gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs typically share line table entries with a CU, so we maintain a
261 separate table of all line table entries to support the sharing.
262 Note that while there can be way more TUs than CUs, we've already
263 sorted all the TUs into "type unit groups", grouped by their
264 DW_AT_stmt_list value. Therefore the only sharing done here is with a
265 CU and its associated TU group if there is one. */
266 htab_t quick_file_names_table;
267
268 /* Set during partial symbol reading, to prevent queueing of full
269 symbols. */
270 int reading_partial_symbols;
271
272 /* Table mapping type DIEs to their struct type *.
273 This is NULL if not allocated yet.
274 The mapping is done via (CU/TU signature + DIE offset) -> type. */
275 htab_t die_type_hash;
276
277 /* The CUs we recently read. */
278 VEC (dwarf2_per_cu_ptr) *just_read_cus;
279 };
280
281 static struct dwarf2_per_objfile *dwarf2_per_objfile;
282
283 /* Default names of the debugging sections. */
284
285 /* Note that if the debugging section has been compressed, it might
286 have a name like .zdebug_info. */
287
288 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 {
290 { ".debug_info", ".zdebug_info" },
291 { ".debug_abbrev", ".zdebug_abbrev" },
292 { ".debug_line", ".zdebug_line" },
293 { ".debug_loc", ".zdebug_loc" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_ranges", ".zdebug_ranges" },
298 { ".debug_types", ".zdebug_types" },
299 { ".debug_addr", ".zdebug_addr" },
300 { ".debug_frame", ".zdebug_frame" },
301 { ".eh_frame", NULL },
302 { ".gdb_index", ".zgdb_index" },
303 23
304 };
305
306 /* List of DWO/DWP sections. */
307
308 static const struct dwop_section_names
309 {
310 struct dwarf2_section_names abbrev_dwo;
311 struct dwarf2_section_names info_dwo;
312 struct dwarf2_section_names line_dwo;
313 struct dwarf2_section_names loc_dwo;
314 struct dwarf2_section_names macinfo_dwo;
315 struct dwarf2_section_names macro_dwo;
316 struct dwarf2_section_names str_dwo;
317 struct dwarf2_section_names str_offsets_dwo;
318 struct dwarf2_section_names types_dwo;
319 struct dwarf2_section_names cu_index;
320 struct dwarf2_section_names tu_index;
321 }
322 dwop_section_names =
323 {
324 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
325 { ".debug_info.dwo", ".zdebug_info.dwo" },
326 { ".debug_line.dwo", ".zdebug_line.dwo" },
327 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_offset;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 /* Offset to the first byte of this compilation unit header in the
356 .debug_info section, for resolving relative reference dies. */
357 sect_offset offset;
358
359 /* Offset to first die in this cu from the start of the cu.
360 This will be the first byte following the compilation unit header. */
361 cu_offset first_die_offset;
362 };
363
364 /* Type used for delaying computation of method physnames.
365 See comments for compute_delayed_physnames. */
366 struct delayed_method_info
367 {
368 /* The type to which the method is attached, i.e., its parent class. */
369 struct type *type;
370
371 /* The index of the method in the type's function fieldlists. */
372 int fnfield_index;
373
374 /* The index of the method in the fieldlist. */
375 int index;
376
377 /* The name of the DIE. */
378 const char *name;
379
380 /* The DIE associated with this method. */
381 struct die_info *die;
382 };
383
384 typedef struct delayed_method_info delayed_method_info;
385 DEF_VEC_O (delayed_method_info);
386
387 /* Internal state when decoding a particular compilation unit. */
388 struct dwarf2_cu
389 {
390 /* The objfile containing this compilation unit. */
391 struct objfile *objfile;
392
393 /* The header of the compilation unit. */
394 struct comp_unit_head header;
395
396 /* Base address of this compilation unit. */
397 CORE_ADDR base_address;
398
399 /* Non-zero if base_address has been set. */
400 int base_known;
401
402 /* The language we are debugging. */
403 enum language language;
404 const struct language_defn *language_defn;
405
406 const char *producer;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the
414 first local scope, and all other local scopes as nested local
415 scopes, and worked fine. Check to see if we really need to
416 distinguish these in buildsym.c. */
417 struct pending **list_in_scope;
418
419 /* The abbrev table for this CU.
420 Normally this points to the abbrev table in the objfile.
421 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
422 struct abbrev_table *abbrev_table;
423
424 /* Hash table holding all the loaded partial DIEs
425 with partial_die->offset.SECT_OFF as hash. */
426 htab_t partial_dies;
427
428 /* Storage for things with the same lifetime as this read-in compilation
429 unit, including partial DIEs. */
430 struct obstack comp_unit_obstack;
431
432 /* When multiple dwarf2_cu structures are living in memory, this field
433 chains them all together, so that they can be released efficiently.
434 We will probably also want a generation counter so that most-recently-used
435 compilation units are cached... */
436 struct dwarf2_per_cu_data *read_in_chain;
437
438 /* Backchain to our per_cu entry if the tree has been built. */
439 struct dwarf2_per_cu_data *per_cu;
440
441 /* How many compilation units ago was this CU last referenced? */
442 int last_used;
443
444 /* A hash table of DIE cu_offset for following references with
445 die_info->offset.sect_off as hash. */
446 htab_t die_hash;
447
448 /* Full DIEs if read in. */
449 struct die_info *dies;
450
451 /* A set of pointers to dwarf2_per_cu_data objects for compilation
452 units referenced by this one. Only set during full symbol processing;
453 partial symbol tables do not have dependencies. */
454 htab_t dependencies;
455
456 /* Header data from the line table, during full symbol processing. */
457 struct line_header *line_header;
458
459 /* A list of methods which need to have physnames computed
460 after all type information has been read. */
461 VEC (delayed_method_info) *method_list;
462
463 /* To be copied to symtab->call_site_htab. */
464 htab_t call_site_htab;
465
466 /* Non-NULL if this CU came from a DWO file.
467 There is an invariant here that is important to remember:
468 Except for attributes copied from the top level DIE in the "main"
469 (or "stub") file in preparation for reading the DWO file
470 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
471 Either there isn't a DWO file (in which case this is NULL and the point
472 is moot), or there is and either we're not going to read it (in which
473 case this is NULL) or there is and we are reading it (in which case this
474 is non-NULL). */
475 struct dwo_unit *dwo_unit;
476
477 /* The DW_AT_addr_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE. */
480 ULONGEST addr_base;
481
482 /* The DW_AT_ranges_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE.
485 Also note that the value is zero in the non-DWO case so this value can
486 be used without needing to know whether DWO files are in use or not.
487 N.B. This does not apply to DW_AT_ranges appearing in
488 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
489 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
490 DW_AT_ranges_base *would* have to be applied, and we'd have to care
491 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
492 ULONGEST ranges_base;
493
494 /* Mark used when releasing cached dies. */
495 unsigned int mark : 1;
496
497 /* This CU references .debug_loc. See the symtab->locations_valid field.
498 This test is imperfect as there may exist optimized debug code not using
499 any location list and still facing inlining issues if handled as
500 unoptimized code. For a future better test see GCC PR other/32998. */
501 unsigned int has_loclist : 1;
502
503 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
504 if all the producer_is_* fields are valid. This information is cached
505 because profiling CU expansion showed excessive time spent in
506 producer_is_gxx_lt_4_6. */
507 unsigned int checked_producer : 1;
508 unsigned int producer_is_gxx_lt_4_6 : 1;
509 unsigned int producer_is_gcc_lt_4_3 : 1;
510 unsigned int producer_is_icc : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 union
570 {
571 /* The CUs we import using DW_TAG_imported_unit. This is filled in
572 while reading psymtabs, used to compute the psymtab dependencies,
573 and then cleared. Then it is filled in again while reading full
574 symbols, and only deleted when the objfile is destroyed. */
575 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
576
577 /* Type units are grouped by their DW_AT_stmt_list entry so that they
578 can share them. If this is a TU, this points to the containing
579 symtab. */
580 struct type_unit_group *type_unit_group;
581 } s;
582 };
583
584 /* Entry in the signatured_types hash table. */
585
586 struct signatured_type
587 {
588 /* The "per_cu" object of this type.
589 N.B.: This is the first member so that it's easy to convert pointers
590 between them. */
591 struct dwarf2_per_cu_data per_cu;
592
593 /* The type's signature. */
594 ULONGEST signature;
595
596 /* Offset in the TU of the type's DIE, as read from the TU header.
597 If the definition lives in a DWO file, this value is unusable. */
598 cu_offset type_offset_in_tu;
599
600 /* Offset in the section of the type's DIE.
601 If the definition lives in a DWO file, this is the offset in the
602 .debug_types.dwo section.
603 The value is zero until the actual value is known.
604 Zero is otherwise not a valid section offset. */
605 sect_offset type_offset_in_section;
606 };
607
608 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
609 This includes type_unit_group and quick_file_names. */
610
611 struct stmt_list_hash
612 {
613 /* The DWO unit this table is from or NULL if there is none. */
614 struct dwo_unit *dwo_unit;
615
616 /* Offset in .debug_line or .debug_line.dwo. */
617 sect_offset line_offset;
618 };
619
620 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
621 an object of this type. */
622
623 struct type_unit_group
624 {
625 /* dwarf2read.c's main "handle" on the symtab.
626 To simplify things we create an artificial CU that "includes" all the
627 type units using this stmt_list so that the rest of the code still has
628 a "per_cu" handle on the symtab.
629 This PER_CU is recognized by having no section. */
630 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
631 struct dwarf2_per_cu_data per_cu;
632
633 union
634 {
635 /* The TUs that share this DW_AT_stmt_list entry.
636 This is added to while parsing type units to build partial symtabs,
637 and is deleted afterwards and not used again. */
638 VEC (dwarf2_per_cu_ptr) *tus;
639
640 /* When reading the line table in "quick" functions, we need a real TU.
641 Any will do, we know they all share the same DW_AT_stmt_list entry.
642 For simplicity's sake, we pick the first one. */
643 struct dwarf2_per_cu_data *first_tu;
644 } t;
645
646 /* The primary symtab.
647 Type units in a group needn't all be defined in the same source file,
648 so we create an essentially anonymous symtab as the primary symtab. */
649 struct symtab *primary_symtab;
650
651 /* The data used to construct the hash key. */
652 struct stmt_list_hash hash;
653
654 /* The number of symtabs from the line header.
655 The value here must match line_header.num_file_names. */
656 unsigned int num_symtabs;
657
658 /* The symbol tables for this TU (obtained from the files listed in
659 DW_AT_stmt_list).
660 WARNING: The order of entries here must match the order of entries
661 in the line header. After the first TU using this type_unit_group, the
662 line header for the subsequent TUs is recreated from this. This is done
663 because we need to use the same symtabs for each TU using the same
664 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
665 there's no guarantee the line header doesn't have duplicate entries. */
666 struct symtab **symtabs;
667 };
668
669 /* These sections are what may appear in a DWO file. */
670
671 struct dwo_sections
672 {
673 struct dwarf2_section_info abbrev;
674 struct dwarf2_section_info line;
675 struct dwarf2_section_info loc;
676 struct dwarf2_section_info macinfo;
677 struct dwarf2_section_info macro;
678 struct dwarf2_section_info str;
679 struct dwarf2_section_info str_offsets;
680 /* In the case of a virtual DWO file, these two are unused. */
681 struct dwarf2_section_info info;
682 VEC (dwarf2_section_info_def) *types;
683 };
684
685 /* Common bits of DWO CUs/TUs. */
686
687 struct dwo_unit
688 {
689 /* Backlink to the containing struct dwo_file. */
690 struct dwo_file *dwo_file;
691
692 /* The "id" that distinguishes this CU/TU.
693 .debug_info calls this "dwo_id", .debug_types calls this "signature".
694 Since signatures came first, we stick with it for consistency. */
695 ULONGEST signature;
696
697 /* The section this CU/TU lives in, in the DWO file. */
698 struct dwarf2_section_info *info_or_types_section;
699
700 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
701 sect_offset offset;
702 unsigned int length;
703
704 /* For types, offset in the type's DIE of the type defined by this TU. */
705 cu_offset type_offset_in_tu;
706 };
707
708 /* Data for one DWO file.
709 This includes virtual DWO files that have been packaged into a
710 DWP file. */
711
712 struct dwo_file
713 {
714 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
715 For virtual DWO files the name is constructed from the section offsets
716 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
717 from related CU+TUs. */
718 const char *name;
719
720 /* The bfd, when the file is open. Otherwise this is NULL.
721 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
722 bfd *dbfd;
723
724 /* Section info for this file. */
725 struct dwo_sections sections;
726
727 /* Table of CUs in the file.
728 Each element is a struct dwo_unit. */
729 htab_t cus;
730
731 /* Table of TUs in the file.
732 Each element is a struct dwo_unit. */
733 htab_t tus;
734 };
735
736 /* These sections are what may appear in a DWP file. */
737
738 struct dwp_sections
739 {
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
744 by section number. We don't need to record them here. */
745 };
746
747 /* These sections are what may appear in a virtual DWO file. */
748
749 struct virtual_dwo_sections
750 {
751 struct dwarf2_section_info abbrev;
752 struct dwarf2_section_info line;
753 struct dwarf2_section_info loc;
754 struct dwarf2_section_info macinfo;
755 struct dwarf2_section_info macro;
756 struct dwarf2_section_info str_offsets;
757 /* Each DWP hash table entry records one CU or one TU.
758 That is recorded here, and copied to dwo_unit.info_or_types_section. */
759 struct dwarf2_section_info info_or_types;
760 };
761
762 /* Contents of DWP hash tables. */
763
764 struct dwp_hash_table
765 {
766 uint32_t nr_units, nr_slots;
767 const gdb_byte *hash_table, *unit_table, *section_pool;
768 };
769
770 /* Data for one DWP file. */
771
772 struct dwp_file
773 {
774 /* Name of the file. */
775 const char *name;
776
777 /* The bfd, when the file is open. Otherwise this is NULL. */
778 bfd *dbfd;
779
780 /* Section info for this file. */
781 struct dwp_sections sections;
782
783 /* Table of CUs in the file. */
784 const struct dwp_hash_table *cus;
785
786 /* Table of TUs in the file. */
787 const struct dwp_hash_table *tus;
788
789 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
790 htab_t loaded_cutus;
791
792 /* Table to map ELF section numbers to their sections. */
793 unsigned int num_sections;
794 asection **elf_sections;
795 };
796
797 /* This represents a '.dwz' file. */
798
799 struct dwz_file
800 {
801 /* A dwz file can only contain a few sections. */
802 struct dwarf2_section_info abbrev;
803 struct dwarf2_section_info info;
804 struct dwarf2_section_info str;
805 struct dwarf2_section_info line;
806 struct dwarf2_section_info macro;
807 struct dwarf2_section_info gdb_index;
808
809 /* The dwz's BFD. */
810 bfd *dwz_bfd;
811 };
812
813 /* Struct used to pass misc. parameters to read_die_and_children, et
814 al. which are used for both .debug_info and .debug_types dies.
815 All parameters here are unchanging for the life of the call. This
816 struct exists to abstract away the constant parameters of die reading. */
817
818 struct die_reader_specs
819 {
820 /* die_section->asection->owner. */
821 bfd* abfd;
822
823 /* The CU of the DIE we are parsing. */
824 struct dwarf2_cu *cu;
825
826 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
827 struct dwo_file *dwo_file;
828
829 /* The section the die comes from.
830 This is either .debug_info or .debug_types, or the .dwo variants. */
831 struct dwarf2_section_info *die_section;
832
833 /* die_section->buffer. */
834 gdb_byte *buffer;
835
836 /* The end of the buffer. */
837 const gdb_byte *buffer_end;
838 };
839
840 /* Type of function passed to init_cutu_and_read_dies, et.al. */
841 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
842 gdb_byte *info_ptr,
843 struct die_info *comp_unit_die,
844 int has_children,
845 void *data);
846
847 /* The line number information for a compilation unit (found in the
848 .debug_line section) begins with a "statement program header",
849 which contains the following information. */
850 struct line_header
851 {
852 unsigned int total_length;
853 unsigned short version;
854 unsigned int header_length;
855 unsigned char minimum_instruction_length;
856 unsigned char maximum_ops_per_instruction;
857 unsigned char default_is_stmt;
858 int line_base;
859 unsigned char line_range;
860 unsigned char opcode_base;
861
862 /* standard_opcode_lengths[i] is the number of operands for the
863 standard opcode whose value is i. This means that
864 standard_opcode_lengths[0] is unused, and the last meaningful
865 element is standard_opcode_lengths[opcode_base - 1]. */
866 unsigned char *standard_opcode_lengths;
867
868 /* The include_directories table. NOTE! These strings are not
869 allocated with xmalloc; instead, they are pointers into
870 debug_line_buffer. If you try to free them, `free' will get
871 indigestion. */
872 unsigned int num_include_dirs, include_dirs_size;
873 char **include_dirs;
874
875 /* The file_names table. NOTE! These strings are not allocated
876 with xmalloc; instead, they are pointers into debug_line_buffer.
877 Don't try to free them directly. */
878 unsigned int num_file_names, file_names_size;
879 struct file_entry
880 {
881 char *name;
882 unsigned int dir_index;
883 unsigned int mod_time;
884 unsigned int length;
885 int included_p; /* Non-zero if referenced by the Line Number Program. */
886 struct symtab *symtab; /* The associated symbol table, if any. */
887 } *file_names;
888
889 /* The start and end of the statement program following this
890 header. These point into dwarf2_per_objfile->line_buffer. */
891 gdb_byte *statement_program_start, *statement_program_end;
892 };
893
894 /* When we construct a partial symbol table entry we only
895 need this much information. */
896 struct partial_die_info
897 {
898 /* Offset of this DIE. */
899 sect_offset offset;
900
901 /* DWARF-2 tag for this DIE. */
902 ENUM_BITFIELD(dwarf_tag) tag : 16;
903
904 /* Assorted flags describing the data found in this DIE. */
905 unsigned int has_children : 1;
906 unsigned int is_external : 1;
907 unsigned int is_declaration : 1;
908 unsigned int has_type : 1;
909 unsigned int has_specification : 1;
910 unsigned int has_pc_info : 1;
911 unsigned int may_be_inlined : 1;
912
913 /* Flag set if the SCOPE field of this structure has been
914 computed. */
915 unsigned int scope_set : 1;
916
917 /* Flag set if the DIE has a byte_size attribute. */
918 unsigned int has_byte_size : 1;
919
920 /* Flag set if any of the DIE's children are template arguments. */
921 unsigned int has_template_arguments : 1;
922
923 /* Flag set if fixup_partial_die has been called on this die. */
924 unsigned int fixup_called : 1;
925
926 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
927 unsigned int is_dwz : 1;
928
929 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
930 unsigned int spec_is_dwz : 1;
931
932 /* The name of this DIE. Normally the value of DW_AT_name, but
933 sometimes a default name for unnamed DIEs. */
934 char *name;
935
936 /* The linkage name, if present. */
937 const char *linkage_name;
938
939 /* The scope to prepend to our children. This is generally
940 allocated on the comp_unit_obstack, so will disappear
941 when this compilation unit leaves the cache. */
942 char *scope;
943
944 /* Some data associated with the partial DIE. The tag determines
945 which field is live. */
946 union
947 {
948 /* The location description associated with this DIE, if any. */
949 struct dwarf_block *locdesc;
950 /* The offset of an import, for DW_TAG_imported_unit. */
951 sect_offset offset;
952 } d;
953
954 /* If HAS_PC_INFO, the PC range associated with this DIE. */
955 CORE_ADDR lowpc;
956 CORE_ADDR highpc;
957
958 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
959 DW_AT_sibling, if any. */
960 /* NOTE: This member isn't strictly necessary, read_partial_die could
961 return DW_AT_sibling values to its caller load_partial_dies. */
962 gdb_byte *sibling;
963
964 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
965 DW_AT_specification (or DW_AT_abstract_origin or
966 DW_AT_extension). */
967 sect_offset spec_offset;
968
969 /* Pointers to this DIE's parent, first child, and next sibling,
970 if any. */
971 struct partial_die_info *die_parent, *die_child, *die_sibling;
972 };
973
974 /* This data structure holds the information of an abbrev. */
975 struct abbrev_info
976 {
977 unsigned int number; /* number identifying abbrev */
978 enum dwarf_tag tag; /* dwarf tag */
979 unsigned short has_children; /* boolean */
980 unsigned short num_attrs; /* number of attributes */
981 struct attr_abbrev *attrs; /* an array of attribute descriptions */
982 struct abbrev_info *next; /* next in chain */
983 };
984
985 struct attr_abbrev
986 {
987 ENUM_BITFIELD(dwarf_attribute) name : 16;
988 ENUM_BITFIELD(dwarf_form) form : 16;
989 };
990
991 /* Size of abbrev_table.abbrev_hash_table. */
992 #define ABBREV_HASH_SIZE 121
993
994 /* Top level data structure to contain an abbreviation table. */
995
996 struct abbrev_table
997 {
998 /* Where the abbrev table came from.
999 This is used as a sanity check when the table is used. */
1000 sect_offset offset;
1001
1002 /* Storage for the abbrev table. */
1003 struct obstack abbrev_obstack;
1004
1005 /* Hash table of abbrevs.
1006 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1007 It could be statically allocated, but the previous code didn't so we
1008 don't either. */
1009 struct abbrev_info **abbrevs;
1010 };
1011
1012 /* Attributes have a name and a value. */
1013 struct attribute
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 15;
1017
1018 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1019 field should be in u.str (existing only for DW_STRING) but it is kept
1020 here for better struct attribute alignment. */
1021 unsigned int string_is_canonical : 1;
1022
1023 union
1024 {
1025 char *str;
1026 struct dwarf_block *blk;
1027 ULONGEST unsnd;
1028 LONGEST snd;
1029 CORE_ADDR addr;
1030 struct signatured_type *signatured_type;
1031 }
1032 u;
1033 };
1034
1035 /* This data structure holds a complete die structure. */
1036 struct die_info
1037 {
1038 /* DWARF-2 tag for this DIE. */
1039 ENUM_BITFIELD(dwarf_tag) tag : 16;
1040
1041 /* Number of attributes */
1042 unsigned char num_attrs;
1043
1044 /* True if we're presently building the full type name for the
1045 type derived from this DIE. */
1046 unsigned char building_fullname : 1;
1047
1048 /* Abbrev number */
1049 unsigned int abbrev;
1050
1051 /* Offset in .debug_info or .debug_types section. */
1052 sect_offset offset;
1053
1054 /* The dies in a compilation unit form an n-ary tree. PARENT
1055 points to this die's parent; CHILD points to the first child of
1056 this node; and all the children of a given node are chained
1057 together via their SIBLING fields. */
1058 struct die_info *child; /* Its first child, if any. */
1059 struct die_info *sibling; /* Its next sibling, if any. */
1060 struct die_info *parent; /* Its parent, if any. */
1061
1062 /* An array of attributes, with NUM_ATTRS elements. There may be
1063 zero, but it's not common and zero-sized arrays are not
1064 sufficiently portable C. */
1065 struct attribute attrs[1];
1066 };
1067
1068 /* Get at parts of an attribute structure. */
1069
1070 #define DW_STRING(attr) ((attr)->u.str)
1071 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1072 #define DW_UNSND(attr) ((attr)->u.unsnd)
1073 #define DW_BLOCK(attr) ((attr)->u.blk)
1074 #define DW_SND(attr) ((attr)->u.snd)
1075 #define DW_ADDR(attr) ((attr)->u.addr)
1076 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1077
1078 /* Blocks are a bunch of untyped bytes. */
1079 struct dwarf_block
1080 {
1081 size_t size;
1082
1083 /* Valid only if SIZE is not zero. */
1084 gdb_byte *data;
1085 };
1086
1087 #ifndef ATTR_ALLOC_CHUNK
1088 #define ATTR_ALLOC_CHUNK 4
1089 #endif
1090
1091 /* Allocate fields for structs, unions and enums in this size. */
1092 #ifndef DW_FIELD_ALLOC_CHUNK
1093 #define DW_FIELD_ALLOC_CHUNK 4
1094 #endif
1095
1096 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1097 but this would require a corresponding change in unpack_field_as_long
1098 and friends. */
1099 static int bits_per_byte = 8;
1100
1101 /* The routines that read and process dies for a C struct or C++ class
1102 pass lists of data member fields and lists of member function fields
1103 in an instance of a field_info structure, as defined below. */
1104 struct field_info
1105 {
1106 /* List of data member and baseclasses fields. */
1107 struct nextfield
1108 {
1109 struct nextfield *next;
1110 int accessibility;
1111 int virtuality;
1112 struct field field;
1113 }
1114 *fields, *baseclasses;
1115
1116 /* Number of fields (including baseclasses). */
1117 int nfields;
1118
1119 /* Number of baseclasses. */
1120 int nbaseclasses;
1121
1122 /* Set if the accesibility of one of the fields is not public. */
1123 int non_public_fields;
1124
1125 /* Member function fields array, entries are allocated in the order they
1126 are encountered in the object file. */
1127 struct nextfnfield
1128 {
1129 struct nextfnfield *next;
1130 struct fn_field fnfield;
1131 }
1132 *fnfields;
1133
1134 /* Member function fieldlist array, contains name of possibly overloaded
1135 member function, number of overloaded member functions and a pointer
1136 to the head of the member function field chain. */
1137 struct fnfieldlist
1138 {
1139 char *name;
1140 int length;
1141 struct nextfnfield *head;
1142 }
1143 *fnfieldlists;
1144
1145 /* Number of entries in the fnfieldlists array. */
1146 int nfnfields;
1147
1148 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1149 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1150 struct typedef_field_list
1151 {
1152 struct typedef_field field;
1153 struct typedef_field_list *next;
1154 }
1155 *typedef_field_list;
1156 unsigned typedef_field_list_count;
1157 };
1158
1159 /* One item on the queue of compilation units to read in full symbols
1160 for. */
1161 struct dwarf2_queue_item
1162 {
1163 struct dwarf2_per_cu_data *per_cu;
1164 enum language pretend_language;
1165 struct dwarf2_queue_item *next;
1166 };
1167
1168 /* The current queue. */
1169 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1170
1171 /* Loaded secondary compilation units are kept in memory until they
1172 have not been referenced for the processing of this many
1173 compilation units. Set this to zero to disable caching. Cache
1174 sizes of up to at least twenty will improve startup time for
1175 typical inter-CU-reference binaries, at an obvious memory cost. */
1176 static int dwarf2_max_cache_age = 5;
1177 static void
1178 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1179 struct cmd_list_element *c, const char *value)
1180 {
1181 fprintf_filtered (file, _("The upper bound on the age of cached "
1182 "dwarf2 compilation units is %s.\n"),
1183 value);
1184 }
1185
1186
1187 /* Various complaints about symbol reading that don't abort the process. */
1188
1189 static void
1190 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1191 {
1192 complaint (&symfile_complaints,
1193 _("statement list doesn't fit in .debug_line section"));
1194 }
1195
1196 static void
1197 dwarf2_debug_line_missing_file_complaint (void)
1198 {
1199 complaint (&symfile_complaints,
1200 _(".debug_line section has line data without a file"));
1201 }
1202
1203 static void
1204 dwarf2_debug_line_missing_end_sequence_complaint (void)
1205 {
1206 complaint (&symfile_complaints,
1207 _(".debug_line section has line "
1208 "program sequence without an end"));
1209 }
1210
1211 static void
1212 dwarf2_complex_location_expr_complaint (void)
1213 {
1214 complaint (&symfile_complaints, _("location expression too complex"));
1215 }
1216
1217 static void
1218 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1219 int arg3)
1220 {
1221 complaint (&symfile_complaints,
1222 _("const value length mismatch for '%s', got %d, expected %d"),
1223 arg1, arg2, arg3);
1224 }
1225
1226 static void
1227 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1228 {
1229 complaint (&symfile_complaints,
1230 _("debug info runs off end of %s section"
1231 " [in module %s]"),
1232 section->asection->name,
1233 bfd_get_filename (section->asection->owner));
1234 }
1235
1236 static void
1237 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1238 {
1239 complaint (&symfile_complaints,
1240 _("macro debug info contains a "
1241 "malformed macro definition:\n`%s'"),
1242 arg1);
1243 }
1244
1245 static void
1246 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1247 {
1248 complaint (&symfile_complaints,
1249 _("invalid attribute class or form for '%s' in '%s'"),
1250 arg1, arg2);
1251 }
1252
1253 /* local function prototypes */
1254
1255 static void dwarf2_locate_sections (bfd *, asection *, void *);
1256
1257 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1258 struct objfile *);
1259
1260 static void dwarf2_find_base_address (struct die_info *die,
1261 struct dwarf2_cu *cu);
1262
1263 static void dwarf2_build_psymtabs_hard (struct objfile *);
1264
1265 static void scan_partial_symbols (struct partial_die_info *,
1266 CORE_ADDR *, CORE_ADDR *,
1267 int, struct dwarf2_cu *);
1268
1269 static void add_partial_symbol (struct partial_die_info *,
1270 struct dwarf2_cu *);
1271
1272 static void add_partial_namespace (struct partial_die_info *pdi,
1273 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1274 int need_pc, struct dwarf2_cu *cu);
1275
1276 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1277 CORE_ADDR *highpc, int need_pc,
1278 struct dwarf2_cu *cu);
1279
1280 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1281 struct dwarf2_cu *cu);
1282
1283 static void add_partial_subprogram (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void dwarf2_psymtab_to_symtab (struct objfile *,
1288 struct partial_symtab *);
1289
1290 static void psymtab_to_symtab_1 (struct partial_symtab *);
1291
1292 static struct abbrev_info *abbrev_table_lookup_abbrev
1293 (const struct abbrev_table *, unsigned int);
1294
1295 static struct abbrev_table *abbrev_table_read_table
1296 (struct dwarf2_section_info *, sect_offset);
1297
1298 static void abbrev_table_free (struct abbrev_table *);
1299
1300 static void abbrev_table_free_cleanup (void *);
1301
1302 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1303 struct dwarf2_section_info *);
1304
1305 static void dwarf2_free_abbrev_table (void *);
1306
1307 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1308
1309 static struct partial_die_info *load_partial_dies
1310 (const struct die_reader_specs *, gdb_byte *, int);
1311
1312 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1313 struct partial_die_info *,
1314 struct abbrev_info *,
1315 unsigned int,
1316 gdb_byte *);
1317
1318 static struct partial_die_info *find_partial_die (sect_offset, int,
1319 struct dwarf2_cu *);
1320
1321 static void fixup_partial_die (struct partial_die_info *,
1322 struct dwarf2_cu *);
1323
1324 static gdb_byte *read_attribute (const struct die_reader_specs *,
1325 struct attribute *, struct attr_abbrev *,
1326 gdb_byte *);
1327
1328 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1329
1330 static int read_1_signed_byte (bfd *, const gdb_byte *);
1331
1332 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1333
1334 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1335
1336 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1337
1338 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1339 unsigned int *);
1340
1341 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1342
1343 static LONGEST read_checked_initial_length_and_offset
1344 (bfd *, gdb_byte *, const struct comp_unit_head *,
1345 unsigned int *, unsigned int *);
1346
1347 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1348 unsigned int *);
1349
1350 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1351
1352 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1353 sect_offset);
1354
1355 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1356
1357 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1358
1359 static char *read_indirect_string (bfd *, gdb_byte *,
1360 const struct comp_unit_head *,
1361 unsigned int *);
1362
1363 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1364
1365 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1366
1367 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1368
1369 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1370 unsigned int *);
1371
1372 static char *read_str_index (const struct die_reader_specs *reader,
1373 struct dwarf2_cu *cu, ULONGEST str_index);
1374
1375 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1376
1377 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1378 struct dwarf2_cu *);
1379
1380 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1381 unsigned int);
1382
1383 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1384 struct dwarf2_cu *cu);
1385
1386 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1387
1388 static struct die_info *die_specification (struct die_info *die,
1389 struct dwarf2_cu **);
1390
1391 static void free_line_header (struct line_header *lh);
1392
1393 static void add_file_name (struct line_header *, char *, unsigned int,
1394 unsigned int, unsigned int);
1395
1396 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1397 struct dwarf2_cu *cu);
1398
1399 static void dwarf_decode_lines (struct line_header *, const char *,
1400 struct dwarf2_cu *, struct partial_symtab *,
1401 int);
1402
1403 static void dwarf2_start_subfile (char *, const char *, const char *);
1404
1405 static void dwarf2_start_symtab (struct dwarf2_cu *,
1406 char *, char *, CORE_ADDR);
1407
1408 static struct symbol *new_symbol (struct die_info *, struct type *,
1409 struct dwarf2_cu *);
1410
1411 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1412 struct dwarf2_cu *, struct symbol *);
1413
1414 static void dwarf2_const_value (struct attribute *, struct symbol *,
1415 struct dwarf2_cu *);
1416
1417 static void dwarf2_const_value_attr (struct attribute *attr,
1418 struct type *type,
1419 const char *name,
1420 struct obstack *obstack,
1421 struct dwarf2_cu *cu, LONGEST *value,
1422 gdb_byte **bytes,
1423 struct dwarf2_locexpr_baton **baton);
1424
1425 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1426
1427 static int need_gnat_info (struct dwarf2_cu *);
1428
1429 static struct type *die_descriptive_type (struct die_info *,
1430 struct dwarf2_cu *);
1431
1432 static void set_descriptive_type (struct type *, struct die_info *,
1433 struct dwarf2_cu *);
1434
1435 static struct type *die_containing_type (struct die_info *,
1436 struct dwarf2_cu *);
1437
1438 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1439 struct dwarf2_cu *);
1440
1441 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1442
1443 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1444
1445 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1446
1447 static char *typename_concat (struct obstack *obs, const char *prefix,
1448 const char *suffix, int physname,
1449 struct dwarf2_cu *cu);
1450
1451 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1452
1453 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1454
1455 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1456
1457 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1458
1459 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1460
1461 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1462 struct dwarf2_cu *, struct partial_symtab *);
1463
1464 static int dwarf2_get_pc_bounds (struct die_info *,
1465 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1466 struct partial_symtab *);
1467
1468 static void get_scope_pc_bounds (struct die_info *,
1469 CORE_ADDR *, CORE_ADDR *,
1470 struct dwarf2_cu *);
1471
1472 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1473 CORE_ADDR, struct dwarf2_cu *);
1474
1475 static void dwarf2_add_field (struct field_info *, struct die_info *,
1476 struct dwarf2_cu *);
1477
1478 static void dwarf2_attach_fields_to_type (struct field_info *,
1479 struct type *, struct dwarf2_cu *);
1480
1481 static void dwarf2_add_member_fn (struct field_info *,
1482 struct die_info *, struct type *,
1483 struct dwarf2_cu *);
1484
1485 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1486 struct type *,
1487 struct dwarf2_cu *);
1488
1489 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1490
1491 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1492
1493 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1494
1495 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1496
1497 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1498
1499 static struct type *read_module_type (struct die_info *die,
1500 struct dwarf2_cu *cu);
1501
1502 static const char *namespace_name (struct die_info *die,
1503 int *is_anonymous, struct dwarf2_cu *);
1504
1505 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1506
1507 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1508
1509 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1510 struct dwarf2_cu *);
1511
1512 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1513 gdb_byte *info_ptr,
1514 gdb_byte **new_info_ptr,
1515 struct die_info *parent);
1516
1517 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1518 gdb_byte *info_ptr,
1519 gdb_byte **new_info_ptr,
1520 struct die_info *parent);
1521
1522 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1523 struct die_info **, gdb_byte *, int *, int);
1524
1525 static gdb_byte *read_full_die (const struct die_reader_specs *,
1526 struct die_info **, gdb_byte *, int *);
1527
1528 static void process_die (struct die_info *, struct dwarf2_cu *);
1529
1530 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1531 struct obstack *);
1532
1533 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1534
1535 static const char *dwarf2_full_name (char *name,
1536 struct die_info *die,
1537 struct dwarf2_cu *cu);
1538
1539 static struct die_info *dwarf2_extension (struct die_info *die,
1540 struct dwarf2_cu **);
1541
1542 static const char *dwarf_tag_name (unsigned int);
1543
1544 static const char *dwarf_attr_name (unsigned int);
1545
1546 static const char *dwarf_form_name (unsigned int);
1547
1548 static char *dwarf_bool_name (unsigned int);
1549
1550 static const char *dwarf_type_encoding_name (unsigned int);
1551
1552 static struct die_info *sibling_die (struct die_info *);
1553
1554 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1555
1556 static void dump_die_for_error (struct die_info *);
1557
1558 static void dump_die_1 (struct ui_file *, int level, int max_level,
1559 struct die_info *);
1560
1561 /*static*/ void dump_die (struct die_info *, int max_level);
1562
1563 static void store_in_ref_table (struct die_info *,
1564 struct dwarf2_cu *);
1565
1566 static int is_ref_attr (struct attribute *);
1567
1568 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1569
1570 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1571
1572 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1573 struct attribute *,
1574 struct dwarf2_cu **);
1575
1576 static struct die_info *follow_die_ref (struct die_info *,
1577 struct attribute *,
1578 struct dwarf2_cu **);
1579
1580 static struct die_info *follow_die_sig (struct die_info *,
1581 struct attribute *,
1582 struct dwarf2_cu **);
1583
1584 static struct signatured_type *lookup_signatured_type_at_offset
1585 (struct objfile *objfile,
1586 struct dwarf2_section_info *section, sect_offset offset);
1587
1588 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1589
1590 static void read_signatured_type (struct signatured_type *);
1591
1592 static struct type_unit_group *get_type_unit_group
1593 (struct dwarf2_cu *, struct attribute *);
1594
1595 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1596
1597 /* memory allocation interface */
1598
1599 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1600
1601 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1602
1603 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1604 char *, int);
1605
1606 static int attr_form_is_block (struct attribute *);
1607
1608 static int attr_form_is_section_offset (struct attribute *);
1609
1610 static int attr_form_is_constant (struct attribute *);
1611
1612 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1613 struct dwarf2_loclist_baton *baton,
1614 struct attribute *attr);
1615
1616 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1617 struct symbol *sym,
1618 struct dwarf2_cu *cu);
1619
1620 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1621 gdb_byte *info_ptr,
1622 struct abbrev_info *abbrev);
1623
1624 static void free_stack_comp_unit (void *);
1625
1626 static hashval_t partial_die_hash (const void *item);
1627
1628 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1629
1630 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1631 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1632
1633 static void init_one_comp_unit (struct dwarf2_cu *cu,
1634 struct dwarf2_per_cu_data *per_cu);
1635
1636 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1637 struct die_info *comp_unit_die,
1638 enum language pretend_language);
1639
1640 static void free_heap_comp_unit (void *);
1641
1642 static void free_cached_comp_units (void *);
1643
1644 static void age_cached_comp_units (void);
1645
1646 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1647
1648 static struct type *set_die_type (struct die_info *, struct type *,
1649 struct dwarf2_cu *);
1650
1651 static void create_all_comp_units (struct objfile *);
1652
1653 static int create_all_type_units (struct objfile *);
1654
1655 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1656 enum language);
1657
1658 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1659 enum language);
1660
1661 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1662 enum language);
1663
1664 static void dwarf2_add_dependence (struct dwarf2_cu *,
1665 struct dwarf2_per_cu_data *);
1666
1667 static void dwarf2_mark (struct dwarf2_cu *);
1668
1669 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1670
1671 static struct type *get_die_type_at_offset (sect_offset,
1672 struct dwarf2_per_cu_data *per_cu);
1673
1674 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1675
1676 static void dwarf2_release_queue (void *dummy);
1677
1678 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1679 enum language pretend_language);
1680
1681 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1682 struct dwarf2_per_cu_data *per_cu,
1683 enum language pretend_language);
1684
1685 static void process_queue (void);
1686
1687 static void find_file_and_directory (struct die_info *die,
1688 struct dwarf2_cu *cu,
1689 char **name, char **comp_dir);
1690
1691 static char *file_full_name (int file, struct line_header *lh,
1692 const char *comp_dir);
1693
1694 static gdb_byte *read_and_check_comp_unit_head
1695 (struct comp_unit_head *header,
1696 struct dwarf2_section_info *section,
1697 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1698 int is_debug_types_section);
1699
1700 static void init_cutu_and_read_dies
1701 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1702 int use_existing_cu, int keep,
1703 die_reader_func_ftype *die_reader_func, void *data);
1704
1705 static void init_cutu_and_read_dies_simple
1706 (struct dwarf2_per_cu_data *this_cu,
1707 die_reader_func_ftype *die_reader_func, void *data);
1708
1709 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1710
1711 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1712
1713 static struct dwo_unit *lookup_dwo_comp_unit
1714 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1715
1716 static struct dwo_unit *lookup_dwo_type_unit
1717 (struct signatured_type *, const char *, const char *);
1718
1719 static void free_dwo_file_cleanup (void *);
1720
1721 static void process_cu_includes (void);
1722
1723 static void check_producer (struct dwarf2_cu *cu);
1724
1725 #if WORDS_BIGENDIAN
1726
1727 /* Convert VALUE between big- and little-endian. */
1728 static offset_type
1729 byte_swap (offset_type value)
1730 {
1731 offset_type result;
1732
1733 result = (value & 0xff) << 24;
1734 result |= (value & 0xff00) << 8;
1735 result |= (value & 0xff0000) >> 8;
1736 result |= (value & 0xff000000) >> 24;
1737 return result;
1738 }
1739
1740 #define MAYBE_SWAP(V) byte_swap (V)
1741
1742 #else
1743 #define MAYBE_SWAP(V) (V)
1744 #endif /* WORDS_BIGENDIAN */
1745
1746 /* The suffix for an index file. */
1747 #define INDEX_SUFFIX ".gdb-index"
1748
1749 static const char *dwarf2_physname (char *name, struct die_info *die,
1750 struct dwarf2_cu *cu);
1751
1752 /* Try to locate the sections we need for DWARF 2 debugging
1753 information and return true if we have enough to do something.
1754 NAMES points to the dwarf2 section names, or is NULL if the standard
1755 ELF names are used. */
1756
1757 int
1758 dwarf2_has_info (struct objfile *objfile,
1759 const struct dwarf2_debug_sections *names)
1760 {
1761 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1762 if (!dwarf2_per_objfile)
1763 {
1764 /* Initialize per-objfile state. */
1765 struct dwarf2_per_objfile *data
1766 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1767
1768 memset (data, 0, sizeof (*data));
1769 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1770 dwarf2_per_objfile = data;
1771
1772 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1773 (void *) names);
1774 dwarf2_per_objfile->objfile = objfile;
1775 }
1776 return (dwarf2_per_objfile->info.asection != NULL
1777 && dwarf2_per_objfile->abbrev.asection != NULL);
1778 }
1779
1780 /* When loading sections, we look either for uncompressed section or for
1781 compressed section names. */
1782
1783 static int
1784 section_is_p (const char *section_name,
1785 const struct dwarf2_section_names *names)
1786 {
1787 if (names->normal != NULL
1788 && strcmp (section_name, names->normal) == 0)
1789 return 1;
1790 if (names->compressed != NULL
1791 && strcmp (section_name, names->compressed) == 0)
1792 return 1;
1793 return 0;
1794 }
1795
1796 /* This function is mapped across the sections and remembers the
1797 offset and size of each of the debugging sections we are interested
1798 in. */
1799
1800 static void
1801 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1802 {
1803 const struct dwarf2_debug_sections *names;
1804 flagword aflag = bfd_get_section_flags (abfd, sectp);
1805
1806 if (vnames == NULL)
1807 names = &dwarf2_elf_names;
1808 else
1809 names = (const struct dwarf2_debug_sections *) vnames;
1810
1811 if ((aflag & SEC_HAS_CONTENTS) == 0)
1812 {
1813 }
1814 else if (section_is_p (sectp->name, &names->info))
1815 {
1816 dwarf2_per_objfile->info.asection = sectp;
1817 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1818 }
1819 else if (section_is_p (sectp->name, &names->abbrev))
1820 {
1821 dwarf2_per_objfile->abbrev.asection = sectp;
1822 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1823 }
1824 else if (section_is_p (sectp->name, &names->line))
1825 {
1826 dwarf2_per_objfile->line.asection = sectp;
1827 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1828 }
1829 else if (section_is_p (sectp->name, &names->loc))
1830 {
1831 dwarf2_per_objfile->loc.asection = sectp;
1832 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1833 }
1834 else if (section_is_p (sectp->name, &names->macinfo))
1835 {
1836 dwarf2_per_objfile->macinfo.asection = sectp;
1837 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1838 }
1839 else if (section_is_p (sectp->name, &names->macro))
1840 {
1841 dwarf2_per_objfile->macro.asection = sectp;
1842 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1843 }
1844 else if (section_is_p (sectp->name, &names->str))
1845 {
1846 dwarf2_per_objfile->str.asection = sectp;
1847 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1848 }
1849 else if (section_is_p (sectp->name, &names->addr))
1850 {
1851 dwarf2_per_objfile->addr.asection = sectp;
1852 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1853 }
1854 else if (section_is_p (sectp->name, &names->frame))
1855 {
1856 dwarf2_per_objfile->frame.asection = sectp;
1857 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1858 }
1859 else if (section_is_p (sectp->name, &names->eh_frame))
1860 {
1861 dwarf2_per_objfile->eh_frame.asection = sectp;
1862 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1863 }
1864 else if (section_is_p (sectp->name, &names->ranges))
1865 {
1866 dwarf2_per_objfile->ranges.asection = sectp;
1867 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1868 }
1869 else if (section_is_p (sectp->name, &names->types))
1870 {
1871 struct dwarf2_section_info type_section;
1872
1873 memset (&type_section, 0, sizeof (type_section));
1874 type_section.asection = sectp;
1875 type_section.size = bfd_get_section_size (sectp);
1876
1877 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1878 &type_section);
1879 }
1880 else if (section_is_p (sectp->name, &names->gdb_index))
1881 {
1882 dwarf2_per_objfile->gdb_index.asection = sectp;
1883 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1884 }
1885
1886 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1887 && bfd_section_vma (abfd, sectp) == 0)
1888 dwarf2_per_objfile->has_section_at_zero = 1;
1889 }
1890
1891 /* A helper function that decides whether a section is empty,
1892 or not present. */
1893
1894 static int
1895 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1896 {
1897 return info->asection == NULL || info->size == 0;
1898 }
1899
1900 /* Read the contents of the section INFO.
1901 OBJFILE is the main object file, but not necessarily the file where
1902 the section comes from. E.g., for DWO files INFO->asection->owner
1903 is the bfd of the DWO file.
1904 If the section is compressed, uncompress it before returning. */
1905
1906 static void
1907 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1908 {
1909 asection *sectp = info->asection;
1910 bfd *abfd;
1911 gdb_byte *buf, *retbuf;
1912 unsigned char header[4];
1913
1914 if (info->readin)
1915 return;
1916 info->buffer = NULL;
1917 info->readin = 1;
1918
1919 if (dwarf2_section_empty_p (info))
1920 return;
1921
1922 abfd = sectp->owner;
1923
1924 /* If the section has relocations, we must read it ourselves.
1925 Otherwise we attach it to the BFD. */
1926 if ((sectp->flags & SEC_RELOC) == 0)
1927 {
1928 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1929
1930 /* We have to cast away const here for historical reasons.
1931 Fixing dwarf2read to be const-correct would be quite nice. */
1932 info->buffer = (gdb_byte *) bytes;
1933 return;
1934 }
1935
1936 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1937 info->buffer = buf;
1938
1939 /* When debugging .o files, we may need to apply relocations; see
1940 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1941 We never compress sections in .o files, so we only need to
1942 try this when the section is not compressed. */
1943 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1944 if (retbuf != NULL)
1945 {
1946 info->buffer = retbuf;
1947 return;
1948 }
1949
1950 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1951 || bfd_bread (buf, info->size, abfd) != info->size)
1952 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1953 bfd_get_filename (abfd));
1954 }
1955
1956 /* A helper function that returns the size of a section in a safe way.
1957 If you are positive that the section has been read before using the
1958 size, then it is safe to refer to the dwarf2_section_info object's
1959 "size" field directly. In other cases, you must call this
1960 function, because for compressed sections the size field is not set
1961 correctly until the section has been read. */
1962
1963 static bfd_size_type
1964 dwarf2_section_size (struct objfile *objfile,
1965 struct dwarf2_section_info *info)
1966 {
1967 if (!info->readin)
1968 dwarf2_read_section (objfile, info);
1969 return info->size;
1970 }
1971
1972 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1973 SECTION_NAME. */
1974
1975 void
1976 dwarf2_get_section_info (struct objfile *objfile,
1977 enum dwarf2_section_enum sect,
1978 asection **sectp, gdb_byte **bufp,
1979 bfd_size_type *sizep)
1980 {
1981 struct dwarf2_per_objfile *data
1982 = objfile_data (objfile, dwarf2_objfile_data_key);
1983 struct dwarf2_section_info *info;
1984
1985 /* We may see an objfile without any DWARF, in which case we just
1986 return nothing. */
1987 if (data == NULL)
1988 {
1989 *sectp = NULL;
1990 *bufp = NULL;
1991 *sizep = 0;
1992 return;
1993 }
1994 switch (sect)
1995 {
1996 case DWARF2_DEBUG_FRAME:
1997 info = &data->frame;
1998 break;
1999 case DWARF2_EH_FRAME:
2000 info = &data->eh_frame;
2001 break;
2002 default:
2003 gdb_assert_not_reached ("unexpected section");
2004 }
2005
2006 dwarf2_read_section (objfile, info);
2007
2008 *sectp = info->asection;
2009 *bufp = info->buffer;
2010 *sizep = info->size;
2011 }
2012
2013 /* A helper function to find the sections for a .dwz file. */
2014
2015 static void
2016 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2017 {
2018 struct dwz_file *dwz_file = arg;
2019
2020 /* Note that we only support the standard ELF names, because .dwz
2021 is ELF-only (at the time of writing). */
2022 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2023 {
2024 dwz_file->abbrev.asection = sectp;
2025 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2026 }
2027 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2028 {
2029 dwz_file->info.asection = sectp;
2030 dwz_file->info.size = bfd_get_section_size (sectp);
2031 }
2032 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2033 {
2034 dwz_file->str.asection = sectp;
2035 dwz_file->str.size = bfd_get_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2038 {
2039 dwz_file->line.asection = sectp;
2040 dwz_file->line.size = bfd_get_section_size (sectp);
2041 }
2042 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2043 {
2044 dwz_file->macro.asection = sectp;
2045 dwz_file->macro.size = bfd_get_section_size (sectp);
2046 }
2047 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2048 {
2049 dwz_file->gdb_index.asection = sectp;
2050 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2051 }
2052 }
2053
2054 /* Open the separate '.dwz' debug file, if needed. Error if the file
2055 cannot be found. */
2056
2057 static struct dwz_file *
2058 dwarf2_get_dwz_file (void)
2059 {
2060 bfd *abfd, *dwz_bfd;
2061 asection *section;
2062 gdb_byte *data;
2063 struct cleanup *cleanup;
2064 const char *filename;
2065 struct dwz_file *result;
2066
2067 if (dwarf2_per_objfile->dwz_file != NULL)
2068 return dwarf2_per_objfile->dwz_file;
2069
2070 abfd = dwarf2_per_objfile->objfile->obfd;
2071 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2072 if (section == NULL)
2073 error (_("could not find '.gnu_debugaltlink' section"));
2074 if (!bfd_malloc_and_get_section (abfd, section, &data))
2075 error (_("could not read '.gnu_debugaltlink' section: %s"),
2076 bfd_errmsg (bfd_get_error ()));
2077 cleanup = make_cleanup (xfree, data);
2078
2079 filename = data;
2080 if (!IS_ABSOLUTE_PATH (filename))
2081 {
2082 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2083 char *rel;
2084
2085 make_cleanup (xfree, abs);
2086 abs = ldirname (abs);
2087 make_cleanup (xfree, abs);
2088
2089 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2090 make_cleanup (xfree, rel);
2091 filename = rel;
2092 }
2093
2094 /* The format is just a NUL-terminated file name, followed by the
2095 build-id. For now, though, we ignore the build-id. */
2096 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2097 if (dwz_bfd == NULL)
2098 error (_("could not read '%s': %s"), filename,
2099 bfd_errmsg (bfd_get_error ()));
2100
2101 if (!bfd_check_format (dwz_bfd, bfd_object))
2102 {
2103 gdb_bfd_unref (dwz_bfd);
2104 error (_("file '%s' was not usable: %s"), filename,
2105 bfd_errmsg (bfd_get_error ()));
2106 }
2107
2108 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2109 struct dwz_file);
2110 result->dwz_bfd = dwz_bfd;
2111
2112 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2113
2114 do_cleanups (cleanup);
2115
2116 dwarf2_per_objfile->dwz_file = result;
2117 return result;
2118 }
2119 \f
2120 /* DWARF quick_symbols_functions support. */
2121
2122 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2123 unique line tables, so we maintain a separate table of all .debug_line
2124 derived entries to support the sharing.
2125 All the quick functions need is the list of file names. We discard the
2126 line_header when we're done and don't need to record it here. */
2127 struct quick_file_names
2128 {
2129 /* The data used to construct the hash key. */
2130 struct stmt_list_hash hash;
2131
2132 /* The number of entries in file_names, real_names. */
2133 unsigned int num_file_names;
2134
2135 /* The file names from the line table, after being run through
2136 file_full_name. */
2137 const char **file_names;
2138
2139 /* The file names from the line table after being run through
2140 gdb_realpath. These are computed lazily. */
2141 const char **real_names;
2142 };
2143
2144 /* When using the index (and thus not using psymtabs), each CU has an
2145 object of this type. This is used to hold information needed by
2146 the various "quick" methods. */
2147 struct dwarf2_per_cu_quick_data
2148 {
2149 /* The file table. This can be NULL if there was no file table
2150 or it's currently not read in.
2151 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2152 struct quick_file_names *file_names;
2153
2154 /* The corresponding symbol table. This is NULL if symbols for this
2155 CU have not yet been read. */
2156 struct symtab *symtab;
2157
2158 /* A temporary mark bit used when iterating over all CUs in
2159 expand_symtabs_matching. */
2160 unsigned int mark : 1;
2161
2162 /* True if we've tried to read the file table and found there isn't one.
2163 There will be no point in trying to read it again next time. */
2164 unsigned int no_file_data : 1;
2165 };
2166
2167 /* Utility hash function for a stmt_list_hash. */
2168
2169 static hashval_t
2170 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2171 {
2172 hashval_t v = 0;
2173
2174 if (stmt_list_hash->dwo_unit != NULL)
2175 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2176 v += stmt_list_hash->line_offset.sect_off;
2177 return v;
2178 }
2179
2180 /* Utility equality function for a stmt_list_hash. */
2181
2182 static int
2183 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2184 const struct stmt_list_hash *rhs)
2185 {
2186 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2187 return 0;
2188 if (lhs->dwo_unit != NULL
2189 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2190 return 0;
2191
2192 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2193 }
2194
2195 /* Hash function for a quick_file_names. */
2196
2197 static hashval_t
2198 hash_file_name_entry (const void *e)
2199 {
2200 const struct quick_file_names *file_data = e;
2201
2202 return hash_stmt_list_entry (&file_data->hash);
2203 }
2204
2205 /* Equality function for a quick_file_names. */
2206
2207 static int
2208 eq_file_name_entry (const void *a, const void *b)
2209 {
2210 const struct quick_file_names *ea = a;
2211 const struct quick_file_names *eb = b;
2212
2213 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2214 }
2215
2216 /* Delete function for a quick_file_names. */
2217
2218 static void
2219 delete_file_name_entry (void *e)
2220 {
2221 struct quick_file_names *file_data = e;
2222 int i;
2223
2224 for (i = 0; i < file_data->num_file_names; ++i)
2225 {
2226 xfree ((void*) file_data->file_names[i]);
2227 if (file_data->real_names)
2228 xfree ((void*) file_data->real_names[i]);
2229 }
2230
2231 /* The space for the struct itself lives on objfile_obstack,
2232 so we don't free it here. */
2233 }
2234
2235 /* Create a quick_file_names hash table. */
2236
2237 static htab_t
2238 create_quick_file_names_table (unsigned int nr_initial_entries)
2239 {
2240 return htab_create_alloc (nr_initial_entries,
2241 hash_file_name_entry, eq_file_name_entry,
2242 delete_file_name_entry, xcalloc, xfree);
2243 }
2244
2245 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2246 have to be created afterwards. You should call age_cached_comp_units after
2247 processing PER_CU->CU. dw2_setup must have been already called. */
2248
2249 static void
2250 load_cu (struct dwarf2_per_cu_data *per_cu)
2251 {
2252 if (per_cu->is_debug_types)
2253 load_full_type_unit (per_cu);
2254 else
2255 load_full_comp_unit (per_cu, language_minimal);
2256
2257 gdb_assert (per_cu->cu != NULL);
2258
2259 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2260 }
2261
2262 /* Read in the symbols for PER_CU. */
2263
2264 static void
2265 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2266 {
2267 struct cleanup *back_to;
2268
2269 /* Skip type_unit_groups, reading the type units they contain
2270 is handled elsewhere. */
2271 if (IS_TYPE_UNIT_GROUP (per_cu))
2272 return;
2273
2274 back_to = make_cleanup (dwarf2_release_queue, NULL);
2275
2276 if (dwarf2_per_objfile->using_index
2277 ? per_cu->v.quick->symtab == NULL
2278 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2279 {
2280 queue_comp_unit (per_cu, language_minimal);
2281 load_cu (per_cu);
2282 }
2283
2284 process_queue ();
2285
2286 /* Age the cache, releasing compilation units that have not
2287 been used recently. */
2288 age_cached_comp_units ();
2289
2290 do_cleanups (back_to);
2291 }
2292
2293 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2294 the objfile from which this CU came. Returns the resulting symbol
2295 table. */
2296
2297 static struct symtab *
2298 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 gdb_assert (dwarf2_per_objfile->using_index);
2301 if (!per_cu->v.quick->symtab)
2302 {
2303 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2304 increment_reading_symtab ();
2305 dw2_do_instantiate_symtab (per_cu);
2306 process_cu_includes ();
2307 do_cleanups (back_to);
2308 }
2309 return per_cu->v.quick->symtab;
2310 }
2311
2312 /* Return the CU given its index.
2313
2314 This is intended for loops like:
2315
2316 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2317 + dwarf2_per_objfile->n_type_units); ++i)
2318 {
2319 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2320
2321 ...;
2322 }
2323 */
2324
2325 static struct dwarf2_per_cu_data *
2326 dw2_get_cu (int index)
2327 {
2328 if (index >= dwarf2_per_objfile->n_comp_units)
2329 {
2330 index -= dwarf2_per_objfile->n_comp_units;
2331 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2332 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2333 }
2334
2335 return dwarf2_per_objfile->all_comp_units[index];
2336 }
2337
2338 /* Return the primary CU given its index.
2339 The difference between this function and dw2_get_cu is in the handling
2340 of type units (TUs). Here we return the type_unit_group object.
