Replace constant values 8 to 15 by AMD64_R8_REGNUM to
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backlink to our per_cu entry. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* Non-zero if the TU has been read.
562 This is used to assist the "Stay in DWO Optimization" for Fission:
563 When reading a DWO, it's faster to read TUs from the DWO instead of
564 fetching them from random other DWOs (due to comdat folding).
565 If the TU has already been read, the optimization is unnecessary
566 (and unwise - we don't want to change where gdb thinks the TU lives
567 "midflight").
568 This flag is only valid if is_debug_types is true. */
569 unsigned int tu_read : 1;
570
571 /* The section this CU/TU lives in.
572 If the DIE refers to a DWO file, this is always the original die,
573 not the DWO file. */
574 struct dwarf2_section_info *section;
575
576 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
577 of the CU cache it gets reset to NULL again. */
578 struct dwarf2_cu *cu;
579
580 /* The corresponding objfile.
581 Normally we can get the objfile from dwarf2_per_objfile.
582 However we can enter this file with just a "per_cu" handle. */
583 struct objfile *objfile;
584
585 /* When using partial symbol tables, the 'psymtab' field is active.
586 Otherwise the 'quick' field is active. */
587 union
588 {
589 /* The partial symbol table associated with this compilation unit,
590 or NULL for unread partial units. */
591 struct partial_symtab *psymtab;
592
593 /* Data needed by the "quick" functions. */
594 struct dwarf2_per_cu_quick_data *quick;
595 } v;
596
597 /* The CUs we import using DW_TAG_imported_unit. This is filled in
598 while reading psymtabs, used to compute the psymtab dependencies,
599 and then cleared. Then it is filled in again while reading full
600 symbols, and only deleted when the objfile is destroyed.
601
602 This is also used to work around a difference between the way gold
603 generates .gdb_index version <=7 and the way gdb does. Arguably this
604 is a gold bug. For symbols coming from TUs, gold records in the index
605 the CU that includes the TU instead of the TU itself. This breaks
606 dw2_lookup_symbol: It assumes that if the index says symbol X lives
607 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
608 will find X. Alas TUs live in their own symtab, so after expanding CU Y
609 we need to look in TU Z to find X. Fortunately, this is akin to
610 DW_TAG_imported_unit, so we just use the same mechanism: For
611 .gdb_index version <=7 this also records the TUs that the CU referred
612 to. Concurrently with this change gdb was modified to emit version 8
613 indices so we only pay a price for gold generated indices.
614 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
615 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
616 };
617
618 /* Entry in the signatured_types hash table. */
619
620 struct signatured_type
621 {
622 /* The "per_cu" object of this type.
623 This struct is used iff per_cu.is_debug_types.
624 N.B.: This is the first member so that it's easy to convert pointers
625 between them. */
626 struct dwarf2_per_cu_data per_cu;
627
628 /* The type's signature. */
629 ULONGEST signature;
630
631 /* Offset in the TU of the type's DIE, as read from the TU header.
632 If this TU is a DWO stub and the definition lives in a DWO file
633 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
634 cu_offset type_offset_in_tu;
635
636 /* Offset in the section of the type's DIE.
637 If the definition lives in a DWO file, this is the offset in the
638 .debug_types.dwo section.
639 The value is zero until the actual value is known.
640 Zero is otherwise not a valid section offset. */
641 sect_offset type_offset_in_section;
642
643 /* Type units are grouped by their DW_AT_stmt_list entry so that they
644 can share them. This points to the containing symtab. */
645 struct type_unit_group *type_unit_group;
646
647 /* The type.
648 The first time we encounter this type we fully read it in and install it
649 in the symbol tables. Subsequent times we only need the type. */
650 struct type *type;
651
652 /* Containing DWO unit.
653 This field is valid iff per_cu.reading_dwo_directly. */
654 struct dwo_unit *dwo_unit;
655 };
656
657 typedef struct signatured_type *sig_type_ptr;
658 DEF_VEC_P (sig_type_ptr);
659
660 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
661 This includes type_unit_group and quick_file_names. */
662
663 struct stmt_list_hash
664 {
665 /* The DWO unit this table is from or NULL if there is none. */
666 struct dwo_unit *dwo_unit;
667
668 /* Offset in .debug_line or .debug_line.dwo. */
669 sect_offset line_offset;
670 };
671
672 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
673 an object of this type. */
674
675 struct type_unit_group
676 {
677 /* dwarf2read.c's main "handle" on a TU symtab.
678 To simplify things we create an artificial CU that "includes" all the
679 type units using this stmt_list so that the rest of the code still has
680 a "per_cu" handle on the symtab.
681 This PER_CU is recognized by having no section. */
682 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
683 struct dwarf2_per_cu_data per_cu;
684
685 /* The TUs that share this DW_AT_stmt_list entry.
686 This is added to while parsing type units to build partial symtabs,
687 and is deleted afterwards and not used again. */
688 VEC (sig_type_ptr) *tus;
689
690 /* The primary symtab.
691 Type units in a group needn't all be defined in the same source file,
692 so we create an essentially anonymous symtab as the primary symtab. */
693 struct symtab *primary_symtab;
694
695 /* The data used to construct the hash key. */
696 struct stmt_list_hash hash;
697
698 /* The number of symtabs from the line header.
699 The value here must match line_header.num_file_names. */
700 unsigned int num_symtabs;
701
702 /* The symbol tables for this TU (obtained from the files listed in
703 DW_AT_stmt_list).
704 WARNING: The order of entries here must match the order of entries
705 in the line header. After the first TU using this type_unit_group, the
706 line header for the subsequent TUs is recreated from this. This is done
707 because we need to use the same symtabs for each TU using the same
708 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
709 there's no guarantee the line header doesn't have duplicate entries. */
710 struct symtab **symtabs;
711 };
712
713 /* These sections are what may appear in a DWO file. */
714
715 struct dwo_sections
716 {
717 struct dwarf2_section_info abbrev;
718 struct dwarf2_section_info line;
719 struct dwarf2_section_info loc;
720 struct dwarf2_section_info macinfo;
721 struct dwarf2_section_info macro;
722 struct dwarf2_section_info str;
723 struct dwarf2_section_info str_offsets;
724 /* In the case of a virtual DWO file, these two are unused. */
725 struct dwarf2_section_info info;
726 VEC (dwarf2_section_info_def) *types;
727 };
728
729 /* CUs/TUs in DWP/DWO files. */
730
731 struct dwo_unit
732 {
733 /* Backlink to the containing struct dwo_file. */
734 struct dwo_file *dwo_file;
735
736 /* The "id" that distinguishes this CU/TU.
737 .debug_info calls this "dwo_id", .debug_types calls this "signature".
738 Since signatures came first, we stick with it for consistency. */
739 ULONGEST signature;
740
741 /* The section this CU/TU lives in, in the DWO file. */
742 struct dwarf2_section_info *section;
743
744 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
745 sect_offset offset;
746 unsigned int length;
747
748 /* For types, offset in the type's DIE of the type defined by this TU. */
749 cu_offset type_offset_in_tu;
750 };
751
752 /* Data for one DWO file.
753 This includes virtual DWO files that have been packaged into a
754 DWP file. */
755
756 struct dwo_file
757 {
758 /* The DW_AT_GNU_dwo_name attribute.
759 For virtual DWO files the name is constructed from the section offsets
760 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
761 from related CU+TUs. */
762 const char *dwo_name;
763
764 /* The DW_AT_comp_dir attribute. */
765 const char *comp_dir;
766
767 /* The bfd, when the file is open. Otherwise this is NULL.
768 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
769 bfd *dbfd;
770
771 /* Section info for this file. */
772 struct dwo_sections sections;
773
774 /* The CU in the file.
775 We only support one because having more than one requires hacking the
776 dwo_name of each to match, which is highly unlikely to happen.
777 Doing this means all TUs can share comp_dir: We also assume that
778 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
779 struct dwo_unit *cu;
780
781 /* Table of TUs in the file.
782 Each element is a struct dwo_unit. */
783 htab_t tus;
784 };
785
786 /* These sections are what may appear in a DWP file. */
787
788 struct dwp_sections
789 {
790 struct dwarf2_section_info str;
791 struct dwarf2_section_info cu_index;
792 struct dwarf2_section_info tu_index;
793 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
794 by section number. We don't need to record them here. */
795 };
796
797 /* These sections are what may appear in a virtual DWO file. */
798
799 struct virtual_dwo_sections
800 {
801 struct dwarf2_section_info abbrev;
802 struct dwarf2_section_info line;
803 struct dwarf2_section_info loc;
804 struct dwarf2_section_info macinfo;
805 struct dwarf2_section_info macro;
806 struct dwarf2_section_info str_offsets;
807 /* Each DWP hash table entry records one CU or one TU.
808 That is recorded here, and copied to dwo_unit.section. */
809 struct dwarf2_section_info info_or_types;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table, *section_pool;
818 };
819
820 /* Data for one DWP file. */
821
822 struct dwp_file
823 {
824 /* Name of the file. */
825 const char *name;
826
827 /* The bfd. */
828 bfd *dbfd;
829
830 /* Section info for this file. */
831 struct dwp_sections sections;
832
833 /* Table of CUs in the file. */
834 const struct dwp_hash_table *cus;
835
836 /* Table of TUs in the file. */
837 const struct dwp_hash_table *tus;
838
839 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
840 htab_t loaded_cutus;
841
842 /* Table to map ELF section numbers to their sections. */
843 unsigned int num_sections;
844 asection **elf_sections;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 /* A dwz file can only contain a few sections. */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info str;
855 struct dwarf2_section_info line;
856 struct dwarf2_section_info macro;
857 struct dwarf2_section_info gdb_index;
858
859 /* The dwz's BFD. */
860 bfd *dwz_bfd;
861 };
862
863 /* Struct used to pass misc. parameters to read_die_and_children, et
864 al. which are used for both .debug_info and .debug_types dies.
865 All parameters here are unchanging for the life of the call. This
866 struct exists to abstract away the constant parameters of die reading. */
867
868 struct die_reader_specs
869 {
870 /* die_section->asection->owner. */
871 bfd* abfd;
872
873 /* The CU of the DIE we are parsing. */
874 struct dwarf2_cu *cu;
875
876 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
877 struct dwo_file *dwo_file;
878
879 /* The section the die comes from.
880 This is either .debug_info or .debug_types, or the .dwo variants. */
881 struct dwarf2_section_info *die_section;
882
883 /* die_section->buffer. */
884 const gdb_byte *buffer;
885
886 /* The end of the buffer. */
887 const gdb_byte *buffer_end;
888
889 /* The value of the DW_AT_comp_dir attribute. */
890 const char *comp_dir;
891 };
892
893 /* Type of function passed to init_cutu_and_read_dies, et.al. */
894 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
895 const gdb_byte *info_ptr,
896 struct die_info *comp_unit_die,
897 int has_children,
898 void *data);
899
900 /* The line number information for a compilation unit (found in the
901 .debug_line section) begins with a "statement program header",
902 which contains the following information. */
903 struct line_header
904 {
905 unsigned int total_length;
906 unsigned short version;
907 unsigned int header_length;
908 unsigned char minimum_instruction_length;
909 unsigned char maximum_ops_per_instruction;
910 unsigned char default_is_stmt;
911 int line_base;
912 unsigned char line_range;
913 unsigned char opcode_base;
914
915 /* standard_opcode_lengths[i] is the number of operands for the
916 standard opcode whose value is i. This means that
917 standard_opcode_lengths[0] is unused, and the last meaningful
918 element is standard_opcode_lengths[opcode_base - 1]. */
919 unsigned char *standard_opcode_lengths;
920
921 /* The include_directories table. NOTE! These strings are not
922 allocated with xmalloc; instead, they are pointers into
923 debug_line_buffer. If you try to free them, `free' will get
924 indigestion. */
925 unsigned int num_include_dirs, include_dirs_size;
926 const char **include_dirs;
927
928 /* The file_names table. NOTE! These strings are not allocated
929 with xmalloc; instead, they are pointers into debug_line_buffer.
930 Don't try to free them directly. */
931 unsigned int num_file_names, file_names_size;
932 struct file_entry
933 {
934 const char *name;
935 unsigned int dir_index;
936 unsigned int mod_time;
937 unsigned int length;
938 int included_p; /* Non-zero if referenced by the Line Number Program. */
939 struct symtab *symtab; /* The associated symbol table, if any. */
940 } *file_names;
941
942 /* The start and end of the statement program following this
943 header. These point into dwarf2_per_objfile->line_buffer. */
944 const gdb_byte *statement_program_start, *statement_program_end;
945 };
946
947 /* When we construct a partial symbol table entry we only
948 need this much information. */
949 struct partial_die_info
950 {
951 /* Offset of this DIE. */
952 sect_offset offset;
953
954 /* DWARF-2 tag for this DIE. */
955 ENUM_BITFIELD(dwarf_tag) tag : 16;
956
957 /* Assorted flags describing the data found in this DIE. */
958 unsigned int has_children : 1;
959 unsigned int is_external : 1;
960 unsigned int is_declaration : 1;
961 unsigned int has_type : 1;
962 unsigned int has_specification : 1;
963 unsigned int has_pc_info : 1;
964 unsigned int may_be_inlined : 1;
965
966 /* Flag set if the SCOPE field of this structure has been
967 computed. */
968 unsigned int scope_set : 1;
969
970 /* Flag set if the DIE has a byte_size attribute. */
971 unsigned int has_byte_size : 1;
972
973 /* Flag set if any of the DIE's children are template arguments. */
974 unsigned int has_template_arguments : 1;
975
976 /* Flag set if fixup_partial_die has been called on this die. */
977 unsigned int fixup_called : 1;
978
979 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
980 unsigned int is_dwz : 1;
981
982 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
983 unsigned int spec_is_dwz : 1;
984
985 /* The name of this DIE. Normally the value of DW_AT_name, but
986 sometimes a default name for unnamed DIEs. */
987 const char *name;
988
989 /* The linkage name, if present. */
990 const char *linkage_name;
991
992 /* The scope to prepend to our children. This is generally
993 allocated on the comp_unit_obstack, so will disappear
994 when this compilation unit leaves the cache. */
995 const char *scope;
996
997 /* Some data associated with the partial DIE. The tag determines
998 which field is live. */
999 union
1000 {
1001 /* The location description associated with this DIE, if any. */
1002 struct dwarf_block *locdesc;
1003 /* The offset of an import, for DW_TAG_imported_unit. */
1004 sect_offset offset;
1005 } d;
1006
1007 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1008 CORE_ADDR lowpc;
1009 CORE_ADDR highpc;
1010
1011 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1012 DW_AT_sibling, if any. */
1013 /* NOTE: This member isn't strictly necessary, read_partial_die could
1014 return DW_AT_sibling values to its caller load_partial_dies. */
1015 const gdb_byte *sibling;
1016
1017 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1018 DW_AT_specification (or DW_AT_abstract_origin or
1019 DW_AT_extension). */
1020 sect_offset spec_offset;
1021
1022 /* Pointers to this DIE's parent, first child, and next sibling,
1023 if any. */
1024 struct partial_die_info *die_parent, *die_child, *die_sibling;
1025 };
1026
1027 /* This data structure holds the information of an abbrev. */
1028 struct abbrev_info
1029 {
1030 unsigned int number; /* number identifying abbrev */
1031 enum dwarf_tag tag; /* dwarf tag */
1032 unsigned short has_children; /* boolean */
1033 unsigned short num_attrs; /* number of attributes */
1034 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1035 struct abbrev_info *next; /* next in chain */
1036 };
1037
1038 struct attr_abbrev
1039 {
1040 ENUM_BITFIELD(dwarf_attribute) name : 16;
1041 ENUM_BITFIELD(dwarf_form) form : 16;
1042 };
1043
1044 /* Size of abbrev_table.abbrev_hash_table. */
1045 #define ABBREV_HASH_SIZE 121
1046
1047 /* Top level data structure to contain an abbreviation table. */
1048
1049 struct abbrev_table
1050 {
1051 /* Where the abbrev table came from.
1052 This is used as a sanity check when the table is used. */
1053 sect_offset offset;
1054
1055 /* Storage for the abbrev table. */
1056 struct obstack abbrev_obstack;
1057
1058 /* Hash table of abbrevs.
1059 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1060 It could be statically allocated, but the previous code didn't so we
1061 don't either. */
1062 struct abbrev_info **abbrevs;
1063 };
1064
1065 /* Attributes have a name and a value. */
1066 struct attribute
1067 {
1068 ENUM_BITFIELD(dwarf_attribute) name : 16;
1069 ENUM_BITFIELD(dwarf_form) form : 15;
1070
1071 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1072 field should be in u.str (existing only for DW_STRING) but it is kept
1073 here for better struct attribute alignment. */
1074 unsigned int string_is_canonical : 1;
1075
1076 union
1077 {
1078 const char *str;
1079 struct dwarf_block *blk;
1080 ULONGEST unsnd;
1081 LONGEST snd;
1082 CORE_ADDR addr;
1083 ULONGEST signature;
1084 }
1085 u;
1086 };
1087
1088 /* This data structure holds a complete die structure. */
1089 struct die_info
1090 {
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1093
1094 /* Number of attributes */
1095 unsigned char num_attrs;
1096
1097 /* True if we're presently building the full type name for the
1098 type derived from this DIE. */
1099 unsigned char building_fullname : 1;
1100
1101 /* Abbrev number */
1102 unsigned int abbrev;
1103
1104 /* Offset in .debug_info or .debug_types section. */
1105 sect_offset offset;
1106
1107 /* The dies in a compilation unit form an n-ary tree. PARENT
1108 points to this die's parent; CHILD points to the first child of
1109 this node; and all the children of a given node are chained
1110 together via their SIBLING fields. */
1111 struct die_info *child; /* Its first child, if any. */
1112 struct die_info *sibling; /* Its next sibling, if any. */
1113 struct die_info *parent; /* Its parent, if any. */
1114
1115 /* An array of attributes, with NUM_ATTRS elements. There may be
1116 zero, but it's not common and zero-sized arrays are not
1117 sufficiently portable C. */
1118 struct attribute attrs[1];
1119 };
1120
1121 /* Get at parts of an attribute structure. */
1122
1123 #define DW_STRING(attr) ((attr)->u.str)
1124 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1125 #define DW_UNSND(attr) ((attr)->u.unsnd)
1126 #define DW_BLOCK(attr) ((attr)->u.blk)
1127 #define DW_SND(attr) ((attr)->u.snd)
1128 #define DW_ADDR(attr) ((attr)->u.addr)
1129 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1130
1131 /* Blocks are a bunch of untyped bytes. */
1132 struct dwarf_block
1133 {
1134 size_t size;
1135
1136 /* Valid only if SIZE is not zero. */
1137 const gdb_byte *data;
1138 };
1139
1140 #ifndef ATTR_ALLOC_CHUNK
1141 #define ATTR_ALLOC_CHUNK 4
1142 #endif
1143
1144 /* Allocate fields for structs, unions and enums in this size. */
1145 #ifndef DW_FIELD_ALLOC_CHUNK
1146 #define DW_FIELD_ALLOC_CHUNK 4
1147 #endif
1148
1149 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1150 but this would require a corresponding change in unpack_field_as_long
1151 and friends. */
1152 static int bits_per_byte = 8;
1153
1154 /* The routines that read and process dies for a C struct or C++ class
1155 pass lists of data member fields and lists of member function fields
1156 in an instance of a field_info structure, as defined below. */
1157 struct field_info
1158 {
1159 /* List of data member and baseclasses fields. */
1160 struct nextfield
1161 {
1162 struct nextfield *next;
1163 int accessibility;
1164 int virtuality;
1165 struct field field;
1166 }
1167 *fields, *baseclasses;
1168
1169 /* Number of fields (including baseclasses). */
1170 int nfields;
1171
1172 /* Number of baseclasses. */
1173 int nbaseclasses;
1174
1175 /* Set if the accesibility of one of the fields is not public. */
1176 int non_public_fields;
1177
1178 /* Member function fields array, entries are allocated in the order they
1179 are encountered in the object file. */
1180 struct nextfnfield
1181 {
1182 struct nextfnfield *next;
1183 struct fn_field fnfield;
1184 }
1185 *fnfields;
1186
1187 /* Member function fieldlist array, contains name of possibly overloaded
1188 member function, number of overloaded member functions and a pointer
1189 to the head of the member function field chain. */
1190 struct fnfieldlist
1191 {
1192 const char *name;
1193 int length;
1194 struct nextfnfield *head;
1195 }
1196 *fnfieldlists;
1197
1198 /* Number of entries in the fnfieldlists array. */
1199 int nfnfields;
1200
1201 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1202 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1203 struct typedef_field_list
1204 {
1205 struct typedef_field field;
1206 struct typedef_field_list *next;
1207 }
1208 *typedef_field_list;
1209 unsigned typedef_field_list_count;
1210 };
1211
1212 /* One item on the queue of compilation units to read in full symbols
1213 for. */
1214 struct dwarf2_queue_item
1215 {
1216 struct dwarf2_per_cu_data *per_cu;
1217 enum language pretend_language;
1218 struct dwarf2_queue_item *next;
1219 };
1220
1221 /* The current queue. */
1222 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1223
1224 /* Loaded secondary compilation units are kept in memory until they
1225 have not been referenced for the processing of this many
1226 compilation units. Set this to zero to disable caching. Cache
1227 sizes of up to at least twenty will improve startup time for
1228 typical inter-CU-reference binaries, at an obvious memory cost. */
1229 static int dwarf2_max_cache_age = 5;
1230 static void
1231 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1232 struct cmd_list_element *c, const char *value)
1233 {
1234 fprintf_filtered (file, _("The upper bound on the age of cached "
1235 "dwarf2 compilation units is %s.\n"),
1236 value);
1237 }
1238 \f
1239 /* local function prototypes */
1240
1241 static void dwarf2_locate_sections (bfd *, asection *, void *);
1242
1243 static void dwarf2_find_base_address (struct die_info *die,
1244 struct dwarf2_cu *cu);
1245
1246 static struct partial_symtab *create_partial_symtab
1247 (struct dwarf2_per_cu_data *per_cu, const char *name);
1248
1249 static void dwarf2_build_psymtabs_hard (struct objfile *);
1250
1251 static void scan_partial_symbols (struct partial_die_info *,
1252 CORE_ADDR *, CORE_ADDR *,
1253 int, struct dwarf2_cu *);
1254
1255 static void add_partial_symbol (struct partial_die_info *,
1256 struct dwarf2_cu *);
1257
1258 static void add_partial_namespace (struct partial_die_info *pdi,
1259 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1260 int need_pc, struct dwarf2_cu *cu);
1261
1262 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1263 CORE_ADDR *highpc, int need_pc,
1264 struct dwarf2_cu *cu);
1265
1266 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1267 struct dwarf2_cu *cu);
1268
1269 static void add_partial_subprogram (struct partial_die_info *pdi,
1270 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1271 int need_pc, struct dwarf2_cu *cu);
1272
1273 static void dwarf2_read_symtab (struct partial_symtab *,
1274 struct objfile *);
1275
1276 static void psymtab_to_symtab_1 (struct partial_symtab *);
1277
1278 static struct abbrev_info *abbrev_table_lookup_abbrev
1279 (const struct abbrev_table *, unsigned int);
1280
1281 static struct abbrev_table *abbrev_table_read_table
1282 (struct dwarf2_section_info *, sect_offset);
1283
1284 static void abbrev_table_free (struct abbrev_table *);
1285
1286 static void abbrev_table_free_cleanup (void *);
1287
1288 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1289 struct dwarf2_section_info *);
1290
1291 static void dwarf2_free_abbrev_table (void *);
1292
1293 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1294
1295 static struct partial_die_info *load_partial_dies
1296 (const struct die_reader_specs *, const gdb_byte *, int);
1297
1298 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1299 struct partial_die_info *,
1300 struct abbrev_info *,
1301 unsigned int,
1302 const gdb_byte *);
1303
1304 static struct partial_die_info *find_partial_die (sect_offset, int,
1305 struct dwarf2_cu *);
1306
1307 static void fixup_partial_die (struct partial_die_info *,
1308 struct dwarf2_cu *);
1309
1310 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1311 struct attribute *, struct attr_abbrev *,
1312 const gdb_byte *);
1313
1314 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1315
1316 static int read_1_signed_byte (bfd *, const gdb_byte *);
1317
1318 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1319
1320 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1321
1322 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1323
1324 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1325 unsigned int *);
1326
1327 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1328
1329 static LONGEST read_checked_initial_length_and_offset
1330 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1331 unsigned int *, unsigned int *);
1332
1333 static LONGEST read_offset (bfd *, const gdb_byte *,
1334 const struct comp_unit_head *,
1335 unsigned int *);
1336
1337 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1338
1339 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1340 sect_offset);
1341
1342 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1343
1344 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1345
1346 static const char *read_indirect_string (bfd *, const gdb_byte *,
1347 const struct comp_unit_head *,
1348 unsigned int *);
1349
1350 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1351
1352 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1353
1354 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1355
1356 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1357 const gdb_byte *,
1358 unsigned int *);
1359
1360 static const char *read_str_index (const struct die_reader_specs *reader,
1361 struct dwarf2_cu *cu, ULONGEST str_index);
1362
1363 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1364
1365 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1366 struct dwarf2_cu *);
1367
1368 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1369 unsigned int);
1370
1371 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1372 struct dwarf2_cu *cu);
1373
1374 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1375
1376 static struct die_info *die_specification (struct die_info *die,
1377 struct dwarf2_cu **);
1378
1379 static void free_line_header (struct line_header *lh);
1380
1381 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1382 struct dwarf2_cu *cu);
1383
1384 static void dwarf_decode_lines (struct line_header *, const char *,
1385 struct dwarf2_cu *, struct partial_symtab *,
1386 int);
1387
1388 static void dwarf2_start_subfile (const char *, const char *, const char *);
1389
1390 static void dwarf2_start_symtab (struct dwarf2_cu *,
1391 const char *, const char *, CORE_ADDR);
1392
1393 static struct symbol *new_symbol (struct die_info *, struct type *,
1394 struct dwarf2_cu *);
1395
1396 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1397 struct dwarf2_cu *, struct symbol *);
1398
1399 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1400 struct dwarf2_cu *);
1401
1402 static void dwarf2_const_value_attr (const struct attribute *attr,
1403 struct type *type,
1404 const char *name,
1405 struct obstack *obstack,
1406 struct dwarf2_cu *cu, LONGEST *value,
1407 const gdb_byte **bytes,
1408 struct dwarf2_locexpr_baton **baton);
1409
1410 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1411
1412 static int need_gnat_info (struct dwarf2_cu *);
1413
1414 static struct type *die_descriptive_type (struct die_info *,
1415 struct dwarf2_cu *);
1416
1417 static void set_descriptive_type (struct type *, struct die_info *,
1418 struct dwarf2_cu *);
1419
1420 static struct type *die_containing_type (struct die_info *,
1421 struct dwarf2_cu *);
1422
1423 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1424 struct dwarf2_cu *);
1425
1426 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1427
1428 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1429
1430 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1431
1432 static char *typename_concat (struct obstack *obs, const char *prefix,
1433 const char *suffix, int physname,
1434 struct dwarf2_cu *cu);
1435
1436 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1439
1440 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1441
1442 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1443
1444 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1445
1446 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1447 struct dwarf2_cu *, struct partial_symtab *);
1448
1449 static int dwarf2_get_pc_bounds (struct die_info *,
1450 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1451 struct partial_symtab *);
1452
1453 static void get_scope_pc_bounds (struct die_info *,
1454 CORE_ADDR *, CORE_ADDR *,
1455 struct dwarf2_cu *);
1456
1457 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1458 CORE_ADDR, struct dwarf2_cu *);
1459
1460 static void dwarf2_add_field (struct field_info *, struct die_info *,
1461 struct dwarf2_cu *);
1462
1463 static void dwarf2_attach_fields_to_type (struct field_info *,
1464 struct type *, struct dwarf2_cu *);
1465
1466 static void dwarf2_add_member_fn (struct field_info *,
1467 struct die_info *, struct type *,
1468 struct dwarf2_cu *);
1469
1470 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1471 struct type *,
1472 struct dwarf2_cu *);
1473
1474 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1475
1476 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1477
1478 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1479
1480 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1481
1482 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1483
1484 static struct type *read_module_type (struct die_info *die,
1485 struct dwarf2_cu *cu);
1486
1487 static const char *namespace_name (struct die_info *die,
1488 int *is_anonymous, struct dwarf2_cu *);
1489
1490 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1491
1492 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1493
1494 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1495 struct dwarf2_cu *);
1496
1497 static struct die_info *read_die_and_siblings_1
1498 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1499 struct die_info *);
1500
1501 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1502 const gdb_byte *info_ptr,
1503 const gdb_byte **new_info_ptr,
1504 struct die_info *parent);
1505
1506 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1507 struct die_info **, const gdb_byte *,
1508 int *, int);
1509
1510 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1511 struct die_info **, const gdb_byte *,
1512 int *);
1513
1514 static void process_die (struct die_info *, struct dwarf2_cu *);
1515
1516 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1517 struct obstack *);
1518
1519 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1520
1521 static const char *dwarf2_full_name (const char *name,
1522 struct die_info *die,
1523 struct dwarf2_cu *cu);
1524
1525 static const char *dwarf2_physname (const char *name, struct die_info *die,
1526 struct dwarf2_cu *cu);
1527
1528 static struct die_info *dwarf2_extension (struct die_info *die,
1529 struct dwarf2_cu **);
1530
1531 static const char *dwarf_tag_name (unsigned int);
1532
1533 static const char *dwarf_attr_name (unsigned int);
1534
1535 static const char *dwarf_form_name (unsigned int);
1536
1537 static char *dwarf_bool_name (unsigned int);
1538
1539 static const char *dwarf_type_encoding_name (unsigned int);
1540
1541 static struct die_info *sibling_die (struct die_info *);
1542
1543 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1544
1545 static void dump_die_for_error (struct die_info *);
1546
1547 static void dump_die_1 (struct ui_file *, int level, int max_level,
1548 struct die_info *);
1549
1550 /*static*/ void dump_die (struct die_info *, int max_level);
1551
1552 static void store_in_ref_table (struct die_info *,
1553 struct dwarf2_cu *);
1554
1555 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1556
1557 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1558
1559 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1560 const struct attribute *,
1561 struct dwarf2_cu **);
1562
1563 static struct die_info *follow_die_ref (struct die_info *,
1564 const struct attribute *,
1565 struct dwarf2_cu **);
1566
1567 static struct die_info *follow_die_sig (struct die_info *,
1568 const struct attribute *,
1569 struct dwarf2_cu **);
1570
1571 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1572 struct dwarf2_cu *);
1573
1574 static struct type *get_DW_AT_signature_type (struct die_info *,
1575 const struct attribute *,
1576 struct dwarf2_cu *);
1577
1578 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1579
1580 static void read_signatured_type (struct signatured_type *);
1581
1582 static struct type_unit_group *get_type_unit_group
1583 (struct dwarf2_cu *, const struct attribute *);
1584
1585 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1586
1587 /* memory allocation interface */
1588
1589 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1590
1591 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1592
1593 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1594 const char *, int);
1595
1596 static int attr_form_is_block (const struct attribute *);
1597
1598 static int attr_form_is_section_offset (const struct attribute *);
1599
1600 static int attr_form_is_constant (const struct attribute *);
1601
1602 static int attr_form_is_ref (const struct attribute *);
1603
1604 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1605 struct dwarf2_loclist_baton *baton,
1606 const struct attribute *attr);
1607
1608 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1609 struct symbol *sym,
1610 struct dwarf2_cu *cu,
1611 int is_block);
1612
1613 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1614 const gdb_byte *info_ptr,
1615 struct abbrev_info *abbrev);
1616
1617 static void free_stack_comp_unit (void *);
1618
1619 static hashval_t partial_die_hash (const void *item);
1620
1621 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1622
1623 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1624 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1625
1626 static void init_one_comp_unit (struct dwarf2_cu *cu,
1627 struct dwarf2_per_cu_data *per_cu);
1628
1629 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1630 struct die_info *comp_unit_die,
1631 enum language pretend_language);
1632
1633 static void free_heap_comp_unit (void *);
1634
1635 static void free_cached_comp_units (void *);
1636
1637 static void age_cached_comp_units (void);
1638
1639 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1640
1641 static struct type *set_die_type (struct die_info *, struct type *,
1642 struct dwarf2_cu *);
1643
1644 static void create_all_comp_units (struct objfile *);
1645
1646 static int create_all_type_units (struct objfile *);
1647
1648 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1649 enum language);
1650
1651 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1652 enum language);
1653
1654 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1655 enum language);
1656
1657 static void dwarf2_add_dependence (struct dwarf2_cu *,
1658 struct dwarf2_per_cu_data *);
1659
1660 static void dwarf2_mark (struct dwarf2_cu *);
1661
1662 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1663
1664 static struct type *get_die_type_at_offset (sect_offset,
1665 struct dwarf2_per_cu_data *);
1666
1667 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1668
1669 static void dwarf2_release_queue (void *dummy);
1670
1671 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1672 enum language pretend_language);
1673
1674 static void process_queue (void);
1675
1676 static void find_file_and_directory (struct die_info *die,
1677 struct dwarf2_cu *cu,
1678 const char **name, const char **comp_dir);
1679
1680 static char *file_full_name (int file, struct line_header *lh,
1681 const char *comp_dir);
1682
1683 static const gdb_byte *read_and_check_comp_unit_head
1684 (struct comp_unit_head *header,
1685 struct dwarf2_section_info *section,
1686 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1687 int is_debug_types_section);
1688
1689 static void init_cutu_and_read_dies
1690 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1691 int use_existing_cu, int keep,
1692 die_reader_func_ftype *die_reader_func, void *data);
1693
1694 static void init_cutu_and_read_dies_simple
1695 (struct dwarf2_per_cu_data *this_cu,
1696 die_reader_func_ftype *die_reader_func, void *data);
1697
1698 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1699
1700 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1701
1702 static struct dwo_unit *lookup_dwo_in_dwp
1703 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1704 const char *comp_dir, ULONGEST signature, int is_debug_types);
1705
1706 static struct dwp_file *get_dwp_file (void);
1707
1708 static struct dwo_unit *lookup_dwo_comp_unit
1709 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1710
1711 static struct dwo_unit *lookup_dwo_type_unit
1712 (struct signatured_type *, const char *, const char *);
1713
1714 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1715
1716 static void free_dwo_file_cleanup (void *);
1717
1718 static void process_cu_includes (void);
1719
1720 static void check_producer (struct dwarf2_cu *cu);
1721 \f
1722 /* Various complaints about symbol reading that don't abort the process. */
1723
1724 static void
1725 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1726 {
1727 complaint (&symfile_complaints,
1728 _("statement list doesn't fit in .debug_line section"));
1729 }
1730
1731 static void
1732 dwarf2_debug_line_missing_file_complaint (void)
1733 {
1734 complaint (&symfile_complaints,
1735 _(".debug_line section has line data without a file"));
1736 }
1737
1738 static void
1739 dwarf2_debug_line_missing_end_sequence_complaint (void)
1740 {
1741 complaint (&symfile_complaints,
1742 _(".debug_line section has line "
1743 "program sequence without an end"));
1744 }
1745
1746 static void
1747 dwarf2_complex_location_expr_complaint (void)
1748 {
1749 complaint (&symfile_complaints, _("location expression too complex"));
1750 }
1751
1752 static void
1753 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1754 int arg3)
1755 {
1756 complaint (&symfile_complaints,
1757 _("const value length mismatch for '%s', got %d, expected %d"),
1758 arg1, arg2, arg3);
1759 }
1760
1761 static void
1762 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1763 {
1764 complaint (&symfile_complaints,
1765 _("debug info runs off end of %s section"
1766 " [in module %s]"),
1767 section->asection->name,
1768 bfd_get_filename (section->asection->owner));
1769 }
1770
1771 static void
1772 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1773 {
1774 complaint (&symfile_complaints,
1775 _("macro debug info contains a "
1776 "malformed macro definition:\n`%s'"),
1777 arg1);
1778 }
1779
1780 static void
1781 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1782 {
1783 complaint (&symfile_complaints,
1784 _("invalid attribute class or form for '%s' in '%s'"),
1785 arg1, arg2);
1786 }
1787 \f
1788 #if WORDS_BIGENDIAN
1789
1790 /* Convert VALUE between big- and little-endian. */
1791 static offset_type
1792 byte_swap (offset_type value)
1793 {
1794 offset_type result;
1795
1796 result = (value & 0xff) << 24;
1797 result |= (value & 0xff00) << 8;
1798 result |= (value & 0xff0000) >> 8;
1799 result |= (value & 0xff000000) >> 24;
1800 return result;
1801 }
1802
1803 #define MAYBE_SWAP(V) byte_swap (V)
1804
1805 #else
1806 #define MAYBE_SWAP(V) (V)
1807 #endif /* WORDS_BIGENDIAN */
1808
1809 /* The suffix for an index file. */
1810 #define INDEX_SUFFIX ".gdb-index"
1811
1812 /* Try to locate the sections we need for DWARF 2 debugging
1813 information and return true if we have enough to do something.
1814 NAMES points to the dwarf2 section names, or is NULL if the standard
1815 ELF names are used. */
1816
1817 int
1818 dwarf2_has_info (struct objfile *objfile,
1819 const struct dwarf2_debug_sections *names)
1820 {
1821 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1822 if (!dwarf2_per_objfile)
1823 {
1824 /* Initialize per-objfile state. */
1825 struct dwarf2_per_objfile *data
1826 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1827
1828 memset (data, 0, sizeof (*data));
1829 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1830 dwarf2_per_objfile = data;
1831
1832 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1833 (void *) names);
1834 dwarf2_per_objfile->objfile = objfile;
1835 }
1836 return (dwarf2_per_objfile->info.asection != NULL
1837 && dwarf2_per_objfile->abbrev.asection != NULL);
1838 }
1839
1840 /* When loading sections, we look either for uncompressed section or for
1841 compressed section names. */
1842
1843 static int
1844 section_is_p (const char *section_name,
1845 const struct dwarf2_section_names *names)
1846 {
1847 if (names->normal != NULL
1848 && strcmp (section_name, names->normal) == 0)
1849 return 1;
1850 if (names->compressed != NULL
1851 && strcmp (section_name, names->compressed) == 0)
1852 return 1;
1853 return 0;
1854 }
1855
1856 /* This function is mapped across the sections and remembers the
1857 offset and size of each of the debugging sections we are interested
1858 in. */
1859
1860 static void
1861 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1862 {
1863 const struct dwarf2_debug_sections *names;
1864 flagword aflag = bfd_get_section_flags (abfd, sectp);
1865
1866 if (vnames == NULL)
1867 names = &dwarf2_elf_names;
1868 else
1869 names = (const struct dwarf2_debug_sections *) vnames;
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (section_is_p (sectp->name, &names->info))
1875 {
1876 dwarf2_per_objfile->info.asection = sectp;
1877 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1878 }
1879 else if (section_is_p (sectp->name, &names->abbrev))
1880 {
1881 dwarf2_per_objfile->abbrev.asection = sectp;
1882 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1883 }
1884 else if (section_is_p (sectp->name, &names->line))
1885 {
1886 dwarf2_per_objfile->line.asection = sectp;
1887 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1888 }
1889 else if (section_is_p (sectp->name, &names->loc))
1890 {
1891 dwarf2_per_objfile->loc.asection = sectp;
1892 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1893 }
1894 else if (section_is_p (sectp->name, &names->macinfo))
1895 {
1896 dwarf2_per_objfile->macinfo.asection = sectp;
1897 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1898 }
1899 else if (section_is_p (sectp->name, &names->macro))
1900 {
1901 dwarf2_per_objfile->macro.asection = sectp;
1902 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1903 }
1904 else if (section_is_p (sectp->name, &names->str))
1905 {
1906 dwarf2_per_objfile->str.asection = sectp;
1907 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1908 }
1909 else if (section_is_p (sectp->name, &names->addr))
1910 {
1911 dwarf2_per_objfile->addr.asection = sectp;
1912 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1913 }
1914 else if (section_is_p (sectp->name, &names->frame))
1915 {
1916 dwarf2_per_objfile->frame.asection = sectp;
1917 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1918 }
1919 else if (section_is_p (sectp->name, &names->eh_frame))
1920 {
1921 dwarf2_per_objfile->eh_frame.asection = sectp;
1922 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1923 }
1924 else if (section_is_p (sectp->name, &names->ranges))
1925 {
1926 dwarf2_per_objfile->ranges.asection = sectp;
1927 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1928 }
1929 else if (section_is_p (sectp->name, &names->types))
1930 {
1931 struct dwarf2_section_info type_section;
1932
1933 memset (&type_section, 0, sizeof (type_section));
1934 type_section.asection = sectp;
1935 type_section.size = bfd_get_section_size (sectp);
1936
1937 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1938 &type_section);
1939 }
1940 else if (section_is_p (sectp->name, &names->gdb_index))
1941 {
1942 dwarf2_per_objfile->gdb_index.asection = sectp;
1943 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1944 }
1945
1946 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1947 && bfd_section_vma (abfd, sectp) == 0)
1948 dwarf2_per_objfile->has_section_at_zero = 1;
1949 }
1950
1951 /* A helper function that decides whether a section is empty,
1952 or not present. */
1953
1954 static int
1955 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1956 {
1957 return info->asection == NULL || info->size == 0;
1958 }
1959
1960 /* Read the contents of the section INFO.
1961 OBJFILE is the main object file, but not necessarily the file where
1962 the section comes from. E.g., for DWO files INFO->asection->owner
1963 is the bfd of the DWO file.
1964 If the section is compressed, uncompress it before returning. */
1965
1966 static void
1967 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1968 {
1969 asection *sectp = info->asection;
1970 bfd *abfd;
1971 gdb_byte *buf, *retbuf;
1972 unsigned char header[4];
1973
1974 if (info->readin)
1975 return;
1976 info->buffer = NULL;
1977 info->readin = 1;
1978
1979 if (dwarf2_section_empty_p (info))
1980 return;
1981
1982 abfd = sectp->owner;
1983
1984 /* If the section has relocations, we must read it ourselves.
1985 Otherwise we attach it to the BFD. */
1986 if ((sectp->flags & SEC_RELOC) == 0)
1987 {
1988 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1989 return;
1990 }
1991
1992 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1993 info->buffer = buf;
1994
1995 /* When debugging .o files, we may need to apply relocations; see
1996 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1997 We never compress sections in .o files, so we only need to
1998 try this when the section is not compressed. */
1999 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2000 if (retbuf != NULL)
2001 {
2002 info->buffer = retbuf;
2003 return;
2004 }
2005
2006 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2007 || bfd_bread (buf, info->size, abfd) != info->size)
2008 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2009 bfd_get_filename (abfd));
2010 }
2011
2012 /* A helper function that returns the size of a section in a safe way.
2013 If you are positive that the section has been read before using the
2014 size, then it is safe to refer to the dwarf2_section_info object's
2015 "size" field directly. In other cases, you must call this
2016 function, because for compressed sections the size field is not set
2017 correctly until the section has been read. */
2018
2019 static bfd_size_type
2020 dwarf2_section_size (struct objfile *objfile,
2021 struct dwarf2_section_info *info)
2022 {
2023 if (!info->readin)
2024 dwarf2_read_section (objfile, info);
2025 return info->size;
2026 }
2027
2028 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2029 SECTION_NAME. */
2030
2031 void
2032 dwarf2_get_section_info (struct objfile *objfile,
2033 enum dwarf2_section_enum sect,
2034 asection **sectp, const gdb_byte **bufp,
2035 bfd_size_type *sizep)
2036 {
2037 struct dwarf2_per_objfile *data
2038 = objfile_data (objfile, dwarf2_objfile_data_key);
2039 struct dwarf2_section_info *info;
2040
2041 /* We may see an objfile without any DWARF, in which case we just
2042 return nothing. */
2043 if (data == NULL)
2044 {
2045 *sectp = NULL;
2046 *bufp = NULL;
2047 *sizep = 0;
2048 return;
2049 }
2050 switch (sect)
2051 {
2052 case DWARF2_DEBUG_FRAME:
2053 info = &data->frame;
2054 break;
2055 case DWARF2_EH_FRAME:
2056 info = &data->eh_frame;
2057 break;
2058 default:
2059 gdb_assert_not_reached ("unexpected section");
2060 }
2061
2062 dwarf2_read_section (objfile, info);
2063
2064 *sectp = info->asection;
2065 *bufp = info->buffer;
2066 *sizep = info->size;
2067 }
2068
2069 /* A helper function to find the sections for a .dwz file. */
2070
2071 static void
2072 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2073 {
2074 struct dwz_file *dwz_file = arg;
2075
2076 /* Note that we only support the standard ELF names, because .dwz
2077 is ELF-only (at the time of writing). */
2078 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2079 {
2080 dwz_file->abbrev.asection = sectp;
2081 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2082 }
2083 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2084 {
2085 dwz_file->info.asection = sectp;
2086 dwz_file->info.size = bfd_get_section_size (sectp);
2087 }
2088 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2089 {
2090 dwz_file->str.asection = sectp;
2091 dwz_file->str.size = bfd_get_section_size (sectp);
2092 }
2093 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2094 {
2095 dwz_file->line.asection = sectp;
2096 dwz_file->line.size = bfd_get_section_size (sectp);
2097 }
2098 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2099 {
2100 dwz_file->macro.asection = sectp;
2101 dwz_file->macro.size = bfd_get_section_size (sectp);
2102 }
2103 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2104 {
2105 dwz_file->gdb_index.asection = sectp;
2106 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2107 }
2108 }
2109
2110 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2111 there is no .gnu_debugaltlink section in the file. Error if there
2112 is such a section but the file cannot be found. */
2113
2114 static struct dwz_file *
2115 dwarf2_get_dwz_file (void)
2116 {
2117 bfd *dwz_bfd;
2118 char *data;
2119 struct cleanup *cleanup;
2120 const char *filename;
2121 struct dwz_file *result;
2122 unsigned long buildid;
2123
2124 if (dwarf2_per_objfile->dwz_file != NULL)
2125 return dwarf2_per_objfile->dwz_file;
2126
2127 bfd_set_error (bfd_error_no_error);
2128 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2129 &buildid);
2130 if (data == NULL)
2131 {
2132 if (bfd_get_error () == bfd_error_no_error)
2133 return NULL;
2134 error (_("could not read '.gnu_debugaltlink' section: %s"),
2135 bfd_errmsg (bfd_get_error ()));
2136 }
2137 cleanup = make_cleanup (xfree, data);
2138
2139 filename = (const char *) data;
2140 if (!IS_ABSOLUTE_PATH (filename))
2141 {
2142 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2143 char *rel;
2144
2145 make_cleanup (xfree, abs);
2146 abs = ldirname (abs);
2147 make_cleanup (xfree, abs);
2148
2149 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2150 make_cleanup (xfree, rel);
2151 filename = rel;
2152 }
2153
2154 /* The format is just a NUL-terminated file name, followed by the
2155 build-id. For now, though, we ignore the build-id. */
2156 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2157 if (dwz_bfd == NULL)
2158 error (_("could not read '%s': %s"), filename,
2159 bfd_errmsg (bfd_get_error ()));
2160
2161 if (!bfd_check_format (dwz_bfd, bfd_object))
2162 {
2163 gdb_bfd_unref (dwz_bfd);
2164 error (_("file '%s' was not usable: %s"), filename,
2165 bfd_errmsg (bfd_get_error ()));
2166 }
2167
2168 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2169 struct dwz_file);
2170 result->dwz_bfd = dwz_bfd;
2171
2172 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2173
2174 do_cleanups (cleanup);
2175
2176 dwarf2_per_objfile->dwz_file = result;
2177 return result;
2178 }
2179 \f
2180 /* DWARF quick_symbols_functions support. */
2181
2182 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2183 unique line tables, so we maintain a separate table of all .debug_line
2184 derived entries to support the sharing.
2185 All the quick functions need is the list of file names. We discard the
2186 line_header when we're done and don't need to record it here. */
2187 struct quick_file_names
2188 {
2189 /* The data used to construct the hash key. */
2190 struct stmt_list_hash hash;
2191
2192 /* The number of entries in file_names, real_names. */
2193 unsigned int num_file_names;
2194
2195 /* The file names from the line table, after being run through
2196 file_full_name. */
2197 const char **file_names;
2198
2199 /* The file names from the line table after being run through
2200 gdb_realpath. These are computed lazily. */
2201 const char **real_names;
2202 };
2203
2204 /* When using the index (and thus not using psymtabs), each CU has an
2205 object of this type. This is used to hold information needed by
2206 the various "quick" methods. */
2207 struct dwarf2_per_cu_quick_data
2208 {
2209 /* The file table. This can be NULL if there was no file table
2210 or it's currently not read in.
2211 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2212 struct quick_file_names *file_names;
2213
2214 /* The corresponding symbol table. This is NULL if symbols for this
2215 CU have not yet been read. */
2216 struct symtab *symtab;
2217
2218 /* A temporary mark bit used when iterating over all CUs in
2219 expand_symtabs_matching. */
2220 unsigned int mark : 1;
2221
2222 /* True if we've tried to read the file table and found there isn't one.
2223 There will be no point in trying to read it again next time. */
2224 unsigned int no_file_data : 1;
2225 };
2226
2227 /* Utility hash function for a stmt_list_hash. */
2228
2229 static hashval_t
2230 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2231 {
2232 hashval_t v = 0;
2233
2234 if (stmt_list_hash->dwo_unit != NULL)
2235 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2236 v += stmt_list_hash->line_offset.sect_off;
2237 return v;
2238 }
2239
2240 /* Utility equality function for a stmt_list_hash. */
2241
2242 static int
2243 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2244 const struct stmt_list_hash *rhs)
2245 {
2246 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2247 return 0;
2248 if (lhs->dwo_unit != NULL
2249 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2250 return 0;
2251
2252 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2253 }
2254
2255 /* Hash function for a quick_file_names. */
2256
2257 static hashval_t
2258 hash_file_name_entry (const void *e)
2259 {
2260 const struct quick_file_names *file_data = e;
2261
2262 return hash_stmt_list_entry (&file_data->hash);
2263 }
2264
2265 /* Equality function for a quick_file_names. */
2266
2267 static int
2268 eq_file_name_entry (const void *a, const void *b)
2269 {
2270 const struct quick_file_names *ea = a;
2271 const struct quick_file_names *eb = b;
2272
2273 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2274 }
2275
2276 /* Delete function for a quick_file_names. */
2277
2278 static void
2279 delete_file_name_entry (void *e)
2280 {
2281 struct quick_file_names *file_data = e;
2282 int i;
2283
2284 for (i = 0; i < file_data->num_file_names; ++i)
2285 {
2286 xfree ((void*) file_data->file_names[i]);
2287 if (file_data->real_names)
2288 xfree ((void*) file_data->real_names[i]);
2289 }
2290
2291 /* The space for the struct itself lives on objfile_obstack,
2292 so we don't free it here. */
2293 }
2294
2295 /* Create a quick_file_names hash table. */
2296
2297 static htab_t
2298 create_quick_file_names_table (unsigned int nr_initial_entries)
2299 {
2300 return htab_create_alloc (nr_initial_entries,
2301 hash_file_name_entry, eq_file_name_entry,
2302 delete_file_name_entry, xcalloc, xfree);
2303 }
2304
2305 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2306 have to be created afterwards. You should call age_cached_comp_units after
2307 processing PER_CU->CU. dw2_setup must have been already called. */
2308
2309 static void
2310 load_cu (struct dwarf2_per_cu_data *per_cu)
2311 {
2312 if (per_cu->is_debug_types)
2313 load_full_type_unit (per_cu);
2314 else
2315 load_full_comp_unit (per_cu, language_minimal);
2316
2317 gdb_assert (per_cu->cu != NULL);
2318
2319 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2320 }
2321
2322 /* Read in the symbols for PER_CU. */
2323
2324 static void
2325 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2326 {
2327 struct cleanup *back_to;
2328
2329 /* Skip type_unit_groups, reading the type units they contain
2330 is handled elsewhere. */
2331 if (IS_TYPE_UNIT_GROUP (per_cu))
2332 return;
2333
2334 back_to = make_cleanup (dwarf2_release_queue, NULL);
2335
2336 if (dwarf2_per_objfile->using_index
2337 ? per_cu->v.quick->symtab == NULL
2338 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2339 {
2340 queue_comp_unit (per_cu, language_minimal);
2341 load_cu (per_cu);
2342
2343 /* If we just loaded a CU from a DWO, and we're working with an index
2344 that may badly handle TUs, load all the TUs in that DWO as well.
2345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2346 if (!per_cu->is_debug_types
2347 && per_cu->cu->dwo_unit != NULL
2348 && dwarf2_per_objfile->index_table != NULL
2349 && dwarf2_per_objfile->index_table->version <= 7
2350 /* DWP files aren't supported yet. */
2351 && get_dwp_file () == NULL)
2352 queue_and_load_all_dwo_tus (per_cu);
2353 }
2354
2355 process_queue ();
2356
2357 /* Age the cache, releasing compilation units that have not
2358 been used recently. */
2359 age_cached_comp_units ();
2360
2361 do_cleanups (back_to);
2362 }
2363
2364 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2365 the objfile from which this CU came. Returns the resulting symbol
2366 table. */
2367
2368 static struct symtab *
2369 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2370 {
2371 gdb_assert (dwarf2_per_objfile->using_index);
2372 if (!per_cu->v.quick->symtab)
2373 {
2374 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2375 increment_reading_symtab ();
2376 dw2_do_instantiate_symtab (per_cu);
2377 process_cu_includes ();
2378 do_cleanups (back_to);
2379 }
2380 return per_cu->v.quick->symtab;
2381 }
2382
2383 /* Return the CU given its index.
2384
2385 This is intended for loops like:
2386
2387 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2388 + dwarf2_per_objfile->n_type_units); ++i)
2389 {
2390 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2391
2392 ...;
2393 }
2394 */
2395
2396 static struct dwarf2_per_cu_data *
2397 dw2_get_cu (int index)
2398 {
2399 if (index >= dwarf2_per_objfile->n_comp_units)
2400 {
2401 index -= dwarf2_per_objfile->n_comp_units;
2402 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2403 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2404 }
2405
2406 return dwarf2_per_objfile->all_comp_units[index];
2407 }
2408
2409 /* Return the primary CU given its index.
2410 The difference between this function and dw2_get_cu is in the handling
2411 of type units (TUs). Here we return the type_unit_group object.
2412
2413 This is intended for loops like:
2414
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2417 {
2418 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2419
2420 ...;
2421 }
2422 */
2423
2424 static struct dwarf2_per_cu_data *
2425 dw2_get_primary_cu (int index)
2426 {
2427 if (index >= dwarf2_per_objfile->n_comp_units)
2428 {
2429 index -= dwarf2_per_objfile->n_comp_units;
2430 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2431 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2432 }
2433
2434 return dwarf2_per_objfile->all_comp_units[index];
2435 }
2436
2437 /* A helper for create_cus_from_index that handles a given list of
2438 CUs. */
2439
2440 static void
2441 create_cus_from_index_list (struct objfile *objfile,
2442 const gdb_byte *cu_list, offset_type n_elements,
2443 struct dwarf2_section_info *section,
2444 int is_dwz,
2445 int base_offset)
2446 {
2447 offset_type i;
2448
2449 for (i = 0; i < n_elements; i += 2)
2450 {
2451 struct dwarf2_per_cu_data *the_cu;
2452 ULONGEST offset, length;
2453
2454 gdb_static_assert (sizeof (ULONGEST) >= 8);
2455 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2456 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2457 cu_list += 2 * 8;
2458
2459 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2460 struct dwarf2_per_cu_data);
2461 the_cu->offset.sect_off = offset;
2462 the_cu->length = length;
2463 the_cu->objfile = objfile;
2464 the_cu->section = section;
2465 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2466 struct dwarf2_per_cu_quick_data);
2467 the_cu->is_dwz = is_dwz;
2468 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2469 }
2470 }
2471
2472 /* Read the CU list from the mapped index, and use it to create all
2473 the CU objects for this objfile. */
2474
2475 static void
2476 create_cus_from_index (struct objfile *objfile,
2477 const gdb_byte *cu_list, offset_type cu_list_elements,
2478 const gdb_byte *dwz_list, offset_type dwz_elements)
2479 {
2480 struct dwz_file *dwz;
2481
2482 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2483 dwarf2_per_objfile->all_comp_units
2484 = obstack_alloc (&objfile->objfile_obstack,
2485 dwarf2_per_objfile->n_comp_units
2486 * sizeof (struct dwarf2_per_cu_data *));
2487
2488 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2489 &dwarf2_per_objfile->info, 0, 0);
2490
2491 if (dwz_elements == 0)
2492 return;
2493
2494 dwz = dwarf2_get_dwz_file ();
2495 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2496 cu_list_elements / 2);
2497 }
2498
2499 /* Create the signatured type hash table from the index. */
2500
2501 static void
2502 create_signatured_type_table_from_index (struct objfile *objfile,
2503 struct dwarf2_section_info *section,
2504 const gdb_byte *bytes,
2505 offset_type elements)
2506 {
2507 offset_type i;
2508 htab_t sig_types_hash;
2509
2510 dwarf2_per_objfile->n_type_units = elements / 3;
2511 dwarf2_per_objfile->all_type_units
2512 = xmalloc (dwarf2_per_objfile->n_type_units
2513 * sizeof (struct signatured_type *));
2514
2515 sig_types_hash = allocate_signatured_type_table (objfile);
2516
2517 for (i = 0; i < elements; i += 3)
2518 {
2519 struct signatured_type *sig_type;
2520 ULONGEST offset, type_offset_in_tu, signature;
2521 void **slot;
2522
2523 gdb_static_assert (sizeof (ULONGEST) >= 8);
2524 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2525 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2526 BFD_ENDIAN_LITTLE);
2527 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2528 bytes += 3 * 8;
2529
2530 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2531 struct signatured_type);
2532 sig_type->signature = signature;
2533 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2534 sig_type->per_cu.is_debug_types = 1;
2535 sig_type->per_cu.section = section;
2536 sig_type->per_cu.offset.sect_off = offset;
2537 sig_type->per_cu.objfile = objfile;
2538 sig_type->per_cu.v.quick
2539 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2540 struct dwarf2_per_cu_quick_data);
2541
2542 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2543 *slot = sig_type;
2544
2545 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2546 }
2547
2548 dwarf2_per_objfile->signatured_types = sig_types_hash;
2549 }
2550
2551 /* Read the address map data from the mapped index, and use it to
2552 populate the objfile's psymtabs_addrmap. */
2553
2554 static void
2555 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2556 {
2557 const gdb_byte *iter, *end;
2558 struct obstack temp_obstack;
2559 struct addrmap *mutable_map;
2560 struct cleanup *cleanup;
2561 CORE_ADDR baseaddr;
2562
2563 obstack_init (&temp_obstack);
2564 cleanup = make_cleanup_obstack_free (&temp_obstack);
2565 mutable_map = addrmap_create_mutable (&temp_obstack);
2566
2567 iter = index->address_table;
2568 end = iter + index->address_table_size;
2569
2570 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2571
2572 while (iter < end)
2573 {
2574 ULONGEST hi, lo, cu_index;
2575 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2576 iter += 8;
2577 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2578 iter += 8;
2579 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2580 iter += 4;
2581
2582 if (lo > hi)
2583 {
2584 complaint (&symfile_complaints,
2585 _(".gdb_index address table has invalid range (%s - %s)"),
2586 hex_string (lo), hex_string (hi));
2587 continue;
2588 }
2589
2590 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2591 {
2592 complaint (&symfile_complaints,
2593 _(".gdb_index address table has invalid CU number %u"),
2594 (unsigned) cu_index);
2595 continue;
2596 }
2597
2598 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2599 dw2_get_cu (cu_index));
2600 }
2601
2602 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2603 &objfile->objfile_obstack);
2604 do_cleanups (cleanup);
2605 }
2606
2607 /* The hash function for strings in the mapped index. This is the same as
2608 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2609 implementation. This is necessary because the hash function is tied to the
2610 format of the mapped index file. The hash values do not have to match with
2611 SYMBOL_HASH_NEXT.
2612
2613 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2614
2615 static hashval_t
2616 mapped_index_string_hash (int index_version, const void *p)
2617 {
2618 const unsigned char *str = (const unsigned char *) p;
2619 hashval_t r = 0;
2620 unsigned char c;
2621
2622 while ((c = *str++) != 0)
2623 {
2624 if (index_version >= 5)
2625 c = tolower (c);
2626 r = r * 67 + c - 113;
2627 }
2628
2629 return r;
2630 }
2631
2632 /* Find a slot in the mapped index INDEX for the object named NAME.
2633 If NAME is found, set *VEC_OUT to point to the CU vector in the
2634 constant pool and return 1. If NAME cannot be found, return 0. */
2635
2636 static int
2637 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2638 offset_type **vec_out)
2639 {
2640 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2641 offset_type hash;
2642 offset_type slot, step;
2643 int (*cmp) (const char *, const char *);
2644
2645 if (current_language->la_language == language_cplus
2646 || current_language->la_language == language_java
2647 || current_language->la_language == language_fortran)
2648 {
2649 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2650 not contain any. */
2651 const char *paren = strchr (name, '(');
2652
2653 if (paren)
2654 {
2655 char *dup;
2656
2657 dup = xmalloc (paren - name + 1);
2658 memcpy (dup, name, paren - name);
2659 dup[paren - name] = 0;
2660
2661 make_cleanup (xfree, dup);
2662 name = dup;
2663 }
2664 }
2665
2666 /* Index version 4 did not support case insensitive searches. But the
2667 indices for case insensitive languages are built in lowercase, therefore
2668 simulate our NAME being searched is also lowercased. */
2669 hash = mapped_index_string_hash ((index->version == 4
2670 && case_sensitivity == case_sensitive_off
2671 ? 5 : index->version),
2672 name);
2673
2674 slot = hash & (index->symbol_table_slots - 1);
2675 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2676 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2677
2678 for (;;)
2679 {
2680 /* Convert a slot number to an offset into the table. */
2681 offset_type i = 2 * slot;
2682 const char *str;
2683 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2684 {
2685 do_cleanups (back_to);
2686 return 0;
2687 }
2688
2689 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2690 if (!cmp (name, str))
2691 {
2692 *vec_out = (offset_type *) (index->constant_pool
2693 + MAYBE_SWAP (index->symbol_table[i + 1]));
2694 do_cleanups (back_to);
2695 return 1;
2696 }
2697
2698 slot = (slot + step) & (index->symbol_table_slots - 1);
2699 }
2700 }
2701
2702 /* A helper function that reads the .gdb_index from SECTION and fills
2703 in MAP. FILENAME is the name of the file containing the section;
2704 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2705 ok to use deprecated sections.
2706
2707 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2708 out parameters that are filled in with information about the CU and
2709 TU lists in the section.
2710
2711 Returns 1 if all went well, 0 otherwise. */
2712
2713 static int
2714 read_index_from_section (struct objfile *objfile,
2715 const char *filename,
2716 int deprecated_ok,
2717 struct dwarf2_section_info *section,
2718 struct mapped_index *map,
2719 const gdb_byte **cu_list,
2720 offset_type *cu_list_elements,
2721 const gdb_byte **types_list,
2722 offset_type *types_list_elements)
2723 {
2724 const gdb_byte *addr;
2725 offset_type version;
2726 offset_type *metadata;
2727 int i;
2728
2729 if (dwarf2_section_empty_p (section))
2730 return 0;
2731
2732 /* Older elfutils strip versions could keep the section in the main
2733 executable while splitting it for the separate debug info file. */
2734 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2735 return 0;
2736
2737 dwarf2_read_section (objfile, section);
2738
2739 addr = section->buffer;
2740 /* Version check. */
2741 version = MAYBE_SWAP (*(offset_type *) addr);
2742 /* Versions earlier than 3 emitted every copy of a psymbol. This
2743 causes the index to behave very poorly for certain requests. Version 3
2744 contained incomplete addrmap. So, it seems better to just ignore such
2745 indices. */
2746 if (version < 4)
2747 {
2748 static int warning_printed = 0;
2749 if (!warning_printed)
2750 {
2751 warning (_("Skipping obsolete .gdb_index section in %s."),
2752 filename);
2753 warning_printed = 1;
2754 }
2755 return 0;
2756 }
2757 /* Index version 4 uses a different hash function than index version
2758 5 and later.
2759
2760 Versions earlier than 6 did not emit psymbols for inlined
2761 functions. Using these files will cause GDB not to be able to
2762 set breakpoints on inlined functions by name, so we ignore these
2763 indices unless the user has done
2764 "set use-deprecated-index-sections on". */
2765 if (version < 6 && !deprecated_ok)
2766 {
2767 static int warning_printed = 0;
2768 if (!warning_printed)
2769 {
2770 warning (_("\
2771 Skipping deprecated .gdb_index section in %s.\n\
2772 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2773 to use the section anyway."),
2774 filename);
2775 warning_printed = 1;
2776 }
2777 return 0;
2778 }
2779 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2780 of the TU (for symbols coming from TUs). It's just a performance bug, and
2781 we can't distinguish gdb-generated indices from gold-generated ones, so
2782 nothing to do here. */
2783
2784 /* Indexes with higher version than the one supported by GDB may be no
2785 longer backward compatible. */
2786 if (version > 8)
2787 return 0;
2788
2789 map->version = version;
2790 map->total_size = section->size;
2791
2792 metadata = (offset_type *) (addr + sizeof (offset_type));
2793
2794 i = 0;
2795 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2796 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2797 / 8);
2798 ++i;
2799
2800 *types_list = addr + MAYBE_SWAP (metadata[i]);
2801 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2802 - MAYBE_SWAP (metadata[i]))
2803 / 8);
2804 ++i;
2805
2806 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2807 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2808 - MAYBE_SWAP (metadata[i]));
2809 ++i;
2810
2811 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2812 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2813 - MAYBE_SWAP (metadata[i]))
2814 / (2 * sizeof (offset_type)));
2815 ++i;
2816
2817 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2818
2819 return 1;
2820 }
2821
2822
2823 /* Read the index file. If everything went ok, initialize the "quick"
2824 elements of all the CUs and return 1. Otherwise, return 0. */
2825
2826 static int
2827 dwarf2_read_index (struct objfile *objfile)
2828 {
2829 struct mapped_index local_map, *map;
2830 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2831 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2832 struct dwz_file *dwz;
2833
2834 if (!read_index_from_section (objfile, objfile_name (objfile),
2835 use_deprecated_index_sections,
2836 &dwarf2_per_objfile->gdb_index, &local_map,
2837 &cu_list, &cu_list_elements,
2838 &types_list, &types_list_elements))
2839 return 0;
2840
2841 /* Don't use the index if it's empty. */
2842 if (local_map.symbol_table_slots == 0)
2843 return 0;
2844
2845 /* If there is a .dwz file, read it so we can get its CU list as
2846 well. */
2847 dwz = dwarf2_get_dwz_file ();
2848 if (dwz != NULL)
2849 {
2850 struct mapped_index dwz_map;
2851 const gdb_byte *dwz_types_ignore;
2852 offset_type dwz_types_elements_ignore;
2853
2854 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2855 1,
2856 &dwz->gdb_index, &dwz_map,
2857 &dwz_list, &dwz_list_elements,
2858 &dwz_types_ignore,
2859 &dwz_types_elements_ignore))
2860 {
2861 warning (_("could not read '.gdb_index' section from %s; skipping"),
2862 bfd_get_filename (dwz->dwz_bfd));
2863 return 0;
2864 }
2865 }
2866
2867 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2868 dwz_list_elements);
2869
2870 if (types_list_elements)
2871 {
2872 struct dwarf2_section_info *section;
2873
2874 /* We can only handle a single .debug_types when we have an
2875 index. */
2876 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2877 return 0;
2878
2879 section = VEC_index (dwarf2_section_info_def,
2880 dwarf2_per_objfile->types, 0);
2881
2882 create_signatured_type_table_from_index (objfile, section, types_list,
2883 types_list_elements);
2884 }
2885
2886 create_addrmap_from_index (objfile, &local_map);
2887
2888 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2889 *map = local_map;
2890
2891 dwarf2_per_objfile->index_table = map;
2892 dwarf2_per_objfile->using_index = 1;
2893 dwarf2_per_objfile->quick_file_names_table =
2894 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2895
2896 return 1;
2897 }
2898
2899 /* A helper for the "quick" functions which sets the global
2900 dwarf2_per_objfile according to OBJFILE. */
2901
2902 static void
2903 dw2_setup (struct objfile *objfile)
2904 {
2905 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2906 gdb_assert (dwarf2_per_objfile);
2907 }
2908
2909 /* die_reader_func for dw2_get_file_names. */
2910
2911 static void
2912 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2913 const gdb_byte *info_ptr,
2914 struct die_info *comp_unit_die,
2915 int has_children,
2916 void *data)
2917 {
2918 struct dwarf2_cu *cu = reader->cu;
2919 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2920 struct objfile *objfile = dwarf2_per_objfile->objfile;
2921 struct dwarf2_per_cu_data *lh_cu;
2922 struct line_header *lh;
2923 struct attribute *attr;
2924 int i;
2925 const char *name, *comp_dir;
2926 void **slot;
2927 struct quick_file_names *qfn;
2928 unsigned int line_offset;
2929
2930 gdb_assert (! this_cu->is_debug_types);
2931
2932 /* Our callers never want to match partial units -- instead they
2933 will match the enclosing full CU. */
2934 if (comp_unit_die->tag == DW_TAG_partial_unit)
2935 {
2936 this_cu->v.quick->no_file_data = 1;
2937 return;
2938 }
2939
2940 lh_cu = this_cu;
2941 lh = NULL;
2942 slot = NULL;
2943 line_offset = 0;
2944
2945 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2946 if (attr)
2947 {
2948 struct quick_file_names find_entry;
2949
2950 line_offset = DW_UNSND (attr);
2951
2952 /* We may have already read in this line header (TU line header sharing).
2953 If we have we're done. */
2954 find_entry.hash.dwo_unit = cu->dwo_unit;
2955 find_entry.hash.line_offset.sect_off = line_offset;
2956 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2957 &find_entry, INSERT);
2958 if (*slot != NULL)
2959 {
2960 lh_cu->v.quick->file_names = *slot;
2961 return;
2962 }
2963
2964 lh = dwarf_decode_line_header (line_offset, cu);
2965 }
2966 if (lh == NULL)
2967 {
2968 lh_cu->v.quick->no_file_data = 1;
2969 return;
2970 }
2971
2972 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2973 qfn->hash.dwo_unit = cu->dwo_unit;
2974 qfn->hash.line_offset.sect_off = line_offset;
2975 gdb_assert (slot != NULL);
2976 *slot = qfn;
2977
2978 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2979
2980 qfn->num_file_names = lh->num_file_names;
2981 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2982 lh->num_file_names * sizeof (char *));
2983 for (i = 0; i < lh->num_file_names; ++i)
2984 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2985 qfn->real_names = NULL;
2986
2987 free_line_header (lh);
2988
2989 lh_cu->v.quick->file_names = qfn;
2990 }
2991
2992 /* A helper for the "quick" functions which attempts to read the line
2993 table for THIS_CU. */
2994
2995 static struct quick_file_names *
2996 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2997 {
2998 /* This should never be called for TUs. */
2999 gdb_assert (! this_cu->is_debug_types);
3000 /* Nor type unit groups. */
3001 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3002
3003 if (this_cu->v.quick->file_names != NULL)
3004 return this_cu->v.quick->file_names;
3005 /* If we know there is no line data, no point in looking again. */
3006 if (this_cu->v.quick->no_file_data)
3007 return NULL;
3008
3009 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3010
3011 if (this_cu->v.quick->no_file_data)
3012 return NULL;
3013 return this_cu->v.quick->file_names;
3014 }
3015
3016 /* A helper for the "quick" functions which computes and caches the
3017 real path for a given file name from the line table. */
3018
3019 static const char *
3020 dw2_get_real_path (struct objfile *objfile,
3021 struct quick_file_names *qfn, int index)
3022 {
3023 if (qfn->real_names == NULL)
3024 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3025 qfn->num_file_names, sizeof (char *));
3026
3027 if (qfn->real_names[index] == NULL)
3028 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3029
3030 return qfn->real_names[index];
3031 }
3032
3033 static struct symtab *
3034 dw2_find_last_source_symtab (struct objfile *objfile)
3035 {
3036 int index;
3037
3038 dw2_setup (objfile);
3039 index = dwarf2_per_objfile->n_comp_units - 1;
3040 return dw2_instantiate_symtab (dw2_get_cu (index));
3041 }
3042
3043 /* Traversal function for dw2_forget_cached_source_info. */
3044
3045 static int
3046 dw2_free_cached_file_names (void **slot, void *info)
3047 {
3048 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3049
3050 if (file_data->real_names)
3051 {
3052 int i;
3053
3054 for (i = 0; i < file_data->num_file_names; ++i)
3055 {
3056 xfree ((void*) file_data->real_names[i]);
3057 file_data->real_names[i] = NULL;
3058 }
3059 }
3060
3061 return 1;
3062 }
3063
3064 static void
3065 dw2_forget_cached_source_info (struct objfile *objfile)
3066 {
3067 dw2_setup (objfile);
3068
3069 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3070 dw2_free_cached_file_names, NULL);
3071 }
3072
3073 /* Helper function for dw2_map_symtabs_matching_filename that expands
3074 the symtabs and calls the iterator. */
3075
3076 static int
3077 dw2_map_expand_apply (struct objfile *objfile,
3078 struct dwarf2_per_cu_data *per_cu,
3079 const char *name, const char *real_path,
3080 int (*callback) (struct symtab *, void *),
3081 void *data)
3082 {
3083 struct symtab *last_made = objfile->symtabs;
3084
3085 /* Don't visit already-expanded CUs. */
3086 if (per_cu->v.quick->symtab)
3087 return 0;
3088
3089 /* This may expand more than one symtab, and we want to iterate over
3090 all of them. */
3091 dw2_instantiate_symtab (per_cu);
3092
3093 return iterate_over_some_symtabs (name, real_path, callback, data,
3094 objfile->symtabs, last_made);
3095 }
3096
3097 /* Implementation of the map_symtabs_matching_filename method. */
3098
3099 static int
3100 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3101 const char *real_path,
3102 int (*callback) (struct symtab *, void *),
3103 void *data)
3104 {
3105 int i;
3106 const char *name_basename = lbasename (name);
3107
3108 dw2_setup (objfile);
3109
3110 /* The rule is CUs specify all the files, including those used by
3111 any TU, so there's no need to scan TUs here. */
3112
3113 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3114 {
3115 int j;
3116 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3117 struct quick_file_names *file_data;
3118
3119 /* We only need to look at symtabs not already expanded. */
3120 if (per_cu->v.quick->symtab)
3121 continue;
3122
3123 file_data = dw2_get_file_names (per_cu);
3124 if (file_data == NULL)
3125 continue;
3126
3127 for (j = 0; j < file_data->num_file_names; ++j)
3128 {
3129 const char *this_name = file_data->file_names[j];
3130 const char *this_real_name;
3131
3132 if (compare_filenames_for_search (this_name, name))
3133 {
3134 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3135 callback, data))
3136 return 1;
3137 continue;
3138 }
3139
3140 /* Before we invoke realpath, which can get expensive when many
3141 files are involved, do a quick comparison of the basenames. */
3142 if (! basenames_may_differ
3143 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3144 continue;
3145
3146 this_real_name = dw2_get_real_path (objfile, file_data, j);
3147 if (compare_filenames_for_search (this_real_name, name))
3148 {
3149 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3150 callback, data))
3151 return 1;
3152 continue;
3153 }
3154
3155 if (real_path != NULL)
3156 {
3157 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3158 gdb_assert (IS_ABSOLUTE_PATH (name));
3159 if (this_real_name != NULL
3160 && FILENAME_CMP (real_path, this_real_name) == 0)
3161 {
3162 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3163 callback, data))
3164 return 1;
3165 continue;
3166 }
3167 }
3168 }
3169 }
3170
3171 return 0;
3172 }
3173
3174 /* Struct used to manage iterating over all CUs looking for a symbol. */
3175
3176 struct dw2_symtab_iterator
3177 {
3178 /* The internalized form of .gdb_index. */
3179 struct mapped_index *index;
3180 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3181 int want_specific_block;
3182 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3183 Unused if !WANT_SPECIFIC_BLOCK. */
3184 int block_index;
3185 /* The kind of symbol we're looking for. */
3186 domain_enum domain;
3187 /* The list of CUs from the index entry of the symbol,
3188 or NULL if not found. */
3189 offset_type *vec;
3190 /* The next element in VEC to look at. */
3191 int next;
3192 /* The number of elements in VEC, or zero if there is no match. */
3193 int length;
3194 };
3195
3196 /* Initialize the index symtab iterator ITER.
3197 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3198 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3199
3200 static void
3201 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3202 struct mapped_index *index,
3203 int want_specific_block,
3204 int block_index,
3205 domain_enum domain,
3206 const char *name)
3207 {
3208 iter->index = index;
3209 iter->want_specific_block = want_specific_block;
3210 iter->block_index = block_index;
3211 iter->domain = domain;
3212 iter->next = 0;
3213
3214 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3215 iter->length = MAYBE_SWAP (*iter->vec);
3216 else
3217 {
3218 iter->vec = NULL;
3219 iter->length = 0;
3220 }
3221 }
3222
3223 /* Return the next matching CU or NULL if there are no more. */
3224
3225 static struct dwarf2_per_cu_data *
3226 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3227 {
3228 for ( ; iter->next < iter->length; ++iter->next)
3229 {
3230 offset_type cu_index_and_attrs =
3231 MAYBE_SWAP (iter->vec[iter->next + 1]);
3232 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3233 struct dwarf2_per_cu_data *per_cu;
3234 int want_static = iter->block_index != GLOBAL_BLOCK;
3235 /* This value is only valid for index versions >= 7. */
3236 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3237 gdb_index_symbol_kind symbol_kind =
3238 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3239 /* Only check the symbol attributes if they're present.
3240 Indices prior to version 7 don't record them,
3241 and indices >= 7 may elide them for certain symbols
3242 (gold does this). */
3243 int attrs_valid =
3244 (iter->index->version >= 7
3245 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3246
3247 /* Don't crash on bad data. */
3248 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3249 + dwarf2_per_objfile->n_type_units))
3250 {
3251 complaint (&symfile_complaints,
3252 _(".gdb_index entry has bad CU index"
3253 " [in module %s]"),
3254 objfile_name (dwarf2_per_objfile->objfile));
3255 continue;
3256 }
3257
3258 per_cu = dw2_get_cu (cu_index);
3259
3260 /* Skip if already read in. */
3261 if (per_cu->v.quick->symtab)
3262 continue;
3263
3264 if (attrs_valid
3265 && iter->want_specific_block
3266 && want_static != is_static)
3267 continue;
3268
3269 /* Only check the symbol's kind if it has one. */
3270 if (attrs_valid)
3271 {
3272 switch (iter->domain)
3273 {
3274 case VAR_DOMAIN:
3275 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3276 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3277 /* Some types are also in VAR_DOMAIN. */
3278 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3279 continue;
3280 break;
3281 case STRUCT_DOMAIN:
3282 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3283 continue;
3284 break;
3285 case LABEL_DOMAIN:
3286 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3287 continue;
3288 break;
3289 default:
3290 break;
3291 }
3292 }
3293
3294 ++iter->next;
3295 return per_cu;
3296 }
3297
3298 return NULL;
3299 }
3300
3301 static struct symtab *
3302 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3303 const char *name, domain_enum domain)
3304 {
3305 struct symtab *stab_best = NULL;
3306 struct mapped_index *index;
3307
3308 dw2_setup (objfile);
3309
3310 index = dwarf2_per_objfile->index_table;
3311
3312 /* index is NULL if OBJF_READNOW. */
3313 if (index)
3314 {
3315 struct dw2_symtab_iterator iter;
3316 struct dwarf2_per_cu_data *per_cu;
3317
3318 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3319
3320 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3321 {
3322 struct symbol *sym = NULL;
3323 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3324
3325 /* Some caution must be observed with overloaded functions
3326 and methods, since the index will not contain any overload
3327 information (but NAME might contain it). */
3328 if (stab->primary)
3329 {
3330 struct blockvector *bv = BLOCKVECTOR (stab);
3331 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3332
3333 sym = lookup_block_symbol (block, name, domain);
3334 }
3335
3336 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3337 {
3338 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3339 return stab;
3340
3341 stab_best = stab;
3342 }
3343
3344 /* Keep looking through other CUs. */
3345 }
3346 }
3347
3348 return stab_best;
3349 }
3350
3351 static void
3352 dw2_print_stats (struct objfile *objfile)
3353 {
3354 int i, total, count;
3355
3356 dw2_setup (objfile);
3357 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3358 count = 0;
3359 for (i = 0; i < total; ++i)
3360 {
3361 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3362
3363 if (!per_cu->v.quick->symtab)
3364 ++count;
3365 }
3366 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3367 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3368 }
3369
3370 /* This dumps minimal information about the index.
