bd162e6e99e7a2a21121628eeda01241d0e378e8
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs). */
206 struct signatured_type **all_type_units;
207
208 /* The number of entries in all_type_unit_groups. */
209 int n_type_unit_groups;
210
211 /* Table of type unit groups.
212 This exists to make it easy to iterate over all CUs and TU groups. */
213 struct type_unit_group **all_type_unit_groups;
214
215 /* Table of struct type_unit_group objects.
216 The hash key is the DW_AT_stmt_list value. */
217 htab_t type_unit_groups;
218
219 /* A table mapping .debug_types signatures to its signatured_type entry.
220 This is NULL if the .debug_types section hasn't been read in yet. */
221 htab_t signatured_types;
222
223 /* Type unit statistics, to see how well the scaling improvements
224 are doing. */
225 struct tu_stats
226 {
227 int nr_uniq_abbrev_tables;
228 int nr_symtabs;
229 int nr_symtab_sharers;
230 int nr_stmt_less_type_units;
231 } tu_stats;
232
233 /* A chain of compilation units that are currently read in, so that
234 they can be freed later. */
235 struct dwarf2_per_cu_data *read_in_chain;
236
237 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
238 This is NULL if the table hasn't been allocated yet. */
239 htab_t dwo_files;
240
241 /* Non-zero if we've check for whether there is a DWP file. */
242 int dwp_checked;
243
244 /* The DWP file if there is one, or NULL. */
245 struct dwp_file *dwp_file;
246
247 /* The shared '.dwz' file, if one exists. This is used when the
248 original data was compressed using 'dwz -m'. */
249 struct dwz_file *dwz_file;
250
251 /* A flag indicating wether this objfile has a section loaded at a
252 VMA of 0. */
253 int has_section_at_zero;
254
255 /* True if we are using the mapped index,
256 or we are faking it for OBJF_READNOW's sake. */
257 unsigned char using_index;
258
259 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
260 struct mapped_index *index_table;
261
262 /* When using index_table, this keeps track of all quick_file_names entries.
263 TUs typically share line table entries with a CU, so we maintain a
264 separate table of all line table entries to support the sharing.
265 Note that while there can be way more TUs than CUs, we've already
266 sorted all the TUs into "type unit groups", grouped by their
267 DW_AT_stmt_list value. Therefore the only sharing done here is with a
268 CU and its associated TU group if there is one. */
269 htab_t quick_file_names_table;
270
271 /* Set during partial symbol reading, to prevent queueing of full
272 symbols. */
273 int reading_partial_symbols;
274
275 /* Table mapping type DIEs to their struct type *.
276 This is NULL if not allocated yet.
277 The mapping is done via (CU/TU + DIE offset) -> type. */
278 htab_t die_type_hash;
279
280 /* The CUs we recently read. */
281 VEC (dwarf2_per_cu_ptr) *just_read_cus;
282 };
283
284 static struct dwarf2_per_objfile *dwarf2_per_objfile;
285
286 /* Default names of the debugging sections. */
287
288 /* Note that if the debugging section has been compressed, it might
289 have a name like .zdebug_info. */
290
291 static const struct dwarf2_debug_sections dwarf2_elf_names =
292 {
293 { ".debug_info", ".zdebug_info" },
294 { ".debug_abbrev", ".zdebug_abbrev" },
295 { ".debug_line", ".zdebug_line" },
296 { ".debug_loc", ".zdebug_loc" },
297 { ".debug_macinfo", ".zdebug_macinfo" },
298 { ".debug_macro", ".zdebug_macro" },
299 { ".debug_str", ".zdebug_str" },
300 { ".debug_ranges", ".zdebug_ranges" },
301 { ".debug_types", ".zdebug_types" },
302 { ".debug_addr", ".zdebug_addr" },
303 { ".debug_frame", ".zdebug_frame" },
304 { ".eh_frame", NULL },
305 { ".gdb_index", ".zgdb_index" },
306 23
307 };
308
309 /* List of DWO/DWP sections. */
310
311 static const struct dwop_section_names
312 {
313 struct dwarf2_section_names abbrev_dwo;
314 struct dwarf2_section_names info_dwo;
315 struct dwarf2_section_names line_dwo;
316 struct dwarf2_section_names loc_dwo;
317 struct dwarf2_section_names macinfo_dwo;
318 struct dwarf2_section_names macro_dwo;
319 struct dwarf2_section_names str_dwo;
320 struct dwarf2_section_names str_offsets_dwo;
321 struct dwarf2_section_names types_dwo;
322 struct dwarf2_section_names cu_index;
323 struct dwarf2_section_names tu_index;
324 }
325 dwop_section_names =
326 {
327 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
328 { ".debug_info.dwo", ".zdebug_info.dwo" },
329 { ".debug_line.dwo", ".zdebug_line.dwo" },
330 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
331 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
332 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
333 { ".debug_str.dwo", ".zdebug_str.dwo" },
334 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
335 { ".debug_types.dwo", ".zdebug_types.dwo" },
336 { ".debug_cu_index", ".zdebug_cu_index" },
337 { ".debug_tu_index", ".zdebug_tu_index" },
338 };
339
340 /* local data types */
341
342 /* The data in a compilation unit header, after target2host
343 translation, looks like this. */
344 struct comp_unit_head
345 {
346 unsigned int length;
347 short version;
348 unsigned char addr_size;
349 unsigned char signed_addr_p;
350 sect_offset abbrev_offset;
351
352 /* Size of file offsets; either 4 or 8. */
353 unsigned int offset_size;
354
355 /* Size of the length field; either 4 or 12. */
356 unsigned int initial_length_size;
357
358 /* Offset to the first byte of this compilation unit header in the
359 .debug_info section, for resolving relative reference dies. */
360 sect_offset offset;
361
362 /* Offset to first die in this cu from the start of the cu.
363 This will be the first byte following the compilation unit header. */
364 cu_offset first_die_offset;
365 };
366
367 /* Type used for delaying computation of method physnames.
368 See comments for compute_delayed_physnames. */
369 struct delayed_method_info
370 {
371 /* The type to which the method is attached, i.e., its parent class. */
372 struct type *type;
373
374 /* The index of the method in the type's function fieldlists. */
375 int fnfield_index;
376
377 /* The index of the method in the fieldlist. */
378 int index;
379
380 /* The name of the DIE. */
381 const char *name;
382
383 /* The DIE associated with this method. */
384 struct die_info *die;
385 };
386
387 typedef struct delayed_method_info delayed_method_info;
388 DEF_VEC_O (delayed_method_info);
389
390 /* Internal state when decoding a particular compilation unit. */
391 struct dwarf2_cu
392 {
393 /* The objfile containing this compilation unit. */
394 struct objfile *objfile;
395
396 /* The header of the compilation unit. */
397 struct comp_unit_head header;
398
399 /* Base address of this compilation unit. */
400 CORE_ADDR base_address;
401
402 /* Non-zero if base_address has been set. */
403 int base_known;
404
405 /* The language we are debugging. */
406 enum language language;
407 const struct language_defn *language_defn;
408
409 const char *producer;
410
411 /* The generic symbol table building routines have separate lists for
412 file scope symbols and all all other scopes (local scopes). So
413 we need to select the right one to pass to add_symbol_to_list().
414 We do it by keeping a pointer to the correct list in list_in_scope.
415
416 FIXME: The original dwarf code just treated the file scope as the
417 first local scope, and all other local scopes as nested local
418 scopes, and worked fine. Check to see if we really need to
419 distinguish these in buildsym.c. */
420 struct pending **list_in_scope;
421
422 /* The abbrev table for this CU.
423 Normally this points to the abbrev table in the objfile.
424 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
425 struct abbrev_table *abbrev_table;
426
427 /* Hash table holding all the loaded partial DIEs
428 with partial_die->offset.SECT_OFF as hash. */
429 htab_t partial_dies;
430
431 /* Storage for things with the same lifetime as this read-in compilation
432 unit, including partial DIEs. */
433 struct obstack comp_unit_obstack;
434
435 /* When multiple dwarf2_cu structures are living in memory, this field
436 chains them all together, so that they can be released efficiently.
437 We will probably also want a generation counter so that most-recently-used
438 compilation units are cached... */
439 struct dwarf2_per_cu_data *read_in_chain;
440
441 /* Backchain to our per_cu entry if the tree has been built. */
442 struct dwarf2_per_cu_data *per_cu;
443
444 /* How many compilation units ago was this CU last referenced? */
445 int last_used;
446
447 /* A hash table of DIE cu_offset for following references with
448 die_info->offset.sect_off as hash. */
449 htab_t die_hash;
450
451 /* Full DIEs if read in. */
452 struct die_info *dies;
453
454 /* A set of pointers to dwarf2_per_cu_data objects for compilation
455 units referenced by this one. Only set during full symbol processing;
456 partial symbol tables do not have dependencies. */
457 htab_t dependencies;
458
459 /* Header data from the line table, during full symbol processing. */
460 struct line_header *line_header;
461
462 /* A list of methods which need to have physnames computed
463 after all type information has been read. */
464 VEC (delayed_method_info) *method_list;
465
466 /* To be copied to symtab->call_site_htab. */
467 htab_t call_site_htab;
468
469 /* Non-NULL if this CU came from a DWO file.
470 There is an invariant here that is important to remember:
471 Except for attributes copied from the top level DIE in the "main"
472 (or "stub") file in preparation for reading the DWO file
473 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
474 Either there isn't a DWO file (in which case this is NULL and the point
475 is moot), or there is and either we're not going to read it (in which
476 case this is NULL) or there is and we are reading it (in which case this
477 is non-NULL). */
478 struct dwo_unit *dwo_unit;
479
480 /* The DW_AT_addr_base attribute if present, zero otherwise
481 (zero is a valid value though).
482 Note this value comes from the stub CU/TU's DIE. */
483 ULONGEST addr_base;
484
485 /* The DW_AT_ranges_base attribute if present, zero otherwise
486 (zero is a valid value though).
487 Note this value comes from the stub CU/TU's DIE.
488 Also note that the value is zero in the non-DWO case so this value can
489 be used without needing to know whether DWO files are in use or not.
490 N.B. This does not apply to DW_AT_ranges appearing in
491 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
492 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
493 DW_AT_ranges_base *would* have to be applied, and we'd have to care
494 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
495 ULONGEST ranges_base;
496
497 /* Mark used when releasing cached dies. */
498 unsigned int mark : 1;
499
500 /* This CU references .debug_loc. See the symtab->locations_valid field.
501 This test is imperfect as there may exist optimized debug code not using
502 any location list and still facing inlining issues if handled as
503 unoptimized code. For a future better test see GCC PR other/32998. */
504 unsigned int has_loclist : 1;
505
506 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
507 if all the producer_is_* fields are valid. This information is cached
508 because profiling CU expansion showed excessive time spent in
509 producer_is_gxx_lt_4_6. */
510 unsigned int checked_producer : 1;
511 unsigned int producer_is_gxx_lt_4_6 : 1;
512 unsigned int producer_is_gcc_lt_4_3 : 1;
513 unsigned int producer_is_icc : 1;
514
515 /* When set, the file that we're processing is known to have
516 debugging info for C++ namespaces. GCC 3.3.x did not produce
517 this information, but later versions do. */
518
519 unsigned int processing_has_namespace_info : 1;
520 };
521
522 /* Persistent data held for a compilation unit, even when not
523 processing it. We put a pointer to this structure in the
524 read_symtab_private field of the psymtab. */
525
526 struct dwarf2_per_cu_data
527 {
528 /* The start offset and length of this compilation unit.
529 NOTE: Unlike comp_unit_head.length, this length includes
530 initial_length_size.
531 If the DIE refers to a DWO file, this is always of the original die,
532 not the DWO file. */
533 sect_offset offset;
534 unsigned int length;
535
536 /* Flag indicating this compilation unit will be read in before
537 any of the current compilation units are processed. */
538 unsigned int queued : 1;
539
540 /* This flag will be set when reading partial DIEs if we need to load
541 absolutely all DIEs for this compilation unit, instead of just the ones
542 we think are interesting. It gets set if we look for a DIE in the
543 hash table and don't find it. */
544 unsigned int load_all_dies : 1;
545
546 /* Non-zero if this CU is from .debug_types.
547 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
548 this is non-zero. */
549 unsigned int is_debug_types : 1;
550
551 /* Non-zero if this CU is from the .dwz file. */
552 unsigned int is_dwz : 1;
553
554 /* The section this CU/TU lives in.
555 If the DIE refers to a DWO file, this is always the original die,
556 not the DWO file. */
557 struct dwarf2_section_info *section;
558
559 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
560 of the CU cache it gets reset to NULL again. */
561 struct dwarf2_cu *cu;
562
563 /* The corresponding objfile.
564 Normally we can get the objfile from dwarf2_per_objfile.
565 However we can enter this file with just a "per_cu" handle. */
566 struct objfile *objfile;
567
568 /* When using partial symbol tables, the 'psymtab' field is active.
569 Otherwise the 'quick' field is active. */
570 union
571 {
572 /* The partial symbol table associated with this compilation unit,
573 or NULL for unread partial units. */
574 struct partial_symtab *psymtab;
575
576 /* Data needed by the "quick" functions. */
577 struct dwarf2_per_cu_quick_data *quick;
578 } v;
579
580 /* The CUs we import using DW_TAG_imported_unit. This is filled in
581 while reading psymtabs, used to compute the psymtab dependencies,
582 and then cleared. Then it is filled in again while reading full
583 symbols, and only deleted when the objfile is destroyed.
584
585 This is also used to work around a difference between the way gold
586 generates .gdb_index version <=7 and the way gdb does. Arguably this
587 is a gold bug. For symbols coming from TUs, gold records in the index
588 the CU that includes the TU instead of the TU itself. This breaks
589 dw2_lookup_symbol: It assumes that if the index says symbol X lives
590 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
591 will find X. Alas TUs live in their own symtab, so after expanding CU Y
592 we need to look in TU Z to find X. Fortunately, this is akin to
593 DW_TAG_imported_unit, so we just use the same mechanism: For
594 .gdb_index version <=7 this also records the TUs that the CU referred
595 to. Concurrently with this change gdb was modified to emit version 8
596 indices so we only pay a price for gold generated indices. */
597 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
598 };
599
600 /* Entry in the signatured_types hash table. */
601
602 struct signatured_type
603 {
604 /* The "per_cu" object of this type.
605 This struct is used iff per_cu.is_debug_types.
606 N.B.: This is the first member so that it's easy to convert pointers
607 between them. */
608 struct dwarf2_per_cu_data per_cu;
609
610 /* The type's signature. */
611 ULONGEST signature;
612
613 /* Offset in the TU of the type's DIE, as read from the TU header.
614 If this TU is a DWO stub and the definition lives in a DWO file
615 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
616 cu_offset type_offset_in_tu;
617
618 /* Offset in the section of the type's DIE.
619 If the definition lives in a DWO file, this is the offset in the
620 .debug_types.dwo section.
621 The value is zero until the actual value is known.
622 Zero is otherwise not a valid section offset. */
623 sect_offset type_offset_in_section;
624
625 /* Type units are grouped by their DW_AT_stmt_list entry so that they
626 can share them. This points to the containing symtab. */
627 struct type_unit_group *type_unit_group;
628
629 /* The type.
630 The first time we encounter this type we fully read it in and install it
631 in the symbol tables. Subsequent times we only need the type. */
632 struct type *type;
633 };
634
635 typedef struct signatured_type *sig_type_ptr;
636 DEF_VEC_P (sig_type_ptr);
637
638 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
639 This includes type_unit_group and quick_file_names. */
640
641 struct stmt_list_hash
642 {
643 /* The DWO unit this table is from or NULL if there is none. */
644 struct dwo_unit *dwo_unit;
645
646 /* Offset in .debug_line or .debug_line.dwo. */
647 sect_offset line_offset;
648 };
649
650 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
651 an object of this type. */
652
653 struct type_unit_group
654 {
655 /* dwarf2read.c's main "handle" on a TU symtab.
656 To simplify things we create an artificial CU that "includes" all the
657 type units using this stmt_list so that the rest of the code still has
658 a "per_cu" handle on the symtab.
659 This PER_CU is recognized by having no section. */
660 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
661 struct dwarf2_per_cu_data per_cu;
662
663 /* The TUs that share this DW_AT_stmt_list entry.
664 This is added to while parsing type units to build partial symtabs,
665 and is deleted afterwards and not used again. */
666 VEC (sig_type_ptr) *tus;
667
668 /* The primary symtab.
669 Type units in a group needn't all be defined in the same source file,
670 so we create an essentially anonymous symtab as the primary symtab. */
671 struct symtab *primary_symtab;
672
673 /* The data used to construct the hash key. */
674 struct stmt_list_hash hash;
675
676 /* The number of symtabs from the line header.
677 The value here must match line_header.num_file_names. */
678 unsigned int num_symtabs;
679
680 /* The symbol tables for this TU (obtained from the files listed in
681 DW_AT_stmt_list).
682 WARNING: The order of entries here must match the order of entries
683 in the line header. After the first TU using this type_unit_group, the
684 line header for the subsequent TUs is recreated from this. This is done
685 because we need to use the same symtabs for each TU using the same
686 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
687 there's no guarantee the line header doesn't have duplicate entries. */
688 struct symtab **symtabs;
689 };
690
691 /* These sections are what may appear in a DWO file. */
692
693 struct dwo_sections
694 {
695 struct dwarf2_section_info abbrev;
696 struct dwarf2_section_info line;
697 struct dwarf2_section_info loc;
698 struct dwarf2_section_info macinfo;
699 struct dwarf2_section_info macro;
700 struct dwarf2_section_info str;
701 struct dwarf2_section_info str_offsets;
702 /* In the case of a virtual DWO file, these two are unused. */
703 struct dwarf2_section_info info;
704 VEC (dwarf2_section_info_def) *types;
705 };
706
707 /* CUs/TUs in DWP/DWO files. */
708
709 struct dwo_unit
710 {
711 /* Backlink to the containing struct dwo_file. */
712 struct dwo_file *dwo_file;
713
714 /* The "id" that distinguishes this CU/TU.
715 .debug_info calls this "dwo_id", .debug_types calls this "signature".
716 Since signatures came first, we stick with it for consistency. */
717 ULONGEST signature;
718
719 /* The section this CU/TU lives in, in the DWO file. */
720 struct dwarf2_section_info *section;
721
722 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
723 sect_offset offset;
724 unsigned int length;
725
726 /* For types, offset in the type's DIE of the type defined by this TU. */
727 cu_offset type_offset_in_tu;
728 };
729
730 /* Data for one DWO file.
731 This includes virtual DWO files that have been packaged into a
732 DWP file. */
733
734 struct dwo_file
735 {
736 /* The DW_AT_GNU_dwo_name attribute.
737 For virtual DWO files the name is constructed from the section offsets
738 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
739 from related CU+TUs. */
740 const char *dwo_name;
741
742 /* The DW_AT_comp_dir attribute. */
743 const char *comp_dir;
744
745 /* The bfd, when the file is open. Otherwise this is NULL.
746 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
747 bfd *dbfd;
748
749 /* Section info for this file. */
750 struct dwo_sections sections;
751
752 /* The CU in the file.
753 We only support one because having more than one requires hacking the
754 dwo_name of each to match, which is highly unlikely to happen.
755 Doing this means all TUs can share comp_dir: We also assume that
756 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
757 struct dwo_unit *cu;
758
759 /* Table of TUs in the file.
760 Each element is a struct dwo_unit. */
761 htab_t tus;
762 };
763
764 /* These sections are what may appear in a DWP file. */
765
766 struct dwp_sections
767 {
768 struct dwarf2_section_info str;
769 struct dwarf2_section_info cu_index;
770 struct dwarf2_section_info tu_index;
771 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
772 by section number. We don't need to record them here. */
773 };
774
775 /* These sections are what may appear in a virtual DWO file. */
776
777 struct virtual_dwo_sections
778 {
779 struct dwarf2_section_info abbrev;
780 struct dwarf2_section_info line;
781 struct dwarf2_section_info loc;
782 struct dwarf2_section_info macinfo;
783 struct dwarf2_section_info macro;
784 struct dwarf2_section_info str_offsets;
785 /* Each DWP hash table entry records one CU or one TU.
786 That is recorded here, and copied to dwo_unit.section. */
787 struct dwarf2_section_info info_or_types;
788 };
789
790 /* Contents of DWP hash tables. */
791
792 struct dwp_hash_table
793 {
794 uint32_t nr_units, nr_slots;
795 const gdb_byte *hash_table, *unit_table, *section_pool;
796 };
797
798 /* Data for one DWP file. */
799
800 struct dwp_file
801 {
802 /* Name of the file. */
803 const char *name;
804
805 /* The bfd, when the file is open. Otherwise this is NULL. */
806 bfd *dbfd;
807
808 /* Section info for this file. */
809 struct dwp_sections sections;
810
811 /* Table of CUs in the file. */
812 const struct dwp_hash_table *cus;
813
814 /* Table of TUs in the file. */
815 const struct dwp_hash_table *tus;
816
817 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
818 htab_t loaded_cutus;
819
820 /* Table to map ELF section numbers to their sections. */
821 unsigned int num_sections;
822 asection **elf_sections;
823 };
824
825 /* This represents a '.dwz' file. */
826
827 struct dwz_file
828 {
829 /* A dwz file can only contain a few sections. */
830 struct dwarf2_section_info abbrev;
831 struct dwarf2_section_info info;
832 struct dwarf2_section_info str;
833 struct dwarf2_section_info line;
834 struct dwarf2_section_info macro;
835 struct dwarf2_section_info gdb_index;
836
837 /* The dwz's BFD. */
838 bfd *dwz_bfd;
839 };
840
841 /* Struct used to pass misc. parameters to read_die_and_children, et
842 al. which are used for both .debug_info and .debug_types dies.
843 All parameters here are unchanging for the life of the call. This
844 struct exists to abstract away the constant parameters of die reading. */
845
846 struct die_reader_specs
847 {
848 /* die_section->asection->owner. */
849 bfd* abfd;
850
851 /* The CU of the DIE we are parsing. */
852 struct dwarf2_cu *cu;
853
854 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
855 struct dwo_file *dwo_file;
856
857 /* The section the die comes from.
858 This is either .debug_info or .debug_types, or the .dwo variants. */
859 struct dwarf2_section_info *die_section;
860
861 /* die_section->buffer. */
862 const gdb_byte *buffer;
863
864 /* The end of the buffer. */
865 const gdb_byte *buffer_end;
866 };
867
868 /* Type of function passed to init_cutu_and_read_dies, et.al. */
869 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
870 const gdb_byte *info_ptr,
871 struct die_info *comp_unit_die,
872 int has_children,
873 void *data);
874
875 /* The line number information for a compilation unit (found in the
876 .debug_line section) begins with a "statement program header",
877 which contains the following information. */
878 struct line_header
879 {
880 unsigned int total_length;
881 unsigned short version;
882 unsigned int header_length;
883 unsigned char minimum_instruction_length;
884 unsigned char maximum_ops_per_instruction;
885 unsigned char default_is_stmt;
886 int line_base;
887 unsigned char line_range;
888 unsigned char opcode_base;
889
890 /* standard_opcode_lengths[i] is the number of operands for the
891 standard opcode whose value is i. This means that
892 standard_opcode_lengths[0] is unused, and the last meaningful
893 element is standard_opcode_lengths[opcode_base - 1]. */
894 unsigned char *standard_opcode_lengths;
895
896 /* The include_directories table. NOTE! These strings are not
897 allocated with xmalloc; instead, they are pointers into
898 debug_line_buffer. If you try to free them, `free' will get
899 indigestion. */
900 unsigned int num_include_dirs, include_dirs_size;
901 const char **include_dirs;
902
903 /* The file_names table. NOTE! These strings are not allocated
904 with xmalloc; instead, they are pointers into debug_line_buffer.
905 Don't try to free them directly. */
906 unsigned int num_file_names, file_names_size;
907 struct file_entry
908 {
909 const char *name;
910 unsigned int dir_index;
911 unsigned int mod_time;
912 unsigned int length;
913 int included_p; /* Non-zero if referenced by the Line Number Program. */
914 struct symtab *symtab; /* The associated symbol table, if any. */
915 } *file_names;
916
917 /* The start and end of the statement program following this
918 header. These point into dwarf2_per_objfile->line_buffer. */
919 const gdb_byte *statement_program_start, *statement_program_end;
920 };
921
922 /* When we construct a partial symbol table entry we only
923 need this much information. */
924 struct partial_die_info
925 {
926 /* Offset of this DIE. */
927 sect_offset offset;
928
929 /* DWARF-2 tag for this DIE. */
930 ENUM_BITFIELD(dwarf_tag) tag : 16;
931
932 /* Assorted flags describing the data found in this DIE. */
933 unsigned int has_children : 1;
934 unsigned int is_external : 1;
935 unsigned int is_declaration : 1;
936 unsigned int has_type : 1;
937 unsigned int has_specification : 1;
938 unsigned int has_pc_info : 1;
939 unsigned int may_be_inlined : 1;
940
941 /* Flag set if the SCOPE field of this structure has been
942 computed. */
943 unsigned int scope_set : 1;
944
945 /* Flag set if the DIE has a byte_size attribute. */
946 unsigned int has_byte_size : 1;
947
948 /* Flag set if any of the DIE's children are template arguments. */
949 unsigned int has_template_arguments : 1;
950
951 /* Flag set if fixup_partial_die has been called on this die. */
952 unsigned int fixup_called : 1;
953
954 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
955 unsigned int is_dwz : 1;
956
957 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
958 unsigned int spec_is_dwz : 1;
959
960 /* The name of this DIE. Normally the value of DW_AT_name, but
961 sometimes a default name for unnamed DIEs. */
962 const char *name;
963
964 /* The linkage name, if present. */
965 const char *linkage_name;
966
967 /* The scope to prepend to our children. This is generally
968 allocated on the comp_unit_obstack, so will disappear
969 when this compilation unit leaves the cache. */
970 const char *scope;
971
972 /* Some data associated with the partial DIE. The tag determines
973 which field is live. */
974 union
975 {
976 /* The location description associated with this DIE, if any. */
977 struct dwarf_block *locdesc;
978 /* The offset of an import, for DW_TAG_imported_unit. */
979 sect_offset offset;
980 } d;
981
982 /* If HAS_PC_INFO, the PC range associated with this DIE. */
983 CORE_ADDR lowpc;
984 CORE_ADDR highpc;
985
986 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
987 DW_AT_sibling, if any. */
988 /* NOTE: This member isn't strictly necessary, read_partial_die could
989 return DW_AT_sibling values to its caller load_partial_dies. */
990 const gdb_byte *sibling;
991
992 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
993 DW_AT_specification (or DW_AT_abstract_origin or
994 DW_AT_extension). */
995 sect_offset spec_offset;
996
997 /* Pointers to this DIE's parent, first child, and next sibling,
998 if any. */
999 struct partial_die_info *die_parent, *die_child, *die_sibling;
1000 };
1001
1002 /* This data structure holds the information of an abbrev. */
1003 struct abbrev_info
1004 {
1005 unsigned int number; /* number identifying abbrev */
1006 enum dwarf_tag tag; /* dwarf tag */
1007 unsigned short has_children; /* boolean */
1008 unsigned short num_attrs; /* number of attributes */
1009 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1010 struct abbrev_info *next; /* next in chain */
1011 };
1012
1013 struct attr_abbrev
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 16;
1017 };
1018
1019 /* Size of abbrev_table.abbrev_hash_table. */
1020 #define ABBREV_HASH_SIZE 121
1021
1022 /* Top level data structure to contain an abbreviation table. */
1023
1024 struct abbrev_table
1025 {
1026 /* Where the abbrev table came from.
1027 This is used as a sanity check when the table is used. */
1028 sect_offset offset;
1029
1030 /* Storage for the abbrev table. */
1031 struct obstack abbrev_obstack;
1032
1033 /* Hash table of abbrevs.
1034 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1035 It could be statically allocated, but the previous code didn't so we
1036 don't either. */
1037 struct abbrev_info **abbrevs;
1038 };
1039
1040 /* Attributes have a name and a value. */
1041 struct attribute
1042 {
1043 ENUM_BITFIELD(dwarf_attribute) name : 16;
1044 ENUM_BITFIELD(dwarf_form) form : 15;
1045
1046 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1047 field should be in u.str (existing only for DW_STRING) but it is kept
1048 here for better struct attribute alignment. */
1049 unsigned int string_is_canonical : 1;
1050
1051 union
1052 {
1053 const char *str;
1054 struct dwarf_block *blk;
1055 ULONGEST unsnd;
1056 LONGEST snd;
1057 CORE_ADDR addr;
1058 ULONGEST signature;
1059 }
1060 u;
1061 };
1062
1063 /* This data structure holds a complete die structure. */
1064 struct die_info
1065 {
1066 /* DWARF-2 tag for this DIE. */
1067 ENUM_BITFIELD(dwarf_tag) tag : 16;
1068
1069 /* Number of attributes */
1070 unsigned char num_attrs;
1071
1072 /* True if we're presently building the full type name for the
1073 type derived from this DIE. */
1074 unsigned char building_fullname : 1;
1075
1076 /* Abbrev number */
1077 unsigned int abbrev;
1078
1079 /* Offset in .debug_info or .debug_types section. */
1080 sect_offset offset;
1081
1082 /* The dies in a compilation unit form an n-ary tree. PARENT
1083 points to this die's parent; CHILD points to the first child of
1084 this node; and all the children of a given node are chained
1085 together via their SIBLING fields. */
1086 struct die_info *child; /* Its first child, if any. */
1087 struct die_info *sibling; /* Its next sibling, if any. */
1088 struct die_info *parent; /* Its parent, if any. */
1089
1090 /* An array of attributes, with NUM_ATTRS elements. There may be
1091 zero, but it's not common and zero-sized arrays are not
1092 sufficiently portable C. */
1093 struct attribute attrs[1];
1094 };
1095
1096 /* Get at parts of an attribute structure. */
1097
1098 #define DW_STRING(attr) ((attr)->u.str)
1099 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1100 #define DW_UNSND(attr) ((attr)->u.unsnd)
1101 #define DW_BLOCK(attr) ((attr)->u.blk)
1102 #define DW_SND(attr) ((attr)->u.snd)
1103 #define DW_ADDR(attr) ((attr)->u.addr)
1104 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1105
1106 /* Blocks are a bunch of untyped bytes. */
1107 struct dwarf_block
1108 {
1109 size_t size;
1110
1111 /* Valid only if SIZE is not zero. */
1112 const gdb_byte *data;
1113 };
1114
1115 #ifndef ATTR_ALLOC_CHUNK
1116 #define ATTR_ALLOC_CHUNK 4
1117 #endif
1118
1119 /* Allocate fields for structs, unions and enums in this size. */
1120 #ifndef DW_FIELD_ALLOC_CHUNK
1121 #define DW_FIELD_ALLOC_CHUNK 4
1122 #endif
1123
1124 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1125 but this would require a corresponding change in unpack_field_as_long
1126 and friends. */
1127 static int bits_per_byte = 8;
1128
1129 /* The routines that read and process dies for a C struct or C++ class
1130 pass lists of data member fields and lists of member function fields
1131 in an instance of a field_info structure, as defined below. */
1132 struct field_info
1133 {
1134 /* List of data member and baseclasses fields. */
1135 struct nextfield
1136 {
1137 struct nextfield *next;
1138 int accessibility;
1139 int virtuality;
1140 struct field field;
1141 }
1142 *fields, *baseclasses;
1143
1144 /* Number of fields (including baseclasses). */
1145 int nfields;
1146
1147 /* Number of baseclasses. */
1148 int nbaseclasses;
1149
1150 /* Set if the accesibility of one of the fields is not public. */
1151 int non_public_fields;
1152
1153 /* Member function fields array, entries are allocated in the order they
1154 are encountered in the object file. */
1155 struct nextfnfield
1156 {
1157 struct nextfnfield *next;
1158 struct fn_field fnfield;
1159 }
1160 *fnfields;
1161
1162 /* Member function fieldlist array, contains name of possibly overloaded
1163 member function, number of overloaded member functions and a pointer
1164 to the head of the member function field chain. */
1165 struct fnfieldlist
1166 {
1167 const char *name;
1168 int length;
1169 struct nextfnfield *head;
1170 }
1171 *fnfieldlists;
1172
1173 /* Number of entries in the fnfieldlists array. */
1174 int nfnfields;
1175
1176 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1177 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1178 struct typedef_field_list
1179 {
1180 struct typedef_field field;
1181 struct typedef_field_list *next;
1182 }
1183 *typedef_field_list;
1184 unsigned typedef_field_list_count;
1185 };
1186
1187 /* One item on the queue of compilation units to read in full symbols
1188 for. */
1189 struct dwarf2_queue_item
1190 {
1191 struct dwarf2_per_cu_data *per_cu;
1192 enum language pretend_language;
1193 struct dwarf2_queue_item *next;
1194 };
1195
1196 /* The current queue. */
1197 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1198
1199 /* Loaded secondary compilation units are kept in memory until they
1200 have not been referenced for the processing of this many
1201 compilation units. Set this to zero to disable caching. Cache
1202 sizes of up to at least twenty will improve startup time for
1203 typical inter-CU-reference binaries, at an obvious memory cost. */
1204 static int dwarf2_max_cache_age = 5;
1205 static void
1206 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1207 struct cmd_list_element *c, const char *value)
1208 {
1209 fprintf_filtered (file, _("The upper bound on the age of cached "
1210 "dwarf2 compilation units is %s.\n"),
1211 value);
1212 }
1213
1214
1215 /* Various complaints about symbol reading that don't abort the process. */
1216
1217 static void
1218 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1219 {
1220 complaint (&symfile_complaints,
1221 _("statement list doesn't fit in .debug_line section"));
1222 }
1223
1224 static void
1225 dwarf2_debug_line_missing_file_complaint (void)
1226 {
1227 complaint (&symfile_complaints,
1228 _(".debug_line section has line data without a file"));
1229 }
1230
1231 static void
1232 dwarf2_debug_line_missing_end_sequence_complaint (void)
1233 {
1234 complaint (&symfile_complaints,
1235 _(".debug_line section has line "
1236 "program sequence without an end"));
1237 }
1238
1239 static void
1240 dwarf2_complex_location_expr_complaint (void)
1241 {
1242 complaint (&symfile_complaints, _("location expression too complex"));
1243 }
1244
1245 static void
1246 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1247 int arg3)
1248 {
1249 complaint (&symfile_complaints,
1250 _("const value length mismatch for '%s', got %d, expected %d"),
1251 arg1, arg2, arg3);
1252 }
1253
1254 static void
1255 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1256 {
1257 complaint (&symfile_complaints,
1258 _("debug info runs off end of %s section"
1259 " [in module %s]"),
1260 section->asection->name,
1261 bfd_get_filename (section->asection->owner));
1262 }
1263
1264 static void
1265 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1266 {
1267 complaint (&symfile_complaints,
1268 _("macro debug info contains a "
1269 "malformed macro definition:\n`%s'"),
1270 arg1);
1271 }
1272
1273 static void
1274 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1275 {
1276 complaint (&symfile_complaints,
1277 _("invalid attribute class or form for '%s' in '%s'"),
1278 arg1, arg2);
1279 }
1280
1281 /* local function prototypes */
1282
1283 static void dwarf2_locate_sections (bfd *, asection *, void *);
1284
1285 static void dwarf2_find_base_address (struct die_info *die,
1286 struct dwarf2_cu *cu);
1287
1288 static struct partial_symtab *create_partial_symtab
1289 (struct dwarf2_per_cu_data *per_cu, const char *name);
1290
1291 static void dwarf2_build_psymtabs_hard (struct objfile *);
1292
1293 static void scan_partial_symbols (struct partial_die_info *,
1294 CORE_ADDR *, CORE_ADDR *,
1295 int, struct dwarf2_cu *);
1296
1297 static void add_partial_symbol (struct partial_die_info *,
1298 struct dwarf2_cu *);
1299
1300 static void add_partial_namespace (struct partial_die_info *pdi,
1301 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1302 int need_pc, struct dwarf2_cu *cu);
1303
1304 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1305 CORE_ADDR *highpc, int need_pc,
1306 struct dwarf2_cu *cu);
1307
1308 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1309 struct dwarf2_cu *cu);
1310
1311 static void add_partial_subprogram (struct partial_die_info *pdi,
1312 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1313 int need_pc, struct dwarf2_cu *cu);
1314
1315 static void dwarf2_read_symtab (struct partial_symtab *,
1316 struct objfile *);
1317
1318 static void psymtab_to_symtab_1 (struct partial_symtab *);
1319
1320 static struct abbrev_info *abbrev_table_lookup_abbrev
1321 (const struct abbrev_table *, unsigned int);
1322
1323 static struct abbrev_table *abbrev_table_read_table
1324 (struct dwarf2_section_info *, sect_offset);
1325
1326 static void abbrev_table_free (struct abbrev_table *);
1327
1328 static void abbrev_table_free_cleanup (void *);
1329
1330 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1331 struct dwarf2_section_info *);
1332
1333 static void dwarf2_free_abbrev_table (void *);
1334
1335 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1336
1337 static struct partial_die_info *load_partial_dies
1338 (const struct die_reader_specs *, const gdb_byte *, int);
1339
1340 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1341 struct partial_die_info *,
1342 struct abbrev_info *,
1343 unsigned int,
1344 const gdb_byte *);
1345
1346 static struct partial_die_info *find_partial_die (sect_offset, int,
1347 struct dwarf2_cu *);
1348
1349 static void fixup_partial_die (struct partial_die_info *,
1350 struct dwarf2_cu *);
1351
1352 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1353 struct attribute *, struct attr_abbrev *,
1354 const gdb_byte *);
1355
1356 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1357
1358 static int read_1_signed_byte (bfd *, const gdb_byte *);
1359
1360 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1361
1362 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1363
1364 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1365
1366 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1367 unsigned int *);
1368
1369 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1370
1371 static LONGEST read_checked_initial_length_and_offset
1372 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1373 unsigned int *, unsigned int *);
1374
1375 static LONGEST read_offset (bfd *, const gdb_byte *,
1376 const struct comp_unit_head *,
1377 unsigned int *);
1378
1379 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1380
1381 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1382 sect_offset);
1383
1384 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1385
1386 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1387
1388 static const char *read_indirect_string (bfd *, const gdb_byte *,
1389 const struct comp_unit_head *,
1390 unsigned int *);
1391
1392 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1393
1394 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1395
1396 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1397
1398 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1399 const gdb_byte *,
1400 unsigned int *);
1401
1402 static const char *read_str_index (const struct die_reader_specs *reader,
1403 struct dwarf2_cu *cu, ULONGEST str_index);
1404
1405 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1406
1407 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1408 struct dwarf2_cu *);
1409
1410 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1411 unsigned int);
1412
1413 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1414 struct dwarf2_cu *cu);
1415
1416 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1417
1418 static struct die_info *die_specification (struct die_info *die,
1419 struct dwarf2_cu **);
1420
1421 static void free_line_header (struct line_header *lh);
1422
1423 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1424 struct dwarf2_cu *cu);
1425
1426 static void dwarf_decode_lines (struct line_header *, const char *,
1427 struct dwarf2_cu *, struct partial_symtab *,
1428 int);
1429
1430 static void dwarf2_start_subfile (const char *, const char *, const char *);
1431
1432 static void dwarf2_start_symtab (struct dwarf2_cu *,
1433 const char *, const char *, CORE_ADDR);
1434
1435 static struct symbol *new_symbol (struct die_info *, struct type *,
1436 struct dwarf2_cu *);
1437
1438 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1439 struct dwarf2_cu *, struct symbol *);
1440
1441 static void dwarf2_const_value (struct attribute *, struct symbol *,
1442 struct dwarf2_cu *);
1443
1444 static void dwarf2_const_value_attr (struct attribute *attr,
1445 struct type *type,
1446 const char *name,
1447 struct obstack *obstack,
1448 struct dwarf2_cu *cu, LONGEST *value,
1449 const gdb_byte **bytes,
1450 struct dwarf2_locexpr_baton **baton);
1451
1452 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1453
1454 static int need_gnat_info (struct dwarf2_cu *);
1455
1456 static struct type *die_descriptive_type (struct die_info *,
1457 struct dwarf2_cu *);
1458
1459 static void set_descriptive_type (struct type *, struct die_info *,
1460 struct dwarf2_cu *);
1461
1462 static struct type *die_containing_type (struct die_info *,
1463 struct dwarf2_cu *);
1464
1465 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1466 struct dwarf2_cu *);
1467
1468 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1469
1470 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1471
1472 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1473
1474 static char *typename_concat (struct obstack *obs, const char *prefix,
1475 const char *suffix, int physname,
1476 struct dwarf2_cu *cu);
1477
1478 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1479
1480 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1481
1482 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1483
1484 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1485
1486 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1487
1488 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1489 struct dwarf2_cu *, struct partial_symtab *);
1490
1491 static int dwarf2_get_pc_bounds (struct die_info *,
1492 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1493 struct partial_symtab *);
1494
1495 static void get_scope_pc_bounds (struct die_info *,
1496 CORE_ADDR *, CORE_ADDR *,
1497 struct dwarf2_cu *);
1498
1499 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1500 CORE_ADDR, struct dwarf2_cu *);
1501
1502 static void dwarf2_add_field (struct field_info *, struct die_info *,
1503 struct dwarf2_cu *);
1504
1505 static void dwarf2_attach_fields_to_type (struct field_info *,
1506 struct type *, struct dwarf2_cu *);
1507
1508 static void dwarf2_add_member_fn (struct field_info *,
1509 struct die_info *, struct type *,
1510 struct dwarf2_cu *);
1511
1512 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1513 struct type *,
1514 struct dwarf2_cu *);
1515
1516 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1517
1518 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1519
1520 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1521
1522 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1523
1524 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1525
1526 static struct type *read_module_type (struct die_info *die,
1527 struct dwarf2_cu *cu);
1528
1529 static const char *namespace_name (struct die_info *die,
1530 int *is_anonymous, struct dwarf2_cu *);
1531
1532 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1533
1534 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1535
1536 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1537 struct dwarf2_cu *);
1538
1539 static struct die_info *read_die_and_siblings_1
1540 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1541 struct die_info *);
1542
1543 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1544 const gdb_byte *info_ptr,
1545 const gdb_byte **new_info_ptr,
1546 struct die_info *parent);
1547
1548 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1549 struct die_info **, const gdb_byte *,
1550 int *, int);
1551
1552 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1553 struct die_info **, const gdb_byte *,
1554 int *);
1555
1556 static void process_die (struct die_info *, struct dwarf2_cu *);
1557
1558 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1559 struct obstack *);
1560
1561 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1562
1563 static const char *dwarf2_full_name (const char *name,
1564 struct die_info *die,
1565 struct dwarf2_cu *cu);
1566
1567 static const char *dwarf2_physname (const char *name, struct die_info *die,
1568 struct dwarf2_cu *cu);
1569
1570 static struct die_info *dwarf2_extension (struct die_info *die,
1571 struct dwarf2_cu **);
1572
1573 static const char *dwarf_tag_name (unsigned int);
1574
1575 static const char *dwarf_attr_name (unsigned int);
1576
1577 static const char *dwarf_form_name (unsigned int);
1578
1579 static char *dwarf_bool_name (unsigned int);
1580
1581 static const char *dwarf_type_encoding_name (unsigned int);
1582
1583 static struct die_info *sibling_die (struct die_info *);
1584
1585 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1586
1587 static void dump_die_for_error (struct die_info *);
1588
1589 static void dump_die_1 (struct ui_file *, int level, int max_level,
1590 struct die_info *);
1591
1592 /*static*/ void dump_die (struct die_info *, int max_level);
1593
1594 static void store_in_ref_table (struct die_info *,
1595 struct dwarf2_cu *);
1596
1597 static int is_ref_attr (struct attribute *);
1598
1599 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1600
1601 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1602
1603 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1604 struct attribute *,
1605 struct dwarf2_cu **);
1606
1607 static struct die_info *follow_die_ref (struct die_info *,
1608 struct attribute *,
1609 struct dwarf2_cu **);
1610
1611 static struct die_info *follow_die_sig (struct die_info *,
1612 struct attribute *,
1613 struct dwarf2_cu **);
1614
1615 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1616 struct dwarf2_cu *);
1617
1618 static struct type *get_DW_AT_signature_type (struct die_info *,
1619 struct attribute *,
1620 struct dwarf2_cu *);
1621
1622 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1623
1624 static void read_signatured_type (struct signatured_type *);
1625
1626 static struct type_unit_group *get_type_unit_group
1627 (struct dwarf2_cu *, struct attribute *);
1628
1629 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1630
1631 /* memory allocation interface */
1632
1633 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1634
1635 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1636
1637 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1638 const char *, int);
1639
1640 static int attr_form_is_block (struct attribute *);
1641
1642 static int attr_form_is_section_offset (struct attribute *);
1643
1644 static int attr_form_is_constant (struct attribute *);
1645
1646 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1647 struct dwarf2_loclist_baton *baton,
1648 struct attribute *attr);
1649
1650 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1651 struct symbol *sym,
1652 struct dwarf2_cu *cu,
1653 int is_block);
1654
1655 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1656 const gdb_byte *info_ptr,
1657 struct abbrev_info *abbrev);
1658
1659 static void free_stack_comp_unit (void *);
1660
1661 static hashval_t partial_die_hash (const void *item);
1662
1663 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1664
1665 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1666 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1667
1668 static void init_one_comp_unit (struct dwarf2_cu *cu,
1669 struct dwarf2_per_cu_data *per_cu);
1670
1671 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1672 struct die_info *comp_unit_die,
1673 enum language pretend_language);
1674
1675 static void free_heap_comp_unit (void *);
1676
1677 static void free_cached_comp_units (void *);
1678
1679 static void age_cached_comp_units (void);
1680
1681 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1682
1683 static struct type *set_die_type (struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static void create_all_comp_units (struct objfile *);
1687
1688 static int create_all_type_units (struct objfile *);
1689
1690 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1691 enum language);
1692
1693 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1694 enum language);
1695
1696 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1697 enum language);
1698
1699 static void dwarf2_add_dependence (struct dwarf2_cu *,
1700 struct dwarf2_per_cu_data *);
1701
1702 static void dwarf2_mark (struct dwarf2_cu *);
1703
1704 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1705
1706 static struct type *get_die_type_at_offset (sect_offset,
1707 struct dwarf2_per_cu_data *);
1708
1709 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1710
1711 static void dwarf2_release_queue (void *dummy);
1712
1713 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1714 enum language pretend_language);
1715
1716 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1717 struct dwarf2_per_cu_data *per_cu,
1718 enum language pretend_language);
1719
1720 static void process_queue (void);
1721
1722 static void find_file_and_directory (struct die_info *die,
1723 struct dwarf2_cu *cu,
1724 const char **name, const char **comp_dir);
1725
1726 static char *file_full_name (int file, struct line_header *lh,
1727 const char *comp_dir);
1728
1729 static const gdb_byte *read_and_check_comp_unit_head
1730 (struct comp_unit_head *header,
1731 struct dwarf2_section_info *section,
1732 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1733 int is_debug_types_section);
1734
1735 static void init_cutu_and_read_dies
1736 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1737 int use_existing_cu, int keep,
1738 die_reader_func_ftype *die_reader_func, void *data);
1739
1740 static void init_cutu_and_read_dies_simple
1741 (struct dwarf2_per_cu_data *this_cu,
1742 die_reader_func_ftype *die_reader_func, void *data);
1743
1744 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1745
1746 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1747
1748 static struct dwo_unit *lookup_dwo_comp_unit
1749 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1750
1751 static struct dwo_unit *lookup_dwo_type_unit
1752 (struct signatured_type *, const char *, const char *);
1753
1754 static void free_dwo_file_cleanup (void *);
1755
1756 static void process_cu_includes (void);
1757
1758 static void check_producer (struct dwarf2_cu *cu);
1759
1760 #if WORDS_BIGENDIAN
1761
1762 /* Convert VALUE between big- and little-endian. */
1763 static offset_type
1764 byte_swap (offset_type value)
1765 {
1766 offset_type result;
1767
1768 result = (value & 0xff) << 24;
1769 result |= (value & 0xff00) << 8;
1770 result |= (value & 0xff0000) >> 8;
1771 result |= (value & 0xff000000) >> 24;
1772 return result;
1773 }
1774
1775 #define MAYBE_SWAP(V) byte_swap (V)
1776
1777 #else
1778 #define MAYBE_SWAP(V) (V)
1779 #endif /* WORDS_BIGENDIAN */
1780
1781 /* The suffix for an index file. */
1782 #define INDEX_SUFFIX ".gdb-index"
1783
1784 /* Try to locate the sections we need for DWARF 2 debugging
1785 information and return true if we have enough to do something.
1786 NAMES points to the dwarf2 section names, or is NULL if the standard
1787 ELF names are used. */
1788
1789 int
1790 dwarf2_has_info (struct objfile *objfile,
1791 const struct dwarf2_debug_sections *names)
1792 {
1793 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1794 if (!dwarf2_per_objfile)
1795 {
1796 /* Initialize per-objfile state. */
1797 struct dwarf2_per_objfile *data
1798 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1799
1800 memset (data, 0, sizeof (*data));
1801 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1802 dwarf2_per_objfile = data;
1803
1804 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1805 (void *) names);
1806 dwarf2_per_objfile->objfile = objfile;
1807 }
1808 return (dwarf2_per_objfile->info.asection != NULL
1809 && dwarf2_per_objfile->abbrev.asection != NULL);
1810 }
1811
1812 /* When loading sections, we look either for uncompressed section or for
1813 compressed section names. */
1814
1815 static int
1816 section_is_p (const char *section_name,
1817 const struct dwarf2_section_names *names)
1818 {
1819 if (names->normal != NULL
1820 && strcmp (section_name, names->normal) == 0)
1821 return 1;
1822 if (names->compressed != NULL
1823 && strcmp (section_name, names->compressed) == 0)
1824 return 1;
1825 return 0;
1826 }
1827
1828 /* This function is mapped across the sections and remembers the
1829 offset and size of each of the debugging sections we are interested
1830 in. */
1831
1832 static void
1833 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1834 {
1835 const struct dwarf2_debug_sections *names;
1836 flagword aflag = bfd_get_section_flags (abfd, sectp);
1837
1838 if (vnames == NULL)
1839 names = &dwarf2_elf_names;
1840 else
1841 names = (const struct dwarf2_debug_sections *) vnames;
1842
1843 if ((aflag & SEC_HAS_CONTENTS) == 0)
1844 {
1845 }
1846 else if (section_is_p (sectp->name, &names->info))
1847 {
1848 dwarf2_per_objfile->info.asection = sectp;
1849 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1850 }
1851 else if (section_is_p (sectp->name, &names->abbrev))
1852 {
1853 dwarf2_per_objfile->abbrev.asection = sectp;
1854 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1855 }
1856 else if (section_is_p (sectp->name, &names->line))
1857 {
1858 dwarf2_per_objfile->line.asection = sectp;
1859 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1860 }
1861 else if (section_is_p (sectp->name, &names->loc))
1862 {
1863 dwarf2_per_objfile->loc.asection = sectp;
1864 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1865 }
1866 else if (section_is_p (sectp->name, &names->macinfo))
1867 {
1868 dwarf2_per_objfile->macinfo.asection = sectp;
1869 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1870 }
1871 else if (section_is_p (sectp->name, &names->macro))
1872 {
1873 dwarf2_per_objfile->macro.asection = sectp;
1874 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1875 }
1876 else if (section_is_p (sectp->name, &names->str))
1877 {
1878 dwarf2_per_objfile->str.asection = sectp;
1879 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->addr))
1882 {
1883 dwarf2_per_objfile->addr.asection = sectp;
1884 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->frame))
1887 {
1888 dwarf2_per_objfile->frame.asection = sectp;
1889 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->eh_frame))
1892 {
1893 dwarf2_per_objfile->eh_frame.asection = sectp;
1894 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->ranges))
1897 {
1898 dwarf2_per_objfile->ranges.asection = sectp;
1899 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->types))
1902 {
1903 struct dwarf2_section_info type_section;
1904
1905 memset (&type_section, 0, sizeof (type_section));
1906 type_section.asection = sectp;
1907 type_section.size = bfd_get_section_size (sectp);
1908
1909 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1910 &type_section);
1911 }
1912 else if (section_is_p (sectp->name, &names->gdb_index))
1913 {
1914 dwarf2_per_objfile->gdb_index.asection = sectp;
1915 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1916 }
1917
1918 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1919 && bfd_section_vma (abfd, sectp) == 0)
1920 dwarf2_per_objfile->has_section_at_zero = 1;
1921 }
1922
1923 /* A helper function that decides whether a section is empty,
1924 or not present. */
1925
1926 static int
1927 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1928 {
1929 return info->asection == NULL || info->size == 0;
1930 }
1931
1932 /* Read the contents of the section INFO.
1933 OBJFILE is the main object file, but not necessarily the file where
1934 the section comes from. E.g., for DWO files INFO->asection->owner
1935 is the bfd of the DWO file.
1936 If the section is compressed, uncompress it before returning. */
1937
1938 static void
1939 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1940 {
1941 asection *sectp = info->asection;
1942 bfd *abfd;
1943 gdb_byte *buf, *retbuf;
1944 unsigned char header[4];
1945
1946 if (info->readin)
1947 return;
1948 info->buffer = NULL;
1949 info->readin = 1;
1950
1951 if (dwarf2_section_empty_p (info))
1952 return;
1953
1954 abfd = sectp->owner;
1955
1956 /* If the section has relocations, we must read it ourselves.
1957 Otherwise we attach it to the BFD. */
1958 if ((sectp->flags & SEC_RELOC) == 0)
1959 {
1960 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1961 return;
1962 }
1963
1964 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1965 info->buffer = buf;
1966
1967 /* When debugging .o files, we may need to apply relocations; see
1968 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1969 We never compress sections in .o files, so we only need to
1970 try this when the section is not compressed. */
1971 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1972 if (retbuf != NULL)
1973 {
1974 info->buffer = retbuf;
1975 return;
1976 }
1977
1978 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1979 || bfd_bread (buf, info->size, abfd) != info->size)
1980 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1981 bfd_get_filename (abfd));
1982 }
1983
1984 /* A helper function that returns the size of a section in a safe way.
1985 If you are positive that the section has been read before using the
1986 size, then it is safe to refer to the dwarf2_section_info object's
1987 "size" field directly. In other cases, you must call this
1988 function, because for compressed sections the size field is not set
1989 correctly until the section has been read. */
1990
1991 static bfd_size_type
1992 dwarf2_section_size (struct objfile *objfile,
1993 struct dwarf2_section_info *info)
1994 {
1995 if (!info->readin)
1996 dwarf2_read_section (objfile, info);
1997 return info->size;
1998 }
1999
2000 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2001 SECTION_NAME. */
2002
2003 void
2004 dwarf2_get_section_info (struct objfile *objfile,
2005 enum dwarf2_section_enum sect,
2006 asection **sectp, const gdb_byte **bufp,
2007 bfd_size_type *sizep)
2008 {
2009 struct dwarf2_per_objfile *data
2010 = objfile_data (objfile, dwarf2_objfile_data_key);
2011 struct dwarf2_section_info *info;
2012
2013 /* We may see an objfile without any DWARF, in which case we just
2014 return nothing. */
2015 if (data == NULL)
2016 {
2017 *sectp = NULL;
2018 *bufp = NULL;
2019 *sizep = 0;
2020 return;
2021 }
2022 switch (sect)
2023 {
2024 case DWARF2_DEBUG_FRAME:
2025 info = &data->frame;
2026 break;
2027 case DWARF2_EH_FRAME:
2028 info = &data->eh_frame;
2029 break;
2030 default:
2031 gdb_assert_not_reached ("unexpected section");
2032 }
2033
2034 dwarf2_read_section (objfile, info);
2035
2036 *sectp = info->asection;
2037 *bufp = info->buffer;
2038 *sizep = info->size;
2039 }
2040
2041 /* A helper function to find the sections for a .dwz file. */
2042
2043 static void
2044 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2045 {
2046 struct dwz_file *dwz_file = arg;
2047
2048 /* Note that we only support the standard ELF names, because .dwz
2049 is ELF-only (at the time of writing). */
2050 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2051 {
2052 dwz_file->abbrev.asection = sectp;
2053 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2054 }
2055 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2056 {
2057 dwz_file->info.asection = sectp;
2058 dwz_file->info.size = bfd_get_section_size (sectp);
2059 }
2060 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2061 {
2062 dwz_file->str.asection = sectp;
2063 dwz_file->str.size = bfd_get_section_size (sectp);
2064 }
2065 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2066 {
2067 dwz_file->line.asection = sectp;
2068 dwz_file->line.size = bfd_get_section_size (sectp);
2069 }
2070 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2071 {
2072 dwz_file->macro.asection = sectp;
2073 dwz_file->macro.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2076 {
2077 dwz_file->gdb_index.asection = sectp;
2078 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2079 }
2080 }
2081
2082 /* Open the separate '.dwz' debug file, if needed. Error if the file
2083 cannot be found. */
2084
2085 static struct dwz_file *
2086 dwarf2_get_dwz_file (void)
2087 {
2088 bfd *abfd, *dwz_bfd;
2089 asection *section;
2090 gdb_byte *data;
2091 struct cleanup *cleanup;
2092 const char *filename;
2093 struct dwz_file *result;
2094
2095 if (dwarf2_per_objfile->dwz_file != NULL)
2096 return dwarf2_per_objfile->dwz_file;
2097
2098 abfd = dwarf2_per_objfile->objfile->obfd;
2099 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2100 if (section == NULL)
2101 error (_("could not find '.gnu_debugaltlink' section"));
2102 if (!bfd_malloc_and_get_section (abfd, section, &data))
2103 error (_("could not read '.gnu_debugaltlink' section: %s"),
2104 bfd_errmsg (bfd_get_error ()));
2105 cleanup = make_cleanup (xfree, data);
2106
2107 filename = (const char *) data;
2108 if (!IS_ABSOLUTE_PATH (filename))
2109 {
2110 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2111 char *rel;
2112
2113 make_cleanup (xfree, abs);
2114 abs = ldirname (abs);
2115 make_cleanup (xfree, abs);
2116
2117 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2118 make_cleanup (xfree, rel);
2119 filename = rel;
2120 }
2121
2122 /* The format is just a NUL-terminated file name, followed by the
2123 build-id. For now, though, we ignore the build-id. */
2124 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2125 if (dwz_bfd == NULL)
2126 error (_("could not read '%s': %s"), filename,
2127 bfd_errmsg (bfd_get_error ()));
2128
2129 if (!bfd_check_format (dwz_bfd, bfd_object))
2130 {
2131 gdb_bfd_unref (dwz_bfd);
2132 error (_("file '%s' was not usable: %s"), filename,
2133 bfd_errmsg (bfd_get_error ()));
2134 }
2135
2136 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2137 struct dwz_file);
2138 result->dwz_bfd = dwz_bfd;
2139
2140 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2141
2142 do_cleanups (cleanup);
2143
2144 dwarf2_per_objfile->dwz_file = result;
2145 return result;
2146 }
2147 \f
2148 /* DWARF quick_symbols_functions support. */
2149
2150 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2151 unique line tables, so we maintain a separate table of all .debug_line
2152 derived entries to support the sharing.
2153 All the quick functions need is the list of file names. We discard the
2154 line_header when we're done and don't need to record it here. */
2155 struct quick_file_names
2156 {
2157 /* The data used to construct the hash key. */
2158 struct stmt_list_hash hash;
2159
2160 /* The number of entries in file_names, real_names. */
2161 unsigned int num_file_names;
2162
2163 /* The file names from the line table, after being run through
2164 file_full_name. */
2165 const char **file_names;
2166
2167 /* The file names from the line table after being run through
2168 gdb_realpath. These are computed lazily. */
2169 const char **real_names;
2170 };
2171
2172 /* When using the index (and thus not using psymtabs), each CU has an
2173 object of this type. This is used to hold information needed by
2174 the various "quick" methods. */
2175 struct dwarf2_per_cu_quick_data
2176 {
2177 /* The file table. This can be NULL if there was no file table
2178 or it's currently not read in.
2179 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2180 struct quick_file_names *file_names;
2181
2182 /* The corresponding symbol table. This is NULL if symbols for this
2183 CU have not yet been read. */
2184 struct symtab *symtab;
2185
2186 /* A temporary mark bit used when iterating over all CUs in
2187 expand_symtabs_matching. */
2188 unsigned int mark : 1;
2189
2190 /* True if we've tried to read the file table and found there isn't one.
2191 There will be no point in trying to read it again next time. */
2192 unsigned int no_file_data : 1;
2193 };
2194
2195 /* Utility hash function for a stmt_list_hash. */
2196
2197 static hashval_t
2198 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2199 {
2200 hashval_t v = 0;
2201
2202 if (stmt_list_hash->dwo_unit != NULL)
2203 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2204 v += stmt_list_hash->line_offset.sect_off;
2205 return v;
2206 }
2207
2208 /* Utility equality function for a stmt_list_hash. */
2209
2210 static int
2211 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2212 const struct stmt_list_hash *rhs)
2213 {
2214 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2215 return 0;
2216 if (lhs->dwo_unit != NULL
2217 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2218 return 0;
2219
2220 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2221 }
2222
2223 /* Hash function for a quick_file_names. */
2224
2225 static hashval_t
2226 hash_file_name_entry (const void *e)
2227 {
2228 const struct quick_file_names *file_data = e;
2229
2230 return hash_stmt_list_entry (&file_data->hash);
2231 }
2232
2233 /* Equality function for a quick_file_names. */
2234
2235 static int
2236 eq_file_name_entry (const void *a, const void *b)
2237 {
2238 const struct quick_file_names *ea = a;
2239 const struct quick_file_names *eb = b;
2240
2241 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2242 }
2243
2244 /* Delete function for a quick_file_names. */
2245
2246 static void
2247 delete_file_name_entry (void *e)
2248 {
2249 struct quick_file_names *file_data = e;
2250 int i;
2251
2252 for (i = 0; i < file_data->num_file_names; ++i)
2253 {
2254 xfree ((void*) file_data->file_names[i]);
2255 if (file_data->real_names)
2256 xfree ((void*) file_data->real_names[i]);
2257 }
2258
2259 /* The space for the struct itself lives on objfile_obstack,
2260 so we don't free it here. */
2261 }
2262
2263 /* Create a quick_file_names hash table. */
2264
2265 static htab_t
2266 create_quick_file_names_table (unsigned int nr_initial_entries)
2267 {
2268 return htab_create_alloc (nr_initial_entries,
2269 hash_file_name_entry, eq_file_name_entry,
2270 delete_file_name_entry, xcalloc, xfree);
2271 }
2272
2273 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2274 have to be created afterwards. You should call age_cached_comp_units after
2275 processing PER_CU->CU. dw2_setup must have been already called. */
2276
2277 static void
2278 load_cu (struct dwarf2_per_cu_data *per_cu)
2279 {
2280 if (per_cu->is_debug_types)
2281 load_full_type_unit (per_cu);
2282 else
2283 load_full_comp_unit (per_cu, language_minimal);
2284
2285 gdb_assert (per_cu->cu != NULL);
2286
2287 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2288 }
2289
2290 /* Read in the symbols for PER_CU. */
2291
2292 static void
2293 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2294 {
2295 struct cleanup *back_to;
2296
2297 /* Skip type_unit_groups, reading the type units they contain
2298 is handled elsewhere. */
2299 if (IS_TYPE_UNIT_GROUP (per_cu))
2300 return;
2301
2302 back_to = make_cleanup (dwarf2_release_queue, NULL);
2303
2304 if (dwarf2_per_objfile->using_index
2305 ? per_cu->v.quick->symtab == NULL
2306 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2307 {
2308 queue_comp_unit (per_cu, language_minimal);
2309 load_cu (per_cu);
2310 }
2311
2312 process_queue ();
2313
2314 /* Age the cache, releasing compilation units that have not
2315 been used recently. */
2316 age_cached_comp_units ();
2317
2318 do_cleanups (back_to);
2319 }
2320
2321 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2322 the objfile from which this CU came. Returns the resulting symbol
2323 table. */
2324
2325 static struct symtab *
2326 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2327 {
2328 gdb_assert (dwarf2_per_objfile->using_index);
2329 if (!per_cu->v.quick->symtab)
2330 {
2331 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2332 increment_reading_symtab ();
2333 dw2_do_instantiate_symtab (per_cu);
2334 process_cu_includes ();
2335 do_cleanups (back_to);
2336 }
2337 return per_cu->v.quick->symtab;
2338 }
2339
2340 /* Return the CU given its index.
2341
2342 This is intended for loops like:
2343
2344 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2345 + dwarf2_per_objfile->n_type_units); ++i)
2346 {
2347 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2348
2349 ...;
2350 }
2351 */
2352
2353 static struct dwarf2_per_cu_data *
2354 dw2_get_cu (int index)
2355 {
2356 if (index >= dwarf2_per_objfile->n_comp_units)
2357 {
2358 index -= dwarf2_per_objfile->n_comp_units;
2359 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2360 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2361 }
2362
2363 return dwarf2_per_objfile->all_comp_units[index];
2364 }
2365
2366 /* Return the primary CU given its index.
2367 The difference between this function and dw2_get_cu is in the handling
2368 of type units (TUs). Here we return the type_unit_group object.
2369
2370 This is intended for loops like:
2371
2372 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2373 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2374 {
2375 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2376
2377 ...;
2378 }
2379 */
2380
2381 static struct dwarf2_per_cu_data *
2382 dw2_get_primary_cu (int index)
2383 {
2384 if (index >= dwarf2_per_objfile->n_comp_units)
2385 {
2386 index -= dwarf2_per_objfile->n_comp_units;
2387 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2388 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2389 }
2390
2391 return dwarf2_per_objfile->all_comp_units[index];
2392 }
2393
2394 /* A helper for create_cus_from_index that handles a given list of
2395 CUs. */
2396
2397 static void
2398 create_cus_from_index_list (struct objfile *objfile,
2399 const gdb_byte *cu_list, offset_type n_elements,
2400 struct dwarf2_section_info *section,
2401 int is_dwz,
2402 int base_offset)
2403 {
2404 offset_type i;
2405
2406 for (i = 0; i < n_elements; i += 2)
2407 {
2408 struct dwarf2_per_cu_data *the_cu;
2409 ULONGEST offset, length;
2410
2411 gdb_static_assert (sizeof (ULONGEST) >= 8);
2412 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2413 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2414 cu_list += 2 * 8;
2415
2416 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2417 struct dwarf2_per_cu_data);
2418 the_cu->offset.sect_off = offset;
2419 the_cu->length = length;
2420 the_cu->objfile = objfile;
2421 the_cu->section = section;
2422 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2423 struct dwarf2_per_cu_quick_data);
2424 the_cu->is_dwz = is_dwz;
2425 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2426 }
2427 }
2428
2429 /* Read the CU list from the mapped index, and use it to create all
2430 the CU objects for this objfile. */
2431
2432 static void
2433 create_cus_from_index (struct objfile *objfile,
2434 const gdb_byte *cu_list, offset_type cu_list_elements,
2435 const gdb_byte *dwz_list, offset_type dwz_elements)
2436 {
2437 struct dwz_file *dwz;
2438
2439 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2440 dwarf2_per_objfile->all_comp_units
2441 = obstack_alloc (&objfile->objfile_obstack,
2442 dwarf2_per_objfile->n_comp_units
2443 * sizeof (struct dwarf2_per_cu_data *));
2444
2445 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2446 &dwarf2_per_objfile->info, 0, 0);
2447
2448 if (dwz_elements == 0)
2449 return;
2450
2451 dwz = dwarf2_get_dwz_file ();
2452 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2453 cu_list_elements / 2);
2454 }
2455
2456 /* Create the signatured type hash table from the index. */
2457
2458 static void
2459 create_signatured_type_table_from_index (struct objfile *objfile,
2460 struct dwarf2_section_info *section,
2461 const gdb_byte *bytes,
2462 offset_type elements)
2463 {
2464 offset_type i;
2465 htab_t sig_types_hash;
2466
2467 dwarf2_per_objfile->n_type_units = elements / 3;
2468 dwarf2_per_objfile->all_type_units
2469 = obstack_alloc (&objfile->objfile_obstack,
2470 dwarf2_per_objfile->n_type_units
2471 * sizeof (struct signatured_type *));
2472
2473 sig_types_hash = allocate_signatured_type_table (objfile);
2474
2475 for (i = 0; i < elements; i += 3)
2476 {
2477 struct signatured_type *sig_type;
2478 ULONGEST offset, type_offset_in_tu, signature;
2479 void **slot;
2480
2481 gdb_static_assert (sizeof (ULONGEST) >= 8);
2482 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2483 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2484 BFD_ENDIAN_LITTLE);
2485 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2486 bytes += 3 * 8;
2487
2488 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2489 struct signatured_type);
2490 sig_type->signature = signature;
2491 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2492 sig_type->per_cu.is_debug_types = 1;
2493 sig_type->per_cu.section = section;
2494 sig_type->per_cu.offset.sect_off = offset;
2495 sig_type->per_cu.objfile = objfile;
2496 sig_type->per_cu.v.quick
2497 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2498 struct dwarf2_per_cu_quick_data);
2499
2500 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2501 *slot = sig_type;
2502
2503 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2504 }
2505
2506 dwarf2_per_objfile->signatured_types = sig_types_hash;
2507 }
2508
2509 /* Read the address map data from the mapped index, and use it to
2510 populate the objfile's psymtabs_addrmap. */
2511
2512 static void
2513 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2514 {
2515 const gdb_byte *iter, *end;
2516 struct obstack temp_obstack;
2517 struct addrmap *mutable_map;
2518 struct cleanup *cleanup;
2519 CORE_ADDR baseaddr;
2520
2521 obstack_init (&temp_obstack);
2522 cleanup = make_cleanup_obstack_free (&temp_obstack);
2523 mutable_map = addrmap_create_mutable (&temp_obstack);
2524
2525 iter = index->address_table;
2526 end = iter + index->address_table_size;
2527
2528 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2529
2530 while (iter < end)
2531 {
2532 ULONGEST hi, lo, cu_index;
2533 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2534 iter += 8;
2535 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2536 iter += 8;
2537 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2538 iter += 4;
2539
2540 if (cu_index < dwarf2_per_objfile->n_comp_units)
2541 {
2542 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2543 dw2_get_cu (cu_index));
2544 }
2545 else
2546 {
2547 complaint (&symfile_complaints,
2548 _(".gdb_index address table has invalid CU number %u"),
2549 (unsigned) cu_index);
2550 }
2551 }
2552
2553 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2554 &objfile->objfile_obstack);
2555 do_cleanups (cleanup);
2556 }
2557
2558 /* The hash function for strings in the mapped index. This is the same as
2559 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2560 implementation. This is necessary because the hash function is tied to the
2561 format of the mapped index file. The hash values do not have to match with
2562 SYMBOL_HASH_NEXT.
2563
2564 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2565
2566 static hashval_t
2567 mapped_index_string_hash (int index_version, const void *p)
2568 {
2569 const unsigned char *str = (const unsigned char *) p;
2570 hashval_t r = 0;
2571 unsigned char c;
2572
2573 while ((c = *str++) != 0)
2574 {
2575 if (index_version >= 5)
2576 c = tolower (c);
2577 r = r * 67 + c - 113;
2578 }
2579
2580 return r;
2581 }
2582
2583 /* Find a slot in the mapped index INDEX for the object named NAME.
2584 If NAME is found, set *VEC_OUT to point to the CU vector in the
2585 constant pool and return 1. If NAME cannot be found, return 0. */
2586
2587 static int
2588 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2589 offset_type **vec_out)
2590 {
2591 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2592 offset_type hash;
2593 offset_type slot, step;
2594 int (*cmp) (const char *, const char *);
2595
2596 if (current_language->la_language == language_cplus
2597 || current_language->la_language == language_java
2598 || current_language->la_language == language_fortran)
2599 {
2600 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2601 not contain any. */
2602 const char *paren = strchr (name, '(');
2603
2604 if (paren)
2605 {
2606 char *dup;
2607
2608 dup = xmalloc (paren - name + 1);
2609 memcpy (dup, name, paren - name);
2610 dup[paren - name] = 0;
2611
2612 make_cleanup (xfree, dup);
2613 name = dup;
2614 }
2615 }
2616
2617 /* Index version 4 did not support case insensitive searches. But the
2618 indices for case insensitive languages are built in lowercase, therefore
2619 simulate our NAME being searched is also lowercased. */
2620 hash = mapped_index_string_hash ((index->version == 4
2621 && case_sensitivity == case_sensitive_off
2622 ? 5 : index->version),
2623 name);
2624
2625 slot = hash & (index->symbol_table_slots - 1);
2626 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2627 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2628
2629 for (;;)
2630 {
2631 /* Convert a slot number to an offset into the table. */
2632 offset_type i = 2 * slot;
2633 const char *str;
2634 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2635 {
2636 do_cleanups (back_to);
2637 return 0;
2638 }
2639
2640 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2641 if (!cmp (name, str))
2642 {
2643 *vec_out = (offset_type *) (index->constant_pool
2644 + MAYBE_SWAP (index->symbol_table[i + 1]));
2645 do_cleanups (back_to);
2646 return 1;
2647 }
2648
2649 slot = (slot + step) & (index->symbol_table_slots - 1);
2650 }
2651 }
2652
2653 /* A helper function that reads the .gdb_index from SECTION and fills
2654 in MAP. FILENAME is the name of the file containing the section;
2655 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2656 ok to use deprecated sections.
2657
2658 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2659 out parameters that are filled in with information about the CU and
2660 TU lists in the section.
2661
2662 Returns 1 if all went well, 0 otherwise. */
2663
2664 static int
2665 read_index_from_section (struct objfile *objfile,
2666 const char *filename,
2667 int deprecated_ok,
2668 struct dwarf2_section_info *section,
2669 struct mapped_index *map,
2670 const gdb_byte **cu_list,
2671 offset_type *cu_list_elements,
2672 const gdb_byte **types_list,
2673 offset_type *types_list_elements)
2674 {
2675 const gdb_byte *addr;
2676 offset_type version;
2677 offset_type *metadata;
2678 int i;
2679
2680 if (dwarf2_section_empty_p (section))
2681 return 0;
2682
2683 /* Older elfutils strip versions could keep the section in the main
2684 executable while splitting it for the separate debug info file. */
2685 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2686 return 0;
2687
2688 dwarf2_read_section (objfile, section);
2689
2690 addr = section->buffer;
2691 /* Version check. */
2692 version = MAYBE_SWAP (*(offset_type *) addr);
2693 /* Versions earlier than 3 emitted every copy of a psymbol. This
2694 causes the index to behave very poorly for certain requests. Version 3
2695 contained incomplete addrmap. So, it seems better to just ignore such
2696 indices. */
2697 if (version < 4)
2698 {
2699 static int warning_printed = 0;
2700 if (!warning_printed)
2701 {
2702 warning (_("Skipping obsolete .gdb_index section in %s."),
2703 filename);
2704 warning_printed = 1;
2705 }
2706 return 0;
2707 }
2708 /* Index version 4 uses a different hash function than index version
2709 5 and later.
2710
2711 Versions earlier than 6 did not emit psymbols for inlined
2712 functions. Using these files will cause GDB not to be able to
2713 set breakpoints on inlined functions by name, so we ignore these
2714 indices unless the user has done
2715 "set use-deprecated-index-sections on". */
2716 if (version < 6 && !deprecated_ok)
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("\
2722 Skipping deprecated .gdb_index section in %s.\n\
2723 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2724 to use the section anyway."),
2725 filename);
2726 warning_printed = 1;
2727 }
2728 return 0;
2729 }
2730 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2731 of the TU (for symbols coming from TUs). It's just a performance bug, and
2732 we can't distinguish gdb-generated indices from gold-generated ones, so
2733 nothing to do here. */
2734
2735 /* Indexes with higher version than the one supported by GDB may be no
2736 longer backward compatible. */
2737 if (version > 8)
2738 return 0;
2739
2740 map->version = version;
2741 map->total_size = section->size;
2742
2743 metadata = (offset_type *) (addr + sizeof (offset_type));
2744
2745 i = 0;
2746 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2747 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2748 / 8);
2749 ++i;
2750
2751 *types_list = addr + MAYBE_SWAP (metadata[i]);
2752 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2753 - MAYBE_SWAP (metadata[i]))
2754 / 8);
2755 ++i;
2756
2757 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2758 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2759 - MAYBE_SWAP (metadata[i]));
2760 ++i;
2761
2762 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2763 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2764 - MAYBE_SWAP (metadata[i]))
2765 / (2 * sizeof (offset_type)));
2766 ++i;
2767
2768 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2769
2770 return 1;
2771 }
2772
2773
2774 /* Read the index file. If everything went ok, initialize the "quick"
2775 elements of all the CUs and return 1. Otherwise, return 0. */
2776
2777 static int
2778 dwarf2_read_index (struct objfile *objfile)
2779 {
2780 struct mapped_index local_map, *map;
2781 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2782 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2783
2784 if (!read_index_from_section (objfile, objfile->name,
2785 use_deprecated_index_sections,
2786 &dwarf2_per_objfile->gdb_index, &local_map,
2787 &cu_list, &cu_list_elements,
2788 &types_list, &types_list_elements))
2789 return 0;
2790
2791 /* Don't use the index if it's empty. */
2792 if (local_map.symbol_table_slots == 0)
2793 return 0;
2794
2795 /* If there is a .dwz file, read it so we can get its CU list as
2796 well. */
2797 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2798 {
2799 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2800 struct mapped_index dwz_map;
2801 const gdb_byte *dwz_types_ignore;
2802 offset_type dwz_types_elements_ignore;
2803
2804 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2805 1,
2806 &dwz->gdb_index, &dwz_map,
2807 &dwz_list, &dwz_list_elements,
2808 &dwz_types_ignore,
2809 &dwz_types_elements_ignore))
2810 {
2811 warning (_("could not read '.gdb_index' section from %s; skipping"),
2812 bfd_get_filename (dwz->dwz_bfd));
2813 return 0;
2814 }
2815 }
2816
2817 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2818 dwz_list_elements);
2819
2820 if (types_list_elements)
2821 {
2822 struct dwarf2_section_info *section;
2823
2824 /* We can only handle a single .debug_types when we have an
2825 index. */
2826 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2827 return 0;
2828
2829 section = VEC_index (dwarf2_section_info_def,
2830 dwarf2_per_objfile->types, 0);
2831
2832 create_signatured_type_table_from_index (objfile, section, types_list,
2833 types_list_elements);
2834 }
2835
2836 create_addrmap_from_index (objfile, &local_map);
2837
2838 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2839 *map = local_map;
2840
2841 dwarf2_per_objfile->index_table = map;
2842 dwarf2_per_objfile->using_index = 1;
2843 dwarf2_per_objfile->quick_file_names_table =
2844 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2845
2846 return 1;
2847 }
2848
2849 /* A helper for the "quick" functions which sets the global
2850 dwarf2_per_objfile according to OBJFILE. */
2851
2852 static void
2853 dw2_setup (struct objfile *objfile)
2854 {
2855 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2856 gdb_assert (dwarf2_per_objfile);
2857 }
2858
2859 /* die_reader_func for dw2_get_file_names. */
2860
2861 static void
2862 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2863 const gdb_byte *info_ptr,
2864 struct die_info *comp_unit_die,
2865 int has_children,
2866 void *data)
2867 {
2868 struct dwarf2_cu *cu = reader->cu;
2869 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2870 struct objfile *objfile = dwarf2_per_objfile->objfile;
2871 struct dwarf2_per_cu_data *lh_cu;
2872 struct line_header *lh;
2873 struct attribute *attr;
2874 int i;
2875 const char *name, *comp_dir;
2876 void **slot;
2877 struct quick_file_names *qfn;
2878 unsigned int line_offset;
2879
2880 gdb_assert (! this_cu->is_debug_types);
2881
2882 /* Our callers never want to match partial units -- instead they
2883 will match the enclosing full CU. */
2884 if (comp_unit_die->tag == DW_TAG_partial_unit)
2885 {
2886 this_cu->v.quick->no_file_data = 1;
2887 return;
2888 }
2889
2890 lh_cu = this_cu;
2891 lh = NULL;
2892 slot = NULL;
2893 line_offset = 0;
2894
2895 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2896 if (attr)
2897 {
2898 struct quick_file_names find_entry;
2899
2900 line_offset = DW_UNSND (attr);
2901
2902 /* We may have already read in this line header (TU line header sharing).