2341
2342 This is intended for loops like:
2343
2344 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2345 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2346 {
2347 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2348
2349 ...;
2350 }
2351 */
2352
2353 static struct dwarf2_per_cu_data *
2354 dw2_get_primary_cu (int index)
2355 {
2356 if (index >= dwarf2_per_objfile->n_comp_units)
2357 {
2358 index -= dwarf2_per_objfile->n_comp_units;
2359 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2360 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2361 }
2362
2363 return dwarf2_per_objfile->all_comp_units[index];
2364 }
2365
2366 /* A helper for create_cus_from_index that handles a given list of
2367 CUs. */
2368
2369 static void
2370 create_cus_from_index_list (struct objfile *objfile,
2371 const gdb_byte *cu_list, offset_type n_elements,
2372 struct dwarf2_section_info *section,
2373 int is_dwz,
2374 int base_offset)
2375 {
2376 offset_type i;
2377
2378 for (i = 0; i < n_elements; i += 2)
2379 {
2380 struct dwarf2_per_cu_data *the_cu;
2381 ULONGEST offset, length;
2382
2383 gdb_static_assert (sizeof (ULONGEST) >= 8);
2384 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2385 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2386 cu_list += 2 * 8;
2387
2388 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2389 struct dwarf2_per_cu_data);
2390 the_cu->offset.sect_off = offset;
2391 the_cu->length = length;
2392 the_cu->objfile = objfile;
2393 the_cu->info_or_types_section = section;
2394 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2395 struct dwarf2_per_cu_quick_data);
2396 the_cu->is_dwz = is_dwz;
2397 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2398 }
2399 }
2400
2401 /* Read the CU list from the mapped index, and use it to create all
2402 the CU objects for this objfile. */
2403
2404 static void
2405 create_cus_from_index (struct objfile *objfile,
2406 const gdb_byte *cu_list, offset_type cu_list_elements,
2407 const gdb_byte *dwz_list, offset_type dwz_elements)
2408 {
2409 struct dwz_file *dwz;
2410
2411 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2412 dwarf2_per_objfile->all_comp_units
2413 = obstack_alloc (&objfile->objfile_obstack,
2414 dwarf2_per_objfile->n_comp_units
2415 * sizeof (struct dwarf2_per_cu_data *));
2416
2417 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2418 &dwarf2_per_objfile->info, 0, 0);
2419
2420 if (dwz_elements == 0)
2421 return;
2422
2423 dwz = dwarf2_get_dwz_file ();
2424 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2425 cu_list_elements / 2);
2426 }
2427
2428 /* Create the signatured type hash table from the index. */
2429
2430 static void
2431 create_signatured_type_table_from_index (struct objfile *objfile,
2432 struct dwarf2_section_info *section,
2433 const gdb_byte *bytes,
2434 offset_type elements)
2435 {
2436 offset_type i;
2437 htab_t sig_types_hash;
2438
2439 dwarf2_per_objfile->n_type_units = elements / 3;
2440 dwarf2_per_objfile->all_type_units
2441 = obstack_alloc (&objfile->objfile_obstack,
2442 dwarf2_per_objfile->n_type_units
2443 * sizeof (struct signatured_type *));
2444
2445 sig_types_hash = allocate_signatured_type_table (objfile);
2446
2447 for (i = 0; i < elements; i += 3)
2448 {
2449 struct signatured_type *sig_type;
2450 ULONGEST offset, type_offset_in_tu, signature;
2451 void **slot;
2452
2453 gdb_static_assert (sizeof (ULONGEST) >= 8);
2454 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2455 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2456 BFD_ENDIAN_LITTLE);
2457 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2458 bytes += 3 * 8;
2459
2460 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2461 struct signatured_type);
2462 sig_type->signature = signature;
2463 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2464 sig_type->per_cu.is_debug_types = 1;
2465 sig_type->per_cu.info_or_types_section = section;
2466 sig_type->per_cu.offset.sect_off = offset;
2467 sig_type->per_cu.objfile = objfile;
2468 sig_type->per_cu.v.quick
2469 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2470 struct dwarf2_per_cu_quick_data);
2471
2472 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2473 *slot = sig_type;
2474
2475 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2476 }
2477
2478 dwarf2_per_objfile->signatured_types = sig_types_hash;
2479 }
2480
2481 /* Read the address map data from the mapped index, and use it to
2482 populate the objfile's psymtabs_addrmap. */
2483
2484 static void
2485 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2486 {
2487 const gdb_byte *iter, *end;
2488 struct obstack temp_obstack;
2489 struct addrmap *mutable_map;
2490 struct cleanup *cleanup;
2491 CORE_ADDR baseaddr;
2492
2493 obstack_init (&temp_obstack);
2494 cleanup = make_cleanup_obstack_free (&temp_obstack);
2495 mutable_map = addrmap_create_mutable (&temp_obstack);
2496
2497 iter = index->address_table;
2498 end = iter + index->address_table_size;
2499
2500 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2501
2502 while (iter < end)
2503 {
2504 ULONGEST hi, lo, cu_index;
2505 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2506 iter += 8;
2507 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2508 iter += 8;
2509 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2510 iter += 4;
2511
2512 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2513 dw2_get_cu (cu_index));
2514 }
2515
2516 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2517 &objfile->objfile_obstack);
2518 do_cleanups (cleanup);
2519 }
2520
2521 /* The hash function for strings in the mapped index. This is the same as
2522 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2523 implementation. This is necessary because the hash function is tied to the
2524 format of the mapped index file. The hash values do not have to match with
2525 SYMBOL_HASH_NEXT.
2526
2527 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2528
2529 static hashval_t
2530 mapped_index_string_hash (int index_version, const void *p)
2531 {
2532 const unsigned char *str = (const unsigned char *) p;
2533 hashval_t r = 0;
2534 unsigned char c;
2535
2536 while ((c = *str++) != 0)
2537 {
2538 if (index_version >= 5)
2539 c = tolower (c);
2540 r = r * 67 + c - 113;
2541 }
2542
2543 return r;
2544 }
2545
2546 /* Find a slot in the mapped index INDEX for the object named NAME.
2547 If NAME is found, set *VEC_OUT to point to the CU vector in the
2548 constant pool and return 1. If NAME cannot be found, return 0. */
2549
2550 static int
2551 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2552 offset_type **vec_out)
2553 {
2554 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2555 offset_type hash;
2556 offset_type slot, step;
2557 int (*cmp) (const char *, const char *);
2558
2559 if (current_language->la_language == language_cplus
2560 || current_language->la_language == language_java
2561 || current_language->la_language == language_fortran)
2562 {
2563 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2564 not contain any. */
2565 const char *paren = strchr (name, '(');
2566
2567 if (paren)
2568 {
2569 char *dup;
2570
2571 dup = xmalloc (paren - name + 1);
2572 memcpy (dup, name, paren - name);
2573 dup[paren - name] = 0;
2574
2575 make_cleanup (xfree, dup);
2576 name = dup;
2577 }
2578 }
2579
2580 /* Index version 4 did not support case insensitive searches. But the
2581 indices for case insensitive languages are built in lowercase, therefore
2582 simulate our NAME being searched is also lowercased. */
2583 hash = mapped_index_string_hash ((index->version == 4
2584 && case_sensitivity == case_sensitive_off
2585 ? 5 : index->version),
2586 name);
2587
2588 slot = hash & (index->symbol_table_slots - 1);
2589 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2590 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2591
2592 for (;;)
2593 {
2594 /* Convert a slot number to an offset into the table. */
2595 offset_type i = 2 * slot;
2596 const char *str;
2597 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2598 {
2599 do_cleanups (back_to);
2600 return 0;
2601 }
2602
2603 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2604 if (!cmp (name, str))
2605 {
2606 *vec_out = (offset_type *) (index->constant_pool
2607 + MAYBE_SWAP (index->symbol_table[i + 1]));
2608 do_cleanups (back_to);
2609 return 1;
2610 }
2611
2612 slot = (slot + step) & (index->symbol_table_slots - 1);
2613 }
2614 }
2615
2616 /* A helper function that reads the .gdb_index from SECTION and fills
2617 in MAP. FILENAME is the name of the file containing the section;
2618 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2619 ok to use deprecated sections.
2620
2621 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2622 out parameters that are filled in with information about the CU and
2623 TU lists in the section.
2624
2625 Returns 1 if all went well, 0 otherwise. */
2626
2627 static int
2628 read_index_from_section (struct objfile *objfile,
2629 const char *filename,
2630 int deprecated_ok,
2631 struct dwarf2_section_info *section,
2632 struct mapped_index *map,
2633 const gdb_byte **cu_list,
2634 offset_type *cu_list_elements,
2635 const gdb_byte **types_list,
2636 offset_type *types_list_elements)
2637 {
2638 char *addr;
2639 offset_type version;
2640 offset_type *metadata;
2641 int i;
2642
2643 if (dwarf2_section_empty_p (section))
2644 return 0;
2645
2646 /* Older elfutils strip versions could keep the section in the main
2647 executable while splitting it for the separate debug info file. */
2648 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2649 return 0;
2650
2651 dwarf2_read_section (objfile, section);
2652
2653 addr = section->buffer;
2654 /* Version check. */
2655 version = MAYBE_SWAP (*(offset_type *) addr);
2656 /* Versions earlier than 3 emitted every copy of a psymbol. This
2657 causes the index to behave very poorly for certain requests. Version 3
2658 contained incomplete addrmap. So, it seems better to just ignore such
2659 indices. */
2660 if (version < 4)
2661 {
2662 static int warning_printed = 0;
2663 if (!warning_printed)
2664 {
2665 warning (_("Skipping obsolete .gdb_index section in %s."),
2666 filename);
2667 warning_printed = 1;
2668 }
2669 return 0;
2670 }
2671 /* Index version 4 uses a different hash function than index version
2672 5 and later.
2673
2674 Versions earlier than 6 did not emit psymbols for inlined
2675 functions. Using these files will cause GDB not to be able to
2676 set breakpoints on inlined functions by name, so we ignore these
2677 indices unless the user has done
2678 "set use-deprecated-index-sections on". */
2679 if (version < 6 && !deprecated_ok)
2680 {
2681 static int warning_printed = 0;
2682 if (!warning_printed)
2683 {
2684 warning (_("\
2685 Skipping deprecated .gdb_index section in %s.\n\
2686 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2687 to use the section anyway."),
2688 filename);
2689 warning_printed = 1;
2690 }
2691 return 0;
2692 }
2693 /* Indexes with higher version than the one supported by GDB may be no
2694 longer backward compatible. */
2695 if (version > 7)
2696 return 0;
2697
2698 map->version = version;
2699 map->total_size = section->size;
2700
2701 metadata = (offset_type *) (addr + sizeof (offset_type));
2702
2703 i = 0;
2704 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2705 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2706 / 8);
2707 ++i;
2708
2709 *types_list = addr + MAYBE_SWAP (metadata[i]);
2710 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2711 - MAYBE_SWAP (metadata[i]))
2712 / 8);
2713 ++i;
2714
2715 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2716 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2717 - MAYBE_SWAP (metadata[i]));
2718 ++i;
2719
2720 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2721 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2722 - MAYBE_SWAP (metadata[i]))
2723 / (2 * sizeof (offset_type)));
2724 ++i;
2725
2726 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2727
2728 return 1;
2729 }
2730
2731
2732 /* Read the index file. If everything went ok, initialize the "quick"
2733 elements of all the CUs and return 1. Otherwise, return 0. */
2734
2735 static int
2736 dwarf2_read_index (struct objfile *objfile)
2737 {
2738 struct mapped_index local_map, *map;
2739 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2740 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2741
2742 if (!read_index_from_section (objfile, objfile->name,
2743 use_deprecated_index_sections,
2744 &dwarf2_per_objfile->gdb_index, &local_map,
2745 &cu_list, &cu_list_elements,
2746 &types_list, &types_list_elements))
2747 return 0;
2748
2749 /* Don't use the index if it's empty. */
2750 if (local_map.symbol_table_slots == 0)
2751 return 0;
2752
2753 /* If there is a .dwz file, read it so we can get its CU list as
2754 well. */
2755 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2756 {
2757 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2758 struct mapped_index dwz_map;
2759 const gdb_byte *dwz_types_ignore;
2760 offset_type dwz_types_elements_ignore;
2761
2762 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2763 1,
2764 &dwz->gdb_index, &dwz_map,
2765 &dwz_list, &dwz_list_elements,
2766 &dwz_types_ignore,
2767 &dwz_types_elements_ignore))
2768 {
2769 warning (_("could not read '.gdb_index' section from %s; skipping"),
2770 bfd_get_filename (dwz->dwz_bfd));
2771 return 0;
2772 }
2773 }
2774
2775 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2776 dwz_list_elements);
2777
2778 if (types_list_elements)
2779 {
2780 struct dwarf2_section_info *section;
2781
2782 /* We can only handle a single .debug_types when we have an
2783 index. */
2784 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2785 return 0;
2786
2787 section = VEC_index (dwarf2_section_info_def,
2788 dwarf2_per_objfile->types, 0);
2789
2790 create_signatured_type_table_from_index (objfile, section, types_list,
2791 types_list_elements);
2792 }
2793
2794 create_addrmap_from_index (objfile, &local_map);
2795
2796 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2797 *map = local_map;
2798
2799 dwarf2_per_objfile->index_table = map;
2800 dwarf2_per_objfile->using_index = 1;
2801 dwarf2_per_objfile->quick_file_names_table =
2802 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2803
2804 return 1;
2805 }
2806
2807 /* A helper for the "quick" functions which sets the global
2808 dwarf2_per_objfile according to OBJFILE. */
2809
2810 static void
2811 dw2_setup (struct objfile *objfile)
2812 {
2813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2814 gdb_assert (dwarf2_per_objfile);
2815 }
2816
2817 /* Reader function for dw2_build_type_unit_groups. */
2818
2819 static void
2820 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2821 gdb_byte *info_ptr,
2822 struct die_info *type_unit_die,
2823 int has_children,
2824 void *data)
2825 {
2826 struct dwarf2_cu *cu = reader->cu;
2827 struct attribute *attr;
2828 struct type_unit_group *tu_group;
2829
2830 gdb_assert (data == NULL);
2831
2832 if (! has_children)
2833 return;
2834
2835 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2836 /* Call this for its side-effect of creating the associated
2837 struct type_unit_group if it doesn't already exist. */
2838 tu_group = get_type_unit_group (cu, attr);
2839 }
2840
2841 /* Build dwarf2_per_objfile->type_unit_groups.
2842 This function may be called multiple times. */
2843
2844 static void
2845 dw2_build_type_unit_groups (void)
2846 {
2847 if (dwarf2_per_objfile->type_unit_groups == NULL)
2848 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2849 }
2850
2851 /* die_reader_func for dw2_get_file_names. */
2852
2853 static void
2854 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2855 gdb_byte *info_ptr,
2856 struct die_info *comp_unit_die,
2857 int has_children,
2858 void *data)
2859 {
2860 struct dwarf2_cu *cu = reader->cu;
2861 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2862 struct objfile *objfile = dwarf2_per_objfile->objfile;
2863 struct dwarf2_per_cu_data *lh_cu;
2864 struct line_header *lh;
2865 struct attribute *attr;
2866 int i;
2867 char *name, *comp_dir;
2868 void **slot;
2869 struct quick_file_names *qfn;
2870 unsigned int line_offset;
2871
2872 /* Our callers never want to match partial units -- instead they
2873 will match the enclosing full CU. */
2874 if (comp_unit_die->tag == DW_TAG_partial_unit)
2875 {
2876 this_cu->v.quick->no_file_data = 1;
2877 return;
2878 }
2879
2880 /* If we're reading the line header for TUs, store it in the "per_cu"
2881 for tu_group. */
2882 if (this_cu->is_debug_types)
2883 {
2884 struct type_unit_group *tu_group = data;
2885
2886 gdb_assert (tu_group != NULL);
2887 lh_cu = &tu_group->per_cu;
2888 }
2889 else
2890 lh_cu = this_cu;
2891
2892 lh = NULL;
2893 slot = NULL;
2894 line_offset = 0;
2895
2896 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2897 if (attr)
2898 {
2899 struct quick_file_names find_entry;
2900
2901 line_offset = DW_UNSND (attr);
2902
2903 /* We may have already read in this line header (TU line header sharing).
2904 If we have we're done. */
2905 find_entry.hash.dwo_unit = cu->dwo_unit;
2906 find_entry.hash.line_offset.sect_off = line_offset;
2907 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2908 &find_entry, INSERT);
2909 if (*slot != NULL)
2910 {
2911 lh_cu->v.quick->file_names = *slot;
2912 return;
2913 }
2914
2915 lh = dwarf_decode_line_header (line_offset, cu);
2916 }
2917 if (lh == NULL)
2918 {
2919 lh_cu->v.quick->no_file_data = 1;
2920 return;
2921 }
2922
2923 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2924 qfn->hash.dwo_unit = cu->dwo_unit;
2925 qfn->hash.line_offset.sect_off = line_offset;
2926 gdb_assert (slot != NULL);
2927 *slot = qfn;
2928
2929 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2930
2931 qfn->num_file_names = lh->num_file_names;
2932 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2933 lh->num_file_names * sizeof (char *));
2934 for (i = 0; i < lh->num_file_names; ++i)
2935 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2936 qfn->real_names = NULL;
2937
2938 free_line_header (lh);
2939
2940 lh_cu->v.quick->file_names = qfn;
2941 }
2942
2943 /* A helper for the "quick" functions which attempts to read the line
2944 table for THIS_CU. */
2945
2946 static struct quick_file_names *
2947 dw2_get_file_names (struct objfile *objfile,
2948 struct dwarf2_per_cu_data *this_cu)
2949 {
2950 /* For TUs this should only be called on the parent group. */
2951 if (this_cu->is_debug_types)
2952 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2953
2954 if (this_cu->v.quick->file_names != NULL)
2955 return this_cu->v.quick->file_names;
2956 /* If we know there is no line data, no point in looking again. */
2957 if (this_cu->v.quick->no_file_data)
2958 return NULL;
2959
2960 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2961 in the stub for CUs, there's is no need to lookup the DWO file.
2962 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2963 DWO file. */
2964 if (this_cu->is_debug_types)
2965 {
2966 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2967
2968 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2969 dw2_get_file_names_reader, tu_group);
2970 }
2971 else
2972 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2973
2974 if (this_cu->v.quick->no_file_data)
2975 return NULL;
2976 return this_cu->v.quick->file_names;
2977 }
2978
2979 /* A helper for the "quick" functions which computes and caches the
2980 real path for a given file name from the line table. */
2981
2982 static const char *
2983 dw2_get_real_path (struct objfile *objfile,
2984 struct quick_file_names *qfn, int index)
2985 {
2986 if (qfn->real_names == NULL)
2987 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2988 qfn->num_file_names, sizeof (char *));
2989
2990 if (qfn->real_names[index] == NULL)
2991 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2992
2993 return qfn->real_names[index];
2994 }
2995
2996 static struct symtab *
2997 dw2_find_last_source_symtab (struct objfile *objfile)
2998 {
2999 int index;
3000
3001 dw2_setup (objfile);
3002 index = dwarf2_per_objfile->n_comp_units - 1;
3003 return dw2_instantiate_symtab (dw2_get_cu (index));
3004 }
3005
3006 /* Traversal function for dw2_forget_cached_source_info. */
3007
3008 static int
3009 dw2_free_cached_file_names (void **slot, void *info)
3010 {
3011 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3012
3013 if (file_data->real_names)
3014 {
3015 int i;
3016
3017 for (i = 0; i < file_data->num_file_names; ++i)
3018 {
3019 xfree ((void*) file_data->real_names[i]);
3020 file_data->real_names[i] = NULL;
3021 }
3022 }
3023
3024 return 1;
3025 }
3026
3027 static void
3028 dw2_forget_cached_source_info (struct objfile *objfile)
3029 {
3030 dw2_setup (objfile);
3031
3032 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3033 dw2_free_cached_file_names, NULL);
3034 }
3035
3036 /* Helper function for dw2_map_symtabs_matching_filename that expands
3037 the symtabs and calls the iterator. */
3038
3039 static int
3040 dw2_map_expand_apply (struct objfile *objfile,
3041 struct dwarf2_per_cu_data *per_cu,
3042 const char *name,
3043 const char *full_path, const char *real_path,
3044 int (*callback) (struct symtab *, void *),
3045 void *data)
3046 {
3047 struct symtab *last_made = objfile->symtabs;
3048
3049 /* Don't visit already-expanded CUs. */
3050 if (per_cu->v.quick->symtab)
3051 return 0;
3052
3053 /* This may expand more than one symtab, and we want to iterate over
3054 all of them. */
3055 dw2_instantiate_symtab (per_cu);
3056
3057 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3058 objfile->symtabs, last_made);
3059 }
3060
3061 /* Implementation of the map_symtabs_matching_filename method. */
3062
3063 static int
3064 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3065 const char *full_path, const char *real_path,
3066 int (*callback) (struct symtab *, void *),
3067 void *data)
3068 {
3069 int i;
3070 const char *name_basename = lbasename (name);
3071 int is_abs = IS_ABSOLUTE_PATH (name);
3072
3073 dw2_setup (objfile);
3074
3075 dw2_build_type_unit_groups ();
3076
3077 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3078 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3079 {
3080 int j;
3081 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3082 struct quick_file_names *file_data;
3083
3084 /* We only need to look at symtabs not already expanded. */
3085 if (per_cu->v.quick->symtab)
3086 continue;
3087
3088 file_data = dw2_get_file_names (objfile, per_cu);
3089 if (file_data == NULL)
3090 continue;
3091
3092 for (j = 0; j < file_data->num_file_names; ++j)
3093 {
3094 const char *this_name = file_data->file_names[j];
3095
3096 if (FILENAME_CMP (name, this_name) == 0
3097 || (!is_abs && compare_filenames_for_search (this_name, name)))
3098 {
3099 if (dw2_map_expand_apply (objfile, per_cu,
3100 name, full_path, real_path,
3101 callback, data))
3102 return 1;
3103 }
3104
3105 /* Before we invoke realpath, which can get expensive when many
3106 files are involved, do a quick comparison of the basenames. */
3107 if (! basenames_may_differ
3108 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3109 continue;
3110
3111 if (full_path != NULL)
3112 {
3113 const char *this_real_name = dw2_get_real_path (objfile,
3114 file_data, j);
3115
3116 if (this_real_name != NULL
3117 && (FILENAME_CMP (full_path, this_real_name) == 0
3118 || (!is_abs
3119 && compare_filenames_for_search (this_real_name,
3120 name))))
3121 {
3122 if (dw2_map_expand_apply (objfile, per_cu,
3123 name, full_path, real_path,
3124 callback, data))
3125 return 1;
3126 }
3127 }
3128
3129 if (real_path != NULL)
3130 {
3131 const char *this_real_name = dw2_get_real_path (objfile,
3132 file_data, j);
3133
3134 if (this_real_name != NULL
3135 && (FILENAME_CMP (real_path, this_real_name) == 0
3136 || (!is_abs
3137 && compare_filenames_for_search (this_real_name,
3138 name))))
3139 {
3140 if (dw2_map_expand_apply (objfile, per_cu,
3141 name, full_path, real_path,
3142 callback, data))
3143 return 1;
3144 }
3145 }
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 static struct symtab *
3153 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3154 const char *name, domain_enum domain)
3155 {
3156 /* We do all the work in the pre_expand_symtabs_matching hook
3157 instead. */
3158 return NULL;
3159 }
3160
3161 /* A helper function that expands all symtabs that hold an object
3162 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3163 symbols in block BLOCK_KIND. */
3164
3165 static void
3166 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3167 int want_specific_block,
3168 enum block_enum block_kind,
3169 const char *name, domain_enum domain)
3170 {
3171 struct mapped_index *index;
3172
3173 dw2_setup (objfile);
3174
3175 index = dwarf2_per_objfile->index_table;
3176
3177 /* index_table is NULL if OBJF_READNOW. */
3178 if (index)
3179 {
3180 offset_type *vec;
3181
3182 if (find_slot_in_mapped_hash (index, name, &vec))
3183 {
3184 offset_type i, len = MAYBE_SWAP (*vec);
3185 for (i = 0; i < len; ++i)
3186 {
3187 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3188 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3189 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3190 int want_static = block_kind != GLOBAL_BLOCK;
3191 /* This value is only valid for index versions >= 7. */
3192 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3193 gdb_index_symbol_kind symbol_kind =
3194 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3195 /* Only check the symbol attributes if they're present.
3196 Indices prior to version 7 don't record them,
3197 and indices >= 7 may elide them for certain symbols
3198 (gold does this). */
3199 int attrs_valid =
3200 (index->version >= 7
3201 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3202
3203 if (attrs_valid
3204 && want_specific_block
3205 && want_static != is_static)
3206 continue;
3207
3208 /* Only check the symbol's kind if it has one. */
3209 if (attrs_valid)
3210 {
3211 switch (domain)
3212 {
3213 case VAR_DOMAIN:
3214 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3215 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3216 /* Some types are also in VAR_DOMAIN. */
3217 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3218 continue;
3219 break;
3220 case STRUCT_DOMAIN:
3221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3222 continue;
3223 break;
3224 case LABEL_DOMAIN:
3225 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3226 continue;
3227 break;
3228 default:
3229 break;
3230 }
3231 }
3232
3233 dw2_instantiate_symtab (per_cu);
3234 }
3235 }
3236 }
3237 }
3238
3239 static void
3240 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3241 enum block_enum block_kind, const char *name,
3242 domain_enum domain)
3243 {
3244 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3245 }
3246
3247 static void
3248 dw2_print_stats (struct objfile *objfile)
3249 {
3250 int i, count;
3251
3252 dw2_setup (objfile);
3253 count = 0;
3254 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3255 + dwarf2_per_objfile->n_type_units); ++i)
3256 {
3257 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3258
3259 if (!per_cu->v.quick->symtab)
3260 ++count;
3261 }
3262 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3263 }
3264
3265 static void
3266 dw2_dump (struct objfile *objfile)
3267 {
3268 /* Nothing worth printing. */
3269 }
3270
3271 static void
3272 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3273 struct section_offsets *delta)
3274 {
3275 /* There's nothing to relocate here. */
3276 }
3277
3278 static void
3279 dw2_expand_symtabs_for_function (struct objfile *objfile,
3280 const char *func_name)
3281 {
3282 /* Note: It doesn't matter what we pass for block_kind here. */
3283 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3284 VAR_DOMAIN);
3285 }
3286
3287 static void
3288 dw2_expand_all_symtabs (struct objfile *objfile)
3289 {
3290 int i;
3291
3292 dw2_setup (objfile);
3293
3294 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3295 + dwarf2_per_objfile->n_type_units); ++i)
3296 {
3297 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3298
3299 dw2_instantiate_symtab (per_cu);
3300 }
3301 }
3302
3303 static void
3304 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3305 const char *filename)
3306 {
3307 int i;
3308
3309 dw2_setup (objfile);
3310
3311 /* We don't need to consider type units here.
3312 This is only called for examining code, e.g. expand_line_sal.
3313 There can be an order of magnitude (or more) more type units
3314 than comp units, and we avoid them if we can. */
3315
3316 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3317 {
3318 int j;
3319 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3320 struct quick_file_names *file_data;
3321
3322 /* We only need to look at symtabs not already expanded. */
3323 if (per_cu->v.quick->symtab)
3324 continue;
3325
3326 file_data = dw2_get_file_names (objfile, per_cu);
3327 if (file_data == NULL)
3328 continue;
3329
3330 for (j = 0; j < file_data->num_file_names; ++j)
3331 {
3332 const char *this_name = file_data->file_names[j];
3333 if (FILENAME_CMP (this_name, filename) == 0)
3334 {
3335 dw2_instantiate_symtab (per_cu);
3336 break;
3337 }
3338 }
3339 }
3340 }
3341
3342 /* A helper function for dw2_find_symbol_file that finds the primary
3343 file name for a given CU. This is a die_reader_func. */
3344
3345 static void
3346 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3347 gdb_byte *info_ptr,
3348 struct die_info *comp_unit_die,
3349 int has_children,
3350 void *data)
3351 {
3352 const char **result_ptr = data;
3353 struct dwarf2_cu *cu = reader->cu;
3354 struct attribute *attr;
3355
3356 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3357 if (attr == NULL)
3358 *result_ptr = NULL;
3359 else
3360 *result_ptr = DW_STRING (attr);
3361 }
3362
3363 static const char *
3364 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3365 {
3366 struct dwarf2_per_cu_data *per_cu;
3367 offset_type *vec;
3368 const char *filename;
3369
3370 dw2_setup (objfile);
3371
3372 /* index_table is NULL if OBJF_READNOW. */
3373 if (!dwarf2_per_objfile->index_table)
3374 {
3375 struct symtab *s;
3376
3377 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3378 {
3379 struct blockvector *bv = BLOCKVECTOR (s);
3380 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3381 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3382
3383 if (sym)
3384 return SYMBOL_SYMTAB (sym)->filename;
3385 }
3386 return NULL;
3387 }
3388
3389 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3390 name, &vec))
3391 return NULL;
3392
3393 /* Note that this just looks at the very first one named NAME -- but
3394 actually we are looking for a function. find_main_filename
3395 should be rewritten so that it doesn't require a custom hook. It
3396 could just use the ordinary symbol tables. */
3397 /* vec[0] is the length, which must always be >0. */
3398 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3399
3400 if (per_cu->v.quick->symtab != NULL)
3401 return per_cu->v.quick->symtab->filename;
3402
3403 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3404 dw2_get_primary_filename_reader, &filename);
3405
3406 return filename;
3407 }
3408
3409 static void
3410 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3411 struct objfile *objfile, int global,
3412 int (*callback) (struct block *,
3413 struct symbol *, void *),
3414 void *data, symbol_compare_ftype *match,
3415 symbol_compare_ftype *ordered_compare)
3416 {
3417 /* Currently unimplemented; used for Ada. The function can be called if the
3418 current language is Ada for a non-Ada objfile using GNU index. As Ada
3419 does not look for non-Ada symbols this function should just return. */
3420 }
3421
3422 static void
3423 dw2_expand_symtabs_matching
3424 (struct objfile *objfile,
3425 int (*file_matcher) (const char *, void *),
3426 int (*name_matcher) (const char *, void *),
3427 enum search_domain kind,
3428 void *data)
3429 {
3430 int i;
3431 offset_type iter;
3432 struct mapped_index *index;
3433
3434 dw2_setup (objfile);
3435
3436 /* index_table is NULL if OBJF_READNOW. */
3437 if (!dwarf2_per_objfile->index_table)
3438 return;
3439 index = dwarf2_per_objfile->index_table;
3440
3441 if (file_matcher != NULL)
3442 {
3443 struct cleanup *cleanup;
3444 htab_t visited_found, visited_not_found;
3445
3446 dw2_build_type_unit_groups ();
3447
3448 visited_found = htab_create_alloc (10,
3449 htab_hash_pointer, htab_eq_pointer,
3450 NULL, xcalloc, xfree);
3451 cleanup = make_cleanup_htab_delete (visited_found);
3452 visited_not_found = htab_create_alloc (10,
3453 htab_hash_pointer, htab_eq_pointer,
3454 NULL, xcalloc, xfree);
3455 make_cleanup_htab_delete (visited_not_found);
3456
3457 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3458 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3459 {
3460 int j;
3461 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3462 struct quick_file_names *file_data;
3463 void **slot;
3464
3465 per_cu->v.quick->mark = 0;
3466
3467 /* We only need to look at symtabs not already expanded. */
3468 if (per_cu->v.quick->symtab)
3469 continue;
3470
3471 file_data = dw2_get_file_names (objfile, per_cu);
3472 if (file_data == NULL)
3473 continue;
3474
3475 if (htab_find (visited_not_found, file_data) != NULL)
3476 continue;
3477 else if (htab_find (visited_found, file_data) != NULL)
3478 {
3479 per_cu->v.quick->mark = 1;
3480 continue;
3481 }
3482
3483 for (j = 0; j < file_data->num_file_names; ++j)
3484 {
3485 if (file_matcher (file_data->file_names[j], data))
3486 {
3487 per_cu->v.quick->mark = 1;
3488 break;
3489 }
3490 }
3491
3492 slot = htab_find_slot (per_cu->v.quick->mark
3493 ? visited_found
3494 : visited_not_found,
3495 file_data, INSERT);
3496 *slot = file_data;
3497 }
3498
3499 do_cleanups (cleanup);
3500 }
3501
3502 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3503 {
3504 offset_type idx = 2 * iter;
3505 const char *name;
3506 offset_type *vec, vec_len, vec_idx;
3507
3508 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3509 continue;
3510
3511 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3512
3513 if (! (*name_matcher) (name, data))
3514 continue;
3515
3516 /* The name was matched, now expand corresponding CUs that were
3517 marked. */
3518 vec = (offset_type *) (index->constant_pool
3519 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3520 vec_len = MAYBE_SWAP (vec[0]);
3521 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3522 {
3523 struct dwarf2_per_cu_data *per_cu;
3524 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3525 gdb_index_symbol_kind symbol_kind =
3526 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3527 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3528
3529 /* Don't crash on bad data. */
3530 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3531 + dwarf2_per_objfile->n_type_units))
3532 continue;
3533
3534 /* Only check the symbol's kind if it has one.
3535 Indices prior to version 7 don't record it. */
3536 if (index->version >= 7)
3537 {
3538 switch (kind)
3539 {
3540 case VARIABLES_DOMAIN:
3541 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3542 continue;
3543 break;
3544 case FUNCTIONS_DOMAIN:
3545 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3546 continue;
3547 break;
3548 case TYPES_DOMAIN:
3549 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3550 continue;
3551 break;
3552 default:
3553 break;
3554 }
3555 }
3556
3557 per_cu = dw2_get_cu (cu_index);
3558 if (file_matcher == NULL || per_cu->v.quick->mark)
3559 dw2_instantiate_symtab (per_cu);
3560 }
3561 }
3562 }
3563
3564 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3565 symtab. */
3566
3567 static struct symtab *
3568 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3569 {
3570 int i;
3571
3572 if (BLOCKVECTOR (symtab) != NULL
3573 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3574 return symtab;
3575
3576 if (symtab->includes == NULL)
3577 return NULL;
3578
3579 for (i = 0; symtab->includes[i]; ++i)
3580 {
3581 struct symtab *s = symtab->includes[i];
3582
3583 s = recursively_find_pc_sect_symtab (s, pc);
3584 if (s != NULL)
3585 return s;
3586 }
3587
3588 return NULL;
3589 }
3590
3591 static struct symtab *
3592 dw2_find_pc_sect_symtab (struct objfile *objfile,
3593 struct minimal_symbol *msymbol,
3594 CORE_ADDR pc,
3595 struct obj_section *section,
3596 int warn_if_readin)
3597 {
3598 struct dwarf2_per_cu_data *data;
3599 struct symtab *result;
3600
3601 dw2_setup (objfile);
3602
3603 if (!objfile->psymtabs_addrmap)
3604 return NULL;
3605
3606 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3607 if (!data)
3608 return NULL;
3609
3610 if (warn_if_readin && data->v.quick->symtab)
3611 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3612 paddress (get_objfile_arch (objfile), pc));
3613
3614 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3615 gdb_assert (result != NULL);
3616 return result;
3617 }
3618
3619 static void
3620 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3621 void *data, int need_fullname)
3622 {
3623 int i;
3624 struct cleanup *cleanup;
3625 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3626 NULL, xcalloc, xfree);
3627
3628 cleanup = make_cleanup_htab_delete (visited);
3629 dw2_setup (objfile);
3630
3631 dw2_build_type_unit_groups ();
3632
3633 /* We can ignore file names coming from already-expanded CUs. */
3634 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3635 + dwarf2_per_objfile->n_type_units); ++i)
3636 {
3637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3638
3639 if (per_cu->v.quick->symtab)
3640 {
3641 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3642 INSERT);
3643
3644 *slot = per_cu->v.quick->file_names;
3645 }
3646 }
3647
3648 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3649 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3650 {
3651 int j;
3652 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3653 struct quick_file_names *file_data;
3654 void **slot;
3655
3656 /* We only need to look at symtabs not already expanded. */
3657 if (per_cu->v.quick->symtab)
3658 continue;
3659
3660 file_data = dw2_get_file_names (objfile, per_cu);
3661 if (file_data == NULL)
3662 continue;
3663
3664 slot = htab_find_slot (visited, file_data, INSERT);
3665 if (*slot)
3666 {
3667 /* Already visited. */
3668 continue;
3669 }
3670 *slot = file_data;
3671
3672 for (j = 0; j < file_data->num_file_names; ++j)
3673 {
3674 const char *this_real_name;
3675
3676 if (need_fullname)
3677 this_real_name = dw2_get_real_path (objfile, file_data, j);
3678 else
3679 this_real_name = NULL;
3680 (*fun) (file_data->file_names[j], this_real_name, data);
3681 }
3682 }
3683
3684 do_cleanups (cleanup);
3685 }
3686
3687 static int
3688 dw2_has_symbols (struct objfile *objfile)
3689 {
3690 return 1;
3691 }
3692
3693 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3694 {
3695 dw2_has_symbols,
3696 dw2_find_last_source_symtab,
3697 dw2_forget_cached_source_info,
3698 dw2_map_symtabs_matching_filename,
3699 dw2_lookup_symbol,
3700 dw2_pre_expand_symtabs_matching,
3701 dw2_print_stats,
3702 dw2_dump,
3703 dw2_relocate,
3704 dw2_expand_symtabs_for_function,
3705 dw2_expand_all_symtabs,
3706 dw2_expand_symtabs_with_filename,
3707 dw2_find_symbol_file,
3708 dw2_map_matching_symbols,
3709 dw2_expand_symtabs_matching,
3710 dw2_find_pc_sect_symtab,
3711 dw2_map_symbol_filenames
3712 };
3713
3714 /* Initialize for reading DWARF for this objfile. Return 0 if this
3715 file will use psymtabs, or 1 if using the GNU index. */
3716
3717 int
3718 dwarf2_initialize_objfile (struct objfile *objfile)
3719 {
3720 /* If we're about to read full symbols, don't bother with the
3721 indices. In this case we also don't care if some other debug
3722 format is making psymtabs, because they are all about to be
3723 expanded anyway. */
3724 if ((objfile->flags & OBJF_READNOW))
3725 {
3726 int i;
3727
3728 dwarf2_per_objfile->using_index = 1;
3729 create_all_comp_units (objfile);
3730 create_all_type_units (objfile);
3731 dwarf2_per_objfile->quick_file_names_table =
3732 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3733
3734 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3735 + dwarf2_per_objfile->n_type_units); ++i)
3736 {
3737 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3738
3739 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3740 struct dwarf2_per_cu_quick_data);
3741 }
3742
3743 /* Return 1 so that gdb sees the "quick" functions. However,
3744 these functions will be no-ops because we will have expanded
3745 all symtabs. */
3746 return 1;
3747 }
3748
3749 if (dwarf2_read_index (objfile))
3750 return 1;
3751
3752 return 0;
3753 }
3754
3755 \f
3756
3757 /* Build a partial symbol table. */
3758
3759 void
3760 dwarf2_build_psymtabs (struct objfile *objfile)
3761 {
3762 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3763 {
3764 init_psymbol_list (objfile, 1024);
3765 }
3766
3767 dwarf2_build_psymtabs_hard (objfile);
3768 }
3769
3770 /* Return the total length of the CU described by HEADER. */
3771
3772 static unsigned int
3773 get_cu_length (const struct comp_unit_head *header)
3774 {
3775 return header->initial_length_size + header->length;
3776 }
3777
3778 /* Return TRUE if OFFSET is within CU_HEADER. */
3779
3780 static inline int
3781 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3782 {
3783 sect_offset bottom = { cu_header->offset.sect_off };
3784 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3785
3786 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3787 }
3788
3789 /* Find the base address of the compilation unit for range lists and
3790 location lists. It will normally be specified by DW_AT_low_pc.
3791 In DWARF-3 draft 4, the base address could be overridden by
3792 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3793 compilation units with discontinuous ranges. */
3794
3795 static void
3796 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3797 {
3798 struct attribute *attr;
3799
3800 cu->base_known = 0;
3801 cu->base_address = 0;
3802
3803 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3804 if (attr)
3805 {
3806 cu->base_address = DW_ADDR (attr);
3807 cu->base_known = 1;
3808 }
3809 else
3810 {
3811 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3812 if (attr)
3813 {
3814 cu->base_address = DW_ADDR (attr);
3815 cu->base_known = 1;
3816 }
3817 }
3818 }
3819
3820 /* Read in the comp unit header information from the debug_info at info_ptr.
3821 NOTE: This leaves members offset, first_die_offset to be filled in
3822 by the caller. */
3823
3824 static gdb_byte *
3825 read_comp_unit_head (struct comp_unit_head *cu_header,
3826 gdb_byte *info_ptr, bfd *abfd)
3827 {
3828 int signed_addr;
3829 unsigned int bytes_read;
3830
3831 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3832 cu_header->initial_length_size = bytes_read;
3833 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3834 info_ptr += bytes_read;
3835 cu_header->version = read_2_bytes (abfd, info_ptr);
3836 info_ptr += 2;
3837 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3838 &bytes_read);
3839 info_ptr += bytes_read;
3840 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3841 info_ptr += 1;
3842 signed_addr = bfd_get_sign_extend_vma (abfd);
3843 if (signed_addr < 0)
3844 internal_error (__FILE__, __LINE__,
3845 _("read_comp_unit_head: dwarf from non elf file"));
3846 cu_header->signed_addr_p = signed_addr;
3847
3848 return info_ptr;
3849 }
3850
3851 /* Helper function that returns the proper abbrev section for
3852 THIS_CU. */
3853
3854 static struct dwarf2_section_info *
3855 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3856 {
3857 struct dwarf2_section_info *abbrev;
3858
3859 if (this_cu->is_dwz)
3860 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3861 else
3862 abbrev = &dwarf2_per_objfile->abbrev;
3863
3864 return abbrev;
3865 }
3866
3867 /* Subroutine of read_and_check_comp_unit_head and
3868 read_and_check_type_unit_head to simplify them.
3869 Perform various error checking on the header. */
3870
3871 static void
3872 error_check_comp_unit_head (struct comp_unit_head *header,
3873 struct dwarf2_section_info *section,
3874 struct dwarf2_section_info *abbrev_section)
3875 {
3876 bfd *abfd = section->asection->owner;
3877 const char *filename = bfd_get_filename (abfd);
3878
3879 if (header->version != 2 && header->version != 3 && header->version != 4)
3880 error (_("Dwarf Error: wrong version in compilation unit header "
3881 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3882 filename);
3883
3884 if (header->abbrev_offset.sect_off
3885 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3886 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3887 "(offset 0x%lx + 6) [in module %s]"),
3888 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3889 filename);
3890
3891 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3892 avoid potential 32-bit overflow. */
3893 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3894 > section->size)
3895 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3896 "(offset 0x%lx + 0) [in module %s]"),
3897 (long) header->length, (long) header->offset.sect_off,
3898 filename);
3899 }
3900
3901 /* Read in a CU/TU header and perform some basic error checking.
3902 The contents of the header are stored in HEADER.
3903 The result is a pointer to the start of the first DIE. */
3904
3905 static gdb_byte *
3906 read_and_check_comp_unit_head (struct comp_unit_head *header,
3907 struct dwarf2_section_info *section,
3908 struct dwarf2_section_info *abbrev_section,
3909 gdb_byte *info_ptr,
3910 int is_debug_types_section)
3911 {
3912 gdb_byte *beg_of_comp_unit = info_ptr;
3913 bfd *abfd = section->asection->owner;
3914
3915 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3916
3917 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3918
3919 /* If we're reading a type unit, skip over the signature and
3920 type_offset fields. */
3921 if (is_debug_types_section)
3922 info_ptr += 8 /*signature*/ + header->offset_size;
3923
3924 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3925
3926 error_check_comp_unit_head (header, section, abbrev_section);
3927
3928 return info_ptr;
3929 }
3930
3931 /* Read in the types comp unit header information from .debug_types entry at
3932 types_ptr. The result is a pointer to one past the end of the header. */
3933
3934 static gdb_byte *
3935 read_and_check_type_unit_head (struct comp_unit_head *header,
3936 struct dwarf2_section_info *section,
3937 struct dwarf2_section_info *abbrev_section,
3938 gdb_byte *info_ptr,
3939 ULONGEST *signature,
3940 cu_offset *type_offset_in_tu)
3941 {
3942 gdb_byte *beg_of_comp_unit = info_ptr;
3943 bfd *abfd = section->asection->owner;
3944
3945 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3946
3947 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3948
3949 /* If we're reading a type unit, skip over the signature and
3950 type_offset fields. */
3951 if (signature != NULL)
3952 *signature = read_8_bytes (abfd, info_ptr);
3953 info_ptr += 8;
3954 if (type_offset_in_tu != NULL)
3955 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3956 header->offset_size);
3957 info_ptr += header->offset_size;
3958
3959 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3960
3961 error_check_comp_unit_head (header, section, abbrev_section);
3962
3963 return info_ptr;
3964 }
3965
3966 /* Fetch the abbreviation table offset from a comp or type unit header. */
3967
3968 static sect_offset
3969 read_abbrev_offset (struct dwarf2_section_info *section,
3970 sect_offset offset)
3971 {
3972 bfd *abfd = section->asection->owner;
3973 gdb_byte *info_ptr;
3974 unsigned int length, initial_length_size, offset_size;
3975 sect_offset abbrev_offset;
3976
3977 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3978 info_ptr = section->buffer + offset.sect_off;
3979 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3980 offset_size = initial_length_size == 4 ? 4 : 8;
3981 info_ptr += initial_length_size + 2 /*version*/;
3982 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3983 return abbrev_offset;
3984 }
3985
3986 /* Allocate a new partial symtab for file named NAME and mark this new
3987 partial symtab as being an include of PST. */
3988
3989 static void
3990 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3991 struct objfile *objfile)
3992 {
3993 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3994
3995 subpst->section_offsets = pst->section_offsets;
3996 subpst->textlow = 0;
3997 subpst->texthigh = 0;
3998
3999 subpst->dependencies = (struct partial_symtab **)
4000 obstack_alloc (&objfile->objfile_obstack,
4001 sizeof (struct partial_symtab *));
4002 subpst->dependencies[0] = pst;
4003 subpst->number_of_dependencies = 1;
4004
4005 subpst->globals_offset = 0;
4006 subpst->n_global_syms = 0;
4007 subpst->statics_offset = 0;
4008 subpst->n_static_syms = 0;
4009 subpst->symtab = NULL;
4010 subpst->read_symtab = pst->read_symtab;
4011 subpst->readin = 0;
4012
4013 /* No private part is necessary for include psymtabs. This property
4014 can be used to differentiate between such include psymtabs and
4015 the regular ones. */
4016 subpst->read_symtab_private = NULL;
4017 }
4018
4019 /* Read the Line Number Program data and extract the list of files
4020 included by the source file represented by PST. Build an include
4021 partial symtab for each of these included files. */
4022
4023 static void
4024 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4025 struct die_info *die,
4026 struct partial_symtab *pst)
4027 {
4028 struct line_header *lh = NULL;
4029 struct attribute *attr;
4030
4031 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4032 if (attr)
4033 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4034 if (lh == NULL)
4035 return; /* No linetable, so no includes. */
4036
4037 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4038 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4039
4040 free_line_header (lh);
4041 }
4042
4043 static hashval_t
4044 hash_signatured_type (const void *item)
4045 {
4046 const struct signatured_type *sig_type = item;
4047
4048 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4049 return sig_type->signature;
4050 }
4051
4052 static int
4053 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4054 {
4055 const struct signatured_type *lhs = item_lhs;
4056 const struct signatured_type *rhs = item_rhs;
4057
4058 return lhs->signature == rhs->signature;
4059 }
4060
4061 /* Allocate a hash table for signatured types. */
4062
4063 static htab_t
4064 allocate_signatured_type_table (struct objfile *objfile)
4065 {
4066 return htab_create_alloc_ex (41,
4067 hash_signatured_type,
4068 eq_signatured_type,
4069 NULL,
4070 &objfile->objfile_obstack,
4071 hashtab_obstack_allocate,
4072 dummy_obstack_deallocate);
4073 }
4074
4075 /* A helper function to add a signatured type CU to a table. */
4076
4077 static int
4078 add_signatured_type_cu_to_table (void **slot, void *datum)
4079 {
4080 struct signatured_type *sigt = *slot;
4081 struct signatured_type ***datap = datum;
4082
4083 **datap = sigt;
4084 ++*datap;
4085
4086 return 1;
4087 }
4088
4089 /* Create the hash table of all entries in the .debug_types section.
4090 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4091 NULL otherwise.
4092 Note: This function processes DWO files only, not DWP files.
4093 The result is a pointer to the hash table or NULL if there are
4094 no types. */
4095
4096 static htab_t
4097 create_debug_types_hash_table (struct dwo_file *dwo_file,
4098 VEC (dwarf2_section_info_def) *types)
4099 {
4100 struct objfile *objfile = dwarf2_per_objfile->objfile;
4101 htab_t types_htab = NULL;
4102 int ix;
4103 struct dwarf2_section_info *section;
4104 struct dwarf2_section_info *abbrev_section;
4105
4106 if (VEC_empty (dwarf2_section_info_def, types))
4107 return NULL;
4108
4109 abbrev_section = (dwo_file != NULL
4110 ? &dwo_file->sections.abbrev
4111 : &dwarf2_per_objfile->abbrev);
4112
4113 if (dwarf2_read_debug)
4114 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4115 dwo_file ? ".dwo" : "",
4116 bfd_get_filename (abbrev_section->asection->owner));
4117
4118 for (ix = 0;
4119 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4120 ++ix)
4121 {
4122 bfd *abfd;
4123 gdb_byte *info_ptr, *end_ptr;
4124 struct dwarf2_section_info *abbrev_section;
4125
4126 dwarf2_read_section (objfile, section);
4127 info_ptr = section->buffer;
4128
4129 if (info_ptr == NULL)
4130 continue;
4131
4132 /* We can't set abfd until now because the section may be empty or
4133 not present, in which case section->asection will be NULL. */
4134 abfd = section->asection->owner;
4135
4136 if (dwo_file)
4137 abbrev_section = &dwo_file->sections.abbrev;
4138 else
4139 abbrev_section = &dwarf2_per_objfile->abbrev;
4140
4141 if (types_htab == NULL)
4142 {
4143 if (dwo_file)
4144 types_htab = allocate_dwo_unit_table (objfile);
4145 else
4146 types_htab = allocate_signatured_type_table (objfile);
4147 }
4148
4149 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4150 because we don't need to read any dies: the signature is in the
4151 header. */
4152
4153 end_ptr = info_ptr + section->size;
4154 while (info_ptr < end_ptr)
4155 {
4156 sect_offset offset;
4157 cu_offset type_offset_in_tu;
4158 ULONGEST signature;
4159 struct signatured_type *sig_type;
4160 struct dwo_unit *dwo_tu;
4161 void **slot;
4162 gdb_byte *ptr = info_ptr;
4163 struct comp_unit_head header;
4164 unsigned int length;
4165
4166 offset.sect_off = ptr - section->buffer;
4167
4168 /* We need to read the type's signature in order to build the hash
4169 table, but we don't need anything else just yet. */
4170
4171 ptr = read_and_check_type_unit_head (&header, section,
4172 abbrev_section, ptr,
4173 &signature, &type_offset_in_tu);
4174
4175 length = get_cu_length (&header);
4176
4177 /* Skip dummy type units. */
4178 if (ptr >= info_ptr + length
4179 || peek_abbrev_code (abfd, ptr) == 0)
4180 {
4181 info_ptr += length;
4182 continue;
4183 }
4184
4185 if (dwo_file)
4186 {
4187 sig_type = NULL;
4188 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4189 struct dwo_unit);
4190 dwo_tu->dwo_file = dwo_file;
4191 dwo_tu->signature = signature;
4192 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4193 dwo_tu->info_or_types_section = section;
4194 dwo_tu->offset = offset;
4195 dwo_tu->length = length;
4196 }
4197 else
4198 {
4199 /* N.B.: type_offset is not usable if this type uses a DWO file.
4200 The real type_offset is in the DWO file. */
4201 dwo_tu = NULL;
4202 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4203 struct signatured_type);
4204 sig_type->signature = signature;
4205 sig_type->type_offset_in_tu = type_offset_in_tu;
4206 sig_type->per_cu.objfile = objfile;
4207 sig_type->per_cu.is_debug_types = 1;
4208 sig_type->per_cu.info_or_types_section = section;
4209 sig_type->per_cu.offset = offset;
4210 sig_type->per_cu.length = length;
4211 }
4212
4213 slot = htab_find_slot (types_htab,
4214 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4215 INSERT);
4216 gdb_assert (slot != NULL);
4217 if (*slot != NULL)
4218 {
4219 sect_offset dup_offset;
4220
4221 if (dwo_file)
4222 {
4223 const struct dwo_unit *dup_tu = *slot;
4224
4225 dup_offset = dup_tu->offset;
4226 }
4227 else
4228 {
4229 const struct signatured_type *dup_tu = *slot;
4230
4231 dup_offset = dup_tu->per_cu.offset;
4232 }
4233
4234 complaint (&symfile_complaints,
4235 _("debug type entry at offset 0x%x is duplicate to the "
4236 "entry at offset 0x%x, signature 0x%s"),
4237 offset.sect_off, dup_offset.sect_off,
4238 phex (signature, sizeof (signature)));
4239 }
4240 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4241
4242 if (dwarf2_read_debug)
4243 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4244 offset.sect_off,
4245 phex (signature, sizeof (signature)));
4246
4247 info_ptr += length;
4248 }
4249 }
4250
4251 return types_htab;
4252 }
4253
4254 /* Create the hash table of all entries in the .debug_types section,
4255 and initialize all_type_units.
4256 The result is zero if there is an error (e.g. missing .debug_types section),
4257 otherwise non-zero. */
4258
4259 static int
4260 create_all_type_units (struct objfile *objfile)
4261 {
4262 htab_t types_htab;
4263 struct signatured_type **iter;
4264
4265 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4266 if (types_htab == NULL)
4267 {
4268 dwarf2_per_objfile->signatured_types = NULL;
4269 return 0;
4270 }
4271
4272 dwarf2_per_objfile->signatured_types = types_htab;
4273
4274 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4275 dwarf2_per_objfile->all_type_units
4276 = obstack_alloc (&objfile->objfile_obstack,
4277 dwarf2_per_objfile->n_type_units
4278 * sizeof (struct signatured_type *));
4279 iter = &dwarf2_per_objfile->all_type_units[0];
4280 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4281 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4282 == dwarf2_per_objfile->n_type_units);
4283
4284 return 1;
4285 }
4286
4287 /* Lookup a signature based type for DW_FORM_ref_sig8.
4288 Returns NULL if signature SIG is not present in the table. */
4289
4290 static struct signatured_type *
4291 lookup_signatured_type (ULONGEST sig)
4292 {
4293 struct signatured_type find_entry, *entry;
4294
4295 if (dwarf2_per_objfile->signatured_types == NULL)
4296 {
4297 complaint (&symfile_complaints,
4298 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4299 return NULL;
4300 }
4301
4302 find_entry.signature = sig;
4303 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4304 return entry;
4305 }
4306 \f
4307 /* Low level DIE reading support. */
4308
4309 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4310
4311 static void
4312 init_cu_die_reader (struct die_reader_specs *reader,
4313 struct dwarf2_cu *cu,
4314 struct dwarf2_section_info *section,
4315 struct dwo_file *dwo_file)
4316 {
4317 gdb_assert (section->readin && section->buffer != NULL);
4318 reader->abfd = section->asection->owner;
4319 reader->cu = cu;
4320 reader->dwo_file = dwo_file;
4321 reader->die_section = section;
4322 reader->buffer = section->buffer;
4323 reader->buffer_end = section->buffer + section->size;
4324 }
4325
4326 /* Initialize a CU (or TU) and read its DIEs.
4327 If the CU defers to a DWO file, read the DWO file as well.
4328
4329 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4330 Otherwise the table specified in the comp unit header is read in and used.
4331 This is an optimization for when we already have the abbrev table.
4332
4333 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4334 Otherwise, a new CU is allocated with xmalloc.
4335
4336 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4337 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4338
4339 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4340 linker) then DIE_READER_FUNC will not get called. */
4341
4342 static void
4343 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4344 struct abbrev_table *abbrev_table,
4345 int use_existing_cu, int keep,
4346 die_reader_func_ftype *die_reader_func,
4347 void *data)
4348 {
4349 struct objfile *objfile = dwarf2_per_objfile->objfile;
4350 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4351 bfd *abfd = section->asection->owner;
4352 struct dwarf2_cu *cu;
4353 gdb_byte *begin_info_ptr, *info_ptr;
4354 struct die_reader_specs reader;
4355 struct die_info *comp_unit_die;
4356 int has_children;
4357 struct attribute *attr;
4358 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4359 struct signatured_type *sig_type = NULL;
4360 struct dwarf2_section_info *abbrev_section;
4361 /* Non-zero if CU currently points to a DWO file and we need to
4362 reread it. When this happens we need to reread the skeleton die
4363 before we can reread the DWO file. */
4364 int rereading_dwo_cu = 0;
4365
4366 if (dwarf2_die_debug)
4367 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4368 this_cu->is_debug_types ? "type" : "comp",
4369 this_cu->offset.sect_off);
4370
4371 if (use_existing_cu)
4372 gdb_assert (keep);
4373
4374 cleanups = make_cleanup (null_cleanup, NULL);
4375
4376 /* This is cheap if the section is already read in. */
4377 dwarf2_read_section (objfile, section);
4378
4379 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4380
4381 abbrev_section = get_abbrev_section_for_cu (this_cu);
4382
4383 if (use_existing_cu && this_cu->cu != NULL)
4384 {
4385 cu = this_cu->cu;
4386
4387 /* If this CU is from a DWO file we need to start over, we need to
4388 refetch the attributes from the skeleton CU.
4389 This could be optimized by retrieving those attributes from when we
4390 were here the first time: the previous comp_unit_die was stored in
4391 comp_unit_obstack. But there's no data yet that we need this
4392 optimization. */
4393 if (cu->dwo_unit != NULL)
4394 rereading_dwo_cu = 1;
4395 }
4396 else
4397 {
4398 /* If !use_existing_cu, this_cu->cu must be NULL. */
4399 gdb_assert (this_cu->cu == NULL);
4400
4401 cu = xmalloc (sizeof (*cu));
4402 init_one_comp_unit (cu, this_cu);
4403
4404 /* If an error occurs while loading, release our storage. */
4405 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4406 }
4407
4408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4409 {
4410 /* We already have the header, there's no need to read it in again. */
4411 info_ptr += cu->header.first_die_offset.cu_off;
4412 }
4413 else
4414 {
4415 if (this_cu->is_debug_types)
4416 {
4417 ULONGEST signature;
4418 cu_offset type_offset_in_tu;
4419
4420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4421 abbrev_section, info_ptr,
4422 &signature,
4423 &type_offset_in_tu);
4424
4425 /* Since per_cu is the first member of struct signatured_type,
4426 we can go from a pointer to one to a pointer to the other. */
4427 sig_type = (struct signatured_type *) this_cu;
4428 gdb_assert (sig_type->signature == signature);
4429 gdb_assert (sig_type->type_offset_in_tu.cu_off
4430 == type_offset_in_tu.cu_off);
4431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4432
4433 /* LENGTH has not been set yet for type units if we're
4434 using .gdb_index. */
4435 this_cu->length = get_cu_length (&cu->header);
4436
4437 /* Establish the type offset that can be used to lookup the type. */
4438 sig_type->type_offset_in_section.sect_off =
4439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4440 }
4441 else
4442 {
4443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4444 abbrev_section,
4445 info_ptr, 0);
4446
4447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4449 }
4450 }
4451
4452 /* Skip dummy compilation units. */
4453 if (info_ptr >= begin_info_ptr + this_cu->length
4454 || peek_abbrev_code (abfd, info_ptr) == 0)
4455 {
4456 do_cleanups (cleanups);
4457 return;
4458 }
4459
4460 /* If we don't have them yet, read the abbrevs for this compilation unit.
4461 And if we need to read them now, make sure they're freed when we're
4462 done. Note that it's important that if the CU had an abbrev table
4463 on entry we don't free it when we're done: Somewhere up the call stack
4464 it may be in use. */
4465 if (abbrev_table != NULL)
4466 {
4467 gdb_assert (cu->abbrev_table == NULL);
4468 gdb_assert (cu->header.abbrev_offset.sect_off
4469 == abbrev_table->offset.sect_off);
4470 cu->abbrev_table = abbrev_table;
4471 }
4472 else if (cu->abbrev_table == NULL)
4473 {
4474 dwarf2_read_abbrevs (cu, abbrev_section);
4475 make_cleanup (dwarf2_free_abbrev_table, cu);
4476 }
4477 else if (rereading_dwo_cu)
4478 {
4479 dwarf2_free_abbrev_table (cu);
4480 dwarf2_read_abbrevs (cu, abbrev_section);
4481 }
4482
4483 /* Read the top level CU/TU die. */
4484 init_cu_die_reader (&reader, cu, section, NULL);
4485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4486
4487 /* If we have a DWO stub, process it and then read in the DWO file.