3371 It is called via "mt print objfiles".
3372 One use is to verify .gdb_index has been loaded by the
3373 gdb.dwarf2/gdb-index.exp testcase. */
3374
3375 static void
3376 dw2_dump (struct objfile *objfile)
3377 {
3378 dw2_setup (objfile);
3379 gdb_assert (dwarf2_per_objfile->using_index);
3380 printf_filtered (".gdb_index:");
3381 if (dwarf2_per_objfile->index_table != NULL)
3382 {
3383 printf_filtered (" version %d\n",
3384 dwarf2_per_objfile->index_table->version);
3385 }
3386 else
3387 printf_filtered (" faked for \"readnow\"\n");
3388 printf_filtered ("\n");
3389 }
3390
3391 static void
3392 dw2_relocate (struct objfile *objfile,
3393 const struct section_offsets *new_offsets,
3394 const struct section_offsets *delta)
3395 {
3396 /* There's nothing to relocate here. */
3397 }
3398
3399 static void
3400 dw2_expand_symtabs_for_function (struct objfile *objfile,
3401 const char *func_name)
3402 {
3403 struct mapped_index *index;
3404
3405 dw2_setup (objfile);
3406
3407 index = dwarf2_per_objfile->index_table;
3408
3409 /* index is NULL if OBJF_READNOW. */
3410 if (index)
3411 {
3412 struct dw2_symtab_iterator iter;
3413 struct dwarf2_per_cu_data *per_cu;
3414
3415 /* Note: It doesn't matter what we pass for block_index here. */
3416 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3417 func_name);
3418
3419 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3420 dw2_instantiate_symtab (per_cu);
3421 }
3422 }
3423
3424 static void
3425 dw2_expand_all_symtabs (struct objfile *objfile)
3426 {
3427 int i;
3428
3429 dw2_setup (objfile);
3430
3431 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3432 + dwarf2_per_objfile->n_type_units); ++i)
3433 {
3434 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3435
3436 dw2_instantiate_symtab (per_cu);
3437 }
3438 }
3439
3440 static void
3441 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3442 const char *fullname)
3443 {
3444 int i;
3445
3446 dw2_setup (objfile);
3447
3448 /* We don't need to consider type units here.
3449 This is only called for examining code, e.g. expand_line_sal.
3450 There can be an order of magnitude (or more) more type units
3451 than comp units, and we avoid them if we can. */
3452
3453 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3454 {
3455 int j;
3456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3457 struct quick_file_names *file_data;
3458
3459 /* We only need to look at symtabs not already expanded. */
3460 if (per_cu->v.quick->symtab)
3461 continue;
3462
3463 file_data = dw2_get_file_names (per_cu);
3464 if (file_data == NULL)
3465 continue;
3466
3467 for (j = 0; j < file_data->num_file_names; ++j)
3468 {
3469 const char *this_fullname = file_data->file_names[j];
3470
3471 if (filename_cmp (this_fullname, fullname) == 0)
3472 {
3473 dw2_instantiate_symtab (per_cu);
3474 break;
3475 }
3476 }
3477 }
3478 }
3479
3480 static void
3481 dw2_map_matching_symbols (struct objfile *objfile,
3482 const char * name, domain_enum namespace,
3483 int global,
3484 int (*callback) (struct block *,
3485 struct symbol *, void *),
3486 void *data, symbol_compare_ftype *match,
3487 symbol_compare_ftype *ordered_compare)
3488 {
3489 /* Currently unimplemented; used for Ada. The function can be called if the
3490 current language is Ada for a non-Ada objfile using GNU index. As Ada
3491 does not look for non-Ada symbols this function should just return. */
3492 }
3493
3494 static void
3495 dw2_expand_symtabs_matching
3496 (struct objfile *objfile,
3497 int (*file_matcher) (const char *, void *, int basenames),
3498 int (*name_matcher) (const char *, void *),
3499 enum search_domain kind,
3500 void *data)
3501 {
3502 int i;
3503 offset_type iter;
3504 struct mapped_index *index;
3505
3506 dw2_setup (objfile);
3507
3508 /* index_table is NULL if OBJF_READNOW. */
3509 if (!dwarf2_per_objfile->index_table)
3510 return;
3511 index = dwarf2_per_objfile->index_table;
3512
3513 if (file_matcher != NULL)
3514 {
3515 struct cleanup *cleanup;
3516 htab_t visited_found, visited_not_found;
3517
3518 visited_found = htab_create_alloc (10,
3519 htab_hash_pointer, htab_eq_pointer,
3520 NULL, xcalloc, xfree);
3521 cleanup = make_cleanup_htab_delete (visited_found);
3522 visited_not_found = htab_create_alloc (10,
3523 htab_hash_pointer, htab_eq_pointer,
3524 NULL, xcalloc, xfree);
3525 make_cleanup_htab_delete (visited_not_found);
3526
3527 /* The rule is CUs specify all the files, including those used by
3528 any TU, so there's no need to scan TUs here. */
3529
3530 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3531 {
3532 int j;
3533 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3534 struct quick_file_names *file_data;
3535 void **slot;
3536
3537 per_cu->v.quick->mark = 0;
3538
3539 /* We only need to look at symtabs not already expanded. */
3540 if (per_cu->v.quick->symtab)
3541 continue;
3542
3543 file_data = dw2_get_file_names (per_cu);
3544 if (file_data == NULL)
3545 continue;
3546
3547 if (htab_find (visited_not_found, file_data) != NULL)
3548 continue;
3549 else if (htab_find (visited_found, file_data) != NULL)
3550 {
3551 per_cu->v.quick->mark = 1;
3552 continue;
3553 }
3554
3555 for (j = 0; j < file_data->num_file_names; ++j)
3556 {
3557 const char *this_real_name;
3558
3559 if (file_matcher (file_data->file_names[j], data, 0))
3560 {
3561 per_cu->v.quick->mark = 1;
3562 break;
3563 }
3564
3565 /* Before we invoke realpath, which can get expensive when many
3566 files are involved, do a quick comparison of the basenames. */
3567 if (!basenames_may_differ
3568 && !file_matcher (lbasename (file_data->file_names[j]),
3569 data, 1))
3570 continue;
3571
3572 this_real_name = dw2_get_real_path (objfile, file_data, j);
3573 if (file_matcher (this_real_name, data, 0))
3574 {
3575 per_cu->v.quick->mark = 1;
3576 break;
3577 }
3578 }
3579
3580 slot = htab_find_slot (per_cu->v.quick->mark
3581 ? visited_found
3582 : visited_not_found,
3583 file_data, INSERT);
3584 *slot = file_data;
3585 }
3586
3587 do_cleanups (cleanup);
3588 }
3589
3590 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3591 {
3592 offset_type idx = 2 * iter;
3593 const char *name;
3594 offset_type *vec, vec_len, vec_idx;
3595
3596 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3597 continue;
3598
3599 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3600
3601 if (! (*name_matcher) (name, data))
3602 continue;
3603
3604 /* The name was matched, now expand corresponding CUs that were
3605 marked. */
3606 vec = (offset_type *) (index->constant_pool
3607 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3608 vec_len = MAYBE_SWAP (vec[0]);
3609 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3610 {
3611 struct dwarf2_per_cu_data *per_cu;
3612 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3613 gdb_index_symbol_kind symbol_kind =
3614 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3615 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3616 /* Only check the symbol attributes if they're present.
3617 Indices prior to version 7 don't record them,
3618 and indices >= 7 may elide them for certain symbols
3619 (gold does this). */
3620 int attrs_valid =
3621 (index->version >= 7
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3623
3624 /* Only check the symbol's kind if it has one. */
3625 if (attrs_valid)
3626 {
3627 switch (kind)
3628 {
3629 case VARIABLES_DOMAIN:
3630 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3631 continue;
3632 break;
3633 case FUNCTIONS_DOMAIN:
3634 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3635 continue;
3636 break;
3637 case TYPES_DOMAIN:
3638 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3639 continue;
3640 break;
3641 default:
3642 break;
3643 }
3644 }
3645
3646 /* Don't crash on bad data. */
3647 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3648 + dwarf2_per_objfile->n_type_units))
3649 {
3650 complaint (&symfile_complaints,
3651 _(".gdb_index entry has bad CU index"
3652 " [in module %s]"), objfile_name (objfile));
3653 continue;
3654 }
3655
3656 per_cu = dw2_get_cu (cu_index);
3657 if (file_matcher == NULL || per_cu->v.quick->mark)
3658 dw2_instantiate_symtab (per_cu);
3659 }
3660 }
3661 }
3662
3663 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3664 symtab. */
3665
3666 static struct symtab *
3667 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3668 {
3669 int i;
3670
3671 if (BLOCKVECTOR (symtab) != NULL
3672 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3673 return symtab;
3674
3675 if (symtab->includes == NULL)
3676 return NULL;
3677
3678 for (i = 0; symtab->includes[i]; ++i)
3679 {
3680 struct symtab *s = symtab->includes[i];
3681
3682 s = recursively_find_pc_sect_symtab (s, pc);
3683 if (s != NULL)
3684 return s;
3685 }
3686
3687 return NULL;
3688 }
3689
3690 static struct symtab *
3691 dw2_find_pc_sect_symtab (struct objfile *objfile,
3692 struct minimal_symbol *msymbol,
3693 CORE_ADDR pc,
3694 struct obj_section *section,
3695 int warn_if_readin)
3696 {
3697 struct dwarf2_per_cu_data *data;
3698 struct symtab *result;
3699
3700 dw2_setup (objfile);
3701
3702 if (!objfile->psymtabs_addrmap)
3703 return NULL;
3704
3705 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3706 if (!data)
3707 return NULL;
3708
3709 if (warn_if_readin && data->v.quick->symtab)
3710 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3711 paddress (get_objfile_arch (objfile), pc));
3712
3713 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3714 gdb_assert (result != NULL);
3715 return result;
3716 }
3717
3718 static void
3719 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3720 void *data, int need_fullname)
3721 {
3722 int i;
3723 struct cleanup *cleanup;
3724 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3725 NULL, xcalloc, xfree);
3726
3727 cleanup = make_cleanup_htab_delete (visited);
3728 dw2_setup (objfile);
3729
3730 /* The rule is CUs specify all the files, including those used by
3731 any TU, so there's no need to scan TUs here.
3732 We can ignore file names coming from already-expanded CUs. */
3733
3734 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3735 {
3736 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3737
3738 if (per_cu->v.quick->symtab)
3739 {
3740 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3741 INSERT);
3742
3743 *slot = per_cu->v.quick->file_names;
3744 }
3745 }
3746
3747 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3748 {
3749 int j;
3750 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3751 struct quick_file_names *file_data;
3752 void **slot;
3753
3754 /* We only need to look at symtabs not already expanded. */
3755 if (per_cu->v.quick->symtab)
3756 continue;
3757
3758 file_data = dw2_get_file_names (per_cu);
3759 if (file_data == NULL)
3760 continue;
3761
3762 slot = htab_find_slot (visited, file_data, INSERT);
3763 if (*slot)
3764 {
3765 /* Already visited. */
3766 continue;
3767 }
3768 *slot = file_data;
3769
3770 for (j = 0; j < file_data->num_file_names; ++j)
3771 {
3772 const char *this_real_name;
3773
3774 if (need_fullname)
3775 this_real_name = dw2_get_real_path (objfile, file_data, j);
3776 else
3777 this_real_name = NULL;
3778 (*fun) (file_data->file_names[j], this_real_name, data);
3779 }
3780 }
3781
3782 do_cleanups (cleanup);
3783 }
3784
3785 static int
3786 dw2_has_symbols (struct objfile *objfile)
3787 {
3788 return 1;
3789 }
3790
3791 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3792 {
3793 dw2_has_symbols,
3794 dw2_find_last_source_symtab,
3795 dw2_forget_cached_source_info,
3796 dw2_map_symtabs_matching_filename,
3797 dw2_lookup_symbol,
3798 dw2_print_stats,
3799 dw2_dump,
3800 dw2_relocate,
3801 dw2_expand_symtabs_for_function,
3802 dw2_expand_all_symtabs,
3803 dw2_expand_symtabs_with_fullname,
3804 dw2_map_matching_symbols,
3805 dw2_expand_symtabs_matching,
3806 dw2_find_pc_sect_symtab,
3807 dw2_map_symbol_filenames
3808 };
3809
3810 /* Initialize for reading DWARF for this objfile. Return 0 if this
3811 file will use psymtabs, or 1 if using the GNU index. */
3812
3813 int
3814 dwarf2_initialize_objfile (struct objfile *objfile)
3815 {
3816 /* If we're about to read full symbols, don't bother with the
3817 indices. In this case we also don't care if some other debug
3818 format is making psymtabs, because they are all about to be
3819 expanded anyway. */
3820 if ((objfile->flags & OBJF_READNOW))
3821 {
3822 int i;
3823
3824 dwarf2_per_objfile->using_index = 1;
3825 create_all_comp_units (objfile);
3826 create_all_type_units (objfile);
3827 dwarf2_per_objfile->quick_file_names_table =
3828 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3829
3830 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3831 + dwarf2_per_objfile->n_type_units); ++i)
3832 {
3833 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3834
3835 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3836 struct dwarf2_per_cu_quick_data);
3837 }
3838
3839 /* Return 1 so that gdb sees the "quick" functions. However,
3840 these functions will be no-ops because we will have expanded
3841 all symtabs. */
3842 return 1;
3843 }
3844
3845 if (dwarf2_read_index (objfile))
3846 return 1;
3847
3848 return 0;
3849 }
3850
3851 \f
3852
3853 /* Build a partial symbol table. */
3854
3855 void
3856 dwarf2_build_psymtabs (struct objfile *objfile)
3857 {
3858 volatile struct gdb_exception except;
3859
3860 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3861 {
3862 init_psymbol_list (objfile, 1024);
3863 }
3864
3865 TRY_CATCH (except, RETURN_MASK_ERROR)
3866 {
3867 /* This isn't really ideal: all the data we allocate on the
3868 objfile's obstack is still uselessly kept around. However,
3869 freeing it seems unsafe. */
3870 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3871
3872 dwarf2_build_psymtabs_hard (objfile);
3873 discard_cleanups (cleanups);
3874 }
3875 if (except.reason < 0)
3876 exception_print (gdb_stderr, except);
3877 }
3878
3879 /* Return the total length of the CU described by HEADER. */
3880
3881 static unsigned int
3882 get_cu_length (const struct comp_unit_head *header)
3883 {
3884 return header->initial_length_size + header->length;
3885 }
3886
3887 /* Return TRUE if OFFSET is within CU_HEADER. */
3888
3889 static inline int
3890 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3891 {
3892 sect_offset bottom = { cu_header->offset.sect_off };
3893 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3894
3895 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3896 }
3897
3898 /* Find the base address of the compilation unit for range lists and
3899 location lists. It will normally be specified by DW_AT_low_pc.
3900 In DWARF-3 draft 4, the base address could be overridden by
3901 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3902 compilation units with discontinuous ranges. */
3903
3904 static void
3905 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3906 {
3907 struct attribute *attr;
3908
3909 cu->base_known = 0;
3910 cu->base_address = 0;
3911
3912 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3913 if (attr)
3914 {
3915 cu->base_address = DW_ADDR (attr);
3916 cu->base_known = 1;
3917 }
3918 else
3919 {
3920 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3921 if (attr)
3922 {
3923 cu->base_address = DW_ADDR (attr);
3924 cu->base_known = 1;
3925 }
3926 }
3927 }
3928
3929 /* Read in the comp unit header information from the debug_info at info_ptr.
3930 NOTE: This leaves members offset, first_die_offset to be filled in
3931 by the caller. */
3932
3933 static const gdb_byte *
3934 read_comp_unit_head (struct comp_unit_head *cu_header,
3935 const gdb_byte *info_ptr, bfd *abfd)
3936 {
3937 int signed_addr;
3938 unsigned int bytes_read;
3939
3940 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3941 cu_header->initial_length_size = bytes_read;
3942 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3943 info_ptr += bytes_read;
3944 cu_header->version = read_2_bytes (abfd, info_ptr);
3945 info_ptr += 2;
3946 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3947 &bytes_read);
3948 info_ptr += bytes_read;
3949 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3950 info_ptr += 1;
3951 signed_addr = bfd_get_sign_extend_vma (abfd);
3952 if (signed_addr < 0)
3953 internal_error (__FILE__, __LINE__,
3954 _("read_comp_unit_head: dwarf from non elf file"));
3955 cu_header->signed_addr_p = signed_addr;
3956
3957 return info_ptr;
3958 }
3959
3960 /* Helper function that returns the proper abbrev section for
3961 THIS_CU. */
3962
3963 static struct dwarf2_section_info *
3964 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3965 {
3966 struct dwarf2_section_info *abbrev;
3967
3968 if (this_cu->is_dwz)
3969 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3970 else
3971 abbrev = &dwarf2_per_objfile->abbrev;
3972
3973 return abbrev;
3974 }
3975
3976 /* Subroutine of read_and_check_comp_unit_head and
3977 read_and_check_type_unit_head to simplify them.
3978 Perform various error checking on the header. */
3979
3980 static void
3981 error_check_comp_unit_head (struct comp_unit_head *header,
3982 struct dwarf2_section_info *section,
3983 struct dwarf2_section_info *abbrev_section)
3984 {
3985 bfd *abfd = section->asection->owner;
3986 const char *filename = bfd_get_filename (abfd);
3987
3988 if (header->version != 2 && header->version != 3 && header->version != 4)
3989 error (_("Dwarf Error: wrong version in compilation unit header "
3990 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3991 filename);
3992
3993 if (header->abbrev_offset.sect_off
3994 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3995 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3996 "(offset 0x%lx + 6) [in module %s]"),
3997 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3998 filename);
3999
4000 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4001 avoid potential 32-bit overflow. */
4002 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4003 > section->size)
4004 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4005 "(offset 0x%lx + 0) [in module %s]"),
4006 (long) header->length, (long) header->offset.sect_off,
4007 filename);
4008 }
4009
4010 /* Read in a CU/TU header and perform some basic error checking.
4011 The contents of the header are stored in HEADER.
4012 The result is a pointer to the start of the first DIE. */
4013
4014 static const gdb_byte *
4015 read_and_check_comp_unit_head (struct comp_unit_head *header,
4016 struct dwarf2_section_info *section,
4017 struct dwarf2_section_info *abbrev_section,
4018 const gdb_byte *info_ptr,
4019 int is_debug_types_section)
4020 {
4021 const gdb_byte *beg_of_comp_unit = info_ptr;
4022 bfd *abfd = section->asection->owner;
4023
4024 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4025
4026 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4027
4028 /* If we're reading a type unit, skip over the signature and
4029 type_offset fields. */
4030 if (is_debug_types_section)
4031 info_ptr += 8 /*signature*/ + header->offset_size;
4032
4033 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4034
4035 error_check_comp_unit_head (header, section, abbrev_section);
4036
4037 return info_ptr;
4038 }
4039
4040 /* Read in the types comp unit header information from .debug_types entry at
4041 types_ptr. The result is a pointer to one past the end of the header. */
4042
4043 static const gdb_byte *
4044 read_and_check_type_unit_head (struct comp_unit_head *header,
4045 struct dwarf2_section_info *section,
4046 struct dwarf2_section_info *abbrev_section,
4047 const gdb_byte *info_ptr,
4048 ULONGEST *signature,
4049 cu_offset *type_offset_in_tu)
4050 {
4051 const gdb_byte *beg_of_comp_unit = info_ptr;
4052 bfd *abfd = section->asection->owner;
4053
4054 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4055
4056 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4057
4058 /* If we're reading a type unit, skip over the signature and
4059 type_offset fields. */
4060 if (signature != NULL)
4061 *signature = read_8_bytes (abfd, info_ptr);
4062 info_ptr += 8;
4063 if (type_offset_in_tu != NULL)
4064 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4065 header->offset_size);
4066 info_ptr += header->offset_size;
4067
4068 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4069
4070 error_check_comp_unit_head (header, section, abbrev_section);
4071
4072 return info_ptr;
4073 }
4074
4075 /* Fetch the abbreviation table offset from a comp or type unit header. */
4076
4077 static sect_offset
4078 read_abbrev_offset (struct dwarf2_section_info *section,
4079 sect_offset offset)
4080 {
4081 bfd *abfd = section->asection->owner;
4082 const gdb_byte *info_ptr;
4083 unsigned int length, initial_length_size, offset_size;
4084 sect_offset abbrev_offset;
4085
4086 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4087 info_ptr = section->buffer + offset.sect_off;
4088 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4089 offset_size = initial_length_size == 4 ? 4 : 8;
4090 info_ptr += initial_length_size + 2 /*version*/;
4091 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4092 return abbrev_offset;
4093 }
4094
4095 /* Allocate a new partial symtab for file named NAME and mark this new
4096 partial symtab as being an include of PST. */
4097
4098 static void
4099 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4100 struct objfile *objfile)
4101 {
4102 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4103
4104 if (!IS_ABSOLUTE_PATH (subpst->filename))
4105 {
4106 /* It shares objfile->objfile_obstack. */
4107 subpst->dirname = pst->dirname;
4108 }
4109
4110 subpst->section_offsets = pst->section_offsets;
4111 subpst->textlow = 0;
4112 subpst->texthigh = 0;
4113
4114 subpst->dependencies = (struct partial_symtab **)
4115 obstack_alloc (&objfile->objfile_obstack,
4116 sizeof (struct partial_symtab *));
4117 subpst->dependencies[0] = pst;
4118 subpst->number_of_dependencies = 1;
4119
4120 subpst->globals_offset = 0;
4121 subpst->n_global_syms = 0;
4122 subpst->statics_offset = 0;
4123 subpst->n_static_syms = 0;
4124 subpst->symtab = NULL;
4125 subpst->read_symtab = pst->read_symtab;
4126 subpst->readin = 0;
4127
4128 /* No private part is necessary for include psymtabs. This property
4129 can be used to differentiate between such include psymtabs and
4130 the regular ones. */
4131 subpst->read_symtab_private = NULL;
4132 }
4133
4134 /* Read the Line Number Program data and extract the list of files
4135 included by the source file represented by PST. Build an include
4136 partial symtab for each of these included files. */
4137
4138 static void
4139 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4140 struct die_info *die,
4141 struct partial_symtab *pst)
4142 {
4143 struct line_header *lh = NULL;
4144 struct attribute *attr;
4145
4146 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4147 if (attr)
4148 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4149 if (lh == NULL)
4150 return; /* No linetable, so no includes. */
4151
4152 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4153 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4154
4155 free_line_header (lh);
4156 }
4157
4158 static hashval_t
4159 hash_signatured_type (const void *item)
4160 {
4161 const struct signatured_type *sig_type = item;
4162
4163 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4164 return sig_type->signature;
4165 }
4166
4167 static int
4168 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4169 {
4170 const struct signatured_type *lhs = item_lhs;
4171 const struct signatured_type *rhs = item_rhs;
4172
4173 return lhs->signature == rhs->signature;
4174 }
4175
4176 /* Allocate a hash table for signatured types. */
4177
4178 static htab_t
4179 allocate_signatured_type_table (struct objfile *objfile)
4180 {
4181 return htab_create_alloc_ex (41,
4182 hash_signatured_type,
4183 eq_signatured_type,
4184 NULL,
4185 &objfile->objfile_obstack,
4186 hashtab_obstack_allocate,
4187 dummy_obstack_deallocate);
4188 }
4189
4190 /* A helper function to add a signatured type CU to a table. */
4191
4192 static int
4193 add_signatured_type_cu_to_table (void **slot, void *datum)
4194 {
4195 struct signatured_type *sigt = *slot;
4196 struct signatured_type ***datap = datum;
4197
4198 **datap = sigt;
4199 ++*datap;
4200
4201 return 1;
4202 }
4203
4204 /* Create the hash table of all entries in the .debug_types
4205 (or .debug_types.dwo) section(s).
4206 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4207 otherwise it is NULL.
4208
4209 The result is a pointer to the hash table or NULL if there are no types.
4210
4211 Note: This function processes DWO files only, not DWP files. */
4212
4213 static htab_t
4214 create_debug_types_hash_table (struct dwo_file *dwo_file,
4215 VEC (dwarf2_section_info_def) *types)
4216 {
4217 struct objfile *objfile = dwarf2_per_objfile->objfile;
4218 htab_t types_htab = NULL;
4219 int ix;
4220 struct dwarf2_section_info *section;
4221 struct dwarf2_section_info *abbrev_section;
4222
4223 if (VEC_empty (dwarf2_section_info_def, types))
4224 return NULL;
4225
4226 abbrev_section = (dwo_file != NULL
4227 ? &dwo_file->sections.abbrev
4228 : &dwarf2_per_objfile->abbrev);
4229
4230 if (dwarf2_read_debug)
4231 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4232 dwo_file ? ".dwo" : "",
4233 bfd_get_filename (abbrev_section->asection->owner));
4234
4235 for (ix = 0;
4236 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4237 ++ix)
4238 {
4239 bfd *abfd;
4240 const gdb_byte *info_ptr, *end_ptr;
4241 struct dwarf2_section_info *abbrev_section;
4242
4243 dwarf2_read_section (objfile, section);
4244 info_ptr = section->buffer;
4245
4246 if (info_ptr == NULL)
4247 continue;
4248
4249 /* We can't set abfd until now because the section may be empty or
4250 not present, in which case section->asection will be NULL. */
4251 abfd = section->asection->owner;
4252
4253 if (dwo_file)
4254 abbrev_section = &dwo_file->sections.abbrev;
4255 else
4256 abbrev_section = &dwarf2_per_objfile->abbrev;
4257
4258 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4259 because we don't need to read any dies: the signature is in the
4260 header. */
4261
4262 end_ptr = info_ptr + section->size;
4263 while (info_ptr < end_ptr)
4264 {
4265 sect_offset offset;
4266 cu_offset type_offset_in_tu;
4267 ULONGEST signature;
4268 struct signatured_type *sig_type;
4269 struct dwo_unit *dwo_tu;
4270 void **slot;
4271 const gdb_byte *ptr = info_ptr;
4272 struct comp_unit_head header;
4273 unsigned int length;
4274
4275 offset.sect_off = ptr - section->buffer;
4276
4277 /* We need to read the type's signature in order to build the hash
4278 table, but we don't need anything else just yet. */
4279
4280 ptr = read_and_check_type_unit_head (&header, section,
4281 abbrev_section, ptr,
4282 &signature, &type_offset_in_tu);
4283
4284 length = get_cu_length (&header);
4285
4286 /* Skip dummy type units. */
4287 if (ptr >= info_ptr + length
4288 || peek_abbrev_code (abfd, ptr) == 0)
4289 {
4290 info_ptr += length;
4291 continue;
4292 }
4293
4294 if (types_htab == NULL)
4295 {
4296 if (dwo_file)
4297 types_htab = allocate_dwo_unit_table (objfile);
4298 else
4299 types_htab = allocate_signatured_type_table (objfile);
4300 }
4301
4302 if (dwo_file)
4303 {
4304 sig_type = NULL;
4305 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4306 struct dwo_unit);
4307 dwo_tu->dwo_file = dwo_file;
4308 dwo_tu->signature = signature;
4309 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4310 dwo_tu->section = section;
4311 dwo_tu->offset = offset;
4312 dwo_tu->length = length;
4313 }
4314 else
4315 {
4316 /* N.B.: type_offset is not usable if this type uses a DWO file.
4317 The real type_offset is in the DWO file. */
4318 dwo_tu = NULL;
4319 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4320 struct signatured_type);
4321 sig_type->signature = signature;
4322 sig_type->type_offset_in_tu = type_offset_in_tu;
4323 sig_type->per_cu.objfile = objfile;
4324 sig_type->per_cu.is_debug_types = 1;
4325 sig_type->per_cu.section = section;
4326 sig_type->per_cu.offset = offset;
4327 sig_type->per_cu.length = length;
4328 }
4329
4330 slot = htab_find_slot (types_htab,
4331 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4332 INSERT);
4333 gdb_assert (slot != NULL);
4334 if (*slot != NULL)
4335 {
4336 sect_offset dup_offset;
4337
4338 if (dwo_file)
4339 {
4340 const struct dwo_unit *dup_tu = *slot;
4341
4342 dup_offset = dup_tu->offset;
4343 }
4344 else
4345 {
4346 const struct signatured_type *dup_tu = *slot;
4347
4348 dup_offset = dup_tu->per_cu.offset;
4349 }
4350
4351 complaint (&symfile_complaints,
4352 _("debug type entry at offset 0x%x is duplicate to"
4353 " the entry at offset 0x%x, signature %s"),
4354 offset.sect_off, dup_offset.sect_off,
4355 hex_string (signature));
4356 }
4357 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4358
4359 if (dwarf2_read_debug)
4360 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4361 offset.sect_off,
4362 hex_string (signature));
4363
4364 info_ptr += length;
4365 }
4366 }
4367
4368 return types_htab;
4369 }
4370
4371 /* Create the hash table of all entries in the .debug_types section,
4372 and initialize all_type_units.
4373 The result is zero if there is an error (e.g. missing .debug_types section),
4374 otherwise non-zero. */
4375
4376 static int
4377 create_all_type_units (struct objfile *objfile)
4378 {
4379 htab_t types_htab;
4380 struct signatured_type **iter;
4381
4382 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4383 if (types_htab == NULL)
4384 {
4385 dwarf2_per_objfile->signatured_types = NULL;
4386 return 0;
4387 }
4388
4389 dwarf2_per_objfile->signatured_types = types_htab;
4390
4391 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4392 dwarf2_per_objfile->all_type_units
4393 = xmalloc (dwarf2_per_objfile->n_type_units
4394 * sizeof (struct signatured_type *));
4395 iter = &dwarf2_per_objfile->all_type_units[0];
4396 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4397 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4398 == dwarf2_per_objfile->n_type_units);
4399
4400 return 1;
4401 }
4402
4403 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4404 Fill in SIG_ENTRY with DWO_ENTRY. */
4405
4406 static void
4407 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4408 struct signatured_type *sig_entry,
4409 struct dwo_unit *dwo_entry)
4410 {
4411 /* Make sure we're not clobbering something we don't expect to. */
4412 gdb_assert (! sig_entry->per_cu.queued);
4413 gdb_assert (sig_entry->per_cu.cu == NULL);
4414 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4415 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4416 gdb_assert (sig_entry->signature == dwo_entry->signature);
4417 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4418 gdb_assert (sig_entry->type_unit_group == NULL);
4419 gdb_assert (sig_entry->dwo_unit == NULL);
4420
4421 sig_entry->per_cu.section = dwo_entry->section;
4422 sig_entry->per_cu.offset = dwo_entry->offset;
4423 sig_entry->per_cu.length = dwo_entry->length;
4424 sig_entry->per_cu.reading_dwo_directly = 1;
4425 sig_entry->per_cu.objfile = objfile;
4426 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4427 sig_entry->dwo_unit = dwo_entry;
4428 }
4429
4430 /* Subroutine of lookup_signatured_type.
4431 If we haven't read the TU yet, create the signatured_type data structure
4432 for a TU to be read in directly from a DWO file, bypassing the stub.
4433 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4434 using .gdb_index, then when reading a CU we want to stay in the DWO file
4435 containing that CU. Otherwise we could end up reading several other DWO
4436 files (due to comdat folding) to process the transitive closure of all the
4437 mentioned TUs, and that can be slow. The current DWO file will have every
4438 type signature that it needs.
4439 We only do this for .gdb_index because in the psymtab case we already have
4440 to read all the DWOs to build the type unit groups. */
4441
4442 static struct signatured_type *
4443 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4444 {
4445 struct objfile *objfile = dwarf2_per_objfile->objfile;
4446 struct dwo_file *dwo_file;
4447 struct dwo_unit find_dwo_entry, *dwo_entry;
4448 struct signatured_type find_sig_entry, *sig_entry;
4449
4450 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4451
4452 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4453 dwo_unit of the TU itself. */
4454 dwo_file = cu->dwo_unit->dwo_file;
4455
4456 /* We only ever need to read in one copy of a signatured type.
4457 Just use the global signatured_types array. If this is the first time
4458 we're reading this type, replace the recorded data from .gdb_index with
4459 this TU. */
4460
4461 if (dwarf2_per_objfile->signatured_types == NULL)
4462 return NULL;
4463 find_sig_entry.signature = sig;
4464 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4465 if (sig_entry == NULL)
4466 return NULL;
4467
4468 /* We can get here with the TU already read, *or* in the process of being
4469 read. Don't reassign it if that's the case. Also note that if the TU is
4470 already being read, it may not have come from a DWO, the program may be
4471 a mix of Fission-compiled code and non-Fission-compiled code. */
4472 /* Have we already tried to read this TU? */
4473 if (sig_entry->per_cu.tu_read)
4474 return sig_entry;
4475
4476 /* Ok, this is the first time we're reading this TU. */
4477 if (dwo_file->tus == NULL)
4478 return NULL;
4479 find_dwo_entry.signature = sig;
4480 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4481 if (dwo_entry == NULL)
4482 return NULL;
4483
4484 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4485 sig_entry->per_cu.tu_read = 1;
4486 return sig_entry;
4487 }
4488
4489 /* Subroutine of lookup_dwp_signatured_type.
4490 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4491
4492 static struct signatured_type *
4493 add_type_unit (ULONGEST sig)
4494 {
4495 struct objfile *objfile = dwarf2_per_objfile->objfile;
4496 int n_type_units = dwarf2_per_objfile->n_type_units;
4497 struct signatured_type *sig_type;
4498 void **slot;
4499
4500 ++n_type_units;
4501 dwarf2_per_objfile->all_type_units =
4502 xrealloc (dwarf2_per_objfile->all_type_units,
4503 n_type_units * sizeof (struct signatured_type *));
4504 dwarf2_per_objfile->n_type_units = n_type_units;
4505 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4506 struct signatured_type);
4507 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4508 sig_type->signature = sig;
4509 sig_type->per_cu.is_debug_types = 1;
4510 sig_type->per_cu.v.quick =
4511 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4512 struct dwarf2_per_cu_quick_data);
4513 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4514 sig_type, INSERT);
4515 gdb_assert (*slot == NULL);
4516 *slot = sig_type;
4517 /* The rest of sig_type must be filled in by the caller. */
4518 return sig_type;
4519 }
4520
4521 /* Subroutine of lookup_signatured_type.
4522 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4523 then try the DWP file.
4524 Normally this "can't happen", but if there's a bug in signature
4525 generation and/or the DWP file is built incorrectly, it can happen.
4526 Using the type directly from the DWP file means we don't have the stub
4527 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4528 not critical. [Eventually the stub may go away for type units anyway.] */
4529
4530 static struct signatured_type *
4531 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4532 {
4533 struct objfile *objfile = dwarf2_per_objfile->objfile;
4534 struct dwp_file *dwp_file = get_dwp_file ();
4535 struct dwo_unit *dwo_entry;
4536 struct signatured_type find_sig_entry, *sig_entry;
4537
4538 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4539 gdb_assert (dwp_file != NULL);
4540
4541 if (dwarf2_per_objfile->signatured_types != NULL)
4542 {
4543 find_sig_entry.signature = sig;
4544 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4545 &find_sig_entry);
4546 if (sig_entry != NULL)
4547 return sig_entry;
4548 }
4549
4550 /* This is the "shouldn't happen" case.
4551 Try the DWP file and hope for the best. */
4552 if (dwp_file->tus == NULL)
4553 return NULL;
4554 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4555 sig, 1 /* is_debug_types */);
4556 if (dwo_entry == NULL)
4557 return NULL;
4558
4559 sig_entry = add_type_unit (sig);
4560 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4561
4562 /* The caller will signal a complaint if we return NULL.
4563 Here we don't return NULL but we still want to complain. */
4564 complaint (&symfile_complaints,
4565 _("Bad type signature %s referenced by %s at 0x%x,"
4566 " coping by using copy in DWP [in module %s]"),
4567 hex_string (sig),
4568 cu->per_cu->is_debug_types ? "TU" : "CU",
4569 cu->per_cu->offset.sect_off,
4570 objfile_name (objfile));
4571
4572 return sig_entry;
4573 }
4574
4575 /* Lookup a signature based type for DW_FORM_ref_sig8.
4576 Returns NULL if signature SIG is not present in the table.
4577 It is up to the caller to complain about this. */
4578
4579 static struct signatured_type *
4580 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4581 {
4582 if (cu->dwo_unit
4583 && dwarf2_per_objfile->using_index)
4584 {
4585 /* We're in a DWO/DWP file, and we're using .gdb_index.
4586 These cases require special processing. */
4587 if (get_dwp_file () == NULL)
4588 return lookup_dwo_signatured_type (cu, sig);
4589 else
4590 return lookup_dwp_signatured_type (cu, sig);
4591 }
4592 else
4593 {
4594 struct signatured_type find_entry, *entry;
4595
4596 if (dwarf2_per_objfile->signatured_types == NULL)
4597 return NULL;
4598 find_entry.signature = sig;
4599 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4600 return entry;
4601 }
4602 }
4603 \f
4604 /* Low level DIE reading support. */
4605
4606 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4607
4608 static void
4609 init_cu_die_reader (struct die_reader_specs *reader,
4610 struct dwarf2_cu *cu,
4611 struct dwarf2_section_info *section,
4612 struct dwo_file *dwo_file)
4613 {
4614 gdb_assert (section->readin && section->buffer != NULL);
4615 reader->abfd = section->asection->owner;
4616 reader->cu = cu;
4617 reader->dwo_file = dwo_file;
4618 reader->die_section = section;
4619 reader->buffer = section->buffer;
4620 reader->buffer_end = section->buffer + section->size;
4621 reader->comp_dir = NULL;
4622 }
4623
4624 /* Subroutine of init_cutu_and_read_dies to simplify it.
4625 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4626 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4627 already.
4628
4629 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4630 from it to the DIE in the DWO. If NULL we are skipping the stub.
4631 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4632 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4633 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4634 COMP_DIR must be non-NULL.
4635 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4636 are filled in with the info of the DIE from the DWO file.
4637 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4638 provided an abbrev table to use.
4639 The result is non-zero if a valid (non-dummy) DIE was found. */
4640
4641 static int
4642 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4643 struct dwo_unit *dwo_unit,
4644 int abbrev_table_provided,
4645 struct die_info *stub_comp_unit_die,
4646 const char *stub_comp_dir,
4647 struct die_reader_specs *result_reader,
4648 const gdb_byte **result_info_ptr,
4649 struct die_info **result_comp_unit_die,
4650 int *result_has_children)
4651 {
4652 struct objfile *objfile = dwarf2_per_objfile->objfile;
4653 struct dwarf2_cu *cu = this_cu->cu;
4654 struct dwarf2_section_info *section;
4655 bfd *abfd;
4656 const gdb_byte *begin_info_ptr, *info_ptr;
4657 const char *comp_dir_string;
4658 ULONGEST signature; /* Or dwo_id. */
4659 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4660 int i,num_extra_attrs;
4661 struct dwarf2_section_info *dwo_abbrev_section;
4662 struct attribute *attr;
4663 struct attribute comp_dir_attr;
4664 struct die_info *comp_unit_die;
4665
4666 /* Both can't be provided. */
4667 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4668
4669 /* These attributes aren't processed until later:
4670 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4671 However, the attribute is found in the stub which we won't have later.
4672 In order to not impose this complication on the rest of the code,
4673 we read them here and copy them to the DWO CU/TU die. */
4674
4675 stmt_list = NULL;
4676 low_pc = NULL;
4677 high_pc = NULL;
4678 ranges = NULL;
4679 comp_dir = NULL;
4680
4681 if (stub_comp_unit_die != NULL)
4682 {
4683 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4684 DWO file. */
4685 if (! this_cu->is_debug_types)
4686 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4687 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4688 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4689 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4690 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4691
4692 /* There should be a DW_AT_addr_base attribute here (if needed).
4693 We need the value before we can process DW_FORM_GNU_addr_index. */
4694 cu->addr_base = 0;
4695 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4696 if (attr)
4697 cu->addr_base = DW_UNSND (attr);
4698
4699 /* There should be a DW_AT_ranges_base attribute here (if needed).
4700 We need the value before we can process DW_AT_ranges. */
4701 cu->ranges_base = 0;
4702 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4703 if (attr)
4704 cu->ranges_base = DW_UNSND (attr);
4705 }
4706 else if (stub_comp_dir != NULL)
4707 {
4708 /* Reconstruct the comp_dir attribute to simplify the code below. */
4709 comp_dir = (struct attribute *)
4710 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4711 comp_dir->name = DW_AT_comp_dir;
4712 comp_dir->form = DW_FORM_string;
4713 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4714 DW_STRING (comp_dir) = stub_comp_dir;
4715 }
4716
4717 /* Set up for reading the DWO CU/TU. */
4718 cu->dwo_unit = dwo_unit;
4719 section = dwo_unit->section;
4720 dwarf2_read_section (objfile, section);
4721 abfd = section->asection->owner;
4722 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4723 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4724 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4725
4726 if (this_cu->is_debug_types)
4727 {
4728 ULONGEST header_signature;
4729 cu_offset type_offset_in_tu;
4730 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4731
4732 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4733 dwo_abbrev_section,
4734 info_ptr,
4735 &header_signature,
4736 &type_offset_in_tu);
4737 /* This is not an assert because it can be caused by bad debug info. */
4738 if (sig_type->signature != header_signature)
4739 {
4740 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4741 " TU at offset 0x%x [in module %s]"),
4742 hex_string (sig_type->signature),
4743 hex_string (header_signature),
4744 dwo_unit->offset.sect_off,
4745 bfd_get_filename (abfd));
4746 }
4747 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4748 /* For DWOs coming from DWP files, we don't know the CU length
4749 nor the type's offset in the TU until now. */
4750 dwo_unit->length = get_cu_length (&cu->header);
4751 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4752
4753 /* Establish the type offset that can be used to lookup the type.
4754 For DWO files, we don't know it until now. */
4755 sig_type->type_offset_in_section.sect_off =
4756 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4757 }
4758 else
4759 {
4760 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4761 dwo_abbrev_section,
4762 info_ptr, 0);
4763 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4764 /* For DWOs coming from DWP files, we don't know the CU length
4765 until now. */
4766 dwo_unit->length = get_cu_length (&cu->header);
4767 }
4768
4769 /* Replace the CU's original abbrev table with the DWO's.
4770 Reminder: We can't read the abbrev table until we've read the header. */
4771 if (abbrev_table_provided)
4772 {
4773 /* Don't free the provided abbrev table, the caller of
4774 init_cutu_and_read_dies owns it. */
4775 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4776 /* Ensure the DWO abbrev table gets freed. */
4777 make_cleanup (dwarf2_free_abbrev_table, cu);
4778 }
4779 else
4780 {
4781 dwarf2_free_abbrev_table (cu);
4782 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4783 /* Leave any existing abbrev table cleanup as is. */
4784 }
4785
4786 /* Read in the die, but leave space to copy over the attributes
4787 from the stub. This has the benefit of simplifying the rest of
4788 the code - all the work to maintain the illusion of a single
4789 DW_TAG_{compile,type}_unit DIE is done here. */
4790 num_extra_attrs = ((stmt_list != NULL)
4791 + (low_pc != NULL)
4792 + (high_pc != NULL)
4793 + (ranges != NULL)
4794 + (comp_dir != NULL));
4795 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4796 result_has_children, num_extra_attrs);
4797
4798 /* Copy over the attributes from the stub to the DIE we just read in. */
4799 comp_unit_die = *result_comp_unit_die;
4800 i = comp_unit_die->num_attrs;
4801 if (stmt_list != NULL)
4802 comp_unit_die->attrs[i++] = *stmt_list;
4803 if (low_pc != NULL)
4804 comp_unit_die->attrs[i++] = *low_pc;
4805 if (high_pc != NULL)
4806 comp_unit_die->attrs[i++] = *high_pc;
4807 if (ranges != NULL)
4808 comp_unit_die->attrs[i++] = *ranges;
4809 if (comp_dir != NULL)
4810 comp_unit_die->attrs[i++] = *comp_dir;
4811 comp_unit_die->num_attrs += num_extra_attrs;
4812
4813 if (dwarf2_die_debug)
4814 {
4815 fprintf_unfiltered (gdb_stdlog,
4816 "Read die from %s@0x%x of %s:\n",
4817 bfd_section_name (abfd, section->asection),
4818 (unsigned) (begin_info_ptr - section->buffer),
4819 bfd_get_filename (abfd));
4820 dump_die (comp_unit_die, dwarf2_die_debug);
4821 }
4822
4823 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4824 TUs by skipping the stub and going directly to the entry in the DWO file.
4825 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4826 to get it via circuitous means. Blech. */
4827 if (comp_dir != NULL)
4828 result_reader->comp_dir = DW_STRING (comp_dir);
4829
4830 /* Skip dummy compilation units. */
4831 if (info_ptr >= begin_info_ptr + dwo_unit->length
4832 || peek_abbrev_code (abfd, info_ptr) == 0)
4833 return 0;
4834
4835 *result_info_ptr = info_ptr;
4836 return 1;
4837 }
4838
4839 /* Subroutine of init_cutu_and_read_dies to simplify it.
4840 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4841 Returns NULL if the specified DWO unit cannot be found. */
4842
4843 static struct dwo_unit *
4844 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4845 struct die_info *comp_unit_die)
4846 {
4847 struct dwarf2_cu *cu = this_cu->cu;
4848 struct attribute *attr;
4849 ULONGEST signature;
4850 struct dwo_unit *dwo_unit;
4851 const char *comp_dir, *dwo_name;
4852
4853 gdb_assert (cu != NULL);
4854
4855 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4856 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4857 gdb_assert (attr != NULL);
4858 dwo_name = DW_STRING (attr);
4859 comp_dir = NULL;
4860 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4861 if (attr)
4862 comp_dir = DW_STRING (attr);
4863
4864 if (this_cu->is_debug_types)
4865 {
4866 struct signatured_type *sig_type;
4867
4868 /* Since this_cu is the first member of struct signatured_type,
4869 we can go from a pointer to one to a pointer to the other. */
4870 sig_type = (struct signatured_type *) this_cu;
4871 signature = sig_type->signature;
4872 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4873 }
4874 else
4875 {
4876 struct attribute *attr;
4877
4878 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4879 if (! attr)
4880 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4881 " [in module %s]"),
4882 dwo_name, objfile_name (this_cu->objfile));
4883 signature = DW_UNSND (attr);
4884 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4885 signature);
4886 }
4887
4888 return dwo_unit;
4889 }
4890
4891 /* Subroutine of init_cutu_and_read_dies to simplify it.
4892 Read a TU directly from a DWO file, bypassing the stub. */
4893
4894 static void
4895 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4896 die_reader_func_ftype *die_reader_func,
4897 void *data)
4898 {
4899 struct dwarf2_cu *cu;
4900 struct signatured_type *sig_type;
4901 struct cleanup *cleanups, *free_cu_cleanup;
4902 struct die_reader_specs reader;
4903 const gdb_byte *info_ptr;
4904 struct die_info *comp_unit_die;
4905 int has_children;
4906
4907 /* Verify we can do the following downcast, and that we have the
4908 data we need. */
4909 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4910 sig_type = (struct signatured_type *) this_cu;
4911 gdb_assert (sig_type->dwo_unit != NULL);
4912
4913 cleanups = make_cleanup (null_cleanup, NULL);
4914
4915 gdb_assert (this_cu->cu == NULL);
4916 cu = xmalloc (sizeof (*cu));
4917 init_one_comp_unit (cu, this_cu);
4918 /* If an error occurs while loading, release our storage. */
4919 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4920
4921 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4922 0 /* abbrev_table_provided */,
4923 NULL /* stub_comp_unit_die */,
4924 sig_type->dwo_unit->dwo_file->comp_dir,
4925 &reader, &info_ptr,
4926 &comp_unit_die, &has_children) == 0)
4927 {
4928 /* Dummy die. */
4929 do_cleanups (cleanups);
4930 return;
4931 }
4932
4933 /* All the "real" work is done here. */
4934 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4935
4936 /* This duplicates some code in init_cutu_and_read_dies,
4937 but the alternative is making the latter more complex.
4938 This function is only for the special case of using DWO files directly:
4939 no point in overly complicating the general case just to handle this. */
4940 if (keep)
4941 {
4942 /* We've successfully allocated this compilation unit. Let our
4943 caller clean it up when finished with it. */
4944 discard_cleanups (free_cu_cleanup);
4945
4946 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4947 So we have to manually free the abbrev table. */
4948 dwarf2_free_abbrev_table (cu);
4949
4950 /* Link this CU into read_in_chain. */
4951 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4952 dwarf2_per_objfile->read_in_chain = this_cu;
4953 }
4954 else
4955 do_cleanups (free_cu_cleanup);
4956
4957 do_cleanups (cleanups);
4958 }
4959
4960 /* Initialize a CU (or TU) and read its DIEs.
4961 If the CU defers to a DWO file, read the DWO file as well.
4962
4963 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4964 Otherwise the table specified in the comp unit header is read in and used.
4965 This is an optimization for when we already have the abbrev table.
4966
4967 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4968 Otherwise, a new CU is allocated with xmalloc.
4969
4970 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4971 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4972
4973 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4974 linker) then DIE_READER_FUNC will not get called. */
4975
4976 static void
4977 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4978 struct abbrev_table *abbrev_table,
4979 int use_existing_cu, int keep,
4980 die_reader_func_ftype *die_reader_func,
4981 void *data)
4982 {
4983 struct objfile *objfile = dwarf2_per_objfile->objfile;
4984 struct dwarf2_section_info *section = this_cu->section;
4985 bfd *abfd = section->asection->owner;
4986 struct dwarf2_cu *cu;
4987 const gdb_byte *begin_info_ptr, *info_ptr;
4988 struct die_reader_specs reader;
4989 struct die_info *comp_unit_die;
4990 int has_children;
4991 struct attribute *attr;
4992 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4993 struct signatured_type *sig_type = NULL;
4994 struct dwarf2_section_info *abbrev_section;
4995 /* Non-zero if CU currently points to a DWO file and we need to
4996 reread it. When this happens we need to reread the skeleton die
4997 before we can reread the DWO file (this only applies to CUs, not TUs). */
4998 int rereading_dwo_cu = 0;
4999
5000 if (dwarf2_die_debug)
5001 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5002 this_cu->is_debug_types ? "type" : "comp",
5003 this_cu->offset.sect_off);
5004
5005 if (use_existing_cu)
5006 gdb_assert (keep);
5007
5008 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5009 file (instead of going through the stub), short-circuit all of this. */
5010 if (this_cu->reading_dwo_directly)
5011 {
5012 /* Narrow down the scope of possibilities to have to understand. */
5013 gdb_assert (this_cu->is_debug_types);
5014 gdb_assert (abbrev_table == NULL);
5015 gdb_assert (!use_existing_cu);
5016 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5017 return;
5018 }
5019
5020 cleanups = make_cleanup (null_cleanup, NULL);
5021
5022 /* This is cheap if the section is already read in. */
5023 dwarf2_read_section (objfile, section);
5024
5025 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5026
5027 abbrev_section = get_abbrev_section_for_cu (this_cu);
5028
5029 if (use_existing_cu && this_cu->cu != NULL)
5030 {
5031 cu = this_cu->cu;
5032
5033 /* If this CU is from a DWO file we need to start over, we need to
5034 refetch the attributes from the skeleton CU.
5035 This could be optimized by retrieving those attributes from when we
5036 were here the first time: the previous comp_unit_die was stored in
5037 comp_unit_obstack. But there's no data yet that we need this
5038 optimization. */
5039 if (cu->dwo_unit != NULL)
5040 rereading_dwo_cu = 1;
5041 }
5042 else
5043 {
5044 /* If !use_existing_cu, this_cu->cu must be NULL. */
5045 gdb_assert (this_cu->cu == NULL);
5046
5047 cu = xmalloc (sizeof (*cu));
5048 init_one_comp_unit (cu, this_cu);
5049
5050 /* If an error occurs while loading, release our storage. */
5051 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5052 }
5053
5054 /* Get the header. */
5055 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5056 {
5057 /* We already have the header, there's no need to read it in again. */
5058 info_ptr += cu->header.first_die_offset.cu_off;
5059 }
5060 else
5061 {
5062 if (this_cu->is_debug_types)
5063 {
5064 ULONGEST signature;
5065 cu_offset type_offset_in_tu;
5066
5067 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5068 abbrev_section, info_ptr,
5069 &signature,
5070 &type_offset_in_tu);
5071
5072 /* Since per_cu is the first member of struct signatured_type,
5073 we can go from a pointer to one to a pointer to the other. */
5074 sig_type = (struct signatured_type *) this_cu;
5075 gdb_assert (sig_type->signature == signature);
5076 gdb_assert (sig_type->type_offset_in_tu.cu_off
5077 == type_offset_in_tu.cu_off);
5078 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5079
5080 /* LENGTH has not been set yet for type units if we're
5081 using .gdb_index. */
5082 this_cu->length = get_cu_length (&cu->header);
5083
5084 /* Establish the type offset that can be used to lookup the type. */
5085 sig_type->type_offset_in_section.sect_off =
5086 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5087 }
5088 else
5089 {
5090 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5091 abbrev_section,
5092 info_ptr, 0);
5093
5094 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5095 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5096 }
5097 }
5098
5099 /* Skip dummy compilation units. */
5100 if (info_ptr >= begin_info_ptr + this_cu->length
5101 || peek_abbrev_code (abfd, info_ptr) == 0)
5102 {
5103 do_cleanups (cleanups);
5104 return;
5105 }
5106
5107 /* If we don't have them yet, read the abbrevs for this compilation unit.
5108 And if we need to read them now, make sure they're freed when we're
5109 done. Note that it's important that if the CU had an abbrev table
5110 on entry we don't free it when we're done: Somewhere up the call stack
5111 it may be in use. */
5112 if (abbrev_table != NULL)
5113 {
5114 gdb_assert (cu->abbrev_table == NULL);
5115 gdb_assert (cu->header.abbrev_offset.sect_off
5116 == abbrev_table->offset.sect_off);
5117 cu->abbrev_table = abbrev_table;
5118 }
5119 else if (cu->abbrev_table == NULL)
5120 {
5121 dwarf2_read_abbrevs (cu, abbrev_section);
5122 make_cleanup (dwarf2_free_abbrev_table, cu);
5123 }
5124 else if (rereading_dwo_cu)
5125 {
5126 dwarf2_free_abbrev_table (cu);
5127 dwarf2_read_abbrevs (cu, abbrev_section);
5128 }
5129
5130 /* Read the top level CU/TU die. */
5131 init_cu_die_reader (&reader, cu, section, NULL);
5132 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5133
5134 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5135 from the DWO file.
5136 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5137 DWO CU, that this test will fail (the attribute will not be present). */
5138 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5139 if (attr)
5140 {
5141 struct dwo_unit *dwo_unit;
5142 struct die_info *dwo_comp_unit_die;
5143
5144 if (has_children)
5145 {
5146 complaint (&symfile_complaints,
5147 _("compilation unit with DW_AT_GNU_dwo_name"
5148 " has children (offset 0x%x) [in module %s]"),
5149 this_cu->offset.sect_off, bfd_get_filename (abfd));
5150 }
5151 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5152 if (dwo_unit != NULL)
5153 {
5154 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5155 abbrev_table != NULL,
5156 comp_unit_die, NULL,
5157 &reader, &info_ptr,
5158 &dwo_comp_unit_die, &has_children) == 0)
5159 {
5160 /* Dummy die. */
5161 do_cleanups (cleanups);
5162 return;
5163 }
5164 comp_unit_die = dwo_comp_unit_die;
5165 }
5166 else
5167 {
5168 /* Yikes, we couldn't find the rest of the DIE, we only have
5169 the stub. A complaint has already been logged. There's
5170 not much more we can do except pass on the stub DIE to
5171 die_reader_func. We don't want to throw an error on bad
5172 debug info. */
5173 }
5174 }
5175
5176 /* All of the above is setup for this call. Yikes. */
5177 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5178
5179 /* Done, clean up. */
5180 if (free_cu_cleanup != NULL)
5181 {
5182 if (keep)
5183 {
5184 /* We've successfully allocated this compilation unit. Let our
5185 caller clean it up when finished with it. */
5186 discard_cleanups (free_cu_cleanup);
5187
5188 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5189 So we have to manually free the abbrev table. */
5190 dwarf2_free_abbrev_table (cu);
5191
5192 /* Link this CU into read_in_chain. */
5193 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5194 dwarf2_per_objfile->read_in_chain = this_cu;
5195 }
5196 else
5197 do_cleanups (free_cu_cleanup);
5198 }
5199
5200 do_cleanups (cleanups);
5201 }
5202
5203 /* Read CU/TU THIS_CU in section SECTION,
5204 but do not follow DW_AT_GNU_dwo_name if present.
5205 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5206 to have already done the lookup to find the DWO/DWP file).
5207
5208 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5209 THIS_CU->is_debug_types, but nothing else.
5210
5211 We fill in THIS_CU->length.
5212
5213 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5214 linker) then DIE_READER_FUNC will not get called.
5215
5216 THIS_CU->cu is always freed when done.
5217 This is done in order to not leave THIS_CU->cu in a state where we have
5218 to care whether it refers to the "main" CU or the DWO CU. */
5219
5220 static void
5221 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5222 struct dwarf2_section_info *abbrev_section,
5223 struct dwo_file *dwo_file,
5224 die_reader_func_ftype *die_reader_func,
5225 void *data)
5226 {
5227 struct objfile *objfile = dwarf2_per_objfile->objfile;
5228 struct dwarf2_section_info *section = this_cu->section;
5229 bfd *abfd = section->asection->owner;
5230 struct dwarf2_cu cu;
5231 const gdb_byte *begin_info_ptr, *info_ptr;
5232 struct die_reader_specs reader;
5233 struct cleanup *cleanups;
5234 struct die_info *comp_unit_die;
5235 int has_children;
5236
5237 if (dwarf2_die_debug)
5238 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5239 this_cu->is_debug_types ? "type" : "comp",
5240 this_cu->offset.sect_off);
5241
5242 gdb_assert (this_cu->cu == NULL);
5243
5244 /* This is cheap if the section is already read in. */
5245 dwarf2_read_section (objfile, section);
5246
5247 init_one_comp_unit (&cu, this_cu);
5248
5249 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5250
5251 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5252 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5253 abbrev_section, info_ptr,
5254 this_cu->is_debug_types);
5255
5256 this_cu->length = get_cu_length (&cu.header);
5257
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + this_cu->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 {
5262 do_cleanups (cleanups);
5263 return;
5264 }
5265
5266 dwarf2_read_abbrevs (&cu, abbrev_section);
5267 make_cleanup (dwarf2_free_abbrev_table, &cu);
5268
5269 init_cu_die_reader (&reader, &cu, section, dwo_file);
5270 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5271
5272 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5273
5274 do_cleanups (cleanups);
5275 }
5276
5277 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5278 does not lookup the specified DWO file.
5279 This cannot be used to read DWO files.
5280
5281 THIS_CU->cu is always freed when done.
5282 This is done in order to not leave THIS_CU->cu in a state where we have
5283 to care whether it refers to the "main" CU or the DWO CU.
5284 We can revisit this if the data shows there's a performance issue. */
5285
5286 static void
5287 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5288 die_reader_func_ftype *die_reader_func,
5289 void *data)
5290 {
5291 init_cutu_and_read_dies_no_follow (this_cu,
5292 get_abbrev_section_for_cu (this_cu),
5293 NULL,
5294 die_reader_func, data);
5295 }
5296 \f
5297 /* Type Unit Groups.
5298
5299 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5300 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5301 so that all types coming from the same compilation (.o file) are grouped
5302 together. A future step could be to put the types in the same symtab as
5303 the CU the types ultimately came from. */
5304
5305 static hashval_t
5306 hash_type_unit_group (const void *item)
5307 {
5308 const struct type_unit_group *tu_group = item;
5309
5310 return hash_stmt_list_entry (&tu_group->hash);
5311 }
5312
5313 static int
5314 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5315 {
5316 const struct type_unit_group *lhs = item_lhs;
5317 const struct type_unit_group *rhs = item_rhs;
5318
5319 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5320 }
5321
5322 /* Allocate a hash table for type unit groups. */
5323
5324 static htab_t
5325 allocate_type_unit_groups_table (void)
5326 {
5327 return htab_create_alloc_ex (3,
5328 hash_type_unit_group,
5329 eq_type_unit_group,
5330 NULL,
5331 &dwarf2_per_objfile->objfile->objfile_obstack,
5332 hashtab_obstack_allocate,
5333 dummy_obstack_deallocate);
5334 }
5335
5336 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5337 partial symtabs. We combine several TUs per psymtab to not let the size
5338 of any one psymtab grow too big. */
5339 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5340 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5341
5342 /* Helper routine for get_type_unit_group.
5343 Create the type_unit_group object used to hold one or more TUs. */
5344
5345 static struct type_unit_group *
5346 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5347 {
5348 struct objfile *objfile = dwarf2_per_objfile->objfile;
5349 struct dwarf2_per_cu_data *per_cu;
5350 struct type_unit_group *tu_group;
5351
5352 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5353 struct type_unit_group);
5354 per_cu = &tu_group->per_cu;
5355 per_cu->objfile = objfile;
5356
5357 if (dwarf2_per_objfile->using_index)
5358 {
5359 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5360 struct dwarf2_per_cu_quick_data);
5361 }
5362 else
5363 {
5364 unsigned int line_offset = line_offset_struct.sect_off;
5365 struct partial_symtab *pst;
5366 char *name;
5367
5368 /* Give the symtab a useful name for debug purposes. */
5369 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5370 name = xstrprintf ("<type_units_%d>",
5371 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5372 else
5373 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5374
5375 pst = create_partial_symtab (per_cu, name);
5376 pst->anonymous = 1;
5377
5378 xfree (name);
5379 }
5380
5381 tu_group->hash.dwo_unit = cu->dwo_unit;
5382 tu_group->hash.line_offset = line_offset_struct;
5383
5384 return tu_group;
5385 }
5386
5387 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5388 STMT_LIST is a DW_AT_stmt_list attribute. */
5389
5390 static struct type_unit_group *
5391 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5392 {
5393 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5394 struct type_unit_group *tu_group;
5395 void **slot;
5396 unsigned int line_offset;
5397 struct type_unit_group type_unit_group_for_lookup;
5398
5399 if (dwarf2_per_objfile->type_unit_groups == NULL)
5400 {
5401 dwarf2_per_objfile->type_unit_groups =
5402 allocate_type_unit_groups_table ();
5403 }
5404
5405 /* Do we need to create a new group, or can we use an existing one? */
5406
5407 if (stmt_list)
5408 {
5409 line_offset = DW_UNSND (stmt_list);
5410 ++tu_stats->nr_symtab_sharers;
5411 }
5412 else
5413 {
5414 /* Ugh, no stmt_list. Rare, but we have to handle it.
5415 We can do various things here like create one group per TU or
5416 spread them over multiple groups to split up the expansion work.
5417 To avoid worst case scenarios (too many groups or too large groups)
5418 we, umm, group them in bunches. */
5419 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5420 | (tu_stats->nr_stmt_less_type_units
5421 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5422 ++tu_stats->nr_stmt_less_type_units;
5423 }
5424
5425 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5426 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5427 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5428 &type_unit_group_for_lookup, INSERT);
5429 if (*slot != NULL)
5430 {
5431 tu_group = *slot;
5432 gdb_assert (tu_group != NULL);
5433 }
5434 else
5435 {
5436 sect_offset line_offset_struct;
5437
5438 line_offset_struct.sect_off = line_offset;
5439 tu_group = create_type_unit_group (cu, line_offset_struct);
5440 *slot = tu_group;
5441 ++tu_stats->nr_symtabs;
5442 }
5443
5444 return tu_group;
5445 }
5446
5447 /* Struct used to sort TUs by their abbreviation table offset. */
5448
5449 struct tu_abbrev_offset
5450 {
5451 struct signatured_type *sig_type;
5452 sect_offset abbrev_offset;
5453 };
5454
5455 /* Helper routine for build_type_unit_groups, passed to qsort. */
5456
5457 static int
5458 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5459 {
5460 const struct tu_abbrev_offset * const *a = ap;
5461 const struct tu_abbrev_offset * const *b = bp;
5462 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5463 unsigned int boff = (*b)->abbrev_offset.sect_off;
5464
5465 return (aoff > boff) - (aoff < boff);
5466 }
5467
5468 /* A helper function to add a type_unit_group to a table. */
5469
5470 static int
5471 add_type_unit_group_to_table (void **slot, void *datum)
5472 {
5473 struct type_unit_group *tu_group = *slot;
5474 struct type_unit_group ***datap = datum;
5475
5476 **datap = tu_group;
5477 ++*datap;
5478
5479 return 1;
5480 }
5481
5482 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5483 each one passing FUNC,DATA.
5484
5485 The efficiency is because we sort TUs by the abbrev table they use and
5486 only read each abbrev table once. In one program there are 200K TUs
5487 sharing 8K abbrev tables.
5488
5489 The main purpose of this function is to support building the
5490 dwarf2_per_objfile->type_unit_groups table.
5491 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5492 can collapse the search space by grouping them by stmt_list.
5493 The savings can be significant, in the same program from above the 200K TUs
5494 share 8K stmt_list tables.
5495
5496 FUNC is expected to call get_type_unit_group, which will create the
5497 struct type_unit_group if necessary and add it to
5498 dwarf2_per_objfile->type_unit_groups. */
5499
5500 static void
5501 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5502 {
5503 struct objfile *objfile = dwarf2_per_objfile->objfile;
5504 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5505 struct cleanup *cleanups;
5506 struct abbrev_table *abbrev_table;
5507 sect_offset abbrev_offset;
5508 struct tu_abbrev_offset *sorted_by_abbrev;
5509 struct type_unit_group **iter;
5510 int i;
5511
5512 /* It's up to the caller to not call us multiple times. */
5513 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5514
5515 if (dwarf2_per_objfile->n_type_units == 0)
5516 return;
5517
5518 /* TUs typically share abbrev tables, and there can be way more TUs than
5519 abbrev tables. Sort by abbrev table to reduce the number of times we
5520 read each abbrev table in.
5521 Alternatives are to punt or to maintain a cache of abbrev tables.
5522 This is simpler and efficient enough for now.
5523
5524 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5525 symtab to use). Typically TUs with the same abbrev offset have the same
5526 stmt_list value too so in practice this should work well.
5527
5528 The basic algorithm here is:
5529
5530 sort TUs by abbrev table
5531 for each TU with same abbrev table:
5532 read abbrev table if first user
5533 read TU top level DIE
5534 [IWBN if DWO skeletons had DW_AT_stmt_list]
5535 call FUNC */
5536
5537 if (dwarf2_read_debug)
5538 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5539
5540 /* Sort in a separate table to maintain the order of all_type_units
5541 for .gdb_index: TU indices directly index all_type_units. */
5542 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5543 dwarf2_per_objfile->n_type_units);
5544 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5545 {
5546 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5547
5548 sorted_by_abbrev[i].sig_type = sig_type;
5549 sorted_by_abbrev[i].abbrev_offset =
5550 read_abbrev_offset (sig_type->per_cu.section,
5551 sig_type->per_cu.offset);
5552 }
5553 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5554 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5555 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5556
5557 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5558 called any number of times, so we don't reset tu_stats here. */
5559
5560 abbrev_offset.sect_off = ~(unsigned) 0;
5561 abbrev_table = NULL;
5562 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5563
5564 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5565 {
5566 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5567
5568 /* Switch to the next abbrev table if necessary. */
5569 if (abbrev_table == NULL
5570 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5571 {
5572 if (abbrev_table != NULL)
5573 {
5574 abbrev_table_free (abbrev_table);
5575 /* Reset to NULL in case abbrev_table_read_table throws
5576 an error: abbrev_table_free_cleanup will get called. */
5577 abbrev_table = NULL;
5578 }
5579 abbrev_offset = tu->abbrev_offset;
5580 abbrev_table =
5581 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5582 abbrev_offset);
5583 ++tu_stats->nr_uniq_abbrev_tables;
5584 }
5585
5586 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5587 func, data);
5588 }
5589
5590 /* type_unit_groups can be NULL if there is an error in the debug info.
5591 Just create an empty table so the rest of gdb doesn't have to watch
5592 for this error case. */
5593 if (dwarf2_per_objfile->type_unit_groups == NULL)
5594 {
5595 dwarf2_per_objfile->type_unit_groups =
5596 allocate_type_unit_groups_table ();
5597 dwarf2_per_objfile->n_type_unit_groups = 0;
5598 }
5599
5600 /* Create a vector of pointers to primary type units to make it easy to
5601 iterate over them and CUs. See dw2_get_primary_cu. */
5602 dwarf2_per_objfile->n_type_unit_groups =
5603 htab_elements (dwarf2_per_objfile->type_unit_groups);
5604 dwarf2_per_objfile->all_type_unit_groups =
5605 obstack_alloc (&objfile->objfile_obstack,
5606 dwarf2_per_objfile->n_type_unit_groups
5607 * sizeof (struct type_unit_group *));
5608 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5609 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5610 add_type_unit_group_to_table, &iter);
5611 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5612 == dwarf2_per_objfile->n_type_unit_groups);
5613
5614 do_cleanups (cleanups);
5615
5616 if (dwarf2_read_debug)
5617 {
5618 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5619 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5620 dwarf2_per_objfile->n_type_units);
5621 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5622 tu_stats->nr_uniq_abbrev_tables);
5623 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5624 tu_stats->nr_symtabs);
5625 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5626 tu_stats->nr_symtab_sharers);
5627 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5628 tu_stats->nr_stmt_less_type_units);
5629 }
5630 }
5631 \f
5632 /* Partial symbol tables. */
5633
5634 /* Create a psymtab named NAME and assign it to PER_CU.
5635
5636 The caller must fill in the following details:
5637 dirname, textlow, texthigh. */
5638
5639 static struct partial_symtab *
5640 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5641 {
5642 struct objfile *objfile = per_cu->objfile;
5643 struct partial_symtab *pst;
5644
5645 pst = start_psymtab_common (objfile, objfile->section_offsets,
5646 name, 0,
5647 objfile->global_psymbols.next,
5648 objfile->static_psymbols.next);
5649
5650 pst->psymtabs_addrmap_supported = 1;
5651
5652 /* This is the glue that links PST into GDB's symbol API. */
5653 pst->read_symtab_private = per_cu;
5654 pst->read_symtab = dwarf2_read_symtab;
5655 per_cu->v.psymtab = pst;
5656
5657 return pst;
5658 }
5659
5660 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5661 type. */
5662
5663 struct process_psymtab_comp_unit_data
5664 {
5665 /* True if we are reading a DW_TAG_partial_unit. */
5666
5667 int want_partial_unit;
5668
5669 /* The "pretend" language that is used if the CU doesn't declare a
5670 language. */
5671
5672 enum language pretend_language;
5673 };
5674
5675 /* die_reader_func for process_psymtab_comp_unit. */
5676
5677 static void
5678 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5679 const gdb_byte *info_ptr,
5680 struct die_info *comp_unit_die,
5681 int has_children,
5682 void *data)
5683 {
5684 struct dwarf2_cu *cu = reader->cu;
5685 struct objfile *objfile = cu->objfile;
5686 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5687 struct attribute *attr;
5688 CORE_ADDR baseaddr;
5689 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5690 struct partial_symtab *pst;
5691 int has_pc_info;
5692 const char *filename;
5693 struct process_psymtab_comp_unit_data *info = data;
5694
5695 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5696 return;
5697
5698 gdb_assert (! per_cu->is_debug_types);
5699
5700 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5701
5702 cu->list_in_scope = &file_symbols;
5703
5704 /* Allocate a new partial symbol table structure. */
5705 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5706 if (attr == NULL || !DW_STRING (attr))
5707 filename = "";
5708 else
5709 filename = DW_STRING (attr);
5710
5711 pst = create_partial_symtab (per_cu, filename);
5712
5713 /* This must be done before calling dwarf2_build_include_psymtabs. */
5714 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5715 if (attr != NULL)
5716 pst->dirname = DW_STRING (attr);
5717
5718 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5719
5720 dwarf2_find_base_address (comp_unit_die, cu);
5721
5722 /* Possibly set the default values of LOWPC and HIGHPC from
5723 `DW_AT_ranges'. */
5724 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5725 &best_highpc, cu, pst);
5726 if (has_pc_info == 1 && best_lowpc < best_highpc)
5727 /* Store the contiguous range if it is not empty; it can be empty for
5728 CUs with no code. */
5729 addrmap_set_empty (objfile->psymtabs_addrmap,
5730 best_lowpc + baseaddr,
5731 best_highpc + baseaddr - 1, pst);
5732
5733 /* Check if comp unit has_children.
5734 If so, read the rest of the partial symbols from this comp unit.
5735 If not, there's no more debug_info for this comp unit. */
5736 if (has_children)
5737 {
5738 struct partial_die_info *first_die;
5739 CORE_ADDR lowpc, highpc;
5740
5741 lowpc = ((CORE_ADDR) -1);
5742 highpc = ((CORE_ADDR) 0);
5743
5744 first_die = load_partial_dies (reader, info_ptr, 1);
5745
5746 scan_partial_symbols (first_die, &lowpc, &highpc,
5747 ! has_pc_info, cu);
5748
5749 /* If we didn't find a lowpc, set it to highpc to avoid
5750 complaints from `maint check'. */
5751 if (lowpc == ((CORE_ADDR) -1))
5752 lowpc = highpc;
5753
5754 /* If the compilation unit didn't have an explicit address range,
5755 then use the information extracted from its child dies. */
5756 if (! has_pc_info)
5757 {
5758 best_lowpc = lowpc;
5759 best_highpc = highpc;
5760 }
5761 }
5762 pst->textlow = best_lowpc + baseaddr;
5763 pst->texthigh = best_highpc + baseaddr;
5764
5765 pst->n_global_syms = objfile->global_psymbols.next -
5766 (objfile->global_psymbols.list + pst->globals_offset);
5767 pst->n_static_syms = objfile->static_psymbols.next -
5768 (objfile->static_psymbols.list + pst->statics_offset);
5769 sort_pst_symbols (objfile, pst);
5770
5771 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5772 {
5773 int i;
5774 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5775 struct dwarf2_per_cu_data *iter;
5776
5777 /* Fill in 'dependencies' here; we fill in 'users' in a
5778 post-pass. */
5779 pst->number_of_dependencies = len;
5780 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5781 len * sizeof (struct symtab *));
5782 for (i = 0;
5783 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5784 i, iter);
5785 ++i)
5786 pst->dependencies[i] = iter->v.psymtab;
5787
5788 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5789 }
5790
5791 /* Get the list of files included in the current compilation unit,
5792 and build a psymtab for each of them. */
5793 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5794
5795 if (dwarf2_read_debug)
5796 {
5797 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5798
5799 fprintf_unfiltered (gdb_stdlog,
5800 "Psymtab for %s unit @0x%x: %s - %s"
5801 ", %d global, %d static syms\n",
5802 per_cu->is_debug_types ? "type" : "comp",
5803 per_cu->offset.sect_off,
5804 paddress (gdbarch, pst->textlow),
5805 paddress (gdbarch, pst->texthigh),
5806 pst->n_global_syms, pst->n_static_syms);
5807 }
5808 }
5809
5810 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5811 Process compilation unit THIS_CU for a psymtab. */
5812
5813 static void
5814 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5815 int want_partial_unit,
5816 enum language pretend_language)
5817 {
5818 struct process_psymtab_comp_unit_data info;
5819
5820 /* If this compilation unit was already read in, free the
5821 cached copy in order to read it in again. This is
5822 necessary because we skipped some symbols when we first
5823 read in the compilation unit (see load_partial_dies).