2903 If we have we're done. */
2904 find_entry.hash.dwo_unit = cu->dwo_unit;
2905 find_entry.hash.line_offset.sect_off = line_offset;
2906 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2907 &find_entry, INSERT);
2908 if (*slot != NULL)
2909 {
2910 lh_cu->v.quick->file_names = *slot;
2911 return;
2912 }
2913
2914 lh = dwarf_decode_line_header (line_offset, cu);
2915 }
2916 if (lh == NULL)
2917 {
2918 lh_cu->v.quick->no_file_data = 1;
2919 return;
2920 }
2921
2922 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2923 qfn->hash.dwo_unit = cu->dwo_unit;
2924 qfn->hash.line_offset.sect_off = line_offset;
2925 gdb_assert (slot != NULL);
2926 *slot = qfn;
2927
2928 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2929
2930 qfn->num_file_names = lh->num_file_names;
2931 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2932 lh->num_file_names * sizeof (char *));
2933 for (i = 0; i < lh->num_file_names; ++i)
2934 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2935 qfn->real_names = NULL;
2936
2937 free_line_header (lh);
2938
2939 lh_cu->v.quick->file_names = qfn;
2940 }
2941
2942 /* A helper for the "quick" functions which attempts to read the line
2943 table for THIS_CU. */
2944
2945 static struct quick_file_names *
2946 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2947 {
2948 /* This should never be called for TUs. */
2949 gdb_assert (! this_cu->is_debug_types);
2950 /* Nor type unit groups. */
2951 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2952
2953 if (this_cu->v.quick->file_names != NULL)
2954 return this_cu->v.quick->file_names;
2955 /* If we know there is no line data, no point in looking again. */
2956 if (this_cu->v.quick->no_file_data)
2957 return NULL;
2958
2959 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2960
2961 if (this_cu->v.quick->no_file_data)
2962 return NULL;
2963 return this_cu->v.quick->file_names;
2964 }
2965
2966 /* A helper for the "quick" functions which computes and caches the
2967 real path for a given file name from the line table. */
2968
2969 static const char *
2970 dw2_get_real_path (struct objfile *objfile,
2971 struct quick_file_names *qfn, int index)
2972 {
2973 if (qfn->real_names == NULL)
2974 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2975 qfn->num_file_names, sizeof (char *));
2976
2977 if (qfn->real_names[index] == NULL)
2978 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2979
2980 return qfn->real_names[index];
2981 }
2982
2983 static struct symtab *
2984 dw2_find_last_source_symtab (struct objfile *objfile)
2985 {
2986 int index;
2987
2988 dw2_setup (objfile);
2989 index = dwarf2_per_objfile->n_comp_units - 1;
2990 return dw2_instantiate_symtab (dw2_get_cu (index));
2991 }
2992
2993 /* Traversal function for dw2_forget_cached_source_info. */
2994
2995 static int
2996 dw2_free_cached_file_names (void **slot, void *info)
2997 {
2998 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2999
3000 if (file_data->real_names)
3001 {
3002 int i;
3003
3004 for (i = 0; i < file_data->num_file_names; ++i)
3005 {
3006 xfree ((void*) file_data->real_names[i]);
3007 file_data->real_names[i] = NULL;
3008 }
3009 }
3010
3011 return 1;
3012 }
3013
3014 static void
3015 dw2_forget_cached_source_info (struct objfile *objfile)
3016 {
3017 dw2_setup (objfile);
3018
3019 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3020 dw2_free_cached_file_names, NULL);
3021 }
3022
3023 /* Helper function for dw2_map_symtabs_matching_filename that expands
3024 the symtabs and calls the iterator. */
3025
3026 static int
3027 dw2_map_expand_apply (struct objfile *objfile,
3028 struct dwarf2_per_cu_data *per_cu,
3029 const char *name, const char *real_path,
3030 int (*callback) (struct symtab *, void *),
3031 void *data)
3032 {
3033 struct symtab *last_made = objfile->symtabs;
3034
3035 /* Don't visit already-expanded CUs. */
3036 if (per_cu->v.quick->symtab)
3037 return 0;
3038
3039 /* This may expand more than one symtab, and we want to iterate over
3040 all of them. */
3041 dw2_instantiate_symtab (per_cu);
3042
3043 return iterate_over_some_symtabs (name, real_path, callback, data,
3044 objfile->symtabs, last_made);
3045 }
3046
3047 /* Implementation of the map_symtabs_matching_filename method. */
3048
3049 static int
3050 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3051 const char *real_path,
3052 int (*callback) (struct symtab *, void *),
3053 void *data)
3054 {
3055 int i;
3056 const char *name_basename = lbasename (name);
3057
3058 dw2_setup (objfile);
3059
3060 /* The rule is CUs specify all the files, including those used by
3061 any TU, so there's no need to scan TUs here. */
3062
3063 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3064 {
3065 int j;
3066 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3067 struct quick_file_names *file_data;
3068
3069 /* We only need to look at symtabs not already expanded. */
3070 if (per_cu->v.quick->symtab)
3071 continue;
3072
3073 file_data = dw2_get_file_names (per_cu);
3074 if (file_data == NULL)
3075 continue;
3076
3077 for (j = 0; j < file_data->num_file_names; ++j)
3078 {
3079 const char *this_name = file_data->file_names[j];
3080 const char *this_real_name;
3081
3082 if (compare_filenames_for_search (this_name, name))
3083 {
3084 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3085 callback, data))
3086 return 1;
3087 continue;
3088 }
3089
3090 /* Before we invoke realpath, which can get expensive when many
3091 files are involved, do a quick comparison of the basenames. */
3092 if (! basenames_may_differ
3093 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3094 continue;
3095
3096 this_real_name = dw2_get_real_path (objfile, file_data, j);
3097 if (compare_filenames_for_search (this_real_name, name))
3098 {
3099 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3100 callback, data))
3101 return 1;
3102 continue;
3103 }
3104
3105 if (real_path != NULL)
3106 {
3107 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3108 gdb_assert (IS_ABSOLUTE_PATH (name));
3109 if (this_real_name != NULL
3110 && FILENAME_CMP (real_path, this_real_name) == 0)
3111 {
3112 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3113 callback, data))
3114 return 1;
3115 continue;
3116 }
3117 }
3118 }
3119 }
3120
3121 return 0;
3122 }
3123
3124 /* Struct used to manage iterating over all CUs looking for a symbol. */
3125
3126 struct dw2_symtab_iterator
3127 {
3128 /* The internalized form of .gdb_index. */
3129 struct mapped_index *index;
3130 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3131 int want_specific_block;
3132 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3133 Unused if !WANT_SPECIFIC_BLOCK. */
3134 int block_index;
3135 /* The kind of symbol we're looking for. */
3136 domain_enum domain;
3137 /* The list of CUs from the index entry of the symbol,
3138 or NULL if not found. */
3139 offset_type *vec;
3140 /* The next element in VEC to look at. */
3141 int next;
3142 /* The number of elements in VEC, or zero if there is no match. */
3143 int length;
3144 };
3145
3146 /* Initialize the index symtab iterator ITER.
3147 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3148 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3149
3150 static void
3151 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3152 struct mapped_index *index,
3153 int want_specific_block,
3154 int block_index,
3155 domain_enum domain,
3156 const char *name)
3157 {
3158 iter->index = index;
3159 iter->want_specific_block = want_specific_block;
3160 iter->block_index = block_index;
3161 iter->domain = domain;
3162 iter->next = 0;
3163
3164 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3165 iter->length = MAYBE_SWAP (*iter->vec);
3166 else
3167 {
3168 iter->vec = NULL;
3169 iter->length = 0;
3170 }
3171 }
3172
3173 /* Return the next matching CU or NULL if there are no more. */
3174
3175 static struct dwarf2_per_cu_data *
3176 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3177 {
3178 for ( ; iter->next < iter->length; ++iter->next)
3179 {
3180 offset_type cu_index_and_attrs =
3181 MAYBE_SWAP (iter->vec[iter->next + 1]);
3182 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3183 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3184 int want_static = iter->block_index != GLOBAL_BLOCK;
3185 /* This value is only valid for index versions >= 7. */
3186 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3187 gdb_index_symbol_kind symbol_kind =
3188 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3189 /* Only check the symbol attributes if they're present.
3190 Indices prior to version 7 don't record them,
3191 and indices >= 7 may elide them for certain symbols
3192 (gold does this). */
3193 int attrs_valid =
3194 (iter->index->version >= 7
3195 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3196
3197 /* Skip if already read in. */
3198 if (per_cu->v.quick->symtab)
3199 continue;
3200
3201 if (attrs_valid
3202 && iter->want_specific_block
3203 && want_static != is_static)
3204 continue;
3205
3206 /* Only check the symbol's kind if it has one. */
3207 if (attrs_valid)
3208 {
3209 switch (iter->domain)
3210 {
3211 case VAR_DOMAIN:
3212 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3213 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3214 /* Some types are also in VAR_DOMAIN. */
3215 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3216 continue;
3217 break;
3218 case STRUCT_DOMAIN:
3219 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3220 continue;
3221 break;
3222 case LABEL_DOMAIN:
3223 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3224 continue;
3225 break;
3226 default:
3227 break;
3228 }
3229 }
3230
3231 ++iter->next;
3232 return per_cu;
3233 }
3234
3235 return NULL;
3236 }
3237
3238 static struct symtab *
3239 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3240 const char *name, domain_enum domain)
3241 {
3242 struct symtab *stab_best = NULL;
3243 struct mapped_index *index;
3244
3245 dw2_setup (objfile);
3246
3247 index = dwarf2_per_objfile->index_table;
3248
3249 /* index is NULL if OBJF_READNOW. */
3250 if (index)
3251 {
3252 struct dw2_symtab_iterator iter;
3253 struct dwarf2_per_cu_data *per_cu;
3254
3255 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3256
3257 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3258 {
3259 struct symbol *sym = NULL;
3260 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3261
3262 /* Some caution must be observed with overloaded functions
3263 and methods, since the index will not contain any overload
3264 information (but NAME might contain it). */
3265 if (stab->primary)
3266 {
3267 struct blockvector *bv = BLOCKVECTOR (stab);
3268 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3269
3270 sym = lookup_block_symbol (block, name, domain);
3271 }
3272
3273 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3274 {
3275 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3276 return stab;
3277
3278 stab_best = stab;
3279 }
3280
3281 /* Keep looking through other CUs. */
3282 }
3283 }
3284
3285 return stab_best;
3286 }
3287
3288 static void
3289 dw2_print_stats (struct objfile *objfile)
3290 {
3291 int i, total, count;
3292
3293 dw2_setup (objfile);
3294 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3295 count = 0;
3296 for (i = 0; i < total; ++i)
3297 {
3298 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3299
3300 if (!per_cu->v.quick->symtab)
3301 ++count;
3302 }
3303 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3304 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3305 }
3306
3307 static void
3308 dw2_dump (struct objfile *objfile)
3309 {
3310 /* Nothing worth printing. */
3311 }
3312
3313 static void
3314 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3315 struct section_offsets *delta)
3316 {
3317 /* There's nothing to relocate here. */
3318 }
3319
3320 static void
3321 dw2_expand_symtabs_for_function (struct objfile *objfile,
3322 const char *func_name)
3323 {
3324 struct mapped_index *index;
3325
3326 dw2_setup (objfile);
3327
3328 index = dwarf2_per_objfile->index_table;
3329
3330 /* index is NULL if OBJF_READNOW. */
3331 if (index)
3332 {
3333 struct dw2_symtab_iterator iter;
3334 struct dwarf2_per_cu_data *per_cu;
3335
3336 /* Note: It doesn't matter what we pass for block_index here. */
3337 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3338 func_name);
3339
3340 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3341 dw2_instantiate_symtab (per_cu);
3342 }
3343 }
3344
3345 static void
3346 dw2_expand_all_symtabs (struct objfile *objfile)
3347 {
3348 int i;
3349
3350 dw2_setup (objfile);
3351
3352 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3353 + dwarf2_per_objfile->n_type_units); ++i)
3354 {
3355 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3356
3357 dw2_instantiate_symtab (per_cu);
3358 }
3359 }
3360
3361 static void
3362 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3363 const char *fullname)
3364 {
3365 int i;
3366
3367 dw2_setup (objfile);
3368
3369 /* We don't need to consider type units here.
3370 This is only called for examining code, e.g. expand_line_sal.
3371 There can be an order of magnitude (or more) more type units
3372 than comp units, and we avoid them if we can. */
3373
3374 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3375 {
3376 int j;
3377 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3378 struct quick_file_names *file_data;
3379
3380 /* We only need to look at symtabs not already expanded. */
3381 if (per_cu->v.quick->symtab)
3382 continue;
3383
3384 file_data = dw2_get_file_names (per_cu);
3385 if (file_data == NULL)
3386 continue;
3387
3388 for (j = 0; j < file_data->num_file_names; ++j)
3389 {
3390 const char *this_fullname = file_data->file_names[j];
3391
3392 if (filename_cmp (this_fullname, fullname) == 0)
3393 {
3394 dw2_instantiate_symtab (per_cu);
3395 break;
3396 }
3397 }
3398 }
3399 }
3400
3401 /* A helper function for dw2_find_symbol_file that finds the primary
3402 file name for a given CU. This is a die_reader_func. */
3403
3404 static void
3405 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3406 const gdb_byte *info_ptr,
3407 struct die_info *comp_unit_die,
3408 int has_children,
3409 void *data)
3410 {
3411 const char **result_ptr = data;
3412 struct dwarf2_cu *cu = reader->cu;
3413 struct attribute *attr;
3414
3415 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3416 if (attr == NULL)
3417 *result_ptr = NULL;
3418 else
3419 *result_ptr = DW_STRING (attr);
3420 }
3421
3422 static const char *
3423 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3424 {
3425 struct dwarf2_per_cu_data *per_cu;
3426 offset_type *vec;
3427 const char *filename;
3428
3429 dw2_setup (objfile);
3430
3431 /* index_table is NULL if OBJF_READNOW. */
3432 if (!dwarf2_per_objfile->index_table)
3433 {
3434 struct symtab *s;
3435
3436 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3437 {
3438 struct blockvector *bv = BLOCKVECTOR (s);
3439 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3440 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3441
3442 if (sym)
3443 {
3444 /* Only file extension of returned filename is recognized. */
3445 return SYMBOL_SYMTAB (sym)->filename;
3446 }
3447 }
3448 return NULL;
3449 }
3450
3451 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3452 name, &vec))
3453 return NULL;
3454
3455 /* Note that this just looks at the very first one named NAME -- but
3456 actually we are looking for a function. find_main_filename
3457 should be rewritten so that it doesn't require a custom hook. It
3458 could just use the ordinary symbol tables. */
3459 /* vec[0] is the length, which must always be >0. */
3460 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3461
3462 if (per_cu->v.quick->symtab != NULL)
3463 {
3464 /* Only file extension of returned filename is recognized. */
3465 return per_cu->v.quick->symtab->filename;
3466 }
3467
3468 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3469 dw2_get_primary_filename_reader, &filename);
3470
3471 /* Only file extension of returned filename is recognized. */
3472 return filename;
3473 }
3474
3475 static void
3476 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3477 struct objfile *objfile, int global,
3478 int (*callback) (struct block *,
3479 struct symbol *, void *),
3480 void *data, symbol_compare_ftype *match,
3481 symbol_compare_ftype *ordered_compare)
3482 {
3483 /* Currently unimplemented; used for Ada. The function can be called if the
3484 current language is Ada for a non-Ada objfile using GNU index. As Ada
3485 does not look for non-Ada symbols this function should just return. */
3486 }
3487
3488 static void
3489 dw2_expand_symtabs_matching
3490 (struct objfile *objfile,
3491 int (*file_matcher) (const char *, void *, int basenames),
3492 int (*name_matcher) (const char *, void *),
3493 enum search_domain kind,
3494 void *data)
3495 {
3496 int i;
3497 offset_type iter;
3498 struct mapped_index *index;
3499
3500 dw2_setup (objfile);
3501
3502 /* index_table is NULL if OBJF_READNOW. */
3503 if (!dwarf2_per_objfile->index_table)
3504 return;
3505 index = dwarf2_per_objfile->index_table;
3506
3507 if (file_matcher != NULL)
3508 {
3509 struct cleanup *cleanup;
3510 htab_t visited_found, visited_not_found;
3511
3512 visited_found = htab_create_alloc (10,
3513 htab_hash_pointer, htab_eq_pointer,
3514 NULL, xcalloc, xfree);
3515 cleanup = make_cleanup_htab_delete (visited_found);
3516 visited_not_found = htab_create_alloc (10,
3517 htab_hash_pointer, htab_eq_pointer,
3518 NULL, xcalloc, xfree);
3519 make_cleanup_htab_delete (visited_not_found);
3520
3521 /* The rule is CUs specify all the files, including those used by
3522 any TU, so there's no need to scan TUs here. */
3523
3524 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3525 {
3526 int j;
3527 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3528 struct quick_file_names *file_data;
3529 void **slot;
3530
3531 per_cu->v.quick->mark = 0;
3532
3533 /* We only need to look at symtabs not already expanded. */
3534 if (per_cu->v.quick->symtab)
3535 continue;
3536
3537 file_data = dw2_get_file_names (per_cu);
3538 if (file_data == NULL)
3539 continue;
3540
3541 if (htab_find (visited_not_found, file_data) != NULL)
3542 continue;
3543 else if (htab_find (visited_found, file_data) != NULL)
3544 {
3545 per_cu->v.quick->mark = 1;
3546 continue;
3547 }
3548
3549 for (j = 0; j < file_data->num_file_names; ++j)
3550 {
3551 const char *this_real_name;
3552
3553 if (file_matcher (file_data->file_names[j], data, 0))
3554 {
3555 per_cu->v.quick->mark = 1;
3556 break;
3557 }
3558
3559 /* Before we invoke realpath, which can get expensive when many
3560 files are involved, do a quick comparison of the basenames. */
3561 if (!basenames_may_differ
3562 && !file_matcher (lbasename (file_data->file_names[j]),
3563 data, 1))
3564 continue;
3565
3566 this_real_name = dw2_get_real_path (objfile, file_data, j);
3567 if (file_matcher (this_real_name, data, 0))
3568 {
3569 per_cu->v.quick->mark = 1;
3570 break;
3571 }
3572 }
3573
3574 slot = htab_find_slot (per_cu->v.quick->mark
3575 ? visited_found
3576 : visited_not_found,
3577 file_data, INSERT);
3578 *slot = file_data;
3579 }
3580
3581 do_cleanups (cleanup);
3582 }
3583
3584 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3585 {
3586 offset_type idx = 2 * iter;
3587 const char *name;
3588 offset_type *vec, vec_len, vec_idx;
3589
3590 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3591 continue;
3592
3593 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3594
3595 if (! (*name_matcher) (name, data))
3596 continue;
3597
3598 /* The name was matched, now expand corresponding CUs that were
3599 marked. */
3600 vec = (offset_type *) (index->constant_pool
3601 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3602 vec_len = MAYBE_SWAP (vec[0]);
3603 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3604 {
3605 struct dwarf2_per_cu_data *per_cu;
3606 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3607 gdb_index_symbol_kind symbol_kind =
3608 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3609 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3610
3611 /* Don't crash on bad data. */
3612 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3613 + dwarf2_per_objfile->n_type_units))
3614 continue;
3615
3616 /* Only check the symbol's kind if it has one.
3617 Indices prior to version 7 don't record it. */
3618 if (index->version >= 7)
3619 {
3620 switch (kind)
3621 {
3622 case VARIABLES_DOMAIN:
3623 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3624 continue;
3625 break;
3626 case FUNCTIONS_DOMAIN:
3627 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3628 continue;
3629 break;
3630 case TYPES_DOMAIN:
3631 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3632 continue;
3633 break;
3634 default:
3635 break;
3636 }
3637 }
3638
3639 per_cu = dw2_get_cu (cu_index);
3640 if (file_matcher == NULL || per_cu->v.quick->mark)
3641 dw2_instantiate_symtab (per_cu);
3642 }
3643 }
3644 }
3645
3646 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3647 symtab. */
3648
3649 static struct symtab *
3650 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3651 {
3652 int i;
3653
3654 if (BLOCKVECTOR (symtab) != NULL
3655 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3656 return symtab;
3657
3658 if (symtab->includes == NULL)
3659 return NULL;
3660
3661 for (i = 0; symtab->includes[i]; ++i)
3662 {
3663 struct symtab *s = symtab->includes[i];
3664
3665 s = recursively_find_pc_sect_symtab (s, pc);
3666 if (s != NULL)
3667 return s;
3668 }
3669
3670 return NULL;
3671 }
3672
3673 static struct symtab *
3674 dw2_find_pc_sect_symtab (struct objfile *objfile,
3675 struct minimal_symbol *msymbol,
3676 CORE_ADDR pc,
3677 struct obj_section *section,
3678 int warn_if_readin)
3679 {
3680 struct dwarf2_per_cu_data *data;
3681 struct symtab *result;
3682
3683 dw2_setup (objfile);
3684
3685 if (!objfile->psymtabs_addrmap)
3686 return NULL;
3687
3688 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3689 if (!data)
3690 return NULL;
3691
3692 if (warn_if_readin && data->v.quick->symtab)
3693 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3694 paddress (get_objfile_arch (objfile), pc));
3695
3696 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3697 gdb_assert (result != NULL);
3698 return result;
3699 }
3700
3701 static void
3702 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3703 void *data, int need_fullname)
3704 {
3705 int i;
3706 struct cleanup *cleanup;
3707 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3708 NULL, xcalloc, xfree);
3709
3710 cleanup = make_cleanup_htab_delete (visited);
3711 dw2_setup (objfile);
3712
3713 /* The rule is CUs specify all the files, including those used by
3714 any TU, so there's no need to scan TUs here.
3715 We can ignore file names coming from already-expanded CUs. */
3716
3717 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3718 {
3719 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3720
3721 if (per_cu->v.quick->symtab)
3722 {
3723 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3724 INSERT);
3725
3726 *slot = per_cu->v.quick->file_names;
3727 }
3728 }
3729
3730 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3731 {
3732 int j;
3733 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3734 struct quick_file_names *file_data;
3735 void **slot;
3736
3737 /* We only need to look at symtabs not already expanded. */
3738 if (per_cu->v.quick->symtab)
3739 continue;
3740
3741 file_data = dw2_get_file_names (per_cu);
3742 if (file_data == NULL)
3743 continue;
3744
3745 slot = htab_find_slot (visited, file_data, INSERT);
3746 if (*slot)
3747 {
3748 /* Already visited. */
3749 continue;
3750 }
3751 *slot = file_data;
3752
3753 for (j = 0; j < file_data->num_file_names; ++j)
3754 {
3755 const char *this_real_name;
3756
3757 if (need_fullname)
3758 this_real_name = dw2_get_real_path (objfile, file_data, j);
3759 else
3760 this_real_name = NULL;
3761 (*fun) (file_data->file_names[j], this_real_name, data);
3762 }
3763 }
3764
3765 do_cleanups (cleanup);
3766 }
3767
3768 static int
3769 dw2_has_symbols (struct objfile *objfile)
3770 {
3771 return 1;
3772 }
3773
3774 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3775 {
3776 dw2_has_symbols,
3777 dw2_find_last_source_symtab,
3778 dw2_forget_cached_source_info,
3779 dw2_map_symtabs_matching_filename,
3780 dw2_lookup_symbol,
3781 dw2_print_stats,
3782 dw2_dump,
3783 dw2_relocate,
3784 dw2_expand_symtabs_for_function,
3785 dw2_expand_all_symtabs,
3786 dw2_expand_symtabs_with_fullname,
3787 dw2_find_symbol_file,
3788 dw2_map_matching_symbols,
3789 dw2_expand_symtabs_matching,
3790 dw2_find_pc_sect_symtab,
3791 dw2_map_symbol_filenames
3792 };
3793
3794 /* Initialize for reading DWARF for this objfile. Return 0 if this
3795 file will use psymtabs, or 1 if using the GNU index. */
3796
3797 int
3798 dwarf2_initialize_objfile (struct objfile *objfile)
3799 {
3800 /* If we're about to read full symbols, don't bother with the
3801 indices. In this case we also don't care if some other debug
3802 format is making psymtabs, because they are all about to be
3803 expanded anyway. */
3804 if ((objfile->flags & OBJF_READNOW))
3805 {
3806 int i;
3807
3808 dwarf2_per_objfile->using_index = 1;
3809 create_all_comp_units (objfile);
3810 create_all_type_units (objfile);
3811 dwarf2_per_objfile->quick_file_names_table =
3812 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3813
3814 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3815 + dwarf2_per_objfile->n_type_units); ++i)
3816 {
3817 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3818
3819 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3820 struct dwarf2_per_cu_quick_data);
3821 }
3822
3823 /* Return 1 so that gdb sees the "quick" functions. However,
3824 these functions will be no-ops because we will have expanded
3825 all symtabs. */
3826 return 1;
3827 }
3828
3829 if (dwarf2_read_index (objfile))
3830 return 1;
3831
3832 return 0;
3833 }
3834
3835 \f
3836
3837 /* Build a partial symbol table. */
3838
3839 void
3840 dwarf2_build_psymtabs (struct objfile *objfile)
3841 {
3842 volatile struct gdb_exception except;
3843
3844 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3845 {
3846 init_psymbol_list (objfile, 1024);
3847 }
3848
3849 TRY_CATCH (except, RETURN_MASK_ERROR)
3850 {
3851 /* This isn't really ideal: all the data we allocate on the
3852 objfile's obstack is still uselessly kept around. However,
3853 freeing it seems unsafe. */
3854 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3855
3856 dwarf2_build_psymtabs_hard (objfile);
3857 discard_cleanups (cleanups);
3858 }
3859 if (except.reason < 0)
3860 exception_print (gdb_stderr, except);
3861 }
3862
3863 /* Return the total length of the CU described by HEADER. */
3864
3865 static unsigned int
3866 get_cu_length (const struct comp_unit_head *header)
3867 {
3868 return header->initial_length_size + header->length;
3869 }
3870
3871 /* Return TRUE if OFFSET is within CU_HEADER. */
3872
3873 static inline int
3874 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3875 {
3876 sect_offset bottom = { cu_header->offset.sect_off };
3877 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3878
3879 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3880 }
3881
3882 /* Find the base address of the compilation unit for range lists and
3883 location lists. It will normally be specified by DW_AT_low_pc.
3884 In DWARF-3 draft 4, the base address could be overridden by
3885 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3886 compilation units with discontinuous ranges. */
3887
3888 static void
3889 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3890 {
3891 struct attribute *attr;
3892
3893 cu->base_known = 0;
3894 cu->base_address = 0;
3895
3896 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3897 if (attr)
3898 {
3899 cu->base_address = DW_ADDR (attr);
3900 cu->base_known = 1;
3901 }
3902 else
3903 {
3904 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3905 if (attr)
3906 {
3907 cu->base_address = DW_ADDR (attr);
3908 cu->base_known = 1;
3909 }
3910 }
3911 }
3912
3913 /* Read in the comp unit header information from the debug_info at info_ptr.
3914 NOTE: This leaves members offset, first_die_offset to be filled in
3915 by the caller. */
3916
3917 static const gdb_byte *
3918 read_comp_unit_head (struct comp_unit_head *cu_header,
3919 const gdb_byte *info_ptr, bfd *abfd)
3920 {
3921 int signed_addr;
3922 unsigned int bytes_read;
3923
3924 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3925 cu_header->initial_length_size = bytes_read;
3926 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3927 info_ptr += bytes_read;
3928 cu_header->version = read_2_bytes (abfd, info_ptr);
3929 info_ptr += 2;
3930 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3931 &bytes_read);
3932 info_ptr += bytes_read;
3933 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3934 info_ptr += 1;
3935 signed_addr = bfd_get_sign_extend_vma (abfd);
3936 if (signed_addr < 0)
3937 internal_error (__FILE__, __LINE__,
3938 _("read_comp_unit_head: dwarf from non elf file"));
3939 cu_header->signed_addr_p = signed_addr;
3940
3941 return info_ptr;
3942 }
3943
3944 /* Helper function that returns the proper abbrev section for
3945 THIS_CU. */
3946
3947 static struct dwarf2_section_info *
3948 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3949 {
3950 struct dwarf2_section_info *abbrev;
3951
3952 if (this_cu->is_dwz)
3953 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3954 else
3955 abbrev = &dwarf2_per_objfile->abbrev;
3956
3957 return abbrev;
3958 }
3959
3960 /* Subroutine of read_and_check_comp_unit_head and
3961 read_and_check_type_unit_head to simplify them.
3962 Perform various error checking on the header. */
3963
3964 static void
3965 error_check_comp_unit_head (struct comp_unit_head *header,
3966 struct dwarf2_section_info *section,
3967 struct dwarf2_section_info *abbrev_section)
3968 {
3969 bfd *abfd = section->asection->owner;
3970 const char *filename = bfd_get_filename (abfd);
3971
3972 if (header->version != 2 && header->version != 3 && header->version != 4)
3973 error (_("Dwarf Error: wrong version in compilation unit header "
3974 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3975 filename);
3976
3977 if (header->abbrev_offset.sect_off
3978 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3979 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3980 "(offset 0x%lx + 6) [in module %s]"),
3981 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3982 filename);
3983
3984 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3985 avoid potential 32-bit overflow. */
3986 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3987 > section->size)
3988 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3989 "(offset 0x%lx + 0) [in module %s]"),
3990 (long) header->length, (long) header->offset.sect_off,
3991 filename);
3992 }
3993
3994 /* Read in a CU/TU header and perform some basic error checking.
3995 The contents of the header are stored in HEADER.
3996 The result is a pointer to the start of the first DIE. */
3997
3998 static const gdb_byte *
3999 read_and_check_comp_unit_head (struct comp_unit_head *header,
4000 struct dwarf2_section_info *section,
4001 struct dwarf2_section_info *abbrev_section,
4002 const gdb_byte *info_ptr,
4003 int is_debug_types_section)
4004 {
4005 const gdb_byte *beg_of_comp_unit = info_ptr;
4006 bfd *abfd = section->asection->owner;
4007
4008 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4009
4010 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4011
4012 /* If we're reading a type unit, skip over the signature and
4013 type_offset fields. */
4014 if (is_debug_types_section)
4015 info_ptr += 8 /*signature*/ + header->offset_size;
4016
4017 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4018
4019 error_check_comp_unit_head (header, section, abbrev_section);
4020
4021 return info_ptr;
4022 }
4023
4024 /* Read in the types comp unit header information from .debug_types entry at
4025 types_ptr. The result is a pointer to one past the end of the header. */
4026
4027 static const gdb_byte *
4028 read_and_check_type_unit_head (struct comp_unit_head *header,
4029 struct dwarf2_section_info *section,
4030 struct dwarf2_section_info *abbrev_section,
4031 const gdb_byte *info_ptr,
4032 ULONGEST *signature,
4033 cu_offset *type_offset_in_tu)
4034 {
4035 const gdb_byte *beg_of_comp_unit = info_ptr;
4036 bfd *abfd = section->asection->owner;
4037
4038 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4039
4040 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4041
4042 /* If we're reading a type unit, skip over the signature and
4043 type_offset fields. */
4044 if (signature != NULL)
4045 *signature = read_8_bytes (abfd, info_ptr);
4046 info_ptr += 8;
4047 if (type_offset_in_tu != NULL)
4048 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4049 header->offset_size);
4050 info_ptr += header->offset_size;
4051
4052 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4053
4054 error_check_comp_unit_head (header, section, abbrev_section);
4055
4056 return info_ptr;
4057 }
4058
4059 /* Fetch the abbreviation table offset from a comp or type unit header. */
4060
4061 static sect_offset
4062 read_abbrev_offset (struct dwarf2_section_info *section,
4063 sect_offset offset)
4064 {
4065 bfd *abfd = section->asection->owner;
4066 const gdb_byte *info_ptr;
4067 unsigned int length, initial_length_size, offset_size;
4068 sect_offset abbrev_offset;
4069
4070 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4071 info_ptr = section->buffer + offset.sect_off;
4072 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4073 offset_size = initial_length_size == 4 ? 4 : 8;
4074 info_ptr += initial_length_size + 2 /*version*/;
4075 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4076 return abbrev_offset;
4077 }
4078
4079 /* Allocate a new partial symtab for file named NAME and mark this new
4080 partial symtab as being an include of PST. */
4081
4082 static void
4083 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4084 struct objfile *objfile)
4085 {
4086 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4087
4088 if (!IS_ABSOLUTE_PATH (subpst->filename))
4089 {
4090 /* It shares objfile->objfile_obstack. */
4091 subpst->dirname = pst->dirname;
4092 }
4093
4094 subpst->section_offsets = pst->section_offsets;
4095 subpst->textlow = 0;
4096 subpst->texthigh = 0;
4097
4098 subpst->dependencies = (struct partial_symtab **)
4099 obstack_alloc (&objfile->objfile_obstack,
4100 sizeof (struct partial_symtab *));
4101 subpst->dependencies[0] = pst;
4102 subpst->number_of_dependencies = 1;
4103
4104 subpst->globals_offset = 0;
4105 subpst->n_global_syms = 0;
4106 subpst->statics_offset = 0;
4107 subpst->n_static_syms = 0;
4108 subpst->symtab = NULL;
4109 subpst->read_symtab = pst->read_symtab;
4110 subpst->readin = 0;
4111
4112 /* No private part is necessary for include psymtabs. This property
4113 can be used to differentiate between such include psymtabs and
4114 the regular ones. */
4115 subpst->read_symtab_private = NULL;
4116 }
4117
4118 /* Read the Line Number Program data and extract the list of files
4119 included by the source file represented by PST. Build an include
4120 partial symtab for each of these included files. */
4121
4122 static void
4123 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4124 struct die_info *die,
4125 struct partial_symtab *pst)
4126 {
4127 struct line_header *lh = NULL;
4128 struct attribute *attr;
4129
4130 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4131 if (attr)
4132 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4133 if (lh == NULL)
4134 return; /* No linetable, so no includes. */
4135
4136 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4137 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4138
4139 free_line_header (lh);
4140 }
4141
4142 static hashval_t
4143 hash_signatured_type (const void *item)
4144 {
4145 const struct signatured_type *sig_type = item;
4146
4147 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4148 return sig_type->signature;
4149 }
4150
4151 static int
4152 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4153 {
4154 const struct signatured_type *lhs = item_lhs;
4155 const struct signatured_type *rhs = item_rhs;
4156
4157 return lhs->signature == rhs->signature;
4158 }
4159
4160 /* Allocate a hash table for signatured types. */
4161
4162 static htab_t
4163 allocate_signatured_type_table (struct objfile *objfile)
4164 {
4165 return htab_create_alloc_ex (41,
4166 hash_signatured_type,
4167 eq_signatured_type,
4168 NULL,
4169 &objfile->objfile_obstack,
4170 hashtab_obstack_allocate,
4171 dummy_obstack_deallocate);
4172 }
4173
4174 /* A helper function to add a signatured type CU to a table. */
4175
4176 static int
4177 add_signatured_type_cu_to_table (void **slot, void *datum)
4178 {
4179 struct signatured_type *sigt = *slot;
4180 struct signatured_type ***datap = datum;
4181
4182 **datap = sigt;
4183 ++*datap;
4184
4185 return 1;
4186 }
4187
4188 /* Create the hash table of all entries in the .debug_types
4189 (or .debug_types.dwo) section(s).
4190 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4191 otherwise it is NULL.
4192
4193 The result is a pointer to the hash table or NULL if there are no types.
4194
4195 Note: This function processes DWO files only, not DWP files. */
4196
4197 static htab_t
4198 create_debug_types_hash_table (struct dwo_file *dwo_file,
4199 VEC (dwarf2_section_info_def) *types)
4200 {
4201 struct objfile *objfile = dwarf2_per_objfile->objfile;
4202 htab_t types_htab = NULL;
4203 int ix;
4204 struct dwarf2_section_info *section;
4205 struct dwarf2_section_info *abbrev_section;
4206
4207 if (VEC_empty (dwarf2_section_info_def, types))
4208 return NULL;
4209
4210 abbrev_section = (dwo_file != NULL
4211 ? &dwo_file->sections.abbrev
4212 : &dwarf2_per_objfile->abbrev);
4213
4214 if (dwarf2_read_debug)
4215 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4216 dwo_file ? ".dwo" : "",
4217 bfd_get_filename (abbrev_section->asection->owner));
4218
4219 for (ix = 0;
4220 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4221 ++ix)
4222 {
4223 bfd *abfd;
4224 const gdb_byte *info_ptr, *end_ptr;
4225 struct dwarf2_section_info *abbrev_section;
4226
4227 dwarf2_read_section (objfile, section);
4228 info_ptr = section->buffer;
4229
4230 if (info_ptr == NULL)
4231 continue;
4232
4233 /* We can't set abfd until now because the section may be empty or
4234 not present, in which case section->asection will be NULL. */
4235 abfd = section->asection->owner;
4236
4237 if (dwo_file)
4238 abbrev_section = &dwo_file->sections.abbrev;
4239 else
4240 abbrev_section = &dwarf2_per_objfile->abbrev;
4241
4242 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4243 because we don't need to read any dies: the signature is in the
4244 header. */
4245
4246 end_ptr = info_ptr + section->size;
4247 while (info_ptr < end_ptr)
4248 {
4249 sect_offset offset;
4250 cu_offset type_offset_in_tu;
4251 ULONGEST signature;
4252 struct signatured_type *sig_type;
4253 struct dwo_unit *dwo_tu;
4254 void **slot;
4255 const gdb_byte *ptr = info_ptr;
4256 struct comp_unit_head header;
4257 unsigned int length;
4258
4259 offset.sect_off = ptr - section->buffer;
4260
4261 /* We need to read the type's signature in order to build the hash
4262 table, but we don't need anything else just yet. */
4263
4264 ptr = read_and_check_type_unit_head (&header, section,
4265 abbrev_section, ptr,
4266 &signature, &type_offset_in_tu);
4267
4268 length = get_cu_length (&header);
4269
4270 /* Skip dummy type units. */
4271 if (ptr >= info_ptr + length
4272 || peek_abbrev_code (abfd, ptr) == 0)
4273 {
4274 info_ptr += length;
4275 continue;
4276 }
4277
4278 if (types_htab == NULL)
4279 {
4280 if (dwo_file)
4281 types_htab = allocate_dwo_unit_table (objfile);
4282 else
4283 types_htab = allocate_signatured_type_table (objfile);
4284 }
4285
4286 if (dwo_file)
4287 {
4288 sig_type = NULL;
4289 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4290 struct dwo_unit);
4291 dwo_tu->dwo_file = dwo_file;
4292 dwo_tu->signature = signature;
4293 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4294 dwo_tu->section = section;
4295 dwo_tu->offset = offset;
4296 dwo_tu->length = length;
4297 }
4298 else
4299 {
4300 /* N.B.: type_offset is not usable if this type uses a DWO file.
4301 The real type_offset is in the DWO file. */
4302 dwo_tu = NULL;
4303 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4304 struct signatured_type);
4305 sig_type->signature = signature;
4306 sig_type->type_offset_in_tu = type_offset_in_tu;
4307 sig_type->per_cu.objfile = objfile;
4308 sig_type->per_cu.is_debug_types = 1;
4309 sig_type->per_cu.section = section;
4310 sig_type->per_cu.offset = offset;
4311 sig_type->per_cu.length = length;
4312 }
4313
4314 slot = htab_find_slot (types_htab,
4315 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4316 INSERT);
4317 gdb_assert (slot != NULL);
4318 if (*slot != NULL)
4319 {
4320 sect_offset dup_offset;
4321
4322 if (dwo_file)
4323 {
4324 const struct dwo_unit *dup_tu = *slot;
4325
4326 dup_offset = dup_tu->offset;
4327 }
4328 else
4329 {
4330 const struct signatured_type *dup_tu = *slot;
4331
4332 dup_offset = dup_tu->per_cu.offset;
4333 }
4334
4335 complaint (&symfile_complaints,
4336 _("debug type entry at offset 0x%x is duplicate to"
4337 " the entry at offset 0x%x, signature %s"),
4338 offset.sect_off, dup_offset.sect_off,
4339 hex_string (signature));
4340 }
4341 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4342
4343 if (dwarf2_read_debug)
4344 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4345 offset.sect_off,
4346 hex_string (signature));
4347
4348 info_ptr += length;
4349 }
4350 }
4351
4352 return types_htab;
4353 }
4354
4355 /* Create the hash table of all entries in the .debug_types section,
4356 and initialize all_type_units.
4357 The result is zero if there is an error (e.g. missing .debug_types section),
4358 otherwise non-zero. */
4359
4360 static int
4361 create_all_type_units (struct objfile *objfile)
4362 {
4363 htab_t types_htab;
4364 struct signatured_type **iter;
4365
4366 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4367 if (types_htab == NULL)
4368 {
4369 dwarf2_per_objfile->signatured_types = NULL;
4370 return 0;
4371 }
4372
4373 dwarf2_per_objfile->signatured_types = types_htab;
4374
4375 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4376 dwarf2_per_objfile->all_type_units
4377 = obstack_alloc (&objfile->objfile_obstack,
4378 dwarf2_per_objfile->n_type_units
4379 * sizeof (struct signatured_type *));
4380 iter = &dwarf2_per_objfile->all_type_units[0];
4381 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4382 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4383 == dwarf2_per_objfile->n_type_units);
4384
4385 return 1;
4386 }
4387
4388 /* Lookup a signature based type for DW_FORM_ref_sig8.
4389 Returns NULL if signature SIG is not present in the table.
4390 It is up to the caller to complain about this. */
4391
4392 static struct signatured_type *
4393 lookup_signatured_type (ULONGEST sig)
4394 {
4395 struct signatured_type find_entry, *entry;
4396
4397 if (dwarf2_per_objfile->signatured_types == NULL)
4398 return NULL;
4399 find_entry.signature = sig;
4400 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4401 return entry;
4402 }
4403 \f
4404 /* Low level DIE reading support. */
4405
4406 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4407
4408 static void
4409 init_cu_die_reader (struct die_reader_specs *reader,
4410 struct dwarf2_cu *cu,
4411 struct dwarf2_section_info *section,
4412 struct dwo_file *dwo_file)
4413 {
4414 gdb_assert (section->readin && section->buffer != NULL);
4415 reader->abfd = section->asection->owner;
4416 reader->cu = cu;
4417 reader->dwo_file = dwo_file;
4418 reader->die_section = section;
4419 reader->buffer = section->buffer;
4420 reader->buffer_end = section->buffer + section->size;
4421 }
4422
4423 /* Subroutine of init_cutu_and_read_dies to simplify it.
4424 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4425 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4426 already.
4427
4428 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4429 from it to the DIE in the DWO. If NULL we are skipping the stub.
4430 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4431 are filled in with the info of the DIE from the DWO file.
4432 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4433 provided an abbrev table to use.
4434 The result is non-zero if a valid (non-dummy) DIE was found. */
4435
4436 static int
4437 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4438 struct dwo_unit *dwo_unit,
4439 int abbrev_table_provided,
4440 struct die_info *stub_comp_unit_die,
4441 struct die_reader_specs *result_reader,
4442 const gdb_byte **result_info_ptr,
4443 struct die_info **result_comp_unit_die,
4444 int *result_has_children)
4445 {
4446 struct objfile *objfile = dwarf2_per_objfile->objfile;
4447 struct dwarf2_cu *cu = this_cu->cu;
4448 struct dwarf2_section_info *section;
4449 bfd *abfd;
4450 const gdb_byte *begin_info_ptr, *info_ptr;
4451 const char *comp_dir_string;
4452 ULONGEST signature; /* Or dwo_id. */
4453 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4454 int i,num_extra_attrs;
4455 struct dwarf2_section_info *dwo_abbrev_section;
4456 struct attribute *attr;
4457 struct die_info *comp_unit_die;
4458
4459 /* These attributes aren't processed until later:
4460 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4461 However, the attribute is found in the stub which we won't have later.
4462 In order to not impose this complication on the rest of the code,
4463 we read them here and copy them to the DWO CU/TU die. */
4464
4465 stmt_list = NULL;
4466 low_pc = NULL;
4467 high_pc = NULL;
4468 ranges = NULL;
4469 comp_dir = NULL;
4470
4471 if (stub_comp_unit_die != NULL)
4472 {
4473 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4474 DWO file. */
4475 if (! this_cu->is_debug_types)
4476 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4477 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4478 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4479 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4480 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4481
4482 /* There should be a DW_AT_addr_base attribute here (if needed).
4483 We need the value before we can process DW_FORM_GNU_addr_index. */
4484 cu->addr_base = 0;
4485 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4486 if (attr)
4487 cu->addr_base = DW_UNSND (attr);
4488
4489 /* There should be a DW_AT_ranges_base attribute here (if needed).
4490 We need the value before we can process DW_AT_ranges. */
4491 cu->ranges_base = 0;
4492 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4493 if (attr)
4494 cu->ranges_base = DW_UNSND (attr);
4495 }
4496
4497 /* Set up for reading the DWO CU/TU. */
4498 cu->dwo_unit = dwo_unit;
4499 section = dwo_unit->section;
4500 dwarf2_read_section (objfile, section);
4501 abfd = section->asection->owner;
4502 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4503 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4504 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4505
4506 if (this_cu->is_debug_types)
4507 {
4508 ULONGEST header_signature;
4509 cu_offset type_offset_in_tu;
4510 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4511
4512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4513 dwo_abbrev_section,
4514 info_ptr,
4515 &header_signature,
4516 &type_offset_in_tu);
4517 gdb_assert (sig_type->signature == header_signature);
4518 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4519 /* For DWOs coming from DWP files, we don't know the CU length
4520 nor the type's offset in the TU until now. */
4521 dwo_unit->length = get_cu_length (&cu->header);
4522 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4523
4524 /* Establish the type offset that can be used to lookup the type.
4525 For DWO files, we don't know it until now. */
4526 sig_type->type_offset_in_section.sect_off =
4527 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4528 }
4529 else
4530 {
4531 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4532 dwo_abbrev_section,
4533 info_ptr, 0);
4534 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4535 /* For DWOs coming from DWP files, we don't know the CU length
4536 until now. */
4537 dwo_unit->length = get_cu_length (&cu->header);
4538 }
4539
4540 /* Replace the CU's original abbrev table with the DWO's.
4541 Reminder: We can't read the abbrev table until we've read the header. */
4542 if (abbrev_table_provided)
4543 {
4544 /* Don't free the provided abbrev table, the caller of
4545 init_cutu_and_read_dies owns it. */
4546 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4547 /* Ensure the DWO abbrev table gets freed. */
4548 make_cleanup (dwarf2_free_abbrev_table, cu);
4549 }
4550 else
4551 {
4552 dwarf2_free_abbrev_table (cu);
4553 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4554 /* Leave any existing abbrev table cleanup as is. */
4555 }
4556
4557 /* Read in the die, but leave space to copy over the attributes
4558 from the stub. This has the benefit of simplifying the rest of
4559 the code - all the work to maintain the illusion of a single
4560 DW_TAG_{compile,type}_unit DIE is done here. */
4561 num_extra_attrs = ((stmt_list != NULL)
4562 + (low_pc != NULL)
4563 + (high_pc != NULL)
4564 + (ranges != NULL)
4565 + (comp_dir != NULL));
4566 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4567 result_has_children, num_extra_attrs);
4568
4569 /* Copy over the attributes from the stub to the DIE we just read in. */
4570 comp_unit_die = *result_comp_unit_die;
4571 i = comp_unit_die->num_attrs;
4572 if (stmt_list != NULL)
4573 comp_unit_die->attrs[i++] = *stmt_list;
4574 if (low_pc != NULL)
4575 comp_unit_die->attrs[i++] = *low_pc;
4576 if (high_pc != NULL)
4577 comp_unit_die->attrs[i++] = *high_pc;
4578 if (ranges != NULL)
4579 comp_unit_die->attrs[i++] = *ranges;
4580 if (comp_dir != NULL)
4581 comp_unit_die->attrs[i++] = *comp_dir;
4582 comp_unit_die->num_attrs += num_extra_attrs;
4583
4584 if (dwarf2_die_debug)
4585 {
4586 fprintf_unfiltered (gdb_stdlog,
4587 "Read die from %s@0x%x of %s:\n",
4588 bfd_section_name (abfd, section->asection),
4589 (unsigned) (begin_info_ptr - section->buffer),
4590 bfd_get_filename (abfd));
4591 dump_die (comp_unit_die, dwarf2_die_debug);
4592 }
4593
4594 /* Skip dummy compilation units. */
4595 if (info_ptr >= begin_info_ptr + dwo_unit->length
4596 || peek_abbrev_code (abfd, info_ptr) == 0)
4597 return 0;
4598
4599 *result_info_ptr = info_ptr;
4600 return 1;
4601 }
4602
4603 /* Subroutine of init_cutu_and_read_dies to simplify it.
4604 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4605 If the specified DWO unit cannot be found an error is thrown. */
4606
4607 static struct dwo_unit *
4608 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4609 struct die_info *comp_unit_die)
4610 {
4611 struct dwarf2_cu *cu = this_cu->cu;
4612 struct attribute *attr;
4613 ULONGEST signature;
4614 struct dwo_unit *dwo_unit;
4615 const char *comp_dir, *dwo_name;
4616
4617 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4618 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4619 gdb_assert (attr != NULL);
4620 dwo_name = DW_STRING (attr);
4621 comp_dir = NULL;
4622 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4623 if (attr)
4624 comp_dir = DW_STRING (attr);
4625
4626 if (this_cu->is_debug_types)
4627 {
4628 struct signatured_type *sig_type;
4629
4630 /* Since this_cu is the first member of struct signatured_type,
4631 we can go from a pointer to one to a pointer to the other. */
4632 sig_type = (struct signatured_type *) this_cu;
4633 signature = sig_type->signature;
4634 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4635 }
4636 else
4637 {
4638 struct attribute *attr;
4639
4640 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4641 if (! attr)
4642 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4643 " [in module %s]"),
4644 dwo_name, this_cu->objfile->name);
4645 signature = DW_UNSND (attr);
4646 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4647 signature);
4648 }
4649
4650 if (dwo_unit == NULL)
4651 {
4652 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4653 " with ID %s [in module %s]"),
4654 this_cu->offset.sect_off, hex_string (signature),
4655 this_cu->objfile->name);
4656 }
4657
4658 return dwo_unit;
4659 }
4660
4661 /* Initialize a CU (or TU) and read its DIEs.
4662 If the CU defers to a DWO file, read the DWO file as well.
4663
4664 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4665 Otherwise the table specified in the comp unit header is read in and used.
4666 This is an optimization for when we already have the abbrev table.
4667
4668 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4669 Otherwise, a new CU is allocated with xmalloc.
4670
4671 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4672 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4673
4674 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4675 linker) then DIE_READER_FUNC will not get called. */
4676
4677 static void
4678 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4679 struct abbrev_table *abbrev_table,
4680 int use_existing_cu, int keep,
4681 die_reader_func_ftype *die_reader_func,
4682 void *data)
4683 {
4684 struct objfile *objfile = dwarf2_per_objfile->objfile;
4685 struct dwarf2_section_info *section = this_cu->section;
4686 bfd *abfd = section->asection->owner;
4687 struct dwarf2_cu *cu;
4688 const gdb_byte *begin_info_ptr, *info_ptr;
4689 struct die_reader_specs reader;
4690 struct die_info *comp_unit_die;
4691 int has_children;
4692 struct attribute *attr;
4693 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4694 struct signatured_type *sig_type = NULL;
4695 struct dwarf2_section_info *abbrev_section;
4696 /* Non-zero if CU currently points to a DWO file and we need to
4697 reread it. When this happens we need to reread the skeleton die
4698 before we can reread the DWO file. */
4699 int rereading_dwo_cu = 0;
4700
4701 if (dwarf2_die_debug)
4702 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4703 this_cu->is_debug_types ? "type" : "comp",
4704 this_cu->offset.sect_off);
4705
4706 if (use_existing_cu)
4707 gdb_assert (keep);
4708
4709 cleanups = make_cleanup (null_cleanup, NULL);
4710
4711 /* This is cheap if the section is already read in. */
4712 dwarf2_read_section (objfile, section);
4713
4714 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4715
4716 abbrev_section = get_abbrev_section_for_cu (this_cu);
4717
4718 if (use_existing_cu && this_cu->cu != NULL)
4719 {
4720 cu = this_cu->cu;
4721
4722 /* If this CU is from a DWO file we need to start over, we need to
4723 refetch the attributes from the skeleton CU.
4724 This could be optimized by retrieving those attributes from when we
4725 were here the first time: the previous comp_unit_die was stored in
4726 comp_unit_obstack. But there's no data yet that we need this
4727 optimization. */
4728 if (cu->dwo_unit != NULL)
4729 rereading_dwo_cu = 1;
4730 }
4731 else
4732 {
4733 /* If !use_existing_cu, this_cu->cu must be NULL. */
4734 gdb_assert (this_cu->cu == NULL);
4735
4736 cu = xmalloc (sizeof (*cu));
4737 init_one_comp_unit (cu, this_cu);
4738
4739 /* If an error occurs while loading, release our storage. */
4740 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4741 }
4742
4743 /* Get the header. */
4744 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4745 {
4746 /* We already have the header, there's no need to read it in again. */
4747 info_ptr += cu->header.first_die_offset.cu_off;
4748 }
4749 else
4750 {
4751 if (this_cu->is_debug_types)
4752 {
4753 ULONGEST signature;
4754 cu_offset type_offset_in_tu;
4755
4756 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4757 abbrev_section, info_ptr,
4758 &signature,
4759 &type_offset_in_tu);
4760
4761 /* Since per_cu is the first member of struct signatured_type,
4762 we can go from a pointer to one to a pointer to the other. */
4763 sig_type = (struct signatured_type *) this_cu;
4764 gdb_assert (sig_type->signature == signature);
4765 gdb_assert (sig_type->type_offset_in_tu.cu_off
4766 == type_offset_in_tu.cu_off);
4767 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4768
4769 /* LENGTH has not been set yet for type units if we're
4770 using .gdb_index. */
4771 this_cu->length = get_cu_length (&cu->header);
4772
4773 /* Establish the type offset that can be used to lookup the type. */
4774 sig_type->type_offset_in_section.sect_off =
4775 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4776 }
4777 else
4778 {
4779 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4780 abbrev_section,
4781 info_ptr, 0);
4782
4783 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4784 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4785 }
4786 }
4787
4788 /* Skip dummy compilation units. */
4789 if (info_ptr >= begin_info_ptr + this_cu->length
4790 || peek_abbrev_code (abfd, info_ptr) == 0)
4791 {
4792 do_cleanups (cleanups);
4793 return;
4794 }
4795
4796 /* If we don't have them yet, read the abbrevs for this compilation unit.
4797 And if we need to read them now, make sure they're freed when we're
4798 done. Note that it's important that if the CU had an abbrev table
4799 on entry we don't free it when we're done: Somewhere up the call stack
4800 it may be in use. */
4801 if (abbrev_table != NULL)
4802 {
4803 gdb_assert (cu->abbrev_table == NULL);
4804 gdb_assert (cu->header.abbrev_offset.sect_off
4805 == abbrev_table->offset.sect_off);
4806 cu->abbrev_table = abbrev_table;
4807 }
4808 else if (cu->abbrev_table == NULL)
4809 {
4810 dwarf2_read_abbrevs (cu, abbrev_section);
4811 make_cleanup (dwarf2_free_abbrev_table, cu);
4812 }
4813 else if (rereading_dwo_cu)
4814 {
4815 dwarf2_free_abbrev_table (cu);
4816 dwarf2_read_abbrevs (cu, abbrev_section);
4817 }
4818
4819 /* Read the top level CU/TU die. */
4820 init_cu_die_reader (&reader, cu, section, NULL);
4821 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4822
4823 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
4824 from the DWO file.
4825 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
4826 DWO CU, that this test will fail (the attribute will not be present). */
4827 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4828 if (attr)
4829 {
4830 struct dwo_unit *dwo_unit;
4831 struct die_info *dwo_comp_unit_die;
4832
4833 if (has_children)
4834 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4835 " has children (offset 0x%x) [in module %s]"),
4836 this_cu->offset.sect_off, bfd_get_filename (abfd));
4837 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
4838 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
4839 abbrev_table != NULL,
4840 comp_unit_die,
4841 &reader, &info_ptr,
4842 &dwo_comp_unit_die, &has_children) == 0)
4843 {
4844 /* Dummy die. */
4845 do_cleanups (cleanups);
4846 return;
4847 }
4848 comp_unit_die = dwo_comp_unit_die;
4849 }
4850
4851 /* All of the above is setup for this call. Yikes. */
4852 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4853
4854 /* Done, clean up. */
4855 if (free_cu_cleanup != NULL)
4856 {
4857 if (keep)
4858 {
4859 /* We've successfully allocated this compilation unit. Let our
4860 caller clean it up when finished with it. */
4861 discard_cleanups (free_cu_cleanup);
4862
4863 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4864 So we have to manually free the abbrev table. */
4865 dwarf2_free_abbrev_table (cu);
4866
4867 /* Link this CU into read_in_chain. */
4868 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4869 dwarf2_per_objfile->read_in_chain = this_cu;
4870 }
4871 else
4872 do_cleanups (free_cu_cleanup);
4873 }
4874
4875 do_cleanups (cleanups);
4876 }
4877
4878 /* Read CU/TU THIS_CU in section SECTION,
4879 but do not follow DW_AT_GNU_dwo_name if present.
4880 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4881 to have already done the lookup to find the DWO/DWP file).
4882
4883 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4884 THIS_CU->is_debug_types, but nothing else.
4885
4886 We fill in THIS_CU->length.
4887
4888 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4889 linker) then DIE_READER_FUNC will not get called.
4890
4891 THIS_CU->cu is always freed when done.
4892 This is done in order to not leave THIS_CU->cu in a state where we have
4893 to care whether it refers to the "main" CU or the DWO CU. */
4894
4895 static void
4896 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4897 struct dwarf2_section_info *abbrev_section,
4898 struct dwo_file *dwo_file,
4899 die_reader_func_ftype *die_reader_func,
4900 void *data)
4901 {
4902 struct objfile *objfile = dwarf2_per_objfile->objfile;
4903 struct dwarf2_section_info *section = this_cu->section;
4904 bfd *abfd = section->asection->owner;
4905 struct dwarf2_cu cu;
4906 const gdb_byte *begin_info_ptr, *info_ptr;
4907 struct die_reader_specs reader;
4908 struct cleanup *cleanups;
4909 struct die_info *comp_unit_die;
4910 int has_children;
4911
4912 if (dwarf2_die_debug)
4913 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4914 this_cu->is_debug_types ? "type" : "comp",
4915 this_cu->offset.sect_off);
4916
4917 gdb_assert (this_cu->cu == NULL);
4918
4919 /* This is cheap if the section is already read in. */
4920 dwarf2_read_section (objfile, section);
4921
4922 init_one_comp_unit (&cu, this_cu);
4923
4924 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4925
4926 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4927 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4928 abbrev_section, info_ptr,
4929 this_cu->is_debug_types);
4930
4931 this_cu->length = get_cu_length (&cu.header);
4932
4933 /* Skip dummy compilation units. */
4934 if (info_ptr >= begin_info_ptr + this_cu->length
4935 || peek_abbrev_code (abfd, info_ptr) == 0)
4936 {
4937 do_cleanups (cleanups);
4938 return;
4939 }
4940
4941 dwarf2_read_abbrevs (&cu, abbrev_section);
4942 make_cleanup (dwarf2_free_abbrev_table, &cu);
4943
4944 init_cu_die_reader (&reader, &cu, section, dwo_file);
4945 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4946
4947 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4948
4949 do_cleanups (cleanups);
4950 }
4951
4952 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4953 does not lookup the specified DWO file.
4954 This cannot be used to read DWO files.
4955
4956 THIS_CU->cu is always freed when done.
4957 This is done in order to not leave THIS_CU->cu in a state where we have
4958 to care whether it refers to the "main" CU or the DWO CU.
4959 We can revisit this if the data shows there's a performance issue. */
4960
4961 static void
4962 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4963 die_reader_func_ftype *die_reader_func,
4964 void *data)
4965 {
4966 init_cutu_and_read_dies_no_follow (this_cu,
4967 get_abbrev_section_for_cu (this_cu),
4968 NULL,
4969 die_reader_func, data);
4970 }
4971 \f
4972 /* Type Unit Groups.
4973
4974 Type Unit Groups are a way to collapse the set of all TUs (type units) into
4975 a more manageable set. The grouping is done by DW_AT_stmt_list entry
4976 so that all types coming from the same compilation (.o file) are grouped
4977 together. A future step could be to put the types in the same symtab as
4978 the CU the types ultimately came from. */
4979
4980 static hashval_t
4981 hash_type_unit_group (const void *item)
4982 {
4983 const struct type_unit_group *tu_group = item;
4984
4985 return hash_stmt_list_entry (&tu_group->hash);
4986 }
4987
4988 static int
4989 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4990 {
4991 const struct type_unit_group *lhs = item_lhs;
4992 const struct type_unit_group *rhs = item_rhs;
4993
4994 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4995 }
4996
4997 /* Allocate a hash table for type unit groups. */
4998
4999 static htab_t
5000 allocate_type_unit_groups_table (void)
5001 {
5002 return htab_create_alloc_ex (3,
5003 hash_type_unit_group,
5004 eq_type_unit_group,
5005 NULL,
5006 &dwarf2_per_objfile->objfile->objfile_obstack,
5007 hashtab_obstack_allocate,
5008 dummy_obstack_deallocate);
5009 }
5010
5011 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5012 partial symtabs. We combine several TUs per psymtab to not let the size
5013 of any one psymtab grow too big. */
5014 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5015 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5016
5017 /* Helper routine for get_type_unit_group.
5018 Create the type_unit_group object used to hold one or more TUs. */
5019
5020 static struct type_unit_group *
5021 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5022 {
5023 struct objfile *objfile = dwarf2_per_objfile->objfile;
5024 struct dwarf2_per_cu_data *per_cu;
5025 struct type_unit_group *tu_group;
5026
5027 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5028 struct type_unit_group);
5029 per_cu = &tu_group->per_cu;
5030 per_cu->objfile = objfile;
5031
5032 if (dwarf2_per_objfile->using_index)
5033 {
5034 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5035 struct dwarf2_per_cu_quick_data);
5036 }
5037 else
5038 {
5039 unsigned int line_offset = line_offset_struct.sect_off;
5040 struct partial_symtab *pst;
5041 char *name;
5042
5043 /* Give the symtab a useful name for debug purposes. */
5044 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5045 name = xstrprintf ("<type_units_%d>",
5046 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5047 else
5048 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5049
5050 pst = create_partial_symtab (per_cu, name);
5051 pst->anonymous = 1;
5052
5053 xfree (name);
5054 }
5055
5056 tu_group->hash.dwo_unit = cu->dwo_unit;
5057 tu_group->hash.line_offset = line_offset_struct;
5058
5059 return tu_group;
5060 }
5061
5062 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5063 STMT_LIST is a DW_AT_stmt_list attribute. */
5064
5065 static struct type_unit_group *
5066 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5067 {
5068 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5069 struct type_unit_group *tu_group;
5070 void **slot;
5071 unsigned int line_offset;
5072 struct type_unit_group type_unit_group_for_lookup;
5073
5074 if (dwarf2_per_objfile->type_unit_groups == NULL)
5075 {
5076 dwarf2_per_objfile->type_unit_groups =
5077 allocate_type_unit_groups_table ();
5078 }
5079
5080 /* Do we need to create a new group, or can we use an existing one? */
5081
5082 if (stmt_list)
5083 {
5084 line_offset = DW_UNSND (stmt_list);
5085 ++tu_stats->nr_symtab_sharers;
5086 }
5087 else
5088 {
5089 /* Ugh, no stmt_list. Rare, but we have to handle it.
5090 We can do various things here like create one group per TU or
5091 spread them over multiple groups to split up the expansion work.
5092 To avoid worst case scenarios (too many groups or too large groups)
5093 we, umm, group them in bunches. */
5094 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5095 | (tu_stats->nr_stmt_less_type_units
5096 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5097 ++tu_stats->nr_stmt_less_type_units;
5098 }
5099
5100 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5101 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5102 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5103 &type_unit_group_for_lookup, INSERT);
5104 if (*slot != NULL)
5105 {
5106 tu_group = *slot;
5107 gdb_assert (tu_group != NULL);
5108 }
5109 else
5110 {
5111 sect_offset line_offset_struct;
5112
5113 line_offset_struct.sect_off = line_offset;
5114 tu_group = create_type_unit_group (cu, line_offset_struct);
5115 *slot = tu_group;
5116 ++tu_stats->nr_symtabs;
5117 }
5118
5119 return tu_group;
5120 }
5121
5122 /* Struct used to sort TUs by their abbreviation table offset. */
5123
5124 struct tu_abbrev_offset
5125 {
5126 struct signatured_type *sig_type;
5127 sect_offset abbrev_offset;
5128 };
5129
5130 /* Helper routine for build_type_unit_groups, passed to qsort. */
5131
5132 static int
5133 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5134 {
5135 const struct tu_abbrev_offset * const *a = ap;
5136 const struct tu_abbrev_offset * const *b = bp;
5137 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5138 unsigned int boff = (*b)->abbrev_offset.sect_off;
5139
5140 return (aoff > boff) - (aoff < boff);
5141 }
5142
5143 /* A helper function to add a type_unit_group to a table. */
5144
5145 static int
5146 add_type_unit_group_to_table (void **slot, void *datum)
5147 {
5148 struct type_unit_group *tu_group = *slot;
5149 struct type_unit_group ***datap = datum;
5150
5151 **datap = tu_group;
5152 ++*datap;
5153
5154 return 1;
5155 }
5156
5157 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5158 each one passing FUNC,DATA.
5159
5160 The efficiency is because we sort TUs by the abbrev table they use and
5161 only read each abbrev table once. In one program there are 200K TUs
5162 sharing 8K abbrev tables.
5163
5164 The main purpose of this function is to support building the
5165 dwarf2_per_objfile->type_unit_groups table.
5166 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5167 can collapse the search space by grouping them by stmt_list.
5168 The savings can be significant, in the same program from above the 200K TUs
5169 share 8K stmt_list tables.
5170
5171 FUNC is expected to call get_type_unit_group, which will create the
5172 struct type_unit_group if necessary and add it to
5173 dwarf2_per_objfile->type_unit_groups. */
5174
5175 static void
5176 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5177 {
5178 struct objfile *objfile = dwarf2_per_objfile->objfile;
5179 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5180 struct cleanup *cleanups;
5181 struct abbrev_table *abbrev_table;
5182 sect_offset abbrev_offset;
5183 struct tu_abbrev_offset *sorted_by_abbrev;
5184 struct type_unit_group **iter;
5185 int i;
5186
5187 /* It's up to the caller to not call us multiple times. */
5188 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5189
5190 if (dwarf2_per_objfile->n_type_units == 0)
5191 return;
5192
5193 /* TUs typically share abbrev tables, and there can be way more TUs than
5194 abbrev tables. Sort by abbrev table to reduce the number of times we
5195 read each abbrev table in.
5196 Alternatives are to punt or to maintain a cache of abbrev tables.
5197 This is simpler and efficient enough for now.
5198
5199 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5200 symtab to use). Typically TUs with the same abbrev offset have the same
5201 stmt_list value too so in practice this should work well.
5202
5203 The basic algorithm here is:
5204
5205 sort TUs by abbrev table
5206 for each TU with same abbrev table:
5207 read abbrev table if first user
5208 read TU top level DIE
5209 [IWBN if DWO skeletons had DW_AT_stmt_list]
5210 call FUNC */
5211
5212 if (dwarf2_read_debug)
5213 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5214
5215 /* Sort in a separate table to maintain the order of all_type_units
5216 for .gdb_index: TU indices directly index all_type_units. */
5217 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5218 dwarf2_per_objfile->n_type_units);
5219 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5220 {
5221 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5222
5223 sorted_by_abbrev[i].sig_type = sig_type;
5224 sorted_by_abbrev[i].abbrev_offset =
5225 read_abbrev_offset (sig_type->per_cu.section,
5226 sig_type->per_cu.offset);
5227 }
5228 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5229 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5230 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5231
5232 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5233 called any number of times, so we don't reset tu_stats here. */
5234
5235 abbrev_offset.sect_off = ~(unsigned) 0;
5236 abbrev_table = NULL;
5237 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5238
5239 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5240 {
5241 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5242
5243 /* Switch to the next abbrev table if necessary. */
5244 if (abbrev_table == NULL
5245 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5246 {
5247 if (abbrev_table != NULL)
5248 {
5249 abbrev_table_free (abbrev_table);
5250 /* Reset to NULL in case abbrev_table_read_table throws
5251 an error: abbrev_table_free_cleanup will get called. */
5252 abbrev_table = NULL;
5253 }
5254 abbrev_offset = tu->abbrev_offset;
5255 abbrev_table =
5256 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5257 abbrev_offset);
5258 ++tu_stats->nr_uniq_abbrev_tables;
5259 }
5260
5261 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5262 func, data);
5263 }
5264
5265 /* Create a vector of pointers to primary type units to make it easy to
5266 iterate over them and CUs. See dw2_get_primary_cu. */
5267 dwarf2_per_objfile->n_type_unit_groups =
5268 htab_elements (dwarf2_per_objfile->type_unit_groups);
5269 dwarf2_per_objfile->all_type_unit_groups =
5270 obstack_alloc (&objfile->objfile_obstack,
5271 dwarf2_per_objfile->n_type_unit_groups
5272 * sizeof (struct type_unit_group *));
5273 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5274 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5275 add_type_unit_group_to_table, &iter);
5276 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5277 == dwarf2_per_objfile->n_type_unit_groups);
5278
5279 do_cleanups (cleanups);
5280
5281 if (dwarf2_read_debug)
5282 {
5283 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5284 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5285 dwarf2_per_objfile->n_type_units);
5286 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5287 tu_stats->nr_uniq_abbrev_tables);
5288 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5289 tu_stats->nr_symtabs);
5290 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5291 tu_stats->nr_symtab_sharers);
5292 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5293 tu_stats->nr_stmt_less_type_units);
5294 }
5295 }
5296 \f
5297 /* Partial symbol tables. */
5298
5299 /* Create a psymtab named NAME and assign it to PER_CU.
5300
5301 The caller must fill in the following details:
5302 dirname, textlow, texthigh. */
5303
5304 static struct partial_symtab *
5305 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5306 {
5307 struct objfile *objfile = per_cu->objfile;
5308 struct partial_symtab *pst;
5309
5310 pst = start_psymtab_common (objfile, objfile->section_offsets,
5311 name, 0,
5312 objfile->global_psymbols.next,
5313 objfile->static_psymbols.next);
5314
5315 pst->psymtabs_addrmap_supported = 1;
5316
5317 /* This is the glue that links PST into GDB's symbol API. */
5318 pst->read_symtab_private = per_cu;
5319 pst->read_symtab = dwarf2_read_symtab;
5320 per_cu->v.psymtab = pst;
5321
5322 return pst;
5323 }
5324
5325 /* die_reader_func for process_psymtab_comp_unit. */
5326
5327 static void
5328 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5329 const gdb_byte *info_ptr,
5330 struct die_info *comp_unit_die,
5331 int has_children,
5332 void *data)
5333 {
5334 struct dwarf2_cu *cu = reader->cu;
5335 struct objfile *objfile = cu->objfile;
5336 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5337 struct attribute *attr;
5338 CORE_ADDR baseaddr;
5339 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5340 struct partial_symtab *pst;
5341 int has_pc_info;
5342 const char *filename;
5343 int *want_partial_unit_ptr = data;
5344
5345 if (comp_unit_die->tag == DW_TAG_partial_unit
5346 && (want_partial_unit_ptr == NULL
5347 || !*want_partial_unit_ptr))
5348 return;
5349
5350 gdb_assert (! per_cu->is_debug_types);
5351
5352 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5353
5354 cu->list_in_scope = &file_symbols;
5355
5356 /* Allocate a new partial symbol table structure. */
5357 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5358 if (attr == NULL || !DW_STRING (attr))
5359 filename = "";
5360 else
5361 filename = DW_STRING (attr);
5362
5363 pst = create_partial_symtab (per_cu, filename);
5364
5365 /* This must be done before calling dwarf2_build_include_psymtabs. */
5366 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5367 if (attr != NULL)
5368 pst->dirname = DW_STRING (attr);
5369
5370 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5371
5372 dwarf2_find_base_address (comp_unit_die, cu);
5373
5374 /* Possibly set the default values of LOWPC and HIGHPC from
5375 `DW_AT_ranges'. */
5376 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5377 &best_highpc, cu, pst);
5378 if (has_pc_info == 1 && best_lowpc < best_highpc)
5379 /* Store the contiguous range if it is not empty; it can be empty for
5380 CUs with no code. */
5381 addrmap_set_empty (objfile->psymtabs_addrmap,
5382 best_lowpc + baseaddr,
5383 best_highpc + baseaddr - 1, pst);
5384
5385 /* Check if comp unit has_children.
5386 If so, read the rest of the partial symbols from this comp unit.
5387 If not, there's no more debug_info for this comp unit. */
5388 if (has_children)
5389 {
5390 struct partial_die_info *first_die;
5391 CORE_ADDR lowpc, highpc;
5392
5393 lowpc = ((CORE_ADDR) -1);
5394 highpc = ((CORE_ADDR) 0);
5395
5396 first_die = load_partial_dies (reader, info_ptr, 1);
5397
5398 scan_partial_symbols (first_die, &lowpc, &highpc,
5399 ! has_pc_info, cu);
5400
5401 /* If we didn't find a lowpc, set it to highpc to avoid
5402 complaints from `maint check'. */
5403 if (lowpc == ((CORE_ADDR) -1))
5404 lowpc = highpc;
5405
5406 /* If the compilation unit didn't have an explicit address range,
5407 then use the information extracted from its child dies. */
5408 if (! has_pc_info)
5409 {
5410 best_lowpc = lowpc;
5411 best_highpc = highpc;
5412 }
5413 }
5414 pst->textlow = best_lowpc + baseaddr;
5415 pst->texthigh = best_highpc + baseaddr;
5416
5417 pst->n_global_syms = objfile->global_psymbols.next -
5418 (objfile->global_psymbols.list + pst->globals_offset);
5419 pst->n_static_syms = objfile->static_psymbols.next -
5420 (objfile->static_psymbols.list + pst->statics_offset);
5421 sort_pst_symbols (objfile, pst);
5422
5423 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5424 {
5425 int i;
5426 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5427 struct dwarf2_per_cu_data *iter;
5428
5429 /* Fill in 'dependencies' here; we fill in 'users' in a
5430 post-pass. */
5431 pst->number_of_dependencies = len;
5432 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5433 len * sizeof (struct symtab *));
5434 for (i = 0;
5435 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5436 i, iter);
5437 ++i)
5438 pst->dependencies[i] = iter->v.psymtab;
5439
5440 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5441 }
5442
5443 /* Get the list of files included in the current compilation unit,
5444 and build a psymtab for each of them. */
5445 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5446
5447 if (dwarf2_read_debug)
5448 {
5449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5450
5451 fprintf_unfiltered (gdb_stdlog,
5452 "Psymtab for %s unit @0x%x: %s - %s"
5453 ", %d global, %d static syms\n",
5454 per_cu->is_debug_types ? "type" : "comp",
5455 per_cu->offset.sect_off,
5456 paddress (gdbarch, pst->textlow),
5457 paddress (gdbarch, pst->texthigh),
5458 pst->n_global_syms, pst->n_static_syms);
5459 }
5460 }
5461
5462 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5463 Process compilation unit THIS_CU for a psymtab. */
5464
5465 static void
5466 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5467 int want_partial_unit)
5468 {
5469 /* If this compilation unit was already read in, free the
5470 cached copy in order to read it in again. This is
5471 necessary because we skipped some symbols when we first
5472 read in the compilation unit (see load_partial_dies).