4488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4489 a DWO CU, that this test will fail. */
4490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4491 if (attr)
4492 {
4493 char *dwo_name = DW_STRING (attr);
4494 const char *comp_dir_string;
4495 struct dwo_unit *dwo_unit;
4496 ULONGEST signature; /* Or dwo_id. */
4497 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4498 int i,num_extra_attrs;
4499 struct dwarf2_section_info *dwo_abbrev_section;
4500
4501 if (has_children)
4502 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4503 " has children (offset 0x%x) [in module %s]"),
4504 this_cu->offset.sect_off, bfd_get_filename (abfd));
4505
4506 /* These attributes aren't processed until later:
4507 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4508 However, the attribute is found in the stub which we won't have later.
4509 In order to not impose this complication on the rest of the code,
4510 we read them here and copy them to the DWO CU/TU die. */
4511
4512 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4513 DWO file. */
4514 stmt_list = NULL;
4515 if (! this_cu->is_debug_types)
4516 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4517 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4518 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4519 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4520 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4521
4522 /* There should be a DW_AT_addr_base attribute here (if needed).
4523 We need the value before we can process DW_FORM_GNU_addr_index. */
4524 cu->addr_base = 0;
4525 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4526 if (attr)
4527 cu->addr_base = DW_UNSND (attr);
4528
4529 /* There should be a DW_AT_ranges_base attribute here (if needed).
4530 We need the value before we can process DW_AT_ranges. */
4531 cu->ranges_base = 0;
4532 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4533 if (attr)
4534 cu->ranges_base = DW_UNSND (attr);
4535
4536 if (this_cu->is_debug_types)
4537 {
4538 gdb_assert (sig_type != NULL);
4539 signature = sig_type->signature;
4540 }
4541 else
4542 {
4543 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4544 if (! attr)
4545 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4546 dwo_name);
4547 signature = DW_UNSND (attr);
4548 }
4549
4550 /* We may need the comp_dir in order to find the DWO file. */
4551 comp_dir_string = NULL;
4552 if (comp_dir)
4553 comp_dir_string = DW_STRING (comp_dir);
4554
4555 if (this_cu->is_debug_types)
4556 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4557 else
4558 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4559 signature);
4560
4561 if (dwo_unit == NULL)
4562 {
4563 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4564 " with ID %s [in module %s]"),
4565 this_cu->offset.sect_off,
4566 phex (signature, sizeof (signature)),
4567 objfile->name);
4568 }
4569
4570 /* Set up for reading the DWO CU/TU. */
4571 cu->dwo_unit = dwo_unit;
4572 section = dwo_unit->info_or_types_section;
4573 dwarf2_read_section (objfile, section);
4574 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4575 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4576 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4577
4578 if (this_cu->is_debug_types)
4579 {
4580 ULONGEST signature;
4581 cu_offset type_offset_in_tu;
4582
4583 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4584 dwo_abbrev_section,
4585 info_ptr,
4586 &signature,
4587 &type_offset_in_tu);
4588 gdb_assert (sig_type->signature == signature);
4589 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4590 /* For DWOs coming from DWP files, we don't know the CU length
4591 nor the type's offset in the TU until now. */
4592 dwo_unit->length = get_cu_length (&cu->header);
4593 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4594
4595 /* Establish the type offset that can be used to lookup the type.
4596 For DWO files, we don't know it until now. */
4597 sig_type->type_offset_in_section.sect_off =
4598 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4599 }
4600 else
4601 {
4602 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4603 dwo_abbrev_section,
4604 info_ptr, 0);
4605 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4606 /* For DWOs coming from DWP files, we don't know the CU length
4607 until now. */
4608 dwo_unit->length = get_cu_length (&cu->header);
4609 }
4610
4611 /* Discard the original CU's abbrev table, and read the DWO's. */
4612 if (abbrev_table == NULL)
4613 {
4614 dwarf2_free_abbrev_table (cu);
4615 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4616 }
4617 else
4618 {
4619 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4620 make_cleanup (dwarf2_free_abbrev_table, cu);
4621 }
4622
4623 /* Read in the die, but leave space to copy over the attributes
4624 from the stub. This has the benefit of simplifying the rest of
4625 the code - all the real work is done here. */
4626 num_extra_attrs = ((stmt_list != NULL)
4627 + (low_pc != NULL)
4628 + (high_pc != NULL)
4629 + (ranges != NULL)
4630 + (comp_dir != NULL));
4631 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4632 &has_children, num_extra_attrs);
4633
4634 /* Copy over the attributes from the stub to the DWO die. */
4635 i = comp_unit_die->num_attrs;
4636 if (stmt_list != NULL)
4637 comp_unit_die->attrs[i++] = *stmt_list;
4638 if (low_pc != NULL)
4639 comp_unit_die->attrs[i++] = *low_pc;
4640 if (high_pc != NULL)
4641 comp_unit_die->attrs[i++] = *high_pc;
4642 if (ranges != NULL)
4643 comp_unit_die->attrs[i++] = *ranges;
4644 if (comp_dir != NULL)
4645 comp_unit_die->attrs[i++] = *comp_dir;
4646 comp_unit_die->num_attrs += num_extra_attrs;
4647
4648 /* Skip dummy compilation units. */
4649 if (info_ptr >= begin_info_ptr + dwo_unit->length
4650 || peek_abbrev_code (abfd, info_ptr) == 0)
4651 {
4652 do_cleanups (cleanups);
4653 return;
4654 }
4655 }
4656
4657 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4658
4659 if (free_cu_cleanup != NULL)
4660 {
4661 if (keep)
4662 {
4663 /* We've successfully allocated this compilation unit. Let our
4664 caller clean it up when finished with it. */
4665 discard_cleanups (free_cu_cleanup);
4666
4667 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4668 So we have to manually free the abbrev table. */
4669 dwarf2_free_abbrev_table (cu);
4670
4671 /* Link this CU into read_in_chain. */
4672 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4673 dwarf2_per_objfile->read_in_chain = this_cu;
4674 }
4675 else
4676 do_cleanups (free_cu_cleanup);
4677 }
4678
4679 do_cleanups (cleanups);
4680 }
4681
4682 /* Read CU/TU THIS_CU in section SECTION,
4683 but do not follow DW_AT_GNU_dwo_name if present.
4684 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4685 to have already done the lookup to find the DWO/DWP file).
4686
4687 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4688 THIS_CU->is_debug_types, but nothing else.
4689
4690 We fill in THIS_CU->length.
4691
4692 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4693 linker) then DIE_READER_FUNC will not get called.
4694
4695 THIS_CU->cu is always freed when done.
4696 This is done in order to not leave THIS_CU->cu in a state where we have
4697 to care whether it refers to the "main" CU or the DWO CU. */
4698
4699 static void
4700 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4701 struct dwarf2_section_info *abbrev_section,
4702 struct dwo_file *dwo_file,
4703 die_reader_func_ftype *die_reader_func,
4704 void *data)
4705 {
4706 struct objfile *objfile = dwarf2_per_objfile->objfile;
4707 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4708 bfd *abfd = section->asection->owner;
4709 struct dwarf2_cu cu;
4710 gdb_byte *begin_info_ptr, *info_ptr;
4711 struct die_reader_specs reader;
4712 struct cleanup *cleanups;
4713 struct die_info *comp_unit_die;
4714 int has_children;
4715
4716 if (dwarf2_die_debug)
4717 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4718 this_cu->is_debug_types ? "type" : "comp",
4719 this_cu->offset.sect_off);
4720
4721 gdb_assert (this_cu->cu == NULL);
4722
4723 /* This is cheap if the section is already read in. */
4724 dwarf2_read_section (objfile, section);
4725
4726 init_one_comp_unit (&cu, this_cu);
4727
4728 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4729
4730 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4731 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4732 abbrev_section, info_ptr,
4733 this_cu->is_debug_types);
4734
4735 this_cu->length = get_cu_length (&cu.header);
4736
4737 /* Skip dummy compilation units. */
4738 if (info_ptr >= begin_info_ptr + this_cu->length
4739 || peek_abbrev_code (abfd, info_ptr) == 0)
4740 {
4741 do_cleanups (cleanups);
4742 return;
4743 }
4744
4745 dwarf2_read_abbrevs (&cu, abbrev_section);
4746 make_cleanup (dwarf2_free_abbrev_table, &cu);
4747
4748 init_cu_die_reader (&reader, &cu, section, dwo_file);
4749 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4750
4751 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4752
4753 do_cleanups (cleanups);
4754 }
4755
4756 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4757 does not lookup the specified DWO file.
4758 This cannot be used to read DWO files.
4759
4760 THIS_CU->cu is always freed when done.
4761 This is done in order to not leave THIS_CU->cu in a state where we have
4762 to care whether it refers to the "main" CU or the DWO CU.
4763 We can revisit this if the data shows there's a performance issue. */
4764
4765 static void
4766 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4767 die_reader_func_ftype *die_reader_func,
4768 void *data)
4769 {
4770 init_cutu_and_read_dies_no_follow (this_cu,
4771 get_abbrev_section_for_cu (this_cu),
4772 NULL,
4773 die_reader_func, data);
4774 }
4775
4776 /* Create a psymtab named NAME and assign it to PER_CU.
4777
4778 The caller must fill in the following details:
4779 dirname, textlow, texthigh. */
4780
4781 static struct partial_symtab *
4782 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4783 {
4784 struct objfile *objfile = per_cu->objfile;
4785 struct partial_symtab *pst;
4786
4787 pst = start_psymtab_common (objfile, objfile->section_offsets,
4788 name, 0,
4789 objfile->global_psymbols.next,
4790 objfile->static_psymbols.next);
4791
4792 pst->psymtabs_addrmap_supported = 1;
4793
4794 /* This is the glue that links PST into GDB's symbol API. */
4795 pst->read_symtab_private = per_cu;
4796 pst->read_symtab = dwarf2_psymtab_to_symtab;
4797 per_cu->v.psymtab = pst;
4798
4799 return pst;
4800 }
4801
4802 /* die_reader_func for process_psymtab_comp_unit. */
4803
4804 static void
4805 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4806 gdb_byte *info_ptr,
4807 struct die_info *comp_unit_die,
4808 int has_children,
4809 void *data)
4810 {
4811 struct dwarf2_cu *cu = reader->cu;
4812 struct objfile *objfile = cu->objfile;
4813 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4814 struct attribute *attr;
4815 CORE_ADDR baseaddr;
4816 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4817 struct partial_symtab *pst;
4818 int has_pc_info;
4819 const char *filename;
4820 int *want_partial_unit_ptr = data;
4821
4822 if (comp_unit_die->tag == DW_TAG_partial_unit
4823 && (want_partial_unit_ptr == NULL
4824 || !*want_partial_unit_ptr))
4825 return;
4826
4827 gdb_assert (! per_cu->is_debug_types);
4828
4829 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4830
4831 cu->list_in_scope = &file_symbols;
4832
4833 /* Allocate a new partial symbol table structure. */
4834 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4835 if (attr == NULL || !DW_STRING (attr))
4836 filename = "";
4837 else
4838 filename = DW_STRING (attr);
4839
4840 pst = create_partial_symtab (per_cu, filename);
4841
4842 /* This must be done before calling dwarf2_build_include_psymtabs. */
4843 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4844 if (attr != NULL)
4845 pst->dirname = DW_STRING (attr);
4846
4847 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4848
4849 dwarf2_find_base_address (comp_unit_die, cu);
4850
4851 /* Possibly set the default values of LOWPC and HIGHPC from
4852 `DW_AT_ranges'. */
4853 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4854 &best_highpc, cu, pst);
4855 if (has_pc_info == 1 && best_lowpc < best_highpc)
4856 /* Store the contiguous range if it is not empty; it can be empty for
4857 CUs with no code. */
4858 addrmap_set_empty (objfile->psymtabs_addrmap,
4859 best_lowpc + baseaddr,
4860 best_highpc + baseaddr - 1, pst);
4861
4862 /* Check if comp unit has_children.
4863 If so, read the rest of the partial symbols from this comp unit.
4864 If not, there's no more debug_info for this comp unit. */
4865 if (has_children)
4866 {
4867 struct partial_die_info *first_die;
4868 CORE_ADDR lowpc, highpc;
4869
4870 lowpc = ((CORE_ADDR) -1);
4871 highpc = ((CORE_ADDR) 0);
4872
4873 first_die = load_partial_dies (reader, info_ptr, 1);
4874
4875 scan_partial_symbols (first_die, &lowpc, &highpc,
4876 ! has_pc_info, cu);
4877
4878 /* If we didn't find a lowpc, set it to highpc to avoid
4879 complaints from `maint check'. */
4880 if (lowpc == ((CORE_ADDR) -1))
4881 lowpc = highpc;
4882
4883 /* If the compilation unit didn't have an explicit address range,
4884 then use the information extracted from its child dies. */
4885 if (! has_pc_info)
4886 {
4887 best_lowpc = lowpc;
4888 best_highpc = highpc;
4889 }
4890 }
4891 pst->textlow = best_lowpc + baseaddr;
4892 pst->texthigh = best_highpc + baseaddr;
4893
4894 pst->n_global_syms = objfile->global_psymbols.next -
4895 (objfile->global_psymbols.list + pst->globals_offset);
4896 pst->n_static_syms = objfile->static_psymbols.next -
4897 (objfile->static_psymbols.list + pst->statics_offset);
4898 sort_pst_symbols (objfile, pst);
4899
4900 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4901 {
4902 int i;
4903 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4904 struct dwarf2_per_cu_data *iter;
4905
4906 /* Fill in 'dependencies' here; we fill in 'users' in a
4907 post-pass. */
4908 pst->number_of_dependencies = len;
4909 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4910 len * sizeof (struct symtab *));
4911 for (i = 0;
4912 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4913 i, iter);
4914 ++i)
4915 pst->dependencies[i] = iter->v.psymtab;
4916
4917 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4918 }
4919
4920 /* Get the list of files included in the current compilation unit,
4921 and build a psymtab for each of them. */
4922 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4923
4924 if (dwarf2_read_debug)
4925 {
4926 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4927
4928 fprintf_unfiltered (gdb_stdlog,
4929 "Psymtab for %s unit @0x%x: %s - %s"
4930 ", %d global, %d static syms\n",
4931 per_cu->is_debug_types ? "type" : "comp",
4932 per_cu->offset.sect_off,
4933 paddress (gdbarch, pst->textlow),
4934 paddress (gdbarch, pst->texthigh),
4935 pst->n_global_syms, pst->n_static_syms);
4936 }
4937 }
4938
4939 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4940 Process compilation unit THIS_CU for a psymtab. */
4941
4942 static void
4943 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4944 int want_partial_unit)
4945 {
4946 /* If this compilation unit was already read in, free the
4947 cached copy in order to read it in again. This is
4948 necessary because we skipped some symbols when we first
4949 read in the compilation unit (see load_partial_dies).
4950 This problem could be avoided, but the benefit is unclear. */
4951 if (this_cu->cu != NULL)
4952 free_one_cached_comp_unit (this_cu);
4953
4954 gdb_assert (! this_cu->is_debug_types);
4955 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4956 process_psymtab_comp_unit_reader,
4957 &want_partial_unit);
4958
4959 /* Age out any secondary CUs. */
4960 age_cached_comp_units ();
4961 }
4962
4963 static hashval_t
4964 hash_type_unit_group (const void *item)
4965 {
4966 const struct type_unit_group *tu_group = item;
4967
4968 return hash_stmt_list_entry (&tu_group->hash);
4969 }
4970
4971 static int
4972 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4973 {
4974 const struct type_unit_group *lhs = item_lhs;
4975 const struct type_unit_group *rhs = item_rhs;
4976
4977 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4978 }
4979
4980 /* Allocate a hash table for type unit groups. */
4981
4982 static htab_t
4983 allocate_type_unit_groups_table (void)
4984 {
4985 return htab_create_alloc_ex (3,
4986 hash_type_unit_group,
4987 eq_type_unit_group,
4988 NULL,
4989 &dwarf2_per_objfile->objfile->objfile_obstack,
4990 hashtab_obstack_allocate,
4991 dummy_obstack_deallocate);
4992 }
4993
4994 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4995 partial symtabs. We combine several TUs per psymtab to not let the size
4996 of any one psymtab grow too big. */
4997 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4998 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4999
5000 /* Helper routine for get_type_unit_group.
5001 Create the type_unit_group object used to hold one or more TUs. */
5002
5003 static struct type_unit_group *
5004 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5005 {
5006 struct objfile *objfile = dwarf2_per_objfile->objfile;
5007 struct dwarf2_per_cu_data *per_cu;
5008 struct type_unit_group *tu_group;
5009
5010 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5011 struct type_unit_group);
5012 per_cu = &tu_group->per_cu;
5013 per_cu->objfile = objfile;
5014 per_cu->is_debug_types = 1;
5015 per_cu->s.type_unit_group = tu_group;
5016
5017 if (dwarf2_per_objfile->using_index)
5018 {
5019 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5020 struct dwarf2_per_cu_quick_data);
5021 tu_group->t.first_tu = cu->per_cu;
5022 }
5023 else
5024 {
5025 unsigned int line_offset = line_offset_struct.sect_off;
5026 struct partial_symtab *pst;
5027 char *name;
5028
5029 /* Give the symtab a useful name for debug purposes. */
5030 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5031 name = xstrprintf ("<type_units_%d>",
5032 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5033 else
5034 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5035
5036 pst = create_partial_symtab (per_cu, name);
5037 pst->anonymous = 1;
5038
5039 xfree (name);
5040 }
5041
5042 tu_group->hash.dwo_unit = cu->dwo_unit;
5043 tu_group->hash.line_offset = line_offset_struct;
5044
5045 return tu_group;
5046 }
5047
5048 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5049 STMT_LIST is a DW_AT_stmt_list attribute. */
5050
5051 static struct type_unit_group *
5052 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5053 {
5054 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5055 struct type_unit_group *tu_group;
5056 void **slot;
5057 unsigned int line_offset;
5058 struct type_unit_group type_unit_group_for_lookup;
5059
5060 if (dwarf2_per_objfile->type_unit_groups == NULL)
5061 {
5062 dwarf2_per_objfile->type_unit_groups =
5063 allocate_type_unit_groups_table ();
5064 }
5065
5066 /* Do we need to create a new group, or can we use an existing one? */
5067
5068 if (stmt_list)
5069 {
5070 line_offset = DW_UNSND (stmt_list);
5071 ++tu_stats->nr_symtab_sharers;
5072 }
5073 else
5074 {
5075 /* Ugh, no stmt_list. Rare, but we have to handle it.
5076 We can do various things here like create one group per TU or
5077 spread them over multiple groups to split up the expansion work.
5078 To avoid worst case scenarios (too many groups or too large groups)
5079 we, umm, group them in bunches. */
5080 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5081 | (tu_stats->nr_stmt_less_type_units
5082 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5083 ++tu_stats->nr_stmt_less_type_units;
5084 }
5085
5086 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5087 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5088 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5089 &type_unit_group_for_lookup, INSERT);
5090 if (*slot != NULL)
5091 {
5092 tu_group = *slot;
5093 gdb_assert (tu_group != NULL);
5094 }
5095 else
5096 {
5097 sect_offset line_offset_struct;
5098
5099 line_offset_struct.sect_off = line_offset;
5100 tu_group = create_type_unit_group (cu, line_offset_struct);
5101 *slot = tu_group;
5102 ++tu_stats->nr_symtabs;
5103 }
5104
5105 return tu_group;
5106 }
5107
5108 /* Struct used to sort TUs by their abbreviation table offset. */
5109
5110 struct tu_abbrev_offset
5111 {
5112 struct signatured_type *sig_type;
5113 sect_offset abbrev_offset;
5114 };
5115
5116 /* Helper routine for build_type_unit_groups, passed to qsort. */
5117
5118 static int
5119 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5120 {
5121 const struct tu_abbrev_offset * const *a = ap;
5122 const struct tu_abbrev_offset * const *b = bp;
5123 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5124 unsigned int boff = (*b)->abbrev_offset.sect_off;
5125
5126 return (aoff > boff) - (aoff < boff);
5127 }
5128
5129 /* A helper function to add a type_unit_group to a table. */
5130
5131 static int
5132 add_type_unit_group_to_table (void **slot, void *datum)
5133 {
5134 struct type_unit_group *tu_group = *slot;
5135 struct type_unit_group ***datap = datum;
5136
5137 **datap = tu_group;
5138 ++*datap;
5139
5140 return 1;
5141 }
5142
5143 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5144 each one passing FUNC,DATA.
5145
5146 The efficiency is because we sort TUs by the abbrev table they use and
5147 only read each abbrev table once. In one program there are 200K TUs
5148 sharing 8K abbrev tables.
5149
5150 The main purpose of this function is to support building the
5151 dwarf2_per_objfile->type_unit_groups table.
5152 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5153 can collapse the search space by grouping them by stmt_list.
5154 The savings can be significant, in the same program from above the 200K TUs
5155 share 8K stmt_list tables.
5156
5157 FUNC is expected to call get_type_unit_group, which will create the
5158 struct type_unit_group if necessary and add it to
5159 dwarf2_per_objfile->type_unit_groups. */
5160
5161 static void
5162 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5163 {
5164 struct objfile *objfile = dwarf2_per_objfile->objfile;
5165 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5166 struct cleanup *cleanups;
5167 struct abbrev_table *abbrev_table;
5168 sect_offset abbrev_offset;
5169 struct tu_abbrev_offset *sorted_by_abbrev;
5170 struct type_unit_group **iter;
5171 int i;
5172
5173 /* It's up to the caller to not call us multiple times. */
5174 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5175
5176 if (dwarf2_per_objfile->n_type_units == 0)
5177 return;
5178
5179 /* TUs typically share abbrev tables, and there can be way more TUs than
5180 abbrev tables. Sort by abbrev table to reduce the number of times we
5181 read each abbrev table in.
5182 Alternatives are to punt or to maintain a cache of abbrev tables.
5183 This is simpler and efficient enough for now.
5184
5185 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5186 symtab to use). Typically TUs with the same abbrev offset have the same
5187 stmt_list value too so in practice this should work well.
5188
5189 The basic algorithm here is:
5190
5191 sort TUs by abbrev table
5192 for each TU with same abbrev table:
5193 read abbrev table if first user
5194 read TU top level DIE
5195 [IWBN if DWO skeletons had DW_AT_stmt_list]
5196 call FUNC */
5197
5198 if (dwarf2_read_debug)
5199 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5200
5201 /* Sort in a separate table to maintain the order of all_type_units
5202 for .gdb_index: TU indices directly index all_type_units. */
5203 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5204 dwarf2_per_objfile->n_type_units);
5205 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5206 {
5207 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5208
5209 sorted_by_abbrev[i].sig_type = sig_type;
5210 sorted_by_abbrev[i].abbrev_offset =
5211 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5212 sig_type->per_cu.offset);
5213 }
5214 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5215 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5216 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5217
5218 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5219 called any number of times, so we don't reset tu_stats here. */
5220
5221 abbrev_offset.sect_off = ~(unsigned) 0;
5222 abbrev_table = NULL;
5223 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5224
5225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5226 {
5227 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5228
5229 /* Switch to the next abbrev table if necessary. */
5230 if (abbrev_table == NULL
5231 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5232 {
5233 if (abbrev_table != NULL)
5234 {
5235 abbrev_table_free (abbrev_table);
5236 /* Reset to NULL in case abbrev_table_read_table throws
5237 an error: abbrev_table_free_cleanup will get called. */
5238 abbrev_table = NULL;
5239 }
5240 abbrev_offset = tu->abbrev_offset;
5241 abbrev_table =
5242 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5243 abbrev_offset);
5244 ++tu_stats->nr_uniq_abbrev_tables;
5245 }
5246
5247 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5248 func, data);
5249 }
5250
5251 /* Create a vector of pointers to primary type units to make it easy to
5252 iterate over them and CUs. See dw2_get_primary_cu. */
5253 dwarf2_per_objfile->n_type_unit_groups =
5254 htab_elements (dwarf2_per_objfile->type_unit_groups);
5255 dwarf2_per_objfile->all_type_unit_groups =
5256 obstack_alloc (&objfile->objfile_obstack,
5257 dwarf2_per_objfile->n_type_unit_groups
5258 * sizeof (struct type_unit_group *));
5259 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5260 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5261 add_type_unit_group_to_table, &iter);
5262 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5263 == dwarf2_per_objfile->n_type_unit_groups);
5264
5265 do_cleanups (cleanups);
5266
5267 if (dwarf2_read_debug)
5268 {
5269 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5270 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5271 dwarf2_per_objfile->n_type_units);
5272 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5273 tu_stats->nr_uniq_abbrev_tables);
5274 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5275 tu_stats->nr_symtabs);
5276 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5277 tu_stats->nr_symtab_sharers);
5278 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5279 tu_stats->nr_stmt_less_type_units);
5280 }
5281 }
5282
5283 /* Reader function for build_type_psymtabs. */
5284
5285 static void
5286 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5287 gdb_byte *info_ptr,
5288 struct die_info *type_unit_die,
5289 int has_children,
5290 void *data)
5291 {
5292 struct objfile *objfile = dwarf2_per_objfile->objfile;
5293 struct dwarf2_cu *cu = reader->cu;
5294 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5295 struct type_unit_group *tu_group;
5296 struct attribute *attr;
5297 struct partial_die_info *first_die;
5298 CORE_ADDR lowpc, highpc;
5299 struct partial_symtab *pst;
5300
5301 gdb_assert (data == NULL);
5302
5303 if (! has_children)
5304 return;
5305
5306 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5307 tu_group = get_type_unit_group (cu, attr);
5308
5309 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5310
5311 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5312 cu->list_in_scope = &file_symbols;
5313 pst = create_partial_symtab (per_cu, "");
5314 pst->anonymous = 1;
5315
5316 first_die = load_partial_dies (reader, info_ptr, 1);
5317
5318 lowpc = (CORE_ADDR) -1;
5319 highpc = (CORE_ADDR) 0;
5320 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5321
5322 pst->n_global_syms = objfile->global_psymbols.next -
5323 (objfile->global_psymbols.list + pst->globals_offset);
5324 pst->n_static_syms = objfile->static_psymbols.next -
5325 (objfile->static_psymbols.list + pst->statics_offset);
5326 sort_pst_symbols (objfile, pst);
5327 }
5328
5329 /* Traversal function for build_type_psymtabs. */
5330
5331 static int
5332 build_type_psymtab_dependencies (void **slot, void *info)
5333 {
5334 struct objfile *objfile = dwarf2_per_objfile->objfile;
5335 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5336 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5337 struct partial_symtab *pst = per_cu->v.psymtab;
5338 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5339 struct dwarf2_per_cu_data *iter;
5340 int i;
5341
5342 gdb_assert (len > 0);
5343
5344 pst->number_of_dependencies = len;
5345 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5346 len * sizeof (struct psymtab *));
5347 for (i = 0;
5348 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5349 ++i)
5350 {
5351 pst->dependencies[i] = iter->v.psymtab;
5352 iter->s.type_unit_group = tu_group;
5353 }
5354
5355 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5356
5357 return 1;
5358 }
5359
5360 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5361 Build partial symbol tables for the .debug_types comp-units. */
5362
5363 static void
5364 build_type_psymtabs (struct objfile *objfile)
5365 {
5366 if (! create_all_type_units (objfile))
5367 return;
5368
5369 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5370
5371 /* Now that all TUs have been processed we can fill in the dependencies. */
5372 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5373 build_type_psymtab_dependencies, NULL);
5374 }
5375
5376 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5377
5378 static void
5379 psymtabs_addrmap_cleanup (void *o)
5380 {
5381 struct objfile *objfile = o;
5382
5383 objfile->psymtabs_addrmap = NULL;
5384 }
5385
5386 /* Compute the 'user' field for each psymtab in OBJFILE. */
5387
5388 static void
5389 set_partial_user (struct objfile *objfile)
5390 {
5391 int i;
5392
5393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5394 {
5395 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5396 struct partial_symtab *pst = per_cu->v.psymtab;
5397 int j;
5398
5399 if (pst == NULL)
5400 continue;
5401
5402 for (j = 0; j < pst->number_of_dependencies; ++j)
5403 {
5404 /* Set the 'user' field only if it is not already set. */
5405 if (pst->dependencies[j]->user == NULL)
5406 pst->dependencies[j]->user = pst;
5407 }
5408 }
5409 }
5410
5411 /* Build the partial symbol table by doing a quick pass through the
5412 .debug_info and .debug_abbrev sections. */
5413
5414 static void
5415 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5416 {
5417 struct cleanup *back_to, *addrmap_cleanup;
5418 struct obstack temp_obstack;
5419 int i;
5420
5421 if (dwarf2_read_debug)
5422 {
5423 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5424 objfile->name);
5425 }
5426
5427 dwarf2_per_objfile->reading_partial_symbols = 1;
5428
5429 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5430
5431 /* Any cached compilation units will be linked by the per-objfile
5432 read_in_chain. Make sure to free them when we're done. */
5433 back_to = make_cleanup (free_cached_comp_units, NULL);
5434
5435 build_type_psymtabs (objfile);
5436
5437 create_all_comp_units (objfile);
5438
5439 /* Create a temporary address map on a temporary obstack. We later
5440 copy this to the final obstack. */
5441 obstack_init (&temp_obstack);
5442 make_cleanup_obstack_free (&temp_obstack);
5443 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5444 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5445
5446 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5447 {
5448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5449
5450 process_psymtab_comp_unit (per_cu, 0);
5451 }
5452
5453 set_partial_user (objfile);
5454
5455 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5456 &objfile->objfile_obstack);
5457 discard_cleanups (addrmap_cleanup);
5458
5459 do_cleanups (back_to);
5460
5461 if (dwarf2_read_debug)
5462 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5463 objfile->name);
5464 }
5465
5466 /* die_reader_func for load_partial_comp_unit. */
5467
5468 static void
5469 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5470 gdb_byte *info_ptr,
5471 struct die_info *comp_unit_die,
5472 int has_children,
5473 void *data)
5474 {
5475 struct dwarf2_cu *cu = reader->cu;
5476
5477 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5478
5479 /* Check if comp unit has_children.
5480 If so, read the rest of the partial symbols from this comp unit.
5481 If not, there's no more debug_info for this comp unit. */
5482 if (has_children)
5483 load_partial_dies (reader, info_ptr, 0);
5484 }
5485
5486 /* Load the partial DIEs for a secondary CU into memory.
5487 This is also used when rereading a primary CU with load_all_dies. */
5488
5489 static void
5490 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5491 {
5492 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5493 load_partial_comp_unit_reader, NULL);
5494 }
5495
5496 static void
5497 read_comp_units_from_section (struct objfile *objfile,
5498 struct dwarf2_section_info *section,
5499 unsigned int is_dwz,
5500 int *n_allocated,
5501 int *n_comp_units,
5502 struct dwarf2_per_cu_data ***all_comp_units)
5503 {
5504 gdb_byte *info_ptr;
5505 bfd *abfd = section->asection->owner;
5506
5507 dwarf2_read_section (objfile, section);
5508
5509 info_ptr = section->buffer;
5510
5511 while (info_ptr < section->buffer + section->size)
5512 {
5513 unsigned int length, initial_length_size;
5514 struct dwarf2_per_cu_data *this_cu;
5515 sect_offset offset;
5516
5517 offset.sect_off = info_ptr - section->buffer;
5518
5519 /* Read just enough information to find out where the next
5520 compilation unit is. */
5521 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5522
5523 /* Save the compilation unit for later lookup. */
5524 this_cu = obstack_alloc (&objfile->objfile_obstack,
5525 sizeof (struct dwarf2_per_cu_data));
5526 memset (this_cu, 0, sizeof (*this_cu));
5527 this_cu->offset = offset;
5528 this_cu->length = length + initial_length_size;
5529 this_cu->is_dwz = is_dwz;
5530 this_cu->objfile = objfile;
5531 this_cu->info_or_types_section = section;
5532
5533 if (*n_comp_units == *n_allocated)
5534 {
5535 *n_allocated *= 2;
5536 *all_comp_units = xrealloc (*all_comp_units,
5537 *n_allocated
5538 * sizeof (struct dwarf2_per_cu_data *));
5539 }
5540 (*all_comp_units)[*n_comp_units] = this_cu;
5541 ++*n_comp_units;
5542
5543 info_ptr = info_ptr + this_cu->length;
5544 }
5545 }
5546
5547 /* Create a list of all compilation units in OBJFILE.
5548 This is only done for -readnow and building partial symtabs. */
5549
5550 static void
5551 create_all_comp_units (struct objfile *objfile)
5552 {
5553 int n_allocated;
5554 int n_comp_units;
5555 struct dwarf2_per_cu_data **all_comp_units;
5556
5557 n_comp_units = 0;
5558 n_allocated = 10;
5559 all_comp_units = xmalloc (n_allocated
5560 * sizeof (struct dwarf2_per_cu_data *));
5561
5562 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5563 &n_allocated, &n_comp_units, &all_comp_units);
5564
5565 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5566 {
5567 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5568
5569 read_comp_units_from_section (objfile, &dwz->info, 1,
5570 &n_allocated, &n_comp_units,
5571 &all_comp_units);
5572 }
5573
5574 dwarf2_per_objfile->all_comp_units
5575 = obstack_alloc (&objfile->objfile_obstack,
5576 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5577 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5578 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5579 xfree (all_comp_units);
5580 dwarf2_per_objfile->n_comp_units = n_comp_units;
5581 }
5582
5583 /* Process all loaded DIEs for compilation unit CU, starting at
5584 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5585 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5586 DW_AT_ranges). If NEED_PC is set, then this function will set
5587 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5588 and record the covered ranges in the addrmap. */
5589
5590 static void
5591 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5592 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5593 {
5594 struct partial_die_info *pdi;
5595
5596 /* Now, march along the PDI's, descending into ones which have
5597 interesting children but skipping the children of the other ones,
5598 until we reach the end of the compilation unit. */
5599
5600 pdi = first_die;
5601
5602 while (pdi != NULL)
5603 {
5604 fixup_partial_die (pdi, cu);
5605
5606 /* Anonymous namespaces or modules have no name but have interesting
5607 children, so we need to look at them. Ditto for anonymous
5608 enums. */
5609
5610 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5611 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5612 || pdi->tag == DW_TAG_imported_unit)
5613 {
5614 switch (pdi->tag)
5615 {
5616 case DW_TAG_subprogram:
5617 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5618 break;
5619 case DW_TAG_constant:
5620 case DW_TAG_variable:
5621 case DW_TAG_typedef:
5622 case DW_TAG_union_type:
5623 if (!pdi->is_declaration)
5624 {
5625 add_partial_symbol (pdi, cu);
5626 }
5627 break;
5628 case DW_TAG_class_type:
5629 case DW_TAG_interface_type:
5630 case DW_TAG_structure_type:
5631 if (!pdi->is_declaration)
5632 {
5633 add_partial_symbol (pdi, cu);
5634 }
5635 break;
5636 case DW_TAG_enumeration_type:
5637 if (!pdi->is_declaration)
5638 add_partial_enumeration (pdi, cu);
5639 break;
5640 case DW_TAG_base_type:
5641 case DW_TAG_subrange_type:
5642 /* File scope base type definitions are added to the partial
5643 symbol table. */
5644 add_partial_symbol (pdi, cu);
5645 break;
5646 case DW_TAG_namespace:
5647 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5648 break;
5649 case DW_TAG_module:
5650 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5651 break;
5652 case DW_TAG_imported_unit:
5653 {
5654 struct dwarf2_per_cu_data *per_cu;
5655
5656 /* For now we don't handle imported units in type units. */
5657 if (cu->per_cu->is_debug_types)
5658 {
5659 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5660 " supported in type units [in module %s]"),
5661 cu->objfile->name);
5662 }
5663
5664 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5665 pdi->is_dwz,
5666 cu->objfile);
5667
5668 /* Go read the partial unit, if needed. */
5669 if (per_cu->v.psymtab == NULL)
5670 process_psymtab_comp_unit (per_cu, 1);
5671
5672 VEC_safe_push (dwarf2_per_cu_ptr,
5673 cu->per_cu->s.imported_symtabs, per_cu);
5674 }
5675 break;
5676 default:
5677 break;
5678 }
5679 }
5680
5681 /* If the die has a sibling, skip to the sibling. */
5682
5683 pdi = pdi->die_sibling;
5684 }
5685 }
5686
5687 /* Functions used to compute the fully scoped name of a partial DIE.
5688
5689 Normally, this is simple. For C++, the parent DIE's fully scoped
5690 name is concatenated with "::" and the partial DIE's name. For
5691 Java, the same thing occurs except that "." is used instead of "::".
5692 Enumerators are an exception; they use the scope of their parent
5693 enumeration type, i.e. the name of the enumeration type is not
5694 prepended to the enumerator.
5695
5696 There are two complexities. One is DW_AT_specification; in this
5697 case "parent" means the parent of the target of the specification,
5698 instead of the direct parent of the DIE. The other is compilers
5699 which do not emit DW_TAG_namespace; in this case we try to guess
5700 the fully qualified name of structure types from their members'
5701 linkage names. This must be done using the DIE's children rather
5702 than the children of any DW_AT_specification target. We only need
5703 to do this for structures at the top level, i.e. if the target of
5704 any DW_AT_specification (if any; otherwise the DIE itself) does not
5705 have a parent. */
5706
5707 /* Compute the scope prefix associated with PDI's parent, in
5708 compilation unit CU. The result will be allocated on CU's
5709 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5710 field. NULL is returned if no prefix is necessary. */
5711 static char *
5712 partial_die_parent_scope (struct partial_die_info *pdi,
5713 struct dwarf2_cu *cu)
5714 {
5715 char *grandparent_scope;
5716 struct partial_die_info *parent, *real_pdi;
5717
5718 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5719 then this means the parent of the specification DIE. */
5720
5721 real_pdi = pdi;
5722 while (real_pdi->has_specification)
5723 real_pdi = find_partial_die (real_pdi->spec_offset,
5724 real_pdi->spec_is_dwz, cu);
5725
5726 parent = real_pdi->die_parent;
5727 if (parent == NULL)
5728 return NULL;
5729
5730 if (parent->scope_set)
5731 return parent->scope;
5732
5733 fixup_partial_die (parent, cu);
5734
5735 grandparent_scope = partial_die_parent_scope (parent, cu);
5736
5737 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5738 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5739 Work around this problem here. */
5740 if (cu->language == language_cplus
5741 && parent->tag == DW_TAG_namespace
5742 && strcmp (parent->name, "::") == 0
5743 && grandparent_scope == NULL)
5744 {
5745 parent->scope = NULL;
5746 parent->scope_set = 1;
5747 return NULL;
5748 }
5749
5750 if (pdi->tag == DW_TAG_enumerator)
5751 /* Enumerators should not get the name of the enumeration as a prefix. */
5752 parent->scope = grandparent_scope;
5753 else if (parent->tag == DW_TAG_namespace
5754 || parent->tag == DW_TAG_module
5755 || parent->tag == DW_TAG_structure_type
5756 || parent->tag == DW_TAG_class_type
5757 || parent->tag == DW_TAG_interface_type
5758 || parent->tag == DW_TAG_union_type
5759 || parent->tag == DW_TAG_enumeration_type)
5760 {
5761 if (grandparent_scope == NULL)
5762 parent->scope = parent->name;
5763 else
5764 parent->scope = typename_concat (&cu->comp_unit_obstack,
5765 grandparent_scope,
5766 parent->name, 0, cu);
5767 }
5768 else
5769 {
5770 /* FIXME drow/2004-04-01: What should we be doing with
5771 function-local names? For partial symbols, we should probably be
5772 ignoring them. */
5773 complaint (&symfile_complaints,
5774 _("unhandled containing DIE tag %d for DIE at %d"),
5775 parent->tag, pdi->offset.sect_off);
5776 parent->scope = grandparent_scope;
5777 }
5778
5779 parent->scope_set = 1;
5780 return parent->scope;
5781 }
5782
5783 /* Return the fully scoped name associated with PDI, from compilation unit
5784 CU. The result will be allocated with malloc. */
5785
5786 static char *
5787 partial_die_full_name (struct partial_die_info *pdi,
5788 struct dwarf2_cu *cu)
5789 {
5790 char *parent_scope;
5791
5792 /* If this is a template instantiation, we can not work out the
5793 template arguments from partial DIEs. So, unfortunately, we have
5794 to go through the full DIEs. At least any work we do building
5795 types here will be reused if full symbols are loaded later. */
5796 if (pdi->has_template_arguments)
5797 {
5798 fixup_partial_die (pdi, cu);
5799
5800 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5801 {
5802 struct die_info *die;
5803 struct attribute attr;
5804 struct dwarf2_cu *ref_cu = cu;
5805
5806 /* DW_FORM_ref_addr is using section offset. */
5807 attr.name = 0;
5808 attr.form = DW_FORM_ref_addr;
5809 attr.u.unsnd = pdi->offset.sect_off;
5810 die = follow_die_ref (NULL, &attr, &ref_cu);
5811
5812 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5813 }
5814 }
5815
5816 parent_scope = partial_die_parent_scope (pdi, cu);
5817 if (parent_scope == NULL)
5818 return NULL;
5819 else
5820 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5821 }
5822
5823 static void
5824 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5825 {
5826 struct objfile *objfile = cu->objfile;
5827 CORE_ADDR addr = 0;
5828 char *actual_name = NULL;
5829 CORE_ADDR baseaddr;
5830 int built_actual_name = 0;
5831
5832 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5833
5834 actual_name = partial_die_full_name (pdi, cu);
5835 if (actual_name)
5836 built_actual_name = 1;
5837
5838 if (actual_name == NULL)
5839 actual_name = pdi->name;
5840
5841 switch (pdi->tag)
5842 {
5843 case DW_TAG_subprogram:
5844 if (pdi->is_external || cu->language == language_ada)
5845 {
5846 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5847 of the global scope. But in Ada, we want to be able to access
5848 nested procedures globally. So all Ada subprograms are stored
5849 in the global scope. */
5850 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5851 mst_text, objfile); */
5852 add_psymbol_to_list (actual_name, strlen (actual_name),
5853 built_actual_name,
5854 VAR_DOMAIN, LOC_BLOCK,
5855 &objfile->global_psymbols,
5856 0, pdi->lowpc + baseaddr,
5857 cu->language, objfile);
5858 }
5859 else
5860 {
5861 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5862 mst_file_text, objfile); */
5863 add_psymbol_to_list (actual_name, strlen (actual_name),
5864 built_actual_name,
5865 VAR_DOMAIN, LOC_BLOCK,
5866 &objfile->static_psymbols,
5867 0, pdi->lowpc + baseaddr,
5868 cu->language, objfile);
5869 }
5870 break;
5871 case DW_TAG_constant:
5872 {
5873 struct psymbol_allocation_list *list;
5874
5875 if (pdi->is_external)
5876 list = &objfile->global_psymbols;
5877 else
5878 list = &objfile->static_psymbols;
5879 add_psymbol_to_list (actual_name, strlen (actual_name),
5880 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5881 list, 0, 0, cu->language, objfile);
5882 }
5883 break;
5884 case DW_TAG_variable:
5885 if (pdi->d.locdesc)
5886 addr = decode_locdesc (pdi->d.locdesc, cu);
5887
5888 if (pdi->d.locdesc
5889 && addr == 0
5890 && !dwarf2_per_objfile->has_section_at_zero)
5891 {
5892 /* A global or static variable may also have been stripped
5893 out by the linker if unused, in which case its address
5894 will be nullified; do not add such variables into partial
5895 symbol table then. */
5896 }
5897 else if (pdi->is_external)
5898 {
5899 /* Global Variable.
5900 Don't enter into the minimal symbol tables as there is
5901 a minimal symbol table entry from the ELF symbols already.
5902 Enter into partial symbol table if it has a location
5903 descriptor or a type.
5904 If the location descriptor is missing, new_symbol will create
5905 a LOC_UNRESOLVED symbol, the address of the variable will then
5906 be determined from the minimal symbol table whenever the variable
5907 is referenced.
5908 The address for the partial symbol table entry is not
5909 used by GDB, but it comes in handy for debugging partial symbol
5910 table building. */
5911
5912 if (pdi->d.locdesc || pdi->has_type)
5913 add_psymbol_to_list (actual_name, strlen (actual_name),
5914 built_actual_name,
5915 VAR_DOMAIN, LOC_STATIC,
5916 &objfile->global_psymbols,
5917 0, addr + baseaddr,
5918 cu->language, objfile);
5919 }
5920 else
5921 {
5922 /* Static Variable. Skip symbols without location descriptors. */
5923 if (pdi->d.locdesc == NULL)
5924 {
5925 if (built_actual_name)
5926 xfree (actual_name);
5927 return;
5928 }
5929 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5930 mst_file_data, objfile); */
5931 add_psymbol_to_list (actual_name, strlen (actual_name),
5932 built_actual_name,
5933 VAR_DOMAIN, LOC_STATIC,
5934 &objfile->static_psymbols,
5935 0, addr + baseaddr,
5936 cu->language, objfile);
5937 }
5938 break;
5939 case DW_TAG_typedef:
5940 case DW_TAG_base_type:
5941 case DW_TAG_subrange_type:
5942 add_psymbol_to_list (actual_name, strlen (actual_name),
5943 built_actual_name,
5944 VAR_DOMAIN, LOC_TYPEDEF,
5945 &objfile->static_psymbols,
5946 0, (CORE_ADDR) 0, cu->language, objfile);
5947 break;
5948 case DW_TAG_namespace:
5949 add_psymbol_to_list (actual_name, strlen (actual_name),
5950 built_actual_name,
5951 VAR_DOMAIN, LOC_TYPEDEF,
5952 &objfile->global_psymbols,
5953 0, (CORE_ADDR) 0, cu->language, objfile);
5954 break;
5955 case DW_TAG_class_type:
5956 case DW_TAG_interface_type:
5957 case DW_TAG_structure_type:
5958 case DW_TAG_union_type:
5959 case DW_TAG_enumeration_type:
5960 /* Skip external references. The DWARF standard says in the section
5961 about "Structure, Union, and Class Type Entries": "An incomplete
5962 structure, union or class type is represented by a structure,
5963 union or class entry that does not have a byte size attribute
5964 and that has a DW_AT_declaration attribute." */
5965 if (!pdi->has_byte_size && pdi->is_declaration)
5966 {
5967 if (built_actual_name)
5968 xfree (actual_name);
5969 return;
5970 }
5971
5972 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5973 static vs. global. */
5974 add_psymbol_to_list (actual_name, strlen (actual_name),
5975 built_actual_name,
5976 STRUCT_DOMAIN, LOC_TYPEDEF,
5977 (cu->language == language_cplus
5978 || cu->language == language_java)
5979 ? &objfile->global_psymbols
5980 : &objfile->static_psymbols,
5981 0, (CORE_ADDR) 0, cu->language, objfile);
5982
5983 break;
5984 case DW_TAG_enumerator:
5985 add_psymbol_to_list (actual_name, strlen (actual_name),
5986 built_actual_name,
5987 VAR_DOMAIN, LOC_CONST,
5988 (cu->language == language_cplus
5989 || cu->language == language_java)
5990 ? &objfile->global_psymbols
5991 : &objfile->static_psymbols,
5992 0, (CORE_ADDR) 0, cu->language, objfile);
5993 break;
5994 default:
5995 break;
5996 }
5997
5998 if (built_actual_name)
5999 xfree (actual_name);
6000 }
6001
6002 /* Read a partial die corresponding to a namespace; also, add a symbol
6003 corresponding to that namespace to the symbol table. NAMESPACE is
6004 the name of the enclosing namespace. */
6005
6006 static void
6007 add_partial_namespace (struct partial_die_info *pdi,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 int need_pc, struct dwarf2_cu *cu)
6010 {
6011 /* Add a symbol for the namespace. */
6012
6013 add_partial_symbol (pdi, cu);
6014
6015 /* Now scan partial symbols in that namespace. */
6016
6017 if (pdi->has_children)
6018 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6019 }
6020
6021 /* Read a partial die corresponding to a Fortran module. */
6022
6023 static void
6024 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6025 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6026 {
6027 /* Now scan partial symbols in that module. */
6028
6029 if (pdi->has_children)
6030 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6031 }
6032
6033 /* Read a partial die corresponding to a subprogram and create a partial
6034 symbol for that subprogram. When the CU language allows it, this
6035 routine also defines a partial symbol for each nested subprogram
6036 that this subprogram contains.
6037
6038 DIE my also be a lexical block, in which case we simply search
6039 recursively for suprograms defined inside that lexical block.
6040 Again, this is only performed when the CU language allows this
6041 type of definitions. */
6042
6043 static void
6044 add_partial_subprogram (struct partial_die_info *pdi,
6045 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6046 int need_pc, struct dwarf2_cu *cu)
6047 {
6048 if (pdi->tag == DW_TAG_subprogram)
6049 {
6050 if (pdi->has_pc_info)
6051 {
6052 if (pdi->lowpc < *lowpc)
6053 *lowpc = pdi->lowpc;
6054 if (pdi->highpc > *highpc)
6055 *highpc = pdi->highpc;
6056 if (need_pc)
6057 {
6058 CORE_ADDR baseaddr;
6059 struct objfile *objfile = cu->objfile;
6060
6061 baseaddr = ANOFFSET (objfile->section_offsets,
6062 SECT_OFF_TEXT (objfile));
6063 addrmap_set_empty (objfile->psymtabs_addrmap,
6064 pdi->lowpc + baseaddr,
6065 pdi->highpc - 1 + baseaddr,
6066 cu->per_cu->v.psymtab);
6067 }
6068 }
6069
6070 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6071 {
6072 if (!pdi->is_declaration)
6073 /* Ignore subprogram DIEs that do not have a name, they are
6074 illegal. Do not emit a complaint at this point, we will
6075 do so when we convert this psymtab into a symtab. */
6076 if (pdi->name)
6077 add_partial_symbol (pdi, cu);
6078 }
6079 }
6080
6081 if (! pdi->has_children)
6082 return;
6083
6084 if (cu->language == language_ada)
6085 {
6086 pdi = pdi->die_child;
6087 while (pdi != NULL)
6088 {
6089 fixup_partial_die (pdi, cu);
6090 if (pdi->tag == DW_TAG_subprogram
6091 || pdi->tag == DW_TAG_lexical_block)
6092 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6093 pdi = pdi->die_sibling;
6094 }
6095 }
6096 }
6097
6098 /* Read a partial die corresponding to an enumeration type. */
6099
6100 static void
6101 add_partial_enumeration (struct partial_die_info *enum_pdi,
6102 struct dwarf2_cu *cu)
6103 {
6104 struct partial_die_info *pdi;
6105
6106 if (enum_pdi->name != NULL)
6107 add_partial_symbol (enum_pdi, cu);
6108
6109 pdi = enum_pdi->die_child;
6110 while (pdi)
6111 {
6112 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6113 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6114 else
6115 add_partial_symbol (pdi, cu);
6116 pdi = pdi->die_sibling;
6117 }
6118 }
6119
6120 /* Return the initial uleb128 in the die at INFO_PTR. */
6121
6122 static unsigned int
6123 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6124 {
6125 unsigned int bytes_read;
6126
6127 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6128 }
6129
6130 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6131 Return the corresponding abbrev, or NULL if the number is zero (indicating
6132 an empty DIE). In either case *BYTES_READ will be set to the length of
6133 the initial number. */
6134
6135 static struct abbrev_info *
6136 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6137 struct dwarf2_cu *cu)
6138 {
6139 bfd *abfd = cu->objfile->obfd;
6140 unsigned int abbrev_number;
6141 struct abbrev_info *abbrev;
6142
6143 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6144
6145 if (abbrev_number == 0)
6146 return NULL;
6147
6148 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6149 if (!abbrev)
6150 {
6151 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6152 abbrev_number, bfd_get_filename (abfd));
6153 }
6154
6155 return abbrev;
6156 }
6157
6158 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6159 Returns a pointer to the end of a series of DIEs, terminated by an empty
6160 DIE. Any children of the skipped DIEs will also be skipped. */
6161
6162 static gdb_byte *
6163 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6164 {
6165 struct dwarf2_cu *cu = reader->cu;
6166 struct abbrev_info *abbrev;
6167 unsigned int bytes_read;
6168
6169 while (1)
6170 {
6171 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6172 if (abbrev == NULL)
6173 return info_ptr + bytes_read;
6174 else
6175 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6176 }
6177 }
6178
6179 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6180 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6181 abbrev corresponding to that skipped uleb128 should be passed in
6182 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6183 children. */
6184
6185 static gdb_byte *
6186 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6187 struct abbrev_info *abbrev)
6188 {
6189 unsigned int bytes_read;
6190 struct attribute attr;
6191 bfd *abfd = reader->abfd;
6192 struct dwarf2_cu *cu = reader->cu;
6193 gdb_byte *buffer = reader->buffer;
6194 const gdb_byte *buffer_end = reader->buffer_end;
6195 gdb_byte *start_info_ptr = info_ptr;
6196 unsigned int form, i;
6197
6198 for (i = 0; i < abbrev->num_attrs; i++)
6199 {
6200 /* The only abbrev we care about is DW_AT_sibling. */
6201 if (abbrev->attrs[i].name == DW_AT_sibling)
6202 {
6203 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6204 if (attr.form == DW_FORM_ref_addr)
6205 complaint (&symfile_complaints,
6206 _("ignoring absolute DW_AT_sibling"));
6207 else
6208 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6209 }
6210
6211 /* If it isn't DW_AT_sibling, skip this attribute. */
6212 form = abbrev->attrs[i].form;
6213 skip_attribute:
6214 switch (form)
6215 {
6216 case DW_FORM_ref_addr:
6217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6218 and later it is offset sized. */
6219 if (cu->header.version == 2)
6220 info_ptr += cu->header.addr_size;
6221 else
6222 info_ptr += cu->header.offset_size;
6223 break;
6224 case DW_FORM_GNU_ref_alt:
6225 info_ptr += cu->header.offset_size;
6226 break;
6227 case DW_FORM_addr:
6228 info_ptr += cu->header.addr_size;
6229 break;
6230 case DW_FORM_data1:
6231 case DW_FORM_ref1:
6232 case DW_FORM_flag:
6233 info_ptr += 1;
6234 break;
6235 case DW_FORM_flag_present:
6236 break;
6237 case DW_FORM_data2:
6238 case DW_FORM_ref2:
6239 info_ptr += 2;
6240 break;
6241 case DW_FORM_data4:
6242 case DW_FORM_ref4:
6243 info_ptr += 4;
6244 break;
6245 case DW_FORM_data8:
6246 case DW_FORM_ref8:
6247 case DW_FORM_ref_sig8:
6248 info_ptr += 8;
6249 break;
6250 case DW_FORM_string:
6251 read_direct_string (abfd, info_ptr, &bytes_read);
6252 info_ptr += bytes_read;
6253 break;
6254 case DW_FORM_sec_offset:
6255 case DW_FORM_strp:
6256 case DW_FORM_GNU_strp_alt:
6257 info_ptr += cu->header.offset_size;
6258 break;
6259 case DW_FORM_exprloc:
6260 case DW_FORM_block:
6261 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6262 info_ptr += bytes_read;
6263 break;
6264 case DW_FORM_block1:
6265 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6266 break;
6267 case DW_FORM_block2:
6268 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6269 break;
6270 case DW_FORM_block4:
6271 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6272 break;
6273 case DW_FORM_sdata:
6274 case DW_FORM_udata:
6275 case DW_FORM_ref_udata:
6276 case DW_FORM_GNU_addr_index:
6277 case DW_FORM_GNU_str_index:
6278 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6279 break;
6280 case DW_FORM_indirect:
6281 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6282 info_ptr += bytes_read;
6283 /* We need to continue parsing from here, so just go back to
6284 the top. */
6285 goto skip_attribute;
6286
6287 default:
6288 error (_("Dwarf Error: Cannot handle %s "
6289 "in DWARF reader [in module %s]"),
6290 dwarf_form_name (form),
6291 bfd_get_filename (abfd));
6292 }
6293 }
6294
6295 if (abbrev->has_children)
6296 return skip_children (reader, info_ptr);
6297 else
6298 return info_ptr;
6299 }
6300
6301 /* Locate ORIG_PDI's sibling.
6302 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6303
6304 static gdb_byte *
6305 locate_pdi_sibling (const struct die_reader_specs *reader,
6306 struct partial_die_info *orig_pdi,
6307 gdb_byte *info_ptr)
6308 {
6309 /* Do we know the sibling already? */
6310
6311 if (orig_pdi->sibling)
6312 return orig_pdi->sibling;
6313
6314 /* Are there any children to deal with? */
6315
6316 if (!orig_pdi->has_children)
6317 return info_ptr;
6318
6319 /* Skip the children the long way. */
6320
6321 return skip_children (reader, info_ptr);
6322 }
6323
6324 /* Expand this partial symbol table into a full symbol table. */
6325
6326 static void
6327 dwarf2_psymtab_to_symtab (struct objfile *objfile, struct partial_symtab *pst)
6328 {
6329 if (pst != NULL)
6330 {
6331 if (pst->readin)
6332 {
6333 warning (_("bug: psymtab for %s is already read in."),
6334 pst->filename);
6335 }
6336 else
6337 {
6338 if (info_verbose)
6339 {
6340 printf_filtered (_("Reading in symbols for %s..."),
6341 pst->filename);
6342 gdb_flush (gdb_stdout);
6343 }
6344
6345 /* Restore our global data. */
6346 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6347
6348 /* If this psymtab is constructed from a debug-only objfile, the
6349 has_section_at_zero flag will not necessarily be correct. We
6350 can get the correct value for this flag by looking at the data
6351 associated with the (presumably stripped) associated objfile. */
6352 if (objfile->separate_debug_objfile_backlink)
6353 {
6354 struct dwarf2_per_objfile *dpo_backlink
6355 = objfile_data (objfile->separate_debug_objfile_backlink,
6356 dwarf2_objfile_data_key);
6357
6358 dwarf2_per_objfile->has_section_at_zero
6359 = dpo_backlink->has_section_at_zero;
6360 }
6361
6362 dwarf2_per_objfile->reading_partial_symbols = 0;
6363
6364 psymtab_to_symtab_1 (pst);
6365
6366 /* Finish up the debug error message. */
6367 if (info_verbose)
6368 printf_filtered (_("done.\n"));
6369 }
6370 }
6371
6372 process_cu_includes ();
6373 }
6374 \f
6375 /* Reading in full CUs. */
6376
6377 /* Add PER_CU to the queue. */
6378
6379 static void
6380 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6381 enum language pretend_language)
6382 {
6383 struct dwarf2_queue_item *item;
6384
6385 per_cu->queued = 1;
6386 item = xmalloc (sizeof (*item));
6387 item->per_cu = per_cu;
6388 item->pretend_language = pretend_language;
6389 item->next = NULL;
6390
6391 if (dwarf2_queue == NULL)
6392 dwarf2_queue = item;
6393 else
6394 dwarf2_queue_tail->next = item;
6395
6396 dwarf2_queue_tail = item;
6397 }
6398
6399 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6400 unit and add it to our queue.