5824 This problem could be avoided, but the benefit is unclear. */
5825 if (this_cu->cu != NULL)
5826 free_one_cached_comp_unit (this_cu);
5827
5828 gdb_assert (! this_cu->is_debug_types);
5829 info.want_partial_unit = want_partial_unit;
5830 info.pretend_language = pretend_language;
5831 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5832 process_psymtab_comp_unit_reader,
5833 &info);
5834
5835 /* Age out any secondary CUs. */
5836 age_cached_comp_units ();
5837 }
5838
5839 /* Reader function for build_type_psymtabs. */
5840
5841 static void
5842 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5843 const gdb_byte *info_ptr,
5844 struct die_info *type_unit_die,
5845 int has_children,
5846 void *data)
5847 {
5848 struct objfile *objfile = dwarf2_per_objfile->objfile;
5849 struct dwarf2_cu *cu = reader->cu;
5850 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5851 struct signatured_type *sig_type;
5852 struct type_unit_group *tu_group;
5853 struct attribute *attr;
5854 struct partial_die_info *first_die;
5855 CORE_ADDR lowpc, highpc;
5856 struct partial_symtab *pst;
5857
5858 gdb_assert (data == NULL);
5859 gdb_assert (per_cu->is_debug_types);
5860 sig_type = (struct signatured_type *) per_cu;
5861
5862 if (! has_children)
5863 return;
5864
5865 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5866 tu_group = get_type_unit_group (cu, attr);
5867
5868 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5869
5870 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5871 cu->list_in_scope = &file_symbols;
5872 pst = create_partial_symtab (per_cu, "");
5873 pst->anonymous = 1;
5874
5875 first_die = load_partial_dies (reader, info_ptr, 1);
5876
5877 lowpc = (CORE_ADDR) -1;
5878 highpc = (CORE_ADDR) 0;
5879 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5880
5881 pst->n_global_syms = objfile->global_psymbols.next -
5882 (objfile->global_psymbols.list + pst->globals_offset);
5883 pst->n_static_syms = objfile->static_psymbols.next -
5884 (objfile->static_psymbols.list + pst->statics_offset);
5885 sort_pst_symbols (objfile, pst);
5886 }
5887
5888 /* Traversal function for build_type_psymtabs. */
5889
5890 static int
5891 build_type_psymtab_dependencies (void **slot, void *info)
5892 {
5893 struct objfile *objfile = dwarf2_per_objfile->objfile;
5894 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5895 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5896 struct partial_symtab *pst = per_cu->v.psymtab;
5897 int len = VEC_length (sig_type_ptr, tu_group->tus);
5898 struct signatured_type *iter;
5899 int i;
5900
5901 gdb_assert (len > 0);
5902 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5903
5904 pst->number_of_dependencies = len;
5905 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5906 len * sizeof (struct psymtab *));
5907 for (i = 0;
5908 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5909 ++i)
5910 {
5911 gdb_assert (iter->per_cu.is_debug_types);
5912 pst->dependencies[i] = iter->per_cu.v.psymtab;
5913 iter->type_unit_group = tu_group;
5914 }
5915
5916 VEC_free (sig_type_ptr, tu_group->tus);
5917
5918 return 1;
5919 }
5920
5921 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5922 Build partial symbol tables for the .debug_types comp-units. */
5923
5924 static void
5925 build_type_psymtabs (struct objfile *objfile)
5926 {
5927 if (! create_all_type_units (objfile))
5928 return;
5929
5930 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5931
5932 /* Now that all TUs have been processed we can fill in the dependencies. */
5933 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5934 build_type_psymtab_dependencies, NULL);
5935 }
5936
5937 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5938
5939 static void
5940 psymtabs_addrmap_cleanup (void *o)
5941 {
5942 struct objfile *objfile = o;
5943
5944 objfile->psymtabs_addrmap = NULL;
5945 }
5946
5947 /* Compute the 'user' field for each psymtab in OBJFILE. */
5948
5949 static void
5950 set_partial_user (struct objfile *objfile)
5951 {
5952 int i;
5953
5954 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5955 {
5956 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5957 struct partial_symtab *pst = per_cu->v.psymtab;
5958 int j;
5959
5960 if (pst == NULL)
5961 continue;
5962
5963 for (j = 0; j < pst->number_of_dependencies; ++j)
5964 {
5965 /* Set the 'user' field only if it is not already set. */
5966 if (pst->dependencies[j]->user == NULL)
5967 pst->dependencies[j]->user = pst;
5968 }
5969 }
5970 }
5971
5972 /* Build the partial symbol table by doing a quick pass through the
5973 .debug_info and .debug_abbrev sections. */
5974
5975 static void
5976 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5977 {
5978 struct cleanup *back_to, *addrmap_cleanup;
5979 struct obstack temp_obstack;
5980 int i;
5981
5982 if (dwarf2_read_debug)
5983 {
5984 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5985 objfile_name (objfile));
5986 }
5987
5988 dwarf2_per_objfile->reading_partial_symbols = 1;
5989
5990 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5991
5992 /* Any cached compilation units will be linked by the per-objfile
5993 read_in_chain. Make sure to free them when we're done. */
5994 back_to = make_cleanup (free_cached_comp_units, NULL);
5995
5996 build_type_psymtabs (objfile);
5997
5998 create_all_comp_units (objfile);
5999
6000 /* Create a temporary address map on a temporary obstack. We later
6001 copy this to the final obstack. */
6002 obstack_init (&temp_obstack);
6003 make_cleanup_obstack_free (&temp_obstack);
6004 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6005 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6006
6007 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6008 {
6009 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6010
6011 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6012 }
6013
6014 set_partial_user (objfile);
6015
6016 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6017 &objfile->objfile_obstack);
6018 discard_cleanups (addrmap_cleanup);
6019
6020 do_cleanups (back_to);
6021
6022 if (dwarf2_read_debug)
6023 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6024 objfile_name (objfile));
6025 }
6026
6027 /* die_reader_func for load_partial_comp_unit. */
6028
6029 static void
6030 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6031 const gdb_byte *info_ptr,
6032 struct die_info *comp_unit_die,
6033 int has_children,
6034 void *data)
6035 {
6036 struct dwarf2_cu *cu = reader->cu;
6037
6038 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6039
6040 /* Check if comp unit has_children.
6041 If so, read the rest of the partial symbols from this comp unit.
6042 If not, there's no more debug_info for this comp unit. */
6043 if (has_children)
6044 load_partial_dies (reader, info_ptr, 0);
6045 }
6046
6047 /* Load the partial DIEs for a secondary CU into memory.
6048 This is also used when rereading a primary CU with load_all_dies. */
6049
6050 static void
6051 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6052 {
6053 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6054 load_partial_comp_unit_reader, NULL);
6055 }
6056
6057 static void
6058 read_comp_units_from_section (struct objfile *objfile,
6059 struct dwarf2_section_info *section,
6060 unsigned int is_dwz,
6061 int *n_allocated,
6062 int *n_comp_units,
6063 struct dwarf2_per_cu_data ***all_comp_units)
6064 {
6065 const gdb_byte *info_ptr;
6066 bfd *abfd = section->asection->owner;
6067
6068 if (dwarf2_read_debug)
6069 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6070 section->asection->name, bfd_get_filename (abfd));
6071
6072 dwarf2_read_section (objfile, section);
6073
6074 info_ptr = section->buffer;
6075
6076 while (info_ptr < section->buffer + section->size)
6077 {
6078 unsigned int length, initial_length_size;
6079 struct dwarf2_per_cu_data *this_cu;
6080 sect_offset offset;
6081
6082 offset.sect_off = info_ptr - section->buffer;
6083
6084 /* Read just enough information to find out where the next
6085 compilation unit is. */
6086 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6087
6088 /* Save the compilation unit for later lookup. */
6089 this_cu = obstack_alloc (&objfile->objfile_obstack,
6090 sizeof (struct dwarf2_per_cu_data));
6091 memset (this_cu, 0, sizeof (*this_cu));
6092 this_cu->offset = offset;
6093 this_cu->length = length + initial_length_size;
6094 this_cu->is_dwz = is_dwz;
6095 this_cu->objfile = objfile;
6096 this_cu->section = section;
6097
6098 if (*n_comp_units == *n_allocated)
6099 {
6100 *n_allocated *= 2;
6101 *all_comp_units = xrealloc (*all_comp_units,
6102 *n_allocated
6103 * sizeof (struct dwarf2_per_cu_data *));
6104 }
6105 (*all_comp_units)[*n_comp_units] = this_cu;
6106 ++*n_comp_units;
6107
6108 info_ptr = info_ptr + this_cu->length;
6109 }
6110 }
6111
6112 /* Create a list of all compilation units in OBJFILE.
6113 This is only done for -readnow and building partial symtabs. */
6114
6115 static void
6116 create_all_comp_units (struct objfile *objfile)
6117 {
6118 int n_allocated;
6119 int n_comp_units;
6120 struct dwarf2_per_cu_data **all_comp_units;
6121 struct dwz_file *dwz;
6122
6123 n_comp_units = 0;
6124 n_allocated = 10;
6125 all_comp_units = xmalloc (n_allocated
6126 * sizeof (struct dwarf2_per_cu_data *));
6127
6128 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6129 &n_allocated, &n_comp_units, &all_comp_units);
6130
6131 dwz = dwarf2_get_dwz_file ();
6132 if (dwz != NULL)
6133 read_comp_units_from_section (objfile, &dwz->info, 1,
6134 &n_allocated, &n_comp_units,
6135 &all_comp_units);
6136
6137 dwarf2_per_objfile->all_comp_units
6138 = obstack_alloc (&objfile->objfile_obstack,
6139 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6140 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6141 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6142 xfree (all_comp_units);
6143 dwarf2_per_objfile->n_comp_units = n_comp_units;
6144 }
6145
6146 /* Process all loaded DIEs for compilation unit CU, starting at
6147 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6148 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6149 DW_AT_ranges). If NEED_PC is set, then this function will set
6150 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6151 and record the covered ranges in the addrmap. */
6152
6153 static void
6154 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6155 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6156 {
6157 struct partial_die_info *pdi;
6158
6159 /* Now, march along the PDI's, descending into ones which have
6160 interesting children but skipping the children of the other ones,
6161 until we reach the end of the compilation unit. */
6162
6163 pdi = first_die;
6164
6165 while (pdi != NULL)
6166 {
6167 fixup_partial_die (pdi, cu);
6168
6169 /* Anonymous namespaces or modules have no name but have interesting
6170 children, so we need to look at them. Ditto for anonymous
6171 enums. */
6172
6173 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6174 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6175 || pdi->tag == DW_TAG_imported_unit)
6176 {
6177 switch (pdi->tag)
6178 {
6179 case DW_TAG_subprogram:
6180 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6181 break;
6182 case DW_TAG_constant:
6183 case DW_TAG_variable:
6184 case DW_TAG_typedef:
6185 case DW_TAG_union_type:
6186 if (!pdi->is_declaration)
6187 {
6188 add_partial_symbol (pdi, cu);
6189 }
6190 break;
6191 case DW_TAG_class_type:
6192 case DW_TAG_interface_type:
6193 case DW_TAG_structure_type:
6194 if (!pdi->is_declaration)
6195 {
6196 add_partial_symbol (pdi, cu);
6197 }
6198 break;
6199 case DW_TAG_enumeration_type:
6200 if (!pdi->is_declaration)
6201 add_partial_enumeration (pdi, cu);
6202 break;
6203 case DW_TAG_base_type:
6204 case DW_TAG_subrange_type:
6205 /* File scope base type definitions are added to the partial
6206 symbol table. */
6207 add_partial_symbol (pdi, cu);
6208 break;
6209 case DW_TAG_namespace:
6210 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6211 break;
6212 case DW_TAG_module:
6213 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6214 break;
6215 case DW_TAG_imported_unit:
6216 {
6217 struct dwarf2_per_cu_data *per_cu;
6218
6219 /* For now we don't handle imported units in type units. */
6220 if (cu->per_cu->is_debug_types)
6221 {
6222 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6223 " supported in type units [in module %s]"),
6224 objfile_name (cu->objfile));
6225 }
6226
6227 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6228 pdi->is_dwz,
6229 cu->objfile);
6230
6231 /* Go read the partial unit, if needed. */
6232 if (per_cu->v.psymtab == NULL)
6233 process_psymtab_comp_unit (per_cu, 1, cu->language);
6234
6235 VEC_safe_push (dwarf2_per_cu_ptr,
6236 cu->per_cu->imported_symtabs, per_cu);
6237 }
6238 break;
6239 default:
6240 break;
6241 }
6242 }
6243
6244 /* If the die has a sibling, skip to the sibling. */
6245
6246 pdi = pdi->die_sibling;
6247 }
6248 }
6249
6250 /* Functions used to compute the fully scoped name of a partial DIE.
6251
6252 Normally, this is simple. For C++, the parent DIE's fully scoped
6253 name is concatenated with "::" and the partial DIE's name. For
6254 Java, the same thing occurs except that "." is used instead of "::".
6255 Enumerators are an exception; they use the scope of their parent
6256 enumeration type, i.e. the name of the enumeration type is not
6257 prepended to the enumerator.
6258
6259 There are two complexities. One is DW_AT_specification; in this
6260 case "parent" means the parent of the target of the specification,
6261 instead of the direct parent of the DIE. The other is compilers
6262 which do not emit DW_TAG_namespace; in this case we try to guess
6263 the fully qualified name of structure types from their members'
6264 linkage names. This must be done using the DIE's children rather
6265 than the children of any DW_AT_specification target. We only need
6266 to do this for structures at the top level, i.e. if the target of
6267 any DW_AT_specification (if any; otherwise the DIE itself) does not
6268 have a parent. */
6269
6270 /* Compute the scope prefix associated with PDI's parent, in
6271 compilation unit CU. The result will be allocated on CU's
6272 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6273 field. NULL is returned if no prefix is necessary. */
6274 static const char *
6275 partial_die_parent_scope (struct partial_die_info *pdi,
6276 struct dwarf2_cu *cu)
6277 {
6278 const char *grandparent_scope;
6279 struct partial_die_info *parent, *real_pdi;
6280
6281 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6282 then this means the parent of the specification DIE. */
6283
6284 real_pdi = pdi;
6285 while (real_pdi->has_specification)
6286 real_pdi = find_partial_die (real_pdi->spec_offset,
6287 real_pdi->spec_is_dwz, cu);
6288
6289 parent = real_pdi->die_parent;
6290 if (parent == NULL)
6291 return NULL;
6292
6293 if (parent->scope_set)
6294 return parent->scope;
6295
6296 fixup_partial_die (parent, cu);
6297
6298 grandparent_scope = partial_die_parent_scope (parent, cu);
6299
6300 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6301 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6302 Work around this problem here. */
6303 if (cu->language == language_cplus
6304 && parent->tag == DW_TAG_namespace
6305 && strcmp (parent->name, "::") == 0
6306 && grandparent_scope == NULL)
6307 {
6308 parent->scope = NULL;
6309 parent->scope_set = 1;
6310 return NULL;
6311 }
6312
6313 if (pdi->tag == DW_TAG_enumerator)
6314 /* Enumerators should not get the name of the enumeration as a prefix. */
6315 parent->scope = grandparent_scope;
6316 else if (parent->tag == DW_TAG_namespace
6317 || parent->tag == DW_TAG_module
6318 || parent->tag == DW_TAG_structure_type
6319 || parent->tag == DW_TAG_class_type
6320 || parent->tag == DW_TAG_interface_type
6321 || parent->tag == DW_TAG_union_type
6322 || parent->tag == DW_TAG_enumeration_type)
6323 {
6324 if (grandparent_scope == NULL)
6325 parent->scope = parent->name;
6326 else
6327 parent->scope = typename_concat (&cu->comp_unit_obstack,
6328 grandparent_scope,
6329 parent->name, 0, cu);
6330 }
6331 else
6332 {
6333 /* FIXME drow/2004-04-01: What should we be doing with
6334 function-local names? For partial symbols, we should probably be
6335 ignoring them. */
6336 complaint (&symfile_complaints,
6337 _("unhandled containing DIE tag %d for DIE at %d"),
6338 parent->tag, pdi->offset.sect_off);
6339 parent->scope = grandparent_scope;
6340 }
6341
6342 parent->scope_set = 1;
6343 return parent->scope;
6344 }
6345
6346 /* Return the fully scoped name associated with PDI, from compilation unit
6347 CU. The result will be allocated with malloc. */
6348
6349 static char *
6350 partial_die_full_name (struct partial_die_info *pdi,
6351 struct dwarf2_cu *cu)
6352 {
6353 const char *parent_scope;
6354
6355 /* If this is a template instantiation, we can not work out the
6356 template arguments from partial DIEs. So, unfortunately, we have
6357 to go through the full DIEs. At least any work we do building
6358 types here will be reused if full symbols are loaded later. */
6359 if (pdi->has_template_arguments)
6360 {
6361 fixup_partial_die (pdi, cu);
6362
6363 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6364 {
6365 struct die_info *die;
6366 struct attribute attr;
6367 struct dwarf2_cu *ref_cu = cu;
6368
6369 /* DW_FORM_ref_addr is using section offset. */
6370 attr.name = 0;
6371 attr.form = DW_FORM_ref_addr;
6372 attr.u.unsnd = pdi->offset.sect_off;
6373 die = follow_die_ref (NULL, &attr, &ref_cu);
6374
6375 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6376 }
6377 }
6378
6379 parent_scope = partial_die_parent_scope (pdi, cu);
6380 if (parent_scope == NULL)
6381 return NULL;
6382 else
6383 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6384 }
6385
6386 static void
6387 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6388 {
6389 struct objfile *objfile = cu->objfile;
6390 CORE_ADDR addr = 0;
6391 const char *actual_name = NULL;
6392 CORE_ADDR baseaddr;
6393 char *built_actual_name;
6394
6395 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6396
6397 built_actual_name = partial_die_full_name (pdi, cu);
6398 if (built_actual_name != NULL)
6399 actual_name = built_actual_name;
6400
6401 if (actual_name == NULL)
6402 actual_name = pdi->name;
6403
6404 switch (pdi->tag)
6405 {
6406 case DW_TAG_subprogram:
6407 if (pdi->is_external || cu->language == language_ada)
6408 {
6409 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6410 of the global scope. But in Ada, we want to be able to access
6411 nested procedures globally. So all Ada subprograms are stored
6412 in the global scope. */
6413 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6414 mst_text, objfile); */
6415 add_psymbol_to_list (actual_name, strlen (actual_name),
6416 built_actual_name != NULL,
6417 VAR_DOMAIN, LOC_BLOCK,
6418 &objfile->global_psymbols,
6419 0, pdi->lowpc + baseaddr,
6420 cu->language, objfile);
6421 }
6422 else
6423 {
6424 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6425 mst_file_text, objfile); */
6426 add_psymbol_to_list (actual_name, strlen (actual_name),
6427 built_actual_name != NULL,
6428 VAR_DOMAIN, LOC_BLOCK,
6429 &objfile->static_psymbols,
6430 0, pdi->lowpc + baseaddr,
6431 cu->language, objfile);
6432 }
6433 break;
6434 case DW_TAG_constant:
6435 {
6436 struct psymbol_allocation_list *list;
6437
6438 if (pdi->is_external)
6439 list = &objfile->global_psymbols;
6440 else
6441 list = &objfile->static_psymbols;
6442 add_psymbol_to_list (actual_name, strlen (actual_name),
6443 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6444 list, 0, 0, cu->language, objfile);
6445 }
6446 break;
6447 case DW_TAG_variable:
6448 if (pdi->d.locdesc)
6449 addr = decode_locdesc (pdi->d.locdesc, cu);
6450
6451 if (pdi->d.locdesc
6452 && addr == 0
6453 && !dwarf2_per_objfile->has_section_at_zero)
6454 {
6455 /* A global or static variable may also have been stripped
6456 out by the linker if unused, in which case its address
6457 will be nullified; do not add such variables into partial
6458 symbol table then. */
6459 }
6460 else if (pdi->is_external)
6461 {
6462 /* Global Variable.
6463 Don't enter into the minimal symbol tables as there is
6464 a minimal symbol table entry from the ELF symbols already.
6465 Enter into partial symbol table if it has a location
6466 descriptor or a type.
6467 If the location descriptor is missing, new_symbol will create
6468 a LOC_UNRESOLVED symbol, the address of the variable will then
6469 be determined from the minimal symbol table whenever the variable
6470 is referenced.
6471 The address for the partial symbol table entry is not
6472 used by GDB, but it comes in handy for debugging partial symbol
6473 table building. */
6474
6475 if (pdi->d.locdesc || pdi->has_type)
6476 add_psymbol_to_list (actual_name, strlen (actual_name),
6477 built_actual_name != NULL,
6478 VAR_DOMAIN, LOC_STATIC,
6479 &objfile->global_psymbols,
6480 0, addr + baseaddr,
6481 cu->language, objfile);
6482 }
6483 else
6484 {
6485 /* Static Variable. Skip symbols without location descriptors. */
6486 if (pdi->d.locdesc == NULL)
6487 {
6488 xfree (built_actual_name);
6489 return;
6490 }
6491 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6492 mst_file_data, objfile); */
6493 add_psymbol_to_list (actual_name, strlen (actual_name),
6494 built_actual_name != NULL,
6495 VAR_DOMAIN, LOC_STATIC,
6496 &objfile->static_psymbols,
6497 0, addr + baseaddr,
6498 cu->language, objfile);
6499 }
6500 break;
6501 case DW_TAG_typedef:
6502 case DW_TAG_base_type:
6503 case DW_TAG_subrange_type:
6504 add_psymbol_to_list (actual_name, strlen (actual_name),
6505 built_actual_name != NULL,
6506 VAR_DOMAIN, LOC_TYPEDEF,
6507 &objfile->static_psymbols,
6508 0, (CORE_ADDR) 0, cu->language, objfile);
6509 break;
6510 case DW_TAG_namespace:
6511 add_psymbol_to_list (actual_name, strlen (actual_name),
6512 built_actual_name != NULL,
6513 VAR_DOMAIN, LOC_TYPEDEF,
6514 &objfile->global_psymbols,
6515 0, (CORE_ADDR) 0, cu->language, objfile);
6516 break;
6517 case DW_TAG_class_type:
6518 case DW_TAG_interface_type:
6519 case DW_TAG_structure_type:
6520 case DW_TAG_union_type:
6521 case DW_TAG_enumeration_type:
6522 /* Skip external references. The DWARF standard says in the section
6523 about "Structure, Union, and Class Type Entries": "An incomplete
6524 structure, union or class type is represented by a structure,
6525 union or class entry that does not have a byte size attribute
6526 and that has a DW_AT_declaration attribute." */
6527 if (!pdi->has_byte_size && pdi->is_declaration)
6528 {
6529 xfree (built_actual_name);
6530 return;
6531 }
6532
6533 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6534 static vs. global. */
6535 add_psymbol_to_list (actual_name, strlen (actual_name),
6536 built_actual_name != NULL,
6537 STRUCT_DOMAIN, LOC_TYPEDEF,
6538 (cu->language == language_cplus
6539 || cu->language == language_java)
6540 ? &objfile->global_psymbols
6541 : &objfile->static_psymbols,
6542 0, (CORE_ADDR) 0, cu->language, objfile);
6543
6544 break;
6545 case DW_TAG_enumerator:
6546 add_psymbol_to_list (actual_name, strlen (actual_name),
6547 built_actual_name != NULL,
6548 VAR_DOMAIN, LOC_CONST,
6549 (cu->language == language_cplus
6550 || cu->language == language_java)
6551 ? &objfile->global_psymbols
6552 : &objfile->static_psymbols,
6553 0, (CORE_ADDR) 0, cu->language, objfile);
6554 break;
6555 default:
6556 break;
6557 }
6558
6559 xfree (built_actual_name);
6560 }
6561
6562 /* Read a partial die corresponding to a namespace; also, add a symbol
6563 corresponding to that namespace to the symbol table. NAMESPACE is
6564 the name of the enclosing namespace. */
6565
6566 static void
6567 add_partial_namespace (struct partial_die_info *pdi,
6568 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6569 int need_pc, struct dwarf2_cu *cu)
6570 {
6571 /* Add a symbol for the namespace. */
6572
6573 add_partial_symbol (pdi, cu);
6574
6575 /* Now scan partial symbols in that namespace. */
6576
6577 if (pdi->has_children)
6578 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6579 }
6580
6581 /* Read a partial die corresponding to a Fortran module. */
6582
6583 static void
6584 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6585 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6586 {
6587 /* Now scan partial symbols in that module. */
6588
6589 if (pdi->has_children)
6590 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6591 }
6592
6593 /* Read a partial die corresponding to a subprogram and create a partial
6594 symbol for that subprogram. When the CU language allows it, this
6595 routine also defines a partial symbol for each nested subprogram
6596 that this subprogram contains.
6597
6598 DIE my also be a lexical block, in which case we simply search
6599 recursively for suprograms defined inside that lexical block.
6600 Again, this is only performed when the CU language allows this
6601 type of definitions. */
6602
6603 static void
6604 add_partial_subprogram (struct partial_die_info *pdi,
6605 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6606 int need_pc, struct dwarf2_cu *cu)
6607 {
6608 if (pdi->tag == DW_TAG_subprogram)
6609 {
6610 if (pdi->has_pc_info)
6611 {
6612 if (pdi->lowpc < *lowpc)
6613 *lowpc = pdi->lowpc;
6614 if (pdi->highpc > *highpc)
6615 *highpc = pdi->highpc;
6616 if (need_pc)
6617 {
6618 CORE_ADDR baseaddr;
6619 struct objfile *objfile = cu->objfile;
6620
6621 baseaddr = ANOFFSET (objfile->section_offsets,
6622 SECT_OFF_TEXT (objfile));
6623 addrmap_set_empty (objfile->psymtabs_addrmap,
6624 pdi->lowpc + baseaddr,
6625 pdi->highpc - 1 + baseaddr,
6626 cu->per_cu->v.psymtab);
6627 }
6628 }
6629
6630 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6631 {
6632 if (!pdi->is_declaration)
6633 /* Ignore subprogram DIEs that do not have a name, they are
6634 illegal. Do not emit a complaint at this point, we will
6635 do so when we convert this psymtab into a symtab. */
6636 if (pdi->name)
6637 add_partial_symbol (pdi, cu);
6638 }
6639 }
6640
6641 if (! pdi->has_children)
6642 return;
6643
6644 if (cu->language == language_ada)
6645 {
6646 pdi = pdi->die_child;
6647 while (pdi != NULL)
6648 {
6649 fixup_partial_die (pdi, cu);
6650 if (pdi->tag == DW_TAG_subprogram
6651 || pdi->tag == DW_TAG_lexical_block)
6652 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6653 pdi = pdi->die_sibling;
6654 }
6655 }
6656 }
6657
6658 /* Read a partial die corresponding to an enumeration type. */
6659
6660 static void
6661 add_partial_enumeration (struct partial_die_info *enum_pdi,
6662 struct dwarf2_cu *cu)
6663 {
6664 struct partial_die_info *pdi;
6665
6666 if (enum_pdi->name != NULL)
6667 add_partial_symbol (enum_pdi, cu);
6668
6669 pdi = enum_pdi->die_child;
6670 while (pdi)
6671 {
6672 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6673 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6674 else
6675 add_partial_symbol (pdi, cu);
6676 pdi = pdi->die_sibling;
6677 }
6678 }
6679
6680 /* Return the initial uleb128 in the die at INFO_PTR. */
6681
6682 static unsigned int
6683 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6684 {
6685 unsigned int bytes_read;
6686
6687 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6688 }
6689
6690 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6691 Return the corresponding abbrev, or NULL if the number is zero (indicating
6692 an empty DIE). In either case *BYTES_READ will be set to the length of
6693 the initial number. */
6694
6695 static struct abbrev_info *
6696 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6697 struct dwarf2_cu *cu)
6698 {
6699 bfd *abfd = cu->objfile->obfd;
6700 unsigned int abbrev_number;
6701 struct abbrev_info *abbrev;
6702
6703 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6704
6705 if (abbrev_number == 0)
6706 return NULL;
6707
6708 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6709 if (!abbrev)
6710 {
6711 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6712 abbrev_number, bfd_get_filename (abfd));
6713 }
6714
6715 return abbrev;
6716 }
6717
6718 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6719 Returns a pointer to the end of a series of DIEs, terminated by an empty
6720 DIE. Any children of the skipped DIEs will also be skipped. */
6721
6722 static const gdb_byte *
6723 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6724 {
6725 struct dwarf2_cu *cu = reader->cu;
6726 struct abbrev_info *abbrev;
6727 unsigned int bytes_read;
6728
6729 while (1)
6730 {
6731 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6732 if (abbrev == NULL)
6733 return info_ptr + bytes_read;
6734 else
6735 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6736 }
6737 }
6738
6739 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6740 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6741 abbrev corresponding to that skipped uleb128 should be passed in
6742 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6743 children. */
6744
6745 static const gdb_byte *
6746 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6747 struct abbrev_info *abbrev)
6748 {
6749 unsigned int bytes_read;
6750 struct attribute attr;
6751 bfd *abfd = reader->abfd;
6752 struct dwarf2_cu *cu = reader->cu;
6753 const gdb_byte *buffer = reader->buffer;
6754 const gdb_byte *buffer_end = reader->buffer_end;
6755 const gdb_byte *start_info_ptr = info_ptr;
6756 unsigned int form, i;
6757
6758 for (i = 0; i < abbrev->num_attrs; i++)
6759 {
6760 /* The only abbrev we care about is DW_AT_sibling. */
6761 if (abbrev->attrs[i].name == DW_AT_sibling)
6762 {
6763 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6764 if (attr.form == DW_FORM_ref_addr)
6765 complaint (&symfile_complaints,
6766 _("ignoring absolute DW_AT_sibling"));
6767 else
6768 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6769 }
6770
6771 /* If it isn't DW_AT_sibling, skip this attribute. */
6772 form = abbrev->attrs[i].form;
6773 skip_attribute:
6774 switch (form)
6775 {
6776 case DW_FORM_ref_addr:
6777 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6778 and later it is offset sized. */
6779 if (cu->header.version == 2)
6780 info_ptr += cu->header.addr_size;
6781 else
6782 info_ptr += cu->header.offset_size;
6783 break;
6784 case DW_FORM_GNU_ref_alt:
6785 info_ptr += cu->header.offset_size;
6786 break;
6787 case DW_FORM_addr:
6788 info_ptr += cu->header.addr_size;
6789 break;
6790 case DW_FORM_data1:
6791 case DW_FORM_ref1:
6792 case DW_FORM_flag:
6793 info_ptr += 1;
6794 break;
6795 case DW_FORM_flag_present:
6796 break;
6797 case DW_FORM_data2:
6798 case DW_FORM_ref2:
6799 info_ptr += 2;
6800 break;
6801 case DW_FORM_data4:
6802 case DW_FORM_ref4:
6803 info_ptr += 4;
6804 break;
6805 case DW_FORM_data8:
6806 case DW_FORM_ref8:
6807 case DW_FORM_ref_sig8:
6808 info_ptr += 8;
6809 break;
6810 case DW_FORM_string:
6811 read_direct_string (abfd, info_ptr, &bytes_read);
6812 info_ptr += bytes_read;
6813 break;
6814 case DW_FORM_sec_offset:
6815 case DW_FORM_strp:
6816 case DW_FORM_GNU_strp_alt:
6817 info_ptr += cu->header.offset_size;
6818 break;
6819 case DW_FORM_exprloc:
6820 case DW_FORM_block:
6821 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6822 info_ptr += bytes_read;
6823 break;
6824 case DW_FORM_block1:
6825 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6826 break;
6827 case DW_FORM_block2:
6828 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6829 break;
6830 case DW_FORM_block4:
6831 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6832 break;
6833 case DW_FORM_sdata:
6834 case DW_FORM_udata:
6835 case DW_FORM_ref_udata:
6836 case DW_FORM_GNU_addr_index:
6837 case DW_FORM_GNU_str_index:
6838 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6839 break;
6840 case DW_FORM_indirect:
6841 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6842 info_ptr += bytes_read;
6843 /* We need to continue parsing from here, so just go back to
6844 the top. */
6845 goto skip_attribute;
6846
6847 default:
6848 error (_("Dwarf Error: Cannot handle %s "
6849 "in DWARF reader [in module %s]"),
6850 dwarf_form_name (form),
6851 bfd_get_filename (abfd));
6852 }
6853 }
6854
6855 if (abbrev->has_children)
6856 return skip_children (reader, info_ptr);
6857 else
6858 return info_ptr;
6859 }
6860
6861 /* Locate ORIG_PDI's sibling.
6862 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6863
6864 static const gdb_byte *
6865 locate_pdi_sibling (const struct die_reader_specs *reader,
6866 struct partial_die_info *orig_pdi,
6867 const gdb_byte *info_ptr)
6868 {
6869 /* Do we know the sibling already? */
6870
6871 if (orig_pdi->sibling)
6872 return orig_pdi->sibling;
6873
6874 /* Are there any children to deal with? */
6875
6876 if (!orig_pdi->has_children)
6877 return info_ptr;
6878
6879 /* Skip the children the long way. */
6880
6881 return skip_children (reader, info_ptr);
6882 }
6883
6884 /* Expand this partial symbol table into a full symbol table. SELF is
6885 not NULL. */
6886
6887 static void
6888 dwarf2_read_symtab (struct partial_symtab *self,
6889 struct objfile *objfile)
6890 {
6891 if (self->readin)
6892 {
6893 warning (_("bug: psymtab for %s is already read in."),
6894 self->filename);
6895 }
6896 else
6897 {
6898 if (info_verbose)
6899 {
6900 printf_filtered (_("Reading in symbols for %s..."),
6901 self->filename);
6902 gdb_flush (gdb_stdout);
6903 }
6904
6905 /* Restore our global data. */
6906 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6907
6908 /* If this psymtab is constructed from a debug-only objfile, the
6909 has_section_at_zero flag will not necessarily be correct. We
6910 can get the correct value for this flag by looking at the data
6911 associated with the (presumably stripped) associated objfile. */
6912 if (objfile->separate_debug_objfile_backlink)
6913 {
6914 struct dwarf2_per_objfile *dpo_backlink
6915 = objfile_data (objfile->separate_debug_objfile_backlink,
6916 dwarf2_objfile_data_key);
6917
6918 dwarf2_per_objfile->has_section_at_zero
6919 = dpo_backlink->has_section_at_zero;
6920 }
6921
6922 dwarf2_per_objfile->reading_partial_symbols = 0;
6923
6924 psymtab_to_symtab_1 (self);
6925
6926 /* Finish up the debug error message. */
6927 if (info_verbose)
6928 printf_filtered (_("done.\n"));
6929 }
6930
6931 process_cu_includes ();
6932 }
6933 \f
6934 /* Reading in full CUs. */
6935
6936 /* Add PER_CU to the queue. */
6937
6938 static void
6939 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6940 enum language pretend_language)
6941 {
6942 struct dwarf2_queue_item *item;
6943
6944 per_cu->queued = 1;
6945 item = xmalloc (sizeof (*item));
6946 item->per_cu = per_cu;
6947 item->pretend_language = pretend_language;
6948 item->next = NULL;
6949
6950 if (dwarf2_queue == NULL)
6951 dwarf2_queue = item;
6952 else
6953 dwarf2_queue_tail->next = item;
6954
6955 dwarf2_queue_tail = item;
6956 }
6957
6958 /* If PER_CU is not yet queued, add it to the queue.
6959 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
6960 dependency.
6961 The result is non-zero if PER_CU was queued, otherwise the result is zero
6962 meaning either PER_CU is already queued or it is already loaded.
6963
6964 N.B. There is an invariant here that if a CU is queued then it is loaded.
6965 The caller is required to load PER_CU if we return non-zero. */
6966
6967 static int
6968 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
6969 struct dwarf2_per_cu_data *per_cu,
6970 enum language pretend_language)
6971 {
6972 /* We may arrive here during partial symbol reading, if we need full
6973 DIEs to process an unusual case (e.g. template arguments). Do
6974 not queue PER_CU, just tell our caller to load its DIEs. */
6975 if (dwarf2_per_objfile->reading_partial_symbols)
6976 {
6977 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6978 return 1;
6979 return 0;
6980 }
6981
6982 /* Mark the dependence relation so that we don't flush PER_CU
6983 too early. */
6984 if (dependent_cu != NULL)
6985 dwarf2_add_dependence (dependent_cu, per_cu);
6986
6987 /* If it's already on the queue, we have nothing to do. */
6988 if (per_cu->queued)
6989 return 0;
6990
6991 /* If the compilation unit is already loaded, just mark it as
6992 used. */
6993 if (per_cu->cu != NULL)
6994 {
6995 per_cu->cu->last_used = 0;
6996 return 0;
6997 }
6998
6999 /* Add it to the queue. */
7000 queue_comp_unit (per_cu, pretend_language);
7001
7002 return 1;
7003 }
7004
7005 /* Process the queue. */
7006
7007 static void
7008 process_queue (void)
7009 {
7010 struct dwarf2_queue_item *item, *next_item;
7011
7012 if (dwarf2_read_debug)
7013 {
7014 fprintf_unfiltered (gdb_stdlog,
7015 "Expanding one or more symtabs of objfile %s ...\n",
7016 objfile_name (dwarf2_per_objfile->objfile));
7017 }
7018
7019 /* The queue starts out with one item, but following a DIE reference
7020 may load a new CU, adding it to the end of the queue. */
7021 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7022 {
7023 if (dwarf2_per_objfile->using_index
7024 ? !item->per_cu->v.quick->symtab
7025 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7026 {
7027 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7028 char buf[100];
7029
7030 if (per_cu->is_debug_types)
7031 {
7032 struct signatured_type *sig_type =
7033 (struct signatured_type *) per_cu;
7034
7035 sprintf (buf, "TU %s at offset 0x%x",
7036 hex_string (sig_type->signature), per_cu->offset.sect_off);
7037 }
7038 else
7039 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7040
7041 if (dwarf2_read_debug)
7042 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7043
7044 if (per_cu->is_debug_types)
7045 process_full_type_unit (per_cu, item->pretend_language);
7046 else
7047 process_full_comp_unit (per_cu, item->pretend_language);
7048
7049 if (dwarf2_read_debug)
7050 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7051 }
7052
7053 item->per_cu->queued = 0;
7054 next_item = item->next;
7055 xfree (item);
7056 }
7057
7058 dwarf2_queue_tail = NULL;
7059
7060 if (dwarf2_read_debug)
7061 {
7062 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7063 objfile_name (dwarf2_per_objfile->objfile));
7064 }
7065 }
7066
7067 /* Free all allocated queue entries. This function only releases anything if
7068 an error was thrown; if the queue was processed then it would have been
7069 freed as we went along. */
7070
7071 static void
7072 dwarf2_release_queue (void *dummy)
7073 {
7074 struct dwarf2_queue_item *item, *last;
7075
7076 item = dwarf2_queue;
7077 while (item)
7078 {
7079 /* Anything still marked queued is likely to be in an
7080 inconsistent state, so discard it. */
7081 if (item->per_cu->queued)
7082 {
7083 if (item->per_cu->cu != NULL)
7084 free_one_cached_comp_unit (item->per_cu);
7085 item->per_cu->queued = 0;
7086 }
7087
7088 last = item;
7089 item = item->next;
7090 xfree (last);
7091 }
7092
7093 dwarf2_queue = dwarf2_queue_tail = NULL;
7094 }
7095
7096 /* Read in full symbols for PST, and anything it depends on. */
7097
7098 static void
7099 psymtab_to_symtab_1 (struct partial_symtab *pst)
7100 {
7101 struct dwarf2_per_cu_data *per_cu;
7102 int i;
7103
7104 if (pst->readin)
7105 return;
7106
7107 for (i = 0; i < pst->number_of_dependencies; i++)
7108 if (!pst->dependencies[i]->readin
7109 && pst->dependencies[i]->user == NULL)
7110 {
7111 /* Inform about additional files that need to be read in. */
7112 if (info_verbose)
7113 {
7114 /* FIXME: i18n: Need to make this a single string. */
7115 fputs_filtered (" ", gdb_stdout);
7116 wrap_here ("");
7117 fputs_filtered ("and ", gdb_stdout);
7118 wrap_here ("");
7119 printf_filtered ("%s...", pst->dependencies[i]->filename);
7120 wrap_here (""); /* Flush output. */
7121 gdb_flush (gdb_stdout);
7122 }
7123 psymtab_to_symtab_1 (pst->dependencies[i]);
7124 }
7125
7126 per_cu = pst->read_symtab_private;
7127
7128 if (per_cu == NULL)
7129 {
7130 /* It's an include file, no symbols to read for it.
7131 Everything is in the parent symtab. */
7132 pst->readin = 1;
7133 return;
7134 }
7135
7136 dw2_do_instantiate_symtab (per_cu);
7137 }
7138
7139 /* Trivial hash function for die_info: the hash value of a DIE
7140 is its offset in .debug_info for this objfile. */
7141
7142 static hashval_t
7143 die_hash (const void *item)
7144 {
7145 const struct die_info *die = item;
7146
7147 return die->offset.sect_off;
7148 }
7149
7150 /* Trivial comparison function for die_info structures: two DIEs
7151 are equal if they have the same offset. */
7152
7153 static int
7154 die_eq (const void *item_lhs, const void *item_rhs)
7155 {
7156 const struct die_info *die_lhs = item_lhs;
7157 const struct die_info *die_rhs = item_rhs;
7158
7159 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7160 }
7161
7162 /* die_reader_func for load_full_comp_unit.
7163 This is identical to read_signatured_type_reader,
7164 but is kept separate for now. */
7165
7166 static void
7167 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7168 const gdb_byte *info_ptr,
7169 struct die_info *comp_unit_die,
7170 int has_children,
7171 void *data)
7172 {
7173 struct dwarf2_cu *cu = reader->cu;
7174 enum language *language_ptr = data;
7175
7176 gdb_assert (cu->die_hash == NULL);
7177 cu->die_hash =
7178 htab_create_alloc_ex (cu->header.length / 12,
7179 die_hash,
7180 die_eq,
7181 NULL,
7182 &cu->comp_unit_obstack,
7183 hashtab_obstack_allocate,
7184 dummy_obstack_deallocate);
7185
7186 if (has_children)
7187 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7188 &info_ptr, comp_unit_die);
7189 cu->dies = comp_unit_die;
7190 /* comp_unit_die is not stored in die_hash, no need. */
7191
7192 /* We try not to read any attributes in this function, because not
7193 all CUs needed for references have been loaded yet, and symbol
7194 table processing isn't initialized. But we have to set the CU language,
7195 or we won't be able to build types correctly.
7196 Similarly, if we do not read the producer, we can not apply
7197 producer-specific interpretation. */
7198 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7199 }
7200
7201 /* Load the DIEs associated with PER_CU into memory. */
7202
7203 static void
7204 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7205 enum language pretend_language)
7206 {
7207 gdb_assert (! this_cu->is_debug_types);
7208
7209 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7210 load_full_comp_unit_reader, &pretend_language);
7211 }
7212
7213 /* Add a DIE to the delayed physname list. */
7214
7215 static void
7216 add_to_method_list (struct type *type, int fnfield_index, int index,
7217 const char *name, struct die_info *die,
7218 struct dwarf2_cu *cu)
7219 {
7220 struct delayed_method_info mi;
7221 mi.type = type;
7222 mi.fnfield_index = fnfield_index;
7223 mi.index = index;
7224 mi.name = name;
7225 mi.die = die;
7226 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7227 }
7228
7229 /* A cleanup for freeing the delayed method list. */
7230
7231 static void
7232 free_delayed_list (void *ptr)
7233 {
7234 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7235 if (cu->method_list != NULL)
7236 {
7237 VEC_free (delayed_method_info, cu->method_list);
7238 cu->method_list = NULL;
7239 }
7240 }
7241
7242 /* Compute the physnames of any methods on the CU's method list.
7243
7244 The computation of method physnames is delayed in order to avoid the
7245 (bad) condition that one of the method's formal parameters is of an as yet
7246 incomplete type. */
7247
7248 static void
7249 compute_delayed_physnames (struct dwarf2_cu *cu)
7250 {
7251 int i;
7252 struct delayed_method_info *mi;
7253 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7254 {
7255 const char *physname;
7256 struct fn_fieldlist *fn_flp
7257 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7258 physname = dwarf2_physname (mi->name, mi->die, cu);
7259 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7260 }
7261 }
7262
7263 /* Go objects should be embedded in a DW_TAG_module DIE,
7264 and it's not clear if/how imported objects will appear.
7265 To keep Go support simple until that's worked out,
7266 go back through what we've read and create something usable.
7267 We could do this while processing each DIE, and feels kinda cleaner,
7268 but that way is more invasive.
7269 This is to, for example, allow the user to type "p var" or "b main"
7270 without having to specify the package name, and allow lookups
7271 of module.object to work in contexts that use the expression
7272 parser. */
7273
7274 static void
7275 fixup_go_packaging (struct dwarf2_cu *cu)
7276 {
7277 char *package_name = NULL;
7278 struct pending *list;
7279 int i;
7280
7281 for (list = global_symbols; list != NULL; list = list->next)
7282 {
7283 for (i = 0; i < list->nsyms; ++i)
7284 {
7285 struct symbol *sym = list->symbol[i];
7286
7287 if (SYMBOL_LANGUAGE (sym) == language_go
7288 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7289 {
7290 char *this_package_name = go_symbol_package_name (sym);
7291
7292 if (this_package_name == NULL)
7293 continue;
7294 if (package_name == NULL)
7295 package_name = this_package_name;
7296 else
7297 {
7298 if (strcmp (package_name, this_package_name) != 0)
7299 complaint (&symfile_complaints,
7300 _("Symtab %s has objects from two different Go packages: %s and %s"),
7301 (SYMBOL_SYMTAB (sym)
7302 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7303 : objfile_name (cu->objfile)),
7304 this_package_name, package_name);
7305 xfree (this_package_name);
7306 }
7307 }
7308 }
7309 }
7310
7311 if (package_name != NULL)
7312 {
7313 struct objfile *objfile = cu->objfile;
7314 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7315 package_name,
7316 strlen (package_name));
7317 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7318 saved_package_name, objfile);
7319 struct symbol *sym;
7320
7321 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7322
7323 sym = allocate_symbol (objfile);
7324 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7325 SYMBOL_SET_NAMES (sym, saved_package_name,
7326 strlen (saved_package_name), 0, objfile);
7327 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7328 e.g., "main" finds the "main" module and not C's main(). */
7329 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7330 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7331 SYMBOL_TYPE (sym) = type;
7332
7333 add_symbol_to_list (sym, &global_symbols);
7334
7335 xfree (package_name);
7336 }
7337 }
7338
7339 /* Return the symtab for PER_CU. This works properly regardless of
7340 whether we're using the index or psymtabs. */
7341
7342 static struct symtab *
7343 get_symtab (struct dwarf2_per_cu_data *per_cu)
7344 {
7345 return (dwarf2_per_objfile->using_index
7346 ? per_cu->v.quick->symtab
7347 : per_cu->v.psymtab->symtab);
7348 }
7349
7350 /* A helper function for computing the list of all symbol tables
7351 included by PER_CU. */
7352
7353 static void
7354 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7355 htab_t all_children, htab_t all_type_symtabs,
7356 struct dwarf2_per_cu_data *per_cu,
7357 struct symtab *immediate_parent)
7358 {
7359 void **slot;
7360 int ix;
7361 struct symtab *symtab;
7362 struct dwarf2_per_cu_data *iter;
7363
7364 slot = htab_find_slot (all_children, per_cu, INSERT);
7365 if (*slot != NULL)
7366 {
7367 /* This inclusion and its children have been processed. */
7368 return;
7369 }
7370
7371 *slot = per_cu;
7372 /* Only add a CU if it has a symbol table. */
7373 symtab = get_symtab (per_cu);
7374 if (symtab != NULL)
7375 {
7376 /* If this is a type unit only add its symbol table if we haven't
7377 seen it yet (type unit per_cu's can share symtabs). */
7378 if (per_cu->is_debug_types)
7379 {
7380 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7381 if (*slot == NULL)
7382 {
7383 *slot = symtab;
7384 VEC_safe_push (symtab_ptr, *result, symtab);
7385 if (symtab->user == NULL)
7386 symtab->user = immediate_parent;
7387 }
7388 }
7389 else
7390 {
7391 VEC_safe_push (symtab_ptr, *result, symtab);
7392 if (symtab->user == NULL)
7393 symtab->user = immediate_parent;
7394 }
7395 }
7396
7397 for (ix = 0;
7398 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7399 ++ix)
7400 {
7401 recursively_compute_inclusions (result, all_children,
7402 all_type_symtabs, iter, symtab);
7403 }
7404 }
7405
7406 /* Compute the symtab 'includes' fields for the symtab related to
7407 PER_CU. */
7408
7409 static void
7410 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7411 {
7412 gdb_assert (! per_cu->is_debug_types);
7413
7414 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7415 {
7416 int ix, len;
7417 struct dwarf2_per_cu_data *per_cu_iter;
7418 struct symtab *symtab_iter;
7419 VEC (symtab_ptr) *result_symtabs = NULL;
7420 htab_t all_children, all_type_symtabs;
7421 struct symtab *symtab = get_symtab (per_cu);
7422
7423 /* If we don't have a symtab, we can just skip this case. */
7424 if (symtab == NULL)
7425 return;
7426
7427 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7428 NULL, xcalloc, xfree);
7429 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7430 NULL, xcalloc, xfree);
7431
7432 for (ix = 0;
7433 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7434 ix, per_cu_iter);
7435 ++ix)
7436 {
7437 recursively_compute_inclusions (&result_symtabs, all_children,
7438 all_type_symtabs, per_cu_iter,
7439 symtab);
7440 }
7441
7442 /* Now we have a transitive closure of all the included symtabs. */
7443 len = VEC_length (symtab_ptr, result_symtabs);
7444 symtab->includes
7445 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7446 (len + 1) * sizeof (struct symtab *));
7447 for (ix = 0;
7448 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7449 ++ix)
7450 symtab->includes[ix] = symtab_iter;
7451 symtab->includes[len] = NULL;
7452
7453 VEC_free (symtab_ptr, result_symtabs);
7454 htab_delete (all_children);
7455 htab_delete (all_type_symtabs);
7456 }
7457 }
7458
7459 /* Compute the 'includes' field for the symtabs of all the CUs we just
7460 read. */
7461
7462 static void
7463 process_cu_includes (void)
7464 {
7465 int ix;
7466 struct dwarf2_per_cu_data *iter;
7467
7468 for (ix = 0;
7469 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7470 ix, iter);
7471 ++ix)
7472 {
7473 if (! iter->is_debug_types)
7474 compute_symtab_includes (iter);
7475 }
7476
7477 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7478 }
7479
7480 /* Generate full symbol information for PER_CU, whose DIEs have
7481 already been loaded into memory. */
7482
7483 static void
7484 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7485 enum language pretend_language)
7486 {
7487 struct dwarf2_cu *cu = per_cu->cu;
7488 struct objfile *objfile = per_cu->objfile;
7489 CORE_ADDR lowpc, highpc;
7490 struct symtab *symtab;
7491 struct cleanup *back_to, *delayed_list_cleanup;
7492 CORE_ADDR baseaddr;
7493 struct block *static_block;
7494
7495 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7496
7497 buildsym_init ();
7498 back_to = make_cleanup (really_free_pendings, NULL);
7499 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7500
7501 cu->list_in_scope = &file_symbols;
7502
7503 cu->language = pretend_language;
7504 cu->language_defn = language_def (cu->language);
7505
7506 /* Do line number decoding in read_file_scope () */
7507 process_die (cu->dies, cu);
7508
7509 /* For now fudge the Go package. */
7510 if (cu->language == language_go)
7511 fixup_go_packaging (cu);
7512
7513 /* Now that we have processed all the DIEs in the CU, all the types
7514 should be complete, and it should now be safe to compute all of the
7515 physnames. */
7516 compute_delayed_physnames (cu);
7517 do_cleanups (delayed_list_cleanup);
7518
7519 /* Some compilers don't define a DW_AT_high_pc attribute for the
7520 compilation unit. If the DW_AT_high_pc is missing, synthesize
7521 it, by scanning the DIE's below the compilation unit. */
7522 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7523
7524 static_block
7525 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7526
7527 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7528 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7529 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7530 addrmap to help ensure it has an accurate map of pc values belonging to
7531 this comp unit. */
7532 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7533
7534 symtab = end_symtab_from_static_block (static_block, objfile,
7535 SECT_OFF_TEXT (objfile), 0);
7536
7537 if (symtab != NULL)
7538 {
7539 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7540
7541 /* Set symtab language to language from DW_AT_language. If the
7542 compilation is from a C file generated by language preprocessors, do
7543 not set the language if it was already deduced by start_subfile. */
7544 if (!(cu->language == language_c && symtab->language != language_c))
7545 symtab->language = cu->language;
7546
7547 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7548 produce DW_AT_location with location lists but it can be possibly
7549 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7550 there were bugs in prologue debug info, fixed later in GCC-4.5
7551 by "unwind info for epilogues" patch (which is not directly related).
7552
7553 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7554 needed, it would be wrong due to missing DW_AT_producer there.
7555
7556 Still one can confuse GDB by using non-standard GCC compilation
7557 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7558 */
7559 if (cu->has_loclist && gcc_4_minor >= 5)
7560 symtab->locations_valid = 1;
7561
7562 if (gcc_4_minor >= 5)
7563 symtab->epilogue_unwind_valid = 1;
7564
7565 symtab->call_site_htab = cu->call_site_htab;
7566 }
7567
7568 if (dwarf2_per_objfile->using_index)
7569 per_cu->v.quick->symtab = symtab;
7570 else
7571 {
7572 struct partial_symtab *pst = per_cu->v.psymtab;
7573 pst->symtab = symtab;
7574 pst->readin = 1;
7575 }
7576
7577 /* Push it for inclusion processing later. */
7578 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7579
7580 do_cleanups (back_to);
7581 }
7582
7583 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7584 already been loaded into memory. */
7585
7586 static void
7587 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7588 enum language pretend_language)
7589 {
7590 struct dwarf2_cu *cu = per_cu->cu;
7591 struct objfile *objfile = per_cu->objfile;
7592 struct symtab *symtab;
7593 struct cleanup *back_to, *delayed_list_cleanup;
7594 struct signatured_type *sig_type;
7595
7596 gdb_assert (per_cu->is_debug_types);
7597 sig_type = (struct signatured_type *) per_cu;
7598
7599 buildsym_init ();
7600 back_to = make_cleanup (really_free_pendings, NULL);
7601 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7602
7603 cu->list_in_scope = &file_symbols;
7604
7605 cu->language = pretend_language;
7606 cu->language_defn = language_def (cu->language);
7607
7608 /* The symbol tables are set up in read_type_unit_scope. */
7609 process_die (cu->dies, cu);
7610
7611 /* For now fudge the Go package. */
7612 if (cu->language == language_go)
7613 fixup_go_packaging (cu);
7614
7615 /* Now that we have processed all the DIEs in the CU, all the types
7616 should be complete, and it should now be safe to compute all of the
7617 physnames. */
7618 compute_delayed_physnames (cu);
7619 do_cleanups (delayed_list_cleanup);
7620
7621 /* TUs share symbol tables.
7622 If this is the first TU to use this symtab, complete the construction
7623 of it with end_expandable_symtab. Otherwise, complete the addition of
7624 this TU's symbols to the existing symtab. */
7625 if (sig_type->type_unit_group->primary_symtab == NULL)
7626 {
7627 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7628 sig_type->type_unit_group->primary_symtab = symtab;
7629
7630 if (symtab != NULL)
7631 {
7632 /* Set symtab language to language from DW_AT_language. If the
7633 compilation is from a C file generated by language preprocessors,
7634 do not set the language if it was already deduced by
7635 start_subfile. */
7636 if (!(cu->language == language_c && symtab->language != language_c))
7637 symtab->language = cu->language;
7638 }
7639 }
7640 else
7641 {
7642 augment_type_symtab (objfile,
7643 sig_type->type_unit_group->primary_symtab);
7644 symtab = sig_type->type_unit_group->primary_symtab;
7645 }
7646
7647 if (dwarf2_per_objfile->using_index)
7648 per_cu->v.quick->symtab = symtab;
7649 else
7650 {
7651 struct partial_symtab *pst = per_cu->v.psymtab;
7652 pst->symtab = symtab;
7653 pst->readin = 1;
7654 }
7655
7656 do_cleanups (back_to);
7657 }
7658
7659 /* Process an imported unit DIE. */
7660
7661 static void
7662 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7663 {
7664 struct attribute *attr;
7665
7666 /* For now we don't handle imported units in type units. */
7667 if (cu->per_cu->is_debug_types)
7668 {
7669 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7670 " supported in type units [in module %s]"),
7671 objfile_name (cu->objfile));
7672 }
7673
7674 attr = dwarf2_attr (die, DW_AT_import, cu);
7675 if (attr != NULL)
7676 {
7677 struct dwarf2_per_cu_data *per_cu;
7678 struct symtab *imported_symtab;
7679 sect_offset offset;
7680 int is_dwz;
7681
7682 offset = dwarf2_get_ref_die_offset (attr);
7683 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7684 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7685
7686 /* If necessary, add it to the queue and load its DIEs. */
7687 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7688 load_full_comp_unit (per_cu, cu->language);
7689
7690 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7691 per_cu);
7692 }
7693 }
7694
7695 /* Process a die and its children. */
7696
7697 static void
7698 process_die (struct die_info *die, struct dwarf2_cu *cu)
7699 {
7700 switch (die->tag)
7701 {
7702 case DW_TAG_padding:
7703 break;
7704 case DW_TAG_compile_unit:
7705 case DW_TAG_partial_unit:
7706 read_file_scope (die, cu);
7707 break;
7708 case DW_TAG_type_unit:
7709 read_type_unit_scope (die, cu);
7710 break;
7711 case DW_TAG_subprogram:
7712 case DW_TAG_inlined_subroutine:
7713 read_func_scope (die, cu);
7714 break;
7715 case DW_TAG_lexical_block:
7716 case DW_TAG_try_block:
7717 case DW_TAG_catch_block:
7718 read_lexical_block_scope (die, cu);
7719 break;
7720 case DW_TAG_GNU_call_site:
7721 read_call_site_scope (die, cu);
7722 break;
7723 case DW_TAG_class_type:
7724 case DW_TAG_interface_type:
7725 case DW_TAG_structure_type:
7726 case DW_TAG_union_type:
7727 process_structure_scope (die, cu);
7728 break;
7729 case DW_TAG_enumeration_type:
7730 process_enumeration_scope (die, cu);
7731 break;
7732
7733 /* These dies have a type, but processing them does not create
7734 a symbol or recurse to process the children. Therefore we can
7735 read them on-demand through read_type_die. */
7736 case DW_TAG_subroutine_type:
7737 case DW_TAG_set_type:
7738 case DW_TAG_array_type:
7739 case DW_TAG_pointer_type:
7740 case DW_TAG_ptr_to_member_type:
7741 case DW_TAG_reference_type:
7742 case DW_TAG_string_type:
7743 break;
7744
7745 case DW_TAG_base_type:
7746 case DW_TAG_subrange_type:
7747 case DW_TAG_typedef:
7748 /* Add a typedef symbol for the type definition, if it has a
7749 DW_AT_name. */
7750 new_symbol (die, read_type_die (die, cu), cu);
7751 break;
7752 case DW_TAG_common_block:
7753 read_common_block (die, cu);
7754 break;
7755 case DW_TAG_common_inclusion:
7756 break;
7757 case DW_TAG_namespace:
7758 cu->processing_has_namespace_info = 1;
7759 read_namespace (die, cu);
7760 break;
7761 case DW_TAG_module:
7762 cu->processing_has_namespace_info = 1;
7763 read_module (die, cu);
7764 break;
7765 case DW_TAG_imported_declaration:
7766 case DW_TAG_imported_module:
7767 cu->processing_has_namespace_info = 1;
7768 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7769 || cu->language != language_fortran))
7770 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7771 dwarf_tag_name (die->tag));
7772 read_import_statement (die, cu);
7773 break;
7774
7775 case DW_TAG_imported_unit:
7776 process_imported_unit_die (die, cu);
7777 break;
7778
7779 default:
7780 new_symbol (die, NULL, cu);
7781 break;
7782 }
7783 }
7784 \f
7785 /* DWARF name computation. */
7786
7787 /* A helper function for dwarf2_compute_name which determines whether DIE
7788 needs to have the name of the scope prepended to the name listed in the
7789 die. */
7790
7791 static int
7792 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7793 {
7794 struct attribute *attr;
7795
7796 switch (die->tag)
7797 {
7798 case DW_TAG_namespace:
7799 case DW_TAG_typedef:
7800 case DW_TAG_class_type:
7801 case DW_TAG_interface_type:
7802 case DW_TAG_structure_type:
7803 case DW_TAG_union_type:
7804 case DW_TAG_enumeration_type:
7805 case DW_TAG_enumerator:
7806 case DW_TAG_subprogram:
7807 case DW_TAG_member:
7808 return 1;
7809
7810 case DW_TAG_variable:
7811 case DW_TAG_constant:
7812 /* We only need to prefix "globally" visible variables. These include
7813 any variable marked with DW_AT_external or any variable that
7814 lives in a namespace. [Variables in anonymous namespaces
7815 require prefixing, but they are not DW_AT_external.] */
7816
7817 if (dwarf2_attr (die, DW_AT_specification, cu))
7818 {
7819 struct dwarf2_cu *spec_cu = cu;
7820
7821 return die_needs_namespace (die_specification (die, &spec_cu),
7822 spec_cu);
7823 }
7824
7825 attr = dwarf2_attr (die, DW_AT_external, cu);
7826 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7827 && die->parent->tag != DW_TAG_module)
7828 return 0;
7829 /* A variable in a lexical block of some kind does not need a
7830 namespace, even though in C++ such variables may be external
7831 and have a mangled name. */
7832 if (die->parent->tag == DW_TAG_lexical_block
7833 || die->parent->tag == DW_TAG_try_block
7834 || die->parent->tag == DW_TAG_catch_block
7835 || die->parent->tag == DW_TAG_subprogram)
7836 return 0;
7837 return 1;
7838
7839 default:
7840 return 0;
7841 }
7842 }
7843
7844 /* Retrieve the last character from a mem_file. */
7845
7846 static void
7847 do_ui_file_peek_last (void *object, const char *buffer, long length)
7848 {
7849 char *last_char_p = (char *) object;
7850
7851 if (length > 0)
7852 *last_char_p = buffer[length - 1];
7853 }
7854
7855 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7856 compute the physname for the object, which include a method's:
7857 - formal parameters (C++/Java),
7858 - receiver type (Go),
7859 - return type (Java).
7860
7861 The term "physname" is a bit confusing.
7862 For C++, for example, it is the demangled name.
7863 For Go, for example, it's the mangled name.
7864
7865 For Ada, return the DIE's linkage name rather than the fully qualified
7866 name. PHYSNAME is ignored..
7867
7868 The result is allocated on the objfile_obstack and canonicalized. */
7869
7870 static const char *
7871 dwarf2_compute_name (const char *name,
7872 struct die_info *die, struct dwarf2_cu *cu,
7873 int physname)
7874 {
7875 struct objfile *objfile = cu->objfile;
7876
7877 if (name == NULL)
7878 name = dwarf2_name (die, cu);
7879
7880 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7881 compute it by typename_concat inside GDB. */
7882 if (cu->language == language_ada
7883 || (cu->language == language_fortran && physname))
7884 {
7885 /* For Ada unit, we prefer the linkage name over the name, as
7886 the former contains the exported name, which the user expects
7887 to be able to reference. Ideally, we want the user to be able
7888 to reference this entity using either natural or linkage name,
7889 but we haven't started looking at this enhancement yet. */
7890 struct attribute *attr;
7891
7892 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7893 if (attr == NULL)
7894 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7895 if (attr && DW_STRING (attr))
7896 return DW_STRING (attr);
7897 }
7898
7899 /* These are the only languages we know how to qualify names in. */
7900 if (name != NULL
7901 && (cu->language == language_cplus || cu->language == language_java
7902 || cu->language == language_fortran))
7903 {
7904 if (die_needs_namespace (die, cu))
7905 {
7906 long length;
7907 const char *prefix;
7908 struct ui_file *buf;
7909
7910 prefix = determine_prefix (die, cu);
7911 buf = mem_fileopen ();
7912 if (*prefix != '\0')
7913 {
7914 char *prefixed_name = typename_concat (NULL, prefix, name,
7915 physname, cu);
7916
7917 fputs_unfiltered (prefixed_name, buf);
7918 xfree (prefixed_name);
7919 }
7920 else
7921 fputs_unfiltered (name, buf);
7922
7923 /* Template parameters may be specified in the DIE's DW_AT_name, or
7924 as children with DW_TAG_template_type_param or
7925 DW_TAG_value_type_param. If the latter, add them to the name
7926 here. If the name already has template parameters, then
7927 skip this step; some versions of GCC emit both, and
7928 it is more efficient to use the pre-computed name.
7929
7930 Something to keep in mind about this process: it is very
7931 unlikely, or in some cases downright impossible, to produce
7932 something that will match the mangled name of a function.
7933 If the definition of the function has the same debug info,
7934 we should be able to match up with it anyway. But fallbacks
7935 using the minimal symbol, for instance to find a method
7936 implemented in a stripped copy of libstdc++, will not work.
7937 If we do not have debug info for the definition, we will have to
7938 match them up some other way.
7939
7940 When we do name matching there is a related problem with function
7941 templates; two instantiated function templates are allowed to
7942 differ only by their return types, which we do not add here. */
7943
7944 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7945 {
7946 struct attribute *attr;
7947 struct die_info *child;
7948 int first = 1;
7949
7950 die->building_fullname = 1;
7951
7952 for (child = die->child; child != NULL; child = child->sibling)
7953 {
7954 struct type *type;
7955 LONGEST value;
7956 const gdb_byte *bytes;
7957 struct dwarf2_locexpr_baton *baton;
7958 struct value *v;
7959
7960 if (child->tag != DW_TAG_template_type_param
7961 && child->tag != DW_TAG_template_value_param)
7962 continue;
7963
7964 if (first)
7965 {
7966 fputs_unfiltered ("<", buf);
7967 first = 0;
7968 }
7969 else
7970 fputs_unfiltered (", ", buf);
7971
7972 attr = dwarf2_attr (child, DW_AT_type, cu);
7973 if (attr == NULL)
7974 {
7975 complaint (&symfile_complaints,
7976 _("template parameter missing DW_AT_type"));
7977 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7978 continue;
7979 }
7980 type = die_type (child, cu);
7981
7982 if (child->tag == DW_TAG_template_type_param)
7983 {
7984 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7985 continue;
7986 }
7987
7988 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7989 if (attr == NULL)
7990 {
7991 complaint (&symfile_complaints,
7992 _("template parameter missing "
7993 "DW_AT_const_value"));
7994 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7995 continue;
7996 }
7997
7998 dwarf2_const_value_attr (attr, type, name,
7999 &cu->comp_unit_obstack, cu,
8000 &value, &bytes, &baton);
8001
8002 if (TYPE_NOSIGN (type))
8003 /* GDB prints characters as NUMBER 'CHAR'. If that's
8004 changed, this can use value_print instead. */
8005 c_printchar (value, type, buf);
8006 else
8007 {
8008 struct value_print_options opts;
8009
8010 if (baton != NULL)
8011 v = dwarf2_evaluate_loc_desc (type, NULL,
8012 baton->data,
8013 baton->size,
8014 baton->per_cu);
8015 else if (bytes != NULL)
8016 {
8017 v = allocate_value (type);
8018 memcpy (value_contents_writeable (v), bytes,
8019 TYPE_LENGTH (type));
8020 }
8021 else
8022 v = value_from_longest (type, value);
8023
8024 /* Specify decimal so that we do not depend on
8025 the radix. */
8026 get_formatted_print_options (&opts, 'd');
8027 opts.raw = 1;
8028 value_print (v, buf, &opts);
8029 release_value (v);
8030 value_free (v);
8031 }
8032 }
8033
8034 die->building_fullname = 0;
8035
8036 if (!first)
8037 {
8038 /* Close the argument list, with a space if necessary
8039 (nested templates). */
8040 char last_char = '\0';
8041 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8042 if (last_char == '>')
8043 fputs_unfiltered (" >", buf);
8044 else
8045 fputs_unfiltered (">", buf);
8046 }
8047 }
8048
8049 /* For Java and C++ methods, append formal parameter type
8050 information, if PHYSNAME. */
8051
8052 if (physname && die->tag == DW_TAG_subprogram
8053 && (cu->language == language_cplus
8054 || cu->language == language_java))
8055 {
8056 struct type *type = read_type_die (die, cu);
8057
8058 c_type_print_args (type, buf, 1, cu->language,
8059 &type_print_raw_options);
8060
8061 if (cu->language == language_java)
8062 {
8063 /* For java, we must append the return type to method
8064 names. */
8065 if (die->tag == DW_TAG_subprogram)
8066 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8067 0, 0, &type_print_raw_options);
8068 }
8069 else if (cu->language == language_cplus)
8070 {
8071 /* Assume that an artificial first parameter is
8072 "this", but do not crash if it is not. RealView
8073 marks unnamed (and thus unused) parameters as
8074 artificial; there is no way to differentiate
8075 the two cases. */
8076 if (TYPE_NFIELDS (type) > 0
8077 && TYPE_FIELD_ARTIFICIAL (type, 0)
8078 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8079 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8080 0))))
8081 fputs_unfiltered (" const", buf);
8082 }
8083 }
8084
8085 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8086 &length);
8087 ui_file_delete (buf);
8088
8089 if (cu->language == language_cplus)
8090 {
8091 const char *cname
8092 = dwarf2_canonicalize_name (name, cu,
8093 &objfile->objfile_obstack);
8094
8095 if (cname != NULL)
8096 name = cname;
8097 }
8098 }
8099 }
8100
8101 return name;
8102 }
8103
8104 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8105 If scope qualifiers are appropriate they will be added. The result
8106 will be allocated on the objfile_obstack, or NULL if the DIE does
8107 not have a name. NAME may either be from a previous call to
8108 dwarf2_name or NULL.
8109
8110 The output string will be canonicalized (if C++/Java). */
8111
8112 static const char *
8113 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8114 {
8115 return dwarf2_compute_name (name, die, cu, 0);
8116 }
8117
8118 /* Construct a physname for the given DIE in CU. NAME may either be
8119 from a previous call to dwarf2_name or NULL. The result will be
8120 allocated on the objfile_objstack or NULL if the DIE does not have a
8121 name.
8122
8123 The output string will be canonicalized (if C++/Java). */
8124
8125 static const char *
8126 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8127 {
8128 struct objfile *objfile = cu->objfile;
8129 struct attribute *attr;
8130 const char *retval, *mangled = NULL, *canon = NULL;
8131 struct cleanup *back_to;
8132 int need_copy = 1;
8133
8134 /* In this case dwarf2_compute_name is just a shortcut not building anything
8135 on its own. */
8136 if (!die_needs_namespace (die, cu))
8137 return dwarf2_compute_name (name, die, cu, 1);
8138
8139 back_to = make_cleanup (null_cleanup, NULL);
8140
8141 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8142 if (!attr)
8143 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8144
8145 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8146 has computed. */
8147 if (attr && DW_STRING (attr))
8148 {
8149 char *demangled;
8150
8151 mangled = DW_STRING (attr);
8152
8153 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8154 type. It is easier for GDB users to search for such functions as
8155 `name(params)' than `long name(params)'. In such case the minimal
8156 symbol names do not match the full symbol names but for template
8157 functions there is never a need to look up their definition from their
8158 declaration so the only disadvantage remains the minimal symbol
8159 variant `long name(params)' does not have the proper inferior type.
8160 */
8161
8162 if (cu->language == language_go)
8163 {
8164 /* This is a lie, but we already lie to the caller new_symbol_full.
8165 new_symbol_full assumes we return the mangled name.
8166 This just undoes that lie until things are cleaned up. */
8167 demangled = NULL;
8168 }
8169 else
8170 {
8171 demangled = gdb_demangle (mangled,
8172 (DMGL_PARAMS | DMGL_ANSI
8173 | (cu->language == language_java
8174 ? DMGL_JAVA | DMGL_RET_POSTFIX
8175 : DMGL_RET_DROP)));
8176 }
8177 if (demangled)
8178 {
8179 make_cleanup (xfree, demangled);
8180 canon = demangled;
8181 }
8182 else
8183 {
8184 canon = mangled;
8185 need_copy = 0;
8186 }
8187 }
8188
8189 if (canon == NULL || check_physname)
8190 {
8191 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8192
8193 if (canon != NULL && strcmp (physname, canon) != 0)
8194 {
8195 /* It may not mean a bug in GDB. The compiler could also
8196 compute DW_AT_linkage_name incorrectly. But in such case
8197 GDB would need to be bug-to-bug compatible. */
8198
8199 complaint (&symfile_complaints,
8200 _("Computed physname <%s> does not match demangled <%s> "
8201 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8202 physname, canon, mangled, die->offset.sect_off,
8203 objfile_name (objfile));
8204
8205 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8206 is available here - over computed PHYSNAME. It is safer
8207 against both buggy GDB and buggy compilers. */
8208
8209 retval = canon;
8210 }
8211 else
8212 {
8213 retval = physname;
8214 need_copy = 0;
8215 }
8216 }
8217 else
8218 retval = canon;
8219
8220 if (need_copy)
8221 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8222
8223 do_cleanups (back_to);
8224 return retval;
8225 }
8226
8227 /* Read the import statement specified by the given die and record it. */
8228
8229 static void
8230 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8231 {
8232 struct objfile *objfile = cu->objfile;
8233 struct attribute *import_attr;
8234 struct die_info *imported_die, *child_die;
8235 struct dwarf2_cu *imported_cu;
8236 const char *imported_name;
8237 const char *imported_name_prefix;
8238 const char *canonical_name;
8239 const char *import_alias;
8240 const char *imported_declaration = NULL;
8241 const char *import_prefix;
8242 VEC (const_char_ptr) *excludes = NULL;
8243 struct cleanup *cleanups;
8244
8245 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8246 if (import_attr == NULL)
8247 {
8248 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8249 dwarf_tag_name (die->tag));
8250 return;
8251 }
8252
8253 imported_cu = cu;
8254 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8255 imported_name = dwarf2_name (imported_die, imported_cu);
8256 if (imported_name == NULL)
8257 {
8258 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8259
8260 The import in the following code:
8261 namespace A
8262 {
8263 typedef int B;
8264 }
8265
8266 int main ()
8267 {
8268 using A::B;
8269 B b;
8270 return b;
8271 }
8272
8273 ...
8274 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8275 <52> DW_AT_decl_file : 1
8276 <53> DW_AT_decl_line : 6
8277 <54> DW_AT_import : <0x75>
8278 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8279 <59> DW_AT_name : B
8280 <5b> DW_AT_decl_file : 1
8281 <5c> DW_AT_decl_line : 2
8282 <5d> DW_AT_type : <0x6e>
8283 ...
8284 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8285 <76> DW_AT_byte_size : 4
8286 <77> DW_AT_encoding : 5 (signed)
8287
8288 imports the wrong die ( 0x75 instead of 0x58 ).
8289 This case will be ignored until the gcc bug is fixed. */
8290 return;
8291 }
8292
8293 /* Figure out the local name after import. */
8294 import_alias = dwarf2_name (die, cu);
8295
8296 /* Figure out where the statement is being imported to. */
8297 import_prefix = determine_prefix (die, cu);
8298
8299 /* Figure out what the scope of the imported die is and prepend it
8300 to the name of the imported die. */
8301 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8302
8303 if (imported_die->tag != DW_TAG_namespace
8304 && imported_die->tag != DW_TAG_module)
8305 {
8306 imported_declaration = imported_name;
8307 canonical_name = imported_name_prefix;
8308 }
8309 else if (strlen (imported_name_prefix) > 0)
8310 canonical_name = obconcat (&objfile->objfile_obstack,
8311 imported_name_prefix, "::", imported_name,
8312 (char *) NULL);
8313 else
8314 canonical_name = imported_name;
8315
8316 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8317
8318 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8319 for (child_die = die->child; child_die && child_die->tag;
8320 child_die = sibling_die (child_die))
8321 {
8322 /* DWARF-4: A Fortran use statement with a “rename list” may be
8323 represented by an imported module entry with an import attribute
8324 referring to the module and owned entries corresponding to those
8325 entities that are renamed as part of being imported. */
8326
8327 if (child_die->tag != DW_TAG_imported_declaration)
8328 {
8329 complaint (&symfile_complaints,
8330 _("child DW_TAG_imported_declaration expected "
8331 "- DIE at 0x%x [in module %s]"),
8332 child_die->offset.sect_off, objfile_name (objfile));
8333 continue;
8334 }
8335
8336 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8337 if (import_attr == NULL)
8338 {
8339 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8340 dwarf_tag_name (child_die->tag));
8341 continue;
8342 }
8343
8344 imported_cu = cu;
8345 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8346 &imported_cu);
8347 imported_name = dwarf2_name (imported_die, imported_cu);
8348 if (imported_name == NULL)
8349 {
8350 complaint (&symfile_complaints,
8351 _("child DW_TAG_imported_declaration has unknown "
8352 "imported name - DIE at 0x%x [in module %s]"),
8353 child_die->offset.sect_off, objfile_name (objfile));
8354 continue;
8355 }
8356
8357 VEC_safe_push (const_char_ptr, excludes, imported_name);
8358
8359 process_die (child_die, cu);
8360 }
8361
8362 cp_add_using_directive (import_prefix,
8363 canonical_name,
8364 import_alias,
8365 imported_declaration,
8366 excludes,
8367 0,
8368 &objfile->objfile_obstack);
8369
8370 do_cleanups (cleanups);
8371 }
8372
8373 /* Cleanup function for handle_DW_AT_stmt_list. */
8374
8375 static void
8376 free_cu_line_header (void *arg)
8377 {
8378 struct dwarf2_cu *cu = arg;
8379
8380 free_line_header (cu->line_header);
8381 cu->line_header = NULL;
8382 }
8383
8384 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8385 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8386 this, it was first present in GCC release 4.3.0. */
8387
8388 static int
8389 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8390 {
8391 if (!cu->checked_producer)
8392 check_producer (cu);
8393
8394 return cu->producer_is_gcc_lt_4_3;
8395 }
8396
8397 static void
8398 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8399 const char **name, const char **comp_dir)
8400 {
8401 struct attribute *attr;
8402
8403 *name = NULL;
8404 *comp_dir = NULL;
8405
8406 /* Find the filename. Do not use dwarf2_name here, since the filename
8407 is not a source language identifier. */
8408 attr = dwarf2_attr (die, DW_AT_name, cu);
8409 if (attr)
8410 {
8411 *name = DW_STRING (attr);
8412 }
8413
8414 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8415 if (attr)
8416 *comp_dir = DW_STRING (attr);
8417 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8418 && IS_ABSOLUTE_PATH (*name))
8419 {
8420 char *d = ldirname (*name);
8421
8422 *comp_dir = d;
8423 if (d != NULL)
8424 make_cleanup (xfree, d);
8425 }
8426 if (*comp_dir != NULL)
8427 {
8428 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8429 directory, get rid of it. */
8430 char *cp = strchr (*comp_dir, ':');
8431
8432 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8433 *comp_dir = cp + 1;
8434 }
8435
8436 if (*name == NULL)
8437 *name = "<unknown>";
8438 }
8439
8440 /* Handle DW_AT_stmt_list for a compilation unit.
8441 DIE is the DW_TAG_compile_unit die for CU.
8442 COMP_DIR is the compilation directory.
8443 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8444
8445 static void
8446 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8447 const char *comp_dir) /* ARI: editCase function */
8448 {
8449 struct attribute *attr;
8450
8451 gdb_assert (! cu->per_cu->is_debug_types);
8452
8453 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8454 if (attr)
8455 {
8456 unsigned int line_offset = DW_UNSND (attr);
8457 struct line_header *line_header
8458 = dwarf_decode_line_header (line_offset, cu);
8459
8460 if (line_header)
8461 {
8462 cu->line_header = line_header;
8463 make_cleanup (free_cu_line_header, cu);
8464 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8465 }
8466 }
8467 }
8468
8469 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8470
8471 static void
8472 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8473 {
8474 struct objfile *objfile = dwarf2_per_objfile->objfile;
8475 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8476 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8477 CORE_ADDR highpc = ((CORE_ADDR) 0);
8478 struct attribute *attr;
8479 const char *name = NULL;
8480 const char *comp_dir = NULL;
8481 struct die_info *child_die;
8482 bfd *abfd = objfile->obfd;
8483 CORE_ADDR baseaddr;
8484
8485 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8486
8487 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8488
8489 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8490 from finish_block. */
8491 if (lowpc == ((CORE_ADDR) -1))
8492 lowpc = highpc;
8493 lowpc += baseaddr;
8494 highpc += baseaddr;
8495
8496 find_file_and_directory (die, cu, &name, &comp_dir);
8497
8498 prepare_one_comp_unit (cu, die, cu->language);
8499
8500 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8501 standardised yet. As a workaround for the language detection we fall
8502 back to the DW_AT_producer string. */
8503 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8504 cu->language = language_opencl;
8505
8506 /* Similar hack for Go. */
8507 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8508 set_cu_language (DW_LANG_Go, cu);
8509
8510 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8511
8512 /* Decode line number information if present. We do this before
8513 processing child DIEs, so that the line header table is available
8514 for DW_AT_decl_file. */
8515 handle_DW_AT_stmt_list (die, cu, comp_dir);
8516
8517 /* Process all dies in compilation unit. */
8518 if (die->child != NULL)
8519 {
8520 child_die = die->child;
8521 while (child_die && child_die->tag)
8522 {
8523 process_die (child_die, cu);
8524 child_die = sibling_die (child_die);
8525 }
8526 }
8527
8528 /* Decode macro information, if present. Dwarf 2 macro information
8529 refers to information in the line number info statement program
8530 header, so we can only read it if we've read the header
8531 successfully. */
8532 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8533 if (attr && cu->line_header)
8534 {
8535 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8536 complaint (&symfile_complaints,
8537 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8538
8539 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8540 }
8541 else
8542 {
8543 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8544 if (attr && cu->line_header)
8545 {
8546 unsigned int macro_offset = DW_UNSND (attr);
8547
8548 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8549 }
8550 }
8551
8552 do_cleanups (back_to);
8553 }
8554
8555 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8556 Create the set of symtabs used by this TU, or if this TU is sharing
8557 symtabs with another TU and the symtabs have already been created
8558 then restore those symtabs in the line header.