5473 This problem could be avoided, but the benefit is unclear. */
5474 if (this_cu->cu != NULL)
5475 free_one_cached_comp_unit (this_cu);
5476
5477 gdb_assert (! this_cu->is_debug_types);
5478 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5479 process_psymtab_comp_unit_reader,
5480 &want_partial_unit);
5481
5482 /* Age out any secondary CUs. */
5483 age_cached_comp_units ();
5484 }
5485
5486 /* Reader function for build_type_psymtabs. */
5487
5488 static void
5489 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5490 const gdb_byte *info_ptr,
5491 struct die_info *type_unit_die,
5492 int has_children,
5493 void *data)
5494 {
5495 struct objfile *objfile = dwarf2_per_objfile->objfile;
5496 struct dwarf2_cu *cu = reader->cu;
5497 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5498 struct signatured_type *sig_type;
5499 struct type_unit_group *tu_group;
5500 struct attribute *attr;
5501 struct partial_die_info *first_die;
5502 CORE_ADDR lowpc, highpc;
5503 struct partial_symtab *pst;
5504
5505 gdb_assert (data == NULL);
5506 gdb_assert (per_cu->is_debug_types);
5507 sig_type = (struct signatured_type *) per_cu;
5508
5509 if (! has_children)
5510 return;
5511
5512 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5513 tu_group = get_type_unit_group (cu, attr);
5514
5515 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5516
5517 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5518 cu->list_in_scope = &file_symbols;
5519 pst = create_partial_symtab (per_cu, "");
5520 pst->anonymous = 1;
5521
5522 first_die = load_partial_dies (reader, info_ptr, 1);
5523
5524 lowpc = (CORE_ADDR) -1;
5525 highpc = (CORE_ADDR) 0;
5526 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5527
5528 pst->n_global_syms = objfile->global_psymbols.next -
5529 (objfile->global_psymbols.list + pst->globals_offset);
5530 pst->n_static_syms = objfile->static_psymbols.next -
5531 (objfile->static_psymbols.list + pst->statics_offset);
5532 sort_pst_symbols (objfile, pst);
5533 }
5534
5535 /* Traversal function for build_type_psymtabs. */
5536
5537 static int
5538 build_type_psymtab_dependencies (void **slot, void *info)
5539 {
5540 struct objfile *objfile = dwarf2_per_objfile->objfile;
5541 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5542 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5543 struct partial_symtab *pst = per_cu->v.psymtab;
5544 int len = VEC_length (sig_type_ptr, tu_group->tus);
5545 struct signatured_type *iter;
5546 int i;
5547
5548 gdb_assert (len > 0);
5549 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5550
5551 pst->number_of_dependencies = len;
5552 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5553 len * sizeof (struct psymtab *));
5554 for (i = 0;
5555 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5556 ++i)
5557 {
5558 gdb_assert (iter->per_cu.is_debug_types);
5559 pst->dependencies[i] = iter->per_cu.v.psymtab;
5560 iter->type_unit_group = tu_group;
5561 }
5562
5563 VEC_free (sig_type_ptr, tu_group->tus);
5564
5565 return 1;
5566 }
5567
5568 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5569 Build partial symbol tables for the .debug_types comp-units. */
5570
5571 static void
5572 build_type_psymtabs (struct objfile *objfile)
5573 {
5574 if (! create_all_type_units (objfile))
5575 return;
5576
5577 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5578
5579 /* Now that all TUs have been processed we can fill in the dependencies. */
5580 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5581 build_type_psymtab_dependencies, NULL);
5582 }
5583
5584 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5585
5586 static void
5587 psymtabs_addrmap_cleanup (void *o)
5588 {
5589 struct objfile *objfile = o;
5590
5591 objfile->psymtabs_addrmap = NULL;
5592 }
5593
5594 /* Compute the 'user' field for each psymtab in OBJFILE. */
5595
5596 static void
5597 set_partial_user (struct objfile *objfile)
5598 {
5599 int i;
5600
5601 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5602 {
5603 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5604 struct partial_symtab *pst = per_cu->v.psymtab;
5605 int j;
5606
5607 if (pst == NULL)
5608 continue;
5609
5610 for (j = 0; j < pst->number_of_dependencies; ++j)
5611 {
5612 /* Set the 'user' field only if it is not already set. */
5613 if (pst->dependencies[j]->user == NULL)
5614 pst->dependencies[j]->user = pst;
5615 }
5616 }
5617 }
5618
5619 /* Build the partial symbol table by doing a quick pass through the
5620 .debug_info and .debug_abbrev sections. */
5621
5622 static void
5623 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5624 {
5625 struct cleanup *back_to, *addrmap_cleanup;
5626 struct obstack temp_obstack;
5627 int i;
5628
5629 if (dwarf2_read_debug)
5630 {
5631 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5632 objfile->name);
5633 }
5634
5635 dwarf2_per_objfile->reading_partial_symbols = 1;
5636
5637 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5638
5639 /* Any cached compilation units will be linked by the per-objfile
5640 read_in_chain. Make sure to free them when we're done. */
5641 back_to = make_cleanup (free_cached_comp_units, NULL);
5642
5643 build_type_psymtabs (objfile);
5644
5645 create_all_comp_units (objfile);
5646
5647 /* Create a temporary address map on a temporary obstack. We later
5648 copy this to the final obstack. */
5649 obstack_init (&temp_obstack);
5650 make_cleanup_obstack_free (&temp_obstack);
5651 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5652 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5653
5654 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5655 {
5656 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5657
5658 process_psymtab_comp_unit (per_cu, 0);
5659 }
5660
5661 set_partial_user (objfile);
5662
5663 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5664 &objfile->objfile_obstack);
5665 discard_cleanups (addrmap_cleanup);
5666
5667 do_cleanups (back_to);
5668
5669 if (dwarf2_read_debug)
5670 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5671 objfile->name);
5672 }
5673
5674 /* die_reader_func for load_partial_comp_unit. */
5675
5676 static void
5677 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5678 const gdb_byte *info_ptr,
5679 struct die_info *comp_unit_die,
5680 int has_children,
5681 void *data)
5682 {
5683 struct dwarf2_cu *cu = reader->cu;
5684
5685 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5686
5687 /* Check if comp unit has_children.
5688 If so, read the rest of the partial symbols from this comp unit.
5689 If not, there's no more debug_info for this comp unit. */
5690 if (has_children)
5691 load_partial_dies (reader, info_ptr, 0);
5692 }
5693
5694 /* Load the partial DIEs for a secondary CU into memory.
5695 This is also used when rereading a primary CU with load_all_dies. */
5696
5697 static void
5698 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5699 {
5700 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5701 load_partial_comp_unit_reader, NULL);
5702 }
5703
5704 static void
5705 read_comp_units_from_section (struct objfile *objfile,
5706 struct dwarf2_section_info *section,
5707 unsigned int is_dwz,
5708 int *n_allocated,
5709 int *n_comp_units,
5710 struct dwarf2_per_cu_data ***all_comp_units)
5711 {
5712 const gdb_byte *info_ptr;
5713 bfd *abfd = section->asection->owner;
5714
5715 if (dwarf2_read_debug)
5716 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
5717 section->asection->name, bfd_get_filename (abfd));
5718
5719 dwarf2_read_section (objfile, section);
5720
5721 info_ptr = section->buffer;
5722
5723 while (info_ptr < section->buffer + section->size)
5724 {
5725 unsigned int length, initial_length_size;
5726 struct dwarf2_per_cu_data *this_cu;
5727 sect_offset offset;
5728
5729 offset.sect_off = info_ptr - section->buffer;
5730
5731 /* Read just enough information to find out where the next
5732 compilation unit is. */
5733 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5734
5735 /* Save the compilation unit for later lookup. */
5736 this_cu = obstack_alloc (&objfile->objfile_obstack,
5737 sizeof (struct dwarf2_per_cu_data));
5738 memset (this_cu, 0, sizeof (*this_cu));
5739 this_cu->offset = offset;
5740 this_cu->length = length + initial_length_size;
5741 this_cu->is_dwz = is_dwz;
5742 this_cu->objfile = objfile;
5743 this_cu->section = section;
5744
5745 if (*n_comp_units == *n_allocated)
5746 {
5747 *n_allocated *= 2;
5748 *all_comp_units = xrealloc (*all_comp_units,
5749 *n_allocated
5750 * sizeof (struct dwarf2_per_cu_data *));
5751 }
5752 (*all_comp_units)[*n_comp_units] = this_cu;
5753 ++*n_comp_units;
5754
5755 info_ptr = info_ptr + this_cu->length;
5756 }
5757 }
5758
5759 /* Create a list of all compilation units in OBJFILE.
5760 This is only done for -readnow and building partial symtabs. */
5761
5762 static void
5763 create_all_comp_units (struct objfile *objfile)
5764 {
5765 int n_allocated;
5766 int n_comp_units;
5767 struct dwarf2_per_cu_data **all_comp_units;
5768
5769 n_comp_units = 0;
5770 n_allocated = 10;
5771 all_comp_units = xmalloc (n_allocated
5772 * sizeof (struct dwarf2_per_cu_data *));
5773
5774 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5775 &n_allocated, &n_comp_units, &all_comp_units);
5776
5777 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5778 {
5779 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5780
5781 read_comp_units_from_section (objfile, &dwz->info, 1,
5782 &n_allocated, &n_comp_units,
5783 &all_comp_units);
5784 }
5785
5786 dwarf2_per_objfile->all_comp_units
5787 = obstack_alloc (&objfile->objfile_obstack,
5788 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5789 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5790 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5791 xfree (all_comp_units);
5792 dwarf2_per_objfile->n_comp_units = n_comp_units;
5793 }
5794
5795 /* Process all loaded DIEs for compilation unit CU, starting at
5796 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5797 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5798 DW_AT_ranges). If NEED_PC is set, then this function will set
5799 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5800 and record the covered ranges in the addrmap. */
5801
5802 static void
5803 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5804 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5805 {
5806 struct partial_die_info *pdi;
5807
5808 /* Now, march along the PDI's, descending into ones which have
5809 interesting children but skipping the children of the other ones,
5810 until we reach the end of the compilation unit. */
5811
5812 pdi = first_die;
5813
5814 while (pdi != NULL)
5815 {
5816 fixup_partial_die (pdi, cu);
5817
5818 /* Anonymous namespaces or modules have no name but have interesting
5819 children, so we need to look at them. Ditto for anonymous
5820 enums. */
5821
5822 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5823 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5824 || pdi->tag == DW_TAG_imported_unit)
5825 {
5826 switch (pdi->tag)
5827 {
5828 case DW_TAG_subprogram:
5829 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5830 break;
5831 case DW_TAG_constant:
5832 case DW_TAG_variable:
5833 case DW_TAG_typedef:
5834 case DW_TAG_union_type:
5835 if (!pdi->is_declaration)
5836 {
5837 add_partial_symbol (pdi, cu);
5838 }
5839 break;
5840 case DW_TAG_class_type:
5841 case DW_TAG_interface_type:
5842 case DW_TAG_structure_type:
5843 if (!pdi->is_declaration)
5844 {
5845 add_partial_symbol (pdi, cu);
5846 }
5847 break;
5848 case DW_TAG_enumeration_type:
5849 if (!pdi->is_declaration)
5850 add_partial_enumeration (pdi, cu);
5851 break;
5852 case DW_TAG_base_type:
5853 case DW_TAG_subrange_type:
5854 /* File scope base type definitions are added to the partial
5855 symbol table. */
5856 add_partial_symbol (pdi, cu);
5857 break;
5858 case DW_TAG_namespace:
5859 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5860 break;
5861 case DW_TAG_module:
5862 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5863 break;
5864 case DW_TAG_imported_unit:
5865 {
5866 struct dwarf2_per_cu_data *per_cu;
5867
5868 /* For now we don't handle imported units in type units. */
5869 if (cu->per_cu->is_debug_types)
5870 {
5871 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5872 " supported in type units [in module %s]"),
5873 cu->objfile->name);
5874 }
5875
5876 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5877 pdi->is_dwz,
5878 cu->objfile);
5879
5880 /* Go read the partial unit, if needed. */
5881 if (per_cu->v.psymtab == NULL)
5882 process_psymtab_comp_unit (per_cu, 1);
5883
5884 VEC_safe_push (dwarf2_per_cu_ptr,
5885 cu->per_cu->imported_symtabs, per_cu);
5886 }
5887 break;
5888 default:
5889 break;
5890 }
5891 }
5892
5893 /* If the die has a sibling, skip to the sibling. */
5894
5895 pdi = pdi->die_sibling;
5896 }
5897 }
5898
5899 /* Functions used to compute the fully scoped name of a partial DIE.
5900
5901 Normally, this is simple. For C++, the parent DIE's fully scoped
5902 name is concatenated with "::" and the partial DIE's name. For
5903 Java, the same thing occurs except that "." is used instead of "::".
5904 Enumerators are an exception; they use the scope of their parent
5905 enumeration type, i.e. the name of the enumeration type is not
5906 prepended to the enumerator.
5907
5908 There are two complexities. One is DW_AT_specification; in this
5909 case "parent" means the parent of the target of the specification,
5910 instead of the direct parent of the DIE. The other is compilers
5911 which do not emit DW_TAG_namespace; in this case we try to guess
5912 the fully qualified name of structure types from their members'
5913 linkage names. This must be done using the DIE's children rather
5914 than the children of any DW_AT_specification target. We only need
5915 to do this for structures at the top level, i.e. if the target of
5916 any DW_AT_specification (if any; otherwise the DIE itself) does not
5917 have a parent. */
5918
5919 /* Compute the scope prefix associated with PDI's parent, in
5920 compilation unit CU. The result will be allocated on CU's
5921 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5922 field. NULL is returned if no prefix is necessary. */
5923 static const char *
5924 partial_die_parent_scope (struct partial_die_info *pdi,
5925 struct dwarf2_cu *cu)
5926 {
5927 const char *grandparent_scope;
5928 struct partial_die_info *parent, *real_pdi;
5929
5930 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5931 then this means the parent of the specification DIE. */
5932
5933 real_pdi = pdi;
5934 while (real_pdi->has_specification)
5935 real_pdi = find_partial_die (real_pdi->spec_offset,
5936 real_pdi->spec_is_dwz, cu);
5937
5938 parent = real_pdi->die_parent;
5939 if (parent == NULL)
5940 return NULL;
5941
5942 if (parent->scope_set)
5943 return parent->scope;
5944
5945 fixup_partial_die (parent, cu);
5946
5947 grandparent_scope = partial_die_parent_scope (parent, cu);
5948
5949 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5950 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5951 Work around this problem here. */
5952 if (cu->language == language_cplus
5953 && parent->tag == DW_TAG_namespace
5954 && strcmp (parent->name, "::") == 0
5955 && grandparent_scope == NULL)
5956 {
5957 parent->scope = NULL;
5958 parent->scope_set = 1;
5959 return NULL;
5960 }
5961
5962 if (pdi->tag == DW_TAG_enumerator)
5963 /* Enumerators should not get the name of the enumeration as a prefix. */
5964 parent->scope = grandparent_scope;
5965 else if (parent->tag == DW_TAG_namespace
5966 || parent->tag == DW_TAG_module
5967 || parent->tag == DW_TAG_structure_type
5968 || parent->tag == DW_TAG_class_type
5969 || parent->tag == DW_TAG_interface_type
5970 || parent->tag == DW_TAG_union_type
5971 || parent->tag == DW_TAG_enumeration_type)
5972 {
5973 if (grandparent_scope == NULL)
5974 parent->scope = parent->name;
5975 else
5976 parent->scope = typename_concat (&cu->comp_unit_obstack,
5977 grandparent_scope,
5978 parent->name, 0, cu);
5979 }
5980 else
5981 {
5982 /* FIXME drow/2004-04-01: What should we be doing with
5983 function-local names? For partial symbols, we should probably be
5984 ignoring them. */
5985 complaint (&symfile_complaints,
5986 _("unhandled containing DIE tag %d for DIE at %d"),
5987 parent->tag, pdi->offset.sect_off);
5988 parent->scope = grandparent_scope;
5989 }
5990
5991 parent->scope_set = 1;
5992 return parent->scope;
5993 }
5994
5995 /* Return the fully scoped name associated with PDI, from compilation unit
5996 CU. The result will be allocated with malloc. */
5997
5998 static char *
5999 partial_die_full_name (struct partial_die_info *pdi,
6000 struct dwarf2_cu *cu)
6001 {
6002 const char *parent_scope;
6003
6004 /* If this is a template instantiation, we can not work out the
6005 template arguments from partial DIEs. So, unfortunately, we have
6006 to go through the full DIEs. At least any work we do building
6007 types here will be reused if full symbols are loaded later. */
6008 if (pdi->has_template_arguments)
6009 {
6010 fixup_partial_die (pdi, cu);
6011
6012 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6013 {
6014 struct die_info *die;
6015 struct attribute attr;
6016 struct dwarf2_cu *ref_cu = cu;
6017
6018 /* DW_FORM_ref_addr is using section offset. */
6019 attr.name = 0;
6020 attr.form = DW_FORM_ref_addr;
6021 attr.u.unsnd = pdi->offset.sect_off;
6022 die = follow_die_ref (NULL, &attr, &ref_cu);
6023
6024 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6025 }
6026 }
6027
6028 parent_scope = partial_die_parent_scope (pdi, cu);
6029 if (parent_scope == NULL)
6030 return NULL;
6031 else
6032 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6033 }
6034
6035 static void
6036 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6037 {
6038 struct objfile *objfile = cu->objfile;
6039 CORE_ADDR addr = 0;
6040 const char *actual_name = NULL;
6041 CORE_ADDR baseaddr;
6042 char *built_actual_name;
6043
6044 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6045
6046 built_actual_name = partial_die_full_name (pdi, cu);
6047 if (built_actual_name != NULL)
6048 actual_name = built_actual_name;
6049
6050 if (actual_name == NULL)
6051 actual_name = pdi->name;
6052
6053 switch (pdi->tag)
6054 {
6055 case DW_TAG_subprogram:
6056 if (pdi->is_external || cu->language == language_ada)
6057 {
6058 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6059 of the global scope. But in Ada, we want to be able to access
6060 nested procedures globally. So all Ada subprograms are stored
6061 in the global scope. */
6062 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6063 mst_text, objfile); */
6064 add_psymbol_to_list (actual_name, strlen (actual_name),
6065 built_actual_name != NULL,
6066 VAR_DOMAIN, LOC_BLOCK,
6067 &objfile->global_psymbols,
6068 0, pdi->lowpc + baseaddr,
6069 cu->language, objfile);
6070 }
6071 else
6072 {
6073 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6074 mst_file_text, objfile); */
6075 add_psymbol_to_list (actual_name, strlen (actual_name),
6076 built_actual_name != NULL,
6077 VAR_DOMAIN, LOC_BLOCK,
6078 &objfile->static_psymbols,
6079 0, pdi->lowpc + baseaddr,
6080 cu->language, objfile);
6081 }
6082 break;
6083 case DW_TAG_constant:
6084 {
6085 struct psymbol_allocation_list *list;
6086
6087 if (pdi->is_external)
6088 list = &objfile->global_psymbols;
6089 else
6090 list = &objfile->static_psymbols;
6091 add_psymbol_to_list (actual_name, strlen (actual_name),
6092 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6093 list, 0, 0, cu->language, objfile);
6094 }
6095 break;
6096 case DW_TAG_variable:
6097 if (pdi->d.locdesc)
6098 addr = decode_locdesc (pdi->d.locdesc, cu);
6099
6100 if (pdi->d.locdesc
6101 && addr == 0
6102 && !dwarf2_per_objfile->has_section_at_zero)
6103 {
6104 /* A global or static variable may also have been stripped
6105 out by the linker if unused, in which case its address
6106 will be nullified; do not add such variables into partial
6107 symbol table then. */
6108 }
6109 else if (pdi->is_external)
6110 {
6111 /* Global Variable.
6112 Don't enter into the minimal symbol tables as there is
6113 a minimal symbol table entry from the ELF symbols already.
6114 Enter into partial symbol table if it has a location
6115 descriptor or a type.
6116 If the location descriptor is missing, new_symbol will create
6117 a LOC_UNRESOLVED symbol, the address of the variable will then
6118 be determined from the minimal symbol table whenever the variable
6119 is referenced.
6120 The address for the partial symbol table entry is not
6121 used by GDB, but it comes in handy for debugging partial symbol
6122 table building. */
6123
6124 if (pdi->d.locdesc || pdi->has_type)
6125 add_psymbol_to_list (actual_name, strlen (actual_name),
6126 built_actual_name != NULL,
6127 VAR_DOMAIN, LOC_STATIC,
6128 &objfile->global_psymbols,
6129 0, addr + baseaddr,
6130 cu->language, objfile);
6131 }
6132 else
6133 {
6134 /* Static Variable. Skip symbols without location descriptors. */
6135 if (pdi->d.locdesc == NULL)
6136 {
6137 xfree (built_actual_name);
6138 return;
6139 }
6140 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6141 mst_file_data, objfile); */
6142 add_psymbol_to_list (actual_name, strlen (actual_name),
6143 built_actual_name != NULL,
6144 VAR_DOMAIN, LOC_STATIC,
6145 &objfile->static_psymbols,
6146 0, addr + baseaddr,
6147 cu->language, objfile);
6148 }
6149 break;
6150 case DW_TAG_typedef:
6151 case DW_TAG_base_type:
6152 case DW_TAG_subrange_type:
6153 add_psymbol_to_list (actual_name, strlen (actual_name),
6154 built_actual_name != NULL,
6155 VAR_DOMAIN, LOC_TYPEDEF,
6156 &objfile->static_psymbols,
6157 0, (CORE_ADDR) 0, cu->language, objfile);
6158 break;
6159 case DW_TAG_namespace:
6160 add_psymbol_to_list (actual_name, strlen (actual_name),
6161 built_actual_name != NULL,
6162 VAR_DOMAIN, LOC_TYPEDEF,
6163 &objfile->global_psymbols,
6164 0, (CORE_ADDR) 0, cu->language, objfile);
6165 break;
6166 case DW_TAG_class_type:
6167 case DW_TAG_interface_type:
6168 case DW_TAG_structure_type:
6169 case DW_TAG_union_type:
6170 case DW_TAG_enumeration_type:
6171 /* Skip external references. The DWARF standard says in the section
6172 about "Structure, Union, and Class Type Entries": "An incomplete
6173 structure, union or class type is represented by a structure,
6174 union or class entry that does not have a byte size attribute
6175 and that has a DW_AT_declaration attribute." */
6176 if (!pdi->has_byte_size && pdi->is_declaration)
6177 {
6178 xfree (built_actual_name);
6179 return;
6180 }
6181
6182 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6183 static vs. global. */
6184 add_psymbol_to_list (actual_name, strlen (actual_name),
6185 built_actual_name != NULL,
6186 STRUCT_DOMAIN, LOC_TYPEDEF,
6187 (cu->language == language_cplus
6188 || cu->language == language_java)
6189 ? &objfile->global_psymbols
6190 : &objfile->static_psymbols,
6191 0, (CORE_ADDR) 0, cu->language, objfile);
6192
6193 break;
6194 case DW_TAG_enumerator:
6195 add_psymbol_to_list (actual_name, strlen (actual_name),
6196 built_actual_name != NULL,
6197 VAR_DOMAIN, LOC_CONST,
6198 (cu->language == language_cplus
6199 || cu->language == language_java)
6200 ? &objfile->global_psymbols
6201 : &objfile->static_psymbols,
6202 0, (CORE_ADDR) 0, cu->language, objfile);
6203 break;
6204 default:
6205 break;
6206 }
6207
6208 xfree (built_actual_name);
6209 }
6210
6211 /* Read a partial die corresponding to a namespace; also, add a symbol
6212 corresponding to that namespace to the symbol table. NAMESPACE is
6213 the name of the enclosing namespace. */
6214
6215 static void
6216 add_partial_namespace (struct partial_die_info *pdi,
6217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6218 int need_pc, struct dwarf2_cu *cu)
6219 {
6220 /* Add a symbol for the namespace. */
6221
6222 add_partial_symbol (pdi, cu);
6223
6224 /* Now scan partial symbols in that namespace. */
6225
6226 if (pdi->has_children)
6227 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6228 }
6229
6230 /* Read a partial die corresponding to a Fortran module. */
6231
6232 static void
6233 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6234 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6235 {
6236 /* Now scan partial symbols in that module. */
6237
6238 if (pdi->has_children)
6239 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6240 }
6241
6242 /* Read a partial die corresponding to a subprogram and create a partial
6243 symbol for that subprogram. When the CU language allows it, this
6244 routine also defines a partial symbol for each nested subprogram
6245 that this subprogram contains.
6246
6247 DIE my also be a lexical block, in which case we simply search
6248 recursively for suprograms defined inside that lexical block.
6249 Again, this is only performed when the CU language allows this
6250 type of definitions. */
6251
6252 static void
6253 add_partial_subprogram (struct partial_die_info *pdi,
6254 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6255 int need_pc, struct dwarf2_cu *cu)
6256 {
6257 if (pdi->tag == DW_TAG_subprogram)
6258 {
6259 if (pdi->has_pc_info)
6260 {
6261 if (pdi->lowpc < *lowpc)
6262 *lowpc = pdi->lowpc;
6263 if (pdi->highpc > *highpc)
6264 *highpc = pdi->highpc;
6265 if (need_pc)
6266 {
6267 CORE_ADDR baseaddr;
6268 struct objfile *objfile = cu->objfile;
6269
6270 baseaddr = ANOFFSET (objfile->section_offsets,
6271 SECT_OFF_TEXT (objfile));
6272 addrmap_set_empty (objfile->psymtabs_addrmap,
6273 pdi->lowpc + baseaddr,
6274 pdi->highpc - 1 + baseaddr,
6275 cu->per_cu->v.psymtab);
6276 }
6277 }
6278
6279 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6280 {
6281 if (!pdi->is_declaration)
6282 /* Ignore subprogram DIEs that do not have a name, they are
6283 illegal. Do not emit a complaint at this point, we will
6284 do so when we convert this psymtab into a symtab. */
6285 if (pdi->name)
6286 add_partial_symbol (pdi, cu);
6287 }
6288 }
6289
6290 if (! pdi->has_children)
6291 return;
6292
6293 if (cu->language == language_ada)
6294 {
6295 pdi = pdi->die_child;
6296 while (pdi != NULL)
6297 {
6298 fixup_partial_die (pdi, cu);
6299 if (pdi->tag == DW_TAG_subprogram
6300 || pdi->tag == DW_TAG_lexical_block)
6301 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6302 pdi = pdi->die_sibling;
6303 }
6304 }
6305 }
6306
6307 /* Read a partial die corresponding to an enumeration type. */
6308
6309 static void
6310 add_partial_enumeration (struct partial_die_info *enum_pdi,
6311 struct dwarf2_cu *cu)
6312 {
6313 struct partial_die_info *pdi;
6314
6315 if (enum_pdi->name != NULL)
6316 add_partial_symbol (enum_pdi, cu);
6317
6318 pdi = enum_pdi->die_child;
6319 while (pdi)
6320 {
6321 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6322 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6323 else
6324 add_partial_symbol (pdi, cu);
6325 pdi = pdi->die_sibling;
6326 }
6327 }
6328
6329 /* Return the initial uleb128 in the die at INFO_PTR. */
6330
6331 static unsigned int
6332 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6333 {
6334 unsigned int bytes_read;
6335
6336 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6337 }
6338
6339 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6340 Return the corresponding abbrev, or NULL if the number is zero (indicating
6341 an empty DIE). In either case *BYTES_READ will be set to the length of
6342 the initial number. */
6343
6344 static struct abbrev_info *
6345 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6346 struct dwarf2_cu *cu)
6347 {
6348 bfd *abfd = cu->objfile->obfd;
6349 unsigned int abbrev_number;
6350 struct abbrev_info *abbrev;
6351
6352 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6353
6354 if (abbrev_number == 0)
6355 return NULL;
6356
6357 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6358 if (!abbrev)
6359 {
6360 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6361 abbrev_number, bfd_get_filename (abfd));
6362 }
6363
6364 return abbrev;
6365 }
6366
6367 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6368 Returns a pointer to the end of a series of DIEs, terminated by an empty
6369 DIE. Any children of the skipped DIEs will also be skipped. */
6370
6371 static const gdb_byte *
6372 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6373 {
6374 struct dwarf2_cu *cu = reader->cu;
6375 struct abbrev_info *abbrev;
6376 unsigned int bytes_read;
6377
6378 while (1)
6379 {
6380 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6381 if (abbrev == NULL)
6382 return info_ptr + bytes_read;
6383 else
6384 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6385 }
6386 }
6387
6388 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6389 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6390 abbrev corresponding to that skipped uleb128 should be passed in
6391 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6392 children. */
6393
6394 static const gdb_byte *
6395 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6396 struct abbrev_info *abbrev)
6397 {
6398 unsigned int bytes_read;
6399 struct attribute attr;
6400 bfd *abfd = reader->abfd;
6401 struct dwarf2_cu *cu = reader->cu;
6402 const gdb_byte *buffer = reader->buffer;
6403 const gdb_byte *buffer_end = reader->buffer_end;
6404 const gdb_byte *start_info_ptr = info_ptr;
6405 unsigned int form, i;
6406
6407 for (i = 0; i < abbrev->num_attrs; i++)
6408 {
6409 /* The only abbrev we care about is DW_AT_sibling. */
6410 if (abbrev->attrs[i].name == DW_AT_sibling)
6411 {
6412 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6413 if (attr.form == DW_FORM_ref_addr)
6414 complaint (&symfile_complaints,
6415 _("ignoring absolute DW_AT_sibling"));
6416 else
6417 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6418 }
6419
6420 /* If it isn't DW_AT_sibling, skip this attribute. */
6421 form = abbrev->attrs[i].form;
6422 skip_attribute:
6423 switch (form)
6424 {
6425 case DW_FORM_ref_addr:
6426 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6427 and later it is offset sized. */
6428 if (cu->header.version == 2)
6429 info_ptr += cu->header.addr_size;
6430 else
6431 info_ptr += cu->header.offset_size;
6432 break;
6433 case DW_FORM_GNU_ref_alt:
6434 info_ptr += cu->header.offset_size;
6435 break;
6436 case DW_FORM_addr:
6437 info_ptr += cu->header.addr_size;
6438 break;
6439 case DW_FORM_data1:
6440 case DW_FORM_ref1:
6441 case DW_FORM_flag:
6442 info_ptr += 1;
6443 break;
6444 case DW_FORM_flag_present:
6445 break;
6446 case DW_FORM_data2:
6447 case DW_FORM_ref2:
6448 info_ptr += 2;
6449 break;
6450 case DW_FORM_data4:
6451 case DW_FORM_ref4:
6452 info_ptr += 4;
6453 break;
6454 case DW_FORM_data8:
6455 case DW_FORM_ref8:
6456 case DW_FORM_ref_sig8:
6457 info_ptr += 8;
6458 break;
6459 case DW_FORM_string:
6460 read_direct_string (abfd, info_ptr, &bytes_read);
6461 info_ptr += bytes_read;
6462 break;
6463 case DW_FORM_sec_offset:
6464 case DW_FORM_strp:
6465 case DW_FORM_GNU_strp_alt:
6466 info_ptr += cu->header.offset_size;
6467 break;
6468 case DW_FORM_exprloc:
6469 case DW_FORM_block:
6470 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6471 info_ptr += bytes_read;
6472 break;
6473 case DW_FORM_block1:
6474 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6475 break;
6476 case DW_FORM_block2:
6477 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6478 break;
6479 case DW_FORM_block4:
6480 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6481 break;
6482 case DW_FORM_sdata:
6483 case DW_FORM_udata:
6484 case DW_FORM_ref_udata:
6485 case DW_FORM_GNU_addr_index:
6486 case DW_FORM_GNU_str_index:
6487 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6488 break;
6489 case DW_FORM_indirect:
6490 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6491 info_ptr += bytes_read;
6492 /* We need to continue parsing from here, so just go back to
6493 the top. */
6494 goto skip_attribute;
6495
6496 default:
6497 error (_("Dwarf Error: Cannot handle %s "
6498 "in DWARF reader [in module %s]"),
6499 dwarf_form_name (form),
6500 bfd_get_filename (abfd));
6501 }
6502 }
6503
6504 if (abbrev->has_children)
6505 return skip_children (reader, info_ptr);
6506 else
6507 return info_ptr;
6508 }
6509
6510 /* Locate ORIG_PDI's sibling.
6511 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6512
6513 static const gdb_byte *
6514 locate_pdi_sibling (const struct die_reader_specs *reader,
6515 struct partial_die_info *orig_pdi,
6516 const gdb_byte *info_ptr)
6517 {
6518 /* Do we know the sibling already? */
6519
6520 if (orig_pdi->sibling)
6521 return orig_pdi->sibling;
6522
6523 /* Are there any children to deal with? */
6524
6525 if (!orig_pdi->has_children)
6526 return info_ptr;
6527
6528 /* Skip the children the long way. */
6529
6530 return skip_children (reader, info_ptr);
6531 }
6532
6533 /* Expand this partial symbol table into a full symbol table. SELF is
6534 not NULL. */
6535
6536 static void
6537 dwarf2_read_symtab (struct partial_symtab *self,
6538 struct objfile *objfile)
6539 {
6540 if (self->readin)
6541 {
6542 warning (_("bug: psymtab for %s is already read in."),
6543 self->filename);
6544 }
6545 else
6546 {
6547 if (info_verbose)
6548 {
6549 printf_filtered (_("Reading in symbols for %s..."),
6550 self->filename);
6551 gdb_flush (gdb_stdout);
6552 }
6553
6554 /* Restore our global data. */
6555 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6556
6557 /* If this psymtab is constructed from a debug-only objfile, the
6558 has_section_at_zero flag will not necessarily be correct. We
6559 can get the correct value for this flag by looking at the data
6560 associated with the (presumably stripped) associated objfile. */
6561 if (objfile->separate_debug_objfile_backlink)
6562 {
6563 struct dwarf2_per_objfile *dpo_backlink
6564 = objfile_data (objfile->separate_debug_objfile_backlink,
6565 dwarf2_objfile_data_key);
6566
6567 dwarf2_per_objfile->has_section_at_zero
6568 = dpo_backlink->has_section_at_zero;
6569 }
6570
6571 dwarf2_per_objfile->reading_partial_symbols = 0;
6572
6573 psymtab_to_symtab_1 (self);
6574
6575 /* Finish up the debug error message. */
6576 if (info_verbose)
6577 printf_filtered (_("done.\n"));
6578 }
6579
6580 process_cu_includes ();
6581 }
6582 \f
6583 /* Reading in full CUs. */
6584
6585 /* Add PER_CU to the queue. */
6586
6587 static void
6588 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6589 enum language pretend_language)
6590 {
6591 struct dwarf2_queue_item *item;
6592
6593 per_cu->queued = 1;
6594 item = xmalloc (sizeof (*item));
6595 item->per_cu = per_cu;
6596 item->pretend_language = pretend_language;
6597 item->next = NULL;
6598
6599 if (dwarf2_queue == NULL)
6600 dwarf2_queue = item;
6601 else
6602 dwarf2_queue_tail->next = item;
6603
6604 dwarf2_queue_tail = item;
6605 }
6606
6607 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6608 unit and add it to our queue.
6609 The result is non-zero if PER_CU was queued, otherwise the result is zero
6610 meaning either PER_CU is already queued or it is already loaded. */
6611
6612 static int
6613 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6614 struct dwarf2_per_cu_data *per_cu,
6615 enum language pretend_language)
6616 {
6617 /* We may arrive here during partial symbol reading, if we need full
6618 DIEs to process an unusual case (e.g. template arguments). Do
6619 not queue PER_CU, just tell our caller to load its DIEs. */
6620 if (dwarf2_per_objfile->reading_partial_symbols)
6621 {
6622 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6623 return 1;
6624 return 0;
6625 }
6626
6627 /* Mark the dependence relation so that we don't flush PER_CU
6628 too early. */
6629 dwarf2_add_dependence (this_cu, per_cu);
6630
6631 /* If it's already on the queue, we have nothing to do. */
6632 if (per_cu->queued)
6633 return 0;
6634
6635 /* If the compilation unit is already loaded, just mark it as
6636 used. */
6637 if (per_cu->cu != NULL)
6638 {
6639 per_cu->cu->last_used = 0;
6640 return 0;
6641 }
6642
6643 /* Add it to the queue. */
6644 queue_comp_unit (per_cu, pretend_language);
6645
6646 return 1;
6647 }
6648
6649 /* Process the queue. */
6650
6651 static void
6652 process_queue (void)
6653 {
6654 struct dwarf2_queue_item *item, *next_item;
6655
6656 if (dwarf2_read_debug)
6657 {
6658 fprintf_unfiltered (gdb_stdlog,
6659 "Expanding one or more symtabs of objfile %s ...\n",
6660 dwarf2_per_objfile->objfile->name);
6661 }
6662
6663 /* The queue starts out with one item, but following a DIE reference
6664 may load a new CU, adding it to the end of the queue. */
6665 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6666 {
6667 if (dwarf2_per_objfile->using_index
6668 ? !item->per_cu->v.quick->symtab
6669 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6670 {
6671 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6672
6673 if (dwarf2_read_debug)
6674 {
6675 fprintf_unfiltered (gdb_stdlog,
6676 "Expanding symtab of %s at offset 0x%x\n",
6677 per_cu->is_debug_types ? "TU" : "CU",
6678 per_cu->offset.sect_off);
6679 }
6680
6681 if (per_cu->is_debug_types)
6682 process_full_type_unit (per_cu, item->pretend_language);
6683 else
6684 process_full_comp_unit (per_cu, item->pretend_language);
6685
6686 if (dwarf2_read_debug)
6687 {
6688 fprintf_unfiltered (gdb_stdlog,
6689 "Done expanding %s at offset 0x%x\n",
6690 per_cu->is_debug_types ? "TU" : "CU",
6691 per_cu->offset.sect_off);
6692 }
6693 }
6694
6695 item->per_cu->queued = 0;
6696 next_item = item->next;
6697 xfree (item);
6698 }
6699
6700 dwarf2_queue_tail = NULL;
6701
6702 if (dwarf2_read_debug)
6703 {
6704 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6705 dwarf2_per_objfile->objfile->name);
6706 }
6707 }
6708
6709 /* Free all allocated queue entries. This function only releases anything if
6710 an error was thrown; if the queue was processed then it would have been
6711 freed as we went along. */
6712
6713 static void
6714 dwarf2_release_queue (void *dummy)
6715 {
6716 struct dwarf2_queue_item *item, *last;
6717
6718 item = dwarf2_queue;
6719 while (item)
6720 {
6721 /* Anything still marked queued is likely to be in an
6722 inconsistent state, so discard it. */
6723 if (item->per_cu->queued)
6724 {
6725 if (item->per_cu->cu != NULL)
6726 free_one_cached_comp_unit (item->per_cu);
6727 item->per_cu->queued = 0;
6728 }
6729
6730 last = item;
6731 item = item->next;
6732 xfree (last);
6733 }
6734
6735 dwarf2_queue = dwarf2_queue_tail = NULL;
6736 }
6737
6738 /* Read in full symbols for PST, and anything it depends on. */
6739
6740 static void
6741 psymtab_to_symtab_1 (struct partial_symtab *pst)
6742 {
6743 struct dwarf2_per_cu_data *per_cu;
6744 int i;
6745
6746 if (pst->readin)
6747 return;
6748
6749 for (i = 0; i < pst->number_of_dependencies; i++)
6750 if (!pst->dependencies[i]->readin
6751 && pst->dependencies[i]->user == NULL)
6752 {
6753 /* Inform about additional files that need to be read in. */
6754 if (info_verbose)
6755 {
6756 /* FIXME: i18n: Need to make this a single string. */
6757 fputs_filtered (" ", gdb_stdout);
6758 wrap_here ("");
6759 fputs_filtered ("and ", gdb_stdout);
6760 wrap_here ("");
6761 printf_filtered ("%s...", pst->dependencies[i]->filename);
6762 wrap_here (""); /* Flush output. */
6763 gdb_flush (gdb_stdout);
6764 }
6765 psymtab_to_symtab_1 (pst->dependencies[i]);
6766 }
6767
6768 per_cu = pst->read_symtab_private;
6769
6770 if (per_cu == NULL)
6771 {
6772 /* It's an include file, no symbols to read for it.
6773 Everything is in the parent symtab. */
6774 pst->readin = 1;
6775 return;
6776 }
6777
6778 dw2_do_instantiate_symtab (per_cu);
6779 }
6780
6781 /* Trivial hash function for die_info: the hash value of a DIE
6782 is its offset in .debug_info for this objfile. */
6783
6784 static hashval_t
6785 die_hash (const void *item)
6786 {
6787 const struct die_info *die = item;
6788
6789 return die->offset.sect_off;
6790 }
6791
6792 /* Trivial comparison function for die_info structures: two DIEs
6793 are equal if they have the same offset. */
6794
6795 static int
6796 die_eq (const void *item_lhs, const void *item_rhs)
6797 {
6798 const struct die_info *die_lhs = item_lhs;
6799 const struct die_info *die_rhs = item_rhs;
6800
6801 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6802 }
6803
6804 /* die_reader_func for load_full_comp_unit.
6805 This is identical to read_signatured_type_reader,
6806 but is kept separate for now. */
6807
6808 static void
6809 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6810 const gdb_byte *info_ptr,
6811 struct die_info *comp_unit_die,
6812 int has_children,
6813 void *data)
6814 {
6815 struct dwarf2_cu *cu = reader->cu;
6816 enum language *language_ptr = data;
6817
6818 gdb_assert (cu->die_hash == NULL);
6819 cu->die_hash =
6820 htab_create_alloc_ex (cu->header.length / 12,
6821 die_hash,
6822 die_eq,
6823 NULL,
6824 &cu->comp_unit_obstack,
6825 hashtab_obstack_allocate,
6826 dummy_obstack_deallocate);
6827
6828 if (has_children)
6829 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6830 &info_ptr, comp_unit_die);
6831 cu->dies = comp_unit_die;
6832 /* comp_unit_die is not stored in die_hash, no need. */
6833
6834 /* We try not to read any attributes in this function, because not
6835 all CUs needed for references have been loaded yet, and symbol
6836 table processing isn't initialized. But we have to set the CU language,
6837 or we won't be able to build types correctly.
6838 Similarly, if we do not read the producer, we can not apply
6839 producer-specific interpretation. */
6840 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6841 }
6842
6843 /* Load the DIEs associated with PER_CU into memory. */
6844
6845 static void
6846 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6847 enum language pretend_language)
6848 {
6849 gdb_assert (! this_cu->is_debug_types);
6850
6851 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6852 load_full_comp_unit_reader, &pretend_language);
6853 }
6854
6855 /* Add a DIE to the delayed physname list. */
6856
6857 static void
6858 add_to_method_list (struct type *type, int fnfield_index, int index,
6859 const char *name, struct die_info *die,
6860 struct dwarf2_cu *cu)
6861 {
6862 struct delayed_method_info mi;
6863 mi.type = type;
6864 mi.fnfield_index = fnfield_index;
6865 mi.index = index;
6866 mi.name = name;
6867 mi.die = die;
6868 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6869 }
6870
6871 /* A cleanup for freeing the delayed method list. */
6872
6873 static void
6874 free_delayed_list (void *ptr)
6875 {
6876 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6877 if (cu->method_list != NULL)
6878 {
6879 VEC_free (delayed_method_info, cu->method_list);
6880 cu->method_list = NULL;
6881 }
6882 }
6883
6884 /* Compute the physnames of any methods on the CU's method list.
6885
6886 The computation of method physnames is delayed in order to avoid the
6887 (bad) condition that one of the method's formal parameters is of an as yet
6888 incomplete type. */
6889
6890 static void
6891 compute_delayed_physnames (struct dwarf2_cu *cu)
6892 {
6893 int i;
6894 struct delayed_method_info *mi;
6895 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6896 {
6897 const char *physname;
6898 struct fn_fieldlist *fn_flp
6899 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6900 physname = dwarf2_physname (mi->name, mi->die, cu);
6901 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6902 }
6903 }
6904
6905 /* Go objects should be embedded in a DW_TAG_module DIE,
6906 and it's not clear if/how imported objects will appear.
6907 To keep Go support simple until that's worked out,
6908 go back through what we've read and create something usable.
6909 We could do this while processing each DIE, and feels kinda cleaner,
6910 but that way is more invasive.
6911 This is to, for example, allow the user to type "p var" or "b main"
6912 without having to specify the package name, and allow lookups
6913 of module.object to work in contexts that use the expression
6914 parser. */
6915
6916 static void
6917 fixup_go_packaging (struct dwarf2_cu *cu)
6918 {
6919 char *package_name = NULL;
6920 struct pending *list;
6921 int i;
6922
6923 for (list = global_symbols; list != NULL; list = list->next)
6924 {
6925 for (i = 0; i < list->nsyms; ++i)
6926 {
6927 struct symbol *sym = list->symbol[i];
6928
6929 if (SYMBOL_LANGUAGE (sym) == language_go
6930 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6931 {
6932 char *this_package_name = go_symbol_package_name (sym);
6933
6934 if (this_package_name == NULL)
6935 continue;
6936 if (package_name == NULL)
6937 package_name = this_package_name;
6938 else
6939 {
6940 if (strcmp (package_name, this_package_name) != 0)
6941 complaint (&symfile_complaints,
6942 _("Symtab %s has objects from two different Go packages: %s and %s"),
6943 (SYMBOL_SYMTAB (sym)
6944 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6945 : cu->objfile->name),
6946 this_package_name, package_name);
6947 xfree (this_package_name);
6948 }
6949 }
6950 }
6951 }
6952
6953 if (package_name != NULL)
6954 {
6955 struct objfile *objfile = cu->objfile;
6956 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6957 package_name,
6958 strlen (package_name));
6959 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6960 saved_package_name, objfile);
6961 struct symbol *sym;
6962
6963 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6964
6965 sym = allocate_symbol (objfile);
6966 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
6967 SYMBOL_SET_NAMES (sym, saved_package_name,
6968 strlen (saved_package_name), 0, objfile);
6969 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6970 e.g., "main" finds the "main" module and not C's main(). */
6971 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6972 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
6973 SYMBOL_TYPE (sym) = type;
6974
6975 add_symbol_to_list (sym, &global_symbols);
6976
6977 xfree (package_name);
6978 }
6979 }
6980
6981 /* Return the symtab for PER_CU. This works properly regardless of
6982 whether we're using the index or psymtabs. */
6983
6984 static struct symtab *
6985 get_symtab (struct dwarf2_per_cu_data *per_cu)
6986 {
6987 return (dwarf2_per_objfile->using_index
6988 ? per_cu->v.quick->symtab
6989 : per_cu->v.psymtab->symtab);
6990 }
6991
6992 /* A helper function for computing the list of all symbol tables
6993 included by PER_CU. */
6994
6995 static void
6996 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6997 htab_t all_children,
6998 struct dwarf2_per_cu_data *per_cu)
6999 {
7000 void **slot;
7001 int ix;
7002 struct dwarf2_per_cu_data *iter;
7003
7004 slot = htab_find_slot (all_children, per_cu, INSERT);
7005 if (*slot != NULL)
7006 {
7007 /* This inclusion and its children have been processed. */
7008 return;
7009 }
7010
7011 *slot = per_cu;
7012 /* Only add a CU if it has a symbol table. */
7013 if (get_symtab (per_cu) != NULL)
7014 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7015
7016 for (ix = 0;
7017 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7018 ++ix)
7019 recursively_compute_inclusions (result, all_children, iter);
7020 }
7021
7022 /* Compute the symtab 'includes' fields for the symtab related to
7023 PER_CU. */
7024
7025 static void
7026 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7027 {
7028 gdb_assert (! per_cu->is_debug_types);
7029
7030 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7031 {
7032 int ix, len;
7033 struct dwarf2_per_cu_data *iter;
7034 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7035 htab_t all_children;
7036 struct symtab *symtab = get_symtab (per_cu);
7037
7038 /* If we don't have a symtab, we can just skip this case. */
7039 if (symtab == NULL)
7040 return;
7041
7042 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7043 NULL, xcalloc, xfree);
7044
7045 for (ix = 0;
7046 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7047 ix, iter);
7048 ++ix)
7049 recursively_compute_inclusions (&result_children, all_children, iter);
7050
7051 /* Now we have a transitive closure of all the included CUs, and
7052 for .gdb_index version 7 the included TUs, so we can convert it
7053 to a list of symtabs. */
7054 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7055 symtab->includes
7056 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7057 (len + 1) * sizeof (struct symtab *));
7058 for (ix = 0;
7059 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7060 ++ix)
7061 symtab->includes[ix] = get_symtab (iter);
7062 symtab->includes[len] = NULL;
7063
7064 VEC_free (dwarf2_per_cu_ptr, result_children);
7065 htab_delete (all_children);
7066 }
7067 }
7068
7069 /* Compute the 'includes' field for the symtabs of all the CUs we just
7070 read. */
7071
7072 static void
7073 process_cu_includes (void)
7074 {
7075 int ix;
7076 struct dwarf2_per_cu_data *iter;
7077
7078 for (ix = 0;
7079 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7080 ix, iter);
7081 ++ix)
7082 {
7083 if (! iter->is_debug_types)
7084 compute_symtab_includes (iter);
7085 }
7086
7087 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7088 }
7089
7090 /* Generate full symbol information for PER_CU, whose DIEs have
7091 already been loaded into memory. */
7092
7093 static void
7094 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7095 enum language pretend_language)
7096 {
7097 struct dwarf2_cu *cu = per_cu->cu;
7098 struct objfile *objfile = per_cu->objfile;
7099 CORE_ADDR lowpc, highpc;
7100 struct symtab *symtab;
7101 struct cleanup *back_to, *delayed_list_cleanup;
7102 CORE_ADDR baseaddr;
7103 struct block *static_block;
7104
7105 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7106
7107 buildsym_init ();
7108 back_to = make_cleanup (really_free_pendings, NULL);
7109 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7110
7111 cu->list_in_scope = &file_symbols;
7112
7113 cu->language = pretend_language;
7114 cu->language_defn = language_def (cu->language);
7115
7116 /* Do line number decoding in read_file_scope () */
7117 process_die (cu->dies, cu);
7118
7119 /* For now fudge the Go package. */
7120 if (cu->language == language_go)
7121 fixup_go_packaging (cu);
7122
7123 /* Now that we have processed all the DIEs in the CU, all the types
7124 should be complete, and it should now be safe to compute all of the
7125 physnames. */
7126 compute_delayed_physnames (cu);
7127 do_cleanups (delayed_list_cleanup);
7128
7129 /* Some compilers don't define a DW_AT_high_pc attribute for the
7130 compilation unit. If the DW_AT_high_pc is missing, synthesize
7131 it, by scanning the DIE's below the compilation unit. */
7132 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7133
7134 static_block
7135 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7136
7137 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7138 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7139 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7140 addrmap to help ensure it has an accurate map of pc values belonging to
7141 this comp unit. */
7142 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7143
7144 symtab = end_symtab_from_static_block (static_block, objfile,
7145 SECT_OFF_TEXT (objfile), 0);
7146
7147 if (symtab != NULL)
7148 {
7149 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7150
7151 /* Set symtab language to language from DW_AT_language. If the
7152 compilation is from a C file generated by language preprocessors, do
7153 not set the language if it was already deduced by start_subfile. */
7154 if (!(cu->language == language_c && symtab->language != language_c))
7155 symtab->language = cu->language;
7156
7157 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7158 produce DW_AT_location with location lists but it can be possibly
7159 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7160 there were bugs in prologue debug info, fixed later in GCC-4.5
7161 by "unwind info for epilogues" patch (which is not directly related).
7162
7163 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7164 needed, it would be wrong due to missing DW_AT_producer there.
7165
7166 Still one can confuse GDB by using non-standard GCC compilation
7167 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7168 */
7169 if (cu->has_loclist && gcc_4_minor >= 5)
7170 symtab->locations_valid = 1;
7171
7172 if (gcc_4_minor >= 5)
7173 symtab->epilogue_unwind_valid = 1;
7174
7175 symtab->call_site_htab = cu->call_site_htab;
7176 }
7177
7178 if (dwarf2_per_objfile->using_index)
7179 per_cu->v.quick->symtab = symtab;
7180 else
7181 {
7182 struct partial_symtab *pst = per_cu->v.psymtab;
7183 pst->symtab = symtab;
7184 pst->readin = 1;
7185 }
7186
7187 /* Push it for inclusion processing later. */
7188 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7189
7190 do_cleanups (back_to);
7191 }
7192
7193 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7194 already been loaded into memory. */
7195
7196 static void
7197 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7198 enum language pretend_language)
7199 {
7200 struct dwarf2_cu *cu = per_cu->cu;
7201 struct objfile *objfile = per_cu->objfile;
7202 struct symtab *symtab;
7203 struct cleanup *back_to, *delayed_list_cleanup;
7204 struct signatured_type *sig_type;
7205
7206 gdb_assert (per_cu->is_debug_types);
7207 sig_type = (struct signatured_type *) per_cu;
7208
7209 buildsym_init ();
7210 back_to = make_cleanup (really_free_pendings, NULL);
7211 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7212
7213 cu->list_in_scope = &file_symbols;
7214
7215 cu->language = pretend_language;
7216 cu->language_defn = language_def (cu->language);
7217
7218 /* The symbol tables are set up in read_type_unit_scope. */
7219 process_die (cu->dies, cu);
7220
7221 /* For now fudge the Go package. */
7222 if (cu->language == language_go)
7223 fixup_go_packaging (cu);
7224
7225 /* Now that we have processed all the DIEs in the CU, all the types
7226 should be complete, and it should now be safe to compute all of the
7227 physnames. */
7228 compute_delayed_physnames (cu);
7229 do_cleanups (delayed_list_cleanup);
7230
7231 /* TUs share symbol tables.
7232 If this is the first TU to use this symtab, complete the construction
7233 of it with end_expandable_symtab. Otherwise, complete the addition of
7234 this TU's symbols to the existing symtab. */
7235 if (sig_type->type_unit_group->primary_symtab == NULL)
7236 {
7237 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7238 sig_type->type_unit_group->primary_symtab = symtab;
7239
7240 if (symtab != NULL)
7241 {
7242 /* Set symtab language to language from DW_AT_language. If the
7243 compilation is from a C file generated by language preprocessors,
7244 do not set the language if it was already deduced by
7245 start_subfile. */
7246 if (!(cu->language == language_c && symtab->language != language_c))
7247 symtab->language = cu->language;
7248 }
7249 }
7250 else
7251 {
7252 augment_type_symtab (objfile,
7253 sig_type->type_unit_group->primary_symtab);
7254 symtab = sig_type->type_unit_group->primary_symtab;
7255 }
7256
7257 if (dwarf2_per_objfile->using_index)
7258 per_cu->v.quick->symtab = symtab;
7259 else
7260 {
7261 struct partial_symtab *pst = per_cu->v.psymtab;
7262 pst->symtab = symtab;
7263 pst->readin = 1;
7264 }
7265
7266 do_cleanups (back_to);
7267 }
7268
7269 /* Process an imported unit DIE. */
7270
7271 static void
7272 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7273 {
7274 struct attribute *attr;
7275
7276 /* For now we don't handle imported units in type units. */
7277 if (cu->per_cu->is_debug_types)
7278 {
7279 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7280 " supported in type units [in module %s]"),
7281 cu->objfile->name);
7282 }
7283
7284 attr = dwarf2_attr (die, DW_AT_import, cu);
7285 if (attr != NULL)
7286 {
7287 struct dwarf2_per_cu_data *per_cu;
7288 struct symtab *imported_symtab;
7289 sect_offset offset;
7290 int is_dwz;
7291
7292 offset = dwarf2_get_ref_die_offset (attr);
7293 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7294 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7295
7296 /* Queue the unit, if needed. */
7297 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7298 load_full_comp_unit (per_cu, cu->language);
7299
7300 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7301 per_cu);
7302 }
7303 }
7304
7305 /* Process a die and its children. */
7306
7307 static void
7308 process_die (struct die_info *die, struct dwarf2_cu *cu)
7309 {
7310 switch (die->tag)
7311 {
7312 case DW_TAG_padding:
7313 break;
7314 case DW_TAG_compile_unit:
7315 case DW_TAG_partial_unit:
7316 read_file_scope (die, cu);
7317 break;
7318 case DW_TAG_type_unit:
7319 read_type_unit_scope (die, cu);
7320 break;
7321 case DW_TAG_subprogram:
7322 case DW_TAG_inlined_subroutine:
7323 read_func_scope (die, cu);
7324 break;
7325 case DW_TAG_lexical_block:
7326 case DW_TAG_try_block:
7327 case DW_TAG_catch_block:
7328 read_lexical_block_scope (die, cu);
7329 break;
7330 case DW_TAG_GNU_call_site:
7331 read_call_site_scope (die, cu);
7332 break;
7333 case DW_TAG_class_type:
7334 case DW_TAG_interface_type:
7335 case DW_TAG_structure_type:
7336 case DW_TAG_union_type:
7337 process_structure_scope (die, cu);
7338 break;
7339 case DW_TAG_enumeration_type:
7340 process_enumeration_scope (die, cu);
7341 break;
7342
7343 /* These dies have a type, but processing them does not create
7344 a symbol or recurse to process the children. Therefore we can
7345 read them on-demand through read_type_die. */
7346 case DW_TAG_subroutine_type:
7347 case DW_TAG_set_type:
7348 case DW_TAG_array_type:
7349 case DW_TAG_pointer_type:
7350 case DW_TAG_ptr_to_member_type:
7351 case DW_TAG_reference_type:
7352 case DW_TAG_string_type:
7353 break;
7354
7355 case DW_TAG_base_type:
7356 case DW_TAG_subrange_type:
7357 case DW_TAG_typedef:
7358 /* Add a typedef symbol for the type definition, if it has a
7359 DW_AT_name. */
7360 new_symbol (die, read_type_die (die, cu), cu);
7361 break;
7362 case DW_TAG_common_block:
7363 read_common_block (die, cu);
7364 break;
7365 case DW_TAG_common_inclusion:
7366 break;
7367 case DW_TAG_namespace:
7368 cu->processing_has_namespace_info = 1;
7369 read_namespace (die, cu);
7370 break;
7371 case DW_TAG_module:
7372 cu->processing_has_namespace_info = 1;
7373 read_module (die, cu);
7374 break;
7375 case DW_TAG_imported_declaration:
7376 case DW_TAG_imported_module:
7377 cu->processing_has_namespace_info = 1;
7378 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7379 || cu->language != language_fortran))
7380 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7381 dwarf_tag_name (die->tag));
7382 read_import_statement (die, cu);
7383 break;
7384
7385 case DW_TAG_imported_unit:
7386 process_imported_unit_die (die, cu);
7387 break;
7388
7389 default:
7390 new_symbol (die, NULL, cu);
7391 break;
7392 }
7393 }
7394 \f
7395 /* DWARF name computation. */
7396
7397 /* A helper function for dwarf2_compute_name which determines whether DIE
7398 needs to have the name of the scope prepended to the name listed in the
7399 die. */
7400
7401 static int
7402 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7403 {
7404 struct attribute *attr;
7405
7406 switch (die->tag)
7407 {
7408 case DW_TAG_namespace:
7409 case DW_TAG_typedef:
7410 case DW_TAG_class_type:
7411 case DW_TAG_interface_type:
7412 case DW_TAG_structure_type:
7413 case DW_TAG_union_type:
7414 case DW_TAG_enumeration_type:
7415 case DW_TAG_enumerator:
7416 case DW_TAG_subprogram:
7417 case DW_TAG_member:
7418 return 1;
7419
7420 case DW_TAG_variable:
7421 case DW_TAG_constant:
7422 /* We only need to prefix "globally" visible variables. These include
7423 any variable marked with DW_AT_external or any variable that
7424 lives in a namespace. [Variables in anonymous namespaces
7425 require prefixing, but they are not DW_AT_external.] */
7426
7427 if (dwarf2_attr (die, DW_AT_specification, cu))
7428 {
7429 struct dwarf2_cu *spec_cu = cu;
7430
7431 return die_needs_namespace (die_specification (die, &spec_cu),
7432 spec_cu);
7433 }
7434
7435 attr = dwarf2_attr (die, DW_AT_external, cu);
7436 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7437 && die->parent->tag != DW_TAG_module)
7438 return 0;
7439 /* A variable in a lexical block of some kind does not need a
7440 namespace, even though in C++ such variables may be external
7441 and have a mangled name. */
7442 if (die->parent->tag == DW_TAG_lexical_block
7443 || die->parent->tag == DW_TAG_try_block
7444 || die->parent->tag == DW_TAG_catch_block
7445 || die->parent->tag == DW_TAG_subprogram)
7446 return 0;
7447 return 1;
7448
7449 default:
7450 return 0;
7451 }
7452 }
7453
7454 /* Retrieve the last character from a mem_file. */
7455
7456 static void
7457 do_ui_file_peek_last (void *object, const char *buffer, long length)
7458 {
7459 char *last_char_p = (char *) object;
7460
7461 if (length > 0)
7462 *last_char_p = buffer[length - 1];
7463 }
7464
7465 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7466 compute the physname for the object, which include a method's:
7467 - formal parameters (C++/Java),
7468 - receiver type (Go),
7469 - return type (Java).
7470
7471 The term "physname" is a bit confusing.
7472 For C++, for example, it is the demangled name.
7473 For Go, for example, it's the mangled name.
7474
7475 For Ada, return the DIE's linkage name rather than the fully qualified
7476 name. PHYSNAME is ignored..
7477
7478 The result is allocated on the objfile_obstack and canonicalized. */
7479
7480 static const char *
7481 dwarf2_compute_name (const char *name,
7482 struct die_info *die, struct dwarf2_cu *cu,
7483 int physname)
7484 {
7485 struct objfile *objfile = cu->objfile;
7486
7487 if (name == NULL)
7488 name = dwarf2_name (die, cu);
7489
7490 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7491 compute it by typename_concat inside GDB. */
7492 if (cu->language == language_ada
7493 || (cu->language == language_fortran && physname))
7494 {
7495 /* For Ada unit, we prefer the linkage name over the name, as
7496 the former contains the exported name, which the user expects
7497 to be able to reference. Ideally, we want the user to be able
7498 to reference this entity using either natural or linkage name,
7499 but we haven't started looking at this enhancement yet. */
7500 struct attribute *attr;
7501
7502 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7503 if (attr == NULL)
7504 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7505 if (attr && DW_STRING (attr))
7506 return DW_STRING (attr);
7507 }
7508
7509 /* These are the only languages we know how to qualify names in. */
7510 if (name != NULL
7511 && (cu->language == language_cplus || cu->language == language_java
7512 || cu->language == language_fortran))
7513 {
7514 if (die_needs_namespace (die, cu))
7515 {
7516 long length;
7517 const char *prefix;
7518 struct ui_file *buf;
7519
7520 prefix = determine_prefix (die, cu);
7521 buf = mem_fileopen ();
7522 if (*prefix != '\0')
7523 {
7524 char *prefixed_name = typename_concat (NULL, prefix, name,
7525 physname, cu);
7526
7527 fputs_unfiltered (prefixed_name, buf);
7528 xfree (prefixed_name);
7529 }
7530 else
7531 fputs_unfiltered (name, buf);
7532
7533 /* Template parameters may be specified in the DIE's DW_AT_name, or
7534 as children with DW_TAG_template_type_param or
7535 DW_TAG_value_type_param. If the latter, add them to the name
7536 here. If the name already has template parameters, then
7537 skip this step; some versions of GCC emit both, and
7538 it is more efficient to use the pre-computed name.
7539
7540 Something to keep in mind about this process: it is very
7541 unlikely, or in some cases downright impossible, to produce
7542 something that will match the mangled name of a function.
7543 If the definition of the function has the same debug info,
7544 we should be able to match up with it anyway. But fallbacks
7545 using the minimal symbol, for instance to find a method
7546 implemented in a stripped copy of libstdc++, will not work.
7547 If we do not have debug info for the definition, we will have to
7548 match them up some other way.
7549
7550 When we do name matching there is a related problem with function
7551 templates; two instantiated function templates are allowed to
7552 differ only by their return types, which we do not add here. */
7553
7554 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7555 {
7556 struct attribute *attr;
7557 struct die_info *child;
7558 int first = 1;
7559
7560 die->building_fullname = 1;
7561
7562 for (child = die->child; child != NULL; child = child->sibling)
7563 {
7564 struct type *type;
7565 LONGEST value;
7566 const gdb_byte *bytes;
7567 struct dwarf2_locexpr_baton *baton;
7568 struct value *v;
7569
7570 if (child->tag != DW_TAG_template_type_param
7571 && child->tag != DW_TAG_template_value_param)
7572 continue;
7573
7574 if (first)
7575 {
7576 fputs_unfiltered ("<", buf);
7577 first = 0;
7578 }
7579 else
7580 fputs_unfiltered (", ", buf);
7581
7582 attr = dwarf2_attr (child, DW_AT_type, cu);
7583 if (attr == NULL)
7584 {
7585 complaint (&symfile_complaints,
7586 _("template parameter missing DW_AT_type"));
7587 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7588 continue;
7589 }
7590 type = die_type (child, cu);
7591
7592 if (child->tag == DW_TAG_template_type_param)
7593 {
7594 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7595 continue;
7596 }
7597
7598 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7599 if (attr == NULL)
7600 {
7601 complaint (&symfile_complaints,
7602 _("template parameter missing "
7603 "DW_AT_const_value"));
7604 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7605 continue;
7606 }
7607
7608 dwarf2_const_value_attr (attr, type, name,
7609 &cu->comp_unit_obstack, cu,
7610 &value, &bytes, &baton);
7611
7612 if (TYPE_NOSIGN (type))
7613 /* GDB prints characters as NUMBER 'CHAR'. If that's
7614 changed, this can use value_print instead. */
7615 c_printchar (value, type, buf);
7616 else
7617 {
7618 struct value_print_options opts;
7619
7620 if (baton != NULL)
7621 v = dwarf2_evaluate_loc_desc (type, NULL,
7622 baton->data,
7623 baton->size,
7624 baton->per_cu);
7625 else if (bytes != NULL)
7626 {
7627 v = allocate_value (type);
7628 memcpy (value_contents_writeable (v), bytes,
7629 TYPE_LENGTH (type));
7630 }
7631 else
7632 v = value_from_longest (type, value);
7633
7634 /* Specify decimal so that we do not depend on
7635 the radix. */
7636 get_formatted_print_options (&opts, 'd');
7637 opts.raw = 1;
7638 value_print (v, buf, &opts);
7639 release_value (v);
7640 value_free (v);
7641 }
7642 }
7643
7644 die->building_fullname = 0;
7645
7646 if (!first)
7647 {
7648 /* Close the argument list, with a space if necessary
7649 (nested templates). */
7650 char last_char = '\0';
7651 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7652 if (last_char == '>')
7653 fputs_unfiltered (" >", buf);
7654 else
7655 fputs_unfiltered (">", buf);
7656 }
7657 }
7658
7659 /* For Java and C++ methods, append formal parameter type
7660 information, if PHYSNAME. */
7661
7662 if (physname && die->tag == DW_TAG_subprogram
7663 && (cu->language == language_cplus
7664 || cu->language == language_java))
7665 {
7666 struct type *type = read_type_die (die, cu);
7667
7668 c_type_print_args (type, buf, 1, cu->language,
7669 &type_print_raw_options);
7670
7671 if (cu->language == language_java)
7672 {
7673 /* For java, we must append the return type to method
7674 names. */
7675 if (die->tag == DW_TAG_subprogram)
7676 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7677 0, 0, &type_print_raw_options);
7678 }
7679 else if (cu->language == language_cplus)
7680 {
7681 /* Assume that an artificial first parameter is
7682 "this", but do not crash if it is not. RealView
7683 marks unnamed (and thus unused) parameters as
7684 artificial; there is no way to differentiate
7685 the two cases. */
7686 if (TYPE_NFIELDS (type) > 0
7687 && TYPE_FIELD_ARTIFICIAL (type, 0)
7688 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7689 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7690 0))))
7691 fputs_unfiltered (" const", buf);
7692 }
7693 }
7694
7695 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7696 &length);
7697 ui_file_delete (buf);
7698
7699 if (cu->language == language_cplus)
7700 {
7701 const char *cname
7702 = dwarf2_canonicalize_name (name, cu,
7703 &objfile->objfile_obstack);
7704
7705 if (cname != NULL)
7706 name = cname;
7707 }
7708 }
7709 }
7710
7711 return name;
7712 }
7713
7714 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7715 If scope qualifiers are appropriate they will be added. The result
7716 will be allocated on the objfile_obstack, or NULL if the DIE does
7717 not have a name. NAME may either be from a previous call to
7718 dwarf2_name or NULL.
7719
7720 The output string will be canonicalized (if C++/Java). */
7721
7722 static const char *
7723 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7724 {
7725 return dwarf2_compute_name (name, die, cu, 0);
7726 }
7727
7728 /* Construct a physname for the given DIE in CU. NAME may either be
7729 from a previous call to dwarf2_name or NULL. The result will be
7730 allocated on the objfile_objstack or NULL if the DIE does not have a
7731 name.
7732
7733 The output string will be canonicalized (if C++/Java). */
7734
7735 static const char *
7736 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7737 {
7738 struct objfile *objfile = cu->objfile;
7739 struct attribute *attr;
7740 const char *retval, *mangled = NULL, *canon = NULL;
7741 struct cleanup *back_to;
7742 int need_copy = 1;
7743
7744 /* In this case dwarf2_compute_name is just a shortcut not building anything
7745 on its own. */
7746 if (!die_needs_namespace (die, cu))
7747 return dwarf2_compute_name (name, die, cu, 1);
7748
7749 back_to = make_cleanup (null_cleanup, NULL);
7750
7751 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7752 if (!attr)
7753 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7754
7755 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7756 has computed. */
7757 if (attr && DW_STRING (attr))
7758 {
7759 char *demangled;
7760
7761 mangled = DW_STRING (attr);
7762
7763 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7764 type. It is easier for GDB users to search for such functions as
7765 `name(params)' than `long name(params)'. In such case the minimal
7766 symbol names do not match the full symbol names but for template
7767 functions there is never a need to look up their definition from their
7768 declaration so the only disadvantage remains the minimal symbol
7769 variant `long name(params)' does not have the proper inferior type.
7770 */
7771
7772 if (cu->language == language_go)
7773 {
7774 /* This is a lie, but we already lie to the caller new_symbol_full.
7775 new_symbol_full assumes we return the mangled name.
7776 This just undoes that lie until things are cleaned up. */
7777 demangled = NULL;
7778 }
7779 else
7780 {
7781 demangled = gdb_demangle (mangled,
7782 (DMGL_PARAMS | DMGL_ANSI
7783 | (cu->language == language_java
7784 ? DMGL_JAVA | DMGL_RET_POSTFIX
7785 : DMGL_RET_DROP)));
7786 }
7787 if (demangled)
7788 {
7789 make_cleanup (xfree, demangled);
7790 canon = demangled;
7791 }
7792 else
7793 {
7794 canon = mangled;
7795 need_copy = 0;
7796 }
7797 }
7798
7799 if (canon == NULL || check_physname)
7800 {
7801 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7802
7803 if (canon != NULL && strcmp (physname, canon) != 0)
7804 {
7805 /* It may not mean a bug in GDB. The compiler could also
7806 compute DW_AT_linkage_name incorrectly. But in such case
7807 GDB would need to be bug-to-bug compatible. */
7808
7809 complaint (&symfile_complaints,
7810 _("Computed physname <%s> does not match demangled <%s> "
7811 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7812 physname, canon, mangled, die->offset.sect_off, objfile->name);
7813
7814 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7815 is available here - over computed PHYSNAME. It is safer
7816 against both buggy GDB and buggy compilers. */
7817
7818 retval = canon;
7819 }
7820 else
7821 {
7822 retval = physname;
7823 need_copy = 0;
7824 }
7825 }
7826 else
7827 retval = canon;
7828
7829 if (need_copy)
7830 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7831
7832 do_cleanups (back_to);
7833 return retval;
7834 }
7835
7836 /* Read the import statement specified by the given die and record it. */
7837
7838 static void
7839 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7840 {
7841 struct objfile *objfile = cu->objfile;
7842 struct attribute *import_attr;
7843 struct die_info *imported_die, *child_die;
7844 struct dwarf2_cu *imported_cu;
7845 const char *imported_name;
7846 const char *imported_name_prefix;
7847 const char *canonical_name;
7848 const char *import_alias;
7849 const char *imported_declaration = NULL;
7850 const char *import_prefix;
7851 VEC (const_char_ptr) *excludes = NULL;
7852 struct cleanup *cleanups;
7853
7854 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7855 if (import_attr == NULL)
7856 {
7857 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7858 dwarf_tag_name (die->tag));
7859 return;
7860 }
7861
7862 imported_cu = cu;
7863 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7864 imported_name = dwarf2_name (imported_die, imported_cu);
7865 if (imported_name == NULL)
7866 {
7867 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7868
7869 The import in the following code:
7870 namespace A
7871 {
7872 typedef int B;
7873 }
7874
7875 int main ()
7876 {
7877 using A::B;
7878 B b;
7879 return b;
7880 }
7881
7882 ...
7883 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7884 <52> DW_AT_decl_file : 1
7885 <53> DW_AT_decl_line : 6
7886 <54> DW_AT_import : <0x75>
7887 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7888 <59> DW_AT_name : B
7889 <5b> DW_AT_decl_file : 1
7890 <5c> DW_AT_decl_line : 2
7891 <5d> DW_AT_type : <0x6e>
7892 ...
7893 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7894 <76> DW_AT_byte_size : 4
7895 <77> DW_AT_encoding : 5 (signed)
7896
7897 imports the wrong die ( 0x75 instead of 0x58 ).
7898 This case will be ignored until the gcc bug is fixed. */
7899 return;
7900 }
7901
7902 /* Figure out the local name after import. */
7903 import_alias = dwarf2_name (die, cu);
7904
7905 /* Figure out where the statement is being imported to. */
7906 import_prefix = determine_prefix (die, cu);
7907
7908 /* Figure out what the scope of the imported die is and prepend it
7909 to the name of the imported die. */
7910 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7911
7912 if (imported_die->tag != DW_TAG_namespace
7913 && imported_die->tag != DW_TAG_module)
7914 {
7915 imported_declaration = imported_name;
7916 canonical_name = imported_name_prefix;
7917 }
7918 else if (strlen (imported_name_prefix) > 0)
7919 canonical_name = obconcat (&objfile->objfile_obstack,
7920 imported_name_prefix, "::", imported_name,
7921 (char *) NULL);
7922 else
7923 canonical_name = imported_name;
7924
7925 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7926
7927 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7928 for (child_die = die->child; child_die && child_die->tag;
7929 child_die = sibling_die (child_die))
7930 {
7931 /* DWARF-4: A Fortran use statement with a “rename list” may be
7932 represented by an imported module entry with an import attribute
7933 referring to the module and owned entries corresponding to those
7934 entities that are renamed as part of being imported. */
7935
7936 if (child_die->tag != DW_TAG_imported_declaration)
7937 {
7938 complaint (&symfile_complaints,
7939 _("child DW_TAG_imported_declaration expected "
7940 "- DIE at 0x%x [in module %s]"),
7941 child_die->offset.sect_off, objfile->name);
7942 continue;
7943 }
7944
7945 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7946 if (import_attr == NULL)
7947 {
7948 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7949 dwarf_tag_name (child_die->tag));
7950 continue;
7951 }
7952
7953 imported_cu = cu;
7954 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7955 &imported_cu);
7956 imported_name = dwarf2_name (imported_die, imported_cu);
7957 if (imported_name == NULL)
7958 {
7959 complaint (&symfile_complaints,
7960 _("child DW_TAG_imported_declaration has unknown "
7961 "imported name - DIE at 0x%x [in module %s]"),
7962 child_die->offset.sect_off, objfile->name);
7963 continue;
7964 }
7965
7966 VEC_safe_push (const_char_ptr, excludes, imported_name);
7967
7968 process_die (child_die, cu);
7969 }
7970
7971 cp_add_using_directive (import_prefix,
7972 canonical_name,
7973 import_alias,
7974 imported_declaration,
7975 excludes,
7976 0,
7977 &objfile->objfile_obstack);
7978
7979 do_cleanups (cleanups);
7980 }
7981
7982 /* Cleanup function for handle_DW_AT_stmt_list. */
7983
7984 static void
7985 free_cu_line_header (void *arg)
7986 {
7987 struct dwarf2_cu *cu = arg;
7988
7989 free_line_header (cu->line_header);
7990 cu->line_header = NULL;
7991 }
7992
7993 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7994 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7995 this, it was first present in GCC release 4.3.0. */
7996
7997 static int
7998 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7999 {
8000 if (!cu->checked_producer)
8001 check_producer (cu);
8002
8003 return cu->producer_is_gcc_lt_4_3;
8004 }
8005
8006 static void
8007 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8008 const char **name, const char **comp_dir)
8009 {
8010 struct attribute *attr;
8011
8012 *name = NULL;
8013 *comp_dir = NULL;
8014
8015 /* Find the filename. Do not use dwarf2_name here, since the filename
8016 is not a source language identifier. */
8017 attr = dwarf2_attr (die, DW_AT_name, cu);
8018 if (attr)
8019 {
8020 *name = DW_STRING (attr);
8021 }
8022
8023 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8024 if (attr)
8025 *comp_dir = DW_STRING (attr);
8026 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8027 && IS_ABSOLUTE_PATH (*name))
8028 {
8029 char *d = ldirname (*name);
8030
8031 *comp_dir = d;
8032 if (d != NULL)
8033 make_cleanup (xfree, d);
8034 }
8035 if (*comp_dir != NULL)
8036 {
8037 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8038 directory, get rid of it. */
8039 char *cp = strchr (*comp_dir, ':');
8040
8041 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8042 *comp_dir = cp + 1;
8043 }
8044
8045 if (*name == NULL)
8046 *name = "<unknown>";
8047 }
8048
8049 /* Handle DW_AT_stmt_list for a compilation unit.