6401 The result is non-zero if PER_CU was queued, otherwise the result is zero
6402 meaning either PER_CU is already queued or it is already loaded. */
6403
6404 static int
6405 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6406 struct dwarf2_per_cu_data *per_cu,
6407 enum language pretend_language)
6408 {
6409 /* We may arrive here during partial symbol reading, if we need full
6410 DIEs to process an unusual case (e.g. template arguments). Do
6411 not queue PER_CU, just tell our caller to load its DIEs. */
6412 if (dwarf2_per_objfile->reading_partial_symbols)
6413 {
6414 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6415 return 1;
6416 return 0;
6417 }
6418
6419 /* Mark the dependence relation so that we don't flush PER_CU
6420 too early. */
6421 dwarf2_add_dependence (this_cu, per_cu);
6422
6423 /* If it's already on the queue, we have nothing to do. */
6424 if (per_cu->queued)
6425 return 0;
6426
6427 /* If the compilation unit is already loaded, just mark it as
6428 used. */
6429 if (per_cu->cu != NULL)
6430 {
6431 per_cu->cu->last_used = 0;
6432 return 0;
6433 }
6434
6435 /* Add it to the queue. */
6436 queue_comp_unit (per_cu, pretend_language);
6437
6438 return 1;
6439 }
6440
6441 /* Process the queue. */
6442
6443 static void
6444 process_queue (void)
6445 {
6446 struct dwarf2_queue_item *item, *next_item;
6447
6448 if (dwarf2_read_debug)
6449 {
6450 fprintf_unfiltered (gdb_stdlog,
6451 "Expanding one or more symtabs of objfile %s ...\n",
6452 dwarf2_per_objfile->objfile->name);
6453 }
6454
6455 /* The queue starts out with one item, but following a DIE reference
6456 may load a new CU, adding it to the end of the queue. */
6457 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6458 {
6459 if (dwarf2_per_objfile->using_index
6460 ? !item->per_cu->v.quick->symtab
6461 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6462 {
6463 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6464
6465 if (dwarf2_read_debug)
6466 {
6467 fprintf_unfiltered (gdb_stdlog,
6468 "Expanding symtab of %s at offset 0x%x\n",
6469 per_cu->is_debug_types ? "TU" : "CU",
6470 per_cu->offset.sect_off);
6471 }
6472
6473 if (per_cu->is_debug_types)
6474 process_full_type_unit (per_cu, item->pretend_language);
6475 else
6476 process_full_comp_unit (per_cu, item->pretend_language);
6477
6478 if (dwarf2_read_debug)
6479 {
6480 fprintf_unfiltered (gdb_stdlog,
6481 "Done expanding %s at offset 0x%x\n",
6482 per_cu->is_debug_types ? "TU" : "CU",
6483 per_cu->offset.sect_off);
6484 }
6485 }
6486
6487 item->per_cu->queued = 0;
6488 next_item = item->next;
6489 xfree (item);
6490 }
6491
6492 dwarf2_queue_tail = NULL;
6493
6494 if (dwarf2_read_debug)
6495 {
6496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6497 dwarf2_per_objfile->objfile->name);
6498 }
6499 }
6500
6501 /* Free all allocated queue entries. This function only releases anything if
6502 an error was thrown; if the queue was processed then it would have been
6503 freed as we went along. */
6504
6505 static void
6506 dwarf2_release_queue (void *dummy)
6507 {
6508 struct dwarf2_queue_item *item, *last;
6509
6510 item = dwarf2_queue;
6511 while (item)
6512 {
6513 /* Anything still marked queued is likely to be in an
6514 inconsistent state, so discard it. */
6515 if (item->per_cu->queued)
6516 {
6517 if (item->per_cu->cu != NULL)
6518 free_one_cached_comp_unit (item->per_cu);
6519 item->per_cu->queued = 0;
6520 }
6521
6522 last = item;
6523 item = item->next;
6524 xfree (last);
6525 }
6526
6527 dwarf2_queue = dwarf2_queue_tail = NULL;
6528 }
6529
6530 /* Read in full symbols for PST, and anything it depends on. */
6531
6532 static void
6533 psymtab_to_symtab_1 (struct partial_symtab *pst)
6534 {
6535 struct dwarf2_per_cu_data *per_cu;
6536 int i;
6537
6538 if (pst->readin)
6539 return;
6540
6541 for (i = 0; i < pst->number_of_dependencies; i++)
6542 if (!pst->dependencies[i]->readin
6543 && pst->dependencies[i]->user == NULL)
6544 {
6545 /* Inform about additional files that need to be read in. */
6546 if (info_verbose)
6547 {
6548 /* FIXME: i18n: Need to make this a single string. */
6549 fputs_filtered (" ", gdb_stdout);
6550 wrap_here ("");
6551 fputs_filtered ("and ", gdb_stdout);
6552 wrap_here ("");
6553 printf_filtered ("%s...", pst->dependencies[i]->filename);
6554 wrap_here (""); /* Flush output. */
6555 gdb_flush (gdb_stdout);
6556 }
6557 psymtab_to_symtab_1 (pst->dependencies[i]);
6558 }
6559
6560 per_cu = pst->read_symtab_private;
6561
6562 if (per_cu == NULL)
6563 {
6564 /* It's an include file, no symbols to read for it.
6565 Everything is in the parent symtab. */
6566 pst->readin = 1;
6567 return;
6568 }
6569
6570 dw2_do_instantiate_symtab (per_cu);
6571 }
6572
6573 /* Trivial hash function for die_info: the hash value of a DIE
6574 is its offset in .debug_info for this objfile. */
6575
6576 static hashval_t
6577 die_hash (const void *item)
6578 {
6579 const struct die_info *die = item;
6580
6581 return die->offset.sect_off;
6582 }
6583
6584 /* Trivial comparison function for die_info structures: two DIEs
6585 are equal if they have the same offset. */
6586
6587 static int
6588 die_eq (const void *item_lhs, const void *item_rhs)
6589 {
6590 const struct die_info *die_lhs = item_lhs;
6591 const struct die_info *die_rhs = item_rhs;
6592
6593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6594 }
6595
6596 /* die_reader_func for load_full_comp_unit.
6597 This is identical to read_signatured_type_reader,
6598 but is kept separate for now. */
6599
6600 static void
6601 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6602 gdb_byte *info_ptr,
6603 struct die_info *comp_unit_die,
6604 int has_children,
6605 void *data)
6606 {
6607 struct dwarf2_cu *cu = reader->cu;
6608 enum language *language_ptr = data;
6609
6610 gdb_assert (cu->die_hash == NULL);
6611 cu->die_hash =
6612 htab_create_alloc_ex (cu->header.length / 12,
6613 die_hash,
6614 die_eq,
6615 NULL,
6616 &cu->comp_unit_obstack,
6617 hashtab_obstack_allocate,
6618 dummy_obstack_deallocate);
6619
6620 if (has_children)
6621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6622 &info_ptr, comp_unit_die);
6623 cu->dies = comp_unit_die;
6624 /* comp_unit_die is not stored in die_hash, no need. */
6625
6626 /* We try not to read any attributes in this function, because not
6627 all CUs needed for references have been loaded yet, and symbol
6628 table processing isn't initialized. But we have to set the CU language,
6629 or we won't be able to build types correctly.
6630 Similarly, if we do not read the producer, we can not apply
6631 producer-specific interpretation. */
6632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6633 }
6634
6635 /* Load the DIEs associated with PER_CU into memory. */
6636
6637 static void
6638 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6639 enum language pretend_language)
6640 {
6641 gdb_assert (! this_cu->is_debug_types);
6642
6643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6644 load_full_comp_unit_reader, &pretend_language);
6645 }
6646
6647 /* Add a DIE to the delayed physname list. */
6648
6649 static void
6650 add_to_method_list (struct type *type, int fnfield_index, int index,
6651 const char *name, struct die_info *die,
6652 struct dwarf2_cu *cu)
6653 {
6654 struct delayed_method_info mi;
6655 mi.type = type;
6656 mi.fnfield_index = fnfield_index;
6657 mi.index = index;
6658 mi.name = name;
6659 mi.die = die;
6660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6661 }
6662
6663 /* A cleanup for freeing the delayed method list. */
6664
6665 static void
6666 free_delayed_list (void *ptr)
6667 {
6668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6669 if (cu->method_list != NULL)
6670 {
6671 VEC_free (delayed_method_info, cu->method_list);
6672 cu->method_list = NULL;
6673 }
6674 }
6675
6676 /* Compute the physnames of any methods on the CU's method list.
6677
6678 The computation of method physnames is delayed in order to avoid the
6679 (bad) condition that one of the method's formal parameters is of an as yet
6680 incomplete type. */
6681
6682 static void
6683 compute_delayed_physnames (struct dwarf2_cu *cu)
6684 {
6685 int i;
6686 struct delayed_method_info *mi;
6687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6688 {
6689 const char *physname;
6690 struct fn_fieldlist *fn_flp
6691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6692 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6694 }
6695 }
6696
6697 /* Go objects should be embedded in a DW_TAG_module DIE,
6698 and it's not clear if/how imported objects will appear.
6699 To keep Go support simple until that's worked out,
6700 go back through what we've read and create something usable.
6701 We could do this while processing each DIE, and feels kinda cleaner,
6702 but that way is more invasive.
6703 This is to, for example, allow the user to type "p var" or "b main"
6704 without having to specify the package name, and allow lookups
6705 of module.object to work in contexts that use the expression
6706 parser. */
6707
6708 static void
6709 fixup_go_packaging (struct dwarf2_cu *cu)
6710 {
6711 char *package_name = NULL;
6712 struct pending *list;
6713 int i;
6714
6715 for (list = global_symbols; list != NULL; list = list->next)
6716 {
6717 for (i = 0; i < list->nsyms; ++i)
6718 {
6719 struct symbol *sym = list->symbol[i];
6720
6721 if (SYMBOL_LANGUAGE (sym) == language_go
6722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6723 {
6724 char *this_package_name = go_symbol_package_name (sym);
6725
6726 if (this_package_name == NULL)
6727 continue;
6728 if (package_name == NULL)
6729 package_name = this_package_name;
6730 else
6731 {
6732 if (strcmp (package_name, this_package_name) != 0)
6733 complaint (&symfile_complaints,
6734 _("Symtab %s has objects from two different Go packages: %s and %s"),
6735 (SYMBOL_SYMTAB (sym)
6736 && SYMBOL_SYMTAB (sym)->filename
6737 ? SYMBOL_SYMTAB (sym)->filename
6738 : cu->objfile->name),
6739 this_package_name, package_name);
6740 xfree (this_package_name);
6741 }
6742 }
6743 }
6744 }
6745
6746 if (package_name != NULL)
6747 {
6748 struct objfile *objfile = cu->objfile;
6749 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6750 package_name, objfile);
6751 struct symbol *sym;
6752
6753 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6754
6755 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6756 SYMBOL_SET_LANGUAGE (sym, language_go);
6757 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6758 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6759 e.g., "main" finds the "main" module and not C's main(). */
6760 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6761 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6762 SYMBOL_TYPE (sym) = type;
6763
6764 add_symbol_to_list (sym, &global_symbols);
6765
6766 xfree (package_name);
6767 }
6768 }
6769
6770 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6771
6772 /* Return the symtab for PER_CU. This works properly regardless of
6773 whether we're using the index or psymtabs. */
6774
6775 static struct symtab *
6776 get_symtab (struct dwarf2_per_cu_data *per_cu)
6777 {
6778 return (dwarf2_per_objfile->using_index
6779 ? per_cu->v.quick->symtab
6780 : per_cu->v.psymtab->symtab);
6781 }
6782
6783 /* A helper function for computing the list of all symbol tables
6784 included by PER_CU. */
6785
6786 static void
6787 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6788 htab_t all_children,
6789 struct dwarf2_per_cu_data *per_cu)
6790 {
6791 void **slot;
6792 int ix;
6793 struct dwarf2_per_cu_data *iter;
6794
6795 slot = htab_find_slot (all_children, per_cu, INSERT);
6796 if (*slot != NULL)
6797 {
6798 /* This inclusion and its children have been processed. */
6799 return;
6800 }
6801
6802 *slot = per_cu;
6803 /* Only add a CU if it has a symbol table. */
6804 if (get_symtab (per_cu) != NULL)
6805 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6806
6807 for (ix = 0;
6808 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6809 ++ix)
6810 recursively_compute_inclusions (result, all_children, iter);
6811 }
6812
6813 /* Compute the symtab 'includes' fields for the symtab related to
6814 PER_CU. */
6815
6816 static void
6817 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6818 {
6819 gdb_assert (! per_cu->is_debug_types);
6820
6821 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6822 {
6823 int ix, len;
6824 struct dwarf2_per_cu_data *iter;
6825 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6826 htab_t all_children;
6827 struct symtab *symtab = get_symtab (per_cu);
6828
6829 /* If we don't have a symtab, we can just skip this case. */
6830 if (symtab == NULL)
6831 return;
6832
6833 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6834 NULL, xcalloc, xfree);
6835
6836 for (ix = 0;
6837 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6838 ix, iter);
6839 ++ix)
6840 recursively_compute_inclusions (&result_children, all_children, iter);
6841
6842 /* Now we have a transitive closure of all the included CUs, so
6843 we can convert it to a list of symtabs. */
6844 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6845 symtab->includes
6846 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6847 (len + 1) * sizeof (struct symtab *));
6848 for (ix = 0;
6849 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6850 ++ix)
6851 symtab->includes[ix] = get_symtab (iter);
6852 symtab->includes[len] = NULL;
6853
6854 VEC_free (dwarf2_per_cu_ptr, result_children);
6855 htab_delete (all_children);
6856 }
6857 }
6858
6859 /* Compute the 'includes' field for the symtabs of all the CUs we just
6860 read. */
6861
6862 static void
6863 process_cu_includes (void)
6864 {
6865 int ix;
6866 struct dwarf2_per_cu_data *iter;
6867
6868 for (ix = 0;
6869 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6870 ix, iter);
6871 ++ix)
6872 {
6873 if (! iter->is_debug_types)
6874 compute_symtab_includes (iter);
6875 }
6876
6877 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6878 }
6879
6880 /* Generate full symbol information for PER_CU, whose DIEs have
6881 already been loaded into memory. */
6882
6883 static void
6884 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6885 enum language pretend_language)
6886 {
6887 struct dwarf2_cu *cu = per_cu->cu;
6888 struct objfile *objfile = per_cu->objfile;
6889 CORE_ADDR lowpc, highpc;
6890 struct symtab *symtab;
6891 struct cleanup *back_to, *delayed_list_cleanup;
6892 CORE_ADDR baseaddr;
6893 struct block *static_block;
6894
6895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6896
6897 buildsym_init ();
6898 back_to = make_cleanup (really_free_pendings, NULL);
6899 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6900
6901 cu->list_in_scope = &file_symbols;
6902
6903 cu->language = pretend_language;
6904 cu->language_defn = language_def (cu->language);
6905
6906 /* Do line number decoding in read_file_scope () */
6907 process_die (cu->dies, cu);
6908
6909 /* For now fudge the Go package. */
6910 if (cu->language == language_go)
6911 fixup_go_packaging (cu);
6912
6913 /* Now that we have processed all the DIEs in the CU, all the types
6914 should be complete, and it should now be safe to compute all of the
6915 physnames. */
6916 compute_delayed_physnames (cu);
6917 do_cleanups (delayed_list_cleanup);
6918
6919 /* Some compilers don't define a DW_AT_high_pc attribute for the
6920 compilation unit. If the DW_AT_high_pc is missing, synthesize
6921 it, by scanning the DIE's below the compilation unit. */
6922 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6923
6924 static_block
6925 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6926 per_cu->s.imported_symtabs != NULL);
6927
6928 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6929 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6930 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6931 addrmap to help ensure it has an accurate map of pc values belonging to
6932 this comp unit. */
6933 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6934
6935 symtab = end_symtab_from_static_block (static_block, objfile,
6936 SECT_OFF_TEXT (objfile), 0);
6937
6938 if (symtab != NULL)
6939 {
6940 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6941
6942 /* Set symtab language to language from DW_AT_language. If the
6943 compilation is from a C file generated by language preprocessors, do
6944 not set the language if it was already deduced by start_subfile. */
6945 if (!(cu->language == language_c && symtab->language != language_c))
6946 symtab->language = cu->language;
6947
6948 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6949 produce DW_AT_location with location lists but it can be possibly
6950 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6951 there were bugs in prologue debug info, fixed later in GCC-4.5
6952 by "unwind info for epilogues" patch (which is not directly related).
6953
6954 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6955 needed, it would be wrong due to missing DW_AT_producer there.
6956
6957 Still one can confuse GDB by using non-standard GCC compilation
6958 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6959 */
6960 if (cu->has_loclist && gcc_4_minor >= 5)
6961 symtab->locations_valid = 1;
6962
6963 if (gcc_4_minor >= 5)
6964 symtab->epilogue_unwind_valid = 1;
6965
6966 symtab->call_site_htab = cu->call_site_htab;
6967 }
6968
6969 if (dwarf2_per_objfile->using_index)
6970 per_cu->v.quick->symtab = symtab;
6971 else
6972 {
6973 struct partial_symtab *pst = per_cu->v.psymtab;
6974 pst->symtab = symtab;
6975 pst->readin = 1;
6976 }
6977
6978 /* Push it for inclusion processing later. */
6979 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6980
6981 do_cleanups (back_to);
6982 }
6983
6984 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6985 already been loaded into memory. */
6986
6987 static void
6988 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6989 enum language pretend_language)
6990 {
6991 struct dwarf2_cu *cu = per_cu->cu;
6992 struct objfile *objfile = per_cu->objfile;
6993 struct symtab *symtab;
6994 struct cleanup *back_to, *delayed_list_cleanup;
6995
6996 buildsym_init ();
6997 back_to = make_cleanup (really_free_pendings, NULL);
6998 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6999
7000 cu->list_in_scope = &file_symbols;
7001
7002 cu->language = pretend_language;
7003 cu->language_defn = language_def (cu->language);
7004
7005 /* The symbol tables are set up in read_type_unit_scope. */
7006 process_die (cu->dies, cu);
7007
7008 /* For now fudge the Go package. */
7009 if (cu->language == language_go)
7010 fixup_go_packaging (cu);
7011
7012 /* Now that we have processed all the DIEs in the CU, all the types
7013 should be complete, and it should now be safe to compute all of the
7014 physnames. */
7015 compute_delayed_physnames (cu);
7016 do_cleanups (delayed_list_cleanup);
7017
7018 /* TUs share symbol tables.
7019 If this is the first TU to use this symtab, complete the construction
7020 of it with end_expandable_symtab. Otherwise, complete the addition of
7021 this TU's symbols to the existing symtab. */
7022 if (per_cu->s.type_unit_group->primary_symtab == NULL)
7023 {
7024 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7025 per_cu->s.type_unit_group->primary_symtab = symtab;
7026
7027 if (symtab != NULL)
7028 {
7029 /* Set symtab language to language from DW_AT_language. If the
7030 compilation is from a C file generated by language preprocessors,
7031 do not set the language if it was already deduced by
7032 start_subfile. */
7033 if (!(cu->language == language_c && symtab->language != language_c))
7034 symtab->language = cu->language;
7035 }
7036 }
7037 else
7038 {
7039 augment_type_symtab (objfile,
7040 per_cu->s.type_unit_group->primary_symtab);
7041 symtab = per_cu->s.type_unit_group->primary_symtab;
7042 }
7043
7044 if (dwarf2_per_objfile->using_index)
7045 per_cu->v.quick->symtab = symtab;
7046 else
7047 {
7048 struct partial_symtab *pst = per_cu->v.psymtab;
7049 pst->symtab = symtab;
7050 pst->readin = 1;
7051 }
7052
7053 do_cleanups (back_to);
7054 }
7055
7056 /* Process an imported unit DIE. */
7057
7058 static void
7059 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7060 {
7061 struct attribute *attr;
7062
7063 /* For now we don't handle imported units in type units. */
7064 if (cu->per_cu->is_debug_types)
7065 {
7066 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7067 " supported in type units [in module %s]"),
7068 cu->objfile->name);
7069 }
7070
7071 attr = dwarf2_attr (die, DW_AT_import, cu);
7072 if (attr != NULL)
7073 {
7074 struct dwarf2_per_cu_data *per_cu;
7075 struct symtab *imported_symtab;
7076 sect_offset offset;
7077 int is_dwz;
7078
7079 offset = dwarf2_get_ref_die_offset (attr);
7080 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7081 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7082
7083 /* Queue the unit, if needed. */
7084 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7085 load_full_comp_unit (per_cu, cu->language);
7086
7087 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7088 per_cu);
7089 }
7090 }
7091
7092 /* Process a die and its children. */
7093
7094 static void
7095 process_die (struct die_info *die, struct dwarf2_cu *cu)
7096 {
7097 switch (die->tag)
7098 {
7099 case DW_TAG_padding:
7100 break;
7101 case DW_TAG_compile_unit:
7102 case DW_TAG_partial_unit:
7103 read_file_scope (die, cu);
7104 break;
7105 case DW_TAG_type_unit:
7106 read_type_unit_scope (die, cu);
7107 break;
7108 case DW_TAG_subprogram:
7109 case DW_TAG_inlined_subroutine:
7110 read_func_scope (die, cu);
7111 break;
7112 case DW_TAG_lexical_block:
7113 case DW_TAG_try_block:
7114 case DW_TAG_catch_block:
7115 read_lexical_block_scope (die, cu);
7116 break;
7117 case DW_TAG_GNU_call_site:
7118 read_call_site_scope (die, cu);
7119 break;
7120 case DW_TAG_class_type:
7121 case DW_TAG_interface_type:
7122 case DW_TAG_structure_type:
7123 case DW_TAG_union_type:
7124 process_structure_scope (die, cu);
7125 break;
7126 case DW_TAG_enumeration_type:
7127 process_enumeration_scope (die, cu);
7128 break;
7129
7130 /* These dies have a type, but processing them does not create
7131 a symbol or recurse to process the children. Therefore we can
7132 read them on-demand through read_type_die. */
7133 case DW_TAG_subroutine_type:
7134 case DW_TAG_set_type:
7135 case DW_TAG_array_type:
7136 case DW_TAG_pointer_type:
7137 case DW_TAG_ptr_to_member_type:
7138 case DW_TAG_reference_type:
7139 case DW_TAG_string_type:
7140 break;
7141
7142 case DW_TAG_base_type:
7143 case DW_TAG_subrange_type:
7144 case DW_TAG_typedef:
7145 /* Add a typedef symbol for the type definition, if it has a
7146 DW_AT_name. */
7147 new_symbol (die, read_type_die (die, cu), cu);
7148 break;
7149 case DW_TAG_common_block:
7150 read_common_block (die, cu);
7151 break;
7152 case DW_TAG_common_inclusion:
7153 break;
7154 case DW_TAG_namespace:
7155 processing_has_namespace_info = 1;
7156 read_namespace (die, cu);
7157 break;
7158 case DW_TAG_module:
7159 processing_has_namespace_info = 1;
7160 read_module (die, cu);
7161 break;
7162 case DW_TAG_imported_declaration:
7163 case DW_TAG_imported_module:
7164 processing_has_namespace_info = 1;
7165 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7166 || cu->language != language_fortran))
7167 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7168 dwarf_tag_name (die->tag));
7169 read_import_statement (die, cu);
7170 break;
7171
7172 case DW_TAG_imported_unit:
7173 process_imported_unit_die (die, cu);
7174 break;
7175
7176 default:
7177 new_symbol (die, NULL, cu);
7178 break;
7179 }
7180 }
7181
7182 /* A helper function for dwarf2_compute_name which determines whether DIE
7183 needs to have the name of the scope prepended to the name listed in the
7184 die. */
7185
7186 static int
7187 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7188 {
7189 struct attribute *attr;
7190
7191 switch (die->tag)
7192 {
7193 case DW_TAG_namespace:
7194 case DW_TAG_typedef:
7195 case DW_TAG_class_type:
7196 case DW_TAG_interface_type:
7197 case DW_TAG_structure_type:
7198 case DW_TAG_union_type:
7199 case DW_TAG_enumeration_type:
7200 case DW_TAG_enumerator:
7201 case DW_TAG_subprogram:
7202 case DW_TAG_member:
7203 return 1;
7204
7205 case DW_TAG_variable:
7206 case DW_TAG_constant:
7207 /* We only need to prefix "globally" visible variables. These include
7208 any variable marked with DW_AT_external or any variable that
7209 lives in a namespace. [Variables in anonymous namespaces
7210 require prefixing, but they are not DW_AT_external.] */
7211
7212 if (dwarf2_attr (die, DW_AT_specification, cu))
7213 {
7214 struct dwarf2_cu *spec_cu = cu;
7215
7216 return die_needs_namespace (die_specification (die, &spec_cu),
7217 spec_cu);
7218 }
7219
7220 attr = dwarf2_attr (die, DW_AT_external, cu);
7221 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7222 && die->parent->tag != DW_TAG_module)
7223 return 0;
7224 /* A variable in a lexical block of some kind does not need a
7225 namespace, even though in C++ such variables may be external
7226 and have a mangled name. */
7227 if (die->parent->tag == DW_TAG_lexical_block
7228 || die->parent->tag == DW_TAG_try_block
7229 || die->parent->tag == DW_TAG_catch_block
7230 || die->parent->tag == DW_TAG_subprogram)
7231 return 0;
7232 return 1;
7233
7234 default:
7235 return 0;
7236 }
7237 }
7238
7239 /* Retrieve the last character from a mem_file. */
7240
7241 static void
7242 do_ui_file_peek_last (void *object, const char *buffer, long length)
7243 {
7244 char *last_char_p = (char *) object;
7245
7246 if (length > 0)
7247 *last_char_p = buffer[length - 1];
7248 }
7249
7250 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7251 compute the physname for the object, which include a method's:
7252 - formal parameters (C++/Java),
7253 - receiver type (Go),
7254 - return type (Java).
7255
7256 The term "physname" is a bit confusing.
7257 For C++, for example, it is the demangled name.
7258 For Go, for example, it's the mangled name.
7259
7260 For Ada, return the DIE's linkage name rather than the fully qualified
7261 name. PHYSNAME is ignored..
7262
7263 The result is allocated on the objfile_obstack and canonicalized. */
7264
7265 static const char *
7266 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7267 int physname)
7268 {
7269 struct objfile *objfile = cu->objfile;
7270
7271 if (name == NULL)
7272 name = dwarf2_name (die, cu);
7273
7274 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7275 compute it by typename_concat inside GDB. */
7276 if (cu->language == language_ada
7277 || (cu->language == language_fortran && physname))
7278 {
7279 /* For Ada unit, we prefer the linkage name over the name, as
7280 the former contains the exported name, which the user expects
7281 to be able to reference. Ideally, we want the user to be able
7282 to reference this entity using either natural or linkage name,
7283 but we haven't started looking at this enhancement yet. */
7284 struct attribute *attr;
7285
7286 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7287 if (attr == NULL)
7288 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7289 if (attr && DW_STRING (attr))
7290 return DW_STRING (attr);
7291 }
7292
7293 /* These are the only languages we know how to qualify names in. */
7294 if (name != NULL
7295 && (cu->language == language_cplus || cu->language == language_java
7296 || cu->language == language_fortran))
7297 {
7298 if (die_needs_namespace (die, cu))
7299 {
7300 long length;
7301 const char *prefix;
7302 struct ui_file *buf;
7303
7304 prefix = determine_prefix (die, cu);
7305 buf = mem_fileopen ();
7306 if (*prefix != '\0')
7307 {
7308 char *prefixed_name = typename_concat (NULL, prefix, name,
7309 physname, cu);
7310
7311 fputs_unfiltered (prefixed_name, buf);
7312 xfree (prefixed_name);
7313 }
7314 else
7315 fputs_unfiltered (name, buf);
7316
7317 /* Template parameters may be specified in the DIE's DW_AT_name, or
7318 as children with DW_TAG_template_type_param or
7319 DW_TAG_value_type_param. If the latter, add them to the name
7320 here. If the name already has template parameters, then
7321 skip this step; some versions of GCC emit both, and
7322 it is more efficient to use the pre-computed name.
7323
7324 Something to keep in mind about this process: it is very
7325 unlikely, or in some cases downright impossible, to produce
7326 something that will match the mangled name of a function.
7327 If the definition of the function has the same debug info,
7328 we should be able to match up with it anyway. But fallbacks
7329 using the minimal symbol, for instance to find a method
7330 implemented in a stripped copy of libstdc++, will not work.
7331 If we do not have debug info for the definition, we will have to
7332 match them up some other way.
7333
7334 When we do name matching there is a related problem with function
7335 templates; two instantiated function templates are allowed to
7336 differ only by their return types, which we do not add here. */
7337
7338 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7339 {
7340 struct attribute *attr;
7341 struct die_info *child;
7342 int first = 1;
7343
7344 die->building_fullname = 1;
7345
7346 for (child = die->child; child != NULL; child = child->sibling)
7347 {
7348 struct type *type;
7349 LONGEST value;
7350 gdb_byte *bytes;
7351 struct dwarf2_locexpr_baton *baton;
7352 struct value *v;
7353
7354 if (child->tag != DW_TAG_template_type_param
7355 && child->tag != DW_TAG_template_value_param)
7356 continue;
7357
7358 if (first)
7359 {
7360 fputs_unfiltered ("<", buf);
7361 first = 0;
7362 }
7363 else
7364 fputs_unfiltered (", ", buf);
7365
7366 attr = dwarf2_attr (child, DW_AT_type, cu);
7367 if (attr == NULL)
7368 {
7369 complaint (&symfile_complaints,
7370 _("template parameter missing DW_AT_type"));
7371 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7372 continue;
7373 }
7374 type = die_type (child, cu);
7375
7376 if (child->tag == DW_TAG_template_type_param)
7377 {
7378 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7379 continue;
7380 }
7381
7382 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7383 if (attr == NULL)
7384 {
7385 complaint (&symfile_complaints,
7386 _("template parameter missing "
7387 "DW_AT_const_value"));
7388 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7389 continue;
7390 }
7391
7392 dwarf2_const_value_attr (attr, type, name,
7393 &cu->comp_unit_obstack, cu,
7394 &value, &bytes, &baton);
7395
7396 if (TYPE_NOSIGN (type))
7397 /* GDB prints characters as NUMBER 'CHAR'. If that's
7398 changed, this can use value_print instead. */
7399 c_printchar (value, type, buf);
7400 else
7401 {
7402 struct value_print_options opts;
7403
7404 if (baton != NULL)
7405 v = dwarf2_evaluate_loc_desc (type, NULL,
7406 baton->data,
7407 baton->size,
7408 baton->per_cu);
7409 else if (bytes != NULL)
7410 {
7411 v = allocate_value (type);
7412 memcpy (value_contents_writeable (v), bytes,
7413 TYPE_LENGTH (type));
7414 }
7415 else
7416 v = value_from_longest (type, value);
7417
7418 /* Specify decimal so that we do not depend on
7419 the radix. */
7420 get_formatted_print_options (&opts, 'd');
7421 opts.raw = 1;
7422 value_print (v, buf, &opts);
7423 release_value (v);
7424 value_free (v);
7425 }
7426 }
7427
7428 die->building_fullname = 0;
7429
7430 if (!first)
7431 {
7432 /* Close the argument list, with a space if necessary
7433 (nested templates). */
7434 char last_char = '\0';
7435 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7436 if (last_char == '>')
7437 fputs_unfiltered (" >", buf);
7438 else
7439 fputs_unfiltered (">", buf);
7440 }
7441 }
7442
7443 /* For Java and C++ methods, append formal parameter type
7444 information, if PHYSNAME. */
7445
7446 if (physname && die->tag == DW_TAG_subprogram
7447 && (cu->language == language_cplus
7448 || cu->language == language_java))
7449 {
7450 struct type *type = read_type_die (die, cu);
7451
7452 c_type_print_args (type, buf, 1, cu->language,
7453 &type_print_raw_options);
7454
7455 if (cu->language == language_java)
7456 {
7457 /* For java, we must append the return type to method
7458 names. */
7459 if (die->tag == DW_TAG_subprogram)
7460 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7461 0, 0, &type_print_raw_options);
7462 }
7463 else if (cu->language == language_cplus)
7464 {
7465 /* Assume that an artificial first parameter is
7466 "this", but do not crash if it is not. RealView
7467 marks unnamed (and thus unused) parameters as
7468 artificial; there is no way to differentiate
7469 the two cases. */
7470 if (TYPE_NFIELDS (type) > 0
7471 && TYPE_FIELD_ARTIFICIAL (type, 0)
7472 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7473 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7474 0))))
7475 fputs_unfiltered (" const", buf);
7476 }
7477 }
7478
7479 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7480 &length);
7481 ui_file_delete (buf);
7482
7483 if (cu->language == language_cplus)
7484 {
7485 char *cname
7486 = dwarf2_canonicalize_name (name, cu,
7487 &objfile->objfile_obstack);
7488
7489 if (cname != NULL)
7490 name = cname;
7491 }
7492 }
7493 }
7494
7495 return name;
7496 }
7497
7498 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7499 If scope qualifiers are appropriate they will be added. The result
7500 will be allocated on the objfile_obstack, or NULL if the DIE does
7501 not have a name. NAME may either be from a previous call to
7502 dwarf2_name or NULL.
7503
7504 The output string will be canonicalized (if C++/Java). */
7505
7506 static const char *
7507 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7508 {
7509 return dwarf2_compute_name (name, die, cu, 0);
7510 }
7511
7512 /* Construct a physname for the given DIE in CU. NAME may either be
7513 from a previous call to dwarf2_name or NULL. The result will be
7514 allocated on the objfile_objstack or NULL if the DIE does not have a
7515 name.
7516
7517 The output string will be canonicalized (if C++/Java). */
7518
7519 static const char *
7520 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7521 {
7522 struct objfile *objfile = cu->objfile;
7523 struct attribute *attr;
7524 const char *retval, *mangled = NULL, *canon = NULL;
7525 struct cleanup *back_to;
7526 int need_copy = 1;
7527
7528 /* In this case dwarf2_compute_name is just a shortcut not building anything
7529 on its own. */
7530 if (!die_needs_namespace (die, cu))
7531 return dwarf2_compute_name (name, die, cu, 1);
7532
7533 back_to = make_cleanup (null_cleanup, NULL);
7534
7535 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7536 if (!attr)
7537 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7538
7539 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7540 has computed. */
7541 if (attr && DW_STRING (attr))
7542 {
7543 char *demangled;
7544
7545 mangled = DW_STRING (attr);
7546
7547 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7548 type. It is easier for GDB users to search for such functions as
7549 `name(params)' than `long name(params)'. In such case the minimal
7550 symbol names do not match the full symbol names but for template
7551 functions there is never a need to look up their definition from their
7552 declaration so the only disadvantage remains the minimal symbol
7553 variant `long name(params)' does not have the proper inferior type.
7554 */
7555
7556 if (cu->language == language_go)
7557 {
7558 /* This is a lie, but we already lie to the caller new_symbol_full.
7559 new_symbol_full assumes we return the mangled name.
7560 This just undoes that lie until things are cleaned up. */
7561 demangled = NULL;
7562 }
7563 else
7564 {
7565 demangled = cplus_demangle (mangled,
7566 (DMGL_PARAMS | DMGL_ANSI
7567 | (cu->language == language_java
7568 ? DMGL_JAVA | DMGL_RET_POSTFIX
7569 : DMGL_RET_DROP)));
7570 }
7571 if (demangled)
7572 {
7573 make_cleanup (xfree, demangled);
7574 canon = demangled;
7575 }
7576 else
7577 {
7578 canon = mangled;
7579 need_copy = 0;
7580 }
7581 }
7582
7583 if (canon == NULL || check_physname)
7584 {
7585 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7586
7587 if (canon != NULL && strcmp (physname, canon) != 0)
7588 {
7589 /* It may not mean a bug in GDB. The compiler could also
7590 compute DW_AT_linkage_name incorrectly. But in such case
7591 GDB would need to be bug-to-bug compatible. */
7592
7593 complaint (&symfile_complaints,
7594 _("Computed physname <%s> does not match demangled <%s> "
7595 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7596 physname, canon, mangled, die->offset.sect_off, objfile->name);
7597
7598 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7599 is available here - over computed PHYSNAME. It is safer
7600 against both buggy GDB and buggy compilers. */
7601
7602 retval = canon;
7603 }
7604 else
7605 {
7606 retval = physname;
7607 need_copy = 0;
7608 }
7609 }
7610 else
7611 retval = canon;
7612
7613 if (need_copy)
7614 retval = obsavestring (retval, strlen (retval),
7615 &objfile->objfile_obstack);
7616
7617 do_cleanups (back_to);
7618 return retval;
7619 }
7620
7621 /* Read the import statement specified by the given die and record it. */
7622
7623 static void
7624 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7625 {
7626 struct objfile *objfile = cu->objfile;
7627 struct attribute *import_attr;
7628 struct die_info *imported_die, *child_die;
7629 struct dwarf2_cu *imported_cu;
7630 const char *imported_name;
7631 const char *imported_name_prefix;
7632 const char *canonical_name;
7633 const char *import_alias;
7634 const char *imported_declaration = NULL;
7635 const char *import_prefix;
7636 VEC (const_char_ptr) *excludes = NULL;
7637 struct cleanup *cleanups;
7638
7639 char *temp;
7640
7641 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7642 if (import_attr == NULL)
7643 {
7644 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7645 dwarf_tag_name (die->tag));
7646 return;
7647 }
7648
7649 imported_cu = cu;
7650 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7651 imported_name = dwarf2_name (imported_die, imported_cu);
7652 if (imported_name == NULL)
7653 {
7654 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7655
7656 The import in the following code:
7657 namespace A
7658 {
7659 typedef int B;
7660 }
7661
7662 int main ()
7663 {
7664 using A::B;
7665 B b;
7666 return b;
7667 }
7668
7669 ...
7670 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7671 <52> DW_AT_decl_file : 1
7672 <53> DW_AT_decl_line : 6
7673 <54> DW_AT_import : <0x75>
7674 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7675 <59> DW_AT_name : B
7676 <5b> DW_AT_decl_file : 1
7677 <5c> DW_AT_decl_line : 2
7678 <5d> DW_AT_type : <0x6e>
7679 ...
7680 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7681 <76> DW_AT_byte_size : 4
7682 <77> DW_AT_encoding : 5 (signed)
7683
7684 imports the wrong die ( 0x75 instead of 0x58 ).
7685 This case will be ignored until the gcc bug is fixed. */
7686 return;
7687 }
7688
7689 /* Figure out the local name after import. */
7690 import_alias = dwarf2_name (die, cu);
7691
7692 /* Figure out where the statement is being imported to. */
7693 import_prefix = determine_prefix (die, cu);
7694
7695 /* Figure out what the scope of the imported die is and prepend it
7696 to the name of the imported die. */
7697 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7698
7699 if (imported_die->tag != DW_TAG_namespace
7700 && imported_die->tag != DW_TAG_module)
7701 {
7702 imported_declaration = imported_name;
7703 canonical_name = imported_name_prefix;
7704 }
7705 else if (strlen (imported_name_prefix) > 0)
7706 {
7707 temp = alloca (strlen (imported_name_prefix)
7708 + 2 + strlen (imported_name) + 1);
7709 strcpy (temp, imported_name_prefix);
7710 strcat (temp, "::");
7711 strcat (temp, imported_name);
7712 canonical_name = temp;
7713 }
7714 else
7715 canonical_name = imported_name;
7716
7717 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7718
7719 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7720 for (child_die = die->child; child_die && child_die->tag;
7721 child_die = sibling_die (child_die))
7722 {
7723 /* DWARF-4: A Fortran use statement with a “rename list” may be
7724 represented by an imported module entry with an import attribute
7725 referring to the module and owned entries corresponding to those
7726 entities that are renamed as part of being imported. */
7727
7728 if (child_die->tag != DW_TAG_imported_declaration)
7729 {
7730 complaint (&symfile_complaints,
7731 _("child DW_TAG_imported_declaration expected "
7732 "- DIE at 0x%x [in module %s]"),
7733 child_die->offset.sect_off, objfile->name);
7734 continue;
7735 }
7736
7737 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7738 if (import_attr == NULL)
7739 {
7740 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7741 dwarf_tag_name (child_die->tag));
7742 continue;
7743 }
7744
7745 imported_cu = cu;
7746 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7747 &imported_cu);
7748 imported_name = dwarf2_name (imported_die, imported_cu);
7749 if (imported_name == NULL)
7750 {
7751 complaint (&symfile_complaints,
7752 _("child DW_TAG_imported_declaration has unknown "
7753 "imported name - DIE at 0x%x [in module %s]"),
7754 child_die->offset.sect_off, objfile->name);
7755 continue;
7756 }
7757
7758 VEC_safe_push (const_char_ptr, excludes, imported_name);
7759
7760 process_die (child_die, cu);
7761 }
7762
7763 cp_add_using_directive (import_prefix,
7764 canonical_name,
7765 import_alias,
7766 imported_declaration,
7767 excludes,
7768 &objfile->objfile_obstack);
7769
7770 do_cleanups (cleanups);
7771 }
7772
7773 /* Cleanup function for handle_DW_AT_stmt_list. */
7774
7775 static void
7776 free_cu_line_header (void *arg)
7777 {
7778 struct dwarf2_cu *cu = arg;
7779
7780 free_line_header (cu->line_header);
7781 cu->line_header = NULL;
7782 }
7783
7784 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7785 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7786 this, it was first present in GCC release 4.3.0. */
7787
7788 static int
7789 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7790 {
7791 if (!cu->checked_producer)
7792 check_producer (cu);
7793
7794 return cu->producer_is_gcc_lt_4_3;
7795 }
7796
7797 static void
7798 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7799 char **name, char **comp_dir)
7800 {
7801 struct attribute *attr;
7802
7803 *name = NULL;
7804 *comp_dir = NULL;
7805
7806 /* Find the filename. Do not use dwarf2_name here, since the filename
7807 is not a source language identifier. */
7808 attr = dwarf2_attr (die, DW_AT_name, cu);
7809 if (attr)
7810 {
7811 *name = DW_STRING (attr);
7812 }
7813
7814 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7815 if (attr)
7816 *comp_dir = DW_STRING (attr);
7817 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7818 && IS_ABSOLUTE_PATH (*name))
7819 {
7820 *comp_dir = ldirname (*name);
7821 if (*comp_dir != NULL)
7822 make_cleanup (xfree, *comp_dir);
7823 }
7824 if (*comp_dir != NULL)
7825 {
7826 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7827 directory, get rid of it. */
7828 char *cp = strchr (*comp_dir, ':');
7829
7830 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7831 *comp_dir = cp + 1;
7832 }
7833
7834 if (*name == NULL)
7835 *name = "<unknown>";
7836 }
7837
7838 /* Handle DW_AT_stmt_list for a compilation unit.
7839 DIE is the DW_TAG_compile_unit die for CU.
7840 COMP_DIR is the compilation directory.
7841 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7842
7843 static void
7844 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7845 const char *comp_dir)
7846 {
7847 struct attribute *attr;
7848
7849 gdb_assert (! cu->per_cu->is_debug_types);
7850
7851 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7852 if (attr)
7853 {
7854 unsigned int line_offset = DW_UNSND (attr);
7855 struct line_header *line_header
7856 = dwarf_decode_line_header (line_offset, cu);
7857
7858 if (line_header)
7859 {
7860 cu->line_header = line_header;
7861 make_cleanup (free_cu_line_header, cu);
7862 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7863 }
7864 }
7865 }
7866
7867 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7868
7869 static void
7870 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7871 {
7872 struct objfile *objfile = dwarf2_per_objfile->objfile;
7873 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7874 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7875 CORE_ADDR highpc = ((CORE_ADDR) 0);
7876 struct attribute *attr;
7877 char *name = NULL;
7878 char *comp_dir = NULL;
7879 struct die_info *child_die;
7880 bfd *abfd = objfile->obfd;
7881 CORE_ADDR baseaddr;
7882
7883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7884
7885 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7886
7887 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7888 from finish_block. */
7889 if (lowpc == ((CORE_ADDR) -1))
7890 lowpc = highpc;
7891 lowpc += baseaddr;
7892 highpc += baseaddr;
7893
7894 find_file_and_directory (die, cu, &name, &comp_dir);
7895
7896 prepare_one_comp_unit (cu, die, cu->language);
7897
7898 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7899 standardised yet. As a workaround for the language detection we fall
7900 back to the DW_AT_producer string. */
7901 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7902 cu->language = language_opencl;
7903
7904 /* Similar hack for Go. */
7905 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7906 set_cu_language (DW_LANG_Go, cu);
7907
7908 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7909
7910 /* Decode line number information if present. We do this before
7911 processing child DIEs, so that the line header table is available
7912 for DW_AT_decl_file. */
7913 handle_DW_AT_stmt_list (die, cu, comp_dir);
7914
7915 /* Process all dies in compilation unit. */
7916 if (die->child != NULL)
7917 {
7918 child_die = die->child;
7919 while (child_die && child_die->tag)
7920 {
7921 process_die (child_die, cu);
7922 child_die = sibling_die (child_die);
7923 }
7924 }
7925
7926 /* Decode macro information, if present. Dwarf 2 macro information
7927 refers to information in the line number info statement program
7928 header, so we can only read it if we've read the header
7929 successfully. */
7930 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7931 if (attr && cu->line_header)
7932 {
7933 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7934 complaint (&symfile_complaints,
7935 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7936
7937 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7938 }
7939 else
7940 {
7941 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7942 if (attr && cu->line_header)
7943 {
7944 unsigned int macro_offset = DW_UNSND (attr);
7945
7946 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7947 }
7948 }
7949
7950 do_cleanups (back_to);
7951 }
7952
7953 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7954 Create the set of symtabs used by this TU, or if this TU is sharing
7955 symtabs with another TU and the symtabs have already been created
7956 then restore those symtabs in the line header.
7957 We don't need the pc/line-number mapping for type units. */
7958
7959 static void
7960 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7961 {
7962 struct objfile *objfile = dwarf2_per_objfile->objfile;
7963 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7964 struct type_unit_group *tu_group;
7965 int first_time;
7966 struct line_header *lh;
7967 struct attribute *attr;
7968 unsigned int i, line_offset;
7969
7970 gdb_assert (per_cu->is_debug_types);
7971
7972 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7973
7974 /* If we're using .gdb_index (includes -readnow) then
7975 per_cu->s.type_unit_group may not have been set up yet. */
7976 if (per_cu->s.type_unit_group == NULL)
7977 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7978 tu_group = per_cu->s.type_unit_group;
7979
7980 /* If we've already processed this stmt_list there's no real need to
7981 do it again, we could fake it and just recreate the part we need
7982 (file name,index -> symtab mapping). If data shows this optimization
7983 is useful we can do it then. */
7984 first_time = tu_group->primary_symtab == NULL;
7985
7986 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7987 debug info. */
7988 lh = NULL;
7989 if (attr != NULL)
7990 {
7991 line_offset = DW_UNSND (attr);
7992 lh = dwarf_decode_line_header (line_offset, cu);
7993 }
7994 if (lh == NULL)
7995 {
7996 if (first_time)
7997 dwarf2_start_symtab (cu, "", NULL, 0);
7998 else
7999 {
8000 gdb_assert (tu_group->symtabs == NULL);
8001 restart_symtab (0);
8002 }
8003 /* Note: The primary symtab will get allocated at the end. */
8004 return;
8005 }
8006
8007 cu->line_header = lh;
8008 make_cleanup (free_cu_line_header, cu);
8009
8010 if (first_time)
8011 {
8012 dwarf2_start_symtab (cu, "", NULL, 0);
8013
8014 tu_group->num_symtabs = lh->num_file_names;
8015 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8016
8017 for (i = 0; i < lh->num_file_names; ++i)
8018 {
8019 char *dir = NULL;
8020 struct file_entry *fe = &lh->file_names[i];
8021
8022 if (fe->dir_index)
8023 dir = lh->include_dirs[fe->dir_index - 1];
8024 dwarf2_start_subfile (fe->name, dir, NULL);
8025
8026 /* Note: We don't have to watch for the main subfile here, type units
8027 don't have DW_AT_name. */
8028
8029 if (current_subfile->symtab == NULL)
8030 {
8031 /* NOTE: start_subfile will recognize when it's been passed
8032 a file it has already seen. So we can't assume there's a
8033 simple mapping from lh->file_names to subfiles,
8034 lh->file_names may contain dups. */
8035 current_subfile->symtab = allocate_symtab (current_subfile->name,
8036 objfile);
8037 }
8038
8039 fe->symtab = current_subfile->symtab;
8040 tu_group->symtabs[i] = fe->symtab;
8041 }
8042 }
8043 else
8044 {
8045 restart_symtab (0);
8046
8047 for (i = 0; i < lh->num_file_names; ++i)
8048 {
8049 struct file_entry *fe = &lh->file_names[i];
8050
8051 fe->symtab = tu_group->symtabs[i];
8052 }
8053 }
8054
8055 /* The main symtab is allocated last. Type units don't have DW_AT_name
8056 so they don't have a "real" (so to speak) symtab anyway.
8057 There is later code that will assign the main symtab to all symbols
8058 that don't have one. We need to handle the case of a symbol with a
8059 missing symtab (DW_AT_decl_file) anyway. */
8060 }
8061
8062 /* Process DW_TAG_type_unit.
8063 For TUs we want to skip the first top level sibling if it's not the
8064 actual type being defined by this TU. In this case the first top
8065 level sibling is there to provide context only. */
8066
8067 static void
8068 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8069 {
8070 struct die_info *child_die;
8071
8072 prepare_one_comp_unit (cu, die, language_minimal);
8073
8074 /* Initialize (or reinitialize) the machinery for building symtabs.
8075 We do this before processing child DIEs, so that the line header table
8076 is available for DW_AT_decl_file. */
8077 setup_type_unit_groups (die, cu);
8078
8079 if (die->child != NULL)
8080 {
8081 child_die = die->child;
8082 while (child_die && child_die->tag)
8083 {
8084 process_die (child_die, cu);
8085 child_die = sibling_die (child_die);
8086 }
8087 }
8088 }
8089 \f
8090 /* DWO/DWP files.
8091
8092 http://gcc.gnu.org/wiki/DebugFission
8093 http://gcc.gnu.org/wiki/DebugFissionDWP
8094
8095 To simplify handling of both DWO files ("object" files with the DWARF info)
8096 and DWP files (a file with the DWOs packaged up into one file), we treat
8097 DWP files as having a collection of virtual DWO files. */
8098
8099 static hashval_t
8100 hash_dwo_file (const void *item)
8101 {
8102 const struct dwo_file *dwo_file = item;
8103
8104 return htab_hash_string (dwo_file->name);
8105 }
8106
8107 static int
8108 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8109 {
8110 const struct dwo_file *lhs = item_lhs;
8111 const struct dwo_file *rhs = item_rhs;
8112
8113 return strcmp (lhs->name, rhs->name) == 0;
8114 }
8115
8116 /* Allocate a hash table for DWO files. */
8117
8118 static htab_t
8119 allocate_dwo_file_hash_table (void)
8120 {
8121 struct objfile *objfile = dwarf2_per_objfile->objfile;
8122
8123 return htab_create_alloc_ex (41,
8124 hash_dwo_file,
8125 eq_dwo_file,
8126 NULL,
8127 &objfile->objfile_obstack,
8128 hashtab_obstack_allocate,
8129 dummy_obstack_deallocate);
8130 }
8131
8132 /* Lookup DWO file DWO_NAME. */
8133
8134 static void **
8135 lookup_dwo_file_slot (const char *dwo_name)
8136 {
8137 struct dwo_file find_entry;
8138 void **slot;
8139
8140 if (dwarf2_per_objfile->dwo_files == NULL)
8141 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8142
8143 memset (&find_entry, 0, sizeof (find_entry));
8144 find_entry.name = dwo_name;
8145 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8146
8147 return slot;
8148 }
8149
8150 static hashval_t
8151 hash_dwo_unit (const void *item)
8152 {
8153 const struct dwo_unit *dwo_unit = item;
8154
8155 /* This drops the top 32 bits of the id, but is ok for a hash. */
8156 return dwo_unit->signature;
8157 }
8158
8159 static int
8160 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8161 {
8162 const struct dwo_unit *lhs = item_lhs;
8163 const struct dwo_unit *rhs = item_rhs;
8164
8165 /* The signature is assumed to be unique within the DWO file.
8166 So while object file CU dwo_id's always have the value zero,
8167 that's OK, assuming each object file DWO file has only one CU,
8168 and that's the rule for now. */
8169 return lhs->signature == rhs->signature;
8170 }
8171
8172 /* Allocate a hash table for DWO CUs,TUs.
8173 There is one of these tables for each of CUs,TUs for each DWO file. */
8174
8175 static htab_t
8176 allocate_dwo_unit_table (struct objfile *objfile)
8177 {
8178 /* Start out with a pretty small number.
8179 Generally DWO files contain only one CU and maybe some TUs. */
8180 return htab_create_alloc_ex (3,
8181 hash_dwo_unit,
8182 eq_dwo_unit,
8183 NULL,
8184 &objfile->objfile_obstack,
8185 hashtab_obstack_allocate,
8186 dummy_obstack_deallocate);
8187 }
8188
8189 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8190
8191 struct create_dwo_info_table_data
8192 {
8193 struct dwo_file *dwo_file;
8194 htab_t cu_htab;
8195 };
8196
8197 /* die_reader_func for create_dwo_debug_info_hash_table. */
8198
8199 static void
8200 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8201 gdb_byte *info_ptr,
8202 struct die_info *comp_unit_die,
8203 int has_children,
8204 void *datap)
8205 {
8206 struct dwarf2_cu *cu = reader->cu;
8207 struct objfile *objfile = dwarf2_per_objfile->objfile;
8208 sect_offset offset = cu->per_cu->offset;
8209 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8210 struct create_dwo_info_table_data *data = datap;
8211 struct dwo_file *dwo_file = data->dwo_file;
8212 htab_t cu_htab = data->cu_htab;
8213 void **slot;
8214 struct attribute *attr;
8215 struct dwo_unit *dwo_unit;
8216
8217 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8218 if (attr == NULL)
8219 {
8220 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8221 " its dwo_id [in module %s]"),
8222 offset.sect_off, dwo_file->name);
8223 return;
8224 }
8225
8226 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8227 dwo_unit->dwo_file = dwo_file;
8228 dwo_unit->signature = DW_UNSND (attr);
8229 dwo_unit->info_or_types_section = section;
8230 dwo_unit->offset = offset;
8231 dwo_unit->length = cu->per_cu->length;
8232
8233 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8234 gdb_assert (slot != NULL);
8235 if (*slot != NULL)
8236 {
8237 const struct dwo_unit *dup_dwo_unit = *slot;
8238
8239 complaint (&symfile_complaints,
8240 _("debug entry at offset 0x%x is duplicate to the entry at"
8241 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8242 offset.sect_off, dup_dwo_unit->offset.sect_off,
8243 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8244 dwo_file->name);
8245 }
8246 else
8247 *slot = dwo_unit;
8248
8249 if (dwarf2_read_debug)
8250 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8251 offset.sect_off,
8252 phex (dwo_unit->signature,
8253 sizeof (dwo_unit->signature)));
8254 }
8255
8256 /* Create a hash table to map DWO IDs to their CU entry in
8257 .debug_info.dwo in DWO_FILE.
8258 Note: This function processes DWO files only, not DWP files. */
8259
8260 static htab_t
8261 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8262 {
8263 struct objfile *objfile = dwarf2_per_objfile->objfile;
8264 struct dwarf2_section_info *section = &dwo_file->sections.info;
8265 bfd *abfd;
8266 htab_t cu_htab;
8267 gdb_byte *info_ptr, *end_ptr;
8268 struct create_dwo_info_table_data create_dwo_info_table_data;
8269
8270 dwarf2_read_section (objfile, section);
8271 info_ptr = section->buffer;
8272
8273 if (info_ptr == NULL)
8274 return NULL;
8275
8276 /* We can't set abfd until now because the section may be empty or
8277 not present, in which case section->asection will be NULL. */
8278 abfd = section->asection->owner;
8279
8280 if (dwarf2_read_debug)
8281 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8282 bfd_get_filename (abfd));
8283
8284 cu_htab = allocate_dwo_unit_table (objfile);
8285
8286 create_dwo_info_table_data.dwo_file = dwo_file;
8287 create_dwo_info_table_data.cu_htab = cu_htab;
8288
8289 end_ptr = info_ptr + section->size;
8290 while (info_ptr < end_ptr)
8291 {
8292 struct dwarf2_per_cu_data per_cu;
8293
8294 memset (&per_cu, 0, sizeof (per_cu));
8295 per_cu.objfile = objfile;
8296 per_cu.is_debug_types = 0;
8297 per_cu.offset.sect_off = info_ptr - section->buffer;
8298 per_cu.info_or_types_section = section;
8299
8300 init_cutu_and_read_dies_no_follow (&per_cu,
8301 &dwo_file->sections.abbrev,
8302 dwo_file,
8303 create_dwo_debug_info_hash_table_reader,
8304 &create_dwo_info_table_data);
8305
8306 info_ptr += per_cu.length;
8307 }
8308
8309 return cu_htab;
8310 }
8311
8312 /* DWP file .debug_{cu,tu}_index section format:
8313 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8314
8315 Both index sections have the same format, and serve to map a 64-bit
8316 signature to a set of section numbers. Each section begins with a header,
8317 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8318 indexes, and a pool of 32-bit section numbers. The index sections will be
8319 aligned at 8-byte boundaries in the file.
8320
8321 The index section header contains two unsigned 32-bit values (using the
8322 byte order of the application binary):
8323
8324 N, the number of compilation units or type units in the index
8325 M, the number of slots in the hash table
8326
8327 (We assume that N and M will not exceed 2^32 - 1.)
8328
8329 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8330
8331 The hash table begins at offset 8 in the section, and consists of an array
8332 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8333 order of the application binary). Unused slots in the hash table are 0.
8334 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8335
8336 The parallel table begins immediately after the hash table
8337 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8338 array of 32-bit indexes (using the byte order of the application binary),
8339 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8340 table contains a 32-bit index into the pool of section numbers. For unused
8341 hash table slots, the corresponding entry in the parallel table will be 0.
8342
8343 Given a 64-bit compilation unit signature or a type signature S, an entry
8344 in the hash table is located as follows:
8345
8346 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8347 the low-order k bits all set to 1.
8348
8349 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8350
8351 3) If the hash table entry at index H matches the signature, use that
8352 entry. If the hash table entry at index H is unused (all zeroes),
8353 terminate the search: the signature is not present in the table.
8354
8355 4) Let H = (H + H') modulo M. Repeat at Step 3.
8356
8357 Because M > N and H' and M are relatively prime, the search is guaranteed
8358 to stop at an unused slot or find the match.
8359
8360 The pool of section numbers begins immediately following the hash table
8361 (at offset 8 + 12 * M from the beginning of the section). The pool of
8362 section numbers consists of an array of 32-bit words (using the byte order
8363 of the application binary). Each item in the array is indexed starting
8364 from 0. The hash table entry provides the index of the first section
8365 number in the set. Additional section numbers in the set follow, and the
8366 set is terminated by a 0 entry (section number 0 is not used in ELF).
8367
8368 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8369 section must be the first entry in the set, and the .debug_abbrev.dwo must
8370 be the second entry. Other members of the set may follow in any order. */
8371
8372 /* Create a hash table to map DWO IDs to their CU/TU entry in
8373 .debug_{info,types}.dwo in DWP_FILE.