8559 We don't need the pc/line-number mapping for type units. */
8560
8561 static void
8562 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8563 {
8564 struct objfile *objfile = dwarf2_per_objfile->objfile;
8565 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8566 struct type_unit_group *tu_group;
8567 int first_time;
8568 struct line_header *lh;
8569 struct attribute *attr;
8570 unsigned int i, line_offset;
8571 struct signatured_type *sig_type;
8572
8573 gdb_assert (per_cu->is_debug_types);
8574 sig_type = (struct signatured_type *) per_cu;
8575
8576 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8577
8578 /* If we're using .gdb_index (includes -readnow) then
8579 per_cu->type_unit_group may not have been set up yet. */
8580 if (sig_type->type_unit_group == NULL)
8581 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8582 tu_group = sig_type->type_unit_group;
8583
8584 /* If we've already processed this stmt_list there's no real need to
8585 do it again, we could fake it and just recreate the part we need
8586 (file name,index -> symtab mapping). If data shows this optimization
8587 is useful we can do it then. */
8588 first_time = tu_group->primary_symtab == NULL;
8589
8590 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8591 debug info. */
8592 lh = NULL;
8593 if (attr != NULL)
8594 {
8595 line_offset = DW_UNSND (attr);
8596 lh = dwarf_decode_line_header (line_offset, cu);
8597 }
8598 if (lh == NULL)
8599 {
8600 if (first_time)
8601 dwarf2_start_symtab (cu, "", NULL, 0);
8602 else
8603 {
8604 gdb_assert (tu_group->symtabs == NULL);
8605 restart_symtab (0);
8606 }
8607 /* Note: The primary symtab will get allocated at the end. */
8608 return;
8609 }
8610
8611 cu->line_header = lh;
8612 make_cleanup (free_cu_line_header, cu);
8613
8614 if (first_time)
8615 {
8616 dwarf2_start_symtab (cu, "", NULL, 0);
8617
8618 tu_group->num_symtabs = lh->num_file_names;
8619 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8620
8621 for (i = 0; i < lh->num_file_names; ++i)
8622 {
8623 const char *dir = NULL;
8624 struct file_entry *fe = &lh->file_names[i];
8625
8626 if (fe->dir_index)
8627 dir = lh->include_dirs[fe->dir_index - 1];
8628 dwarf2_start_subfile (fe->name, dir, NULL);
8629
8630 /* Note: We don't have to watch for the main subfile here, type units
8631 don't have DW_AT_name. */
8632
8633 if (current_subfile->symtab == NULL)
8634 {
8635 /* NOTE: start_subfile will recognize when it's been passed
8636 a file it has already seen. So we can't assume there's a
8637 simple mapping from lh->file_names to subfiles,
8638 lh->file_names may contain dups. */
8639 current_subfile->symtab = allocate_symtab (current_subfile->name,
8640 objfile);
8641 }
8642
8643 fe->symtab = current_subfile->symtab;
8644 tu_group->symtabs[i] = fe->symtab;
8645 }
8646 }
8647 else
8648 {
8649 restart_symtab (0);
8650
8651 for (i = 0; i < lh->num_file_names; ++i)
8652 {
8653 struct file_entry *fe = &lh->file_names[i];
8654
8655 fe->symtab = tu_group->symtabs[i];
8656 }
8657 }
8658
8659 /* The main symtab is allocated last. Type units don't have DW_AT_name
8660 so they don't have a "real" (so to speak) symtab anyway.
8661 There is later code that will assign the main symtab to all symbols
8662 that don't have one. We need to handle the case of a symbol with a
8663 missing symtab (DW_AT_decl_file) anyway. */
8664 }
8665
8666 /* Process DW_TAG_type_unit.
8667 For TUs we want to skip the first top level sibling if it's not the
8668 actual type being defined by this TU. In this case the first top
8669 level sibling is there to provide context only. */
8670
8671 static void
8672 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8673 {
8674 struct die_info *child_die;
8675
8676 prepare_one_comp_unit (cu, die, language_minimal);
8677
8678 /* Initialize (or reinitialize) the machinery for building symtabs.
8679 We do this before processing child DIEs, so that the line header table
8680 is available for DW_AT_decl_file. */
8681 setup_type_unit_groups (die, cu);
8682
8683 if (die->child != NULL)
8684 {
8685 child_die = die->child;
8686 while (child_die && child_die->tag)
8687 {
8688 process_die (child_die, cu);
8689 child_die = sibling_die (child_die);
8690 }
8691 }
8692 }
8693 \f
8694 /* DWO/DWP files.
8695
8696 http://gcc.gnu.org/wiki/DebugFission
8697 http://gcc.gnu.org/wiki/DebugFissionDWP
8698
8699 To simplify handling of both DWO files ("object" files with the DWARF info)
8700 and DWP files (a file with the DWOs packaged up into one file), we treat
8701 DWP files as having a collection of virtual DWO files. */
8702
8703 static hashval_t
8704 hash_dwo_file (const void *item)
8705 {
8706 const struct dwo_file *dwo_file = item;
8707 hashval_t hash;
8708
8709 hash = htab_hash_string (dwo_file->dwo_name);
8710 if (dwo_file->comp_dir != NULL)
8711 hash += htab_hash_string (dwo_file->comp_dir);
8712 return hash;
8713 }
8714
8715 static int
8716 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8717 {
8718 const struct dwo_file *lhs = item_lhs;
8719 const struct dwo_file *rhs = item_rhs;
8720
8721 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8722 return 0;
8723 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8724 return lhs->comp_dir == rhs->comp_dir;
8725 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8726 }
8727
8728 /* Allocate a hash table for DWO files. */
8729
8730 static htab_t
8731 allocate_dwo_file_hash_table (void)
8732 {
8733 struct objfile *objfile = dwarf2_per_objfile->objfile;
8734
8735 return htab_create_alloc_ex (41,
8736 hash_dwo_file,
8737 eq_dwo_file,
8738 NULL,
8739 &objfile->objfile_obstack,
8740 hashtab_obstack_allocate,
8741 dummy_obstack_deallocate);
8742 }
8743
8744 /* Lookup DWO file DWO_NAME. */
8745
8746 static void **
8747 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8748 {
8749 struct dwo_file find_entry;
8750 void **slot;
8751
8752 if (dwarf2_per_objfile->dwo_files == NULL)
8753 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8754
8755 memset (&find_entry, 0, sizeof (find_entry));
8756 find_entry.dwo_name = dwo_name;
8757 find_entry.comp_dir = comp_dir;
8758 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8759
8760 return slot;
8761 }
8762
8763 static hashval_t
8764 hash_dwo_unit (const void *item)
8765 {
8766 const struct dwo_unit *dwo_unit = item;
8767
8768 /* This drops the top 32 bits of the id, but is ok for a hash. */
8769 return dwo_unit->signature;
8770 }
8771
8772 static int
8773 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8774 {
8775 const struct dwo_unit *lhs = item_lhs;
8776 const struct dwo_unit *rhs = item_rhs;
8777
8778 /* The signature is assumed to be unique within the DWO file.
8779 So while object file CU dwo_id's always have the value zero,
8780 that's OK, assuming each object file DWO file has only one CU,
8781 and that's the rule for now. */
8782 return lhs->signature == rhs->signature;
8783 }
8784
8785 /* Allocate a hash table for DWO CUs,TUs.
8786 There is one of these tables for each of CUs,TUs for each DWO file. */
8787
8788 static htab_t
8789 allocate_dwo_unit_table (struct objfile *objfile)
8790 {
8791 /* Start out with a pretty small number.
8792 Generally DWO files contain only one CU and maybe some TUs. */
8793 return htab_create_alloc_ex (3,
8794 hash_dwo_unit,
8795 eq_dwo_unit,
8796 NULL,
8797 &objfile->objfile_obstack,
8798 hashtab_obstack_allocate,
8799 dummy_obstack_deallocate);
8800 }
8801
8802 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8803
8804 struct create_dwo_cu_data
8805 {
8806 struct dwo_file *dwo_file;
8807 struct dwo_unit dwo_unit;
8808 };
8809
8810 /* die_reader_func for create_dwo_cu. */
8811
8812 static void
8813 create_dwo_cu_reader (const struct die_reader_specs *reader,
8814 const gdb_byte *info_ptr,
8815 struct die_info *comp_unit_die,
8816 int has_children,
8817 void *datap)
8818 {
8819 struct dwarf2_cu *cu = reader->cu;
8820 struct objfile *objfile = dwarf2_per_objfile->objfile;
8821 sect_offset offset = cu->per_cu->offset;
8822 struct dwarf2_section_info *section = cu->per_cu->section;
8823 struct create_dwo_cu_data *data = datap;
8824 struct dwo_file *dwo_file = data->dwo_file;
8825 struct dwo_unit *dwo_unit = &data->dwo_unit;
8826 struct attribute *attr;
8827
8828 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8829 if (attr == NULL)
8830 {
8831 complaint (&symfile_complaints,
8832 _("Dwarf Error: debug entry at offset 0x%x is missing"
8833 " its dwo_id [in module %s]"),
8834 offset.sect_off, dwo_file->dwo_name);
8835 return;
8836 }
8837
8838 dwo_unit->dwo_file = dwo_file;
8839 dwo_unit->signature = DW_UNSND (attr);
8840 dwo_unit->section = section;
8841 dwo_unit->offset = offset;
8842 dwo_unit->length = cu->per_cu->length;
8843
8844 if (dwarf2_read_debug)
8845 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8846 offset.sect_off, hex_string (dwo_unit->signature));
8847 }
8848
8849 /* Create the dwo_unit for the lone CU in DWO_FILE.
8850 Note: This function processes DWO files only, not DWP files. */
8851
8852 static struct dwo_unit *
8853 create_dwo_cu (struct dwo_file *dwo_file)
8854 {
8855 struct objfile *objfile = dwarf2_per_objfile->objfile;
8856 struct dwarf2_section_info *section = &dwo_file->sections.info;
8857 bfd *abfd;
8858 htab_t cu_htab;
8859 const gdb_byte *info_ptr, *end_ptr;
8860 struct create_dwo_cu_data create_dwo_cu_data;
8861 struct dwo_unit *dwo_unit;
8862
8863 dwarf2_read_section (objfile, section);
8864 info_ptr = section->buffer;
8865
8866 if (info_ptr == NULL)
8867 return NULL;
8868
8869 /* We can't set abfd until now because the section may be empty or
8870 not present, in which case section->asection will be NULL. */
8871 abfd = section->asection->owner;
8872
8873 if (dwarf2_read_debug)
8874 {
8875 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8876 bfd_section_name (abfd, section->asection),
8877 bfd_get_filename (abfd));
8878 }
8879
8880 create_dwo_cu_data.dwo_file = dwo_file;
8881 dwo_unit = NULL;
8882
8883 end_ptr = info_ptr + section->size;
8884 while (info_ptr < end_ptr)
8885 {
8886 struct dwarf2_per_cu_data per_cu;
8887
8888 memset (&create_dwo_cu_data.dwo_unit, 0,
8889 sizeof (create_dwo_cu_data.dwo_unit));
8890 memset (&per_cu, 0, sizeof (per_cu));
8891 per_cu.objfile = objfile;
8892 per_cu.is_debug_types = 0;
8893 per_cu.offset.sect_off = info_ptr - section->buffer;
8894 per_cu.section = section;
8895
8896 init_cutu_and_read_dies_no_follow (&per_cu,
8897 &dwo_file->sections.abbrev,
8898 dwo_file,
8899 create_dwo_cu_reader,
8900 &create_dwo_cu_data);
8901
8902 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8903 {
8904 /* If we've already found one, complain. We only support one
8905 because having more than one requires hacking the dwo_name of
8906 each to match, which is highly unlikely to happen. */
8907 if (dwo_unit != NULL)
8908 {
8909 complaint (&symfile_complaints,
8910 _("Multiple CUs in DWO file %s [in module %s]"),
8911 dwo_file->dwo_name, objfile_name (objfile));
8912 break;
8913 }
8914
8915 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8916 *dwo_unit = create_dwo_cu_data.dwo_unit;
8917 }
8918
8919 info_ptr += per_cu.length;
8920 }
8921
8922 return dwo_unit;
8923 }
8924
8925 /* DWP file .debug_{cu,tu}_index section format:
8926 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8927
8928 DWP Version 1:
8929
8930 Both index sections have the same format, and serve to map a 64-bit
8931 signature to a set of section numbers. Each section begins with a header,
8932 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8933 indexes, and a pool of 32-bit section numbers. The index sections will be
8934 aligned at 8-byte boundaries in the file.
8935
8936 The index section header consists of:
8937
8938 V, 32 bit version number
8939 -, 32 bits unused
8940 N, 32 bit number of compilation units or type units in the index
8941 M, 32 bit number of slots in the hash table
8942
8943 Numbers are recorded using the byte order of the application binary.
8944
8945 We assume that N and M will not exceed 2^32 - 1.
8946
8947 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8948
8949 The hash table begins at offset 16 in the section, and consists of an array
8950 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8951 order of the application binary). Unused slots in the hash table are 0.
8952 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8953
8954 The parallel table begins immediately after the hash table
8955 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8956 array of 32-bit indexes (using the byte order of the application binary),
8957 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8958 table contains a 32-bit index into the pool of section numbers. For unused
8959 hash table slots, the corresponding entry in the parallel table will be 0.
8960
8961 Given a 64-bit compilation unit signature or a type signature S, an entry
8962 in the hash table is located as follows:
8963
8964 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8965 the low-order k bits all set to 1.
8966
8967 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8968
8969 3) If the hash table entry at index H matches the signature, use that
8970 entry. If the hash table entry at index H is unused (all zeroes),
8971 terminate the search: the signature is not present in the table.
8972
8973 4) Let H = (H + H') modulo M. Repeat at Step 3.
8974
8975 Because M > N and H' and M are relatively prime, the search is guaranteed
8976 to stop at an unused slot or find the match.
8977
8978 The pool of section numbers begins immediately following the hash table
8979 (at offset 16 + 12 * M from the beginning of the section). The pool of
8980 section numbers consists of an array of 32-bit words (using the byte order
8981 of the application binary). Each item in the array is indexed starting
8982 from 0. The hash table entry provides the index of the first section
8983 number in the set. Additional section numbers in the set follow, and the
8984 set is terminated by a 0 entry (section number 0 is not used in ELF).
8985
8986 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8987 section must be the first entry in the set, and the .debug_abbrev.dwo must
8988 be the second entry. Other members of the set may follow in any order. */
8989
8990 /* Create a hash table to map DWO IDs to their CU/TU entry in
8991 .debug_{info,types}.dwo in DWP_FILE.
8992 Returns NULL if there isn't one.
8993 Note: This function processes DWP files only, not DWO files. */
8994
8995 static struct dwp_hash_table *
8996 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8997 {
8998 struct objfile *objfile = dwarf2_per_objfile->objfile;
8999 bfd *dbfd = dwp_file->dbfd;
9000 const gdb_byte *index_ptr, *index_end;
9001 struct dwarf2_section_info *index;
9002 uint32_t version, nr_units, nr_slots;
9003 struct dwp_hash_table *htab;
9004
9005 if (is_debug_types)
9006 index = &dwp_file->sections.tu_index;
9007 else
9008 index = &dwp_file->sections.cu_index;
9009
9010 if (dwarf2_section_empty_p (index))
9011 return NULL;
9012 dwarf2_read_section (objfile, index);
9013
9014 index_ptr = index->buffer;
9015 index_end = index_ptr + index->size;
9016
9017 version = read_4_bytes (dbfd, index_ptr);
9018 index_ptr += 8; /* Skip the unused word. */
9019 nr_units = read_4_bytes (dbfd, index_ptr);
9020 index_ptr += 4;
9021 nr_slots = read_4_bytes (dbfd, index_ptr);
9022 index_ptr += 4;
9023
9024 if (version != 1)
9025 {
9026 error (_("Dwarf Error: unsupported DWP file version (%s)"
9027 " [in module %s]"),
9028 pulongest (version), dwp_file->name);
9029 }
9030 if (nr_slots != (nr_slots & -nr_slots))
9031 {
9032 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9033 " is not power of 2 [in module %s]"),
9034 pulongest (nr_slots), dwp_file->name);
9035 }
9036
9037 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9038 htab->nr_units = nr_units;
9039 htab->nr_slots = nr_slots;
9040 htab->hash_table = index_ptr;
9041 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9042 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9043
9044 return htab;
9045 }
9046
9047 /* Update SECTIONS with the data from SECTP.
9048
9049 This function is like the other "locate" section routines that are
9050 passed to bfd_map_over_sections, but in this context the sections to
9051 read comes from the DWP hash table, not the full ELF section table.
9052
9053 The result is non-zero for success, or zero if an error was found. */
9054
9055 static int
9056 locate_virtual_dwo_sections (asection *sectp,
9057 struct virtual_dwo_sections *sections)
9058 {
9059 const struct dwop_section_names *names = &dwop_section_names;
9060
9061 if (section_is_p (sectp->name, &names->abbrev_dwo))
9062 {
9063 /* There can be only one. */
9064 if (sections->abbrev.asection != NULL)
9065 return 0;
9066 sections->abbrev.asection = sectp;
9067 sections->abbrev.size = bfd_get_section_size (sectp);
9068 }
9069 else if (section_is_p (sectp->name, &names->info_dwo)
9070 || section_is_p (sectp->name, &names->types_dwo))
9071 {
9072 /* There can be only one. */
9073 if (sections->info_or_types.asection != NULL)
9074 return 0;
9075 sections->info_or_types.asection = sectp;
9076 sections->info_or_types.size = bfd_get_section_size (sectp);
9077 }
9078 else if (section_is_p (sectp->name, &names->line_dwo))
9079 {
9080 /* There can be only one. */
9081 if (sections->line.asection != NULL)
9082 return 0;
9083 sections->line.asection = sectp;
9084 sections->line.size = bfd_get_section_size (sectp);
9085 }
9086 else if (section_is_p (sectp->name, &names->loc_dwo))
9087 {
9088 /* There can be only one. */
9089 if (sections->loc.asection != NULL)
9090 return 0;
9091 sections->loc.asection = sectp;
9092 sections->loc.size = bfd_get_section_size (sectp);
9093 }
9094 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9095 {
9096 /* There can be only one. */
9097 if (sections->macinfo.asection != NULL)
9098 return 0;
9099 sections->macinfo.asection = sectp;
9100 sections->macinfo.size = bfd_get_section_size (sectp);
9101 }
9102 else if (section_is_p (sectp->name, &names->macro_dwo))
9103 {
9104 /* There can be only one. */
9105 if (sections->macro.asection != NULL)
9106 return 0;
9107 sections->macro.asection = sectp;
9108 sections->macro.size = bfd_get_section_size (sectp);
9109 }
9110 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9111 {
9112 /* There can be only one. */
9113 if (sections->str_offsets.asection != NULL)
9114 return 0;
9115 sections->str_offsets.asection = sectp;
9116 sections->str_offsets.size = bfd_get_section_size (sectp);
9117 }
9118 else
9119 {
9120 /* No other kind of section is valid. */
9121 return 0;
9122 }
9123
9124 return 1;
9125 }
9126
9127 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9128 HTAB is the hash table from the DWP file.
9129 SECTION_INDEX is the index of the DWO in HTAB.
9130 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9131
9132 static struct dwo_unit *
9133 create_dwo_in_dwp (struct dwp_file *dwp_file,
9134 const struct dwp_hash_table *htab,
9135 uint32_t section_index,
9136 const char *comp_dir,
9137 ULONGEST signature, int is_debug_types)
9138 {
9139 struct objfile *objfile = dwarf2_per_objfile->objfile;
9140 bfd *dbfd = dwp_file->dbfd;
9141 const char *kind = is_debug_types ? "TU" : "CU";
9142 struct dwo_file *dwo_file;
9143 struct dwo_unit *dwo_unit;
9144 struct virtual_dwo_sections sections;
9145 void **dwo_file_slot;
9146 char *virtual_dwo_name;
9147 struct dwarf2_section_info *cutu;
9148 struct cleanup *cleanups;
9149 int i;
9150
9151 if (dwarf2_read_debug)
9152 {
9153 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9154 kind,
9155 pulongest (section_index), hex_string (signature),
9156 dwp_file->name);
9157 }
9158
9159 /* Fetch the sections of this DWO.
9160 Put a limit on the number of sections we look for so that bad data
9161 doesn't cause us to loop forever. */
9162
9163 #define MAX_NR_DWO_SECTIONS \
9164 (1 /* .debug_info or .debug_types */ \
9165 + 1 /* .debug_abbrev */ \
9166 + 1 /* .debug_line */ \
9167 + 1 /* .debug_loc */ \
9168 + 1 /* .debug_str_offsets */ \
9169 + 1 /* .debug_macro */ \
9170 + 1 /* .debug_macinfo */ \
9171 + 1 /* trailing zero */)
9172
9173 memset (&sections, 0, sizeof (sections));
9174 cleanups = make_cleanup (null_cleanup, 0);
9175
9176 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9177 {
9178 asection *sectp;
9179 uint32_t section_nr =
9180 read_4_bytes (dbfd,
9181 htab->section_pool
9182 + (section_index + i) * sizeof (uint32_t));
9183
9184 if (section_nr == 0)
9185 break;
9186 if (section_nr >= dwp_file->num_sections)
9187 {
9188 error (_("Dwarf Error: bad DWP hash table, section number too large"
9189 " [in module %s]"),
9190 dwp_file->name);
9191 }
9192
9193 sectp = dwp_file->elf_sections[section_nr];
9194 if (! locate_virtual_dwo_sections (sectp, &sections))
9195 {
9196 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9197 " [in module %s]"),
9198 dwp_file->name);
9199 }
9200 }
9201
9202 if (i < 2
9203 || sections.info_or_types.asection == NULL
9204 || sections.abbrev.asection == NULL)
9205 {
9206 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9207 " [in module %s]"),
9208 dwp_file->name);
9209 }
9210 if (i == MAX_NR_DWO_SECTIONS)
9211 {
9212 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9213 " [in module %s]"),
9214 dwp_file->name);
9215 }
9216
9217 /* It's easier for the rest of the code if we fake a struct dwo_file and
9218 have dwo_unit "live" in that. At least for now.
9219
9220 The DWP file can be made up of a random collection of CUs and TUs.
9221 However, for each CU + set of TUs that came from the same original DWO
9222 file, we want to combine them back into a virtual DWO file to save space
9223 (fewer struct dwo_file objects to allocated). Remember that for really
9224 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9225
9226 virtual_dwo_name =
9227 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9228 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9229 sections.line.asection ? sections.line.asection->id : 0,
9230 sections.loc.asection ? sections.loc.asection->id : 0,
9231 (sections.str_offsets.asection
9232 ? sections.str_offsets.asection->id
9233 : 0));
9234 make_cleanup (xfree, virtual_dwo_name);
9235 /* Can we use an existing virtual DWO file? */
9236 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9237 /* Create one if necessary. */
9238 if (*dwo_file_slot == NULL)
9239 {
9240 if (dwarf2_read_debug)
9241 {
9242 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9243 virtual_dwo_name);
9244 }
9245 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9246 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9247 virtual_dwo_name,
9248 strlen (virtual_dwo_name));
9249 dwo_file->comp_dir = comp_dir;
9250 dwo_file->sections.abbrev = sections.abbrev;
9251 dwo_file->sections.line = sections.line;
9252 dwo_file->sections.loc = sections.loc;
9253 dwo_file->sections.macinfo = sections.macinfo;
9254 dwo_file->sections.macro = sections.macro;
9255 dwo_file->sections.str_offsets = sections.str_offsets;
9256 /* The "str" section is global to the entire DWP file. */
9257 dwo_file->sections.str = dwp_file->sections.str;
9258 /* The info or types section is assigned later to dwo_unit,
9259 there's no need to record it in dwo_file.
9260 Also, we can't simply record type sections in dwo_file because
9261 we record a pointer into the vector in dwo_unit. As we collect more
9262 types we'll grow the vector and eventually have to reallocate space
9263 for it, invalidating all the pointers into the current copy. */
9264 *dwo_file_slot = dwo_file;
9265 }
9266 else
9267 {
9268 if (dwarf2_read_debug)
9269 {
9270 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9271 virtual_dwo_name);
9272 }
9273 dwo_file = *dwo_file_slot;
9274 }
9275 do_cleanups (cleanups);
9276
9277 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9278 dwo_unit->dwo_file = dwo_file;
9279 dwo_unit->signature = signature;
9280 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9281 sizeof (struct dwarf2_section_info));
9282 *dwo_unit->section = sections.info_or_types;
9283 /* offset, length, type_offset_in_tu are set later. */
9284
9285 return dwo_unit;
9286 }
9287
9288 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9289
9290 static struct dwo_unit *
9291 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9292 const struct dwp_hash_table *htab,
9293 const char *comp_dir,
9294 ULONGEST signature, int is_debug_types)
9295 {
9296 bfd *dbfd = dwp_file->dbfd;
9297 uint32_t mask = htab->nr_slots - 1;
9298 uint32_t hash = signature & mask;
9299 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9300 unsigned int i;
9301 void **slot;
9302 struct dwo_unit find_dwo_cu, *dwo_cu;
9303
9304 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9305 find_dwo_cu.signature = signature;
9306 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9307
9308 if (*slot != NULL)
9309 return *slot;
9310
9311 /* Use a for loop so that we don't loop forever on bad debug info. */
9312 for (i = 0; i < htab->nr_slots; ++i)
9313 {
9314 ULONGEST signature_in_table;
9315
9316 signature_in_table =
9317 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9318 if (signature_in_table == signature)
9319 {
9320 uint32_t section_index =
9321 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9322
9323 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9324 comp_dir, signature, is_debug_types);
9325 return *slot;
9326 }
9327 if (signature_in_table == 0)
9328 return NULL;
9329 hash = (hash + hash2) & mask;
9330 }
9331
9332 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9333 " [in module %s]"),
9334 dwp_file->name);
9335 }
9336
9337 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9338 Open the file specified by FILE_NAME and hand it off to BFD for
9339 preliminary analysis. Return a newly initialized bfd *, which
9340 includes a canonicalized copy of FILE_NAME.
9341 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9342 SEARCH_CWD is true if the current directory is to be searched.
9343 It will be searched before debug-file-directory.
9344 If unable to find/open the file, return NULL.
9345 NOTE: This function is derived from symfile_bfd_open. */
9346
9347 static bfd *
9348 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9349 {
9350 bfd *sym_bfd;
9351 int desc, flags;
9352 char *absolute_name;
9353 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9354 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9355 to debug_file_directory. */
9356 char *search_path;
9357 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9358
9359 if (search_cwd)
9360 {
9361 if (*debug_file_directory != '\0')
9362 search_path = concat (".", dirname_separator_string,
9363 debug_file_directory, NULL);
9364 else
9365 search_path = xstrdup (".");
9366 }
9367 else
9368 search_path = xstrdup (debug_file_directory);
9369
9370 flags = OPF_RETURN_REALPATH;
9371 if (is_dwp)
9372 flags |= OPF_SEARCH_IN_PATH;
9373 desc = openp (search_path, flags, file_name,
9374 O_RDONLY | O_BINARY, &absolute_name);
9375 xfree (search_path);
9376 if (desc < 0)
9377 return NULL;
9378
9379 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9380 xfree (absolute_name);
9381 if (sym_bfd == NULL)
9382 return NULL;
9383 bfd_set_cacheable (sym_bfd, 1);
9384
9385 if (!bfd_check_format (sym_bfd, bfd_object))
9386 {
9387 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9388 return NULL;
9389 }
9390
9391 return sym_bfd;
9392 }
9393
9394 /* Try to open DWO file FILE_NAME.
9395 COMP_DIR is the DW_AT_comp_dir attribute.
9396 The result is the bfd handle of the file.
9397 If there is a problem finding or opening the file, return NULL.
9398 Upon success, the canonicalized path of the file is stored in the bfd,
9399 same as symfile_bfd_open. */
9400
9401 static bfd *
9402 open_dwo_file (const char *file_name, const char *comp_dir)
9403 {
9404 bfd *abfd;
9405
9406 if (IS_ABSOLUTE_PATH (file_name))
9407 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9408
9409 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9410
9411 if (comp_dir != NULL)
9412 {
9413 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9414
9415 /* NOTE: If comp_dir is a relative path, this will also try the
9416 search path, which seems useful. */
9417 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9418 xfree (path_to_try);
9419 if (abfd != NULL)
9420 return abfd;
9421 }
9422
9423 /* That didn't work, try debug-file-directory, which, despite its name,
9424 is a list of paths. */
9425
9426 if (*debug_file_directory == '\0')
9427 return NULL;
9428
9429 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9430 }
9431
9432 /* This function is mapped across the sections and remembers the offset and
9433 size of each of the DWO debugging sections we are interested in. */
9434
9435 static void
9436 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9437 {
9438 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9439 const struct dwop_section_names *names = &dwop_section_names;
9440
9441 if (section_is_p (sectp->name, &names->abbrev_dwo))
9442 {
9443 dwo_sections->abbrev.asection = sectp;
9444 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9445 }
9446 else if (section_is_p (sectp->name, &names->info_dwo))
9447 {
9448 dwo_sections->info.asection = sectp;
9449 dwo_sections->info.size = bfd_get_section_size (sectp);
9450 }
9451 else if (section_is_p (sectp->name, &names->line_dwo))
9452 {
9453 dwo_sections->line.asection = sectp;
9454 dwo_sections->line.size = bfd_get_section_size (sectp);
9455 }
9456 else if (section_is_p (sectp->name, &names->loc_dwo))
9457 {
9458 dwo_sections->loc.asection = sectp;
9459 dwo_sections->loc.size = bfd_get_section_size (sectp);
9460 }
9461 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9462 {
9463 dwo_sections->macinfo.asection = sectp;
9464 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9465 }
9466 else if (section_is_p (sectp->name, &names->macro_dwo))
9467 {
9468 dwo_sections->macro.asection = sectp;
9469 dwo_sections->macro.size = bfd_get_section_size (sectp);
9470 }
9471 else if (section_is_p (sectp->name, &names->str_dwo))
9472 {
9473 dwo_sections->str.asection = sectp;
9474 dwo_sections->str.size = bfd_get_section_size (sectp);
9475 }
9476 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9477 {
9478 dwo_sections->str_offsets.asection = sectp;
9479 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9480 }
9481 else if (section_is_p (sectp->name, &names->types_dwo))
9482 {
9483 struct dwarf2_section_info type_section;
9484
9485 memset (&type_section, 0, sizeof (type_section));
9486 type_section.asection = sectp;
9487 type_section.size = bfd_get_section_size (sectp);
9488 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9489 &type_section);
9490 }
9491 }
9492
9493 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9494 by PER_CU. This is for the non-DWP case.
9495 The result is NULL if DWO_NAME can't be found. */
9496
9497 static struct dwo_file *
9498 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9499 const char *dwo_name, const char *comp_dir)
9500 {
9501 struct objfile *objfile = dwarf2_per_objfile->objfile;
9502 struct dwo_file *dwo_file;
9503 bfd *dbfd;
9504 struct cleanup *cleanups;
9505
9506 dbfd = open_dwo_file (dwo_name, comp_dir);
9507 if (dbfd == NULL)
9508 {
9509 if (dwarf2_read_debug)
9510 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9511 return NULL;
9512 }
9513 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9514 dwo_file->dwo_name = dwo_name;
9515 dwo_file->comp_dir = comp_dir;
9516 dwo_file->dbfd = dbfd;
9517
9518 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9519
9520 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9521
9522 dwo_file->cu = create_dwo_cu (dwo_file);
9523
9524 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9525 dwo_file->sections.types);
9526
9527 discard_cleanups (cleanups);
9528
9529 if (dwarf2_read_debug)
9530 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9531
9532 return dwo_file;
9533 }
9534
9535 /* This function is mapped across the sections and remembers the offset and
9536 size of each of the DWP debugging sections we are interested in. */
9537
9538 static void
9539 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9540 {
9541 struct dwp_file *dwp_file = dwp_file_ptr;
9542 const struct dwop_section_names *names = &dwop_section_names;
9543 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9544
9545 /* Record the ELF section number for later lookup: this is what the
9546 .debug_cu_index,.debug_tu_index tables use. */
9547 gdb_assert (elf_section_nr < dwp_file->num_sections);
9548 dwp_file->elf_sections[elf_section_nr] = sectp;
9549
9550 /* Look for specific sections that we need. */
9551 if (section_is_p (sectp->name, &names->str_dwo))
9552 {
9553 dwp_file->sections.str.asection = sectp;
9554 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9555 }
9556 else if (section_is_p (sectp->name, &names->cu_index))
9557 {
9558 dwp_file->sections.cu_index.asection = sectp;
9559 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9560 }
9561 else if (section_is_p (sectp->name, &names->tu_index))
9562 {
9563 dwp_file->sections.tu_index.asection = sectp;
9564 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9565 }
9566 }
9567
9568 /* Hash function for dwp_file loaded CUs/TUs. */
9569
9570 static hashval_t
9571 hash_dwp_loaded_cutus (const void *item)
9572 {
9573 const struct dwo_unit *dwo_unit = item;
9574
9575 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9576 return dwo_unit->signature;
9577 }
9578
9579 /* Equality function for dwp_file loaded CUs/TUs. */
9580
9581 static int
9582 eq_dwp_loaded_cutus (const void *a, const void *b)
9583 {
9584 const struct dwo_unit *dua = a;
9585 const struct dwo_unit *dub = b;
9586
9587 return dua->signature == dub->signature;
9588 }
9589
9590 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9591
9592 static htab_t
9593 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9594 {
9595 return htab_create_alloc_ex (3,
9596 hash_dwp_loaded_cutus,
9597 eq_dwp_loaded_cutus,
9598 NULL,
9599 &objfile->objfile_obstack,
9600 hashtab_obstack_allocate,
9601 dummy_obstack_deallocate);
9602 }
9603
9604 /* Try to open DWP file FILE_NAME.
9605 The result is the bfd handle of the file.
9606 If there is a problem finding or opening the file, return NULL.
9607 Upon success, the canonicalized path of the file is stored in the bfd,
9608 same as symfile_bfd_open. */
9609
9610 static bfd *
9611 open_dwp_file (const char *file_name)
9612 {
9613 bfd *abfd;
9614
9615 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9616 if (abfd != NULL)
9617 return abfd;
9618
9619 /* Work around upstream bug 15652.
9620 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9621 [Whether that's a "bug" is debatable, but it is getting in our way.]
9622 We have no real idea where the dwp file is, because gdb's realpath-ing
9623 of the executable's path may have discarded the needed info.
9624 [IWBN if the dwp file name was recorded in the executable, akin to
9625 .gnu_debuglink, but that doesn't exist yet.]
9626 Strip the directory from FILE_NAME and search again. */
9627 if (*debug_file_directory != '\0')
9628 {
9629 /* Don't implicitly search the current directory here.
9630 If the user wants to search "." to handle this case,
9631 it must be added to debug-file-directory. */
9632 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9633 0 /*search_cwd*/);
9634 }
9635
9636 return NULL;
9637 }
9638
9639 /* Initialize the use of the DWP file for the current objfile.
9640 By convention the name of the DWP file is ${objfile}.dwp.
9641 The result is NULL if it can't be found. */
9642
9643 static struct dwp_file *
9644 open_and_init_dwp_file (void)
9645 {
9646 struct objfile *objfile = dwarf2_per_objfile->objfile;
9647 struct dwp_file *dwp_file;
9648 char *dwp_name;
9649 bfd *dbfd;
9650 struct cleanup *cleanups;
9651
9652 /* Try to find first .dwp for the binary file before any symbolic links
9653 resolving. */
9654 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
9655 cleanups = make_cleanup (xfree, dwp_name);
9656
9657 dbfd = open_dwp_file (dwp_name);
9658 if (dbfd == NULL
9659 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
9660 {
9661 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
9662 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
9663 make_cleanup (xfree, dwp_name);
9664 dbfd = open_dwp_file (dwp_name);
9665 }
9666
9667 if (dbfd == NULL)
9668 {
9669 if (dwarf2_read_debug)
9670 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9671 do_cleanups (cleanups);
9672 return NULL;
9673 }
9674 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9675 dwp_file->name = bfd_get_filename (dbfd);
9676 dwp_file->dbfd = dbfd;
9677 do_cleanups (cleanups);
9678
9679 /* +1: section 0 is unused */
9680 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9681 dwp_file->elf_sections =
9682 OBSTACK_CALLOC (&objfile->objfile_obstack,
9683 dwp_file->num_sections, asection *);
9684
9685 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9686
9687 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9688
9689 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9690
9691 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9692
9693 if (dwarf2_read_debug)
9694 {
9695 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9696 fprintf_unfiltered (gdb_stdlog,
9697 " %s CUs, %s TUs\n",
9698 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9699 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9700 }
9701
9702 return dwp_file;
9703 }
9704
9705 /* Wrapper around open_and_init_dwp_file, only open it once. */
9706
9707 static struct dwp_file *
9708 get_dwp_file (void)
9709 {
9710 if (! dwarf2_per_objfile->dwp_checked)
9711 {
9712 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9713 dwarf2_per_objfile->dwp_checked = 1;
9714 }
9715 return dwarf2_per_objfile->dwp_file;
9716 }
9717
9718 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9719 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9720 or in the DWP file for the objfile, referenced by THIS_UNIT.
9721 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9722 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9723
9724 This is called, for example, when wanting to read a variable with a
9725 complex location. Therefore we don't want to do file i/o for every call.
9726 Therefore we don't want to look for a DWO file on every call.
9727 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9728 then we check if we've already seen DWO_NAME, and only THEN do we check
9729 for a DWO file.
9730
9731 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9732 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9733
9734 static struct dwo_unit *
9735 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9736 const char *dwo_name, const char *comp_dir,
9737 ULONGEST signature, int is_debug_types)
9738 {
9739 struct objfile *objfile = dwarf2_per_objfile->objfile;
9740 const char *kind = is_debug_types ? "TU" : "CU";
9741 void **dwo_file_slot;
9742 struct dwo_file *dwo_file;
9743 struct dwp_file *dwp_file;
9744
9745 /* First see if there's a DWP file.
9746 If we have a DWP file but didn't find the DWO inside it, don't
9747 look for the original DWO file. It makes gdb behave differently
9748 depending on whether one is debugging in the build tree. */
9749
9750 dwp_file = get_dwp_file ();
9751 if (dwp_file != NULL)
9752 {
9753 const struct dwp_hash_table *dwp_htab =
9754 is_debug_types ? dwp_file->tus : dwp_file->cus;
9755
9756 if (dwp_htab != NULL)
9757 {
9758 struct dwo_unit *dwo_cutu =
9759 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9760 signature, is_debug_types);
9761
9762 if (dwo_cutu != NULL)
9763 {
9764 if (dwarf2_read_debug)
9765 {
9766 fprintf_unfiltered (gdb_stdlog,
9767 "Virtual DWO %s %s found: @%s\n",
9768 kind, hex_string (signature),
9769 host_address_to_string (dwo_cutu));
9770 }
9771 return dwo_cutu;
9772 }
9773 }
9774 }
9775 else
9776 {
9777 /* No DWP file, look for the DWO file. */
9778
9779 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9780 if (*dwo_file_slot == NULL)
9781 {
9782 /* Read in the file and build a table of the CUs/TUs it contains. */
9783 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9784 }
9785 /* NOTE: This will be NULL if unable to open the file. */
9786 dwo_file = *dwo_file_slot;
9787
9788 if (dwo_file != NULL)
9789 {
9790 struct dwo_unit *dwo_cutu = NULL;
9791
9792 if (is_debug_types && dwo_file->tus)
9793 {
9794 struct dwo_unit find_dwo_cutu;
9795
9796 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9797 find_dwo_cutu.signature = signature;
9798 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9799 }
9800 else if (!is_debug_types && dwo_file->cu)
9801 {
9802 if (signature == dwo_file->cu->signature)
9803 dwo_cutu = dwo_file->cu;
9804 }
9805
9806 if (dwo_cutu != NULL)
9807 {
9808 if (dwarf2_read_debug)
9809 {
9810 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9811 kind, dwo_name, hex_string (signature),
9812 host_address_to_string (dwo_cutu));
9813 }
9814 return dwo_cutu;
9815 }
9816 }
9817 }
9818
9819 /* We didn't find it. This could mean a dwo_id mismatch, or
9820 someone deleted the DWO/DWP file, or the search path isn't set up
9821 correctly to find the file. */
9822
9823 if (dwarf2_read_debug)
9824 {
9825 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9826 kind, dwo_name, hex_string (signature));
9827 }
9828
9829 /* This is a warning and not a complaint because it can be caused by
9830 pilot error (e.g., user accidentally deleting the DWO). */
9831 warning (_("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9832 " [in module %s]"),
9833 kind, dwo_name, hex_string (signature),
9834 this_unit->is_debug_types ? "TU" : "CU",
9835 this_unit->offset.sect_off, objfile_name (objfile));
9836 return NULL;
9837 }
9838
9839 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9840 See lookup_dwo_cutu_unit for details. */
9841
9842 static struct dwo_unit *
9843 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9844 const char *dwo_name, const char *comp_dir,
9845 ULONGEST signature)
9846 {
9847 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9848 }
9849
9850 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9851 See lookup_dwo_cutu_unit for details. */
9852
9853 static struct dwo_unit *
9854 lookup_dwo_type_unit (struct signatured_type *this_tu,
9855 const char *dwo_name, const char *comp_dir)
9856 {
9857 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9858 }
9859
9860 /* Traversal function for queue_and_load_all_dwo_tus. */
9861
9862 static int
9863 queue_and_load_dwo_tu (void **slot, void *info)
9864 {
9865 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9866 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
9867 ULONGEST signature = dwo_unit->signature;
9868 struct signatured_type *sig_type =
9869 lookup_dwo_signatured_type (per_cu->cu, signature);
9870
9871 if (sig_type != NULL)
9872 {
9873 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
9874
9875 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
9876 a real dependency of PER_CU on SIG_TYPE. That is detected later
9877 while processing PER_CU. */
9878 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
9879 load_full_type_unit (sig_cu);
9880 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
9881 }
9882
9883 return 1;
9884 }
9885
9886 /* Queue all TUs contained in the DWO of PER_CU to be read in.
9887 The DWO may have the only definition of the type, though it may not be
9888 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
9889 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
9890
9891 static void
9892 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
9893 {
9894 struct dwo_unit *dwo_unit;
9895 struct dwo_file *dwo_file;
9896
9897 gdb_assert (!per_cu->is_debug_types);
9898 gdb_assert (get_dwp_file () == NULL);
9899 gdb_assert (per_cu->cu != NULL);
9900
9901 dwo_unit = per_cu->cu->dwo_unit;
9902 gdb_assert (dwo_unit != NULL);
9903
9904 dwo_file = dwo_unit->dwo_file;
9905 if (dwo_file->tus != NULL)
9906 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
9907 }
9908
9909 /* Free all resources associated with DWO_FILE.
9910 Close the DWO file and munmap the sections.
9911 All memory should be on the objfile obstack. */
9912
9913 static void
9914 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9915 {
9916 int ix;
9917 struct dwarf2_section_info *section;
9918
9919 /* Note: dbfd is NULL for virtual DWO files. */
9920 gdb_bfd_unref (dwo_file->dbfd);
9921
9922 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9923 }
9924
9925 /* Wrapper for free_dwo_file for use in cleanups. */
9926
9927 static void
9928 free_dwo_file_cleanup (void *arg)
9929 {
9930 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9931 struct objfile *objfile = dwarf2_per_objfile->objfile;
9932
9933 free_dwo_file (dwo_file, objfile);
9934 }
9935
9936 /* Traversal function for free_dwo_files. */
9937
9938 static int
9939 free_dwo_file_from_slot (void **slot, void *info)
9940 {
9941 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9942 struct objfile *objfile = (struct objfile *) info;
9943
9944 free_dwo_file (dwo_file, objfile);
9945
9946 return 1;
9947 }
9948
9949 /* Free all resources associated with DWO_FILES. */
9950
9951 static void
9952 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9953 {
9954 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9955 }
9956 \f
9957 /* Read in various DIEs. */
9958
9959 /* qsort helper for inherit_abstract_dies. */
9960
9961 static int
9962 unsigned_int_compar (const void *ap, const void *bp)
9963 {
9964 unsigned int a = *(unsigned int *) ap;
9965 unsigned int b = *(unsigned int *) bp;
9966
9967 return (a > b) - (b > a);
9968 }
9969
9970 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9971 Inherit only the children of the DW_AT_abstract_origin DIE not being
9972 already referenced by DW_AT_abstract_origin from the children of the
9973 current DIE. */
9974
9975 static void
9976 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9977 {
9978 struct die_info *child_die;
9979 unsigned die_children_count;
9980 /* CU offsets which were referenced by children of the current DIE. */
9981 sect_offset *offsets;
9982 sect_offset *offsets_end, *offsetp;
9983 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9984 struct die_info *origin_die;
9985 /* Iterator of the ORIGIN_DIE children. */
9986 struct die_info *origin_child_die;
9987 struct cleanup *cleanups;
9988 struct attribute *attr;
9989 struct dwarf2_cu *origin_cu;
9990 struct pending **origin_previous_list_in_scope;
9991
9992 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9993 if (!attr)
9994 return;
9995
9996 /* Note that following die references may follow to a die in a
9997 different cu. */
9998
9999 origin_cu = cu;
10000 origin_die = follow_die_ref (die, attr, &origin_cu);
10001
10002 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10003 symbols in. */
10004 origin_previous_list_in_scope = origin_cu->list_in_scope;
10005 origin_cu->list_in_scope = cu->list_in_scope;
10006
10007 if (die->tag != origin_die->tag
10008 && !(die->tag == DW_TAG_inlined_subroutine
10009 && origin_die->tag == DW_TAG_subprogram))
10010 complaint (&symfile_complaints,
10011 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10012 die->offset.sect_off, origin_die->offset.sect_off);
10013
10014 child_die = die->child;
10015 die_children_count = 0;
10016 while (child_die && child_die->tag)
10017 {
10018 child_die = sibling_die (child_die);
10019 die_children_count++;
10020 }
10021 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10022 cleanups = make_cleanup (xfree, offsets);
10023
10024 offsets_end = offsets;
10025 child_die = die->child;
10026 while (child_die && child_die->tag)
10027 {
10028 /* For each CHILD_DIE, find the corresponding child of
10029 ORIGIN_DIE. If there is more than one layer of
10030 DW_AT_abstract_origin, follow them all; there shouldn't be,
10031 but GCC versions at least through 4.4 generate this (GCC PR
10032 40573). */
10033 struct die_info *child_origin_die = child_die;
10034 struct dwarf2_cu *child_origin_cu = cu;
10035
10036 while (1)
10037 {
10038 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10039 child_origin_cu);
10040 if (attr == NULL)
10041 break;
10042 child_origin_die = follow_die_ref (child_origin_die, attr,
10043 &child_origin_cu);
10044 }
10045
10046 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10047 counterpart may exist. */
10048 if (child_origin_die != child_die)
10049 {
10050 if (child_die->tag != child_origin_die->tag
10051 && !(child_die->tag == DW_TAG_inlined_subroutine
10052 && child_origin_die->tag == DW_TAG_subprogram))
10053 complaint (&symfile_complaints,
10054 _("Child DIE 0x%x and its abstract origin 0x%x have "
10055 "different tags"), child_die->offset.sect_off,
10056 child_origin_die->offset.sect_off);
10057 if (child_origin_die->parent != origin_die)
10058 complaint (&symfile_complaints,
10059 _("Child DIE 0x%x and its abstract origin 0x%x have "
10060 "different parents"), child_die->offset.sect_off,
10061 child_origin_die->offset.sect_off);
10062 else
10063 *offsets_end++ = child_origin_die->offset;
10064 }
10065 child_die = sibling_die (child_die);
10066 }
10067 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10068 unsigned_int_compar);
10069 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10070 if (offsetp[-1].sect_off == offsetp->sect_off)
10071 complaint (&symfile_complaints,
10072 _("Multiple children of DIE 0x%x refer "
10073 "to DIE 0x%x as their abstract origin"),
10074 die->offset.sect_off, offsetp->sect_off);
10075
10076 offsetp = offsets;
10077 origin_child_die = origin_die->child;
10078 while (origin_child_die && origin_child_die->tag)
10079 {
10080 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10081 while (offsetp < offsets_end
10082 && offsetp->sect_off < origin_child_die->offset.sect_off)
10083 offsetp++;
10084 if (offsetp >= offsets_end
10085 || offsetp->sect_off > origin_child_die->offset.sect_off)
10086 {
10087 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
10088 process_die (origin_child_die, origin_cu);
10089 }
10090 origin_child_die = sibling_die (origin_child_die);
10091 }
10092 origin_cu->list_in_scope = origin_previous_list_in_scope;
10093
10094 do_cleanups (cleanups);
10095 }
10096
10097 static void
10098 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10099 {
10100 struct objfile *objfile = cu->objfile;
10101 struct context_stack *new;
10102 CORE_ADDR lowpc;
10103 CORE_ADDR highpc;
10104 struct die_info *child_die;
10105 struct attribute *attr, *call_line, *call_file;
10106 const char *name;
10107 CORE_ADDR baseaddr;
10108 struct block *block;
10109 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10110 VEC (symbolp) *template_args = NULL;
10111 struct template_symbol *templ_func = NULL;
10112
10113 if (inlined_func)
10114 {
10115 /* If we do not have call site information, we can't show the
10116 caller of this inlined function. That's too confusing, so
10117 only use the scope for local variables. */
10118 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10119 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10120 if (call_line == NULL || call_file == NULL)
10121 {
10122 read_lexical_block_scope (die, cu);
10123 return;
10124 }
10125 }
10126
10127 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10128
10129 name = dwarf2_name (die, cu);
10130
10131 /* Ignore functions with missing or empty names. These are actually
10132 illegal according to the DWARF standard. */
10133 if (name == NULL)
10134 {
10135 complaint (&symfile_complaints,
10136 _("missing name for subprogram DIE at %d"),
10137 die->offset.sect_off);
10138 return;
10139 }
10140
10141 /* Ignore functions with missing or invalid low and high pc attributes. */
10142 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10143 {
10144 attr = dwarf2_attr (die, DW_AT_external, cu);
10145 if (!attr || !DW_UNSND (attr))
10146 complaint (&symfile_complaints,
10147 _("cannot get low and high bounds "
10148 "for subprogram DIE at %d"),
10149 die->offset.sect_off);
10150 return;
10151 }
10152
10153 lowpc += baseaddr;
10154 highpc += baseaddr;
10155
10156 /* If we have any template arguments, then we must allocate a
10157 different sort of symbol. */
10158 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10159 {
10160 if (child_die->tag == DW_TAG_template_type_param
10161 || child_die->tag == DW_TAG_template_value_param)
10162 {
10163 templ_func = allocate_template_symbol (objfile);
10164 templ_func->base.is_cplus_template_function = 1;
10165 break;
10166 }
10167 }
10168
10169 new = push_context (0, lowpc);
10170 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10171 (struct symbol *) templ_func);
10172
10173 /* If there is a location expression for DW_AT_frame_base, record
10174 it. */
10175 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10176 if (attr)
10177 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10178
10179 cu->list_in_scope = &local_symbols;
10180
10181 if (die->child != NULL)
10182 {
10183 child_die = die->child;
10184 while (child_die && child_die->tag)
10185 {
10186 if (child_die->tag == DW_TAG_template_type_param
10187 || child_die->tag == DW_TAG_template_value_param)
10188 {
10189 struct symbol *arg = new_symbol (child_die, NULL, cu);
10190
10191 if (arg != NULL)
10192 VEC_safe_push (symbolp, template_args, arg);
10193 }
10194 else
10195 process_die (child_die, cu);
10196 child_die = sibling_die (child_die);
10197 }
10198 }
10199
10200 inherit_abstract_dies (die, cu);
10201
10202 /* If we have a DW_AT_specification, we might need to import using
10203 directives from the context of the specification DIE. See the
10204 comment in determine_prefix. */
10205 if (cu->language == language_cplus
10206 && dwarf2_attr (die, DW_AT_specification, cu))
10207 {
10208 struct dwarf2_cu *spec_cu = cu;
10209 struct die_info *spec_die = die_specification (die, &spec_cu);
10210
10211 while (spec_die)
10212 {
10213 child_die = spec_die->child;
10214 while (child_die && child_die->tag)
10215 {
10216 if (child_die->tag == DW_TAG_imported_module)
10217 process_die (child_die, spec_cu);
10218 child_die = sibling_die (child_die);
10219 }
10220
10221 /* In some cases, GCC generates specification DIEs that
10222 themselves contain DW_AT_specification attributes. */
10223 spec_die = die_specification (spec_die, &spec_cu);
10224 }
10225 }
10226
10227 new = pop_context ();
10228 /* Make a block for the local symbols within. */
10229 block = finish_block (new->name, &local_symbols, new->old_blocks,
10230 lowpc, highpc, objfile);
10231
10232 /* For C++, set the block's scope. */
10233 if ((cu->language == language_cplus || cu->language == language_fortran)
10234 && cu->processing_has_namespace_info)
10235 block_set_scope (block, determine_prefix (die, cu),
10236 &objfile->objfile_obstack);
10237
10238 /* If we have address ranges, record them. */
10239 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10240
10241 /* Attach template arguments to function. */
10242 if (! VEC_empty (symbolp, template_args))
10243 {
10244 gdb_assert (templ_func != NULL);
10245
10246 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10247 templ_func->template_arguments
10248 = obstack_alloc (&objfile->objfile_obstack,
10249 (templ_func->n_template_arguments
10250 * sizeof (struct symbol *)));
10251 memcpy (templ_func->template_arguments,
10252 VEC_address (symbolp, template_args),
10253 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10254 VEC_free (symbolp, template_args);
10255 }
10256
10257 /* In C++, we can have functions nested inside functions (e.g., when
10258 a function declares a class that has methods). This means that
10259 when we finish processing a function scope, we may need to go
10260 back to building a containing block's symbol lists. */
10261 local_symbols = new->locals;
10262 using_directives = new->using_directives;
10263
10264 /* If we've finished processing a top-level function, subsequent
10265 symbols go in the file symbol list. */
10266 if (outermost_context_p ())
10267 cu->list_in_scope = &file_symbols;
10268 }
10269
10270 /* Process all the DIES contained within a lexical block scope. Start
10271 a new scope, process the dies, and then close the scope. */
10272
10273 static void
10274 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10275 {
10276 struct objfile *objfile = cu->objfile;
10277 struct context_stack *new;
10278 CORE_ADDR lowpc, highpc;
10279 struct die_info *child_die;
10280 CORE_ADDR baseaddr;
10281
10282 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10283
10284 /* Ignore blocks with missing or invalid low and high pc attributes. */
10285 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10286 as multiple lexical blocks? Handling children in a sane way would
10287 be nasty. Might be easier to properly extend generic blocks to
10288 describe ranges. */
10289 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10290 return;
10291 lowpc += baseaddr;
10292 highpc += baseaddr;
10293
10294 push_context (0, lowpc);
10295 if (die->child != NULL)
10296 {
10297 child_die = die->child;
10298 while (child_die && child_die->tag)
10299 {
10300 process_die (child_die, cu);
10301 child_die = sibling_die (child_die);
10302 }
10303 }
10304 new = pop_context ();
10305
10306 if (local_symbols != NULL || using_directives != NULL)
10307 {
10308 struct block *block
10309 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10310 highpc, objfile);
10311
10312 /* Note that recording ranges after traversing children, as we
10313 do here, means that recording a parent's ranges entails
10314 walking across all its children's ranges as they appear in
10315 the address map, which is quadratic behavior.
10316
10317 It would be nicer to record the parent's ranges before
10318 traversing its children, simply overriding whatever you find
10319 there. But since we don't even decide whether to create a
10320 block until after we've traversed its children, that's hard
10321 to do. */
10322 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10323 }
10324 local_symbols = new->locals;
10325 using_directives = new->using_directives;
10326 }
10327
10328 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10329
10330 static void
10331 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10332 {
10333 struct objfile *objfile = cu->objfile;
10334 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10335 CORE_ADDR pc, baseaddr;
10336 struct attribute *attr;
10337 struct call_site *call_site, call_site_local;
10338 void **slot;
10339 int nparams;
10340 struct die_info *child_die;
10341
10342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10343
10344 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10345 if (!attr)
10346 {
10347 complaint (&symfile_complaints,
10348 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10349 "DIE 0x%x [in module %s]"),
10350 die->offset.sect_off, objfile_name (objfile));
10351 return;
10352 }
10353 pc = DW_ADDR (attr) + baseaddr;
10354
10355 if (cu->call_site_htab == NULL)
10356 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10357 NULL, &objfile->objfile_obstack,
10358 hashtab_obstack_allocate, NULL);
10359 call_site_local.pc = pc;
10360 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10361 if (*slot != NULL)
10362 {
10363 complaint (&symfile_complaints,
10364 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10365 "DIE 0x%x [in module %s]"),
10366 paddress (gdbarch, pc), die->offset.sect_off,
10367 objfile_name (objfile));
10368 return;
10369 }
10370
10371 /* Count parameters at the caller. */
10372
10373 nparams = 0;
10374 for (child_die = die->child; child_die && child_die->tag;
10375 child_die = sibling_die (child_die))
10376 {
10377 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10378 {
10379 complaint (&symfile_complaints,
10380 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10381 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10382 child_die->tag, child_die->offset.sect_off,
10383 objfile_name (objfile));
10384 continue;
10385 }
10386
10387 nparams++;
10388 }
10389
10390 call_site = obstack_alloc (&objfile->objfile_obstack,
10391 (sizeof (*call_site)
10392 + (sizeof (*call_site->parameter)
10393 * (nparams - 1))));
10394 *slot = call_site;
10395 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10396 call_site->pc = pc;
10397
10398 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10399 {
10400 struct die_info *func_die;
10401
10402 /* Skip also over DW_TAG_inlined_subroutine. */
10403 for (func_die = die->parent;
10404 func_die && func_die->tag != DW_TAG_subprogram
10405 && func_die->tag != DW_TAG_subroutine_type;
10406 func_die = func_die->parent);
10407
10408 /* DW_AT_GNU_all_call_sites is a superset
10409 of DW_AT_GNU_all_tail_call_sites. */
10410 if (func_die
10411 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10412 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10413 {
10414 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10415 not complete. But keep CALL_SITE for look ups via call_site_htab,
10416 both the initial caller containing the real return address PC and
10417 the final callee containing the current PC of a chain of tail
10418 calls do not need to have the tail call list complete. But any
10419 function candidate for a virtual tail call frame searched via
10420 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10421 determined unambiguously. */
10422 }
10423 else
10424 {
10425 struct type *func_type = NULL;
10426
10427 if (func_die)
10428 func_type = get_die_type (func_die, cu);
10429 if (func_type != NULL)
10430 {
10431 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10432
10433 /* Enlist this call site to the function. */
10434 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10435 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10436 }
10437 else
10438 complaint (&symfile_complaints,
10439 _("Cannot find function owning DW_TAG_GNU_call_site "
10440 "DIE 0x%x [in module %s]"),
10441 die->offset.sect_off, objfile_name (objfile));
10442 }
10443 }
10444
10445 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10446 if (attr == NULL)
10447 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10448 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10449 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10450 /* Keep NULL DWARF_BLOCK. */;
10451 else if (attr_form_is_block (attr))
10452 {
10453 struct dwarf2_locexpr_baton *dlbaton;
10454
10455 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10456 dlbaton->data = DW_BLOCK (attr)->data;
10457 dlbaton->size = DW_BLOCK (attr)->size;
10458 dlbaton->per_cu = cu->per_cu;
10459
10460 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10461 }
10462 else if (attr_form_is_ref (attr))
10463 {
10464 struct dwarf2_cu *target_cu = cu;
10465 struct die_info *target_die;
10466
10467 target_die = follow_die_ref (die, attr, &target_cu);
10468 gdb_assert (target_cu->objfile == objfile);
10469 if (die_is_declaration (target_die, target_cu))
10470 {
10471 const char *target_physname = NULL;
10472 struct attribute *target_attr;
10473
10474 /* Prefer the mangled name; otherwise compute the demangled one. */
10475 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10476 if (target_attr == NULL)
10477 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10478 target_cu);
10479 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10480 target_physname = DW_STRING (target_attr);
10481 else
10482 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10483 if (target_physname == NULL)
10484 complaint (&symfile_complaints,
10485 _("DW_AT_GNU_call_site_target target DIE has invalid "
10486 "physname, for referencing DIE 0x%x [in module %s]"),
10487 die->offset.sect_off, objfile_name (objfile));
10488 else
10489 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10490 }
10491 else
10492 {
10493 CORE_ADDR lowpc;
10494
10495 /* DW_AT_entry_pc should be preferred. */
10496 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10497 complaint (&symfile_complaints,
10498 _("DW_AT_GNU_call_site_target target DIE has invalid "
10499 "low pc, for referencing DIE 0x%x [in module %s]"),
10500 die->offset.sect_off, objfile_name (objfile));
10501 else
10502 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10503 }
10504 }
10505 else
10506 complaint (&symfile_complaints,
10507 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10508 "block nor reference, for DIE 0x%x [in module %s]"),
10509 die->offset.sect_off, objfile_name (objfile));
10510
10511 call_site->per_cu = cu->per_cu;
10512
10513 for (child_die = die->child;
10514 child_die && child_die->tag;
10515 child_die = sibling_die (child_die))
10516 {
10517 struct call_site_parameter *parameter;
10518 struct attribute *loc, *origin;
10519
10520 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10521 {
10522 /* Already printed the complaint above. */
10523 continue;
10524 }
10525
10526 gdb_assert (call_site->parameter_count < nparams);
10527 parameter = &call_site->parameter[call_site->parameter_count];
10528
10529 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10530 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10531 register is contained in DW_AT_GNU_call_site_value. */
10532
10533 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10534 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10535 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
10536 {
10537 sect_offset offset;
10538
10539 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10540 offset = dwarf2_get_ref_die_offset (origin);
10541 if (!offset_in_cu_p (&cu->header, offset))
10542 {
10543 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10544 binding can be done only inside one CU. Such referenced DIE
10545 therefore cannot be even moved to DW_TAG_partial_unit. */
10546 complaint (&symfile_complaints,
10547 _("DW_AT_abstract_origin offset is not in CU for "
10548 "DW_TAG_GNU_call_site child DIE 0x%x "
10549 "[in module %s]"),
10550 child_die->offset.sect_off, objfile_name (objfile));
10551 continue;
10552 }
10553 parameter->u.param_offset.cu_off = (offset.sect_off
10554 - cu->header.offset.sect_off);
10555 }
10556 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10557 {
10558 complaint (&symfile_complaints,
10559 _("No DW_FORM_block* DW_AT_location for "
10560 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10561 child_die->offset.sect_off, objfile_name (objfile));
10562 continue;
10563 }
10564 else
10565 {
10566 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10567 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10568 if (parameter->u.dwarf_reg != -1)
10569 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10570 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10571 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10572 &parameter->u.fb_offset))
10573 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10574 else
10575 {
10576 complaint (&symfile_complaints,
10577 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10578 "for DW_FORM_block* DW_AT_location is supported for "
10579 "DW_TAG_GNU_call_site child DIE 0x%x "
10580 "[in module %s]"),
10581 child_die->offset.sect_off, objfile_name (objfile));
10582 continue;
10583 }
10584 }
10585
10586 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10587 if (!attr_form_is_block (attr))
10588 {
10589 complaint (&symfile_complaints,
10590 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10591 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10592 child_die->offset.sect_off, objfile_name (objfile));
10593 continue;
10594 }
10595 parameter->value = DW_BLOCK (attr)->data;
10596 parameter->value_size = DW_BLOCK (attr)->size;
10597
10598 /* Parameters are not pre-cleared by memset above. */
10599 parameter->data_value = NULL;
10600 parameter->data_value_size = 0;
10601 call_site->parameter_count++;
10602
10603 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10604 if (attr)
10605 {
10606 if (!attr_form_is_block (attr))
10607 complaint (&symfile_complaints,
10608 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10609 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10610 child_die->offset.sect_off, objfile_name (objfile));
10611 else
10612 {
10613 parameter->data_value = DW_BLOCK (attr)->data;
10614 parameter->data_value_size = DW_BLOCK (attr)->size;
10615 }
10616 }
10617 }
10618 }
10619
10620 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10621 Return 1 if the attributes are present and valid, otherwise, return 0.
10622 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10623
10624 static int
10625 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10626 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10627 struct partial_symtab *ranges_pst)
10628 {
10629 struct objfile *objfile = cu->objfile;
10630 struct comp_unit_head *cu_header = &cu->header;
10631 bfd *obfd = objfile->obfd;
10632 unsigned int addr_size = cu_header->addr_size;
10633 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10634 /* Base address selection entry. */
10635 CORE_ADDR base;
10636 int found_base;
10637 unsigned int dummy;
10638 const gdb_byte *buffer;
10639 CORE_ADDR marker;
10640 int low_set;
10641 CORE_ADDR low = 0;
10642 CORE_ADDR high = 0;
10643 CORE_ADDR baseaddr;
10644
10645 found_base = cu->base_known;
10646 base = cu->base_address;
10647
10648 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10649 if (offset >= dwarf2_per_objfile->ranges.size)
10650 {
10651 complaint (&symfile_complaints,
10652 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10653 offset);
10654 return 0;
10655 }
10656 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10657
10658 /* Read in the largest possible address. */
10659 marker = read_address (obfd, buffer, cu, &dummy);
10660 if ((marker & mask) == mask)
10661 {
10662 /* If we found the largest possible address, then
10663 read the base address. */
10664 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10665 buffer += 2 * addr_size;
10666 offset += 2 * addr_size;
10667 found_base = 1;
10668 }
10669
10670 low_set = 0;
10671
10672 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10673
10674 while (1)
10675 {
10676 CORE_ADDR range_beginning, range_end;
10677
10678 range_beginning = read_address (obfd, buffer, cu, &dummy);
10679 buffer += addr_size;
10680 range_end = read_address (obfd, buffer, cu, &dummy);
10681 buffer += addr_size;
10682 offset += 2 * addr_size;
10683
10684 /* An end of list marker is a pair of zero addresses. */
10685 if (range_beginning == 0 && range_end == 0)
10686 /* Found the end of list entry. */
10687 break;
10688
10689 /* Each base address selection entry is a pair of 2 values.
10690 The first is the largest possible address, the second is
10691 the base address. Check for a base address here. */
10692 if ((range_beginning & mask) == mask)
10693 {
10694 /* If we found the largest possible address, then
10695 read the base address. */
10696 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10697 found_base = 1;
10698 continue;
10699 }
10700
10701 if (!found_base)
10702 {
10703 /* We have no valid base address for the ranges
10704 data. */
10705 complaint (&symfile_complaints,
10706 _("Invalid .debug_ranges data (no base address)"));
10707 return 0;
10708 }
10709
10710 if (range_beginning > range_end)
10711 {
10712 /* Inverted range entries are invalid. */
10713 complaint (&symfile_complaints,
10714 _("Invalid .debug_ranges data (inverted range)"));
10715 return 0;
10716 }
10717
10718 /* Empty range entries have no effect. */
10719 if (range_beginning == range_end)
10720 continue;
10721
10722 range_beginning += base;
10723 range_end += base;
10724
10725 /* A not-uncommon case of bad debug info.
10726 Don't pollute the addrmap with bad data. */
10727 if (range_beginning + baseaddr == 0
10728 && !dwarf2_per_objfile->has_section_at_zero)
10729 {
10730 complaint (&symfile_complaints,
10731 _(".debug_ranges entry has start address of zero"
10732 " [in module %s]"), objfile_name (objfile));
10733 continue;
10734 }
10735
10736 if (ranges_pst != NULL)
10737 addrmap_set_empty (objfile->psymtabs_addrmap,
10738 range_beginning + baseaddr,
10739 range_end - 1 + baseaddr,
10740 ranges_pst);
10741
10742 /* FIXME: This is recording everything as a low-high
10743 segment of consecutive addresses. We should have a
10744 data structure for discontiguous block ranges
10745 instead. */
10746 if (! low_set)
10747 {
10748 low = range_beginning;
10749 high = range_end;
10750 low_set = 1;
10751 }
10752 else
10753 {
10754 if (range_beginning < low)
10755 low = range_beginning;
10756 if (range_end > high)
10757 high = range_end;
10758 }
10759 }
10760
10761 if (! low_set)
10762 /* If the first entry is an end-of-list marker, the range
10763 describes an empty scope, i.e. no instructions. */
10764 return 0;
10765
10766 if (low_return)
10767 *low_return = low;
10768 if (high_return)
10769 *high_return = high;
10770 return 1;
10771 }
10772
10773 /* Get low and high pc attributes from a die. Return 1 if the attributes
10774 are present and valid, otherwise, return 0. Return -1 if the range is
10775 discontinuous, i.e. derived from DW_AT_ranges information. */
10776
10777 static int
10778 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10779 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10780 struct partial_symtab *pst)
10781 {
10782 struct attribute *attr;
10783 struct attribute *attr_high;
10784 CORE_ADDR low = 0;
10785 CORE_ADDR high = 0;
10786 int ret = 0;
10787
10788 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10789 if (attr_high)
10790 {
10791 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10792 if (attr)
10793 {
10794 low = DW_ADDR (attr);
10795 if (attr_high->form == DW_FORM_addr
10796 || attr_high->form == DW_FORM_GNU_addr_index)
10797 high = DW_ADDR (attr_high);
10798 else
10799 high = low + DW_UNSND (attr_high);
10800 }
10801 else
10802 /* Found high w/o low attribute. */
10803 return 0;
10804
10805 /* Found consecutive range of addresses. */
10806 ret = 1;
10807 }
10808 else
10809 {
10810 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10811 if (attr != NULL)
10812 {
10813 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10814 We take advantage of the fact that DW_AT_ranges does not appear
10815 in DW_TAG_compile_unit of DWO files. */
10816 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10817 unsigned int ranges_offset = (DW_UNSND (attr)
10818 + (need_ranges_base
10819 ? cu->ranges_base
10820 : 0));
10821
10822 /* Value of the DW_AT_ranges attribute is the offset in the
10823 .debug_ranges section. */
10824 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10825 return 0;
10826 /* Found discontinuous range of addresses. */
10827 ret = -1;
10828 }
10829 }
10830
10831 /* read_partial_die has also the strict LOW < HIGH requirement. */
10832 if (high <= low)
10833 return 0;
10834
10835 /* When using the GNU linker, .gnu.linkonce. sections are used to
10836 eliminate duplicate copies of functions and vtables and such.
10837 The linker will arbitrarily choose one and discard the others.
10838 The AT_*_pc values for such functions refer to local labels in
10839 these sections. If the section from that file was discarded, the
10840 labels are not in the output, so the relocs get a value of 0.
10841 If this is a discarded function, mark the pc bounds as invalid,
10842 so that GDB will ignore it. */
10843 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10844 return 0;
10845
10846 *lowpc = low;
10847 if (highpc)
10848 *highpc = high;
10849 return ret;
10850 }
10851
10852 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10853 its low and high PC addresses. Do nothing if these addresses could not
10854 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10855 and HIGHPC to the high address if greater than HIGHPC. */
10856
10857 static void
10858 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10859 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10860 struct dwarf2_cu *cu)
10861 {
10862 CORE_ADDR low, high;
10863 struct die_info *child = die->child;
10864
10865 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10866 {
10867 *lowpc = min (*lowpc, low);
10868 *highpc = max (*highpc, high);
10869 }
10870
10871 /* If the language does not allow nested subprograms (either inside
10872 subprograms or lexical blocks), we're done. */
10873 if (cu->language != language_ada)
10874 return;
10875
10876 /* Check all the children of the given DIE. If it contains nested
10877 subprograms, then check their pc bounds. Likewise, we need to
10878 check lexical blocks as well, as they may also contain subprogram
10879 definitions. */
10880 while (child && child->tag)
10881 {
10882 if (child->tag == DW_TAG_subprogram
10883 || child->tag == DW_TAG_lexical_block)
10884 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10885 child = sibling_die (child);
10886 }
10887 }
10888
10889 /* Get the low and high pc's represented by the scope DIE, and store
10890 them in *LOWPC and *HIGHPC. If the correct values can't be
10891 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10892
10893 static void
10894 get_scope_pc_bounds (struct die_info *die,
10895 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10896 struct dwarf2_cu *cu)
10897 {
10898 CORE_ADDR best_low = (CORE_ADDR) -1;
10899 CORE_ADDR best_high = (CORE_ADDR) 0;
10900 CORE_ADDR current_low, current_high;
10901
10902 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10903 {
10904 best_low = current_low;
10905 best_high = current_high;
10906 }
10907 else
10908 {
10909 struct die_info *child = die->child;
10910
10911 while (child && child->tag)
10912 {
10913 switch (child->tag) {
10914 case DW_TAG_subprogram:
10915 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10916 break;
10917 case DW_TAG_namespace:
10918 case DW_TAG_module:
10919 /* FIXME: carlton/2004-01-16: Should we do this for
10920 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10921 that current GCC's always emit the DIEs corresponding
10922 to definitions of methods of classes as children of a
10923 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10924 the DIEs giving the declarations, which could be
10925 anywhere). But I don't see any reason why the
10926 standards says that they have to be there. */
10927 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10928
10929 if (current_low != ((CORE_ADDR) -1))
10930 {
10931 best_low = min (best_low, current_low);
10932 best_high = max (best_high, current_high);
10933 }
10934 break;
10935 default:
10936 /* Ignore. */
10937 break;
10938 }
10939
10940 child = sibling_die (child);
10941 }
10942 }
10943
10944 *lowpc = best_low;
10945 *highpc = best_high;
10946 }
10947
10948 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10949 in DIE. */
10950
10951 static void
10952 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10953 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10954 {
10955 struct objfile *objfile = cu->objfile;
10956 struct attribute *attr;
10957 struct attribute *attr_high;
10958
10959 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10960 if (attr_high)
10961 {
10962 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10963 if (attr)
10964 {
10965 CORE_ADDR low = DW_ADDR (attr);
10966 CORE_ADDR high;
10967 if (attr_high->form == DW_FORM_addr
10968 || attr_high->form == DW_FORM_GNU_addr_index)
10969 high = DW_ADDR (attr_high);
10970 else
10971 high = low + DW_UNSND (attr_high);
10972
10973 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10974 }
10975 }
10976
10977 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10978 if (attr)
10979 {
10980 bfd *obfd = objfile->obfd;
10981 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10982 We take advantage of the fact that DW_AT_ranges does not appear
10983 in DW_TAG_compile_unit of DWO files. */
10984 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10985
10986 /* The value of the DW_AT_ranges attribute is the offset of the
10987 address range list in the .debug_ranges section. */
10988 unsigned long offset = (DW_UNSND (attr)
10989 + (need_ranges_base ? cu->ranges_base : 0));
10990 const gdb_byte *buffer;
10991
10992 /* For some target architectures, but not others, the
10993 read_address function sign-extends the addresses it returns.
10994 To recognize base address selection entries, we need a
10995 mask. */
10996 unsigned int addr_size = cu->header.addr_size;
10997 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10998
10999 /* The base address, to which the next pair is relative. Note
11000 that this 'base' is a DWARF concept: most entries in a range
11001 list are relative, to reduce the number of relocs against the
11002 debugging information. This is separate from this function's
11003 'baseaddr' argument, which GDB uses to relocate debugging
11004 information from a shared library based on the address at
11005 which the library was loaded. */
11006 CORE_ADDR base = cu->base_address;
11007 int base_known = cu->base_known;
11008
11009 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11010 if (offset >= dwarf2_per_objfile->ranges.size)
11011 {
11012 complaint (&symfile_complaints,
11013 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11014 offset);
11015 return;
11016 }
11017 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11018
11019 for (;;)
11020 {
11021 unsigned int bytes_read;
11022 CORE_ADDR start, end;
11023
11024 start = read_address (obfd, buffer, cu, &bytes_read);
11025 buffer += bytes_read;
11026 end = read_address (obfd, buffer, cu, &bytes_read);
11027 buffer += bytes_read;
11028
11029 /* Did we find the end of the range list? */
11030 if (start == 0 && end == 0)
11031 break;
11032
11033 /* Did we find a base address selection entry? */
11034 else if ((start & base_select_mask) == base_select_mask)
11035 {
11036 base = end;
11037 base_known = 1;
11038 }
11039
11040 /* We found an ordinary address range. */
11041 else
11042 {
11043 if (!base_known)
11044 {
11045 complaint (&symfile_complaints,
11046 _("Invalid .debug_ranges data "
11047 "(no base address)"));
11048 return;
11049 }
11050
11051 if (start > end)
11052 {
11053 /* Inverted range entries are invalid. */
11054 complaint (&symfile_complaints,
11055 _("Invalid .debug_ranges data "
11056 "(inverted range)"));
11057 return;
11058 }
11059
11060 /* Empty range entries have no effect. */
11061 if (start == end)
11062 continue;
11063
11064 start += base + baseaddr;
11065 end += base + baseaddr;
11066
11067 /* A not-uncommon case of bad debug info.
11068 Don't pollute the addrmap with bad data. */
11069 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11070 {
11071 complaint (&symfile_complaints,
11072 _(".debug_ranges entry has start address of zero"
11073 " [in module %s]"), objfile_name (objfile));
11074 continue;
11075 }
11076
11077 record_block_range (block, start, end - 1);
11078 }
11079 }
11080 }
11081 }
11082
11083 /* Check whether the producer field indicates either of GCC < 4.6, or the
11084 Intel C/C++ compiler, and cache the result in CU. */
11085
11086 static void
11087 check_producer (struct dwarf2_cu *cu)
11088 {
11089 const char *cs;
11090 int major, minor, release;
11091
11092 if (cu->producer == NULL)
11093 {
11094 /* For unknown compilers expect their behavior is DWARF version
11095 compliant.
11096
11097 GCC started to support .debug_types sections by -gdwarf-4 since
11098 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11099 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11100 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11101 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11102 }
11103 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11104 {
11105 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11106
11107 cs = &cu->producer[strlen ("GNU ")];
11108 while (*cs && !isdigit (*cs))
11109 cs++;
11110 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11111 {
11112 /* Not recognized as GCC. */
11113 }
11114 else
11115 {
11116 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11117 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11118 }
11119 }
11120 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11121 cu->producer_is_icc = 1;
11122 else
11123 {
11124 /* For other non-GCC compilers, expect their behavior is DWARF version
11125 compliant. */
11126 }
11127
11128 cu->checked_producer = 1;
11129 }
11130
11131 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11132 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11133 during 4.6.0 experimental. */
11134
11135 static int
11136 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11137 {
11138 if (!cu->checked_producer)
11139 check_producer (cu);
11140
11141 return cu->producer_is_gxx_lt_4_6;
11142 }
11143
11144 /* Return the default accessibility type if it is not overriden by
11145 DW_AT_accessibility. */
11146
11147 static enum dwarf_access_attribute
11148 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11149 {
11150 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11151 {
11152 /* The default DWARF 2 accessibility for members is public, the default
11153 accessibility for inheritance is private. */
11154
11155 if (die->tag != DW_TAG_inheritance)
11156 return DW_ACCESS_public;
11157 else
11158 return DW_ACCESS_private;
11159 }
11160 else
11161 {
11162 /* DWARF 3+ defines the default accessibility a different way. The same
11163 rules apply now for DW_TAG_inheritance as for the members and it only
11164 depends on the container kind. */
11165
11166 if (die->parent->tag == DW_TAG_class_type)
11167 return DW_ACCESS_private;
11168 else
11169 return DW_ACCESS_public;
11170 }
11171 }
11172
11173 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11174 offset. If the attribute was not found return 0, otherwise return
11175 1. If it was found but could not properly be handled, set *OFFSET
11176 to 0. */
11177
11178 static int
11179 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11180 LONGEST *offset)
11181 {
11182 struct attribute *attr;
11183
11184 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11185 if (attr != NULL)
11186 {
11187 *offset = 0;
11188
11189 /* Note that we do not check for a section offset first here.