8050 DIE is the DW_TAG_compile_unit die for CU.
8051 COMP_DIR is the compilation directory.
8052 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8053
8054 static void
8055 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8056 const char *comp_dir)
8057 {
8058 struct attribute *attr;
8059
8060 gdb_assert (! cu->per_cu->is_debug_types);
8061
8062 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8063 if (attr)
8064 {
8065 unsigned int line_offset = DW_UNSND (attr);
8066 struct line_header *line_header
8067 = dwarf_decode_line_header (line_offset, cu);
8068
8069 if (line_header)
8070 {
8071 cu->line_header = line_header;
8072 make_cleanup (free_cu_line_header, cu);
8073 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8074 }
8075 }
8076 }
8077
8078 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8079
8080 static void
8081 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8082 {
8083 struct objfile *objfile = dwarf2_per_objfile->objfile;
8084 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8085 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8086 CORE_ADDR highpc = ((CORE_ADDR) 0);
8087 struct attribute *attr;
8088 const char *name = NULL;
8089 const char *comp_dir = NULL;
8090 struct die_info *child_die;
8091 bfd *abfd = objfile->obfd;
8092 CORE_ADDR baseaddr;
8093
8094 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8095
8096 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8097
8098 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8099 from finish_block. */
8100 if (lowpc == ((CORE_ADDR) -1))
8101 lowpc = highpc;
8102 lowpc += baseaddr;
8103 highpc += baseaddr;
8104
8105 find_file_and_directory (die, cu, &name, &comp_dir);
8106
8107 prepare_one_comp_unit (cu, die, cu->language);
8108
8109 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8110 standardised yet. As a workaround for the language detection we fall
8111 back to the DW_AT_producer string. */
8112 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8113 cu->language = language_opencl;
8114
8115 /* Similar hack for Go. */
8116 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8117 set_cu_language (DW_LANG_Go, cu);
8118
8119 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8120
8121 /* Decode line number information if present. We do this before
8122 processing child DIEs, so that the line header table is available
8123 for DW_AT_decl_file. */
8124 handle_DW_AT_stmt_list (die, cu, comp_dir);
8125
8126 /* Process all dies in compilation unit. */
8127 if (die->child != NULL)
8128 {
8129 child_die = die->child;
8130 while (child_die && child_die->tag)
8131 {
8132 process_die (child_die, cu);
8133 child_die = sibling_die (child_die);
8134 }
8135 }
8136
8137 /* Decode macro information, if present. Dwarf 2 macro information
8138 refers to information in the line number info statement program
8139 header, so we can only read it if we've read the header
8140 successfully. */
8141 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8142 if (attr && cu->line_header)
8143 {
8144 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8145 complaint (&symfile_complaints,
8146 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8147
8148 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8149 }
8150 else
8151 {
8152 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8153 if (attr && cu->line_header)
8154 {
8155 unsigned int macro_offset = DW_UNSND (attr);
8156
8157 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8158 }
8159 }
8160
8161 do_cleanups (back_to);
8162 }
8163
8164 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8165 Create the set of symtabs used by this TU, or if this TU is sharing
8166 symtabs with another TU and the symtabs have already been created
8167 then restore those symtabs in the line header.
8168 We don't need the pc/line-number mapping for type units. */
8169
8170 static void
8171 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8172 {
8173 struct objfile *objfile = dwarf2_per_objfile->objfile;
8174 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8175 struct type_unit_group *tu_group;
8176 int first_time;
8177 struct line_header *lh;
8178 struct attribute *attr;
8179 unsigned int i, line_offset;
8180 struct signatured_type *sig_type;
8181
8182 gdb_assert (per_cu->is_debug_types);
8183 sig_type = (struct signatured_type *) per_cu;
8184
8185 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8186
8187 /* If we're using .gdb_index (includes -readnow) then
8188 per_cu->type_unit_group may not have been set up yet. */
8189 if (sig_type->type_unit_group == NULL)
8190 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8191 tu_group = sig_type->type_unit_group;
8192
8193 /* If we've already processed this stmt_list there's no real need to
8194 do it again, we could fake it and just recreate the part we need
8195 (file name,index -> symtab mapping). If data shows this optimization
8196 is useful we can do it then. */
8197 first_time = tu_group->primary_symtab == NULL;
8198
8199 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8200 debug info. */
8201 lh = NULL;
8202 if (attr != NULL)
8203 {
8204 line_offset = DW_UNSND (attr);
8205 lh = dwarf_decode_line_header (line_offset, cu);
8206 }
8207 if (lh == NULL)
8208 {
8209 if (first_time)
8210 dwarf2_start_symtab (cu, "", NULL, 0);
8211 else
8212 {
8213 gdb_assert (tu_group->symtabs == NULL);
8214 restart_symtab (0);
8215 }
8216 /* Note: The primary symtab will get allocated at the end. */
8217 return;
8218 }
8219
8220 cu->line_header = lh;
8221 make_cleanup (free_cu_line_header, cu);
8222
8223 if (first_time)
8224 {
8225 dwarf2_start_symtab (cu, "", NULL, 0);
8226
8227 tu_group->num_symtabs = lh->num_file_names;
8228 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8229
8230 for (i = 0; i < lh->num_file_names; ++i)
8231 {
8232 const char *dir = NULL;
8233 struct file_entry *fe = &lh->file_names[i];
8234
8235 if (fe->dir_index)
8236 dir = lh->include_dirs[fe->dir_index - 1];
8237 dwarf2_start_subfile (fe->name, dir, NULL);
8238
8239 /* Note: We don't have to watch for the main subfile here, type units
8240 don't have DW_AT_name. */
8241
8242 if (current_subfile->symtab == NULL)
8243 {
8244 /* NOTE: start_subfile will recognize when it's been passed
8245 a file it has already seen. So we can't assume there's a
8246 simple mapping from lh->file_names to subfiles,
8247 lh->file_names may contain dups. */
8248 current_subfile->symtab = allocate_symtab (current_subfile->name,
8249 objfile);
8250 }
8251
8252 fe->symtab = current_subfile->symtab;
8253 tu_group->symtabs[i] = fe->symtab;
8254 }
8255 }
8256 else
8257 {
8258 restart_symtab (0);
8259
8260 for (i = 0; i < lh->num_file_names; ++i)
8261 {
8262 struct file_entry *fe = &lh->file_names[i];
8263
8264 fe->symtab = tu_group->symtabs[i];
8265 }
8266 }
8267
8268 /* The main symtab is allocated last. Type units don't have DW_AT_name
8269 so they don't have a "real" (so to speak) symtab anyway.
8270 There is later code that will assign the main symtab to all symbols
8271 that don't have one. We need to handle the case of a symbol with a
8272 missing symtab (DW_AT_decl_file) anyway. */
8273 }
8274
8275 /* Process DW_TAG_type_unit.
8276 For TUs we want to skip the first top level sibling if it's not the
8277 actual type being defined by this TU. In this case the first top
8278 level sibling is there to provide context only. */
8279
8280 static void
8281 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8282 {
8283 struct die_info *child_die;
8284
8285 prepare_one_comp_unit (cu, die, language_minimal);
8286
8287 /* Initialize (or reinitialize) the machinery for building symtabs.
8288 We do this before processing child DIEs, so that the line header table
8289 is available for DW_AT_decl_file. */
8290 setup_type_unit_groups (die, cu);
8291
8292 if (die->child != NULL)
8293 {
8294 child_die = die->child;
8295 while (child_die && child_die->tag)
8296 {
8297 process_die (child_die, cu);
8298 child_die = sibling_die (child_die);
8299 }
8300 }
8301 }
8302 \f
8303 /* DWO/DWP files.
8304
8305 http://gcc.gnu.org/wiki/DebugFission
8306 http://gcc.gnu.org/wiki/DebugFissionDWP
8307
8308 To simplify handling of both DWO files ("object" files with the DWARF info)
8309 and DWP files (a file with the DWOs packaged up into one file), we treat
8310 DWP files as having a collection of virtual DWO files. */
8311
8312 static hashval_t
8313 hash_dwo_file (const void *item)
8314 {
8315 const struct dwo_file *dwo_file = item;
8316
8317 return (htab_hash_string (dwo_file->dwo_name)
8318 + htab_hash_string (dwo_file->comp_dir));
8319 }
8320
8321 static int
8322 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8323 {
8324 const struct dwo_file *lhs = item_lhs;
8325 const struct dwo_file *rhs = item_rhs;
8326
8327 return (strcmp (lhs->dwo_name, rhs->dwo_name) == 0
8328 && strcmp (lhs->comp_dir, rhs->comp_dir) == 0);
8329 }
8330
8331 /* Allocate a hash table for DWO files. */
8332
8333 static htab_t
8334 allocate_dwo_file_hash_table (void)
8335 {
8336 struct objfile *objfile = dwarf2_per_objfile->objfile;
8337
8338 return htab_create_alloc_ex (41,
8339 hash_dwo_file,
8340 eq_dwo_file,
8341 NULL,
8342 &objfile->objfile_obstack,
8343 hashtab_obstack_allocate,
8344 dummy_obstack_deallocate);
8345 }
8346
8347 /* Lookup DWO file DWO_NAME. */
8348
8349 static void **
8350 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8351 {
8352 struct dwo_file find_entry;
8353 void **slot;
8354
8355 if (dwarf2_per_objfile->dwo_files == NULL)
8356 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8357
8358 memset (&find_entry, 0, sizeof (find_entry));
8359 find_entry.dwo_name = dwo_name;
8360 find_entry.comp_dir = comp_dir;
8361 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8362
8363 return slot;
8364 }
8365
8366 static hashval_t
8367 hash_dwo_unit (const void *item)
8368 {
8369 const struct dwo_unit *dwo_unit = item;
8370
8371 /* This drops the top 32 bits of the id, but is ok for a hash. */
8372 return dwo_unit->signature;
8373 }
8374
8375 static int
8376 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8377 {
8378 const struct dwo_unit *lhs = item_lhs;
8379 const struct dwo_unit *rhs = item_rhs;
8380
8381 /* The signature is assumed to be unique within the DWO file.
8382 So while object file CU dwo_id's always have the value zero,
8383 that's OK, assuming each object file DWO file has only one CU,
8384 and that's the rule for now. */
8385 return lhs->signature == rhs->signature;
8386 }
8387
8388 /* Allocate a hash table for DWO CUs,TUs.
8389 There is one of these tables for each of CUs,TUs for each DWO file. */
8390
8391 static htab_t
8392 allocate_dwo_unit_table (struct objfile *objfile)
8393 {
8394 /* Start out with a pretty small number.
8395 Generally DWO files contain only one CU and maybe some TUs. */
8396 return htab_create_alloc_ex (3,
8397 hash_dwo_unit,
8398 eq_dwo_unit,
8399 NULL,
8400 &objfile->objfile_obstack,
8401 hashtab_obstack_allocate,
8402 dummy_obstack_deallocate);
8403 }
8404
8405 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8406
8407 struct create_dwo_cu_data
8408 {
8409 struct dwo_file *dwo_file;
8410 struct dwo_unit dwo_unit;
8411 };
8412
8413 /* die_reader_func for create_dwo_cu. */
8414
8415 static void
8416 create_dwo_cu_reader (const struct die_reader_specs *reader,
8417 const gdb_byte *info_ptr,
8418 struct die_info *comp_unit_die,
8419 int has_children,
8420 void *datap)
8421 {
8422 struct dwarf2_cu *cu = reader->cu;
8423 struct objfile *objfile = dwarf2_per_objfile->objfile;
8424 sect_offset offset = cu->per_cu->offset;
8425 struct dwarf2_section_info *section = cu->per_cu->section;
8426 struct create_dwo_cu_data *data = datap;
8427 struct dwo_file *dwo_file = data->dwo_file;
8428 struct dwo_unit *dwo_unit = &data->dwo_unit;
8429 struct attribute *attr;
8430
8431 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8432 if (attr == NULL)
8433 {
8434 complaint (&symfile_complaints,
8435 _("Dwarf Error: debug entry at offset 0x%x is missing"
8436 " its dwo_id [in module %s]"),
8437 offset.sect_off, dwo_file->dwo_name);
8438 return;
8439 }
8440
8441 dwo_unit->dwo_file = dwo_file;
8442 dwo_unit->signature = DW_UNSND (attr);
8443 dwo_unit->section = section;
8444 dwo_unit->offset = offset;
8445 dwo_unit->length = cu->per_cu->length;
8446
8447 if (dwarf2_read_debug)
8448 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8449 offset.sect_off, hex_string (dwo_unit->signature));
8450 }
8451
8452 /* Create the dwo_unit for the lone CU in DWO_FILE.
8453 Note: This function processes DWO files only, not DWP files. */
8454
8455 static struct dwo_unit *
8456 create_dwo_cu (struct dwo_file *dwo_file)
8457 {
8458 struct objfile *objfile = dwarf2_per_objfile->objfile;
8459 struct dwarf2_section_info *section = &dwo_file->sections.info;
8460 bfd *abfd;
8461 htab_t cu_htab;
8462 const gdb_byte *info_ptr, *end_ptr;
8463 struct create_dwo_cu_data create_dwo_cu_data;
8464 struct dwo_unit *dwo_unit;
8465
8466 dwarf2_read_section (objfile, section);
8467 info_ptr = section->buffer;
8468
8469 if (info_ptr == NULL)
8470 return NULL;
8471
8472 /* We can't set abfd until now because the section may be empty or
8473 not present, in which case section->asection will be NULL. */
8474 abfd = section->asection->owner;
8475
8476 if (dwarf2_read_debug)
8477 {
8478 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8479 bfd_section_name (abfd, section->asection),
8480 bfd_get_filename (abfd));
8481 }
8482
8483 create_dwo_cu_data.dwo_file = dwo_file;
8484 dwo_unit = NULL;
8485
8486 end_ptr = info_ptr + section->size;
8487 while (info_ptr < end_ptr)
8488 {
8489 struct dwarf2_per_cu_data per_cu;
8490
8491 memset (&create_dwo_cu_data.dwo_unit, 0,
8492 sizeof (create_dwo_cu_data.dwo_unit));
8493 memset (&per_cu, 0, sizeof (per_cu));
8494 per_cu.objfile = objfile;
8495 per_cu.is_debug_types = 0;
8496 per_cu.offset.sect_off = info_ptr - section->buffer;
8497 per_cu.section = section;
8498
8499 init_cutu_and_read_dies_no_follow (&per_cu,
8500 &dwo_file->sections.abbrev,
8501 dwo_file,
8502 create_dwo_cu_reader,
8503 &create_dwo_cu_data);
8504
8505 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8506 {
8507 /* If we've already found one, complain. We only support one
8508 because having more than one requires hacking the dwo_name of
8509 each to match, which is highly unlikely to happen. */
8510 if (dwo_unit != NULL)
8511 {
8512 complaint (&symfile_complaints,
8513 _("Multiple CUs in DWO file %s [in module %s]"),
8514 dwo_file->dwo_name, objfile->name);
8515 break;
8516 }
8517
8518 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8519 *dwo_unit = create_dwo_cu_data.dwo_unit;
8520 }
8521
8522 info_ptr += per_cu.length;
8523 }
8524
8525 return dwo_unit;
8526 }
8527
8528 /* DWP file .debug_{cu,tu}_index section format:
8529 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8530
8531 Both index sections have the same format, and serve to map a 64-bit
8532 signature to a set of section numbers. Each section begins with a header,
8533 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8534 indexes, and a pool of 32-bit section numbers. The index sections will be
8535 aligned at 8-byte boundaries in the file.
8536
8537 The index section header contains two unsigned 32-bit values (using the
8538 byte order of the application binary):
8539
8540 N, the number of compilation units or type units in the index
8541 M, the number of slots in the hash table
8542
8543 (We assume that N and M will not exceed 2^32 - 1.)
8544
8545 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8546
8547 The hash table begins at offset 8 in the section, and consists of an array
8548 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8549 order of the application binary). Unused slots in the hash table are 0.
8550 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8551
8552 The parallel table begins immediately after the hash table
8553 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8554 array of 32-bit indexes (using the byte order of the application binary),
8555 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8556 table contains a 32-bit index into the pool of section numbers. For unused
8557 hash table slots, the corresponding entry in the parallel table will be 0.
8558
8559 Given a 64-bit compilation unit signature or a type signature S, an entry
8560 in the hash table is located as follows:
8561
8562 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8563 the low-order k bits all set to 1.
8564
8565 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8566
8567 3) If the hash table entry at index H matches the signature, use that
8568 entry. If the hash table entry at index H is unused (all zeroes),
8569 terminate the search: the signature is not present in the table.
8570
8571 4) Let H = (H + H') modulo M. Repeat at Step 3.
8572
8573 Because M > N and H' and M are relatively prime, the search is guaranteed
8574 to stop at an unused slot or find the match.
8575
8576 The pool of section numbers begins immediately following the hash table
8577 (at offset 8 + 12 * M from the beginning of the section). The pool of
8578 section numbers consists of an array of 32-bit words (using the byte order
8579 of the application binary). Each item in the array is indexed starting
8580 from 0. The hash table entry provides the index of the first section
8581 number in the set. Additional section numbers in the set follow, and the
8582 set is terminated by a 0 entry (section number 0 is not used in ELF).
8583
8584 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8585 section must be the first entry in the set, and the .debug_abbrev.dwo must
8586 be the second entry. Other members of the set may follow in any order. */
8587
8588 /* Create a hash table to map DWO IDs to their CU/TU entry in
8589 .debug_{info,types}.dwo in DWP_FILE.
8590 Returns NULL if there isn't one.
8591 Note: This function processes DWP files only, not DWO files. */
8592
8593 static struct dwp_hash_table *
8594 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8595 {
8596 struct objfile *objfile = dwarf2_per_objfile->objfile;
8597 bfd *dbfd = dwp_file->dbfd;
8598 const gdb_byte *index_ptr, *index_end;
8599 struct dwarf2_section_info *index;
8600 uint32_t version, nr_units, nr_slots;
8601 struct dwp_hash_table *htab;
8602
8603 if (is_debug_types)
8604 index = &dwp_file->sections.tu_index;
8605 else
8606 index = &dwp_file->sections.cu_index;
8607
8608 if (dwarf2_section_empty_p (index))
8609 return NULL;
8610 dwarf2_read_section (objfile, index);
8611
8612 index_ptr = index->buffer;
8613 index_end = index_ptr + index->size;
8614
8615 version = read_4_bytes (dbfd, index_ptr);
8616 index_ptr += 8; /* Skip the unused word. */
8617 nr_units = read_4_bytes (dbfd, index_ptr);
8618 index_ptr += 4;
8619 nr_slots = read_4_bytes (dbfd, index_ptr);
8620 index_ptr += 4;
8621
8622 if (version != 1)
8623 {
8624 error (_("Dwarf Error: unsupported DWP file version (%u)"
8625 " [in module %s]"),
8626 version, dwp_file->name);
8627 }
8628 if (nr_slots != (nr_slots & -nr_slots))
8629 {
8630 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8631 " is not power of 2 [in module %s]"),
8632 nr_slots, dwp_file->name);
8633 }
8634
8635 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8636 htab->nr_units = nr_units;
8637 htab->nr_slots = nr_slots;
8638 htab->hash_table = index_ptr;
8639 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8640 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8641
8642 return htab;
8643 }
8644
8645 /* Update SECTIONS with the data from SECTP.
8646
8647 This function is like the other "locate" section routines that are
8648 passed to bfd_map_over_sections, but in this context the sections to
8649 read comes from the DWP hash table, not the full ELF section table.
8650
8651 The result is non-zero for success, or zero if an error was found. */
8652
8653 static int
8654 locate_virtual_dwo_sections (asection *sectp,
8655 struct virtual_dwo_sections *sections)
8656 {
8657 const struct dwop_section_names *names = &dwop_section_names;
8658
8659 if (section_is_p (sectp->name, &names->abbrev_dwo))
8660 {
8661 /* There can be only one. */
8662 if (sections->abbrev.asection != NULL)
8663 return 0;
8664 sections->abbrev.asection = sectp;
8665 sections->abbrev.size = bfd_get_section_size (sectp);
8666 }
8667 else if (section_is_p (sectp->name, &names->info_dwo)
8668 || section_is_p (sectp->name, &names->types_dwo))
8669 {
8670 /* There can be only one. */
8671 if (sections->info_or_types.asection != NULL)
8672 return 0;
8673 sections->info_or_types.asection = sectp;
8674 sections->info_or_types.size = bfd_get_section_size (sectp);
8675 }
8676 else if (section_is_p (sectp->name, &names->line_dwo))
8677 {
8678 /* There can be only one. */
8679 if (sections->line.asection != NULL)
8680 return 0;
8681 sections->line.asection = sectp;
8682 sections->line.size = bfd_get_section_size (sectp);
8683 }
8684 else if (section_is_p (sectp->name, &names->loc_dwo))
8685 {
8686 /* There can be only one. */
8687 if (sections->loc.asection != NULL)
8688 return 0;
8689 sections->loc.asection = sectp;
8690 sections->loc.size = bfd_get_section_size (sectp);
8691 }
8692 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8693 {
8694 /* There can be only one. */
8695 if (sections->macinfo.asection != NULL)
8696 return 0;
8697 sections->macinfo.asection = sectp;
8698 sections->macinfo.size = bfd_get_section_size (sectp);
8699 }
8700 else if (section_is_p (sectp->name, &names->macro_dwo))
8701 {
8702 /* There can be only one. */
8703 if (sections->macro.asection != NULL)
8704 return 0;
8705 sections->macro.asection = sectp;
8706 sections->macro.size = bfd_get_section_size (sectp);
8707 }
8708 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8709 {
8710 /* There can be only one. */
8711 if (sections->str_offsets.asection != NULL)
8712 return 0;
8713 sections->str_offsets.asection = sectp;
8714 sections->str_offsets.size = bfd_get_section_size (sectp);
8715 }
8716 else
8717 {
8718 /* No other kind of section is valid. */
8719 return 0;
8720 }
8721
8722 return 1;
8723 }
8724
8725 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8726 HTAB is the hash table from the DWP file.
8727 SECTION_INDEX is the index of the DWO in HTAB.
8728 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
8729
8730 static struct dwo_unit *
8731 create_dwo_in_dwp (struct dwp_file *dwp_file,
8732 const struct dwp_hash_table *htab,
8733 uint32_t section_index,
8734 const char *comp_dir,
8735 ULONGEST signature, int is_debug_types)
8736 {
8737 struct objfile *objfile = dwarf2_per_objfile->objfile;
8738 bfd *dbfd = dwp_file->dbfd;
8739 const char *kind = is_debug_types ? "TU" : "CU";
8740 struct dwo_file *dwo_file;
8741 struct dwo_unit *dwo_unit;
8742 struct virtual_dwo_sections sections;
8743 void **dwo_file_slot;
8744 char *virtual_dwo_name;
8745 struct dwarf2_section_info *cutu;
8746 struct cleanup *cleanups;
8747 int i;
8748
8749 if (dwarf2_read_debug)
8750 {
8751 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/%s in DWP file: %s\n",
8752 kind,
8753 section_index, hex_string (signature),
8754 dwp_file->name);
8755 }
8756
8757 /* Fetch the sections of this DWO.
8758 Put a limit on the number of sections we look for so that bad data
8759 doesn't cause us to loop forever. */
8760
8761 #define MAX_NR_DWO_SECTIONS \
8762 (1 /* .debug_info or .debug_types */ \
8763 + 1 /* .debug_abbrev */ \
8764 + 1 /* .debug_line */ \
8765 + 1 /* .debug_loc */ \
8766 + 1 /* .debug_str_offsets */ \
8767 + 1 /* .debug_macro */ \
8768 + 1 /* .debug_macinfo */ \
8769 + 1 /* trailing zero */)
8770
8771 memset (&sections, 0, sizeof (sections));
8772 cleanups = make_cleanup (null_cleanup, 0);
8773
8774 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8775 {
8776 asection *sectp;
8777 uint32_t section_nr =
8778 read_4_bytes (dbfd,
8779 htab->section_pool
8780 + (section_index + i) * sizeof (uint32_t));
8781
8782 if (section_nr == 0)
8783 break;
8784 if (section_nr >= dwp_file->num_sections)
8785 {
8786 error (_("Dwarf Error: bad DWP hash table, section number too large"
8787 " [in module %s]"),
8788 dwp_file->name);
8789 }
8790
8791 sectp = dwp_file->elf_sections[section_nr];
8792 if (! locate_virtual_dwo_sections (sectp, &sections))
8793 {
8794 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8795 " [in module %s]"),
8796 dwp_file->name);
8797 }
8798 }
8799
8800 if (i < 2
8801 || sections.info_or_types.asection == NULL
8802 || sections.abbrev.asection == NULL)
8803 {
8804 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8805 " [in module %s]"),
8806 dwp_file->name);
8807 }
8808 if (i == MAX_NR_DWO_SECTIONS)
8809 {
8810 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8811 " [in module %s]"),
8812 dwp_file->name);
8813 }
8814
8815 /* It's easier for the rest of the code if we fake a struct dwo_file and
8816 have dwo_unit "live" in that. At least for now.
8817
8818 The DWP file can be made up of a random collection of CUs and TUs.
8819 However, for each CU + set of TUs that came from the same original DWO
8820 file, we want to combine them back into a virtual DWO file to save space
8821 (fewer struct dwo_file objects to allocated). Remember that for really
8822 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8823
8824 virtual_dwo_name =
8825 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8826 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8827 sections.line.asection ? sections.line.asection->id : 0,
8828 sections.loc.asection ? sections.loc.asection->id : 0,
8829 (sections.str_offsets.asection
8830 ? sections.str_offsets.asection->id
8831 : 0));
8832 make_cleanup (xfree, virtual_dwo_name);
8833 /* Can we use an existing virtual DWO file? */
8834 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
8835 /* Create one if necessary. */
8836 if (*dwo_file_slot == NULL)
8837 {
8838 if (dwarf2_read_debug)
8839 {
8840 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8841 virtual_dwo_name);
8842 }
8843 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8844 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
8845 virtual_dwo_name,
8846 strlen (virtual_dwo_name));
8847 dwo_file->comp_dir = comp_dir;
8848 dwo_file->sections.abbrev = sections.abbrev;
8849 dwo_file->sections.line = sections.line;
8850 dwo_file->sections.loc = sections.loc;
8851 dwo_file->sections.macinfo = sections.macinfo;
8852 dwo_file->sections.macro = sections.macro;
8853 dwo_file->sections.str_offsets = sections.str_offsets;
8854 /* The "str" section is global to the entire DWP file. */
8855 dwo_file->sections.str = dwp_file->sections.str;
8856 /* The info or types section is assigned later to dwo_unit,
8857 there's no need to record it in dwo_file.
8858 Also, we can't simply record type sections in dwo_file because
8859 we record a pointer into the vector in dwo_unit. As we collect more
8860 types we'll grow the vector and eventually have to reallocate space
8861 for it, invalidating all the pointers into the current copy. */
8862 *dwo_file_slot = dwo_file;
8863 }
8864 else
8865 {
8866 if (dwarf2_read_debug)
8867 {
8868 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8869 virtual_dwo_name);
8870 }
8871 dwo_file = *dwo_file_slot;
8872 }
8873 do_cleanups (cleanups);
8874
8875 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8876 dwo_unit->dwo_file = dwo_file;
8877 dwo_unit->signature = signature;
8878 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
8879 sizeof (struct dwarf2_section_info));
8880 *dwo_unit->section = sections.info_or_types;
8881 /* offset, length, type_offset_in_tu are set later. */
8882
8883 return dwo_unit;
8884 }
8885
8886 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8887
8888 static struct dwo_unit *
8889 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8890 const struct dwp_hash_table *htab,
8891 const char *comp_dir,
8892 ULONGEST signature, int is_debug_types)
8893 {
8894 bfd *dbfd = dwp_file->dbfd;
8895 uint32_t mask = htab->nr_slots - 1;
8896 uint32_t hash = signature & mask;
8897 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8898 unsigned int i;
8899 void **slot;
8900 struct dwo_unit find_dwo_cu, *dwo_cu;
8901
8902 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8903 find_dwo_cu.signature = signature;
8904 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8905
8906 if (*slot != NULL)
8907 return *slot;
8908
8909 /* Use a for loop so that we don't loop forever on bad debug info. */
8910 for (i = 0; i < htab->nr_slots; ++i)
8911 {
8912 ULONGEST signature_in_table;
8913
8914 signature_in_table =
8915 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8916 if (signature_in_table == signature)
8917 {
8918 uint32_t section_index =
8919 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8920
8921 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8922 comp_dir, signature, is_debug_types);
8923 return *slot;
8924 }
8925 if (signature_in_table == 0)
8926 return NULL;
8927 hash = (hash + hash2) & mask;
8928 }
8929
8930 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8931 " [in module %s]"),
8932 dwp_file->name);
8933 }
8934
8935 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
8936 Open the file specified by FILE_NAME and hand it off to BFD for
8937 preliminary analysis. Return a newly initialized bfd *, which
8938 includes a canonicalized copy of FILE_NAME.
8939 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8940 In case of trouble, return NULL.
8941 NOTE: This function is derived from symfile_bfd_open. */
8942
8943 static bfd *
8944 try_open_dwop_file (const char *file_name, int is_dwp)
8945 {
8946 bfd *sym_bfd;
8947 int desc, flags;
8948 char *absolute_name;
8949
8950 flags = OPF_TRY_CWD_FIRST;
8951 if (is_dwp)
8952 flags |= OPF_SEARCH_IN_PATH;
8953 desc = openp (debug_file_directory, flags, file_name,
8954 O_RDONLY | O_BINARY, &absolute_name);
8955 if (desc < 0)
8956 return NULL;
8957
8958 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8959 if (!sym_bfd)
8960 {
8961 xfree (absolute_name);
8962 return NULL;
8963 }
8964 xfree (absolute_name);
8965 bfd_set_cacheable (sym_bfd, 1);
8966
8967 if (!bfd_check_format (sym_bfd, bfd_object))
8968 {
8969 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8970 return NULL;
8971 }
8972
8973 return sym_bfd;
8974 }
8975
8976 /* Try to open DWO file FILE_NAME.
8977 COMP_DIR is the DW_AT_comp_dir attribute.
8978 The result is the bfd handle of the file.
8979 If there is a problem finding or opening the file, return NULL.
8980 Upon success, the canonicalized path of the file is stored in the bfd,
8981 same as symfile_bfd_open. */
8982
8983 static bfd *
8984 open_dwo_file (const char *file_name, const char *comp_dir)
8985 {
8986 bfd *abfd;
8987
8988 if (IS_ABSOLUTE_PATH (file_name))
8989 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
8990
8991 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8992
8993 if (comp_dir != NULL)
8994 {
8995 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8996
8997 /* NOTE: If comp_dir is a relative path, this will also try the
8998 search path, which seems useful. */
8999 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
9000 xfree (path_to_try);
9001 if (abfd != NULL)
9002 return abfd;
9003 }
9004
9005 /* That didn't work, try debug-file-directory, which, despite its name,
9006 is a list of paths. */
9007
9008 if (*debug_file_directory == '\0')
9009 return NULL;
9010
9011 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9012 }
9013
9014 /* This function is mapped across the sections and remembers the offset and
9015 size of each of the DWO debugging sections we are interested in. */
9016
9017 static void
9018 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9019 {
9020 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9021 const struct dwop_section_names *names = &dwop_section_names;
9022
9023 if (section_is_p (sectp->name, &names->abbrev_dwo))
9024 {
9025 dwo_sections->abbrev.asection = sectp;
9026 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9027 }
9028 else if (section_is_p (sectp->name, &names->info_dwo))
9029 {
9030 dwo_sections->info.asection = sectp;
9031 dwo_sections->info.size = bfd_get_section_size (sectp);
9032 }
9033 else if (section_is_p (sectp->name, &names->line_dwo))
9034 {
9035 dwo_sections->line.asection = sectp;
9036 dwo_sections->line.size = bfd_get_section_size (sectp);
9037 }
9038 else if (section_is_p (sectp->name, &names->loc_dwo))
9039 {
9040 dwo_sections->loc.asection = sectp;
9041 dwo_sections->loc.size = bfd_get_section_size (sectp);
9042 }
9043 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9044 {
9045 dwo_sections->macinfo.asection = sectp;
9046 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9047 }
9048 else if (section_is_p (sectp->name, &names->macro_dwo))
9049 {
9050 dwo_sections->macro.asection = sectp;
9051 dwo_sections->macro.size = bfd_get_section_size (sectp);
9052 }
9053 else if (section_is_p (sectp->name, &names->str_dwo))
9054 {
9055 dwo_sections->str.asection = sectp;
9056 dwo_sections->str.size = bfd_get_section_size (sectp);
9057 }
9058 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9059 {
9060 dwo_sections->str_offsets.asection = sectp;
9061 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9062 }
9063 else if (section_is_p (sectp->name, &names->types_dwo))
9064 {
9065 struct dwarf2_section_info type_section;
9066
9067 memset (&type_section, 0, sizeof (type_section));
9068 type_section.asection = sectp;
9069 type_section.size = bfd_get_section_size (sectp);
9070 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9071 &type_section);
9072 }
9073 }
9074
9075 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9076 by PER_CU. This is for the non-DWP case.
9077 The result is NULL if DWO_NAME can't be found. */
9078
9079 static struct dwo_file *
9080 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9081 const char *dwo_name, const char *comp_dir)
9082 {
9083 struct objfile *objfile = dwarf2_per_objfile->objfile;
9084 struct dwo_file *dwo_file;
9085 bfd *dbfd;
9086 struct cleanup *cleanups;
9087
9088 dbfd = open_dwo_file (dwo_name, comp_dir);
9089 if (dbfd == NULL)
9090 {
9091 if (dwarf2_read_debug)
9092 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9093 return NULL;
9094 }
9095 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9096 dwo_file->dwo_name = dwo_name;
9097 dwo_file->comp_dir = comp_dir;
9098 dwo_file->dbfd = dbfd;
9099
9100 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9101
9102 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9103
9104 dwo_file->cu = create_dwo_cu (dwo_file);
9105
9106 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9107 dwo_file->sections.types);
9108
9109 discard_cleanups (cleanups);
9110
9111 if (dwarf2_read_debug)
9112 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9113
9114 return dwo_file;
9115 }
9116
9117 /* This function is mapped across the sections and remembers the offset and
9118 size of each of the DWP debugging sections we are interested in. */
9119
9120 static void
9121 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9122 {
9123 struct dwp_file *dwp_file = dwp_file_ptr;
9124 const struct dwop_section_names *names = &dwop_section_names;
9125 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9126
9127 /* Record the ELF section number for later lookup: this is what the
9128 .debug_cu_index,.debug_tu_index tables use. */
9129 gdb_assert (elf_section_nr < dwp_file->num_sections);
9130 dwp_file->elf_sections[elf_section_nr] = sectp;
9131
9132 /* Look for specific sections that we need. */
9133 if (section_is_p (sectp->name, &names->str_dwo))
9134 {
9135 dwp_file->sections.str.asection = sectp;
9136 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9137 }
9138 else if (section_is_p (sectp->name, &names->cu_index))
9139 {
9140 dwp_file->sections.cu_index.asection = sectp;
9141 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9142 }
9143 else if (section_is_p (sectp->name, &names->tu_index))
9144 {
9145 dwp_file->sections.tu_index.asection = sectp;
9146 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9147 }
9148 }
9149
9150 /* Hash function for dwp_file loaded CUs/TUs. */
9151
9152 static hashval_t
9153 hash_dwp_loaded_cutus (const void *item)
9154 {
9155 const struct dwo_unit *dwo_unit = item;
9156
9157 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9158 return dwo_unit->signature;
9159 }
9160
9161 /* Equality function for dwp_file loaded CUs/TUs. */
9162
9163 static int
9164 eq_dwp_loaded_cutus (const void *a, const void *b)
9165 {
9166 const struct dwo_unit *dua = a;
9167 const struct dwo_unit *dub = b;
9168
9169 return dua->signature == dub->signature;
9170 }
9171
9172 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9173
9174 static htab_t
9175 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9176 {
9177 return htab_create_alloc_ex (3,
9178 hash_dwp_loaded_cutus,
9179 eq_dwp_loaded_cutus,
9180 NULL,
9181 &objfile->objfile_obstack,
9182 hashtab_obstack_allocate,
9183 dummy_obstack_deallocate);
9184 }
9185
9186 /* Try to open DWP file FILE_NAME.
9187 The result is the bfd handle of the file.
9188 If there is a problem finding or opening the file, return NULL.
9189 Upon success, the canonicalized path of the file is stored in the bfd,
9190 same as symfile_bfd_open. */
9191
9192 static bfd *
9193 open_dwp_file (const char *file_name)
9194 {
9195 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9196 }
9197
9198 /* Initialize the use of the DWP file for the current objfile.
9199 By convention the name of the DWP file is ${objfile}.dwp.
9200 The result is NULL if it can't be found. */
9201
9202 static struct dwp_file *
9203 open_and_init_dwp_file (void)
9204 {
9205 struct objfile *objfile = dwarf2_per_objfile->objfile;
9206 struct dwp_file *dwp_file;
9207 char *dwp_name;
9208 bfd *dbfd;
9209 struct cleanup *cleanups;
9210
9211 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9212 cleanups = make_cleanup (xfree, dwp_name);
9213
9214 dbfd = open_dwp_file (dwp_name);
9215 if (dbfd == NULL)
9216 {
9217 if (dwarf2_read_debug)
9218 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9219 do_cleanups (cleanups);
9220 return NULL;
9221 }
9222 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9223 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9224 dwp_name, strlen (dwp_name));
9225 dwp_file->dbfd = dbfd;
9226 do_cleanups (cleanups);
9227
9228 /* +1: section 0 is unused */
9229 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9230 dwp_file->elf_sections =
9231 OBSTACK_CALLOC (&objfile->objfile_obstack,
9232 dwp_file->num_sections, asection *);
9233
9234 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9235
9236 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9237
9238 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9239
9240 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9241
9242 if (dwarf2_read_debug)
9243 {
9244 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9245 fprintf_unfiltered (gdb_stdlog,
9246 " %u CUs, %u TUs\n",
9247 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9248 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9249 }
9250
9251 return dwp_file;
9252 }
9253
9254 /* Wrapper around open_and_init_dwp_file, only open it once. */
9255
9256 static struct dwp_file *
9257 get_dwp_file (void)
9258 {
9259 if (! dwarf2_per_objfile->dwp_checked)
9260 {
9261 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9262 dwarf2_per_objfile->dwp_checked = 1;
9263 }
9264 return dwarf2_per_objfile->dwp_file;
9265 }
9266
9267 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9268 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9269 or in the DWP file for the objfile, referenced by THIS_UNIT.
9270 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9271 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9272
9273 This is called, for example, when wanting to read a variable with a
9274 complex location. Therefore we don't want to do file i/o for every call.
9275 Therefore we don't want to look for a DWO file on every call.
9276 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9277 then we check if we've already seen DWO_NAME, and only THEN do we check
9278 for a DWO file.
9279
9280 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9281 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9282
9283 static struct dwo_unit *
9284 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9285 const char *dwo_name, const char *comp_dir,
9286 ULONGEST signature, int is_debug_types)
9287 {
9288 struct objfile *objfile = dwarf2_per_objfile->objfile;
9289 const char *kind = is_debug_types ? "TU" : "CU";
9290 void **dwo_file_slot;
9291 struct dwo_file *dwo_file;
9292 struct dwp_file *dwp_file;
9293
9294 /* Have we already read SIGNATURE from a DWP file? */
9295
9296 dwp_file = get_dwp_file ();
9297 if (dwp_file != NULL)
9298 {
9299 const struct dwp_hash_table *dwp_htab =
9300 is_debug_types ? dwp_file->tus : dwp_file->cus;
9301
9302 if (dwp_htab != NULL)
9303 {
9304 struct dwo_unit *dwo_cutu =
9305 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9306 signature, is_debug_types);
9307
9308 if (dwo_cutu != NULL)
9309 {
9310 if (dwarf2_read_debug)
9311 {
9312 fprintf_unfiltered (gdb_stdlog,
9313 "Virtual DWO %s %s found: @%s\n",
9314 kind, hex_string (signature),
9315 host_address_to_string (dwo_cutu));
9316 }
9317 return dwo_cutu;
9318 }
9319 }
9320 }
9321
9322 /* Have we already seen DWO_NAME? */
9323
9324 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9325 if (*dwo_file_slot == NULL)
9326 {
9327 /* Read in the file and build a table of the DWOs it contains. */
9328 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9329 }
9330 /* NOTE: This will be NULL if unable to open the file. */
9331 dwo_file = *dwo_file_slot;
9332
9333 if (dwo_file != NULL)
9334 {
9335 struct dwo_unit *dwo_cutu = NULL;
9336
9337 if (is_debug_types && dwo_file->tus)
9338 {
9339 struct dwo_unit find_dwo_cutu;
9340
9341 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9342 find_dwo_cutu.signature = signature;
9343 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9344 }
9345 else if (!is_debug_types && dwo_file->cu)
9346 {
9347 if (signature == dwo_file->cu->signature)
9348 dwo_cutu = dwo_file->cu;
9349 }
9350
9351 if (dwo_cutu != NULL)
9352 {
9353 if (dwarf2_read_debug)
9354 {
9355 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9356 kind, dwo_name, hex_string (signature),
9357 host_address_to_string (dwo_cutu));
9358 }
9359 return dwo_cutu;
9360 }
9361 }
9362
9363 /* We didn't find it. This could mean a dwo_id mismatch, or
9364 someone deleted the DWO/DWP file, or the search path isn't set up
9365 correctly to find the file. */
9366
9367 if (dwarf2_read_debug)
9368 {
9369 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9370 kind, dwo_name, hex_string (signature));
9371 }
9372
9373 complaint (&symfile_complaints,
9374 _("Could not find DWO %s referenced by CU at offset 0x%x"
9375 " [in module %s]"),
9376 kind, this_unit->offset.sect_off, objfile->name);
9377 return NULL;
9378 }
9379
9380 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9381 See lookup_dwo_cutu_unit for details. */
9382
9383 static struct dwo_unit *
9384 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9385 const char *dwo_name, const char *comp_dir,
9386 ULONGEST signature)
9387 {
9388 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9389 }
9390
9391 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9392 See lookup_dwo_cutu_unit for details. */
9393
9394 static struct dwo_unit *
9395 lookup_dwo_type_unit (struct signatured_type *this_tu,
9396 const char *dwo_name, const char *comp_dir)
9397 {
9398 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9399 }
9400
9401 /* Free all resources associated with DWO_FILE.
9402 Close the DWO file and munmap the sections.
9403 All memory should be on the objfile obstack. */
9404
9405 static void
9406 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9407 {
9408 int ix;
9409 struct dwarf2_section_info *section;
9410
9411 /* Note: dbfd is NULL for virtual DWO files. */
9412 gdb_bfd_unref (dwo_file->dbfd);
9413
9414 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9415 }
9416
9417 /* Wrapper for free_dwo_file for use in cleanups. */
9418
9419 static void
9420 free_dwo_file_cleanup (void *arg)
9421 {
9422 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9423 struct objfile *objfile = dwarf2_per_objfile->objfile;
9424
9425 free_dwo_file (dwo_file, objfile);
9426 }
9427
9428 /* Traversal function for free_dwo_files. */
9429
9430 static int
9431 free_dwo_file_from_slot (void **slot, void *info)
9432 {
9433 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9434 struct objfile *objfile = (struct objfile *) info;
9435
9436 free_dwo_file (dwo_file, objfile);
9437
9438 return 1;
9439 }
9440
9441 /* Free all resources associated with DWO_FILES. */
9442
9443 static void
9444 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9445 {
9446 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9447 }
9448 \f
9449 /* Read in various DIEs. */
9450
9451 /* qsort helper for inherit_abstract_dies. */
9452
9453 static int
9454 unsigned_int_compar (const void *ap, const void *bp)
9455 {
9456 unsigned int a = *(unsigned int *) ap;
9457 unsigned int b = *(unsigned int *) bp;
9458
9459 return (a > b) - (b > a);
9460 }
9461
9462 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9463 Inherit only the children of the DW_AT_abstract_origin DIE not being
9464 already referenced by DW_AT_abstract_origin from the children of the
9465 current DIE. */
9466
9467 static void
9468 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9469 {
9470 struct die_info *child_die;
9471 unsigned die_children_count;
9472 /* CU offsets which were referenced by children of the current DIE. */
9473 sect_offset *offsets;
9474 sect_offset *offsets_end, *offsetp;
9475 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9476 struct die_info *origin_die;
9477 /* Iterator of the ORIGIN_DIE children. */
9478 struct die_info *origin_child_die;
9479 struct cleanup *cleanups;
9480 struct attribute *attr;
9481 struct dwarf2_cu *origin_cu;
9482 struct pending **origin_previous_list_in_scope;
9483
9484 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9485 if (!attr)
9486 return;
9487
9488 /* Note that following die references may follow to a die in a
9489 different cu. */
9490
9491 origin_cu = cu;
9492 origin_die = follow_die_ref (die, attr, &origin_cu);
9493
9494 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9495 symbols in. */
9496 origin_previous_list_in_scope = origin_cu->list_in_scope;
9497 origin_cu->list_in_scope = cu->list_in_scope;
9498
9499 if (die->tag != origin_die->tag
9500 && !(die->tag == DW_TAG_inlined_subroutine
9501 && origin_die->tag == DW_TAG_subprogram))
9502 complaint (&symfile_complaints,
9503 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9504 die->offset.sect_off, origin_die->offset.sect_off);
9505
9506 child_die = die->child;
9507 die_children_count = 0;
9508 while (child_die && child_die->tag)
9509 {
9510 child_die = sibling_die (child_die);
9511 die_children_count++;
9512 }
9513 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9514 cleanups = make_cleanup (xfree, offsets);
9515
9516 offsets_end = offsets;
9517 child_die = die->child;
9518 while (child_die && child_die->tag)
9519 {
9520 /* For each CHILD_DIE, find the corresponding child of
9521 ORIGIN_DIE. If there is more than one layer of
9522 DW_AT_abstract_origin, follow them all; there shouldn't be,
9523 but GCC versions at least through 4.4 generate this (GCC PR
9524 40573). */
9525 struct die_info *child_origin_die = child_die;
9526 struct dwarf2_cu *child_origin_cu = cu;
9527
9528 while (1)
9529 {
9530 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9531 child_origin_cu);
9532 if (attr == NULL)
9533 break;
9534 child_origin_die = follow_die_ref (child_origin_die, attr,
9535 &child_origin_cu);
9536 }
9537
9538 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9539 counterpart may exist. */
9540 if (child_origin_die != child_die)
9541 {
9542 if (child_die->tag != child_origin_die->tag
9543 && !(child_die->tag == DW_TAG_inlined_subroutine
9544 && child_origin_die->tag == DW_TAG_subprogram))
9545 complaint (&symfile_complaints,
9546 _("Child DIE 0x%x and its abstract origin 0x%x have "
9547 "different tags"), child_die->offset.sect_off,
9548 child_origin_die->offset.sect_off);
9549 if (child_origin_die->parent != origin_die)
9550 complaint (&symfile_complaints,
9551 _("Child DIE 0x%x and its abstract origin 0x%x have "
9552 "different parents"), child_die->offset.sect_off,
9553 child_origin_die->offset.sect_off);
9554 else
9555 *offsets_end++ = child_origin_die->offset;
9556 }
9557 child_die = sibling_die (child_die);
9558 }
9559 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9560 unsigned_int_compar);
9561 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9562 if (offsetp[-1].sect_off == offsetp->sect_off)
9563 complaint (&symfile_complaints,
9564 _("Multiple children of DIE 0x%x refer "
9565 "to DIE 0x%x as their abstract origin"),
9566 die->offset.sect_off, offsetp->sect_off);
9567
9568 offsetp = offsets;
9569 origin_child_die = origin_die->child;
9570 while (origin_child_die && origin_child_die->tag)
9571 {
9572 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9573 while (offsetp < offsets_end
9574 && offsetp->sect_off < origin_child_die->offset.sect_off)
9575 offsetp++;
9576 if (offsetp >= offsets_end
9577 || offsetp->sect_off > origin_child_die->offset.sect_off)
9578 {
9579 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9580 process_die (origin_child_die, origin_cu);
9581 }
9582 origin_child_die = sibling_die (origin_child_die);
9583 }
9584 origin_cu->list_in_scope = origin_previous_list_in_scope;
9585
9586 do_cleanups (cleanups);
9587 }
9588
9589 static void
9590 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9591 {
9592 struct objfile *objfile = cu->objfile;
9593 struct context_stack *new;
9594 CORE_ADDR lowpc;
9595 CORE_ADDR highpc;
9596 struct die_info *child_die;
9597 struct attribute *attr, *call_line, *call_file;
9598 const char *name;
9599 CORE_ADDR baseaddr;
9600 struct block *block;
9601 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9602 VEC (symbolp) *template_args = NULL;
9603 struct template_symbol *templ_func = NULL;
9604
9605 if (inlined_func)
9606 {
9607 /* If we do not have call site information, we can't show the
9608 caller of this inlined function. That's too confusing, so
9609 only use the scope for local variables. */
9610 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9611 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9612 if (call_line == NULL || call_file == NULL)
9613 {
9614 read_lexical_block_scope (die, cu);
9615 return;
9616 }
9617 }
9618
9619 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9620
9621 name = dwarf2_name (die, cu);
9622
9623 /* Ignore functions with missing or empty names. These are actually
9624 illegal according to the DWARF standard. */
9625 if (name == NULL)
9626 {
9627 complaint (&symfile_complaints,
9628 _("missing name for subprogram DIE at %d"),
9629 die->offset.sect_off);
9630 return;
9631 }
9632
9633 /* Ignore functions with missing or invalid low and high pc attributes. */
9634 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9635 {
9636 attr = dwarf2_attr (die, DW_AT_external, cu);
9637 if (!attr || !DW_UNSND (attr))
9638 complaint (&symfile_complaints,
9639 _("cannot get low and high bounds "
9640 "for subprogram DIE at %d"),
9641 die->offset.sect_off);
9642 return;
9643 }
9644
9645 lowpc += baseaddr;
9646 highpc += baseaddr;
9647
9648 /* If we have any template arguments, then we must allocate a
9649 different sort of symbol. */
9650 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9651 {
9652 if (child_die->tag == DW_TAG_template_type_param
9653 || child_die->tag == DW_TAG_template_value_param)
9654 {
9655 templ_func = allocate_template_symbol (objfile);
9656 templ_func->base.is_cplus_template_function = 1;
9657 break;
9658 }
9659 }
9660
9661 new = push_context (0, lowpc);
9662 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9663 (struct symbol *) templ_func);
9664
9665 /* If there is a location expression for DW_AT_frame_base, record
9666 it. */
9667 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9668 if (attr)
9669 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
9670
9671 cu->list_in_scope = &local_symbols;
9672
9673 if (die->child != NULL)
9674 {
9675 child_die = die->child;
9676 while (child_die && child_die->tag)
9677 {
9678 if (child_die->tag == DW_TAG_template_type_param
9679 || child_die->tag == DW_TAG_template_value_param)
9680 {
9681 struct symbol *arg = new_symbol (child_die, NULL, cu);
9682
9683 if (arg != NULL)
9684 VEC_safe_push (symbolp, template_args, arg);
9685 }
9686 else
9687 process_die (child_die, cu);
9688 child_die = sibling_die (child_die);
9689 }
9690 }
9691
9692 inherit_abstract_dies (die, cu);
9693
9694 /* If we have a DW_AT_specification, we might need to import using
9695 directives from the context of the specification DIE. See the
9696 comment in determine_prefix. */
9697 if (cu->language == language_cplus
9698 && dwarf2_attr (die, DW_AT_specification, cu))
9699 {
9700 struct dwarf2_cu *spec_cu = cu;
9701 struct die_info *spec_die = die_specification (die, &spec_cu);
9702
9703 while (spec_die)
9704 {
9705 child_die = spec_die->child;
9706 while (child_die && child_die->tag)
9707 {
9708 if (child_die->tag == DW_TAG_imported_module)
9709 process_die (child_die, spec_cu);
9710 child_die = sibling_die (child_die);
9711 }
9712
9713 /* In some cases, GCC generates specification DIEs that
9714 themselves contain DW_AT_specification attributes. */
9715 spec_die = die_specification (spec_die, &spec_cu);
9716 }
9717 }
9718
9719 new = pop_context ();
9720 /* Make a block for the local symbols within. */
9721 block = finish_block (new->name, &local_symbols, new->old_blocks,
9722 lowpc, highpc, objfile);
9723
9724 /* For C++, set the block's scope. */
9725 if ((cu->language == language_cplus || cu->language == language_fortran)
9726 && cu->processing_has_namespace_info)
9727 block_set_scope (block, determine_prefix (die, cu),
9728 &objfile->objfile_obstack);
9729
9730 /* If we have address ranges, record them. */
9731 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9732
9733 /* Attach template arguments to function. */
9734 if (! VEC_empty (symbolp, template_args))
9735 {
9736 gdb_assert (templ_func != NULL);
9737
9738 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9739 templ_func->template_arguments
9740 = obstack_alloc (&objfile->objfile_obstack,
9741 (templ_func->n_template_arguments
9742 * sizeof (struct symbol *)));
9743 memcpy (templ_func->template_arguments,
9744 VEC_address (symbolp, template_args),
9745 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9746 VEC_free (symbolp, template_args);
9747 }
9748
9749 /* In C++, we can have functions nested inside functions (e.g., when
9750 a function declares a class that has methods). This means that
9751 when we finish processing a function scope, we may need to go
9752 back to building a containing block's symbol lists. */
9753 local_symbols = new->locals;
9754 using_directives = new->using_directives;
9755
9756 /* If we've finished processing a top-level function, subsequent
9757 symbols go in the file symbol list. */
9758 if (outermost_context_p ())
9759 cu->list_in_scope = &file_symbols;
9760 }
9761
9762 /* Process all the DIES contained within a lexical block scope. Start
9763 a new scope, process the dies, and then close the scope. */
9764
9765 static void
9766 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9767 {
9768 struct objfile *objfile = cu->objfile;
9769 struct context_stack *new;
9770 CORE_ADDR lowpc, highpc;
9771 struct die_info *child_die;
9772 CORE_ADDR baseaddr;
9773
9774 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9775
9776 /* Ignore blocks with missing or invalid low and high pc attributes. */
9777 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9778 as multiple lexical blocks? Handling children in a sane way would
9779 be nasty. Might be easier to properly extend generic blocks to
9780 describe ranges. */
9781 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9782 return;
9783 lowpc += baseaddr;
9784 highpc += baseaddr;
9785
9786 push_context (0, lowpc);
9787 if (die->child != NULL)
9788 {
9789 child_die = die->child;
9790 while (child_die && child_die->tag)
9791 {
9792 process_die (child_die, cu);
9793 child_die = sibling_die (child_die);
9794 }
9795 }
9796 new = pop_context ();
9797
9798 if (local_symbols != NULL || using_directives != NULL)
9799 {
9800 struct block *block
9801 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9802 highpc, objfile);
9803
9804 /* Note that recording ranges after traversing children, as we
9805 do here, means that recording a parent's ranges entails
9806 walking across all its children's ranges as they appear in
9807 the address map, which is quadratic behavior.
9808
9809 It would be nicer to record the parent's ranges before
9810 traversing its children, simply overriding whatever you find
9811 there. But since we don't even decide whether to create a
9812 block until after we've traversed its children, that's hard
9813 to do. */
9814 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9815 }
9816 local_symbols = new->locals;
9817 using_directives = new->using_directives;
9818 }
9819
9820 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9821
9822 static void
9823 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9824 {
9825 struct objfile *objfile = cu->objfile;
9826 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9827 CORE_ADDR pc, baseaddr;
9828 struct attribute *attr;
9829 struct call_site *call_site, call_site_local;
9830 void **slot;
9831 int nparams;
9832 struct die_info *child_die;
9833
9834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9835
9836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9837 if (!attr)
9838 {
9839 complaint (&symfile_complaints,
9840 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9841 "DIE 0x%x [in module %s]"),
9842 die->offset.sect_off, objfile->name);
9843 return;
9844 }
9845 pc = DW_ADDR (attr) + baseaddr;
9846
9847 if (cu->call_site_htab == NULL)
9848 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9849 NULL, &objfile->objfile_obstack,
9850 hashtab_obstack_allocate, NULL);
9851 call_site_local.pc = pc;
9852 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9853 if (*slot != NULL)
9854 {
9855 complaint (&symfile_complaints,
9856 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9857 "DIE 0x%x [in module %s]"),
9858 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9859 return;
9860 }
9861
9862 /* Count parameters at the caller. */
9863
9864 nparams = 0;
9865 for (child_die = die->child; child_die && child_die->tag;
9866 child_die = sibling_die (child_die))
9867 {
9868 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9869 {
9870 complaint (&symfile_complaints,
9871 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9872 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9873 child_die->tag, child_die->offset.sect_off, objfile->name);
9874 continue;
9875 }
9876
9877 nparams++;
9878 }
9879
9880 call_site = obstack_alloc (&objfile->objfile_obstack,
9881 (sizeof (*call_site)
9882 + (sizeof (*call_site->parameter)
9883 * (nparams - 1))));
9884 *slot = call_site;
9885 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9886 call_site->pc = pc;
9887
9888 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9889 {
9890 struct die_info *func_die;
9891
9892 /* Skip also over DW_TAG_inlined_subroutine. */
9893 for (func_die = die->parent;
9894 func_die && func_die->tag != DW_TAG_subprogram
9895 && func_die->tag != DW_TAG_subroutine_type;
9896 func_die = func_die->parent);
9897
9898 /* DW_AT_GNU_all_call_sites is a superset
9899 of DW_AT_GNU_all_tail_call_sites. */
9900 if (func_die
9901 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9902 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9903 {
9904 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9905 not complete. But keep CALL_SITE for look ups via call_site_htab,
9906 both the initial caller containing the real return address PC and
9907 the final callee containing the current PC of a chain of tail
9908 calls do not need to have the tail call list complete. But any
9909 function candidate for a virtual tail call frame searched via
9910 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9911 determined unambiguously. */
9912 }
9913 else
9914 {
9915 struct type *func_type = NULL;
9916
9917 if (func_die)
9918 func_type = get_die_type (func_die, cu);
9919 if (func_type != NULL)
9920 {
9921 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9922
9923 /* Enlist this call site to the function. */
9924 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9925 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9926 }
9927 else
9928 complaint (&symfile_complaints,
9929 _("Cannot find function owning DW_TAG_GNU_call_site "
9930 "DIE 0x%x [in module %s]"),
9931 die->offset.sect_off, objfile->name);
9932 }
9933 }
9934
9935 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9936 if (attr == NULL)
9937 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9938 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9939 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9940 /* Keep NULL DWARF_BLOCK. */;
9941 else if (attr_form_is_block (attr))
9942 {
9943 struct dwarf2_locexpr_baton *dlbaton;
9944
9945 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9946 dlbaton->data = DW_BLOCK (attr)->data;
9947 dlbaton->size = DW_BLOCK (attr)->size;
9948 dlbaton->per_cu = cu->per_cu;
9949
9950 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9951 }
9952 else if (is_ref_attr (attr))
9953 {
9954 struct dwarf2_cu *target_cu = cu;
9955 struct die_info *target_die;
9956
9957 target_die = follow_die_ref (die, attr, &target_cu);
9958 gdb_assert (target_cu->objfile == objfile);
9959 if (die_is_declaration (target_die, target_cu))
9960 {
9961 const char *target_physname = NULL;
9962 struct attribute *target_attr;
9963
9964 /* Prefer the mangled name; otherwise compute the demangled one. */
9965 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9966 if (target_attr == NULL)
9967 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9968 target_cu);
9969 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9970 target_physname = DW_STRING (target_attr);
9971 else
9972 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9973 if (target_physname == NULL)
9974 complaint (&symfile_complaints,
9975 _("DW_AT_GNU_call_site_target target DIE has invalid "
9976 "physname, for referencing DIE 0x%x [in module %s]"),
9977 die->offset.sect_off, objfile->name);
9978 else
9979 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9980 }
9981 else
9982 {
9983 CORE_ADDR lowpc;
9984
9985 /* DW_AT_entry_pc should be preferred. */
9986 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9987 complaint (&symfile_complaints,
9988 _("DW_AT_GNU_call_site_target target DIE has invalid "
9989 "low pc, for referencing DIE 0x%x [in module %s]"),
9990 die->offset.sect_off, objfile->name);
9991 else
9992 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9993 }
9994 }
9995 else
9996 complaint (&symfile_complaints,
9997 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9998 "block nor reference, for DIE 0x%x [in module %s]"),
9999 die->offset.sect_off, objfile->name);
10000
10001 call_site->per_cu = cu->per_cu;
10002
10003 for (child_die = die->child;
10004 child_die && child_die->tag;
10005 child_die = sibling_die (child_die))
10006 {
10007 struct call_site_parameter *parameter;
10008 struct attribute *loc, *origin;
10009
10010 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10011 {
10012 /* Already printed the complaint above. */
10013 continue;
10014 }
10015
10016 gdb_assert (call_site->parameter_count < nparams);
10017 parameter = &call_site->parameter[call_site->parameter_count];
10018
10019 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10020 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10021 register is contained in DW_AT_GNU_call_site_value. */
10022
10023 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10024 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10025 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10026 {
10027 sect_offset offset;
10028
10029 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10030 offset = dwarf2_get_ref_die_offset (origin);
10031 if (!offset_in_cu_p (&cu->header, offset))
10032 {
10033 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10034 binding can be done only inside one CU. Such referenced DIE
10035 therefore cannot be even moved to DW_TAG_partial_unit. */
10036 complaint (&symfile_complaints,
10037 _("DW_AT_abstract_origin offset is not in CU for "
10038 "DW_TAG_GNU_call_site child DIE 0x%x "
10039 "[in module %s]"),
10040 child_die->offset.sect_off, objfile->name);
10041 continue;
10042 }
10043 parameter->u.param_offset.cu_off = (offset.sect_off
10044 - cu->header.offset.sect_off);
10045 }
10046 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10047 {
10048 complaint (&symfile_complaints,
10049 _("No DW_FORM_block* DW_AT_location for "
10050 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10051 child_die->offset.sect_off, objfile->name);
10052 continue;
10053 }
10054 else
10055 {
10056 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10057 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10058 if (parameter->u.dwarf_reg != -1)
10059 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10060 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10061 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10062 &parameter->u.fb_offset))
10063 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10064 else
10065 {
10066 complaint (&symfile_complaints,
10067 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10068 "for DW_FORM_block* DW_AT_location is supported for "
10069 "DW_TAG_GNU_call_site child DIE 0x%x "
10070 "[in module %s]"),
10071 child_die->offset.sect_off, objfile->name);
10072 continue;
10073 }
10074 }
10075
10076 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10077 if (!attr_form_is_block (attr))
10078 {
10079 complaint (&symfile_complaints,
10080 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10081 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10082 child_die->offset.sect_off, objfile->name);
10083 continue;
10084 }
10085 parameter->value = DW_BLOCK (attr)->data;
10086 parameter->value_size = DW_BLOCK (attr)->size;
10087
10088 /* Parameters are not pre-cleared by memset above. */
10089 parameter->data_value = NULL;
10090 parameter->data_value_size = 0;
10091 call_site->parameter_count++;
10092
10093 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10094 if (attr)
10095 {
10096 if (!attr_form_is_block (attr))
10097 complaint (&symfile_complaints,
10098 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10099 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10100 child_die->offset.sect_off, objfile->name);
10101 else
10102 {
10103 parameter->data_value = DW_BLOCK (attr)->data;
10104 parameter->data_value_size = DW_BLOCK (attr)->size;
10105 }
10106 }
10107 }
10108 }
10109
10110 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10111 Return 1 if the attributes are present and valid, otherwise, return 0.
10112 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10113
10114 static int
10115 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10116 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10117 struct partial_symtab *ranges_pst)
10118 {
10119 struct objfile *objfile = cu->objfile;
10120 struct comp_unit_head *cu_header = &cu->header;
10121 bfd *obfd = objfile->obfd;
10122 unsigned int addr_size = cu_header->addr_size;
10123 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10124 /* Base address selection entry. */
10125 CORE_ADDR base;
10126 int found_base;
10127 unsigned int dummy;
10128 const gdb_byte *buffer;
10129 CORE_ADDR marker;
10130 int low_set;
10131 CORE_ADDR low = 0;
10132 CORE_ADDR high = 0;
10133 CORE_ADDR baseaddr;
10134
10135 found_base = cu->base_known;
10136 base = cu->base_address;
10137
10138 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10139 if (offset >= dwarf2_per_objfile->ranges.size)
10140 {
10141 complaint (&symfile_complaints,
10142 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10143 offset);
10144 return 0;
10145 }
10146 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10147
10148 /* Read in the largest possible address. */
10149 marker = read_address (obfd, buffer, cu, &dummy);
10150 if ((marker & mask) == mask)
10151 {
10152 /* If we found the largest possible address, then
10153 read the base address. */
10154 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10155 buffer += 2 * addr_size;
10156 offset += 2 * addr_size;
10157 found_base = 1;
10158 }
10159
10160 low_set = 0;
10161
10162 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10163
10164 while (1)
10165 {
10166 CORE_ADDR range_beginning, range_end;
10167
10168 range_beginning = read_address (obfd, buffer, cu, &dummy);
10169 buffer += addr_size;
10170 range_end = read_address (obfd, buffer, cu, &dummy);
10171 buffer += addr_size;
10172 offset += 2 * addr_size;
10173
10174 /* An end of list marker is a pair of zero addresses. */
10175 if (range_beginning == 0 && range_end == 0)
10176 /* Found the end of list entry. */
10177 break;
10178
10179 /* Each base address selection entry is a pair of 2 values.
10180 The first is the largest possible address, the second is
10181 the base address. Check for a base address here. */
10182 if ((range_beginning & mask) == mask)
10183 {
10184 /* If we found the largest possible address, then
10185 read the base address. */
10186 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10187 found_base = 1;
10188 continue;
10189 }
10190
10191 if (!found_base)
10192 {
10193 /* We have no valid base address for the ranges
10194 data. */
10195 complaint (&symfile_complaints,
10196 _("Invalid .debug_ranges data (no base address)"));
10197 return 0;
10198 }
10199
10200 if (range_beginning > range_end)
10201 {
10202 /* Inverted range entries are invalid. */
10203 complaint (&symfile_complaints,
10204 _("Invalid .debug_ranges data (inverted range)"));
10205 return 0;
10206 }
10207
10208 /* Empty range entries have no effect. */
10209 if (range_beginning == range_end)
10210 continue;
10211
10212 range_beginning += base;
10213 range_end += base;
10214
10215 /* A not-uncommon case of bad debug info.
10216 Don't pollute the addrmap with bad data. */
10217 if (range_beginning + baseaddr == 0
10218 && !dwarf2_per_objfile->has_section_at_zero)
10219 {
10220 complaint (&symfile_complaints,
10221 _(".debug_ranges entry has start address of zero"
10222 " [in module %s]"), objfile->name);
10223 continue;
10224 }
10225
10226 if (ranges_pst != NULL)
10227 addrmap_set_empty (objfile->psymtabs_addrmap,
10228 range_beginning + baseaddr,
10229 range_end - 1 + baseaddr,
10230 ranges_pst);
10231
10232 /* FIXME: This is recording everything as a low-high
10233 segment of consecutive addresses. We should have a
10234 data structure for discontiguous block ranges
10235 instead. */
10236 if (! low_set)
10237 {
10238 low = range_beginning;
10239 high = range_end;
10240 low_set = 1;
10241 }
10242 else
10243 {
10244 if (range_beginning < low)
10245 low = range_beginning;
10246 if (range_end > high)
10247 high = range_end;
10248 }
10249 }
10250
10251 if (! low_set)
10252 /* If the first entry is an end-of-list marker, the range
10253 describes an empty scope, i.e. no instructions. */
10254 return 0;
10255
10256 if (low_return)
10257 *low_return = low;
10258 if (high_return)
10259 *high_return = high;
10260 return 1;
10261 }
10262
10263 /* Get low and high pc attributes from a die. Return 1 if the attributes
10264 are present and valid, otherwise, return 0. Return -1 if the range is
10265 discontinuous, i.e. derived from DW_AT_ranges information. */
10266
10267 static int
10268 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10269 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10270 struct partial_symtab *pst)
10271 {
10272 struct attribute *attr;
10273 struct attribute *attr_high;
10274 CORE_ADDR low = 0;
10275 CORE_ADDR high = 0;
10276 int ret = 0;
10277
10278 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10279 if (attr_high)
10280 {
10281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10282 if (attr)
10283 {
10284 low = DW_ADDR (attr);
10285 if (attr_high->form == DW_FORM_addr
10286 || attr_high->form == DW_FORM_GNU_addr_index)
10287 high = DW_ADDR (attr_high);
10288 else
10289 high = low + DW_UNSND (attr_high);
10290 }
10291 else
10292 /* Found high w/o low attribute. */
10293 return 0;
10294
10295 /* Found consecutive range of addresses. */
10296 ret = 1;
10297 }
10298 else
10299 {
10300 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10301 if (attr != NULL)
10302 {
10303 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10304 We take advantage of the fact that DW_AT_ranges does not appear
10305 in DW_TAG_compile_unit of DWO files. */
10306 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10307 unsigned int ranges_offset = (DW_UNSND (attr)
10308 + (need_ranges_base
10309 ? cu->ranges_base
10310 : 0));
10311
10312 /* Value of the DW_AT_ranges attribute is the offset in the
10313 .debug_ranges section. */
10314 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10315 return 0;
10316 /* Found discontinuous range of addresses. */
10317 ret = -1;
10318 }
10319 }
10320
10321 /* read_partial_die has also the strict LOW < HIGH requirement. */
10322 if (high <= low)
10323 return 0;
10324
10325 /* When using the GNU linker, .gnu.linkonce. sections are used to
10326 eliminate duplicate copies of functions and vtables and such.
10327 The linker will arbitrarily choose one and discard the others.
10328 The AT_*_pc values for such functions refer to local labels in
10329 these sections. If the section from that file was discarded, the
10330 labels are not in the output, so the relocs get a value of 0.
10331 If this is a discarded function, mark the pc bounds as invalid,
10332 so that GDB will ignore it. */
10333 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10334 return 0;
10335
10336 *lowpc = low;
10337 if (highpc)
10338 *highpc = high;
10339 return ret;
10340 }
10341
10342 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10343 its low and high PC addresses. Do nothing if these addresses could not
10344 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10345 and HIGHPC to the high address if greater than HIGHPC. */
10346
10347 static void
10348 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10349 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10350 struct dwarf2_cu *cu)
10351 {
10352 CORE_ADDR low, high;
10353 struct die_info *child = die->child;
10354
10355 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10356 {
10357 *lowpc = min (*lowpc, low);
10358 *highpc = max (*highpc, high);
10359 }
10360
10361 /* If the language does not allow nested subprograms (either inside
10362 subprograms or lexical blocks), we're done. */
10363 if (cu->language != language_ada)
10364 return;
10365
10366 /* Check all the children of the given DIE. If it contains nested
10367 subprograms, then check their pc bounds. Likewise, we need to
10368 check lexical blocks as well, as they may also contain subprogram
10369 definitions. */
10370 while (child && child->tag)
10371 {
10372 if (child->tag == DW_TAG_subprogram
10373 || child->tag == DW_TAG_lexical_block)
10374 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10375 child = sibling_die (child);
10376 }
10377 }
10378
10379 /* Get the low and high pc's represented by the scope DIE, and store
10380 them in *LOWPC and *HIGHPC. If the correct values can't be
10381 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10382
10383 static void
10384 get_scope_pc_bounds (struct die_info *die,
10385 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10386 struct dwarf2_cu *cu)
10387 {
10388 CORE_ADDR best_low = (CORE_ADDR) -1;
10389 CORE_ADDR best_high = (CORE_ADDR) 0;
10390 CORE_ADDR current_low, current_high;
10391
10392 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10393 {
10394 best_low = current_low;
10395 best_high = current_high;
10396 }
10397 else
10398 {
10399 struct die_info *child = die->child;
10400
10401 while (child && child->tag)
10402 {
10403 switch (child->tag) {
10404 case DW_TAG_subprogram:
10405 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10406 break;
10407 case DW_TAG_namespace:
10408 case DW_TAG_module:
10409 /* FIXME: carlton/2004-01-16: Should we do this for
10410 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10411 that current GCC's always emit the DIEs corresponding
10412 to definitions of methods of classes as children of a
10413 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10414 the DIEs giving the declarations, which could be
10415 anywhere). But I don't see any reason why the
10416 standards says that they have to be there. */
10417 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10418
10419 if (current_low != ((CORE_ADDR) -1))
10420 {
10421 best_low = min (best_low, current_low);
10422 best_high = max (best_high, current_high);
10423 }
10424 break;
10425 default:
10426 /* Ignore. */
10427 break;
10428 }
10429
10430 child = sibling_die (child);
10431 }
10432 }
10433
10434 *lowpc = best_low;
10435 *highpc = best_high;
10436 }
10437
10438 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10439 in DIE. */
10440
10441 static void
10442 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10443 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10444 {
10445 struct objfile *objfile = cu->objfile;
10446 struct attribute *attr;
10447 struct attribute *attr_high;
10448
10449 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10450 if (attr_high)
10451 {
10452 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10453 if (attr)
10454 {
10455 CORE_ADDR low = DW_ADDR (attr);
10456 CORE_ADDR high;
10457 if (attr_high->form == DW_FORM_addr
10458 || attr_high->form == DW_FORM_GNU_addr_index)
10459 high = DW_ADDR (attr_high);
10460 else
10461 high = low + DW_UNSND (attr_high);
10462
10463 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10464 }
10465 }
10466
10467 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10468 if (attr)
10469 {
10470 bfd *obfd = objfile->obfd;
10471 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10472 We take advantage of the fact that DW_AT_ranges does not appear
10473 in DW_TAG_compile_unit of DWO files. */
10474 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10475
10476 /* The value of the DW_AT_ranges attribute is the offset of the
10477 address range list in the .debug_ranges section. */
10478 unsigned long offset = (DW_UNSND (attr)
10479 + (need_ranges_base ? cu->ranges_base : 0));
10480 const gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10481
10482 /* For some target architectures, but not others, the
10483 read_address function sign-extends the addresses it returns.
10484 To recognize base address selection entries, we need a
10485 mask. */
10486 unsigned int addr_size = cu->header.addr_size;
10487 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10488
10489 /* The base address, to which the next pair is relative. Note
10490 that this 'base' is a DWARF concept: most entries in a range
10491 list are relative, to reduce the number of relocs against the
10492 debugging information. This is separate from this function's
10493 'baseaddr' argument, which GDB uses to relocate debugging
10494 information from a shared library based on the address at
10495 which the library was loaded. */
10496 CORE_ADDR base = cu->base_address;
10497 int base_known = cu->base_known;
10498
10499 gdb_assert (dwarf2_per_objfile->ranges.readin);
10500 if (offset >= dwarf2_per_objfile->ranges.size)
10501 {
10502 complaint (&symfile_complaints,
10503 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10504 offset);
10505 return;
10506 }
10507
10508 for (;;)
10509 {
10510 unsigned int bytes_read;
10511 CORE_ADDR start, end;
10512
10513 start = read_address (obfd, buffer, cu, &bytes_read);
10514 buffer += bytes_read;
10515 end = read_address (obfd, buffer, cu, &bytes_read);
10516 buffer += bytes_read;
10517
10518 /* Did we find the end of the range list? */
10519 if (start == 0 && end == 0)
10520 break;
10521
10522 /* Did we find a base address selection entry? */
10523 else if ((start & base_select_mask) == base_select_mask)
10524 {
10525 base = end;
10526 base_known = 1;
10527 }
10528
10529 /* We found an ordinary address range. */
10530 else
10531 {
10532 if (!base_known)
10533 {
10534 complaint (&symfile_complaints,
10535 _("Invalid .debug_ranges data "
10536 "(no base address)"));
10537 return;
10538 }
10539
10540 if (start > end)
10541 {
10542 /* Inverted range entries are invalid. */
10543 complaint (&symfile_complaints,
10544 _("Invalid .debug_ranges data "
10545 "(inverted range)"));
10546 return;
10547 }
10548
10549 /* Empty range entries have no effect. */
10550 if (start == end)
10551 continue;
10552
10553 start += base + baseaddr;
10554 end += base + baseaddr;
10555
10556 /* A not-uncommon case of bad debug info.
10557 Don't pollute the addrmap with bad data. */
10558 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10559 {
10560 complaint (&symfile_complaints,
10561 _(".debug_ranges entry has start address of zero"
10562 " [in module %s]"), objfile->name);
10563 continue;
10564 }
10565
10566 record_block_range (block, start, end - 1);
10567 }
10568 }
10569 }
10570 }
10571
10572 /* Check whether the producer field indicates either of GCC < 4.6, or the
10573 Intel C/C++ compiler, and cache the result in CU. */
10574
10575 static void
10576 check_producer (struct dwarf2_cu *cu)
10577 {
10578 const char *cs;
10579 int major, minor, release;
10580
10581 if (cu->producer == NULL)
10582 {
10583 /* For unknown compilers expect their behavior is DWARF version
10584 compliant.
10585
10586 GCC started to support .debug_types sections by -gdwarf-4 since
10587 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10588 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10589 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10590 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10591 }
10592 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10593 {
10594 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10595
10596 cs = &cu->producer[strlen ("GNU ")];
10597 while (*cs && !isdigit (*cs))
10598 cs++;
10599 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10600 {
10601 /* Not recognized as GCC. */
10602 }
10603 else
10604 {
10605 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10606 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10607 }
10608 }
10609 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10610 cu->producer_is_icc = 1;
10611 else
10612 {
10613 /* For other non-GCC compilers, expect their behavior is DWARF version
10614 compliant. */
10615 }
10616
10617 cu->checked_producer = 1;
10618 }
10619
10620 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10621 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10622 during 4.6.0 experimental. */
10623
10624 static int
10625 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10626 {
10627 if (!cu->checked_producer)
10628 check_producer (cu);
10629
10630 return cu->producer_is_gxx_lt_4_6;
10631 }
10632
10633 /* Return the default accessibility type if it is not overriden by
10634 DW_AT_accessibility. */
10635
10636 static enum dwarf_access_attribute
10637 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10638 {
10639 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10640 {
10641 /* The default DWARF 2 accessibility for members is public, the default
10642 accessibility for inheritance is private. */
10643
10644 if (die->tag != DW_TAG_inheritance)
10645 return DW_ACCESS_public;
10646 else
10647 return DW_ACCESS_private;
10648 }
10649 else
10650 {
10651 /* DWARF 3+ defines the default accessibility a different way. The same
10652 rules apply now for DW_TAG_inheritance as for the members and it only
10653 depends on the container kind. */
10654
10655 if (die->parent->tag == DW_TAG_class_type)
10656 return DW_ACCESS_private;
10657 else
10658 return DW_ACCESS_public;
10659 }
10660 }
10661
10662 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10663 offset. If the attribute was not found return 0, otherwise return
10664 1. If it was found but could not properly be handled, set *OFFSET
10665 to 0. */
10666
10667 static int
10668 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10669 LONGEST *offset)
10670 {
10671 struct attribute *attr;
10672
10673 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10674 if (attr != NULL)
10675 {
10676 *offset = 0;
10677
10678 /* Note that we do not check for a section offset first here.