8374 Returns NULL if there isn't one.
8375 Note: This function processes DWP files only, not DWO files. */
8376
8377 static struct dwp_hash_table *
8378 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8379 {
8380 struct objfile *objfile = dwarf2_per_objfile->objfile;
8381 bfd *dbfd = dwp_file->dbfd;
8382 char *index_ptr, *index_end;
8383 struct dwarf2_section_info *index;
8384 uint32_t version, nr_units, nr_slots;
8385 struct dwp_hash_table *htab;
8386
8387 if (is_debug_types)
8388 index = &dwp_file->sections.tu_index;
8389 else
8390 index = &dwp_file->sections.cu_index;
8391
8392 if (dwarf2_section_empty_p (index))
8393 return NULL;
8394 dwarf2_read_section (objfile, index);
8395
8396 index_ptr = index->buffer;
8397 index_end = index_ptr + index->size;
8398
8399 version = read_4_bytes (dbfd, index_ptr);
8400 index_ptr += 8; /* Skip the unused word. */
8401 nr_units = read_4_bytes (dbfd, index_ptr);
8402 index_ptr += 4;
8403 nr_slots = read_4_bytes (dbfd, index_ptr);
8404 index_ptr += 4;
8405
8406 if (version != 1)
8407 {
8408 error (_("Dwarf Error: unsupported DWP file version (%u)"
8409 " [in module %s]"),
8410 version, dwp_file->name);
8411 }
8412 if (nr_slots != (nr_slots & -nr_slots))
8413 {
8414 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8415 " is not power of 2 [in module %s]"),
8416 nr_slots, dwp_file->name);
8417 }
8418
8419 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8420 htab->nr_units = nr_units;
8421 htab->nr_slots = nr_slots;
8422 htab->hash_table = index_ptr;
8423 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8424 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8425
8426 return htab;
8427 }
8428
8429 /* Update SECTIONS with the data from SECTP.
8430
8431 This function is like the other "locate" section routines that are
8432 passed to bfd_map_over_sections, but in this context the sections to
8433 read comes from the DWP hash table, not the full ELF section table.
8434
8435 The result is non-zero for success, or zero if an error was found. */
8436
8437 static int
8438 locate_virtual_dwo_sections (asection *sectp,
8439 struct virtual_dwo_sections *sections)
8440 {
8441 const struct dwop_section_names *names = &dwop_section_names;
8442
8443 if (section_is_p (sectp->name, &names->abbrev_dwo))
8444 {
8445 /* There can be only one. */
8446 if (sections->abbrev.asection != NULL)
8447 return 0;
8448 sections->abbrev.asection = sectp;
8449 sections->abbrev.size = bfd_get_section_size (sectp);
8450 }
8451 else if (section_is_p (sectp->name, &names->info_dwo)
8452 || section_is_p (sectp->name, &names->types_dwo))
8453 {
8454 /* There can be only one. */
8455 if (sections->info_or_types.asection != NULL)
8456 return 0;
8457 sections->info_or_types.asection = sectp;
8458 sections->info_or_types.size = bfd_get_section_size (sectp);
8459 }
8460 else if (section_is_p (sectp->name, &names->line_dwo))
8461 {
8462 /* There can be only one. */
8463 if (sections->line.asection != NULL)
8464 return 0;
8465 sections->line.asection = sectp;
8466 sections->line.size = bfd_get_section_size (sectp);
8467 }
8468 else if (section_is_p (sectp->name, &names->loc_dwo))
8469 {
8470 /* There can be only one. */
8471 if (sections->loc.asection != NULL)
8472 return 0;
8473 sections->loc.asection = sectp;
8474 sections->loc.size = bfd_get_section_size (sectp);
8475 }
8476 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8477 {
8478 /* There can be only one. */
8479 if (sections->macinfo.asection != NULL)
8480 return 0;
8481 sections->macinfo.asection = sectp;
8482 sections->macinfo.size = bfd_get_section_size (sectp);
8483 }
8484 else if (section_is_p (sectp->name, &names->macro_dwo))
8485 {
8486 /* There can be only one. */
8487 if (sections->macro.asection != NULL)
8488 return 0;
8489 sections->macro.asection = sectp;
8490 sections->macro.size = bfd_get_section_size (sectp);
8491 }
8492 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8493 {
8494 /* There can be only one. */
8495 if (sections->str_offsets.asection != NULL)
8496 return 0;
8497 sections->str_offsets.asection = sectp;
8498 sections->str_offsets.size = bfd_get_section_size (sectp);
8499 }
8500 else
8501 {
8502 /* No other kind of section is valid. */
8503 return 0;
8504 }
8505
8506 return 1;
8507 }
8508
8509 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8510 HTAB is the hash table from the DWP file.
8511 SECTION_INDEX is the index of the DWO in HTAB. */
8512
8513 static struct dwo_unit *
8514 create_dwo_in_dwp (struct dwp_file *dwp_file,
8515 const struct dwp_hash_table *htab,
8516 uint32_t section_index,
8517 ULONGEST signature, int is_debug_types)
8518 {
8519 struct objfile *objfile = dwarf2_per_objfile->objfile;
8520 bfd *dbfd = dwp_file->dbfd;
8521 const char *kind = is_debug_types ? "TU" : "CU";
8522 struct dwo_file *dwo_file;
8523 struct dwo_unit *dwo_unit;
8524 struct virtual_dwo_sections sections;
8525 void **dwo_file_slot;
8526 char *virtual_dwo_name;
8527 struct dwarf2_section_info *cutu;
8528 struct cleanup *cleanups;
8529 int i;
8530
8531 if (dwarf2_read_debug)
8532 {
8533 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8534 kind,
8535 section_index, phex (signature, sizeof (signature)),
8536 dwp_file->name);
8537 }
8538
8539 /* Fetch the sections of this DWO.
8540 Put a limit on the number of sections we look for so that bad data
8541 doesn't cause us to loop forever. */
8542
8543 #define MAX_NR_DWO_SECTIONS \
8544 (1 /* .debug_info or .debug_types */ \
8545 + 1 /* .debug_abbrev */ \
8546 + 1 /* .debug_line */ \
8547 + 1 /* .debug_loc */ \
8548 + 1 /* .debug_str_offsets */ \
8549 + 1 /* .debug_macro */ \
8550 + 1 /* .debug_macinfo */ \
8551 + 1 /* trailing zero */)
8552
8553 memset (&sections, 0, sizeof (sections));
8554 cleanups = make_cleanup (null_cleanup, 0);
8555
8556 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8557 {
8558 asection *sectp;
8559 uint32_t section_nr =
8560 read_4_bytes (dbfd,
8561 htab->section_pool
8562 + (section_index + i) * sizeof (uint32_t));
8563
8564 if (section_nr == 0)
8565 break;
8566 if (section_nr >= dwp_file->num_sections)
8567 {
8568 error (_("Dwarf Error: bad DWP hash table, section number too large"
8569 " [in module %s]"),
8570 dwp_file->name);
8571 }
8572
8573 sectp = dwp_file->elf_sections[section_nr];
8574 if (! locate_virtual_dwo_sections (sectp, &sections))
8575 {
8576 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8577 " [in module %s]"),
8578 dwp_file->name);
8579 }
8580 }
8581
8582 if (i < 2
8583 || sections.info_or_types.asection == NULL
8584 || sections.abbrev.asection == NULL)
8585 {
8586 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8587 " [in module %s]"),
8588 dwp_file->name);
8589 }
8590 if (i == MAX_NR_DWO_SECTIONS)
8591 {
8592 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8593 " [in module %s]"),
8594 dwp_file->name);
8595 }
8596
8597 /* It's easier for the rest of the code if we fake a struct dwo_file and
8598 have dwo_unit "live" in that. At least for now.
8599
8600 The DWP file can be made up of a random collection of CUs and TUs.
8601 However, for each CU + set of TUs that came from the same original DWO
8602 file, we want to combine them back into a virtual DWO file to save space
8603 (fewer struct dwo_file objects to allocated). Remember that for really
8604 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8605
8606 virtual_dwo_name =
8607 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8608 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8609 sections.line.asection ? sections.line.asection->id : 0,
8610 sections.loc.asection ? sections.loc.asection->id : 0,
8611 (sections.str_offsets.asection
8612 ? sections.str_offsets.asection->id
8613 : 0));
8614 make_cleanup (xfree, virtual_dwo_name);
8615 /* Can we use an existing virtual DWO file? */
8616 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8617 /* Create one if necessary. */
8618 if (*dwo_file_slot == NULL)
8619 {
8620 if (dwarf2_read_debug)
8621 {
8622 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8623 virtual_dwo_name);
8624 }
8625 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8626 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8627 virtual_dwo_name,
8628 strlen (virtual_dwo_name));
8629 dwo_file->sections.abbrev = sections.abbrev;
8630 dwo_file->sections.line = sections.line;
8631 dwo_file->sections.loc = sections.loc;
8632 dwo_file->sections.macinfo = sections.macinfo;
8633 dwo_file->sections.macro = sections.macro;
8634 dwo_file->sections.str_offsets = sections.str_offsets;
8635 /* The "str" section is global to the entire DWP file. */
8636 dwo_file->sections.str = dwp_file->sections.str;
8637 /* The info or types section is assigned later to dwo_unit,
8638 there's no need to record it in dwo_file.
8639 Also, we can't simply record type sections in dwo_file because
8640 we record a pointer into the vector in dwo_unit. As we collect more
8641 types we'll grow the vector and eventually have to reallocate space
8642 for it, invalidating all the pointers into the current copy. */
8643 *dwo_file_slot = dwo_file;
8644 }
8645 else
8646 {
8647 if (dwarf2_read_debug)
8648 {
8649 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8650 virtual_dwo_name);
8651 }
8652 dwo_file = *dwo_file_slot;
8653 }
8654 do_cleanups (cleanups);
8655
8656 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8657 dwo_unit->dwo_file = dwo_file;
8658 dwo_unit->signature = signature;
8659 dwo_unit->info_or_types_section =
8660 obstack_alloc (&objfile->objfile_obstack,
8661 sizeof (struct dwarf2_section_info));
8662 *dwo_unit->info_or_types_section = sections.info_or_types;
8663 /* offset, length, type_offset_in_tu are set later. */
8664
8665 return dwo_unit;
8666 }
8667
8668 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8669
8670 static struct dwo_unit *
8671 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8672 const struct dwp_hash_table *htab,
8673 ULONGEST signature, int is_debug_types)
8674 {
8675 bfd *dbfd = dwp_file->dbfd;
8676 uint32_t mask = htab->nr_slots - 1;
8677 uint32_t hash = signature & mask;
8678 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8679 unsigned int i;
8680 void **slot;
8681 struct dwo_unit find_dwo_cu, *dwo_cu;
8682
8683 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8684 find_dwo_cu.signature = signature;
8685 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8686
8687 if (*slot != NULL)
8688 return *slot;
8689
8690 /* Use a for loop so that we don't loop forever on bad debug info. */
8691 for (i = 0; i < htab->nr_slots; ++i)
8692 {
8693 ULONGEST signature_in_table;
8694
8695 signature_in_table =
8696 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8697 if (signature_in_table == signature)
8698 {
8699 uint32_t section_index =
8700 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8701
8702 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8703 signature, is_debug_types);
8704 return *slot;
8705 }
8706 if (signature_in_table == 0)
8707 return NULL;
8708 hash = (hash + hash2) & mask;
8709 }
8710
8711 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8712 " [in module %s]"),
8713 dwp_file->name);
8714 }
8715
8716 /* Subroutine of open_dwop_file to simplify it.
8717 Open the file specified by FILE_NAME and hand it off to BFD for
8718 preliminary analysis. Return a newly initialized bfd *, which
8719 includes a canonicalized copy of FILE_NAME.
8720 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8721 In case of trouble, return NULL.
8722 NOTE: This function is derived from symfile_bfd_open. */
8723
8724 static bfd *
8725 try_open_dwop_file (const char *file_name, int is_dwp)
8726 {
8727 bfd *sym_bfd;
8728 int desc, flags;
8729 char *absolute_name;
8730
8731 flags = OPF_TRY_CWD_FIRST;
8732 if (is_dwp)
8733 flags |= OPF_SEARCH_IN_PATH;
8734 desc = openp (debug_file_directory, flags, file_name,
8735 O_RDONLY | O_BINARY, &absolute_name);
8736 if (desc < 0)
8737 return NULL;
8738
8739 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8740 if (!sym_bfd)
8741 {
8742 xfree (absolute_name);
8743 return NULL;
8744 }
8745 xfree (absolute_name);
8746 bfd_set_cacheable (sym_bfd, 1);
8747
8748 if (!bfd_check_format (sym_bfd, bfd_object))
8749 {
8750 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8751 return NULL;
8752 }
8753
8754 return sym_bfd;
8755 }
8756
8757 /* Try to open DWO/DWP file FILE_NAME.
8758 COMP_DIR is the DW_AT_comp_dir attribute.
8759 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8760 The result is the bfd handle of the file.
8761 If there is a problem finding or opening the file, return NULL.
8762 Upon success, the canonicalized path of the file is stored in the bfd,
8763 same as symfile_bfd_open. */
8764
8765 static bfd *
8766 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8767 {
8768 bfd *abfd;
8769
8770 if (IS_ABSOLUTE_PATH (file_name))
8771 return try_open_dwop_file (file_name, is_dwp);
8772
8773 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8774
8775 if (comp_dir != NULL)
8776 {
8777 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8778
8779 /* NOTE: If comp_dir is a relative path, this will also try the
8780 search path, which seems useful. */
8781 abfd = try_open_dwop_file (path_to_try, is_dwp);
8782 xfree (path_to_try);
8783 if (abfd != NULL)
8784 return abfd;
8785 }
8786
8787 /* That didn't work, try debug-file-directory, which, despite its name,
8788 is a list of paths. */
8789
8790 if (*debug_file_directory == '\0')
8791 return NULL;
8792
8793 return try_open_dwop_file (file_name, is_dwp);
8794 }
8795
8796 /* This function is mapped across the sections and remembers the offset and
8797 size of each of the DWO debugging sections we are interested in. */
8798
8799 static void
8800 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8801 {
8802 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8803 const struct dwop_section_names *names = &dwop_section_names;
8804
8805 if (section_is_p (sectp->name, &names->abbrev_dwo))
8806 {
8807 dwo_sections->abbrev.asection = sectp;
8808 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8809 }
8810 else if (section_is_p (sectp->name, &names->info_dwo))
8811 {
8812 dwo_sections->info.asection = sectp;
8813 dwo_sections->info.size = bfd_get_section_size (sectp);
8814 }
8815 else if (section_is_p (sectp->name, &names->line_dwo))
8816 {
8817 dwo_sections->line.asection = sectp;
8818 dwo_sections->line.size = bfd_get_section_size (sectp);
8819 }
8820 else if (section_is_p (sectp->name, &names->loc_dwo))
8821 {
8822 dwo_sections->loc.asection = sectp;
8823 dwo_sections->loc.size = bfd_get_section_size (sectp);
8824 }
8825 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8826 {
8827 dwo_sections->macinfo.asection = sectp;
8828 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8829 }
8830 else if (section_is_p (sectp->name, &names->macro_dwo))
8831 {
8832 dwo_sections->macro.asection = sectp;
8833 dwo_sections->macro.size = bfd_get_section_size (sectp);
8834 }
8835 else if (section_is_p (sectp->name, &names->str_dwo))
8836 {
8837 dwo_sections->str.asection = sectp;
8838 dwo_sections->str.size = bfd_get_section_size (sectp);
8839 }
8840 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8841 {
8842 dwo_sections->str_offsets.asection = sectp;
8843 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8844 }
8845 else if (section_is_p (sectp->name, &names->types_dwo))
8846 {
8847 struct dwarf2_section_info type_section;
8848
8849 memset (&type_section, 0, sizeof (type_section));
8850 type_section.asection = sectp;
8851 type_section.size = bfd_get_section_size (sectp);
8852 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8853 &type_section);
8854 }
8855 }
8856
8857 /* Initialize the use of the DWO file specified by DWO_NAME.
8858 The result is NULL if DWO_NAME can't be found. */
8859
8860 static struct dwo_file *
8861 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8862 {
8863 struct objfile *objfile = dwarf2_per_objfile->objfile;
8864 struct dwo_file *dwo_file;
8865 bfd *dbfd;
8866 struct cleanup *cleanups;
8867
8868 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8869 if (dbfd == NULL)
8870 {
8871 if (dwarf2_read_debug)
8872 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8873 return NULL;
8874 }
8875 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8876 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8877 dwo_name, strlen (dwo_name));
8878 dwo_file->dbfd = dbfd;
8879
8880 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8881
8882 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8883
8884 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8885
8886 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8887 dwo_file->sections.types);
8888
8889 discard_cleanups (cleanups);
8890
8891 if (dwarf2_read_debug)
8892 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8893
8894 return dwo_file;
8895 }
8896
8897 /* This function is mapped across the sections and remembers the offset and
8898 size of each of the DWP debugging sections we are interested in. */
8899
8900 static void
8901 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8902 {
8903 struct dwp_file *dwp_file = dwp_file_ptr;
8904 const struct dwop_section_names *names = &dwop_section_names;
8905 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8906
8907 /* Record the ELF section number for later lookup: this is what the
8908 .debug_cu_index,.debug_tu_index tables use. */
8909 gdb_assert (elf_section_nr < dwp_file->num_sections);
8910 dwp_file->elf_sections[elf_section_nr] = sectp;
8911
8912 /* Look for specific sections that we need. */
8913 if (section_is_p (sectp->name, &names->str_dwo))
8914 {
8915 dwp_file->sections.str.asection = sectp;
8916 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8917 }
8918 else if (section_is_p (sectp->name, &names->cu_index))
8919 {
8920 dwp_file->sections.cu_index.asection = sectp;
8921 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8922 }
8923 else if (section_is_p (sectp->name, &names->tu_index))
8924 {
8925 dwp_file->sections.tu_index.asection = sectp;
8926 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8927 }
8928 }
8929
8930 /* Hash function for dwp_file loaded CUs/TUs. */
8931
8932 static hashval_t
8933 hash_dwp_loaded_cutus (const void *item)
8934 {
8935 const struct dwo_unit *dwo_unit = item;
8936
8937 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8938 return dwo_unit->signature;
8939 }
8940
8941 /* Equality function for dwp_file loaded CUs/TUs. */
8942
8943 static int
8944 eq_dwp_loaded_cutus (const void *a, const void *b)
8945 {
8946 const struct dwo_unit *dua = a;
8947 const struct dwo_unit *dub = b;
8948
8949 return dua->signature == dub->signature;
8950 }
8951
8952 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
8953
8954 static htab_t
8955 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8956 {
8957 return htab_create_alloc_ex (3,
8958 hash_dwp_loaded_cutus,
8959 eq_dwp_loaded_cutus,
8960 NULL,
8961 &objfile->objfile_obstack,
8962 hashtab_obstack_allocate,
8963 dummy_obstack_deallocate);
8964 }
8965
8966 /* Initialize the use of the DWP file for the current objfile.
8967 By convention the name of the DWP file is ${objfile}.dwp.
8968 The result is NULL if it can't be found. */
8969
8970 static struct dwp_file *
8971 open_and_init_dwp_file (const char *comp_dir)
8972 {
8973 struct objfile *objfile = dwarf2_per_objfile->objfile;
8974 struct dwp_file *dwp_file;
8975 char *dwp_name;
8976 bfd *dbfd;
8977 struct cleanup *cleanups;
8978
8979 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
8980 cleanups = make_cleanup (xfree, dwp_name);
8981
8982 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8983 if (dbfd == NULL)
8984 {
8985 if (dwarf2_read_debug)
8986 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8987 do_cleanups (cleanups);
8988 return NULL;
8989 }
8990 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8991 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8992 dwp_name, strlen (dwp_name));
8993 dwp_file->dbfd = dbfd;
8994 do_cleanups (cleanups);
8995
8996 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
8997
8998 /* +1: section 0 is unused */
8999 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9000 dwp_file->elf_sections =
9001 OBSTACK_CALLOC (&objfile->objfile_obstack,
9002 dwp_file->num_sections, asection *);
9003
9004 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9005
9006 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9007
9008 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9009
9010 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9011
9012 discard_cleanups (cleanups);
9013
9014 if (dwarf2_read_debug)
9015 {
9016 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9017 fprintf_unfiltered (gdb_stdlog,
9018 " %u CUs, %u TUs\n",
9019 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9020 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9021 }
9022
9023 return dwp_file;
9024 }
9025
9026 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9027 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9028 or in the DWP file for the objfile, referenced by THIS_UNIT.
9029 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9030 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9031
9032 This is called, for example, when wanting to read a variable with a
9033 complex location. Therefore we don't want to do file i/o for every call.
9034 Therefore we don't want to look for a DWO file on every call.
9035 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9036 then we check if we've already seen DWO_NAME, and only THEN do we check
9037 for a DWO file.
9038
9039 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9040 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9041
9042 static struct dwo_unit *
9043 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9044 const char *dwo_name, const char *comp_dir,
9045 ULONGEST signature, int is_debug_types)
9046 {
9047 struct objfile *objfile = dwarf2_per_objfile->objfile;
9048 const char *kind = is_debug_types ? "TU" : "CU";
9049 void **dwo_file_slot;
9050 struct dwo_file *dwo_file;
9051 struct dwp_file *dwp_file;
9052
9053 /* Have we already read SIGNATURE from a DWP file? */
9054
9055 if (! dwarf2_per_objfile->dwp_checked)
9056 {
9057 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9058 dwarf2_per_objfile->dwp_checked = 1;
9059 }
9060 dwp_file = dwarf2_per_objfile->dwp_file;
9061
9062 if (dwp_file != NULL)
9063 {
9064 const struct dwp_hash_table *dwp_htab =
9065 is_debug_types ? dwp_file->tus : dwp_file->cus;
9066
9067 if (dwp_htab != NULL)
9068 {
9069 struct dwo_unit *dwo_cutu =
9070 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9071
9072 if (dwo_cutu != NULL)
9073 {
9074 if (dwarf2_read_debug)
9075 {
9076 fprintf_unfiltered (gdb_stdlog,
9077 "Virtual DWO %s %s found: @%s\n",
9078 kind, hex_string (signature),
9079 host_address_to_string (dwo_cutu));
9080 }
9081 return dwo_cutu;
9082 }
9083 }
9084 }
9085
9086 /* Have we already seen DWO_NAME? */
9087
9088 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9089 if (*dwo_file_slot == NULL)
9090 {
9091 /* Read in the file and build a table of the DWOs it contains. */
9092 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9093 }
9094 /* NOTE: This will be NULL if unable to open the file. */
9095 dwo_file = *dwo_file_slot;
9096
9097 if (dwo_file != NULL)
9098 {
9099 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9100
9101 if (htab != NULL)
9102 {
9103 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9104
9105 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9106 find_dwo_cutu.signature = signature;
9107 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9108
9109 if (dwo_cutu != NULL)
9110 {
9111 if (dwarf2_read_debug)
9112 {
9113 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9114 kind, dwo_name, hex_string (signature),
9115 host_address_to_string (dwo_cutu));
9116 }
9117 return dwo_cutu;
9118 }
9119 }
9120 }
9121
9122 /* We didn't find it. This could mean a dwo_id mismatch, or
9123 someone deleted the DWO/DWP file, or the search path isn't set up
9124 correctly to find the file. */
9125
9126 if (dwarf2_read_debug)
9127 {
9128 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9129 kind, dwo_name, hex_string (signature));
9130 }
9131
9132 complaint (&symfile_complaints,
9133 _("Could not find DWO CU referenced by CU at offset 0x%x"
9134 " [in module %s]"),
9135 this_unit->offset.sect_off, objfile->name);
9136 return NULL;
9137 }
9138
9139 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9140 See lookup_dwo_cutu_unit for details. */
9141
9142 static struct dwo_unit *
9143 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9144 const char *dwo_name, const char *comp_dir,
9145 ULONGEST signature)
9146 {
9147 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9148 }
9149
9150 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9151 See lookup_dwo_cutu_unit for details. */
9152
9153 static struct dwo_unit *
9154 lookup_dwo_type_unit (struct signatured_type *this_tu,
9155 const char *dwo_name, const char *comp_dir)
9156 {
9157 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9158 }
9159
9160 /* Free all resources associated with DWO_FILE.
9161 Close the DWO file and munmap the sections.
9162 All memory should be on the objfile obstack. */
9163
9164 static void
9165 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9166 {
9167 int ix;
9168 struct dwarf2_section_info *section;
9169
9170 gdb_assert (dwo_file->dbfd != objfile->obfd);
9171 gdb_bfd_unref (dwo_file->dbfd);
9172
9173 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9174 }
9175
9176 /* Wrapper for free_dwo_file for use in cleanups. */
9177
9178 static void
9179 free_dwo_file_cleanup (void *arg)
9180 {
9181 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9182 struct objfile *objfile = dwarf2_per_objfile->objfile;
9183
9184 free_dwo_file (dwo_file, objfile);
9185 }
9186
9187 /* Traversal function for free_dwo_files. */
9188
9189 static int
9190 free_dwo_file_from_slot (void **slot, void *info)
9191 {
9192 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9193 struct objfile *objfile = (struct objfile *) info;
9194
9195 free_dwo_file (dwo_file, objfile);
9196
9197 return 1;
9198 }
9199
9200 /* Free all resources associated with DWO_FILES. */
9201
9202 static void
9203 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9204 {
9205 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9206 }
9207 \f
9208 /* Read in various DIEs. */
9209
9210 /* qsort helper for inherit_abstract_dies. */
9211
9212 static int
9213 unsigned_int_compar (const void *ap, const void *bp)
9214 {
9215 unsigned int a = *(unsigned int *) ap;
9216 unsigned int b = *(unsigned int *) bp;
9217
9218 return (a > b) - (b > a);
9219 }
9220
9221 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9222 Inherit only the children of the DW_AT_abstract_origin DIE not being
9223 already referenced by DW_AT_abstract_origin from the children of the
9224 current DIE. */
9225
9226 static void
9227 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9228 {
9229 struct die_info *child_die;
9230 unsigned die_children_count;
9231 /* CU offsets which were referenced by children of the current DIE. */
9232 sect_offset *offsets;
9233 sect_offset *offsets_end, *offsetp;
9234 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9235 struct die_info *origin_die;
9236 /* Iterator of the ORIGIN_DIE children. */
9237 struct die_info *origin_child_die;
9238 struct cleanup *cleanups;
9239 struct attribute *attr;
9240 struct dwarf2_cu *origin_cu;
9241 struct pending **origin_previous_list_in_scope;
9242
9243 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9244 if (!attr)
9245 return;
9246
9247 /* Note that following die references may follow to a die in a
9248 different cu. */
9249
9250 origin_cu = cu;
9251 origin_die = follow_die_ref (die, attr, &origin_cu);
9252
9253 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9254 symbols in. */
9255 origin_previous_list_in_scope = origin_cu->list_in_scope;
9256 origin_cu->list_in_scope = cu->list_in_scope;
9257
9258 if (die->tag != origin_die->tag
9259 && !(die->tag == DW_TAG_inlined_subroutine
9260 && origin_die->tag == DW_TAG_subprogram))
9261 complaint (&symfile_complaints,
9262 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9263 die->offset.sect_off, origin_die->offset.sect_off);
9264
9265 child_die = die->child;
9266 die_children_count = 0;
9267 while (child_die && child_die->tag)
9268 {
9269 child_die = sibling_die (child_die);
9270 die_children_count++;
9271 }
9272 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9273 cleanups = make_cleanup (xfree, offsets);
9274
9275 offsets_end = offsets;
9276 child_die = die->child;
9277 while (child_die && child_die->tag)
9278 {
9279 /* For each CHILD_DIE, find the corresponding child of
9280 ORIGIN_DIE. If there is more than one layer of
9281 DW_AT_abstract_origin, follow them all; there shouldn't be,
9282 but GCC versions at least through 4.4 generate this (GCC PR
9283 40573). */
9284 struct die_info *child_origin_die = child_die;
9285 struct dwarf2_cu *child_origin_cu = cu;
9286
9287 while (1)
9288 {
9289 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9290 child_origin_cu);
9291 if (attr == NULL)
9292 break;
9293 child_origin_die = follow_die_ref (child_origin_die, attr,
9294 &child_origin_cu);
9295 }
9296
9297 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9298 counterpart may exist. */
9299 if (child_origin_die != child_die)
9300 {
9301 if (child_die->tag != child_origin_die->tag
9302 && !(child_die->tag == DW_TAG_inlined_subroutine
9303 && child_origin_die->tag == DW_TAG_subprogram))
9304 complaint (&symfile_complaints,
9305 _("Child DIE 0x%x and its abstract origin 0x%x have "
9306 "different tags"), child_die->offset.sect_off,
9307 child_origin_die->offset.sect_off);
9308 if (child_origin_die->parent != origin_die)
9309 complaint (&symfile_complaints,
9310 _("Child DIE 0x%x and its abstract origin 0x%x have "
9311 "different parents"), child_die->offset.sect_off,
9312 child_origin_die->offset.sect_off);
9313 else
9314 *offsets_end++ = child_origin_die->offset;
9315 }
9316 child_die = sibling_die (child_die);
9317 }
9318 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9319 unsigned_int_compar);
9320 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9321 if (offsetp[-1].sect_off == offsetp->sect_off)
9322 complaint (&symfile_complaints,
9323 _("Multiple children of DIE 0x%x refer "
9324 "to DIE 0x%x as their abstract origin"),
9325 die->offset.sect_off, offsetp->sect_off);
9326
9327 offsetp = offsets;
9328 origin_child_die = origin_die->child;
9329 while (origin_child_die && origin_child_die->tag)
9330 {
9331 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9332 while (offsetp < offsets_end
9333 && offsetp->sect_off < origin_child_die->offset.sect_off)
9334 offsetp++;
9335 if (offsetp >= offsets_end
9336 || offsetp->sect_off > origin_child_die->offset.sect_off)
9337 {
9338 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9339 process_die (origin_child_die, origin_cu);
9340 }
9341 origin_child_die = sibling_die (origin_child_die);
9342 }
9343 origin_cu->list_in_scope = origin_previous_list_in_scope;
9344
9345 do_cleanups (cleanups);
9346 }
9347
9348 static void
9349 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9350 {
9351 struct objfile *objfile = cu->objfile;
9352 struct context_stack *new;
9353 CORE_ADDR lowpc;
9354 CORE_ADDR highpc;
9355 struct die_info *child_die;
9356 struct attribute *attr, *call_line, *call_file;
9357 char *name;
9358 CORE_ADDR baseaddr;
9359 struct block *block;
9360 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9361 VEC (symbolp) *template_args = NULL;
9362 struct template_symbol *templ_func = NULL;
9363
9364 if (inlined_func)
9365 {
9366 /* If we do not have call site information, we can't show the
9367 caller of this inlined function. That's too confusing, so
9368 only use the scope for local variables. */
9369 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9370 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9371 if (call_line == NULL || call_file == NULL)
9372 {
9373 read_lexical_block_scope (die, cu);
9374 return;
9375 }
9376 }
9377
9378 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9379
9380 name = dwarf2_name (die, cu);
9381
9382 /* Ignore functions with missing or empty names. These are actually
9383 illegal according to the DWARF standard. */
9384 if (name == NULL)
9385 {
9386 complaint (&symfile_complaints,
9387 _("missing name for subprogram DIE at %d"),
9388 die->offset.sect_off);
9389 return;
9390 }
9391
9392 /* Ignore functions with missing or invalid low and high pc attributes. */
9393 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9394 {
9395 attr = dwarf2_attr (die, DW_AT_external, cu);
9396 if (!attr || !DW_UNSND (attr))
9397 complaint (&symfile_complaints,
9398 _("cannot get low and high bounds "
9399 "for subprogram DIE at %d"),
9400 die->offset.sect_off);
9401 return;
9402 }
9403
9404 lowpc += baseaddr;
9405 highpc += baseaddr;
9406
9407 /* If we have any template arguments, then we must allocate a
9408 different sort of symbol. */
9409 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9410 {
9411 if (child_die->tag == DW_TAG_template_type_param
9412 || child_die->tag == DW_TAG_template_value_param)
9413 {
9414 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9415 struct template_symbol);
9416 templ_func->base.is_cplus_template_function = 1;
9417 break;
9418 }
9419 }
9420
9421 new = push_context (0, lowpc);
9422 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9423 (struct symbol *) templ_func);
9424
9425 /* If there is a location expression for DW_AT_frame_base, record
9426 it. */
9427 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9428 if (attr)
9429 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9430 expression is being recorded directly in the function's symbol
9431 and not in a separate frame-base object. I guess this hack is
9432 to avoid adding some sort of frame-base adjunct/annex to the
9433 function's symbol :-(. The problem with doing this is that it
9434 results in a function symbol with a location expression that
9435 has nothing to do with the location of the function, ouch! The
9436 relationship should be: a function's symbol has-a frame base; a
9437 frame-base has-a location expression. */
9438 dwarf2_symbol_mark_computed (attr, new->name, cu);
9439
9440 cu->list_in_scope = &local_symbols;
9441
9442 if (die->child != NULL)
9443 {
9444 child_die = die->child;
9445 while (child_die && child_die->tag)
9446 {
9447 if (child_die->tag == DW_TAG_template_type_param
9448 || child_die->tag == DW_TAG_template_value_param)
9449 {
9450 struct symbol *arg = new_symbol (child_die, NULL, cu);
9451
9452 if (arg != NULL)
9453 VEC_safe_push (symbolp, template_args, arg);
9454 }
9455 else
9456 process_die (child_die, cu);
9457 child_die = sibling_die (child_die);
9458 }
9459 }
9460
9461 inherit_abstract_dies (die, cu);
9462
9463 /* If we have a DW_AT_specification, we might need to import using
9464 directives from the context of the specification DIE. See the
9465 comment in determine_prefix. */
9466 if (cu->language == language_cplus
9467 && dwarf2_attr (die, DW_AT_specification, cu))
9468 {
9469 struct dwarf2_cu *spec_cu = cu;
9470 struct die_info *spec_die = die_specification (die, &spec_cu);
9471
9472 while (spec_die)
9473 {
9474 child_die = spec_die->child;
9475 while (child_die && child_die->tag)
9476 {
9477 if (child_die->tag == DW_TAG_imported_module)
9478 process_die (child_die, spec_cu);
9479 child_die = sibling_die (child_die);
9480 }
9481
9482 /* In some cases, GCC generates specification DIEs that
9483 themselves contain DW_AT_specification attributes. */
9484 spec_die = die_specification (spec_die, &spec_cu);
9485 }
9486 }
9487
9488 new = pop_context ();
9489 /* Make a block for the local symbols within. */
9490 block = finish_block (new->name, &local_symbols, new->old_blocks,
9491 lowpc, highpc, objfile);
9492
9493 /* For C++, set the block's scope. */
9494 if (cu->language == language_cplus || cu->language == language_fortran)
9495 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9496 determine_prefix (die, cu),
9497 processing_has_namespace_info);
9498
9499 /* If we have address ranges, record them. */
9500 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9501
9502 /* Attach template arguments to function. */
9503 if (! VEC_empty (symbolp, template_args))
9504 {
9505 gdb_assert (templ_func != NULL);
9506
9507 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9508 templ_func->template_arguments
9509 = obstack_alloc (&objfile->objfile_obstack,
9510 (templ_func->n_template_arguments
9511 * sizeof (struct symbol *)));
9512 memcpy (templ_func->template_arguments,
9513 VEC_address (symbolp, template_args),
9514 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9515 VEC_free (symbolp, template_args);
9516 }
9517
9518 /* In C++, we can have functions nested inside functions (e.g., when
9519 a function declares a class that has methods). This means that
9520 when we finish processing a function scope, we may need to go
9521 back to building a containing block's symbol lists. */
9522 local_symbols = new->locals;
9523 using_directives = new->using_directives;
9524
9525 /* If we've finished processing a top-level function, subsequent
9526 symbols go in the file symbol list. */
9527 if (outermost_context_p ())
9528 cu->list_in_scope = &file_symbols;
9529 }
9530
9531 /* Process all the DIES contained within a lexical block scope. Start
9532 a new scope, process the dies, and then close the scope. */
9533
9534 static void
9535 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9536 {
9537 struct objfile *objfile = cu->objfile;
9538 struct context_stack *new;
9539 CORE_ADDR lowpc, highpc;
9540 struct die_info *child_die;
9541 CORE_ADDR baseaddr;
9542
9543 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9544
9545 /* Ignore blocks with missing or invalid low and high pc attributes. */
9546 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9547 as multiple lexical blocks? Handling children in a sane way would
9548 be nasty. Might be easier to properly extend generic blocks to
9549 describe ranges. */
9550 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9551 return;
9552 lowpc += baseaddr;
9553 highpc += baseaddr;
9554
9555 push_context (0, lowpc);
9556 if (die->child != NULL)
9557 {
9558 child_die = die->child;
9559 while (child_die && child_die->tag)
9560 {
9561 process_die (child_die, cu);
9562 child_die = sibling_die (child_die);
9563 }
9564 }
9565 new = pop_context ();
9566
9567 if (local_symbols != NULL || using_directives != NULL)
9568 {
9569 struct block *block
9570 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9571 highpc, objfile);
9572
9573 /* Note that recording ranges after traversing children, as we
9574 do here, means that recording a parent's ranges entails
9575 walking across all its children's ranges as they appear in
9576 the address map, which is quadratic behavior.
9577
9578 It would be nicer to record the parent's ranges before
9579 traversing its children, simply overriding whatever you find
9580 there. But since we don't even decide whether to create a
9581 block until after we've traversed its children, that's hard
9582 to do. */
9583 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9584 }
9585 local_symbols = new->locals;
9586 using_directives = new->using_directives;
9587 }
9588
9589 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9590
9591 static void
9592 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9593 {
9594 struct objfile *objfile = cu->objfile;
9595 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9596 CORE_ADDR pc, baseaddr;
9597 struct attribute *attr;
9598 struct call_site *call_site, call_site_local;
9599 void **slot;
9600 int nparams;
9601 struct die_info *child_die;
9602
9603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9604
9605 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9606 if (!attr)
9607 {
9608 complaint (&symfile_complaints,
9609 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9610 "DIE 0x%x [in module %s]"),
9611 die->offset.sect_off, objfile->name);
9612 return;
9613 }
9614 pc = DW_ADDR (attr) + baseaddr;
9615
9616 if (cu->call_site_htab == NULL)
9617 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9618 NULL, &objfile->objfile_obstack,
9619 hashtab_obstack_allocate, NULL);
9620 call_site_local.pc = pc;
9621 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9622 if (*slot != NULL)
9623 {
9624 complaint (&symfile_complaints,
9625 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9626 "DIE 0x%x [in module %s]"),
9627 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9628 return;
9629 }
9630
9631 /* Count parameters at the caller. */
9632
9633 nparams = 0;
9634 for (child_die = die->child; child_die && child_die->tag;
9635 child_die = sibling_die (child_die))
9636 {
9637 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9638 {
9639 complaint (&symfile_complaints,
9640 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9641 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9642 child_die->tag, child_die->offset.sect_off, objfile->name);
9643 continue;
9644 }
9645
9646 nparams++;
9647 }
9648
9649 call_site = obstack_alloc (&objfile->objfile_obstack,
9650 (sizeof (*call_site)
9651 + (sizeof (*call_site->parameter)
9652 * (nparams - 1))));
9653 *slot = call_site;
9654 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9655 call_site->pc = pc;
9656
9657 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9658 {
9659 struct die_info *func_die;
9660
9661 /* Skip also over DW_TAG_inlined_subroutine. */
9662 for (func_die = die->parent;
9663 func_die && func_die->tag != DW_TAG_subprogram
9664 && func_die->tag != DW_TAG_subroutine_type;
9665 func_die = func_die->parent);
9666
9667 /* DW_AT_GNU_all_call_sites is a superset
9668 of DW_AT_GNU_all_tail_call_sites. */
9669 if (func_die
9670 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9671 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9672 {
9673 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9674 not complete. But keep CALL_SITE for look ups via call_site_htab,
9675 both the initial caller containing the real return address PC and
9676 the final callee containing the current PC of a chain of tail
9677 calls do not need to have the tail call list complete. But any
9678 function candidate for a virtual tail call frame searched via
9679 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9680 determined unambiguously. */
9681 }
9682 else
9683 {
9684 struct type *func_type = NULL;
9685
9686 if (func_die)
9687 func_type = get_die_type (func_die, cu);
9688 if (func_type != NULL)
9689 {
9690 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9691
9692 /* Enlist this call site to the function. */
9693 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9694 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9695 }
9696 else
9697 complaint (&symfile_complaints,
9698 _("Cannot find function owning DW_TAG_GNU_call_site "
9699 "DIE 0x%x [in module %s]"),
9700 die->offset.sect_off, objfile->name);
9701 }
9702 }
9703
9704 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9705 if (attr == NULL)
9706 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9707 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9708 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9709 /* Keep NULL DWARF_BLOCK. */;
9710 else if (attr_form_is_block (attr))
9711 {
9712 struct dwarf2_locexpr_baton *dlbaton;
9713
9714 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9715 dlbaton->data = DW_BLOCK (attr)->data;
9716 dlbaton->size = DW_BLOCK (attr)->size;
9717 dlbaton->per_cu = cu->per_cu;
9718
9719 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9720 }
9721 else if (is_ref_attr (attr))
9722 {
9723 struct dwarf2_cu *target_cu = cu;
9724 struct die_info *target_die;
9725
9726 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9727 gdb_assert (target_cu->objfile == objfile);
9728 if (die_is_declaration (target_die, target_cu))
9729 {
9730 const char *target_physname;
9731
9732 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9733 if (target_physname == NULL)
9734 complaint (&symfile_complaints,
9735 _("DW_AT_GNU_call_site_target target DIE has invalid "
9736 "physname, for referencing DIE 0x%x [in module %s]"),
9737 die->offset.sect_off, objfile->name);
9738 else
9739 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9740 }
9741 else
9742 {
9743 CORE_ADDR lowpc;
9744
9745 /* DW_AT_entry_pc should be preferred. */
9746 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9747 complaint (&symfile_complaints,
9748 _("DW_AT_GNU_call_site_target target DIE has invalid "
9749 "low pc, for referencing DIE 0x%x [in module %s]"),
9750 die->offset.sect_off, objfile->name);
9751 else
9752 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9753 }
9754 }
9755 else
9756 complaint (&symfile_complaints,
9757 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9758 "block nor reference, for DIE 0x%x [in module %s]"),
9759 die->offset.sect_off, objfile->name);
9760
9761 call_site->per_cu = cu->per_cu;
9762
9763 for (child_die = die->child;
9764 child_die && child_die->tag;
9765 child_die = sibling_die (child_die))
9766 {
9767 struct call_site_parameter *parameter;
9768 struct attribute *loc, *origin;
9769
9770 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9771 {
9772 /* Already printed the complaint above. */
9773 continue;
9774 }
9775
9776 gdb_assert (call_site->parameter_count < nparams);
9777 parameter = &call_site->parameter[call_site->parameter_count];
9778
9779 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9780 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9781 register is contained in DW_AT_GNU_call_site_value. */
9782
9783 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9784 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9785 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9786 {
9787 sect_offset offset;
9788
9789 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9790 offset = dwarf2_get_ref_die_offset (origin);
9791 if (!offset_in_cu_p (&cu->header, offset))
9792 {
9793 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9794 binding can be done only inside one CU. Such referenced DIE
9795 therefore cannot be even moved to DW_TAG_partial_unit. */
9796 complaint (&symfile_complaints,
9797 _("DW_AT_abstract_origin offset is not in CU for "
9798 "DW_TAG_GNU_call_site child DIE 0x%x "
9799 "[in module %s]"),
9800 child_die->offset.sect_off, objfile->name);
9801 continue;
9802 }
9803 parameter->u.param_offset.cu_off = (offset.sect_off
9804 - cu->header.offset.sect_off);
9805 }
9806 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9807 {
9808 complaint (&symfile_complaints,
9809 _("No DW_FORM_block* DW_AT_location for "
9810 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9811 child_die->offset.sect_off, objfile->name);
9812 continue;
9813 }
9814 else
9815 {
9816 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9817 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9818 if (parameter->u.dwarf_reg != -1)
9819 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9820 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9821 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9822 &parameter->u.fb_offset))
9823 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9824 else
9825 {
9826 complaint (&symfile_complaints,
9827 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9828 "for DW_FORM_block* DW_AT_location is supported for "
9829 "DW_TAG_GNU_call_site child DIE 0x%x "
9830 "[in module %s]"),
9831 child_die->offset.sect_off, objfile->name);
9832 continue;
9833 }
9834 }
9835
9836 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9837 if (!attr_form_is_block (attr))
9838 {
9839 complaint (&symfile_complaints,
9840 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9841 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9842 child_die->offset.sect_off, objfile->name);
9843 continue;
9844 }
9845 parameter->value = DW_BLOCK (attr)->data;
9846 parameter->value_size = DW_BLOCK (attr)->size;
9847
9848 /* Parameters are not pre-cleared by memset above. */
9849 parameter->data_value = NULL;
9850 parameter->data_value_size = 0;
9851 call_site->parameter_count++;
9852
9853 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9854 if (attr)
9855 {
9856 if (!attr_form_is_block (attr))
9857 complaint (&symfile_complaints,
9858 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9859 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9860 child_die->offset.sect_off, objfile->name);
9861 else
9862 {
9863 parameter->data_value = DW_BLOCK (attr)->data;
9864 parameter->data_value_size = DW_BLOCK (attr)->size;
9865 }
9866 }
9867 }
9868 }
9869
9870 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9871 Return 1 if the attributes are present and valid, otherwise, return 0.
9872 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9873
9874 static int
9875 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9876 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9877 struct partial_symtab *ranges_pst)
9878 {
9879 struct objfile *objfile = cu->objfile;
9880 struct comp_unit_head *cu_header = &cu->header;
9881 bfd *obfd = objfile->obfd;
9882 unsigned int addr_size = cu_header->addr_size;
9883 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9884 /* Base address selection entry. */
9885 CORE_ADDR base;
9886 int found_base;
9887 unsigned int dummy;
9888 gdb_byte *buffer;
9889 CORE_ADDR marker;
9890 int low_set;
9891 CORE_ADDR low = 0;
9892 CORE_ADDR high = 0;
9893 CORE_ADDR baseaddr;
9894
9895 found_base = cu->base_known;
9896 base = cu->base_address;
9897
9898 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9899 if (offset >= dwarf2_per_objfile->ranges.size)
9900 {
9901 complaint (&symfile_complaints,
9902 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9903 offset);
9904 return 0;
9905 }
9906 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9907
9908 /* Read in the largest possible address. */
9909 marker = read_address (obfd, buffer, cu, &dummy);
9910 if ((marker & mask) == mask)
9911 {
9912 /* If we found the largest possible address, then
9913 read the base address. */
9914 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9915 buffer += 2 * addr_size;
9916 offset += 2 * addr_size;
9917 found_base = 1;
9918 }
9919
9920 low_set = 0;
9921
9922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9923
9924 while (1)
9925 {
9926 CORE_ADDR range_beginning, range_end;
9927
9928 range_beginning = read_address (obfd, buffer, cu, &dummy);
9929 buffer += addr_size;
9930 range_end = read_address (obfd, buffer, cu, &dummy);
9931 buffer += addr_size;
9932 offset += 2 * addr_size;
9933
9934 /* An end of list marker is a pair of zero addresses. */
9935 if (range_beginning == 0 && range_end == 0)
9936 /* Found the end of list entry. */
9937 break;
9938
9939 /* Each base address selection entry is a pair of 2 values.
9940 The first is the largest possible address, the second is
9941 the base address. Check for a base address here. */
9942 if ((range_beginning & mask) == mask)
9943 {
9944 /* If we found the largest possible address, then
9945 read the base address. */
9946 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9947 found_base = 1;
9948 continue;
9949 }
9950
9951 if (!found_base)
9952 {
9953 /* We have no valid base address for the ranges
9954 data. */
9955 complaint (&symfile_complaints,
9956 _("Invalid .debug_ranges data (no base address)"));
9957 return 0;
9958 }
9959
9960 if (range_beginning > range_end)
9961 {
9962 /* Inverted range entries are invalid. */
9963 complaint (&symfile_complaints,
9964 _("Invalid .debug_ranges data (inverted range)"));
9965 return 0;
9966 }
9967
9968 /* Empty range entries have no effect. */
9969 if (range_beginning == range_end)
9970 continue;
9971
9972 range_beginning += base;
9973 range_end += base;
9974
9975 /* A not-uncommon case of bad debug info.
9976 Don't pollute the addrmap with bad data. */
9977 if (range_beginning + baseaddr == 0
9978 && !dwarf2_per_objfile->has_section_at_zero)
9979 {
9980 complaint (&symfile_complaints,
9981 _(".debug_ranges entry has start address of zero"
9982 " [in module %s]"), objfile->name);
9983 continue;
9984 }
9985
9986 if (ranges_pst != NULL)
9987 addrmap_set_empty (objfile->psymtabs_addrmap,
9988 range_beginning + baseaddr,
9989 range_end - 1 + baseaddr,
9990 ranges_pst);
9991
9992 /* FIXME: This is recording everything as a low-high
9993 segment of consecutive addresses. We should have a
9994 data structure for discontiguous block ranges
9995 instead. */
9996 if (! low_set)
9997 {
9998 low = range_beginning;
9999 high = range_end;
10000 low_set = 1;
10001 }
10002 else
10003 {
10004 if (range_beginning < low)
10005 low = range_beginning;
10006 if (range_end > high)
10007 high = range_end;
10008 }
10009 }
10010
10011 if (! low_set)
10012 /* If the first entry is an end-of-list marker, the range
10013 describes an empty scope, i.e. no instructions. */
10014 return 0;
10015
10016 if (low_return)
10017 *low_return = low;
10018 if (high_return)
10019 *high_return = high;
10020 return 1;
10021 }
10022
10023 /* Get low and high pc attributes from a die. Return 1 if the attributes
10024 are present and valid, otherwise, return 0. Return -1 if the range is
10025 discontinuous, i.e. derived from DW_AT_ranges information. */
10026
10027 static int
10028 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10029 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10030 struct partial_symtab *pst)
10031 {
10032 struct attribute *attr;
10033 struct attribute *attr_high;
10034 CORE_ADDR low = 0;
10035 CORE_ADDR high = 0;
10036 int ret = 0;
10037
10038 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10039 if (attr_high)
10040 {
10041 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10042 if (attr)
10043 {
10044 low = DW_ADDR (attr);
10045 if (attr_high->form == DW_FORM_addr
10046 || attr_high->form == DW_FORM_GNU_addr_index)
10047 high = DW_ADDR (attr_high);
10048 else
10049 high = low + DW_UNSND (attr_high);
10050 }
10051 else
10052 /* Found high w/o low attribute. */
10053 return 0;
10054
10055 /* Found consecutive range of addresses. */
10056 ret = 1;
10057 }
10058 else
10059 {
10060 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10061 if (attr != NULL)
10062 {
10063 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10064 We take advantage of the fact that DW_AT_ranges does not appear
10065 in DW_TAG_compile_unit of DWO files. */
10066 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10067 unsigned int ranges_offset = (DW_UNSND (attr)
10068 + (need_ranges_base
10069 ? cu->ranges_base
10070 : 0));
10071
10072 /* Value of the DW_AT_ranges attribute is the offset in the
10073 .debug_ranges section. */
10074 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10075 return 0;
10076 /* Found discontinuous range of addresses. */
10077 ret = -1;
10078 }
10079 }
10080
10081 /* read_partial_die has also the strict LOW < HIGH requirement. */
10082 if (high <= low)
10083 return 0;
10084
10085 /* When using the GNU linker, .gnu.linkonce. sections are used to
10086 eliminate duplicate copies of functions and vtables and such.
10087 The linker will arbitrarily choose one and discard the others.
10088 The AT_*_pc values for such functions refer to local labels in
10089 these sections. If the section from that file was discarded, the
10090 labels are not in the output, so the relocs get a value of 0.
10091 If this is a discarded function, mark the pc bounds as invalid,
10092 so that GDB will ignore it. */
10093 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10094 return 0;
10095
10096 *lowpc = low;
10097 if (highpc)
10098 *highpc = high;
10099 return ret;
10100 }
10101
10102 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10103 its low and high PC addresses. Do nothing if these addresses could not
10104 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10105 and HIGHPC to the high address if greater than HIGHPC. */
10106
10107 static void
10108 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10110 struct dwarf2_cu *cu)
10111 {
10112 CORE_ADDR low, high;
10113 struct die_info *child = die->child;
10114
10115 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10116 {
10117 *lowpc = min (*lowpc, low);
10118 *highpc = max (*highpc, high);
10119 }
10120
10121 /* If the language does not allow nested subprograms (either inside
10122 subprograms or lexical blocks), we're done. */
10123 if (cu->language != language_ada)
10124 return;
10125
10126 /* Check all the children of the given DIE. If it contains nested
10127 subprograms, then check their pc bounds. Likewise, we need to
10128 check lexical blocks as well, as they may also contain subprogram
10129 definitions. */
10130 while (child && child->tag)
10131 {
10132 if (child->tag == DW_TAG_subprogram
10133 || child->tag == DW_TAG_lexical_block)
10134 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10135 child = sibling_die (child);
10136 }
10137 }
10138
10139 /* Get the low and high pc's represented by the scope DIE, and store
10140 them in *LOWPC and *HIGHPC. If the correct values can't be
10141 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10142
10143 static void
10144 get_scope_pc_bounds (struct die_info *die,
10145 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10146 struct dwarf2_cu *cu)
10147 {
10148 CORE_ADDR best_low = (CORE_ADDR) -1;
10149 CORE_ADDR best_high = (CORE_ADDR) 0;
10150 CORE_ADDR current_low, current_high;
10151
10152 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10153 {
10154 best_low = current_low;
10155 best_high = current_high;
10156 }
10157 else
10158 {
10159 struct die_info *child = die->child;
10160
10161 while (child && child->tag)
10162 {
10163 switch (child->tag) {
10164 case DW_TAG_subprogram:
10165 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10166 break;
10167 case DW_TAG_namespace:
10168 case DW_TAG_module:
10169 /* FIXME: carlton/2004-01-16: Should we do this for
10170 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10171 that current GCC's always emit the DIEs corresponding
10172 to definitions of methods of classes as children of a
10173 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10174 the DIEs giving the declarations, which could be
10175 anywhere). But I don't see any reason why the
10176 standards says that they have to be there. */
10177 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10178
10179 if (current_low != ((CORE_ADDR) -1))
10180 {
10181 best_low = min (best_low, current_low);
10182 best_high = max (best_high, current_high);
10183 }
10184 break;
10185 default:
10186 /* Ignore. */
10187 break;
10188 }
10189
10190 child = sibling_die (child);
10191 }
10192 }
10193
10194 *lowpc = best_low;
10195 *highpc = best_high;
10196 }
10197
10198 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10199 in DIE. */
10200
10201 static void
10202 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10203 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10204 {
10205 struct objfile *objfile = cu->objfile;
10206 struct attribute *attr;
10207 struct attribute *attr_high;
10208
10209 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10210 if (attr_high)
10211 {
10212 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10213 if (attr)
10214 {
10215 CORE_ADDR low = DW_ADDR (attr);
10216 CORE_ADDR high;
10217 if (attr_high->form == DW_FORM_addr
10218 || attr_high->form == DW_FORM_GNU_addr_index)
10219 high = DW_ADDR (attr_high);
10220 else
10221 high = low + DW_UNSND (attr_high);
10222
10223 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10224 }
10225 }
10226
10227 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10228 if (attr)
10229 {
10230 bfd *obfd = objfile->obfd;
10231 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10232 We take advantage of the fact that DW_AT_ranges does not appear
10233 in DW_TAG_compile_unit of DWO files. */
10234 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10235
10236 /* The value of the DW_AT_ranges attribute is the offset of the
10237 address range list in the .debug_ranges section. */
10238 unsigned long offset = (DW_UNSND (attr)
10239 + (need_ranges_base ? cu->ranges_base : 0));
10240 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10241
10242 /* For some target architectures, but not others, the
10243 read_address function sign-extends the addresses it returns.
10244 To recognize base address selection entries, we need a
10245 mask. */
10246 unsigned int addr_size = cu->header.addr_size;
10247 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10248
10249 /* The base address, to which the next pair is relative. Note
10250 that this 'base' is a DWARF concept: most entries in a range
10251 list are relative, to reduce the number of relocs against the
10252 debugging information. This is separate from this function's
10253 'baseaddr' argument, which GDB uses to relocate debugging
10254 information from a shared library based on the address at
10255 which the library was loaded. */
10256 CORE_ADDR base = cu->base_address;
10257 int base_known = cu->base_known;
10258
10259 gdb_assert (dwarf2_per_objfile->ranges.readin);
10260 if (offset >= dwarf2_per_objfile->ranges.size)
10261 {
10262 complaint (&symfile_complaints,
10263 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10264 offset);
10265 return;
10266 }
10267
10268 for (;;)
10269 {
10270 unsigned int bytes_read;
10271 CORE_ADDR start, end;
10272
10273 start = read_address (obfd, buffer, cu, &bytes_read);
10274 buffer += bytes_read;
10275 end = read_address (obfd, buffer, cu, &bytes_read);
10276 buffer += bytes_read;
10277
10278 /* Did we find the end of the range list? */
10279 if (start == 0 && end == 0)
10280 break;
10281
10282 /* Did we find a base address selection entry? */
10283 else if ((start & base_select_mask) == base_select_mask)
10284 {
10285 base = end;
10286 base_known = 1;
10287 }
10288
10289 /* We found an ordinary address range. */
10290 else
10291 {
10292 if (!base_known)
10293 {
10294 complaint (&symfile_complaints,
10295 _("Invalid .debug_ranges data "
10296 "(no base address)"));
10297 return;
10298 }
10299
10300 if (start > end)
10301 {
10302 /* Inverted range entries are invalid. */
10303 complaint (&symfile_complaints,
10304 _("Invalid .debug_ranges data "
10305 "(inverted range)"));
10306 return;
10307 }
10308
10309 /* Empty range entries have no effect. */
10310 if (start == end)
10311 continue;
10312
10313 start += base + baseaddr;
10314 end += base + baseaddr;
10315
10316 /* A not-uncommon case of bad debug info.
10317 Don't pollute the addrmap with bad data. */
10318 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10319 {
10320 complaint (&symfile_complaints,
10321 _(".debug_ranges entry has start address of zero"
10322 " [in module %s]"), objfile->name);
10323 continue;
10324 }
10325
10326 record_block_range (block, start, end - 1);
10327 }
10328 }
10329 }
10330 }
10331
10332 /* Check whether the producer field indicates either of GCC < 4.6, or the
10333 Intel C/C++ compiler, and cache the result in CU. */
10334
10335 static void
10336 check_producer (struct dwarf2_cu *cu)
10337 {
10338 const char *cs;
10339 int major, minor, release;
10340
10341 if (cu->producer == NULL)
10342 {
10343 /* For unknown compilers expect their behavior is DWARF version
10344 compliant.
10345
10346 GCC started to support .debug_types sections by -gdwarf-4 since
10347 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10348 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10349 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10350 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10351 }
10352 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10353 {
10354 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10355
10356 cs = &cu->producer[strlen ("GNU ")];
10357 while (*cs && !isdigit (*cs))
10358 cs++;
10359 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10360 {
10361 /* Not recognized as GCC. */
10362 }
10363 else
10364 {
10365 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10366 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10367 }
10368 }
10369 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10370 cu->producer_is_icc = 1;
10371 else
10372 {
10373 /* For other non-GCC compilers, expect their behavior is DWARF version
10374 compliant. */
10375 }
10376
10377 cu->checked_producer = 1;
10378 }
10379
10380 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10381 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10382 during 4.6.0 experimental. */
10383
10384 static int
10385 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10386 {
10387 if (!cu->checked_producer)
10388 check_producer (cu);
10389
10390 return cu->producer_is_gxx_lt_4_6;
10391 }
10392
10393 /* Return the default accessibility type if it is not overriden by
10394 DW_AT_accessibility. */
10395
10396 static enum dwarf_access_attribute
10397 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10398 {
10399 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10400 {
10401 /* The default DWARF 2 accessibility for members is public, the default
10402 accessibility for inheritance is private. */
10403
10404 if (die->tag != DW_TAG_inheritance)
10405 return DW_ACCESS_public;
10406 else
10407 return DW_ACCESS_private;
10408 }
10409 else
10410 {
10411 /* DWARF 3+ defines the default accessibility a different way. The same
10412 rules apply now for DW_TAG_inheritance as for the members and it only
10413 depends on the container kind. */
10414
10415 if (die->parent->tag == DW_TAG_class_type)
10416 return DW_ACCESS_private;
10417 else
10418 return DW_ACCESS_public;
10419 }
10420 }
10421
10422 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10423 offset. If the attribute was not found return 0, otherwise return
10424 1. If it was found but could not properly be handled, set *OFFSET
10425 to 0. */
10426
10427 static int
10428 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10429 LONGEST *offset)
10430 {
10431 struct attribute *attr;
10432
10433 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10434 if (attr != NULL)
10435 {
10436 *offset = 0;
10437
10438 /* Note that we do not check for a section offset first here.