11190 This is because DW_AT_data_member_location is new in DWARF 4,
11191 so if we see it, we can assume that a constant form is really
11192 a constant and not a section offset. */
11193 if (attr_form_is_constant (attr))
11194 *offset = dwarf2_get_attr_constant_value (attr, 0);
11195 else if (attr_form_is_section_offset (attr))
11196 dwarf2_complex_location_expr_complaint ();
11197 else if (attr_form_is_block (attr))
11198 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11199 else
11200 dwarf2_complex_location_expr_complaint ();
11201
11202 return 1;
11203 }
11204
11205 return 0;
11206 }
11207
11208 /* Add an aggregate field to the field list. */
11209
11210 static void
11211 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11212 struct dwarf2_cu *cu)
11213 {
11214 struct objfile *objfile = cu->objfile;
11215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11216 struct nextfield *new_field;
11217 struct attribute *attr;
11218 struct field *fp;
11219 const char *fieldname = "";
11220
11221 /* Allocate a new field list entry and link it in. */
11222 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11223 make_cleanup (xfree, new_field);
11224 memset (new_field, 0, sizeof (struct nextfield));
11225
11226 if (die->tag == DW_TAG_inheritance)
11227 {
11228 new_field->next = fip->baseclasses;
11229 fip->baseclasses = new_field;
11230 }
11231 else
11232 {
11233 new_field->next = fip->fields;
11234 fip->fields = new_field;
11235 }
11236 fip->nfields++;
11237
11238 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11239 if (attr)
11240 new_field->accessibility = DW_UNSND (attr);
11241 else
11242 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11243 if (new_field->accessibility != DW_ACCESS_public)
11244 fip->non_public_fields = 1;
11245
11246 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11247 if (attr)
11248 new_field->virtuality = DW_UNSND (attr);
11249 else
11250 new_field->virtuality = DW_VIRTUALITY_none;
11251
11252 fp = &new_field->field;
11253
11254 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11255 {
11256 LONGEST offset;
11257
11258 /* Data member other than a C++ static data member. */
11259
11260 /* Get type of field. */
11261 fp->type = die_type (die, cu);
11262
11263 SET_FIELD_BITPOS (*fp, 0);
11264
11265 /* Get bit size of field (zero if none). */
11266 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11267 if (attr)
11268 {
11269 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11270 }
11271 else
11272 {
11273 FIELD_BITSIZE (*fp) = 0;
11274 }
11275
11276 /* Get bit offset of field. */
11277 if (handle_data_member_location (die, cu, &offset))
11278 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11279 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11280 if (attr)
11281 {
11282 if (gdbarch_bits_big_endian (gdbarch))
11283 {
11284 /* For big endian bits, the DW_AT_bit_offset gives the
11285 additional bit offset from the MSB of the containing
11286 anonymous object to the MSB of the field. We don't
11287 have to do anything special since we don't need to
11288 know the size of the anonymous object. */
11289 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11290 }
11291 else
11292 {
11293 /* For little endian bits, compute the bit offset to the
11294 MSB of the anonymous object, subtract off the number of
11295 bits from the MSB of the field to the MSB of the
11296 object, and then subtract off the number of bits of
11297 the field itself. The result is the bit offset of
11298 the LSB of the field. */
11299 int anonymous_size;
11300 int bit_offset = DW_UNSND (attr);
11301
11302 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11303 if (attr)
11304 {
11305 /* The size of the anonymous object containing
11306 the bit field is explicit, so use the
11307 indicated size (in bytes). */
11308 anonymous_size = DW_UNSND (attr);
11309 }
11310 else
11311 {
11312 /* The size of the anonymous object containing
11313 the bit field must be inferred from the type
11314 attribute of the data member containing the
11315 bit field. */
11316 anonymous_size = TYPE_LENGTH (fp->type);
11317 }
11318 SET_FIELD_BITPOS (*fp,
11319 (FIELD_BITPOS (*fp)
11320 + anonymous_size * bits_per_byte
11321 - bit_offset - FIELD_BITSIZE (*fp)));
11322 }
11323 }
11324
11325 /* Get name of field. */
11326 fieldname = dwarf2_name (die, cu);
11327 if (fieldname == NULL)
11328 fieldname = "";
11329
11330 /* The name is already allocated along with this objfile, so we don't
11331 need to duplicate it for the type. */
11332 fp->name = fieldname;
11333
11334 /* Change accessibility for artificial fields (e.g. virtual table
11335 pointer or virtual base class pointer) to private. */
11336 if (dwarf2_attr (die, DW_AT_artificial, cu))
11337 {
11338 FIELD_ARTIFICIAL (*fp) = 1;
11339 new_field->accessibility = DW_ACCESS_private;
11340 fip->non_public_fields = 1;
11341 }
11342 }
11343 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11344 {
11345 /* C++ static member. */
11346
11347 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11348 is a declaration, but all versions of G++ as of this writing
11349 (so through at least 3.2.1) incorrectly generate
11350 DW_TAG_variable tags. */
11351
11352 const char *physname;
11353
11354 /* Get name of field. */
11355 fieldname = dwarf2_name (die, cu);
11356 if (fieldname == NULL)
11357 return;
11358
11359 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11360 if (attr
11361 /* Only create a symbol if this is an external value.
11362 new_symbol checks this and puts the value in the global symbol
11363 table, which we want. If it is not external, new_symbol
11364 will try to put the value in cu->list_in_scope which is wrong. */
11365 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11366 {
11367 /* A static const member, not much different than an enum as far as
11368 we're concerned, except that we can support more types. */
11369 new_symbol (die, NULL, cu);
11370 }
11371
11372 /* Get physical name. */
11373 physname = dwarf2_physname (fieldname, die, cu);
11374
11375 /* The name is already allocated along with this objfile, so we don't
11376 need to duplicate it for the type. */
11377 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11378 FIELD_TYPE (*fp) = die_type (die, cu);
11379 FIELD_NAME (*fp) = fieldname;
11380 }
11381 else if (die->tag == DW_TAG_inheritance)
11382 {
11383 LONGEST offset;
11384
11385 /* C++ base class field. */
11386 if (handle_data_member_location (die, cu, &offset))
11387 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11388 FIELD_BITSIZE (*fp) = 0;
11389 FIELD_TYPE (*fp) = die_type (die, cu);
11390 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11391 fip->nbaseclasses++;
11392 }
11393 }
11394
11395 /* Add a typedef defined in the scope of the FIP's class. */
11396
11397 static void
11398 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11399 struct dwarf2_cu *cu)
11400 {
11401 struct objfile *objfile = cu->objfile;
11402 struct typedef_field_list *new_field;
11403 struct attribute *attr;
11404 struct typedef_field *fp;
11405 char *fieldname = "";
11406
11407 /* Allocate a new field list entry and link it in. */
11408 new_field = xzalloc (sizeof (*new_field));
11409 make_cleanup (xfree, new_field);
11410
11411 gdb_assert (die->tag == DW_TAG_typedef);
11412
11413 fp = &new_field->field;
11414
11415 /* Get name of field. */
11416 fp->name = dwarf2_name (die, cu);
11417 if (fp->name == NULL)
11418 return;
11419
11420 fp->type = read_type_die (die, cu);
11421
11422 new_field->next = fip->typedef_field_list;
11423 fip->typedef_field_list = new_field;
11424 fip->typedef_field_list_count++;
11425 }
11426
11427 /* Create the vector of fields, and attach it to the type. */
11428
11429 static void
11430 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11431 struct dwarf2_cu *cu)
11432 {
11433 int nfields = fip->nfields;
11434
11435 /* Record the field count, allocate space for the array of fields,
11436 and create blank accessibility bitfields if necessary. */
11437 TYPE_NFIELDS (type) = nfields;
11438 TYPE_FIELDS (type) = (struct field *)
11439 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11440 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11441
11442 if (fip->non_public_fields && cu->language != language_ada)
11443 {
11444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11445
11446 TYPE_FIELD_PRIVATE_BITS (type) =
11447 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11448 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11449
11450 TYPE_FIELD_PROTECTED_BITS (type) =
11451 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11452 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11453
11454 TYPE_FIELD_IGNORE_BITS (type) =
11455 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11456 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11457 }
11458
11459 /* If the type has baseclasses, allocate and clear a bit vector for
11460 TYPE_FIELD_VIRTUAL_BITS. */
11461 if (fip->nbaseclasses && cu->language != language_ada)
11462 {
11463 int num_bytes = B_BYTES (fip->nbaseclasses);
11464 unsigned char *pointer;
11465
11466 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11467 pointer = TYPE_ALLOC (type, num_bytes);
11468 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11469 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11470 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11471 }
11472
11473 /* Copy the saved-up fields into the field vector. Start from the head of
11474 the list, adding to the tail of the field array, so that they end up in
11475 the same order in the array in which they were added to the list. */
11476 while (nfields-- > 0)
11477 {
11478 struct nextfield *fieldp;
11479
11480 if (fip->fields)
11481 {
11482 fieldp = fip->fields;
11483 fip->fields = fieldp->next;
11484 }
11485 else
11486 {
11487 fieldp = fip->baseclasses;
11488 fip->baseclasses = fieldp->next;
11489 }
11490
11491 TYPE_FIELD (type, nfields) = fieldp->field;
11492 switch (fieldp->accessibility)
11493 {
11494 case DW_ACCESS_private:
11495 if (cu->language != language_ada)
11496 SET_TYPE_FIELD_PRIVATE (type, nfields);
11497 break;
11498
11499 case DW_ACCESS_protected:
11500 if (cu->language != language_ada)
11501 SET_TYPE_FIELD_PROTECTED (type, nfields);
11502 break;
11503
11504 case DW_ACCESS_public:
11505 break;
11506
11507 default:
11508 /* Unknown accessibility. Complain and treat it as public. */
11509 {
11510 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11511 fieldp->accessibility);
11512 }
11513 break;
11514 }
11515 if (nfields < fip->nbaseclasses)
11516 {
11517 switch (fieldp->virtuality)
11518 {
11519 case DW_VIRTUALITY_virtual:
11520 case DW_VIRTUALITY_pure_virtual:
11521 if (cu->language == language_ada)
11522 error (_("unexpected virtuality in component of Ada type"));
11523 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11524 break;
11525 }
11526 }
11527 }
11528 }
11529
11530 /* Return true if this member function is a constructor, false
11531 otherwise. */
11532
11533 static int
11534 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11535 {
11536 const char *fieldname;
11537 const char *typename;
11538 int len;
11539
11540 if (die->parent == NULL)
11541 return 0;
11542
11543 if (die->parent->tag != DW_TAG_structure_type
11544 && die->parent->tag != DW_TAG_union_type
11545 && die->parent->tag != DW_TAG_class_type)
11546 return 0;
11547
11548 fieldname = dwarf2_name (die, cu);
11549 typename = dwarf2_name (die->parent, cu);
11550 if (fieldname == NULL || typename == NULL)
11551 return 0;
11552
11553 len = strlen (fieldname);
11554 return (strncmp (fieldname, typename, len) == 0
11555 && (typename[len] == '\0' || typename[len] == '<'));
11556 }
11557
11558 /* Add a member function to the proper fieldlist. */
11559
11560 static void
11561 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11562 struct type *type, struct dwarf2_cu *cu)
11563 {
11564 struct objfile *objfile = cu->objfile;
11565 struct attribute *attr;
11566 struct fnfieldlist *flp;
11567 int i;
11568 struct fn_field *fnp;
11569 const char *fieldname;
11570 struct nextfnfield *new_fnfield;
11571 struct type *this_type;
11572 enum dwarf_access_attribute accessibility;
11573
11574 if (cu->language == language_ada)
11575 error (_("unexpected member function in Ada type"));
11576
11577 /* Get name of member function. */
11578 fieldname = dwarf2_name (die, cu);
11579 if (fieldname == NULL)
11580 return;
11581
11582 /* Look up member function name in fieldlist. */
11583 for (i = 0; i < fip->nfnfields; i++)
11584 {
11585 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11586 break;
11587 }
11588
11589 /* Create new list element if necessary. */
11590 if (i < fip->nfnfields)
11591 flp = &fip->fnfieldlists[i];
11592 else
11593 {
11594 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11595 {
11596 fip->fnfieldlists = (struct fnfieldlist *)
11597 xrealloc (fip->fnfieldlists,
11598 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11599 * sizeof (struct fnfieldlist));
11600 if (fip->nfnfields == 0)
11601 make_cleanup (free_current_contents, &fip->fnfieldlists);
11602 }
11603 flp = &fip->fnfieldlists[fip->nfnfields];
11604 flp->name = fieldname;
11605 flp->length = 0;
11606 flp->head = NULL;
11607 i = fip->nfnfields++;
11608 }
11609
11610 /* Create a new member function field and chain it to the field list
11611 entry. */
11612 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11613 make_cleanup (xfree, new_fnfield);
11614 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11615 new_fnfield->next = flp->head;
11616 flp->head = new_fnfield;
11617 flp->length++;
11618
11619 /* Fill in the member function field info. */
11620 fnp = &new_fnfield->fnfield;
11621
11622 /* Delay processing of the physname until later. */
11623 if (cu->language == language_cplus || cu->language == language_java)
11624 {
11625 add_to_method_list (type, i, flp->length - 1, fieldname,
11626 die, cu);
11627 }
11628 else
11629 {
11630 const char *physname = dwarf2_physname (fieldname, die, cu);
11631 fnp->physname = physname ? physname : "";
11632 }
11633
11634 fnp->type = alloc_type (objfile);
11635 this_type = read_type_die (die, cu);
11636 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11637 {
11638 int nparams = TYPE_NFIELDS (this_type);
11639
11640 /* TYPE is the domain of this method, and THIS_TYPE is the type
11641 of the method itself (TYPE_CODE_METHOD). */
11642 smash_to_method_type (fnp->type, type,
11643 TYPE_TARGET_TYPE (this_type),
11644 TYPE_FIELDS (this_type),
11645 TYPE_NFIELDS (this_type),
11646 TYPE_VARARGS (this_type));
11647
11648 /* Handle static member functions.
11649 Dwarf2 has no clean way to discern C++ static and non-static
11650 member functions. G++ helps GDB by marking the first
11651 parameter for non-static member functions (which is the this
11652 pointer) as artificial. We obtain this information from
11653 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11654 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11655 fnp->voffset = VOFFSET_STATIC;
11656 }
11657 else
11658 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11659 dwarf2_full_name (fieldname, die, cu));
11660
11661 /* Get fcontext from DW_AT_containing_type if present. */
11662 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11663 fnp->fcontext = die_containing_type (die, cu);
11664
11665 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11666 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11667
11668 /* Get accessibility. */
11669 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11670 if (attr)
11671 accessibility = DW_UNSND (attr);
11672 else
11673 accessibility = dwarf2_default_access_attribute (die, cu);
11674 switch (accessibility)
11675 {
11676 case DW_ACCESS_private:
11677 fnp->is_private = 1;
11678 break;
11679 case DW_ACCESS_protected:
11680 fnp->is_protected = 1;
11681 break;
11682 }
11683
11684 /* Check for artificial methods. */
11685 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11686 if (attr && DW_UNSND (attr) != 0)
11687 fnp->is_artificial = 1;
11688
11689 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11690
11691 /* Get index in virtual function table if it is a virtual member
11692 function. For older versions of GCC, this is an offset in the
11693 appropriate virtual table, as specified by DW_AT_containing_type.
11694 For everyone else, it is an expression to be evaluated relative
11695 to the object address. */
11696
11697 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11698 if (attr)
11699 {
11700 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11701 {
11702 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11703 {
11704 /* Old-style GCC. */
11705 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11706 }
11707 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11708 || (DW_BLOCK (attr)->size > 1
11709 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11710 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11711 {
11712 struct dwarf_block blk;
11713 int offset;
11714
11715 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11716 ? 1 : 2);
11717 blk.size = DW_BLOCK (attr)->size - offset;
11718 blk.data = DW_BLOCK (attr)->data + offset;
11719 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11720 if ((fnp->voffset % cu->header.addr_size) != 0)
11721 dwarf2_complex_location_expr_complaint ();
11722 else
11723 fnp->voffset /= cu->header.addr_size;
11724 fnp->voffset += 2;
11725 }
11726 else
11727 dwarf2_complex_location_expr_complaint ();
11728
11729 if (!fnp->fcontext)
11730 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11731 }
11732 else if (attr_form_is_section_offset (attr))
11733 {
11734 dwarf2_complex_location_expr_complaint ();
11735 }
11736 else
11737 {
11738 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11739 fieldname);
11740 }
11741 }
11742 else
11743 {
11744 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11745 if (attr && DW_UNSND (attr))
11746 {
11747 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11748 complaint (&symfile_complaints,
11749 _("Member function \"%s\" (offset %d) is virtual "
11750 "but the vtable offset is not specified"),
11751 fieldname, die->offset.sect_off);
11752 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11753 TYPE_CPLUS_DYNAMIC (type) = 1;
11754 }
11755 }
11756 }
11757
11758 /* Create the vector of member function fields, and attach it to the type. */
11759
11760 static void
11761 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11762 struct dwarf2_cu *cu)
11763 {
11764 struct fnfieldlist *flp;
11765 int i;
11766
11767 if (cu->language == language_ada)
11768 error (_("unexpected member functions in Ada type"));
11769
11770 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11771 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11772 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11773
11774 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11775 {
11776 struct nextfnfield *nfp = flp->head;
11777 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11778 int k;
11779
11780 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11781 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11782 fn_flp->fn_fields = (struct fn_field *)
11783 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11784 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11785 fn_flp->fn_fields[k] = nfp->fnfield;
11786 }
11787
11788 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11789 }
11790
11791 /* Returns non-zero if NAME is the name of a vtable member in CU's
11792 language, zero otherwise. */
11793 static int
11794 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11795 {
11796 static const char vptr[] = "_vptr";
11797 static const char vtable[] = "vtable";
11798
11799 /* Look for the C++ and Java forms of the vtable. */
11800 if ((cu->language == language_java
11801 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11802 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11803 && is_cplus_marker (name[sizeof (vptr) - 1])))
11804 return 1;
11805
11806 return 0;
11807 }
11808
11809 /* GCC outputs unnamed structures that are really pointers to member
11810 functions, with the ABI-specified layout. If TYPE describes
11811 such a structure, smash it into a member function type.
11812
11813 GCC shouldn't do this; it should just output pointer to member DIEs.
11814 This is GCC PR debug/28767. */
11815
11816 static void
11817 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11818 {
11819 struct type *pfn_type, *domain_type, *new_type;
11820
11821 /* Check for a structure with no name and two children. */
11822 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11823 return;
11824
11825 /* Check for __pfn and __delta members. */
11826 if (TYPE_FIELD_NAME (type, 0) == NULL
11827 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11828 || TYPE_FIELD_NAME (type, 1) == NULL
11829 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11830 return;
11831
11832 /* Find the type of the method. */
11833 pfn_type = TYPE_FIELD_TYPE (type, 0);
11834 if (pfn_type == NULL
11835 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11836 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11837 return;
11838
11839 /* Look for the "this" argument. */
11840 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11841 if (TYPE_NFIELDS (pfn_type) == 0
11842 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11843 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11844 return;
11845
11846 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11847 new_type = alloc_type (objfile);
11848 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11849 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11850 TYPE_VARARGS (pfn_type));
11851 smash_to_methodptr_type (type, new_type);
11852 }
11853
11854 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11855 (icc). */
11856
11857 static int
11858 producer_is_icc (struct dwarf2_cu *cu)
11859 {
11860 if (!cu->checked_producer)
11861 check_producer (cu);
11862
11863 return cu->producer_is_icc;
11864 }
11865
11866 /* Called when we find the DIE that starts a structure or union scope
11867 (definition) to create a type for the structure or union. Fill in
11868 the type's name and general properties; the members will not be
11869 processed until process_structure_scope.
11870
11871 NOTE: we need to call these functions regardless of whether or not the
11872 DIE has a DW_AT_name attribute, since it might be an anonymous
11873 structure or union. This gets the type entered into our set of
11874 user defined types.
11875
11876 However, if the structure is incomplete (an opaque struct/union)
11877 then suppress creating a symbol table entry for it since gdb only
11878 wants to find the one with the complete definition. Note that if
11879 it is complete, we just call new_symbol, which does it's own
11880 checking about whether the struct/union is anonymous or not (and
11881 suppresses creating a symbol table entry itself). */
11882
11883 static struct type *
11884 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11885 {
11886 struct objfile *objfile = cu->objfile;
11887 struct type *type;
11888 struct attribute *attr;
11889 const char *name;
11890
11891 /* If the definition of this type lives in .debug_types, read that type.
11892 Don't follow DW_AT_specification though, that will take us back up
11893 the chain and we want to go down. */
11894 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11895 if (attr)
11896 {
11897 type = get_DW_AT_signature_type (die, attr, cu);
11898
11899 /* The type's CU may not be the same as CU.
11900 Ensure TYPE is recorded with CU in die_type_hash. */
11901 return set_die_type (die, type, cu);
11902 }
11903
11904 type = alloc_type (objfile);
11905 INIT_CPLUS_SPECIFIC (type);
11906
11907 name = dwarf2_name (die, cu);
11908 if (name != NULL)
11909 {
11910 if (cu->language == language_cplus
11911 || cu->language == language_java)
11912 {
11913 const char *full_name = dwarf2_full_name (name, die, cu);
11914
11915 /* dwarf2_full_name might have already finished building the DIE's
11916 type. If so, there is no need to continue. */
11917 if (get_die_type (die, cu) != NULL)
11918 return get_die_type (die, cu);
11919
11920 TYPE_TAG_NAME (type) = full_name;
11921 if (die->tag == DW_TAG_structure_type
11922 || die->tag == DW_TAG_class_type)
11923 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11924 }
11925 else
11926 {
11927 /* The name is already allocated along with this objfile, so
11928 we don't need to duplicate it for the type. */
11929 TYPE_TAG_NAME (type) = name;
11930 if (die->tag == DW_TAG_class_type)
11931 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11932 }
11933 }
11934
11935 if (die->tag == DW_TAG_structure_type)
11936 {
11937 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11938 }
11939 else if (die->tag == DW_TAG_union_type)
11940 {
11941 TYPE_CODE (type) = TYPE_CODE_UNION;
11942 }
11943 else
11944 {
11945 TYPE_CODE (type) = TYPE_CODE_CLASS;
11946 }
11947
11948 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11949 TYPE_DECLARED_CLASS (type) = 1;
11950
11951 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11952 if (attr)
11953 {
11954 TYPE_LENGTH (type) = DW_UNSND (attr);
11955 }
11956 else
11957 {
11958 TYPE_LENGTH (type) = 0;
11959 }
11960
11961 if (producer_is_icc (cu))
11962 {
11963 /* ICC does not output the required DW_AT_declaration
11964 on incomplete types, but gives them a size of zero. */
11965 }
11966 else
11967 TYPE_STUB_SUPPORTED (type) = 1;
11968
11969 if (die_is_declaration (die, cu))
11970 TYPE_STUB (type) = 1;
11971 else if (attr == NULL && die->child == NULL
11972 && producer_is_realview (cu->producer))
11973 /* RealView does not output the required DW_AT_declaration
11974 on incomplete types. */
11975 TYPE_STUB (type) = 1;
11976
11977 /* We need to add the type field to the die immediately so we don't
11978 infinitely recurse when dealing with pointers to the structure
11979 type within the structure itself. */
11980 set_die_type (die, type, cu);
11981
11982 /* set_die_type should be already done. */
11983 set_descriptive_type (type, die, cu);
11984
11985 return type;
11986 }
11987
11988 /* Finish creating a structure or union type, including filling in
11989 its members and creating a symbol for it. */
11990
11991 static void
11992 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11993 {
11994 struct objfile *objfile = cu->objfile;
11995 struct die_info *child_die = die->child;
11996 struct type *type;
11997
11998 type = get_die_type (die, cu);
11999 if (type == NULL)
12000 type = read_structure_type (die, cu);
12001
12002 if (die->child != NULL && ! die_is_declaration (die, cu))
12003 {
12004 struct field_info fi;
12005 struct die_info *child_die;
12006 VEC (symbolp) *template_args = NULL;
12007 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12008
12009 memset (&fi, 0, sizeof (struct field_info));
12010
12011 child_die = die->child;
12012
12013 while (child_die && child_die->tag)
12014 {
12015 if (child_die->tag == DW_TAG_member
12016 || child_die->tag == DW_TAG_variable)
12017 {
12018 /* NOTE: carlton/2002-11-05: A C++ static data member
12019 should be a DW_TAG_member that is a declaration, but
12020 all versions of G++ as of this writing (so through at
12021 least 3.2.1) incorrectly generate DW_TAG_variable
12022 tags for them instead. */
12023 dwarf2_add_field (&fi, child_die, cu);
12024 }
12025 else if (child_die->tag == DW_TAG_subprogram)
12026 {
12027 /* C++ member function. */
12028 dwarf2_add_member_fn (&fi, child_die, type, cu);
12029 }
12030 else if (child_die->tag == DW_TAG_inheritance)
12031 {
12032 /* C++ base class field. */
12033 dwarf2_add_field (&fi, child_die, cu);
12034 }
12035 else if (child_die->tag == DW_TAG_typedef)
12036 dwarf2_add_typedef (&fi, child_die, cu);
12037 else if (child_die->tag == DW_TAG_template_type_param
12038 || child_die->tag == DW_TAG_template_value_param)
12039 {
12040 struct symbol *arg = new_symbol (child_die, NULL, cu);
12041
12042 if (arg != NULL)
12043 VEC_safe_push (symbolp, template_args, arg);
12044 }
12045
12046 child_die = sibling_die (child_die);
12047 }
12048
12049 /* Attach template arguments to type. */
12050 if (! VEC_empty (symbolp, template_args))
12051 {
12052 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12053 TYPE_N_TEMPLATE_ARGUMENTS (type)
12054 = VEC_length (symbolp, template_args);
12055 TYPE_TEMPLATE_ARGUMENTS (type)
12056 = obstack_alloc (&objfile->objfile_obstack,
12057 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12058 * sizeof (struct symbol *)));
12059 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12060 VEC_address (symbolp, template_args),
12061 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12062 * sizeof (struct symbol *)));
12063 VEC_free (symbolp, template_args);
12064 }
12065
12066 /* Attach fields and member functions to the type. */
12067 if (fi.nfields)
12068 dwarf2_attach_fields_to_type (&fi, type, cu);
12069 if (fi.nfnfields)
12070 {
12071 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12072
12073 /* Get the type which refers to the base class (possibly this
12074 class itself) which contains the vtable pointer for the current
12075 class from the DW_AT_containing_type attribute. This use of
12076 DW_AT_containing_type is a GNU extension. */
12077
12078 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12079 {
12080 struct type *t = die_containing_type (die, cu);
12081
12082 TYPE_VPTR_BASETYPE (type) = t;
12083 if (type == t)
12084 {
12085 int i;
12086
12087 /* Our own class provides vtbl ptr. */
12088 for (i = TYPE_NFIELDS (t) - 1;
12089 i >= TYPE_N_BASECLASSES (t);
12090 --i)
12091 {
12092 const char *fieldname = TYPE_FIELD_NAME (t, i);
12093
12094 if (is_vtable_name (fieldname, cu))
12095 {
12096 TYPE_VPTR_FIELDNO (type) = i;
12097 break;
12098 }
12099 }
12100
12101 /* Complain if virtual function table field not found. */
12102 if (i < TYPE_N_BASECLASSES (t))
12103 complaint (&symfile_complaints,
12104 _("virtual function table pointer "
12105 "not found when defining class '%s'"),
12106 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12107 "");
12108 }
12109 else
12110 {
12111 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12112 }
12113 }
12114 else if (cu->producer
12115 && strncmp (cu->producer,
12116 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12117 {
12118 /* The IBM XLC compiler does not provide direct indication
12119 of the containing type, but the vtable pointer is
12120 always named __vfp. */
12121
12122 int i;
12123
12124 for (i = TYPE_NFIELDS (type) - 1;
12125 i >= TYPE_N_BASECLASSES (type);
12126 --i)
12127 {
12128 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12129 {
12130 TYPE_VPTR_FIELDNO (type) = i;
12131 TYPE_VPTR_BASETYPE (type) = type;
12132 break;
12133 }
12134 }
12135 }
12136 }
12137
12138 /* Copy fi.typedef_field_list linked list elements content into the
12139 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12140 if (fi.typedef_field_list)
12141 {
12142 int i = fi.typedef_field_list_count;
12143
12144 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12145 TYPE_TYPEDEF_FIELD_ARRAY (type)
12146 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12147 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12148
12149 /* Reverse the list order to keep the debug info elements order. */
12150 while (--i >= 0)
12151 {
12152 struct typedef_field *dest, *src;
12153
12154 dest = &TYPE_TYPEDEF_FIELD (type, i);
12155 src = &fi.typedef_field_list->field;
12156 fi.typedef_field_list = fi.typedef_field_list->next;
12157 *dest = *src;
12158 }
12159 }
12160
12161 do_cleanups (back_to);
12162
12163 if (HAVE_CPLUS_STRUCT (type))
12164 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12165 }
12166
12167 quirk_gcc_member_function_pointer (type, objfile);
12168
12169 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12170 snapshots) has been known to create a die giving a declaration
12171 for a class that has, as a child, a die giving a definition for a
12172 nested class. So we have to process our children even if the
12173 current die is a declaration. Normally, of course, a declaration
12174 won't have any children at all. */
12175
12176 while (child_die != NULL && child_die->tag)
12177 {
12178 if (child_die->tag == DW_TAG_member
12179 || child_die->tag == DW_TAG_variable
12180 || child_die->tag == DW_TAG_inheritance
12181 || child_die->tag == DW_TAG_template_value_param
12182 || child_die->tag == DW_TAG_template_type_param)
12183 {
12184 /* Do nothing. */
12185 }
12186 else
12187 process_die (child_die, cu);
12188
12189 child_die = sibling_die (child_die);
12190 }
12191
12192 /* Do not consider external references. According to the DWARF standard,
12193 these DIEs are identified by the fact that they have no byte_size
12194 attribute, and a declaration attribute. */
12195 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12196 || !die_is_declaration (die, cu))
12197 new_symbol (die, type, cu);
12198 }
12199
12200 /* Given a DW_AT_enumeration_type die, set its type. We do not
12201 complete the type's fields yet, or create any symbols. */
12202
12203 static struct type *
12204 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12205 {
12206 struct objfile *objfile = cu->objfile;
12207 struct type *type;
12208 struct attribute *attr;
12209 const char *name;
12210
12211 /* If the definition of this type lives in .debug_types, read that type.
12212 Don't follow DW_AT_specification though, that will take us back up
12213 the chain and we want to go down. */
12214 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12215 if (attr)
12216 {
12217 type = get_DW_AT_signature_type (die, attr, cu);
12218
12219 /* The type's CU may not be the same as CU.
12220 Ensure TYPE is recorded with CU in die_type_hash. */
12221 return set_die_type (die, type, cu);
12222 }
12223
12224 type = alloc_type (objfile);
12225
12226 TYPE_CODE (type) = TYPE_CODE_ENUM;
12227 name = dwarf2_full_name (NULL, die, cu);
12228 if (name != NULL)
12229 TYPE_TAG_NAME (type) = name;
12230
12231 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12232 if (attr)
12233 {
12234 TYPE_LENGTH (type) = DW_UNSND (attr);
12235 }
12236 else
12237 {
12238 TYPE_LENGTH (type) = 0;
12239 }
12240
12241 /* The enumeration DIE can be incomplete. In Ada, any type can be
12242 declared as private in the package spec, and then defined only
12243 inside the package body. Such types are known as Taft Amendment
12244 Types. When another package uses such a type, an incomplete DIE
12245 may be generated by the compiler. */
12246 if (die_is_declaration (die, cu))
12247 TYPE_STUB (type) = 1;
12248
12249 return set_die_type (die, type, cu);
12250 }
12251
12252 /* Given a pointer to a die which begins an enumeration, process all
12253 the dies that define the members of the enumeration, and create the
12254 symbol for the enumeration type.
12255
12256 NOTE: We reverse the order of the element list. */
12257
12258 static void
12259 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12260 {
12261 struct type *this_type;
12262
12263 this_type = get_die_type (die, cu);
12264 if (this_type == NULL)
12265 this_type = read_enumeration_type (die, cu);
12266
12267 if (die->child != NULL)
12268 {
12269 struct die_info *child_die;
12270 struct symbol *sym;
12271 struct field *fields = NULL;
12272 int num_fields = 0;
12273 int unsigned_enum = 1;
12274 const char *name;
12275 int flag_enum = 1;
12276 ULONGEST mask = 0;
12277
12278 child_die = die->child;
12279 while (child_die && child_die->tag)
12280 {
12281 if (child_die->tag != DW_TAG_enumerator)
12282 {
12283 process_die (child_die, cu);
12284 }
12285 else
12286 {
12287 name = dwarf2_name (child_die, cu);
12288 if (name)
12289 {
12290 sym = new_symbol (child_die, this_type, cu);
12291 if (SYMBOL_VALUE (sym) < 0)
12292 {
12293 unsigned_enum = 0;
12294 flag_enum = 0;
12295 }
12296 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12297 flag_enum = 0;
12298 else
12299 mask |= SYMBOL_VALUE (sym);
12300
12301 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12302 {
12303 fields = (struct field *)
12304 xrealloc (fields,
12305 (num_fields + DW_FIELD_ALLOC_CHUNK)
12306 * sizeof (struct field));
12307 }
12308
12309 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12310 FIELD_TYPE (fields[num_fields]) = NULL;
12311 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12312 FIELD_BITSIZE (fields[num_fields]) = 0;
12313
12314 num_fields++;
12315 }
12316 }
12317
12318 child_die = sibling_die (child_die);
12319 }
12320
12321 if (num_fields)
12322 {
12323 TYPE_NFIELDS (this_type) = num_fields;
12324 TYPE_FIELDS (this_type) = (struct field *)
12325 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12326 memcpy (TYPE_FIELDS (this_type), fields,
12327 sizeof (struct field) * num_fields);
12328 xfree (fields);
12329 }
12330 if (unsigned_enum)
12331 TYPE_UNSIGNED (this_type) = 1;
12332 if (flag_enum)
12333 TYPE_FLAG_ENUM (this_type) = 1;
12334 }
12335
12336 /* If we are reading an enum from a .debug_types unit, and the enum
12337 is a declaration, and the enum is not the signatured type in the
12338 unit, then we do not want to add a symbol for it. Adding a
12339 symbol would in some cases obscure the true definition of the
12340 enum, giving users an incomplete type when the definition is
12341 actually available. Note that we do not want to do this for all
12342 enums which are just declarations, because C++0x allows forward
12343 enum declarations. */
12344 if (cu->per_cu->is_debug_types
12345 && die_is_declaration (die, cu))
12346 {
12347 struct signatured_type *sig_type;
12348
12349 sig_type = (struct signatured_type *) cu->per_cu;
12350 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12351 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12352 return;
12353 }
12354
12355 new_symbol (die, this_type, cu);
12356 }
12357
12358 /* Extract all information from a DW_TAG_array_type DIE and put it in
12359 the DIE's type field. For now, this only handles one dimensional
12360 arrays. */
12361
12362 static struct type *
12363 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12364 {
12365 struct objfile *objfile = cu->objfile;
12366 struct die_info *child_die;
12367 struct type *type;
12368 struct type *element_type, *range_type, *index_type;
12369 struct type **range_types = NULL;
12370 struct attribute *attr;
12371 int ndim = 0;
12372 struct cleanup *back_to;
12373 const char *name;
12374
12375 element_type = die_type (die, cu);
12376
12377 /* The die_type call above may have already set the type for this DIE. */
12378 type = get_die_type (die, cu);
12379 if (type)
12380 return type;
12381
12382 /* Irix 6.2 native cc creates array types without children for
12383 arrays with unspecified length. */
12384 if (die->child == NULL)
12385 {
12386 index_type = objfile_type (objfile)->builtin_int;
12387 range_type = create_range_type (NULL, index_type, 0, -1);
12388 type = create_array_type (NULL, element_type, range_type);
12389 return set_die_type (die, type, cu);
12390 }
12391
12392 back_to = make_cleanup (null_cleanup, NULL);
12393 child_die = die->child;
12394 while (child_die && child_die->tag)
12395 {
12396 if (child_die->tag == DW_TAG_subrange_type)
12397 {
12398 struct type *child_type = read_type_die (child_die, cu);
12399
12400 if (child_type != NULL)
12401 {
12402 /* The range type was succesfully read. Save it for the
12403 array type creation. */
12404 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12405 {
12406 range_types = (struct type **)
12407 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12408 * sizeof (struct type *));
12409 if (ndim == 0)
12410 make_cleanup (free_current_contents, &range_types);
12411 }
12412 range_types[ndim++] = child_type;
12413 }
12414 }
12415 child_die = sibling_die (child_die);
12416 }
12417
12418 /* Dwarf2 dimensions are output from left to right, create the
12419 necessary array types in backwards order. */
12420
12421 type = element_type;
12422
12423 if (read_array_order (die, cu) == DW_ORD_col_major)
12424 {
12425 int i = 0;
12426
12427 while (i < ndim)
12428 type = create_array_type (NULL, type, range_types[i++]);
12429 }
12430 else
12431 {
12432 while (ndim-- > 0)
12433 type = create_array_type (NULL, type, range_types[ndim]);
12434 }
12435
12436 /* Understand Dwarf2 support for vector types (like they occur on
12437 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12438 array type. This is not part of the Dwarf2/3 standard yet, but a
12439 custom vendor extension. The main difference between a regular
12440 array and the vector variant is that vectors are passed by value
12441 to functions. */
12442 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12443 if (attr)
12444 make_vector_type (type);
12445
12446 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12447 implementation may choose to implement triple vectors using this
12448 attribute. */
12449 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12450 if (attr)
12451 {
12452 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12453 TYPE_LENGTH (type) = DW_UNSND (attr);
12454 else
12455 complaint (&symfile_complaints,
12456 _("DW_AT_byte_size for array type smaller "
12457 "than the total size of elements"));
12458 }
12459
12460 name = dwarf2_name (die, cu);
12461 if (name)
12462 TYPE_NAME (type) = name;
12463
12464 /* Install the type in the die. */
12465 set_die_type (die, type, cu);
12466
12467 /* set_die_type should be already done. */
12468 set_descriptive_type (type, die, cu);
12469
12470 do_cleanups (back_to);
12471
12472 return type;
12473 }
12474
12475 static enum dwarf_array_dim_ordering
12476 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12477 {
12478 struct attribute *attr;
12479
12480 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12481
12482 if (attr) return DW_SND (attr);
12483
12484 /* GNU F77 is a special case, as at 08/2004 array type info is the
12485 opposite order to the dwarf2 specification, but data is still
12486 laid out as per normal fortran.
12487
12488 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12489 version checking. */
12490
12491 if (cu->language == language_fortran
12492 && cu->producer && strstr (cu->producer, "GNU F77"))
12493 {
12494 return DW_ORD_row_major;
12495 }
12496
12497 switch (cu->language_defn->la_array_ordering)
12498 {
12499 case array_column_major:
12500 return DW_ORD_col_major;
12501 case array_row_major:
12502 default:
12503 return DW_ORD_row_major;
12504 };
12505 }
12506
12507 /* Extract all information from a DW_TAG_set_type DIE and put it in
12508 the DIE's type field. */
12509
12510 static struct type *
12511 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12512 {
12513 struct type *domain_type, *set_type;
12514 struct attribute *attr;
12515
12516 domain_type = die_type (die, cu);
12517
12518 /* The die_type call above may have already set the type for this DIE. */
12519 set_type = get_die_type (die, cu);
12520 if (set_type)
12521 return set_type;
12522
12523 set_type = create_set_type (NULL, domain_type);
12524
12525 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12526 if (attr)
12527 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12528
12529 return set_die_type (die, set_type, cu);
12530 }
12531
12532 /* A helper for read_common_block that creates a locexpr baton.
12533 SYM is the symbol which we are marking as computed.
12534 COMMON_DIE is the DIE for the common block.
12535 COMMON_LOC is the location expression attribute for the common
12536 block itself.
12537 MEMBER_LOC is the location expression attribute for the particular
12538 member of the common block that we are processing.
12539 CU is the CU from which the above come. */
12540
12541 static void
12542 mark_common_block_symbol_computed (struct symbol *sym,
12543 struct die_info *common_die,
12544 struct attribute *common_loc,
12545 struct attribute *member_loc,
12546 struct dwarf2_cu *cu)
12547 {
12548 struct objfile *objfile = dwarf2_per_objfile->objfile;
12549 struct dwarf2_locexpr_baton *baton;
12550 gdb_byte *ptr;
12551 unsigned int cu_off;
12552 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12553 LONGEST offset = 0;
12554
12555 gdb_assert (common_loc && member_loc);
12556 gdb_assert (attr_form_is_block (common_loc));
12557 gdb_assert (attr_form_is_block (member_loc)
12558 || attr_form_is_constant (member_loc));
12559
12560 baton = obstack_alloc (&objfile->objfile_obstack,
12561 sizeof (struct dwarf2_locexpr_baton));
12562 baton->per_cu = cu->per_cu;
12563 gdb_assert (baton->per_cu);
12564
12565 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12566
12567 if (attr_form_is_constant (member_loc))
12568 {
12569 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12570 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12571 }
12572 else
12573 baton->size += DW_BLOCK (member_loc)->size;
12574
12575 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12576 baton->data = ptr;
12577
12578 *ptr++ = DW_OP_call4;
12579 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12580 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12581 ptr += 4;
12582
12583 if (attr_form_is_constant (member_loc))
12584 {
12585 *ptr++ = DW_OP_addr;
12586 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12587 ptr += cu->header.addr_size;
12588 }
12589 else
12590 {
12591 /* We have to copy the data here, because DW_OP_call4 will only
12592 use a DW_AT_location attribute. */
12593 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12594 ptr += DW_BLOCK (member_loc)->size;
12595 }
12596
12597 *ptr++ = DW_OP_plus;
12598 gdb_assert (ptr - baton->data == baton->size);
12599
12600 SYMBOL_LOCATION_BATON (sym) = baton;
12601 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12602 }
12603
12604 /* Create appropriate locally-scoped variables for all the
12605 DW_TAG_common_block entries. Also create a struct common_block
12606 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12607 is used to sepate the common blocks name namespace from regular
12608 variable names. */
12609
12610 static void
12611 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12612 {
12613 struct attribute *attr;
12614
12615 attr = dwarf2_attr (die, DW_AT_location, cu);
12616 if (attr)
12617 {
12618 /* Support the .debug_loc offsets. */
12619 if (attr_form_is_block (attr))
12620 {
12621 /* Ok. */
12622 }
12623 else if (attr_form_is_section_offset (attr))
12624 {
12625 dwarf2_complex_location_expr_complaint ();
12626 attr = NULL;
12627 }
12628 else
12629 {
12630 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12631 "common block member");
12632 attr = NULL;
12633 }
12634 }
12635
12636 if (die->child != NULL)
12637 {
12638 struct objfile *objfile = cu->objfile;
12639 struct die_info *child_die;
12640 size_t n_entries = 0, size;
12641 struct common_block *common_block;
12642 struct symbol *sym;
12643
12644 for (child_die = die->child;
12645 child_die && child_die->tag;
12646 child_die = sibling_die (child_die))
12647 ++n_entries;
12648
12649 size = (sizeof (struct common_block)
12650 + (n_entries - 1) * sizeof (struct symbol *));
12651 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12652 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12653 common_block->n_entries = 0;
12654
12655 for (child_die = die->child;
12656 child_die && child_die->tag;
12657 child_die = sibling_die (child_die))
12658 {
12659 /* Create the symbol in the DW_TAG_common_block block in the current
12660 symbol scope. */
12661 sym = new_symbol (child_die, NULL, cu);
12662 if (sym != NULL)
12663 {
12664 struct attribute *member_loc;
12665
12666 common_block->contents[common_block->n_entries++] = sym;
12667
12668 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12669 cu);
12670 if (member_loc)
12671 {
12672 /* GDB has handled this for a long time, but it is
12673 not specified by DWARF. It seems to have been
12674 emitted by gfortran at least as recently as:
12675 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12676 complaint (&symfile_complaints,
12677 _("Variable in common block has "
12678 "DW_AT_data_member_location "
12679 "- DIE at 0x%x [in module %s]"),
12680 child_die->offset.sect_off,
12681 objfile_name (cu->objfile));
12682
12683 if (attr_form_is_section_offset (member_loc))
12684 dwarf2_complex_location_expr_complaint ();
12685 else if (attr_form_is_constant (member_loc)
12686 || attr_form_is_block (member_loc))
12687 {
12688 if (attr)
12689 mark_common_block_symbol_computed (sym, die, attr,
12690 member_loc, cu);
12691 }
12692 else
12693 dwarf2_complex_location_expr_complaint ();
12694 }
12695 }
12696 }
12697
12698 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12699 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12700 }
12701 }
12702
12703 /* Create a type for a C++ namespace. */
12704
12705 static struct type *
12706 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12707 {
12708 struct objfile *objfile = cu->objfile;
12709 const char *previous_prefix, *name;
12710 int is_anonymous;
12711 struct type *type;
12712
12713 /* For extensions, reuse the type of the original namespace. */
12714 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12715 {
12716 struct die_info *ext_die;
12717 struct dwarf2_cu *ext_cu = cu;
12718
12719 ext_die = dwarf2_extension (die, &ext_cu);
12720 type = read_type_die (ext_die, ext_cu);
12721
12722 /* EXT_CU may not be the same as CU.
12723 Ensure TYPE is recorded with CU in die_type_hash. */
12724 return set_die_type (die, type, cu);
12725 }
12726
12727 name = namespace_name (die, &is_anonymous, cu);
12728
12729 /* Now build the name of the current namespace. */
12730
12731 previous_prefix = determine_prefix (die, cu);
12732 if (previous_prefix[0] != '\0')
12733 name = typename_concat (&objfile->objfile_obstack,
12734 previous_prefix, name, 0, cu);
12735
12736 /* Create the type. */
12737 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12738 objfile);
12739 TYPE_NAME (type) = name;
12740 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12741
12742 return set_die_type (die, type, cu);
12743 }
12744
12745 /* Read a C++ namespace. */
12746
12747 static void
12748 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12749 {
12750 struct objfile *objfile = cu->objfile;
12751 int is_anonymous;
12752
12753 /* Add a symbol associated to this if we haven't seen the namespace
12754 before. Also, add a using directive if it's an anonymous
12755 namespace. */
12756
12757 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12758 {
12759 struct type *type;
12760
12761 type = read_type_die (die, cu);
12762 new_symbol (die, type, cu);
12763
12764 namespace_name (die, &is_anonymous, cu);
12765 if (is_anonymous)
12766 {
12767 const char *previous_prefix = determine_prefix (die, cu);
12768
12769 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12770 NULL, NULL, 0, &objfile->objfile_obstack);
12771 }
12772 }
12773
12774 if (die->child != NULL)
12775 {
12776 struct die_info *child_die = die->child;
12777
12778 while (child_die && child_die->tag)
12779 {
12780 process_die (child_die, cu);
12781 child_die = sibling_die (child_die);
12782 }
12783 }
12784 }
12785
12786 /* Read a Fortran module as type. This DIE can be only a declaration used for
12787 imported module. Still we need that type as local Fortran "use ... only"
12788 declaration imports depend on the created type in determine_prefix. */
12789
12790 static struct type *
12791 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12792 {
12793 struct objfile *objfile = cu->objfile;
12794 const char *module_name;
12795 struct type *type;
12796
12797 module_name = dwarf2_name (die, cu);
12798 if (!module_name)
12799 complaint (&symfile_complaints,
12800 _("DW_TAG_module has no name, offset 0x%x"),
12801 die->offset.sect_off);
12802 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12803
12804 /* determine_prefix uses TYPE_TAG_NAME. */
12805 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12806
12807 return set_die_type (die, type, cu);
12808 }
12809
12810 /* Read a Fortran module. */
12811
12812 static void
12813 read_module (struct die_info *die, struct dwarf2_cu *cu)
12814 {
12815 struct die_info *child_die = die->child;
12816
12817 while (child_die && child_die->tag)
12818 {
12819 process_die (child_die, cu);
12820 child_die = sibling_die (child_die);
12821 }
12822 }
12823
12824 /* Return the name of the namespace represented by DIE. Set
12825 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12826 namespace. */
12827
12828 static const char *
12829 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12830 {
12831 struct die_info *current_die;
12832 const char *name = NULL;
12833
12834 /* Loop through the extensions until we find a name. */
12835
12836 for (current_die = die;
12837 current_die != NULL;
12838 current_die = dwarf2_extension (die, &cu))
12839 {
12840 name = dwarf2_name (current_die, cu);
12841 if (name != NULL)
12842 break;
12843 }
12844
12845 /* Is it an anonymous namespace? */
12846
12847 *is_anonymous = (name == NULL);
12848 if (*is_anonymous)
12849 name = CP_ANONYMOUS_NAMESPACE_STR;
12850
12851 return name;
12852 }
12853
12854 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12855 the user defined type vector. */
12856
12857 static struct type *
12858 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12859 {
12860 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12861 struct comp_unit_head *cu_header = &cu->header;
12862 struct type *type;
12863 struct attribute *attr_byte_size;
12864 struct attribute *attr_address_class;
12865 int byte_size, addr_class;
12866 struct type *target_type;
12867
12868 target_type = die_type (die, cu);
12869
12870 /* The die_type call above may have already set the type for this DIE. */
12871 type = get_die_type (die, cu);
12872 if (type)
12873 return type;
12874
12875 type = lookup_pointer_type (target_type);
12876
12877 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12878 if (attr_byte_size)
12879 byte_size = DW_UNSND (attr_byte_size);
12880 else
12881 byte_size = cu_header->addr_size;
12882
12883 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12884 if (attr_address_class)
12885 addr_class = DW_UNSND (attr_address_class);
12886 else
12887 addr_class = DW_ADDR_none;
12888
12889 /* If the pointer size or address class is different than the
12890 default, create a type variant marked as such and set the
12891 length accordingly. */
12892 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12893 {
12894 if (gdbarch_address_class_type_flags_p (gdbarch))
12895 {
12896 int type_flags;
12897
12898 type_flags = gdbarch_address_class_type_flags
12899 (gdbarch, byte_size, addr_class);
12900 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12901 == 0);
12902 type = make_type_with_address_space (type, type_flags);
12903 }
12904 else if (TYPE_LENGTH (type) != byte_size)
12905 {
12906 complaint (&symfile_complaints,
12907 _("invalid pointer size %d"), byte_size);
12908 }
12909 else
12910 {
12911 /* Should we also complain about unhandled address classes? */
12912 }
12913 }
12914
12915 TYPE_LENGTH (type) = byte_size;
12916 return set_die_type (die, type, cu);
12917 }
12918
12919 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12920 the user defined type vector. */
12921
12922 static struct type *
12923 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12924 {
12925 struct type *type;
12926 struct type *to_type;
12927 struct type *domain;
12928
12929 to_type = die_type (die, cu);
12930 domain = die_containing_type (die, cu);
12931
12932 /* The calls above may have already set the type for this DIE. */
12933 type = get_die_type (die, cu);
12934 if (type)
12935 return type;
12936
12937 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12938 type = lookup_methodptr_type (to_type);
12939 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12940 {
12941 struct type *new_type = alloc_type (cu->objfile);
12942
12943 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12944 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12945 TYPE_VARARGS (to_type));
12946 type = lookup_methodptr_type (new_type);
12947 }
12948 else
12949 type = lookup_memberptr_type (to_type, domain);
12950
12951 return set_die_type (die, type, cu);
12952 }
12953
12954 /* Extract all information from a DW_TAG_reference_type DIE and add to
12955 the user defined type vector. */
12956
12957 static struct type *
12958 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12959 {
12960 struct comp_unit_head *cu_header = &cu->header;
12961 struct type *type, *target_type;
12962 struct attribute *attr;
12963
12964 target_type = die_type (die, cu);
12965
12966 /* The die_type call above may have already set the type for this DIE. */
12967 type = get_die_type (die, cu);
12968 if (type)
12969 return type;
12970
12971 type = lookup_reference_type (target_type);
12972 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12973 if (attr)
12974 {
12975 TYPE_LENGTH (type) = DW_UNSND (attr);
12976 }
12977 else
12978 {
12979 TYPE_LENGTH (type) = cu_header->addr_size;
12980 }
12981 return set_die_type (die, type, cu);
12982 }
12983
12984 static struct type *
12985 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12986 {
12987 struct type *base_type, *cv_type;
12988
12989 base_type = die_type (die, cu);
12990
12991 /* The die_type call above may have already set the type for this DIE. */
12992 cv_type = get_die_type (die, cu);
12993 if (cv_type)
12994 return cv_type;
12995
12996 /* In case the const qualifier is applied to an array type, the element type
12997 is so qualified, not the array type (section 6.7.3 of C99). */
12998 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12999 {
13000 struct type *el_type, *inner_array;
13001
13002 base_type = copy_type (base_type);
13003 inner_array = base_type;
13004
13005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13006 {
13007 TYPE_TARGET_TYPE (inner_array) =
13008 copy_type (TYPE_TARGET_TYPE (inner_array));
13009 inner_array = TYPE_TARGET_TYPE (inner_array);
13010 }
13011
13012 el_type = TYPE_TARGET_TYPE (inner_array);
13013 TYPE_TARGET_TYPE (inner_array) =
13014 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13015
13016 return set_die_type (die, base_type, cu);
13017 }
13018
13019 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13020 return set_die_type (die, cv_type, cu);
13021 }
13022
13023 static struct type *
13024 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
13025 {
13026 struct type *base_type, *cv_type;
13027
13028 base_type = die_type (die, cu);
13029
13030 /* The die_type call above may have already set the type for this DIE. */
13031 cv_type = get_die_type (die, cu);
13032 if (cv_type)
13033 return cv_type;
13034
13035 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
13036 return set_die_type (die, cv_type, cu);
13037 }
13038
13039 /* Handle DW_TAG_restrict_type. */
13040
13041 static struct type *
13042 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
13043 {
13044 struct type *base_type, *cv_type;
13045
13046 base_type = die_type (die, cu);
13047
13048 /* The die_type call above may have already set the type for this DIE. */
13049 cv_type = get_die_type (die, cu);
13050 if (cv_type)
13051 return cv_type;
13052
13053 cv_type = make_restrict_type (base_type);
13054 return set_die_type (die, cv_type, cu);
13055 }
13056
13057 /* Extract all information from a DW_TAG_string_type DIE and add to
13058 the user defined type vector. It isn't really a user defined type,
13059 but it behaves like one, with other DIE's using an AT_user_def_type
13060 attribute to reference it. */
13061
13062 static struct type *
13063 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
13064 {
13065 struct objfile *objfile = cu->objfile;
13066 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13067 struct type *type, *range_type, *index_type, *char_type;
13068 struct attribute *attr;
13069 unsigned int length;
13070
13071 attr = dwarf2_attr (die, DW_AT_string_length, cu);
13072 if (attr)
13073 {
13074 length = DW_UNSND (attr);
13075 }
13076 else
13077 {
13078 /* Check for the DW_AT_byte_size attribute. */
13079 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13080 if (attr)
13081 {
13082 length = DW_UNSND (attr);
13083 }
13084 else
13085 {
13086 length = 1;
13087 }
13088 }
13089
13090 index_type = objfile_type (objfile)->builtin_int;
13091 range_type = create_range_type (NULL, index_type, 1, length);
13092 char_type = language_string_char_type (cu->language_defn, gdbarch);
13093 type = create_string_type (NULL, char_type, range_type);
13094
13095 return set_die_type (die, type, cu);
13096 }
13097
13098 /* Assuming that DIE corresponds to a function, returns nonzero
13099 if the function is prototyped. */
13100
13101 static int
13102 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13103 {
13104 struct attribute *attr;
13105
13106 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13107 if (attr && (DW_UNSND (attr) != 0))
13108 return 1;
13109
13110 /* The DWARF standard implies that the DW_AT_prototyped attribute
13111 is only meaninful for C, but the concept also extends to other
13112 languages that allow unprototyped functions (Eg: Objective C).
13113 For all other languages, assume that functions are always
13114 prototyped. */
13115 if (cu->language != language_c
13116 && cu->language != language_objc
13117 && cu->language != language_opencl)
13118 return 1;
13119
13120 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13121 prototyped and unprototyped functions; default to prototyped,
13122 since that is more common in modern code (and RealView warns
13123 about unprototyped functions). */
13124 if (producer_is_realview (cu->producer))
13125 return 1;
13126
13127 return 0;
13128 }
13129
13130 /* Handle DIES due to C code like:
13131
13132 struct foo
13133 {
13134 int (*funcp)(int a, long l);
13135 int b;
13136 };
13137
13138 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13139
13140 static struct type *
13141 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13142 {
13143 struct objfile *objfile = cu->objfile;
13144 struct type *type; /* Type that this function returns. */
13145 struct type *ftype; /* Function that returns above type. */
13146 struct attribute *attr;
13147
13148 type = die_type (die, cu);
13149
13150 /* The die_type call above may have already set the type for this DIE. */
13151 ftype = get_die_type (die, cu);
13152 if (ftype)
13153 return ftype;
13154
13155 ftype = lookup_function_type (type);
13156
13157 if (prototyped_function_p (die, cu))
13158 TYPE_PROTOTYPED (ftype) = 1;
13159
13160 /* Store the calling convention in the type if it's available in
13161 the subroutine die. Otherwise set the calling convention to
13162 the default value DW_CC_normal. */
13163 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13164 if (attr)
13165 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13166 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13167 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13168 else
13169 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13170
13171 /* We need to add the subroutine type to the die immediately so
13172 we don't infinitely recurse when dealing with parameters
13173 declared as the same subroutine type. */
13174 set_die_type (die, ftype, cu);
13175
13176 if (die->child != NULL)
13177 {
13178 struct type *void_type = objfile_type (objfile)->builtin_void;
13179 struct die_info *child_die;
13180 int nparams, iparams;
13181
13182 /* Count the number of parameters.
13183 FIXME: GDB currently ignores vararg functions, but knows about
13184 vararg member functions. */
13185 nparams = 0;
13186 child_die = die->child;
13187 while (child_die && child_die->tag)
13188 {
13189 if (child_die->tag == DW_TAG_formal_parameter)
13190 nparams++;
13191 else if (child_die->tag == DW_TAG_unspecified_parameters)
13192 TYPE_VARARGS (ftype) = 1;
13193 child_die = sibling_die (child_die);
13194 }
13195
13196 /* Allocate storage for parameters and fill them in. */
13197 TYPE_NFIELDS (ftype) = nparams;
13198 TYPE_FIELDS (ftype) = (struct field *)
13199 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13200
13201 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13202 even if we error out during the parameters reading below. */
13203 for (iparams = 0; iparams < nparams; iparams++)
13204 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13205
13206 iparams = 0;
13207 child_die = die->child;
13208 while (child_die && child_die->tag)
13209 {
13210 if (child_die->tag == DW_TAG_formal_parameter)
13211 {
13212 struct type *arg_type;
13213
13214 /* DWARF version 2 has no clean way to discern C++
13215 static and non-static member functions. G++ helps
13216 GDB by marking the first parameter for non-static
13217 member functions (which is the this pointer) as
13218 artificial. We pass this information to
13219 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13220
13221 DWARF version 3 added DW_AT_object_pointer, which GCC
13222 4.5 does not yet generate. */
13223 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13224 if (attr)
13225 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13226 else
13227 {
13228 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13229
13230 /* GCC/43521: In java, the formal parameter
13231 "this" is sometimes not marked with DW_AT_artificial. */
13232 if (cu->language == language_java)
13233 {
13234 const char *name = dwarf2_name (child_die, cu);
13235
13236 if (name && !strcmp (name, "this"))
13237 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13238 }
13239 }
13240 arg_type = die_type (child_die, cu);
13241
13242 /* RealView does not mark THIS as const, which the testsuite
13243 expects. GCC marks THIS as const in method definitions,
13244 but not in the class specifications (GCC PR 43053). */
13245 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13246 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13247 {
13248 int is_this = 0;
13249 struct dwarf2_cu *arg_cu = cu;
13250 const char *name = dwarf2_name (child_die, cu);
13251
13252 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13253 if (attr)
13254 {
13255 /* If the compiler emits this, use it. */
13256 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13257 is_this = 1;
13258 }
13259 else if (name && strcmp (name, "this") == 0)
13260 /* Function definitions will have the argument names. */
13261 is_this = 1;
13262 else if (name == NULL && iparams == 0)
13263 /* Declarations may not have the names, so like
13264 elsewhere in GDB, assume an artificial first
13265 argument is "this". */
13266 is_this = 1;
13267
13268 if (is_this)
13269 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13270 arg_type, 0);
13271 }
13272
13273 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13274 iparams++;
13275 }
13276 child_die = sibling_die (child_die);
13277 }
13278 }
13279
13280 return ftype;
13281 }
13282
13283 static struct type *
13284 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13285 {
13286 struct objfile *objfile = cu->objfile;
13287 const char *name = NULL;
13288 struct type *this_type, *target_type;
13289
13290 name = dwarf2_full_name (NULL, die, cu);
13291 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13292 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13293 TYPE_NAME (this_type) = name;
13294 set_die_type (die, this_type, cu);
13295 target_type = die_type (die, cu);
13296 if (target_type != this_type)
13297 TYPE_TARGET_TYPE (this_type) = target_type;
13298 else
13299 {
13300 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13301 spec and cause infinite loops in GDB. */
13302 complaint (&symfile_complaints,
13303 _("Self-referential DW_TAG_typedef "
13304 "- DIE at 0x%x [in module %s]"),
13305 die->offset.sect_off, objfile_name (objfile));
13306 TYPE_TARGET_TYPE (this_type) = NULL;
13307 }
13308 return this_type;
13309 }
13310
13311 /* Find a representation of a given base type and install
13312 it in the TYPE field of the die. */
13313
13314 static struct type *
13315 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13316 {
13317 struct objfile *objfile = cu->objfile;
13318 struct type *type;
13319 struct attribute *attr;
13320 int encoding = 0, size = 0;
13321 const char *name;
13322 enum type_code code = TYPE_CODE_INT;
13323 int type_flags = 0;
13324 struct type *target_type = NULL;
13325
13326 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13327 if (attr)
13328 {
13329 encoding = DW_UNSND (attr);
13330 }
13331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13332 if (attr)
13333 {
13334 size = DW_UNSND (attr);
13335 }
13336 name = dwarf2_name (die, cu);
13337 if (!name)
13338 {
13339 complaint (&symfile_complaints,
13340 _("DW_AT_name missing from DW_TAG_base_type"));
13341 }
13342
13343 switch (encoding)
13344 {
13345 case DW_ATE_address:
13346 /* Turn DW_ATE_address into a void * pointer. */
13347 code = TYPE_CODE_PTR;
13348 type_flags |= TYPE_FLAG_UNSIGNED;
13349 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13350 break;
13351 case DW_ATE_boolean:
13352 code = TYPE_CODE_BOOL;
13353 type_flags |= TYPE_FLAG_UNSIGNED;
13354 break;
13355 case DW_ATE_complex_float:
13356 code = TYPE_CODE_COMPLEX;
13357 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13358 break;
13359 case DW_ATE_decimal_float:
13360 code = TYPE_CODE_DECFLOAT;
13361 break;
13362 case DW_ATE_float:
13363 code = TYPE_CODE_FLT;
13364 break;
13365 case DW_ATE_signed:
13366 break;
13367 case DW_ATE_unsigned:
13368 type_flags |= TYPE_FLAG_UNSIGNED;
13369 if (cu->language == language_fortran
13370 && name
13371 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13372 code = TYPE_CODE_CHAR;
13373 break;
13374 case DW_ATE_signed_char:
13375 if (cu->language == language_ada || cu->language == language_m2
13376 || cu->language == language_pascal
13377 || cu->language == language_fortran)
13378 code = TYPE_CODE_CHAR;
13379 break;
13380 case DW_ATE_unsigned_char:
13381 if (cu->language == language_ada || cu->language == language_m2
13382 || cu->language == language_pascal
13383 || cu->language == language_fortran)
13384 code = TYPE_CODE_CHAR;
13385 type_flags |= TYPE_FLAG_UNSIGNED;
13386 break;
13387 case DW_ATE_UTF:
13388 /* We just treat this as an integer and then recognize the
13389 type by name elsewhere. */
13390 break;
13391
13392 default:
13393 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13394 dwarf_type_encoding_name (encoding));
13395 break;
13396 }
13397
13398 type = init_type (code, size, type_flags, NULL, objfile);
13399 TYPE_NAME (type) = name;
13400 TYPE_TARGET_TYPE (type) = target_type;
13401
13402 if (name && strcmp (name, "char") == 0)
13403 TYPE_NOSIGN (type) = 1;
13404
13405 return set_die_type (die, type, cu);
13406 }
13407
13408 /* Read the given DW_AT_subrange DIE. */
13409
13410 static struct type *
13411 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13412 {
13413 struct type *base_type, *orig_base_type;
13414 struct type *range_type;
13415 struct attribute *attr;
13416 LONGEST low, high;
13417 int low_default_is_valid;
13418 const char *name;
13419 LONGEST negative_mask;
13420
13421 orig_base_type = die_type (die, cu);
13422 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13423 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13424 creating the range type, but we use the result of check_typedef
13425 when examining properties of the type. */
13426 base_type = check_typedef (orig_base_type);
13427
13428 /* The die_type call above may have already set the type for this DIE. */
13429 range_type = get_die_type (die, cu);
13430 if (range_type)
13431 return range_type;
13432
13433 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13434 omitting DW_AT_lower_bound. */
13435 switch (cu->language)
13436 {
13437 case language_c:
13438 case language_cplus:
13439 low = 0;
13440 low_default_is_valid = 1;
13441 break;
13442 case language_fortran:
13443 low = 1;
13444 low_default_is_valid = 1;
13445 break;
13446 case language_d:
13447 case language_java:
13448 case language_objc:
13449 low = 0;
13450 low_default_is_valid = (cu->header.version >= 4);
13451 break;
13452 case language_ada:
13453 case language_m2:
13454 case language_pascal:
13455 low = 1;
13456 low_default_is_valid = (cu->header.version >= 4);
13457 break;
13458 default:
13459 low = 0;
13460 low_default_is_valid = 0;
13461 break;
13462 }
13463
13464 /* FIXME: For variable sized arrays either of these could be
13465 a variable rather than a constant value. We'll allow it,
13466 but we don't know how to handle it. */
13467 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13468 if (attr)
13469 low = dwarf2_get_attr_constant_value (attr, low);
13470 else if (!low_default_is_valid)
13471 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13472 "- DIE at 0x%x [in module %s]"),
13473 die->offset.sect_off, objfile_name (cu->objfile));
13474
13475 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13476 if (attr)
13477 {
13478 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
13479 {
13480 /* GCC encodes arrays with unspecified or dynamic length
13481 with a DW_FORM_block1 attribute or a reference attribute.
13482 FIXME: GDB does not yet know how to handle dynamic
13483 arrays properly, treat them as arrays with unspecified
13484 length for now.
13485
13486 FIXME: jimb/2003-09-22: GDB does not really know
13487 how to handle arrays of unspecified length
13488 either; we just represent them as zero-length
13489 arrays. Choose an appropriate upper bound given
13490 the lower bound we've computed above. */
13491 high = low - 1;
13492 }
13493 else
13494 high = dwarf2_get_attr_constant_value (attr, 1);
13495 }
13496 else
13497 {
13498 attr = dwarf2_attr (die, DW_AT_count, cu);
13499 if (attr)
13500 {
13501 int count = dwarf2_get_attr_constant_value (attr, 1);
13502 high = low + count - 1;
13503 }
13504 else
13505 {
13506 /* Unspecified array length. */
13507 high = low - 1;
13508 }
13509 }
13510
13511 /* Dwarf-2 specifications explicitly allows to create subrange types
13512 without specifying a base type.
13513 In that case, the base type must be set to the type of
13514 the lower bound, upper bound or count, in that order, if any of these
13515 three attributes references an object that has a type.
13516 If no base type is found, the Dwarf-2 specifications say that
13517 a signed integer type of size equal to the size of an address should
13518 be used.
13519 For the following C code: `extern char gdb_int [];'
13520 GCC produces an empty range DIE.
13521 FIXME: muller/2010-05-28: Possible references to object for low bound,
13522 high bound or count are not yet handled by this code. */
13523 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13524 {
13525 struct objfile *objfile = cu->objfile;
13526 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13527 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13528 struct type *int_type = objfile_type (objfile)->builtin_int;
13529
13530 /* Test "int", "long int", and "long long int" objfile types,
13531 and select the first one having a size above or equal to the
13532 architecture address size. */
13533 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13534 base_type = int_type;
13535 else
13536 {
13537 int_type = objfile_type (objfile)->builtin_long;
13538 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13539 base_type = int_type;
13540 else
13541 {
13542 int_type = objfile_type (objfile)->builtin_long_long;
13543 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13544 base_type = int_type;
13545 }
13546 }
13547 }
13548
13549 negative_mask =
13550 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13551 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13552 low |= negative_mask;
13553 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13554 high |= negative_mask;
13555
13556 range_type = create_range_type (NULL, orig_base_type, low, high);
13557
13558 /* Mark arrays with dynamic length at least as an array of unspecified
13559 length. GDB could check the boundary but before it gets implemented at
13560 least allow accessing the array elements. */
13561 if (attr && attr_form_is_block (attr))
13562 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13563
13564 /* Ada expects an empty array on no boundary attributes. */
13565 if (attr == NULL && cu->language != language_ada)
13566 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13567
13568 name = dwarf2_name (die, cu);
13569 if (name)
13570 TYPE_NAME (range_type) = name;
13571
13572 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13573 if (attr)
13574 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13575
13576 set_die_type (die, range_type, cu);
13577
13578 /* set_die_type should be already done. */
13579 set_descriptive_type (range_type, die, cu);
13580
13581 return range_type;
13582 }
13583
13584 static struct type *
13585 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13586 {
13587 struct type *type;
13588
13589 /* For now, we only support the C meaning of an unspecified type: void. */
13590
13591 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13592 TYPE_NAME (type) = dwarf2_name (die, cu);
13593
13594 return set_die_type (die, type, cu);
13595 }
13596
13597 /* Read a single die and all its descendents. Set the die's sibling
13598 field to NULL; set other fields in the die correctly, and set all
13599 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13600 location of the info_ptr after reading all of those dies. PARENT
13601 is the parent of the die in question. */
13602
13603 static struct die_info *
13604 read_die_and_children (const struct die_reader_specs *reader,
13605 const gdb_byte *info_ptr,
13606 const gdb_byte **new_info_ptr,
13607 struct die_info *parent)
13608 {
13609 struct die_info *die;
13610 const gdb_byte *cur_ptr;
13611 int has_children;
13612
13613 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13614 if (die == NULL)
13615 {
13616 *new_info_ptr = cur_ptr;
13617 return NULL;
13618 }
13619 store_in_ref_table (die, reader->cu);
13620
13621 if (has_children)
13622 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13623 else
13624 {
13625 die->child = NULL;
13626 *new_info_ptr = cur_ptr;
13627 }
13628
13629 die->sibling = NULL;
13630 die->parent = parent;
13631 return die;
13632 }
13633
13634 /* Read a die, all of its descendents, and all of its siblings; set
13635 all of the fields of all of the dies correctly. Arguments are as
13636 in read_die_and_children. */
13637
13638 static struct die_info *
13639 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13640 const gdb_byte *info_ptr,
13641 const gdb_byte **new_info_ptr,
13642 struct die_info *parent)
13643 {
13644 struct die_info *first_die, *last_sibling;
13645 const gdb_byte *cur_ptr;
13646
13647 cur_ptr = info_ptr;
13648 first_die = last_sibling = NULL;
13649
13650 while (1)
13651 {
13652 struct die_info *die
13653 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13654
13655 if (die == NULL)
13656 {
13657 *new_info_ptr = cur_ptr;
13658 return first_die;
13659 }
13660
13661 if (!first_die)
13662 first_die = die;
13663 else
13664 last_sibling->sibling = die;
13665
13666 last_sibling = die;
13667 }
13668 }
13669
13670 /* Read a die, all of its descendents, and all of its siblings; set
13671 all of the fields of all of the dies correctly. Arguments are as
13672 in read_die_and_children.
13673 This the main entry point for reading a DIE and all its children. */
13674
13675 static struct die_info *
13676 read_die_and_siblings (const struct die_reader_specs *reader,
13677 const gdb_byte *info_ptr,
13678 const gdb_byte **new_info_ptr,
13679 struct die_info *parent)
13680 {
13681 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13682 new_info_ptr, parent);
13683
13684 if (dwarf2_die_debug)
13685 {
13686 fprintf_unfiltered (gdb_stdlog,
13687 "Read die from %s@0x%x of %s:\n",
13688 bfd_section_name (reader->abfd,
13689 reader->die_section->asection),
13690 (unsigned) (info_ptr - reader->die_section->buffer),
13691 bfd_get_filename (reader->abfd));
13692 dump_die (die, dwarf2_die_debug);
13693 }
13694
13695 return die;
13696 }
13697
13698 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13699 attributes.
13700 The caller is responsible for filling in the extra attributes
13701 and updating (*DIEP)->num_attrs.
13702 Set DIEP to point to a newly allocated die with its information,
13703 except for its child, sibling, and parent fields.
13704 Set HAS_CHILDREN to tell whether the die has children or not. */
13705
13706 static const gdb_byte *
13707 read_full_die_1 (const struct die_reader_specs *reader,
13708 struct die_info **diep, const gdb_byte *info_ptr,
13709 int *has_children, int num_extra_attrs)
13710 {
13711 unsigned int abbrev_number, bytes_read, i;
13712 sect_offset offset;
13713 struct abbrev_info *abbrev;
13714 struct die_info *die;
13715 struct dwarf2_cu *cu = reader->cu;
13716 bfd *abfd = reader->abfd;
13717
13718 offset.sect_off = info_ptr - reader->buffer;
13719 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13720 info_ptr += bytes_read;
13721 if (!abbrev_number)
13722 {
13723 *diep = NULL;
13724 *has_children = 0;
13725 return info_ptr;
13726 }
13727
13728 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13729 if (!abbrev)
13730 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13731 abbrev_number,
13732 bfd_get_filename (abfd));
13733
13734 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13735 die->offset = offset;
13736 die->tag = abbrev->tag;
13737 die->abbrev = abbrev_number;
13738
13739 /* Make the result usable.
13740 The caller needs to update num_attrs after adding the extra
13741 attributes. */
13742 die->num_attrs = abbrev->num_attrs;
13743
13744 for (i = 0; i < abbrev->num_attrs; ++i)
13745 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13746 info_ptr);
13747
13748 *diep = die;
13749 *has_children = abbrev->has_children;
13750 return info_ptr;
13751 }
13752
13753 /* Read a die and all its attributes.
13754 Set DIEP to point to a newly allocated die with its information,
13755 except for its child, sibling, and parent fields.
13756 Set HAS_CHILDREN to tell whether the die has children or not. */
13757
13758 static const gdb_byte *
13759 read_full_die (const struct die_reader_specs *reader,
13760 struct die_info **diep, const gdb_byte *info_ptr,
13761 int *has_children)
13762 {
13763 const gdb_byte *result;
13764
13765 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13766
13767 if (dwarf2_die_debug)
13768 {
13769 fprintf_unfiltered (gdb_stdlog,
13770 "Read die from %s@0x%x of %s:\n",
13771 bfd_section_name (reader->abfd,
13772 reader->die_section->asection),
13773 (unsigned) (info_ptr - reader->die_section->buffer),
13774 bfd_get_filename (reader->abfd));
13775 dump_die (*diep, dwarf2_die_debug);
13776 }
13777
13778 return result;
13779 }
13780 \f
13781 /* Abbreviation tables.
13782
13783 In DWARF version 2, the description of the debugging information is
13784 stored in a separate .debug_abbrev section. Before we read any
13785 dies from a section we read in all abbreviations and install them
13786 in a hash table. */
13787
13788 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13789
13790 static struct abbrev_info *
13791 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13792 {
13793 struct abbrev_info *abbrev;
13794
13795 abbrev = (struct abbrev_info *)
13796 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13797 memset (abbrev, 0, sizeof (struct abbrev_info));
13798 return abbrev;
13799 }
13800
13801 /* Add an abbreviation to the table. */
13802
13803 static void
13804 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13805 unsigned int abbrev_number,
13806 struct abbrev_info *abbrev)
13807 {
13808 unsigned int hash_number;
13809
13810 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13811 abbrev->next = abbrev_table->abbrevs[hash_number];
13812 abbrev_table->abbrevs[hash_number] = abbrev;
13813 }
13814
13815 /* Look up an abbrev in the table.
13816 Returns NULL if the abbrev is not found. */
13817
13818 static struct abbrev_info *
13819 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13820 unsigned int abbrev_number)
13821 {
13822 unsigned int hash_number;
13823 struct abbrev_info *abbrev;
13824
13825 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13826 abbrev = abbrev_table->abbrevs[hash_number];
13827
13828 while (abbrev)
13829 {
13830 if (abbrev->number == abbrev_number)
13831 return abbrev;
13832 abbrev = abbrev->next;
13833 }
13834 return NULL;
13835 }
13836
13837 /* Read in an abbrev table. */
13838
13839 static struct abbrev_table *
13840 abbrev_table_read_table (struct dwarf2_section_info *section,
13841 sect_offset offset)
13842 {
13843 struct objfile *objfile = dwarf2_per_objfile->objfile;
13844 bfd *abfd = section->asection->owner;
13845 struct abbrev_table *abbrev_table;
13846 const gdb_byte *abbrev_ptr;
13847 struct abbrev_info *cur_abbrev;
13848 unsigned int abbrev_number, bytes_read, abbrev_name;
13849 unsigned int abbrev_form;
13850 struct attr_abbrev *cur_attrs;
13851 unsigned int allocated_attrs;
13852
13853 abbrev_table = XMALLOC (struct abbrev_table);
13854 abbrev_table->offset = offset;
13855 obstack_init (&abbrev_table->abbrev_obstack);
13856 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13857 (ABBREV_HASH_SIZE
13858 * sizeof (struct abbrev_info *)));
13859 memset (abbrev_table->abbrevs, 0,
13860 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13861
13862 dwarf2_read_section (objfile, section);
13863 abbrev_ptr = section->buffer + offset.sect_off;
13864 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13865 abbrev_ptr += bytes_read;
13866
13867 allocated_attrs = ATTR_ALLOC_CHUNK;
13868 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13869
13870 /* Loop until we reach an abbrev number of 0. */
13871 while (abbrev_number)
13872 {
13873 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13874
13875 /* read in abbrev header */
13876 cur_abbrev->number = abbrev_number;
13877 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13878 abbrev_ptr += bytes_read;
13879 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13880 abbrev_ptr += 1;
13881
13882 /* now read in declarations */
13883 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13884 abbrev_ptr += bytes_read;
13885 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13886 abbrev_ptr += bytes_read;
13887 while (abbrev_name)
13888 {
13889 if (cur_abbrev->num_attrs == allocated_attrs)
13890 {
13891 allocated_attrs += ATTR_ALLOC_CHUNK;
13892 cur_attrs
13893 = xrealloc (cur_attrs, (allocated_attrs
13894 * sizeof (struct attr_abbrev)));
13895 }
13896
13897 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13898 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13899 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13900 abbrev_ptr += bytes_read;
13901 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13902 abbrev_ptr += bytes_read;
13903 }
13904
13905 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13906 (cur_abbrev->num_attrs
13907 * sizeof (struct attr_abbrev)));
13908 memcpy (cur_abbrev->attrs, cur_attrs,
13909 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13910
13911 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13912
13913 /* Get next abbreviation.