10679 This is because DW_AT_data_member_location is new in DWARF 4,
10680 so if we see it, we can assume that a constant form is really
10681 a constant and not a section offset. */
10682 if (attr_form_is_constant (attr))
10683 *offset = dwarf2_get_attr_constant_value (attr, 0);
10684 else if (attr_form_is_section_offset (attr))
10685 dwarf2_complex_location_expr_complaint ();
10686 else if (attr_form_is_block (attr))
10687 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10688 else
10689 dwarf2_complex_location_expr_complaint ();
10690
10691 return 1;
10692 }
10693
10694 return 0;
10695 }
10696
10697 /* Add an aggregate field to the field list. */
10698
10699 static void
10700 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10701 struct dwarf2_cu *cu)
10702 {
10703 struct objfile *objfile = cu->objfile;
10704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10705 struct nextfield *new_field;
10706 struct attribute *attr;
10707 struct field *fp;
10708 const char *fieldname = "";
10709
10710 /* Allocate a new field list entry and link it in. */
10711 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10712 make_cleanup (xfree, new_field);
10713 memset (new_field, 0, sizeof (struct nextfield));
10714
10715 if (die->tag == DW_TAG_inheritance)
10716 {
10717 new_field->next = fip->baseclasses;
10718 fip->baseclasses = new_field;
10719 }
10720 else
10721 {
10722 new_field->next = fip->fields;
10723 fip->fields = new_field;
10724 }
10725 fip->nfields++;
10726
10727 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10728 if (attr)
10729 new_field->accessibility = DW_UNSND (attr);
10730 else
10731 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10732 if (new_field->accessibility != DW_ACCESS_public)
10733 fip->non_public_fields = 1;
10734
10735 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10736 if (attr)
10737 new_field->virtuality = DW_UNSND (attr);
10738 else
10739 new_field->virtuality = DW_VIRTUALITY_none;
10740
10741 fp = &new_field->field;
10742
10743 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10744 {
10745 LONGEST offset;
10746
10747 /* Data member other than a C++ static data member. */
10748
10749 /* Get type of field. */
10750 fp->type = die_type (die, cu);
10751
10752 SET_FIELD_BITPOS (*fp, 0);
10753
10754 /* Get bit size of field (zero if none). */
10755 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10756 if (attr)
10757 {
10758 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10759 }
10760 else
10761 {
10762 FIELD_BITSIZE (*fp) = 0;
10763 }
10764
10765 /* Get bit offset of field. */
10766 if (handle_data_member_location (die, cu, &offset))
10767 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10768 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10769 if (attr)
10770 {
10771 if (gdbarch_bits_big_endian (gdbarch))
10772 {
10773 /* For big endian bits, the DW_AT_bit_offset gives the
10774 additional bit offset from the MSB of the containing
10775 anonymous object to the MSB of the field. We don't
10776 have to do anything special since we don't need to
10777 know the size of the anonymous object. */
10778 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10779 }
10780 else
10781 {
10782 /* For little endian bits, compute the bit offset to the
10783 MSB of the anonymous object, subtract off the number of
10784 bits from the MSB of the field to the MSB of the
10785 object, and then subtract off the number of bits of
10786 the field itself. The result is the bit offset of
10787 the LSB of the field. */
10788 int anonymous_size;
10789 int bit_offset = DW_UNSND (attr);
10790
10791 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10792 if (attr)
10793 {
10794 /* The size of the anonymous object containing
10795 the bit field is explicit, so use the
10796 indicated size (in bytes). */
10797 anonymous_size = DW_UNSND (attr);
10798 }
10799 else
10800 {
10801 /* The size of the anonymous object containing
10802 the bit field must be inferred from the type
10803 attribute of the data member containing the
10804 bit field. */
10805 anonymous_size = TYPE_LENGTH (fp->type);
10806 }
10807 SET_FIELD_BITPOS (*fp,
10808 (FIELD_BITPOS (*fp)
10809 + anonymous_size * bits_per_byte
10810 - bit_offset - FIELD_BITSIZE (*fp)));
10811 }
10812 }
10813
10814 /* Get name of field. */
10815 fieldname = dwarf2_name (die, cu);
10816 if (fieldname == NULL)
10817 fieldname = "";
10818
10819 /* The name is already allocated along with this objfile, so we don't
10820 need to duplicate it for the type. */
10821 fp->name = fieldname;
10822
10823 /* Change accessibility for artificial fields (e.g. virtual table
10824 pointer or virtual base class pointer) to private. */
10825 if (dwarf2_attr (die, DW_AT_artificial, cu))
10826 {
10827 FIELD_ARTIFICIAL (*fp) = 1;
10828 new_field->accessibility = DW_ACCESS_private;
10829 fip->non_public_fields = 1;
10830 }
10831 }
10832 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10833 {
10834 /* C++ static member. */
10835
10836 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10837 is a declaration, but all versions of G++ as of this writing
10838 (so through at least 3.2.1) incorrectly generate
10839 DW_TAG_variable tags. */
10840
10841 const char *physname;
10842
10843 /* Get name of field. */
10844 fieldname = dwarf2_name (die, cu);
10845 if (fieldname == NULL)
10846 return;
10847
10848 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10849 if (attr
10850 /* Only create a symbol if this is an external value.
10851 new_symbol checks this and puts the value in the global symbol
10852 table, which we want. If it is not external, new_symbol
10853 will try to put the value in cu->list_in_scope which is wrong. */
10854 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10855 {
10856 /* A static const member, not much different than an enum as far as
10857 we're concerned, except that we can support more types. */
10858 new_symbol (die, NULL, cu);
10859 }
10860
10861 /* Get physical name. */
10862 physname = dwarf2_physname (fieldname, die, cu);
10863
10864 /* The name is already allocated along with this objfile, so we don't
10865 need to duplicate it for the type. */
10866 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10867 FIELD_TYPE (*fp) = die_type (die, cu);
10868 FIELD_NAME (*fp) = fieldname;
10869 }
10870 else if (die->tag == DW_TAG_inheritance)
10871 {
10872 LONGEST offset;
10873
10874 /* C++ base class field. */
10875 if (handle_data_member_location (die, cu, &offset))
10876 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10877 FIELD_BITSIZE (*fp) = 0;
10878 FIELD_TYPE (*fp) = die_type (die, cu);
10879 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10880 fip->nbaseclasses++;
10881 }
10882 }
10883
10884 /* Add a typedef defined in the scope of the FIP's class. */
10885
10886 static void
10887 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10888 struct dwarf2_cu *cu)
10889 {
10890 struct objfile *objfile = cu->objfile;
10891 struct typedef_field_list *new_field;
10892 struct attribute *attr;
10893 struct typedef_field *fp;
10894 char *fieldname = "";
10895
10896 /* Allocate a new field list entry and link it in. */
10897 new_field = xzalloc (sizeof (*new_field));
10898 make_cleanup (xfree, new_field);
10899
10900 gdb_assert (die->tag == DW_TAG_typedef);
10901
10902 fp = &new_field->field;
10903
10904 /* Get name of field. */
10905 fp->name = dwarf2_name (die, cu);
10906 if (fp->name == NULL)
10907 return;
10908
10909 fp->type = read_type_die (die, cu);
10910
10911 new_field->next = fip->typedef_field_list;
10912 fip->typedef_field_list = new_field;
10913 fip->typedef_field_list_count++;
10914 }
10915
10916 /* Create the vector of fields, and attach it to the type. */
10917
10918 static void
10919 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10920 struct dwarf2_cu *cu)
10921 {
10922 int nfields = fip->nfields;
10923
10924 /* Record the field count, allocate space for the array of fields,
10925 and create blank accessibility bitfields if necessary. */
10926 TYPE_NFIELDS (type) = nfields;
10927 TYPE_FIELDS (type) = (struct field *)
10928 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10929 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10930
10931 if (fip->non_public_fields && cu->language != language_ada)
10932 {
10933 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10934
10935 TYPE_FIELD_PRIVATE_BITS (type) =
10936 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10937 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10938
10939 TYPE_FIELD_PROTECTED_BITS (type) =
10940 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10941 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10942
10943 TYPE_FIELD_IGNORE_BITS (type) =
10944 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10945 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10946 }
10947
10948 /* If the type has baseclasses, allocate and clear a bit vector for
10949 TYPE_FIELD_VIRTUAL_BITS. */
10950 if (fip->nbaseclasses && cu->language != language_ada)
10951 {
10952 int num_bytes = B_BYTES (fip->nbaseclasses);
10953 unsigned char *pointer;
10954
10955 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10956 pointer = TYPE_ALLOC (type, num_bytes);
10957 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10958 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10959 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10960 }
10961
10962 /* Copy the saved-up fields into the field vector. Start from the head of
10963 the list, adding to the tail of the field array, so that they end up in
10964 the same order in the array in which they were added to the list. */
10965 while (nfields-- > 0)
10966 {
10967 struct nextfield *fieldp;
10968
10969 if (fip->fields)
10970 {
10971 fieldp = fip->fields;
10972 fip->fields = fieldp->next;
10973 }
10974 else
10975 {
10976 fieldp = fip->baseclasses;
10977 fip->baseclasses = fieldp->next;
10978 }
10979
10980 TYPE_FIELD (type, nfields) = fieldp->field;
10981 switch (fieldp->accessibility)
10982 {
10983 case DW_ACCESS_private:
10984 if (cu->language != language_ada)
10985 SET_TYPE_FIELD_PRIVATE (type, nfields);
10986 break;
10987
10988 case DW_ACCESS_protected:
10989 if (cu->language != language_ada)
10990 SET_TYPE_FIELD_PROTECTED (type, nfields);
10991 break;
10992
10993 case DW_ACCESS_public:
10994 break;
10995
10996 default:
10997 /* Unknown accessibility. Complain and treat it as public. */
10998 {
10999 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11000 fieldp->accessibility);
11001 }
11002 break;
11003 }
11004 if (nfields < fip->nbaseclasses)
11005 {
11006 switch (fieldp->virtuality)
11007 {
11008 case DW_VIRTUALITY_virtual:
11009 case DW_VIRTUALITY_pure_virtual:
11010 if (cu->language == language_ada)
11011 error (_("unexpected virtuality in component of Ada type"));
11012 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11013 break;
11014 }
11015 }
11016 }
11017 }
11018
11019 /* Return true if this member function is a constructor, false
11020 otherwise. */
11021
11022 static int
11023 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11024 {
11025 const char *fieldname;
11026 const char *typename;
11027 int len;
11028
11029 if (die->parent == NULL)
11030 return 0;
11031
11032 if (die->parent->tag != DW_TAG_structure_type
11033 && die->parent->tag != DW_TAG_union_type
11034 && die->parent->tag != DW_TAG_class_type)
11035 return 0;
11036
11037 fieldname = dwarf2_name (die, cu);
11038 typename = dwarf2_name (die->parent, cu);
11039 if (fieldname == NULL || typename == NULL)
11040 return 0;
11041
11042 len = strlen (fieldname);
11043 return (strncmp (fieldname, typename, len) == 0
11044 && (typename[len] == '\0' || typename[len] == '<'));
11045 }
11046
11047 /* Add a member function to the proper fieldlist. */
11048
11049 static void
11050 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11051 struct type *type, struct dwarf2_cu *cu)
11052 {
11053 struct objfile *objfile = cu->objfile;
11054 struct attribute *attr;
11055 struct fnfieldlist *flp;
11056 int i;
11057 struct fn_field *fnp;
11058 const char *fieldname;
11059 struct nextfnfield *new_fnfield;
11060 struct type *this_type;
11061 enum dwarf_access_attribute accessibility;
11062
11063 if (cu->language == language_ada)
11064 error (_("unexpected member function in Ada type"));
11065
11066 /* Get name of member function. */
11067 fieldname = dwarf2_name (die, cu);
11068 if (fieldname == NULL)
11069 return;
11070
11071 /* Look up member function name in fieldlist. */
11072 for (i = 0; i < fip->nfnfields; i++)
11073 {
11074 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11075 break;
11076 }
11077
11078 /* Create new list element if necessary. */
11079 if (i < fip->nfnfields)
11080 flp = &fip->fnfieldlists[i];
11081 else
11082 {
11083 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11084 {
11085 fip->fnfieldlists = (struct fnfieldlist *)
11086 xrealloc (fip->fnfieldlists,
11087 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11088 * sizeof (struct fnfieldlist));
11089 if (fip->nfnfields == 0)
11090 make_cleanup (free_current_contents, &fip->fnfieldlists);
11091 }
11092 flp = &fip->fnfieldlists[fip->nfnfields];
11093 flp->name = fieldname;
11094 flp->length = 0;
11095 flp->head = NULL;
11096 i = fip->nfnfields++;
11097 }
11098
11099 /* Create a new member function field and chain it to the field list
11100 entry. */
11101 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11102 make_cleanup (xfree, new_fnfield);
11103 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11104 new_fnfield->next = flp->head;
11105 flp->head = new_fnfield;
11106 flp->length++;
11107
11108 /* Fill in the member function field info. */
11109 fnp = &new_fnfield->fnfield;
11110
11111 /* Delay processing of the physname until later. */
11112 if (cu->language == language_cplus || cu->language == language_java)
11113 {
11114 add_to_method_list (type, i, flp->length - 1, fieldname,
11115 die, cu);
11116 }
11117 else
11118 {
11119 const char *physname = dwarf2_physname (fieldname, die, cu);
11120 fnp->physname = physname ? physname : "";
11121 }
11122
11123 fnp->type = alloc_type (objfile);
11124 this_type = read_type_die (die, cu);
11125 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11126 {
11127 int nparams = TYPE_NFIELDS (this_type);
11128
11129 /* TYPE is the domain of this method, and THIS_TYPE is the type
11130 of the method itself (TYPE_CODE_METHOD). */
11131 smash_to_method_type (fnp->type, type,
11132 TYPE_TARGET_TYPE (this_type),
11133 TYPE_FIELDS (this_type),
11134 TYPE_NFIELDS (this_type),
11135 TYPE_VARARGS (this_type));
11136
11137 /* Handle static member functions.
11138 Dwarf2 has no clean way to discern C++ static and non-static
11139 member functions. G++ helps GDB by marking the first
11140 parameter for non-static member functions (which is the this
11141 pointer) as artificial. We obtain this information from
11142 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11143 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11144 fnp->voffset = VOFFSET_STATIC;
11145 }
11146 else
11147 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11148 dwarf2_full_name (fieldname, die, cu));
11149
11150 /* Get fcontext from DW_AT_containing_type if present. */
11151 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11152 fnp->fcontext = die_containing_type (die, cu);
11153
11154 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11155 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11156
11157 /* Get accessibility. */
11158 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11159 if (attr)
11160 accessibility = DW_UNSND (attr);
11161 else
11162 accessibility = dwarf2_default_access_attribute (die, cu);
11163 switch (accessibility)
11164 {
11165 case DW_ACCESS_private:
11166 fnp->is_private = 1;
11167 break;
11168 case DW_ACCESS_protected:
11169 fnp->is_protected = 1;
11170 break;
11171 }
11172
11173 /* Check for artificial methods. */
11174 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11175 if (attr && DW_UNSND (attr) != 0)
11176 fnp->is_artificial = 1;
11177
11178 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11179
11180 /* Get index in virtual function table if it is a virtual member
11181 function. For older versions of GCC, this is an offset in the
11182 appropriate virtual table, as specified by DW_AT_containing_type.
11183 For everyone else, it is an expression to be evaluated relative
11184 to the object address. */
11185
11186 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11187 if (attr)
11188 {
11189 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11190 {
11191 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11192 {
11193 /* Old-style GCC. */
11194 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11195 }
11196 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11197 || (DW_BLOCK (attr)->size > 1
11198 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11199 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11200 {
11201 struct dwarf_block blk;
11202 int offset;
11203
11204 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11205 ? 1 : 2);
11206 blk.size = DW_BLOCK (attr)->size - offset;
11207 blk.data = DW_BLOCK (attr)->data + offset;
11208 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11209 if ((fnp->voffset % cu->header.addr_size) != 0)
11210 dwarf2_complex_location_expr_complaint ();
11211 else
11212 fnp->voffset /= cu->header.addr_size;
11213 fnp->voffset += 2;
11214 }
11215 else
11216 dwarf2_complex_location_expr_complaint ();
11217
11218 if (!fnp->fcontext)
11219 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11220 }
11221 else if (attr_form_is_section_offset (attr))
11222 {
11223 dwarf2_complex_location_expr_complaint ();
11224 }
11225 else
11226 {
11227 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11228 fieldname);
11229 }
11230 }
11231 else
11232 {
11233 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11234 if (attr && DW_UNSND (attr))
11235 {
11236 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11237 complaint (&symfile_complaints,
11238 _("Member function \"%s\" (offset %d) is virtual "
11239 "but the vtable offset is not specified"),
11240 fieldname, die->offset.sect_off);
11241 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11242 TYPE_CPLUS_DYNAMIC (type) = 1;
11243 }
11244 }
11245 }
11246
11247 /* Create the vector of member function fields, and attach it to the type. */
11248
11249 static void
11250 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11251 struct dwarf2_cu *cu)
11252 {
11253 struct fnfieldlist *flp;
11254 int i;
11255
11256 if (cu->language == language_ada)
11257 error (_("unexpected member functions in Ada type"));
11258
11259 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11260 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11261 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11262
11263 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11264 {
11265 struct nextfnfield *nfp = flp->head;
11266 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11267 int k;
11268
11269 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11270 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11271 fn_flp->fn_fields = (struct fn_field *)
11272 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11273 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11274 fn_flp->fn_fields[k] = nfp->fnfield;
11275 }
11276
11277 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11278 }
11279
11280 /* Returns non-zero if NAME is the name of a vtable member in CU's
11281 language, zero otherwise. */
11282 static int
11283 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11284 {
11285 static const char vptr[] = "_vptr";
11286 static const char vtable[] = "vtable";
11287
11288 /* Look for the C++ and Java forms of the vtable. */
11289 if ((cu->language == language_java
11290 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11291 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11292 && is_cplus_marker (name[sizeof (vptr) - 1])))
11293 return 1;
11294
11295 return 0;
11296 }
11297
11298 /* GCC outputs unnamed structures that are really pointers to member
11299 functions, with the ABI-specified layout. If TYPE describes
11300 such a structure, smash it into a member function type.
11301
11302 GCC shouldn't do this; it should just output pointer to member DIEs.
11303 This is GCC PR debug/28767. */
11304
11305 static void
11306 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11307 {
11308 struct type *pfn_type, *domain_type, *new_type;
11309
11310 /* Check for a structure with no name and two children. */
11311 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11312 return;
11313
11314 /* Check for __pfn and __delta members. */
11315 if (TYPE_FIELD_NAME (type, 0) == NULL
11316 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11317 || TYPE_FIELD_NAME (type, 1) == NULL
11318 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11319 return;
11320
11321 /* Find the type of the method. */
11322 pfn_type = TYPE_FIELD_TYPE (type, 0);
11323 if (pfn_type == NULL
11324 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11325 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11326 return;
11327
11328 /* Look for the "this" argument. */
11329 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11330 if (TYPE_NFIELDS (pfn_type) == 0
11331 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11332 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11333 return;
11334
11335 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11336 new_type = alloc_type (objfile);
11337 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11338 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11339 TYPE_VARARGS (pfn_type));
11340 smash_to_methodptr_type (type, new_type);
11341 }
11342
11343 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11344 (icc). */
11345
11346 static int
11347 producer_is_icc (struct dwarf2_cu *cu)
11348 {
11349 if (!cu->checked_producer)
11350 check_producer (cu);
11351
11352 return cu->producer_is_icc;
11353 }
11354
11355 /* Called when we find the DIE that starts a structure or union scope
11356 (definition) to create a type for the structure or union. Fill in
11357 the type's name and general properties; the members will not be
11358 processed until process_structure_scope.
11359
11360 NOTE: we need to call these functions regardless of whether or not the
11361 DIE has a DW_AT_name attribute, since it might be an anonymous
11362 structure or union. This gets the type entered into our set of
11363 user defined types.
11364
11365 However, if the structure is incomplete (an opaque struct/union)
11366 then suppress creating a symbol table entry for it since gdb only
11367 wants to find the one with the complete definition. Note that if
11368 it is complete, we just call new_symbol, which does it's own
11369 checking about whether the struct/union is anonymous or not (and
11370 suppresses creating a symbol table entry itself). */
11371
11372 static struct type *
11373 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11374 {
11375 struct objfile *objfile = cu->objfile;
11376 struct type *type;
11377 struct attribute *attr;
11378 const char *name;
11379
11380 /* If the definition of this type lives in .debug_types, read that type.
11381 Don't follow DW_AT_specification though, that will take us back up
11382 the chain and we want to go down. */
11383 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11384 if (attr)
11385 {
11386 type = get_DW_AT_signature_type (die, attr, cu);
11387
11388 /* The type's CU may not be the same as CU.
11389 Ensure TYPE is recorded with CU in die_type_hash. */
11390 return set_die_type (die, type, cu);
11391 }
11392
11393 type = alloc_type (objfile);
11394 INIT_CPLUS_SPECIFIC (type);
11395
11396 name = dwarf2_name (die, cu);
11397 if (name != NULL)
11398 {
11399 if (cu->language == language_cplus
11400 || cu->language == language_java)
11401 {
11402 const char *full_name = dwarf2_full_name (name, die, cu);
11403
11404 /* dwarf2_full_name might have already finished building the DIE's
11405 type. If so, there is no need to continue. */
11406 if (get_die_type (die, cu) != NULL)
11407 return get_die_type (die, cu);
11408
11409 TYPE_TAG_NAME (type) = full_name;
11410 if (die->tag == DW_TAG_structure_type
11411 || die->tag == DW_TAG_class_type)
11412 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11413 }
11414 else
11415 {
11416 /* The name is already allocated along with this objfile, so
11417 we don't need to duplicate it for the type. */
11418 TYPE_TAG_NAME (type) = name;
11419 if (die->tag == DW_TAG_class_type)
11420 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11421 }
11422 }
11423
11424 if (die->tag == DW_TAG_structure_type)
11425 {
11426 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11427 }
11428 else if (die->tag == DW_TAG_union_type)
11429 {
11430 TYPE_CODE (type) = TYPE_CODE_UNION;
11431 }
11432 else
11433 {
11434 TYPE_CODE (type) = TYPE_CODE_CLASS;
11435 }
11436
11437 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11438 TYPE_DECLARED_CLASS (type) = 1;
11439
11440 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11441 if (attr)
11442 {
11443 TYPE_LENGTH (type) = DW_UNSND (attr);
11444 }
11445 else
11446 {
11447 TYPE_LENGTH (type) = 0;
11448 }
11449
11450 if (producer_is_icc (cu))
11451 {
11452 /* ICC does not output the required DW_AT_declaration
11453 on incomplete types, but gives them a size of zero. */
11454 }
11455 else
11456 TYPE_STUB_SUPPORTED (type) = 1;
11457
11458 if (die_is_declaration (die, cu))
11459 TYPE_STUB (type) = 1;
11460 else if (attr == NULL && die->child == NULL
11461 && producer_is_realview (cu->producer))
11462 /* RealView does not output the required DW_AT_declaration
11463 on incomplete types. */
11464 TYPE_STUB (type) = 1;
11465
11466 /* We need to add the type field to the die immediately so we don't
11467 infinitely recurse when dealing with pointers to the structure
11468 type within the structure itself. */
11469 set_die_type (die, type, cu);
11470
11471 /* set_die_type should be already done. */
11472 set_descriptive_type (type, die, cu);
11473
11474 return type;
11475 }
11476
11477 /* Finish creating a structure or union type, including filling in
11478 its members and creating a symbol for it. */
11479
11480 static void
11481 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11482 {
11483 struct objfile *objfile = cu->objfile;
11484 struct die_info *child_die = die->child;
11485 struct type *type;
11486
11487 type = get_die_type (die, cu);
11488 if (type == NULL)
11489 type = read_structure_type (die, cu);
11490
11491 if (die->child != NULL && ! die_is_declaration (die, cu))
11492 {
11493 struct field_info fi;
11494 struct die_info *child_die;
11495 VEC (symbolp) *template_args = NULL;
11496 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11497
11498 memset (&fi, 0, sizeof (struct field_info));
11499
11500 child_die = die->child;
11501
11502 while (child_die && child_die->tag)
11503 {
11504 if (child_die->tag == DW_TAG_member
11505 || child_die->tag == DW_TAG_variable)
11506 {
11507 /* NOTE: carlton/2002-11-05: A C++ static data member
11508 should be a DW_TAG_member that is a declaration, but
11509 all versions of G++ as of this writing (so through at
11510 least 3.2.1) incorrectly generate DW_TAG_variable
11511 tags for them instead. */
11512 dwarf2_add_field (&fi, child_die, cu);
11513 }
11514 else if (child_die->tag == DW_TAG_subprogram)
11515 {
11516 /* C++ member function. */
11517 dwarf2_add_member_fn (&fi, child_die, type, cu);
11518 }
11519 else if (child_die->tag == DW_TAG_inheritance)
11520 {
11521 /* C++ base class field. */
11522 dwarf2_add_field (&fi, child_die, cu);
11523 }
11524 else if (child_die->tag == DW_TAG_typedef)
11525 dwarf2_add_typedef (&fi, child_die, cu);
11526 else if (child_die->tag == DW_TAG_template_type_param
11527 || child_die->tag == DW_TAG_template_value_param)
11528 {
11529 struct symbol *arg = new_symbol (child_die, NULL, cu);
11530
11531 if (arg != NULL)
11532 VEC_safe_push (symbolp, template_args, arg);
11533 }
11534
11535 child_die = sibling_die (child_die);
11536 }
11537
11538 /* Attach template arguments to type. */
11539 if (! VEC_empty (symbolp, template_args))
11540 {
11541 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11542 TYPE_N_TEMPLATE_ARGUMENTS (type)
11543 = VEC_length (symbolp, template_args);
11544 TYPE_TEMPLATE_ARGUMENTS (type)
11545 = obstack_alloc (&objfile->objfile_obstack,
11546 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11547 * sizeof (struct symbol *)));
11548 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11549 VEC_address (symbolp, template_args),
11550 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11551 * sizeof (struct symbol *)));
11552 VEC_free (symbolp, template_args);
11553 }
11554
11555 /* Attach fields and member functions to the type. */
11556 if (fi.nfields)
11557 dwarf2_attach_fields_to_type (&fi, type, cu);
11558 if (fi.nfnfields)
11559 {
11560 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11561
11562 /* Get the type which refers to the base class (possibly this
11563 class itself) which contains the vtable pointer for the current
11564 class from the DW_AT_containing_type attribute. This use of
11565 DW_AT_containing_type is a GNU extension. */
11566
11567 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11568 {
11569 struct type *t = die_containing_type (die, cu);
11570
11571 TYPE_VPTR_BASETYPE (type) = t;
11572 if (type == t)
11573 {
11574 int i;
11575
11576 /* Our own class provides vtbl ptr. */
11577 for (i = TYPE_NFIELDS (t) - 1;
11578 i >= TYPE_N_BASECLASSES (t);
11579 --i)
11580 {
11581 const char *fieldname = TYPE_FIELD_NAME (t, i);
11582
11583 if (is_vtable_name (fieldname, cu))
11584 {
11585 TYPE_VPTR_FIELDNO (type) = i;
11586 break;
11587 }
11588 }
11589
11590 /* Complain if virtual function table field not found. */
11591 if (i < TYPE_N_BASECLASSES (t))
11592 complaint (&symfile_complaints,
11593 _("virtual function table pointer "
11594 "not found when defining class '%s'"),
11595 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11596 "");
11597 }
11598 else
11599 {
11600 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11601 }
11602 }
11603 else if (cu->producer
11604 && strncmp (cu->producer,
11605 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11606 {
11607 /* The IBM XLC compiler does not provide direct indication
11608 of the containing type, but the vtable pointer is
11609 always named __vfp. */
11610
11611 int i;
11612
11613 for (i = TYPE_NFIELDS (type) - 1;
11614 i >= TYPE_N_BASECLASSES (type);
11615 --i)
11616 {
11617 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11618 {
11619 TYPE_VPTR_FIELDNO (type) = i;
11620 TYPE_VPTR_BASETYPE (type) = type;
11621 break;
11622 }
11623 }
11624 }
11625 }
11626
11627 /* Copy fi.typedef_field_list linked list elements content into the
11628 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11629 if (fi.typedef_field_list)
11630 {
11631 int i = fi.typedef_field_list_count;
11632
11633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11634 TYPE_TYPEDEF_FIELD_ARRAY (type)
11635 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11636 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11637
11638 /* Reverse the list order to keep the debug info elements order. */
11639 while (--i >= 0)
11640 {
11641 struct typedef_field *dest, *src;
11642
11643 dest = &TYPE_TYPEDEF_FIELD (type, i);
11644 src = &fi.typedef_field_list->field;
11645 fi.typedef_field_list = fi.typedef_field_list->next;
11646 *dest = *src;
11647 }
11648 }
11649
11650 do_cleanups (back_to);
11651
11652 if (HAVE_CPLUS_STRUCT (type))
11653 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11654 }
11655
11656 quirk_gcc_member_function_pointer (type, objfile);
11657
11658 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11659 snapshots) has been known to create a die giving a declaration
11660 for a class that has, as a child, a die giving a definition for a
11661 nested class. So we have to process our children even if the
11662 current die is a declaration. Normally, of course, a declaration
11663 won't have any children at all. */
11664
11665 while (child_die != NULL && child_die->tag)
11666 {
11667 if (child_die->tag == DW_TAG_member
11668 || child_die->tag == DW_TAG_variable
11669 || child_die->tag == DW_TAG_inheritance
11670 || child_die->tag == DW_TAG_template_value_param
11671 || child_die->tag == DW_TAG_template_type_param)
11672 {
11673 /* Do nothing. */
11674 }
11675 else
11676 process_die (child_die, cu);
11677
11678 child_die = sibling_die (child_die);
11679 }
11680
11681 /* Do not consider external references. According to the DWARF standard,
11682 these DIEs are identified by the fact that they have no byte_size
11683 attribute, and a declaration attribute. */
11684 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11685 || !die_is_declaration (die, cu))
11686 new_symbol (die, type, cu);
11687 }
11688
11689 /* Given a DW_AT_enumeration_type die, set its type. We do not
11690 complete the type's fields yet, or create any symbols. */
11691
11692 static struct type *
11693 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11694 {
11695 struct objfile *objfile = cu->objfile;
11696 struct type *type;
11697 struct attribute *attr;
11698 const char *name;
11699
11700 /* If the definition of this type lives in .debug_types, read that type.
11701 Don't follow DW_AT_specification though, that will take us back up
11702 the chain and we want to go down. */
11703 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11704 if (attr)
11705 {
11706 type = get_DW_AT_signature_type (die, attr, cu);
11707
11708 /* The type's CU may not be the same as CU.
11709 Ensure TYPE is recorded with CU in die_type_hash. */
11710 return set_die_type (die, type, cu);
11711 }
11712
11713 type = alloc_type (objfile);
11714
11715 TYPE_CODE (type) = TYPE_CODE_ENUM;
11716 name = dwarf2_full_name (NULL, die, cu);
11717 if (name != NULL)
11718 TYPE_TAG_NAME (type) = name;
11719
11720 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11721 if (attr)
11722 {
11723 TYPE_LENGTH (type) = DW_UNSND (attr);
11724 }
11725 else
11726 {
11727 TYPE_LENGTH (type) = 0;
11728 }
11729
11730 /* The enumeration DIE can be incomplete. In Ada, any type can be
11731 declared as private in the package spec, and then defined only
11732 inside the package body. Such types are known as Taft Amendment
11733 Types. When another package uses such a type, an incomplete DIE
11734 may be generated by the compiler. */
11735 if (die_is_declaration (die, cu))
11736 TYPE_STUB (type) = 1;
11737
11738 return set_die_type (die, type, cu);
11739 }
11740
11741 /* Given a pointer to a die which begins an enumeration, process all
11742 the dies that define the members of the enumeration, and create the
11743 symbol for the enumeration type.
11744
11745 NOTE: We reverse the order of the element list. */
11746
11747 static void
11748 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11749 {
11750 struct type *this_type;
11751
11752 this_type = get_die_type (die, cu);
11753 if (this_type == NULL)
11754 this_type = read_enumeration_type (die, cu);
11755
11756 if (die->child != NULL)
11757 {
11758 struct die_info *child_die;
11759 struct symbol *sym;
11760 struct field *fields = NULL;
11761 int num_fields = 0;
11762 int unsigned_enum = 1;
11763 const char *name;
11764 int flag_enum = 1;
11765 ULONGEST mask = 0;
11766
11767 child_die = die->child;
11768 while (child_die && child_die->tag)
11769 {
11770 if (child_die->tag != DW_TAG_enumerator)
11771 {
11772 process_die (child_die, cu);
11773 }
11774 else
11775 {
11776 name = dwarf2_name (child_die, cu);
11777 if (name)
11778 {
11779 sym = new_symbol (child_die, this_type, cu);
11780 if (SYMBOL_VALUE (sym) < 0)
11781 {
11782 unsigned_enum = 0;
11783 flag_enum = 0;
11784 }
11785 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11786 flag_enum = 0;
11787 else
11788 mask |= SYMBOL_VALUE (sym);
11789
11790 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11791 {
11792 fields = (struct field *)
11793 xrealloc (fields,
11794 (num_fields + DW_FIELD_ALLOC_CHUNK)
11795 * sizeof (struct field));
11796 }
11797
11798 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11799 FIELD_TYPE (fields[num_fields]) = NULL;
11800 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11801 FIELD_BITSIZE (fields[num_fields]) = 0;
11802
11803 num_fields++;
11804 }
11805 }
11806
11807 child_die = sibling_die (child_die);
11808 }
11809
11810 if (num_fields)
11811 {
11812 TYPE_NFIELDS (this_type) = num_fields;
11813 TYPE_FIELDS (this_type) = (struct field *)
11814 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11815 memcpy (TYPE_FIELDS (this_type), fields,
11816 sizeof (struct field) * num_fields);
11817 xfree (fields);
11818 }
11819 if (unsigned_enum)
11820 TYPE_UNSIGNED (this_type) = 1;
11821 if (flag_enum)
11822 TYPE_FLAG_ENUM (this_type) = 1;
11823 }
11824
11825 /* If we are reading an enum from a .debug_types unit, and the enum
11826 is a declaration, and the enum is not the signatured type in the
11827 unit, then we do not want to add a symbol for it. Adding a
11828 symbol would in some cases obscure the true definition of the
11829 enum, giving users an incomplete type when the definition is
11830 actually available. Note that we do not want to do this for all
11831 enums which are just declarations, because C++0x allows forward
11832 enum declarations. */
11833 if (cu->per_cu->is_debug_types
11834 && die_is_declaration (die, cu))
11835 {
11836 struct signatured_type *sig_type;
11837
11838 sig_type = (struct signatured_type *) cu->per_cu;
11839 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11840 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11841 return;
11842 }
11843
11844 new_symbol (die, this_type, cu);
11845 }
11846
11847 /* Extract all information from a DW_TAG_array_type DIE and put it in
11848 the DIE's type field. For now, this only handles one dimensional
11849 arrays. */
11850
11851 static struct type *
11852 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11853 {
11854 struct objfile *objfile = cu->objfile;
11855 struct die_info *child_die;
11856 struct type *type;
11857 struct type *element_type, *range_type, *index_type;
11858 struct type **range_types = NULL;
11859 struct attribute *attr;
11860 int ndim = 0;
11861 struct cleanup *back_to;
11862 const char *name;
11863
11864 element_type = die_type (die, cu);
11865
11866 /* The die_type call above may have already set the type for this DIE. */
11867 type = get_die_type (die, cu);
11868 if (type)
11869 return type;
11870
11871 /* Irix 6.2 native cc creates array types without children for
11872 arrays with unspecified length. */
11873 if (die->child == NULL)
11874 {
11875 index_type = objfile_type (objfile)->builtin_int;
11876 range_type = create_range_type (NULL, index_type, 0, -1);
11877 type = create_array_type (NULL, element_type, range_type);
11878 return set_die_type (die, type, cu);
11879 }
11880
11881 back_to = make_cleanup (null_cleanup, NULL);
11882 child_die = die->child;
11883 while (child_die && child_die->tag)
11884 {
11885 if (child_die->tag == DW_TAG_subrange_type)
11886 {
11887 struct type *child_type = read_type_die (child_die, cu);
11888
11889 if (child_type != NULL)
11890 {
11891 /* The range type was succesfully read. Save it for the
11892 array type creation. */
11893 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11894 {
11895 range_types = (struct type **)
11896 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11897 * sizeof (struct type *));
11898 if (ndim == 0)
11899 make_cleanup (free_current_contents, &range_types);
11900 }
11901 range_types[ndim++] = child_type;
11902 }
11903 }
11904 child_die = sibling_die (child_die);
11905 }
11906
11907 /* Dwarf2 dimensions are output from left to right, create the
11908 necessary array types in backwards order. */
11909
11910 type = element_type;
11911
11912 if (read_array_order (die, cu) == DW_ORD_col_major)
11913 {
11914 int i = 0;
11915
11916 while (i < ndim)
11917 type = create_array_type (NULL, type, range_types[i++]);
11918 }
11919 else
11920 {
11921 while (ndim-- > 0)
11922 type = create_array_type (NULL, type, range_types[ndim]);
11923 }
11924
11925 /* Understand Dwarf2 support for vector types (like they occur on
11926 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11927 array type. This is not part of the Dwarf2/3 standard yet, but a
11928 custom vendor extension. The main difference between a regular
11929 array and the vector variant is that vectors are passed by value
11930 to functions. */
11931 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11932 if (attr)
11933 make_vector_type (type);
11934
11935 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11936 implementation may choose to implement triple vectors using this
11937 attribute. */
11938 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11939 if (attr)
11940 {
11941 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11942 TYPE_LENGTH (type) = DW_UNSND (attr);
11943 else
11944 complaint (&symfile_complaints,
11945 _("DW_AT_byte_size for array type smaller "
11946 "than the total size of elements"));
11947 }
11948
11949 name = dwarf2_name (die, cu);
11950 if (name)
11951 TYPE_NAME (type) = name;
11952
11953 /* Install the type in the die. */
11954 set_die_type (die, type, cu);
11955
11956 /* set_die_type should be already done. */
11957 set_descriptive_type (type, die, cu);
11958
11959 do_cleanups (back_to);
11960
11961 return type;
11962 }
11963
11964 static enum dwarf_array_dim_ordering
11965 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11966 {
11967 struct attribute *attr;
11968
11969 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11970
11971 if (attr) return DW_SND (attr);
11972
11973 /* GNU F77 is a special case, as at 08/2004 array type info is the
11974 opposite order to the dwarf2 specification, but data is still
11975 laid out as per normal fortran.
11976
11977 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11978 version checking. */
11979
11980 if (cu->language == language_fortran
11981 && cu->producer && strstr (cu->producer, "GNU F77"))
11982 {
11983 return DW_ORD_row_major;
11984 }
11985
11986 switch (cu->language_defn->la_array_ordering)
11987 {
11988 case array_column_major:
11989 return DW_ORD_col_major;
11990 case array_row_major:
11991 default:
11992 return DW_ORD_row_major;
11993 };
11994 }
11995
11996 /* Extract all information from a DW_TAG_set_type DIE and put it in
11997 the DIE's type field. */
11998
11999 static struct type *
12000 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12001 {
12002 struct type *domain_type, *set_type;
12003 struct attribute *attr;
12004
12005 domain_type = die_type (die, cu);
12006
12007 /* The die_type call above may have already set the type for this DIE. */
12008 set_type = get_die_type (die, cu);
12009 if (set_type)
12010 return set_type;
12011
12012 set_type = create_set_type (NULL, domain_type);
12013
12014 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12015 if (attr)
12016 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12017
12018 return set_die_type (die, set_type, cu);
12019 }
12020
12021 /* A helper for read_common_block that creates a locexpr baton.
12022 SYM is the symbol which we are marking as computed.
12023 COMMON_DIE is the DIE for the common block.
12024 COMMON_LOC is the location expression attribute for the common
12025 block itself.
12026 MEMBER_LOC is the location expression attribute for the particular
12027 member of the common block that we are processing.
12028 CU is the CU from which the above come. */
12029
12030 static void
12031 mark_common_block_symbol_computed (struct symbol *sym,
12032 struct die_info *common_die,
12033 struct attribute *common_loc,
12034 struct attribute *member_loc,
12035 struct dwarf2_cu *cu)
12036 {
12037 struct objfile *objfile = dwarf2_per_objfile->objfile;
12038 struct dwarf2_locexpr_baton *baton;
12039 gdb_byte *ptr;
12040 unsigned int cu_off;
12041 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12042 LONGEST offset = 0;
12043
12044 gdb_assert (common_loc && member_loc);
12045 gdb_assert (attr_form_is_block (common_loc));
12046 gdb_assert (attr_form_is_block (member_loc)
12047 || attr_form_is_constant (member_loc));
12048
12049 baton = obstack_alloc (&objfile->objfile_obstack,
12050 sizeof (struct dwarf2_locexpr_baton));
12051 baton->per_cu = cu->per_cu;
12052 gdb_assert (baton->per_cu);
12053
12054 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12055
12056 if (attr_form_is_constant (member_loc))
12057 {
12058 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12059 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12060 }
12061 else
12062 baton->size += DW_BLOCK (member_loc)->size;
12063
12064 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12065 baton->data = ptr;
12066
12067 *ptr++ = DW_OP_call4;
12068 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12069 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12070 ptr += 4;
12071
12072 if (attr_form_is_constant (member_loc))
12073 {
12074 *ptr++ = DW_OP_addr;
12075 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12076 ptr += cu->header.addr_size;
12077 }
12078 else
12079 {
12080 /* We have to copy the data here, because DW_OP_call4 will only
12081 use a DW_AT_location attribute. */
12082 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12083 ptr += DW_BLOCK (member_loc)->size;
12084 }
12085
12086 *ptr++ = DW_OP_plus;
12087 gdb_assert (ptr - baton->data == baton->size);
12088
12089 SYMBOL_LOCATION_BATON (sym) = baton;
12090 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12091 }
12092
12093 /* Create appropriate locally-scoped variables for all the
12094 DW_TAG_common_block entries. Also create a struct common_block
12095 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12096 is used to sepate the common blocks name namespace from regular
12097 variable names. */
12098
12099 static void
12100 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12101 {
12102 struct attribute *attr;
12103
12104 attr = dwarf2_attr (die, DW_AT_location, cu);
12105 if (attr)
12106 {
12107 /* Support the .debug_loc offsets. */
12108 if (attr_form_is_block (attr))
12109 {
12110 /* Ok. */
12111 }
12112 else if (attr_form_is_section_offset (attr))
12113 {
12114 dwarf2_complex_location_expr_complaint ();
12115 attr = NULL;
12116 }
12117 else
12118 {
12119 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12120 "common block member");
12121 attr = NULL;
12122 }
12123 }
12124
12125 if (die->child != NULL)
12126 {
12127 struct objfile *objfile = cu->objfile;
12128 struct die_info *child_die;
12129 size_t n_entries = 0, size;
12130 struct common_block *common_block;
12131 struct symbol *sym;
12132
12133 for (child_die = die->child;
12134 child_die && child_die->tag;
12135 child_die = sibling_die (child_die))
12136 ++n_entries;
12137
12138 size = (sizeof (struct common_block)
12139 + (n_entries - 1) * sizeof (struct symbol *));
12140 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12141 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12142 common_block->n_entries = 0;
12143
12144 for (child_die = die->child;
12145 child_die && child_die->tag;
12146 child_die = sibling_die (child_die))
12147 {
12148 /* Create the symbol in the DW_TAG_common_block block in the current
12149 symbol scope. */
12150 sym = new_symbol (child_die, NULL, cu);
12151 if (sym != NULL)
12152 {
12153 struct attribute *member_loc;
12154
12155 common_block->contents[common_block->n_entries++] = sym;
12156
12157 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12158 cu);
12159 if (member_loc)
12160 {
12161 /* GDB has handled this for a long time, but it is
12162 not specified by DWARF. It seems to have been
12163 emitted by gfortran at least as recently as:
12164 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12165 complaint (&symfile_complaints,
12166 _("Variable in common block has "
12167 "DW_AT_data_member_location "
12168 "- DIE at 0x%x [in module %s]"),
12169 child_die->offset.sect_off, cu->objfile->name);
12170
12171 if (attr_form_is_section_offset (member_loc))
12172 dwarf2_complex_location_expr_complaint ();
12173 else if (attr_form_is_constant (member_loc)
12174 || attr_form_is_block (member_loc))
12175 {
12176 if (attr)
12177 mark_common_block_symbol_computed (sym, die, attr,
12178 member_loc, cu);
12179 }
12180 else
12181 dwarf2_complex_location_expr_complaint ();
12182 }
12183 }
12184 }
12185
12186 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12187 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12188 }
12189 }
12190
12191 /* Create a type for a C++ namespace. */
12192
12193 static struct type *
12194 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12195 {
12196 struct objfile *objfile = cu->objfile;
12197 const char *previous_prefix, *name;
12198 int is_anonymous;
12199 struct type *type;
12200
12201 /* For extensions, reuse the type of the original namespace. */
12202 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12203 {
12204 struct die_info *ext_die;
12205 struct dwarf2_cu *ext_cu = cu;
12206
12207 ext_die = dwarf2_extension (die, &ext_cu);
12208 type = read_type_die (ext_die, ext_cu);
12209
12210 /* EXT_CU may not be the same as CU.
12211 Ensure TYPE is recorded with CU in die_type_hash. */
12212 return set_die_type (die, type, cu);
12213 }
12214
12215 name = namespace_name (die, &is_anonymous, cu);
12216
12217 /* Now build the name of the current namespace. */
12218
12219 previous_prefix = determine_prefix (die, cu);
12220 if (previous_prefix[0] != '\0')
12221 name = typename_concat (&objfile->objfile_obstack,
12222 previous_prefix, name, 0, cu);
12223
12224 /* Create the type. */
12225 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12226 objfile);
12227 TYPE_NAME (type) = name;
12228 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12229
12230 return set_die_type (die, type, cu);
12231 }
12232
12233 /* Read a C++ namespace. */
12234
12235 static void
12236 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12237 {
12238 struct objfile *objfile = cu->objfile;
12239 int is_anonymous;
12240
12241 /* Add a symbol associated to this if we haven't seen the namespace
12242 before. Also, add a using directive if it's an anonymous
12243 namespace. */
12244
12245 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12246 {
12247 struct type *type;
12248
12249 type = read_type_die (die, cu);
12250 new_symbol (die, type, cu);
12251
12252 namespace_name (die, &is_anonymous, cu);
12253 if (is_anonymous)
12254 {
12255 const char *previous_prefix = determine_prefix (die, cu);
12256
12257 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12258 NULL, NULL, 0, &objfile->objfile_obstack);
12259 }
12260 }
12261
12262 if (die->child != NULL)
12263 {
12264 struct die_info *child_die = die->child;
12265
12266 while (child_die && child_die->tag)
12267 {
12268 process_die (child_die, cu);
12269 child_die = sibling_die (child_die);
12270 }
12271 }
12272 }
12273
12274 /* Read a Fortran module as type. This DIE can be only a declaration used for
12275 imported module. Still we need that type as local Fortran "use ... only"
12276 declaration imports depend on the created type in determine_prefix. */
12277
12278 static struct type *
12279 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12280 {
12281 struct objfile *objfile = cu->objfile;
12282 const char *module_name;
12283 struct type *type;
12284
12285 module_name = dwarf2_name (die, cu);
12286 if (!module_name)
12287 complaint (&symfile_complaints,
12288 _("DW_TAG_module has no name, offset 0x%x"),
12289 die->offset.sect_off);
12290 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12291
12292 /* determine_prefix uses TYPE_TAG_NAME. */
12293 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12294
12295 return set_die_type (die, type, cu);
12296 }
12297
12298 /* Read a Fortran module. */
12299
12300 static void
12301 read_module (struct die_info *die, struct dwarf2_cu *cu)
12302 {
12303 struct die_info *child_die = die->child;
12304
12305 while (child_die && child_die->tag)
12306 {
12307 process_die (child_die, cu);
12308 child_die = sibling_die (child_die);
12309 }
12310 }
12311
12312 /* Return the name of the namespace represented by DIE. Set
12313 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12314 namespace. */
12315
12316 static const char *
12317 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12318 {
12319 struct die_info *current_die;
12320 const char *name = NULL;
12321
12322 /* Loop through the extensions until we find a name. */
12323
12324 for (current_die = die;
12325 current_die != NULL;
12326 current_die = dwarf2_extension (die, &cu))
12327 {
12328 name = dwarf2_name (current_die, cu);
12329 if (name != NULL)
12330 break;
12331 }
12332
12333 /* Is it an anonymous namespace? */
12334
12335 *is_anonymous = (name == NULL);
12336 if (*is_anonymous)
12337 name = CP_ANONYMOUS_NAMESPACE_STR;
12338
12339 return name;
12340 }
12341
12342 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12343 the user defined type vector. */
12344
12345 static struct type *
12346 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12347 {
12348 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12349 struct comp_unit_head *cu_header = &cu->header;
12350 struct type *type;
12351 struct attribute *attr_byte_size;
12352 struct attribute *attr_address_class;
12353 int byte_size, addr_class;
12354 struct type *target_type;
12355
12356 target_type = die_type (die, cu);
12357
12358 /* The die_type call above may have already set the type for this DIE. */
12359 type = get_die_type (die, cu);
12360 if (type)
12361 return type;
12362
12363 type = lookup_pointer_type (target_type);
12364
12365 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12366 if (attr_byte_size)
12367 byte_size = DW_UNSND (attr_byte_size);
12368 else
12369 byte_size = cu_header->addr_size;
12370
12371 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12372 if (attr_address_class)
12373 addr_class = DW_UNSND (attr_address_class);
12374 else
12375 addr_class = DW_ADDR_none;
12376
12377 /* If the pointer size or address class is different than the
12378 default, create a type variant marked as such and set the
12379 length accordingly. */
12380 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12381 {
12382 if (gdbarch_address_class_type_flags_p (gdbarch))
12383 {
12384 int type_flags;
12385
12386 type_flags = gdbarch_address_class_type_flags
12387 (gdbarch, byte_size, addr_class);
12388 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12389 == 0);
12390 type = make_type_with_address_space (type, type_flags);
12391 }
12392 else if (TYPE_LENGTH (type) != byte_size)
12393 {
12394 complaint (&symfile_complaints,
12395 _("invalid pointer size %d"), byte_size);
12396 }
12397 else
12398 {
12399 /* Should we also complain about unhandled address classes? */
12400 }
12401 }
12402
12403 TYPE_LENGTH (type) = byte_size;
12404 return set_die_type (die, type, cu);
12405 }
12406
12407 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12408 the user defined type vector. */
12409
12410 static struct type *
12411 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12412 {
12413 struct type *type;
12414 struct type *to_type;
12415 struct type *domain;
12416
12417 to_type = die_type (die, cu);
12418 domain = die_containing_type (die, cu);
12419
12420 /* The calls above may have already set the type for this DIE. */
12421 type = get_die_type (die, cu);
12422 if (type)
12423 return type;
12424
12425 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12426 type = lookup_methodptr_type (to_type);
12427 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12428 {
12429 struct type *new_type = alloc_type (cu->objfile);
12430
12431 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12432 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12433 TYPE_VARARGS (to_type));
12434 type = lookup_methodptr_type (new_type);
12435 }
12436 else
12437 type = lookup_memberptr_type (to_type, domain);
12438
12439 return set_die_type (die, type, cu);
12440 }
12441
12442 /* Extract all information from a DW_TAG_reference_type DIE and add to
12443 the user defined type vector. */
12444
12445 static struct type *
12446 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12447 {
12448 struct comp_unit_head *cu_header = &cu->header;
12449 struct type *type, *target_type;
12450 struct attribute *attr;
12451
12452 target_type = die_type (die, cu);
12453
12454 /* The die_type call above may have already set the type for this DIE. */
12455 type = get_die_type (die, cu);
12456 if (type)
12457 return type;
12458
12459 type = lookup_reference_type (target_type);
12460 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12461 if (attr)
12462 {
12463 TYPE_LENGTH (type) = DW_UNSND (attr);
12464 }
12465 else
12466 {
12467 TYPE_LENGTH (type) = cu_header->addr_size;
12468 }
12469 return set_die_type (die, type, cu);
12470 }
12471
12472 static struct type *
12473 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12474 {
12475 struct type *base_type, *cv_type;
12476
12477 base_type = die_type (die, cu);
12478
12479 /* The die_type call above may have already set the type for this DIE. */
12480 cv_type = get_die_type (die, cu);
12481 if (cv_type)
12482 return cv_type;
12483
12484 /* In case the const qualifier is applied to an array type, the element type
12485 is so qualified, not the array type (section 6.7.3 of C99). */
12486 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12487 {
12488 struct type *el_type, *inner_array;
12489
12490 base_type = copy_type (base_type);
12491 inner_array = base_type;
12492
12493 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12494 {
12495 TYPE_TARGET_TYPE (inner_array) =
12496 copy_type (TYPE_TARGET_TYPE (inner_array));
12497 inner_array = TYPE_TARGET_TYPE (inner_array);
12498 }
12499
12500 el_type = TYPE_TARGET_TYPE (inner_array);
12501 TYPE_TARGET_TYPE (inner_array) =
12502 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12503
12504 return set_die_type (die, base_type, cu);
12505 }
12506
12507 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12508 return set_die_type (die, cv_type, cu);
12509 }
12510
12511 static struct type *
12512 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12513 {
12514 struct type *base_type, *cv_type;
12515
12516 base_type = die_type (die, cu);
12517
12518 /* The die_type call above may have already set the type for this DIE. */
12519 cv_type = get_die_type (die, cu);
12520 if (cv_type)
12521 return cv_type;
12522
12523 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12524 return set_die_type (die, cv_type, cu);
12525 }
12526
12527 /* Handle DW_TAG_restrict_type. */
12528
12529 static struct type *
12530 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12531 {
12532 struct type *base_type, *cv_type;
12533
12534 base_type = die_type (die, cu);
12535
12536 /* The die_type call above may have already set the type for this DIE. */
12537 cv_type = get_die_type (die, cu);
12538 if (cv_type)
12539 return cv_type;
12540
12541 cv_type = make_restrict_type (base_type);
12542 return set_die_type (die, cv_type, cu);
12543 }
12544
12545 /* Extract all information from a DW_TAG_string_type DIE and add to
12546 the user defined type vector. It isn't really a user defined type,
12547 but it behaves like one, with other DIE's using an AT_user_def_type
12548 attribute to reference it. */
12549
12550 static struct type *
12551 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12552 {
12553 struct objfile *objfile = cu->objfile;
12554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12555 struct type *type, *range_type, *index_type, *char_type;
12556 struct attribute *attr;
12557 unsigned int length;
12558
12559 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12560 if (attr)
12561 {
12562 length = DW_UNSND (attr);
12563 }
12564 else
12565 {
12566 /* Check for the DW_AT_byte_size attribute. */
12567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12568 if (attr)
12569 {
12570 length = DW_UNSND (attr);
12571 }
12572 else
12573 {
12574 length = 1;
12575 }
12576 }
12577
12578 index_type = objfile_type (objfile)->builtin_int;
12579 range_type = create_range_type (NULL, index_type, 1, length);
12580 char_type = language_string_char_type (cu->language_defn, gdbarch);
12581 type = create_string_type (NULL, char_type, range_type);
12582
12583 return set_die_type (die, type, cu);
12584 }
12585
12586 /* Handle DIES due to C code like:
12587
12588 struct foo
12589 {
12590 int (*funcp)(int a, long l);
12591 int b;
12592 };
12593
12594 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12595
12596 static struct type *
12597 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12598 {
12599 struct objfile *objfile = cu->objfile;
12600 struct type *type; /* Type that this function returns. */
12601 struct type *ftype; /* Function that returns above type. */
12602 struct attribute *attr;
12603
12604 type = die_type (die, cu);
12605
12606 /* The die_type call above may have already set the type for this DIE. */
12607 ftype = get_die_type (die, cu);
12608 if (ftype)
12609 return ftype;
12610
12611 ftype = lookup_function_type (type);
12612
12613 /* All functions in C++, Pascal and Java have prototypes. */
12614 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12615 if ((attr && (DW_UNSND (attr) != 0))
12616 || cu->language == language_cplus
12617 || cu->language == language_java
12618 || cu->language == language_pascal)
12619 TYPE_PROTOTYPED (ftype) = 1;
12620 else if (producer_is_realview (cu->producer))
12621 /* RealView does not emit DW_AT_prototyped. We can not
12622 distinguish prototyped and unprototyped functions; default to
12623 prototyped, since that is more common in modern code (and
12624 RealView warns about unprototyped functions). */
12625 TYPE_PROTOTYPED (ftype) = 1;
12626
12627 /* Store the calling convention in the type if it's available in
12628 the subroutine die. Otherwise set the calling convention to
12629 the default value DW_CC_normal. */
12630 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12631 if (attr)
12632 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12633 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12634 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12635 else
12636 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12637
12638 /* We need to add the subroutine type to the die immediately so
12639 we don't infinitely recurse when dealing with parameters
12640 declared as the same subroutine type. */
12641 set_die_type (die, ftype, cu);
12642
12643 if (die->child != NULL)
12644 {
12645 struct type *void_type = objfile_type (objfile)->builtin_void;
12646 struct die_info *child_die;
12647 int nparams, iparams;
12648
12649 /* Count the number of parameters.
12650 FIXME: GDB currently ignores vararg functions, but knows about
12651 vararg member functions. */
12652 nparams = 0;
12653 child_die = die->child;
12654 while (child_die && child_die->tag)
12655 {
12656 if (child_die->tag == DW_TAG_formal_parameter)
12657 nparams++;
12658 else if (child_die->tag == DW_TAG_unspecified_parameters)
12659 TYPE_VARARGS (ftype) = 1;
12660 child_die = sibling_die (child_die);
12661 }
12662
12663 /* Allocate storage for parameters and fill them in. */
12664 TYPE_NFIELDS (ftype) = nparams;
12665 TYPE_FIELDS (ftype) = (struct field *)
12666 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12667
12668 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12669 even if we error out during the parameters reading below. */
12670 for (iparams = 0; iparams < nparams; iparams++)
12671 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12672
12673 iparams = 0;
12674 child_die = die->child;
12675 while (child_die && child_die->tag)
12676 {
12677 if (child_die->tag == DW_TAG_formal_parameter)
12678 {
12679 struct type *arg_type;
12680
12681 /* DWARF version 2 has no clean way to discern C++
12682 static and non-static member functions. G++ helps
12683 GDB by marking the first parameter for non-static
12684 member functions (which is the this pointer) as
12685 artificial. We pass this information to
12686 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12687
12688 DWARF version 3 added DW_AT_object_pointer, which GCC
12689 4.5 does not yet generate. */
12690 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12691 if (attr)
12692 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12693 else
12694 {
12695 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12696
12697 /* GCC/43521: In java, the formal parameter
12698 "this" is sometimes not marked with DW_AT_artificial. */
12699 if (cu->language == language_java)
12700 {
12701 const char *name = dwarf2_name (child_die, cu);
12702
12703 if (name && !strcmp (name, "this"))
12704 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12705 }
12706 }
12707 arg_type = die_type (child_die, cu);
12708
12709 /* RealView does not mark THIS as const, which the testsuite
12710 expects. GCC marks THIS as const in method definitions,
12711 but not in the class specifications (GCC PR 43053). */
12712 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12713 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12714 {
12715 int is_this = 0;
12716 struct dwarf2_cu *arg_cu = cu;
12717 const char *name = dwarf2_name (child_die, cu);
12718
12719 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12720 if (attr)
12721 {
12722 /* If the compiler emits this, use it. */
12723 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12724 is_this = 1;
12725 }
12726 else if (name && strcmp (name, "this") == 0)
12727 /* Function definitions will have the argument names. */
12728 is_this = 1;
12729 else if (name == NULL && iparams == 0)
12730 /* Declarations may not have the names, so like
12731 elsewhere in GDB, assume an artificial first
12732 argument is "this". */
12733 is_this = 1;
12734
12735 if (is_this)
12736 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12737 arg_type, 0);
12738 }
12739
12740 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12741 iparams++;
12742 }
12743 child_die = sibling_die (child_die);
12744 }
12745 }
12746
12747 return ftype;
12748 }
12749
12750 static struct type *
12751 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12752 {
12753 struct objfile *objfile = cu->objfile;
12754 const char *name = NULL;
12755 struct type *this_type, *target_type;
12756
12757 name = dwarf2_full_name (NULL, die, cu);
12758 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12759 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12760 TYPE_NAME (this_type) = name;
12761 set_die_type (die, this_type, cu);
12762 target_type = die_type (die, cu);
12763 if (target_type != this_type)
12764 TYPE_TARGET_TYPE (this_type) = target_type;
12765 else
12766 {
12767 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12768 spec and cause infinite loops in GDB. */
12769 complaint (&symfile_complaints,
12770 _("Self-referential DW_TAG_typedef "
12771 "- DIE at 0x%x [in module %s]"),
12772 die->offset.sect_off, objfile->name);
12773 TYPE_TARGET_TYPE (this_type) = NULL;
12774 }
12775 return this_type;
12776 }
12777
12778 /* Find a representation of a given base type and install
12779 it in the TYPE field of the die. */
12780
12781 static struct type *
12782 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12783 {
12784 struct objfile *objfile = cu->objfile;
12785 struct type *type;
12786 struct attribute *attr;
12787 int encoding = 0, size = 0;
12788 const char *name;
12789 enum type_code code = TYPE_CODE_INT;
12790 int type_flags = 0;
12791 struct type *target_type = NULL;
12792
12793 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12794 if (attr)
12795 {
12796 encoding = DW_UNSND (attr);
12797 }
12798 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12799 if (attr)
12800 {
12801 size = DW_UNSND (attr);
12802 }
12803 name = dwarf2_name (die, cu);
12804 if (!name)
12805 {
12806 complaint (&symfile_complaints,
12807 _("DW_AT_name missing from DW_TAG_base_type"));
12808 }
12809
12810 switch (encoding)
12811 {
12812 case DW_ATE_address:
12813 /* Turn DW_ATE_address into a void * pointer. */
12814 code = TYPE_CODE_PTR;
12815 type_flags |= TYPE_FLAG_UNSIGNED;
12816 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12817 break;
12818 case DW_ATE_boolean:
12819 code = TYPE_CODE_BOOL;
12820 type_flags |= TYPE_FLAG_UNSIGNED;
12821 break;
12822 case DW_ATE_complex_float:
12823 code = TYPE_CODE_COMPLEX;
12824 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12825 break;
12826 case DW_ATE_decimal_float:
12827 code = TYPE_CODE_DECFLOAT;
12828 break;
12829 case DW_ATE_float:
12830 code = TYPE_CODE_FLT;
12831 break;
12832 case DW_ATE_signed:
12833 break;
12834 case DW_ATE_unsigned:
12835 type_flags |= TYPE_FLAG_UNSIGNED;
12836 if (cu->language == language_fortran
12837 && name
12838 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12839 code = TYPE_CODE_CHAR;
12840 break;
12841 case DW_ATE_signed_char:
12842 if (cu->language == language_ada || cu->language == language_m2
12843 || cu->language == language_pascal
12844 || cu->language == language_fortran)
12845 code = TYPE_CODE_CHAR;
12846 break;
12847 case DW_ATE_unsigned_char:
12848 if (cu->language == language_ada || cu->language == language_m2
12849 || cu->language == language_pascal
12850 || cu->language == language_fortran)
12851 code = TYPE_CODE_CHAR;
12852 type_flags |= TYPE_FLAG_UNSIGNED;
12853 break;
12854 case DW_ATE_UTF:
12855 /* We just treat this as an integer and then recognize the
12856 type by name elsewhere. */
12857 break;
12858
12859 default:
12860 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12861 dwarf_type_encoding_name (encoding));
12862 break;
12863 }
12864
12865 type = init_type (code, size, type_flags, NULL, objfile);
12866 TYPE_NAME (type) = name;
12867 TYPE_TARGET_TYPE (type) = target_type;
12868
12869 if (name && strcmp (name, "char") == 0)
12870 TYPE_NOSIGN (type) = 1;
12871
12872 return set_die_type (die, type, cu);
12873 }
12874
12875 /* Read the given DW_AT_subrange DIE. */
12876
12877 static struct type *
12878 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12879 {
12880 struct type *base_type, *orig_base_type;
12881 struct type *range_type;
12882 struct attribute *attr;
12883 LONGEST low, high;
12884 int low_default_is_valid;
12885 const char *name;
12886 LONGEST negative_mask;
12887
12888 orig_base_type = die_type (die, cu);
12889 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12890 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12891 creating the range type, but we use the result of check_typedef
12892 when examining properties of the type. */
12893 base_type = check_typedef (orig_base_type);
12894
12895 /* The die_type call above may have already set the type for this DIE. */
12896 range_type = get_die_type (die, cu);
12897 if (range_type)
12898 return range_type;
12899
12900 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12901 omitting DW_AT_lower_bound. */
12902 switch (cu->language)
12903 {
12904 case language_c:
12905 case language_cplus:
12906 low = 0;
12907 low_default_is_valid = 1;
12908 break;
12909 case language_fortran:
12910 low = 1;
12911 low_default_is_valid = 1;
12912 break;
12913 case language_d:
12914 case language_java:
12915 case language_objc:
12916 low = 0;
12917 low_default_is_valid = (cu->header.version >= 4);
12918 break;
12919 case language_ada:
12920 case language_m2:
12921 case language_pascal:
12922 low = 1;
12923 low_default_is_valid = (cu->header.version >= 4);
12924 break;
12925 default:
12926 low = 0;
12927 low_default_is_valid = 0;
12928 break;
12929 }
12930
12931 /* FIXME: For variable sized arrays either of these could be
12932 a variable rather than a constant value. We'll allow it,
12933 but we don't know how to handle it. */
12934 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12935 if (attr)
12936 low = dwarf2_get_attr_constant_value (attr, low);
12937 else if (!low_default_is_valid)
12938 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12939 "- DIE at 0x%x [in module %s]"),
12940 die->offset.sect_off, cu->objfile->name);
12941
12942 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12943 if (attr)
12944 {
12945 if (attr_form_is_block (attr) || is_ref_attr (attr))
12946 {
12947 /* GCC encodes arrays with unspecified or dynamic length
12948 with a DW_FORM_block1 attribute or a reference attribute.
12949 FIXME: GDB does not yet know how to handle dynamic
12950 arrays properly, treat them as arrays with unspecified
12951 length for now.
12952
12953 FIXME: jimb/2003-09-22: GDB does not really know
12954 how to handle arrays of unspecified length
12955 either; we just represent them as zero-length
12956 arrays. Choose an appropriate upper bound given
12957 the lower bound we've computed above. */
12958 high = low - 1;
12959 }
12960 else
12961 high = dwarf2_get_attr_constant_value (attr, 1);
12962 }
12963 else
12964 {
12965 attr = dwarf2_attr (die, DW_AT_count, cu);
12966 if (attr)
12967 {
12968 int count = dwarf2_get_attr_constant_value (attr, 1);
12969 high = low + count - 1;
12970 }
12971 else
12972 {
12973 /* Unspecified array length. */
12974 high = low - 1;
12975 }
12976 }
12977
12978 /* Dwarf-2 specifications explicitly allows to create subrange types
12979 without specifying a base type.
12980 In that case, the base type must be set to the type of
12981 the lower bound, upper bound or count, in that order, if any of these
12982 three attributes references an object that has a type.
12983 If no base type is found, the Dwarf-2 specifications say that
12984 a signed integer type of size equal to the size of an address should
12985 be used.
12986 For the following C code: `extern char gdb_int [];'
12987 GCC produces an empty range DIE.
12988 FIXME: muller/2010-05-28: Possible references to object for low bound,
12989 high bound or count are not yet handled by this code. */
12990 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12991 {
12992 struct objfile *objfile = cu->objfile;
12993 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12994 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12995 struct type *int_type = objfile_type (objfile)->builtin_int;
12996
12997 /* Test "int", "long int", and "long long int" objfile types,
12998 and select the first one having a size above or equal to the
12999 architecture address size. */
13000 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13001 base_type = int_type;
13002 else
13003 {
13004 int_type = objfile_type (objfile)->builtin_long;
13005 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13006 base_type = int_type;
13007 else
13008 {
13009 int_type = objfile_type (objfile)->builtin_long_long;
13010 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13011 base_type = int_type;
13012 }
13013 }
13014 }
13015
13016 negative_mask =
13017 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13018 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13019 low |= negative_mask;
13020 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13021 high |= negative_mask;
13022
13023 range_type = create_range_type (NULL, orig_base_type, low, high);
13024
13025 /* Mark arrays with dynamic length at least as an array of unspecified
13026 length. GDB could check the boundary but before it gets implemented at
13027 least allow accessing the array elements. */
13028 if (attr && attr_form_is_block (attr))
13029 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13030
13031 /* Ada expects an empty array on no boundary attributes. */
13032 if (attr == NULL && cu->language != language_ada)
13033 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13034
13035 name = dwarf2_name (die, cu);
13036 if (name)
13037 TYPE_NAME (range_type) = name;
13038
13039 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13040 if (attr)
13041 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13042
13043 set_die_type (die, range_type, cu);
13044
13045 /* set_die_type should be already done. */
13046 set_descriptive_type (range_type, die, cu);
13047
13048 return range_type;
13049 }
13050
13051 static struct type *
13052 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13053 {
13054 struct type *type;
13055
13056 /* For now, we only support the C meaning of an unspecified type: void. */
13057
13058 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13059 TYPE_NAME (type) = dwarf2_name (die, cu);
13060
13061 return set_die_type (die, type, cu);
13062 }
13063
13064 /* Read a single die and all its descendents. Set the die's sibling
13065 field to NULL; set other fields in the die correctly, and set all
13066 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13067 location of the info_ptr after reading all of those dies. PARENT
13068 is the parent of the die in question. */
13069
13070 static struct die_info *
13071 read_die_and_children (const struct die_reader_specs *reader,
13072 const gdb_byte *info_ptr,
13073 const gdb_byte **new_info_ptr,
13074 struct die_info *parent)
13075 {
13076 struct die_info *die;
13077 const gdb_byte *cur_ptr;
13078 int has_children;
13079
13080 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13081 if (die == NULL)
13082 {
13083 *new_info_ptr = cur_ptr;
13084 return NULL;
13085 }
13086 store_in_ref_table (die, reader->cu);
13087
13088 if (has_children)
13089 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13090 else
13091 {
13092 die->child = NULL;
13093 *new_info_ptr = cur_ptr;
13094 }
13095
13096 die->sibling = NULL;
13097 die->parent = parent;
13098 return die;
13099 }
13100
13101 /* Read a die, all of its descendents, and all of its siblings; set
13102 all of the fields of all of the dies correctly. Arguments are as
13103 in read_die_and_children. */
13104
13105 static struct die_info *
13106 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13107 const gdb_byte *info_ptr,
13108 const gdb_byte **new_info_ptr,
13109 struct die_info *parent)
13110 {
13111 struct die_info *first_die, *last_sibling;
13112 const gdb_byte *cur_ptr;
13113
13114 cur_ptr = info_ptr;
13115 first_die = last_sibling = NULL;
13116
13117 while (1)
13118 {
13119 struct die_info *die
13120 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13121
13122 if (die == NULL)
13123 {
13124 *new_info_ptr = cur_ptr;
13125 return first_die;
13126 }
13127
13128 if (!first_die)
13129 first_die = die;
13130 else
13131 last_sibling->sibling = die;
13132
13133 last_sibling = die;
13134 }
13135 }
13136
13137 /* Read a die, all of its descendents, and all of its siblings; set
13138 all of the fields of all of the dies correctly. Arguments are as
13139 in read_die_and_children.
13140 This the main entry point for reading a DIE and all its children. */
13141
13142 static struct die_info *
13143 read_die_and_siblings (const struct die_reader_specs *reader,
13144 const gdb_byte *info_ptr,
13145 const gdb_byte **new_info_ptr,
13146 struct die_info *parent)
13147 {
13148 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13149 new_info_ptr, parent);
13150
13151 if (dwarf2_die_debug)
13152 {
13153 fprintf_unfiltered (gdb_stdlog,
13154 "Read die from %s@0x%x of %s:\n",
13155 bfd_section_name (reader->abfd,
13156 reader->die_section->asection),
13157 (unsigned) (info_ptr - reader->die_section->buffer),
13158 bfd_get_filename (reader->abfd));
13159 dump_die (die, dwarf2_die_debug);
13160 }
13161
13162 return die;
13163 }
13164
13165 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13166 attributes.
13167 The caller is responsible for filling in the extra attributes
13168 and updating (*DIEP)->num_attrs.
13169 Set DIEP to point to a newly allocated die with its information,
13170 except for its child, sibling, and parent fields.
13171 Set HAS_CHILDREN to tell whether the die has children or not. */
13172
13173 static const gdb_byte *
13174 read_full_die_1 (const struct die_reader_specs *reader,
13175 struct die_info **diep, const gdb_byte *info_ptr,
13176 int *has_children, int num_extra_attrs)
13177 {
13178 unsigned int abbrev_number, bytes_read, i;
13179 sect_offset offset;
13180 struct abbrev_info *abbrev;
13181 struct die_info *die;
13182 struct dwarf2_cu *cu = reader->cu;
13183 bfd *abfd = reader->abfd;
13184
13185 offset.sect_off = info_ptr - reader->buffer;
13186 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13187 info_ptr += bytes_read;
13188 if (!abbrev_number)
13189 {
13190 *diep = NULL;
13191 *has_children = 0;
13192 return info_ptr;
13193 }
13194
13195 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13196 if (!abbrev)
13197 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13198 abbrev_number,
13199 bfd_get_filename (abfd));
13200
13201 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13202 die->offset = offset;
13203 die->tag = abbrev->tag;
13204 die->abbrev = abbrev_number;
13205
13206 /* Make the result usable.
13207 The caller needs to update num_attrs after adding the extra
13208 attributes. */
13209 die->num_attrs = abbrev->num_attrs;
13210
13211 for (i = 0; i < abbrev->num_attrs; ++i)
13212 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13213 info_ptr);
13214
13215 *diep = die;
13216 *has_children = abbrev->has_children;
13217 return info_ptr;
13218 }
13219
13220 /* Read a die and all its attributes.
13221 Set DIEP to point to a newly allocated die with its information,
13222 except for its child, sibling, and parent fields.
13223 Set HAS_CHILDREN to tell whether the die has children or not. */
13224
13225 static const gdb_byte *
13226 read_full_die (const struct die_reader_specs *reader,
13227 struct die_info **diep, const gdb_byte *info_ptr,
13228 int *has_children)
13229 {
13230 const gdb_byte *result;
13231
13232 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13233
13234 if (dwarf2_die_debug)
13235 {
13236 fprintf_unfiltered (gdb_stdlog,
13237 "Read die from %s@0x%x of %s:\n",
13238 bfd_section_name (reader->abfd,
13239 reader->die_section->asection),
13240 (unsigned) (info_ptr - reader->die_section->buffer),
13241 bfd_get_filename (reader->abfd));
13242 dump_die (*diep, dwarf2_die_debug);
13243 }
13244
13245 return result;
13246 }
13247 \f
13248 /* Abbreviation tables.
13249
13250 In DWARF version 2, the description of the debugging information is
13251 stored in a separate .debug_abbrev section. Before we read any
13252 dies from a section we read in all abbreviations and install them
13253 in a hash table. */
13254
13255 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13256
13257 static struct abbrev_info *
13258 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13259 {
13260 struct abbrev_info *abbrev;
13261
13262 abbrev = (struct abbrev_info *)
13263 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13264 memset (abbrev, 0, sizeof (struct abbrev_info));
13265 return abbrev;
13266 }
13267
13268 /* Add an abbreviation to the table. */
13269
13270 static void
13271 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13272 unsigned int abbrev_number,
13273 struct abbrev_info *abbrev)
13274 {
13275 unsigned int hash_number;
13276
13277 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13278 abbrev->next = abbrev_table->abbrevs[hash_number];
13279 abbrev_table->abbrevs[hash_number] = abbrev;
13280 }
13281
13282 /* Look up an abbrev in the table.