10439 This is because DW_AT_data_member_location is new in DWARF 4,
10440 so if we see it, we can assume that a constant form is really
10441 a constant and not a section offset. */
10442 if (attr_form_is_constant (attr))
10443 *offset = dwarf2_get_attr_constant_value (attr, 0);
10444 else if (attr_form_is_section_offset (attr))
10445 dwarf2_complex_location_expr_complaint ();
10446 else if (attr_form_is_block (attr))
10447 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10448 else
10449 dwarf2_complex_location_expr_complaint ();
10450
10451 return 1;
10452 }
10453
10454 return 0;
10455 }
10456
10457 /* Add an aggregate field to the field list. */
10458
10459 static void
10460 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10461 struct dwarf2_cu *cu)
10462 {
10463 struct objfile *objfile = cu->objfile;
10464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10465 struct nextfield *new_field;
10466 struct attribute *attr;
10467 struct field *fp;
10468 char *fieldname = "";
10469
10470 /* Allocate a new field list entry and link it in. */
10471 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10472 make_cleanup (xfree, new_field);
10473 memset (new_field, 0, sizeof (struct nextfield));
10474
10475 if (die->tag == DW_TAG_inheritance)
10476 {
10477 new_field->next = fip->baseclasses;
10478 fip->baseclasses = new_field;
10479 }
10480 else
10481 {
10482 new_field->next = fip->fields;
10483 fip->fields = new_field;
10484 }
10485 fip->nfields++;
10486
10487 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10488 if (attr)
10489 new_field->accessibility = DW_UNSND (attr);
10490 else
10491 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10492 if (new_field->accessibility != DW_ACCESS_public)
10493 fip->non_public_fields = 1;
10494
10495 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10496 if (attr)
10497 new_field->virtuality = DW_UNSND (attr);
10498 else
10499 new_field->virtuality = DW_VIRTUALITY_none;
10500
10501 fp = &new_field->field;
10502
10503 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10504 {
10505 LONGEST offset;
10506
10507 /* Data member other than a C++ static data member. */
10508
10509 /* Get type of field. */
10510 fp->type = die_type (die, cu);
10511
10512 SET_FIELD_BITPOS (*fp, 0);
10513
10514 /* Get bit size of field (zero if none). */
10515 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10516 if (attr)
10517 {
10518 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10519 }
10520 else
10521 {
10522 FIELD_BITSIZE (*fp) = 0;
10523 }
10524
10525 /* Get bit offset of field. */
10526 if (handle_data_member_location (die, cu, &offset))
10527 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10528 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10529 if (attr)
10530 {
10531 if (gdbarch_bits_big_endian (gdbarch))
10532 {
10533 /* For big endian bits, the DW_AT_bit_offset gives the
10534 additional bit offset from the MSB of the containing
10535 anonymous object to the MSB of the field. We don't
10536 have to do anything special since we don't need to
10537 know the size of the anonymous object. */
10538 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10539 }
10540 else
10541 {
10542 /* For little endian bits, compute the bit offset to the
10543 MSB of the anonymous object, subtract off the number of
10544 bits from the MSB of the field to the MSB of the
10545 object, and then subtract off the number of bits of
10546 the field itself. The result is the bit offset of
10547 the LSB of the field. */
10548 int anonymous_size;
10549 int bit_offset = DW_UNSND (attr);
10550
10551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10552 if (attr)
10553 {
10554 /* The size of the anonymous object containing
10555 the bit field is explicit, so use the
10556 indicated size (in bytes). */
10557 anonymous_size = DW_UNSND (attr);
10558 }
10559 else
10560 {
10561 /* The size of the anonymous object containing
10562 the bit field must be inferred from the type
10563 attribute of the data member containing the
10564 bit field. */
10565 anonymous_size = TYPE_LENGTH (fp->type);
10566 }
10567 SET_FIELD_BITPOS (*fp,
10568 (FIELD_BITPOS (*fp)
10569 + anonymous_size * bits_per_byte
10570 - bit_offset - FIELD_BITSIZE (*fp)));
10571 }
10572 }
10573
10574 /* Get name of field. */
10575 fieldname = dwarf2_name (die, cu);
10576 if (fieldname == NULL)
10577 fieldname = "";
10578
10579 /* The name is already allocated along with this objfile, so we don't
10580 need to duplicate it for the type. */
10581 fp->name = fieldname;
10582
10583 /* Change accessibility for artificial fields (e.g. virtual table
10584 pointer or virtual base class pointer) to private. */
10585 if (dwarf2_attr (die, DW_AT_artificial, cu))
10586 {
10587 FIELD_ARTIFICIAL (*fp) = 1;
10588 new_field->accessibility = DW_ACCESS_private;
10589 fip->non_public_fields = 1;
10590 }
10591 }
10592 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10593 {
10594 /* C++ static member. */
10595
10596 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10597 is a declaration, but all versions of G++ as of this writing
10598 (so through at least 3.2.1) incorrectly generate
10599 DW_TAG_variable tags. */
10600
10601 const char *physname;
10602
10603 /* Get name of field. */
10604 fieldname = dwarf2_name (die, cu);
10605 if (fieldname == NULL)
10606 return;
10607
10608 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10609 if (attr
10610 /* Only create a symbol if this is an external value.
10611 new_symbol checks this and puts the value in the global symbol
10612 table, which we want. If it is not external, new_symbol
10613 will try to put the value in cu->list_in_scope which is wrong. */
10614 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10615 {
10616 /* A static const member, not much different than an enum as far as
10617 we're concerned, except that we can support more types. */
10618 new_symbol (die, NULL, cu);
10619 }
10620
10621 /* Get physical name. */
10622 physname = dwarf2_physname (fieldname, die, cu);
10623
10624 /* The name is already allocated along with this objfile, so we don't
10625 need to duplicate it for the type. */
10626 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10627 FIELD_TYPE (*fp) = die_type (die, cu);
10628 FIELD_NAME (*fp) = fieldname;
10629 }
10630 else if (die->tag == DW_TAG_inheritance)
10631 {
10632 LONGEST offset;
10633
10634 /* C++ base class field. */
10635 if (handle_data_member_location (die, cu, &offset))
10636 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10637 FIELD_BITSIZE (*fp) = 0;
10638 FIELD_TYPE (*fp) = die_type (die, cu);
10639 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10640 fip->nbaseclasses++;
10641 }
10642 }
10643
10644 /* Add a typedef defined in the scope of the FIP's class. */
10645
10646 static void
10647 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10648 struct dwarf2_cu *cu)
10649 {
10650 struct objfile *objfile = cu->objfile;
10651 struct typedef_field_list *new_field;
10652 struct attribute *attr;
10653 struct typedef_field *fp;
10654 char *fieldname = "";
10655
10656 /* Allocate a new field list entry and link it in. */
10657 new_field = xzalloc (sizeof (*new_field));
10658 make_cleanup (xfree, new_field);
10659
10660 gdb_assert (die->tag == DW_TAG_typedef);
10661
10662 fp = &new_field->field;
10663
10664 /* Get name of field. */
10665 fp->name = dwarf2_name (die, cu);
10666 if (fp->name == NULL)
10667 return;
10668
10669 fp->type = read_type_die (die, cu);
10670
10671 new_field->next = fip->typedef_field_list;
10672 fip->typedef_field_list = new_field;
10673 fip->typedef_field_list_count++;
10674 }
10675
10676 /* Create the vector of fields, and attach it to the type. */
10677
10678 static void
10679 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10680 struct dwarf2_cu *cu)
10681 {
10682 int nfields = fip->nfields;
10683
10684 /* Record the field count, allocate space for the array of fields,
10685 and create blank accessibility bitfields if necessary. */
10686 TYPE_NFIELDS (type) = nfields;
10687 TYPE_FIELDS (type) = (struct field *)
10688 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10689 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10690
10691 if (fip->non_public_fields && cu->language != language_ada)
10692 {
10693 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10694
10695 TYPE_FIELD_PRIVATE_BITS (type) =
10696 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10697 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10698
10699 TYPE_FIELD_PROTECTED_BITS (type) =
10700 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10701 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10702
10703 TYPE_FIELD_IGNORE_BITS (type) =
10704 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10705 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10706 }
10707
10708 /* If the type has baseclasses, allocate and clear a bit vector for
10709 TYPE_FIELD_VIRTUAL_BITS. */
10710 if (fip->nbaseclasses && cu->language != language_ada)
10711 {
10712 int num_bytes = B_BYTES (fip->nbaseclasses);
10713 unsigned char *pointer;
10714
10715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10716 pointer = TYPE_ALLOC (type, num_bytes);
10717 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10718 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10719 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10720 }
10721
10722 /* Copy the saved-up fields into the field vector. Start from the head of
10723 the list, adding to the tail of the field array, so that they end up in
10724 the same order in the array in which they were added to the list. */
10725 while (nfields-- > 0)
10726 {
10727 struct nextfield *fieldp;
10728
10729 if (fip->fields)
10730 {
10731 fieldp = fip->fields;
10732 fip->fields = fieldp->next;
10733 }
10734 else
10735 {
10736 fieldp = fip->baseclasses;
10737 fip->baseclasses = fieldp->next;
10738 }
10739
10740 TYPE_FIELD (type, nfields) = fieldp->field;
10741 switch (fieldp->accessibility)
10742 {
10743 case DW_ACCESS_private:
10744 if (cu->language != language_ada)
10745 SET_TYPE_FIELD_PRIVATE (type, nfields);
10746 break;
10747
10748 case DW_ACCESS_protected:
10749 if (cu->language != language_ada)
10750 SET_TYPE_FIELD_PROTECTED (type, nfields);
10751 break;
10752
10753 case DW_ACCESS_public:
10754 break;
10755
10756 default:
10757 /* Unknown accessibility. Complain and treat it as public. */
10758 {
10759 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10760 fieldp->accessibility);
10761 }
10762 break;
10763 }
10764 if (nfields < fip->nbaseclasses)
10765 {
10766 switch (fieldp->virtuality)
10767 {
10768 case DW_VIRTUALITY_virtual:
10769 case DW_VIRTUALITY_pure_virtual:
10770 if (cu->language == language_ada)
10771 error (_("unexpected virtuality in component of Ada type"));
10772 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10773 break;
10774 }
10775 }
10776 }
10777 }
10778
10779 /* Return true if this member function is a constructor, false
10780 otherwise. */
10781
10782 static int
10783 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10784 {
10785 const char *fieldname;
10786 const char *typename;
10787 int len;
10788
10789 if (die->parent == NULL)
10790 return 0;
10791
10792 if (die->parent->tag != DW_TAG_structure_type
10793 && die->parent->tag != DW_TAG_union_type
10794 && die->parent->tag != DW_TAG_class_type)
10795 return 0;
10796
10797 fieldname = dwarf2_name (die, cu);
10798 typename = dwarf2_name (die->parent, cu);
10799 if (fieldname == NULL || typename == NULL)
10800 return 0;
10801
10802 len = strlen (fieldname);
10803 return (strncmp (fieldname, typename, len) == 0
10804 && (typename[len] == '\0' || typename[len] == '<'));
10805 }
10806
10807 /* Add a member function to the proper fieldlist. */
10808
10809 static void
10810 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10811 struct type *type, struct dwarf2_cu *cu)
10812 {
10813 struct objfile *objfile = cu->objfile;
10814 struct attribute *attr;
10815 struct fnfieldlist *flp;
10816 int i;
10817 struct fn_field *fnp;
10818 char *fieldname;
10819 struct nextfnfield *new_fnfield;
10820 struct type *this_type;
10821 enum dwarf_access_attribute accessibility;
10822
10823 if (cu->language == language_ada)
10824 error (_("unexpected member function in Ada type"));
10825
10826 /* Get name of member function. */
10827 fieldname = dwarf2_name (die, cu);
10828 if (fieldname == NULL)
10829 return;
10830
10831 /* Look up member function name in fieldlist. */
10832 for (i = 0; i < fip->nfnfields; i++)
10833 {
10834 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10835 break;
10836 }
10837
10838 /* Create new list element if necessary. */
10839 if (i < fip->nfnfields)
10840 flp = &fip->fnfieldlists[i];
10841 else
10842 {
10843 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10844 {
10845 fip->fnfieldlists = (struct fnfieldlist *)
10846 xrealloc (fip->fnfieldlists,
10847 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10848 * sizeof (struct fnfieldlist));
10849 if (fip->nfnfields == 0)
10850 make_cleanup (free_current_contents, &fip->fnfieldlists);
10851 }
10852 flp = &fip->fnfieldlists[fip->nfnfields];
10853 flp->name = fieldname;
10854 flp->length = 0;
10855 flp->head = NULL;
10856 i = fip->nfnfields++;
10857 }
10858
10859 /* Create a new member function field and chain it to the field list
10860 entry. */
10861 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10862 make_cleanup (xfree, new_fnfield);
10863 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10864 new_fnfield->next = flp->head;
10865 flp->head = new_fnfield;
10866 flp->length++;
10867
10868 /* Fill in the member function field info. */
10869 fnp = &new_fnfield->fnfield;
10870
10871 /* Delay processing of the physname until later. */
10872 if (cu->language == language_cplus || cu->language == language_java)
10873 {
10874 add_to_method_list (type, i, flp->length - 1, fieldname,
10875 die, cu);
10876 }
10877 else
10878 {
10879 const char *physname = dwarf2_physname (fieldname, die, cu);
10880 fnp->physname = physname ? physname : "";
10881 }
10882
10883 fnp->type = alloc_type (objfile);
10884 this_type = read_type_die (die, cu);
10885 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10886 {
10887 int nparams = TYPE_NFIELDS (this_type);
10888
10889 /* TYPE is the domain of this method, and THIS_TYPE is the type
10890 of the method itself (TYPE_CODE_METHOD). */
10891 smash_to_method_type (fnp->type, type,
10892 TYPE_TARGET_TYPE (this_type),
10893 TYPE_FIELDS (this_type),
10894 TYPE_NFIELDS (this_type),
10895 TYPE_VARARGS (this_type));
10896
10897 /* Handle static member functions.
10898 Dwarf2 has no clean way to discern C++ static and non-static
10899 member functions. G++ helps GDB by marking the first
10900 parameter for non-static member functions (which is the this
10901 pointer) as artificial. We obtain this information from
10902 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10903 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10904 fnp->voffset = VOFFSET_STATIC;
10905 }
10906 else
10907 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10908 dwarf2_full_name (fieldname, die, cu));
10909
10910 /* Get fcontext from DW_AT_containing_type if present. */
10911 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10912 fnp->fcontext = die_containing_type (die, cu);
10913
10914 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10915 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10916
10917 /* Get accessibility. */
10918 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10919 if (attr)
10920 accessibility = DW_UNSND (attr);
10921 else
10922 accessibility = dwarf2_default_access_attribute (die, cu);
10923 switch (accessibility)
10924 {
10925 case DW_ACCESS_private:
10926 fnp->is_private = 1;
10927 break;
10928 case DW_ACCESS_protected:
10929 fnp->is_protected = 1;
10930 break;
10931 }
10932
10933 /* Check for artificial methods. */
10934 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10935 if (attr && DW_UNSND (attr) != 0)
10936 fnp->is_artificial = 1;
10937
10938 fnp->is_constructor = dwarf2_is_constructor (die, cu);
10939
10940 /* Get index in virtual function table if it is a virtual member
10941 function. For older versions of GCC, this is an offset in the
10942 appropriate virtual table, as specified by DW_AT_containing_type.
10943 For everyone else, it is an expression to be evaluated relative
10944 to the object address. */
10945
10946 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10947 if (attr)
10948 {
10949 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10950 {
10951 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10952 {
10953 /* Old-style GCC. */
10954 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10955 }
10956 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10957 || (DW_BLOCK (attr)->size > 1
10958 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10959 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10960 {
10961 struct dwarf_block blk;
10962 int offset;
10963
10964 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10965 ? 1 : 2);
10966 blk.size = DW_BLOCK (attr)->size - offset;
10967 blk.data = DW_BLOCK (attr)->data + offset;
10968 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10969 if ((fnp->voffset % cu->header.addr_size) != 0)
10970 dwarf2_complex_location_expr_complaint ();
10971 else
10972 fnp->voffset /= cu->header.addr_size;
10973 fnp->voffset += 2;
10974 }
10975 else
10976 dwarf2_complex_location_expr_complaint ();
10977
10978 if (!fnp->fcontext)
10979 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10980 }
10981 else if (attr_form_is_section_offset (attr))
10982 {
10983 dwarf2_complex_location_expr_complaint ();
10984 }
10985 else
10986 {
10987 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10988 fieldname);
10989 }
10990 }
10991 else
10992 {
10993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10994 if (attr && DW_UNSND (attr))
10995 {
10996 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10997 complaint (&symfile_complaints,
10998 _("Member function \"%s\" (offset %d) is virtual "
10999 "but the vtable offset is not specified"),
11000 fieldname, die->offset.sect_off);
11001 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11002 TYPE_CPLUS_DYNAMIC (type) = 1;
11003 }
11004 }
11005 }
11006
11007 /* Create the vector of member function fields, and attach it to the type. */
11008
11009 static void
11010 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11011 struct dwarf2_cu *cu)
11012 {
11013 struct fnfieldlist *flp;
11014 int i;
11015
11016 if (cu->language == language_ada)
11017 error (_("unexpected member functions in Ada type"));
11018
11019 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11020 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11021 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11022
11023 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11024 {
11025 struct nextfnfield *nfp = flp->head;
11026 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11027 int k;
11028
11029 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11030 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11031 fn_flp->fn_fields = (struct fn_field *)
11032 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11033 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11034 fn_flp->fn_fields[k] = nfp->fnfield;
11035 }
11036
11037 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11038 }
11039
11040 /* Returns non-zero if NAME is the name of a vtable member in CU's
11041 language, zero otherwise. */
11042 static int
11043 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11044 {
11045 static const char vptr[] = "_vptr";
11046 static const char vtable[] = "vtable";
11047
11048 /* Look for the C++ and Java forms of the vtable. */
11049 if ((cu->language == language_java
11050 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11051 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11052 && is_cplus_marker (name[sizeof (vptr) - 1])))
11053 return 1;
11054
11055 return 0;
11056 }
11057
11058 /* GCC outputs unnamed structures that are really pointers to member
11059 functions, with the ABI-specified layout. If TYPE describes
11060 such a structure, smash it into a member function type.
11061
11062 GCC shouldn't do this; it should just output pointer to member DIEs.
11063 This is GCC PR debug/28767. */
11064
11065 static void
11066 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11067 {
11068 struct type *pfn_type, *domain_type, *new_type;
11069
11070 /* Check for a structure with no name and two children. */
11071 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11072 return;
11073
11074 /* Check for __pfn and __delta members. */
11075 if (TYPE_FIELD_NAME (type, 0) == NULL
11076 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11077 || TYPE_FIELD_NAME (type, 1) == NULL
11078 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11079 return;
11080
11081 /* Find the type of the method. */
11082 pfn_type = TYPE_FIELD_TYPE (type, 0);
11083 if (pfn_type == NULL
11084 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11085 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11086 return;
11087
11088 /* Look for the "this" argument. */
11089 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11090 if (TYPE_NFIELDS (pfn_type) == 0
11091 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11092 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11093 return;
11094
11095 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11096 new_type = alloc_type (objfile);
11097 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11098 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11099 TYPE_VARARGS (pfn_type));
11100 smash_to_methodptr_type (type, new_type);
11101 }
11102
11103 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11104 (icc). */
11105
11106 static int
11107 producer_is_icc (struct dwarf2_cu *cu)
11108 {
11109 if (!cu->checked_producer)
11110 check_producer (cu);
11111
11112 return cu->producer_is_icc;
11113 }
11114
11115 /* Called when we find the DIE that starts a structure or union scope
11116 (definition) to create a type for the structure or union. Fill in
11117 the type's name and general properties; the members will not be
11118 processed until process_structure_type.
11119
11120 NOTE: we need to call these functions regardless of whether or not the
11121 DIE has a DW_AT_name attribute, since it might be an anonymous
11122 structure or union. This gets the type entered into our set of
11123 user defined types.
11124
11125 However, if the structure is incomplete (an opaque struct/union)
11126 then suppress creating a symbol table entry for it since gdb only
11127 wants to find the one with the complete definition. Note that if
11128 it is complete, we just call new_symbol, which does it's own
11129 checking about whether the struct/union is anonymous or not (and
11130 suppresses creating a symbol table entry itself). */
11131
11132 static struct type *
11133 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11134 {
11135 struct objfile *objfile = cu->objfile;
11136 struct type *type;
11137 struct attribute *attr;
11138 char *name;
11139
11140 /* If the definition of this type lives in .debug_types, read that type.
11141 Don't follow DW_AT_specification though, that will take us back up
11142 the chain and we want to go down. */
11143 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11144 if (attr)
11145 {
11146 struct dwarf2_cu *type_cu = cu;
11147 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11148
11149 /* We could just recurse on read_structure_type, but we need to call
11150 get_die_type to ensure only one type for this DIE is created.
11151 This is important, for example, because for c++ classes we need
11152 TYPE_NAME set which is only done by new_symbol. Blech. */
11153 type = read_type_die (type_die, type_cu);
11154
11155 /* TYPE_CU may not be the same as CU.
11156 Ensure TYPE is recorded in CU's type_hash table. */
11157 return set_die_type (die, type, cu);
11158 }
11159
11160 type = alloc_type (objfile);
11161 INIT_CPLUS_SPECIFIC (type);
11162
11163 name = dwarf2_name (die, cu);
11164 if (name != NULL)
11165 {
11166 if (cu->language == language_cplus
11167 || cu->language == language_java)
11168 {
11169 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11170
11171 /* dwarf2_full_name might have already finished building the DIE's
11172 type. If so, there is no need to continue. */
11173 if (get_die_type (die, cu) != NULL)
11174 return get_die_type (die, cu);
11175
11176 TYPE_TAG_NAME (type) = full_name;
11177 if (die->tag == DW_TAG_structure_type
11178 || die->tag == DW_TAG_class_type)
11179 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11180 }
11181 else
11182 {
11183 /* The name is already allocated along with this objfile, so
11184 we don't need to duplicate it for the type. */
11185 TYPE_TAG_NAME (type) = (char *) name;
11186 if (die->tag == DW_TAG_class_type)
11187 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11188 }
11189 }
11190
11191 if (die->tag == DW_TAG_structure_type)
11192 {
11193 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11194 }
11195 else if (die->tag == DW_TAG_union_type)
11196 {
11197 TYPE_CODE (type) = TYPE_CODE_UNION;
11198 }
11199 else
11200 {
11201 TYPE_CODE (type) = TYPE_CODE_CLASS;
11202 }
11203
11204 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11205 TYPE_DECLARED_CLASS (type) = 1;
11206
11207 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11208 if (attr)
11209 {
11210 TYPE_LENGTH (type) = DW_UNSND (attr);
11211 }
11212 else
11213 {
11214 TYPE_LENGTH (type) = 0;
11215 }
11216
11217 if (producer_is_icc (cu))
11218 {
11219 /* ICC does not output the required DW_AT_declaration
11220 on incomplete types, but gives them a size of zero. */
11221 }
11222 else
11223 TYPE_STUB_SUPPORTED (type) = 1;
11224
11225 if (die_is_declaration (die, cu))
11226 TYPE_STUB (type) = 1;
11227 else if (attr == NULL && die->child == NULL
11228 && producer_is_realview (cu->producer))
11229 /* RealView does not output the required DW_AT_declaration
11230 on incomplete types. */
11231 TYPE_STUB (type) = 1;
11232
11233 /* We need to add the type field to the die immediately so we don't
11234 infinitely recurse when dealing with pointers to the structure
11235 type within the structure itself. */
11236 set_die_type (die, type, cu);
11237
11238 /* set_die_type should be already done. */
11239 set_descriptive_type (type, die, cu);
11240
11241 return type;
11242 }
11243
11244 /* Finish creating a structure or union type, including filling in
11245 its members and creating a symbol for it. */
11246
11247 static void
11248 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11249 {
11250 struct objfile *objfile = cu->objfile;
11251 struct die_info *child_die = die->child;
11252 struct type *type;
11253
11254 type = get_die_type (die, cu);
11255 if (type == NULL)
11256 type = read_structure_type (die, cu);
11257
11258 if (die->child != NULL && ! die_is_declaration (die, cu))
11259 {
11260 struct field_info fi;
11261 struct die_info *child_die;
11262 VEC (symbolp) *template_args = NULL;
11263 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11264
11265 memset (&fi, 0, sizeof (struct field_info));
11266
11267 child_die = die->child;
11268
11269 while (child_die && child_die->tag)
11270 {
11271 if (child_die->tag == DW_TAG_member
11272 || child_die->tag == DW_TAG_variable)
11273 {
11274 /* NOTE: carlton/2002-11-05: A C++ static data member
11275 should be a DW_TAG_member that is a declaration, but
11276 all versions of G++ as of this writing (so through at
11277 least 3.2.1) incorrectly generate DW_TAG_variable
11278 tags for them instead. */
11279 dwarf2_add_field (&fi, child_die, cu);
11280 }
11281 else if (child_die->tag == DW_TAG_subprogram)
11282 {
11283 /* C++ member function. */
11284 dwarf2_add_member_fn (&fi, child_die, type, cu);
11285 }
11286 else if (child_die->tag == DW_TAG_inheritance)
11287 {
11288 /* C++ base class field. */
11289 dwarf2_add_field (&fi, child_die, cu);
11290 }
11291 else if (child_die->tag == DW_TAG_typedef)
11292 dwarf2_add_typedef (&fi, child_die, cu);
11293 else if (child_die->tag == DW_TAG_template_type_param
11294 || child_die->tag == DW_TAG_template_value_param)
11295 {
11296 struct symbol *arg = new_symbol (child_die, NULL, cu);
11297
11298 if (arg != NULL)
11299 VEC_safe_push (symbolp, template_args, arg);
11300 }
11301
11302 child_die = sibling_die (child_die);
11303 }
11304
11305 /* Attach template arguments to type. */
11306 if (! VEC_empty (symbolp, template_args))
11307 {
11308 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11309 TYPE_N_TEMPLATE_ARGUMENTS (type)
11310 = VEC_length (symbolp, template_args);
11311 TYPE_TEMPLATE_ARGUMENTS (type)
11312 = obstack_alloc (&objfile->objfile_obstack,
11313 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11314 * sizeof (struct symbol *)));
11315 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11316 VEC_address (symbolp, template_args),
11317 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11318 * sizeof (struct symbol *)));
11319 VEC_free (symbolp, template_args);
11320 }
11321
11322 /* Attach fields and member functions to the type. */
11323 if (fi.nfields)
11324 dwarf2_attach_fields_to_type (&fi, type, cu);
11325 if (fi.nfnfields)
11326 {
11327 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11328
11329 /* Get the type which refers to the base class (possibly this
11330 class itself) which contains the vtable pointer for the current
11331 class from the DW_AT_containing_type attribute. This use of
11332 DW_AT_containing_type is a GNU extension. */
11333
11334 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11335 {
11336 struct type *t = die_containing_type (die, cu);
11337
11338 TYPE_VPTR_BASETYPE (type) = t;
11339 if (type == t)
11340 {
11341 int i;
11342
11343 /* Our own class provides vtbl ptr. */
11344 for (i = TYPE_NFIELDS (t) - 1;
11345 i >= TYPE_N_BASECLASSES (t);
11346 --i)
11347 {
11348 const char *fieldname = TYPE_FIELD_NAME (t, i);
11349
11350 if (is_vtable_name (fieldname, cu))
11351 {
11352 TYPE_VPTR_FIELDNO (type) = i;
11353 break;
11354 }
11355 }
11356
11357 /* Complain if virtual function table field not found. */
11358 if (i < TYPE_N_BASECLASSES (t))
11359 complaint (&symfile_complaints,
11360 _("virtual function table pointer "
11361 "not found when defining class '%s'"),
11362 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11363 "");
11364 }
11365 else
11366 {
11367 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11368 }
11369 }
11370 else if (cu->producer
11371 && strncmp (cu->producer,
11372 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11373 {
11374 /* The IBM XLC compiler does not provide direct indication
11375 of the containing type, but the vtable pointer is
11376 always named __vfp. */
11377
11378 int i;
11379
11380 for (i = TYPE_NFIELDS (type) - 1;
11381 i >= TYPE_N_BASECLASSES (type);
11382 --i)
11383 {
11384 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11385 {
11386 TYPE_VPTR_FIELDNO (type) = i;
11387 TYPE_VPTR_BASETYPE (type) = type;
11388 break;
11389 }
11390 }
11391 }
11392 }
11393
11394 /* Copy fi.typedef_field_list linked list elements content into the
11395 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11396 if (fi.typedef_field_list)
11397 {
11398 int i = fi.typedef_field_list_count;
11399
11400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11401 TYPE_TYPEDEF_FIELD_ARRAY (type)
11402 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11403 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11404
11405 /* Reverse the list order to keep the debug info elements order. */
11406 while (--i >= 0)
11407 {
11408 struct typedef_field *dest, *src;
11409
11410 dest = &TYPE_TYPEDEF_FIELD (type, i);
11411 src = &fi.typedef_field_list->field;
11412 fi.typedef_field_list = fi.typedef_field_list->next;
11413 *dest = *src;
11414 }
11415 }
11416
11417 do_cleanups (back_to);
11418
11419 if (HAVE_CPLUS_STRUCT (type))
11420 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11421 }
11422
11423 quirk_gcc_member_function_pointer (type, objfile);
11424
11425 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11426 snapshots) has been known to create a die giving a declaration
11427 for a class that has, as a child, a die giving a definition for a
11428 nested class. So we have to process our children even if the
11429 current die is a declaration. Normally, of course, a declaration
11430 won't have any children at all. */
11431
11432 while (child_die != NULL && child_die->tag)
11433 {
11434 if (child_die->tag == DW_TAG_member
11435 || child_die->tag == DW_TAG_variable
11436 || child_die->tag == DW_TAG_inheritance
11437 || child_die->tag == DW_TAG_template_value_param
11438 || child_die->tag == DW_TAG_template_type_param)
11439 {
11440 /* Do nothing. */
11441 }
11442 else
11443 process_die (child_die, cu);
11444
11445 child_die = sibling_die (child_die);
11446 }
11447
11448 /* Do not consider external references. According to the DWARF standard,
11449 these DIEs are identified by the fact that they have no byte_size
11450 attribute, and a declaration attribute. */
11451 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11452 || !die_is_declaration (die, cu))
11453 new_symbol (die, type, cu);
11454 }
11455
11456 /* Given a DW_AT_enumeration_type die, set its type. We do not
11457 complete the type's fields yet, or create any symbols. */
11458
11459 static struct type *
11460 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11461 {
11462 struct objfile *objfile = cu->objfile;
11463 struct type *type;
11464 struct attribute *attr;
11465 const char *name;
11466
11467 /* If the definition of this type lives in .debug_types, read that type.
11468 Don't follow DW_AT_specification though, that will take us back up
11469 the chain and we want to go down. */
11470 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11471 if (attr)
11472 {
11473 struct dwarf2_cu *type_cu = cu;
11474 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11475
11476 type = read_type_die (type_die, type_cu);
11477
11478 /* TYPE_CU may not be the same as CU.
11479 Ensure TYPE is recorded in CU's type_hash table. */
11480 return set_die_type (die, type, cu);
11481 }
11482
11483 type = alloc_type (objfile);
11484
11485 TYPE_CODE (type) = TYPE_CODE_ENUM;
11486 name = dwarf2_full_name (NULL, die, cu);
11487 if (name != NULL)
11488 TYPE_TAG_NAME (type) = (char *) name;
11489
11490 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11491 if (attr)
11492 {
11493 TYPE_LENGTH (type) = DW_UNSND (attr);
11494 }
11495 else
11496 {
11497 TYPE_LENGTH (type) = 0;
11498 }
11499
11500 /* The enumeration DIE can be incomplete. In Ada, any type can be
11501 declared as private in the package spec, and then defined only
11502 inside the package body. Such types are known as Taft Amendment
11503 Types. When another package uses such a type, an incomplete DIE
11504 may be generated by the compiler. */
11505 if (die_is_declaration (die, cu))
11506 TYPE_STUB (type) = 1;
11507
11508 return set_die_type (die, type, cu);
11509 }
11510
11511 /* Given a pointer to a die which begins an enumeration, process all
11512 the dies that define the members of the enumeration, and create the
11513 symbol for the enumeration type.
11514
11515 NOTE: We reverse the order of the element list. */
11516
11517 static void
11518 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11519 {
11520 struct type *this_type;
11521
11522 this_type = get_die_type (die, cu);
11523 if (this_type == NULL)
11524 this_type = read_enumeration_type (die, cu);
11525
11526 if (die->child != NULL)
11527 {
11528 struct die_info *child_die;
11529 struct symbol *sym;
11530 struct field *fields = NULL;
11531 int num_fields = 0;
11532 int unsigned_enum = 1;
11533 char *name;
11534 int flag_enum = 1;
11535 ULONGEST mask = 0;
11536
11537 child_die = die->child;
11538 while (child_die && child_die->tag)
11539 {
11540 if (child_die->tag != DW_TAG_enumerator)
11541 {
11542 process_die (child_die, cu);
11543 }
11544 else
11545 {
11546 name = dwarf2_name (child_die, cu);
11547 if (name)
11548 {
11549 sym = new_symbol (child_die, this_type, cu);
11550 if (SYMBOL_VALUE (sym) < 0)
11551 {
11552 unsigned_enum = 0;
11553 flag_enum = 0;
11554 }
11555 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11556 flag_enum = 0;
11557 else
11558 mask |= SYMBOL_VALUE (sym);
11559
11560 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11561 {
11562 fields = (struct field *)
11563 xrealloc (fields,
11564 (num_fields + DW_FIELD_ALLOC_CHUNK)
11565 * sizeof (struct field));
11566 }
11567
11568 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11569 FIELD_TYPE (fields[num_fields]) = NULL;
11570 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11571 FIELD_BITSIZE (fields[num_fields]) = 0;
11572
11573 num_fields++;
11574 }
11575 }
11576
11577 child_die = sibling_die (child_die);
11578 }
11579
11580 if (num_fields)
11581 {
11582 TYPE_NFIELDS (this_type) = num_fields;
11583 TYPE_FIELDS (this_type) = (struct field *)
11584 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11585 memcpy (TYPE_FIELDS (this_type), fields,
11586 sizeof (struct field) * num_fields);
11587 xfree (fields);
11588 }
11589 if (unsigned_enum)
11590 TYPE_UNSIGNED (this_type) = 1;
11591 if (flag_enum)
11592 TYPE_FLAG_ENUM (this_type) = 1;
11593 }
11594
11595 /* If we are reading an enum from a .debug_types unit, and the enum
11596 is a declaration, and the enum is not the signatured type in the
11597 unit, then we do not want to add a symbol for it. Adding a
11598 symbol would in some cases obscure the true definition of the
11599 enum, giving users an incomplete type when the definition is
11600 actually available. Note that we do not want to do this for all
11601 enums which are just declarations, because C++0x allows forward
11602 enum declarations. */
11603 if (cu->per_cu->is_debug_types
11604 && die_is_declaration (die, cu))
11605 {
11606 struct signatured_type *sig_type;
11607
11608 sig_type
11609 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11610 cu->per_cu->info_or_types_section,
11611 cu->per_cu->offset);
11612 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11613 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11614 return;
11615 }
11616
11617 new_symbol (die, this_type, cu);
11618 }
11619
11620 /* Extract all information from a DW_TAG_array_type DIE and put it in
11621 the DIE's type field. For now, this only handles one dimensional
11622 arrays. */
11623
11624 static struct type *
11625 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11626 {
11627 struct objfile *objfile = cu->objfile;
11628 struct die_info *child_die;
11629 struct type *type;
11630 struct type *element_type, *range_type, *index_type;
11631 struct type **range_types = NULL;
11632 struct attribute *attr;
11633 int ndim = 0;
11634 struct cleanup *back_to;
11635 char *name;
11636
11637 element_type = die_type (die, cu);
11638
11639 /* The die_type call above may have already set the type for this DIE. */
11640 type = get_die_type (die, cu);
11641 if (type)
11642 return type;
11643
11644 /* Irix 6.2 native cc creates array types without children for
11645 arrays with unspecified length. */
11646 if (die->child == NULL)
11647 {
11648 index_type = objfile_type (objfile)->builtin_int;
11649 range_type = create_range_type (NULL, index_type, 0, -1);
11650 type = create_array_type (NULL, element_type, range_type);
11651 return set_die_type (die, type, cu);
11652 }
11653
11654 back_to = make_cleanup (null_cleanup, NULL);
11655 child_die = die->child;
11656 while (child_die && child_die->tag)
11657 {
11658 if (child_die->tag == DW_TAG_subrange_type)
11659 {
11660 struct type *child_type = read_type_die (child_die, cu);
11661
11662 if (child_type != NULL)
11663 {
11664 /* The range type was succesfully read. Save it for the
11665 array type creation. */
11666 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11667 {
11668 range_types = (struct type **)
11669 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11670 * sizeof (struct type *));
11671 if (ndim == 0)
11672 make_cleanup (free_current_contents, &range_types);
11673 }
11674 range_types[ndim++] = child_type;
11675 }
11676 }
11677 child_die = sibling_die (child_die);
11678 }
11679
11680 /* Dwarf2 dimensions are output from left to right, create the
11681 necessary array types in backwards order. */
11682
11683 type = element_type;
11684
11685 if (read_array_order (die, cu) == DW_ORD_col_major)
11686 {
11687 int i = 0;
11688
11689 while (i < ndim)
11690 type = create_array_type (NULL, type, range_types[i++]);
11691 }
11692 else
11693 {
11694 while (ndim-- > 0)
11695 type = create_array_type (NULL, type, range_types[ndim]);
11696 }
11697
11698 /* Understand Dwarf2 support for vector types (like they occur on
11699 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11700 array type. This is not part of the Dwarf2/3 standard yet, but a
11701 custom vendor extension. The main difference between a regular
11702 array and the vector variant is that vectors are passed by value
11703 to functions. */
11704 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11705 if (attr)
11706 make_vector_type (type);
11707
11708 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11709 implementation may choose to implement triple vectors using this
11710 attribute. */
11711 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11712 if (attr)
11713 {
11714 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11715 TYPE_LENGTH (type) = DW_UNSND (attr);
11716 else
11717 complaint (&symfile_complaints,
11718 _("DW_AT_byte_size for array type smaller "
11719 "than the total size of elements"));
11720 }
11721
11722 name = dwarf2_name (die, cu);
11723 if (name)
11724 TYPE_NAME (type) = name;
11725
11726 /* Install the type in the die. */
11727 set_die_type (die, type, cu);
11728
11729 /* set_die_type should be already done. */
11730 set_descriptive_type (type, die, cu);
11731
11732 do_cleanups (back_to);
11733
11734 return type;
11735 }
11736
11737 static enum dwarf_array_dim_ordering
11738 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11739 {
11740 struct attribute *attr;
11741
11742 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11743
11744 if (attr) return DW_SND (attr);
11745
11746 /* GNU F77 is a special case, as at 08/2004 array type info is the
11747 opposite order to the dwarf2 specification, but data is still
11748 laid out as per normal fortran.
11749
11750 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11751 version checking. */
11752
11753 if (cu->language == language_fortran
11754 && cu->producer && strstr (cu->producer, "GNU F77"))
11755 {
11756 return DW_ORD_row_major;
11757 }
11758
11759 switch (cu->language_defn->la_array_ordering)
11760 {
11761 case array_column_major:
11762 return DW_ORD_col_major;
11763 case array_row_major:
11764 default:
11765 return DW_ORD_row_major;
11766 };
11767 }
11768
11769 /* Extract all information from a DW_TAG_set_type DIE and put it in
11770 the DIE's type field. */
11771
11772 static struct type *
11773 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11774 {
11775 struct type *domain_type, *set_type;
11776 struct attribute *attr;
11777
11778 domain_type = die_type (die, cu);
11779
11780 /* The die_type call above may have already set the type for this DIE. */
11781 set_type = get_die_type (die, cu);
11782 if (set_type)
11783 return set_type;
11784
11785 set_type = create_set_type (NULL, domain_type);
11786
11787 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11788 if (attr)
11789 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11790
11791 return set_die_type (die, set_type, cu);
11792 }
11793
11794 /* A helper for read_common_block that creates a locexpr baton.
11795 SYM is the symbol which we are marking as computed.
11796 COMMON_DIE is the DIE for the common block.
11797 COMMON_LOC is the location expression attribute for the common
11798 block itself.
11799 MEMBER_LOC is the location expression attribute for the particular
11800 member of the common block that we are processing.
11801 CU is the CU from which the above come. */
11802
11803 static void
11804 mark_common_block_symbol_computed (struct symbol *sym,
11805 struct die_info *common_die,
11806 struct attribute *common_loc,
11807 struct attribute *member_loc,
11808 struct dwarf2_cu *cu)
11809 {
11810 struct objfile *objfile = dwarf2_per_objfile->objfile;
11811 struct dwarf2_locexpr_baton *baton;
11812 gdb_byte *ptr;
11813 unsigned int cu_off;
11814 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11815 LONGEST offset = 0;
11816
11817 gdb_assert (common_loc && member_loc);
11818 gdb_assert (attr_form_is_block (common_loc));
11819 gdb_assert (attr_form_is_block (member_loc)
11820 || attr_form_is_constant (member_loc));
11821
11822 baton = obstack_alloc (&objfile->objfile_obstack,
11823 sizeof (struct dwarf2_locexpr_baton));
11824 baton->per_cu = cu->per_cu;
11825 gdb_assert (baton->per_cu);
11826
11827 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11828
11829 if (attr_form_is_constant (member_loc))
11830 {
11831 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11832 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11833 }
11834 else
11835 baton->size += DW_BLOCK (member_loc)->size;
11836
11837 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11838 baton->data = ptr;
11839
11840 *ptr++ = DW_OP_call4;
11841 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11842 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11843 ptr += 4;
11844
11845 if (attr_form_is_constant (member_loc))
11846 {
11847 *ptr++ = DW_OP_addr;
11848 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11849 ptr += cu->header.addr_size;
11850 }
11851 else
11852 {
11853 /* We have to copy the data here, because DW_OP_call4 will only
11854 use a DW_AT_location attribute. */
11855 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11856 ptr += DW_BLOCK (member_loc)->size;
11857 }
11858
11859 *ptr++ = DW_OP_plus;
11860 gdb_assert (ptr - baton->data == baton->size);
11861
11862 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11863 SYMBOL_LOCATION_BATON (sym) = baton;
11864 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11865 }
11866
11867 /* Create appropriate locally-scoped variables for all the
11868 DW_TAG_common_block entries. Also create a struct common_block
11869 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11870 is used to sepate the common blocks name namespace from regular
11871 variable names. */
11872
11873 static void
11874 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11875 {
11876 struct attribute *attr;
11877
11878 attr = dwarf2_attr (die, DW_AT_location, cu);
11879 if (attr)
11880 {
11881 /* Support the .debug_loc offsets. */
11882 if (attr_form_is_block (attr))
11883 {
11884 /* Ok. */
11885 }
11886 else if (attr_form_is_section_offset (attr))
11887 {
11888 dwarf2_complex_location_expr_complaint ();
11889 attr = NULL;
11890 }
11891 else
11892 {
11893 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11894 "common block member");
11895 attr = NULL;
11896 }
11897 }
11898
11899 if (die->child != NULL)
11900 {
11901 struct objfile *objfile = cu->objfile;
11902 struct die_info *child_die;
11903 size_t n_entries = 0, size;
11904 struct common_block *common_block;
11905 struct symbol *sym;
11906
11907 for (child_die = die->child;
11908 child_die && child_die->tag;
11909 child_die = sibling_die (child_die))
11910 ++n_entries;
11911
11912 size = (sizeof (struct common_block)
11913 + (n_entries - 1) * sizeof (struct symbol *));
11914 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11915 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11916 common_block->n_entries = 0;
11917
11918 for (child_die = die->child;
11919 child_die && child_die->tag;
11920 child_die = sibling_die (child_die))
11921 {
11922 /* Create the symbol in the DW_TAG_common_block block in the current
11923 symbol scope. */
11924 sym = new_symbol (child_die, NULL, cu);
11925 if (sym != NULL)
11926 {
11927 struct attribute *member_loc;
11928
11929 common_block->contents[common_block->n_entries++] = sym;
11930
11931 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11932 cu);
11933 if (member_loc)
11934 {
11935 /* GDB has handled this for a long time, but it is
11936 not specified by DWARF. It seems to have been
11937 emitted by gfortran at least as recently as:
11938 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11939 complaint (&symfile_complaints,
11940 _("Variable in common block has "
11941 "DW_AT_data_member_location "
11942 "- DIE at 0x%x [in module %s]"),
11943 child_die->offset.sect_off, cu->objfile->name);
11944
11945 if (attr_form_is_section_offset (member_loc))
11946 dwarf2_complex_location_expr_complaint ();
11947 else if (attr_form_is_constant (member_loc)
11948 || attr_form_is_block (member_loc))
11949 {
11950 if (attr)
11951 mark_common_block_symbol_computed (sym, die, attr,
11952 member_loc, cu);
11953 }
11954 else
11955 dwarf2_complex_location_expr_complaint ();
11956 }
11957 }
11958 }
11959
11960 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11961 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
11962 }
11963 }
11964
11965 /* Create a type for a C++ namespace. */
11966
11967 static struct type *
11968 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11969 {
11970 struct objfile *objfile = cu->objfile;
11971 const char *previous_prefix, *name;
11972 int is_anonymous;
11973 struct type *type;
11974
11975 /* For extensions, reuse the type of the original namespace. */
11976 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11977 {
11978 struct die_info *ext_die;
11979 struct dwarf2_cu *ext_cu = cu;
11980
11981 ext_die = dwarf2_extension (die, &ext_cu);
11982 type = read_type_die (ext_die, ext_cu);
11983
11984 /* EXT_CU may not be the same as CU.
11985 Ensure TYPE is recorded in CU's type_hash table. */
11986 return set_die_type (die, type, cu);
11987 }
11988
11989 name = namespace_name (die, &is_anonymous, cu);
11990
11991 /* Now build the name of the current namespace. */
11992
11993 previous_prefix = determine_prefix (die, cu);
11994 if (previous_prefix[0] != '\0')
11995 name = typename_concat (&objfile->objfile_obstack,
11996 previous_prefix, name, 0, cu);
11997
11998 /* Create the type. */
11999 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12000 objfile);
12001 TYPE_NAME (type) = (char *) name;
12002 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12003
12004 return set_die_type (die, type, cu);
12005 }
12006
12007 /* Read a C++ namespace. */
12008
12009 static void
12010 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12011 {
12012 struct objfile *objfile = cu->objfile;
12013 int is_anonymous;
12014
12015 /* Add a symbol associated to this if we haven't seen the namespace
12016 before. Also, add a using directive if it's an anonymous
12017 namespace. */
12018
12019 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12020 {
12021 struct type *type;
12022
12023 type = read_type_die (die, cu);
12024 new_symbol (die, type, cu);
12025
12026 namespace_name (die, &is_anonymous, cu);
12027 if (is_anonymous)
12028 {
12029 const char *previous_prefix = determine_prefix (die, cu);
12030
12031 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12032 NULL, NULL, &objfile->objfile_obstack);
12033 }
12034 }
12035
12036 if (die->child != NULL)
12037 {
12038 struct die_info *child_die = die->child;
12039
12040 while (child_die && child_die->tag)
12041 {
12042 process_die (child_die, cu);
12043 child_die = sibling_die (child_die);
12044 }
12045 }
12046 }
12047
12048 /* Read a Fortran module as type. This DIE can be only a declaration used for
12049 imported module. Still we need that type as local Fortran "use ... only"
12050 declaration imports depend on the created type in determine_prefix. */
12051
12052 static struct type *
12053 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12054 {
12055 struct objfile *objfile = cu->objfile;
12056 char *module_name;
12057 struct type *type;
12058
12059 module_name = dwarf2_name (die, cu);
12060 if (!module_name)
12061 complaint (&symfile_complaints,
12062 _("DW_TAG_module has no name, offset 0x%x"),
12063 die->offset.sect_off);
12064 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12065
12066 /* determine_prefix uses TYPE_TAG_NAME. */
12067 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12068
12069 return set_die_type (die, type, cu);
12070 }
12071
12072 /* Read a Fortran module. */
12073
12074 static void
12075 read_module (struct die_info *die, struct dwarf2_cu *cu)
12076 {
12077 struct die_info *child_die = die->child;
12078
12079 while (child_die && child_die->tag)
12080 {
12081 process_die (child_die, cu);
12082 child_die = sibling_die (child_die);
12083 }
12084 }
12085
12086 /* Return the name of the namespace represented by DIE. Set
12087 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12088 namespace. */
12089
12090 static const char *
12091 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12092 {
12093 struct die_info *current_die;
12094 const char *name = NULL;
12095
12096 /* Loop through the extensions until we find a name. */
12097
12098 for (current_die = die;
12099 current_die != NULL;
12100 current_die = dwarf2_extension (die, &cu))
12101 {
12102 name = dwarf2_name (current_die, cu);
12103 if (name != NULL)
12104 break;
12105 }
12106
12107 /* Is it an anonymous namespace? */
12108
12109 *is_anonymous = (name == NULL);
12110 if (*is_anonymous)
12111 name = CP_ANONYMOUS_NAMESPACE_STR;
12112
12113 return name;
12114 }
12115
12116 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12117 the user defined type vector. */
12118
12119 static struct type *
12120 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12121 {
12122 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12123 struct comp_unit_head *cu_header = &cu->header;
12124 struct type *type;
12125 struct attribute *attr_byte_size;
12126 struct attribute *attr_address_class;
12127 int byte_size, addr_class;
12128 struct type *target_type;
12129
12130 target_type = die_type (die, cu);
12131
12132 /* The die_type call above may have already set the type for this DIE. */
12133 type = get_die_type (die, cu);
12134 if (type)
12135 return type;
12136
12137 type = lookup_pointer_type (target_type);
12138
12139 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12140 if (attr_byte_size)
12141 byte_size = DW_UNSND (attr_byte_size);
12142 else
12143 byte_size = cu_header->addr_size;
12144
12145 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12146 if (attr_address_class)
12147 addr_class = DW_UNSND (attr_address_class);
12148 else
12149 addr_class = DW_ADDR_none;
12150
12151 /* If the pointer size or address class is different than the
12152 default, create a type variant marked as such and set the
12153 length accordingly. */
12154 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12155 {
12156 if (gdbarch_address_class_type_flags_p (gdbarch))
12157 {
12158 int type_flags;
12159
12160 type_flags = gdbarch_address_class_type_flags
12161 (gdbarch, byte_size, addr_class);
12162 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12163 == 0);
12164 type = make_type_with_address_space (type, type_flags);
12165 }
12166 else if (TYPE_LENGTH (type) != byte_size)
12167 {
12168 complaint (&symfile_complaints,
12169 _("invalid pointer size %d"), byte_size);
12170 }
12171 else
12172 {
12173 /* Should we also complain about unhandled address classes? */
12174 }
12175 }
12176
12177 TYPE_LENGTH (type) = byte_size;
12178 return set_die_type (die, type, cu);
12179 }
12180
12181 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12182 the user defined type vector. */
12183
12184 static struct type *
12185 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12186 {
12187 struct type *type;
12188 struct type *to_type;
12189 struct type *domain;
12190
12191 to_type = die_type (die, cu);
12192 domain = die_containing_type (die, cu);
12193
12194 /* The calls above may have already set the type for this DIE. */
12195 type = get_die_type (die, cu);
12196 if (type)
12197 return type;
12198
12199 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12200 type = lookup_methodptr_type (to_type);
12201 else
12202 type = lookup_memberptr_type (to_type, domain);
12203
12204 return set_die_type (die, type, cu);
12205 }
12206
12207 /* Extract all information from a DW_TAG_reference_type DIE and add to
12208 the user defined type vector. */
12209
12210 static struct type *
12211 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12212 {
12213 struct comp_unit_head *cu_header = &cu->header;
12214 struct type *type, *target_type;
12215 struct attribute *attr;
12216
12217 target_type = die_type (die, cu);
12218
12219 /* The die_type call above may have already set the type for this DIE. */
12220 type = get_die_type (die, cu);
12221 if (type)
12222 return type;
12223
12224 type = lookup_reference_type (target_type);
12225 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12226 if (attr)
12227 {
12228 TYPE_LENGTH (type) = DW_UNSND (attr);
12229 }
12230 else
12231 {
12232 TYPE_LENGTH (type) = cu_header->addr_size;
12233 }
12234 return set_die_type (die, type, cu);
12235 }
12236
12237 static struct type *
12238 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12239 {
12240 struct type *base_type, *cv_type;
12241
12242 base_type = die_type (die, cu);
12243
12244 /* The die_type call above may have already set the type for this DIE. */
12245 cv_type = get_die_type (die, cu);
12246 if (cv_type)
12247 return cv_type;
12248
12249 /* In case the const qualifier is applied to an array type, the element type
12250 is so qualified, not the array type (section 6.7.3 of C99). */
12251 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12252 {
12253 struct type *el_type, *inner_array;
12254
12255 base_type = copy_type (base_type);
12256 inner_array = base_type;
12257
12258 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12259 {
12260 TYPE_TARGET_TYPE (inner_array) =
12261 copy_type (TYPE_TARGET_TYPE (inner_array));
12262 inner_array = TYPE_TARGET_TYPE (inner_array);
12263 }
12264
12265 el_type = TYPE_TARGET_TYPE (inner_array);
12266 TYPE_TARGET_TYPE (inner_array) =
12267 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12268
12269 return set_die_type (die, base_type, cu);
12270 }
12271
12272 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12273 return set_die_type (die, cv_type, cu);
12274 }
12275
12276 static struct type *
12277 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12278 {
12279 struct type *base_type, *cv_type;
12280
12281 base_type = die_type (die, cu);
12282
12283 /* The die_type call above may have already set the type for this DIE. */
12284 cv_type = get_die_type (die, cu);
12285 if (cv_type)
12286 return cv_type;
12287
12288 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12289 return set_die_type (die, cv_type, cu);
12290 }
12291
12292 /* Extract all information from a DW_TAG_string_type DIE and add to
12293 the user defined type vector. It isn't really a user defined type,
12294 but it behaves like one, with other DIE's using an AT_user_def_type
12295 attribute to reference it. */
12296
12297 static struct type *
12298 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12299 {
12300 struct objfile *objfile = cu->objfile;
12301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12302 struct type *type, *range_type, *index_type, *char_type;
12303 struct attribute *attr;
12304 unsigned int length;
12305
12306 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12307 if (attr)
12308 {
12309 length = DW_UNSND (attr);
12310 }
12311 else
12312 {
12313 /* Check for the DW_AT_byte_size attribute. */
12314 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12315 if (attr)
12316 {
12317 length = DW_UNSND (attr);
12318 }
12319 else
12320 {
12321 length = 1;
12322 }
12323 }
12324
12325 index_type = objfile_type (objfile)->builtin_int;
12326 range_type = create_range_type (NULL, index_type, 1, length);
12327 char_type = language_string_char_type (cu->language_defn, gdbarch);
12328 type = create_string_type (NULL, char_type, range_type);
12329
12330 return set_die_type (die, type, cu);
12331 }
12332
12333 /* Handle DIES due to C code like:
12334
12335 struct foo
12336 {
12337 int (*funcp)(int a, long l);
12338 int b;
12339 };
12340
12341 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12342
12343 static struct type *
12344 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12345 {
12346 struct objfile *objfile = cu->objfile;
12347 struct type *type; /* Type that this function returns. */
12348 struct type *ftype; /* Function that returns above type. */
12349 struct attribute *attr;
12350
12351 type = die_type (die, cu);
12352
12353 /* The die_type call above may have already set the type for this DIE. */
12354 ftype = get_die_type (die, cu);
12355 if (ftype)
12356 return ftype;
12357
12358 ftype = lookup_function_type (type);
12359
12360 /* All functions in C++, Pascal and Java have prototypes. */
12361 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12362 if ((attr && (DW_UNSND (attr) != 0))
12363 || cu->language == language_cplus
12364 || cu->language == language_java
12365 || cu->language == language_pascal)
12366 TYPE_PROTOTYPED (ftype) = 1;
12367 else if (producer_is_realview (cu->producer))
12368 /* RealView does not emit DW_AT_prototyped. We can not
12369 distinguish prototyped and unprototyped functions; default to
12370 prototyped, since that is more common in modern code (and
12371 RealView warns about unprototyped functions). */
12372 TYPE_PROTOTYPED (ftype) = 1;
12373
12374 /* Store the calling convention in the type if it's available in
12375 the subroutine die. Otherwise set the calling convention to
12376 the default value DW_CC_normal. */
12377 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12378 if (attr)
12379 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12380 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12381 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12382 else
12383 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12384
12385 /* We need to add the subroutine type to the die immediately so
12386 we don't infinitely recurse when dealing with parameters
12387 declared as the same subroutine type. */
12388 set_die_type (die, ftype, cu);
12389
12390 if (die->child != NULL)
12391 {
12392 struct type *void_type = objfile_type (objfile)->builtin_void;
12393 struct die_info *child_die;
12394 int nparams, iparams;
12395
12396 /* Count the number of parameters.