13914 Under Irix6 the abbreviations for a compilation unit are not
13915 always properly terminated with an abbrev number of 0.
13916 Exit loop if we encounter an abbreviation which we have
13917 already read (which means we are about to read the abbreviations
13918 for the next compile unit) or if the end of the abbreviation
13919 table is reached. */
13920 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13921 break;
13922 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13923 abbrev_ptr += bytes_read;
13924 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13925 break;
13926 }
13927
13928 xfree (cur_attrs);
13929 return abbrev_table;
13930 }
13931
13932 /* Free the resources held by ABBREV_TABLE. */
13933
13934 static void
13935 abbrev_table_free (struct abbrev_table *abbrev_table)
13936 {
13937 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13938 xfree (abbrev_table);
13939 }
13940
13941 /* Same as abbrev_table_free but as a cleanup.
13942 We pass in a pointer to the pointer to the table so that we can
13943 set the pointer to NULL when we're done. It also simplifies
13944 build_type_unit_groups. */
13945
13946 static void
13947 abbrev_table_free_cleanup (void *table_ptr)
13948 {
13949 struct abbrev_table **abbrev_table_ptr = table_ptr;
13950
13951 if (*abbrev_table_ptr != NULL)
13952 abbrev_table_free (*abbrev_table_ptr);
13953 *abbrev_table_ptr = NULL;
13954 }
13955
13956 /* Read the abbrev table for CU from ABBREV_SECTION. */
13957
13958 static void
13959 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13960 struct dwarf2_section_info *abbrev_section)
13961 {
13962 cu->abbrev_table =
13963 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13964 }
13965
13966 /* Release the memory used by the abbrev table for a compilation unit. */
13967
13968 static void
13969 dwarf2_free_abbrev_table (void *ptr_to_cu)
13970 {
13971 struct dwarf2_cu *cu = ptr_to_cu;
13972
13973 if (cu->abbrev_table != NULL)
13974 abbrev_table_free (cu->abbrev_table);
13975 /* Set this to NULL so that we SEGV if we try to read it later,
13976 and also because free_comp_unit verifies this is NULL. */
13977 cu->abbrev_table = NULL;
13978 }
13979 \f
13980 /* Returns nonzero if TAG represents a type that we might generate a partial
13981 symbol for. */
13982
13983 static int
13984 is_type_tag_for_partial (int tag)
13985 {
13986 switch (tag)
13987 {
13988 #if 0
13989 /* Some types that would be reasonable to generate partial symbols for,
13990 that we don't at present. */
13991 case DW_TAG_array_type:
13992 case DW_TAG_file_type:
13993 case DW_TAG_ptr_to_member_type:
13994 case DW_TAG_set_type:
13995 case DW_TAG_string_type:
13996 case DW_TAG_subroutine_type:
13997 #endif
13998 case DW_TAG_base_type:
13999 case DW_TAG_class_type:
14000 case DW_TAG_interface_type:
14001 case DW_TAG_enumeration_type:
14002 case DW_TAG_structure_type:
14003 case DW_TAG_subrange_type:
14004 case DW_TAG_typedef:
14005 case DW_TAG_union_type:
14006 return 1;
14007 default:
14008 return 0;
14009 }
14010 }
14011
14012 /* Load all DIEs that are interesting for partial symbols into memory. */
14013
14014 static struct partial_die_info *
14015 load_partial_dies (const struct die_reader_specs *reader,
14016 const gdb_byte *info_ptr, int building_psymtab)
14017 {
14018 struct dwarf2_cu *cu = reader->cu;
14019 struct objfile *objfile = cu->objfile;
14020 struct partial_die_info *part_die;
14021 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
14022 struct abbrev_info *abbrev;
14023 unsigned int bytes_read;
14024 unsigned int load_all = 0;
14025 int nesting_level = 1;
14026
14027 parent_die = NULL;
14028 last_die = NULL;
14029
14030 gdb_assert (cu->per_cu != NULL);
14031 if (cu->per_cu->load_all_dies)
14032 load_all = 1;
14033
14034 cu->partial_dies
14035 = htab_create_alloc_ex (cu->header.length / 12,
14036 partial_die_hash,
14037 partial_die_eq,
14038 NULL,
14039 &cu->comp_unit_obstack,
14040 hashtab_obstack_allocate,
14041 dummy_obstack_deallocate);
14042
14043 part_die = obstack_alloc (&cu->comp_unit_obstack,
14044 sizeof (struct partial_die_info));
14045
14046 while (1)
14047 {
14048 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
14049
14050 /* A NULL abbrev means the end of a series of children. */
14051 if (abbrev == NULL)
14052 {
14053 if (--nesting_level == 0)
14054 {
14055 /* PART_DIE was probably the last thing allocated on the
14056 comp_unit_obstack, so we could call obstack_free
14057 here. We don't do that because the waste is small,
14058 and will be cleaned up when we're done with this
14059 compilation unit. This way, we're also more robust
14060 against other users of the comp_unit_obstack. */
14061 return first_die;
14062 }
14063 info_ptr += bytes_read;
14064 last_die = parent_die;
14065 parent_die = parent_die->die_parent;
14066 continue;
14067 }
14068
14069 /* Check for template arguments. We never save these; if
14070 they're seen, we just mark the parent, and go on our way. */
14071 if (parent_die != NULL
14072 && cu->language == language_cplus
14073 && (abbrev->tag == DW_TAG_template_type_param
14074 || abbrev->tag == DW_TAG_template_value_param))
14075 {
14076 parent_die->has_template_arguments = 1;
14077
14078 if (!load_all)
14079 {
14080 /* We don't need a partial DIE for the template argument. */
14081 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14082 continue;
14083 }
14084 }
14085
14086 /* We only recurse into c++ subprograms looking for template arguments.
14087 Skip their other children. */
14088 if (!load_all
14089 && cu->language == language_cplus
14090 && parent_die != NULL
14091 && parent_die->tag == DW_TAG_subprogram)
14092 {
14093 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14094 continue;
14095 }
14096
14097 /* Check whether this DIE is interesting enough to save. Normally
14098 we would not be interested in members here, but there may be
14099 later variables referencing them via DW_AT_specification (for
14100 static members). */
14101 if (!load_all
14102 && !is_type_tag_for_partial (abbrev->tag)
14103 && abbrev->tag != DW_TAG_constant
14104 && abbrev->tag != DW_TAG_enumerator
14105 && abbrev->tag != DW_TAG_subprogram
14106 && abbrev->tag != DW_TAG_lexical_block
14107 && abbrev->tag != DW_TAG_variable
14108 && abbrev->tag != DW_TAG_namespace
14109 && abbrev->tag != DW_TAG_module
14110 && abbrev->tag != DW_TAG_member
14111 && abbrev->tag != DW_TAG_imported_unit)
14112 {
14113 /* Otherwise we skip to the next sibling, if any. */
14114 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14115 continue;
14116 }
14117
14118 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14119 info_ptr);
14120
14121 /* This two-pass algorithm for processing partial symbols has a
14122 high cost in cache pressure. Thus, handle some simple cases
14123 here which cover the majority of C partial symbols. DIEs
14124 which neither have specification tags in them, nor could have
14125 specification tags elsewhere pointing at them, can simply be
14126 processed and discarded.
14127
14128 This segment is also optional; scan_partial_symbols and
14129 add_partial_symbol will handle these DIEs if we chain
14130 them in normally. When compilers which do not emit large
14131 quantities of duplicate debug information are more common,
14132 this code can probably be removed. */
14133
14134 /* Any complete simple types at the top level (pretty much all
14135 of them, for a language without namespaces), can be processed
14136 directly. */
14137 if (parent_die == NULL
14138 && part_die->has_specification == 0
14139 && part_die->is_declaration == 0
14140 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14141 || part_die->tag == DW_TAG_base_type
14142 || part_die->tag == DW_TAG_subrange_type))
14143 {
14144 if (building_psymtab && part_die->name != NULL)
14145 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14146 VAR_DOMAIN, LOC_TYPEDEF,
14147 &objfile->static_psymbols,
14148 0, (CORE_ADDR) 0, cu->language, objfile);
14149 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14150 continue;
14151 }
14152
14153 /* The exception for DW_TAG_typedef with has_children above is
14154 a workaround of GCC PR debug/47510. In the case of this complaint
14155 type_name_no_tag_or_error will error on such types later.
14156
14157 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14158 it could not find the child DIEs referenced later, this is checked
14159 above. In correct DWARF DW_TAG_typedef should have no children. */
14160
14161 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14162 complaint (&symfile_complaints,
14163 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14164 "- DIE at 0x%x [in module %s]"),
14165 part_die->offset.sect_off, objfile_name (objfile));
14166
14167 /* If we're at the second level, and we're an enumerator, and
14168 our parent has no specification (meaning possibly lives in a
14169 namespace elsewhere), then we can add the partial symbol now
14170 instead of queueing it. */
14171 if (part_die->tag == DW_TAG_enumerator
14172 && parent_die != NULL
14173 && parent_die->die_parent == NULL
14174 && parent_die->tag == DW_TAG_enumeration_type
14175 && parent_die->has_specification == 0)
14176 {
14177 if (part_die->name == NULL)
14178 complaint (&symfile_complaints,
14179 _("malformed enumerator DIE ignored"));
14180 else if (building_psymtab)
14181 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14182 VAR_DOMAIN, LOC_CONST,
14183 (cu->language == language_cplus
14184 || cu->language == language_java)
14185 ? &objfile->global_psymbols
14186 : &objfile->static_psymbols,
14187 0, (CORE_ADDR) 0, cu->language, objfile);
14188
14189 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14190 continue;
14191 }
14192
14193 /* We'll save this DIE so link it in. */
14194 part_die->die_parent = parent_die;
14195 part_die->die_sibling = NULL;
14196 part_die->die_child = NULL;
14197
14198 if (last_die && last_die == parent_die)
14199 last_die->die_child = part_die;
14200 else if (last_die)
14201 last_die->die_sibling = part_die;
14202
14203 last_die = part_die;
14204
14205 if (first_die == NULL)
14206 first_die = part_die;
14207
14208 /* Maybe add the DIE to the hash table. Not all DIEs that we
14209 find interesting need to be in the hash table, because we
14210 also have the parent/sibling/child chains; only those that we
14211 might refer to by offset later during partial symbol reading.
14212
14213 For now this means things that might have be the target of a
14214 DW_AT_specification, DW_AT_abstract_origin, or
14215 DW_AT_extension. DW_AT_extension will refer only to
14216 namespaces; DW_AT_abstract_origin refers to functions (and
14217 many things under the function DIE, but we do not recurse
14218 into function DIEs during partial symbol reading) and
14219 possibly variables as well; DW_AT_specification refers to
14220 declarations. Declarations ought to have the DW_AT_declaration
14221 flag. It happens that GCC forgets to put it in sometimes, but
14222 only for functions, not for types.
14223
14224 Adding more things than necessary to the hash table is harmless
14225 except for the performance cost. Adding too few will result in
14226 wasted time in find_partial_die, when we reread the compilation
14227 unit with load_all_dies set. */
14228
14229 if (load_all
14230 || abbrev->tag == DW_TAG_constant
14231 || abbrev->tag == DW_TAG_subprogram
14232 || abbrev->tag == DW_TAG_variable
14233 || abbrev->tag == DW_TAG_namespace
14234 || part_die->is_declaration)
14235 {
14236 void **slot;
14237
14238 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14239 part_die->offset.sect_off, INSERT);
14240 *slot = part_die;
14241 }
14242
14243 part_die = obstack_alloc (&cu->comp_unit_obstack,
14244 sizeof (struct partial_die_info));
14245
14246 /* For some DIEs we want to follow their children (if any). For C
14247 we have no reason to follow the children of structures; for other
14248 languages we have to, so that we can get at method physnames
14249 to infer fully qualified class names, for DW_AT_specification,
14250 and for C++ template arguments. For C++, we also look one level
14251 inside functions to find template arguments (if the name of the
14252 function does not already contain the template arguments).
14253
14254 For Ada, we need to scan the children of subprograms and lexical
14255 blocks as well because Ada allows the definition of nested
14256 entities that could be interesting for the debugger, such as
14257 nested subprograms for instance. */
14258 if (last_die->has_children
14259 && (load_all
14260 || last_die->tag == DW_TAG_namespace
14261 || last_die->tag == DW_TAG_module
14262 || last_die->tag == DW_TAG_enumeration_type
14263 || (cu->language == language_cplus
14264 && last_die->tag == DW_TAG_subprogram
14265 && (last_die->name == NULL
14266 || strchr (last_die->name, '<') == NULL))
14267 || (cu->language != language_c
14268 && (last_die->tag == DW_TAG_class_type
14269 || last_die->tag == DW_TAG_interface_type
14270 || last_die->tag == DW_TAG_structure_type
14271 || last_die->tag == DW_TAG_union_type))
14272 || (cu->language == language_ada
14273 && (last_die->tag == DW_TAG_subprogram
14274 || last_die->tag == DW_TAG_lexical_block))))
14275 {
14276 nesting_level++;
14277 parent_die = last_die;
14278 continue;
14279 }
14280
14281 /* Otherwise we skip to the next sibling, if any. */
14282 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14283
14284 /* Back to the top, do it again. */
14285 }
14286 }
14287
14288 /* Read a minimal amount of information into the minimal die structure. */
14289
14290 static const gdb_byte *
14291 read_partial_die (const struct die_reader_specs *reader,
14292 struct partial_die_info *part_die,
14293 struct abbrev_info *abbrev, unsigned int abbrev_len,
14294 const gdb_byte *info_ptr)
14295 {
14296 struct dwarf2_cu *cu = reader->cu;
14297 struct objfile *objfile = cu->objfile;
14298 const gdb_byte *buffer = reader->buffer;
14299 unsigned int i;
14300 struct attribute attr;
14301 int has_low_pc_attr = 0;
14302 int has_high_pc_attr = 0;
14303 int high_pc_relative = 0;
14304
14305 memset (part_die, 0, sizeof (struct partial_die_info));
14306
14307 part_die->offset.sect_off = info_ptr - buffer;
14308
14309 info_ptr += abbrev_len;
14310
14311 if (abbrev == NULL)
14312 return info_ptr;
14313
14314 part_die->tag = abbrev->tag;
14315 part_die->has_children = abbrev->has_children;
14316
14317 for (i = 0; i < abbrev->num_attrs; ++i)
14318 {
14319 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14320
14321 /* Store the data if it is of an attribute we want to keep in a
14322 partial symbol table. */
14323 switch (attr.name)
14324 {
14325 case DW_AT_name:
14326 switch (part_die->tag)
14327 {
14328 case DW_TAG_compile_unit:
14329 case DW_TAG_partial_unit:
14330 case DW_TAG_type_unit:
14331 /* Compilation units have a DW_AT_name that is a filename, not
14332 a source language identifier. */
14333 case DW_TAG_enumeration_type:
14334 case DW_TAG_enumerator:
14335 /* These tags always have simple identifiers already; no need
14336 to canonicalize them. */
14337 part_die->name = DW_STRING (&attr);
14338 break;
14339 default:
14340 part_die->name
14341 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14342 &objfile->objfile_obstack);
14343 break;
14344 }
14345 break;
14346 case DW_AT_linkage_name:
14347 case DW_AT_MIPS_linkage_name:
14348 /* Note that both forms of linkage name might appear. We
14349 assume they will be the same, and we only store the last
14350 one we see. */
14351 if (cu->language == language_ada)
14352 part_die->name = DW_STRING (&attr);
14353 part_die->linkage_name = DW_STRING (&attr);
14354 break;
14355 case DW_AT_low_pc:
14356 has_low_pc_attr = 1;
14357 part_die->lowpc = DW_ADDR (&attr);
14358 break;
14359 case DW_AT_high_pc:
14360 has_high_pc_attr = 1;
14361 if (attr.form == DW_FORM_addr
14362 || attr.form == DW_FORM_GNU_addr_index)
14363 part_die->highpc = DW_ADDR (&attr);
14364 else
14365 {
14366 high_pc_relative = 1;
14367 part_die->highpc = DW_UNSND (&attr);
14368 }
14369 break;
14370 case DW_AT_location:
14371 /* Support the .debug_loc offsets. */
14372 if (attr_form_is_block (&attr))
14373 {
14374 part_die->d.locdesc = DW_BLOCK (&attr);
14375 }
14376 else if (attr_form_is_section_offset (&attr))
14377 {
14378 dwarf2_complex_location_expr_complaint ();
14379 }
14380 else
14381 {
14382 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14383 "partial symbol information");
14384 }
14385 break;
14386 case DW_AT_external:
14387 part_die->is_external = DW_UNSND (&attr);
14388 break;
14389 case DW_AT_declaration:
14390 part_die->is_declaration = DW_UNSND (&attr);
14391 break;
14392 case DW_AT_type:
14393 part_die->has_type = 1;
14394 break;
14395 case DW_AT_abstract_origin:
14396 case DW_AT_specification:
14397 case DW_AT_extension:
14398 part_die->has_specification = 1;
14399 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14400 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14401 || cu->per_cu->is_dwz);
14402 break;
14403 case DW_AT_sibling:
14404 /* Ignore absolute siblings, they might point outside of
14405 the current compile unit. */
14406 if (attr.form == DW_FORM_ref_addr)
14407 complaint (&symfile_complaints,
14408 _("ignoring absolute DW_AT_sibling"));
14409 else
14410 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14411 break;
14412 case DW_AT_byte_size:
14413 part_die->has_byte_size = 1;
14414 break;
14415 case DW_AT_calling_convention:
14416 /* DWARF doesn't provide a way to identify a program's source-level
14417 entry point. DW_AT_calling_convention attributes are only meant
14418 to describe functions' calling conventions.
14419
14420 However, because it's a necessary piece of information in
14421 Fortran, and because DW_CC_program is the only piece of debugging
14422 information whose definition refers to a 'main program' at all,
14423 several compilers have begun marking Fortran main programs with
14424 DW_CC_program --- even when those functions use the standard
14425 calling conventions.
14426
14427 So until DWARF specifies a way to provide this information and
14428 compilers pick up the new representation, we'll support this
14429 practice. */
14430 if (DW_UNSND (&attr) == DW_CC_program
14431 && cu->language == language_fortran)
14432 {
14433 set_main_name (part_die->name);
14434
14435 /* As this DIE has a static linkage the name would be difficult
14436 to look up later. */
14437 language_of_main = language_fortran;
14438 }
14439 break;
14440 case DW_AT_inline:
14441 if (DW_UNSND (&attr) == DW_INL_inlined
14442 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14443 part_die->may_be_inlined = 1;
14444 break;
14445
14446 case DW_AT_import:
14447 if (part_die->tag == DW_TAG_imported_unit)
14448 {
14449 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14450 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14451 || cu->per_cu->is_dwz);
14452 }
14453 break;
14454
14455 default:
14456 break;
14457 }
14458 }
14459
14460 if (high_pc_relative)
14461 part_die->highpc += part_die->lowpc;
14462
14463 if (has_low_pc_attr && has_high_pc_attr)
14464 {
14465 /* When using the GNU linker, .gnu.linkonce. sections are used to
14466 eliminate duplicate copies of functions and vtables and such.
14467 The linker will arbitrarily choose one and discard the others.
14468 The AT_*_pc values for such functions refer to local labels in
14469 these sections. If the section from that file was discarded, the
14470 labels are not in the output, so the relocs get a value of 0.
14471 If this is a discarded function, mark the pc bounds as invalid,
14472 so that GDB will ignore it. */
14473 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14474 {
14475 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14476
14477 complaint (&symfile_complaints,
14478 _("DW_AT_low_pc %s is zero "
14479 "for DIE at 0x%x [in module %s]"),
14480 paddress (gdbarch, part_die->lowpc),
14481 part_die->offset.sect_off, objfile_name (objfile));
14482 }
14483 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14484 else if (part_die->lowpc >= part_die->highpc)
14485 {
14486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14487
14488 complaint (&symfile_complaints,
14489 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14490 "for DIE at 0x%x [in module %s]"),
14491 paddress (gdbarch, part_die->lowpc),
14492 paddress (gdbarch, part_die->highpc),
14493 part_die->offset.sect_off, objfile_name (objfile));
14494 }
14495 else
14496 part_die->has_pc_info = 1;
14497 }
14498
14499 return info_ptr;
14500 }
14501
14502 /* Find a cached partial DIE at OFFSET in CU. */
14503
14504 static struct partial_die_info *
14505 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14506 {
14507 struct partial_die_info *lookup_die = NULL;
14508 struct partial_die_info part_die;
14509
14510 part_die.offset = offset;
14511 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14512 offset.sect_off);
14513
14514 return lookup_die;
14515 }
14516
14517 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14518 except in the case of .debug_types DIEs which do not reference
14519 outside their CU (they do however referencing other types via
14520 DW_FORM_ref_sig8). */
14521
14522 static struct partial_die_info *
14523 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14524 {
14525 struct objfile *objfile = cu->objfile;
14526 struct dwarf2_per_cu_data *per_cu = NULL;
14527 struct partial_die_info *pd = NULL;
14528
14529 if (offset_in_dwz == cu->per_cu->is_dwz
14530 && offset_in_cu_p (&cu->header, offset))
14531 {
14532 pd = find_partial_die_in_comp_unit (offset, cu);
14533 if (pd != NULL)
14534 return pd;
14535 /* We missed recording what we needed.
14536 Load all dies and try again. */
14537 per_cu = cu->per_cu;
14538 }
14539 else
14540 {
14541 /* TUs don't reference other CUs/TUs (except via type signatures). */
14542 if (cu->per_cu->is_debug_types)
14543 {
14544 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14545 " external reference to offset 0x%lx [in module %s].\n"),
14546 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14547 bfd_get_filename (objfile->obfd));
14548 }
14549 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14550 objfile);
14551
14552 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14553 load_partial_comp_unit (per_cu);
14554
14555 per_cu->cu->last_used = 0;
14556 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14557 }
14558
14559 /* If we didn't find it, and not all dies have been loaded,
14560 load them all and try again. */
14561
14562 if (pd == NULL && per_cu->load_all_dies == 0)
14563 {
14564 per_cu->load_all_dies = 1;
14565
14566 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14567 THIS_CU->cu may already be in use. So we can't just free it and
14568 replace its DIEs with the ones we read in. Instead, we leave those
14569 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14570 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14571 set. */
14572 load_partial_comp_unit (per_cu);
14573
14574 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14575 }
14576
14577 if (pd == NULL)
14578 internal_error (__FILE__, __LINE__,
14579 _("could not find partial DIE 0x%x "
14580 "in cache [from module %s]\n"),
14581 offset.sect_off, bfd_get_filename (objfile->obfd));
14582 return pd;
14583 }
14584
14585 /* See if we can figure out if the class lives in a namespace. We do
14586 this by looking for a member function; its demangled name will
14587 contain namespace info, if there is any. */
14588
14589 static void
14590 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14591 struct dwarf2_cu *cu)
14592 {
14593 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14594 what template types look like, because the demangler
14595 frequently doesn't give the same name as the debug info. We
14596 could fix this by only using the demangled name to get the
14597 prefix (but see comment in read_structure_type). */
14598
14599 struct partial_die_info *real_pdi;
14600 struct partial_die_info *child_pdi;
14601
14602 /* If this DIE (this DIE's specification, if any) has a parent, then
14603 we should not do this. We'll prepend the parent's fully qualified
14604 name when we create the partial symbol. */
14605
14606 real_pdi = struct_pdi;
14607 while (real_pdi->has_specification)
14608 real_pdi = find_partial_die (real_pdi->spec_offset,
14609 real_pdi->spec_is_dwz, cu);
14610
14611 if (real_pdi->die_parent != NULL)
14612 return;
14613
14614 for (child_pdi = struct_pdi->die_child;
14615 child_pdi != NULL;
14616 child_pdi = child_pdi->die_sibling)
14617 {
14618 if (child_pdi->tag == DW_TAG_subprogram
14619 && child_pdi->linkage_name != NULL)
14620 {
14621 char *actual_class_name
14622 = language_class_name_from_physname (cu->language_defn,
14623 child_pdi->linkage_name);
14624 if (actual_class_name != NULL)
14625 {
14626 struct_pdi->name
14627 = obstack_copy0 (&cu->objfile->objfile_obstack,
14628 actual_class_name,
14629 strlen (actual_class_name));
14630 xfree (actual_class_name);
14631 }
14632 break;
14633 }
14634 }
14635 }
14636
14637 /* Adjust PART_DIE before generating a symbol for it. This function
14638 may set the is_external flag or change the DIE's name. */
14639
14640 static void
14641 fixup_partial_die (struct partial_die_info *part_die,
14642 struct dwarf2_cu *cu)
14643 {
14644 /* Once we've fixed up a die, there's no point in doing so again.
14645 This also avoids a memory leak if we were to call
14646 guess_partial_die_structure_name multiple times. */
14647 if (part_die->fixup_called)
14648 return;
14649
14650 /* If we found a reference attribute and the DIE has no name, try
14651 to find a name in the referred to DIE. */
14652
14653 if (part_die->name == NULL && part_die->has_specification)
14654 {
14655 struct partial_die_info *spec_die;
14656
14657 spec_die = find_partial_die (part_die->spec_offset,
14658 part_die->spec_is_dwz, cu);
14659
14660 fixup_partial_die (spec_die, cu);
14661
14662 if (spec_die->name)
14663 {
14664 part_die->name = spec_die->name;
14665
14666 /* Copy DW_AT_external attribute if it is set. */
14667 if (spec_die->is_external)
14668 part_die->is_external = spec_die->is_external;
14669 }
14670 }
14671
14672 /* Set default names for some unnamed DIEs. */
14673
14674 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14675 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14676
14677 /* If there is no parent die to provide a namespace, and there are
14678 children, see if we can determine the namespace from their linkage
14679 name. */
14680 if (cu->language == language_cplus
14681 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14682 && part_die->die_parent == NULL
14683 && part_die->has_children
14684 && (part_die->tag == DW_TAG_class_type
14685 || part_die->tag == DW_TAG_structure_type
14686 || part_die->tag == DW_TAG_union_type))
14687 guess_partial_die_structure_name (part_die, cu);
14688
14689 /* GCC might emit a nameless struct or union that has a linkage
14690 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14691 if (part_die->name == NULL
14692 && (part_die->tag == DW_TAG_class_type
14693 || part_die->tag == DW_TAG_interface_type
14694 || part_die->tag == DW_TAG_structure_type
14695 || part_die->tag == DW_TAG_union_type)
14696 && part_die->linkage_name != NULL)
14697 {
14698 char *demangled;
14699
14700 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14701 if (demangled)
14702 {
14703 const char *base;
14704
14705 /* Strip any leading namespaces/classes, keep only the base name.
14706 DW_AT_name for named DIEs does not contain the prefixes. */
14707 base = strrchr (demangled, ':');
14708 if (base && base > demangled && base[-1] == ':')
14709 base++;
14710 else
14711 base = demangled;
14712
14713 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14714 base, strlen (base));
14715 xfree (demangled);
14716 }
14717 }
14718
14719 part_die->fixup_called = 1;
14720 }
14721
14722 /* Read an attribute value described by an attribute form. */
14723
14724 static const gdb_byte *
14725 read_attribute_value (const struct die_reader_specs *reader,
14726 struct attribute *attr, unsigned form,
14727 const gdb_byte *info_ptr)
14728 {
14729 struct dwarf2_cu *cu = reader->cu;
14730 bfd *abfd = reader->abfd;
14731 struct comp_unit_head *cu_header = &cu->header;
14732 unsigned int bytes_read;
14733 struct dwarf_block *blk;
14734
14735 attr->form = form;
14736 switch (form)
14737 {
14738 case DW_FORM_ref_addr:
14739 if (cu->header.version == 2)
14740 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14741 else
14742 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14743 &cu->header, &bytes_read);
14744 info_ptr += bytes_read;
14745 break;
14746 case DW_FORM_GNU_ref_alt:
14747 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14748 info_ptr += bytes_read;
14749 break;
14750 case DW_FORM_addr:
14751 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14752 info_ptr += bytes_read;
14753 break;
14754 case DW_FORM_block2:
14755 blk = dwarf_alloc_block (cu);
14756 blk->size = read_2_bytes (abfd, info_ptr);
14757 info_ptr += 2;
14758 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14759 info_ptr += blk->size;
14760 DW_BLOCK (attr) = blk;
14761 break;
14762 case DW_FORM_block4:
14763 blk = dwarf_alloc_block (cu);
14764 blk->size = read_4_bytes (abfd, info_ptr);
14765 info_ptr += 4;
14766 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14767 info_ptr += blk->size;
14768 DW_BLOCK (attr) = blk;
14769 break;
14770 case DW_FORM_data2:
14771 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14772 info_ptr += 2;
14773 break;
14774 case DW_FORM_data4:
14775 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14776 info_ptr += 4;
14777 break;
14778 case DW_FORM_data8:
14779 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14780 info_ptr += 8;
14781 break;
14782 case DW_FORM_sec_offset:
14783 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14784 info_ptr += bytes_read;
14785 break;
14786 case DW_FORM_string:
14787 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14788 DW_STRING_IS_CANONICAL (attr) = 0;
14789 info_ptr += bytes_read;
14790 break;
14791 case DW_FORM_strp:
14792 if (!cu->per_cu->is_dwz)
14793 {
14794 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14795 &bytes_read);
14796 DW_STRING_IS_CANONICAL (attr) = 0;
14797 info_ptr += bytes_read;
14798 break;
14799 }
14800 /* FALLTHROUGH */
14801 case DW_FORM_GNU_strp_alt:
14802 {
14803 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14804 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14805 &bytes_read);
14806
14807 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14808 DW_STRING_IS_CANONICAL (attr) = 0;
14809 info_ptr += bytes_read;
14810 }
14811 break;
14812 case DW_FORM_exprloc:
14813 case DW_FORM_block:
14814 blk = dwarf_alloc_block (cu);
14815 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14816 info_ptr += bytes_read;
14817 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14818 info_ptr += blk->size;
14819 DW_BLOCK (attr) = blk;
14820 break;
14821 case DW_FORM_block1:
14822 blk = dwarf_alloc_block (cu);
14823 blk->size = read_1_byte (abfd, info_ptr);
14824 info_ptr += 1;
14825 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14826 info_ptr += blk->size;
14827 DW_BLOCK (attr) = blk;
14828 break;
14829 case DW_FORM_data1:
14830 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14831 info_ptr += 1;
14832 break;
14833 case DW_FORM_flag:
14834 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14835 info_ptr += 1;
14836 break;
14837 case DW_FORM_flag_present:
14838 DW_UNSND (attr) = 1;
14839 break;
14840 case DW_FORM_sdata:
14841 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14842 info_ptr += bytes_read;
14843 break;
14844 case DW_FORM_udata:
14845 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14846 info_ptr += bytes_read;
14847 break;
14848 case DW_FORM_ref1:
14849 DW_UNSND (attr) = (cu->header.offset.sect_off
14850 + read_1_byte (abfd, info_ptr));
14851 info_ptr += 1;
14852 break;
14853 case DW_FORM_ref2:
14854 DW_UNSND (attr) = (cu->header.offset.sect_off
14855 + read_2_bytes (abfd, info_ptr));
14856 info_ptr += 2;
14857 break;
14858 case DW_FORM_ref4:
14859 DW_UNSND (attr) = (cu->header.offset.sect_off
14860 + read_4_bytes (abfd, info_ptr));
14861 info_ptr += 4;
14862 break;
14863 case DW_FORM_ref8:
14864 DW_UNSND (attr) = (cu->header.offset.sect_off
14865 + read_8_bytes (abfd, info_ptr));
14866 info_ptr += 8;
14867 break;
14868 case DW_FORM_ref_sig8:
14869 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14870 info_ptr += 8;
14871 break;
14872 case DW_FORM_ref_udata:
14873 DW_UNSND (attr) = (cu->header.offset.sect_off
14874 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14875 info_ptr += bytes_read;
14876 break;
14877 case DW_FORM_indirect:
14878 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14879 info_ptr += bytes_read;
14880 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14881 break;
14882 case DW_FORM_GNU_addr_index:
14883 if (reader->dwo_file == NULL)
14884 {
14885 /* For now flag a hard error.
14886 Later we can turn this into a complaint. */
14887 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14888 dwarf_form_name (form),
14889 bfd_get_filename (abfd));
14890 }
14891 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14892 info_ptr += bytes_read;
14893 break;
14894 case DW_FORM_GNU_str_index:
14895 if (reader->dwo_file == NULL)
14896 {
14897 /* For now flag a hard error.
14898 Later we can turn this into a complaint if warranted. */
14899 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14900 dwarf_form_name (form),
14901 bfd_get_filename (abfd));
14902 }
14903 {
14904 ULONGEST str_index =
14905 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14906
14907 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14908 DW_STRING_IS_CANONICAL (attr) = 0;
14909 info_ptr += bytes_read;
14910 }
14911 break;
14912 default:
14913 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14914 dwarf_form_name (form),
14915 bfd_get_filename (abfd));
14916 }
14917
14918 /* Super hack. */
14919 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
14920 attr->form = DW_FORM_GNU_ref_alt;
14921
14922 /* We have seen instances where the compiler tried to emit a byte
14923 size attribute of -1 which ended up being encoded as an unsigned
14924 0xffffffff. Although 0xffffffff is technically a valid size value,
14925 an object of this size seems pretty unlikely so we can relatively
14926 safely treat these cases as if the size attribute was invalid and
14927 treat them as zero by default. */
14928 if (attr->name == DW_AT_byte_size
14929 && form == DW_FORM_data4
14930 && DW_UNSND (attr) >= 0xffffffff)
14931 {
14932 complaint
14933 (&symfile_complaints,
14934 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14935 hex_string (DW_UNSND (attr)));
14936 DW_UNSND (attr) = 0;
14937 }
14938
14939 return info_ptr;
14940 }
14941
14942 /* Read an attribute described by an abbreviated attribute. */
14943
14944 static const gdb_byte *
14945 read_attribute (const struct die_reader_specs *reader,
14946 struct attribute *attr, struct attr_abbrev *abbrev,
14947 const gdb_byte *info_ptr)
14948 {
14949 attr->name = abbrev->name;
14950 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14951 }
14952
14953 /* Read dwarf information from a buffer. */
14954
14955 static unsigned int
14956 read_1_byte (bfd *abfd, const gdb_byte *buf)
14957 {
14958 return bfd_get_8 (abfd, buf);
14959 }
14960
14961 static int
14962 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14963 {
14964 return bfd_get_signed_8 (abfd, buf);
14965 }
14966
14967 static unsigned int
14968 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14969 {
14970 return bfd_get_16 (abfd, buf);
14971 }
14972
14973 static int
14974 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14975 {
14976 return bfd_get_signed_16 (abfd, buf);
14977 }
14978
14979 static unsigned int
14980 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14981 {
14982 return bfd_get_32 (abfd, buf);
14983 }
14984
14985 static int
14986 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14987 {
14988 return bfd_get_signed_32 (abfd, buf);
14989 }
14990
14991 static ULONGEST
14992 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14993 {
14994 return bfd_get_64 (abfd, buf);
14995 }
14996
14997 static CORE_ADDR
14998 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14999 unsigned int *bytes_read)
15000 {
15001 struct comp_unit_head *cu_header = &cu->header;
15002 CORE_ADDR retval = 0;
15003
15004 if (cu_header->signed_addr_p)
15005 {
15006 switch (cu_header->addr_size)
15007 {
15008 case 2:
15009 retval = bfd_get_signed_16 (abfd, buf);
15010 break;
15011 case 4:
15012 retval = bfd_get_signed_32 (abfd, buf);
15013 break;
15014 case 8:
15015 retval = bfd_get_signed_64 (abfd, buf);
15016 break;
15017 default:
15018 internal_error (__FILE__, __LINE__,
15019 _("read_address: bad switch, signed [in module %s]"),
15020 bfd_get_filename (abfd));
15021 }
15022 }
15023 else
15024 {
15025 switch (cu_header->addr_size)
15026 {
15027 case 2:
15028 retval = bfd_get_16 (abfd, buf);
15029 break;
15030 case 4:
15031 retval = bfd_get_32 (abfd, buf);
15032 break;
15033 case 8:
15034 retval = bfd_get_64 (abfd, buf);
15035 break;
15036 default:
15037 internal_error (__FILE__, __LINE__,
15038 _("read_address: bad switch, "
15039 "unsigned [in module %s]"),
15040 bfd_get_filename (abfd));
15041 }
15042 }
15043
15044 *bytes_read = cu_header->addr_size;
15045 return retval;
15046 }
15047
15048 /* Read the initial length from a section. The (draft) DWARF 3
15049 specification allows the initial length to take up either 4 bytes
15050 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
15051 bytes describe the length and all offsets will be 8 bytes in length
15052 instead of 4.
15053
15054 An older, non-standard 64-bit format is also handled by this
15055 function. The older format in question stores the initial length
15056 as an 8-byte quantity without an escape value. Lengths greater
15057 than 2^32 aren't very common which means that the initial 4 bytes
15058 is almost always zero. Since a length value of zero doesn't make
15059 sense for the 32-bit format, this initial zero can be considered to
15060 be an escape value which indicates the presence of the older 64-bit
15061 format. As written, the code can't detect (old format) lengths
15062 greater than 4GB. If it becomes necessary to handle lengths
15063 somewhat larger than 4GB, we could allow other small values (such
15064 as the non-sensical values of 1, 2, and 3) to also be used as
15065 escape values indicating the presence of the old format.
15066
15067 The value returned via bytes_read should be used to increment the
15068 relevant pointer after calling read_initial_length().
15069
15070 [ Note: read_initial_length() and read_offset() are based on the
15071 document entitled "DWARF Debugging Information Format", revision
15072 3, draft 8, dated November 19, 2001. This document was obtained
15073 from:
15074
15075 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
15076
15077 This document is only a draft and is subject to change. (So beware.)
15078
15079 Details regarding the older, non-standard 64-bit format were
15080 determined empirically by examining 64-bit ELF files produced by
15081 the SGI toolchain on an IRIX 6.5 machine.
15082
15083 - Kevin, July 16, 2002
15084 ] */
15085
15086 static LONGEST
15087 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
15088 {
15089 LONGEST length = bfd_get_32 (abfd, buf);
15090
15091 if (length == 0xffffffff)
15092 {
15093 length = bfd_get_64 (abfd, buf + 4);
15094 *bytes_read = 12;
15095 }
15096 else if (length == 0)
15097 {
15098 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15099 length = bfd_get_64 (abfd, buf);
15100 *bytes_read = 8;
15101 }
15102 else
15103 {
15104 *bytes_read = 4;
15105 }
15106
15107 return length;
15108 }
15109
15110 /* Cover function for read_initial_length.
15111 Returns the length of the object at BUF, and stores the size of the
15112 initial length in *BYTES_READ and stores the size that offsets will be in
15113 *OFFSET_SIZE.
15114 If the initial length size is not equivalent to that specified in
15115 CU_HEADER then issue a complaint.
15116 This is useful when reading non-comp-unit headers. */
15117
15118 static LONGEST
15119 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15120 const struct comp_unit_head *cu_header,
15121 unsigned int *bytes_read,
15122 unsigned int *offset_size)
15123 {
15124 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15125
15126 gdb_assert (cu_header->initial_length_size == 4
15127 || cu_header->initial_length_size == 8
15128 || cu_header->initial_length_size == 12);
15129
15130 if (cu_header->initial_length_size != *bytes_read)
15131 complaint (&symfile_complaints,
15132 _("intermixed 32-bit and 64-bit DWARF sections"));
15133
15134 *offset_size = (*bytes_read == 4) ? 4 : 8;
15135 return length;
15136 }
15137
15138 /* Read an offset from the data stream. The size of the offset is
15139 given by cu_header->offset_size. */
15140
15141 static LONGEST
15142 read_offset (bfd *abfd, const gdb_byte *buf,
15143 const struct comp_unit_head *cu_header,
15144 unsigned int *bytes_read)
15145 {
15146 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15147
15148 *bytes_read = cu_header->offset_size;
15149 return offset;
15150 }
15151
15152 /* Read an offset from the data stream. */
15153
15154 static LONGEST
15155 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15156 {
15157 LONGEST retval = 0;
15158
15159 switch (offset_size)
15160 {
15161 case 4:
15162 retval = bfd_get_32 (abfd, buf);
15163 break;
15164 case 8:
15165 retval = bfd_get_64 (abfd, buf);
15166 break;
15167 default:
15168 internal_error (__FILE__, __LINE__,
15169 _("read_offset_1: bad switch [in module %s]"),
15170 bfd_get_filename (abfd));
15171 }
15172
15173 return retval;
15174 }
15175
15176 static const gdb_byte *
15177 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15178 {
15179 /* If the size of a host char is 8 bits, we can return a pointer
15180 to the buffer, otherwise we have to copy the data to a buffer
15181 allocated on the temporary obstack. */
15182 gdb_assert (HOST_CHAR_BIT == 8);
15183 return buf;
15184 }
15185
15186 static const char *
15187 read_direct_string (bfd *abfd, const gdb_byte *buf,
15188 unsigned int *bytes_read_ptr)
15189 {
15190 /* If the size of a host char is 8 bits, we can return a pointer
15191 to the string, otherwise we have to copy the string to a buffer
15192 allocated on the temporary obstack. */
15193 gdb_assert (HOST_CHAR_BIT == 8);
15194 if (*buf == '\0')
15195 {
15196 *bytes_read_ptr = 1;
15197 return NULL;
15198 }
15199 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15200 return (const char *) buf;
15201 }
15202
15203 static const char *
15204 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15205 {
15206 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15207 if (dwarf2_per_objfile->str.buffer == NULL)
15208 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15209 bfd_get_filename (abfd));
15210 if (str_offset >= dwarf2_per_objfile->str.size)
15211 error (_("DW_FORM_strp pointing outside of "
15212 ".debug_str section [in module %s]"),
15213 bfd_get_filename (abfd));
15214 gdb_assert (HOST_CHAR_BIT == 8);
15215 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15216 return NULL;
15217 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15218 }
15219
15220 /* Read a string at offset STR_OFFSET in the .debug_str section from
15221 the .dwz file DWZ. Throw an error if the offset is too large. If
15222 the string consists of a single NUL byte, return NULL; otherwise
15223 return a pointer to the string. */
15224
15225 static const char *
15226 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15227 {
15228 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15229
15230 if (dwz->str.buffer == NULL)
15231 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15232 "section [in module %s]"),
15233 bfd_get_filename (dwz->dwz_bfd));
15234 if (str_offset >= dwz->str.size)
15235 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15236 ".debug_str section [in module %s]"),
15237 bfd_get_filename (dwz->dwz_bfd));
15238 gdb_assert (HOST_CHAR_BIT == 8);
15239 if (dwz->str.buffer[str_offset] == '\0')
15240 return NULL;
15241 return (const char *) (dwz->str.buffer + str_offset);
15242 }
15243
15244 static const char *
15245 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15246 const struct comp_unit_head *cu_header,
15247 unsigned int *bytes_read_ptr)
15248 {
15249 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15250
15251 return read_indirect_string_at_offset (abfd, str_offset);
15252 }
15253
15254 static ULONGEST
15255 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15256 unsigned int *bytes_read_ptr)
15257 {
15258 ULONGEST result;
15259 unsigned int num_read;
15260 int i, shift;
15261 unsigned char byte;
15262
15263 result = 0;
15264 shift = 0;
15265 num_read = 0;
15266 i = 0;
15267 while (1)
15268 {
15269 byte = bfd_get_8 (abfd, buf);
15270 buf++;
15271 num_read++;
15272 result |= ((ULONGEST) (byte & 127) << shift);
15273 if ((byte & 128) == 0)
15274 {
15275 break;
15276 }
15277 shift += 7;
15278 }
15279 *bytes_read_ptr = num_read;
15280 return result;
15281 }
15282
15283 static LONGEST
15284 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15285 unsigned int *bytes_read_ptr)
15286 {
15287 LONGEST result;
15288 int i, shift, num_read;
15289 unsigned char byte;
15290
15291 result = 0;
15292 shift = 0;
15293 num_read = 0;
15294 i = 0;
15295 while (1)
15296 {
15297 byte = bfd_get_8 (abfd, buf);
15298 buf++;
15299 num_read++;
15300 result |= ((LONGEST) (byte & 127) << shift);
15301 shift += 7;
15302 if ((byte & 128) == 0)
15303 {
15304 break;
15305 }
15306 }
15307 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15308 result |= -(((LONGEST) 1) << shift);
15309 *bytes_read_ptr = num_read;
15310 return result;
15311 }
15312
15313 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15314 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15315 ADDR_SIZE is the size of addresses from the CU header. */
15316
15317 static CORE_ADDR
15318 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15319 {
15320 struct objfile *objfile = dwarf2_per_objfile->objfile;
15321 bfd *abfd = objfile->obfd;
15322 const gdb_byte *info_ptr;
15323
15324 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15325 if (dwarf2_per_objfile->addr.buffer == NULL)
15326 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15327 objfile_name (objfile));
15328 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15329 error (_("DW_FORM_addr_index pointing outside of "
15330 ".debug_addr section [in module %s]"),
15331 objfile_name (objfile));
15332 info_ptr = (dwarf2_per_objfile->addr.buffer
15333 + addr_base + addr_index * addr_size);
15334 if (addr_size == 4)
15335 return bfd_get_32 (abfd, info_ptr);
15336 else
15337 return bfd_get_64 (abfd, info_ptr);
15338 }
15339
15340 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15341
15342 static CORE_ADDR
15343 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15344 {
15345 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15346 }
15347
15348 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15349
15350 static CORE_ADDR
15351 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15352 unsigned int *bytes_read)
15353 {
15354 bfd *abfd = cu->objfile->obfd;
15355 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15356
15357 return read_addr_index (cu, addr_index);
15358 }
15359
15360 /* Data structure to pass results from dwarf2_read_addr_index_reader
15361 back to dwarf2_read_addr_index. */
15362
15363 struct dwarf2_read_addr_index_data
15364 {
15365 ULONGEST addr_base;
15366 int addr_size;
15367 };
15368
15369 /* die_reader_func for dwarf2_read_addr_index. */
15370
15371 static void
15372 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15373 const gdb_byte *info_ptr,
15374 struct die_info *comp_unit_die,
15375 int has_children,
15376 void *data)
15377 {
15378 struct dwarf2_cu *cu = reader->cu;
15379 struct dwarf2_read_addr_index_data *aidata =
15380 (struct dwarf2_read_addr_index_data *) data;
15381
15382 aidata->addr_base = cu->addr_base;
15383 aidata->addr_size = cu->header.addr_size;
15384 }
15385
15386 /* Given an index in .debug_addr, fetch the value.
15387 NOTE: This can be called during dwarf expression evaluation,
15388 long after the debug information has been read, and thus per_cu->cu
15389 may no longer exist. */
15390
15391 CORE_ADDR
15392 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15393 unsigned int addr_index)
15394 {
15395 struct objfile *objfile = per_cu->objfile;
15396 struct dwarf2_cu *cu = per_cu->cu;
15397 ULONGEST addr_base;
15398 int addr_size;
15399
15400 /* This is intended to be called from outside this file. */
15401 dw2_setup (objfile);
15402
15403 /* We need addr_base and addr_size.
15404 If we don't have PER_CU->cu, we have to get it.
15405 Nasty, but the alternative is storing the needed info in PER_CU,
15406 which at this point doesn't seem justified: it's not clear how frequently
15407 it would get used and it would increase the size of every PER_CU.
15408 Entry points like dwarf2_per_cu_addr_size do a similar thing
15409 so we're not in uncharted territory here.
15410 Alas we need to be a bit more complicated as addr_base is contained
15411 in the DIE.
15412
15413 We don't need to read the entire CU(/TU).
15414 We just need the header and top level die.
15415
15416 IWBN to use the aging mechanism to let us lazily later discard the CU.
15417 For now we skip this optimization. */
15418
15419 if (cu != NULL)
15420 {
15421 addr_base = cu->addr_base;
15422 addr_size = cu->header.addr_size;
15423 }
15424 else
15425 {
15426 struct dwarf2_read_addr_index_data aidata;
15427
15428 /* Note: We can't use init_cutu_and_read_dies_simple here,
15429 we need addr_base. */
15430 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15431 dwarf2_read_addr_index_reader, &aidata);
15432 addr_base = aidata.addr_base;
15433 addr_size = aidata.addr_size;
15434 }
15435
15436 return read_addr_index_1 (addr_index, addr_base, addr_size);
15437 }
15438
15439 /* Given a DW_AT_str_index, fetch the string. */
15440
15441 static const char *
15442 read_str_index (const struct die_reader_specs *reader,
15443 struct dwarf2_cu *cu, ULONGEST str_index)
15444 {
15445 struct objfile *objfile = dwarf2_per_objfile->objfile;
15446 const char *dwo_name = objfile_name (objfile);
15447 bfd *abfd = objfile->obfd;
15448 struct dwo_sections *sections = &reader->dwo_file->sections;
15449 const gdb_byte *info_ptr;
15450 ULONGEST str_offset;
15451
15452 dwarf2_read_section (objfile, &sections->str);
15453 dwarf2_read_section (objfile, &sections->str_offsets);
15454 if (sections->str.buffer == NULL)
15455 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15456 " in CU at offset 0x%lx [in module %s]"),
15457 (long) cu->header.offset.sect_off, dwo_name);
15458 if (sections->str_offsets.buffer == NULL)
15459 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15460 " in CU at offset 0x%lx [in module %s]"),
15461 (long) cu->header.offset.sect_off, dwo_name);
15462 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15463 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15464 " section in CU at offset 0x%lx [in module %s]"),
15465 (long) cu->header.offset.sect_off, dwo_name);
15466 info_ptr = (sections->str_offsets.buffer
15467 + str_index * cu->header.offset_size);
15468 if (cu->header.offset_size == 4)
15469 str_offset = bfd_get_32 (abfd, info_ptr);
15470 else
15471 str_offset = bfd_get_64 (abfd, info_ptr);
15472 if (str_offset >= sections->str.size)
15473 error (_("Offset from DW_FORM_str_index pointing outside of"
15474 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15475 (long) cu->header.offset.sect_off, dwo_name);
15476 return (const char *) (sections->str.buffer + str_offset);
15477 }
15478
15479 /* Return the length of an LEB128 number in BUF. */
15480
15481 static int
15482 leb128_size (const gdb_byte *buf)
15483 {
15484 const gdb_byte *begin = buf;
15485 gdb_byte byte;
15486
15487 while (1)
15488 {
15489 byte = *buf++;
15490 if ((byte & 128) == 0)
15491 return buf - begin;
15492 }
15493 }
15494
15495 static void
15496 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15497 {
15498 switch (lang)
15499 {
15500 case DW_LANG_C89:
15501 case DW_LANG_C99:
15502 case DW_LANG_C:
15503 case DW_LANG_UPC:
15504 cu->language = language_c;
15505 break;
15506 case DW_LANG_C_plus_plus:
15507 cu->language = language_cplus;
15508 break;
15509 case DW_LANG_D:
15510 cu->language = language_d;
15511 break;
15512 case DW_LANG_Fortran77:
15513 case DW_LANG_Fortran90:
15514 case DW_LANG_Fortran95:
15515 cu->language = language_fortran;
15516 break;
15517 case DW_LANG_Go:
15518 cu->language = language_go;
15519 break;
15520 case DW_LANG_Mips_Assembler:
15521 cu->language = language_asm;
15522 break;
15523 case DW_LANG_Java:
15524 cu->language = language_java;
15525 break;
15526 case DW_LANG_Ada83:
15527 case DW_LANG_Ada95:
15528 cu->language = language_ada;
15529 break;
15530 case DW_LANG_Modula2:
15531 cu->language = language_m2;
15532 break;
15533 case DW_LANG_Pascal83:
15534 cu->language = language_pascal;
15535 break;
15536 case DW_LANG_ObjC:
15537 cu->language = language_objc;
15538 break;
15539 case DW_LANG_Cobol74:
15540 case DW_LANG_Cobol85:
15541 default:
15542 cu->language = language_minimal;
15543 break;
15544 }
15545 cu->language_defn = language_def (cu->language);
15546 }
15547
15548 /* Return the named attribute or NULL if not there. */
15549
15550 static struct attribute *
15551 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15552 {
15553 for (;;)
15554 {
15555 unsigned int i;
15556 struct attribute *spec = NULL;
15557
15558 for (i = 0; i < die->num_attrs; ++i)
15559 {
15560 if (die->attrs[i].name == name)
15561 return &die->attrs[i];
15562 if (die->attrs[i].name == DW_AT_specification
15563 || die->attrs[i].name == DW_AT_abstract_origin)
15564 spec = &die->attrs[i];
15565 }
15566
15567 if (!spec)
15568 break;
15569
15570 die = follow_die_ref (die, spec, &cu);
15571 }
15572
15573 return NULL;
15574 }
15575
15576 /* Return the named attribute or NULL if not there,
15577 but do not follow DW_AT_specification, etc.
15578 This is for use in contexts where we're reading .debug_types dies.
15579 Following DW_AT_specification, DW_AT_abstract_origin will take us
15580 back up the chain, and we want to go down. */
15581
15582 static struct attribute *
15583 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15584 {
15585 unsigned int i;
15586
15587 for (i = 0; i < die->num_attrs; ++i)
15588 if (die->attrs[i].name == name)
15589 return &die->attrs[i];
15590
15591 return NULL;
15592 }
15593
15594 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15595 and holds a non-zero value. This function should only be used for
15596 DW_FORM_flag or DW_FORM_flag_present attributes. */
15597
15598 static int
15599 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15600 {
15601 struct attribute *attr = dwarf2_attr (die, name, cu);
15602
15603 return (attr && DW_UNSND (attr));
15604 }
15605
15606 static int
15607 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15608 {
15609 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15610 which value is non-zero. However, we have to be careful with
15611 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15612 (via dwarf2_flag_true_p) follows this attribute. So we may
15613 end up accidently finding a declaration attribute that belongs
15614 to a different DIE referenced by the specification attribute,
15615 even though the given DIE does not have a declaration attribute. */
15616 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15617 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15618 }
15619
15620 /* Return the die giving the specification for DIE, if there is
15621 one. *SPEC_CU is the CU containing DIE on input, and the CU
15622 containing the return value on output. If there is no
15623 specification, but there is an abstract origin, that is
15624 returned. */
15625
15626 static struct die_info *
15627 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15628 {
15629 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15630 *spec_cu);
15631
15632 if (spec_attr == NULL)
15633 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15634
15635 if (spec_attr == NULL)
15636 return NULL;
15637 else
15638 return follow_die_ref (die, spec_attr, spec_cu);
15639 }
15640
15641 /* Free the line_header structure *LH, and any arrays and strings it
15642 refers to.
15643 NOTE: This is also used as a "cleanup" function. */
15644
15645 static void
15646 free_line_header (struct line_header *lh)
15647 {
15648 if (lh->standard_opcode_lengths)
15649 xfree (lh->standard_opcode_lengths);
15650
15651 /* Remember that all the lh->file_names[i].name pointers are
15652 pointers into debug_line_buffer, and don't need to be freed. */
15653 if (lh->file_names)
15654 xfree (lh->file_names);
15655
15656 /* Similarly for the include directory names. */
15657 if (lh->include_dirs)
15658 xfree (lh->include_dirs);
15659
15660 xfree (lh);
15661 }
15662
15663 /* Add an entry to LH's include directory table. */
15664
15665 static void
15666 add_include_dir (struct line_header *lh, const char *include_dir)
15667 {
15668 /* Grow the array if necessary. */
15669 if (lh->include_dirs_size == 0)
15670 {
15671 lh->include_dirs_size = 1; /* for testing */
15672 lh->include_dirs = xmalloc (lh->include_dirs_size
15673 * sizeof (*lh->include_dirs));
15674 }
15675 else if (lh->num_include_dirs >= lh->include_dirs_size)
15676 {
15677 lh->include_dirs_size *= 2;
15678 lh->include_dirs = xrealloc (lh->include_dirs,
15679 (lh->include_dirs_size
15680 * sizeof (*lh->include_dirs)));
15681 }
15682
15683 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15684 }
15685
15686 /* Add an entry to LH's file name table. */
15687
15688 static void
15689 add_file_name (struct line_header *lh,
15690 const char *name,
15691 unsigned int dir_index,
15692 unsigned int mod_time,
15693 unsigned int length)
15694 {
15695 struct file_entry *fe;
15696
15697 /* Grow the array if necessary. */
15698 if (lh->file_names_size == 0)
15699 {
15700 lh->file_names_size = 1; /* for testing */
15701 lh->file_names = xmalloc (lh->file_names_size
15702 * sizeof (*lh->file_names));
15703 }
15704 else if (lh->num_file_names >= lh->file_names_size)
15705 {
15706 lh->file_names_size *= 2;
15707 lh->file_names = xrealloc (lh->file_names,
15708 (lh->file_names_size
15709 * sizeof (*lh->file_names)));
15710 }
15711
15712 fe = &lh->file_names[lh->num_file_names++];
15713 fe->name = name;
15714 fe->dir_index = dir_index;
15715 fe->mod_time = mod_time;
15716 fe->length = length;
15717 fe->included_p = 0;
15718 fe->symtab = NULL;
15719 }
15720
15721 /* A convenience function to find the proper .debug_line section for a
15722 CU. */
15723
15724 static struct dwarf2_section_info *
15725 get_debug_line_section (struct dwarf2_cu *cu)
15726 {
15727 struct dwarf2_section_info *section;
15728
15729 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15730 DWO file. */
15731 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15732 section = &cu->dwo_unit->dwo_file->sections.line;
15733 else if (cu->per_cu->is_dwz)
15734 {
15735 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15736
15737 section = &dwz->line;
15738 }
15739 else
15740 section = &dwarf2_per_objfile->line;
15741
15742 return section;
15743 }
15744
15745 /* Read the statement program header starting at OFFSET in
15746 .debug_line, or .debug_line.dwo. Return a pointer
15747 to a struct line_header, allocated using xmalloc.
15748
15749 NOTE: the strings in the include directory and file name tables of
15750 the returned object point into the dwarf line section buffer,
15751 and must not be freed. */
15752
15753 static struct line_header *
15754 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15755 {
15756 struct cleanup *back_to;
15757 struct line_header *lh;
15758 const gdb_byte *line_ptr;
15759 unsigned int bytes_read, offset_size;
15760 int i;
15761 const char *cur_dir, *cur_file;
15762 struct dwarf2_section_info *section;
15763 bfd *abfd;
15764
15765 section = get_debug_line_section (cu);
15766 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15767 if (section->buffer == NULL)
15768 {
15769 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15770 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15771 else
15772 complaint (&symfile_complaints, _("missing .debug_line section"));
15773 return 0;
15774 }
15775
15776 /* We can't do this until we know the section is non-empty.
15777 Only then do we know we have such a section. */
15778 abfd = section->asection->owner;
15779
15780 /* Make sure that at least there's room for the total_length field.
15781 That could be 12 bytes long, but we're just going to fudge that. */
15782 if (offset + 4 >= section->size)
15783 {
15784 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15785 return 0;
15786 }
15787
15788 lh = xmalloc (sizeof (*lh));
15789 memset (lh, 0, sizeof (*lh));
15790 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15791 (void *) lh);
15792
15793 line_ptr = section->buffer + offset;
15794
15795 /* Read in the header. */
15796 lh->total_length =
15797 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15798 &bytes_read, &offset_size);
15799 line_ptr += bytes_read;
15800 if (line_ptr + lh->total_length > (section->buffer + section->size))
15801 {
15802 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15803 do_cleanups (back_to);
15804 return 0;
15805 }
15806 lh->statement_program_end = line_ptr + lh->total_length;
15807 lh->version = read_2_bytes (abfd, line_ptr);
15808 line_ptr += 2;
15809 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15810 line_ptr += offset_size;
15811 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15812 line_ptr += 1;
15813 if (lh->version >= 4)
15814 {
15815 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15816 line_ptr += 1;
15817 }
15818 else
15819 lh->maximum_ops_per_instruction = 1;
15820
15821 if (lh->maximum_ops_per_instruction == 0)
15822 {
15823 lh->maximum_ops_per_instruction = 1;
15824 complaint (&symfile_complaints,
15825 _("invalid maximum_ops_per_instruction "
15826 "in `.debug_line' section"));
15827 }
15828
15829 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15830 line_ptr += 1;
15831 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15832 line_ptr += 1;
15833 lh->line_range = read_1_byte (abfd, line_ptr);
15834 line_ptr += 1;
15835 lh->opcode_base = read_1_byte (abfd, line_ptr);
15836 line_ptr += 1;
15837 lh->standard_opcode_lengths
15838 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15839
15840 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15841 for (i = 1; i < lh->opcode_base; ++i)
15842 {
15843 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15844 line_ptr += 1;
15845 }
15846
15847 /* Read directory table. */
15848 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15849 {
15850 line_ptr += bytes_read;
15851 add_include_dir (lh, cur_dir);
15852 }
15853 line_ptr += bytes_read;
15854
15855 /* Read file name table. */
15856 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15857 {
15858 unsigned int dir_index, mod_time, length;
15859
15860 line_ptr += bytes_read;
15861 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15862 line_ptr += bytes_read;
15863 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15864 line_ptr += bytes_read;
15865 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15866 line_ptr += bytes_read;
15867
15868 add_file_name (lh, cur_file, dir_index, mod_time, length);
15869 }
15870 line_ptr += bytes_read;
15871 lh->statement_program_start = line_ptr;
15872
15873 if (line_ptr > (section->buffer + section->size))
15874 complaint (&symfile_complaints,
15875 _("line number info header doesn't "
15876 "fit in `.debug_line' section"));
15877
15878 discard_cleanups (back_to);
15879 return lh;
15880 }
15881
15882 /* Subroutine of dwarf_decode_lines to simplify it.
15883 Return the file name of the psymtab for included file FILE_INDEX
15884 in line header LH of PST.
15885 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15886 If space for the result is malloc'd, it will be freed by a cleanup.
15887 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15888
15889 The function creates dangling cleanup registration. */
15890
15891 static const char *
15892 psymtab_include_file_name (const struct line_header *lh, int file_index,
15893 const struct partial_symtab *pst,
15894 const char *comp_dir)
15895 {
15896 const struct file_entry fe = lh->file_names [file_index];
15897 const char *include_name = fe.name;
15898 const char *include_name_to_compare = include_name;
15899 const char *dir_name = NULL;
15900 const char *pst_filename;
15901 char *copied_name = NULL;
15902 int file_is_pst;
15903
15904 if (fe.dir_index)
15905 dir_name = lh->include_dirs[fe.dir_index - 1];
15906
15907 if (!IS_ABSOLUTE_PATH (include_name)
15908 && (dir_name != NULL || comp_dir != NULL))
15909 {
15910 /* Avoid creating a duplicate psymtab for PST.
15911 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15912 Before we do the comparison, however, we need to account
15913 for DIR_NAME and COMP_DIR.
15914 First prepend dir_name (if non-NULL). If we still don't
15915 have an absolute path prepend comp_dir (if non-NULL).
15916 However, the directory we record in the include-file's
15917 psymtab does not contain COMP_DIR (to match the
15918 corresponding symtab(s)).
15919
15920 Example:
15921
15922 bash$ cd /tmp
15923 bash$ gcc -g ./hello.c
15924 include_name = "hello.c"
15925 dir_name = "."
15926 DW_AT_comp_dir = comp_dir = "/tmp"
15927 DW_AT_name = "./hello.c" */
15928
15929 if (dir_name != NULL)
15930 {
15931 char *tem = concat (dir_name, SLASH_STRING,
15932 include_name, (char *)NULL);
15933
15934 make_cleanup (xfree, tem);
15935 include_name = tem;
15936 include_name_to_compare = include_name;
15937 }
15938 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15939 {
15940 char *tem = concat (comp_dir, SLASH_STRING,
15941 include_name, (char *)NULL);
15942
15943 make_cleanup (xfree, tem);
15944 include_name_to_compare = tem;
15945 }
15946 }
15947
15948 pst_filename = pst->filename;
15949 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15950 {
15951 copied_name = concat (pst->dirname, SLASH_STRING,
15952 pst_filename, (char *)NULL);
15953 pst_filename = copied_name;
15954 }
15955
15956 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15957
15958 if (copied_name != NULL)
15959 xfree (copied_name);
15960
15961 if (file_is_pst)
15962 return NULL;
15963 return include_name;
15964 }
15965
15966 /* Ignore this record_line request. */
15967
15968 static void
15969 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15970 {
15971 return;
15972 }
15973
15974 /* Subroutine of dwarf_decode_lines to simplify it.
15975 Process the line number information in LH. */
15976
15977 static void
15978 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15979 struct dwarf2_cu *cu, struct partial_symtab *pst)
15980 {
15981 const gdb_byte *line_ptr, *extended_end;
15982 const gdb_byte *line_end;
15983 unsigned int bytes_read, extended_len;
15984 unsigned char op_code, extended_op, adj_opcode;
15985 CORE_ADDR baseaddr;
15986 struct objfile *objfile = cu->objfile;
15987 bfd *abfd = objfile->obfd;
15988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15989 const int decode_for_pst_p = (pst != NULL);
15990 struct subfile *last_subfile = NULL;
15991 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15992 = record_line;
15993
15994 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15995
15996 line_ptr = lh->statement_program_start;
15997 line_end = lh->statement_program_end;
15998
15999 /* Read the statement sequences until there's nothing left. */
16000 while (line_ptr < line_end)
16001 {
16002 /* state machine registers */
16003 CORE_ADDR address = 0;
16004 unsigned int file = 1;
16005 unsigned int line = 1;
16006 unsigned int column = 0;
16007 int is_stmt = lh->default_is_stmt;
16008 int basic_block = 0;
16009 int end_sequence = 0;
16010 CORE_ADDR addr;
16011 unsigned char op_index = 0;
16012
16013 if (!decode_for_pst_p && lh->num_file_names >= file)
16014 {
16015 /* Start a subfile for the current file of the state machine. */
16016 /* lh->include_dirs and lh->file_names are 0-based, but the
16017 directory and file name numbers in the statement program
16018 are 1-based. */
16019 struct file_entry *fe = &lh->file_names[file - 1];
16020 const char *dir = NULL;
16021
16022 if (fe->dir_index)
16023 dir = lh->include_dirs[fe->dir_index - 1];
16024
16025 dwarf2_start_subfile (fe->name, dir, comp_dir);
16026 }
16027
16028 /* Decode the table. */
16029 while (!end_sequence)
16030 {
16031 op_code = read_1_byte (abfd, line_ptr);
16032 line_ptr += 1;
16033 if (line_ptr > line_end)
16034 {
16035 dwarf2_debug_line_missing_end_sequence_complaint ();
16036 break;
16037 }
16038
16039 if (op_code >= lh->opcode_base)
16040 {
16041 /* Special operand. */
16042 adj_opcode = op_code - lh->opcode_base;
16043 address += (((op_index + (adj_opcode / lh->line_range))
16044 / lh->maximum_ops_per_instruction)
16045 * lh->minimum_instruction_length);
16046 op_index = ((op_index + (adj_opcode / lh->line_range))
16047 % lh->maximum_ops_per_instruction);
16048 line += lh->line_base + (adj_opcode % lh->line_range);
16049 if (lh->num_file_names < file || file == 0)
16050 dwarf2_debug_line_missing_file_complaint ();
16051 /* For now we ignore lines not starting on an
16052 instruction boundary. */
16053 else if (op_index == 0)
16054 {
16055 lh->file_names[file - 1].included_p = 1;
16056 if (!decode_for_pst_p && is_stmt)
16057 {
16058 if (last_subfile != current_subfile)
16059 {
16060 addr = gdbarch_addr_bits_remove (gdbarch, address);
16061 if (last_subfile)
16062 (*p_record_line) (last_subfile, 0, addr);
16063 last_subfile = current_subfile;
16064 }
16065 /* Append row to matrix using current values. */
16066 addr = gdbarch_addr_bits_remove (gdbarch, address);
16067 (*p_record_line) (current_subfile, line, addr);
16068 }
16069 }
16070 basic_block = 0;
16071 }
16072 else switch (op_code)
16073 {
16074 case DW_LNS_extended_op:
16075 extended_len = read_unsigned_leb128 (abfd, line_ptr,
16076 &bytes_read);
16077 line_ptr += bytes_read;
16078 extended_end = line_ptr + extended_len;
16079 extended_op = read_1_byte (abfd, line_ptr);
16080 line_ptr += 1;
16081 switch (extended_op)
16082 {
16083 case DW_LNE_end_sequence:
16084 p_record_line = record_line;
16085 end_sequence = 1;
16086 break;
16087 case DW_LNE_set_address:
16088 address = read_address (abfd, line_ptr, cu, &bytes_read);
16089
16090 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
16091 {
16092 /* This line table is for a function which has been
16093 GCd by the linker. Ignore it. PR gdb/12528 */
16094
16095 long line_offset
16096 = line_ptr - get_debug_line_section (cu)->buffer;
16097
16098 complaint (&symfile_complaints,
16099 _(".debug_line address at offset 0x%lx is 0 "
16100 "[in module %s]"),
16101 line_offset, objfile_name (objfile));
16102 p_record_line = noop_record_line;
16103 }
16104
16105 op_index = 0;
16106 line_ptr += bytes_read;
16107 address += baseaddr;
16108 break;
16109 case DW_LNE_define_file:
16110 {
16111 const char *cur_file;
16112 unsigned int dir_index, mod_time, length;
16113
16114 cur_file = read_direct_string (abfd, line_ptr,
16115 &bytes_read);
16116 line_ptr += bytes_read;
16117 dir_index =
16118 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16119 line_ptr += bytes_read;
16120 mod_time =
16121 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16122 line_ptr += bytes_read;
16123 length =
16124 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16125 line_ptr += bytes_read;
16126 add_file_name (lh, cur_file, dir_index, mod_time, length);
16127 }
16128 break;
16129 case DW_LNE_set_discriminator:
16130 /* The discriminator is not interesting to the debugger;
16131 just ignore it. */
16132 line_ptr = extended_end;
16133 break;
16134 default:
16135 complaint (&symfile_complaints,
16136 _("mangled .debug_line section"));
16137 return;
16138 }
16139 /* Make sure that we parsed the extended op correctly. If e.g.
16140 we expected a different address size than the producer used,
16141 we may have read the wrong number of bytes. */
16142 if (line_ptr != extended_end)
16143 {
16144 complaint (&symfile_complaints,
16145 _("mangled .debug_line section"));
16146 return;
16147 }
16148 break;
16149 case DW_LNS_copy:
16150 if (lh->num_file_names < file || file == 0)
16151 dwarf2_debug_line_missing_file_complaint ();
16152 else
16153 {
16154 lh->file_names[file - 1].included_p = 1;
16155 if (!decode_for_pst_p && is_stmt)
16156 {
16157 if (last_subfile != current_subfile)
16158 {
16159 addr = gdbarch_addr_bits_remove (gdbarch, address);
16160 if (last_subfile)
16161 (*p_record_line) (last_subfile, 0, addr);
16162 last_subfile = current_subfile;
16163 }
16164 addr = gdbarch_addr_bits_remove (gdbarch, address);
16165 (*p_record_line) (current_subfile, line, addr);
16166 }
16167 }
16168 basic_block = 0;
16169 break;
16170 case DW_LNS_advance_pc:
16171 {
16172 CORE_ADDR adjust
16173 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16174
16175 address += (((op_index + adjust)
16176 / lh->maximum_ops_per_instruction)
16177 * lh->minimum_instruction_length);
16178 op_index = ((op_index + adjust)
16179 % lh->maximum_ops_per_instruction);
16180 line_ptr += bytes_read;
16181 }
16182 break;
16183 case DW_LNS_advance_line:
16184 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16185 line_ptr += bytes_read;
16186 break;
16187 case DW_LNS_set_file:
16188 {
16189 /* The arrays lh->include_dirs and lh->file_names are
16190 0-based, but the directory and file name numbers in
16191 the statement program are 1-based. */
16192 struct file_entry *fe;
16193 const char *dir = NULL;
16194
16195 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16196 line_ptr += bytes_read;
16197 if (lh->num_file_names < file || file == 0)
16198 dwarf2_debug_line_missing_file_complaint ();
16199 else
16200 {
16201 fe = &lh->file_names[file - 1];
16202 if (fe->dir_index)
16203 dir = lh->include_dirs[fe->dir_index - 1];
16204 if (!decode_for_pst_p)
16205 {
16206 last_subfile = current_subfile;
16207 dwarf2_start_subfile (fe->name, dir, comp_dir);
16208 }
16209 }
16210 }
16211 break;
16212 case DW_LNS_set_column:
16213 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16214 line_ptr += bytes_read;
16215 break;
16216 case DW_LNS_negate_stmt:
16217 is_stmt = (!is_stmt);
16218 break;
16219 case DW_LNS_set_basic_block:
16220 basic_block = 1;
16221 break;
16222 /* Add to the address register of the state machine the
16223 address increment value corresponding to special opcode
16224 255. I.e., this value is scaled by the minimum
16225 instruction length since special opcode 255 would have
16226 scaled the increment. */
16227 case DW_LNS_const_add_pc:
16228 {
16229 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16230
16231 address += (((op_index + adjust)
16232 / lh->maximum_ops_per_instruction)
16233 * lh->minimum_instruction_length);
16234 op_index = ((op_index + adjust)
16235 % lh->maximum_ops_per_instruction);
16236 }
16237 break;
16238 case DW_LNS_fixed_advance_pc:
16239 address += read_2_bytes (abfd, line_ptr);
16240 op_index = 0;
16241 line_ptr += 2;
16242 break;
16243 default:
16244 {
16245 /* Unknown standard opcode, ignore it. */
16246 int i;
16247
16248 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16249 {
16250 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16251 line_ptr += bytes_read;
16252 }
16253 }
16254 }
16255 }
16256 if (lh->num_file_names < file || file == 0)
16257 dwarf2_debug_line_missing_file_complaint ();
16258 else
16259 {
16260 lh->file_names[file - 1].included_p = 1;
16261 if (!decode_for_pst_p)
16262 {
16263 addr = gdbarch_addr_bits_remove (gdbarch, address);
16264 (*p_record_line) (current_subfile, 0, addr);
16265 }
16266 }
16267 }
16268 }
16269
16270 /* Decode the Line Number Program (LNP) for the given line_header
16271 structure and CU. The actual information extracted and the type
16272 of structures created from the LNP depends on the value of PST.
16273
16274 1. If PST is NULL, then this procedure uses the data from the program
16275 to create all necessary symbol tables, and their linetables.
16276
16277 2. If PST is not NULL, this procedure reads the program to determine
16278 the list of files included by the unit represented by PST, and
16279 builds all the associated partial symbol tables.
16280
16281 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16282 It is used for relative paths in the line table.
16283 NOTE: When processing partial symtabs (pst != NULL),
16284 comp_dir == pst->dirname.
16285
16286 NOTE: It is important that psymtabs have the same file name (via strcmp)
16287 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16288 symtab we don't use it in the name of the psymtabs we create.
16289 E.g. expand_line_sal requires this when finding psymtabs to expand.
16290 A good testcase for this is mb-inline.exp. */
16291
16292 static void
16293 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16294 struct dwarf2_cu *cu, struct partial_symtab *pst,
16295 int want_line_info)
16296 {
16297 struct objfile *objfile = cu->objfile;
16298 const int decode_for_pst_p = (pst != NULL);
16299 struct subfile *first_subfile = current_subfile;
16300
16301 if (want_line_info)
16302 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16303
16304 if (decode_for_pst_p)
16305 {
16306 int file_index;
16307
16308 /* Now that we're done scanning the Line Header Program, we can
16309 create the psymtab of each included file. */
16310 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16311 if (lh->file_names[file_index].included_p == 1)
16312 {
16313 const char *include_name =
16314 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16315 if (include_name != NULL)
16316 dwarf2_create_include_psymtab (include_name, pst, objfile);
16317 }
16318 }
16319 else
16320 {
16321 /* Make sure a symtab is created for every file, even files
16322 which contain only variables (i.e. no code with associated
16323 line numbers). */
16324 int i;
16325
16326 for (i = 0; i < lh->num_file_names; i++)
16327 {
16328 const char *dir = NULL;
16329 struct file_entry *fe;
16330
16331 fe = &lh->file_names[i];
16332 if (fe->dir_index)
16333 dir = lh->include_dirs[fe->dir_index - 1];
16334 dwarf2_start_subfile (fe->name, dir, comp_dir);
16335
16336 /* Skip the main file; we don't need it, and it must be
16337 allocated last, so that it will show up before the
16338 non-primary symtabs in the objfile's symtab list. */
16339 if (current_subfile == first_subfile)
16340 continue;
16341
16342 if (current_subfile->symtab == NULL)
16343 current_subfile->symtab = allocate_symtab (current_subfile->name,
16344 objfile);
16345 fe->symtab = current_subfile->symtab;
16346 }
16347 }
16348 }
16349
16350 /* Start a subfile for DWARF. FILENAME is the name of the file and
16351 DIRNAME the name of the source directory which contains FILENAME
16352 or NULL if not known. COMP_DIR is the compilation directory for the
16353 linetable's compilation unit or NULL if not known.
16354 This routine tries to keep line numbers from identical absolute and
16355 relative file names in a common subfile.
16356
16357 Using the `list' example from the GDB testsuite, which resides in
16358 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16359 of /srcdir/list0.c yields the following debugging information for list0.c:
16360
16361 DW_AT_name: /srcdir/list0.c
16362 DW_AT_comp_dir: /compdir
16363 files.files[0].name: list0.h
16364 files.files[0].dir: /srcdir
16365 files.files[1].name: list0.c
16366 files.files[1].dir: /srcdir
16367
16368 The line number information for list0.c has to end up in a single
16369 subfile, so that `break /srcdir/list0.c:1' works as expected.
16370 start_subfile will ensure that this happens provided that we pass the
16371 concatenation of files.files[1].dir and files.files[1].name as the
16372 subfile's name. */
16373
16374 static void
16375 dwarf2_start_subfile (const char *filename, const char *dirname,
16376 const char *comp_dir)
16377 {
16378 char *copy = NULL;
16379
16380 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16381 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16382 second argument to start_subfile. To be consistent, we do the
16383 same here. In order not to lose the line information directory,
16384 we concatenate it to the filename when it makes sense.
16385 Note that the Dwarf3 standard says (speaking of filenames in line
16386 information): ``The directory index is ignored for file names
16387 that represent full path names''. Thus ignoring dirname in the
16388 `else' branch below isn't an issue. */
16389
16390 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16391 {
16392 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16393 filename = copy;
16394 }
16395
16396 start_subfile (filename, comp_dir);
16397
16398 if (copy != NULL)
16399 xfree (copy);
16400 }
16401
16402 /* Start a symtab for DWARF.