13283 Returns NULL if the abbrev is not found. */
13284
13285 static struct abbrev_info *
13286 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13287 unsigned int abbrev_number)
13288 {
13289 unsigned int hash_number;
13290 struct abbrev_info *abbrev;
13291
13292 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13293 abbrev = abbrev_table->abbrevs[hash_number];
13294
13295 while (abbrev)
13296 {
13297 if (abbrev->number == abbrev_number)
13298 return abbrev;
13299 abbrev = abbrev->next;
13300 }
13301 return NULL;
13302 }
13303
13304 /* Read in an abbrev table. */
13305
13306 static struct abbrev_table *
13307 abbrev_table_read_table (struct dwarf2_section_info *section,
13308 sect_offset offset)
13309 {
13310 struct objfile *objfile = dwarf2_per_objfile->objfile;
13311 bfd *abfd = section->asection->owner;
13312 struct abbrev_table *abbrev_table;
13313 const gdb_byte *abbrev_ptr;
13314 struct abbrev_info *cur_abbrev;
13315 unsigned int abbrev_number, bytes_read, abbrev_name;
13316 unsigned int abbrev_form;
13317 struct attr_abbrev *cur_attrs;
13318 unsigned int allocated_attrs;
13319
13320 abbrev_table = XMALLOC (struct abbrev_table);
13321 abbrev_table->offset = offset;
13322 obstack_init (&abbrev_table->abbrev_obstack);
13323 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13324 (ABBREV_HASH_SIZE
13325 * sizeof (struct abbrev_info *)));
13326 memset (abbrev_table->abbrevs, 0,
13327 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13328
13329 dwarf2_read_section (objfile, section);
13330 abbrev_ptr = section->buffer + offset.sect_off;
13331 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13332 abbrev_ptr += bytes_read;
13333
13334 allocated_attrs = ATTR_ALLOC_CHUNK;
13335 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13336
13337 /* Loop until we reach an abbrev number of 0. */
13338 while (abbrev_number)
13339 {
13340 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13341
13342 /* read in abbrev header */
13343 cur_abbrev->number = abbrev_number;
13344 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13345 abbrev_ptr += bytes_read;
13346 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13347 abbrev_ptr += 1;
13348
13349 /* now read in declarations */
13350 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13351 abbrev_ptr += bytes_read;
13352 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13353 abbrev_ptr += bytes_read;
13354 while (abbrev_name)
13355 {
13356 if (cur_abbrev->num_attrs == allocated_attrs)
13357 {
13358 allocated_attrs += ATTR_ALLOC_CHUNK;
13359 cur_attrs
13360 = xrealloc (cur_attrs, (allocated_attrs
13361 * sizeof (struct attr_abbrev)));
13362 }
13363
13364 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13365 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13366 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13367 abbrev_ptr += bytes_read;
13368 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13369 abbrev_ptr += bytes_read;
13370 }
13371
13372 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13373 (cur_abbrev->num_attrs
13374 * sizeof (struct attr_abbrev)));
13375 memcpy (cur_abbrev->attrs, cur_attrs,
13376 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13377
13378 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13379
13380 /* Get next abbreviation.
13381 Under Irix6 the abbreviations for a compilation unit are not
13382 always properly terminated with an abbrev number of 0.
13383 Exit loop if we encounter an abbreviation which we have
13384 already read (which means we are about to read the abbreviations
13385 for the next compile unit) or if the end of the abbreviation
13386 table is reached. */
13387 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13388 break;
13389 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13390 abbrev_ptr += bytes_read;
13391 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13392 break;
13393 }
13394
13395 xfree (cur_attrs);
13396 return abbrev_table;
13397 }
13398
13399 /* Free the resources held by ABBREV_TABLE. */
13400
13401 static void
13402 abbrev_table_free (struct abbrev_table *abbrev_table)
13403 {
13404 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13405 xfree (abbrev_table);
13406 }
13407
13408 /* Same as abbrev_table_free but as a cleanup.
13409 We pass in a pointer to the pointer to the table so that we can
13410 set the pointer to NULL when we're done. It also simplifies
13411 build_type_unit_groups. */
13412
13413 static void
13414 abbrev_table_free_cleanup (void *table_ptr)
13415 {
13416 struct abbrev_table **abbrev_table_ptr = table_ptr;
13417
13418 if (*abbrev_table_ptr != NULL)
13419 abbrev_table_free (*abbrev_table_ptr);
13420 *abbrev_table_ptr = NULL;
13421 }
13422
13423 /* Read the abbrev table for CU from ABBREV_SECTION. */
13424
13425 static void
13426 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13427 struct dwarf2_section_info *abbrev_section)
13428 {
13429 cu->abbrev_table =
13430 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13431 }
13432
13433 /* Release the memory used by the abbrev table for a compilation unit. */
13434
13435 static void
13436 dwarf2_free_abbrev_table (void *ptr_to_cu)
13437 {
13438 struct dwarf2_cu *cu = ptr_to_cu;
13439
13440 abbrev_table_free (cu->abbrev_table);
13441 /* Set this to NULL so that we SEGV if we try to read it later,
13442 and also because free_comp_unit verifies this is NULL. */
13443 cu->abbrev_table = NULL;
13444 }
13445 \f
13446 /* Returns nonzero if TAG represents a type that we might generate a partial
13447 symbol for. */
13448
13449 static int
13450 is_type_tag_for_partial (int tag)
13451 {
13452 switch (tag)
13453 {
13454 #if 0
13455 /* Some types that would be reasonable to generate partial symbols for,
13456 that we don't at present. */
13457 case DW_TAG_array_type:
13458 case DW_TAG_file_type:
13459 case DW_TAG_ptr_to_member_type:
13460 case DW_TAG_set_type:
13461 case DW_TAG_string_type:
13462 case DW_TAG_subroutine_type:
13463 #endif
13464 case DW_TAG_base_type:
13465 case DW_TAG_class_type:
13466 case DW_TAG_interface_type:
13467 case DW_TAG_enumeration_type:
13468 case DW_TAG_structure_type:
13469 case DW_TAG_subrange_type:
13470 case DW_TAG_typedef:
13471 case DW_TAG_union_type:
13472 return 1;
13473 default:
13474 return 0;
13475 }
13476 }
13477
13478 /* Load all DIEs that are interesting for partial symbols into memory. */
13479
13480 static struct partial_die_info *
13481 load_partial_dies (const struct die_reader_specs *reader,
13482 const gdb_byte *info_ptr, int building_psymtab)
13483 {
13484 struct dwarf2_cu *cu = reader->cu;
13485 struct objfile *objfile = cu->objfile;
13486 struct partial_die_info *part_die;
13487 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13488 struct abbrev_info *abbrev;
13489 unsigned int bytes_read;
13490 unsigned int load_all = 0;
13491 int nesting_level = 1;
13492
13493 parent_die = NULL;
13494 last_die = NULL;
13495
13496 gdb_assert (cu->per_cu != NULL);
13497 if (cu->per_cu->load_all_dies)
13498 load_all = 1;
13499
13500 cu->partial_dies
13501 = htab_create_alloc_ex (cu->header.length / 12,
13502 partial_die_hash,
13503 partial_die_eq,
13504 NULL,
13505 &cu->comp_unit_obstack,
13506 hashtab_obstack_allocate,
13507 dummy_obstack_deallocate);
13508
13509 part_die = obstack_alloc (&cu->comp_unit_obstack,
13510 sizeof (struct partial_die_info));
13511
13512 while (1)
13513 {
13514 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13515
13516 /* A NULL abbrev means the end of a series of children. */
13517 if (abbrev == NULL)
13518 {
13519 if (--nesting_level == 0)
13520 {
13521 /* PART_DIE was probably the last thing allocated on the
13522 comp_unit_obstack, so we could call obstack_free
13523 here. We don't do that because the waste is small,
13524 and will be cleaned up when we're done with this
13525 compilation unit. This way, we're also more robust
13526 against other users of the comp_unit_obstack. */
13527 return first_die;
13528 }
13529 info_ptr += bytes_read;
13530 last_die = parent_die;
13531 parent_die = parent_die->die_parent;
13532 continue;
13533 }
13534
13535 /* Check for template arguments. We never save these; if
13536 they're seen, we just mark the parent, and go on our way. */
13537 if (parent_die != NULL
13538 && cu->language == language_cplus
13539 && (abbrev->tag == DW_TAG_template_type_param
13540 || abbrev->tag == DW_TAG_template_value_param))
13541 {
13542 parent_die->has_template_arguments = 1;
13543
13544 if (!load_all)
13545 {
13546 /* We don't need a partial DIE for the template argument. */
13547 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13548 continue;
13549 }
13550 }
13551
13552 /* We only recurse into c++ subprograms looking for template arguments.
13553 Skip their other children. */
13554 if (!load_all
13555 && cu->language == language_cplus
13556 && parent_die != NULL
13557 && parent_die->tag == DW_TAG_subprogram)
13558 {
13559 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13560 continue;
13561 }
13562
13563 /* Check whether this DIE is interesting enough to save. Normally
13564 we would not be interested in members here, but there may be
13565 later variables referencing them via DW_AT_specification (for
13566 static members). */
13567 if (!load_all
13568 && !is_type_tag_for_partial (abbrev->tag)
13569 && abbrev->tag != DW_TAG_constant
13570 && abbrev->tag != DW_TAG_enumerator
13571 && abbrev->tag != DW_TAG_subprogram
13572 && abbrev->tag != DW_TAG_lexical_block
13573 && abbrev->tag != DW_TAG_variable
13574 && abbrev->tag != DW_TAG_namespace
13575 && abbrev->tag != DW_TAG_module
13576 && abbrev->tag != DW_TAG_member
13577 && abbrev->tag != DW_TAG_imported_unit)
13578 {
13579 /* Otherwise we skip to the next sibling, if any. */
13580 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13581 continue;
13582 }
13583
13584 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13585 info_ptr);
13586
13587 /* This two-pass algorithm for processing partial symbols has a
13588 high cost in cache pressure. Thus, handle some simple cases
13589 here which cover the majority of C partial symbols. DIEs
13590 which neither have specification tags in them, nor could have
13591 specification tags elsewhere pointing at them, can simply be
13592 processed and discarded.
13593
13594 This segment is also optional; scan_partial_symbols and
13595 add_partial_symbol will handle these DIEs if we chain
13596 them in normally. When compilers which do not emit large
13597 quantities of duplicate debug information are more common,
13598 this code can probably be removed. */
13599
13600 /* Any complete simple types at the top level (pretty much all
13601 of them, for a language without namespaces), can be processed
13602 directly. */
13603 if (parent_die == NULL
13604 && part_die->has_specification == 0
13605 && part_die->is_declaration == 0
13606 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13607 || part_die->tag == DW_TAG_base_type
13608 || part_die->tag == DW_TAG_subrange_type))
13609 {
13610 if (building_psymtab && part_die->name != NULL)
13611 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13612 VAR_DOMAIN, LOC_TYPEDEF,
13613 &objfile->static_psymbols,
13614 0, (CORE_ADDR) 0, cu->language, objfile);
13615 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13616 continue;
13617 }
13618
13619 /* The exception for DW_TAG_typedef with has_children above is
13620 a workaround of GCC PR debug/47510. In the case of this complaint
13621 type_name_no_tag_or_error will error on such types later.
13622
13623 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13624 it could not find the child DIEs referenced later, this is checked
13625 above. In correct DWARF DW_TAG_typedef should have no children. */
13626
13627 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13628 complaint (&symfile_complaints,
13629 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13630 "- DIE at 0x%x [in module %s]"),
13631 part_die->offset.sect_off, objfile->name);
13632
13633 /* If we're at the second level, and we're an enumerator, and
13634 our parent has no specification (meaning possibly lives in a
13635 namespace elsewhere), then we can add the partial symbol now
13636 instead of queueing it. */
13637 if (part_die->tag == DW_TAG_enumerator
13638 && parent_die != NULL
13639 && parent_die->die_parent == NULL
13640 && parent_die->tag == DW_TAG_enumeration_type
13641 && parent_die->has_specification == 0)
13642 {
13643 if (part_die->name == NULL)
13644 complaint (&symfile_complaints,
13645 _("malformed enumerator DIE ignored"));
13646 else if (building_psymtab)
13647 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13648 VAR_DOMAIN, LOC_CONST,
13649 (cu->language == language_cplus
13650 || cu->language == language_java)
13651 ? &objfile->global_psymbols
13652 : &objfile->static_psymbols,
13653 0, (CORE_ADDR) 0, cu->language, objfile);
13654
13655 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13656 continue;
13657 }
13658
13659 /* We'll save this DIE so link it in. */
13660 part_die->die_parent = parent_die;
13661 part_die->die_sibling = NULL;
13662 part_die->die_child = NULL;
13663
13664 if (last_die && last_die == parent_die)
13665 last_die->die_child = part_die;
13666 else if (last_die)
13667 last_die->die_sibling = part_die;
13668
13669 last_die = part_die;
13670
13671 if (first_die == NULL)
13672 first_die = part_die;
13673
13674 /* Maybe add the DIE to the hash table. Not all DIEs that we
13675 find interesting need to be in the hash table, because we
13676 also have the parent/sibling/child chains; only those that we
13677 might refer to by offset later during partial symbol reading.
13678
13679 For now this means things that might have be the target of a
13680 DW_AT_specification, DW_AT_abstract_origin, or
13681 DW_AT_extension. DW_AT_extension will refer only to
13682 namespaces; DW_AT_abstract_origin refers to functions (and
13683 many things under the function DIE, but we do not recurse
13684 into function DIEs during partial symbol reading) and
13685 possibly variables as well; DW_AT_specification refers to
13686 declarations. Declarations ought to have the DW_AT_declaration
13687 flag. It happens that GCC forgets to put it in sometimes, but
13688 only for functions, not for types.
13689
13690 Adding more things than necessary to the hash table is harmless
13691 except for the performance cost. Adding too few will result in
13692 wasted time in find_partial_die, when we reread the compilation
13693 unit with load_all_dies set. */
13694
13695 if (load_all
13696 || abbrev->tag == DW_TAG_constant
13697 || abbrev->tag == DW_TAG_subprogram
13698 || abbrev->tag == DW_TAG_variable
13699 || abbrev->tag == DW_TAG_namespace
13700 || part_die->is_declaration)
13701 {
13702 void **slot;
13703
13704 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13705 part_die->offset.sect_off, INSERT);
13706 *slot = part_die;
13707 }
13708
13709 part_die = obstack_alloc (&cu->comp_unit_obstack,
13710 sizeof (struct partial_die_info));
13711
13712 /* For some DIEs we want to follow their children (if any). For C
13713 we have no reason to follow the children of structures; for other
13714 languages we have to, so that we can get at method physnames
13715 to infer fully qualified class names, for DW_AT_specification,
13716 and for C++ template arguments. For C++, we also look one level
13717 inside functions to find template arguments (if the name of the
13718 function does not already contain the template arguments).
13719
13720 For Ada, we need to scan the children of subprograms and lexical
13721 blocks as well because Ada allows the definition of nested
13722 entities that could be interesting for the debugger, such as
13723 nested subprograms for instance. */
13724 if (last_die->has_children
13725 && (load_all
13726 || last_die->tag == DW_TAG_namespace
13727 || last_die->tag == DW_TAG_module
13728 || last_die->tag == DW_TAG_enumeration_type
13729 || (cu->language == language_cplus
13730 && last_die->tag == DW_TAG_subprogram
13731 && (last_die->name == NULL
13732 || strchr (last_die->name, '<') == NULL))
13733 || (cu->language != language_c
13734 && (last_die->tag == DW_TAG_class_type
13735 || last_die->tag == DW_TAG_interface_type
13736 || last_die->tag == DW_TAG_structure_type
13737 || last_die->tag == DW_TAG_union_type))
13738 || (cu->language == language_ada
13739 && (last_die->tag == DW_TAG_subprogram
13740 || last_die->tag == DW_TAG_lexical_block))))
13741 {
13742 nesting_level++;
13743 parent_die = last_die;
13744 continue;
13745 }
13746
13747 /* Otherwise we skip to the next sibling, if any. */
13748 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13749
13750 /* Back to the top, do it again. */
13751 }
13752 }
13753
13754 /* Read a minimal amount of information into the minimal die structure. */
13755
13756 static const gdb_byte *
13757 read_partial_die (const struct die_reader_specs *reader,
13758 struct partial_die_info *part_die,
13759 struct abbrev_info *abbrev, unsigned int abbrev_len,
13760 const gdb_byte *info_ptr)
13761 {
13762 struct dwarf2_cu *cu = reader->cu;
13763 struct objfile *objfile = cu->objfile;
13764 const gdb_byte *buffer = reader->buffer;
13765 unsigned int i;
13766 struct attribute attr;
13767 int has_low_pc_attr = 0;
13768 int has_high_pc_attr = 0;
13769 int high_pc_relative = 0;
13770
13771 memset (part_die, 0, sizeof (struct partial_die_info));
13772
13773 part_die->offset.sect_off = info_ptr - buffer;
13774
13775 info_ptr += abbrev_len;
13776
13777 if (abbrev == NULL)
13778 return info_ptr;
13779
13780 part_die->tag = abbrev->tag;
13781 part_die->has_children = abbrev->has_children;
13782
13783 for (i = 0; i < abbrev->num_attrs; ++i)
13784 {
13785 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13786
13787 /* Store the data if it is of an attribute we want to keep in a
13788 partial symbol table. */
13789 switch (attr.name)
13790 {
13791 case DW_AT_name:
13792 switch (part_die->tag)
13793 {
13794 case DW_TAG_compile_unit:
13795 case DW_TAG_partial_unit:
13796 case DW_TAG_type_unit:
13797 /* Compilation units have a DW_AT_name that is a filename, not
13798 a source language identifier. */
13799 case DW_TAG_enumeration_type:
13800 case DW_TAG_enumerator:
13801 /* These tags always have simple identifiers already; no need
13802 to canonicalize them. */
13803 part_die->name = DW_STRING (&attr);
13804 break;
13805 default:
13806 part_die->name
13807 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13808 &objfile->objfile_obstack);
13809 break;
13810 }
13811 break;
13812 case DW_AT_linkage_name:
13813 case DW_AT_MIPS_linkage_name:
13814 /* Note that both forms of linkage name might appear. We
13815 assume they will be the same, and we only store the last
13816 one we see. */
13817 if (cu->language == language_ada)
13818 part_die->name = DW_STRING (&attr);
13819 part_die->linkage_name = DW_STRING (&attr);
13820 break;
13821 case DW_AT_low_pc:
13822 has_low_pc_attr = 1;
13823 part_die->lowpc = DW_ADDR (&attr);
13824 break;
13825 case DW_AT_high_pc:
13826 has_high_pc_attr = 1;
13827 if (attr.form == DW_FORM_addr
13828 || attr.form == DW_FORM_GNU_addr_index)
13829 part_die->highpc = DW_ADDR (&attr);
13830 else
13831 {
13832 high_pc_relative = 1;
13833 part_die->highpc = DW_UNSND (&attr);
13834 }
13835 break;
13836 case DW_AT_location:
13837 /* Support the .debug_loc offsets. */
13838 if (attr_form_is_block (&attr))
13839 {
13840 part_die->d.locdesc = DW_BLOCK (&attr);
13841 }
13842 else if (attr_form_is_section_offset (&attr))
13843 {
13844 dwarf2_complex_location_expr_complaint ();
13845 }
13846 else
13847 {
13848 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13849 "partial symbol information");
13850 }
13851 break;
13852 case DW_AT_external:
13853 part_die->is_external = DW_UNSND (&attr);
13854 break;
13855 case DW_AT_declaration:
13856 part_die->is_declaration = DW_UNSND (&attr);
13857 break;
13858 case DW_AT_type:
13859 part_die->has_type = 1;
13860 break;
13861 case DW_AT_abstract_origin:
13862 case DW_AT_specification:
13863 case DW_AT_extension:
13864 part_die->has_specification = 1;
13865 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13866 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13867 || cu->per_cu->is_dwz);
13868 break;
13869 case DW_AT_sibling:
13870 /* Ignore absolute siblings, they might point outside of
13871 the current compile unit. */
13872 if (attr.form == DW_FORM_ref_addr)
13873 complaint (&symfile_complaints,
13874 _("ignoring absolute DW_AT_sibling"));
13875 else
13876 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13877 break;
13878 case DW_AT_byte_size:
13879 part_die->has_byte_size = 1;
13880 break;
13881 case DW_AT_calling_convention:
13882 /* DWARF doesn't provide a way to identify a program's source-level
13883 entry point. DW_AT_calling_convention attributes are only meant
13884 to describe functions' calling conventions.
13885
13886 However, because it's a necessary piece of information in
13887 Fortran, and because DW_CC_program is the only piece of debugging
13888 information whose definition refers to a 'main program' at all,
13889 several compilers have begun marking Fortran main programs with
13890 DW_CC_program --- even when those functions use the standard
13891 calling conventions.
13892
13893 So until DWARF specifies a way to provide this information and
13894 compilers pick up the new representation, we'll support this
13895 practice. */
13896 if (DW_UNSND (&attr) == DW_CC_program
13897 && cu->language == language_fortran)
13898 {
13899 set_main_name (part_die->name);
13900
13901 /* As this DIE has a static linkage the name would be difficult
13902 to look up later. */
13903 language_of_main = language_fortran;
13904 }
13905 break;
13906 case DW_AT_inline:
13907 if (DW_UNSND (&attr) == DW_INL_inlined
13908 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13909 part_die->may_be_inlined = 1;
13910 break;
13911
13912 case DW_AT_import:
13913 if (part_die->tag == DW_TAG_imported_unit)
13914 {
13915 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13916 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13917 || cu->per_cu->is_dwz);
13918 }
13919 break;
13920
13921 default:
13922 break;
13923 }
13924 }
13925
13926 if (high_pc_relative)
13927 part_die->highpc += part_die->lowpc;
13928
13929 if (has_low_pc_attr && has_high_pc_attr)
13930 {
13931 /* When using the GNU linker, .gnu.linkonce. sections are used to
13932 eliminate duplicate copies of functions and vtables and such.
13933 The linker will arbitrarily choose one and discard the others.
13934 The AT_*_pc values for such functions refer to local labels in
13935 these sections. If the section from that file was discarded, the
13936 labels are not in the output, so the relocs get a value of 0.
13937 If this is a discarded function, mark the pc bounds as invalid,
13938 so that GDB will ignore it. */
13939 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13940 {
13941 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13942
13943 complaint (&symfile_complaints,
13944 _("DW_AT_low_pc %s is zero "
13945 "for DIE at 0x%x [in module %s]"),
13946 paddress (gdbarch, part_die->lowpc),
13947 part_die->offset.sect_off, objfile->name);
13948 }
13949 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13950 else if (part_die->lowpc >= part_die->highpc)
13951 {
13952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13953
13954 complaint (&symfile_complaints,
13955 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13956 "for DIE at 0x%x [in module %s]"),
13957 paddress (gdbarch, part_die->lowpc),
13958 paddress (gdbarch, part_die->highpc),
13959 part_die->offset.sect_off, objfile->name);
13960 }
13961 else
13962 part_die->has_pc_info = 1;
13963 }
13964
13965 return info_ptr;
13966 }
13967
13968 /* Find a cached partial DIE at OFFSET in CU. */
13969
13970 static struct partial_die_info *
13971 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13972 {
13973 struct partial_die_info *lookup_die = NULL;
13974 struct partial_die_info part_die;
13975
13976 part_die.offset = offset;
13977 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13978 offset.sect_off);
13979
13980 return lookup_die;
13981 }
13982
13983 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13984 except in the case of .debug_types DIEs which do not reference
13985 outside their CU (they do however referencing other types via
13986 DW_FORM_ref_sig8). */
13987
13988 static struct partial_die_info *
13989 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13990 {
13991 struct objfile *objfile = cu->objfile;
13992 struct dwarf2_per_cu_data *per_cu = NULL;
13993 struct partial_die_info *pd = NULL;
13994
13995 if (offset_in_dwz == cu->per_cu->is_dwz
13996 && offset_in_cu_p (&cu->header, offset))
13997 {
13998 pd = find_partial_die_in_comp_unit (offset, cu);
13999 if (pd != NULL)
14000 return pd;
14001 /* We missed recording what we needed.
14002 Load all dies and try again. */
14003 per_cu = cu->per_cu;
14004 }
14005 else
14006 {
14007 /* TUs don't reference other CUs/TUs (except via type signatures). */
14008 if (cu->per_cu->is_debug_types)
14009 {
14010 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14011 " external reference to offset 0x%lx [in module %s].\n"),
14012 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14013 bfd_get_filename (objfile->obfd));
14014 }
14015 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14016 objfile);
14017
14018 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14019 load_partial_comp_unit (per_cu);
14020
14021 per_cu->cu->last_used = 0;
14022 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14023 }
14024
14025 /* If we didn't find it, and not all dies have been loaded,
14026 load them all and try again. */
14027
14028 if (pd == NULL && per_cu->load_all_dies == 0)
14029 {
14030 per_cu->load_all_dies = 1;
14031
14032 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14033 THIS_CU->cu may already be in use. So we can't just free it and
14034 replace its DIEs with the ones we read in. Instead, we leave those
14035 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14036 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14037 set. */
14038 load_partial_comp_unit (per_cu);
14039
14040 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14041 }
14042
14043 if (pd == NULL)
14044 internal_error (__FILE__, __LINE__,
14045 _("could not find partial DIE 0x%x "
14046 "in cache [from module %s]\n"),
14047 offset.sect_off, bfd_get_filename (objfile->obfd));
14048 return pd;
14049 }
14050
14051 /* See if we can figure out if the class lives in a namespace. We do
14052 this by looking for a member function; its demangled name will
14053 contain namespace info, if there is any. */
14054
14055 static void
14056 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14057 struct dwarf2_cu *cu)
14058 {
14059 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14060 what template types look like, because the demangler
14061 frequently doesn't give the same name as the debug info. We
14062 could fix this by only using the demangled name to get the
14063 prefix (but see comment in read_structure_type). */
14064
14065 struct partial_die_info *real_pdi;
14066 struct partial_die_info *child_pdi;
14067
14068 /* If this DIE (this DIE's specification, if any) has a parent, then
14069 we should not do this. We'll prepend the parent's fully qualified
14070 name when we create the partial symbol. */
14071
14072 real_pdi = struct_pdi;
14073 while (real_pdi->has_specification)
14074 real_pdi = find_partial_die (real_pdi->spec_offset,
14075 real_pdi->spec_is_dwz, cu);
14076
14077 if (real_pdi->die_parent != NULL)
14078 return;
14079
14080 for (child_pdi = struct_pdi->die_child;
14081 child_pdi != NULL;
14082 child_pdi = child_pdi->die_sibling)
14083 {
14084 if (child_pdi->tag == DW_TAG_subprogram
14085 && child_pdi->linkage_name != NULL)
14086 {
14087 char *actual_class_name
14088 = language_class_name_from_physname (cu->language_defn,
14089 child_pdi->linkage_name);
14090 if (actual_class_name != NULL)
14091 {
14092 struct_pdi->name
14093 = obstack_copy0 (&cu->objfile->objfile_obstack,
14094 actual_class_name,
14095 strlen (actual_class_name));
14096 xfree (actual_class_name);
14097 }
14098 break;
14099 }
14100 }
14101 }
14102
14103 /* Adjust PART_DIE before generating a symbol for it. This function
14104 may set the is_external flag or change the DIE's name. */
14105
14106 static void
14107 fixup_partial_die (struct partial_die_info *part_die,
14108 struct dwarf2_cu *cu)
14109 {
14110 /* Once we've fixed up a die, there's no point in doing so again.
14111 This also avoids a memory leak if we were to call
14112 guess_partial_die_structure_name multiple times. */
14113 if (part_die->fixup_called)
14114 return;
14115
14116 /* If we found a reference attribute and the DIE has no name, try
14117 to find a name in the referred to DIE. */
14118
14119 if (part_die->name == NULL && part_die->has_specification)
14120 {
14121 struct partial_die_info *spec_die;
14122
14123 spec_die = find_partial_die (part_die->spec_offset,
14124 part_die->spec_is_dwz, cu);
14125
14126 fixup_partial_die (spec_die, cu);
14127
14128 if (spec_die->name)
14129 {
14130 part_die->name = spec_die->name;
14131
14132 /* Copy DW_AT_external attribute if it is set. */
14133 if (spec_die->is_external)
14134 part_die->is_external = spec_die->is_external;
14135 }
14136 }
14137
14138 /* Set default names for some unnamed DIEs. */
14139
14140 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14141 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14142
14143 /* If there is no parent die to provide a namespace, and there are
14144 children, see if we can determine the namespace from their linkage
14145 name. */
14146 if (cu->language == language_cplus
14147 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14148 && part_die->die_parent == NULL
14149 && part_die->has_children
14150 && (part_die->tag == DW_TAG_class_type
14151 || part_die->tag == DW_TAG_structure_type
14152 || part_die->tag == DW_TAG_union_type))
14153 guess_partial_die_structure_name (part_die, cu);
14154
14155 /* GCC might emit a nameless struct or union that has a linkage
14156 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14157 if (part_die->name == NULL
14158 && (part_die->tag == DW_TAG_class_type
14159 || part_die->tag == DW_TAG_interface_type
14160 || part_die->tag == DW_TAG_structure_type
14161 || part_die->tag == DW_TAG_union_type)
14162 && part_die->linkage_name != NULL)
14163 {
14164 char *demangled;
14165
14166 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14167 if (demangled)
14168 {
14169 const char *base;
14170
14171 /* Strip any leading namespaces/classes, keep only the base name.
14172 DW_AT_name for named DIEs does not contain the prefixes. */
14173 base = strrchr (demangled, ':');
14174 if (base && base > demangled && base[-1] == ':')
14175 base++;
14176 else
14177 base = demangled;
14178
14179 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14180 base, strlen (base));
14181 xfree (demangled);
14182 }
14183 }
14184
14185 part_die->fixup_called = 1;
14186 }
14187
14188 /* Read an attribute value described by an attribute form. */
14189
14190 static const gdb_byte *
14191 read_attribute_value (const struct die_reader_specs *reader,
14192 struct attribute *attr, unsigned form,
14193 const gdb_byte *info_ptr)
14194 {
14195 struct dwarf2_cu *cu = reader->cu;
14196 bfd *abfd = reader->abfd;
14197 struct comp_unit_head *cu_header = &cu->header;
14198 unsigned int bytes_read;
14199 struct dwarf_block *blk;
14200
14201 attr->form = form;
14202 switch (form)
14203 {
14204 case DW_FORM_ref_addr:
14205 if (cu->header.version == 2)
14206 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14207 else
14208 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14209 &cu->header, &bytes_read);
14210 info_ptr += bytes_read;
14211 break;
14212 case DW_FORM_GNU_ref_alt:
14213 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14214 info_ptr += bytes_read;
14215 break;
14216 case DW_FORM_addr:
14217 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14218 info_ptr += bytes_read;
14219 break;
14220 case DW_FORM_block2:
14221 blk = dwarf_alloc_block (cu);
14222 blk->size = read_2_bytes (abfd, info_ptr);
14223 info_ptr += 2;
14224 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14225 info_ptr += blk->size;
14226 DW_BLOCK (attr) = blk;
14227 break;
14228 case DW_FORM_block4:
14229 blk = dwarf_alloc_block (cu);
14230 blk->size = read_4_bytes (abfd, info_ptr);
14231 info_ptr += 4;
14232 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14233 info_ptr += blk->size;
14234 DW_BLOCK (attr) = blk;
14235 break;
14236 case DW_FORM_data2:
14237 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14238 info_ptr += 2;
14239 break;
14240 case DW_FORM_data4:
14241 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14242 info_ptr += 4;
14243 break;
14244 case DW_FORM_data8:
14245 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14246 info_ptr += 8;
14247 break;
14248 case DW_FORM_sec_offset:
14249 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14250 info_ptr += bytes_read;
14251 break;
14252 case DW_FORM_string:
14253 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14254 DW_STRING_IS_CANONICAL (attr) = 0;
14255 info_ptr += bytes_read;
14256 break;
14257 case DW_FORM_strp:
14258 if (!cu->per_cu->is_dwz)
14259 {
14260 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14261 &bytes_read);
14262 DW_STRING_IS_CANONICAL (attr) = 0;
14263 info_ptr += bytes_read;
14264 break;
14265 }
14266 /* FALLTHROUGH */
14267 case DW_FORM_GNU_strp_alt:
14268 {
14269 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14270 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14271 &bytes_read);
14272
14273 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14274 DW_STRING_IS_CANONICAL (attr) = 0;
14275 info_ptr += bytes_read;
14276 }
14277 break;
14278 case DW_FORM_exprloc:
14279 case DW_FORM_block:
14280 blk = dwarf_alloc_block (cu);
14281 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14282 info_ptr += bytes_read;
14283 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14284 info_ptr += blk->size;
14285 DW_BLOCK (attr) = blk;
14286 break;
14287 case DW_FORM_block1:
14288 blk = dwarf_alloc_block (cu);
14289 blk->size = read_1_byte (abfd, info_ptr);
14290 info_ptr += 1;
14291 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14292 info_ptr += blk->size;
14293 DW_BLOCK (attr) = blk;
14294 break;
14295 case DW_FORM_data1:
14296 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14297 info_ptr += 1;
14298 break;
14299 case DW_FORM_flag:
14300 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14301 info_ptr += 1;
14302 break;
14303 case DW_FORM_flag_present:
14304 DW_UNSND (attr) = 1;
14305 break;
14306 case DW_FORM_sdata:
14307 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14308 info_ptr += bytes_read;
14309 break;
14310 case DW_FORM_udata:
14311 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14312 info_ptr += bytes_read;
14313 break;
14314 case DW_FORM_ref1:
14315 DW_UNSND (attr) = (cu->header.offset.sect_off
14316 + read_1_byte (abfd, info_ptr));
14317 info_ptr += 1;
14318 break;
14319 case DW_FORM_ref2:
14320 DW_UNSND (attr) = (cu->header.offset.sect_off
14321 + read_2_bytes (abfd, info_ptr));
14322 info_ptr += 2;
14323 break;
14324 case DW_FORM_ref4:
14325 DW_UNSND (attr) = (cu->header.offset.sect_off
14326 + read_4_bytes (abfd, info_ptr));
14327 info_ptr += 4;
14328 break;
14329 case DW_FORM_ref8:
14330 DW_UNSND (attr) = (cu->header.offset.sect_off
14331 + read_8_bytes (abfd, info_ptr));
14332 info_ptr += 8;
14333 break;
14334 case DW_FORM_ref_sig8:
14335 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14336 info_ptr += 8;
14337 break;
14338 case DW_FORM_ref_udata:
14339 DW_UNSND (attr) = (cu->header.offset.sect_off
14340 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14341 info_ptr += bytes_read;
14342 break;
14343 case DW_FORM_indirect:
14344 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14345 info_ptr += bytes_read;
14346 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14347 break;
14348 case DW_FORM_GNU_addr_index:
14349 if (reader->dwo_file == NULL)
14350 {
14351 /* For now flag a hard error.
14352 Later we can turn this into a complaint. */
14353 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14354 dwarf_form_name (form),
14355 bfd_get_filename (abfd));
14356 }
14357 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14358 info_ptr += bytes_read;
14359 break;
14360 case DW_FORM_GNU_str_index:
14361 if (reader->dwo_file == NULL)
14362 {
14363 /* For now flag a hard error.
14364 Later we can turn this into a complaint if warranted. */
14365 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14366 dwarf_form_name (form),
14367 bfd_get_filename (abfd));
14368 }
14369 {
14370 ULONGEST str_index =
14371 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14372
14373 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14374 DW_STRING_IS_CANONICAL (attr) = 0;
14375 info_ptr += bytes_read;
14376 }
14377 break;
14378 default:
14379 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14380 dwarf_form_name (form),
14381 bfd_get_filename (abfd));
14382 }
14383
14384 /* Super hack. */
14385 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14386 attr->form = DW_FORM_GNU_ref_alt;
14387
14388 /* We have seen instances where the compiler tried to emit a byte
14389 size attribute of -1 which ended up being encoded as an unsigned
14390 0xffffffff. Although 0xffffffff is technically a valid size value,
14391 an object of this size seems pretty unlikely so we can relatively
14392 safely treat these cases as if the size attribute was invalid and
14393 treat them as zero by default. */
14394 if (attr->name == DW_AT_byte_size
14395 && form == DW_FORM_data4
14396 && DW_UNSND (attr) >= 0xffffffff)
14397 {
14398 complaint
14399 (&symfile_complaints,
14400 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14401 hex_string (DW_UNSND (attr)));
14402 DW_UNSND (attr) = 0;
14403 }
14404
14405 return info_ptr;
14406 }
14407
14408 /* Read an attribute described by an abbreviated attribute. */
14409
14410 static const gdb_byte *
14411 read_attribute (const struct die_reader_specs *reader,
14412 struct attribute *attr, struct attr_abbrev *abbrev,
14413 const gdb_byte *info_ptr)
14414 {
14415 attr->name = abbrev->name;
14416 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14417 }
14418
14419 /* Read dwarf information from a buffer. */
14420
14421 static unsigned int
14422 read_1_byte (bfd *abfd, const gdb_byte *buf)
14423 {
14424 return bfd_get_8 (abfd, buf);
14425 }
14426
14427 static int
14428 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14429 {
14430 return bfd_get_signed_8 (abfd, buf);
14431 }
14432
14433 static unsigned int
14434 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14435 {
14436 return bfd_get_16 (abfd, buf);
14437 }
14438
14439 static int
14440 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14441 {
14442 return bfd_get_signed_16 (abfd, buf);
14443 }
14444
14445 static unsigned int
14446 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14447 {
14448 return bfd_get_32 (abfd, buf);
14449 }
14450
14451 static int
14452 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14453 {
14454 return bfd_get_signed_32 (abfd, buf);
14455 }
14456
14457 static ULONGEST
14458 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14459 {
14460 return bfd_get_64 (abfd, buf);
14461 }
14462
14463 static CORE_ADDR
14464 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14465 unsigned int *bytes_read)
14466 {
14467 struct comp_unit_head *cu_header = &cu->header;
14468 CORE_ADDR retval = 0;
14469
14470 if (cu_header->signed_addr_p)
14471 {
14472 switch (cu_header->addr_size)
14473 {
14474 case 2:
14475 retval = bfd_get_signed_16 (abfd, buf);
14476 break;
14477 case 4:
14478 retval = bfd_get_signed_32 (abfd, buf);
14479 break;
14480 case 8:
14481 retval = bfd_get_signed_64 (abfd, buf);
14482 break;
14483 default:
14484 internal_error (__FILE__, __LINE__,
14485 _("read_address: bad switch, signed [in module %s]"),
14486 bfd_get_filename (abfd));
14487 }
14488 }
14489 else
14490 {
14491 switch (cu_header->addr_size)
14492 {
14493 case 2:
14494 retval = bfd_get_16 (abfd, buf);
14495 break;
14496 case 4:
14497 retval = bfd_get_32 (abfd, buf);
14498 break;
14499 case 8:
14500 retval = bfd_get_64 (abfd, buf);
14501 break;
14502 default:
14503 internal_error (__FILE__, __LINE__,
14504 _("read_address: bad switch, "
14505 "unsigned [in module %s]"),
14506 bfd_get_filename (abfd));
14507 }
14508 }
14509
14510 *bytes_read = cu_header->addr_size;
14511 return retval;
14512 }
14513
14514 /* Read the initial length from a section. The (draft) DWARF 3
14515 specification allows the initial length to take up either 4 bytes
14516 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14517 bytes describe the length and all offsets will be 8 bytes in length
14518 instead of 4.
14519
14520 An older, non-standard 64-bit format is also handled by this
14521 function. The older format in question stores the initial length
14522 as an 8-byte quantity without an escape value. Lengths greater
14523 than 2^32 aren't very common which means that the initial 4 bytes
14524 is almost always zero. Since a length value of zero doesn't make
14525 sense for the 32-bit format, this initial zero can be considered to
14526 be an escape value which indicates the presence of the older 64-bit
14527 format. As written, the code can't detect (old format) lengths
14528 greater than 4GB. If it becomes necessary to handle lengths
14529 somewhat larger than 4GB, we could allow other small values (such
14530 as the non-sensical values of 1, 2, and 3) to also be used as
14531 escape values indicating the presence of the old format.
14532
14533 The value returned via bytes_read should be used to increment the
14534 relevant pointer after calling read_initial_length().
14535
14536 [ Note: read_initial_length() and read_offset() are based on the
14537 document entitled "DWARF Debugging Information Format", revision
14538 3, draft 8, dated November 19, 2001. This document was obtained
14539 from:
14540
14541 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14542
14543 This document is only a draft and is subject to change. (So beware.)
14544
14545 Details regarding the older, non-standard 64-bit format were
14546 determined empirically by examining 64-bit ELF files produced by
14547 the SGI toolchain on an IRIX 6.5 machine.
14548
14549 - Kevin, July 16, 2002
14550 ] */
14551
14552 static LONGEST
14553 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14554 {
14555 LONGEST length = bfd_get_32 (abfd, buf);
14556
14557 if (length == 0xffffffff)
14558 {
14559 length = bfd_get_64 (abfd, buf + 4);
14560 *bytes_read = 12;
14561 }
14562 else if (length == 0)
14563 {
14564 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14565 length = bfd_get_64 (abfd, buf);
14566 *bytes_read = 8;
14567 }
14568 else
14569 {
14570 *bytes_read = 4;
14571 }
14572
14573 return length;
14574 }
14575
14576 /* Cover function for read_initial_length.
14577 Returns the length of the object at BUF, and stores the size of the
14578 initial length in *BYTES_READ and stores the size that offsets will be in
14579 *OFFSET_SIZE.
14580 If the initial length size is not equivalent to that specified in
14581 CU_HEADER then issue a complaint.
14582 This is useful when reading non-comp-unit headers. */
14583
14584 static LONGEST
14585 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14586 const struct comp_unit_head *cu_header,
14587 unsigned int *bytes_read,
14588 unsigned int *offset_size)
14589 {
14590 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14591
14592 gdb_assert (cu_header->initial_length_size == 4
14593 || cu_header->initial_length_size == 8
14594 || cu_header->initial_length_size == 12);
14595
14596 if (cu_header->initial_length_size != *bytes_read)
14597 complaint (&symfile_complaints,
14598 _("intermixed 32-bit and 64-bit DWARF sections"));
14599
14600 *offset_size = (*bytes_read == 4) ? 4 : 8;
14601 return length;
14602 }
14603
14604 /* Read an offset from the data stream. The size of the offset is
14605 given by cu_header->offset_size. */
14606
14607 static LONGEST
14608 read_offset (bfd *abfd, const gdb_byte *buf,
14609 const struct comp_unit_head *cu_header,
14610 unsigned int *bytes_read)
14611 {
14612 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14613
14614 *bytes_read = cu_header->offset_size;
14615 return offset;
14616 }
14617
14618 /* Read an offset from the data stream. */
14619
14620 static LONGEST
14621 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
14622 {
14623 LONGEST retval = 0;
14624
14625 switch (offset_size)
14626 {
14627 case 4:
14628 retval = bfd_get_32 (abfd, buf);
14629 break;
14630 case 8:
14631 retval = bfd_get_64 (abfd, buf);
14632 break;
14633 default:
14634 internal_error (__FILE__, __LINE__,
14635 _("read_offset_1: bad switch [in module %s]"),
14636 bfd_get_filename (abfd));
14637 }
14638
14639 return retval;
14640 }
14641
14642 static const gdb_byte *
14643 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
14644 {
14645 /* If the size of a host char is 8 bits, we can return a pointer
14646 to the buffer, otherwise we have to copy the data to a buffer
14647 allocated on the temporary obstack. */
14648 gdb_assert (HOST_CHAR_BIT == 8);
14649 return buf;
14650 }
14651
14652 static const char *
14653 read_direct_string (bfd *abfd, const gdb_byte *buf,
14654 unsigned int *bytes_read_ptr)
14655 {
14656 /* If the size of a host char is 8 bits, we can return a pointer
14657 to the string, otherwise we have to copy the string to a buffer
14658 allocated on the temporary obstack. */
14659 gdb_assert (HOST_CHAR_BIT == 8);
14660 if (*buf == '\0')
14661 {
14662 *bytes_read_ptr = 1;
14663 return NULL;
14664 }
14665 *bytes_read_ptr = strlen ((const char *) buf) + 1;
14666 return (const char *) buf;
14667 }
14668
14669 static const char *
14670 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14671 {
14672 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14673 if (dwarf2_per_objfile->str.buffer == NULL)
14674 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14675 bfd_get_filename (abfd));
14676 if (str_offset >= dwarf2_per_objfile->str.size)
14677 error (_("DW_FORM_strp pointing outside of "
14678 ".debug_str section [in module %s]"),
14679 bfd_get_filename (abfd));
14680 gdb_assert (HOST_CHAR_BIT == 8);
14681 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14682 return NULL;
14683 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
14684 }
14685
14686 /* Read a string at offset STR_OFFSET in the .debug_str section from
14687 the .dwz file DWZ. Throw an error if the offset is too large. If
14688 the string consists of a single NUL byte, return NULL; otherwise
14689 return a pointer to the string. */
14690
14691 static const char *
14692 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14693 {
14694 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14695
14696 if (dwz->str.buffer == NULL)
14697 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14698 "section [in module %s]"),
14699 bfd_get_filename (dwz->dwz_bfd));
14700 if (str_offset >= dwz->str.size)
14701 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14702 ".debug_str section [in module %s]"),
14703 bfd_get_filename (dwz->dwz_bfd));
14704 gdb_assert (HOST_CHAR_BIT == 8);
14705 if (dwz->str.buffer[str_offset] == '\0')
14706 return NULL;
14707 return (const char *) (dwz->str.buffer + str_offset);
14708 }
14709
14710 static const char *
14711 read_indirect_string (bfd *abfd, const gdb_byte *buf,
14712 const struct comp_unit_head *cu_header,
14713 unsigned int *bytes_read_ptr)
14714 {
14715 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14716
14717 return read_indirect_string_at_offset (abfd, str_offset);
14718 }
14719
14720 static ULONGEST
14721 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
14722 unsigned int *bytes_read_ptr)
14723 {
14724 ULONGEST result;
14725 unsigned int num_read;
14726 int i, shift;
14727 unsigned char byte;
14728
14729 result = 0;
14730 shift = 0;
14731 num_read = 0;
14732 i = 0;
14733 while (1)
14734 {
14735 byte = bfd_get_8 (abfd, buf);
14736 buf++;
14737 num_read++;
14738 result |= ((ULONGEST) (byte & 127) << shift);
14739 if ((byte & 128) == 0)
14740 {
14741 break;
14742 }
14743 shift += 7;
14744 }
14745 *bytes_read_ptr = num_read;
14746 return result;
14747 }
14748
14749 static LONGEST
14750 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
14751 unsigned int *bytes_read_ptr)
14752 {
14753 LONGEST result;
14754 int i, shift, num_read;
14755 unsigned char byte;
14756
14757 result = 0;
14758 shift = 0;
14759 num_read = 0;
14760 i = 0;
14761 while (1)
14762 {
14763 byte = bfd_get_8 (abfd, buf);
14764 buf++;
14765 num_read++;
14766 result |= ((LONGEST) (byte & 127) << shift);
14767 shift += 7;
14768 if ((byte & 128) == 0)
14769 {
14770 break;
14771 }
14772 }
14773 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14774 result |= -(((LONGEST) 1) << shift);
14775 *bytes_read_ptr = num_read;
14776 return result;
14777 }
14778
14779 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14780 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14781 ADDR_SIZE is the size of addresses from the CU header. */
14782
14783 static CORE_ADDR
14784 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14785 {
14786 struct objfile *objfile = dwarf2_per_objfile->objfile;
14787 bfd *abfd = objfile->obfd;
14788 const gdb_byte *info_ptr;
14789
14790 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14791 if (dwarf2_per_objfile->addr.buffer == NULL)
14792 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14793 objfile->name);
14794 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14795 error (_("DW_FORM_addr_index pointing outside of "
14796 ".debug_addr section [in module %s]"),
14797 objfile->name);
14798 info_ptr = (dwarf2_per_objfile->addr.buffer
14799 + addr_base + addr_index * addr_size);
14800 if (addr_size == 4)
14801 return bfd_get_32 (abfd, info_ptr);
14802 else
14803 return bfd_get_64 (abfd, info_ptr);
14804 }
14805
14806 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14807
14808 static CORE_ADDR
14809 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14810 {
14811 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14812 }
14813
14814 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14815
14816 static CORE_ADDR
14817 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
14818 unsigned int *bytes_read)
14819 {
14820 bfd *abfd = cu->objfile->obfd;
14821 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14822
14823 return read_addr_index (cu, addr_index);
14824 }
14825
14826 /* Data structure to pass results from dwarf2_read_addr_index_reader
14827 back to dwarf2_read_addr_index. */
14828
14829 struct dwarf2_read_addr_index_data
14830 {
14831 ULONGEST addr_base;
14832 int addr_size;
14833 };
14834
14835 /* die_reader_func for dwarf2_read_addr_index. */
14836
14837 static void
14838 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14839 const gdb_byte *info_ptr,
14840 struct die_info *comp_unit_die,
14841 int has_children,
14842 void *data)
14843 {
14844 struct dwarf2_cu *cu = reader->cu;
14845 struct dwarf2_read_addr_index_data *aidata =
14846 (struct dwarf2_read_addr_index_data *) data;
14847
14848 aidata->addr_base = cu->addr_base;
14849 aidata->addr_size = cu->header.addr_size;
14850 }
14851
14852 /* Given an index in .debug_addr, fetch the value.
14853 NOTE: This can be called during dwarf expression evaluation,
14854 long after the debug information has been read, and thus per_cu->cu
14855 may no longer exist. */
14856
14857 CORE_ADDR
14858 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14859 unsigned int addr_index)
14860 {
14861 struct objfile *objfile = per_cu->objfile;
14862 struct dwarf2_cu *cu = per_cu->cu;
14863 ULONGEST addr_base;
14864 int addr_size;
14865
14866 /* This is intended to be called from outside this file. */
14867 dw2_setup (objfile);
14868
14869 /* We need addr_base and addr_size.
14870 If we don't have PER_CU->cu, we have to get it.
14871 Nasty, but the alternative is storing the needed info in PER_CU,
14872 which at this point doesn't seem justified: it's not clear how frequently
14873 it would get used and it would increase the size of every PER_CU.
14874 Entry points like dwarf2_per_cu_addr_size do a similar thing
14875 so we're not in uncharted territory here.
14876 Alas we need to be a bit more complicated as addr_base is contained
14877 in the DIE.
14878
14879 We don't need to read the entire CU(/TU).
14880 We just need the header and top level die.
14881
14882 IWBN to use the aging mechanism to let us lazily later discard the CU.
14883 For now we skip this optimization. */
14884
14885 if (cu != NULL)
14886 {
14887 addr_base = cu->addr_base;
14888 addr_size = cu->header.addr_size;
14889 }
14890 else
14891 {
14892 struct dwarf2_read_addr_index_data aidata;
14893
14894 /* Note: We can't use init_cutu_and_read_dies_simple here,
14895 we need addr_base. */
14896 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14897 dwarf2_read_addr_index_reader, &aidata);
14898 addr_base = aidata.addr_base;
14899 addr_size = aidata.addr_size;
14900 }
14901
14902 return read_addr_index_1 (addr_index, addr_base, addr_size);
14903 }
14904
14905 /* Given a DW_AT_str_index, fetch the string. */
14906
14907 static const char *
14908 read_str_index (const struct die_reader_specs *reader,
14909 struct dwarf2_cu *cu, ULONGEST str_index)
14910 {
14911 struct objfile *objfile = dwarf2_per_objfile->objfile;
14912 const char *dwo_name = objfile->name;
14913 bfd *abfd = objfile->obfd;
14914 struct dwo_sections *sections = &reader->dwo_file->sections;
14915 const gdb_byte *info_ptr;
14916 ULONGEST str_offset;
14917
14918 dwarf2_read_section (objfile, &sections->str);
14919 dwarf2_read_section (objfile, &sections->str_offsets);
14920 if (sections->str.buffer == NULL)
14921 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14922 " in CU at offset 0x%lx [in module %s]"),
14923 (long) cu->header.offset.sect_off, dwo_name);
14924 if (sections->str_offsets.buffer == NULL)
14925 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14926 " in CU at offset 0x%lx [in module %s]"),
14927 (long) cu->header.offset.sect_off, dwo_name);
14928 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14929 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14930 " section in CU at offset 0x%lx [in module %s]"),
14931 (long) cu->header.offset.sect_off, dwo_name);
14932 info_ptr = (sections->str_offsets.buffer
14933 + str_index * cu->header.offset_size);
14934 if (cu->header.offset_size == 4)
14935 str_offset = bfd_get_32 (abfd, info_ptr);
14936 else
14937 str_offset = bfd_get_64 (abfd, info_ptr);
14938 if (str_offset >= sections->str.size)
14939 error (_("Offset from DW_FORM_str_index pointing outside of"
14940 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14941 (long) cu->header.offset.sect_off, dwo_name);
14942 return (const char *) (sections->str.buffer + str_offset);
14943 }
14944
14945 /* Return the length of an LEB128 number in BUF. */
14946
14947 static int
14948 leb128_size (const gdb_byte *buf)
14949 {
14950 const gdb_byte *begin = buf;
14951 gdb_byte byte;
14952
14953 while (1)
14954 {
14955 byte = *buf++;
14956 if ((byte & 128) == 0)
14957 return buf - begin;
14958 }
14959 }
14960
14961 static void
14962 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14963 {
14964 switch (lang)
14965 {
14966 case DW_LANG_C89:
14967 case DW_LANG_C99:
14968 case DW_LANG_C:
14969 cu->language = language_c;
14970 break;
14971 case DW_LANG_C_plus_plus:
14972 cu->language = language_cplus;
14973 break;
14974 case DW_LANG_D:
14975 cu->language = language_d;
14976 break;
14977 case DW_LANG_Fortran77:
14978 case DW_LANG_Fortran90:
14979 case DW_LANG_Fortran95:
14980 cu->language = language_fortran;
14981 break;
14982 case DW_LANG_Go:
14983 cu->language = language_go;
14984 break;
14985 case DW_LANG_Mips_Assembler:
14986 cu->language = language_asm;
14987 break;
14988 case DW_LANG_Java:
14989 cu->language = language_java;
14990 break;
14991 case DW_LANG_Ada83:
14992 case DW_LANG_Ada95:
14993 cu->language = language_ada;
14994 break;
14995 case DW_LANG_Modula2:
14996 cu->language = language_m2;
14997 break;
14998 case DW_LANG_Pascal83:
14999 cu->language = language_pascal;
15000 break;
15001 case DW_LANG_ObjC:
15002 cu->language = language_objc;
15003 break;
15004 case DW_LANG_Cobol74:
15005 case DW_LANG_Cobol85:
15006 default:
15007 cu->language = language_minimal;
15008 break;
15009 }
15010 cu->language_defn = language_def (cu->language);
15011 }
15012
15013 /* Return the named attribute or NULL if not there. */
15014
15015 static struct attribute *
15016 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15017 {
15018 for (;;)
15019 {
15020 unsigned int i;
15021 struct attribute *spec = NULL;
15022
15023 for (i = 0; i < die->num_attrs; ++i)
15024 {
15025 if (die->attrs[i].name == name)
15026 return &die->attrs[i];
15027 if (die->attrs[i].name == DW_AT_specification
15028 || die->attrs[i].name == DW_AT_abstract_origin)
15029 spec = &die->attrs[i];
15030 }
15031
15032 if (!spec)
15033 break;
15034
15035 die = follow_die_ref (die, spec, &cu);
15036 }
15037
15038 return NULL;
15039 }
15040
15041 /* Return the named attribute or NULL if not there,
15042 but do not follow DW_AT_specification, etc.
15043 This is for use in contexts where we're reading .debug_types dies.
15044 Following DW_AT_specification, DW_AT_abstract_origin will take us
15045 back up the chain, and we want to go down. */
15046
15047 static struct attribute *
15048 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15049 {
15050 unsigned int i;
15051
15052 for (i = 0; i < die->num_attrs; ++i)
15053 if (die->attrs[i].name == name)
15054 return &die->attrs[i];
15055
15056 return NULL;
15057 }
15058
15059 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15060 and holds a non-zero value. This function should only be used for
15061 DW_FORM_flag or DW_FORM_flag_present attributes. */
15062
15063 static int
15064 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15065 {
15066 struct attribute *attr = dwarf2_attr (die, name, cu);
15067
15068 return (attr && DW_UNSND (attr));
15069 }
15070
15071 static int
15072 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15073 {
15074 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15075 which value is non-zero. However, we have to be careful with
15076 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15077 (via dwarf2_flag_true_p) follows this attribute. So we may
15078 end up accidently finding a declaration attribute that belongs
15079 to a different DIE referenced by the specification attribute,
15080 even though the given DIE does not have a declaration attribute. */
15081 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15082 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15083 }
15084
15085 /* Return the die giving the specification for DIE, if there is
15086 one. *SPEC_CU is the CU containing DIE on input, and the CU
15087 containing the return value on output. If there is no
15088 specification, but there is an abstract origin, that is
15089 returned. */
15090
15091 static struct die_info *
15092 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15093 {
15094 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15095 *spec_cu);
15096
15097 if (spec_attr == NULL)
15098 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15099
15100 if (spec_attr == NULL)
15101 return NULL;
15102 else
15103 return follow_die_ref (die, spec_attr, spec_cu);
15104 }
15105
15106 /* Free the line_header structure *LH, and any arrays and strings it
15107 refers to.
15108 NOTE: This is also used as a "cleanup" function. */
15109
15110 static void
15111 free_line_header (struct line_header *lh)
15112 {
15113 if (lh->standard_opcode_lengths)
15114 xfree (lh->standard_opcode_lengths);
15115
15116 /* Remember that all the lh->file_names[i].name pointers are
15117 pointers into debug_line_buffer, and don't need to be freed. */
15118 if (lh->file_names)
15119 xfree (lh->file_names);
15120
15121 /* Similarly for the include directory names. */
15122 if (lh->include_dirs)
15123 xfree (lh->include_dirs);
15124
15125 xfree (lh);
15126 }
15127
15128 /* Add an entry to LH's include directory table. */
15129
15130 static void
15131 add_include_dir (struct line_header *lh, const char *include_dir)
15132 {
15133 /* Grow the array if necessary. */
15134 if (lh->include_dirs_size == 0)
15135 {
15136 lh->include_dirs_size = 1; /* for testing */
15137 lh->include_dirs = xmalloc (lh->include_dirs_size
15138 * sizeof (*lh->include_dirs));
15139 }
15140 else if (lh->num_include_dirs >= lh->include_dirs_size)
15141 {
15142 lh->include_dirs_size *= 2;
15143 lh->include_dirs = xrealloc (lh->include_dirs,
15144 (lh->include_dirs_size
15145 * sizeof (*lh->include_dirs)));
15146 }
15147
15148 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15149 }
15150
15151 /* Add an entry to LH's file name table. */
15152
15153 static void
15154 add_file_name (struct line_header *lh,
15155 const char *name,
15156 unsigned int dir_index,
15157 unsigned int mod_time,
15158 unsigned int length)
15159 {
15160 struct file_entry *fe;
15161
15162 /* Grow the array if necessary. */
15163 if (lh->file_names_size == 0)
15164 {
15165 lh->file_names_size = 1; /* for testing */
15166 lh->file_names = xmalloc (lh->file_names_size
15167 * sizeof (*lh->file_names));
15168 }
15169 else if (lh->num_file_names >= lh->file_names_size)
15170 {
15171 lh->file_names_size *= 2;
15172 lh->file_names = xrealloc (lh->file_names,
15173 (lh->file_names_size
15174 * sizeof (*lh->file_names)));
15175 }
15176
15177 fe = &lh->file_names[lh->num_file_names++];
15178 fe->name = name;
15179 fe->dir_index = dir_index;
15180 fe->mod_time = mod_time;
15181 fe->length = length;
15182 fe->included_p = 0;
15183 fe->symtab = NULL;
15184 }
15185
15186 /* A convenience function to find the proper .debug_line section for a
15187 CU. */
15188
15189 static struct dwarf2_section_info *
15190 get_debug_line_section (struct dwarf2_cu *cu)
15191 {
15192 struct dwarf2_section_info *section;
15193
15194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15195 DWO file. */
15196 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15197 section = &cu->dwo_unit->dwo_file->sections.line;
15198 else if (cu->per_cu->is_dwz)
15199 {
15200 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15201
15202 section = &dwz->line;
15203 }
15204 else
15205 section = &dwarf2_per_objfile->line;
15206
15207 return section;
15208 }
15209
15210 /* Read the statement program header starting at OFFSET in
15211 .debug_line, or .debug_line.dwo. Return a pointer
15212 to a struct line_header, allocated using xmalloc.
15213
15214 NOTE: the strings in the include directory and file name tables of
15215 the returned object point into the dwarf line section buffer,
15216 and must not be freed. */
15217
15218 static struct line_header *
15219 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15220 {
15221 struct cleanup *back_to;
15222 struct line_header *lh;
15223 const gdb_byte *line_ptr;
15224 unsigned int bytes_read, offset_size;
15225 int i;
15226 const char *cur_dir, *cur_file;
15227 struct dwarf2_section_info *section;
15228 bfd *abfd;
15229
15230 section = get_debug_line_section (cu);
15231 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15232 if (section->buffer == NULL)
15233 {
15234 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15235 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15236 else
15237 complaint (&symfile_complaints, _("missing .debug_line section"));
15238 return 0;
15239 }
15240
15241 /* We can't do this until we know the section is non-empty.
15242 Only then do we know we have such a section. */
15243 abfd = section->asection->owner;
15244
15245 /* Make sure that at least there's room for the total_length field.
15246 That could be 12 bytes long, but we're just going to fudge that. */
15247 if (offset + 4 >= section->size)
15248 {
15249 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15250 return 0;
15251 }
15252
15253 lh = xmalloc (sizeof (*lh));
15254 memset (lh, 0, sizeof (*lh));
15255 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15256 (void *) lh);
15257
15258 line_ptr = section->buffer + offset;
15259
15260 /* Read in the header. */
15261 lh->total_length =
15262 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15263 &bytes_read, &offset_size);
15264 line_ptr += bytes_read;
15265 if (line_ptr + lh->total_length > (section->buffer + section->size))
15266 {
15267 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15268 return 0;
15269 }
15270 lh->statement_program_end = line_ptr + lh->total_length;
15271 lh->version = read_2_bytes (abfd, line_ptr);
15272 line_ptr += 2;
15273 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15274 line_ptr += offset_size;
15275 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15276 line_ptr += 1;
15277 if (lh->version >= 4)
15278 {
15279 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15280 line_ptr += 1;
15281 }
15282 else
15283 lh->maximum_ops_per_instruction = 1;
15284
15285 if (lh->maximum_ops_per_instruction == 0)
15286 {
15287 lh->maximum_ops_per_instruction = 1;
15288 complaint (&symfile_complaints,
15289 _("invalid maximum_ops_per_instruction "
15290 "in `.debug_line' section"));
15291 }
15292
15293 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15294 line_ptr += 1;
15295 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15296 line_ptr += 1;
15297 lh->line_range = read_1_byte (abfd, line_ptr);
15298 line_ptr += 1;
15299 lh->opcode_base = read_1_byte (abfd, line_ptr);
15300 line_ptr += 1;
15301 lh->standard_opcode_lengths
15302 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15303
15304 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15305 for (i = 1; i < lh->opcode_base; ++i)
15306 {
15307 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15308 line_ptr += 1;
15309 }
15310
15311 /* Read directory table. */
15312 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15313 {
15314 line_ptr += bytes_read;
15315 add_include_dir (lh, cur_dir);
15316 }
15317 line_ptr += bytes_read;
15318
15319 /* Read file name table. */
15320 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15321 {
15322 unsigned int dir_index, mod_time, length;
15323
15324 line_ptr += bytes_read;
15325 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15326 line_ptr += bytes_read;
15327 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15328 line_ptr += bytes_read;
15329 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15330 line_ptr += bytes_read;
15331
15332 add_file_name (lh, cur_file, dir_index, mod_time, length);
15333 }
15334 line_ptr += bytes_read;
15335 lh->statement_program_start = line_ptr;
15336
15337 if (line_ptr > (section->buffer + section->size))
15338 complaint (&symfile_complaints,
15339 _("line number info header doesn't "
15340 "fit in `.debug_line' section"));
15341
15342 discard_cleanups (back_to);
15343 return lh;
15344 }
15345
15346 /* Subroutine of dwarf_decode_lines to simplify it.
15347 Return the file name of the psymtab for included file FILE_INDEX
15348 in line header LH of PST.
15349 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15350 If space for the result is malloc'd, it will be freed by a cleanup.
15351 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15352
15353 The function creates dangling cleanup registration. */
15354
15355 static const char *
15356 psymtab_include_file_name (const struct line_header *lh, int file_index,
15357 const struct partial_symtab *pst,
15358 const char *comp_dir)
15359 {
15360 const struct file_entry fe = lh->file_names [file_index];
15361 const char *include_name = fe.name;
15362 const char *include_name_to_compare = include_name;
15363 const char *dir_name = NULL;
15364 const char *pst_filename;
15365 char *copied_name = NULL;
15366 int file_is_pst;
15367
15368 if (fe.dir_index)
15369 dir_name = lh->include_dirs[fe.dir_index - 1];
15370
15371 if (!IS_ABSOLUTE_PATH (include_name)
15372 && (dir_name != NULL || comp_dir != NULL))
15373 {
15374 /* Avoid creating a duplicate psymtab for PST.
15375 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15376 Before we do the comparison, however, we need to account
15377 for DIR_NAME and COMP_DIR.
15378 First prepend dir_name (if non-NULL). If we still don't
15379 have an absolute path prepend comp_dir (if non-NULL).
15380 However, the directory we record in the include-file's
15381 psymtab does not contain COMP_DIR (to match the
15382 corresponding symtab(s)).
15383
15384 Example:
15385
15386 bash$ cd /tmp
15387 bash$ gcc -g ./hello.c
15388 include_name = "hello.c"
15389 dir_name = "."
15390 DW_AT_comp_dir = comp_dir = "/tmp"
15391 DW_AT_name = "./hello.c" */
15392
15393 if (dir_name != NULL)
15394 {
15395 char *tem = concat (dir_name, SLASH_STRING,
15396 include_name, (char *)NULL);
15397
15398 make_cleanup (xfree, tem);
15399 include_name = tem;
15400 include_name_to_compare = include_name;
15401 }
15402 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15403 {
15404 char *tem = concat (comp_dir, SLASH_STRING,
15405 include_name, (char *)NULL);
15406
15407 make_cleanup (xfree, tem);
15408 include_name_to_compare = tem;
15409 }
15410 }
15411
15412 pst_filename = pst->filename;
15413 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15414 {
15415 copied_name = concat (pst->dirname, SLASH_STRING,
15416 pst_filename, (char *)NULL);
15417 pst_filename = copied_name;
15418 }
15419
15420 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15421
15422 if (copied_name != NULL)
15423 xfree (copied_name);
15424
15425 if (file_is_pst)
15426 return NULL;
15427 return include_name;
15428 }
15429
15430 /* Ignore this record_line request. */
15431
15432 static void
15433 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15434 {
15435 return;
15436 }
15437
15438 /* Subroutine of dwarf_decode_lines to simplify it.
15439 Process the line number information in LH. */
15440
15441 static void
15442 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15443 struct dwarf2_cu *cu, struct partial_symtab *pst)
15444 {
15445 const gdb_byte *line_ptr, *extended_end;
15446 const gdb_byte *line_end;
15447 unsigned int bytes_read, extended_len;
15448 unsigned char op_code, extended_op, adj_opcode;
15449 CORE_ADDR baseaddr;
15450 struct objfile *objfile = cu->objfile;
15451 bfd *abfd = objfile->obfd;
15452 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15453 const int decode_for_pst_p = (pst != NULL);
15454 struct subfile *last_subfile = NULL;
15455 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15456 = record_line;
15457
15458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15459
15460 line_ptr = lh->statement_program_start;
15461 line_end = lh->statement_program_end;
15462
15463 /* Read the statement sequences until there's nothing left. */
15464 while (line_ptr < line_end)
15465 {
15466 /* state machine registers */
15467 CORE_ADDR address = 0;
15468 unsigned int file = 1;
15469 unsigned int line = 1;
15470 unsigned int column = 0;
15471 int is_stmt = lh->default_is_stmt;
15472 int basic_block = 0;
15473 int end_sequence = 0;
15474 CORE_ADDR addr;
15475 unsigned char op_index = 0;
15476
15477 if (!decode_for_pst_p && lh->num_file_names >= file)
15478 {
15479 /* Start a subfile for the current file of the state machine. */
15480 /* lh->include_dirs and lh->file_names are 0-based, but the
15481 directory and file name numbers in the statement program
15482 are 1-based. */
15483 struct file_entry *fe = &lh->file_names[file - 1];
15484 const char *dir = NULL;
15485
15486 if (fe->dir_index)
15487 dir = lh->include_dirs[fe->dir_index - 1];
15488
15489 dwarf2_start_subfile (fe->name, dir, comp_dir);
15490 }
15491
15492 /* Decode the table. */
15493 while (!end_sequence)
15494 {
15495 op_code = read_1_byte (abfd, line_ptr);
15496 line_ptr += 1;
15497 if (line_ptr > line_end)
15498 {
15499 dwarf2_debug_line_missing_end_sequence_complaint ();
15500 break;
15501 }
15502
15503 if (op_code >= lh->opcode_base)
15504 {
15505 /* Special operand. */
15506 adj_opcode = op_code - lh->opcode_base;
15507 address += (((op_index + (adj_opcode / lh->line_range))
15508 / lh->maximum_ops_per_instruction)
15509 * lh->minimum_instruction_length);
15510 op_index = ((op_index + (adj_opcode / lh->line_range))
15511 % lh->maximum_ops_per_instruction);
15512 line += lh->line_base + (adj_opcode % lh->line_range);
15513 if (lh->num_file_names < file || file == 0)
15514 dwarf2_debug_line_missing_file_complaint ();
15515 /* For now we ignore lines not starting on an
15516 instruction boundary. */
15517 else if (op_index == 0)
15518 {
15519 lh->file_names[file - 1].included_p = 1;
15520 if (!decode_for_pst_p && is_stmt)
15521 {
15522 if (last_subfile != current_subfile)
15523 {
15524 addr = gdbarch_addr_bits_remove (gdbarch, address);
15525 if (last_subfile)
15526 (*p_record_line) (last_subfile, 0, addr);
15527 last_subfile = current_subfile;
15528 }
15529 /* Append row to matrix using current values. */
15530 addr = gdbarch_addr_bits_remove (gdbarch, address);
15531 (*p_record_line) (current_subfile, line, addr);
15532 }
15533 }
15534 basic_block = 0;
15535 }
15536 else switch (op_code)
15537 {
15538 case DW_LNS_extended_op:
15539 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15540 &bytes_read);
15541 line_ptr += bytes_read;
15542 extended_end = line_ptr + extended_len;
15543 extended_op = read_1_byte (abfd, line_ptr);
15544 line_ptr += 1;
15545 switch (extended_op)
15546 {
15547 case DW_LNE_end_sequence:
15548 p_record_line = record_line;
15549 end_sequence = 1;
15550 break;
15551 case DW_LNE_set_address:
15552 address = read_address (abfd, line_ptr, cu, &bytes_read);
15553
15554 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15555 {
15556 /* This line table is for a function which has been
15557 GCd by the linker. Ignore it. PR gdb/12528 */
15558
15559 long line_offset
15560 = line_ptr - get_debug_line_section (cu)->buffer;
15561
15562 complaint (&symfile_complaints,
15563 _(".debug_line address at offset 0x%lx is 0 "
15564 "[in module %s]"),
15565 line_offset, objfile->name);
15566 p_record_line = noop_record_line;
15567 }
15568
15569 op_index = 0;
15570 line_ptr += bytes_read;
15571 address += baseaddr;
15572 break;
15573 case DW_LNE_define_file:
15574 {
15575 const char *cur_file;
15576 unsigned int dir_index, mod_time, length;
15577
15578 cur_file = read_direct_string (abfd, line_ptr,
15579 &bytes_read);
15580 line_ptr += bytes_read;
15581 dir_index =
15582 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15583 line_ptr += bytes_read;
15584 mod_time =
15585 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15586 line_ptr += bytes_read;
15587 length =
15588 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15589 line_ptr += bytes_read;
15590 add_file_name (lh, cur_file, dir_index, mod_time, length);
15591 }
15592 break;
15593 case DW_LNE_set_discriminator:
15594 /* The discriminator is not interesting to the debugger;
15595 just ignore it. */
15596 line_ptr = extended_end;
15597 break;
15598 default:
15599 complaint (&symfile_complaints,
15600 _("mangled .debug_line section"));
15601 return;
15602 }
15603 /* Make sure that we parsed the extended op correctly. If e.g.
15604 we expected a different address size than the producer used,
15605 we may have read the wrong number of bytes. */
15606 if (line_ptr != extended_end)
15607 {
15608 complaint (&symfile_complaints,
15609 _("mangled .debug_line section"));
15610 return;
15611 }
15612 break;
15613 case DW_LNS_copy:
15614 if (lh->num_file_names < file || file == 0)
15615 dwarf2_debug_line_missing_file_complaint ();
15616 else
15617 {
15618 lh->file_names[file - 1].included_p = 1;
15619 if (!decode_for_pst_p && is_stmt)
15620 {
15621 if (last_subfile != current_subfile)
15622 {
15623 addr = gdbarch_addr_bits_remove (gdbarch, address);
15624 if (last_subfile)
15625 (*p_record_line) (last_subfile, 0, addr);
15626 last_subfile = current_subfile;
15627 }
15628 addr = gdbarch_addr_bits_remove (gdbarch, address);
15629 (*p_record_line) (current_subfile, line, addr);
15630 }
15631 }
15632 basic_block = 0;
15633 break;
15634 case DW_LNS_advance_pc:
15635 {
15636 CORE_ADDR adjust
15637 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15638
15639 address += (((op_index + adjust)
15640 / lh->maximum_ops_per_instruction)
15641 * lh->minimum_instruction_length);
15642 op_index = ((op_index + adjust)
15643 % lh->maximum_ops_per_instruction);
15644 line_ptr += bytes_read;
15645 }
15646 break;
15647 case DW_LNS_advance_line:
15648 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15649 line_ptr += bytes_read;
15650 break;
15651 case DW_LNS_set_file:
15652 {
15653 /* The arrays lh->include_dirs and lh->file_names are
15654 0-based, but the directory and file name numbers in
15655 the statement program are 1-based. */
15656 struct file_entry *fe;
15657 const char *dir = NULL;
15658
15659 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15660 line_ptr += bytes_read;
15661 if (lh->num_file_names < file || file == 0)
15662 dwarf2_debug_line_missing_file_complaint ();
15663 else
15664 {
15665 fe = &lh->file_names[file - 1];
15666 if (fe->dir_index)
15667 dir = lh->include_dirs[fe->dir_index - 1];
15668 if (!decode_for_pst_p)
15669 {
15670 last_subfile = current_subfile;
15671 dwarf2_start_subfile (fe->name, dir, comp_dir);
15672 }
15673 }
15674 }
15675 break;
15676 case DW_LNS_set_column:
15677 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15678 line_ptr += bytes_read;
15679 break;
15680 case DW_LNS_negate_stmt:
15681 is_stmt = (!is_stmt);
15682 break;
15683 case DW_LNS_set_basic_block:
15684 basic_block = 1;
15685 break;
15686 /* Add to the address register of the state machine the
15687 address increment value corresponding to special opcode
15688 255. I.e., this value is scaled by the minimum
15689 instruction length since special opcode 255 would have
15690 scaled the increment. */
15691 case DW_LNS_const_add_pc:
15692 {
15693 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15694
15695 address += (((op_index + adjust)
15696 / lh->maximum_ops_per_instruction)
15697 * lh->minimum_instruction_length);
15698 op_index = ((op_index + adjust)
15699 % lh->maximum_ops_per_instruction);
15700 }
15701 break;
15702 case DW_LNS_fixed_advance_pc:
15703 address += read_2_bytes (abfd, line_ptr);
15704 op_index = 0;
15705 line_ptr += 2;
15706 break;
15707 default:
15708 {
15709 /* Unknown standard opcode, ignore it. */
15710 int i;
15711
15712 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15713 {
15714 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15715 line_ptr += bytes_read;
15716 }
15717 }
15718 }
15719 }
15720 if (lh->num_file_names < file || file == 0)
15721 dwarf2_debug_line_missing_file_complaint ();
15722 else
15723 {
15724 lh->file_names[file - 1].included_p = 1;
15725 if (!decode_for_pst_p)
15726 {
15727 addr = gdbarch_addr_bits_remove (gdbarch, address);
15728 (*p_record_line) (current_subfile, 0, addr);
15729 }
15730 }
15731 }
15732 }
15733
15734 /* Decode the Line Number Program (LNP) for the given line_header
15735 structure and CU. The actual information extracted and the type
15736 of structures created from the LNP depends on the value of PST.
15737
15738 1. If PST is NULL, then this procedure uses the data from the program
15739 to create all necessary symbol tables, and their linetables.
15740
15741 2. If PST is not NULL, this procedure reads the program to determine
15742 the list of files included by the unit represented by PST, and
15743 builds all the associated partial symbol tables.
15744
15745 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15746 It is used for relative paths in the line table.
15747 NOTE: When processing partial symtabs (pst != NULL),
15748 comp_dir == pst->dirname.
15749
15750 NOTE: It is important that psymtabs have the same file name (via strcmp)
15751 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15752 symtab we don't use it in the name of the psymtabs we create.
15753 E.g. expand_line_sal requires this when finding psymtabs to expand.
15754 A good testcase for this is mb-inline.exp. */
15755
15756 static void
15757 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15758 struct dwarf2_cu *cu, struct partial_symtab *pst,
15759 int want_line_info)
15760 {
15761 struct objfile *objfile = cu->objfile;
15762 const int decode_for_pst_p = (pst != NULL);
15763 struct subfile *first_subfile = current_subfile;
15764
15765 if (want_line_info)
15766 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15767
15768 if (decode_for_pst_p)
15769 {
15770 int file_index;
15771
15772 /* Now that we're done scanning the Line Header Program, we can
15773 create the psymtab of each included file. */
15774 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15775 if (lh->file_names[file_index].included_p == 1)
15776 {
15777 const char *include_name =
15778 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15779 if (include_name != NULL)
15780 dwarf2_create_include_psymtab (include_name, pst, objfile);
15781 }
15782 }
15783 else
15784 {
15785 /* Make sure a symtab is created for every file, even files
15786 which contain only variables (i.e. no code with associated
15787 line numbers). */
15788 int i;
15789
15790 for (i = 0; i < lh->num_file_names; i++)
15791 {
15792 const char *dir = NULL;
15793 struct file_entry *fe;
15794
15795 fe = &lh->file_names[i];
15796 if (fe->dir_index)
15797 dir = lh->include_dirs[fe->dir_index - 1];
15798 dwarf2_start_subfile (fe->name, dir, comp_dir);
15799
15800 /* Skip the main file; we don't need it, and it must be
15801 allocated last, so that it will show up before the
15802 non-primary symtabs in the objfile's symtab list. */
15803 if (current_subfile == first_subfile)
15804 continue;
15805
15806 if (current_subfile->symtab == NULL)
15807 current_subfile->symtab = allocate_symtab (current_subfile->name,
15808 objfile);
15809 fe->symtab = current_subfile->symtab;
15810 }
15811 }
15812 }
15813
15814 /* Start a subfile for DWARF. FILENAME is the name of the file and
15815 DIRNAME the name of the source directory which contains FILENAME
15816 or NULL if not known. COMP_DIR is the compilation directory for the
15817 linetable's compilation unit or NULL if not known.