12397 FIXME: GDB currently ignores vararg functions, but knows about
12398 vararg member functions. */
12399 nparams = 0;
12400 child_die = die->child;
12401 while (child_die && child_die->tag)
12402 {
12403 if (child_die->tag == DW_TAG_formal_parameter)
12404 nparams++;
12405 else if (child_die->tag == DW_TAG_unspecified_parameters)
12406 TYPE_VARARGS (ftype) = 1;
12407 child_die = sibling_die (child_die);
12408 }
12409
12410 /* Allocate storage for parameters and fill them in. */
12411 TYPE_NFIELDS (ftype) = nparams;
12412 TYPE_FIELDS (ftype) = (struct field *)
12413 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12414
12415 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12416 even if we error out during the parameters reading below. */
12417 for (iparams = 0; iparams < nparams; iparams++)
12418 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12419
12420 iparams = 0;
12421 child_die = die->child;
12422 while (child_die && child_die->tag)
12423 {
12424 if (child_die->tag == DW_TAG_formal_parameter)
12425 {
12426 struct type *arg_type;
12427
12428 /* DWARF version 2 has no clean way to discern C++
12429 static and non-static member functions. G++ helps
12430 GDB by marking the first parameter for non-static
12431 member functions (which is the this pointer) as
12432 artificial. We pass this information to
12433 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12434
12435 DWARF version 3 added DW_AT_object_pointer, which GCC
12436 4.5 does not yet generate. */
12437 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12438 if (attr)
12439 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12440 else
12441 {
12442 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12443
12444 /* GCC/43521: In java, the formal parameter
12445 "this" is sometimes not marked with DW_AT_artificial. */
12446 if (cu->language == language_java)
12447 {
12448 const char *name = dwarf2_name (child_die, cu);
12449
12450 if (name && !strcmp (name, "this"))
12451 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12452 }
12453 }
12454 arg_type = die_type (child_die, cu);
12455
12456 /* RealView does not mark THIS as const, which the testsuite
12457 expects. GCC marks THIS as const in method definitions,
12458 but not in the class specifications (GCC PR 43053). */
12459 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12460 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12461 {
12462 int is_this = 0;
12463 struct dwarf2_cu *arg_cu = cu;
12464 const char *name = dwarf2_name (child_die, cu);
12465
12466 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12467 if (attr)
12468 {
12469 /* If the compiler emits this, use it. */
12470 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12471 is_this = 1;
12472 }
12473 else if (name && strcmp (name, "this") == 0)
12474 /* Function definitions will have the argument names. */
12475 is_this = 1;
12476 else if (name == NULL && iparams == 0)
12477 /* Declarations may not have the names, so like
12478 elsewhere in GDB, assume an artificial first
12479 argument is "this". */
12480 is_this = 1;
12481
12482 if (is_this)
12483 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12484 arg_type, 0);
12485 }
12486
12487 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12488 iparams++;
12489 }
12490 child_die = sibling_die (child_die);
12491 }
12492 }
12493
12494 return ftype;
12495 }
12496
12497 static struct type *
12498 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12499 {
12500 struct objfile *objfile = cu->objfile;
12501 const char *name = NULL;
12502 struct type *this_type, *target_type;
12503
12504 name = dwarf2_full_name (NULL, die, cu);
12505 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12506 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12507 TYPE_NAME (this_type) = (char *) name;
12508 set_die_type (die, this_type, cu);
12509 target_type = die_type (die, cu);
12510 if (target_type != this_type)
12511 TYPE_TARGET_TYPE (this_type) = target_type;
12512 else
12513 {
12514 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12515 spec and cause infinite loops in GDB. */
12516 complaint (&symfile_complaints,
12517 _("Self-referential DW_TAG_typedef "
12518 "- DIE at 0x%x [in module %s]"),
12519 die->offset.sect_off, objfile->name);
12520 TYPE_TARGET_TYPE (this_type) = NULL;
12521 }
12522 return this_type;
12523 }
12524
12525 /* Find a representation of a given base type and install
12526 it in the TYPE field of the die. */
12527
12528 static struct type *
12529 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12530 {
12531 struct objfile *objfile = cu->objfile;
12532 struct type *type;
12533 struct attribute *attr;
12534 int encoding = 0, size = 0;
12535 char *name;
12536 enum type_code code = TYPE_CODE_INT;
12537 int type_flags = 0;
12538 struct type *target_type = NULL;
12539
12540 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12541 if (attr)
12542 {
12543 encoding = DW_UNSND (attr);
12544 }
12545 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12546 if (attr)
12547 {
12548 size = DW_UNSND (attr);
12549 }
12550 name = dwarf2_name (die, cu);
12551 if (!name)
12552 {
12553 complaint (&symfile_complaints,
12554 _("DW_AT_name missing from DW_TAG_base_type"));
12555 }
12556
12557 switch (encoding)
12558 {
12559 case DW_ATE_address:
12560 /* Turn DW_ATE_address into a void * pointer. */
12561 code = TYPE_CODE_PTR;
12562 type_flags |= TYPE_FLAG_UNSIGNED;
12563 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12564 break;
12565 case DW_ATE_boolean:
12566 code = TYPE_CODE_BOOL;
12567 type_flags |= TYPE_FLAG_UNSIGNED;
12568 break;
12569 case DW_ATE_complex_float:
12570 code = TYPE_CODE_COMPLEX;
12571 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12572 break;
12573 case DW_ATE_decimal_float:
12574 code = TYPE_CODE_DECFLOAT;
12575 break;
12576 case DW_ATE_float:
12577 code = TYPE_CODE_FLT;
12578 break;
12579 case DW_ATE_signed:
12580 break;
12581 case DW_ATE_unsigned:
12582 type_flags |= TYPE_FLAG_UNSIGNED;
12583 if (cu->language == language_fortran
12584 && name
12585 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12586 code = TYPE_CODE_CHAR;
12587 break;
12588 case DW_ATE_signed_char:
12589 if (cu->language == language_ada || cu->language == language_m2
12590 || cu->language == language_pascal
12591 || cu->language == language_fortran)
12592 code = TYPE_CODE_CHAR;
12593 break;
12594 case DW_ATE_unsigned_char:
12595 if (cu->language == language_ada || cu->language == language_m2
12596 || cu->language == language_pascal
12597 || cu->language == language_fortran)
12598 code = TYPE_CODE_CHAR;
12599 type_flags |= TYPE_FLAG_UNSIGNED;
12600 break;
12601 case DW_ATE_UTF:
12602 /* We just treat this as an integer and then recognize the
12603 type by name elsewhere. */
12604 break;
12605
12606 default:
12607 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12608 dwarf_type_encoding_name (encoding));
12609 break;
12610 }
12611
12612 type = init_type (code, size, type_flags, NULL, objfile);
12613 TYPE_NAME (type) = name;
12614 TYPE_TARGET_TYPE (type) = target_type;
12615
12616 if (name && strcmp (name, "char") == 0)
12617 TYPE_NOSIGN (type) = 1;
12618
12619 return set_die_type (die, type, cu);
12620 }
12621
12622 /* Read the given DW_AT_subrange DIE. */
12623
12624 static struct type *
12625 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12626 {
12627 struct type *base_type;
12628 struct type *range_type;
12629 struct attribute *attr;
12630 LONGEST low, high;
12631 int low_default_is_valid;
12632 char *name;
12633 LONGEST negative_mask;
12634
12635 base_type = die_type (die, cu);
12636 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12637 check_typedef (base_type);
12638
12639 /* The die_type call above may have already set the type for this DIE. */
12640 range_type = get_die_type (die, cu);
12641 if (range_type)
12642 return range_type;
12643
12644 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12645 omitting DW_AT_lower_bound. */
12646 switch (cu->language)
12647 {
12648 case language_c:
12649 case language_cplus:
12650 low = 0;
12651 low_default_is_valid = 1;
12652 break;
12653 case language_fortran:
12654 low = 1;
12655 low_default_is_valid = 1;
12656 break;
12657 case language_d:
12658 case language_java:
12659 case language_objc:
12660 low = 0;
12661 low_default_is_valid = (cu->header.version >= 4);
12662 break;
12663 case language_ada:
12664 case language_m2:
12665 case language_pascal:
12666 low = 1;
12667 low_default_is_valid = (cu->header.version >= 4);
12668 break;
12669 default:
12670 low = 0;
12671 low_default_is_valid = 0;
12672 break;
12673 }
12674
12675 /* FIXME: For variable sized arrays either of these could be
12676 a variable rather than a constant value. We'll allow it,
12677 but we don't know how to handle it. */
12678 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12679 if (attr)
12680 low = dwarf2_get_attr_constant_value (attr, low);
12681 else if (!low_default_is_valid)
12682 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12683 "- DIE at 0x%x [in module %s]"),
12684 die->offset.sect_off, cu->objfile->name);
12685
12686 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12687 if (attr)
12688 {
12689 if (attr_form_is_block (attr) || is_ref_attr (attr))
12690 {
12691 /* GCC encodes arrays with unspecified or dynamic length
12692 with a DW_FORM_block1 attribute or a reference attribute.
12693 FIXME: GDB does not yet know how to handle dynamic
12694 arrays properly, treat them as arrays with unspecified
12695 length for now.
12696
12697 FIXME: jimb/2003-09-22: GDB does not really know
12698 how to handle arrays of unspecified length
12699 either; we just represent them as zero-length
12700 arrays. Choose an appropriate upper bound given
12701 the lower bound we've computed above. */
12702 high = low - 1;
12703 }
12704 else
12705 high = dwarf2_get_attr_constant_value (attr, 1);
12706 }
12707 else
12708 {
12709 attr = dwarf2_attr (die, DW_AT_count, cu);
12710 if (attr)
12711 {
12712 int count = dwarf2_get_attr_constant_value (attr, 1);
12713 high = low + count - 1;
12714 }
12715 else
12716 {
12717 /* Unspecified array length. */
12718 high = low - 1;
12719 }
12720 }
12721
12722 /* Dwarf-2 specifications explicitly allows to create subrange types
12723 without specifying a base type.
12724 In that case, the base type must be set to the type of
12725 the lower bound, upper bound or count, in that order, if any of these
12726 three attributes references an object that has a type.
12727 If no base type is found, the Dwarf-2 specifications say that
12728 a signed integer type of size equal to the size of an address should
12729 be used.
12730 For the following C code: `extern char gdb_int [];'
12731 GCC produces an empty range DIE.
12732 FIXME: muller/2010-05-28: Possible references to object for low bound,
12733 high bound or count are not yet handled by this code. */
12734 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12735 {
12736 struct objfile *objfile = cu->objfile;
12737 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12738 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12739 struct type *int_type = objfile_type (objfile)->builtin_int;
12740
12741 /* Test "int", "long int", and "long long int" objfile types,
12742 and select the first one having a size above or equal to the
12743 architecture address size. */
12744 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12745 base_type = int_type;
12746 else
12747 {
12748 int_type = objfile_type (objfile)->builtin_long;
12749 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12750 base_type = int_type;
12751 else
12752 {
12753 int_type = objfile_type (objfile)->builtin_long_long;
12754 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12755 base_type = int_type;
12756 }
12757 }
12758 }
12759
12760 negative_mask =
12761 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12762 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12763 low |= negative_mask;
12764 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12765 high |= negative_mask;
12766
12767 range_type = create_range_type (NULL, base_type, low, high);
12768
12769 /* Mark arrays with dynamic length at least as an array of unspecified
12770 length. GDB could check the boundary but before it gets implemented at
12771 least allow accessing the array elements. */
12772 if (attr && attr_form_is_block (attr))
12773 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12774
12775 /* Ada expects an empty array on no boundary attributes. */
12776 if (attr == NULL && cu->language != language_ada)
12777 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12778
12779 name = dwarf2_name (die, cu);
12780 if (name)
12781 TYPE_NAME (range_type) = name;
12782
12783 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12784 if (attr)
12785 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12786
12787 set_die_type (die, range_type, cu);
12788
12789 /* set_die_type should be already done. */
12790 set_descriptive_type (range_type, die, cu);
12791
12792 return range_type;
12793 }
12794
12795 static struct type *
12796 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12797 {
12798 struct type *type;
12799
12800 /* For now, we only support the C meaning of an unspecified type: void. */
12801
12802 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12803 TYPE_NAME (type) = dwarf2_name (die, cu);
12804
12805 return set_die_type (die, type, cu);
12806 }
12807
12808 /* Read a single die and all its descendents. Set the die's sibling
12809 field to NULL; set other fields in the die correctly, and set all
12810 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12811 location of the info_ptr after reading all of those dies. PARENT
12812 is the parent of the die in question. */
12813
12814 static struct die_info *
12815 read_die_and_children (const struct die_reader_specs *reader,
12816 gdb_byte *info_ptr,
12817 gdb_byte **new_info_ptr,
12818 struct die_info *parent)
12819 {
12820 struct die_info *die;
12821 gdb_byte *cur_ptr;
12822 int has_children;
12823
12824 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12825 if (die == NULL)
12826 {
12827 *new_info_ptr = cur_ptr;
12828 return NULL;
12829 }
12830 store_in_ref_table (die, reader->cu);
12831
12832 if (has_children)
12833 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12834 else
12835 {
12836 die->child = NULL;
12837 *new_info_ptr = cur_ptr;
12838 }
12839
12840 die->sibling = NULL;
12841 die->parent = parent;
12842 return die;
12843 }
12844
12845 /* Read a die, all of its descendents, and all of its siblings; set
12846 all of the fields of all of the dies correctly. Arguments are as
12847 in read_die_and_children. */
12848
12849 static struct die_info *
12850 read_die_and_siblings (const struct die_reader_specs *reader,
12851 gdb_byte *info_ptr,
12852 gdb_byte **new_info_ptr,
12853 struct die_info *parent)
12854 {
12855 struct die_info *first_die, *last_sibling;
12856 gdb_byte *cur_ptr;
12857
12858 cur_ptr = info_ptr;
12859 first_die = last_sibling = NULL;
12860
12861 while (1)
12862 {
12863 struct die_info *die
12864 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12865
12866 if (die == NULL)
12867 {
12868 *new_info_ptr = cur_ptr;
12869 return first_die;
12870 }
12871
12872 if (!first_die)
12873 first_die = die;
12874 else
12875 last_sibling->sibling = die;
12876
12877 last_sibling = die;
12878 }
12879 }
12880
12881 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12882 attributes.
12883 The caller is responsible for filling in the extra attributes
12884 and updating (*DIEP)->num_attrs.
12885 Set DIEP to point to a newly allocated die with its information,
12886 except for its child, sibling, and parent fields.
12887 Set HAS_CHILDREN to tell whether the die has children or not. */
12888
12889 static gdb_byte *
12890 read_full_die_1 (const struct die_reader_specs *reader,
12891 struct die_info **diep, gdb_byte *info_ptr,
12892 int *has_children, int num_extra_attrs)
12893 {
12894 unsigned int abbrev_number, bytes_read, i;
12895 sect_offset offset;
12896 struct abbrev_info *abbrev;
12897 struct die_info *die;
12898 struct dwarf2_cu *cu = reader->cu;
12899 bfd *abfd = reader->abfd;
12900
12901 offset.sect_off = info_ptr - reader->buffer;
12902 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12903 info_ptr += bytes_read;
12904 if (!abbrev_number)
12905 {
12906 *diep = NULL;
12907 *has_children = 0;
12908 return info_ptr;
12909 }
12910
12911 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12912 if (!abbrev)
12913 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12914 abbrev_number,
12915 bfd_get_filename (abfd));
12916
12917 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12918 die->offset = offset;
12919 die->tag = abbrev->tag;
12920 die->abbrev = abbrev_number;
12921
12922 /* Make the result usable.
12923 The caller needs to update num_attrs after adding the extra
12924 attributes. */
12925 die->num_attrs = abbrev->num_attrs;
12926
12927 for (i = 0; i < abbrev->num_attrs; ++i)
12928 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12929 info_ptr);
12930
12931 *diep = die;
12932 *has_children = abbrev->has_children;
12933 return info_ptr;
12934 }
12935
12936 /* Read a die and all its attributes.
12937 Set DIEP to point to a newly allocated die with its information,
12938 except for its child, sibling, and parent fields.
12939 Set HAS_CHILDREN to tell whether the die has children or not. */
12940
12941 static gdb_byte *
12942 read_full_die (const struct die_reader_specs *reader,
12943 struct die_info **diep, gdb_byte *info_ptr,
12944 int *has_children)
12945 {
12946 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12947 }
12948 \f
12949 /* Abbreviation tables.
12950
12951 In DWARF version 2, the description of the debugging information is
12952 stored in a separate .debug_abbrev section. Before we read any
12953 dies from a section we read in all abbreviations and install them
12954 in a hash table. */
12955
12956 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12957
12958 static struct abbrev_info *
12959 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12960 {
12961 struct abbrev_info *abbrev;
12962
12963 abbrev = (struct abbrev_info *)
12964 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12965 memset (abbrev, 0, sizeof (struct abbrev_info));
12966 return abbrev;
12967 }
12968
12969 /* Add an abbreviation to the table. */
12970
12971 static void
12972 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12973 unsigned int abbrev_number,
12974 struct abbrev_info *abbrev)
12975 {
12976 unsigned int hash_number;
12977
12978 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12979 abbrev->next = abbrev_table->abbrevs[hash_number];
12980 abbrev_table->abbrevs[hash_number] = abbrev;
12981 }
12982
12983 /* Look up an abbrev in the table.
12984 Returns NULL if the abbrev is not found. */
12985
12986 static struct abbrev_info *
12987 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12988 unsigned int abbrev_number)
12989 {
12990 unsigned int hash_number;
12991 struct abbrev_info *abbrev;
12992
12993 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12994 abbrev = abbrev_table->abbrevs[hash_number];
12995
12996 while (abbrev)
12997 {
12998 if (abbrev->number == abbrev_number)
12999 return abbrev;
13000 abbrev = abbrev->next;
13001 }
13002 return NULL;
13003 }
13004
13005 /* Read in an abbrev table. */
13006
13007 static struct abbrev_table *
13008 abbrev_table_read_table (struct dwarf2_section_info *section,
13009 sect_offset offset)
13010 {
13011 struct objfile *objfile = dwarf2_per_objfile->objfile;
13012 bfd *abfd = section->asection->owner;
13013 struct abbrev_table *abbrev_table;
13014 gdb_byte *abbrev_ptr;
13015 struct abbrev_info *cur_abbrev;
13016 unsigned int abbrev_number, bytes_read, abbrev_name;
13017 unsigned int abbrev_form;
13018 struct attr_abbrev *cur_attrs;
13019 unsigned int allocated_attrs;
13020
13021 abbrev_table = XMALLOC (struct abbrev_table);
13022 abbrev_table->offset = offset;
13023 obstack_init (&abbrev_table->abbrev_obstack);
13024 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13025 (ABBREV_HASH_SIZE
13026 * sizeof (struct abbrev_info *)));
13027 memset (abbrev_table->abbrevs, 0,
13028 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13029
13030 dwarf2_read_section (objfile, section);
13031 abbrev_ptr = section->buffer + offset.sect_off;
13032 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13033 abbrev_ptr += bytes_read;
13034
13035 allocated_attrs = ATTR_ALLOC_CHUNK;
13036 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13037
13038 /* Loop until we reach an abbrev number of 0. */
13039 while (abbrev_number)
13040 {
13041 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13042
13043 /* read in abbrev header */
13044 cur_abbrev->number = abbrev_number;
13045 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13046 abbrev_ptr += bytes_read;
13047 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13048 abbrev_ptr += 1;
13049
13050 /* now read in declarations */
13051 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13052 abbrev_ptr += bytes_read;
13053 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13054 abbrev_ptr += bytes_read;
13055 while (abbrev_name)
13056 {
13057 if (cur_abbrev->num_attrs == allocated_attrs)
13058 {
13059 allocated_attrs += ATTR_ALLOC_CHUNK;
13060 cur_attrs
13061 = xrealloc (cur_attrs, (allocated_attrs
13062 * sizeof (struct attr_abbrev)));
13063 }
13064
13065 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13066 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13067 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13068 abbrev_ptr += bytes_read;
13069 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13070 abbrev_ptr += bytes_read;
13071 }
13072
13073 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13074 (cur_abbrev->num_attrs
13075 * sizeof (struct attr_abbrev)));
13076 memcpy (cur_abbrev->attrs, cur_attrs,
13077 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13078
13079 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13080
13081 /* Get next abbreviation.
13082 Under Irix6 the abbreviations for a compilation unit are not
13083 always properly terminated with an abbrev number of 0.
13084 Exit loop if we encounter an abbreviation which we have
13085 already read (which means we are about to read the abbreviations
13086 for the next compile unit) or if the end of the abbreviation
13087 table is reached. */
13088 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13089 break;
13090 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13091 abbrev_ptr += bytes_read;
13092 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13093 break;
13094 }
13095
13096 xfree (cur_attrs);
13097 return abbrev_table;
13098 }
13099
13100 /* Free the resources held by ABBREV_TABLE. */
13101
13102 static void
13103 abbrev_table_free (struct abbrev_table *abbrev_table)
13104 {
13105 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13106 xfree (abbrev_table);
13107 }
13108
13109 /* Same as abbrev_table_free but as a cleanup.
13110 We pass in a pointer to the pointer to the table so that we can
13111 set the pointer to NULL when we're done. It also simplifies
13112 build_type_unit_groups. */
13113
13114 static void
13115 abbrev_table_free_cleanup (void *table_ptr)
13116 {
13117 struct abbrev_table **abbrev_table_ptr = table_ptr;
13118
13119 if (*abbrev_table_ptr != NULL)
13120 abbrev_table_free (*abbrev_table_ptr);
13121 *abbrev_table_ptr = NULL;
13122 }
13123
13124 /* Read the abbrev table for CU from ABBREV_SECTION. */
13125
13126 static void
13127 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13128 struct dwarf2_section_info *abbrev_section)
13129 {
13130 cu->abbrev_table =
13131 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13132 }
13133
13134 /* Release the memory used by the abbrev table for a compilation unit. */
13135
13136 static void
13137 dwarf2_free_abbrev_table (void *ptr_to_cu)
13138 {
13139 struct dwarf2_cu *cu = ptr_to_cu;
13140
13141 abbrev_table_free (cu->abbrev_table);
13142 /* Set this to NULL so that we SEGV if we try to read it later,
13143 and also because free_comp_unit verifies this is NULL. */
13144 cu->abbrev_table = NULL;
13145 }
13146 \f
13147 /* Returns nonzero if TAG represents a type that we might generate a partial
13148 symbol for. */
13149
13150 static int
13151 is_type_tag_for_partial (int tag)
13152 {
13153 switch (tag)
13154 {
13155 #if 0
13156 /* Some types that would be reasonable to generate partial symbols for,
13157 that we don't at present. */
13158 case DW_TAG_array_type:
13159 case DW_TAG_file_type:
13160 case DW_TAG_ptr_to_member_type:
13161 case DW_TAG_set_type:
13162 case DW_TAG_string_type:
13163 case DW_TAG_subroutine_type:
13164 #endif
13165 case DW_TAG_base_type:
13166 case DW_TAG_class_type:
13167 case DW_TAG_interface_type:
13168 case DW_TAG_enumeration_type:
13169 case DW_TAG_structure_type:
13170 case DW_TAG_subrange_type:
13171 case DW_TAG_typedef:
13172 case DW_TAG_union_type:
13173 return 1;
13174 default:
13175 return 0;
13176 }
13177 }
13178
13179 /* Load all DIEs that are interesting for partial symbols into memory. */
13180
13181 static struct partial_die_info *
13182 load_partial_dies (const struct die_reader_specs *reader,
13183 gdb_byte *info_ptr, int building_psymtab)
13184 {
13185 struct dwarf2_cu *cu = reader->cu;
13186 struct objfile *objfile = cu->objfile;
13187 struct partial_die_info *part_die;
13188 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13189 struct abbrev_info *abbrev;
13190 unsigned int bytes_read;
13191 unsigned int load_all = 0;
13192 int nesting_level = 1;
13193
13194 parent_die = NULL;
13195 last_die = NULL;
13196
13197 gdb_assert (cu->per_cu != NULL);
13198 if (cu->per_cu->load_all_dies)
13199 load_all = 1;
13200
13201 cu->partial_dies
13202 = htab_create_alloc_ex (cu->header.length / 12,
13203 partial_die_hash,
13204 partial_die_eq,
13205 NULL,
13206 &cu->comp_unit_obstack,
13207 hashtab_obstack_allocate,
13208 dummy_obstack_deallocate);
13209
13210 part_die = obstack_alloc (&cu->comp_unit_obstack,
13211 sizeof (struct partial_die_info));
13212
13213 while (1)
13214 {
13215 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13216
13217 /* A NULL abbrev means the end of a series of children. */
13218 if (abbrev == NULL)
13219 {
13220 if (--nesting_level == 0)
13221 {
13222 /* PART_DIE was probably the last thing allocated on the
13223 comp_unit_obstack, so we could call obstack_free
13224 here. We don't do that because the waste is small,
13225 and will be cleaned up when we're done with this
13226 compilation unit. This way, we're also more robust
13227 against other users of the comp_unit_obstack. */
13228 return first_die;
13229 }
13230 info_ptr += bytes_read;
13231 last_die = parent_die;
13232 parent_die = parent_die->die_parent;
13233 continue;
13234 }
13235
13236 /* Check for template arguments. We never save these; if
13237 they're seen, we just mark the parent, and go on our way. */
13238 if (parent_die != NULL
13239 && cu->language == language_cplus
13240 && (abbrev->tag == DW_TAG_template_type_param
13241 || abbrev->tag == DW_TAG_template_value_param))
13242 {
13243 parent_die->has_template_arguments = 1;
13244
13245 if (!load_all)
13246 {
13247 /* We don't need a partial DIE for the template argument. */
13248 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13249 continue;
13250 }
13251 }
13252
13253 /* We only recurse into c++ subprograms looking for template arguments.
13254 Skip their other children. */
13255 if (!load_all
13256 && cu->language == language_cplus
13257 && parent_die != NULL
13258 && parent_die->tag == DW_TAG_subprogram)
13259 {
13260 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13261 continue;
13262 }
13263
13264 /* Check whether this DIE is interesting enough to save. Normally
13265 we would not be interested in members here, but there may be
13266 later variables referencing them via DW_AT_specification (for
13267 static members). */
13268 if (!load_all
13269 && !is_type_tag_for_partial (abbrev->tag)
13270 && abbrev->tag != DW_TAG_constant
13271 && abbrev->tag != DW_TAG_enumerator
13272 && abbrev->tag != DW_TAG_subprogram
13273 && abbrev->tag != DW_TAG_lexical_block
13274 && abbrev->tag != DW_TAG_variable
13275 && abbrev->tag != DW_TAG_namespace
13276 && abbrev->tag != DW_TAG_module
13277 && abbrev->tag != DW_TAG_member
13278 && abbrev->tag != DW_TAG_imported_unit)
13279 {
13280 /* Otherwise we skip to the next sibling, if any. */
13281 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13282 continue;
13283 }
13284
13285 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13286 info_ptr);
13287
13288 /* This two-pass algorithm for processing partial symbols has a
13289 high cost in cache pressure. Thus, handle some simple cases
13290 here which cover the majority of C partial symbols. DIEs
13291 which neither have specification tags in them, nor could have
13292 specification tags elsewhere pointing at them, can simply be
13293 processed and discarded.
13294
13295 This segment is also optional; scan_partial_symbols and
13296 add_partial_symbol will handle these DIEs if we chain
13297 them in normally. When compilers which do not emit large
13298 quantities of duplicate debug information are more common,
13299 this code can probably be removed. */
13300
13301 /* Any complete simple types at the top level (pretty much all
13302 of them, for a language without namespaces), can be processed
13303 directly. */
13304 if (parent_die == NULL
13305 && part_die->has_specification == 0
13306 && part_die->is_declaration == 0
13307 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13308 || part_die->tag == DW_TAG_base_type
13309 || part_die->tag == DW_TAG_subrange_type))
13310 {
13311 if (building_psymtab && part_die->name != NULL)
13312 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13313 VAR_DOMAIN, LOC_TYPEDEF,
13314 &objfile->static_psymbols,
13315 0, (CORE_ADDR) 0, cu->language, objfile);
13316 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13317 continue;
13318 }
13319
13320 /* The exception for DW_TAG_typedef with has_children above is
13321 a workaround of GCC PR debug/47510. In the case of this complaint
13322 type_name_no_tag_or_error will error on such types later.
13323
13324 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13325 it could not find the child DIEs referenced later, this is checked
13326 above. In correct DWARF DW_TAG_typedef should have no children. */
13327
13328 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13329 complaint (&symfile_complaints,
13330 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13331 "- DIE at 0x%x [in module %s]"),
13332 part_die->offset.sect_off, objfile->name);
13333
13334 /* If we're at the second level, and we're an enumerator, and
13335 our parent has no specification (meaning possibly lives in a
13336 namespace elsewhere), then we can add the partial symbol now
13337 instead of queueing it. */
13338 if (part_die->tag == DW_TAG_enumerator
13339 && parent_die != NULL
13340 && parent_die->die_parent == NULL
13341 && parent_die->tag == DW_TAG_enumeration_type
13342 && parent_die->has_specification == 0)
13343 {
13344 if (part_die->name == NULL)
13345 complaint (&symfile_complaints,
13346 _("malformed enumerator DIE ignored"));
13347 else if (building_psymtab)
13348 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13349 VAR_DOMAIN, LOC_CONST,
13350 (cu->language == language_cplus
13351 || cu->language == language_java)
13352 ? &objfile->global_psymbols
13353 : &objfile->static_psymbols,
13354 0, (CORE_ADDR) 0, cu->language, objfile);
13355
13356 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13357 continue;
13358 }
13359
13360 /* We'll save this DIE so link it in. */
13361 part_die->die_parent = parent_die;
13362 part_die->die_sibling = NULL;
13363 part_die->die_child = NULL;
13364
13365 if (last_die && last_die == parent_die)
13366 last_die->die_child = part_die;
13367 else if (last_die)
13368 last_die->die_sibling = part_die;
13369
13370 last_die = part_die;
13371
13372 if (first_die == NULL)
13373 first_die = part_die;
13374
13375 /* Maybe add the DIE to the hash table. Not all DIEs that we
13376 find interesting need to be in the hash table, because we
13377 also have the parent/sibling/child chains; only those that we
13378 might refer to by offset later during partial symbol reading.
13379
13380 For now this means things that might have be the target of a
13381 DW_AT_specification, DW_AT_abstract_origin, or
13382 DW_AT_extension. DW_AT_extension will refer only to
13383 namespaces; DW_AT_abstract_origin refers to functions (and
13384 many things under the function DIE, but we do not recurse
13385 into function DIEs during partial symbol reading) and
13386 possibly variables as well; DW_AT_specification refers to
13387 declarations. Declarations ought to have the DW_AT_declaration
13388 flag. It happens that GCC forgets to put it in sometimes, but
13389 only for functions, not for types.
13390
13391 Adding more things than necessary to the hash table is harmless
13392 except for the performance cost. Adding too few will result in
13393 wasted time in find_partial_die, when we reread the compilation
13394 unit with load_all_dies set. */
13395
13396 if (load_all
13397 || abbrev->tag == DW_TAG_constant
13398 || abbrev->tag == DW_TAG_subprogram
13399 || abbrev->tag == DW_TAG_variable
13400 || abbrev->tag == DW_TAG_namespace
13401 || part_die->is_declaration)
13402 {
13403 void **slot;
13404
13405 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13406 part_die->offset.sect_off, INSERT);
13407 *slot = part_die;
13408 }
13409
13410 part_die = obstack_alloc (&cu->comp_unit_obstack,
13411 sizeof (struct partial_die_info));
13412
13413 /* For some DIEs we want to follow their children (if any). For C
13414 we have no reason to follow the children of structures; for other
13415 languages we have to, so that we can get at method physnames
13416 to infer fully qualified class names, for DW_AT_specification,
13417 and for C++ template arguments. For C++, we also look one level
13418 inside functions to find template arguments (if the name of the
13419 function does not already contain the template arguments).
13420
13421 For Ada, we need to scan the children of subprograms and lexical
13422 blocks as well because Ada allows the definition of nested
13423 entities that could be interesting for the debugger, such as
13424 nested subprograms for instance. */
13425 if (last_die->has_children
13426 && (load_all
13427 || last_die->tag == DW_TAG_namespace
13428 || last_die->tag == DW_TAG_module
13429 || last_die->tag == DW_TAG_enumeration_type
13430 || (cu->language == language_cplus
13431 && last_die->tag == DW_TAG_subprogram
13432 && (last_die->name == NULL
13433 || strchr (last_die->name, '<') == NULL))
13434 || (cu->language != language_c
13435 && (last_die->tag == DW_TAG_class_type
13436 || last_die->tag == DW_TAG_interface_type
13437 || last_die->tag == DW_TAG_structure_type
13438 || last_die->tag == DW_TAG_union_type))
13439 || (cu->language == language_ada
13440 && (last_die->tag == DW_TAG_subprogram
13441 || last_die->tag == DW_TAG_lexical_block))))
13442 {
13443 nesting_level++;
13444 parent_die = last_die;
13445 continue;
13446 }
13447
13448 /* Otherwise we skip to the next sibling, if any. */
13449 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13450
13451 /* Back to the top, do it again. */
13452 }
13453 }
13454
13455 /* Read a minimal amount of information into the minimal die structure. */
13456
13457 static gdb_byte *
13458 read_partial_die (const struct die_reader_specs *reader,
13459 struct partial_die_info *part_die,
13460 struct abbrev_info *abbrev, unsigned int abbrev_len,
13461 gdb_byte *info_ptr)
13462 {
13463 struct dwarf2_cu *cu = reader->cu;
13464 struct objfile *objfile = cu->objfile;
13465 gdb_byte *buffer = reader->buffer;
13466 unsigned int i;
13467 struct attribute attr;
13468 int has_low_pc_attr = 0;
13469 int has_high_pc_attr = 0;
13470 int high_pc_relative = 0;
13471
13472 memset (part_die, 0, sizeof (struct partial_die_info));
13473
13474 part_die->offset.sect_off = info_ptr - buffer;
13475
13476 info_ptr += abbrev_len;
13477
13478 if (abbrev == NULL)
13479 return info_ptr;
13480
13481 part_die->tag = abbrev->tag;
13482 part_die->has_children = abbrev->has_children;
13483
13484 for (i = 0; i < abbrev->num_attrs; ++i)
13485 {
13486 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13487
13488 /* Store the data if it is of an attribute we want to keep in a
13489 partial symbol table. */
13490 switch (attr.name)
13491 {
13492 case DW_AT_name:
13493 switch (part_die->tag)
13494 {
13495 case DW_TAG_compile_unit:
13496 case DW_TAG_partial_unit:
13497 case DW_TAG_type_unit:
13498 /* Compilation units have a DW_AT_name that is a filename, not
13499 a source language identifier. */
13500 case DW_TAG_enumeration_type:
13501 case DW_TAG_enumerator:
13502 /* These tags always have simple identifiers already; no need
13503 to canonicalize them. */
13504 part_die->name = DW_STRING (&attr);
13505 break;
13506 default:
13507 part_die->name
13508 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13509 &objfile->objfile_obstack);
13510 break;
13511 }
13512 break;
13513 case DW_AT_linkage_name:
13514 case DW_AT_MIPS_linkage_name:
13515 /* Note that both forms of linkage name might appear. We
13516 assume they will be the same, and we only store the last
13517 one we see. */
13518 if (cu->language == language_ada)
13519 part_die->name = DW_STRING (&attr);
13520 part_die->linkage_name = DW_STRING (&attr);
13521 break;
13522 case DW_AT_low_pc:
13523 has_low_pc_attr = 1;
13524 part_die->lowpc = DW_ADDR (&attr);
13525 break;
13526 case DW_AT_high_pc:
13527 has_high_pc_attr = 1;
13528 if (attr.form == DW_FORM_addr
13529 || attr.form == DW_FORM_GNU_addr_index)
13530 part_die->highpc = DW_ADDR (&attr);
13531 else
13532 {
13533 high_pc_relative = 1;
13534 part_die->highpc = DW_UNSND (&attr);
13535 }
13536 break;
13537 case DW_AT_location:
13538 /* Support the .debug_loc offsets. */
13539 if (attr_form_is_block (&attr))
13540 {
13541 part_die->d.locdesc = DW_BLOCK (&attr);
13542 }
13543 else if (attr_form_is_section_offset (&attr))
13544 {
13545 dwarf2_complex_location_expr_complaint ();
13546 }
13547 else
13548 {
13549 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13550 "partial symbol information");
13551 }
13552 break;
13553 case DW_AT_external:
13554 part_die->is_external = DW_UNSND (&attr);
13555 break;
13556 case DW_AT_declaration:
13557 part_die->is_declaration = DW_UNSND (&attr);
13558 break;
13559 case DW_AT_type:
13560 part_die->has_type = 1;
13561 break;
13562 case DW_AT_abstract_origin:
13563 case DW_AT_specification:
13564 case DW_AT_extension:
13565 part_die->has_specification = 1;
13566 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13567 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13568 || cu->per_cu->is_dwz);
13569 break;
13570 case DW_AT_sibling:
13571 /* Ignore absolute siblings, they might point outside of
13572 the current compile unit. */
13573 if (attr.form == DW_FORM_ref_addr)
13574 complaint (&symfile_complaints,
13575 _("ignoring absolute DW_AT_sibling"));
13576 else
13577 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13578 break;
13579 case DW_AT_byte_size:
13580 part_die->has_byte_size = 1;
13581 break;
13582 case DW_AT_calling_convention:
13583 /* DWARF doesn't provide a way to identify a program's source-level
13584 entry point. DW_AT_calling_convention attributes are only meant
13585 to describe functions' calling conventions.
13586
13587 However, because it's a necessary piece of information in
13588 Fortran, and because DW_CC_program is the only piece of debugging
13589 information whose definition refers to a 'main program' at all,
13590 several compilers have begun marking Fortran main programs with
13591 DW_CC_program --- even when those functions use the standard
13592 calling conventions.
13593
13594 So until DWARF specifies a way to provide this information and
13595 compilers pick up the new representation, we'll support this
13596 practice. */
13597 if (DW_UNSND (&attr) == DW_CC_program
13598 && cu->language == language_fortran)
13599 {
13600 set_main_name (part_die->name);
13601
13602 /* As this DIE has a static linkage the name would be difficult
13603 to look up later. */
13604 language_of_main = language_fortran;
13605 }
13606 break;
13607 case DW_AT_inline:
13608 if (DW_UNSND (&attr) == DW_INL_inlined
13609 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13610 part_die->may_be_inlined = 1;
13611 break;
13612
13613 case DW_AT_import:
13614 if (part_die->tag == DW_TAG_imported_unit)
13615 {
13616 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13617 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13618 || cu->per_cu->is_dwz);
13619 }
13620 break;
13621
13622 default:
13623 break;
13624 }
13625 }
13626
13627 if (high_pc_relative)
13628 part_die->highpc += part_die->lowpc;
13629
13630 if (has_low_pc_attr && has_high_pc_attr)
13631 {
13632 /* When using the GNU linker, .gnu.linkonce. sections are used to
13633 eliminate duplicate copies of functions and vtables and such.
13634 The linker will arbitrarily choose one and discard the others.
13635 The AT_*_pc values for such functions refer to local labels in
13636 these sections. If the section from that file was discarded, the
13637 labels are not in the output, so the relocs get a value of 0.
13638 If this is a discarded function, mark the pc bounds as invalid,
13639 so that GDB will ignore it. */
13640 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13641 {
13642 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13643
13644 complaint (&symfile_complaints,
13645 _("DW_AT_low_pc %s is zero "
13646 "for DIE at 0x%x [in module %s]"),
13647 paddress (gdbarch, part_die->lowpc),
13648 part_die->offset.sect_off, objfile->name);
13649 }
13650 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13651 else if (part_die->lowpc >= part_die->highpc)
13652 {
13653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13654
13655 complaint (&symfile_complaints,
13656 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13657 "for DIE at 0x%x [in module %s]"),
13658 paddress (gdbarch, part_die->lowpc),
13659 paddress (gdbarch, part_die->highpc),
13660 part_die->offset.sect_off, objfile->name);
13661 }
13662 else
13663 part_die->has_pc_info = 1;
13664 }
13665
13666 return info_ptr;
13667 }
13668
13669 /* Find a cached partial DIE at OFFSET in CU. */
13670
13671 static struct partial_die_info *
13672 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13673 {
13674 struct partial_die_info *lookup_die = NULL;
13675 struct partial_die_info part_die;
13676
13677 part_die.offset = offset;
13678 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13679 offset.sect_off);
13680
13681 return lookup_die;
13682 }
13683
13684 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13685 except in the case of .debug_types DIEs which do not reference
13686 outside their CU (they do however referencing other types via
13687 DW_FORM_ref_sig8). */
13688
13689 static struct partial_die_info *
13690 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13691 {
13692 struct objfile *objfile = cu->objfile;
13693 struct dwarf2_per_cu_data *per_cu = NULL;
13694 struct partial_die_info *pd = NULL;
13695
13696 if (offset_in_dwz == cu->per_cu->is_dwz
13697 && offset_in_cu_p (&cu->header, offset))
13698 {
13699 pd = find_partial_die_in_comp_unit (offset, cu);
13700 if (pd != NULL)
13701 return pd;
13702 /* We missed recording what we needed.
13703 Load all dies and try again. */
13704 per_cu = cu->per_cu;
13705 }
13706 else
13707 {
13708 /* TUs don't reference other CUs/TUs (except via type signatures). */
13709 if (cu->per_cu->is_debug_types)
13710 {
13711 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13712 " external reference to offset 0x%lx [in module %s].\n"),
13713 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13714 bfd_get_filename (objfile->obfd));
13715 }
13716 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13717 objfile);
13718
13719 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13720 load_partial_comp_unit (per_cu);
13721
13722 per_cu->cu->last_used = 0;
13723 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13724 }
13725
13726 /* If we didn't find it, and not all dies have been loaded,
13727 load them all and try again. */
13728
13729 if (pd == NULL && per_cu->load_all_dies == 0)
13730 {
13731 per_cu->load_all_dies = 1;
13732
13733 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13734 THIS_CU->cu may already be in use. So we can't just free it and
13735 replace its DIEs with the ones we read in. Instead, we leave those
13736 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13737 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13738 set. */
13739 load_partial_comp_unit (per_cu);
13740
13741 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13742 }
13743
13744 if (pd == NULL)
13745 internal_error (__FILE__, __LINE__,
13746 _("could not find partial DIE 0x%x "
13747 "in cache [from module %s]\n"),
13748 offset.sect_off, bfd_get_filename (objfile->obfd));
13749 return pd;
13750 }
13751
13752 /* See if we can figure out if the class lives in a namespace. We do
13753 this by looking for a member function; its demangled name will
13754 contain namespace info, if there is any. */
13755
13756 static void
13757 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13758 struct dwarf2_cu *cu)
13759 {
13760 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13761 what template types look like, because the demangler
13762 frequently doesn't give the same name as the debug info. We
13763 could fix this by only using the demangled name to get the
13764 prefix (but see comment in read_structure_type). */
13765
13766 struct partial_die_info *real_pdi;
13767 struct partial_die_info *child_pdi;
13768
13769 /* If this DIE (this DIE's specification, if any) has a parent, then
13770 we should not do this. We'll prepend the parent's fully qualified
13771 name when we create the partial symbol. */
13772
13773 real_pdi = struct_pdi;
13774 while (real_pdi->has_specification)
13775 real_pdi = find_partial_die (real_pdi->spec_offset,
13776 real_pdi->spec_is_dwz, cu);
13777
13778 if (real_pdi->die_parent != NULL)
13779 return;
13780
13781 for (child_pdi = struct_pdi->die_child;
13782 child_pdi != NULL;
13783 child_pdi = child_pdi->die_sibling)
13784 {
13785 if (child_pdi->tag == DW_TAG_subprogram
13786 && child_pdi->linkage_name != NULL)
13787 {
13788 char *actual_class_name
13789 = language_class_name_from_physname (cu->language_defn,
13790 child_pdi->linkage_name);
13791 if (actual_class_name != NULL)
13792 {
13793 struct_pdi->name
13794 = obsavestring (actual_class_name,
13795 strlen (actual_class_name),
13796 &cu->objfile->objfile_obstack);
13797 xfree (actual_class_name);
13798 }
13799 break;
13800 }
13801 }
13802 }
13803
13804 /* Adjust PART_DIE before generating a symbol for it. This function
13805 may set the is_external flag or change the DIE's name. */
13806
13807 static void
13808 fixup_partial_die (struct partial_die_info *part_die,
13809 struct dwarf2_cu *cu)
13810 {
13811 /* Once we've fixed up a die, there's no point in doing so again.
13812 This also avoids a memory leak if we were to call
13813 guess_partial_die_structure_name multiple times. */
13814 if (part_die->fixup_called)
13815 return;
13816
13817 /* If we found a reference attribute and the DIE has no name, try
13818 to find a name in the referred to DIE. */
13819
13820 if (part_die->name == NULL && part_die->has_specification)
13821 {
13822 struct partial_die_info *spec_die;
13823
13824 spec_die = find_partial_die (part_die->spec_offset,
13825 part_die->spec_is_dwz, cu);
13826
13827 fixup_partial_die (spec_die, cu);
13828
13829 if (spec_die->name)
13830 {
13831 part_die->name = spec_die->name;
13832
13833 /* Copy DW_AT_external attribute if it is set. */
13834 if (spec_die->is_external)
13835 part_die->is_external = spec_die->is_external;
13836 }
13837 }
13838
13839 /* Set default names for some unnamed DIEs. */
13840
13841 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13842 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13843
13844 /* If there is no parent die to provide a namespace, and there are
13845 children, see if we can determine the namespace from their linkage
13846 name. */
13847 if (cu->language == language_cplus
13848 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13849 && part_die->die_parent == NULL
13850 && part_die->has_children
13851 && (part_die->tag == DW_TAG_class_type
13852 || part_die->tag == DW_TAG_structure_type
13853 || part_die->tag == DW_TAG_union_type))
13854 guess_partial_die_structure_name (part_die, cu);
13855
13856 /* GCC might emit a nameless struct or union that has a linkage
13857 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13858 if (part_die->name == NULL
13859 && (part_die->tag == DW_TAG_class_type
13860 || part_die->tag == DW_TAG_interface_type
13861 || part_die->tag == DW_TAG_structure_type
13862 || part_die->tag == DW_TAG_union_type)
13863 && part_die->linkage_name != NULL)
13864 {
13865 char *demangled;
13866
13867 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13868 if (demangled)
13869 {
13870 const char *base;
13871
13872 /* Strip any leading namespaces/classes, keep only the base name.
13873 DW_AT_name for named DIEs does not contain the prefixes. */
13874 base = strrchr (demangled, ':');
13875 if (base && base > demangled && base[-1] == ':')
13876 base++;
13877 else
13878 base = demangled;
13879
13880 part_die->name = obsavestring (base, strlen (base),
13881 &cu->objfile->objfile_obstack);
13882 xfree (demangled);
13883 }
13884 }
13885
13886 part_die->fixup_called = 1;
13887 }
13888
13889 /* Read an attribute value described by an attribute form. */
13890
13891 static gdb_byte *
13892 read_attribute_value (const struct die_reader_specs *reader,
13893 struct attribute *attr, unsigned form,
13894 gdb_byte *info_ptr)
13895 {
13896 struct dwarf2_cu *cu = reader->cu;
13897 bfd *abfd = reader->abfd;
13898 struct comp_unit_head *cu_header = &cu->header;
13899 unsigned int bytes_read;
13900 struct dwarf_block *blk;
13901
13902 attr->form = form;
13903 switch (form)
13904 {
13905 case DW_FORM_ref_addr:
13906 if (cu->header.version == 2)
13907 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13908 else
13909 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13910 &cu->header, &bytes_read);
13911 info_ptr += bytes_read;
13912 break;
13913 case DW_FORM_GNU_ref_alt:
13914 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13915 info_ptr += bytes_read;
13916 break;
13917 case DW_FORM_addr:
13918 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13919 info_ptr += bytes_read;
13920 break;
13921 case DW_FORM_block2:
13922 blk = dwarf_alloc_block (cu);
13923 blk->size = read_2_bytes (abfd, info_ptr);
13924 info_ptr += 2;
13925 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13926 info_ptr += blk->size;
13927 DW_BLOCK (attr) = blk;
13928 break;
13929 case DW_FORM_block4:
13930 blk = dwarf_alloc_block (cu);
13931 blk->size = read_4_bytes (abfd, info_ptr);
13932 info_ptr += 4;
13933 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13934 info_ptr += blk->size;
13935 DW_BLOCK (attr) = blk;
13936 break;
13937 case DW_FORM_data2:
13938 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13939 info_ptr += 2;
13940 break;
13941 case DW_FORM_data4:
13942 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13943 info_ptr += 4;
13944 break;
13945 case DW_FORM_data8:
13946 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13947 info_ptr += 8;
13948 break;
13949 case DW_FORM_sec_offset:
13950 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13951 info_ptr += bytes_read;
13952 break;
13953 case DW_FORM_string:
13954 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13955 DW_STRING_IS_CANONICAL (attr) = 0;
13956 info_ptr += bytes_read;
13957 break;
13958 case DW_FORM_strp:
13959 if (!cu->per_cu->is_dwz)
13960 {
13961 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13962 &bytes_read);
13963 DW_STRING_IS_CANONICAL (attr) = 0;
13964 info_ptr += bytes_read;
13965 break;
13966 }
13967 /* FALLTHROUGH */
13968 case DW_FORM_GNU_strp_alt:
13969 {
13970 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13971 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13972 &bytes_read);
13973
13974 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13975 DW_STRING_IS_CANONICAL (attr) = 0;
13976 info_ptr += bytes_read;
13977 }
13978 break;
13979 case DW_FORM_exprloc:
13980 case DW_FORM_block:
13981 blk = dwarf_alloc_block (cu);
13982 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13983 info_ptr += bytes_read;
13984 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13985 info_ptr += blk->size;
13986 DW_BLOCK (attr) = blk;
13987 break;
13988 case DW_FORM_block1:
13989 blk = dwarf_alloc_block (cu);
13990 blk->size = read_1_byte (abfd, info_ptr);
13991 info_ptr += 1;
13992 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13993 info_ptr += blk->size;
13994 DW_BLOCK (attr) = blk;
13995 break;
13996 case DW_FORM_data1:
13997 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13998 info_ptr += 1;
13999 break;
14000 case DW_FORM_flag:
14001 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14002 info_ptr += 1;
14003 break;
14004 case DW_FORM_flag_present:
14005 DW_UNSND (attr) = 1;
14006 break;
14007 case DW_FORM_sdata:
14008 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14009 info_ptr += bytes_read;
14010 break;
14011 case DW_FORM_udata:
14012 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14013 info_ptr += bytes_read;
14014 break;
14015 case DW_FORM_ref1:
14016 DW_UNSND (attr) = (cu->header.offset.sect_off
14017 + read_1_byte (abfd, info_ptr));
14018 info_ptr += 1;
14019 break;
14020 case DW_FORM_ref2:
14021 DW_UNSND (attr) = (cu->header.offset.sect_off
14022 + read_2_bytes (abfd, info_ptr));
14023 info_ptr += 2;
14024 break;
14025 case DW_FORM_ref4:
14026 DW_UNSND (attr) = (cu->header.offset.sect_off
14027 + read_4_bytes (abfd, info_ptr));
14028 info_ptr += 4;
14029 break;
14030 case DW_FORM_ref8:
14031 DW_UNSND (attr) = (cu->header.offset.sect_off
14032 + read_8_bytes (abfd, info_ptr));
14033 info_ptr += 8;
14034 break;
14035 case DW_FORM_ref_sig8:
14036 /* Convert the signature to something we can record in DW_UNSND
14037 for later lookup.
14038 NOTE: This is NULL if the type wasn't found. */
14039 DW_SIGNATURED_TYPE (attr) =
14040 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14041 info_ptr += 8;
14042 break;
14043 case DW_FORM_ref_udata:
14044 DW_UNSND (attr) = (cu->header.offset.sect_off
14045 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14046 info_ptr += bytes_read;
14047 break;
14048 case DW_FORM_indirect:
14049 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14050 info_ptr += bytes_read;
14051 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14052 break;
14053 case DW_FORM_GNU_addr_index:
14054 if (reader->dwo_file == NULL)
14055 {
14056 /* For now flag a hard error.
14057 Later we can turn this into a complaint. */
14058 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14059 dwarf_form_name (form),
14060 bfd_get_filename (abfd));
14061 }
14062 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14063 info_ptr += bytes_read;
14064 break;
14065 case DW_FORM_GNU_str_index:
14066 if (reader->dwo_file == NULL)
14067 {
14068 /* For now flag a hard error.
14069 Later we can turn this into a complaint if warranted. */
14070 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14071 dwarf_form_name (form),
14072 bfd_get_filename (abfd));
14073 }
14074 {
14075 ULONGEST str_index =
14076 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14077
14078 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14079 DW_STRING_IS_CANONICAL (attr) = 0;
14080 info_ptr += bytes_read;
14081 }
14082 break;
14083 default:
14084 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14085 dwarf_form_name (form),
14086 bfd_get_filename (abfd));
14087 }
14088
14089 /* Super hack. */
14090 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14091 attr->form = DW_FORM_GNU_ref_alt;
14092
14093 /* We have seen instances where the compiler tried to emit a byte
14094 size attribute of -1 which ended up being encoded as an unsigned
14095 0xffffffff. Although 0xffffffff is technically a valid size value,
14096 an object of this size seems pretty unlikely so we can relatively
14097 safely treat these cases as if the size attribute was invalid and
14098 treat them as zero by default. */
14099 if (attr->name == DW_AT_byte_size
14100 && form == DW_FORM_data4
14101 && DW_UNSND (attr) >= 0xffffffff)
14102 {
14103 complaint
14104 (&symfile_complaints,
14105 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14106 hex_string (DW_UNSND (attr)));
14107 DW_UNSND (attr) = 0;
14108 }
14109
14110 return info_ptr;
14111 }
14112
14113 /* Read an attribute described by an abbreviated attribute. */
14114
14115 static gdb_byte *
14116 read_attribute (const struct die_reader_specs *reader,
14117 struct attribute *attr, struct attr_abbrev *abbrev,
14118 gdb_byte *info_ptr)
14119 {
14120 attr->name = abbrev->name;
14121 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14122 }
14123
14124 /* Read dwarf information from a buffer. */
14125
14126 static unsigned int
14127 read_1_byte (bfd *abfd, const gdb_byte *buf)
14128 {
14129 return bfd_get_8 (abfd, buf);
14130 }
14131
14132 static int
14133 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14134 {
14135 return bfd_get_signed_8 (abfd, buf);
14136 }
14137
14138 static unsigned int
14139 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14140 {
14141 return bfd_get_16 (abfd, buf);
14142 }
14143
14144 static int
14145 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14146 {
14147 return bfd_get_signed_16 (abfd, buf);
14148 }
14149
14150 static unsigned int
14151 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14152 {
14153 return bfd_get_32 (abfd, buf);
14154 }
14155
14156 static int
14157 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14158 {
14159 return bfd_get_signed_32 (abfd, buf);
14160 }
14161
14162 static ULONGEST
14163 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14164 {
14165 return bfd_get_64 (abfd, buf);
14166 }
14167
14168 static CORE_ADDR
14169 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14170 unsigned int *bytes_read)
14171 {
14172 struct comp_unit_head *cu_header = &cu->header;
14173 CORE_ADDR retval = 0;
14174
14175 if (cu_header->signed_addr_p)
14176 {
14177 switch (cu_header->addr_size)
14178 {
14179 case 2:
14180 retval = bfd_get_signed_16 (abfd, buf);
14181 break;
14182 case 4:
14183 retval = bfd_get_signed_32 (abfd, buf);
14184 break;
14185 case 8:
14186 retval = bfd_get_signed_64 (abfd, buf);
14187 break;
14188 default:
14189 internal_error (__FILE__, __LINE__,
14190 _("read_address: bad switch, signed [in module %s]"),
14191 bfd_get_filename (abfd));
14192 }
14193 }
14194 else
14195 {
14196 switch (cu_header->addr_size)
14197 {
14198 case 2:
14199 retval = bfd_get_16 (abfd, buf);
14200 break;
14201 case 4:
14202 retval = bfd_get_32 (abfd, buf);
14203 break;
14204 case 8:
14205 retval = bfd_get_64 (abfd, buf);
14206 break;
14207 default:
14208 internal_error (__FILE__, __LINE__,
14209 _("read_address: bad switch, "
14210 "unsigned [in module %s]"),
14211 bfd_get_filename (abfd));
14212 }
14213 }
14214
14215 *bytes_read = cu_header->addr_size;
14216 return retval;
14217 }
14218
14219 /* Read the initial length from a section. The (draft) DWARF 3
14220 specification allows the initial length to take up either 4 bytes
14221 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14222 bytes describe the length and all offsets will be 8 bytes in length
14223 instead of 4.
14224
14225 An older, non-standard 64-bit format is also handled by this
14226 function. The older format in question stores the initial length
14227 as an 8-byte quantity without an escape value. Lengths greater
14228 than 2^32 aren't very common which means that the initial 4 bytes
14229 is almost always zero. Since a length value of zero doesn't make
14230 sense for the 32-bit format, this initial zero can be considered to
14231 be an escape value which indicates the presence of the older 64-bit
14232 format. As written, the code can't detect (old format) lengths
14233 greater than 4GB. If it becomes necessary to handle lengths
14234 somewhat larger than 4GB, we could allow other small values (such
14235 as the non-sensical values of 1, 2, and 3) to also be used as
14236 escape values indicating the presence of the old format.
14237
14238 The value returned via bytes_read should be used to increment the
14239 relevant pointer after calling read_initial_length().
14240
14241 [ Note: read_initial_length() and read_offset() are based on the
14242 document entitled "DWARF Debugging Information Format", revision
14243 3, draft 8, dated November 19, 2001. This document was obtained
14244 from:
14245
14246 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14247
14248 This document is only a draft and is subject to change. (So beware.)
14249
14250 Details regarding the older, non-standard 64-bit format were
14251 determined empirically by examining 64-bit ELF files produced by
14252 the SGI toolchain on an IRIX 6.5 machine.
14253
14254 - Kevin, July 16, 2002
14255 ] */
14256
14257 static LONGEST
14258 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14259 {
14260 LONGEST length = bfd_get_32 (abfd, buf);
14261
14262 if (length == 0xffffffff)
14263 {
14264 length = bfd_get_64 (abfd, buf + 4);
14265 *bytes_read = 12;
14266 }
14267 else if (length == 0)
14268 {
14269 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14270 length = bfd_get_64 (abfd, buf);
14271 *bytes_read = 8;
14272 }
14273 else
14274 {
14275 *bytes_read = 4;
14276 }
14277
14278 return length;
14279 }
14280
14281 /* Cover function for read_initial_length.
14282 Returns the length of the object at BUF, and stores the size of the
14283 initial length in *BYTES_READ and stores the size that offsets will be in
14284 *OFFSET_SIZE.