16403 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16404
16405 static void
16406 dwarf2_start_symtab (struct dwarf2_cu *cu,
16407 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16408 {
16409 start_symtab (name, comp_dir, low_pc);
16410 record_debugformat ("DWARF 2");
16411 record_producer (cu->producer);
16412
16413 /* We assume that we're processing GCC output. */
16414 processing_gcc_compilation = 2;
16415
16416 cu->processing_has_namespace_info = 0;
16417 }
16418
16419 static void
16420 var_decode_location (struct attribute *attr, struct symbol *sym,
16421 struct dwarf2_cu *cu)
16422 {
16423 struct objfile *objfile = cu->objfile;
16424 struct comp_unit_head *cu_header = &cu->header;
16425
16426 /* NOTE drow/2003-01-30: There used to be a comment and some special
16427 code here to turn a symbol with DW_AT_external and a
16428 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16429 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16430 with some versions of binutils) where shared libraries could have
16431 relocations against symbols in their debug information - the
16432 minimal symbol would have the right address, but the debug info
16433 would not. It's no longer necessary, because we will explicitly
16434 apply relocations when we read in the debug information now. */
16435
16436 /* A DW_AT_location attribute with no contents indicates that a
16437 variable has been optimized away. */
16438 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16439 {
16440 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16441 return;
16442 }
16443
16444 /* Handle one degenerate form of location expression specially, to
16445 preserve GDB's previous behavior when section offsets are
16446 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16447 then mark this symbol as LOC_STATIC. */
16448
16449 if (attr_form_is_block (attr)
16450 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16451 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16452 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16453 && (DW_BLOCK (attr)->size
16454 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16455 {
16456 unsigned int dummy;
16457
16458 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16459 SYMBOL_VALUE_ADDRESS (sym) =
16460 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16461 else
16462 SYMBOL_VALUE_ADDRESS (sym) =
16463 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16464 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16465 fixup_symbol_section (sym, objfile);
16466 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16467 SYMBOL_SECTION (sym));
16468 return;
16469 }
16470
16471 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16472 expression evaluator, and use LOC_COMPUTED only when necessary
16473 (i.e. when the value of a register or memory location is
16474 referenced, or a thread-local block, etc.). Then again, it might
16475 not be worthwhile. I'm assuming that it isn't unless performance
16476 or memory numbers show me otherwise. */
16477
16478 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16479
16480 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16481 cu->has_loclist = 1;
16482 }
16483
16484 /* Given a pointer to a DWARF information entry, figure out if we need
16485 to make a symbol table entry for it, and if so, create a new entry
16486 and return a pointer to it.
16487 If TYPE is NULL, determine symbol type from the die, otherwise
16488 used the passed type.
16489 If SPACE is not NULL, use it to hold the new symbol. If it is
16490 NULL, allocate a new symbol on the objfile's obstack. */
16491
16492 static struct symbol *
16493 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16494 struct symbol *space)
16495 {
16496 struct objfile *objfile = cu->objfile;
16497 struct symbol *sym = NULL;
16498 const char *name;
16499 struct attribute *attr = NULL;
16500 struct attribute *attr2 = NULL;
16501 CORE_ADDR baseaddr;
16502 struct pending **list_to_add = NULL;
16503
16504 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16505
16506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16507
16508 name = dwarf2_name (die, cu);
16509 if (name)
16510 {
16511 const char *linkagename;
16512 int suppress_add = 0;
16513
16514 if (space)
16515 sym = space;
16516 else
16517 sym = allocate_symbol (objfile);
16518 OBJSTAT (objfile, n_syms++);
16519
16520 /* Cache this symbol's name and the name's demangled form (if any). */
16521 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16522 linkagename = dwarf2_physname (name, die, cu);
16523 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16524
16525 /* Fortran does not have mangling standard and the mangling does differ
16526 between gfortran, iFort etc. */
16527 if (cu->language == language_fortran
16528 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16529 symbol_set_demangled_name (&(sym->ginfo),
16530 dwarf2_full_name (name, die, cu),
16531 NULL);
16532
16533 /* Default assumptions.
16534 Use the passed type or decode it from the die. */
16535 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16536 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16537 if (type != NULL)
16538 SYMBOL_TYPE (sym) = type;
16539 else
16540 SYMBOL_TYPE (sym) = die_type (die, cu);
16541 attr = dwarf2_attr (die,
16542 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16543 cu);
16544 if (attr)
16545 {
16546 SYMBOL_LINE (sym) = DW_UNSND (attr);
16547 }
16548
16549 attr = dwarf2_attr (die,
16550 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16551 cu);
16552 if (attr)
16553 {
16554 int file_index = DW_UNSND (attr);
16555
16556 if (cu->line_header == NULL
16557 || file_index > cu->line_header->num_file_names)
16558 complaint (&symfile_complaints,
16559 _("file index out of range"));
16560 else if (file_index > 0)
16561 {
16562 struct file_entry *fe;
16563
16564 fe = &cu->line_header->file_names[file_index - 1];
16565 SYMBOL_SYMTAB (sym) = fe->symtab;
16566 }
16567 }
16568
16569 switch (die->tag)
16570 {
16571 case DW_TAG_label:
16572 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16573 if (attr)
16574 {
16575 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16576 }
16577 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16578 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16579 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16580 add_symbol_to_list (sym, cu->list_in_scope);
16581 break;
16582 case DW_TAG_subprogram:
16583 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16584 finish_block. */
16585 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16586 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16587 if ((attr2 && (DW_UNSND (attr2) != 0))
16588 || cu->language == language_ada)
16589 {
16590 /* Subprograms marked external are stored as a global symbol.
16591 Ada subprograms, whether marked external or not, are always
16592 stored as a global symbol, because we want to be able to
16593 access them globally. For instance, we want to be able
16594 to break on a nested subprogram without having to
16595 specify the context. */
16596 list_to_add = &global_symbols;
16597 }
16598 else
16599 {
16600 list_to_add = cu->list_in_scope;
16601 }
16602 break;
16603 case DW_TAG_inlined_subroutine:
16604 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16605 finish_block. */
16606 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16607 SYMBOL_INLINED (sym) = 1;
16608 list_to_add = cu->list_in_scope;
16609 break;
16610 case DW_TAG_template_value_param:
16611 suppress_add = 1;
16612 /* Fall through. */
16613 case DW_TAG_constant:
16614 case DW_TAG_variable:
16615 case DW_TAG_member:
16616 /* Compilation with minimal debug info may result in
16617 variables with missing type entries. Change the
16618 misleading `void' type to something sensible. */
16619 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16620 SYMBOL_TYPE (sym)
16621 = objfile_type (objfile)->nodebug_data_symbol;
16622
16623 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16624 /* In the case of DW_TAG_member, we should only be called for
16625 static const members. */
16626 if (die->tag == DW_TAG_member)
16627 {
16628 /* dwarf2_add_field uses die_is_declaration,
16629 so we do the same. */
16630 gdb_assert (die_is_declaration (die, cu));
16631 gdb_assert (attr);
16632 }
16633 if (attr)
16634 {
16635 dwarf2_const_value (attr, sym, cu);
16636 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16637 if (!suppress_add)
16638 {
16639 if (attr2 && (DW_UNSND (attr2) != 0))
16640 list_to_add = &global_symbols;
16641 else
16642 list_to_add = cu->list_in_scope;
16643 }
16644 break;
16645 }
16646 attr = dwarf2_attr (die, DW_AT_location, cu);
16647 if (attr)
16648 {
16649 var_decode_location (attr, sym, cu);
16650 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16651
16652 /* Fortran explicitly imports any global symbols to the local
16653 scope by DW_TAG_common_block. */
16654 if (cu->language == language_fortran && die->parent
16655 && die->parent->tag == DW_TAG_common_block)
16656 attr2 = NULL;
16657
16658 if (SYMBOL_CLASS (sym) == LOC_STATIC
16659 && SYMBOL_VALUE_ADDRESS (sym) == 0
16660 && !dwarf2_per_objfile->has_section_at_zero)
16661 {
16662 /* When a static variable is eliminated by the linker,
16663 the corresponding debug information is not stripped
16664 out, but the variable address is set to null;
16665 do not add such variables into symbol table. */
16666 }
16667 else if (attr2 && (DW_UNSND (attr2) != 0))
16668 {
16669 /* Workaround gfortran PR debug/40040 - it uses
16670 DW_AT_location for variables in -fPIC libraries which may
16671 get overriden by other libraries/executable and get
16672 a different address. Resolve it by the minimal symbol
16673 which may come from inferior's executable using copy
16674 relocation. Make this workaround only for gfortran as for
16675 other compilers GDB cannot guess the minimal symbol
16676 Fortran mangling kind. */
16677 if (cu->language == language_fortran && die->parent
16678 && die->parent->tag == DW_TAG_module
16679 && cu->producer
16680 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16681 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16682
16683 /* A variable with DW_AT_external is never static,
16684 but it may be block-scoped. */
16685 list_to_add = (cu->list_in_scope == &file_symbols
16686 ? &global_symbols : cu->list_in_scope);
16687 }
16688 else
16689 list_to_add = cu->list_in_scope;
16690 }
16691 else
16692 {
16693 /* We do not know the address of this symbol.
16694 If it is an external symbol and we have type information
16695 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16696 The address of the variable will then be determined from
16697 the minimal symbol table whenever the variable is
16698 referenced. */
16699 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16700
16701 /* Fortran explicitly imports any global symbols to the local
16702 scope by DW_TAG_common_block. */
16703 if (cu->language == language_fortran && die->parent
16704 && die->parent->tag == DW_TAG_common_block)
16705 {
16706 /* SYMBOL_CLASS doesn't matter here because
16707 read_common_block is going to reset it. */
16708 if (!suppress_add)
16709 list_to_add = cu->list_in_scope;
16710 }
16711 else if (attr2 && (DW_UNSND (attr2) != 0)
16712 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16713 {
16714 /* A variable with DW_AT_external is never static, but it
16715 may be block-scoped. */
16716 list_to_add = (cu->list_in_scope == &file_symbols
16717 ? &global_symbols : cu->list_in_scope);
16718
16719 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16720 }
16721 else if (!die_is_declaration (die, cu))
16722 {
16723 /* Use the default LOC_OPTIMIZED_OUT class. */
16724 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16725 if (!suppress_add)
16726 list_to_add = cu->list_in_scope;
16727 }
16728 }
16729 break;
16730 case DW_TAG_formal_parameter:
16731 /* If we are inside a function, mark this as an argument. If
16732 not, we might be looking at an argument to an inlined function
16733 when we do not have enough information to show inlined frames;
16734 pretend it's a local variable in that case so that the user can
16735 still see it. */
16736 if (context_stack_depth > 0
16737 && context_stack[context_stack_depth - 1].name != NULL)
16738 SYMBOL_IS_ARGUMENT (sym) = 1;
16739 attr = dwarf2_attr (die, DW_AT_location, cu);
16740 if (attr)
16741 {
16742 var_decode_location (attr, sym, cu);
16743 }
16744 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16745 if (attr)
16746 {
16747 dwarf2_const_value (attr, sym, cu);
16748 }
16749
16750 list_to_add = cu->list_in_scope;
16751 break;
16752 case DW_TAG_unspecified_parameters:
16753 /* From varargs functions; gdb doesn't seem to have any
16754 interest in this information, so just ignore it for now.
16755 (FIXME?) */
16756 break;
16757 case DW_TAG_template_type_param:
16758 suppress_add = 1;
16759 /* Fall through. */
16760 case DW_TAG_class_type:
16761 case DW_TAG_interface_type:
16762 case DW_TAG_structure_type:
16763 case DW_TAG_union_type:
16764 case DW_TAG_set_type:
16765 case DW_TAG_enumeration_type:
16766 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16767 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16768
16769 {
16770 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16771 really ever be static objects: otherwise, if you try
16772 to, say, break of a class's method and you're in a file
16773 which doesn't mention that class, it won't work unless
16774 the check for all static symbols in lookup_symbol_aux
16775 saves you. See the OtherFileClass tests in
16776 gdb.c++/namespace.exp. */
16777
16778 if (!suppress_add)
16779 {
16780 list_to_add = (cu->list_in_scope == &file_symbols
16781 && (cu->language == language_cplus
16782 || cu->language == language_java)
16783 ? &global_symbols : cu->list_in_scope);
16784
16785 /* The semantics of C++ state that "struct foo {
16786 ... }" also defines a typedef for "foo". A Java
16787 class declaration also defines a typedef for the
16788 class. */
16789 if (cu->language == language_cplus
16790 || cu->language == language_java
16791 || cu->language == language_ada)
16792 {
16793 /* The symbol's name is already allocated along
16794 with this objfile, so we don't need to
16795 duplicate it for the type. */
16796 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16797 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16798 }
16799 }
16800 }
16801 break;
16802 case DW_TAG_typedef:
16803 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16804 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16805 list_to_add = cu->list_in_scope;
16806 break;
16807 case DW_TAG_base_type:
16808 case DW_TAG_subrange_type:
16809 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16810 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16811 list_to_add = cu->list_in_scope;
16812 break;
16813 case DW_TAG_enumerator:
16814 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16815 if (attr)
16816 {
16817 dwarf2_const_value (attr, sym, cu);
16818 }
16819 {
16820 /* NOTE: carlton/2003-11-10: See comment above in the
16821 DW_TAG_class_type, etc. block. */
16822
16823 list_to_add = (cu->list_in_scope == &file_symbols
16824 && (cu->language == language_cplus
16825 || cu->language == language_java)
16826 ? &global_symbols : cu->list_in_scope);
16827 }
16828 break;
16829 case DW_TAG_namespace:
16830 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16831 list_to_add = &global_symbols;
16832 break;
16833 case DW_TAG_common_block:
16834 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16835 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16836 add_symbol_to_list (sym, cu->list_in_scope);
16837 break;
16838 default:
16839 /* Not a tag we recognize. Hopefully we aren't processing
16840 trash data, but since we must specifically ignore things
16841 we don't recognize, there is nothing else we should do at
16842 this point. */
16843 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16844 dwarf_tag_name (die->tag));
16845 break;
16846 }
16847
16848 if (suppress_add)
16849 {
16850 sym->hash_next = objfile->template_symbols;
16851 objfile->template_symbols = sym;
16852 list_to_add = NULL;
16853 }
16854
16855 if (list_to_add != NULL)
16856 add_symbol_to_list (sym, list_to_add);
16857
16858 /* For the benefit of old versions of GCC, check for anonymous
16859 namespaces based on the demangled name. */
16860 if (!cu->processing_has_namespace_info
16861 && cu->language == language_cplus)
16862 cp_scan_for_anonymous_namespaces (sym, objfile);
16863 }
16864 return (sym);
16865 }
16866
16867 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16868
16869 static struct symbol *
16870 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16871 {
16872 return new_symbol_full (die, type, cu, NULL);
16873 }
16874
16875 /* Given an attr with a DW_FORM_dataN value in host byte order,
16876 zero-extend it as appropriate for the symbol's type. The DWARF
16877 standard (v4) is not entirely clear about the meaning of using
16878 DW_FORM_dataN for a constant with a signed type, where the type is
16879 wider than the data. The conclusion of a discussion on the DWARF
16880 list was that this is unspecified. We choose to always zero-extend
16881 because that is the interpretation long in use by GCC. */
16882
16883 static gdb_byte *
16884 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
16885 struct dwarf2_cu *cu, LONGEST *value, int bits)
16886 {
16887 struct objfile *objfile = cu->objfile;
16888 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16889 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16890 LONGEST l = DW_UNSND (attr);
16891
16892 if (bits < sizeof (*value) * 8)
16893 {
16894 l &= ((LONGEST) 1 << bits) - 1;
16895 *value = l;
16896 }
16897 else if (bits == sizeof (*value) * 8)
16898 *value = l;
16899 else
16900 {
16901 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16902 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16903 return bytes;
16904 }
16905
16906 return NULL;
16907 }
16908
16909 /* Read a constant value from an attribute. Either set *VALUE, or if
16910 the value does not fit in *VALUE, set *BYTES - either already
16911 allocated on the objfile obstack, or newly allocated on OBSTACK,
16912 or, set *BATON, if we translated the constant to a location
16913 expression. */
16914
16915 static void
16916 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
16917 const char *name, struct obstack *obstack,
16918 struct dwarf2_cu *cu,
16919 LONGEST *value, const gdb_byte **bytes,
16920 struct dwarf2_locexpr_baton **baton)
16921 {
16922 struct objfile *objfile = cu->objfile;
16923 struct comp_unit_head *cu_header = &cu->header;
16924 struct dwarf_block *blk;
16925 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16926 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16927
16928 *value = 0;
16929 *bytes = NULL;
16930 *baton = NULL;
16931
16932 switch (attr->form)
16933 {
16934 case DW_FORM_addr:
16935 case DW_FORM_GNU_addr_index:
16936 {
16937 gdb_byte *data;
16938
16939 if (TYPE_LENGTH (type) != cu_header->addr_size)
16940 dwarf2_const_value_length_mismatch_complaint (name,
16941 cu_header->addr_size,
16942 TYPE_LENGTH (type));
16943 /* Symbols of this form are reasonably rare, so we just
16944 piggyback on the existing location code rather than writing
16945 a new implementation of symbol_computed_ops. */
16946 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16947 (*baton)->per_cu = cu->per_cu;
16948 gdb_assert ((*baton)->per_cu);
16949
16950 (*baton)->size = 2 + cu_header->addr_size;
16951 data = obstack_alloc (obstack, (*baton)->size);
16952 (*baton)->data = data;
16953
16954 data[0] = DW_OP_addr;
16955 store_unsigned_integer (&data[1], cu_header->addr_size,
16956 byte_order, DW_ADDR (attr));
16957 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16958 }
16959 break;
16960 case DW_FORM_string:
16961 case DW_FORM_strp:
16962 case DW_FORM_GNU_str_index:
16963 case DW_FORM_GNU_strp_alt:
16964 /* DW_STRING is already allocated on the objfile obstack, point
16965 directly to it. */
16966 *bytes = (const gdb_byte *) DW_STRING (attr);
16967 break;
16968 case DW_FORM_block1:
16969 case DW_FORM_block2:
16970 case DW_FORM_block4:
16971 case DW_FORM_block:
16972 case DW_FORM_exprloc:
16973 blk = DW_BLOCK (attr);
16974 if (TYPE_LENGTH (type) != blk->size)
16975 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16976 TYPE_LENGTH (type));
16977 *bytes = blk->data;
16978 break;
16979
16980 /* The DW_AT_const_value attributes are supposed to carry the
16981 symbol's value "represented as it would be on the target
16982 architecture." By the time we get here, it's already been
16983 converted to host endianness, so we just need to sign- or
16984 zero-extend it as appropriate. */
16985 case DW_FORM_data1:
16986 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16987 break;
16988 case DW_FORM_data2:
16989 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16990 break;
16991 case DW_FORM_data4:
16992 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16993 break;
16994 case DW_FORM_data8:
16995 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16996 break;
16997
16998 case DW_FORM_sdata:
16999 *value = DW_SND (attr);
17000 break;
17001
17002 case DW_FORM_udata:
17003 *value = DW_UNSND (attr);
17004 break;
17005
17006 default:
17007 complaint (&symfile_complaints,
17008 _("unsupported const value attribute form: '%s'"),
17009 dwarf_form_name (attr->form));
17010 *value = 0;
17011 break;
17012 }
17013 }
17014
17015
17016 /* Copy constant value from an attribute to a symbol. */
17017
17018 static void
17019 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
17020 struct dwarf2_cu *cu)
17021 {
17022 struct objfile *objfile = cu->objfile;
17023 struct comp_unit_head *cu_header = &cu->header;
17024 LONGEST value;
17025 const gdb_byte *bytes;
17026 struct dwarf2_locexpr_baton *baton;
17027
17028 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
17029 SYMBOL_PRINT_NAME (sym),
17030 &objfile->objfile_obstack, cu,
17031 &value, &bytes, &baton);
17032
17033 if (baton != NULL)
17034 {
17035 SYMBOL_LOCATION_BATON (sym) = baton;
17036 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17037 }
17038 else if (bytes != NULL)
17039 {
17040 SYMBOL_VALUE_BYTES (sym) = bytes;
17041 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
17042 }
17043 else
17044 {
17045 SYMBOL_VALUE (sym) = value;
17046 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
17047 }
17048 }
17049
17050 /* Return the type of the die in question using its DW_AT_type attribute. */
17051
17052 static struct type *
17053 die_type (struct die_info *die, struct dwarf2_cu *cu)
17054 {
17055 struct attribute *type_attr;
17056
17057 type_attr = dwarf2_attr (die, DW_AT_type, cu);
17058 if (!type_attr)
17059 {
17060 /* A missing DW_AT_type represents a void type. */
17061 return objfile_type (cu->objfile)->builtin_void;
17062 }
17063
17064 return lookup_die_type (die, type_attr, cu);
17065 }
17066
17067 /* True iff CU's producer generates GNAT Ada auxiliary information
17068 that allows to find parallel types through that information instead
17069 of having to do expensive parallel lookups by type name. */
17070
17071 static int
17072 need_gnat_info (struct dwarf2_cu *cu)
17073 {
17074 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
17075 of GNAT produces this auxiliary information, without any indication
17076 that it is produced. Part of enhancing the FSF version of GNAT
17077 to produce that information will be to put in place an indicator
17078 that we can use in order to determine whether the descriptive type
17079 info is available or not. One suggestion that has been made is
17080 to use a new attribute, attached to the CU die. For now, assume
17081 that the descriptive type info is not available. */
17082 return 0;
17083 }
17084
17085 /* Return the auxiliary type of the die in question using its
17086 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
17087 attribute is not present. */
17088
17089 static struct type *
17090 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
17091 {
17092 struct attribute *type_attr;
17093
17094 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
17095 if (!type_attr)
17096 return NULL;
17097
17098 return lookup_die_type (die, type_attr, cu);
17099 }
17100
17101 /* If DIE has a descriptive_type attribute, then set the TYPE's
17102 descriptive type accordingly. */
17103
17104 static void
17105 set_descriptive_type (struct type *type, struct die_info *die,
17106 struct dwarf2_cu *cu)
17107 {
17108 struct type *descriptive_type = die_descriptive_type (die, cu);
17109
17110 if (descriptive_type)
17111 {
17112 ALLOCATE_GNAT_AUX_TYPE (type);
17113 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17114 }
17115 }
17116
17117 /* Return the containing type of the die in question using its
17118 DW_AT_containing_type attribute. */
17119
17120 static struct type *
17121 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17122 {
17123 struct attribute *type_attr;
17124
17125 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17126 if (!type_attr)
17127 error (_("Dwarf Error: Problem turning containing type into gdb type "
17128 "[in module %s]"), objfile_name (cu->objfile));
17129
17130 return lookup_die_type (die, type_attr, cu);
17131 }
17132
17133 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17134
17135 static struct type *
17136 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17137 {
17138 struct objfile *objfile = dwarf2_per_objfile->objfile;
17139 char *message, *saved;
17140
17141 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17142 objfile_name (objfile),
17143 cu->header.offset.sect_off,
17144 die->offset.sect_off);
17145 saved = obstack_copy0 (&objfile->objfile_obstack,
17146 message, strlen (message));
17147 xfree (message);
17148
17149 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17150 }
17151
17152 /* Look up the type of DIE in CU using its type attribute ATTR.
17153 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17154 DW_AT_containing_type.
17155 If there is no type substitute an error marker. */
17156
17157 static struct type *
17158 lookup_die_type (struct die_info *die, const struct attribute *attr,
17159 struct dwarf2_cu *cu)
17160 {
17161 struct objfile *objfile = cu->objfile;
17162 struct type *this_type;
17163
17164 gdb_assert (attr->name == DW_AT_type
17165 || attr->name == DW_AT_GNAT_descriptive_type
17166 || attr->name == DW_AT_containing_type);
17167
17168 /* First see if we have it cached. */
17169
17170 if (attr->form == DW_FORM_GNU_ref_alt)
17171 {
17172 struct dwarf2_per_cu_data *per_cu;
17173 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17174
17175 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17176 this_type = get_die_type_at_offset (offset, per_cu);
17177 }
17178 else if (attr_form_is_ref (attr))
17179 {
17180 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17181
17182 this_type = get_die_type_at_offset (offset, cu->per_cu);
17183 }
17184 else if (attr->form == DW_FORM_ref_sig8)
17185 {
17186 ULONGEST signature = DW_SIGNATURE (attr);
17187
17188 return get_signatured_type (die, signature, cu);
17189 }
17190 else
17191 {
17192 complaint (&symfile_complaints,
17193 _("Dwarf Error: Bad type attribute %s in DIE"
17194 " at 0x%x [in module %s]"),
17195 dwarf_attr_name (attr->name), die->offset.sect_off,
17196 objfile_name (objfile));
17197 return build_error_marker_type (cu, die);
17198 }
17199
17200 /* If not cached we need to read it in. */
17201
17202 if (this_type == NULL)
17203 {
17204 struct die_info *type_die = NULL;
17205 struct dwarf2_cu *type_cu = cu;
17206
17207 if (attr_form_is_ref (attr))
17208 type_die = follow_die_ref (die, attr, &type_cu);
17209 if (type_die == NULL)
17210 return build_error_marker_type (cu, die);
17211 /* If we find the type now, it's probably because the type came
17212 from an inter-CU reference and the type's CU got expanded before
17213 ours. */
17214 this_type = read_type_die (type_die, type_cu);
17215 }
17216
17217 /* If we still don't have a type use an error marker. */
17218
17219 if (this_type == NULL)
17220 return build_error_marker_type (cu, die);
17221
17222 return this_type;
17223 }
17224
17225 /* Return the type in DIE, CU.
17226 Returns NULL for invalid types.
17227
17228 This first does a lookup in die_type_hash,
17229 and only reads the die in if necessary.
17230
17231 NOTE: This can be called when reading in partial or full symbols. */
17232
17233 static struct type *
17234 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17235 {
17236 struct type *this_type;
17237
17238 this_type = get_die_type (die, cu);
17239 if (this_type)
17240 return this_type;
17241
17242 return read_type_die_1 (die, cu);
17243 }
17244
17245 /* Read the type in DIE, CU.
17246 Returns NULL for invalid types. */
17247
17248 static struct type *
17249 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17250 {
17251 struct type *this_type = NULL;
17252
17253 switch (die->tag)
17254 {
17255 case DW_TAG_class_type:
17256 case DW_TAG_interface_type:
17257 case DW_TAG_structure_type:
17258 case DW_TAG_union_type:
17259 this_type = read_structure_type (die, cu);
17260 break;
17261 case DW_TAG_enumeration_type:
17262 this_type = read_enumeration_type (die, cu);
17263 break;
17264 case DW_TAG_subprogram:
17265 case DW_TAG_subroutine_type:
17266 case DW_TAG_inlined_subroutine:
17267 this_type = read_subroutine_type (die, cu);
17268 break;
17269 case DW_TAG_array_type:
17270 this_type = read_array_type (die, cu);
17271 break;
17272 case DW_TAG_set_type:
17273 this_type = read_set_type (die, cu);
17274 break;
17275 case DW_TAG_pointer_type:
17276 this_type = read_tag_pointer_type (die, cu);
17277 break;
17278 case DW_TAG_ptr_to_member_type:
17279 this_type = read_tag_ptr_to_member_type (die, cu);
17280 break;
17281 case DW_TAG_reference_type:
17282 this_type = read_tag_reference_type (die, cu);
17283 break;
17284 case DW_TAG_const_type:
17285 this_type = read_tag_const_type (die, cu);
17286 break;
17287 case DW_TAG_volatile_type:
17288 this_type = read_tag_volatile_type (die, cu);
17289 break;
17290 case DW_TAG_restrict_type:
17291 this_type = read_tag_restrict_type (die, cu);
17292 break;
17293 case DW_TAG_string_type:
17294 this_type = read_tag_string_type (die, cu);
17295 break;
17296 case DW_TAG_typedef:
17297 this_type = read_typedef (die, cu);
17298 break;
17299 case DW_TAG_subrange_type:
17300 this_type = read_subrange_type (die, cu);
17301 break;
17302 case DW_TAG_base_type:
17303 this_type = read_base_type (die, cu);
17304 break;
17305 case DW_TAG_unspecified_type:
17306 this_type = read_unspecified_type (die, cu);
17307 break;
17308 case DW_TAG_namespace:
17309 this_type = read_namespace_type (die, cu);
17310 break;
17311 case DW_TAG_module:
17312 this_type = read_module_type (die, cu);
17313 break;
17314 default:
17315 complaint (&symfile_complaints,
17316 _("unexpected tag in read_type_die: '%s'"),
17317 dwarf_tag_name (die->tag));
17318 break;
17319 }
17320
17321 return this_type;
17322 }
17323
17324 /* See if we can figure out if the class lives in a namespace. We do
17325 this by looking for a member function; its demangled name will
17326 contain namespace info, if there is any.
17327 Return the computed name or NULL.
17328 Space for the result is allocated on the objfile's obstack.
17329 This is the full-die version of guess_partial_die_structure_name.
17330 In this case we know DIE has no useful parent. */
17331
17332 static char *
17333 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17334 {
17335 struct die_info *spec_die;
17336 struct dwarf2_cu *spec_cu;
17337 struct die_info *child;
17338
17339 spec_cu = cu;
17340 spec_die = die_specification (die, &spec_cu);
17341 if (spec_die != NULL)
17342 {
17343 die = spec_die;
17344 cu = spec_cu;
17345 }
17346
17347 for (child = die->child;
17348 child != NULL;
17349 child = child->sibling)
17350 {
17351 if (child->tag == DW_TAG_subprogram)
17352 {
17353 struct attribute *attr;
17354
17355 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17356 if (attr == NULL)
17357 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17358 if (attr != NULL)
17359 {
17360 char *actual_name
17361 = language_class_name_from_physname (cu->language_defn,
17362 DW_STRING (attr));
17363 char *name = NULL;
17364
17365 if (actual_name != NULL)
17366 {
17367 const char *die_name = dwarf2_name (die, cu);
17368
17369 if (die_name != NULL
17370 && strcmp (die_name, actual_name) != 0)
17371 {
17372 /* Strip off the class name from the full name.
17373 We want the prefix. */
17374 int die_name_len = strlen (die_name);
17375 int actual_name_len = strlen (actual_name);
17376
17377 /* Test for '::' as a sanity check. */
17378 if (actual_name_len > die_name_len + 2
17379 && actual_name[actual_name_len
17380 - die_name_len - 1] == ':')
17381 name =
17382 obstack_copy0 (&cu->objfile->objfile_obstack,
17383 actual_name,
17384 actual_name_len - die_name_len - 2);
17385 }
17386 }
17387 xfree (actual_name);
17388 return name;
17389 }
17390 }
17391 }
17392
17393 return NULL;
17394 }
17395
17396 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17397 prefix part in such case. See
17398 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17399
17400 static char *
17401 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17402 {
17403 struct attribute *attr;
17404 char *base;
17405
17406 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17407 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17408 return NULL;
17409
17410 attr = dwarf2_attr (die, DW_AT_name, cu);
17411 if (attr != NULL && DW_STRING (attr) != NULL)
17412 return NULL;
17413
17414 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17415 if (attr == NULL)
17416 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17417 if (attr == NULL || DW_STRING (attr) == NULL)
17418 return NULL;
17419
17420 /* dwarf2_name had to be already called. */
17421 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17422
17423 /* Strip the base name, keep any leading namespaces/classes. */
17424 base = strrchr (DW_STRING (attr), ':');
17425 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17426 return "";
17427
17428 return obstack_copy0 (&cu->objfile->objfile_obstack,
17429 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17430 }
17431
17432 /* Return the name of the namespace/class that DIE is defined within,
17433 or "" if we can't tell. The caller should not xfree the result.
17434
17435 For example, if we're within the method foo() in the following
17436 code:
17437
17438 namespace N {
17439 class C {
17440 void foo () {
17441 }
17442 };
17443 }
17444
17445 then determine_prefix on foo's die will return "N::C". */
17446
17447 static const char *
17448 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17449 {
17450 struct die_info *parent, *spec_die;
17451 struct dwarf2_cu *spec_cu;
17452 struct type *parent_type;
17453 char *retval;
17454
17455 if (cu->language != language_cplus && cu->language != language_java
17456 && cu->language != language_fortran)
17457 return "";
17458
17459 retval = anonymous_struct_prefix (die, cu);
17460 if (retval)
17461 return retval;
17462
17463 /* We have to be careful in the presence of DW_AT_specification.
17464 For example, with GCC 3.4, given the code
17465
17466 namespace N {
17467 void foo() {
17468 // Definition of N::foo.
17469 }
17470 }
17471
17472 then we'll have a tree of DIEs like this:
17473
17474 1: DW_TAG_compile_unit
17475 2: DW_TAG_namespace // N
17476 3: DW_TAG_subprogram // declaration of N::foo
17477 4: DW_TAG_subprogram // definition of N::foo
17478 DW_AT_specification // refers to die #3
17479
17480 Thus, when processing die #4, we have to pretend that we're in
17481 the context of its DW_AT_specification, namely the contex of die
17482 #3. */
17483 spec_cu = cu;
17484 spec_die = die_specification (die, &spec_cu);
17485 if (spec_die == NULL)
17486 parent = die->parent;
17487 else
17488 {
17489 parent = spec_die->parent;
17490 cu = spec_cu;
17491 }
17492
17493 if (parent == NULL)
17494 return "";
17495 else if (parent->building_fullname)
17496 {
17497 const char *name;
17498 const char *parent_name;
17499
17500 /* It has been seen on RealView 2.2 built binaries,
17501 DW_TAG_template_type_param types actually _defined_ as
17502 children of the parent class:
17503
17504 enum E {};
17505 template class <class Enum> Class{};
17506 Class<enum E> class_e;
17507
17508 1: DW_TAG_class_type (Class)
17509 2: DW_TAG_enumeration_type (E)
17510 3: DW_TAG_enumerator (enum1:0)
17511 3: DW_TAG_enumerator (enum2:1)
17512 ...
17513 2: DW_TAG_template_type_param
17514 DW_AT_type DW_FORM_ref_udata (E)
17515
17516 Besides being broken debug info, it can put GDB into an
17517 infinite loop. Consider:
17518
17519 When we're building the full name for Class<E>, we'll start
17520 at Class, and go look over its template type parameters,
17521 finding E. We'll then try to build the full name of E, and
17522 reach here. We're now trying to build the full name of E,
17523 and look over the parent DIE for containing scope. In the
17524 broken case, if we followed the parent DIE of E, we'd again
17525 find Class, and once again go look at its template type
17526 arguments, etc., etc. Simply don't consider such parent die
17527 as source-level parent of this die (it can't be, the language
17528 doesn't allow it), and break the loop here. */
17529 name = dwarf2_name (die, cu);
17530 parent_name = dwarf2_name (parent, cu);
17531 complaint (&symfile_complaints,
17532 _("template param type '%s' defined within parent '%s'"),
17533 name ? name : "<unknown>",
17534 parent_name ? parent_name : "<unknown>");
17535 return "";
17536 }
17537 else
17538 switch (parent->tag)
17539 {
17540 case DW_TAG_namespace:
17541 parent_type = read_type_die (parent, cu);
17542 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17543 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17544 Work around this problem here. */
17545 if (cu->language == language_cplus
17546 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17547 return "";
17548 /* We give a name to even anonymous namespaces. */
17549 return TYPE_TAG_NAME (parent_type);
17550 case DW_TAG_class_type:
17551 case DW_TAG_interface_type:
17552 case DW_TAG_structure_type:
17553 case DW_TAG_union_type:
17554 case DW_TAG_module:
17555 parent_type = read_type_die (parent, cu);
17556 if (TYPE_TAG_NAME (parent_type) != NULL)
17557 return TYPE_TAG_NAME (parent_type);
17558 else
17559 /* An anonymous structure is only allowed non-static data
17560 members; no typedefs, no member functions, et cetera.
17561 So it does not need a prefix. */
17562 return "";
17563 case DW_TAG_compile_unit:
17564 case DW_TAG_partial_unit:
17565 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17566 if (cu->language == language_cplus
17567 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17568 && die->child != NULL
17569 && (die->tag == DW_TAG_class_type
17570 || die->tag == DW_TAG_structure_type
17571 || die->tag == DW_TAG_union_type))
17572 {
17573 char *name = guess_full_die_structure_name (die, cu);
17574 if (name != NULL)
17575 return name;
17576 }
17577 return "";
17578 default:
17579 return determine_prefix (parent, cu);
17580 }
17581 }
17582
17583 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17584 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17585 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17586 an obconcat, otherwise allocate storage for the result. The CU argument is
17587 used to determine the language and hence, the appropriate separator. */
17588
17589 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17590
17591 static char *
17592 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17593 int physname, struct dwarf2_cu *cu)
17594 {
17595 const char *lead = "";
17596 const char *sep;
17597
17598 if (suffix == NULL || suffix[0] == '\0'
17599 || prefix == NULL || prefix[0] == '\0')
17600 sep = "";
17601 else if (cu->language == language_java)
17602 sep = ".";
17603 else if (cu->language == language_fortran && physname)
17604 {
17605 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17606 DW_AT_MIPS_linkage_name is preferred and used instead. */
17607
17608 lead = "__";
17609 sep = "_MOD_";
17610 }
17611 else
17612 sep = "::";
17613
17614 if (prefix == NULL)
17615 prefix = "";
17616 if (suffix == NULL)
17617 suffix = "";
17618
17619 if (obs == NULL)
17620 {
17621 char *retval
17622 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17623
17624 strcpy (retval, lead);
17625 strcat (retval, prefix);
17626 strcat (retval, sep);
17627 strcat (retval, suffix);
17628 return retval;
17629 }
17630 else
17631 {
17632 /* We have an obstack. */
17633 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17634 }
17635 }
17636
17637 /* Return sibling of die, NULL if no sibling. */
17638
17639 static struct die_info *
17640 sibling_die (struct die_info *die)
17641 {
17642 return die->sibling;
17643 }
17644
17645 /* Get name of a die, return NULL if not found. */
17646
17647 static const char *
17648 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17649 struct obstack *obstack)
17650 {
17651 if (name && cu->language == language_cplus)
17652 {
17653 char *canon_name = cp_canonicalize_string (name);
17654
17655 if (canon_name != NULL)
17656 {
17657 if (strcmp (canon_name, name) != 0)
17658 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17659 xfree (canon_name);
17660 }
17661 }
17662
17663 return name;
17664 }
17665
17666 /* Get name of a die, return NULL if not found. */
17667
17668 static const char *
17669 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17670 {
17671 struct attribute *attr;
17672
17673 attr = dwarf2_attr (die, DW_AT_name, cu);
17674 if ((!attr || !DW_STRING (attr))
17675 && die->tag != DW_TAG_class_type
17676 && die->tag != DW_TAG_interface_type
17677 && die->tag != DW_TAG_structure_type
17678 && die->tag != DW_TAG_union_type)
17679 return NULL;
17680
17681 switch (die->tag)
17682 {
17683 case DW_TAG_compile_unit:
17684 case DW_TAG_partial_unit:
17685 /* Compilation units have a DW_AT_name that is a filename, not
17686 a source language identifier. */
17687 case DW_TAG_enumeration_type:
17688 case DW_TAG_enumerator:
17689 /* These tags always have simple identifiers already; no need
17690 to canonicalize them. */
17691 return DW_STRING (attr);
17692
17693 case DW_TAG_subprogram:
17694 /* Java constructors will all be named "<init>", so return
17695 the class name when we see this special case. */
17696 if (cu->language == language_java
17697 && DW_STRING (attr) != NULL
17698 && strcmp (DW_STRING (attr), "<init>") == 0)
17699 {
17700 struct dwarf2_cu *spec_cu = cu;
17701 struct die_info *spec_die;
17702
17703 /* GCJ will output '<init>' for Java constructor names.
17704 For this special case, return the name of the parent class. */
17705
17706 /* GCJ may output suprogram DIEs with AT_specification set.
17707 If so, use the name of the specified DIE. */
17708 spec_die = die_specification (die, &spec_cu);
17709 if (spec_die != NULL)
17710 return dwarf2_name (spec_die, spec_cu);
17711
17712 do
17713 {
17714 die = die->parent;
17715 if (die->tag == DW_TAG_class_type)
17716 return dwarf2_name (die, cu);
17717 }
17718 while (die->tag != DW_TAG_compile_unit
17719 && die->tag != DW_TAG_partial_unit);
17720 }
17721 break;
17722
17723 case DW_TAG_class_type:
17724 case DW_TAG_interface_type:
17725 case DW_TAG_structure_type:
17726 case DW_TAG_union_type:
17727 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17728 structures or unions. These were of the form "._%d" in GCC 4.1,
17729 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17730 and GCC 4.4. We work around this problem by ignoring these. */
17731 if (attr && DW_STRING (attr)
17732 && (strncmp (DW_STRING (attr), "._", 2) == 0
17733 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17734 return NULL;
17735
17736 /* GCC might emit a nameless typedef that has a linkage name. See
17737 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17738 if (!attr || DW_STRING (attr) == NULL)
17739 {
17740 char *demangled = NULL;
17741
17742 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17743 if (attr == NULL)
17744 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17745
17746 if (attr == NULL || DW_STRING (attr) == NULL)
17747 return NULL;
17748
17749 /* Avoid demangling DW_STRING (attr) the second time on a second
17750 call for the same DIE. */
17751 if (!DW_STRING_IS_CANONICAL (attr))
17752 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17753
17754 if (demangled)
17755 {
17756 char *base;
17757
17758 /* FIXME: we already did this for the partial symbol... */
17759 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17760 demangled, strlen (demangled));
17761 DW_STRING_IS_CANONICAL (attr) = 1;
17762 xfree (demangled);
17763
17764 /* Strip any leading namespaces/classes, keep only the base name.
17765 DW_AT_name for named DIEs does not contain the prefixes. */
17766 base = strrchr (DW_STRING (attr), ':');
17767 if (base && base > DW_STRING (attr) && base[-1] == ':')
17768 return &base[1];
17769 else
17770 return DW_STRING (attr);
17771 }
17772 }
17773 break;
17774
17775 default:
17776 break;
17777 }
17778
17779 if (!DW_STRING_IS_CANONICAL (attr))
17780 {
17781 DW_STRING (attr)
17782 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17783 &cu->objfile->objfile_obstack);
17784 DW_STRING_IS_CANONICAL (attr) = 1;
17785 }
17786 return DW_STRING (attr);
17787 }
17788
17789 /* Return the die that this die in an extension of, or NULL if there
17790 is none. *EXT_CU is the CU containing DIE on input, and the CU
17791 containing the return value on output. */
17792
17793 static struct die_info *
17794 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17795 {
17796 struct attribute *attr;
17797
17798 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17799 if (attr == NULL)
17800 return NULL;
17801
17802 return follow_die_ref (die, attr, ext_cu);
17803 }
17804
17805 /* Convert a DIE tag into its string name. */
17806
17807 static const char *
17808 dwarf_tag_name (unsigned tag)
17809 {
17810 const char *name = get_DW_TAG_name (tag);
17811
17812 if (name == NULL)
17813 return "DW_TAG_<unknown>";
17814
17815 return name;
17816 }
17817
17818 /* Convert a DWARF attribute code into its string name. */
17819
17820 static const char *
17821 dwarf_attr_name (unsigned attr)
17822 {
17823 const char *name;
17824
17825 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17826 if (attr == DW_AT_MIPS_fde)
17827 return "DW_AT_MIPS_fde";
17828 #else
17829 if (attr == DW_AT_HP_block_index)
17830 return "DW_AT_HP_block_index";
17831 #endif
17832
17833 name = get_DW_AT_name (attr);
17834
17835 if (name == NULL)
17836 return "DW_AT_<unknown>";
17837
17838 return name;
17839 }
17840
17841 /* Convert a DWARF value form code into its string name. */
17842
17843 static const char *
17844 dwarf_form_name (unsigned form)
17845 {
17846 const char *name = get_DW_FORM_name (form);
17847
17848 if (name == NULL)
17849 return "DW_FORM_<unknown>";
17850
17851 return name;
17852 }
17853
17854 static char *
17855 dwarf_bool_name (unsigned mybool)
17856 {
17857 if (mybool)
17858 return "TRUE";
17859 else
17860 return "FALSE";
17861 }
17862
17863 /* Convert a DWARF type code into its string name. */
17864
17865 static const char *
17866 dwarf_type_encoding_name (unsigned enc)
17867 {
17868 const char *name = get_DW_ATE_name (enc);
17869
17870 if (name == NULL)
17871 return "DW_ATE_<unknown>";
17872
17873 return name;
17874 }
17875
17876 static void
17877 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17878 {
17879 unsigned int i;
17880
17881 print_spaces (indent, f);
17882 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17883 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17884
17885 if (die->parent != NULL)
17886 {
17887 print_spaces (indent, f);
17888 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17889 die->parent->offset.sect_off);
17890 }
17891
17892 print_spaces (indent, f);
17893 fprintf_unfiltered (f, " has children: %s\n",
17894 dwarf_bool_name (die->child != NULL));
17895
17896 print_spaces (indent, f);
17897 fprintf_unfiltered (f, " attributes:\n");
17898
17899 for (i = 0; i < die->num_attrs; ++i)
17900 {
17901 print_spaces (indent, f);
17902 fprintf_unfiltered (f, " %s (%s) ",
17903 dwarf_attr_name (die->attrs[i].name),
17904 dwarf_form_name (die->attrs[i].form));
17905
17906 switch (die->attrs[i].form)
17907 {
17908 case DW_FORM_addr:
17909 case DW_FORM_GNU_addr_index:
17910 fprintf_unfiltered (f, "address: ");
17911 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17912 break;
17913 case DW_FORM_block2:
17914 case DW_FORM_block4:
17915 case DW_FORM_block:
17916 case DW_FORM_block1:
17917 fprintf_unfiltered (f, "block: size %s",
17918 pulongest (DW_BLOCK (&die->attrs[i])->size));
17919 break;
17920 case DW_FORM_exprloc:
17921 fprintf_unfiltered (f, "expression: size %s",
17922 pulongest (DW_BLOCK (&die->attrs[i])->size));
17923 break;
17924 case DW_FORM_ref_addr:
17925 fprintf_unfiltered (f, "ref address: ");
17926 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17927 break;
17928 case DW_FORM_GNU_ref_alt:
17929 fprintf_unfiltered (f, "alt ref address: ");
17930 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17931 break;
17932 case DW_FORM_ref1:
17933 case DW_FORM_ref2:
17934 case DW_FORM_ref4:
17935 case DW_FORM_ref8:
17936 case DW_FORM_ref_udata:
17937 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17938 (long) (DW_UNSND (&die->attrs[i])));
17939 break;
17940 case DW_FORM_data1:
17941 case DW_FORM_data2:
17942 case DW_FORM_data4:
17943 case DW_FORM_data8:
17944 case DW_FORM_udata:
17945 case DW_FORM_sdata:
17946 fprintf_unfiltered (f, "constant: %s",
17947 pulongest (DW_UNSND (&die->attrs[i])));
17948 break;
17949 case DW_FORM_sec_offset:
17950 fprintf_unfiltered (f, "section offset: %s",
17951 pulongest (DW_UNSND (&die->attrs[i])));
17952 break;
17953 case DW_FORM_ref_sig8:
17954 fprintf_unfiltered (f, "signature: %s",
17955 hex_string (DW_SIGNATURE (&die->attrs[i])));
17956 break;
17957 case DW_FORM_string:
17958 case DW_FORM_strp:
17959 case DW_FORM_GNU_str_index:
17960 case DW_FORM_GNU_strp_alt:
17961 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17962 DW_STRING (&die->attrs[i])
17963 ? DW_STRING (&die->attrs[i]) : "",
17964 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17965 break;
17966 case DW_FORM_flag:
17967 if (DW_UNSND (&die->attrs[i]))
17968 fprintf_unfiltered (f, "flag: TRUE");
17969 else
17970 fprintf_unfiltered (f, "flag: FALSE");
17971 break;
17972 case DW_FORM_flag_present:
17973 fprintf_unfiltered (f, "flag: TRUE");
17974 break;
17975 case DW_FORM_indirect:
17976 /* The reader will have reduced the indirect form to
17977 the "base form" so this form should not occur. */
17978 fprintf_unfiltered (f,
17979 "unexpected attribute form: DW_FORM_indirect");
17980 break;
17981 default:
17982 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17983 die->attrs[i].form);
17984 break;
17985 }
17986 fprintf_unfiltered (f, "\n");
17987 }
17988 }
17989
17990 static void
17991 dump_die_for_error (struct die_info *die)
17992 {
17993 dump_die_shallow (gdb_stderr, 0, die);
17994 }
17995
17996 static void
17997 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17998 {
17999 int indent = level * 4;
18000
18001 gdb_assert (die != NULL);
18002
18003 if (level >= max_level)
18004 return;
18005
18006 dump_die_shallow (f, indent, die);
18007
18008 if (die->child != NULL)
18009 {
18010 print_spaces (indent, f);
18011 fprintf_unfiltered (f, " Children:");
18012 if (level + 1 < max_level)
18013 {
18014 fprintf_unfiltered (f, "\n");
18015 dump_die_1 (f, level + 1, max_level, die->child);
18016 }
18017 else
18018 {
18019 fprintf_unfiltered (f,
18020 " [not printed, max nesting level reached]\n");
18021 }
18022 }
18023
18024 if (die->sibling != NULL && level > 0)
18025 {
18026 dump_die_1 (f, level, max_level, die->sibling);
18027 }
18028 }
18029
18030 /* This is called from the pdie macro in gdbinit.in.
18031 It's not static so gcc will keep a copy callable from gdb. */
18032
18033 void
18034 dump_die (struct die_info *die, int max_level)
18035 {
18036 dump_die_1 (gdb_stdlog, 0, max_level, die);
18037 }
18038
18039 static void
18040 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
18041 {
18042 void **slot;
18043
18044 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
18045 INSERT);
18046
18047 *slot = die;
18048 }
18049
18050 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
18051 required kind. */
18052
18053 static sect_offset
18054 dwarf2_get_ref_die_offset (const struct attribute *attr)
18055 {
18056 sect_offset retval = { DW_UNSND (attr) };
18057
18058 if (attr_form_is_ref (attr))
18059 return retval;
18060
18061 retval.sect_off = 0;
18062 complaint (&symfile_complaints,
18063 _("unsupported die ref attribute form: '%s'"),
18064 dwarf_form_name (attr->form));
18065 return retval;
18066 }
18067
18068 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
18069 * the value held by the attribute is not constant. */
18070
18071 static LONGEST
18072 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
18073 {
18074 if (attr->form == DW_FORM_sdata)
18075 return DW_SND (attr);
18076 else if (attr->form == DW_FORM_udata
18077 || attr->form == DW_FORM_data1
18078 || attr->form == DW_FORM_data2
18079 || attr->form == DW_FORM_data4
18080 || attr->form == DW_FORM_data8)
18081 return DW_UNSND (attr);
18082 else
18083 {
18084 complaint (&symfile_complaints,
18085 _("Attribute value is not a constant (%s)"),
18086 dwarf_form_name (attr->form));
18087 return default_value;
18088 }
18089 }
18090
18091 /* Follow reference or signature attribute ATTR of SRC_DIE.
18092 On entry *REF_CU is the CU of SRC_DIE.
18093 On exit *REF_CU is the CU of the result. */
18094
18095 static struct die_info *
18096 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
18097 struct dwarf2_cu **ref_cu)
18098 {
18099 struct die_info *die;
18100
18101 if (attr_form_is_ref (attr))
18102 die = follow_die_ref (src_die, attr, ref_cu);
18103 else if (attr->form == DW_FORM_ref_sig8)
18104 die = follow_die_sig (src_die, attr, ref_cu);
18105 else
18106 {
18107 dump_die_for_error (src_die);
18108 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18109 objfile_name ((*ref_cu)->objfile));
18110 }
18111
18112 return die;
18113 }
18114
18115 /* Follow reference OFFSET.
18116 On entry *REF_CU is the CU of the source die referencing OFFSET.
18117 On exit *REF_CU is the CU of the result.
18118 Returns NULL if OFFSET is invalid. */
18119
18120 static struct die_info *
18121 follow_die_offset (sect_offset offset, int offset_in_dwz,
18122 struct dwarf2_cu **ref_cu)
18123 {
18124 struct die_info temp_die;
18125 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18126
18127 gdb_assert (cu->per_cu != NULL);
18128
18129 target_cu = cu;
18130
18131 if (cu->per_cu->is_debug_types)
18132 {
18133 /* .debug_types CUs cannot reference anything outside their CU.
18134 If they need to, they have to reference a signatured type via
18135 DW_FORM_ref_sig8. */
18136 if (! offset_in_cu_p (&cu->header, offset))
18137 return NULL;
18138 }
18139 else if (offset_in_dwz != cu->per_cu->is_dwz
18140 || ! offset_in_cu_p (&cu->header, offset))
18141 {
18142 struct dwarf2_per_cu_data *per_cu;
18143
18144 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18145 cu->objfile);
18146
18147 /* If necessary, add it to the queue and load its DIEs. */
18148 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18149 load_full_comp_unit (per_cu, cu->language);
18150
18151 target_cu = per_cu->cu;
18152 }
18153 else if (cu->dies == NULL)
18154 {
18155 /* We're loading full DIEs during partial symbol reading. */
18156 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18157 load_full_comp_unit (cu->per_cu, language_minimal);
18158 }
18159
18160 *ref_cu = target_cu;
18161 temp_die.offset = offset;
18162 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18163 }
18164
18165 /* Follow reference attribute ATTR of SRC_DIE.
18166 On entry *REF_CU is the CU of SRC_DIE.
18167 On exit *REF_CU is the CU of the result. */
18168
18169 static struct die_info *
18170 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
18171 struct dwarf2_cu **ref_cu)
18172 {
18173 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18174 struct dwarf2_cu *cu = *ref_cu;
18175 struct die_info *die;
18176
18177 die = follow_die_offset (offset,
18178 (attr->form == DW_FORM_GNU_ref_alt
18179 || cu->per_cu->is_dwz),
18180 ref_cu);
18181 if (!die)
18182 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18183 "at 0x%x [in module %s]"),
18184 offset.sect_off, src_die->offset.sect_off,
18185 objfile_name (cu->objfile));
18186
18187 return die;
18188 }
18189
18190 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18191 Returned value is intended for DW_OP_call*. Returned
18192 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18193
18194 struct dwarf2_locexpr_baton
18195 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18196 struct dwarf2_per_cu_data *per_cu,
18197 CORE_ADDR (*get_frame_pc) (void *baton),
18198 void *baton)
18199 {
18200 struct dwarf2_cu *cu;
18201 struct die_info *die;
18202 struct attribute *attr;
18203 struct dwarf2_locexpr_baton retval;
18204
18205 dw2_setup (per_cu->objfile);
18206
18207 if (per_cu->cu == NULL)
18208 load_cu (per_cu);
18209 cu = per_cu->cu;
18210
18211 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18212 if (!die)
18213 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18214 offset.sect_off, objfile_name (per_cu->objfile));
18215
18216 attr = dwarf2_attr (die, DW_AT_location, cu);
18217 if (!attr)
18218 {
18219 /* DWARF: "If there is no such attribute, then there is no effect.".
18220 DATA is ignored if SIZE is 0. */
18221
18222 retval.data = NULL;
18223 retval.size = 0;
18224 }
18225 else if (attr_form_is_section_offset (attr))
18226 {
18227 struct dwarf2_loclist_baton loclist_baton;
18228 CORE_ADDR pc = (*get_frame_pc) (baton);
18229 size_t size;
18230
18231 fill_in_loclist_baton (cu, &loclist_baton, attr);
18232
18233 retval.data = dwarf2_find_location_expression (&loclist_baton,
18234 &size, pc);
18235 retval.size = size;
18236 }
18237 else
18238 {
18239 if (!attr_form_is_block (attr))
18240 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18241 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18242 offset.sect_off, objfile_name (per_cu->objfile));
18243
18244 retval.data = DW_BLOCK (attr)->data;
18245 retval.size = DW_BLOCK (attr)->size;
18246 }
18247 retval.per_cu = cu->per_cu;
18248
18249 age_cached_comp_units ();
18250
18251 return retval;
18252 }
18253
18254 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18255 offset. */
18256
18257 struct dwarf2_locexpr_baton
18258 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18259 struct dwarf2_per_cu_data *per_cu,
18260 CORE_ADDR (*get_frame_pc) (void *baton),
18261 void *baton)
18262 {
18263 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18264
18265 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18266 }
18267
18268 /* Write a constant of a given type as target-ordered bytes into
18269 OBSTACK. */
18270
18271 static const gdb_byte *
18272 write_constant_as_bytes (struct obstack *obstack,
18273 enum bfd_endian byte_order,
18274 struct type *type,
18275 ULONGEST value,
18276 LONGEST *len)
18277 {
18278 gdb_byte *result;
18279
18280 *len = TYPE_LENGTH (type);
18281 result = obstack_alloc (obstack, *len);
18282 store_unsigned_integer (result, *len, byte_order, value);
18283
18284 return result;
18285 }
18286
18287 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18288 pointer to the constant bytes and set LEN to the length of the
18289 data. If memory is needed, allocate it on OBSTACK. If the DIE
18290 does not have a DW_AT_const_value, return NULL. */
18291
18292 const gdb_byte *
18293 dwarf2_fetch_constant_bytes (sect_offset offset,
18294 struct dwarf2_per_cu_data *per_cu,
18295 struct obstack *obstack,
18296 LONGEST *len)
18297 {
18298 struct dwarf2_cu *cu;
18299 struct die_info *die;
18300 struct attribute *attr;
18301 const gdb_byte *result = NULL;
18302 struct type *type;
18303 LONGEST value;
18304 enum bfd_endian byte_order;
18305
18306 dw2_setup (per_cu->objfile);
18307
18308 if (per_cu->cu == NULL)
18309 load_cu (per_cu);
18310 cu = per_cu->cu;
18311
18312 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18313 if (!die)
18314 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18315 offset.sect_off, objfile_name (per_cu->objfile));
18316
18317
18318 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18319 if (attr == NULL)
18320 return NULL;
18321
18322 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18323 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18324
18325 switch (attr->form)
18326 {
18327 case DW_FORM_addr:
18328 case DW_FORM_GNU_addr_index:
18329 {
18330 gdb_byte *tem;
18331
18332 *len = cu->header.addr_size;
18333 tem = obstack_alloc (obstack, *len);
18334 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18335 result = tem;
18336 }
18337 break;
18338 case DW_FORM_string:
18339 case DW_FORM_strp:
18340 case DW_FORM_GNU_str_index:
18341 case DW_FORM_GNU_strp_alt:
18342 /* DW_STRING is already allocated on the objfile obstack, point
18343 directly to it. */
18344 result = (const gdb_byte *) DW_STRING (attr);
18345 *len = strlen (DW_STRING (attr));
18346 break;
18347 case DW_FORM_block1:
18348 case DW_FORM_block2:
18349 case DW_FORM_block4:
18350 case DW_FORM_block:
18351 case DW_FORM_exprloc:
18352 result = DW_BLOCK (attr)->data;
18353 *len = DW_BLOCK (attr)->size;
18354 break;
18355
18356 /* The DW_AT_const_value attributes are supposed to carry the
18357 symbol's value "represented as it would be on the target
18358 architecture." By the time we get here, it's already been
18359 converted to host endianness, so we just need to sign- or
18360 zero-extend it as appropriate. */
18361 case DW_FORM_data1:
18362 type = die_type (die, cu);
18363 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18364 if (result == NULL)
18365 result = write_constant_as_bytes (obstack, byte_order,
18366 type, value, len);
18367 break;
18368 case DW_FORM_data2:
18369 type = die_type (die, cu);
18370 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18371 if (result == NULL)
18372 result = write_constant_as_bytes (obstack, byte_order,
18373 type, value, len);
18374 break;
18375 case DW_FORM_data4:
18376 type = die_type (die, cu);
18377 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18378 if (result == NULL)
18379 result = write_constant_as_bytes (obstack, byte_order,
18380 type, value, len);
18381 break;
18382 case DW_FORM_data8:
18383 type = die_type (die, cu);
18384 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18385 if (result == NULL)
18386 result = write_constant_as_bytes (obstack, byte_order,
18387 type, value, len);
18388 break;
18389
18390 case DW_FORM_sdata:
18391 type = die_type (die, cu);
18392 result = write_constant_as_bytes (obstack, byte_order,
18393 type, DW_SND (attr), len);
18394 break;
18395
18396 case DW_FORM_udata:
18397 type = die_type (die, cu);
18398 result = write_constant_as_bytes (obstack, byte_order,
18399 type, DW_UNSND (attr), len);
18400 break;
18401
18402 default:
18403 complaint (&symfile_complaints,
18404 _("unsupported const value attribute form: '%s'"),
18405 dwarf_form_name (attr->form));
18406 break;
18407 }
18408
18409 return result;
18410 }
18411
18412 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18413 PER_CU. */
18414
18415 struct type *
18416 dwarf2_get_die_type (cu_offset die_offset,
18417 struct dwarf2_per_cu_data *per_cu)
18418 {
18419 sect_offset die_offset_sect;
18420
18421 dw2_setup (per_cu->objfile);
18422
18423 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18424 return get_die_type_at_offset (die_offset_sect, per_cu);
18425 }
18426
18427 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18428 On entry *REF_CU is the CU of SRC_DIE.
18429 On exit *REF_CU is the CU of the result.
18430 Returns NULL if the referenced DIE isn't found. */
18431
18432 static struct die_info *
18433 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18434 struct dwarf2_cu **ref_cu)
18435 {
18436 struct objfile *objfile = (*ref_cu)->objfile;
18437 struct die_info temp_die;
18438 struct dwarf2_cu *sig_cu;
18439 struct die_info *die;
18440
18441 /* While it might be nice to assert sig_type->type == NULL here,
18442 we can get here for DW_AT_imported_declaration where we need
18443 the DIE not the type. */
18444
18445 /* If necessary, add it to the queue and load its DIEs. */
18446
18447 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18448 read_signatured_type (sig_type);
18449
18450 sig_cu = sig_type->per_cu.cu;
18451 gdb_assert (sig_cu != NULL);
18452 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18453 temp_die.offset = sig_type->type_offset_in_section;
18454 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18455 temp_die.offset.sect_off);
18456 if (die)
18457 {
18458 /* For .gdb_index version 7 keep track of included TUs.
18459 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18460 if (dwarf2_per_objfile->index_table != NULL
18461 && dwarf2_per_objfile->index_table->version <= 7)
18462 {
18463 VEC_safe_push (dwarf2_per_cu_ptr,
18464 (*ref_cu)->per_cu->imported_symtabs,
18465 sig_cu->per_cu);
18466 }
18467
18468 *ref_cu = sig_cu;
18469 return die;
18470 }
18471
18472 return NULL;
18473 }
18474
18475 /* Follow signatured type referenced by ATTR in SRC_DIE.
18476 On entry *REF_CU is the CU of SRC_DIE.
18477 On exit *REF_CU is the CU of the result.
18478 The result is the DIE of the type.
18479 If the referenced type cannot be found an error is thrown. */
18480
18481 static struct die_info *
18482 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
18483 struct dwarf2_cu **ref_cu)
18484 {
18485 ULONGEST signature = DW_SIGNATURE (attr);
18486 struct signatured_type *sig_type;
18487 struct die_info *die;
18488
18489 gdb_assert (attr->form == DW_FORM_ref_sig8);
18490
18491 sig_type = lookup_signatured_type (*ref_cu, signature);
18492 /* sig_type will be NULL if the signatured type is missing from
18493 the debug info. */
18494 if (sig_type == NULL)
18495 {
18496 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18497 " from DIE at 0x%x [in module %s]"),
18498 hex_string (signature), src_die->offset.sect_off,
18499 objfile_name ((*ref_cu)->objfile));
18500 }
18501
18502 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18503 if (die == NULL)
18504 {
18505 dump_die_for_error (src_die);
18506 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18507 " from DIE at 0x%x [in module %s]"),
18508 hex_string (signature), src_die->offset.sect_off,
18509 objfile_name ((*ref_cu)->objfile));
18510 }
18511
18512 return die;
18513 }
18514
18515 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18516 reading in and processing the type unit if necessary. */
18517
18518 static struct type *
18519 get_signatured_type (struct die_info *die, ULONGEST signature,
18520 struct dwarf2_cu *cu)
18521 {
18522 struct signatured_type *sig_type;
18523 struct dwarf2_cu *type_cu;
18524 struct die_info *type_die;
18525 struct type *type;
18526
18527 sig_type = lookup_signatured_type (cu, signature);
18528 /* sig_type will be NULL if the signatured type is missing from
18529 the debug info. */
18530 if (sig_type == NULL)
18531 {
18532 complaint (&symfile_complaints,
18533 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18534 " from DIE at 0x%x [in module %s]"),
18535 hex_string (signature), die->offset.sect_off,
18536 objfile_name (dwarf2_per_objfile->objfile));
18537 return build_error_marker_type (cu, die);
18538 }
18539
18540 /* If we already know the type we're done. */
18541 if (sig_type->type != NULL)
18542 return sig_type->type;
18543
18544 type_cu = cu;
18545 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18546 if (type_die != NULL)
18547 {
18548 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18549 is created. This is important, for example, because for c++ classes
18550 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18551 type = read_type_die (type_die, type_cu);
18552 if (type == NULL)
18553 {
18554 complaint (&symfile_complaints,
18555 _("Dwarf Error: Cannot build signatured type %s"
18556 " referenced from DIE at 0x%x [in module %s]"),
18557 hex_string (signature), die->offset.sect_off,
18558 objfile_name (dwarf2_per_objfile->objfile));
18559 type = build_error_marker_type (cu, die);
18560 }
18561 }
18562 else
18563 {
18564 complaint (&symfile_complaints,
18565 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18566 " from DIE at 0x%x [in module %s]"),
18567 hex_string (signature), die->offset.sect_off,
18568 objfile_name (dwarf2_per_objfile->objfile));
18569 type = build_error_marker_type (cu, die);
18570 }
18571 sig_type->type = type;
18572
18573 return type;
18574 }
18575
18576 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18577 reading in and processing the type unit if necessary. */
18578
18579 static struct type *
18580 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
18581 struct dwarf2_cu *cu) /* ARI: editCase function */
18582 {
18583 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18584 if (attr_form_is_ref (attr))
18585 {
18586 struct dwarf2_cu *type_cu = cu;
18587 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18588
18589 return read_type_die (type_die, type_cu);
18590 }
18591 else if (attr->form == DW_FORM_ref_sig8)
18592 {
18593 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18594 }
18595 else
18596 {
18597 complaint (&symfile_complaints,
18598 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18599 " at 0x%x [in module %s]"),
18600 dwarf_form_name (attr->form), die->offset.sect_off,
18601 objfile_name (dwarf2_per_objfile->objfile));
18602 return build_error_marker_type (cu, die);
18603 }
18604 }
18605
18606 /* Load the DIEs associated with type unit PER_CU into memory. */
18607
18608 static void
18609 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18610 {
18611 struct signatured_type *sig_type;
18612
18613 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18614 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18615
18616 /* We have the per_cu, but we need the signatured_type.
18617 Fortunately this is an easy translation. */
18618 gdb_assert (per_cu->is_debug_types);
18619 sig_type = (struct signatured_type *) per_cu;
18620
18621 gdb_assert (per_cu->cu == NULL);
18622
18623 read_signatured_type (sig_type);
18624
18625 gdb_assert (per_cu->cu != NULL);
18626 }
18627
18628 /* die_reader_func for read_signatured_type.
18629 This is identical to load_full_comp_unit_reader,
18630 but is kept separate for now. */
18631
18632 static void
18633 read_signatured_type_reader (const struct die_reader_specs *reader,
18634 const gdb_byte *info_ptr,
18635 struct die_info *comp_unit_die,
18636 int has_children,
18637 void *data)
18638 {
18639 struct dwarf2_cu *cu = reader->cu;
18640
18641 gdb_assert (cu->die_hash == NULL);
18642 cu->die_hash =
18643 htab_create_alloc_ex (cu->header.length / 12,
18644 die_hash,
18645 die_eq,
18646 NULL,
18647 &cu->comp_unit_obstack,
18648 hashtab_obstack_allocate,
18649 dummy_obstack_deallocate);
18650
18651 if (has_children)
18652 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18653 &info_ptr, comp_unit_die);
18654 cu->dies = comp_unit_die;
18655 /* comp_unit_die is not stored in die_hash, no need. */
18656
18657 /* We try not to read any attributes in this function, because not
18658 all CUs needed for references have been loaded yet, and symbol
18659 table processing isn't initialized. But we have to set the CU language,
18660 or we won't be able to build types correctly.
18661 Similarly, if we do not read the producer, we can not apply
18662 producer-specific interpretation. */
18663 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18664 }
18665
18666 /* Read in a signatured type and build its CU and DIEs.
18667 If the type is a stub for the real type in a DWO file,
18668 read in the real type from the DWO file as well. */
18669
18670 static void
18671 read_signatured_type (struct signatured_type *sig_type)
18672 {
18673 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18674
18675 gdb_assert (per_cu->is_debug_types);
18676 gdb_assert (per_cu->cu == NULL);
18677
18678 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18679 read_signatured_type_reader, NULL);
18680 sig_type->per_cu.tu_read = 1;
18681 }
18682
18683 /* Decode simple location descriptions.
18684 Given a pointer to a dwarf block that defines a location, compute
18685 the location and return the value.
18686
18687 NOTE drow/2003-11-18: This function is called in two situations
18688 now: for the address of static or global variables (partial symbols
18689 only) and for offsets into structures which are expected to be
18690 (more or less) constant. The partial symbol case should go away,
18691 and only the constant case should remain. That will let this
18692 function complain more accurately. A few special modes are allowed
18693 without complaint for global variables (for instance, global
18694 register values and thread-local values).
18695
18696 A location description containing no operations indicates that the
18697 object is optimized out. The return value is 0 for that case.
18698 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18699 callers will only want a very basic result and this can become a
18700 complaint.
18701
18702 Note that stack[0] is unused except as a default error return. */
18703
18704 static CORE_ADDR
18705 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18706 {
18707 struct objfile *objfile = cu->objfile;
18708 size_t i;
18709 size_t size = blk->size;
18710 const gdb_byte *data = blk->data;
18711 CORE_ADDR stack[64];
18712 int stacki;
18713 unsigned int bytes_read, unsnd;
18714 gdb_byte op;
18715
18716 i = 0;
18717 stacki = 0;
18718 stack[stacki] = 0;
18719 stack[++stacki] = 0;
18720
18721 while (i < size)
18722 {
18723 op = data[i++];
18724 switch (op)
18725 {
18726 case DW_OP_lit0:
18727 case DW_OP_lit1:
18728 case DW_OP_lit2:
18729 case DW_OP_lit3:
18730 case DW_OP_lit4:
18731 case DW_OP_lit5:
18732 case DW_OP_lit6:
18733 case DW_OP_lit7:
18734 case DW_OP_lit8:
18735 case DW_OP_lit9:
18736 case DW_OP_lit10:
18737 case DW_OP_lit11:
18738 case DW_OP_lit12:
18739 case DW_OP_lit13:
18740 case DW_OP_lit14:
18741 case DW_OP_lit15:
18742 case DW_OP_lit16:
18743 case DW_OP_lit17:
18744 case DW_OP_lit18:
18745 case DW_OP_lit19:
18746 case DW_OP_lit20:
18747 case DW_OP_lit21:
18748 case DW_OP_lit22:
18749 case DW_OP_lit23:
18750 case DW_OP_lit24:
18751 case DW_OP_lit25:
18752 case DW_OP_lit26:
18753 case DW_OP_lit27:
18754 case DW_OP_lit28:
18755 case DW_OP_lit29:
18756 case DW_OP_lit30:
18757 case DW_OP_lit31:
18758 stack[++stacki] = op - DW_OP_lit0;
18759 break;
18760
18761 case DW_OP_reg0:
18762 case DW_OP_reg1:
18763 case DW_OP_reg2:
18764 case DW_OP_reg3:
18765 case DW_OP_reg4:
18766 case DW_OP_reg5:
18767 case DW_OP_reg6:
18768 case DW_OP_reg7:
18769 case DW_OP_reg8:
18770 case DW_OP_reg9:
18771 case DW_OP_reg10:
18772 case DW_OP_reg11:
18773 case DW_OP_reg12:
18774 case DW_OP_reg13:
18775 case DW_OP_reg14:
18776 case DW_OP_reg15:
18777 case DW_OP_reg16:
18778 case DW_OP_reg17:
18779 case DW_OP_reg18:
18780 case DW_OP_reg19:
18781 case DW_OP_reg20:
18782 case DW_OP_reg21:
18783 case DW_OP_reg22:
18784 case DW_OP_reg23:
18785 case DW_OP_reg24:
18786 case DW_OP_reg25:
18787 case DW_OP_reg26:
18788 case DW_OP_reg27:
18789 case DW_OP_reg28:
18790 case DW_OP_reg29:
18791 case DW_OP_reg30:
18792 case DW_OP_reg31:
18793 stack[++stacki] = op - DW_OP_reg0;
18794 if (i < size)
18795 dwarf2_complex_location_expr_complaint ();
18796 break;
18797
18798 case DW_OP_regx:
18799 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18800 i += bytes_read;
18801 stack[++stacki] = unsnd;
18802 if (i < size)
18803 dwarf2_complex_location_expr_complaint ();
18804 break;
18805
18806 case DW_OP_addr:
18807 stack[++stacki] = read_address (objfile->obfd, &data[i],
18808 cu, &bytes_read);
18809 i += bytes_read;
18810 break;
18811
18812 case DW_OP_const1u:
18813 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18814 i += 1;
18815 break;
18816
18817 case DW_OP_const1s:
18818 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18819 i += 1;
18820 break;
18821
18822 case DW_OP_const2u:
18823 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18824 i += 2;
18825 break;
18826
18827 case DW_OP_const2s:
18828 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18829 i += 2;
18830 break;
18831
18832 case DW_OP_const4u:
18833 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18834 i += 4;
18835 break;
18836
18837 case DW_OP_const4s:
18838 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18839 i += 4;
18840 break;
18841
18842 case DW_OP_const8u:
18843 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18844 i += 8;
18845 break;
18846
18847 case DW_OP_constu:
18848 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18849 &bytes_read);
18850 i += bytes_read;
18851 break;
18852
18853 case DW_OP_consts:
18854 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18855 i += bytes_read;
18856 break;
18857
18858 case DW_OP_dup:
18859 stack[stacki + 1] = stack[stacki];
18860 stacki++;
18861 break;
18862
18863 case DW_OP_plus:
18864 stack[stacki - 1] += stack[stacki];
18865 stacki--;
18866 break;
18867
18868 case DW_OP_plus_uconst:
18869 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18870 &bytes_read);
18871 i += bytes_read;
18872 break;
18873
18874 case DW_OP_minus:
18875 stack[stacki - 1] -= stack[stacki];
18876 stacki--;
18877 break;
18878
18879 case DW_OP_deref:
18880 /* If we're not the last op, then we definitely can't encode
18881 this using GDB's address_class enum. This is valid for partial
18882 global symbols, although the variable's address will be bogus
18883 in the psymtab. */
18884 if (i < size)
18885 dwarf2_complex_location_expr_complaint ();
18886 break;
18887
18888 case DW_OP_GNU_push_tls_address:
18889 /* The top of the stack has the offset from the beginning
18890 of the thread control block at which the variable is located. */
18891 /* Nothing should follow this operator, so the top of stack would
18892 be returned. */
18893 /* This is valid for partial global symbols, but the variable's
18894 address will be bogus in the psymtab. Make it always at least
18895 non-zero to not look as a variable garbage collected by linker
18896 which have DW_OP_addr 0. */
18897 if (i < size)
18898 dwarf2_complex_location_expr_complaint ();
18899 stack[stacki]++;
18900 break;
18901
18902 case DW_OP_GNU_uninit:
18903 break;
18904
18905 case DW_OP_GNU_addr_index:
18906 case DW_OP_GNU_const_index:
18907 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18908 &bytes_read);
18909 i += bytes_read;
18910 break;
18911
18912 default:
18913 {
18914 const char *name = get_DW_OP_name (op);
18915
18916 if (name)
18917 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18918 name);
18919 else
18920 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18921 op);
18922 }
18923
18924 return (stack[stacki]);
18925 }
18926
18927 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18928 outside of the allocated space. Also enforce minimum>0. */
18929 if (stacki >= ARRAY_SIZE (stack) - 1)
18930 {
18931 complaint (&symfile_complaints,
18932 _("location description stack overflow"));
18933 return 0;
18934 }
18935
18936 if (stacki <= 0)
18937 {
18938 complaint (&symfile_complaints,
18939 _("location description stack underflow"));
18940 return 0;
18941 }
18942 }
18943 return (stack[stacki]);
18944 }
18945
18946 /* memory allocation interface */
18947
18948 static struct dwarf_block *
18949 dwarf_alloc_block (struct dwarf2_cu *cu)
18950 {
18951 struct dwarf_block *blk;
18952
18953 blk = (struct dwarf_block *)
18954 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18955 return (blk);
18956 }
18957
18958 static struct die_info *
18959 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18960 {
18961 struct die_info *die;
18962 size_t size = sizeof (struct die_info);
18963
18964 if (num_attrs > 1)
18965 size += (num_attrs - 1) * sizeof (struct attribute);
18966
18967 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18968 memset (die, 0, sizeof (struct die_info));
18969 return (die);
18970 }
18971
18972 \f
18973 /* Macro support. */
18974
18975 /* Return file name relative to the compilation directory of file number I in
18976 *LH's file name table. The result is allocated using xmalloc; the caller is
18977 responsible for freeing it. */
18978
18979 static char *
18980 file_file_name (int file, struct line_header *lh)
18981 {
18982 /* Is the file number a valid index into the line header's file name
18983 table? Remember that file numbers start with one, not zero. */
18984 if (1 <= file && file <= lh->num_file_names)
18985 {
18986 struct file_entry *fe = &lh->file_names[file - 1];
18987
18988 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18989 return xstrdup (fe->name);
18990 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18991 fe->name, NULL);
18992 }
18993 else
18994 {
18995 /* The compiler produced a bogus file number. We can at least
18996 record the macro definitions made in the file, even if we
18997 won't be able to find the file by name. */
18998 char fake_name[80];
18999
19000 xsnprintf (fake_name, sizeof (fake_name),
19001 "<bad macro file number %d>", file);
19002
19003 complaint (&symfile_complaints,
19004 _("bad file number in macro information (%d)"),
19005 file);
19006
19007 return xstrdup (fake_name);
19008 }
19009 }
19010
19011 /* Return the full name of file number I in *LH's file name table.