15818 This routine tries to keep line numbers from identical absolute and
15819 relative file names in a common subfile.
15820
15821 Using the `list' example from the GDB testsuite, which resides in
15822 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15823 of /srcdir/list0.c yields the following debugging information for list0.c:
15824
15825 DW_AT_name: /srcdir/list0.c
15826 DW_AT_comp_dir: /compdir
15827 files.files[0].name: list0.h
15828 files.files[0].dir: /srcdir
15829 files.files[1].name: list0.c
15830 files.files[1].dir: /srcdir
15831
15832 The line number information for list0.c has to end up in a single
15833 subfile, so that `break /srcdir/list0.c:1' works as expected.
15834 start_subfile will ensure that this happens provided that we pass the
15835 concatenation of files.files[1].dir and files.files[1].name as the
15836 subfile's name. */
15837
15838 static void
15839 dwarf2_start_subfile (const char *filename, const char *dirname,
15840 const char *comp_dir)
15841 {
15842 char *copy = NULL;
15843
15844 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15845 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15846 second argument to start_subfile. To be consistent, we do the
15847 same here. In order not to lose the line information directory,
15848 we concatenate it to the filename when it makes sense.
15849 Note that the Dwarf3 standard says (speaking of filenames in line
15850 information): ``The directory index is ignored for file names
15851 that represent full path names''. Thus ignoring dirname in the
15852 `else' branch below isn't an issue. */
15853
15854 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15855 {
15856 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15857 filename = copy;
15858 }
15859
15860 start_subfile (filename, comp_dir);
15861
15862 if (copy != NULL)
15863 xfree (copy);
15864 }
15865
15866 /* Start a symtab for DWARF.
15867 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15868
15869 static void
15870 dwarf2_start_symtab (struct dwarf2_cu *cu,
15871 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15872 {
15873 start_symtab (name, comp_dir, low_pc);
15874 record_debugformat ("DWARF 2");
15875 record_producer (cu->producer);
15876
15877 /* We assume that we're processing GCC output. */
15878 processing_gcc_compilation = 2;
15879
15880 cu->processing_has_namespace_info = 0;
15881 }
15882
15883 static void
15884 var_decode_location (struct attribute *attr, struct symbol *sym,
15885 struct dwarf2_cu *cu)
15886 {
15887 struct objfile *objfile = cu->objfile;
15888 struct comp_unit_head *cu_header = &cu->header;
15889
15890 /* NOTE drow/2003-01-30: There used to be a comment and some special
15891 code here to turn a symbol with DW_AT_external and a
15892 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15893 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15894 with some versions of binutils) where shared libraries could have
15895 relocations against symbols in their debug information - the
15896 minimal symbol would have the right address, but the debug info
15897 would not. It's no longer necessary, because we will explicitly
15898 apply relocations when we read in the debug information now. */
15899
15900 /* A DW_AT_location attribute with no contents indicates that a
15901 variable has been optimized away. */
15902 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15903 {
15904 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15905 return;
15906 }
15907
15908 /* Handle one degenerate form of location expression specially, to
15909 preserve GDB's previous behavior when section offsets are
15910 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15911 then mark this symbol as LOC_STATIC. */
15912
15913 if (attr_form_is_block (attr)
15914 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15915 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15916 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15917 && (DW_BLOCK (attr)->size
15918 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15919 {
15920 unsigned int dummy;
15921
15922 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15923 SYMBOL_VALUE_ADDRESS (sym) =
15924 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15925 else
15926 SYMBOL_VALUE_ADDRESS (sym) =
15927 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15928 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
15929 fixup_symbol_section (sym, objfile);
15930 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15931 SYMBOL_SECTION (sym));
15932 return;
15933 }
15934
15935 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15936 expression evaluator, and use LOC_COMPUTED only when necessary
15937 (i.e. when the value of a register or memory location is
15938 referenced, or a thread-local block, etc.). Then again, it might
15939 not be worthwhile. I'm assuming that it isn't unless performance
15940 or memory numbers show me otherwise. */
15941
15942 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
15943
15944 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
15945 cu->has_loclist = 1;
15946 }
15947
15948 /* Given a pointer to a DWARF information entry, figure out if we need
15949 to make a symbol table entry for it, and if so, create a new entry
15950 and return a pointer to it.
15951 If TYPE is NULL, determine symbol type from the die, otherwise
15952 used the passed type.
15953 If SPACE is not NULL, use it to hold the new symbol. If it is
15954 NULL, allocate a new symbol on the objfile's obstack. */
15955
15956 static struct symbol *
15957 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15958 struct symbol *space)
15959 {
15960 struct objfile *objfile = cu->objfile;
15961 struct symbol *sym = NULL;
15962 const char *name;
15963 struct attribute *attr = NULL;
15964 struct attribute *attr2 = NULL;
15965 CORE_ADDR baseaddr;
15966 struct pending **list_to_add = NULL;
15967
15968 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15969
15970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15971
15972 name = dwarf2_name (die, cu);
15973 if (name)
15974 {
15975 const char *linkagename;
15976 int suppress_add = 0;
15977
15978 if (space)
15979 sym = space;
15980 else
15981 sym = allocate_symbol (objfile);
15982 OBJSTAT (objfile, n_syms++);
15983
15984 /* Cache this symbol's name and the name's demangled form (if any). */
15985 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
15986 linkagename = dwarf2_physname (name, die, cu);
15987 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15988
15989 /* Fortran does not have mangling standard and the mangling does differ
15990 between gfortran, iFort etc. */
15991 if (cu->language == language_fortran
15992 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15993 symbol_set_demangled_name (&(sym->ginfo),
15994 dwarf2_full_name (name, die, cu),
15995 NULL);
15996
15997 /* Default assumptions.
15998 Use the passed type or decode it from the die. */
15999 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16000 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16001 if (type != NULL)
16002 SYMBOL_TYPE (sym) = type;
16003 else
16004 SYMBOL_TYPE (sym) = die_type (die, cu);
16005 attr = dwarf2_attr (die,
16006 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16007 cu);
16008 if (attr)
16009 {
16010 SYMBOL_LINE (sym) = DW_UNSND (attr);
16011 }
16012
16013 attr = dwarf2_attr (die,
16014 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16015 cu);
16016 if (attr)
16017 {
16018 int file_index = DW_UNSND (attr);
16019
16020 if (cu->line_header == NULL
16021 || file_index > cu->line_header->num_file_names)
16022 complaint (&symfile_complaints,
16023 _("file index out of range"));
16024 else if (file_index > 0)
16025 {
16026 struct file_entry *fe;
16027
16028 fe = &cu->line_header->file_names[file_index - 1];
16029 SYMBOL_SYMTAB (sym) = fe->symtab;
16030 }
16031 }
16032
16033 switch (die->tag)
16034 {
16035 case DW_TAG_label:
16036 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16037 if (attr)
16038 {
16039 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16040 }
16041 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16042 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16043 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16044 add_symbol_to_list (sym, cu->list_in_scope);
16045 break;
16046 case DW_TAG_subprogram:
16047 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16048 finish_block. */
16049 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16050 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16051 if ((attr2 && (DW_UNSND (attr2) != 0))
16052 || cu->language == language_ada)
16053 {
16054 /* Subprograms marked external are stored as a global symbol.
16055 Ada subprograms, whether marked external or not, are always
16056 stored as a global symbol, because we want to be able to
16057 access them globally. For instance, we want to be able
16058 to break on a nested subprogram without having to
16059 specify the context. */
16060 list_to_add = &global_symbols;
16061 }
16062 else
16063 {
16064 list_to_add = cu->list_in_scope;
16065 }
16066 break;
16067 case DW_TAG_inlined_subroutine:
16068 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16069 finish_block. */
16070 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16071 SYMBOL_INLINED (sym) = 1;
16072 list_to_add = cu->list_in_scope;
16073 break;
16074 case DW_TAG_template_value_param:
16075 suppress_add = 1;
16076 /* Fall through. */
16077 case DW_TAG_constant:
16078 case DW_TAG_variable:
16079 case DW_TAG_member:
16080 /* Compilation with minimal debug info may result in
16081 variables with missing type entries. Change the
16082 misleading `void' type to something sensible. */
16083 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16084 SYMBOL_TYPE (sym)
16085 = objfile_type (objfile)->nodebug_data_symbol;
16086
16087 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16088 /* In the case of DW_TAG_member, we should only be called for
16089 static const members. */
16090 if (die->tag == DW_TAG_member)
16091 {
16092 /* dwarf2_add_field uses die_is_declaration,
16093 so we do the same. */
16094 gdb_assert (die_is_declaration (die, cu));
16095 gdb_assert (attr);
16096 }
16097 if (attr)
16098 {
16099 dwarf2_const_value (attr, sym, cu);
16100 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16101 if (!suppress_add)
16102 {
16103 if (attr2 && (DW_UNSND (attr2) != 0))
16104 list_to_add = &global_symbols;
16105 else
16106 list_to_add = cu->list_in_scope;
16107 }
16108 break;
16109 }
16110 attr = dwarf2_attr (die, DW_AT_location, cu);
16111 if (attr)
16112 {
16113 var_decode_location (attr, sym, cu);
16114 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16115
16116 /* Fortran explicitly imports any global symbols to the local
16117 scope by DW_TAG_common_block. */
16118 if (cu->language == language_fortran && die->parent
16119 && die->parent->tag == DW_TAG_common_block)
16120 attr2 = NULL;
16121
16122 if (SYMBOL_CLASS (sym) == LOC_STATIC
16123 && SYMBOL_VALUE_ADDRESS (sym) == 0
16124 && !dwarf2_per_objfile->has_section_at_zero)
16125 {
16126 /* When a static variable is eliminated by the linker,
16127 the corresponding debug information is not stripped
16128 out, but the variable address is set to null;
16129 do not add such variables into symbol table. */
16130 }
16131 else if (attr2 && (DW_UNSND (attr2) != 0))
16132 {
16133 /* Workaround gfortran PR debug/40040 - it uses
16134 DW_AT_location for variables in -fPIC libraries which may
16135 get overriden by other libraries/executable and get
16136 a different address. Resolve it by the minimal symbol
16137 which may come from inferior's executable using copy
16138 relocation. Make this workaround only for gfortran as for
16139 other compilers GDB cannot guess the minimal symbol
16140 Fortran mangling kind. */
16141 if (cu->language == language_fortran && die->parent
16142 && die->parent->tag == DW_TAG_module
16143 && cu->producer
16144 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16145 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16146
16147 /* A variable with DW_AT_external is never static,
16148 but it may be block-scoped. */
16149 list_to_add = (cu->list_in_scope == &file_symbols
16150 ? &global_symbols : cu->list_in_scope);
16151 }
16152 else
16153 list_to_add = cu->list_in_scope;
16154 }
16155 else
16156 {
16157 /* We do not know the address of this symbol.
16158 If it is an external symbol and we have type information
16159 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16160 The address of the variable will then be determined from
16161 the minimal symbol table whenever the variable is
16162 referenced. */
16163 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16164
16165 /* Fortran explicitly imports any global symbols to the local
16166 scope by DW_TAG_common_block. */
16167 if (cu->language == language_fortran && die->parent
16168 && die->parent->tag == DW_TAG_common_block)
16169 {
16170 /* SYMBOL_CLASS doesn't matter here because
16171 read_common_block is going to reset it. */
16172 if (!suppress_add)
16173 list_to_add = cu->list_in_scope;
16174 }
16175 else if (attr2 && (DW_UNSND (attr2) != 0)
16176 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16177 {
16178 /* A variable with DW_AT_external is never static, but it
16179 may be block-scoped. */
16180 list_to_add = (cu->list_in_scope == &file_symbols
16181 ? &global_symbols : cu->list_in_scope);
16182
16183 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16184 }
16185 else if (!die_is_declaration (die, cu))
16186 {
16187 /* Use the default LOC_OPTIMIZED_OUT class. */
16188 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16189 if (!suppress_add)
16190 list_to_add = cu->list_in_scope;
16191 }
16192 }
16193 break;
16194 case DW_TAG_formal_parameter:
16195 /* If we are inside a function, mark this as an argument. If
16196 not, we might be looking at an argument to an inlined function
16197 when we do not have enough information to show inlined frames;
16198 pretend it's a local variable in that case so that the user can
16199 still see it. */
16200 if (context_stack_depth > 0
16201 && context_stack[context_stack_depth - 1].name != NULL)
16202 SYMBOL_IS_ARGUMENT (sym) = 1;
16203 attr = dwarf2_attr (die, DW_AT_location, cu);
16204 if (attr)
16205 {
16206 var_decode_location (attr, sym, cu);
16207 }
16208 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16209 if (attr)
16210 {
16211 dwarf2_const_value (attr, sym, cu);
16212 }
16213
16214 list_to_add = cu->list_in_scope;
16215 break;
16216 case DW_TAG_unspecified_parameters:
16217 /* From varargs functions; gdb doesn't seem to have any
16218 interest in this information, so just ignore it for now.
16219 (FIXME?) */
16220 break;
16221 case DW_TAG_template_type_param:
16222 suppress_add = 1;
16223 /* Fall through. */
16224 case DW_TAG_class_type:
16225 case DW_TAG_interface_type:
16226 case DW_TAG_structure_type:
16227 case DW_TAG_union_type:
16228 case DW_TAG_set_type:
16229 case DW_TAG_enumeration_type:
16230 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16231 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16232
16233 {
16234 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16235 really ever be static objects: otherwise, if you try
16236 to, say, break of a class's method and you're in a file
16237 which doesn't mention that class, it won't work unless
16238 the check for all static symbols in lookup_symbol_aux
16239 saves you. See the OtherFileClass tests in
16240 gdb.c++/namespace.exp. */
16241
16242 if (!suppress_add)
16243 {
16244 list_to_add = (cu->list_in_scope == &file_symbols
16245 && (cu->language == language_cplus
16246 || cu->language == language_java)
16247 ? &global_symbols : cu->list_in_scope);
16248
16249 /* The semantics of C++ state that "struct foo {
16250 ... }" also defines a typedef for "foo". A Java
16251 class declaration also defines a typedef for the
16252 class. */
16253 if (cu->language == language_cplus
16254 || cu->language == language_java
16255 || cu->language == language_ada)
16256 {
16257 /* The symbol's name is already allocated along
16258 with this objfile, so we don't need to
16259 duplicate it for the type. */
16260 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16261 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16262 }
16263 }
16264 }
16265 break;
16266 case DW_TAG_typedef:
16267 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16268 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16269 list_to_add = cu->list_in_scope;
16270 break;
16271 case DW_TAG_base_type:
16272 case DW_TAG_subrange_type:
16273 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16274 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16275 list_to_add = cu->list_in_scope;
16276 break;
16277 case DW_TAG_enumerator:
16278 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16279 if (attr)
16280 {
16281 dwarf2_const_value (attr, sym, cu);
16282 }
16283 {
16284 /* NOTE: carlton/2003-11-10: See comment above in the
16285 DW_TAG_class_type, etc. block. */
16286
16287 list_to_add = (cu->list_in_scope == &file_symbols
16288 && (cu->language == language_cplus
16289 || cu->language == language_java)
16290 ? &global_symbols : cu->list_in_scope);
16291 }
16292 break;
16293 case DW_TAG_namespace:
16294 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16295 list_to_add = &global_symbols;
16296 break;
16297 case DW_TAG_common_block:
16298 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16299 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16300 add_symbol_to_list (sym, cu->list_in_scope);
16301 break;
16302 default:
16303 /* Not a tag we recognize. Hopefully we aren't processing
16304 trash data, but since we must specifically ignore things
16305 we don't recognize, there is nothing else we should do at
16306 this point. */
16307 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16308 dwarf_tag_name (die->tag));
16309 break;
16310 }
16311
16312 if (suppress_add)
16313 {
16314 sym->hash_next = objfile->template_symbols;
16315 objfile->template_symbols = sym;
16316 list_to_add = NULL;
16317 }
16318
16319 if (list_to_add != NULL)
16320 add_symbol_to_list (sym, list_to_add);
16321
16322 /* For the benefit of old versions of GCC, check for anonymous
16323 namespaces based on the demangled name. */
16324 if (!cu->processing_has_namespace_info
16325 && cu->language == language_cplus)
16326 cp_scan_for_anonymous_namespaces (sym, objfile);
16327 }
16328 return (sym);
16329 }
16330
16331 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16332
16333 static struct symbol *
16334 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16335 {
16336 return new_symbol_full (die, type, cu, NULL);
16337 }
16338
16339 /* Given an attr with a DW_FORM_dataN value in host byte order,
16340 zero-extend it as appropriate for the symbol's type. The DWARF
16341 standard (v4) is not entirely clear about the meaning of using
16342 DW_FORM_dataN for a constant with a signed type, where the type is
16343 wider than the data. The conclusion of a discussion on the DWARF
16344 list was that this is unspecified. We choose to always zero-extend
16345 because that is the interpretation long in use by GCC. */
16346
16347 static gdb_byte *
16348 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16349 const char *name, struct obstack *obstack,
16350 struct dwarf2_cu *cu, LONGEST *value, int bits)
16351 {
16352 struct objfile *objfile = cu->objfile;
16353 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16354 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16355 LONGEST l = DW_UNSND (attr);
16356
16357 if (bits < sizeof (*value) * 8)
16358 {
16359 l &= ((LONGEST) 1 << bits) - 1;
16360 *value = l;
16361 }
16362 else if (bits == sizeof (*value) * 8)
16363 *value = l;
16364 else
16365 {
16366 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16367 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16368 return bytes;
16369 }
16370
16371 return NULL;
16372 }
16373
16374 /* Read a constant value from an attribute. Either set *VALUE, or if
16375 the value does not fit in *VALUE, set *BYTES - either already
16376 allocated on the objfile obstack, or newly allocated on OBSTACK,
16377 or, set *BATON, if we translated the constant to a location
16378 expression. */
16379
16380 static void
16381 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16382 const char *name, struct obstack *obstack,
16383 struct dwarf2_cu *cu,
16384 LONGEST *value, const gdb_byte **bytes,
16385 struct dwarf2_locexpr_baton **baton)
16386 {
16387 struct objfile *objfile = cu->objfile;
16388 struct comp_unit_head *cu_header = &cu->header;
16389 struct dwarf_block *blk;
16390 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16391 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16392
16393 *value = 0;
16394 *bytes = NULL;
16395 *baton = NULL;
16396
16397 switch (attr->form)
16398 {
16399 case DW_FORM_addr:
16400 case DW_FORM_GNU_addr_index:
16401 {
16402 gdb_byte *data;
16403
16404 if (TYPE_LENGTH (type) != cu_header->addr_size)
16405 dwarf2_const_value_length_mismatch_complaint (name,
16406 cu_header->addr_size,
16407 TYPE_LENGTH (type));
16408 /* Symbols of this form are reasonably rare, so we just
16409 piggyback on the existing location code rather than writing
16410 a new implementation of symbol_computed_ops. */
16411 *baton = obstack_alloc (&objfile->objfile_obstack,
16412 sizeof (struct dwarf2_locexpr_baton));
16413 (*baton)->per_cu = cu->per_cu;
16414 gdb_assert ((*baton)->per_cu);
16415
16416 (*baton)->size = 2 + cu_header->addr_size;
16417 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16418 (*baton)->data = data;
16419
16420 data[0] = DW_OP_addr;
16421 store_unsigned_integer (&data[1], cu_header->addr_size,
16422 byte_order, DW_ADDR (attr));
16423 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16424 }
16425 break;
16426 case DW_FORM_string:
16427 case DW_FORM_strp:
16428 case DW_FORM_GNU_str_index:
16429 case DW_FORM_GNU_strp_alt:
16430 /* DW_STRING is already allocated on the objfile obstack, point
16431 directly to it. */
16432 *bytes = (const gdb_byte *) DW_STRING (attr);
16433 break;
16434 case DW_FORM_block1:
16435 case DW_FORM_block2:
16436 case DW_FORM_block4:
16437 case DW_FORM_block:
16438 case DW_FORM_exprloc:
16439 blk = DW_BLOCK (attr);
16440 if (TYPE_LENGTH (type) != blk->size)
16441 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16442 TYPE_LENGTH (type));
16443 *bytes = blk->data;
16444 break;
16445
16446 /* The DW_AT_const_value attributes are supposed to carry the
16447 symbol's value "represented as it would be on the target
16448 architecture." By the time we get here, it's already been
16449 converted to host endianness, so we just need to sign- or
16450 zero-extend it as appropriate. */
16451 case DW_FORM_data1:
16452 *bytes = dwarf2_const_value_data (attr, type, name,
16453 obstack, cu, value, 8);
16454 break;
16455 case DW_FORM_data2:
16456 *bytes = dwarf2_const_value_data (attr, type, name,
16457 obstack, cu, value, 16);
16458 break;
16459 case DW_FORM_data4:
16460 *bytes = dwarf2_const_value_data (attr, type, name,
16461 obstack, cu, value, 32);
16462 break;
16463 case DW_FORM_data8:
16464 *bytes = dwarf2_const_value_data (attr, type, name,
16465 obstack, cu, value, 64);
16466 break;
16467
16468 case DW_FORM_sdata:
16469 *value = DW_SND (attr);
16470 break;
16471
16472 case DW_FORM_udata:
16473 *value = DW_UNSND (attr);
16474 break;
16475
16476 default:
16477 complaint (&symfile_complaints,
16478 _("unsupported const value attribute form: '%s'"),
16479 dwarf_form_name (attr->form));
16480 *value = 0;
16481 break;
16482 }
16483 }
16484
16485
16486 /* Copy constant value from an attribute to a symbol. */
16487
16488 static void
16489 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16490 struct dwarf2_cu *cu)
16491 {
16492 struct objfile *objfile = cu->objfile;
16493 struct comp_unit_head *cu_header = &cu->header;
16494 LONGEST value;
16495 const gdb_byte *bytes;
16496 struct dwarf2_locexpr_baton *baton;
16497
16498 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16499 SYMBOL_PRINT_NAME (sym),
16500 &objfile->objfile_obstack, cu,
16501 &value, &bytes, &baton);
16502
16503 if (baton != NULL)
16504 {
16505 SYMBOL_LOCATION_BATON (sym) = baton;
16506 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16507 }
16508 else if (bytes != NULL)
16509 {
16510 SYMBOL_VALUE_BYTES (sym) = bytes;
16511 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16512 }
16513 else
16514 {
16515 SYMBOL_VALUE (sym) = value;
16516 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16517 }
16518 }
16519
16520 /* Return the type of the die in question using its DW_AT_type attribute. */
16521
16522 static struct type *
16523 die_type (struct die_info *die, struct dwarf2_cu *cu)
16524 {
16525 struct attribute *type_attr;
16526
16527 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16528 if (!type_attr)
16529 {
16530 /* A missing DW_AT_type represents a void type. */
16531 return objfile_type (cu->objfile)->builtin_void;
16532 }
16533
16534 return lookup_die_type (die, type_attr, cu);
16535 }
16536
16537 /* True iff CU's producer generates GNAT Ada auxiliary information
16538 that allows to find parallel types through that information instead
16539 of having to do expensive parallel lookups by type name. */
16540
16541 static int
16542 need_gnat_info (struct dwarf2_cu *cu)
16543 {
16544 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16545 of GNAT produces this auxiliary information, without any indication
16546 that it is produced. Part of enhancing the FSF version of GNAT
16547 to produce that information will be to put in place an indicator
16548 that we can use in order to determine whether the descriptive type
16549 info is available or not. One suggestion that has been made is
16550 to use a new attribute, attached to the CU die. For now, assume
16551 that the descriptive type info is not available. */
16552 return 0;
16553 }
16554
16555 /* Return the auxiliary type of the die in question using its
16556 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16557 attribute is not present. */
16558
16559 static struct type *
16560 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16561 {
16562 struct attribute *type_attr;
16563
16564 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16565 if (!type_attr)
16566 return NULL;
16567
16568 return lookup_die_type (die, type_attr, cu);
16569 }
16570
16571 /* If DIE has a descriptive_type attribute, then set the TYPE's
16572 descriptive type accordingly. */
16573
16574 static void
16575 set_descriptive_type (struct type *type, struct die_info *die,
16576 struct dwarf2_cu *cu)
16577 {
16578 struct type *descriptive_type = die_descriptive_type (die, cu);
16579
16580 if (descriptive_type)
16581 {
16582 ALLOCATE_GNAT_AUX_TYPE (type);
16583 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16584 }
16585 }
16586
16587 /* Return the containing type of the die in question using its
16588 DW_AT_containing_type attribute. */
16589
16590 static struct type *
16591 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16592 {
16593 struct attribute *type_attr;
16594
16595 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16596 if (!type_attr)
16597 error (_("Dwarf Error: Problem turning containing type into gdb type "
16598 "[in module %s]"), cu->objfile->name);
16599
16600 return lookup_die_type (die, type_attr, cu);
16601 }
16602
16603 /* Return an error marker type to use for the ill formed type in DIE/CU. */
16604
16605 static struct type *
16606 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
16607 {
16608 struct objfile *objfile = dwarf2_per_objfile->objfile;
16609 char *message, *saved;
16610
16611 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16612 objfile->name,
16613 cu->header.offset.sect_off,
16614 die->offset.sect_off);
16615 saved = obstack_copy0 (&objfile->objfile_obstack,
16616 message, strlen (message));
16617 xfree (message);
16618
16619 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16620 }
16621
16622 /* Look up the type of DIE in CU using its type attribute ATTR.
16623 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
16624 DW_AT_containing_type.
16625 If there is no type substitute an error marker. */
16626
16627 static struct type *
16628 lookup_die_type (struct die_info *die, struct attribute *attr,
16629 struct dwarf2_cu *cu)
16630 {
16631 struct objfile *objfile = cu->objfile;
16632 struct type *this_type;
16633
16634 gdb_assert (attr->name == DW_AT_type
16635 || attr->name == DW_AT_GNAT_descriptive_type
16636 || attr->name == DW_AT_containing_type);
16637
16638 /* First see if we have it cached. */
16639
16640 if (attr->form == DW_FORM_GNU_ref_alt)
16641 {
16642 struct dwarf2_per_cu_data *per_cu;
16643 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16644
16645 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16646 this_type = get_die_type_at_offset (offset, per_cu);
16647 }
16648 else if (is_ref_attr (attr))
16649 {
16650 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16651
16652 this_type = get_die_type_at_offset (offset, cu->per_cu);
16653 }
16654 else if (attr->form == DW_FORM_ref_sig8)
16655 {
16656 ULONGEST signature = DW_SIGNATURE (attr);
16657
16658 return get_signatured_type (die, signature, cu);
16659 }
16660 else
16661 {
16662 complaint (&symfile_complaints,
16663 _("Dwarf Error: Bad type attribute %s in DIE"
16664 " at 0x%x [in module %s]"),
16665 dwarf_attr_name (attr->name), die->offset.sect_off,
16666 objfile->name);
16667 return build_error_marker_type (cu, die);
16668 }
16669
16670 /* If not cached we need to read it in. */
16671
16672 if (this_type == NULL)
16673 {
16674 struct die_info *type_die = NULL;
16675 struct dwarf2_cu *type_cu = cu;
16676
16677 if (is_ref_attr (attr))
16678 type_die = follow_die_ref (die, attr, &type_cu);
16679 if (type_die == NULL)
16680 return build_error_marker_type (cu, die);
16681 /* If we find the type now, it's probably because the type came
16682 from an inter-CU reference and the type's CU got expanded before
16683 ours. */
16684 this_type = read_type_die (type_die, type_cu);
16685 }
16686
16687 /* If we still don't have a type use an error marker. */
16688
16689 if (this_type == NULL)
16690 return build_error_marker_type (cu, die);
16691
16692 return this_type;
16693 }
16694
16695 /* Return the type in DIE, CU.
16696 Returns NULL for invalid types.
16697
16698 This first does a lookup in die_type_hash,
16699 and only reads the die in if necessary.
16700
16701 NOTE: This can be called when reading in partial or full symbols. */
16702
16703 static struct type *
16704 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16705 {
16706 struct type *this_type;
16707
16708 this_type = get_die_type (die, cu);
16709 if (this_type)
16710 return this_type;
16711
16712 return read_type_die_1 (die, cu);
16713 }
16714
16715 /* Read the type in DIE, CU.
16716 Returns NULL for invalid types. */
16717
16718 static struct type *
16719 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16720 {
16721 struct type *this_type = NULL;
16722
16723 switch (die->tag)
16724 {
16725 case DW_TAG_class_type:
16726 case DW_TAG_interface_type:
16727 case DW_TAG_structure_type:
16728 case DW_TAG_union_type:
16729 this_type = read_structure_type (die, cu);
16730 break;
16731 case DW_TAG_enumeration_type:
16732 this_type = read_enumeration_type (die, cu);
16733 break;
16734 case DW_TAG_subprogram:
16735 case DW_TAG_subroutine_type:
16736 case DW_TAG_inlined_subroutine:
16737 this_type = read_subroutine_type (die, cu);
16738 break;
16739 case DW_TAG_array_type:
16740 this_type = read_array_type (die, cu);
16741 break;
16742 case DW_TAG_set_type:
16743 this_type = read_set_type (die, cu);
16744 break;
16745 case DW_TAG_pointer_type:
16746 this_type = read_tag_pointer_type (die, cu);
16747 break;
16748 case DW_TAG_ptr_to_member_type:
16749 this_type = read_tag_ptr_to_member_type (die, cu);
16750 break;
16751 case DW_TAG_reference_type:
16752 this_type = read_tag_reference_type (die, cu);
16753 break;
16754 case DW_TAG_const_type:
16755 this_type = read_tag_const_type (die, cu);
16756 break;
16757 case DW_TAG_volatile_type:
16758 this_type = read_tag_volatile_type (die, cu);
16759 break;
16760 case DW_TAG_restrict_type:
16761 this_type = read_tag_restrict_type (die, cu);
16762 break;
16763 case DW_TAG_string_type:
16764 this_type = read_tag_string_type (die, cu);
16765 break;
16766 case DW_TAG_typedef:
16767 this_type = read_typedef (die, cu);
16768 break;
16769 case DW_TAG_subrange_type:
16770 this_type = read_subrange_type (die, cu);
16771 break;
16772 case DW_TAG_base_type:
16773 this_type = read_base_type (die, cu);
16774 break;
16775 case DW_TAG_unspecified_type:
16776 this_type = read_unspecified_type (die, cu);
16777 break;
16778 case DW_TAG_namespace:
16779 this_type = read_namespace_type (die, cu);
16780 break;
16781 case DW_TAG_module:
16782 this_type = read_module_type (die, cu);
16783 break;
16784 default:
16785 complaint (&symfile_complaints,
16786 _("unexpected tag in read_type_die: '%s'"),
16787 dwarf_tag_name (die->tag));
16788 break;
16789 }
16790
16791 return this_type;
16792 }
16793
16794 /* See if we can figure out if the class lives in a namespace. We do
16795 this by looking for a member function; its demangled name will
16796 contain namespace info, if there is any.
16797 Return the computed name or NULL.
16798 Space for the result is allocated on the objfile's obstack.
16799 This is the full-die version of guess_partial_die_structure_name.
16800 In this case we know DIE has no useful parent. */
16801
16802 static char *
16803 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16804 {
16805 struct die_info *spec_die;
16806 struct dwarf2_cu *spec_cu;
16807 struct die_info *child;
16808
16809 spec_cu = cu;
16810 spec_die = die_specification (die, &spec_cu);
16811 if (spec_die != NULL)
16812 {
16813 die = spec_die;
16814 cu = spec_cu;
16815 }
16816
16817 for (child = die->child;
16818 child != NULL;
16819 child = child->sibling)
16820 {
16821 if (child->tag == DW_TAG_subprogram)
16822 {
16823 struct attribute *attr;
16824
16825 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16826 if (attr == NULL)
16827 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16828 if (attr != NULL)
16829 {
16830 char *actual_name
16831 = language_class_name_from_physname (cu->language_defn,
16832 DW_STRING (attr));
16833 char *name = NULL;
16834
16835 if (actual_name != NULL)
16836 {
16837 const char *die_name = dwarf2_name (die, cu);
16838
16839 if (die_name != NULL
16840 && strcmp (die_name, actual_name) != 0)
16841 {
16842 /* Strip off the class name from the full name.
16843 We want the prefix. */
16844 int die_name_len = strlen (die_name);
16845 int actual_name_len = strlen (actual_name);
16846
16847 /* Test for '::' as a sanity check. */
16848 if (actual_name_len > die_name_len + 2
16849 && actual_name[actual_name_len
16850 - die_name_len - 1] == ':')
16851 name =
16852 obstack_copy0 (&cu->objfile->objfile_obstack,
16853 actual_name,
16854 actual_name_len - die_name_len - 2);
16855 }
16856 }
16857 xfree (actual_name);
16858 return name;
16859 }
16860 }
16861 }
16862
16863 return NULL;
16864 }
16865
16866 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16867 prefix part in such case. See
16868 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16869
16870 static char *
16871 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16872 {
16873 struct attribute *attr;
16874 char *base;
16875
16876 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16877 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16878 return NULL;
16879
16880 attr = dwarf2_attr (die, DW_AT_name, cu);
16881 if (attr != NULL && DW_STRING (attr) != NULL)
16882 return NULL;
16883
16884 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16885 if (attr == NULL)
16886 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16887 if (attr == NULL || DW_STRING (attr) == NULL)
16888 return NULL;
16889
16890 /* dwarf2_name had to be already called. */
16891 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16892
16893 /* Strip the base name, keep any leading namespaces/classes. */
16894 base = strrchr (DW_STRING (attr), ':');
16895 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16896 return "";
16897
16898 return obstack_copy0 (&cu->objfile->objfile_obstack,
16899 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16900 }
16901
16902 /* Return the name of the namespace/class that DIE is defined within,
16903 or "" if we can't tell. The caller should not xfree the result.
16904
16905 For example, if we're within the method foo() in the following
16906 code:
16907
16908 namespace N {
16909 class C {
16910 void foo () {
16911 }
16912 };
16913 }
16914
16915 then determine_prefix on foo's die will return "N::C". */
16916
16917 static const char *
16918 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16919 {
16920 struct die_info *parent, *spec_die;
16921 struct dwarf2_cu *spec_cu;
16922 struct type *parent_type;
16923 char *retval;
16924
16925 if (cu->language != language_cplus && cu->language != language_java
16926 && cu->language != language_fortran)
16927 return "";
16928
16929 retval = anonymous_struct_prefix (die, cu);
16930 if (retval)
16931 return retval;
16932
16933 /* We have to be careful in the presence of DW_AT_specification.
16934 For example, with GCC 3.4, given the code
16935
16936 namespace N {
16937 void foo() {
16938 // Definition of N::foo.
16939 }
16940 }
16941
16942 then we'll have a tree of DIEs like this:
16943
16944 1: DW_TAG_compile_unit
16945 2: DW_TAG_namespace // N
16946 3: DW_TAG_subprogram // declaration of N::foo
16947 4: DW_TAG_subprogram // definition of N::foo
16948 DW_AT_specification // refers to die #3
16949
16950 Thus, when processing die #4, we have to pretend that we're in
16951 the context of its DW_AT_specification, namely the contex of die
16952 #3. */
16953 spec_cu = cu;
16954 spec_die = die_specification (die, &spec_cu);
16955 if (spec_die == NULL)
16956 parent = die->parent;
16957 else
16958 {
16959 parent = spec_die->parent;
16960 cu = spec_cu;
16961 }
16962
16963 if (parent == NULL)
16964 return "";
16965 else if (parent->building_fullname)
16966 {
16967 const char *name;
16968 const char *parent_name;
16969
16970 /* It has been seen on RealView 2.2 built binaries,
16971 DW_TAG_template_type_param types actually _defined_ as
16972 children of the parent class:
16973
16974 enum E {};
16975 template class <class Enum> Class{};
16976 Class<enum E> class_e;
16977
16978 1: DW_TAG_class_type (Class)
16979 2: DW_TAG_enumeration_type (E)
16980 3: DW_TAG_enumerator (enum1:0)
16981 3: DW_TAG_enumerator (enum2:1)
16982 ...
16983 2: DW_TAG_template_type_param
16984 DW_AT_type DW_FORM_ref_udata (E)
16985
16986 Besides being broken debug info, it can put GDB into an
16987 infinite loop. Consider:
16988
16989 When we're building the full name for Class<E>, we'll start
16990 at Class, and go look over its template type parameters,
16991 finding E. We'll then try to build the full name of E, and
16992 reach here. We're now trying to build the full name of E,
16993 and look over the parent DIE for containing scope. In the
16994 broken case, if we followed the parent DIE of E, we'd again
16995 find Class, and once again go look at its template type
16996 arguments, etc., etc. Simply don't consider such parent die
16997 as source-level parent of this die (it can't be, the language
16998 doesn't allow it), and break the loop here. */
16999 name = dwarf2_name (die, cu);
17000 parent_name = dwarf2_name (parent, cu);
17001 complaint (&symfile_complaints,
17002 _("template param type '%s' defined within parent '%s'"),
17003 name ? name : "<unknown>",
17004 parent_name ? parent_name : "<unknown>");
17005 return "";
17006 }
17007 else
17008 switch (parent->tag)
17009 {
17010 case DW_TAG_namespace:
17011 parent_type = read_type_die (parent, cu);
17012 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17013 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17014 Work around this problem here. */
17015 if (cu->language == language_cplus
17016 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17017 return "";
17018 /* We give a name to even anonymous namespaces. */
17019 return TYPE_TAG_NAME (parent_type);
17020 case DW_TAG_class_type:
17021 case DW_TAG_interface_type:
17022 case DW_TAG_structure_type:
17023 case DW_TAG_union_type:
17024 case DW_TAG_module:
17025 parent_type = read_type_die (parent, cu);
17026 if (TYPE_TAG_NAME (parent_type) != NULL)
17027 return TYPE_TAG_NAME (parent_type);
17028 else
17029 /* An anonymous structure is only allowed non-static data
17030 members; no typedefs, no member functions, et cetera.
17031 So it does not need a prefix. */
17032 return "";
17033 case DW_TAG_compile_unit:
17034 case DW_TAG_partial_unit:
17035 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17036 if (cu->language == language_cplus
17037 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17038 && die->child != NULL
17039 && (die->tag == DW_TAG_class_type
17040 || die->tag == DW_TAG_structure_type
17041 || die->tag == DW_TAG_union_type))
17042 {
17043 char *name = guess_full_die_structure_name (die, cu);
17044 if (name != NULL)
17045 return name;
17046 }
17047 return "";
17048 default:
17049 return determine_prefix (parent, cu);
17050 }
17051 }
17052
17053 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17054 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17055 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17056 an obconcat, otherwise allocate storage for the result. The CU argument is
17057 used to determine the language and hence, the appropriate separator. */
17058
17059 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17060
17061 static char *
17062 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17063 int physname, struct dwarf2_cu *cu)
17064 {
17065 const char *lead = "";
17066 const char *sep;
17067
17068 if (suffix == NULL || suffix[0] == '\0'
17069 || prefix == NULL || prefix[0] == '\0')
17070 sep = "";
17071 else if (cu->language == language_java)
17072 sep = ".";
17073 else if (cu->language == language_fortran && physname)
17074 {
17075 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17076 DW_AT_MIPS_linkage_name is preferred and used instead. */
17077
17078 lead = "__";
17079 sep = "_MOD_";
17080 }
17081 else
17082 sep = "::";
17083
17084 if (prefix == NULL)
17085 prefix = "";
17086 if (suffix == NULL)
17087 suffix = "";
17088
17089 if (obs == NULL)
17090 {
17091 char *retval
17092 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17093
17094 strcpy (retval, lead);
17095 strcat (retval, prefix);
17096 strcat (retval, sep);
17097 strcat (retval, suffix);
17098 return retval;
17099 }
17100 else
17101 {
17102 /* We have an obstack. */
17103 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17104 }
17105 }
17106
17107 /* Return sibling of die, NULL if no sibling. */
17108
17109 static struct die_info *
17110 sibling_die (struct die_info *die)
17111 {
17112 return die->sibling;
17113 }
17114
17115 /* Get name of a die, return NULL if not found. */
17116
17117 static const char *
17118 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17119 struct obstack *obstack)
17120 {
17121 if (name && cu->language == language_cplus)
17122 {
17123 char *canon_name = cp_canonicalize_string (name);
17124
17125 if (canon_name != NULL)
17126 {
17127 if (strcmp (canon_name, name) != 0)
17128 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17129 xfree (canon_name);
17130 }
17131 }
17132
17133 return name;
17134 }
17135
17136 /* Get name of a die, return NULL if not found. */
17137
17138 static const char *
17139 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17140 {
17141 struct attribute *attr;
17142
17143 attr = dwarf2_attr (die, DW_AT_name, cu);
17144 if ((!attr || !DW_STRING (attr))
17145 && die->tag != DW_TAG_class_type
17146 && die->tag != DW_TAG_interface_type
17147 && die->tag != DW_TAG_structure_type
17148 && die->tag != DW_TAG_union_type)
17149 return NULL;
17150
17151 switch (die->tag)
17152 {
17153 case DW_TAG_compile_unit:
17154 case DW_TAG_partial_unit:
17155 /* Compilation units have a DW_AT_name that is a filename, not
17156 a source language identifier. */
17157 case DW_TAG_enumeration_type:
17158 case DW_TAG_enumerator:
17159 /* These tags always have simple identifiers already; no need
17160 to canonicalize them. */
17161 return DW_STRING (attr);
17162
17163 case DW_TAG_subprogram:
17164 /* Java constructors will all be named "<init>", so return
17165 the class name when we see this special case. */
17166 if (cu->language == language_java
17167 && DW_STRING (attr) != NULL
17168 && strcmp (DW_STRING (attr), "<init>") == 0)
17169 {
17170 struct dwarf2_cu *spec_cu = cu;
17171 struct die_info *spec_die;
17172
17173 /* GCJ will output '<init>' for Java constructor names.
17174 For this special case, return the name of the parent class. */
17175
17176 /* GCJ may output suprogram DIEs with AT_specification set.
17177 If so, use the name of the specified DIE. */
17178 spec_die = die_specification (die, &spec_cu);
17179 if (spec_die != NULL)
17180 return dwarf2_name (spec_die, spec_cu);
17181
17182 do
17183 {
17184 die = die->parent;
17185 if (die->tag == DW_TAG_class_type)
17186 return dwarf2_name (die, cu);
17187 }
17188 while (die->tag != DW_TAG_compile_unit
17189 && die->tag != DW_TAG_partial_unit);
17190 }
17191 break;
17192
17193 case DW_TAG_class_type:
17194 case DW_TAG_interface_type:
17195 case DW_TAG_structure_type:
17196 case DW_TAG_union_type:
17197 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17198 structures or unions. These were of the form "._%d" in GCC 4.1,
17199 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17200 and GCC 4.4. We work around this problem by ignoring these. */
17201 if (attr && DW_STRING (attr)
17202 && (strncmp (DW_STRING (attr), "._", 2) == 0
17203 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17204 return NULL;
17205
17206 /* GCC might emit a nameless typedef that has a linkage name. See
17207 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17208 if (!attr || DW_STRING (attr) == NULL)
17209 {
17210 char *demangled = NULL;
17211
17212 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17213 if (attr == NULL)
17214 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17215
17216 if (attr == NULL || DW_STRING (attr) == NULL)
17217 return NULL;
17218
17219 /* Avoid demangling DW_STRING (attr) the second time on a second
17220 call for the same DIE. */
17221 if (!DW_STRING_IS_CANONICAL (attr))
17222 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17223
17224 if (demangled)
17225 {
17226 char *base;
17227
17228 /* FIXME: we already did this for the partial symbol... */
17229 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17230 demangled, strlen (demangled));
17231 DW_STRING_IS_CANONICAL (attr) = 1;
17232 xfree (demangled);
17233
17234 /* Strip any leading namespaces/classes, keep only the base name.
17235 DW_AT_name for named DIEs does not contain the prefixes. */
17236 base = strrchr (DW_STRING (attr), ':');
17237 if (base && base > DW_STRING (attr) && base[-1] == ':')
17238 return &base[1];
17239 else
17240 return DW_STRING (attr);
17241 }
17242 }
17243 break;
17244
17245 default:
17246 break;
17247 }
17248
17249 if (!DW_STRING_IS_CANONICAL (attr))
17250 {
17251 DW_STRING (attr)
17252 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17253 &cu->objfile->objfile_obstack);
17254 DW_STRING_IS_CANONICAL (attr) = 1;
17255 }
17256 return DW_STRING (attr);
17257 }
17258
17259 /* Return the die that this die in an extension of, or NULL if there
17260 is none. *EXT_CU is the CU containing DIE on input, and the CU
17261 containing the return value on output. */
17262
17263 static struct die_info *
17264 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17265 {
17266 struct attribute *attr;
17267
17268 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17269 if (attr == NULL)
17270 return NULL;
17271
17272 return follow_die_ref (die, attr, ext_cu);
17273 }
17274
17275 /* Convert a DIE tag into its string name. */
17276
17277 static const char *
17278 dwarf_tag_name (unsigned tag)
17279 {
17280 const char *name = get_DW_TAG_name (tag);
17281
17282 if (name == NULL)
17283 return "DW_TAG_<unknown>";
17284
17285 return name;
17286 }
17287
17288 /* Convert a DWARF attribute code into its string name. */
17289
17290 static const char *
17291 dwarf_attr_name (unsigned attr)
17292 {
17293 const char *name;
17294
17295 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17296 if (attr == DW_AT_MIPS_fde)
17297 return "DW_AT_MIPS_fde";
17298 #else
17299 if (attr == DW_AT_HP_block_index)
17300 return "DW_AT_HP_block_index";
17301 #endif
17302
17303 name = get_DW_AT_name (attr);
17304
17305 if (name == NULL)
17306 return "DW_AT_<unknown>";
17307
17308 return name;
17309 }
17310
17311 /* Convert a DWARF value form code into its string name. */
17312
17313 static const char *
17314 dwarf_form_name (unsigned form)
17315 {
17316 const char *name = get_DW_FORM_name (form);
17317
17318 if (name == NULL)
17319 return "DW_FORM_<unknown>";
17320
17321 return name;
17322 }
17323
17324 static char *
17325 dwarf_bool_name (unsigned mybool)
17326 {
17327 if (mybool)
17328 return "TRUE";
17329 else
17330 return "FALSE";
17331 }
17332
17333 /* Convert a DWARF type code into its string name. */
17334
17335 static const char *
17336 dwarf_type_encoding_name (unsigned enc)
17337 {
17338 const char *name = get_DW_ATE_name (enc);
17339
17340 if (name == NULL)
17341 return "DW_ATE_<unknown>";
17342
17343 return name;
17344 }
17345
17346 static void
17347 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17348 {
17349 unsigned int i;
17350
17351 print_spaces (indent, f);
17352 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17353 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17354
17355 if (die->parent != NULL)
17356 {
17357 print_spaces (indent, f);
17358 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17359 die->parent->offset.sect_off);
17360 }
17361
17362 print_spaces (indent, f);
17363 fprintf_unfiltered (f, " has children: %s\n",
17364 dwarf_bool_name (die->child != NULL));
17365
17366 print_spaces (indent, f);
17367 fprintf_unfiltered (f, " attributes:\n");
17368
17369 for (i = 0; i < die->num_attrs; ++i)
17370 {
17371 print_spaces (indent, f);
17372 fprintf_unfiltered (f, " %s (%s) ",
17373 dwarf_attr_name (die->attrs[i].name),
17374 dwarf_form_name (die->attrs[i].form));
17375
17376 switch (die->attrs[i].form)
17377 {
17378 case DW_FORM_addr:
17379 case DW_FORM_GNU_addr_index:
17380 fprintf_unfiltered (f, "address: ");
17381 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17382 break;
17383 case DW_FORM_block2:
17384 case DW_FORM_block4:
17385 case DW_FORM_block:
17386 case DW_FORM_block1:
17387 fprintf_unfiltered (f, "block: size %s",
17388 pulongest (DW_BLOCK (&die->attrs[i])->size));
17389 break;
17390 case DW_FORM_exprloc:
17391 fprintf_unfiltered (f, "expression: size %s",
17392 pulongest (DW_BLOCK (&die->attrs[i])->size));
17393 break;
17394 case DW_FORM_ref_addr:
17395 fprintf_unfiltered (f, "ref address: ");
17396 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17397 break;
17398 case DW_FORM_GNU_ref_alt:
17399 fprintf_unfiltered (f, "alt ref address: ");
17400 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17401 break;
17402 case DW_FORM_ref1:
17403 case DW_FORM_ref2:
17404 case DW_FORM_ref4:
17405 case DW_FORM_ref8:
17406 case DW_FORM_ref_udata:
17407 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17408 (long) (DW_UNSND (&die->attrs[i])));
17409 break;
17410 case DW_FORM_data1:
17411 case DW_FORM_data2:
17412 case DW_FORM_data4:
17413 case DW_FORM_data8:
17414 case DW_FORM_udata:
17415 case DW_FORM_sdata:
17416 fprintf_unfiltered (f, "constant: %s",
17417 pulongest (DW_UNSND (&die->attrs[i])));
17418 break;
17419 case DW_FORM_sec_offset:
17420 fprintf_unfiltered (f, "section offset: %s",
17421 pulongest (DW_UNSND (&die->attrs[i])));
17422 break;
17423 case DW_FORM_ref_sig8:
17424 fprintf_unfiltered (f, "signature: %s",
17425 hex_string (DW_SIGNATURE (&die->attrs[i])));
17426 break;
17427 case DW_FORM_string:
17428 case DW_FORM_strp:
17429 case DW_FORM_GNU_str_index:
17430 case DW_FORM_GNU_strp_alt:
17431 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17432 DW_STRING (&die->attrs[i])
17433 ? DW_STRING (&die->attrs[i]) : "",
17434 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17435 break;
17436 case DW_FORM_flag:
17437 if (DW_UNSND (&die->attrs[i]))
17438 fprintf_unfiltered (f, "flag: TRUE");
17439 else
17440 fprintf_unfiltered (f, "flag: FALSE");
17441 break;
17442 case DW_FORM_flag_present:
17443 fprintf_unfiltered (f, "flag: TRUE");
17444 break;
17445 case DW_FORM_indirect:
17446 /* The reader will have reduced the indirect form to
17447 the "base form" so this form should not occur. */
17448 fprintf_unfiltered (f,
17449 "unexpected attribute form: DW_FORM_indirect");
17450 break;
17451 default:
17452 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17453 die->attrs[i].form);
17454 break;
17455 }
17456 fprintf_unfiltered (f, "\n");
17457 }
17458 }
17459
17460 static void
17461 dump_die_for_error (struct die_info *die)
17462 {
17463 dump_die_shallow (gdb_stderr, 0, die);
17464 }
17465
17466 static void
17467 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17468 {
17469 int indent = level * 4;
17470
17471 gdb_assert (die != NULL);
17472
17473 if (level >= max_level)
17474 return;
17475
17476 dump_die_shallow (f, indent, die);
17477
17478 if (die->child != NULL)
17479 {
17480 print_spaces (indent, f);
17481 fprintf_unfiltered (f, " Children:");
17482 if (level + 1 < max_level)
17483 {
17484 fprintf_unfiltered (f, "\n");
17485 dump_die_1 (f, level + 1, max_level, die->child);
17486 }
17487 else
17488 {
17489 fprintf_unfiltered (f,
17490 " [not printed, max nesting level reached]\n");
17491 }
17492 }
17493
17494 if (die->sibling != NULL && level > 0)
17495 {
17496 dump_die_1 (f, level, max_level, die->sibling);
17497 }
17498 }
17499
17500 /* This is called from the pdie macro in gdbinit.in.
17501 It's not static so gcc will keep a copy callable from gdb. */
17502
17503 void
17504 dump_die (struct die_info *die, int max_level)
17505 {
17506 dump_die_1 (gdb_stdlog, 0, max_level, die);
17507 }
17508
17509 static void
17510 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17511 {
17512 void **slot;
17513
17514 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17515 INSERT);
17516
17517 *slot = die;
17518 }
17519
17520 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17521 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17522
17523 static int
17524 is_ref_attr (struct attribute *attr)
17525 {
17526 switch (attr->form)
17527 {
17528 case DW_FORM_ref_addr:
17529 case DW_FORM_ref1:
17530 case DW_FORM_ref2:
17531 case DW_FORM_ref4:
17532 case DW_FORM_ref8:
17533 case DW_FORM_ref_udata:
17534 case DW_FORM_GNU_ref_alt:
17535 return 1;
17536 default:
17537 return 0;
17538 }
17539 }
17540
17541 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17542 required kind. */
17543
17544 static sect_offset
17545 dwarf2_get_ref_die_offset (struct attribute *attr)
17546 {
17547 sect_offset retval = { DW_UNSND (attr) };
17548
17549 if (is_ref_attr (attr))
17550 return retval;
17551
17552 retval.sect_off = 0;
17553 complaint (&symfile_complaints,
17554 _("unsupported die ref attribute form: '%s'"),
17555 dwarf_form_name (attr->form));
17556 return retval;
17557 }
17558
17559 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17560 * the value held by the attribute is not constant. */
17561
17562 static LONGEST
17563 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17564 {
17565 if (attr->form == DW_FORM_sdata)
17566 return DW_SND (attr);
17567 else if (attr->form == DW_FORM_udata
17568 || attr->form == DW_FORM_data1
17569 || attr->form == DW_FORM_data2
17570 || attr->form == DW_FORM_data4
17571 || attr->form == DW_FORM_data8)
17572 return DW_UNSND (attr);
17573 else
17574 {
17575 complaint (&symfile_complaints,
17576 _("Attribute value is not a constant (%s)"),
17577 dwarf_form_name (attr->form));
17578 return default_value;
17579 }
17580 }
17581
17582 /* Follow reference or signature attribute ATTR of SRC_DIE.
17583 On entry *REF_CU is the CU of SRC_DIE.
17584 On exit *REF_CU is the CU of the result. */
17585
17586 static struct die_info *
17587 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17588 struct dwarf2_cu **ref_cu)
17589 {
17590 struct die_info *die;
17591
17592 if (is_ref_attr (attr))
17593 die = follow_die_ref (src_die, attr, ref_cu);
17594 else if (attr->form == DW_FORM_ref_sig8)
17595 die = follow_die_sig (src_die, attr, ref_cu);
17596 else
17597 {
17598 dump_die_for_error (src_die);
17599 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17600 (*ref_cu)->objfile->name);
17601 }
17602
17603 return die;
17604 }
17605
17606 /* Follow reference OFFSET.
17607 On entry *REF_CU is the CU of the source die referencing OFFSET.
17608 On exit *REF_CU is the CU of the result.
17609 Returns NULL if OFFSET is invalid. */
17610
17611 static struct die_info *
17612 follow_die_offset (sect_offset offset, int offset_in_dwz,
17613 struct dwarf2_cu **ref_cu)
17614 {
17615 struct die_info temp_die;
17616 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17617
17618 gdb_assert (cu->per_cu != NULL);
17619
17620 target_cu = cu;
17621
17622 if (cu->per_cu->is_debug_types)
17623 {
17624 /* .debug_types CUs cannot reference anything outside their CU.
17625 If they need to, they have to reference a signatured type via
17626 DW_FORM_ref_sig8. */
17627 if (! offset_in_cu_p (&cu->header, offset))
17628 return NULL;
17629 }
17630 else if (offset_in_dwz != cu->per_cu->is_dwz
17631 || ! offset_in_cu_p (&cu->header, offset))
17632 {
17633 struct dwarf2_per_cu_data *per_cu;
17634
17635 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17636 cu->objfile);
17637
17638 /* If necessary, add it to the queue and load its DIEs. */
17639 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17640 load_full_comp_unit (per_cu, cu->language);
17641
17642 target_cu = per_cu->cu;
17643 }
17644 else if (cu->dies == NULL)
17645 {
17646 /* We're loading full DIEs during partial symbol reading. */
17647 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17648 load_full_comp_unit (cu->per_cu, language_minimal);
17649 }
17650
17651 *ref_cu = target_cu;
17652 temp_die.offset = offset;
17653 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17654 }
17655
17656 /* Follow reference attribute ATTR of SRC_DIE.
17657 On entry *REF_CU is the CU of SRC_DIE.
17658 On exit *REF_CU is the CU of the result. */
17659
17660 static struct die_info *
17661 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17662 struct dwarf2_cu **ref_cu)
17663 {
17664 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17665 struct dwarf2_cu *cu = *ref_cu;
17666 struct die_info *die;
17667
17668 die = follow_die_offset (offset,
17669 (attr->form == DW_FORM_GNU_ref_alt
17670 || cu->per_cu->is_dwz),
17671 ref_cu);
17672 if (!die)
17673 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17674 "at 0x%x [in module %s]"),
17675 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17676
17677 return die;
17678 }
17679
17680 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17681 Returned value is intended for DW_OP_call*. Returned
17682 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17683
17684 struct dwarf2_locexpr_baton
17685 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17686 struct dwarf2_per_cu_data *per_cu,
17687 CORE_ADDR (*get_frame_pc) (void *baton),
17688 void *baton)
17689 {
17690 struct dwarf2_cu *cu;
17691 struct die_info *die;
17692 struct attribute *attr;
17693 struct dwarf2_locexpr_baton retval;
17694
17695 dw2_setup (per_cu->objfile);
17696
17697 if (per_cu->cu == NULL)
17698 load_cu (per_cu);
17699 cu = per_cu->cu;
17700
17701 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17702 if (!die)
17703 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17704 offset.sect_off, per_cu->objfile->name);
17705
17706 attr = dwarf2_attr (die, DW_AT_location, cu);
17707 if (!attr)
17708 {
17709 /* DWARF: "If there is no such attribute, then there is no effect.".
17710 DATA is ignored if SIZE is 0. */
17711
17712 retval.data = NULL;
17713 retval.size = 0;
17714 }
17715 else if (attr_form_is_section_offset (attr))
17716 {
17717 struct dwarf2_loclist_baton loclist_baton;
17718 CORE_ADDR pc = (*get_frame_pc) (baton);
17719 size_t size;
17720
17721 fill_in_loclist_baton (cu, &loclist_baton, attr);
17722
17723 retval.data = dwarf2_find_location_expression (&loclist_baton,
17724 &size, pc);
17725 retval.size = size;
17726 }
17727 else
17728 {
17729 if (!attr_form_is_block (attr))
17730 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17731 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17732 offset.sect_off, per_cu->objfile->name);
17733
17734 retval.data = DW_BLOCK (attr)->data;
17735 retval.size = DW_BLOCK (attr)->size;
17736 }
17737 retval.per_cu = cu->per_cu;
17738
17739 age_cached_comp_units ();
17740
17741 return retval;
17742 }
17743
17744 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17745 offset. */
17746
17747 struct dwarf2_locexpr_baton
17748 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17749 struct dwarf2_per_cu_data *per_cu,
17750 CORE_ADDR (*get_frame_pc) (void *baton),
17751 void *baton)
17752 {
17753 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17754
17755 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17756 }
17757
17758 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17759 PER_CU. */
17760
17761 struct type *
17762 dwarf2_get_die_type (cu_offset die_offset,
17763 struct dwarf2_per_cu_data *per_cu)
17764 {
17765 sect_offset die_offset_sect;
17766
17767 dw2_setup (per_cu->objfile);
17768
17769 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17770 return get_die_type_at_offset (die_offset_sect, per_cu);
17771 }
17772
17773 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
17774 On entry *REF_CU is the CU of SRC_DIE.
17775 On exit *REF_CU is the CU of the result.
17776 Returns NULL if the referenced DIE isn't found. */
17777
17778 static struct die_info *
17779 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
17780 struct dwarf2_cu **ref_cu)
17781 {
17782 struct objfile *objfile = (*ref_cu)->objfile;
17783 struct die_info temp_die;
17784 struct dwarf2_cu *sig_cu;
17785 struct die_info *die;
17786
17787 /* While it might be nice to assert sig_type->type == NULL here,
17788 we can get here for DW_AT_imported_declaration where we need
17789 the DIE not the type. */
17790
17791 /* If necessary, add it to the queue and load its DIEs. */
17792
17793 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17794 read_signatured_type (sig_type);
17795
17796 gdb_assert (sig_type->per_cu.cu != NULL);
17797
17798 sig_cu = sig_type->per_cu.cu;
17799 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17800 temp_die.offset = sig_type->type_offset_in_section;
17801 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17802 temp_die.offset.sect_off);
17803 if (die)
17804 {
17805 /* For .gdb_index version 7 keep track of included TUs.
17806 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17807 if (dwarf2_per_objfile->index_table != NULL
17808 && dwarf2_per_objfile->index_table->version <= 7)
17809 {
17810 VEC_safe_push (dwarf2_per_cu_ptr,
17811 (*ref_cu)->per_cu->imported_symtabs,
17812 sig_cu->per_cu);
17813 }
17814
17815 *ref_cu = sig_cu;
17816 return die;
17817 }
17818
17819 return NULL;
17820 }
17821
17822 /* Follow signatured type referenced by ATTR in SRC_DIE.
17823 On entry *REF_CU is the CU of SRC_DIE.
17824 On exit *REF_CU is the CU of the result.
17825 The result is the DIE of the type.
17826 If the referenced type cannot be found an error is thrown. */
17827
17828 static struct die_info *
17829 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17830 struct dwarf2_cu **ref_cu)
17831 {
17832 ULONGEST signature = DW_SIGNATURE (attr);
17833 struct signatured_type *sig_type;
17834 struct die_info *die;
17835
17836 gdb_assert (attr->form == DW_FORM_ref_sig8);
17837
17838 sig_type = lookup_signatured_type (signature);
17839 /* sig_type will be NULL if the signatured type is missing from
17840 the debug info. */
17841 if (sig_type == NULL)
17842 {
17843 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
17844 " from DIE at 0x%x [in module %s]"),
17845 hex_string (signature), src_die->offset.sect_off,
17846 (*ref_cu)->objfile->name);
17847 }
17848
17849 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
17850 if (die == NULL)
17851 {
17852 dump_die_for_error (src_die);
17853 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
17854 " from DIE at 0x%x [in module %s]"),
17855 hex_string (signature), src_die->offset.sect_off,
17856 (*ref_cu)->objfile->name);
17857 }
17858
17859 return die;
17860 }
17861
17862 /* Get the type specified by SIGNATURE referenced in DIE/CU,
17863 reading in and processing the type unit if necessary. */
17864
17865 static struct type *
17866 get_signatured_type (struct die_info *die, ULONGEST signature,
17867 struct dwarf2_cu *cu)
17868 {
17869 struct signatured_type *sig_type;
17870 struct dwarf2_cu *type_cu;
17871 struct die_info *type_die;
17872 struct type *type;
17873
17874 sig_type = lookup_signatured_type (signature);
17875 /* sig_type will be NULL if the signatured type is missing from
17876 the debug info. */
17877 if (sig_type == NULL)
17878 {
17879 complaint (&symfile_complaints,
17880 _("Dwarf Error: Cannot find signatured DIE %s referenced"
17881 " from DIE at 0x%x [in module %s]"),
17882 hex_string (signature), die->offset.sect_off,
17883 dwarf2_per_objfile->objfile->name);
17884 return build_error_marker_type (cu, die);
17885 }
17886
17887 /* If we already know the type we're done. */
17888 if (sig_type->type != NULL)
17889 return sig_type->type;
17890
17891 type_cu = cu;
17892 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
17893 if (type_die != NULL)
17894 {
17895 /* N.B. We need to call get_die_type to ensure only one type for this DIE
17896 is created. This is important, for example, because for c++ classes
17897 we need TYPE_NAME set which is only done by new_symbol. Blech. */
17898 type = read_type_die (type_die, type_cu);
17899 if (type == NULL)
17900 {
17901 complaint (&symfile_complaints,
17902 _("Dwarf Error: Cannot build signatured type %s"
17903 " referenced from DIE at 0x%x [in module %s]"),
17904 hex_string (signature), die->offset.sect_off,
17905 dwarf2_per_objfile->objfile->name);
17906 type = build_error_marker_type (cu, die);
17907 }
17908 }
17909 else
17910 {
17911 complaint (&symfile_complaints,
17912 _("Dwarf Error: Problem reading signatured DIE %s referenced"
17913 " from DIE at 0x%x [in module %s]"),
17914 hex_string (signature), die->offset.sect_off,
17915 dwarf2_per_objfile->objfile->name);
17916 type = build_error_marker_type (cu, die);
17917 }
17918 sig_type->type = type;
17919
17920 return type;
17921 }
17922
17923 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
17924 reading in and processing the type unit if necessary. */
17925
17926 static struct type *
17927 get_DW_AT_signature_type /* ARI: editCase */
17928 (struct die_info *die, struct attribute *attr, struct dwarf2_cu *cu)
17929 {
17930 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
17931 if (is_ref_attr (attr))
17932 {
17933 struct dwarf2_cu *type_cu = cu;
17934 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
17935
17936 return read_type_die (type_die, type_cu);
17937 }
17938 else if (attr->form == DW_FORM_ref_sig8)
17939 {
17940 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
17941 }
17942 else
17943 {
17944 complaint (&symfile_complaints,
17945 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
17946 " at 0x%x [in module %s]"),
17947 dwarf_form_name (attr->form), die->offset.sect_off,
17948 dwarf2_per_objfile->objfile->name);
17949 return build_error_marker_type (cu, die);
17950 }
17951 }
17952
17953 /* Load the DIEs associated with type unit PER_CU into memory. */
17954
17955 static void
17956 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17957 {
17958 struct signatured_type *sig_type;
17959
17960 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17961 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17962
17963 /* We have the per_cu, but we need the signatured_type.
17964 Fortunately this is an easy translation. */
17965 gdb_assert (per_cu->is_debug_types);
17966 sig_type = (struct signatured_type *) per_cu;
17967
17968 gdb_assert (per_cu->cu == NULL);
17969
17970 read_signatured_type (sig_type);
17971
17972 gdb_assert (per_cu->cu != NULL);
17973 }
17974
17975 /* die_reader_func for read_signatured_type.
17976 This is identical to load_full_comp_unit_reader,
17977 but is kept separate for now. */
17978
17979 static void
17980 read_signatured_type_reader (const struct die_reader_specs *reader,
17981 const gdb_byte *info_ptr,
17982 struct die_info *comp_unit_die,
17983 int has_children,
17984 void *data)
17985 {
17986 struct dwarf2_cu *cu = reader->cu;
17987
17988 gdb_assert (cu->die_hash == NULL);
17989 cu->die_hash =
17990 htab_create_alloc_ex (cu->header.length / 12,
17991 die_hash,
17992 die_eq,
17993 NULL,
17994 &cu->comp_unit_obstack,
17995 hashtab_obstack_allocate,
17996 dummy_obstack_deallocate);
17997
17998 if (has_children)
17999 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18000 &info_ptr, comp_unit_die);
18001 cu->dies = comp_unit_die;
18002 /* comp_unit_die is not stored in die_hash, no need. */
18003
18004 /* We try not to read any attributes in this function, because not
18005 all CUs needed for references have been loaded yet, and symbol
18006 table processing isn't initialized. But we have to set the CU language,
18007 or we won't be able to build types correctly.
18008 Similarly, if we do not read the producer, we can not apply
18009 producer-specific interpretation. */
18010 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18011 }
18012
18013 /* Read in a signatured type and build its CU and DIEs.
18014 If the type is a stub for the real type in a DWO file,
18015 read in the real type from the DWO file as well. */
18016
18017 static void
18018 read_signatured_type (struct signatured_type *sig_type)
18019 {
18020 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18021
18022 gdb_assert (per_cu->is_debug_types);
18023 gdb_assert (per_cu->cu == NULL);
18024
18025 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18026 read_signatured_type_reader, NULL);
18027 }
18028
18029 /* Decode simple location descriptions.
18030 Given a pointer to a dwarf block that defines a location, compute
18031 the location and return the value.
18032
18033 NOTE drow/2003-11-18: This function is called in two situations
18034 now: for the address of static or global variables (partial symbols
18035 only) and for offsets into structures which are expected to be
18036 (more or less) constant. The partial symbol case should go away,
18037 and only the constant case should remain. That will let this
18038 function complain more accurately. A few special modes are allowed
18039 without complaint for global variables (for instance, global
18040 register values and thread-local values).
18041
18042 A location description containing no operations indicates that the
18043 object is optimized out. The return value is 0 for that case.
18044 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18045 callers will only want a very basic result and this can become a
18046 complaint.
18047
18048 Note that stack[0] is unused except as a default error return. */
18049
18050 static CORE_ADDR
18051 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18052 {
18053 struct objfile *objfile = cu->objfile;
18054 size_t i;
18055 size_t size = blk->size;
18056 const gdb_byte *data = blk->data;
18057 CORE_ADDR stack[64];
18058 int stacki;
18059 unsigned int bytes_read, unsnd;
18060 gdb_byte op;
18061
18062 i = 0;
18063 stacki = 0;
18064 stack[stacki] = 0;
18065 stack[++stacki] = 0;
18066
18067 while (i < size)
18068 {
18069 op = data[i++];
18070 switch (op)
18071 {
18072 case DW_OP_lit0:
18073 case DW_OP_lit1:
18074 case DW_OP_lit2:
18075 case DW_OP_lit3:
18076 case DW_OP_lit4:
18077 case DW_OP_lit5:
18078 case DW_OP_lit6:
18079 case DW_OP_lit7:
18080 case DW_OP_lit8:
18081 case DW_OP_lit9:
18082 case DW_OP_lit10:
18083 case DW_OP_lit11:
18084 case DW_OP_lit12:
18085 case DW_OP_lit13:
18086 case DW_OP_lit14:
18087 case DW_OP_lit15:
18088 case DW_OP_lit16:
18089 case DW_OP_lit17:
18090 case DW_OP_lit18:
18091 case DW_OP_lit19:
18092 case DW_OP_lit20:
18093 case DW_OP_lit21:
18094 case DW_OP_lit22:
18095 case DW_OP_lit23:
18096 case DW_OP_lit24:
18097 case DW_OP_lit25:
18098 case DW_OP_lit26:
18099 case DW_OP_lit27:
18100 case DW_OP_lit28:
18101 case DW_OP_lit29:
18102 case DW_OP_lit30:
18103 case DW_OP_lit31:
18104 stack[++stacki] = op - DW_OP_lit0;
18105 break;
18106
18107 case DW_OP_reg0:
18108 case DW_OP_reg1:
18109 case DW_OP_reg2:
18110 case DW_OP_reg3:
18111 case DW_OP_reg4:
18112 case DW_OP_reg5:
18113 case DW_OP_reg6:
18114 case DW_OP_reg7:
18115 case DW_OP_reg8:
18116 case DW_OP_reg9:
18117 case DW_OP_reg10:
18118 case DW_OP_reg11:
18119 case DW_OP_reg12:
18120 case DW_OP_reg13:
18121 case DW_OP_reg14:
18122 case DW_OP_reg15:
18123 case DW_OP_reg16:
18124 case DW_OP_reg17:
18125 case DW_OP_reg18:
18126 case DW_OP_reg19:
18127 case DW_OP_reg20:
18128 case DW_OP_reg21:
18129 case DW_OP_reg22:
18130 case DW_OP_reg23:
18131 case DW_OP_reg24:
18132 case DW_OP_reg25:
18133 case DW_OP_reg26:
18134 case DW_OP_reg27:
18135 case DW_OP_reg28:
18136 case DW_OP_reg29:
18137 case DW_OP_reg30:
18138 case DW_OP_reg31:
18139 stack[++stacki] = op - DW_OP_reg0;
18140 if (i < size)
18141 dwarf2_complex_location_expr_complaint ();
18142 break;
18143
18144 case DW_OP_regx:
18145 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18146 i += bytes_read;
18147 stack[++stacki] = unsnd;
18148 if (i < size)
18149 dwarf2_complex_location_expr_complaint ();
18150 break;
18151
18152 case DW_OP_addr:
18153 stack[++stacki] = read_address (objfile->obfd, &data[i],
18154 cu, &bytes_read);
18155 i += bytes_read;
18156 break;
18157
18158 case DW_OP_const1u:
18159 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18160 i += 1;
18161 break;
18162
18163 case DW_OP_const1s:
18164 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18165 i += 1;
18166 break;
18167
18168 case DW_OP_const2u:
18169 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18170 i += 2;
18171 break;
18172
18173 case DW_OP_const2s:
18174 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18175 i += 2;
18176 break;
18177
18178 case DW_OP_const4u:
18179 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18180 i += 4;
18181 break;
18182
18183 case DW_OP_const4s:
18184 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18185 i += 4;
18186 break;
18187
18188 case DW_OP_const8u:
18189 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18190 i += 8;
18191 break;
18192
18193 case DW_OP_constu:
18194 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18195 &bytes_read);
18196 i += bytes_read;
18197 break;
18198
18199 case DW_OP_consts:
18200 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18201 i += bytes_read;
18202 break;
18203
18204 case DW_OP_dup:
18205 stack[stacki + 1] = stack[stacki];
18206 stacki++;
18207 break;
18208
18209 case DW_OP_plus:
18210 stack[stacki - 1] += stack[stacki];
18211 stacki--;
18212 break;
18213
18214 case DW_OP_plus_uconst:
18215 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18216 &bytes_read);
18217 i += bytes_read;
18218 break;
18219
18220 case DW_OP_minus:
18221 stack[stacki - 1] -= stack[stacki];
18222 stacki--;
18223 break;
18224
18225 case DW_OP_deref:
18226 /* If we're not the last op, then we definitely can't encode
18227 this using GDB's address_class enum. This is valid for partial
18228 global symbols, although the variable's address will be bogus
18229 in the psymtab. */
18230 if (i < size)
18231 dwarf2_complex_location_expr_complaint ();
18232 break;
18233
18234 case DW_OP_GNU_push_tls_address:
18235 /* The top of the stack has the offset from the beginning
18236 of the thread control block at which the variable is located. */
18237 /* Nothing should follow this operator, so the top of stack would
18238 be returned. */
18239 /* This is valid for partial global symbols, but the variable's
18240 address will be bogus in the psymtab. Make it always at least
18241 non-zero to not look as a variable garbage collected by linker
18242 which have DW_OP_addr 0. */
18243 if (i < size)
18244 dwarf2_complex_location_expr_complaint ();
18245 stack[stacki]++;
18246 break;
18247
18248 case DW_OP_GNU_uninit:
18249 break;
18250
18251 case DW_OP_GNU_addr_index:
18252 case DW_OP_GNU_const_index:
18253 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18254 &bytes_read);
18255 i += bytes_read;
18256 break;
18257
18258 default:
18259 {
18260 const char *name = get_DW_OP_name (op);
18261
18262 if (name)
18263 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18264 name);
18265 else
18266 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18267 op);
18268 }
18269
18270 return (stack[stacki]);
18271 }
18272
18273 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18274 outside of the allocated space. Also enforce minimum>0. */
18275 if (stacki >= ARRAY_SIZE (stack) - 1)
18276 {
18277 complaint (&symfile_complaints,
18278 _("location description stack overflow"));
18279 return 0;
18280 }
18281
18282 if (stacki <= 0)
18283 {
18284 complaint (&symfile_complaints,
18285 _("location description stack underflow"));
18286 return 0;
18287 }
18288 }
18289 return (stack[stacki]);
18290 }
18291
18292 /* memory allocation interface */
18293
18294 static struct dwarf_block *
18295 dwarf_alloc_block (struct dwarf2_cu *cu)
18296 {
18297 struct dwarf_block *blk;
18298
18299 blk = (struct dwarf_block *)
18300 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18301 return (blk);
18302 }
18303
18304 static struct die_info *
18305 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18306 {
18307 struct die_info *die;
18308 size_t size = sizeof (struct die_info);
18309
18310 if (num_attrs > 1)
18311 size += (num_attrs - 1) * sizeof (struct attribute);
18312
18313 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18314 memset (die, 0, sizeof (struct die_info));
18315 return (die);
18316 }
18317
18318 \f
18319 /* Macro support. */
18320
18321 /* Return file name relative to the compilation directory of file number I in
18322 *LH's file name table. The result is allocated using xmalloc; the caller is
18323 responsible for freeing it. */
18324
18325 static char *
18326 file_file_name (int file, struct line_header *lh)
18327 {
18328 /* Is the file number a valid index into the line header's file name
18329 table? Remember that file numbers start with one, not zero. */
18330 if (1 <= file && file <= lh->num_file_names)
18331 {
18332 struct file_entry *fe = &lh->file_names[file - 1];
18333
18334 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18335 return xstrdup (fe->name);
18336 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18337 fe->name, NULL);
18338 }
18339 else
18340 {
18341 /* The compiler produced a bogus file number. We can at least
18342 record the macro definitions made in the file, even if we
18343 won't be able to find the file by name. */
18344 char fake_name[80];
18345
18346 xsnprintf (fake_name, sizeof (fake_name),
18347 "<bad macro file number %d>", file);
18348
18349 complaint (&symfile_complaints,
18350 _("bad file number in macro information (%d)"),
18351 file);
18352
18353 return xstrdup (fake_name);
18354 }
18355 }
18356
18357 /* Return the full name of file number I in *LH's file name table.
18358 Use COMP_DIR as the name of the current directory of the
18359 compilation. The result is allocated using xmalloc; the caller is
18360 responsible for freeing it. */
18361 static char *
18362 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18363 {
18364 /* Is the file number a valid index into the line header's file name
18365 table? Remember that file numbers start with one, not zero. */
18366 if (1 <= file && file <= lh->num_file_names)
18367 {
18368 char *relative = file_file_name (file, lh);
18369
18370 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18371 return relative;
18372 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18373 }
18374 else
18375 return file_file_name (file, lh);
18376 }
18377
18378
18379 static struct macro_source_file *
18380 macro_start_file (int file, int line,
18381 struct macro_source_file *current_file,
18382 const char *comp_dir,
18383 struct line_header *lh, struct objfile *objfile)
18384 {
18385 /* File name relative to the compilation directory of this source file. */
18386 char *file_name = file_file_name (file, lh);
18387
18388 /* We don't create a macro table for this compilation unit
18389 at all until we actually get a filename. */
18390 if (! pending_macros)
18391 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18392 objfile->per_bfd->macro_cache,
18393 comp_dir);
18394
18395 if (! current_file)
18396 {
18397 /* If we have no current file, then this must be the start_file
18398 directive for the compilation unit's main source file. */
18399 current_file = macro_set_main (pending_macros, file_name);
18400 macro_define_special (pending_macros);
18401 }
18402 else
18403 current_file = macro_include (current_file, line, file_name);
18404
18405 xfree (file_name);
18406
18407 return current_file;
18408 }
18409
18410
18411 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18412 followed by a null byte. */
18413 static char *
18414 copy_string (const char *buf, int len)
18415 {
18416 char *s = xmalloc (len + 1);
18417
18418 memcpy (s, buf, len);
18419 s[len] = '\0';
18420 return s;
18421 }
18422
18423
18424 static const char *
18425 consume_improper_spaces (const char *p, const char *body)
18426 {
18427 if (*p == ' ')
18428 {
18429 complaint (&symfile_complaints,
18430 _("macro definition contains spaces "
18431 "in formal argument list:\n`%s'"),
18432 body);
18433
18434 while (*p == ' ')
18435 p++;
18436 }
18437
18438 return p;
18439 }
18440
18441
18442 static void
18443 parse_macro_definition (struct macro_source_file *file, int line,
18444 const char *body)
18445 {
18446 const char *p;
18447
18448 /* The body string takes one of two forms. For object-like macro
18449 definitions, it should be:
18450
18451 <macro name> " " <definition>
18452
18453 For function-like macro definitions, it should be:
18454
18455 <macro name> "() " <definition>
18456 or
18457 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18458
18459 Spaces may appear only where explicitly indicated, and in the
18460 <definition>.
18461
18462 The Dwarf 2 spec says that an object-like macro's name is always
18463 followed by a space, but versions of GCC around March 2002 omit
18464 the space when the macro's definition is the empty string.
18465
18466 The Dwarf 2 spec says that there should be no spaces between the
18467 formal arguments in a function-like macro's formal argument list,
18468 but versions of GCC around March 2002 include spaces after the
18469 commas. */
18470
18471
18472 /* Find the extent of the macro name. The macro name is terminated
18473 by either a space or null character (for an object-like macro) or
18474 an opening paren (for a function-like macro). */
18475 for (p = body; *p; p++)
18476 if (*p == ' ' || *p == '(')
18477 break;
18478
18479 if (*p == ' ' || *p == '\0')
18480 {
18481 /* It's an object-like macro. */
18482 int name_len = p - body;
18483 char *name = copy_string (body, name_len);
18484 const char *replacement;
18485
18486 if (*p == ' ')
18487 replacement = body + name_len + 1;
18488 else
18489 {
18490 dwarf2_macro_malformed_definition_complaint (body);
18491 replacement = body + name_len;
18492 }
18493
18494 macro_define_object (file, line, name, replacement);
18495
18496 xfree (name);
18497 }
18498 else if (*p == '(')
18499 {
18500 /* It's a function-like macro. */
18501 char *name = copy_string (body, p - body);
18502 int argc = 0;
18503 int argv_size = 1;
18504 char **argv = xmalloc (argv_size * sizeof (*argv));
18505
18506 p++;
18507
18508 p = consume_improper_spaces (p, body);
18509
18510 /* Parse the formal argument list. */
18511 while (*p && *p != ')')
18512 {
18513 /* Find the extent of the current argument name. */
18514 const char *arg_start = p;
18515
18516 while (*p && *p != ',' && *p != ')' && *p != ' ')
18517 p++;
18518
18519 if (! *p || p == arg_start)
18520 dwarf2_macro_malformed_definition_complaint (body);
18521 else
18522 {
18523 /* Make sure argv has room for the new argument. */
18524 if (argc >= argv_size)
18525 {
18526 argv_size *= 2;
18527 argv = xrealloc (argv, argv_size * sizeof (*argv));
18528 }
18529
18530 argv[argc++] = copy_string (arg_start, p - arg_start);
18531 }
18532
18533 p = consume_improper_spaces (p, body);
18534
18535 /* Consume the comma, if present. */
18536 if (*p == ',')
18537 {
18538 p++;
18539
18540 p = consume_improper_spaces (p, body);
18541 }
18542 }
18543
18544 if (*p == ')')
18545 {
18546 p++;
18547
18548 if (*p == ' ')
18549 /* Perfectly formed definition, no complaints. */
18550 macro_define_function (file, line, name,
18551 argc, (const char **) argv,
18552 p + 1);
18553 else if (*p == '\0')
18554 {
18555 /* Complain, but do define it. */
18556 dwarf2_macro_malformed_definition_complaint (body);
18557 macro_define_function (file, line, name,
18558 argc, (const char **) argv,
18559 p);
18560 }
18561 else
18562 /* Just complain. */
18563 dwarf2_macro_malformed_definition_complaint (body);
18564 }
18565 else
18566 /* Just complain. */
18567 dwarf2_macro_malformed_definition_complaint (body);
18568
18569 xfree (name);
18570 {
18571 int i;
18572
18573 for (i = 0; i < argc; i++)
18574 xfree (argv[i]);
18575 }
18576 xfree (argv);
18577 }
18578 else
18579 dwarf2_macro_malformed_definition_complaint (body);
18580 }
18581
18582 /* Skip some bytes from BYTES according to the form given in FORM.
18583 Returns the new pointer. */
18584
18585 static const gdb_byte *
18586 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
18587 enum dwarf_form form,
18588 unsigned int offset_size,
18589 struct dwarf2_section_info *section)
18590 {
18591 unsigned int bytes_read;
18592
18593 switch (form)
18594 {
18595 case DW_FORM_data1:
18596 case DW_FORM_flag:
18597 ++bytes;
18598 break;
18599
18600 case DW_FORM_data2:
18601 bytes += 2;
18602 break;
18603
18604 case DW_FORM_data4:
18605 bytes += 4;
18606 break;
18607
18608 case DW_FORM_data8:
18609 bytes += 8;
18610 break;
18611
18612 case DW_FORM_string:
18613 read_direct_string (abfd, bytes, &bytes_read);
18614 bytes += bytes_read;
18615 break;
18616
18617 case DW_FORM_sec_offset:
18618 case DW_FORM_strp:
18619 case DW_FORM_GNU_strp_alt:
18620 bytes += offset_size;
18621 break;
18622
18623 case DW_FORM_block:
18624 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18625 bytes += bytes_read;
18626 break;
18627
18628 case DW_FORM_block1:
18629 bytes += 1 + read_1_byte (abfd, bytes);
18630 break;
18631 case DW_FORM_block2:
18632 bytes += 2 + read_2_bytes (abfd, bytes);
18633 break;
18634 case DW_FORM_block4:
18635 bytes += 4 + read_4_bytes (abfd, bytes);
18636 break;
18637
18638 case DW_FORM_sdata:
18639 case DW_FORM_udata:
18640 case DW_FORM_GNU_addr_index:
18641 case DW_FORM_GNU_str_index:
18642 bytes = gdb_skip_leb128 (bytes, buffer_end);
18643 if (bytes == NULL)
18644 {
18645 dwarf2_section_buffer_overflow_complaint (section);
18646 return NULL;
18647 }
18648 break;
18649
18650 default:
18651 {
18652 complain:
18653 complaint (&symfile_complaints,
18654 _("invalid form 0x%x in `%s'"),
18655 form,
18656 section->asection->name);
18657 return NULL;
18658 }
18659 }
18660
18661 return bytes;
18662 }
18663
18664 /* A helper for dwarf_decode_macros that handles skipping an unknown
18665 opcode. Returns an updated pointer to the macro data buffer; or,
18666 on error, issues a complaint and returns NULL. */
18667
18668 static const gdb_byte *
18669 skip_unknown_opcode (unsigned int opcode,
18670 const gdb_byte **opcode_definitions,
18671 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18672 bfd *abfd,
18673 unsigned int offset_size,
18674 struct dwarf2_section_info *section)
18675 {
18676 unsigned int bytes_read, i;
18677 unsigned long arg;
18678 const gdb_byte *defn;
18679
18680 if (opcode_definitions[opcode] == NULL)
18681 {
18682 complaint (&symfile_complaints,
18683 _("unrecognized DW_MACFINO opcode 0x%x"),
18684 opcode);
18685 return NULL;
18686 }
18687
18688 defn = opcode_definitions[opcode];
18689 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18690 defn += bytes_read;
18691
18692 for (i = 0; i < arg; ++i)
18693 {
18694 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18695 section);
18696 if (mac_ptr == NULL)
18697 {
18698 /* skip_form_bytes already issued the complaint. */
18699 return NULL;
18700 }
18701 }
18702
18703 return mac_ptr;
18704 }
18705
18706 /* A helper function which parses the header of a macro section.
18707 If the macro section is the extended (for now called "GNU") type,
18708 then this updates *OFFSET_SIZE. Returns a pointer to just after
18709 the header, or issues a complaint and returns NULL on error. */
18710
18711 static const gdb_byte *
18712 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
18713 bfd *abfd,
18714 const gdb_byte *mac_ptr,
18715 unsigned int *offset_size,
18716 int section_is_gnu)
18717 {
18718 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18719
18720 if (section_is_gnu)
18721 {
18722 unsigned int version, flags;
18723
18724 version = read_2_bytes (abfd, mac_ptr);
18725 if (version != 4)
18726 {
18727 complaint (&symfile_complaints,
18728 _("unrecognized version `%d' in .debug_macro section"),
18729 version);
18730 return NULL;
18731 }
18732 mac_ptr += 2;
18733
18734 flags = read_1_byte (abfd, mac_ptr);
18735 ++mac_ptr;
18736 *offset_size = (flags & 1) ? 8 : 4;
18737
18738 if ((flags & 2) != 0)
18739 /* We don't need the line table offset. */
18740 mac_ptr += *offset_size;
18741
18742 /* Vendor opcode descriptions. */
18743 if ((flags & 4) != 0)
18744 {
18745 unsigned int i, count;
18746
18747 count = read_1_byte (abfd, mac_ptr);
18748 ++mac_ptr;
18749 for (i = 0; i < count; ++i)
18750 {
18751 unsigned int opcode, bytes_read;
18752 unsigned long arg;
18753
18754 opcode = read_1_byte (abfd, mac_ptr);
18755 ++mac_ptr;
18756 opcode_definitions[opcode] = mac_ptr;
18757 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18758 mac_ptr += bytes_read;
18759 mac_ptr += arg;
18760 }
18761 }
18762 }
18763
18764 return mac_ptr;
18765 }
18766
18767 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18768 including DW_MACRO_GNU_transparent_include. */
18769
18770 static void
18771 dwarf_decode_macro_bytes (bfd *abfd,
18772 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18773 struct macro_source_file *current_file,
18774 struct line_header *lh, const char *comp_dir,
18775 struct dwarf2_section_info *section,
18776 int section_is_gnu, int section_is_dwz,
18777 unsigned int offset_size,
18778 struct objfile *objfile,
18779 htab_t include_hash)
18780 {
18781 enum dwarf_macro_record_type macinfo_type;
18782 int at_commandline;
18783 const gdb_byte *opcode_definitions[256];
18784
18785 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18786 &offset_size, section_is_gnu);
18787 if (mac_ptr == NULL)
18788 {
18789 /* We already issued a complaint. */
18790 return;
18791 }
18792
18793 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18794 GDB is still reading the definitions from command line. First
18795 DW_MACINFO_start_file will need to be ignored as it was already executed
18796 to create CURRENT_FILE for the main source holding also the command line
18797 definitions. On first met DW_MACINFO_start_file this flag is reset to
18798 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18799
18800 at_commandline = 1;
18801
18802 do
18803 {
18804 /* Do we at least have room for a macinfo type byte? */
18805 if (mac_ptr >= mac_end)
18806 {
18807 dwarf2_section_buffer_overflow_complaint (section);
18808 break;
18809 }
18810
18811 macinfo_type = read_1_byte (abfd, mac_ptr);
18812 mac_ptr++;
18813
18814 /* Note that we rely on the fact that the corresponding GNU and
18815 DWARF constants are the same. */
18816 switch (macinfo_type)
18817 {
18818 /* A zero macinfo type indicates the end of the macro
18819 information. */
18820 case 0:
18821 break;
18822
18823 case DW_MACRO_GNU_define:
18824 case DW_MACRO_GNU_undef:
18825 case DW_MACRO_GNU_define_indirect:
18826 case DW_MACRO_GNU_undef_indirect:
18827 case DW_MACRO_GNU_define_indirect_alt:
18828 case DW_MACRO_GNU_undef_indirect_alt:
18829 {
18830 unsigned int bytes_read;
18831 int line;
18832 const char *body;
18833 int is_define;
18834
18835 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18836 mac_ptr += bytes_read;
18837
18838 if (macinfo_type == DW_MACRO_GNU_define
18839 || macinfo_type == DW_MACRO_GNU_undef)
18840 {
18841 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18842 mac_ptr += bytes_read;
18843 }
18844 else
18845 {
18846 LONGEST str_offset;
18847
18848 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18849 mac_ptr += offset_size;
18850
18851 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18852 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18853 || section_is_dwz)
18854 {
18855 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18856
18857 body = read_indirect_string_from_dwz (dwz, str_offset);
18858 }
18859 else
18860 body = read_indirect_string_at_offset (abfd, str_offset);
18861 }
18862
18863 is_define = (macinfo_type == DW_MACRO_GNU_define
18864 || macinfo_type == DW_MACRO_GNU_define_indirect
18865 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18866 if (! current_file)
18867 {
18868 /* DWARF violation as no main source is present. */
18869 complaint (&symfile_complaints,
18870 _("debug info with no main source gives macro %s "
18871 "on line %d: %s"),
18872 is_define ? _("definition") : _("undefinition"),
18873 line, body);
18874 break;
18875 }
18876 if ((line == 0 && !at_commandline)
18877 || (line != 0 && at_commandline))
18878 complaint (&symfile_complaints,
18879 _("debug info gives %s macro %s with %s line %d: %s"),
18880 at_commandline ? _("command-line") : _("in-file"),
18881 is_define ? _("definition") : _("undefinition"),
18882 line == 0 ? _("zero") : _("non-zero"), line, body);
18883
18884 if (is_define)
18885 parse_macro_definition (current_file, line, body);
18886 else
18887 {
18888 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18889 || macinfo_type == DW_MACRO_GNU_undef_indirect
18890 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18891 macro_undef (current_file, line, body);
18892 }
18893 }
18894 break;
18895
18896 case DW_MACRO_GNU_start_file:
18897 {
18898 unsigned int bytes_read;
18899 int line, file;
18900
18901 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18902 mac_ptr += bytes_read;
18903 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18904 mac_ptr += bytes_read;
18905
18906 if ((line == 0 && !at_commandline)
18907 || (line != 0 && at_commandline))
18908 complaint (&symfile_complaints,
18909 _("debug info gives source %d included "
18910 "from %s at %s line %d"),
18911 file, at_commandline ? _("command-line") : _("file"),
18912 line == 0 ? _("zero") : _("non-zero"), line);
18913
18914 if (at_commandline)
18915 {
18916 /* This DW_MACRO_GNU_start_file was executed in the
18917 pass one. */
18918 at_commandline = 0;
18919 }
18920 else
18921 current_file = macro_start_file (file, line,
18922 current_file, comp_dir,
18923 lh, objfile);
18924 }
18925 break;
18926
18927 case DW_MACRO_GNU_end_file:
18928 if (! current_file)
18929 complaint (&symfile_complaints,
18930 _("macro debug info has an unmatched "
18931 "`close_file' directive"));
18932 else
18933 {
18934 current_file = current_file->included_by;
18935 if (! current_file)
18936 {
18937 enum dwarf_macro_record_type next_type;
18938
18939 /* GCC circa March 2002 doesn't produce the zero
18940 type byte marking the end of the compilation
18941 unit. Complain if it's not there, but exit no
18942 matter what. */
18943
18944 /* Do we at least have room for a macinfo type byte? */
18945 if (mac_ptr >= mac_end)
18946 {
18947 dwarf2_section_buffer_overflow_complaint (section);
18948 return;
18949 }
18950
18951 /* We don't increment mac_ptr here, so this is just
18952 a look-ahead. */
18953 next_type = read_1_byte (abfd, mac_ptr);
18954 if (next_type != 0)
18955 complaint (&symfile_complaints,
18956 _("no terminating 0-type entry for "
18957 "macros in `.debug_macinfo' section"));
18958
18959 return;
18960 }
18961 }
18962 break;
18963
18964 case DW_MACRO_GNU_transparent_include:
18965 case DW_MACRO_GNU_transparent_include_alt:
18966 {
18967 LONGEST offset;
18968 void **slot;
18969 bfd *include_bfd = abfd;
18970 struct dwarf2_section_info *include_section = section;
18971 struct dwarf2_section_info alt_section;
18972 const gdb_byte *include_mac_end = mac_end;
18973 int is_dwz = section_is_dwz;
18974 const gdb_byte *new_mac_ptr;
18975
18976 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18977 mac_ptr += offset_size;
18978
18979 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18980 {
18981 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18982
18983 dwarf2_read_section (dwarf2_per_objfile->objfile,
18984 &dwz->macro);
18985
18986 include_bfd = dwz->macro.asection->owner;
18987 include_section = &dwz->macro;
18988 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18989 is_dwz = 1;
18990 }
18991
18992 new_mac_ptr = include_section->buffer + offset;
18993 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18994
18995 if (*slot != NULL)
18996 {
18997 /* This has actually happened; see
18998 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18999 complaint (&symfile_complaints,
19000 _("recursive DW_MACRO_GNU_transparent_include in "
19001 ".debug_macro section"));
19002 }
19003 else
19004 {
19005 *slot = (void *) new_mac_ptr;
19006
19007 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19008 include_mac_end, current_file,
19009 lh, comp_dir,
19010 section, section_is_gnu, is_dwz,
19011 offset_size, objfile, include_hash);
19012
19013 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19014 }
19015 }
19016 break;
19017
19018 case DW_MACINFO_vendor_ext:
19019 if (!section_is_gnu)
19020 {
19021 unsigned int bytes_read;
19022 int constant;
19023
19024 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19025 mac_ptr += bytes_read;
19026 read_direct_string (abfd, mac_ptr, &bytes_read);
19027 mac_ptr += bytes_read;
19028
19029 /* We don't recognize any vendor extensions. */
19030 break;
19031 }
19032 /* FALLTHROUGH */
19033
19034 default:
19035 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19036 mac_ptr, mac_end, abfd, offset_size,
19037 section);
19038 if (mac_ptr == NULL)
19039 return;
19040 break;
19041 }
19042 } while (macinfo_type != 0);
19043 }
19044
19045 static void
19046 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19047 const char *comp_dir, int section_is_gnu)
19048 {
19049 struct objfile *objfile = dwarf2_per_objfile->objfile;
19050 struct line_header *lh = cu->line_header;
19051 bfd *abfd;
19052 const gdb_byte *mac_ptr, *mac_end;
19053 struct macro_source_file *current_file = 0;
19054 enum dwarf_macro_record_type macinfo_type;
19055 unsigned int offset_size = cu->header.offset_size;
19056 const gdb_byte *opcode_definitions[256];
19057 struct cleanup *cleanup;
19058 htab_t include_hash;
19059 void **slot;
19060 struct dwarf2_section_info *section;
19061 const char *section_name;
19062
19063 if (cu->dwo_unit != NULL)
19064 {
19065 if (section_is_gnu)
19066 {
19067 section = &cu->dwo_unit->dwo_file->sections.macro;
19068 section_name = ".debug_macro.dwo";
19069 }
19070 else
19071 {
19072 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19073 section_name = ".debug_macinfo.dwo";
19074 }
19075 }
19076 else
19077 {
19078 if (section_is_gnu)
19079 {
19080 section = &dwarf2_per_objfile->macro;
19081 section_name = ".debug_macro";
19082 }
19083 else
19084 {
19085 section = &dwarf2_per_objfile->macinfo;
19086 section_name = ".debug_macinfo";
19087 }
19088 }
19089
19090 dwarf2_read_section (objfile, section);
19091 if (section->buffer == NULL)
19092 {
19093 complaint (&symfile_complaints, _("missing %s section"), section_name);
19094 return;
19095 }
19096 abfd = section->asection->owner;
19097
19098 /* First pass: Find the name of the base filename.
19099 This filename is needed in order to process all macros whose definition
19100 (or undefinition) comes from the command line. These macros are defined
19101 before the first DW_MACINFO_start_file entry, and yet still need to be
19102 associated to the base file.
19103
19104 To determine the base file name, we scan the macro definitions until we
19105 reach the first DW_MACINFO_start_file entry. We then initialize
19106 CURRENT_FILE accordingly so that any macro definition found before the
19107 first DW_MACINFO_start_file can still be associated to the base file. */
19108
19109 mac_ptr = section->buffer + offset;
19110 mac_end = section->buffer + section->size;
19111
19112 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19113 &offset_size, section_is_gnu);
19114 if (mac_ptr == NULL)
19115 {
19116 /* We already issued a complaint. */
19117 return;
19118 }
19119
19120 do
19121 {
19122 /* Do we at least have room for a macinfo type byte? */
19123 if (mac_ptr >= mac_end)
19124 {
19125 /* Complaint is printed during the second pass as GDB will probably
19126 stop the first pass earlier upon finding
19127 DW_MACINFO_start_file. */
19128 break;
19129 }
19130
19131 macinfo_type = read_1_byte (abfd, mac_ptr);
19132 mac_ptr++;
19133
19134 /* Note that we rely on the fact that the corresponding GNU and
19135 DWARF constants are the same. */
19136 switch (macinfo_type)
19137 {
19138 /* A zero macinfo type indicates the end of the macro
19139 information. */
19140 case 0:
19141 break;
19142
19143 case DW_MACRO_GNU_define:
19144 case DW_MACRO_GNU_undef:
19145 /* Only skip the data by MAC_PTR. */
19146 {
19147 unsigned int bytes_read;
19148
19149 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19150 mac_ptr += bytes_read;
19151 read_direct_string (abfd, mac_ptr, &bytes_read);
19152 mac_ptr += bytes_read;
19153 }
19154 break;
19155
19156 case DW_MACRO_GNU_start_file:
19157 {
19158 unsigned int bytes_read;
19159 int line, file;
19160
19161 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19162 mac_ptr += bytes_read;
19163 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19164 mac_ptr += bytes_read;
19165
19166 current_file = macro_start_file (file, line, current_file,
19167 comp_dir, lh, objfile);
19168 }
19169 break;
19170
19171 case DW_MACRO_GNU_end_file:
19172 /* No data to skip by MAC_PTR. */
19173 break;
19174
19175 case DW_MACRO_GNU_define_indirect:
19176 case DW_MACRO_GNU_undef_indirect:
19177 case DW_MACRO_GNU_define_indirect_alt:
19178 case DW_MACRO_GNU_undef_indirect_alt:
19179 {
19180 unsigned int bytes_read;
19181
19182 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19183 mac_ptr += bytes_read;
19184 mac_ptr += offset_size;
19185 }
19186 break;
19187
19188 case DW_MACRO_GNU_transparent_include:
19189 case DW_MACRO_GNU_transparent_include_alt:
19190 /* Note that, according to the spec, a transparent include
19191 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19192 skip this opcode. */
19193 mac_ptr += offset_size;
19194 break;
19195
19196 case DW_MACINFO_vendor_ext:
19197 /* Only skip the data by MAC_PTR. */
19198 if (!section_is_gnu)
19199 {
19200 unsigned int bytes_read;
19201
19202 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19203 mac_ptr += bytes_read;
19204 read_direct_string (abfd, mac_ptr, &bytes_read);
19205 mac_ptr += bytes_read;
19206 }
19207 /* FALLTHROUGH */
19208
19209 default:
19210 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19211 mac_ptr, mac_end, abfd, offset_size,
19212 section);
19213 if (mac_ptr == NULL)
19214 return;
19215 break;
19216 }
19217 } while (macinfo_type != 0 && current_file == NULL);
19218
19219 /* Second pass: Process all entries.
19220
19221 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19222 command-line macro definitions/undefinitions. This flag is unset when we
19223 reach the first DW_MACINFO_start_file entry. */
19224
19225 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19226 NULL, xcalloc, xfree);
19227 cleanup = make_cleanup_htab_delete (include_hash);
19228 mac_ptr = section->buffer + offset;
19229 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19230 *slot = (void *) mac_ptr;
19231 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19232 current_file, lh, comp_dir, section,
19233 section_is_gnu, 0,
19234 offset_size, objfile, include_hash);
19235 do_cleanups (cleanup);
19236 }
19237
19238 /* Check if the attribute's form is a DW_FORM_block*
19239 if so return true else false. */
19240
19241 static int
19242 attr_form_is_block (struct attribute *attr)
19243 {
19244 return (attr == NULL ? 0 :
19245 attr->form == DW_FORM_block1
19246 || attr->form == DW_FORM_block2
19247 || attr->form == DW_FORM_block4
19248 || attr->form == DW_FORM_block
19249 || attr->form == DW_FORM_exprloc);
19250 }
19251
19252 /* Return non-zero if ATTR's value is a section offset --- classes
19253 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19254 You may use DW_UNSND (attr) to retrieve such offsets.
19255
19256 Section 7.5.4, "Attribute Encodings", explains that no attribute
19257 may have a value that belongs to more than one of these classes; it
19258 would be ambiguous if we did, because we use the same forms for all
19259 of them. */
19260
19261 static int
19262 attr_form_is_section_offset (struct attribute *attr)
19263 {
19264 return (attr->form == DW_FORM_data4
19265 || attr->form == DW_FORM_data8
19266 || attr->form == DW_FORM_sec_offset);
19267 }
19268
19269 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19270 zero otherwise. When this function returns true, you can apply
19271 dwarf2_get_attr_constant_value to it.
19272
19273 However, note that for some attributes you must check
19274 attr_form_is_section_offset before using this test. DW_FORM_data4
19275 and DW_FORM_data8 are members of both the constant class, and of
19276 the classes that contain offsets into other debug sections
19277 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19278 that, if an attribute's can be either a constant or one of the
19279 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19280 taken as section offsets, not constants. */
19281
19282 static int
19283 attr_form_is_constant (struct attribute *attr)
19284 {
19285 switch (attr->form)
19286 {
19287 case DW_FORM_sdata:
19288 case DW_FORM_udata:
19289 case DW_FORM_data1:
19290 case DW_FORM_data2:
19291 case DW_FORM_data4:
19292 case DW_FORM_data8:
19293 return 1;
19294 default:
19295 return 0;
19296 }
19297 }
19298
19299 /* Return the .debug_loc section to use for CU.
19300 For DWO files use .debug_loc.dwo. */
19301
19302 static struct dwarf2_section_info *
19303 cu_debug_loc_section (struct dwarf2_cu *cu)
19304 {
19305 if (cu->dwo_unit)
19306 return &cu->dwo_unit->dwo_file->sections.loc;
19307 return &dwarf2_per_objfile->loc;
19308 }
19309
19310 /* A helper function that fills in a dwarf2_loclist_baton. */
19311
19312 static void
19313 fill_in_loclist_baton (struct dwarf2_cu *cu,
19314 struct dwarf2_loclist_baton *baton,
19315 struct attribute *attr)
19316 {
19317 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19318
19319 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19320
19321 baton->per_cu = cu->per_cu;
19322 gdb_assert (baton->per_cu);
19323 /* We don't know how long the location list is, but make sure we
19324 don't run off the edge of the section. */
19325 baton->size = section->size - DW_UNSND (attr);
19326 baton->data = section->buffer + DW_UNSND (attr);
19327 baton->base_address = cu->base_address;
19328 baton->from_dwo = cu->dwo_unit != NULL;
19329 }
19330
19331 static void
19332 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19333 struct dwarf2_cu *cu, int is_block)
19334 {
19335 struct objfile *objfile = dwarf2_per_objfile->objfile;
19336 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19337
19338 if (attr_form_is_section_offset (attr)
19339 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19340 the section. If so, fall through to the complaint in the
19341 other branch. */
19342 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19343 {
19344 struct dwarf2_loclist_baton *baton;
19345
19346 baton = obstack_alloc (&objfile->objfile_obstack,
19347 sizeof (struct dwarf2_loclist_baton));
19348
19349 fill_in_loclist_baton (cu, baton, attr);
19350
19351 if (cu->base_known == 0)
19352 complaint (&symfile_complaints,
19353 _("Location list used without "
19354 "specifying the CU base address."));
19355
19356 SYMBOL_ACLASS_INDEX (sym) = (is_block
19357 ? dwarf2_loclist_block_index
19358 : dwarf2_loclist_index);
19359 SYMBOL_LOCATION_BATON (sym) = baton;
19360 }
19361 else
19362 {
19363 struct dwarf2_locexpr_baton *baton;
19364
19365 baton = obstack_alloc (&objfile->objfile_obstack,
19366 sizeof (struct dwarf2_locexpr_baton));
19367 baton->per_cu = cu->per_cu;
19368 gdb_assert (baton->per_cu);
19369
19370 if (attr_form_is_block (attr))
19371 {
19372 /* Note that we're just copying the block's data pointer
19373 here, not the actual data. We're still pointing into the
19374 info_buffer for SYM's objfile; right now we never release
19375 that buffer, but when we do clean up properly this may
19376 need to change. */
19377 baton->size = DW_BLOCK (attr)->size;
19378 baton->data = DW_BLOCK (attr)->data;
19379 }
19380 else
19381 {
19382 dwarf2_invalid_attrib_class_complaint ("location description",
19383 SYMBOL_NATURAL_NAME (sym));
19384 baton->size = 0;
19385 }
19386
19387 SYMBOL_ACLASS_INDEX (sym) = (is_block
19388 ? dwarf2_locexpr_block_index
19389 : dwarf2_locexpr_index);
19390 SYMBOL_LOCATION_BATON (sym) = baton;
19391 }
19392 }
19393
19394 /* Return the OBJFILE associated with the compilation unit CU. If CU
19395 came from a separate debuginfo file, then the master objfile is
19396 returned. */
19397
19398 struct objfile *
19399 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19400 {
19401 struct objfile *objfile = per_cu->objfile;
19402
19403 /* Return the master objfile, so that we can report and look up the
19404 correct file containing this variable. */
19405 if (objfile->separate_debug_objfile_backlink)
19406 objfile = objfile->separate_debug_objfile_backlink;
19407
19408 return objfile;
19409 }
19410
19411 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19412 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19413 CU_HEADERP first. */
19414
19415 static const struct comp_unit_head *
19416 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19417 struct dwarf2_per_cu_data *per_cu)
19418 {
19419 const gdb_byte *info_ptr;
19420
19421 if (per_cu->cu)
19422 return &per_cu->cu->header;
19423
19424 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19425
19426 memset (cu_headerp, 0, sizeof (*cu_headerp));
19427 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19428
19429 return cu_headerp;
19430 }
19431
19432 /* Return the address size given in the compilation unit header for CU. */
19433
19434 int
19435 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19436 {
19437 struct comp_unit_head cu_header_local;
19438 const struct comp_unit_head *cu_headerp;
19439
19440 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19441
19442 return cu_headerp->addr_size;
19443 }
19444
19445 /* Return the offset size given in the compilation unit header for CU. */
19446
19447 int
19448 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19449 {
19450 struct comp_unit_head cu_header_local;
19451 const struct comp_unit_head *cu_headerp;
19452
19453 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19454
19455 return cu_headerp->offset_size;
19456 }
19457
19458 /* See its dwarf2loc.h declaration. */
19459
19460 int
19461 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19462 {
19463 struct comp_unit_head cu_header_local;
19464 const struct comp_unit_head *cu_headerp;
19465
19466 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19467
19468 if (cu_headerp->version == 2)
19469 return cu_headerp->addr_size;
19470 else
19471 return cu_headerp->offset_size;
19472 }
19473
19474 /* Return the text offset of the CU. The returned offset comes from
19475 this CU's objfile. If this objfile came from a separate debuginfo
19476 file, then the offset may be different from the corresponding
19477 offset in the parent objfile. */
19478
19479 CORE_ADDR
19480 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19481 {
19482 struct objfile *objfile = per_cu->objfile;
19483
19484 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19485 }
19486
19487 /* Locate the .debug_info compilation unit from CU's objfile which contains
19488 the DIE at OFFSET. Raises an error on failure. */
19489
19490 static struct dwarf2_per_cu_data *
19491 dwarf2_find_containing_comp_unit (sect_offset offset,
19492 unsigned int offset_in_dwz,
19493 struct objfile *objfile)
19494 {
19495 struct dwarf2_per_cu_data *this_cu;
19496 int low, high;
19497 const sect_offset *cu_off;
19498
19499 low = 0;
19500 high = dwarf2_per_objfile->n_comp_units - 1;
19501 while (high > low)
19502 {
19503 struct dwarf2_per_cu_data *mid_cu;
19504 int mid = low + (high - low) / 2;
19505
19506 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19507 cu_off = &mid_cu->offset;
19508 if (mid_cu->is_dwz > offset_in_dwz
19509 || (mid_cu->is_dwz == offset_in_dwz
19510 && cu_off->sect_off >= offset.sect_off))
19511 high = mid;
19512 else
19513 low = mid + 1;
19514 }
19515 gdb_assert (low == high);
19516 this_cu = dwarf2_per_objfile->all_comp_units[low];
19517 cu_off = &this_cu->offset;
19518 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19519 {
19520 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19521 error (_("Dwarf Error: could not find partial DIE containing "
19522 "offset 0x%lx [in module %s]"),
19523 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19524
19525 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19526 <= offset.sect_off);
19527 return dwarf2_per_objfile->all_comp_units[low-1];
19528 }
19529 else
19530 {
19531 this_cu = dwarf2_per_objfile->all_comp_units[low];
19532 if (low == dwarf2_per_objfile->n_comp_units - 1
19533 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19534 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19535 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19536 return this_cu;
19537 }
19538 }
19539
19540 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19541
19542 static void
19543 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19544 {
19545 memset (cu, 0, sizeof (*cu));
19546 per_cu->cu = cu;
19547 cu->per_cu = per_cu;
19548 cu->objfile = per_cu->objfile;
19549 obstack_init (&cu->comp_unit_obstack);
19550 }
19551
19552 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19553
19554 static void
19555 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19556 enum language pretend_language)
19557 {
19558 struct attribute *attr;
19559
19560 /* Set the language we're debugging. */
19561 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19562 if (attr)
19563 set_cu_language (DW_UNSND (attr), cu);
19564 else
19565 {
19566 cu->language = pretend_language;
19567 cu->language_defn = language_def (cu->language);
19568 }
19569
19570 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19571 if (attr)
19572 cu->producer = DW_STRING (attr);
19573 }
19574
19575 /* Release one cached compilation unit, CU. We unlink it from the tree
19576 of compilation units, but we don't remove it from the read_in_chain;
19577 the caller is responsible for that.
19578 NOTE: DATA is a void * because this function is also used as a
19579 cleanup routine. */
19580
19581 static void
19582 free_heap_comp_unit (void *data)
19583 {
19584 struct dwarf2_cu *cu = data;
19585
19586 gdb_assert (cu->per_cu != NULL);
19587 cu->per_cu->cu = NULL;
19588 cu->per_cu = NULL;
19589
19590 obstack_free (&cu->comp_unit_obstack, NULL);
19591
19592 xfree (cu);
19593 }
19594
19595 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19596 when we're finished with it. We can't free the pointer itself, but be
19597 sure to unlink it from the cache. Also release any associated storage. */
19598
19599 static void
19600 free_stack_comp_unit (void *data)
19601 {
19602 struct dwarf2_cu *cu = data;
19603
19604 gdb_assert (cu->per_cu != NULL);
19605 cu->per_cu->cu = NULL;
19606 cu->per_cu = NULL;
19607
19608 obstack_free (&cu->comp_unit_obstack, NULL);
19609 cu->partial_dies = NULL;
19610 }
19611
19612 /* Free all cached compilation units. */
19613
19614 static void
19615 free_cached_comp_units (void *data)
19616 {
19617 struct dwarf2_per_cu_data *per_cu, **last_chain;
19618
19619 per_cu = dwarf2_per_objfile->read_in_chain;
19620 last_chain = &dwarf2_per_objfile->read_in_chain;
19621 while (per_cu != NULL)
19622 {
19623 struct dwarf2_per_cu_data *next_cu;
19624
19625 next_cu = per_cu->cu->read_in_chain;
19626
19627 free_heap_comp_unit (per_cu->cu);
19628 *last_chain = next_cu;
19629
19630 per_cu = next_cu;
19631 }
19632 }
19633
19634 /* Increase the age counter on each cached compilation unit, and free
19635 any that are too old. */
19636
19637 static void
19638 age_cached_comp_units (void)
19639 {
19640 struct dwarf2_per_cu_data *per_cu, **last_chain;
19641
19642 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19643 per_cu = dwarf2_per_objfile->read_in_chain;
19644 while (per_cu != NULL)
19645 {
19646 per_cu->cu->last_used ++;
19647 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19648 dwarf2_mark (per_cu->cu);
19649 per_cu = per_cu->cu->read_in_chain;
19650 }
19651
19652 per_cu = dwarf2_per_objfile->read_in_chain;
19653 last_chain = &dwarf2_per_objfile->read_in_chain;
19654 while (per_cu != NULL)
19655 {
19656 struct dwarf2_per_cu_data *next_cu;
19657
19658 next_cu = per_cu->cu->read_in_chain;
19659
19660 if (!per_cu->cu->mark)
19661 {
19662 free_heap_comp_unit (per_cu->cu);
19663 *last_chain = next_cu;
19664 }
19665 else
19666 last_chain = &per_cu->cu->read_in_chain;
19667
19668 per_cu = next_cu;
19669 }
19670 }
19671
19672 /* Remove a single compilation unit from the cache. */
19673
19674 static void
19675 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19676 {
19677 struct dwarf2_per_cu_data *per_cu, **last_chain;
19678
19679 per_cu = dwarf2_per_objfile->read_in_chain;
19680 last_chain = &dwarf2_per_objfile->read_in_chain;
19681 while (per_cu != NULL)
19682 {
19683 struct dwarf2_per_cu_data *next_cu;
19684
19685 next_cu = per_cu->cu->read_in_chain;
19686
19687 if (per_cu == target_per_cu)
19688 {
19689 free_heap_comp_unit (per_cu->cu);
19690 per_cu->cu = NULL;
19691 *last_chain = next_cu;
19692 break;
19693 }
19694 else
19695 last_chain = &per_cu->cu->read_in_chain;
19696
19697 per_cu = next_cu;
19698 }
19699 }
19700
19701 /* Release all extra memory associated with OBJFILE. */
19702
19703 void
19704 dwarf2_free_objfile (struct objfile *objfile)
19705 {
19706 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19707
19708 if (dwarf2_per_objfile == NULL)
19709 return;
19710
19711 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19712 free_cached_comp_units (NULL);
19713
19714 if (dwarf2_per_objfile->quick_file_names_table)
19715 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19716
19717 /* Everything else should be on the objfile obstack. */
19718 }
19719
19720 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19721 We store these in a hash table separate from the DIEs, and preserve them
19722 when the DIEs are flushed out of cache.
19723
19724 The CU "per_cu" pointer is needed because offset alone is not enough to
19725 uniquely identify the type. A file may have multiple .debug_types sections,
19726 or the type may come from a DWO file. Furthermore, while it's more logical
19727 to use per_cu->section+offset, with Fission the section with the data is in
19728 the DWO file but we don't know that section at the point we need it.
19729 We have to use something in dwarf2_per_cu_data (or the pointer to it)
19730 because we can enter the lookup routine, get_die_type_at_offset, from
19731 outside this file, and thus won't necessarily have PER_CU->cu.
19732 Fortunately, PER_CU is stable for the life of the objfile. */
19733
19734 struct dwarf2_per_cu_offset_and_type
19735 {
19736 const struct dwarf2_per_cu_data *per_cu;
19737 sect_offset offset;
19738 struct type *type;
19739 };
19740
19741 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19742
19743 static hashval_t
19744 per_cu_offset_and_type_hash (const void *item)
19745 {
19746 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19747
19748 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19749 }
19750
19751 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19752
19753 static int
19754 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19755 {
19756 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19757 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19758
19759 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19760 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19761 }
19762
19763 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19764 table if necessary. For convenience, return TYPE.
19765
19766 The DIEs reading must have careful ordering to:
19767 * Not cause infite loops trying to read in DIEs as a prerequisite for
19768 reading current DIE.
19769 * Not trying to dereference contents of still incompletely read in types
19770 while reading in other DIEs.
19771 * Enable referencing still incompletely read in types just by a pointer to
19772 the type without accessing its fields.
19773
19774 Therefore caller should follow these rules:
19775 * Try to fetch any prerequisite types we may need to build this DIE type
19776 before building the type and calling set_die_type.
19777 * After building type call set_die_type for current DIE as soon as
19778 possible before fetching more types to complete the current type.
19779 * Make the type as complete as possible before fetching more types. */
19780
19781 static struct type *
19782 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19783 {
19784 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19785 struct objfile *objfile = cu->objfile;
19786
19787 /* For Ada types, make sure that the gnat-specific data is always
19788 initialized (if not already set). There are a few types where
19789 we should not be doing so, because the type-specific area is
19790 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19791 where the type-specific area is used to store the floatformat).
19792 But this is not a problem, because the gnat-specific information
19793 is actually not needed for these types. */
19794 if (need_gnat_info (cu)
19795 && TYPE_CODE (type) != TYPE_CODE_FUNC
19796 && TYPE_CODE (type) != TYPE_CODE_FLT
19797 && !HAVE_GNAT_AUX_INFO (type))
19798 INIT_GNAT_SPECIFIC (type);
19799
19800 if (dwarf2_per_objfile->die_type_hash == NULL)
19801 {
19802 dwarf2_per_objfile->die_type_hash =
19803 htab_create_alloc_ex (127,
19804 per_cu_offset_and_type_hash,
19805 per_cu_offset_and_type_eq,
19806 NULL,
19807 &objfile->objfile_obstack,
19808 hashtab_obstack_allocate,
19809 dummy_obstack_deallocate);
19810 }
19811
19812 ofs.per_cu = cu->per_cu;
19813 ofs.offset = die->offset;
19814 ofs.type = type;
19815 slot = (struct dwarf2_per_cu_offset_and_type **)
19816 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19817 if (*slot)
19818 complaint (&symfile_complaints,
19819 _("A problem internal to GDB: DIE 0x%x has type already set"),
19820 die->offset.sect_off);
19821 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19822 **slot = ofs;
19823 return type;
19824 }
19825
19826 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
19827 or return NULL if the die does not have a saved type. */
19828
19829 static struct type *
19830 get_die_type_at_offset (sect_offset offset,
19831 struct dwarf2_per_cu_data *per_cu)
19832 {
19833 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19834
19835 if (dwarf2_per_objfile->die_type_hash == NULL)
19836 return NULL;
19837
19838 ofs.per_cu = per_cu;
19839 ofs.offset = offset;
19840 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19841 if (slot)
19842 return slot->type;
19843 else
19844 return NULL;
19845 }
19846
19847 /* Look up the type for DIE in CU in die_type_hash,
19848 or return NULL if DIE does not have a saved type. */
19849
19850 static struct type *
19851 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19852 {
19853 return get_die_type_at_offset (die->offset, cu->per_cu);
19854 }
19855
19856 /* Add a dependence relationship from CU to REF_PER_CU. */
19857
19858 static void
19859 dwarf2_add_dependence (struct dwarf2_cu *cu,
19860 struct dwarf2_per_cu_data *ref_per_cu)
19861 {
19862 void **slot;
19863
19864 if (cu->dependencies == NULL)
19865 cu->dependencies
19866 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19867 NULL, &cu->comp_unit_obstack,
19868 hashtab_obstack_allocate,
19869 dummy_obstack_deallocate);
19870
19871 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19872 if (*slot == NULL)
19873 *slot = ref_per_cu;
19874 }
19875
19876 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19877 Set the mark field in every compilation unit in the
19878 cache that we must keep because we are keeping CU. */
19879
19880 static int
19881 dwarf2_mark_helper (void **slot, void *data)
19882 {
19883 struct dwarf2_per_cu_data *per_cu;
19884
19885 per_cu = (struct dwarf2_per_cu_data *) *slot;
19886
19887 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19888 reading of the chain. As such dependencies remain valid it is not much
19889 useful to track and undo them during QUIT cleanups. */
19890 if (per_cu->cu == NULL)
19891 return 1;
19892
19893 if (per_cu->cu->mark)
19894 return 1;
19895 per_cu->cu->mark = 1;
19896
19897 if (per_cu->cu->dependencies != NULL)
19898 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19899
19900 return 1;
19901 }
19902
19903 /* Set the mark field in CU and in every other compilation unit in the
19904 cache that we must keep because we are keeping CU. */
19905
19906 static void
19907 dwarf2_mark (struct dwarf2_cu *cu)
19908 {
19909 if (cu->mark)
19910 return;
19911 cu->mark = 1;
19912 if (cu->dependencies != NULL)
19913 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19914 }
19915
19916 static void
19917 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19918 {
19919 while (per_cu)
19920 {
19921 per_cu->cu->mark = 0;
19922 per_cu = per_cu->cu->read_in_chain;
19923 }
19924 }
19925
19926 /* Trivial hash function for partial_die_info: the hash value of a DIE
19927 is its offset in .debug_info for this objfile. */
19928
19929 static hashval_t
19930 partial_die_hash (const void *item)
19931 {
19932 const struct partial_die_info *part_die = item;
19933
19934 return part_die->offset.sect_off;
19935 }
19936
19937 /* Trivial comparison function for partial_die_info structures: two DIEs
19938 are equal if they have the same offset. */
19939
19940 static int
19941 partial_die_eq (const void *item_lhs, const void *item_rhs)
19942 {
19943 const struct partial_die_info *part_die_lhs = item_lhs;
19944 const struct partial_die_info *part_die_rhs = item_rhs;
19945
19946 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19947 }
19948
19949 static struct cmd_list_element *set_dwarf2_cmdlist;
19950 static struct cmd_list_element *show_dwarf2_cmdlist;
19951
19952 static void
19953 set_dwarf2_cmd (char *args, int from_tty)
19954 {
19955 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19956 }
19957
19958 static void
19959 show_dwarf2_cmd (char *args, int from_tty)
19960 {
19961 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19962 }
19963
19964 /* Free data associated with OBJFILE, if necessary. */
19965
19966 static void
19967 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19968 {
19969 struct dwarf2_per_objfile *data = d;
19970 int ix;
19971
19972 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19973 VEC_free (dwarf2_per_cu_ptr,
19974 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19975
19976 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19977 VEC_free (dwarf2_per_cu_ptr,
19978 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19979
19980 VEC_free (dwarf2_section_info_def, data->types);
19981
19982 if (data->dwo_files)
19983 free_dwo_files (data->dwo_files, objfile);
19984 if (data->dwp_file)
19985 gdb_bfd_unref (data->dwp_file->dbfd);
19986
19987 if (data->dwz_file && data->dwz_file->dwz_bfd)
19988 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19989 }
19990
19991 \f
19992 /* The "save gdb-index" command. */
19993
19994 /* The contents of the hash table we create when building the string
19995 table. */
19996 struct strtab_entry
19997 {
19998 offset_type offset;
19999 const char *str;
20000 };
20001
20002 /* Hash function for a strtab_entry.
20003
20004 Function is used only during write_hash_table so no index format backward
20005 compatibility is needed. */
20006
20007 static hashval_t
20008 hash_strtab_entry (const void *e)
20009 {
20010 const struct strtab_entry *entry = e;
20011 return mapped_index_string_hash (INT_MAX, entry->str);
20012 }
20013
20014 /* Equality function for a strtab_entry. */
20015
20016 static int
20017 eq_strtab_entry (const void *a, const void *b)
20018 {
20019 const struct strtab_entry *ea = a;
20020 const struct strtab_entry *eb = b;
20021 return !strcmp (ea->str, eb->str);
20022 }
20023
20024 /* Create a strtab_entry hash table. */
20025
20026 static htab_t
20027 create_strtab (void)
20028 {
20029 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20030 xfree, xcalloc, xfree);
20031 }
20032
20033 /* Add a string to the constant pool. Return the string's offset in
20034 host order. */
20035
20036 static offset_type
20037 add_string (htab_t table, struct obstack *cpool, const char *str)
20038 {
20039 void **slot;
20040 struct strtab_entry entry;
20041 struct strtab_entry *result;
20042
20043 entry.str = str;
20044 slot = htab_find_slot (table, &entry, INSERT);
20045 if (*slot)
20046 result = *slot;
20047 else
20048 {
20049 result = XNEW (struct strtab_entry);
20050 result->offset = obstack_object_size (cpool);
20051 result->str = str;
20052 obstack_grow_str0 (cpool, str);
20053 *slot = result;
20054 }
20055 return result->offset;
20056 }
20057
20058 /* An entry in the symbol table. */
20059 struct symtab_index_entry
20060 {
20061 /* The name of the symbol. */
20062 const char *name;
20063 /* The offset of the name in the constant pool. */
20064 offset_type index_offset;
20065 /* A sorted vector of the indices of all the CUs that hold an object
20066 of this name. */
20067 VEC (offset_type) *cu_indices;
20068 };
20069
20070 /* The symbol table. This is a power-of-2-sized hash table. */
20071 struct mapped_symtab
20072 {
20073 offset_type n_elements;
20074 offset_type size;
20075 struct symtab_index_entry **data;
20076 };
20077
20078 /* Hash function for a symtab_index_entry. */
20079
20080 static hashval_t
20081 hash_symtab_entry (const void *e)
20082 {
20083 const struct symtab_index_entry *entry = e;
20084 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20085 sizeof (offset_type) * VEC_length (offset_type,
20086 entry->cu_indices),
20087 0);
20088 }
20089
20090 /* Equality function for a symtab_index_entry. */
20091
20092 static int
20093 eq_symtab_entry (const void *a, const void *b)
20094 {
20095 const struct symtab_index_entry *ea = a;
20096 const struct symtab_index_entry *eb = b;
20097 int len = VEC_length (offset_type, ea->cu_indices);
20098 if (len != VEC_length (offset_type, eb->cu_indices))
20099 return 0;
20100 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20101 VEC_address (offset_type, eb->cu_indices),
20102 sizeof (offset_type) * len);
20103 }
20104
20105 /* Destroy a symtab_index_entry. */
20106
20107 static void
20108 delete_symtab_entry (void *p)
20109 {
20110 struct symtab_index_entry *entry = p;
20111 VEC_free (offset_type, entry->cu_indices);
20112 xfree (entry);
20113 }
20114
20115 /* Create a hash table holding symtab_index_entry objects. */
20116
20117 static htab_t
20118 create_symbol_hash_table (void)
20119 {
20120 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20121 delete_symtab_entry, xcalloc, xfree);
20122 }
20123
20124 /* Create a new mapped symtab object. */
20125
20126 static struct mapped_symtab *
20127 create_mapped_symtab (void)
20128 {
20129 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20130 symtab->n_elements = 0;
20131 symtab->size = 1024;
20132 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20133 return symtab;
20134 }
20135
20136 /* Destroy a mapped_symtab. */
20137
20138 static void
20139 cleanup_mapped_symtab (void *p)
20140 {
20141 struct mapped_symtab *symtab = p;
20142 /* The contents of the array are freed when the other hash table is
20143 destroyed. */
20144 xfree (symtab->data);
20145 xfree (symtab);
20146 }
20147
20148 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20149 the slot.
20150
20151 Function is used only during write_hash_table so no index format backward
20152 compatibility is needed. */
20153
20154 static struct symtab_index_entry **
20155 find_slot (struct mapped_symtab *symtab, const char *name)
20156 {
20157 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20158
20159 index = hash & (symtab->size - 1);
20160 step = ((hash * 17) & (symtab->size - 1)) | 1;
20161
20162 for (;;)
20163 {
20164 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20165 return &symtab->data[index];
20166 index = (index + step) & (symtab->size - 1);
20167 }
20168 }
20169
20170 /* Expand SYMTAB's hash table. */
20171
20172 static void
20173 hash_expand (struct mapped_symtab *symtab)
20174 {
20175 offset_type old_size = symtab->size;
20176 offset_type i;
20177 struct symtab_index_entry **old_entries = symtab->data;
20178
20179 symtab->size *= 2;
20180 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20181
20182 for (i = 0; i < old_size; ++i)
20183 {
20184 if (old_entries[i])
20185 {
20186 struct symtab_index_entry **slot = find_slot (symtab,
20187 old_entries[i]->name);
20188 *slot = old_entries[i];
20189 }
20190 }
20191
20192 xfree (old_entries);
20193 }
20194
20195 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20196 CU_INDEX is the index of the CU in which the symbol appears.
20197 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20198
20199 static void
20200 add_index_entry (struct mapped_symtab *symtab, const char *name,
20201 int is_static, gdb_index_symbol_kind kind,
20202 offset_type cu_index)
20203 {
20204 struct symtab_index_entry **slot;
20205 offset_type cu_index_and_attrs;
20206
20207 ++symtab->n_elements;
20208 if (4 * symtab->n_elements / 3 >= symtab->size)
20209 hash_expand (symtab);
20210
20211 slot = find_slot (symtab, name);
20212 if (!*slot)
20213 {
20214 *slot = XNEW (struct symtab_index_entry);
20215 (*slot)->name = name;
20216 /* index_offset is set later. */
20217 (*slot)->cu_indices = NULL;
20218 }
20219
20220 cu_index_and_attrs = 0;
20221 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20222 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20223 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20224
20225 /* We don't want to record an index value twice as we want to avoid the
20226 duplication.
20227 We process all global symbols and then all static symbols
20228 (which would allow us to avoid the duplication by only having to check
20229 the last entry pushed), but a symbol could have multiple kinds in one CU.
20230 To keep things simple we don't worry about the duplication here and
20231 sort and uniqufy the list after we've processed all symbols. */
20232 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20233 }
20234
20235 /* qsort helper routine for uniquify_cu_indices. */
20236
20237 static int
20238 offset_type_compare (const void *ap, const void *bp)
20239 {
20240 offset_type a = *(offset_type *) ap;
20241 offset_type b = *(offset_type *) bp;
20242
20243 return (a > b) - (b > a);
20244 }
20245
20246 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20247
20248 static void
20249 uniquify_cu_indices (struct mapped_symtab *symtab)
20250 {
20251 int i;
20252
20253 for (i = 0; i < symtab->size; ++i)
20254 {
20255 struct symtab_index_entry *entry = symtab->data[i];
20256
20257 if (entry
20258 && entry->cu_indices != NULL)
20259 {
20260 unsigned int next_to_insert, next_to_check;
20261 offset_type last_value;
20262
20263 qsort (VEC_address (offset_type, entry->cu_indices),
20264 VEC_length (offset_type, entry->cu_indices),
20265 sizeof (offset_type), offset_type_compare);
20266
20267 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20268 next_to_insert = 1;
20269 for (next_to_check = 1;
20270 next_to_check < VEC_length (offset_type, entry->cu_indices);
20271 ++next_to_check)
20272 {
20273 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20274 != last_value)
20275 {
20276 last_value = VEC_index (offset_type, entry->cu_indices,
20277 next_to_check);
20278 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20279 last_value);
20280 ++next_to_insert;
20281 }
20282 }
20283 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20284 }
20285 }
20286 }
20287
20288 /* Add a vector of indices to the constant pool. */
20289
20290 static offset_type
20291 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20292 struct symtab_index_entry *entry)
20293 {
20294 void **slot;
20295
20296 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20297 if (!*slot)
20298 {
20299 offset_type len = VEC_length (offset_type, entry->cu_indices);
20300 offset_type val = MAYBE_SWAP (len);
20301 offset_type iter;
20302 int i;
20303
20304 *slot = entry;
20305 entry->index_offset = obstack_object_size (cpool);
20306
20307 obstack_grow (cpool, &val, sizeof (val));
20308 for (i = 0;
20309 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20310 ++i)
20311 {
20312 val = MAYBE_SWAP (iter);
20313 obstack_grow (cpool, &val, sizeof (val));
20314 }
20315 }
20316 else
20317 {
20318 struct symtab_index_entry *old_entry = *slot;
20319 entry->index_offset = old_entry->index_offset;
20320 entry = old_entry;
20321 }
20322 return entry->index_offset;
20323 }
20324
20325 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20326 constant pool entries going into the obstack CPOOL. */
20327
20328 static void
20329 write_hash_table (struct mapped_symtab *symtab,
20330 struct obstack *output, struct obstack *cpool)
20331 {
20332 offset_type i;
20333 htab_t symbol_hash_table;
20334 htab_t str_table;
20335
20336 symbol_hash_table = create_symbol_hash_table ();
20337 str_table = create_strtab ();
20338
20339 /* We add all the index vectors to the constant pool first, to
20340 ensure alignment is ok. */
20341 for (i = 0; i < symtab->size; ++i)
20342 {
20343 if (symtab->data[i])
20344 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20345 }
20346
20347 /* Now write out the hash table. */
20348 for (i = 0; i < symtab->size; ++i)
20349 {
20350 offset_type str_off, vec_off;
20351
20352 if (symtab->data[i])
20353 {
20354 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20355 vec_off = symtab->data[i]->index_offset;
20356 }
20357 else
20358 {
20359 /* While 0 is a valid constant pool index, it is not valid
20360 to have 0 for both offsets. */
20361 str_off = 0;
20362 vec_off = 0;
20363 }
20364
20365 str_off = MAYBE_SWAP (str_off);
20366 vec_off = MAYBE_SWAP (vec_off);
20367
20368 obstack_grow (output, &str_off, sizeof (str_off));
20369 obstack_grow (output, &vec_off, sizeof (vec_off));
20370 }
20371
20372 htab_delete (str_table);
20373 htab_delete (symbol_hash_table);
20374 }
20375
20376 /* Struct to map psymtab to CU index in the index file. */
20377 struct psymtab_cu_index_map
20378 {
20379 struct partial_symtab *psymtab;
20380 unsigned int cu_index;
20381 };
20382
20383 static hashval_t
20384 hash_psymtab_cu_index (const void *item)
20385 {
20386 const struct psymtab_cu_index_map *map = item;
20387
20388 return htab_hash_pointer (map->psymtab);
20389 }
20390
20391 static int
20392 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20393 {
20394 const struct psymtab_cu_index_map *lhs = item_lhs;
20395 const struct psymtab_cu_index_map *rhs = item_rhs;
20396
20397 return lhs->psymtab == rhs->psymtab;
20398 }
20399
20400 /* Helper struct for building the address table. */
20401 struct addrmap_index_data
20402 {
20403 struct objfile *objfile;
20404 struct obstack *addr_obstack;
20405 htab_t cu_index_htab;
20406
20407 /* Non-zero if the previous_* fields are valid.
20408 We can't write an entry until we see the next entry (since it is only then
20409 that we know the end of the entry). */
20410 int previous_valid;
20411 /* Index of the CU in the table of all CUs in the index file. */
20412 unsigned int previous_cu_index;
20413 /* Start address of the CU. */
20414 CORE_ADDR previous_cu_start;
20415 };
20416
20417 /* Write an address entry to OBSTACK. */
20418
20419 static void
20420 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20421 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20422 {
20423 offset_type cu_index_to_write;
20424 gdb_byte addr[8];
20425 CORE_ADDR baseaddr;
20426
20427 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20428
20429 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20430 obstack_grow (obstack, addr, 8);
20431 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20432 obstack_grow (obstack, addr, 8);
20433 cu_index_to_write = MAYBE_SWAP (cu_index);
20434 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20435 }
20436
20437 /* Worker function for traversing an addrmap to build the address table. */
20438
20439 static int
20440 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20441 {
20442 struct addrmap_index_data *data = datap;
20443 struct partial_symtab *pst = obj;
20444
20445 if (data->previous_valid)
20446 add_address_entry (data->objfile, data->addr_obstack,
20447 data->previous_cu_start, start_addr,
20448 data->previous_cu_index);
20449
20450 data->previous_cu_start = start_addr;
20451 if (pst != NULL)
20452 {
20453 struct psymtab_cu_index_map find_map, *map;
20454 find_map.psymtab = pst;
20455 map = htab_find (data->cu_index_htab, &find_map);
20456 gdb_assert (map != NULL);
20457 data->previous_cu_index = map->cu_index;
20458 data->previous_valid = 1;
20459 }
20460 else
20461 data->previous_valid = 0;
20462
20463 return 0;
20464 }
20465
20466 /* Write OBJFILE's address map to OBSTACK.
20467 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20468 in the index file. */
20469
20470 static void
20471 write_address_map (struct objfile *objfile, struct obstack *obstack,
20472 htab_t cu_index_htab)
20473 {
20474 struct addrmap_index_data addrmap_index_data;
20475
20476 /* When writing the address table, we have to cope with the fact that
20477 the addrmap iterator only provides the start of a region; we have to
20478 wait until the next invocation to get the start of the next region. */
20479
20480 addrmap_index_data.objfile = objfile;
20481 addrmap_index_data.addr_obstack = obstack;
20482 addrmap_index_data.cu_index_htab = cu_index_htab;
20483 addrmap_index_data.previous_valid = 0;
20484
20485 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20486 &addrmap_index_data);
20487
20488 /* It's highly unlikely the last entry (end address = 0xff...ff)
20489 is valid, but we should still handle it.
20490 The end address is recorded as the start of the next region, but that
20491 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20492 anyway. */
20493 if (addrmap_index_data.previous_valid)
20494 add_address_entry (objfile, obstack,
20495 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20496 addrmap_index_data.previous_cu_index);
20497 }
20498
20499 /* Return the symbol kind of PSYM. */
20500
20501 static gdb_index_symbol_kind
20502 symbol_kind (struct partial_symbol *psym)
20503 {
20504 domain_enum domain = PSYMBOL_DOMAIN (psym);
20505 enum address_class aclass = PSYMBOL_CLASS (psym);
20506
20507 switch (domain)
20508 {
20509 case VAR_DOMAIN:
20510 switch (aclass)
20511 {
20512 case LOC_BLOCK:
20513 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20514 case LOC_TYPEDEF:
20515 return GDB_INDEX_SYMBOL_KIND_TYPE;
20516 case LOC_COMPUTED:
20517 case LOC_CONST_BYTES:
20518 case LOC_OPTIMIZED_OUT:
20519 case LOC_STATIC:
20520 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20521 case LOC_CONST:
20522 /* Note: It's currently impossible to recognize psyms as enum values
20523 short of reading the type info. For now punt. */
20524 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20525 default:
20526 /* There are other LOC_FOO values that one might want to classify
20527 as variables, but dwarf2read.c doesn't currently use them. */
20528 return GDB_INDEX_SYMBOL_KIND_OTHER;
20529 }
20530 case STRUCT_DOMAIN:
20531 return GDB_INDEX_SYMBOL_KIND_TYPE;
20532 default:
20533 return GDB_INDEX_SYMBOL_KIND_OTHER;
20534 }
20535 }
20536
20537 /* Add a list of partial symbols to SYMTAB. */
20538
20539 static void
20540 write_psymbols (struct mapped_symtab *symtab,
20541 htab_t psyms_seen,
20542 struct partial_symbol **psymp,
20543 int count,
20544 offset_type cu_index,
20545 int is_static)
20546 {
20547 for (; count-- > 0; ++psymp)
20548 {
20549 struct partial_symbol *psym = *psymp;
20550 void **slot;
20551
20552 if (SYMBOL_LANGUAGE (psym) == language_ada)
20553 error (_("Ada is not currently supported by the index"));
20554
20555 /* Only add a given psymbol once. */
20556 slot = htab_find_slot (psyms_seen, psym, INSERT);
20557 if (!*slot)
20558 {
20559 gdb_index_symbol_kind kind = symbol_kind (psym);
20560
20561 *slot = psym;
20562 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20563 is_static, kind, cu_index);
20564 }
20565 }
20566 }
20567
20568 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20569 exception if there is an error. */
20570
20571 static void
20572 write_obstack (FILE *file, struct obstack *obstack)
20573 {
20574 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20575 file)
20576 != obstack_object_size (obstack))
20577 error (_("couldn't data write to file"));
20578 }
20579
20580 /* Unlink a file if the argument is not NULL. */
20581
20582 static void
20583 unlink_if_set (void *p)
20584 {
20585 char **filename = p;
20586 if (*filename)
20587 unlink (*filename);
20588 }
20589
20590 /* A helper struct used when iterating over debug_types. */
20591 struct signatured_type_index_data
20592 {
20593 struct objfile *objfile;
20594 struct mapped_symtab *symtab;
20595 struct obstack *types_list;
20596 htab_t psyms_seen;
20597 int cu_index;
20598 };
20599
20600 /* A helper function that writes a single signatured_type to an
20601 obstack. */
20602
20603 static int
20604 write_one_signatured_type (void **slot, void *d)
20605 {
20606 struct signatured_type_index_data *info = d;
20607 struct signatured_type *entry = (struct signatured_type *) *slot;
20608 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
20609 gdb_byte val[8];
20610
20611 write_psymbols (info->symtab,
20612 info->psyms_seen,
20613 info->objfile->global_psymbols.list
20614 + psymtab->globals_offset,
20615 psymtab->n_global_syms, info->cu_index,
20616 0);
20617 write_psymbols (info->symtab,
20618 info->psyms_seen,
20619 info->objfile->static_psymbols.list
20620 + psymtab->statics_offset,
20621 psymtab->n_static_syms, info->cu_index,
20622 1);
20623
20624 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20625 entry->per_cu.offset.sect_off);
20626 obstack_grow (info->types_list, val, 8);
20627 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20628 entry->type_offset_in_tu.cu_off);
20629 obstack_grow (info->types_list, val, 8);
20630 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20631 obstack_grow (info->types_list, val, 8);
20632
20633 ++info->cu_index;
20634
20635 return 1;
20636 }
20637
20638 /* Recurse into all "included" dependencies and write their symbols as
20639 if they appeared in this psymtab. */
20640
20641 static void
20642 recursively_write_psymbols (struct objfile *objfile,
20643 struct partial_symtab *psymtab,
20644 struct mapped_symtab *symtab,
20645 htab_t psyms_seen,
20646 offset_type cu_index)
20647 {
20648 int i;
20649
20650 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20651 if (psymtab->dependencies[i]->user != NULL)
20652 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20653 symtab, psyms_seen, cu_index);
20654
20655 write_psymbols (symtab,
20656 psyms_seen,
20657 objfile->global_psymbols.list + psymtab->globals_offset,
20658 psymtab->n_global_syms, cu_index,
20659 0);
20660 write_psymbols (symtab,
20661 psyms_seen,
20662 objfile->static_psymbols.list + psymtab->statics_offset,
20663 psymtab->n_static_syms, cu_index,
20664 1);
20665 }
20666
20667 /* Create an index file for OBJFILE in the directory DIR. */
20668
20669 static void
20670 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20671 {
20672 struct cleanup *cleanup;
20673 char *filename, *cleanup_filename;
20674 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20675 struct obstack cu_list, types_cu_list;
20676 int i;
20677 FILE *out_file;
20678 struct mapped_symtab *symtab;
20679 offset_type val, size_of_contents, total_len;
20680 struct stat st;
20681 htab_t psyms_seen;
20682 htab_t cu_index_htab;
20683 struct psymtab_cu_index_map *psymtab_cu_index_map;
20684
20685 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20686 return;
20687
20688 if (dwarf2_per_objfile->using_index)
20689 error (_("Cannot use an index to create the index"));
20690
20691 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20692 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20693
20694 if (stat (objfile->name, &st) < 0)
20695 perror_with_name (objfile->name);
20696
20697 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20698 INDEX_SUFFIX, (char *) NULL);
20699 cleanup = make_cleanup (xfree, filename);
20700
20701 out_file = gdb_fopen_cloexec (filename, "wb");
20702 if (!out_file)
20703 error (_("Can't open `%s' for writing"), filename);
20704
20705 cleanup_filename = filename;
20706 make_cleanup (unlink_if_set, &cleanup_filename);
20707
20708 symtab = create_mapped_symtab ();
20709 make_cleanup (cleanup_mapped_symtab, symtab);
20710
20711 obstack_init (&addr_obstack);
20712 make_cleanup_obstack_free (&addr_obstack);
20713
20714 obstack_init (&cu_list);
20715 make_cleanup_obstack_free (&cu_list);
20716
20717 obstack_init (&types_cu_list);
20718 make_cleanup_obstack_free (&types_cu_list);
20719
20720 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20721 NULL, xcalloc, xfree);
20722 make_cleanup_htab_delete (psyms_seen);
20723
20724 /* While we're scanning CU's create a table that maps a psymtab pointer
20725 (which is what addrmap records) to its index (which is what is recorded
20726 in the index file). This will later be needed to write the address
20727 table. */
20728 cu_index_htab = htab_create_alloc (100,
20729 hash_psymtab_cu_index,
20730 eq_psymtab_cu_index,
20731 NULL, xcalloc, xfree);
20732 make_cleanup_htab_delete (cu_index_htab);
20733 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20734 xmalloc (sizeof (struct psymtab_cu_index_map)
20735 * dwarf2_per_objfile->n_comp_units);
20736 make_cleanup (xfree, psymtab_cu_index_map);
20737
20738 /* The CU list is already sorted, so we don't need to do additional
20739 work here. Also, the debug_types entries do not appear in
20740 all_comp_units, but only in their own hash table. */
20741 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20742 {
20743 struct dwarf2_per_cu_data *per_cu
20744 = dwarf2_per_objfile->all_comp_units[i];
20745 struct partial_symtab *psymtab = per_cu->v.psymtab;
20746 gdb_byte val[8];
20747 struct psymtab_cu_index_map *map;
20748 void **slot;
20749
20750 if (psymtab->user == NULL)
20751 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20752
20753 map = &psymtab_cu_index_map[i];
20754 map->psymtab = psymtab;
20755 map->cu_index = i;
20756 slot = htab_find_slot (cu_index_htab, map, INSERT);
20757 gdb_assert (slot != NULL);
20758 gdb_assert (*slot == NULL);
20759 *slot = map;
20760
20761 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20762 per_cu->offset.sect_off);
20763 obstack_grow (&cu_list, val, 8);
20764 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20765 obstack_grow (&cu_list, val, 8);
20766 }
20767
20768 /* Dump the address map. */
20769 write_address_map (objfile, &addr_obstack, cu_index_htab);
20770
20771 /* Write out the .debug_type entries, if any. */
20772 if (dwarf2_per_objfile->signatured_types)
20773 {
20774 struct signatured_type_index_data sig_data;
20775
20776 sig_data.objfile = objfile;
20777 sig_data.symtab = symtab;
20778 sig_data.types_list = &types_cu_list;
20779 sig_data.psyms_seen = psyms_seen;
20780 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20781 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20782 write_one_signatured_type, &sig_data);
20783 }
20784
20785 /* Now that we've processed all symbols we can shrink their cu_indices
20786 lists. */
20787 uniquify_cu_indices (symtab);
20788
20789 obstack_init (&constant_pool);
20790 make_cleanup_obstack_free (&constant_pool);
20791 obstack_init (&symtab_obstack);
20792 make_cleanup_obstack_free (&symtab_obstack);
20793 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20794
20795 obstack_init (&contents);
20796 make_cleanup_obstack_free (&contents);
20797 size_of_contents = 6 * sizeof (offset_type);
20798 total_len = size_of_contents;
20799
20800 /* The version number. */
20801 val = MAYBE_SWAP (8);
20802 obstack_grow (&contents, &val, sizeof (val));
20803
20804 /* The offset of the CU list from the start of the file. */
20805 val = MAYBE_SWAP (total_len);
20806 obstack_grow (&contents, &val, sizeof (val));
20807 total_len += obstack_object_size (&cu_list);
20808
20809 /* The offset of the types CU list from the start of the file. */
20810 val = MAYBE_SWAP (total_len);
20811 obstack_grow (&contents, &val, sizeof (val));
20812 total_len += obstack_object_size (&types_cu_list);
20813
20814 /* The offset of the address table from the start of the file. */
20815 val = MAYBE_SWAP (total_len);
20816 obstack_grow (&contents, &val, sizeof (val));
20817 total_len += obstack_object_size (&addr_obstack);
20818
20819 /* The offset of the symbol table from the start of the file. */
20820 val = MAYBE_SWAP (total_len);
20821 obstack_grow (&contents, &val, sizeof (val));
20822 total_len += obstack_object_size (&symtab_obstack);
20823
20824 /* The offset of the constant pool from the start of the file. */
20825 val = MAYBE_SWAP (total_len);
20826 obstack_grow (&contents, &val, sizeof (val));
20827 total_len += obstack_object_size (&constant_pool);
20828
20829 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20830
20831 write_obstack (out_file, &contents);
20832 write_obstack (out_file, &cu_list);
20833 write_obstack (out_file, &types_cu_list);
20834 write_obstack (out_file, &addr_obstack);
20835 write_obstack (out_file, &symtab_obstack);
20836 write_obstack (out_file, &constant_pool);
20837
20838 fclose (out_file);
20839
20840 /* We want to keep the file, so we set cleanup_filename to NULL
20841 here. See unlink_if_set. */
20842 cleanup_filename = NULL;
20843
20844 do_cleanups (cleanup);
20845 }
20846
20847 /* Implementation of the `save gdb-index' command.
20848
20849 Note that the file format used by this command is documented in the
20850 GDB manual. Any changes here must be documented there. */
20851
20852 static void
20853 save_gdb_index_command (char *arg, int from_tty)
20854 {
20855 struct objfile *objfile;
20856
20857 if (!arg || !*arg)
20858 error (_("usage: save gdb-index DIRECTORY"));
20859
20860 ALL_OBJFILES (objfile)
20861 {
20862 struct stat st;
20863
20864 /* If the objfile does not correspond to an actual file, skip it. */
20865 if (stat (objfile->name, &st) < 0)
20866 continue;
20867
20868 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20869 if (dwarf2_per_objfile)
20870 {
20871 volatile struct gdb_exception except;
20872
20873 TRY_CATCH (except, RETURN_MASK_ERROR)
20874 {
20875 write_psymtabs_to_index (objfile, arg);
20876 }
20877 if (except.reason < 0)
20878 exception_fprintf (gdb_stderr, except,
20879 _("Error while writing index for `%s': "),
20880 objfile->name);
20881 }
20882 }
20883 }
20884
20885 \f
20886
20887 int dwarf2_always_disassemble;
20888
20889 static void
20890 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20891 struct cmd_list_element *c, const char *value)
20892 {
20893 fprintf_filtered (file,
20894 _("Whether to always disassemble "
20895 "DWARF expressions is %s.\n"),
20896 value);
20897 }
20898
20899 static void
20900 show_check_physname (struct ui_file *file, int from_tty,
20901 struct cmd_list_element *c, const char *value)
20902 {
20903 fprintf_filtered (file,
20904 _("Whether to check \"physname\" is %s.\n"),
20905 value);
20906 }
20907
20908 void _initialize_dwarf2_read (void);
20909
20910 void
20911 _initialize_dwarf2_read (void)
20912 {
20913 struct cmd_list_element *c;
20914
20915 dwarf2_objfile_data_key
20916 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20917
20918 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20919 Set DWARF 2 specific variables.\n\
20920 Configure DWARF 2 variables such as the cache size"),
20921 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20922 0/*allow-unknown*/, &maintenance_set_cmdlist);
20923
20924 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20925 Show DWARF 2 specific variables\n\
20926 Show DWARF 2 variables such as the cache size"),
20927 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20928 0/*allow-unknown*/, &maintenance_show_cmdlist);
20929
20930 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20931 &dwarf2_max_cache_age, _("\
20932 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20933 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20934 A higher limit means that cached compilation units will be stored\n\
20935 in memory longer, and more total memory will be used. Zero disables\n\
20936 caching, which can slow down startup."),
20937 NULL,
20938 show_dwarf2_max_cache_age,
20939 &set_dwarf2_cmdlist,
20940 &show_dwarf2_cmdlist);
20941
20942 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20943 &dwarf2_always_disassemble, _("\
20944 Set whether `info address' always disassembles DWARF expressions."), _("\
20945 Show whether `info address' always disassembles DWARF expressions."), _("\
20946 When enabled, DWARF expressions are always printed in an assembly-like\n\
20947 syntax. When disabled, expressions will be printed in a more\n\
20948 conversational style, when possible."),
20949 NULL,
20950 show_dwarf2_always_disassemble,
20951 &set_dwarf2_cmdlist,
20952 &show_dwarf2_cmdlist);
20953
20954 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20955 Set debugging of the dwarf2 reader."), _("\
20956 Show debugging of the dwarf2 reader."), _("\
20957 When enabled, debugging messages are printed during dwarf2 reading\n\
20958 and symtab expansion."),
20959 NULL,
20960 NULL,
20961 &setdebuglist, &showdebuglist);
20962
20963 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20964 Set debugging of the dwarf2 DIE reader."), _("\
20965 Show debugging of the dwarf2 DIE reader."), _("\
20966 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20967 The value is the maximum depth to print."),
20968 NULL,
20969 NULL,
20970 &setdebuglist, &showdebuglist);
20971
20972 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20973 Set cross-checking of \"physname\" code against demangler."), _("\
20974 Show cross-checking of \"physname\" code against demangler."), _("\
20975 When enabled, GDB's internal \"physname\" code is checked against\n\
20976 the demangler."),
20977 NULL, show_check_physname,
20978 &setdebuglist, &showdebuglist);
20979
20980 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20981 no_class, &use_deprecated_index_sections, _("\
20982 Set whether to use deprecated gdb_index sections."), _("\
20983 Show whether to use deprecated gdb_index sections."), _("\
20984 When enabled, deprecated .gdb_index sections are used anyway.\n\
20985 Normally they are ignored either because of a missing feature or\n\
20986 performance issue.\n\
20987 Warning: This option must be enabled before gdb reads the file."),
20988 NULL,
20989 NULL,
20990 &setlist, &showlist);
20991
20992 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20993 _("\
20994 Save a gdb-index file.\n\
20995 Usage: save gdb-index DIRECTORY"),
20996 &save_cmdlist);
20997 set_cmd_completer (c, filename_completer);
20998
20999 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21000 &dwarf2_locexpr_funcs);
21001 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21002 &dwarf2_loclist_funcs);
21003
21004 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21005 &dwarf2_block_frame_base_locexpr_funcs);
21006 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21007 &dwarf2_block_frame_base_loclist_funcs);
21008 }
This page took 0.588156 seconds and 3 git commands to generate.