19012 Use COMP_DIR as the name of the current directory of the
19013 compilation. The result is allocated using xmalloc; the caller is
19014 responsible for freeing it. */
19015 static char *
19016 file_full_name (int file, struct line_header *lh, const char *comp_dir)
19017 {
19018 /* Is the file number a valid index into the line header's file name
19019 table? Remember that file numbers start with one, not zero. */
19020 if (1 <= file && file <= lh->num_file_names)
19021 {
19022 char *relative = file_file_name (file, lh);
19023
19024 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
19025 return relative;
19026 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
19027 }
19028 else
19029 return file_file_name (file, lh);
19030 }
19031
19032
19033 static struct macro_source_file *
19034 macro_start_file (int file, int line,
19035 struct macro_source_file *current_file,
19036 const char *comp_dir,
19037 struct line_header *lh, struct objfile *objfile)
19038 {
19039 /* File name relative to the compilation directory of this source file. */
19040 char *file_name = file_file_name (file, lh);
19041
19042 if (! current_file)
19043 {
19044 /* Note: We don't create a macro table for this compilation unit
19045 at all until we actually get a filename. */
19046 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
19047
19048 /* If we have no current file, then this must be the start_file
19049 directive for the compilation unit's main source file. */
19050 current_file = macro_set_main (macro_table, file_name);
19051 macro_define_special (macro_table);
19052 }
19053 else
19054 current_file = macro_include (current_file, line, file_name);
19055
19056 xfree (file_name);
19057
19058 return current_file;
19059 }
19060
19061
19062 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
19063 followed by a null byte. */
19064 static char *
19065 copy_string (const char *buf, int len)
19066 {
19067 char *s = xmalloc (len + 1);
19068
19069 memcpy (s, buf, len);
19070 s[len] = '\0';
19071 return s;
19072 }
19073
19074
19075 static const char *
19076 consume_improper_spaces (const char *p, const char *body)
19077 {
19078 if (*p == ' ')
19079 {
19080 complaint (&symfile_complaints,
19081 _("macro definition contains spaces "
19082 "in formal argument list:\n`%s'"),
19083 body);
19084
19085 while (*p == ' ')
19086 p++;
19087 }
19088
19089 return p;
19090 }
19091
19092
19093 static void
19094 parse_macro_definition (struct macro_source_file *file, int line,
19095 const char *body)
19096 {
19097 const char *p;
19098
19099 /* The body string takes one of two forms. For object-like macro
19100 definitions, it should be:
19101
19102 <macro name> " " <definition>
19103
19104 For function-like macro definitions, it should be:
19105
19106 <macro name> "() " <definition>
19107 or
19108 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19109
19110 Spaces may appear only where explicitly indicated, and in the
19111 <definition>.
19112
19113 The Dwarf 2 spec says that an object-like macro's name is always
19114 followed by a space, but versions of GCC around March 2002 omit
19115 the space when the macro's definition is the empty string.
19116
19117 The Dwarf 2 spec says that there should be no spaces between the
19118 formal arguments in a function-like macro's formal argument list,
19119 but versions of GCC around March 2002 include spaces after the
19120 commas. */
19121
19122
19123 /* Find the extent of the macro name. The macro name is terminated
19124 by either a space or null character (for an object-like macro) or
19125 an opening paren (for a function-like macro). */
19126 for (p = body; *p; p++)
19127 if (*p == ' ' || *p == '(')
19128 break;
19129
19130 if (*p == ' ' || *p == '\0')
19131 {
19132 /* It's an object-like macro. */
19133 int name_len = p - body;
19134 char *name = copy_string (body, name_len);
19135 const char *replacement;
19136
19137 if (*p == ' ')
19138 replacement = body + name_len + 1;
19139 else
19140 {
19141 dwarf2_macro_malformed_definition_complaint (body);
19142 replacement = body + name_len;
19143 }
19144
19145 macro_define_object (file, line, name, replacement);
19146
19147 xfree (name);
19148 }
19149 else if (*p == '(')
19150 {
19151 /* It's a function-like macro. */
19152 char *name = copy_string (body, p - body);
19153 int argc = 0;
19154 int argv_size = 1;
19155 char **argv = xmalloc (argv_size * sizeof (*argv));
19156
19157 p++;
19158
19159 p = consume_improper_spaces (p, body);
19160
19161 /* Parse the formal argument list. */
19162 while (*p && *p != ')')
19163 {
19164 /* Find the extent of the current argument name. */
19165 const char *arg_start = p;
19166
19167 while (*p && *p != ',' && *p != ')' && *p != ' ')
19168 p++;
19169
19170 if (! *p || p == arg_start)
19171 dwarf2_macro_malformed_definition_complaint (body);
19172 else
19173 {
19174 /* Make sure argv has room for the new argument. */
19175 if (argc >= argv_size)
19176 {
19177 argv_size *= 2;
19178 argv = xrealloc (argv, argv_size * sizeof (*argv));
19179 }
19180
19181 argv[argc++] = copy_string (arg_start, p - arg_start);
19182 }
19183
19184 p = consume_improper_spaces (p, body);
19185
19186 /* Consume the comma, if present. */
19187 if (*p == ',')
19188 {
19189 p++;
19190
19191 p = consume_improper_spaces (p, body);
19192 }
19193 }
19194
19195 if (*p == ')')
19196 {
19197 p++;
19198
19199 if (*p == ' ')
19200 /* Perfectly formed definition, no complaints. */
19201 macro_define_function (file, line, name,
19202 argc, (const char **) argv,
19203 p + 1);
19204 else if (*p == '\0')
19205 {
19206 /* Complain, but do define it. */
19207 dwarf2_macro_malformed_definition_complaint (body);
19208 macro_define_function (file, line, name,
19209 argc, (const char **) argv,
19210 p);
19211 }
19212 else
19213 /* Just complain. */
19214 dwarf2_macro_malformed_definition_complaint (body);
19215 }
19216 else
19217 /* Just complain. */
19218 dwarf2_macro_malformed_definition_complaint (body);
19219
19220 xfree (name);
19221 {
19222 int i;
19223
19224 for (i = 0; i < argc; i++)
19225 xfree (argv[i]);
19226 }
19227 xfree (argv);
19228 }
19229 else
19230 dwarf2_macro_malformed_definition_complaint (body);
19231 }
19232
19233 /* Skip some bytes from BYTES according to the form given in FORM.
19234 Returns the new pointer. */
19235
19236 static const gdb_byte *
19237 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19238 enum dwarf_form form,
19239 unsigned int offset_size,
19240 struct dwarf2_section_info *section)
19241 {
19242 unsigned int bytes_read;
19243
19244 switch (form)
19245 {
19246 case DW_FORM_data1:
19247 case DW_FORM_flag:
19248 ++bytes;
19249 break;
19250
19251 case DW_FORM_data2:
19252 bytes += 2;
19253 break;
19254
19255 case DW_FORM_data4:
19256 bytes += 4;
19257 break;
19258
19259 case DW_FORM_data8:
19260 bytes += 8;
19261 break;
19262
19263 case DW_FORM_string:
19264 read_direct_string (abfd, bytes, &bytes_read);
19265 bytes += bytes_read;
19266 break;
19267
19268 case DW_FORM_sec_offset:
19269 case DW_FORM_strp:
19270 case DW_FORM_GNU_strp_alt:
19271 bytes += offset_size;
19272 break;
19273
19274 case DW_FORM_block:
19275 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19276 bytes += bytes_read;
19277 break;
19278
19279 case DW_FORM_block1:
19280 bytes += 1 + read_1_byte (abfd, bytes);
19281 break;
19282 case DW_FORM_block2:
19283 bytes += 2 + read_2_bytes (abfd, bytes);
19284 break;
19285 case DW_FORM_block4:
19286 bytes += 4 + read_4_bytes (abfd, bytes);
19287 break;
19288
19289 case DW_FORM_sdata:
19290 case DW_FORM_udata:
19291 case DW_FORM_GNU_addr_index:
19292 case DW_FORM_GNU_str_index:
19293 bytes = gdb_skip_leb128 (bytes, buffer_end);
19294 if (bytes == NULL)
19295 {
19296 dwarf2_section_buffer_overflow_complaint (section);
19297 return NULL;
19298 }
19299 break;
19300
19301 default:
19302 {
19303 complain:
19304 complaint (&symfile_complaints,
19305 _("invalid form 0x%x in `%s'"),
19306 form,
19307 section->asection->name);
19308 return NULL;
19309 }
19310 }
19311
19312 return bytes;
19313 }
19314
19315 /* A helper for dwarf_decode_macros that handles skipping an unknown
19316 opcode. Returns an updated pointer to the macro data buffer; or,
19317 on error, issues a complaint and returns NULL. */
19318
19319 static const gdb_byte *
19320 skip_unknown_opcode (unsigned int opcode,
19321 const gdb_byte **opcode_definitions,
19322 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19323 bfd *abfd,
19324 unsigned int offset_size,
19325 struct dwarf2_section_info *section)
19326 {
19327 unsigned int bytes_read, i;
19328 unsigned long arg;
19329 const gdb_byte *defn;
19330
19331 if (opcode_definitions[opcode] == NULL)
19332 {
19333 complaint (&symfile_complaints,
19334 _("unrecognized DW_MACFINO opcode 0x%x"),
19335 opcode);
19336 return NULL;
19337 }
19338
19339 defn = opcode_definitions[opcode];
19340 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19341 defn += bytes_read;
19342
19343 for (i = 0; i < arg; ++i)
19344 {
19345 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19346 section);
19347 if (mac_ptr == NULL)
19348 {
19349 /* skip_form_bytes already issued the complaint. */
19350 return NULL;
19351 }
19352 }
19353
19354 return mac_ptr;
19355 }
19356
19357 /* A helper function which parses the header of a macro section.
19358 If the macro section is the extended (for now called "GNU") type,
19359 then this updates *OFFSET_SIZE. Returns a pointer to just after
19360 the header, or issues a complaint and returns NULL on error. */
19361
19362 static const gdb_byte *
19363 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19364 bfd *abfd,
19365 const gdb_byte *mac_ptr,
19366 unsigned int *offset_size,
19367 int section_is_gnu)
19368 {
19369 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19370
19371 if (section_is_gnu)
19372 {
19373 unsigned int version, flags;
19374
19375 version = read_2_bytes (abfd, mac_ptr);
19376 if (version != 4)
19377 {
19378 complaint (&symfile_complaints,
19379 _("unrecognized version `%d' in .debug_macro section"),
19380 version);
19381 return NULL;
19382 }
19383 mac_ptr += 2;
19384
19385 flags = read_1_byte (abfd, mac_ptr);
19386 ++mac_ptr;
19387 *offset_size = (flags & 1) ? 8 : 4;
19388
19389 if ((flags & 2) != 0)
19390 /* We don't need the line table offset. */
19391 mac_ptr += *offset_size;
19392
19393 /* Vendor opcode descriptions. */
19394 if ((flags & 4) != 0)
19395 {
19396 unsigned int i, count;
19397
19398 count = read_1_byte (abfd, mac_ptr);
19399 ++mac_ptr;
19400 for (i = 0; i < count; ++i)
19401 {
19402 unsigned int opcode, bytes_read;
19403 unsigned long arg;
19404
19405 opcode = read_1_byte (abfd, mac_ptr);
19406 ++mac_ptr;
19407 opcode_definitions[opcode] = mac_ptr;
19408 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19409 mac_ptr += bytes_read;
19410 mac_ptr += arg;
19411 }
19412 }
19413 }
19414
19415 return mac_ptr;
19416 }
19417
19418 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19419 including DW_MACRO_GNU_transparent_include. */
19420
19421 static void
19422 dwarf_decode_macro_bytes (bfd *abfd,
19423 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19424 struct macro_source_file *current_file,
19425 struct line_header *lh, const char *comp_dir,
19426 struct dwarf2_section_info *section,
19427 int section_is_gnu, int section_is_dwz,
19428 unsigned int offset_size,
19429 struct objfile *objfile,
19430 htab_t include_hash)
19431 {
19432 enum dwarf_macro_record_type macinfo_type;
19433 int at_commandline;
19434 const gdb_byte *opcode_definitions[256];
19435
19436 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19437 &offset_size, section_is_gnu);
19438 if (mac_ptr == NULL)
19439 {
19440 /* We already issued a complaint. */
19441 return;
19442 }
19443
19444 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19445 GDB is still reading the definitions from command line. First
19446 DW_MACINFO_start_file will need to be ignored as it was already executed
19447 to create CURRENT_FILE for the main source holding also the command line
19448 definitions. On first met DW_MACINFO_start_file this flag is reset to
19449 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19450
19451 at_commandline = 1;
19452
19453 do
19454 {
19455 /* Do we at least have room for a macinfo type byte? */
19456 if (mac_ptr >= mac_end)
19457 {
19458 dwarf2_section_buffer_overflow_complaint (section);
19459 break;
19460 }
19461
19462 macinfo_type = read_1_byte (abfd, mac_ptr);
19463 mac_ptr++;
19464
19465 /* Note that we rely on the fact that the corresponding GNU and
19466 DWARF constants are the same. */
19467 switch (macinfo_type)
19468 {
19469 /* A zero macinfo type indicates the end of the macro
19470 information. */
19471 case 0:
19472 break;
19473
19474 case DW_MACRO_GNU_define:
19475 case DW_MACRO_GNU_undef:
19476 case DW_MACRO_GNU_define_indirect:
19477 case DW_MACRO_GNU_undef_indirect:
19478 case DW_MACRO_GNU_define_indirect_alt:
19479 case DW_MACRO_GNU_undef_indirect_alt:
19480 {
19481 unsigned int bytes_read;
19482 int line;
19483 const char *body;
19484 int is_define;
19485
19486 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19487 mac_ptr += bytes_read;
19488
19489 if (macinfo_type == DW_MACRO_GNU_define
19490 || macinfo_type == DW_MACRO_GNU_undef)
19491 {
19492 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19493 mac_ptr += bytes_read;
19494 }
19495 else
19496 {
19497 LONGEST str_offset;
19498
19499 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19500 mac_ptr += offset_size;
19501
19502 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19503 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19504 || section_is_dwz)
19505 {
19506 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19507
19508 body = read_indirect_string_from_dwz (dwz, str_offset);
19509 }
19510 else
19511 body = read_indirect_string_at_offset (abfd, str_offset);
19512 }
19513
19514 is_define = (macinfo_type == DW_MACRO_GNU_define
19515 || macinfo_type == DW_MACRO_GNU_define_indirect
19516 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19517 if (! current_file)
19518 {
19519 /* DWARF violation as no main source is present. */
19520 complaint (&symfile_complaints,
19521 _("debug info with no main source gives macro %s "
19522 "on line %d: %s"),
19523 is_define ? _("definition") : _("undefinition"),
19524 line, body);
19525 break;
19526 }
19527 if ((line == 0 && !at_commandline)
19528 || (line != 0 && at_commandline))
19529 complaint (&symfile_complaints,
19530 _("debug info gives %s macro %s with %s line %d: %s"),
19531 at_commandline ? _("command-line") : _("in-file"),
19532 is_define ? _("definition") : _("undefinition"),
19533 line == 0 ? _("zero") : _("non-zero"), line, body);
19534
19535 if (is_define)
19536 parse_macro_definition (current_file, line, body);
19537 else
19538 {
19539 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19540 || macinfo_type == DW_MACRO_GNU_undef_indirect
19541 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19542 macro_undef (current_file, line, body);
19543 }
19544 }
19545 break;
19546
19547 case DW_MACRO_GNU_start_file:
19548 {
19549 unsigned int bytes_read;
19550 int line, file;
19551
19552 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19553 mac_ptr += bytes_read;
19554 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19555 mac_ptr += bytes_read;
19556
19557 if ((line == 0 && !at_commandline)
19558 || (line != 0 && at_commandline))
19559 complaint (&symfile_complaints,
19560 _("debug info gives source %d included "
19561 "from %s at %s line %d"),
19562 file, at_commandline ? _("command-line") : _("file"),
19563 line == 0 ? _("zero") : _("non-zero"), line);
19564
19565 if (at_commandline)
19566 {
19567 /* This DW_MACRO_GNU_start_file was executed in the
19568 pass one. */
19569 at_commandline = 0;
19570 }
19571 else
19572 current_file = macro_start_file (file, line,
19573 current_file, comp_dir,
19574 lh, objfile);
19575 }
19576 break;
19577
19578 case DW_MACRO_GNU_end_file:
19579 if (! current_file)
19580 complaint (&symfile_complaints,
19581 _("macro debug info has an unmatched "
19582 "`close_file' directive"));
19583 else
19584 {
19585 current_file = current_file->included_by;
19586 if (! current_file)
19587 {
19588 enum dwarf_macro_record_type next_type;
19589
19590 /* GCC circa March 2002 doesn't produce the zero
19591 type byte marking the end of the compilation
19592 unit. Complain if it's not there, but exit no
19593 matter what. */
19594
19595 /* Do we at least have room for a macinfo type byte? */
19596 if (mac_ptr >= mac_end)
19597 {
19598 dwarf2_section_buffer_overflow_complaint (section);
19599 return;
19600 }
19601
19602 /* We don't increment mac_ptr here, so this is just
19603 a look-ahead. */
19604 next_type = read_1_byte (abfd, mac_ptr);
19605 if (next_type != 0)
19606 complaint (&symfile_complaints,
19607 _("no terminating 0-type entry for "
19608 "macros in `.debug_macinfo' section"));
19609
19610 return;
19611 }
19612 }
19613 break;
19614
19615 case DW_MACRO_GNU_transparent_include:
19616 case DW_MACRO_GNU_transparent_include_alt:
19617 {
19618 LONGEST offset;
19619 void **slot;
19620 bfd *include_bfd = abfd;
19621 struct dwarf2_section_info *include_section = section;
19622 struct dwarf2_section_info alt_section;
19623 const gdb_byte *include_mac_end = mac_end;
19624 int is_dwz = section_is_dwz;
19625 const gdb_byte *new_mac_ptr;
19626
19627 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19628 mac_ptr += offset_size;
19629
19630 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19631 {
19632 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19633
19634 dwarf2_read_section (dwarf2_per_objfile->objfile,
19635 &dwz->macro);
19636
19637 include_bfd = dwz->macro.asection->owner;
19638 include_section = &dwz->macro;
19639 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19640 is_dwz = 1;
19641 }
19642
19643 new_mac_ptr = include_section->buffer + offset;
19644 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19645
19646 if (*slot != NULL)
19647 {
19648 /* This has actually happened; see
19649 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19650 complaint (&symfile_complaints,
19651 _("recursive DW_MACRO_GNU_transparent_include in "
19652 ".debug_macro section"));
19653 }
19654 else
19655 {
19656 *slot = (void *) new_mac_ptr;
19657
19658 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19659 include_mac_end, current_file,
19660 lh, comp_dir,
19661 section, section_is_gnu, is_dwz,
19662 offset_size, objfile, include_hash);
19663
19664 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19665 }
19666 }
19667 break;
19668
19669 case DW_MACINFO_vendor_ext:
19670 if (!section_is_gnu)
19671 {
19672 unsigned int bytes_read;
19673 int constant;
19674
19675 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19676 mac_ptr += bytes_read;
19677 read_direct_string (abfd, mac_ptr, &bytes_read);
19678 mac_ptr += bytes_read;
19679
19680 /* We don't recognize any vendor extensions. */
19681 break;
19682 }
19683 /* FALLTHROUGH */
19684
19685 default:
19686 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19687 mac_ptr, mac_end, abfd, offset_size,
19688 section);
19689 if (mac_ptr == NULL)
19690 return;
19691 break;
19692 }
19693 } while (macinfo_type != 0);
19694 }
19695
19696 static void
19697 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19698 const char *comp_dir, int section_is_gnu)
19699 {
19700 struct objfile *objfile = dwarf2_per_objfile->objfile;
19701 struct line_header *lh = cu->line_header;
19702 bfd *abfd;
19703 const gdb_byte *mac_ptr, *mac_end;
19704 struct macro_source_file *current_file = 0;
19705 enum dwarf_macro_record_type macinfo_type;
19706 unsigned int offset_size = cu->header.offset_size;
19707 const gdb_byte *opcode_definitions[256];
19708 struct cleanup *cleanup;
19709 htab_t include_hash;
19710 void **slot;
19711 struct dwarf2_section_info *section;
19712 const char *section_name;
19713
19714 if (cu->dwo_unit != NULL)
19715 {
19716 if (section_is_gnu)
19717 {
19718 section = &cu->dwo_unit->dwo_file->sections.macro;
19719 section_name = ".debug_macro.dwo";
19720 }
19721 else
19722 {
19723 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19724 section_name = ".debug_macinfo.dwo";
19725 }
19726 }
19727 else
19728 {
19729 if (section_is_gnu)
19730 {
19731 section = &dwarf2_per_objfile->macro;
19732 section_name = ".debug_macro";
19733 }
19734 else
19735 {
19736 section = &dwarf2_per_objfile->macinfo;
19737 section_name = ".debug_macinfo";
19738 }
19739 }
19740
19741 dwarf2_read_section (objfile, section);
19742 if (section->buffer == NULL)
19743 {
19744 complaint (&symfile_complaints, _("missing %s section"), section_name);
19745 return;
19746 }
19747 abfd = section->asection->owner;
19748
19749 /* First pass: Find the name of the base filename.
19750 This filename is needed in order to process all macros whose definition
19751 (or undefinition) comes from the command line. These macros are defined
19752 before the first DW_MACINFO_start_file entry, and yet still need to be
19753 associated to the base file.
19754
19755 To determine the base file name, we scan the macro definitions until we
19756 reach the first DW_MACINFO_start_file entry. We then initialize
19757 CURRENT_FILE accordingly so that any macro definition found before the
19758 first DW_MACINFO_start_file can still be associated to the base file. */
19759
19760 mac_ptr = section->buffer + offset;
19761 mac_end = section->buffer + section->size;
19762
19763 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19764 &offset_size, section_is_gnu);
19765 if (mac_ptr == NULL)
19766 {
19767 /* We already issued a complaint. */
19768 return;
19769 }
19770
19771 do
19772 {
19773 /* Do we at least have room for a macinfo type byte? */
19774 if (mac_ptr >= mac_end)
19775 {
19776 /* Complaint is printed during the second pass as GDB will probably
19777 stop the first pass earlier upon finding
19778 DW_MACINFO_start_file. */
19779 break;
19780 }
19781
19782 macinfo_type = read_1_byte (abfd, mac_ptr);
19783 mac_ptr++;
19784
19785 /* Note that we rely on the fact that the corresponding GNU and
19786 DWARF constants are the same. */
19787 switch (macinfo_type)
19788 {
19789 /* A zero macinfo type indicates the end of the macro
19790 information. */
19791 case 0:
19792 break;
19793
19794 case DW_MACRO_GNU_define:
19795 case DW_MACRO_GNU_undef:
19796 /* Only skip the data by MAC_PTR. */
19797 {
19798 unsigned int bytes_read;
19799
19800 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19801 mac_ptr += bytes_read;
19802 read_direct_string (abfd, mac_ptr, &bytes_read);
19803 mac_ptr += bytes_read;
19804 }
19805 break;
19806
19807 case DW_MACRO_GNU_start_file:
19808 {
19809 unsigned int bytes_read;
19810 int line, file;
19811
19812 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19813 mac_ptr += bytes_read;
19814 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19815 mac_ptr += bytes_read;
19816
19817 current_file = macro_start_file (file, line, current_file,
19818 comp_dir, lh, objfile);
19819 }
19820 break;
19821
19822 case DW_MACRO_GNU_end_file:
19823 /* No data to skip by MAC_PTR. */
19824 break;
19825
19826 case DW_MACRO_GNU_define_indirect:
19827 case DW_MACRO_GNU_undef_indirect:
19828 case DW_MACRO_GNU_define_indirect_alt:
19829 case DW_MACRO_GNU_undef_indirect_alt:
19830 {
19831 unsigned int bytes_read;
19832
19833 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19834 mac_ptr += bytes_read;
19835 mac_ptr += offset_size;
19836 }
19837 break;
19838
19839 case DW_MACRO_GNU_transparent_include:
19840 case DW_MACRO_GNU_transparent_include_alt:
19841 /* Note that, according to the spec, a transparent include
19842 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19843 skip this opcode. */
19844 mac_ptr += offset_size;
19845 break;
19846
19847 case DW_MACINFO_vendor_ext:
19848 /* Only skip the data by MAC_PTR. */
19849 if (!section_is_gnu)
19850 {
19851 unsigned int bytes_read;
19852
19853 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19854 mac_ptr += bytes_read;
19855 read_direct_string (abfd, mac_ptr, &bytes_read);
19856 mac_ptr += bytes_read;
19857 }
19858 /* FALLTHROUGH */
19859
19860 default:
19861 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19862 mac_ptr, mac_end, abfd, offset_size,
19863 section);
19864 if (mac_ptr == NULL)
19865 return;
19866 break;
19867 }
19868 } while (macinfo_type != 0 && current_file == NULL);
19869
19870 /* Second pass: Process all entries.
19871
19872 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19873 command-line macro definitions/undefinitions. This flag is unset when we
19874 reach the first DW_MACINFO_start_file entry. */
19875
19876 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19877 NULL, xcalloc, xfree);
19878 cleanup = make_cleanup_htab_delete (include_hash);
19879 mac_ptr = section->buffer + offset;
19880 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19881 *slot = (void *) mac_ptr;
19882 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19883 current_file, lh, comp_dir, section,
19884 section_is_gnu, 0,
19885 offset_size, objfile, include_hash);
19886 do_cleanups (cleanup);
19887 }
19888
19889 /* Check if the attribute's form is a DW_FORM_block*
19890 if so return true else false. */
19891
19892 static int
19893 attr_form_is_block (const struct attribute *attr)
19894 {
19895 return (attr == NULL ? 0 :
19896 attr->form == DW_FORM_block1
19897 || attr->form == DW_FORM_block2
19898 || attr->form == DW_FORM_block4
19899 || attr->form == DW_FORM_block
19900 || attr->form == DW_FORM_exprloc);
19901 }
19902
19903 /* Return non-zero if ATTR's value is a section offset --- classes
19904 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19905 You may use DW_UNSND (attr) to retrieve such offsets.
19906
19907 Section 7.5.4, "Attribute Encodings", explains that no attribute
19908 may have a value that belongs to more than one of these classes; it
19909 would be ambiguous if we did, because we use the same forms for all
19910 of them. */
19911
19912 static int
19913 attr_form_is_section_offset (const struct attribute *attr)
19914 {
19915 return (attr->form == DW_FORM_data4
19916 || attr->form == DW_FORM_data8
19917 || attr->form == DW_FORM_sec_offset);
19918 }
19919
19920 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19921 zero otherwise. When this function returns true, you can apply
19922 dwarf2_get_attr_constant_value to it.
19923
19924 However, note that for some attributes you must check
19925 attr_form_is_section_offset before using this test. DW_FORM_data4
19926 and DW_FORM_data8 are members of both the constant class, and of
19927 the classes that contain offsets into other debug sections
19928 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19929 that, if an attribute's can be either a constant or one of the
19930 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19931 taken as section offsets, not constants. */
19932
19933 static int
19934 attr_form_is_constant (const struct attribute *attr)
19935 {
19936 switch (attr->form)
19937 {
19938 case DW_FORM_sdata:
19939 case DW_FORM_udata:
19940 case DW_FORM_data1:
19941 case DW_FORM_data2:
19942 case DW_FORM_data4:
19943 case DW_FORM_data8:
19944 return 1;
19945 default:
19946 return 0;
19947 }
19948 }
19949
19950
19951 /* DW_ADDR is always stored already as sect_offset; despite for the forms
19952 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
19953
19954 static int
19955 attr_form_is_ref (const struct attribute *attr)
19956 {
19957 switch (attr->form)
19958 {
19959 case DW_FORM_ref_addr:
19960 case DW_FORM_ref1:
19961 case DW_FORM_ref2:
19962 case DW_FORM_ref4:
19963 case DW_FORM_ref8:
19964 case DW_FORM_ref_udata:
19965 case DW_FORM_GNU_ref_alt:
19966 return 1;
19967 default:
19968 return 0;
19969 }
19970 }
19971
19972 /* Return the .debug_loc section to use for CU.
19973 For DWO files use .debug_loc.dwo. */
19974
19975 static struct dwarf2_section_info *
19976 cu_debug_loc_section (struct dwarf2_cu *cu)
19977 {
19978 if (cu->dwo_unit)
19979 return &cu->dwo_unit->dwo_file->sections.loc;
19980 return &dwarf2_per_objfile->loc;
19981 }
19982
19983 /* A helper function that fills in a dwarf2_loclist_baton. */
19984
19985 static void
19986 fill_in_loclist_baton (struct dwarf2_cu *cu,
19987 struct dwarf2_loclist_baton *baton,
19988 const struct attribute *attr)
19989 {
19990 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19991
19992 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19993
19994 baton->per_cu = cu->per_cu;
19995 gdb_assert (baton->per_cu);
19996 /* We don't know how long the location list is, but make sure we
19997 don't run off the edge of the section. */
19998 baton->size = section->size - DW_UNSND (attr);
19999 baton->data = section->buffer + DW_UNSND (attr);
20000 baton->base_address = cu->base_address;
20001 baton->from_dwo = cu->dwo_unit != NULL;
20002 }
20003
20004 static void
20005 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
20006 struct dwarf2_cu *cu, int is_block)
20007 {
20008 struct objfile *objfile = dwarf2_per_objfile->objfile;
20009 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20010
20011 if (attr_form_is_section_offset (attr)
20012 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
20013 the section. If so, fall through to the complaint in the
20014 other branch. */
20015 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
20016 {
20017 struct dwarf2_loclist_baton *baton;
20018
20019 baton = obstack_alloc (&objfile->objfile_obstack,
20020 sizeof (struct dwarf2_loclist_baton));
20021
20022 fill_in_loclist_baton (cu, baton, attr);
20023
20024 if (cu->base_known == 0)
20025 complaint (&symfile_complaints,
20026 _("Location list used without "
20027 "specifying the CU base address."));
20028
20029 SYMBOL_ACLASS_INDEX (sym) = (is_block
20030 ? dwarf2_loclist_block_index
20031 : dwarf2_loclist_index);
20032 SYMBOL_LOCATION_BATON (sym) = baton;
20033 }
20034 else
20035 {
20036 struct dwarf2_locexpr_baton *baton;
20037
20038 baton = obstack_alloc (&objfile->objfile_obstack,
20039 sizeof (struct dwarf2_locexpr_baton));
20040 baton->per_cu = cu->per_cu;
20041 gdb_assert (baton->per_cu);
20042
20043 if (attr_form_is_block (attr))
20044 {
20045 /* Note that we're just copying the block's data pointer
20046 here, not the actual data. We're still pointing into the
20047 info_buffer for SYM's objfile; right now we never release
20048 that buffer, but when we do clean up properly this may
20049 need to change. */
20050 baton->size = DW_BLOCK (attr)->size;
20051 baton->data = DW_BLOCK (attr)->data;
20052 }
20053 else
20054 {
20055 dwarf2_invalid_attrib_class_complaint ("location description",
20056 SYMBOL_NATURAL_NAME (sym));
20057 baton->size = 0;
20058 }
20059
20060 SYMBOL_ACLASS_INDEX (sym) = (is_block
20061 ? dwarf2_locexpr_block_index
20062 : dwarf2_locexpr_index);
20063 SYMBOL_LOCATION_BATON (sym) = baton;
20064 }
20065 }
20066
20067 /* Return the OBJFILE associated with the compilation unit CU. If CU
20068 came from a separate debuginfo file, then the master objfile is
20069 returned. */
20070
20071 struct objfile *
20072 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
20073 {
20074 struct objfile *objfile = per_cu->objfile;
20075
20076 /* Return the master objfile, so that we can report and look up the
20077 correct file containing this variable. */
20078 if (objfile->separate_debug_objfile_backlink)
20079 objfile = objfile->separate_debug_objfile_backlink;
20080
20081 return objfile;
20082 }
20083
20084 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
20085 (CU_HEADERP is unused in such case) or prepare a temporary copy at
20086 CU_HEADERP first. */
20087
20088 static const struct comp_unit_head *
20089 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
20090 struct dwarf2_per_cu_data *per_cu)
20091 {
20092 const gdb_byte *info_ptr;
20093
20094 if (per_cu->cu)
20095 return &per_cu->cu->header;
20096
20097 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
20098
20099 memset (cu_headerp, 0, sizeof (*cu_headerp));
20100 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20101
20102 return cu_headerp;
20103 }
20104
20105 /* Return the address size given in the compilation unit header for CU. */
20106
20107 int
20108 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20109 {
20110 struct comp_unit_head cu_header_local;
20111 const struct comp_unit_head *cu_headerp;
20112
20113 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20114
20115 return cu_headerp->addr_size;
20116 }
20117
20118 /* Return the offset size given in the compilation unit header for CU. */
20119
20120 int
20121 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20122 {
20123 struct comp_unit_head cu_header_local;
20124 const struct comp_unit_head *cu_headerp;
20125
20126 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20127
20128 return cu_headerp->offset_size;
20129 }
20130
20131 /* See its dwarf2loc.h declaration. */
20132
20133 int
20134 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20135 {
20136 struct comp_unit_head cu_header_local;
20137 const struct comp_unit_head *cu_headerp;
20138
20139 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20140
20141 if (cu_headerp->version == 2)
20142 return cu_headerp->addr_size;
20143 else
20144 return cu_headerp->offset_size;
20145 }
20146
20147 /* Return the text offset of the CU. The returned offset comes from
20148 this CU's objfile. If this objfile came from a separate debuginfo
20149 file, then the offset may be different from the corresponding
20150 offset in the parent objfile. */
20151
20152 CORE_ADDR
20153 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20154 {
20155 struct objfile *objfile = per_cu->objfile;
20156
20157 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20158 }
20159
20160 /* Locate the .debug_info compilation unit from CU's objfile which contains
20161 the DIE at OFFSET. Raises an error on failure. */
20162
20163 static struct dwarf2_per_cu_data *
20164 dwarf2_find_containing_comp_unit (sect_offset offset,
20165 unsigned int offset_in_dwz,
20166 struct objfile *objfile)
20167 {
20168 struct dwarf2_per_cu_data *this_cu;
20169 int low, high;
20170 const sect_offset *cu_off;
20171
20172 low = 0;
20173 high = dwarf2_per_objfile->n_comp_units - 1;
20174 while (high > low)
20175 {
20176 struct dwarf2_per_cu_data *mid_cu;
20177 int mid = low + (high - low) / 2;
20178
20179 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20180 cu_off = &mid_cu->offset;
20181 if (mid_cu->is_dwz > offset_in_dwz
20182 || (mid_cu->is_dwz == offset_in_dwz
20183 && cu_off->sect_off >= offset.sect_off))
20184 high = mid;
20185 else
20186 low = mid + 1;
20187 }
20188 gdb_assert (low == high);
20189 this_cu = dwarf2_per_objfile->all_comp_units[low];
20190 cu_off = &this_cu->offset;
20191 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20192 {
20193 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20194 error (_("Dwarf Error: could not find partial DIE containing "
20195 "offset 0x%lx [in module %s]"),
20196 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20197
20198 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20199 <= offset.sect_off);
20200 return dwarf2_per_objfile->all_comp_units[low-1];
20201 }
20202 else
20203 {
20204 this_cu = dwarf2_per_objfile->all_comp_units[low];
20205 if (low == dwarf2_per_objfile->n_comp_units - 1
20206 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20207 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20208 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20209 return this_cu;
20210 }
20211 }
20212
20213 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20214
20215 static void
20216 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20217 {
20218 memset (cu, 0, sizeof (*cu));
20219 per_cu->cu = cu;
20220 cu->per_cu = per_cu;
20221 cu->objfile = per_cu->objfile;
20222 obstack_init (&cu->comp_unit_obstack);
20223 }
20224
20225 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20226
20227 static void
20228 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20229 enum language pretend_language)
20230 {
20231 struct attribute *attr;
20232
20233 /* Set the language we're debugging. */
20234 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20235 if (attr)
20236 set_cu_language (DW_UNSND (attr), cu);
20237 else
20238 {
20239 cu->language = pretend_language;
20240 cu->language_defn = language_def (cu->language);
20241 }
20242
20243 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20244 if (attr)
20245 cu->producer = DW_STRING (attr);
20246 }
20247
20248 /* Release one cached compilation unit, CU. We unlink it from the tree
20249 of compilation units, but we don't remove it from the read_in_chain;
20250 the caller is responsible for that.
20251 NOTE: DATA is a void * because this function is also used as a
20252 cleanup routine. */
20253
20254 static void
20255 free_heap_comp_unit (void *data)
20256 {
20257 struct dwarf2_cu *cu = data;
20258
20259 gdb_assert (cu->per_cu != NULL);
20260 cu->per_cu->cu = NULL;
20261 cu->per_cu = NULL;
20262
20263 obstack_free (&cu->comp_unit_obstack, NULL);
20264
20265 xfree (cu);
20266 }
20267
20268 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20269 when we're finished with it. We can't free the pointer itself, but be
20270 sure to unlink it from the cache. Also release any associated storage. */
20271
20272 static void
20273 free_stack_comp_unit (void *data)
20274 {
20275 struct dwarf2_cu *cu = data;
20276
20277 gdb_assert (cu->per_cu != NULL);
20278 cu->per_cu->cu = NULL;
20279 cu->per_cu = NULL;
20280
20281 obstack_free (&cu->comp_unit_obstack, NULL);
20282 cu->partial_dies = NULL;
20283 }
20284
20285 /* Free all cached compilation units. */
20286
20287 static void
20288 free_cached_comp_units (void *data)
20289 {
20290 struct dwarf2_per_cu_data *per_cu, **last_chain;
20291
20292 per_cu = dwarf2_per_objfile->read_in_chain;
20293 last_chain = &dwarf2_per_objfile->read_in_chain;
20294 while (per_cu != NULL)
20295 {
20296 struct dwarf2_per_cu_data *next_cu;
20297
20298 next_cu = per_cu->cu->read_in_chain;
20299
20300 free_heap_comp_unit (per_cu->cu);
20301 *last_chain = next_cu;
20302
20303 per_cu = next_cu;
20304 }
20305 }
20306
20307 /* Increase the age counter on each cached compilation unit, and free
20308 any that are too old. */
20309
20310 static void
20311 age_cached_comp_units (void)
20312 {
20313 struct dwarf2_per_cu_data *per_cu, **last_chain;
20314
20315 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20316 per_cu = dwarf2_per_objfile->read_in_chain;
20317 while (per_cu != NULL)
20318 {
20319 per_cu->cu->last_used ++;
20320 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20321 dwarf2_mark (per_cu->cu);
20322 per_cu = per_cu->cu->read_in_chain;
20323 }
20324
20325 per_cu = dwarf2_per_objfile->read_in_chain;
20326 last_chain = &dwarf2_per_objfile->read_in_chain;
20327 while (per_cu != NULL)
20328 {
20329 struct dwarf2_per_cu_data *next_cu;
20330
20331 next_cu = per_cu->cu->read_in_chain;
20332
20333 if (!per_cu->cu->mark)
20334 {
20335 free_heap_comp_unit (per_cu->cu);
20336 *last_chain = next_cu;
20337 }
20338 else
20339 last_chain = &per_cu->cu->read_in_chain;
20340
20341 per_cu = next_cu;
20342 }
20343 }
20344
20345 /* Remove a single compilation unit from the cache. */
20346
20347 static void
20348 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20349 {
20350 struct dwarf2_per_cu_data *per_cu, **last_chain;
20351
20352 per_cu = dwarf2_per_objfile->read_in_chain;
20353 last_chain = &dwarf2_per_objfile->read_in_chain;
20354 while (per_cu != NULL)
20355 {
20356 struct dwarf2_per_cu_data *next_cu;
20357
20358 next_cu = per_cu->cu->read_in_chain;
20359
20360 if (per_cu == target_per_cu)
20361 {
20362 free_heap_comp_unit (per_cu->cu);
20363 per_cu->cu = NULL;
20364 *last_chain = next_cu;
20365 break;
20366 }
20367 else
20368 last_chain = &per_cu->cu->read_in_chain;
20369
20370 per_cu = next_cu;
20371 }
20372 }
20373
20374 /* Release all extra memory associated with OBJFILE. */
20375
20376 void
20377 dwarf2_free_objfile (struct objfile *objfile)
20378 {
20379 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20380
20381 if (dwarf2_per_objfile == NULL)
20382 return;
20383
20384 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20385 free_cached_comp_units (NULL);
20386
20387 if (dwarf2_per_objfile->quick_file_names_table)
20388 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20389
20390 /* Everything else should be on the objfile obstack. */
20391 }
20392
20393 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20394 We store these in a hash table separate from the DIEs, and preserve them
20395 when the DIEs are flushed out of cache.
20396
20397 The CU "per_cu" pointer is needed because offset alone is not enough to
20398 uniquely identify the type. A file may have multiple .debug_types sections,
20399 or the type may come from a DWO file. Furthermore, while it's more logical
20400 to use per_cu->section+offset, with Fission the section with the data is in
20401 the DWO file but we don't know that section at the point we need it.
20402 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20403 because we can enter the lookup routine, get_die_type_at_offset, from
20404 outside this file, and thus won't necessarily have PER_CU->cu.
20405 Fortunately, PER_CU is stable for the life of the objfile. */
20406
20407 struct dwarf2_per_cu_offset_and_type
20408 {
20409 const struct dwarf2_per_cu_data *per_cu;
20410 sect_offset offset;
20411 struct type *type;
20412 };
20413
20414 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20415
20416 static hashval_t
20417 per_cu_offset_and_type_hash (const void *item)
20418 {
20419 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20420
20421 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20422 }
20423
20424 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20425
20426 static int
20427 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20428 {
20429 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20430 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20431
20432 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20433 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20434 }
20435
20436 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20437 table if necessary. For convenience, return TYPE.
20438
20439 The DIEs reading must have careful ordering to:
20440 * Not cause infite loops trying to read in DIEs as a prerequisite for
20441 reading current DIE.
20442 * Not trying to dereference contents of still incompletely read in types
20443 while reading in other DIEs.
20444 * Enable referencing still incompletely read in types just by a pointer to
20445 the type without accessing its fields.
20446
20447 Therefore caller should follow these rules:
20448 * Try to fetch any prerequisite types we may need to build this DIE type
20449 before building the type and calling set_die_type.
20450 * After building type call set_die_type for current DIE as soon as
20451 possible before fetching more types to complete the current type.
20452 * Make the type as complete as possible before fetching more types. */
20453
20454 static struct type *
20455 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20456 {
20457 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20458 struct objfile *objfile = cu->objfile;
20459
20460 /* For Ada types, make sure that the gnat-specific data is always
20461 initialized (if not already set). There are a few types where
20462 we should not be doing so, because the type-specific area is
20463 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20464 where the type-specific area is used to store the floatformat).
20465 But this is not a problem, because the gnat-specific information
20466 is actually not needed for these types. */
20467 if (need_gnat_info (cu)
20468 && TYPE_CODE (type) != TYPE_CODE_FUNC
20469 && TYPE_CODE (type) != TYPE_CODE_FLT
20470 && !HAVE_GNAT_AUX_INFO (type))
20471 INIT_GNAT_SPECIFIC (type);
20472
20473 if (dwarf2_per_objfile->die_type_hash == NULL)
20474 {
20475 dwarf2_per_objfile->die_type_hash =
20476 htab_create_alloc_ex (127,
20477 per_cu_offset_and_type_hash,
20478 per_cu_offset_and_type_eq,
20479 NULL,
20480 &objfile->objfile_obstack,
20481 hashtab_obstack_allocate,
20482 dummy_obstack_deallocate);
20483 }
20484
20485 ofs.per_cu = cu->per_cu;
20486 ofs.offset = die->offset;
20487 ofs.type = type;
20488 slot = (struct dwarf2_per_cu_offset_and_type **)
20489 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20490 if (*slot)
20491 complaint (&symfile_complaints,
20492 _("A problem internal to GDB: DIE 0x%x has type already set"),
20493 die->offset.sect_off);
20494 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20495 **slot = ofs;
20496 return type;
20497 }
20498
20499 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20500 or return NULL if the die does not have a saved type. */
20501
20502 static struct type *
20503 get_die_type_at_offset (sect_offset offset,
20504 struct dwarf2_per_cu_data *per_cu)
20505 {
20506 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20507
20508 if (dwarf2_per_objfile->die_type_hash == NULL)
20509 return NULL;
20510
20511 ofs.per_cu = per_cu;
20512 ofs.offset = offset;
20513 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20514 if (slot)
20515 return slot->type;
20516 else
20517 return NULL;
20518 }
20519
20520 /* Look up the type for DIE in CU in die_type_hash,
20521 or return NULL if DIE does not have a saved type. */
20522
20523 static struct type *
20524 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20525 {
20526 return get_die_type_at_offset (die->offset, cu->per_cu);
20527 }
20528
20529 /* Add a dependence relationship from CU to REF_PER_CU. */
20530
20531 static void
20532 dwarf2_add_dependence (struct dwarf2_cu *cu,
20533 struct dwarf2_per_cu_data *ref_per_cu)
20534 {
20535 void **slot;
20536
20537 if (cu->dependencies == NULL)
20538 cu->dependencies
20539 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20540 NULL, &cu->comp_unit_obstack,
20541 hashtab_obstack_allocate,
20542 dummy_obstack_deallocate);
20543
20544 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20545 if (*slot == NULL)
20546 *slot = ref_per_cu;
20547 }
20548
20549 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20550 Set the mark field in every compilation unit in the
20551 cache that we must keep because we are keeping CU. */
20552
20553 static int
20554 dwarf2_mark_helper (void **slot, void *data)
20555 {
20556 struct dwarf2_per_cu_data *per_cu;
20557
20558 per_cu = (struct dwarf2_per_cu_data *) *slot;
20559
20560 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20561 reading of the chain. As such dependencies remain valid it is not much
20562 useful to track and undo them during QUIT cleanups. */
20563 if (per_cu->cu == NULL)
20564 return 1;
20565
20566 if (per_cu->cu->mark)
20567 return 1;
20568 per_cu->cu->mark = 1;
20569
20570 if (per_cu->cu->dependencies != NULL)
20571 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20572
20573 return 1;
20574 }
20575
20576 /* Set the mark field in CU and in every other compilation unit in the
20577 cache that we must keep because we are keeping CU. */
20578
20579 static void
20580 dwarf2_mark (struct dwarf2_cu *cu)
20581 {
20582 if (cu->mark)
20583 return;
20584 cu->mark = 1;
20585 if (cu->dependencies != NULL)
20586 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20587 }
20588
20589 static void
20590 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20591 {
20592 while (per_cu)
20593 {
20594 per_cu->cu->mark = 0;
20595 per_cu = per_cu->cu->read_in_chain;
20596 }
20597 }
20598
20599 /* Trivial hash function for partial_die_info: the hash value of a DIE
20600 is its offset in .debug_info for this objfile. */
20601
20602 static hashval_t
20603 partial_die_hash (const void *item)
20604 {
20605 const struct partial_die_info *part_die = item;
20606
20607 return part_die->offset.sect_off;
20608 }
20609
20610 /* Trivial comparison function for partial_die_info structures: two DIEs
20611 are equal if they have the same offset. */
20612
20613 static int
20614 partial_die_eq (const void *item_lhs, const void *item_rhs)
20615 {
20616 const struct partial_die_info *part_die_lhs = item_lhs;
20617 const struct partial_die_info *part_die_rhs = item_rhs;
20618
20619 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20620 }
20621
20622 static struct cmd_list_element *set_dwarf2_cmdlist;
20623 static struct cmd_list_element *show_dwarf2_cmdlist;
20624
20625 static void
20626 set_dwarf2_cmd (char *args, int from_tty)
20627 {
20628 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20629 }
20630
20631 static void
20632 show_dwarf2_cmd (char *args, int from_tty)
20633 {
20634 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20635 }
20636
20637 /* Free data associated with OBJFILE, if necessary. */
20638
20639 static void
20640 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20641 {
20642 struct dwarf2_per_objfile *data = d;
20643 int ix;
20644
20645 /* Make sure we don't accidentally use dwarf2_per_objfile while
20646 cleaning up. */
20647 dwarf2_per_objfile = NULL;
20648
20649 for (ix = 0; ix < data->n_comp_units; ++ix)
20650 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20651
20652 for (ix = 0; ix < data->n_type_units; ++ix)
20653 VEC_free (dwarf2_per_cu_ptr,
20654 data->all_type_units[ix]->per_cu.imported_symtabs);
20655 xfree (data->all_type_units);
20656
20657 VEC_free (dwarf2_section_info_def, data->types);
20658
20659 if (data->dwo_files)
20660 free_dwo_files (data->dwo_files, objfile);
20661 if (data->dwp_file)
20662 gdb_bfd_unref (data->dwp_file->dbfd);
20663
20664 if (data->dwz_file && data->dwz_file->dwz_bfd)
20665 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20666 }
20667
20668 \f
20669 /* The "save gdb-index" command. */
20670
20671 /* The contents of the hash table we create when building the string
20672 table. */
20673 struct strtab_entry
20674 {
20675 offset_type offset;
20676 const char *str;
20677 };
20678
20679 /* Hash function for a strtab_entry.
20680
20681 Function is used only during write_hash_table so no index format backward
20682 compatibility is needed. */
20683
20684 static hashval_t
20685 hash_strtab_entry (const void *e)
20686 {
20687 const struct strtab_entry *entry = e;
20688 return mapped_index_string_hash (INT_MAX, entry->str);
20689 }
20690
20691 /* Equality function for a strtab_entry. */
20692
20693 static int
20694 eq_strtab_entry (const void *a, const void *b)
20695 {
20696 const struct strtab_entry *ea = a;
20697 const struct strtab_entry *eb = b;
20698 return !strcmp (ea->str, eb->str);
20699 }
20700
20701 /* Create a strtab_entry hash table. */
20702
20703 static htab_t
20704 create_strtab (void)
20705 {
20706 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20707 xfree, xcalloc, xfree);
20708 }
20709
20710 /* Add a string to the constant pool. Return the string's offset in
20711 host order. */
20712
20713 static offset_type
20714 add_string (htab_t table, struct obstack *cpool, const char *str)
20715 {
20716 void **slot;
20717 struct strtab_entry entry;
20718 struct strtab_entry *result;
20719
20720 entry.str = str;
20721 slot = htab_find_slot (table, &entry, INSERT);
20722 if (*slot)
20723 result = *slot;
20724 else
20725 {
20726 result = XNEW (struct strtab_entry);
20727 result->offset = obstack_object_size (cpool);
20728 result->str = str;
20729 obstack_grow_str0 (cpool, str);
20730 *slot = result;
20731 }
20732 return result->offset;
20733 }
20734
20735 /* An entry in the symbol table. */
20736 struct symtab_index_entry
20737 {
20738 /* The name of the symbol. */
20739 const char *name;
20740 /* The offset of the name in the constant pool. */
20741 offset_type index_offset;
20742 /* A sorted vector of the indices of all the CUs that hold an object
20743 of this name. */
20744 VEC (offset_type) *cu_indices;
20745 };
20746
20747 /* The symbol table. This is a power-of-2-sized hash table. */
20748 struct mapped_symtab
20749 {
20750 offset_type n_elements;
20751 offset_type size;
20752 struct symtab_index_entry **data;
20753 };
20754
20755 /* Hash function for a symtab_index_entry. */
20756
20757 static hashval_t
20758 hash_symtab_entry (const void *e)
20759 {
20760 const struct symtab_index_entry *entry = e;
20761 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20762 sizeof (offset_type) * VEC_length (offset_type,
20763 entry->cu_indices),
20764 0);
20765 }
20766
20767 /* Equality function for a symtab_index_entry. */
20768
20769 static int
20770 eq_symtab_entry (const void *a, const void *b)
20771 {
20772 const struct symtab_index_entry *ea = a;
20773 const struct symtab_index_entry *eb = b;
20774 int len = VEC_length (offset_type, ea->cu_indices);
20775 if (len != VEC_length (offset_type, eb->cu_indices))
20776 return 0;
20777 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20778 VEC_address (offset_type, eb->cu_indices),
20779 sizeof (offset_type) * len);
20780 }
20781
20782 /* Destroy a symtab_index_entry. */
20783
20784 static void
20785 delete_symtab_entry (void *p)
20786 {
20787 struct symtab_index_entry *entry = p;
20788 VEC_free (offset_type, entry->cu_indices);
20789 xfree (entry);
20790 }
20791
20792 /* Create a hash table holding symtab_index_entry objects. */
20793
20794 static htab_t
20795 create_symbol_hash_table (void)
20796 {
20797 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20798 delete_symtab_entry, xcalloc, xfree);
20799 }
20800
20801 /* Create a new mapped symtab object. */
20802
20803 static struct mapped_symtab *
20804 create_mapped_symtab (void)
20805 {
20806 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20807 symtab->n_elements = 0;
20808 symtab->size = 1024;
20809 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20810 return symtab;
20811 }
20812
20813 /* Destroy a mapped_symtab. */
20814
20815 static void
20816 cleanup_mapped_symtab (void *p)
20817 {
20818 struct mapped_symtab *symtab = p;
20819 /* The contents of the array are freed when the other hash table is
20820 destroyed. */
20821 xfree (symtab->data);
20822 xfree (symtab);
20823 }
20824
20825 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20826 the slot.
20827
20828 Function is used only during write_hash_table so no index format backward
20829 compatibility is needed. */
20830
20831 static struct symtab_index_entry **
20832 find_slot (struct mapped_symtab *symtab, const char *name)
20833 {
20834 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20835
20836 index = hash & (symtab->size - 1);
20837 step = ((hash * 17) & (symtab->size - 1)) | 1;
20838
20839 for (;;)
20840 {
20841 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20842 return &symtab->data[index];
20843 index = (index + step) & (symtab->size - 1);
20844 }
20845 }
20846
20847 /* Expand SYMTAB's hash table. */
20848
20849 static void
20850 hash_expand (struct mapped_symtab *symtab)
20851 {
20852 offset_type old_size = symtab->size;
20853 offset_type i;
20854 struct symtab_index_entry **old_entries = symtab->data;
20855
20856 symtab->size *= 2;
20857 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20858
20859 for (i = 0; i < old_size; ++i)
20860 {
20861 if (old_entries[i])
20862 {
20863 struct symtab_index_entry **slot = find_slot (symtab,
20864 old_entries[i]->name);
20865 *slot = old_entries[i];
20866 }
20867 }
20868
20869 xfree (old_entries);
20870 }
20871
20872 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20873 CU_INDEX is the index of the CU in which the symbol appears.
20874 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20875
20876 static void
20877 add_index_entry (struct mapped_symtab *symtab, const char *name,
20878 int is_static, gdb_index_symbol_kind kind,
20879 offset_type cu_index)
20880 {
20881 struct symtab_index_entry **slot;
20882 offset_type cu_index_and_attrs;
20883
20884 ++symtab->n_elements;
20885 if (4 * symtab->n_elements / 3 >= symtab->size)
20886 hash_expand (symtab);
20887
20888 slot = find_slot (symtab, name);
20889 if (!*slot)
20890 {
20891 *slot = XNEW (struct symtab_index_entry);
20892 (*slot)->name = name;
20893 /* index_offset is set later. */
20894 (*slot)->cu_indices = NULL;
20895 }
20896
20897 cu_index_and_attrs = 0;
20898 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20899 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20900 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20901
20902 /* We don't want to record an index value twice as we want to avoid the
20903 duplication.
20904 We process all global symbols and then all static symbols
20905 (which would allow us to avoid the duplication by only having to check
20906 the last entry pushed), but a symbol could have multiple kinds in one CU.
20907 To keep things simple we don't worry about the duplication here and
20908 sort and uniqufy the list after we've processed all symbols. */
20909 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20910 }
20911
20912 /* qsort helper routine for uniquify_cu_indices. */
20913
20914 static int
20915 offset_type_compare (const void *ap, const void *bp)
20916 {
20917 offset_type a = *(offset_type *) ap;
20918 offset_type b = *(offset_type *) bp;
20919
20920 return (a > b) - (b > a);
20921 }
20922
20923 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20924
20925 static void
20926 uniquify_cu_indices (struct mapped_symtab *symtab)
20927 {
20928 int i;
20929
20930 for (i = 0; i < symtab->size; ++i)
20931 {
20932 struct symtab_index_entry *entry = symtab->data[i];
20933
20934 if (entry
20935 && entry->cu_indices != NULL)
20936 {
20937 unsigned int next_to_insert, next_to_check;
20938 offset_type last_value;
20939
20940 qsort (VEC_address (offset_type, entry->cu_indices),
20941 VEC_length (offset_type, entry->cu_indices),
20942 sizeof (offset_type), offset_type_compare);
20943
20944 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20945 next_to_insert = 1;
20946 for (next_to_check = 1;
20947 next_to_check < VEC_length (offset_type, entry->cu_indices);
20948 ++next_to_check)
20949 {
20950 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20951 != last_value)
20952 {
20953 last_value = VEC_index (offset_type, entry->cu_indices,
20954 next_to_check);
20955 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20956 last_value);
20957 ++next_to_insert;
20958 }
20959 }
20960 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20961 }
20962 }
20963 }
20964
20965 /* Add a vector of indices to the constant pool. */
20966
20967 static offset_type
20968 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20969 struct symtab_index_entry *entry)
20970 {
20971 void **slot;
20972
20973 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20974 if (!*slot)
20975 {
20976 offset_type len = VEC_length (offset_type, entry->cu_indices);
20977 offset_type val = MAYBE_SWAP (len);
20978 offset_type iter;
20979 int i;
20980
20981 *slot = entry;
20982 entry->index_offset = obstack_object_size (cpool);
20983
20984 obstack_grow (cpool, &val, sizeof (val));
20985 for (i = 0;
20986 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20987 ++i)
20988 {
20989 val = MAYBE_SWAP (iter);
20990 obstack_grow (cpool, &val, sizeof (val));
20991 }
20992 }
20993 else
20994 {
20995 struct symtab_index_entry *old_entry = *slot;
20996 entry->index_offset = old_entry->index_offset;
20997 entry = old_entry;
20998 }
20999 return entry->index_offset;
21000 }
21001
21002 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21003 constant pool entries going into the obstack CPOOL. */
21004
21005 static void
21006 write_hash_table (struct mapped_symtab *symtab,
21007 struct obstack *output, struct obstack *cpool)
21008 {
21009 offset_type i;
21010 htab_t symbol_hash_table;
21011 htab_t str_table;
21012
21013 symbol_hash_table = create_symbol_hash_table ();
21014 str_table = create_strtab ();
21015
21016 /* We add all the index vectors to the constant pool first, to
21017 ensure alignment is ok. */
21018 for (i = 0; i < symtab->size; ++i)
21019 {
21020 if (symtab->data[i])
21021 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
21022 }
21023
21024 /* Now write out the hash table. */
21025 for (i = 0; i < symtab->size; ++i)
21026 {
21027 offset_type str_off, vec_off;
21028
21029 if (symtab->data[i])
21030 {
21031 str_off = add_string (str_table, cpool, symtab->data[i]->name);
21032 vec_off = symtab->data[i]->index_offset;
21033 }
21034 else
21035 {
21036 /* While 0 is a valid constant pool index, it is not valid
21037 to have 0 for both offsets. */
21038 str_off = 0;
21039 vec_off = 0;
21040 }
21041
21042 str_off = MAYBE_SWAP (str_off);
21043 vec_off = MAYBE_SWAP (vec_off);
21044
21045 obstack_grow (output, &str_off, sizeof (str_off));
21046 obstack_grow (output, &vec_off, sizeof (vec_off));
21047 }
21048
21049 htab_delete (str_table);
21050 htab_delete (symbol_hash_table);
21051 }
21052
21053 /* Struct to map psymtab to CU index in the index file. */
21054 struct psymtab_cu_index_map
21055 {
21056 struct partial_symtab *psymtab;
21057 unsigned int cu_index;
21058 };
21059
21060 static hashval_t
21061 hash_psymtab_cu_index (const void *item)
21062 {
21063 const struct psymtab_cu_index_map *map = item;
21064
21065 return htab_hash_pointer (map->psymtab);
21066 }
21067
21068 static int
21069 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
21070 {
21071 const struct psymtab_cu_index_map *lhs = item_lhs;
21072 const struct psymtab_cu_index_map *rhs = item_rhs;
21073
21074 return lhs->psymtab == rhs->psymtab;
21075 }
21076
21077 /* Helper struct for building the address table. */
21078 struct addrmap_index_data
21079 {
21080 struct objfile *objfile;
21081 struct obstack *addr_obstack;
21082 htab_t cu_index_htab;
21083
21084 /* Non-zero if the previous_* fields are valid.
21085 We can't write an entry until we see the next entry (since it is only then
21086 that we know the end of the entry). */
21087 int previous_valid;
21088 /* Index of the CU in the table of all CUs in the index file. */
21089 unsigned int previous_cu_index;
21090 /* Start address of the CU. */
21091 CORE_ADDR previous_cu_start;
21092 };
21093
21094 /* Write an address entry to OBSTACK. */
21095
21096 static void
21097 add_address_entry (struct objfile *objfile, struct obstack *obstack,
21098 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
21099 {
21100 offset_type cu_index_to_write;
21101 gdb_byte addr[8];
21102 CORE_ADDR baseaddr;
21103
21104 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21105
21106 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21107 obstack_grow (obstack, addr, 8);
21108 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21109 obstack_grow (obstack, addr, 8);
21110 cu_index_to_write = MAYBE_SWAP (cu_index);
21111 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21112 }
21113
21114 /* Worker function for traversing an addrmap to build the address table. */
21115
21116 static int
21117 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21118 {
21119 struct addrmap_index_data *data = datap;
21120 struct partial_symtab *pst = obj;
21121
21122 if (data->previous_valid)
21123 add_address_entry (data->objfile, data->addr_obstack,
21124 data->previous_cu_start, start_addr,
21125 data->previous_cu_index);
21126
21127 data->previous_cu_start = start_addr;
21128 if (pst != NULL)
21129 {
21130 struct psymtab_cu_index_map find_map, *map;
21131 find_map.psymtab = pst;
21132 map = htab_find (data->cu_index_htab, &find_map);
21133 gdb_assert (map != NULL);
21134 data->previous_cu_index = map->cu_index;
21135 data->previous_valid = 1;
21136 }
21137 else
21138 data->previous_valid = 0;
21139
21140 return 0;
21141 }
21142
21143 /* Write OBJFILE's address map to OBSTACK.
21144 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21145 in the index file. */
21146
21147 static void
21148 write_address_map (struct objfile *objfile, struct obstack *obstack,
21149 htab_t cu_index_htab)
21150 {
21151 struct addrmap_index_data addrmap_index_data;
21152
21153 /* When writing the address table, we have to cope with the fact that
21154 the addrmap iterator only provides the start of a region; we have to
21155 wait until the next invocation to get the start of the next region. */
21156
21157 addrmap_index_data.objfile = objfile;
21158 addrmap_index_data.addr_obstack = obstack;
21159 addrmap_index_data.cu_index_htab = cu_index_htab;
21160 addrmap_index_data.previous_valid = 0;
21161
21162 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21163 &addrmap_index_data);
21164
21165 /* It's highly unlikely the last entry (end address = 0xff...ff)
21166 is valid, but we should still handle it.
21167 The end address is recorded as the start of the next region, but that
21168 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21169 anyway. */
21170 if (addrmap_index_data.previous_valid)
21171 add_address_entry (objfile, obstack,
21172 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21173 addrmap_index_data.previous_cu_index);
21174 }
21175
21176 /* Return the symbol kind of PSYM. */
21177
21178 static gdb_index_symbol_kind
21179 symbol_kind (struct partial_symbol *psym)
21180 {
21181 domain_enum domain = PSYMBOL_DOMAIN (psym);
21182 enum address_class aclass = PSYMBOL_CLASS (psym);
21183
21184 switch (domain)
21185 {
21186 case VAR_DOMAIN:
21187 switch (aclass)
21188 {
21189 case LOC_BLOCK:
21190 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21191 case LOC_TYPEDEF:
21192 return GDB_INDEX_SYMBOL_KIND_TYPE;
21193 case LOC_COMPUTED:
21194 case LOC_CONST_BYTES:
21195 case LOC_OPTIMIZED_OUT:
21196 case LOC_STATIC:
21197 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21198 case LOC_CONST:
21199 /* Note: It's currently impossible to recognize psyms as enum values
21200 short of reading the type info. For now punt. */
21201 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21202 default:
21203 /* There are other LOC_FOO values that one might want to classify
21204 as variables, but dwarf2read.c doesn't currently use them. */
21205 return GDB_INDEX_SYMBOL_KIND_OTHER;
21206 }
21207 case STRUCT_DOMAIN:
21208 return GDB_INDEX_SYMBOL_KIND_TYPE;
21209 default:
21210 return GDB_INDEX_SYMBOL_KIND_OTHER;
21211 }
21212 }
21213
21214 /* Add a list of partial symbols to SYMTAB. */
21215
21216 static void
21217 write_psymbols (struct mapped_symtab *symtab,
21218 htab_t psyms_seen,
21219 struct partial_symbol **psymp,
21220 int count,
21221 offset_type cu_index,
21222 int is_static)
21223 {
21224 for (; count-- > 0; ++psymp)
21225 {
21226 struct partial_symbol *psym = *psymp;
21227 void **slot;
21228
21229 if (SYMBOL_LANGUAGE (psym) == language_ada)
21230 error (_("Ada is not currently supported by the index"));
21231
21232 /* Only add a given psymbol once. */
21233 slot = htab_find_slot (psyms_seen, psym, INSERT);
21234 if (!*slot)
21235 {
21236 gdb_index_symbol_kind kind = symbol_kind (psym);
21237
21238 *slot = psym;
21239 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21240 is_static, kind, cu_index);
21241 }
21242 }
21243 }
21244
21245 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21246 exception if there is an error. */
21247
21248 static void
21249 write_obstack (FILE *file, struct obstack *obstack)
21250 {
21251 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21252 file)
21253 != obstack_object_size (obstack))
21254 error (_("couldn't data write to file"));
21255 }
21256
21257 /* Unlink a file if the argument is not NULL. */
21258
21259 static void
21260 unlink_if_set (void *p)
21261 {
21262 char **filename = p;
21263 if (*filename)
21264 unlink (*filename);
21265 }
21266
21267 /* A helper struct used when iterating over debug_types. */
21268 struct signatured_type_index_data
21269 {
21270 struct objfile *objfile;
21271 struct mapped_symtab *symtab;
21272 struct obstack *types_list;
21273 htab_t psyms_seen;
21274 int cu_index;
21275 };
21276
21277 /* A helper function that writes a single signatured_type to an
21278 obstack. */
21279
21280 static int
21281 write_one_signatured_type (void **slot, void *d)
21282 {
21283 struct signatured_type_index_data *info = d;
21284 struct signatured_type *entry = (struct signatured_type *) *slot;
21285 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21286 gdb_byte val[8];
21287
21288 write_psymbols (info->symtab,
21289 info->psyms_seen,
21290 info->objfile->global_psymbols.list
21291 + psymtab->globals_offset,
21292 psymtab->n_global_syms, info->cu_index,
21293 0);
21294 write_psymbols (info->symtab,
21295 info->psyms_seen,
21296 info->objfile->static_psymbols.list
21297 + psymtab->statics_offset,
21298 psymtab->n_static_syms, info->cu_index,
21299 1);
21300
21301 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21302 entry->per_cu.offset.sect_off);
21303 obstack_grow (info->types_list, val, 8);
21304 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21305 entry->type_offset_in_tu.cu_off);
21306 obstack_grow (info->types_list, val, 8);
21307 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21308 obstack_grow (info->types_list, val, 8);
21309
21310 ++info->cu_index;
21311
21312 return 1;
21313 }
21314
21315 /* Recurse into all "included" dependencies and write their symbols as
21316 if they appeared in this psymtab. */
21317
21318 static void
21319 recursively_write_psymbols (struct objfile *objfile,
21320 struct partial_symtab *psymtab,
21321 struct mapped_symtab *symtab,
21322 htab_t psyms_seen,
21323 offset_type cu_index)
21324 {
21325 int i;
21326
21327 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21328 if (psymtab->dependencies[i]->user != NULL)
21329 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21330 symtab, psyms_seen, cu_index);
21331
21332 write_psymbols (symtab,
21333 psyms_seen,
21334 objfile->global_psymbols.list + psymtab->globals_offset,
21335 psymtab->n_global_syms, cu_index,
21336 0);
21337 write_psymbols (symtab,
21338 psyms_seen,
21339 objfile->static_psymbols.list + psymtab->statics_offset,
21340 psymtab->n_static_syms, cu_index,
21341 1);
21342 }
21343
21344 /* Create an index file for OBJFILE in the directory DIR. */
21345
21346 static void
21347 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21348 {
21349 struct cleanup *cleanup;
21350 char *filename, *cleanup_filename;
21351 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21352 struct obstack cu_list, types_cu_list;
21353 int i;
21354 FILE *out_file;
21355 struct mapped_symtab *symtab;
21356 offset_type val, size_of_contents, total_len;
21357 struct stat st;
21358 htab_t psyms_seen;
21359 htab_t cu_index_htab;
21360 struct psymtab_cu_index_map *psymtab_cu_index_map;
21361
21362 if (dwarf2_per_objfile->using_index)
21363 error (_("Cannot use an index to create the index"));
21364
21365 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21366 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21367
21368 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21369 return;
21370
21371 if (stat (objfile_name (objfile), &st) < 0)
21372 perror_with_name (objfile_name (objfile));
21373
21374 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
21375 INDEX_SUFFIX, (char *) NULL);
21376 cleanup = make_cleanup (xfree, filename);
21377
21378 out_file = gdb_fopen_cloexec (filename, "wb");
21379 if (!out_file)
21380 error (_("Can't open `%s' for writing"), filename);
21381
21382 cleanup_filename = filename;
21383 make_cleanup (unlink_if_set, &cleanup_filename);
21384
21385 symtab = create_mapped_symtab ();
21386 make_cleanup (cleanup_mapped_symtab, symtab);
21387
21388 obstack_init (&addr_obstack);
21389 make_cleanup_obstack_free (&addr_obstack);
21390
21391 obstack_init (&cu_list);
21392 make_cleanup_obstack_free (&cu_list);
21393
21394 obstack_init (&types_cu_list);
21395 make_cleanup_obstack_free (&types_cu_list);
21396
21397 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21398 NULL, xcalloc, xfree);
21399 make_cleanup_htab_delete (psyms_seen);
21400
21401 /* While we're scanning CU's create a table that maps a psymtab pointer
21402 (which is what addrmap records) to its index (which is what is recorded
21403 in the index file). This will later be needed to write the address
21404 table. */
21405 cu_index_htab = htab_create_alloc (100,
21406 hash_psymtab_cu_index,
21407 eq_psymtab_cu_index,
21408 NULL, xcalloc, xfree);
21409 make_cleanup_htab_delete (cu_index_htab);
21410 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21411 xmalloc (sizeof (struct psymtab_cu_index_map)
21412 * dwarf2_per_objfile->n_comp_units);
21413 make_cleanup (xfree, psymtab_cu_index_map);
21414
21415 /* The CU list is already sorted, so we don't need to do additional
21416 work here. Also, the debug_types entries do not appear in
21417 all_comp_units, but only in their own hash table. */
21418 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21419 {
21420 struct dwarf2_per_cu_data *per_cu
21421 = dwarf2_per_objfile->all_comp_units[i];
21422 struct partial_symtab *psymtab = per_cu->v.psymtab;
21423 gdb_byte val[8];
21424 struct psymtab_cu_index_map *map;
21425 void **slot;
21426
21427 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21428 It may be referenced from a local scope but in such case it does not
21429 need to be present in .gdb_index. */
21430 if (psymtab == NULL)
21431 continue;
21432
21433 if (psymtab->user == NULL)
21434 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21435
21436 map = &psymtab_cu_index_map[i];
21437 map->psymtab = psymtab;
21438 map->cu_index = i;
21439 slot = htab_find_slot (cu_index_htab, map, INSERT);
21440 gdb_assert (slot != NULL);
21441 gdb_assert (*slot == NULL);
21442 *slot = map;
21443
21444 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21445 per_cu->offset.sect_off);
21446 obstack_grow (&cu_list, val, 8);
21447 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21448 obstack_grow (&cu_list, val, 8);
21449 }
21450
21451 /* Dump the address map. */
21452 write_address_map (objfile, &addr_obstack, cu_index_htab);
21453
21454 /* Write out the .debug_type entries, if any. */
21455 if (dwarf2_per_objfile->signatured_types)
21456 {
21457 struct signatured_type_index_data sig_data;
21458
21459 sig_data.objfile = objfile;
21460 sig_data.symtab = symtab;
21461 sig_data.types_list = &types_cu_list;
21462 sig_data.psyms_seen = psyms_seen;
21463 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21464 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21465 write_one_signatured_type, &sig_data);
21466 }
21467
21468 /* Now that we've processed all symbols we can shrink their cu_indices
21469 lists. */
21470 uniquify_cu_indices (symtab);
21471
21472 obstack_init (&constant_pool);
21473 make_cleanup_obstack_free (&constant_pool);
21474 obstack_init (&symtab_obstack);
21475 make_cleanup_obstack_free (&symtab_obstack);
21476 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21477
21478 obstack_init (&contents);
21479 make_cleanup_obstack_free (&contents);
21480 size_of_contents = 6 * sizeof (offset_type);
21481 total_len = size_of_contents;
21482
21483 /* The version number. */
21484 val = MAYBE_SWAP (8);
21485 obstack_grow (&contents, &val, sizeof (val));
21486
21487 /* The offset of the CU list from the start of the file. */
21488 val = MAYBE_SWAP (total_len);
21489 obstack_grow (&contents, &val, sizeof (val));
21490 total_len += obstack_object_size (&cu_list);
21491
21492 /* The offset of the types CU list from the start of the file. */
21493 val = MAYBE_SWAP (total_len);
21494 obstack_grow (&contents, &val, sizeof (val));
21495 total_len += obstack_object_size (&types_cu_list);
21496
21497 /* The offset of the address table from the start of the file. */
21498 val = MAYBE_SWAP (total_len);
21499 obstack_grow (&contents, &val, sizeof (val));
21500 total_len += obstack_object_size (&addr_obstack);
21501
21502 /* The offset of the symbol table from the start of the file. */
21503 val = MAYBE_SWAP (total_len);
21504 obstack_grow (&contents, &val, sizeof (val));
21505 total_len += obstack_object_size (&symtab_obstack);
21506
21507 /* The offset of the constant pool from the start of the file. */
21508 val = MAYBE_SWAP (total_len);
21509 obstack_grow (&contents, &val, sizeof (val));
21510 total_len += obstack_object_size (&constant_pool);
21511
21512 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21513
21514 write_obstack (out_file, &contents);
21515 write_obstack (out_file, &cu_list);
21516 write_obstack (out_file, &types_cu_list);
21517 write_obstack (out_file, &addr_obstack);
21518 write_obstack (out_file, &symtab_obstack);
21519 write_obstack (out_file, &constant_pool);
21520
21521 fclose (out_file);
21522
21523 /* We want to keep the file, so we set cleanup_filename to NULL
21524 here. See unlink_if_set. */
21525 cleanup_filename = NULL;
21526
21527 do_cleanups (cleanup);
21528 }
21529
21530 /* Implementation of the `save gdb-index' command.
21531
21532 Note that the file format used by this command is documented in the
21533 GDB manual. Any changes here must be documented there. */
21534
21535 static void
21536 save_gdb_index_command (char *arg, int from_tty)
21537 {
21538 struct objfile *objfile;
21539
21540 if (!arg || !*arg)
21541 error (_("usage: save gdb-index DIRECTORY"));
21542
21543 ALL_OBJFILES (objfile)
21544 {
21545 struct stat st;
21546
21547 /* If the objfile does not correspond to an actual file, skip it. */
21548 if (stat (objfile_name (objfile), &st) < 0)
21549 continue;
21550
21551 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21552 if (dwarf2_per_objfile)
21553 {
21554 volatile struct gdb_exception except;
21555
21556 TRY_CATCH (except, RETURN_MASK_ERROR)
21557 {
21558 write_psymtabs_to_index (objfile, arg);
21559 }
21560 if (except.reason < 0)
21561 exception_fprintf (gdb_stderr, except,
21562 _("Error while writing index for `%s': "),
21563 objfile_name (objfile));
21564 }
21565 }
21566 }
21567
21568 \f
21569
21570 int dwarf2_always_disassemble;
21571
21572 static void
21573 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21574 struct cmd_list_element *c, const char *value)
21575 {
21576 fprintf_filtered (file,
21577 _("Whether to always disassemble "
21578 "DWARF expressions is %s.\n"),
21579 value);
21580 }
21581
21582 static void
21583 show_check_physname (struct ui_file *file, int from_tty,
21584 struct cmd_list_element *c, const char *value)
21585 {
21586 fprintf_filtered (file,
21587 _("Whether to check \"physname\" is %s.\n"),
21588 value);
21589 }
21590
21591 void _initialize_dwarf2_read (void);
21592
21593 void
21594 _initialize_dwarf2_read (void)
21595 {
21596 struct cmd_list_element *c;
21597
21598 dwarf2_objfile_data_key
21599 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21600
21601 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21602 Set DWARF 2 specific variables.\n\
21603 Configure DWARF 2 variables such as the cache size"),
21604 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21605 0/*allow-unknown*/, &maintenance_set_cmdlist);
21606
21607 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21608 Show DWARF 2 specific variables\n\
21609 Show DWARF 2 variables such as the cache size"),
21610 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21611 0/*allow-unknown*/, &maintenance_show_cmdlist);
21612
21613 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21614 &dwarf2_max_cache_age, _("\
21615 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21616 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21617 A higher limit means that cached compilation units will be stored\n\
21618 in memory longer, and more total memory will be used. Zero disables\n\
21619 caching, which can slow down startup."),
21620 NULL,
21621 show_dwarf2_max_cache_age,
21622 &set_dwarf2_cmdlist,
21623 &show_dwarf2_cmdlist);
21624
21625 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21626 &dwarf2_always_disassemble, _("\
21627 Set whether `info address' always disassembles DWARF expressions."), _("\
21628 Show whether `info address' always disassembles DWARF expressions."), _("\
21629 When enabled, DWARF expressions are always printed in an assembly-like\n\
21630 syntax. When disabled, expressions will be printed in a more\n\
21631 conversational style, when possible."),
21632 NULL,
21633 show_dwarf2_always_disassemble,
21634 &set_dwarf2_cmdlist,
21635 &show_dwarf2_cmdlist);
21636
21637 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21638 Set debugging of the dwarf2 reader."), _("\
21639 Show debugging of the dwarf2 reader."), _("\
21640 When enabled, debugging messages are printed during dwarf2 reading\n\
21641 and symtab expansion."),
21642 NULL,
21643 NULL,
21644 &setdebuglist, &showdebuglist);
21645
21646 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21647 Set debugging of the dwarf2 DIE reader."), _("\
21648 Show debugging of the dwarf2 DIE reader."), _("\
21649 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21650 The value is the maximum depth to print."),
21651 NULL,
21652 NULL,
21653 &setdebuglist, &showdebuglist);
21654
21655 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21656 Set cross-checking of \"physname\" code against demangler."), _("\
21657 Show cross-checking of \"physname\" code against demangler."), _("\
21658 When enabled, GDB's internal \"physname\" code is checked against\n\
21659 the demangler."),
21660 NULL, show_check_physname,
21661 &setdebuglist, &showdebuglist);
21662
21663 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21664 no_class, &use_deprecated_index_sections, _("\
21665 Set whether to use deprecated gdb_index sections."), _("\
21666 Show whether to use deprecated gdb_index sections."), _("\
21667 When enabled, deprecated .gdb_index sections are used anyway.\n\
21668 Normally they are ignored either because of a missing feature or\n\
21669 performance issue.\n\
21670 Warning: This option must be enabled before gdb reads the file."),
21671 NULL,
21672 NULL,
21673 &setlist, &showlist);
21674
21675 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21676 _("\
21677 Save a gdb-index file.\n\
21678 Usage: save gdb-index DIRECTORY"),
21679 &save_cmdlist);
21680 set_cmd_completer (c, filename_completer);
21681
21682 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21683 &dwarf2_locexpr_funcs);
21684 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21685 &dwarf2_loclist_funcs);
21686
21687 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21688 &dwarf2_block_frame_base_locexpr_funcs);
21689 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21690 &dwarf2_block_frame_base_loclist_funcs);
21691 }
This page took 0.508675 seconds and 4 git commands to generate.