14285 If the initial length size is not equivalent to that specified in
14286 CU_HEADER then issue a complaint.
14287 This is useful when reading non-comp-unit headers. */
14288
14289 static LONGEST
14290 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14291 const struct comp_unit_head *cu_header,
14292 unsigned int *bytes_read,
14293 unsigned int *offset_size)
14294 {
14295 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14296
14297 gdb_assert (cu_header->initial_length_size == 4
14298 || cu_header->initial_length_size == 8
14299 || cu_header->initial_length_size == 12);
14300
14301 if (cu_header->initial_length_size != *bytes_read)
14302 complaint (&symfile_complaints,
14303 _("intermixed 32-bit and 64-bit DWARF sections"));
14304
14305 *offset_size = (*bytes_read == 4) ? 4 : 8;
14306 return length;
14307 }
14308
14309 /* Read an offset from the data stream. The size of the offset is
14310 given by cu_header->offset_size. */
14311
14312 static LONGEST
14313 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14314 unsigned int *bytes_read)
14315 {
14316 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14317
14318 *bytes_read = cu_header->offset_size;
14319 return offset;
14320 }
14321
14322 /* Read an offset from the data stream. */
14323
14324 static LONGEST
14325 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14326 {
14327 LONGEST retval = 0;
14328
14329 switch (offset_size)
14330 {
14331 case 4:
14332 retval = bfd_get_32 (abfd, buf);
14333 break;
14334 case 8:
14335 retval = bfd_get_64 (abfd, buf);
14336 break;
14337 default:
14338 internal_error (__FILE__, __LINE__,
14339 _("read_offset_1: bad switch [in module %s]"),
14340 bfd_get_filename (abfd));
14341 }
14342
14343 return retval;
14344 }
14345
14346 static gdb_byte *
14347 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14348 {
14349 /* If the size of a host char is 8 bits, we can return a pointer
14350 to the buffer, otherwise we have to copy the data to a buffer
14351 allocated on the temporary obstack. */
14352 gdb_assert (HOST_CHAR_BIT == 8);
14353 return buf;
14354 }
14355
14356 static char *
14357 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14358 {
14359 /* If the size of a host char is 8 bits, we can return a pointer
14360 to the string, otherwise we have to copy the string to a buffer
14361 allocated on the temporary obstack. */
14362 gdb_assert (HOST_CHAR_BIT == 8);
14363 if (*buf == '\0')
14364 {
14365 *bytes_read_ptr = 1;
14366 return NULL;
14367 }
14368 *bytes_read_ptr = strlen ((char *) buf) + 1;
14369 return (char *) buf;
14370 }
14371
14372 static char *
14373 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14374 {
14375 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14376 if (dwarf2_per_objfile->str.buffer == NULL)
14377 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14378 bfd_get_filename (abfd));
14379 if (str_offset >= dwarf2_per_objfile->str.size)
14380 error (_("DW_FORM_strp pointing outside of "
14381 ".debug_str section [in module %s]"),
14382 bfd_get_filename (abfd));
14383 gdb_assert (HOST_CHAR_BIT == 8);
14384 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14385 return NULL;
14386 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14387 }
14388
14389 /* Read a string at offset STR_OFFSET in the .debug_str section from
14390 the .dwz file DWZ. Throw an error if the offset is too large. If
14391 the string consists of a single NUL byte, return NULL; otherwise
14392 return a pointer to the string. */
14393
14394 static char *
14395 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14396 {
14397 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14398
14399 if (dwz->str.buffer == NULL)
14400 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14401 "section [in module %s]"),
14402 bfd_get_filename (dwz->dwz_bfd));
14403 if (str_offset >= dwz->str.size)
14404 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14405 ".debug_str section [in module %s]"),
14406 bfd_get_filename (dwz->dwz_bfd));
14407 gdb_assert (HOST_CHAR_BIT == 8);
14408 if (dwz->str.buffer[str_offset] == '\0')
14409 return NULL;
14410 return (char *) (dwz->str.buffer + str_offset);
14411 }
14412
14413 static char *
14414 read_indirect_string (bfd *abfd, gdb_byte *buf,
14415 const struct comp_unit_head *cu_header,
14416 unsigned int *bytes_read_ptr)
14417 {
14418 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14419
14420 return read_indirect_string_at_offset (abfd, str_offset);
14421 }
14422
14423 static ULONGEST
14424 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14425 {
14426 ULONGEST result;
14427 unsigned int num_read;
14428 int i, shift;
14429 unsigned char byte;
14430
14431 result = 0;
14432 shift = 0;
14433 num_read = 0;
14434 i = 0;
14435 while (1)
14436 {
14437 byte = bfd_get_8 (abfd, buf);
14438 buf++;
14439 num_read++;
14440 result |= ((ULONGEST) (byte & 127) << shift);
14441 if ((byte & 128) == 0)
14442 {
14443 break;
14444 }
14445 shift += 7;
14446 }
14447 *bytes_read_ptr = num_read;
14448 return result;
14449 }
14450
14451 static LONGEST
14452 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14453 {
14454 LONGEST result;
14455 int i, shift, num_read;
14456 unsigned char byte;
14457
14458 result = 0;
14459 shift = 0;
14460 num_read = 0;
14461 i = 0;
14462 while (1)
14463 {
14464 byte = bfd_get_8 (abfd, buf);
14465 buf++;
14466 num_read++;
14467 result |= ((LONGEST) (byte & 127) << shift);
14468 shift += 7;
14469 if ((byte & 128) == 0)
14470 {
14471 break;
14472 }
14473 }
14474 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14475 result |= -(((LONGEST) 1) << shift);
14476 *bytes_read_ptr = num_read;
14477 return result;
14478 }
14479
14480 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14481 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14482 ADDR_SIZE is the size of addresses from the CU header. */
14483
14484 static CORE_ADDR
14485 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14486 {
14487 struct objfile *objfile = dwarf2_per_objfile->objfile;
14488 bfd *abfd = objfile->obfd;
14489 const gdb_byte *info_ptr;
14490
14491 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14492 if (dwarf2_per_objfile->addr.buffer == NULL)
14493 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14494 objfile->name);
14495 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14496 error (_("DW_FORM_addr_index pointing outside of "
14497 ".debug_addr section [in module %s]"),
14498 objfile->name);
14499 info_ptr = (dwarf2_per_objfile->addr.buffer
14500 + addr_base + addr_index * addr_size);
14501 if (addr_size == 4)
14502 return bfd_get_32 (abfd, info_ptr);
14503 else
14504 return bfd_get_64 (abfd, info_ptr);
14505 }
14506
14507 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14508
14509 static CORE_ADDR
14510 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14511 {
14512 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14513 }
14514
14515 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14516
14517 static CORE_ADDR
14518 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14519 unsigned int *bytes_read)
14520 {
14521 bfd *abfd = cu->objfile->obfd;
14522 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14523
14524 return read_addr_index (cu, addr_index);
14525 }
14526
14527 /* Data structure to pass results from dwarf2_read_addr_index_reader
14528 back to dwarf2_read_addr_index. */
14529
14530 struct dwarf2_read_addr_index_data
14531 {
14532 ULONGEST addr_base;
14533 int addr_size;
14534 };
14535
14536 /* die_reader_func for dwarf2_read_addr_index. */
14537
14538 static void
14539 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14540 gdb_byte *info_ptr,
14541 struct die_info *comp_unit_die,
14542 int has_children,
14543 void *data)
14544 {
14545 struct dwarf2_cu *cu = reader->cu;
14546 struct dwarf2_read_addr_index_data *aidata =
14547 (struct dwarf2_read_addr_index_data *) data;
14548
14549 aidata->addr_base = cu->addr_base;
14550 aidata->addr_size = cu->header.addr_size;
14551 }
14552
14553 /* Given an index in .debug_addr, fetch the value.
14554 NOTE: This can be called during dwarf expression evaluation,
14555 long after the debug information has been read, and thus per_cu->cu
14556 may no longer exist. */
14557
14558 CORE_ADDR
14559 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14560 unsigned int addr_index)
14561 {
14562 struct objfile *objfile = per_cu->objfile;
14563 struct dwarf2_cu *cu = per_cu->cu;
14564 ULONGEST addr_base;
14565 int addr_size;
14566
14567 /* This is intended to be called from outside this file. */
14568 dw2_setup (objfile);
14569
14570 /* We need addr_base and addr_size.
14571 If we don't have PER_CU->cu, we have to get it.
14572 Nasty, but the alternative is storing the needed info in PER_CU,
14573 which at this point doesn't seem justified: it's not clear how frequently
14574 it would get used and it would increase the size of every PER_CU.
14575 Entry points like dwarf2_per_cu_addr_size do a similar thing
14576 so we're not in uncharted territory here.
14577 Alas we need to be a bit more complicated as addr_base is contained
14578 in the DIE.
14579
14580 We don't need to read the entire CU(/TU).
14581 We just need the header and top level die.
14582
14583 IWBN to use the aging mechanism to let us lazily later discard the CU.
14584 For now we skip this optimization. */
14585
14586 if (cu != NULL)
14587 {
14588 addr_base = cu->addr_base;
14589 addr_size = cu->header.addr_size;
14590 }
14591 else
14592 {
14593 struct dwarf2_read_addr_index_data aidata;
14594
14595 /* Note: We can't use init_cutu_and_read_dies_simple here,
14596 we need addr_base. */
14597 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14598 dwarf2_read_addr_index_reader, &aidata);
14599 addr_base = aidata.addr_base;
14600 addr_size = aidata.addr_size;
14601 }
14602
14603 return read_addr_index_1 (addr_index, addr_base, addr_size);
14604 }
14605
14606 /* Given a DW_AT_str_index, fetch the string. */
14607
14608 static char *
14609 read_str_index (const struct die_reader_specs *reader,
14610 struct dwarf2_cu *cu, ULONGEST str_index)
14611 {
14612 struct objfile *objfile = dwarf2_per_objfile->objfile;
14613 const char *dwo_name = objfile->name;
14614 bfd *abfd = objfile->obfd;
14615 struct dwo_sections *sections = &reader->dwo_file->sections;
14616 gdb_byte *info_ptr;
14617 ULONGEST str_offset;
14618
14619 dwarf2_read_section (objfile, &sections->str);
14620 dwarf2_read_section (objfile, &sections->str_offsets);
14621 if (sections->str.buffer == NULL)
14622 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14623 " in CU at offset 0x%lx [in module %s]"),
14624 (long) cu->header.offset.sect_off, dwo_name);
14625 if (sections->str_offsets.buffer == NULL)
14626 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14627 " in CU at offset 0x%lx [in module %s]"),
14628 (long) cu->header.offset.sect_off, dwo_name);
14629 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14630 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14631 " section in CU at offset 0x%lx [in module %s]"),
14632 (long) cu->header.offset.sect_off, dwo_name);
14633 info_ptr = (sections->str_offsets.buffer
14634 + str_index * cu->header.offset_size);
14635 if (cu->header.offset_size == 4)
14636 str_offset = bfd_get_32 (abfd, info_ptr);
14637 else
14638 str_offset = bfd_get_64 (abfd, info_ptr);
14639 if (str_offset >= sections->str.size)
14640 error (_("Offset from DW_FORM_str_index pointing outside of"
14641 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14642 (long) cu->header.offset.sect_off, dwo_name);
14643 return (char *) (sections->str.buffer + str_offset);
14644 }
14645
14646 /* Return the length of an LEB128 number in BUF. */
14647
14648 static int
14649 leb128_size (const gdb_byte *buf)
14650 {
14651 const gdb_byte *begin = buf;
14652 gdb_byte byte;
14653
14654 while (1)
14655 {
14656 byte = *buf++;
14657 if ((byte & 128) == 0)
14658 return buf - begin;
14659 }
14660 }
14661
14662 static void
14663 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14664 {
14665 switch (lang)
14666 {
14667 case DW_LANG_C89:
14668 case DW_LANG_C99:
14669 case DW_LANG_C:
14670 cu->language = language_c;
14671 break;
14672 case DW_LANG_C_plus_plus:
14673 cu->language = language_cplus;
14674 break;
14675 case DW_LANG_D:
14676 cu->language = language_d;
14677 break;
14678 case DW_LANG_Fortran77:
14679 case DW_LANG_Fortran90:
14680 case DW_LANG_Fortran95:
14681 cu->language = language_fortran;
14682 break;
14683 case DW_LANG_Go:
14684 cu->language = language_go;
14685 break;
14686 case DW_LANG_Mips_Assembler:
14687 cu->language = language_asm;
14688 break;
14689 case DW_LANG_Java:
14690 cu->language = language_java;
14691 break;
14692 case DW_LANG_Ada83:
14693 case DW_LANG_Ada95:
14694 cu->language = language_ada;
14695 break;
14696 case DW_LANG_Modula2:
14697 cu->language = language_m2;
14698 break;
14699 case DW_LANG_Pascal83:
14700 cu->language = language_pascal;
14701 break;
14702 case DW_LANG_ObjC:
14703 cu->language = language_objc;
14704 break;
14705 case DW_LANG_Cobol74:
14706 case DW_LANG_Cobol85:
14707 default:
14708 cu->language = language_minimal;
14709 break;
14710 }
14711 cu->language_defn = language_def (cu->language);
14712 }
14713
14714 /* Return the named attribute or NULL if not there. */
14715
14716 static struct attribute *
14717 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14718 {
14719 for (;;)
14720 {
14721 unsigned int i;
14722 struct attribute *spec = NULL;
14723
14724 for (i = 0; i < die->num_attrs; ++i)
14725 {
14726 if (die->attrs[i].name == name)
14727 return &die->attrs[i];
14728 if (die->attrs[i].name == DW_AT_specification
14729 || die->attrs[i].name == DW_AT_abstract_origin)
14730 spec = &die->attrs[i];
14731 }
14732
14733 if (!spec)
14734 break;
14735
14736 die = follow_die_ref (die, spec, &cu);
14737 }
14738
14739 return NULL;
14740 }
14741
14742 /* Return the named attribute or NULL if not there,
14743 but do not follow DW_AT_specification, etc.
14744 This is for use in contexts where we're reading .debug_types dies.
14745 Following DW_AT_specification, DW_AT_abstract_origin will take us
14746 back up the chain, and we want to go down. */
14747
14748 static struct attribute *
14749 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14750 {
14751 unsigned int i;
14752
14753 for (i = 0; i < die->num_attrs; ++i)
14754 if (die->attrs[i].name == name)
14755 return &die->attrs[i];
14756
14757 return NULL;
14758 }
14759
14760 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14761 and holds a non-zero value. This function should only be used for
14762 DW_FORM_flag or DW_FORM_flag_present attributes. */
14763
14764 static int
14765 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14766 {
14767 struct attribute *attr = dwarf2_attr (die, name, cu);
14768
14769 return (attr && DW_UNSND (attr));
14770 }
14771
14772 static int
14773 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14774 {
14775 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14776 which value is non-zero. However, we have to be careful with
14777 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14778 (via dwarf2_flag_true_p) follows this attribute. So we may
14779 end up accidently finding a declaration attribute that belongs
14780 to a different DIE referenced by the specification attribute,
14781 even though the given DIE does not have a declaration attribute. */
14782 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14783 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14784 }
14785
14786 /* Return the die giving the specification for DIE, if there is
14787 one. *SPEC_CU is the CU containing DIE on input, and the CU
14788 containing the return value on output. If there is no
14789 specification, but there is an abstract origin, that is
14790 returned. */
14791
14792 static struct die_info *
14793 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14794 {
14795 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14796 *spec_cu);
14797
14798 if (spec_attr == NULL)
14799 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14800
14801 if (spec_attr == NULL)
14802 return NULL;
14803 else
14804 return follow_die_ref (die, spec_attr, spec_cu);
14805 }
14806
14807 /* Free the line_header structure *LH, and any arrays and strings it
14808 refers to.
14809 NOTE: This is also used as a "cleanup" function. */
14810
14811 static void
14812 free_line_header (struct line_header *lh)
14813 {
14814 if (lh->standard_opcode_lengths)
14815 xfree (lh->standard_opcode_lengths);
14816
14817 /* Remember that all the lh->file_names[i].name pointers are
14818 pointers into debug_line_buffer, and don't need to be freed. */
14819 if (lh->file_names)
14820 xfree (lh->file_names);
14821
14822 /* Similarly for the include directory names. */
14823 if (lh->include_dirs)
14824 xfree (lh->include_dirs);
14825
14826 xfree (lh);
14827 }
14828
14829 /* Add an entry to LH's include directory table. */
14830
14831 static void
14832 add_include_dir (struct line_header *lh, char *include_dir)
14833 {
14834 /* Grow the array if necessary. */
14835 if (lh->include_dirs_size == 0)
14836 {
14837 lh->include_dirs_size = 1; /* for testing */
14838 lh->include_dirs = xmalloc (lh->include_dirs_size
14839 * sizeof (*lh->include_dirs));
14840 }
14841 else if (lh->num_include_dirs >= lh->include_dirs_size)
14842 {
14843 lh->include_dirs_size *= 2;
14844 lh->include_dirs = xrealloc (lh->include_dirs,
14845 (lh->include_dirs_size
14846 * sizeof (*lh->include_dirs)));
14847 }
14848
14849 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14850 }
14851
14852 /* Add an entry to LH's file name table. */
14853
14854 static void
14855 add_file_name (struct line_header *lh,
14856 char *name,
14857 unsigned int dir_index,
14858 unsigned int mod_time,
14859 unsigned int length)
14860 {
14861 struct file_entry *fe;
14862
14863 /* Grow the array if necessary. */
14864 if (lh->file_names_size == 0)
14865 {
14866 lh->file_names_size = 1; /* for testing */
14867 lh->file_names = xmalloc (lh->file_names_size
14868 * sizeof (*lh->file_names));
14869 }
14870 else if (lh->num_file_names >= lh->file_names_size)
14871 {
14872 lh->file_names_size *= 2;
14873 lh->file_names = xrealloc (lh->file_names,
14874 (lh->file_names_size
14875 * sizeof (*lh->file_names)));
14876 }
14877
14878 fe = &lh->file_names[lh->num_file_names++];
14879 fe->name = name;
14880 fe->dir_index = dir_index;
14881 fe->mod_time = mod_time;
14882 fe->length = length;
14883 fe->included_p = 0;
14884 fe->symtab = NULL;
14885 }
14886
14887 /* A convenience function to find the proper .debug_line section for a
14888 CU. */
14889
14890 static struct dwarf2_section_info *
14891 get_debug_line_section (struct dwarf2_cu *cu)
14892 {
14893 struct dwarf2_section_info *section;
14894
14895 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14896 DWO file. */
14897 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14898 section = &cu->dwo_unit->dwo_file->sections.line;
14899 else if (cu->per_cu->is_dwz)
14900 {
14901 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14902
14903 section = &dwz->line;
14904 }
14905 else
14906 section = &dwarf2_per_objfile->line;
14907
14908 return section;
14909 }
14910
14911 /* Read the statement program header starting at OFFSET in
14912 .debug_line, or .debug_line.dwo. Return a pointer
14913 to a struct line_header, allocated using xmalloc.
14914
14915 NOTE: the strings in the include directory and file name tables of
14916 the returned object point into the dwarf line section buffer,
14917 and must not be freed. */
14918
14919 static struct line_header *
14920 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14921 {
14922 struct cleanup *back_to;
14923 struct line_header *lh;
14924 gdb_byte *line_ptr;
14925 unsigned int bytes_read, offset_size;
14926 int i;
14927 char *cur_dir, *cur_file;
14928 struct dwarf2_section_info *section;
14929 bfd *abfd;
14930
14931 section = get_debug_line_section (cu);
14932 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14933 if (section->buffer == NULL)
14934 {
14935 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14936 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14937 else
14938 complaint (&symfile_complaints, _("missing .debug_line section"));
14939 return 0;
14940 }
14941
14942 /* We can't do this until we know the section is non-empty.
14943 Only then do we know we have such a section. */
14944 abfd = section->asection->owner;
14945
14946 /* Make sure that at least there's room for the total_length field.
14947 That could be 12 bytes long, but we're just going to fudge that. */
14948 if (offset + 4 >= section->size)
14949 {
14950 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14951 return 0;
14952 }
14953
14954 lh = xmalloc (sizeof (*lh));
14955 memset (lh, 0, sizeof (*lh));
14956 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14957 (void *) lh);
14958
14959 line_ptr = section->buffer + offset;
14960
14961 /* Read in the header. */
14962 lh->total_length =
14963 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14964 &bytes_read, &offset_size);
14965 line_ptr += bytes_read;
14966 if (line_ptr + lh->total_length > (section->buffer + section->size))
14967 {
14968 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14969 return 0;
14970 }
14971 lh->statement_program_end = line_ptr + lh->total_length;
14972 lh->version = read_2_bytes (abfd, line_ptr);
14973 line_ptr += 2;
14974 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14975 line_ptr += offset_size;
14976 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14977 line_ptr += 1;
14978 if (lh->version >= 4)
14979 {
14980 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14981 line_ptr += 1;
14982 }
14983 else
14984 lh->maximum_ops_per_instruction = 1;
14985
14986 if (lh->maximum_ops_per_instruction == 0)
14987 {
14988 lh->maximum_ops_per_instruction = 1;
14989 complaint (&symfile_complaints,
14990 _("invalid maximum_ops_per_instruction "
14991 "in `.debug_line' section"));
14992 }
14993
14994 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14995 line_ptr += 1;
14996 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14997 line_ptr += 1;
14998 lh->line_range = read_1_byte (abfd, line_ptr);
14999 line_ptr += 1;
15000 lh->opcode_base = read_1_byte (abfd, line_ptr);
15001 line_ptr += 1;
15002 lh->standard_opcode_lengths
15003 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15004
15005 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15006 for (i = 1; i < lh->opcode_base; ++i)
15007 {
15008 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15009 line_ptr += 1;
15010 }
15011
15012 /* Read directory table. */
15013 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15014 {
15015 line_ptr += bytes_read;
15016 add_include_dir (lh, cur_dir);
15017 }
15018 line_ptr += bytes_read;
15019
15020 /* Read file name table. */
15021 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15022 {
15023 unsigned int dir_index, mod_time, length;
15024
15025 line_ptr += bytes_read;
15026 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15027 line_ptr += bytes_read;
15028 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15029 line_ptr += bytes_read;
15030 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15031 line_ptr += bytes_read;
15032
15033 add_file_name (lh, cur_file, dir_index, mod_time, length);
15034 }
15035 line_ptr += bytes_read;
15036 lh->statement_program_start = line_ptr;
15037
15038 if (line_ptr > (section->buffer + section->size))
15039 complaint (&symfile_complaints,
15040 _("line number info header doesn't "
15041 "fit in `.debug_line' section"));
15042
15043 discard_cleanups (back_to);
15044 return lh;
15045 }
15046
15047 /* Subroutine of dwarf_decode_lines to simplify it.
15048 Return the file name of the psymtab for included file FILE_INDEX
15049 in line header LH of PST.
15050 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15051 If space for the result is malloc'd, it will be freed by a cleanup.
15052 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15053
15054 static char *
15055 psymtab_include_file_name (const struct line_header *lh, int file_index,
15056 const struct partial_symtab *pst,
15057 const char *comp_dir)
15058 {
15059 const struct file_entry fe = lh->file_names [file_index];
15060 char *include_name = fe.name;
15061 char *include_name_to_compare = include_name;
15062 char *dir_name = NULL;
15063 const char *pst_filename;
15064 char *copied_name = NULL;
15065 int file_is_pst;
15066
15067 if (fe.dir_index)
15068 dir_name = lh->include_dirs[fe.dir_index - 1];
15069
15070 if (!IS_ABSOLUTE_PATH (include_name)
15071 && (dir_name != NULL || comp_dir != NULL))
15072 {
15073 /* Avoid creating a duplicate psymtab for PST.
15074 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15075 Before we do the comparison, however, we need to account
15076 for DIR_NAME and COMP_DIR.
15077 First prepend dir_name (if non-NULL). If we still don't
15078 have an absolute path prepend comp_dir (if non-NULL).
15079 However, the directory we record in the include-file's
15080 psymtab does not contain COMP_DIR (to match the
15081 corresponding symtab(s)).
15082
15083 Example:
15084
15085 bash$ cd /tmp
15086 bash$ gcc -g ./hello.c
15087 include_name = "hello.c"
15088 dir_name = "."
15089 DW_AT_comp_dir = comp_dir = "/tmp"
15090 DW_AT_name = "./hello.c" */
15091
15092 if (dir_name != NULL)
15093 {
15094 include_name = concat (dir_name, SLASH_STRING,
15095 include_name, (char *)NULL);
15096 include_name_to_compare = include_name;
15097 make_cleanup (xfree, include_name);
15098 }
15099 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15100 {
15101 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15102 include_name, (char *)NULL);
15103 }
15104 }
15105
15106 pst_filename = pst->filename;
15107 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15108 {
15109 copied_name = concat (pst->dirname, SLASH_STRING,
15110 pst_filename, (char *)NULL);
15111 pst_filename = copied_name;
15112 }
15113
15114 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15115
15116 if (include_name_to_compare != include_name)
15117 xfree (include_name_to_compare);
15118 if (copied_name != NULL)
15119 xfree (copied_name);
15120
15121 if (file_is_pst)
15122 return NULL;
15123 return include_name;
15124 }
15125
15126 /* Ignore this record_line request. */
15127
15128 static void
15129 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15130 {
15131 return;
15132 }
15133
15134 /* Subroutine of dwarf_decode_lines to simplify it.
15135 Process the line number information in LH. */
15136
15137 static void
15138 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15139 struct dwarf2_cu *cu, struct partial_symtab *pst)
15140 {
15141 gdb_byte *line_ptr, *extended_end;
15142 gdb_byte *line_end;
15143 unsigned int bytes_read, extended_len;
15144 unsigned char op_code, extended_op, adj_opcode;
15145 CORE_ADDR baseaddr;
15146 struct objfile *objfile = cu->objfile;
15147 bfd *abfd = objfile->obfd;
15148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15149 const int decode_for_pst_p = (pst != NULL);
15150 struct subfile *last_subfile = NULL;
15151 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15152 = record_line;
15153
15154 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15155
15156 line_ptr = lh->statement_program_start;
15157 line_end = lh->statement_program_end;
15158
15159 /* Read the statement sequences until there's nothing left. */
15160 while (line_ptr < line_end)
15161 {
15162 /* state machine registers */
15163 CORE_ADDR address = 0;
15164 unsigned int file = 1;
15165 unsigned int line = 1;
15166 unsigned int column = 0;
15167 int is_stmt = lh->default_is_stmt;
15168 int basic_block = 0;
15169 int end_sequence = 0;
15170 CORE_ADDR addr;
15171 unsigned char op_index = 0;
15172
15173 if (!decode_for_pst_p && lh->num_file_names >= file)
15174 {
15175 /* Start a subfile for the current file of the state machine. */
15176 /* lh->include_dirs and lh->file_names are 0-based, but the
15177 directory and file name numbers in the statement program
15178 are 1-based. */
15179 struct file_entry *fe = &lh->file_names[file - 1];
15180 char *dir = NULL;
15181
15182 if (fe->dir_index)
15183 dir = lh->include_dirs[fe->dir_index - 1];
15184
15185 dwarf2_start_subfile (fe->name, dir, comp_dir);
15186 }
15187
15188 /* Decode the table. */
15189 while (!end_sequence)
15190 {
15191 op_code = read_1_byte (abfd, line_ptr);
15192 line_ptr += 1;
15193 if (line_ptr > line_end)
15194 {
15195 dwarf2_debug_line_missing_end_sequence_complaint ();
15196 break;
15197 }
15198
15199 if (op_code >= lh->opcode_base)
15200 {
15201 /* Special operand. */
15202 adj_opcode = op_code - lh->opcode_base;
15203 address += (((op_index + (adj_opcode / lh->line_range))
15204 / lh->maximum_ops_per_instruction)
15205 * lh->minimum_instruction_length);
15206 op_index = ((op_index + (adj_opcode / lh->line_range))
15207 % lh->maximum_ops_per_instruction);
15208 line += lh->line_base + (adj_opcode % lh->line_range);
15209 if (lh->num_file_names < file || file == 0)
15210 dwarf2_debug_line_missing_file_complaint ();
15211 /* For now we ignore lines not starting on an
15212 instruction boundary. */
15213 else if (op_index == 0)
15214 {
15215 lh->file_names[file - 1].included_p = 1;
15216 if (!decode_for_pst_p && is_stmt)
15217 {
15218 if (last_subfile != current_subfile)
15219 {
15220 addr = gdbarch_addr_bits_remove (gdbarch, address);
15221 if (last_subfile)
15222 (*p_record_line) (last_subfile, 0, addr);
15223 last_subfile = current_subfile;
15224 }
15225 /* Append row to matrix using current values. */
15226 addr = gdbarch_addr_bits_remove (gdbarch, address);
15227 (*p_record_line) (current_subfile, line, addr);
15228 }
15229 }
15230 basic_block = 0;
15231 }
15232 else switch (op_code)
15233 {
15234 case DW_LNS_extended_op:
15235 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15236 &bytes_read);
15237 line_ptr += bytes_read;
15238 extended_end = line_ptr + extended_len;
15239 extended_op = read_1_byte (abfd, line_ptr);
15240 line_ptr += 1;
15241 switch (extended_op)
15242 {
15243 case DW_LNE_end_sequence:
15244 p_record_line = record_line;
15245 end_sequence = 1;
15246 break;
15247 case DW_LNE_set_address:
15248 address = read_address (abfd, line_ptr, cu, &bytes_read);
15249
15250 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15251 {
15252 /* This line table is for a function which has been
15253 GCd by the linker. Ignore it. PR gdb/12528 */
15254
15255 long line_offset
15256 = line_ptr - get_debug_line_section (cu)->buffer;
15257
15258 complaint (&symfile_complaints,
15259 _(".debug_line address at offset 0x%lx is 0 "
15260 "[in module %s]"),
15261 line_offset, objfile->name);
15262 p_record_line = noop_record_line;
15263 }
15264
15265 op_index = 0;
15266 line_ptr += bytes_read;
15267 address += baseaddr;
15268 break;
15269 case DW_LNE_define_file:
15270 {
15271 char *cur_file;
15272 unsigned int dir_index, mod_time, length;
15273
15274 cur_file = read_direct_string (abfd, line_ptr,
15275 &bytes_read);
15276 line_ptr += bytes_read;
15277 dir_index =
15278 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15279 line_ptr += bytes_read;
15280 mod_time =
15281 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15282 line_ptr += bytes_read;
15283 length =
15284 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15285 line_ptr += bytes_read;
15286 add_file_name (lh, cur_file, dir_index, mod_time, length);
15287 }
15288 break;
15289 case DW_LNE_set_discriminator:
15290 /* The discriminator is not interesting to the debugger;
15291 just ignore it. */
15292 line_ptr = extended_end;
15293 break;
15294 default:
15295 complaint (&symfile_complaints,
15296 _("mangled .debug_line section"));
15297 return;
15298 }
15299 /* Make sure that we parsed the extended op correctly. If e.g.
15300 we expected a different address size than the producer used,
15301 we may have read the wrong number of bytes. */
15302 if (line_ptr != extended_end)
15303 {
15304 complaint (&symfile_complaints,
15305 _("mangled .debug_line section"));
15306 return;
15307 }
15308 break;
15309 case DW_LNS_copy:
15310 if (lh->num_file_names < file || file == 0)
15311 dwarf2_debug_line_missing_file_complaint ();
15312 else
15313 {
15314 lh->file_names[file - 1].included_p = 1;
15315 if (!decode_for_pst_p && is_stmt)
15316 {
15317 if (last_subfile != current_subfile)
15318 {
15319 addr = gdbarch_addr_bits_remove (gdbarch, address);
15320 if (last_subfile)
15321 (*p_record_line) (last_subfile, 0, addr);
15322 last_subfile = current_subfile;
15323 }
15324 addr = gdbarch_addr_bits_remove (gdbarch, address);
15325 (*p_record_line) (current_subfile, line, addr);
15326 }
15327 }
15328 basic_block = 0;
15329 break;
15330 case DW_LNS_advance_pc:
15331 {
15332 CORE_ADDR adjust
15333 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15334
15335 address += (((op_index + adjust)
15336 / lh->maximum_ops_per_instruction)
15337 * lh->minimum_instruction_length);
15338 op_index = ((op_index + adjust)
15339 % lh->maximum_ops_per_instruction);
15340 line_ptr += bytes_read;
15341 }
15342 break;
15343 case DW_LNS_advance_line:
15344 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15345 line_ptr += bytes_read;
15346 break;
15347 case DW_LNS_set_file:
15348 {
15349 /* The arrays lh->include_dirs and lh->file_names are
15350 0-based, but the directory and file name numbers in
15351 the statement program are 1-based. */
15352 struct file_entry *fe;
15353 char *dir = NULL;
15354
15355 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15356 line_ptr += bytes_read;
15357 if (lh->num_file_names < file || file == 0)
15358 dwarf2_debug_line_missing_file_complaint ();
15359 else
15360 {
15361 fe = &lh->file_names[file - 1];
15362 if (fe->dir_index)
15363 dir = lh->include_dirs[fe->dir_index - 1];
15364 if (!decode_for_pst_p)
15365 {
15366 last_subfile = current_subfile;
15367 dwarf2_start_subfile (fe->name, dir, comp_dir);
15368 }
15369 }
15370 }
15371 break;
15372 case DW_LNS_set_column:
15373 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15374 line_ptr += bytes_read;
15375 break;
15376 case DW_LNS_negate_stmt:
15377 is_stmt = (!is_stmt);
15378 break;
15379 case DW_LNS_set_basic_block:
15380 basic_block = 1;
15381 break;
15382 /* Add to the address register of the state machine the
15383 address increment value corresponding to special opcode
15384 255. I.e., this value is scaled by the minimum
15385 instruction length since special opcode 255 would have
15386 scaled the increment. */
15387 case DW_LNS_const_add_pc:
15388 {
15389 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15390
15391 address += (((op_index + adjust)
15392 / lh->maximum_ops_per_instruction)
15393 * lh->minimum_instruction_length);
15394 op_index = ((op_index + adjust)
15395 % lh->maximum_ops_per_instruction);
15396 }
15397 break;
15398 case DW_LNS_fixed_advance_pc:
15399 address += read_2_bytes (abfd, line_ptr);
15400 op_index = 0;
15401 line_ptr += 2;
15402 break;
15403 default:
15404 {
15405 /* Unknown standard opcode, ignore it. */
15406 int i;
15407
15408 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15409 {
15410 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15411 line_ptr += bytes_read;
15412 }
15413 }
15414 }
15415 }
15416 if (lh->num_file_names < file || file == 0)
15417 dwarf2_debug_line_missing_file_complaint ();
15418 else
15419 {
15420 lh->file_names[file - 1].included_p = 1;
15421 if (!decode_for_pst_p)
15422 {
15423 addr = gdbarch_addr_bits_remove (gdbarch, address);
15424 (*p_record_line) (current_subfile, 0, addr);
15425 }
15426 }
15427 }
15428 }
15429
15430 /* Decode the Line Number Program (LNP) for the given line_header
15431 structure and CU. The actual information extracted and the type
15432 of structures created from the LNP depends on the value of PST.
15433
15434 1. If PST is NULL, then this procedure uses the data from the program
15435 to create all necessary symbol tables, and their linetables.
15436
15437 2. If PST is not NULL, this procedure reads the program to determine
15438 the list of files included by the unit represented by PST, and
15439 builds all the associated partial symbol tables.
15440
15441 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15442 It is used for relative paths in the line table.
15443 NOTE: When processing partial symtabs (pst != NULL),
15444 comp_dir == pst->dirname.
15445
15446 NOTE: It is important that psymtabs have the same file name (via strcmp)
15447 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15448 symtab we don't use it in the name of the psymtabs we create.
15449 E.g. expand_line_sal requires this when finding psymtabs to expand.
15450 A good testcase for this is mb-inline.exp. */
15451
15452 static void
15453 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15454 struct dwarf2_cu *cu, struct partial_symtab *pst,
15455 int want_line_info)
15456 {
15457 struct objfile *objfile = cu->objfile;
15458 const int decode_for_pst_p = (pst != NULL);
15459 struct subfile *first_subfile = current_subfile;
15460
15461 if (want_line_info)
15462 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15463
15464 if (decode_for_pst_p)
15465 {
15466 int file_index;
15467
15468 /* Now that we're done scanning the Line Header Program, we can
15469 create the psymtab of each included file. */
15470 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15471 if (lh->file_names[file_index].included_p == 1)
15472 {
15473 char *include_name =
15474 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15475 if (include_name != NULL)
15476 dwarf2_create_include_psymtab (include_name, pst, objfile);
15477 }
15478 }
15479 else
15480 {
15481 /* Make sure a symtab is created for every file, even files
15482 which contain only variables (i.e. no code with associated
15483 line numbers). */
15484 int i;
15485
15486 for (i = 0; i < lh->num_file_names; i++)
15487 {
15488 char *dir = NULL;
15489 struct file_entry *fe;
15490
15491 fe = &lh->file_names[i];
15492 if (fe->dir_index)
15493 dir = lh->include_dirs[fe->dir_index - 1];
15494 dwarf2_start_subfile (fe->name, dir, comp_dir);
15495
15496 /* Skip the main file; we don't need it, and it must be
15497 allocated last, so that it will show up before the
15498 non-primary symtabs in the objfile's symtab list. */
15499 if (current_subfile == first_subfile)
15500 continue;
15501
15502 if (current_subfile->symtab == NULL)
15503 current_subfile->symtab = allocate_symtab (current_subfile->name,
15504 objfile);
15505 fe->symtab = current_subfile->symtab;
15506 }
15507 }
15508 }
15509
15510 /* Start a subfile for DWARF. FILENAME is the name of the file and
15511 DIRNAME the name of the source directory which contains FILENAME
15512 or NULL if not known. COMP_DIR is the compilation directory for the
15513 linetable's compilation unit or NULL if not known.
15514 This routine tries to keep line numbers from identical absolute and
15515 relative file names in a common subfile.
15516
15517 Using the `list' example from the GDB testsuite, which resides in
15518 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15519 of /srcdir/list0.c yields the following debugging information for list0.c:
15520
15521 DW_AT_name: /srcdir/list0.c
15522 DW_AT_comp_dir: /compdir
15523 files.files[0].name: list0.h
15524 files.files[0].dir: /srcdir
15525 files.files[1].name: list0.c
15526 files.files[1].dir: /srcdir
15527
15528 The line number information for list0.c has to end up in a single
15529 subfile, so that `break /srcdir/list0.c:1' works as expected.
15530 start_subfile will ensure that this happens provided that we pass the
15531 concatenation of files.files[1].dir and files.files[1].name as the
15532 subfile's name. */
15533
15534 static void
15535 dwarf2_start_subfile (char *filename, const char *dirname,
15536 const char *comp_dir)
15537 {
15538 char *fullname;
15539
15540 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15541 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15542 second argument to start_subfile. To be consistent, we do the
15543 same here. In order not to lose the line information directory,
15544 we concatenate it to the filename when it makes sense.
15545 Note that the Dwarf3 standard says (speaking of filenames in line
15546 information): ``The directory index is ignored for file names
15547 that represent full path names''. Thus ignoring dirname in the
15548 `else' branch below isn't an issue. */
15549
15550 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15551 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15552 else
15553 fullname = filename;
15554
15555 start_subfile (fullname, comp_dir);
15556
15557 if (fullname != filename)
15558 xfree (fullname);
15559 }
15560
15561 /* Start a symtab for DWARF.
15562 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15563
15564 static void
15565 dwarf2_start_symtab (struct dwarf2_cu *cu,
15566 char *name, char *comp_dir, CORE_ADDR low_pc)
15567 {
15568 start_symtab (name, comp_dir, low_pc);
15569 record_debugformat ("DWARF 2");
15570 record_producer (cu->producer);
15571
15572 /* We assume that we're processing GCC output. */
15573 processing_gcc_compilation = 2;
15574
15575 processing_has_namespace_info = 0;
15576 }
15577
15578 static void
15579 var_decode_location (struct attribute *attr, struct symbol *sym,
15580 struct dwarf2_cu *cu)
15581 {
15582 struct objfile *objfile = cu->objfile;
15583 struct comp_unit_head *cu_header = &cu->header;
15584
15585 /* NOTE drow/2003-01-30: There used to be a comment and some special
15586 code here to turn a symbol with DW_AT_external and a
15587 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15588 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15589 with some versions of binutils) where shared libraries could have
15590 relocations against symbols in their debug information - the
15591 minimal symbol would have the right address, but the debug info
15592 would not. It's no longer necessary, because we will explicitly
15593 apply relocations when we read in the debug information now. */
15594
15595 /* A DW_AT_location attribute with no contents indicates that a
15596 variable has been optimized away. */
15597 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15598 {
15599 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15600 return;
15601 }
15602
15603 /* Handle one degenerate form of location expression specially, to
15604 preserve GDB's previous behavior when section offsets are
15605 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15606 then mark this symbol as LOC_STATIC. */
15607
15608 if (attr_form_is_block (attr)
15609 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15610 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15611 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15612 && (DW_BLOCK (attr)->size
15613 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15614 {
15615 unsigned int dummy;
15616
15617 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15618 SYMBOL_VALUE_ADDRESS (sym) =
15619 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15620 else
15621 SYMBOL_VALUE_ADDRESS (sym) =
15622 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15623 SYMBOL_CLASS (sym) = LOC_STATIC;
15624 fixup_symbol_section (sym, objfile);
15625 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15626 SYMBOL_SECTION (sym));
15627 return;
15628 }
15629
15630 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15631 expression evaluator, and use LOC_COMPUTED only when necessary
15632 (i.e. when the value of a register or memory location is
15633 referenced, or a thread-local block, etc.). Then again, it might
15634 not be worthwhile. I'm assuming that it isn't unless performance
15635 or memory numbers show me otherwise. */
15636
15637 dwarf2_symbol_mark_computed (attr, sym, cu);
15638 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15639
15640 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15641 cu->has_loclist = 1;
15642 }
15643
15644 /* Given a pointer to a DWARF information entry, figure out if we need
15645 to make a symbol table entry for it, and if so, create a new entry
15646 and return a pointer to it.
15647 If TYPE is NULL, determine symbol type from the die, otherwise
15648 used the passed type.
15649 If SPACE is not NULL, use it to hold the new symbol. If it is
15650 NULL, allocate a new symbol on the objfile's obstack. */
15651
15652 static struct symbol *
15653 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15654 struct symbol *space)
15655 {
15656 struct objfile *objfile = cu->objfile;
15657 struct symbol *sym = NULL;
15658 char *name;
15659 struct attribute *attr = NULL;
15660 struct attribute *attr2 = NULL;
15661 CORE_ADDR baseaddr;
15662 struct pending **list_to_add = NULL;
15663
15664 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15665
15666 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15667
15668 name = dwarf2_name (die, cu);
15669 if (name)
15670 {
15671 const char *linkagename;
15672 int suppress_add = 0;
15673
15674 if (space)
15675 sym = space;
15676 else
15677 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15678 OBJSTAT (objfile, n_syms++);
15679
15680 /* Cache this symbol's name and the name's demangled form (if any). */
15681 SYMBOL_SET_LANGUAGE (sym, cu->language);
15682 linkagename = dwarf2_physname (name, die, cu);
15683 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15684
15685 /* Fortran does not have mangling standard and the mangling does differ
15686 between gfortran, iFort etc. */
15687 if (cu->language == language_fortran
15688 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15689 symbol_set_demangled_name (&(sym->ginfo),
15690 (char *) dwarf2_full_name (name, die, cu),
15691 NULL);
15692
15693 /* Default assumptions.
15694 Use the passed type or decode it from the die. */
15695 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15696 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15697 if (type != NULL)
15698 SYMBOL_TYPE (sym) = type;
15699 else
15700 SYMBOL_TYPE (sym) = die_type (die, cu);
15701 attr = dwarf2_attr (die,
15702 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15703 cu);
15704 if (attr)
15705 {
15706 SYMBOL_LINE (sym) = DW_UNSND (attr);
15707 }
15708
15709 attr = dwarf2_attr (die,
15710 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15711 cu);
15712 if (attr)
15713 {
15714 int file_index = DW_UNSND (attr);
15715
15716 if (cu->line_header == NULL
15717 || file_index > cu->line_header->num_file_names)
15718 complaint (&symfile_complaints,
15719 _("file index out of range"));
15720 else if (file_index > 0)
15721 {
15722 struct file_entry *fe;
15723
15724 fe = &cu->line_header->file_names[file_index - 1];
15725 SYMBOL_SYMTAB (sym) = fe->symtab;
15726 }
15727 }
15728
15729 switch (die->tag)
15730 {
15731 case DW_TAG_label:
15732 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15733 if (attr)
15734 {
15735 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15736 }
15737 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15738 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15739 SYMBOL_CLASS (sym) = LOC_LABEL;
15740 add_symbol_to_list (sym, cu->list_in_scope);
15741 break;
15742 case DW_TAG_subprogram:
15743 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15744 finish_block. */
15745 SYMBOL_CLASS (sym) = LOC_BLOCK;
15746 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15747 if ((attr2 && (DW_UNSND (attr2) != 0))
15748 || cu->language == language_ada)
15749 {
15750 /* Subprograms marked external are stored as a global symbol.
15751 Ada subprograms, whether marked external or not, are always
15752 stored as a global symbol, because we want to be able to
15753 access them globally. For instance, we want to be able
15754 to break on a nested subprogram without having to
15755 specify the context. */
15756 list_to_add = &global_symbols;
15757 }
15758 else
15759 {
15760 list_to_add = cu->list_in_scope;
15761 }
15762 break;
15763 case DW_TAG_inlined_subroutine:
15764 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15765 finish_block. */
15766 SYMBOL_CLASS (sym) = LOC_BLOCK;
15767 SYMBOL_INLINED (sym) = 1;
15768 list_to_add = cu->list_in_scope;
15769 break;
15770 case DW_TAG_template_value_param:
15771 suppress_add = 1;
15772 /* Fall through. */
15773 case DW_TAG_constant:
15774 case DW_TAG_variable:
15775 case DW_TAG_member:
15776 /* Compilation with minimal debug info may result in
15777 variables with missing type entries. Change the
15778 misleading `void' type to something sensible. */
15779 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15780 SYMBOL_TYPE (sym)
15781 = objfile_type (objfile)->nodebug_data_symbol;
15782
15783 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15784 /* In the case of DW_TAG_member, we should only be called for
15785 static const members. */
15786 if (die->tag == DW_TAG_member)
15787 {
15788 /* dwarf2_add_field uses die_is_declaration,
15789 so we do the same. */
15790 gdb_assert (die_is_declaration (die, cu));
15791 gdb_assert (attr);
15792 }
15793 if (attr)
15794 {
15795 dwarf2_const_value (attr, sym, cu);
15796 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15797 if (!suppress_add)
15798 {
15799 if (attr2 && (DW_UNSND (attr2) != 0))
15800 list_to_add = &global_symbols;
15801 else
15802 list_to_add = cu->list_in_scope;
15803 }
15804 break;
15805 }
15806 attr = dwarf2_attr (die, DW_AT_location, cu);
15807 if (attr)
15808 {
15809 var_decode_location (attr, sym, cu);
15810 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15811
15812 /* Fortran explicitly imports any global symbols to the local
15813 scope by DW_TAG_common_block. */
15814 if (cu->language == language_fortran && die->parent
15815 && die->parent->tag == DW_TAG_common_block)
15816 attr2 = NULL;
15817
15818 if (SYMBOL_CLASS (sym) == LOC_STATIC
15819 && SYMBOL_VALUE_ADDRESS (sym) == 0
15820 && !dwarf2_per_objfile->has_section_at_zero)
15821 {
15822 /* When a static variable is eliminated by the linker,
15823 the corresponding debug information is not stripped
15824 out, but the variable address is set to null;
15825 do not add such variables into symbol table. */
15826 }
15827 else if (attr2 && (DW_UNSND (attr2) != 0))
15828 {
15829 /* Workaround gfortran PR debug/40040 - it uses
15830 DW_AT_location for variables in -fPIC libraries which may
15831 get overriden by other libraries/executable and get
15832 a different address. Resolve it by the minimal symbol
15833 which may come from inferior's executable using copy
15834 relocation. Make this workaround only for gfortran as for
15835 other compilers GDB cannot guess the minimal symbol
15836 Fortran mangling kind. */
15837 if (cu->language == language_fortran && die->parent
15838 && die->parent->tag == DW_TAG_module
15839 && cu->producer
15840 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15841 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15842
15843 /* A variable with DW_AT_external is never static,
15844 but it may be block-scoped. */
15845 list_to_add = (cu->list_in_scope == &file_symbols
15846 ? &global_symbols : cu->list_in_scope);
15847 }
15848 else
15849 list_to_add = cu->list_in_scope;
15850 }
15851 else
15852 {
15853 /* We do not know the address of this symbol.
15854 If it is an external symbol and we have type information
15855 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15856 The address of the variable will then be determined from
15857 the minimal symbol table whenever the variable is
15858 referenced. */
15859 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15860
15861 /* Fortran explicitly imports any global symbols to the local
15862 scope by DW_TAG_common_block. */
15863 if (cu->language == language_fortran && die->parent
15864 && die->parent->tag == DW_TAG_common_block)
15865 {
15866 /* SYMBOL_CLASS doesn't matter here because
15867 read_common_block is going to reset it. */
15868 if (!suppress_add)
15869 list_to_add = cu->list_in_scope;
15870 }
15871 else if (attr2 && (DW_UNSND (attr2) != 0)
15872 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15873 {
15874 /* A variable with DW_AT_external is never static, but it
15875 may be block-scoped. */
15876 list_to_add = (cu->list_in_scope == &file_symbols
15877 ? &global_symbols : cu->list_in_scope);
15878
15879 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15880 }
15881 else if (!die_is_declaration (die, cu))
15882 {
15883 /* Use the default LOC_OPTIMIZED_OUT class. */
15884 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15885 if (!suppress_add)
15886 list_to_add = cu->list_in_scope;
15887 }
15888 }
15889 break;
15890 case DW_TAG_formal_parameter:
15891 /* If we are inside a function, mark this as an argument. If
15892 not, we might be looking at an argument to an inlined function
15893 when we do not have enough information to show inlined frames;
15894 pretend it's a local variable in that case so that the user can
15895 still see it. */
15896 if (context_stack_depth > 0
15897 && context_stack[context_stack_depth - 1].name != NULL)
15898 SYMBOL_IS_ARGUMENT (sym) = 1;
15899 attr = dwarf2_attr (die, DW_AT_location, cu);
15900 if (attr)
15901 {
15902 var_decode_location (attr, sym, cu);
15903 }
15904 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15905 if (attr)
15906 {
15907 dwarf2_const_value (attr, sym, cu);
15908 }
15909
15910 list_to_add = cu->list_in_scope;
15911 break;
15912 case DW_TAG_unspecified_parameters:
15913 /* From varargs functions; gdb doesn't seem to have any
15914 interest in this information, so just ignore it for now.
15915 (FIXME?) */
15916 break;
15917 case DW_TAG_template_type_param:
15918 suppress_add = 1;
15919 /* Fall through. */
15920 case DW_TAG_class_type:
15921 case DW_TAG_interface_type:
15922 case DW_TAG_structure_type:
15923 case DW_TAG_union_type:
15924 case DW_TAG_set_type:
15925 case DW_TAG_enumeration_type:
15926 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15927 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15928
15929 {
15930 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15931 really ever be static objects: otherwise, if you try
15932 to, say, break of a class's method and you're in a file
15933 which doesn't mention that class, it won't work unless
15934 the check for all static symbols in lookup_symbol_aux
15935 saves you. See the OtherFileClass tests in
15936 gdb.c++/namespace.exp. */
15937
15938 if (!suppress_add)
15939 {
15940 list_to_add = (cu->list_in_scope == &file_symbols
15941 && (cu->language == language_cplus
15942 || cu->language == language_java)
15943 ? &global_symbols : cu->list_in_scope);
15944
15945 /* The semantics of C++ state that "struct foo {
15946 ... }" also defines a typedef for "foo". A Java
15947 class declaration also defines a typedef for the
15948 class. */
15949 if (cu->language == language_cplus
15950 || cu->language == language_java
15951 || cu->language == language_ada)
15952 {
15953 /* The symbol's name is already allocated along
15954 with this objfile, so we don't need to
15955 duplicate it for the type. */
15956 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15957 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15958 }
15959 }
15960 }
15961 break;
15962 case DW_TAG_typedef:
15963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15964 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15965 list_to_add = cu->list_in_scope;
15966 break;
15967 case DW_TAG_base_type:
15968 case DW_TAG_subrange_type:
15969 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15970 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15971 list_to_add = cu->list_in_scope;
15972 break;
15973 case DW_TAG_enumerator:
15974 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15975 if (attr)
15976 {
15977 dwarf2_const_value (attr, sym, cu);
15978 }
15979 {
15980 /* NOTE: carlton/2003-11-10: See comment above in the
15981 DW_TAG_class_type, etc. block. */
15982
15983 list_to_add = (cu->list_in_scope == &file_symbols
15984 && (cu->language == language_cplus
15985 || cu->language == language_java)
15986 ? &global_symbols : cu->list_in_scope);
15987 }
15988 break;
15989 case DW_TAG_namespace:
15990 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15991 list_to_add = &global_symbols;
15992 break;
15993 case DW_TAG_common_block:
15994 SYMBOL_CLASS (sym) = LOC_STATIC;
15995 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15996 add_symbol_to_list (sym, cu->list_in_scope);
15997 break;
15998 default:
15999 /* Not a tag we recognize. Hopefully we aren't processing
16000 trash data, but since we must specifically ignore things
16001 we don't recognize, there is nothing else we should do at
16002 this point. */
16003 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16004 dwarf_tag_name (die->tag));
16005 break;
16006 }
16007
16008 if (suppress_add)
16009 {
16010 sym->hash_next = objfile->template_symbols;
16011 objfile->template_symbols = sym;
16012 list_to_add = NULL;
16013 }
16014
16015 if (list_to_add != NULL)
16016 add_symbol_to_list (sym, list_to_add);
16017
16018 /* For the benefit of old versions of GCC, check for anonymous
16019 namespaces based on the demangled name. */
16020 if (!processing_has_namespace_info
16021 && cu->language == language_cplus)
16022 cp_scan_for_anonymous_namespaces (sym, objfile);
16023 }
16024 return (sym);
16025 }
16026
16027 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16028
16029 static struct symbol *
16030 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16031 {
16032 return new_symbol_full (die, type, cu, NULL);
16033 }
16034
16035 /* Given an attr with a DW_FORM_dataN value in host byte order,
16036 zero-extend it as appropriate for the symbol's type. The DWARF
16037 standard (v4) is not entirely clear about the meaning of using
16038 DW_FORM_dataN for a constant with a signed type, where the type is
16039 wider than the data. The conclusion of a discussion on the DWARF
16040 list was that this is unspecified. We choose to always zero-extend
16041 because that is the interpretation long in use by GCC. */
16042
16043 static gdb_byte *
16044 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16045 const char *name, struct obstack *obstack,
16046 struct dwarf2_cu *cu, LONGEST *value, int bits)
16047 {
16048 struct objfile *objfile = cu->objfile;
16049 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16050 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16051 LONGEST l = DW_UNSND (attr);
16052
16053 if (bits < sizeof (*value) * 8)
16054 {
16055 l &= ((LONGEST) 1 << bits) - 1;
16056 *value = l;
16057 }
16058 else if (bits == sizeof (*value) * 8)
16059 *value = l;
16060 else
16061 {
16062 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16063 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16064 return bytes;
16065 }
16066
16067 return NULL;
16068 }
16069
16070 /* Read a constant value from an attribute. Either set *VALUE, or if
16071 the value does not fit in *VALUE, set *BYTES - either already
16072 allocated on the objfile obstack, or newly allocated on OBSTACK,
16073 or, set *BATON, if we translated the constant to a location
16074 expression. */
16075
16076 static void
16077 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16078 const char *name, struct obstack *obstack,
16079 struct dwarf2_cu *cu,
16080 LONGEST *value, gdb_byte **bytes,
16081 struct dwarf2_locexpr_baton **baton)
16082 {
16083 struct objfile *objfile = cu->objfile;
16084 struct comp_unit_head *cu_header = &cu->header;
16085 struct dwarf_block *blk;
16086 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16087 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16088
16089 *value = 0;
16090 *bytes = NULL;
16091 *baton = NULL;
16092
16093 switch (attr->form)
16094 {
16095 case DW_FORM_addr:
16096 case DW_FORM_GNU_addr_index:
16097 {
16098 gdb_byte *data;
16099
16100 if (TYPE_LENGTH (type) != cu_header->addr_size)
16101 dwarf2_const_value_length_mismatch_complaint (name,
16102 cu_header->addr_size,
16103 TYPE_LENGTH (type));
16104 /* Symbols of this form are reasonably rare, so we just
16105 piggyback on the existing location code rather than writing
16106 a new implementation of symbol_computed_ops. */
16107 *baton = obstack_alloc (&objfile->objfile_obstack,
16108 sizeof (struct dwarf2_locexpr_baton));
16109 (*baton)->per_cu = cu->per_cu;
16110 gdb_assert ((*baton)->per_cu);
16111
16112 (*baton)->size = 2 + cu_header->addr_size;
16113 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16114 (*baton)->data = data;
16115
16116 data[0] = DW_OP_addr;
16117 store_unsigned_integer (&data[1], cu_header->addr_size,
16118 byte_order, DW_ADDR (attr));
16119 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16120 }
16121 break;
16122 case DW_FORM_string:
16123 case DW_FORM_strp:
16124 case DW_FORM_GNU_str_index:
16125 case DW_FORM_GNU_strp_alt:
16126 /* DW_STRING is already allocated on the objfile obstack, point
16127 directly to it. */
16128 *bytes = (gdb_byte *) DW_STRING (attr);
16129 break;
16130 case DW_FORM_block1:
16131 case DW_FORM_block2:
16132 case DW_FORM_block4:
16133 case DW_FORM_block:
16134 case DW_FORM_exprloc:
16135 blk = DW_BLOCK (attr);
16136 if (TYPE_LENGTH (type) != blk->size)
16137 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16138 TYPE_LENGTH (type));
16139 *bytes = blk->data;
16140 break;
16141
16142 /* The DW_AT_const_value attributes are supposed to carry the
16143 symbol's value "represented as it would be on the target
16144 architecture." By the time we get here, it's already been
16145 converted to host endianness, so we just need to sign- or
16146 zero-extend it as appropriate. */
16147 case DW_FORM_data1:
16148 *bytes = dwarf2_const_value_data (attr, type, name,
16149 obstack, cu, value, 8);
16150 break;
16151 case DW_FORM_data2:
16152 *bytes = dwarf2_const_value_data (attr, type, name,
16153 obstack, cu, value, 16);
16154 break;
16155 case DW_FORM_data4:
16156 *bytes = dwarf2_const_value_data (attr, type, name,
16157 obstack, cu, value, 32);
16158 break;
16159 case DW_FORM_data8:
16160 *bytes = dwarf2_const_value_data (attr, type, name,
16161 obstack, cu, value, 64);
16162 break;
16163
16164 case DW_FORM_sdata:
16165 *value = DW_SND (attr);
16166 break;
16167
16168 case DW_FORM_udata:
16169 *value = DW_UNSND (attr);
16170 break;
16171
16172 default:
16173 complaint (&symfile_complaints,
16174 _("unsupported const value attribute form: '%s'"),
16175 dwarf_form_name (attr->form));
16176 *value = 0;
16177 break;
16178 }
16179 }
16180
16181
16182 /* Copy constant value from an attribute to a symbol. */
16183
16184 static void
16185 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16186 struct dwarf2_cu *cu)
16187 {
16188 struct objfile *objfile = cu->objfile;
16189 struct comp_unit_head *cu_header = &cu->header;
16190 LONGEST value;
16191 gdb_byte *bytes;
16192 struct dwarf2_locexpr_baton *baton;
16193
16194 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16195 SYMBOL_PRINT_NAME (sym),
16196 &objfile->objfile_obstack, cu,
16197 &value, &bytes, &baton);
16198
16199 if (baton != NULL)
16200 {
16201 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16202 SYMBOL_LOCATION_BATON (sym) = baton;
16203 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16204 }
16205 else if (bytes != NULL)
16206 {
16207 SYMBOL_VALUE_BYTES (sym) = bytes;
16208 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16209 }
16210 else
16211 {
16212 SYMBOL_VALUE (sym) = value;
16213 SYMBOL_CLASS (sym) = LOC_CONST;
16214 }
16215 }
16216
16217 /* Return the type of the die in question using its DW_AT_type attribute. */
16218
16219 static struct type *
16220 die_type (struct die_info *die, struct dwarf2_cu *cu)
16221 {
16222 struct attribute *type_attr;
16223
16224 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16225 if (!type_attr)
16226 {
16227 /* A missing DW_AT_type represents a void type. */
16228 return objfile_type (cu->objfile)->builtin_void;
16229 }
16230
16231 return lookup_die_type (die, type_attr, cu);
16232 }
16233
16234 /* True iff CU's producer generates GNAT Ada auxiliary information
16235 that allows to find parallel types through that information instead
16236 of having to do expensive parallel lookups by type name. */
16237
16238 static int
16239 need_gnat_info (struct dwarf2_cu *cu)
16240 {
16241 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16242 of GNAT produces this auxiliary information, without any indication
16243 that it is produced. Part of enhancing the FSF version of GNAT
16244 to produce that information will be to put in place an indicator
16245 that we can use in order to determine whether the descriptive type
16246 info is available or not. One suggestion that has been made is
16247 to use a new attribute, attached to the CU die. For now, assume
16248 that the descriptive type info is not available. */
16249 return 0;
16250 }
16251
16252 /* Return the auxiliary type of the die in question using its
16253 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16254 attribute is not present. */
16255
16256 static struct type *
16257 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16258 {
16259 struct attribute *type_attr;
16260
16261 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16262 if (!type_attr)
16263 return NULL;
16264
16265 return lookup_die_type (die, type_attr, cu);
16266 }
16267
16268 /* If DIE has a descriptive_type attribute, then set the TYPE's
16269 descriptive type accordingly. */
16270
16271 static void
16272 set_descriptive_type (struct type *type, struct die_info *die,
16273 struct dwarf2_cu *cu)
16274 {
16275 struct type *descriptive_type = die_descriptive_type (die, cu);
16276
16277 if (descriptive_type)
16278 {
16279 ALLOCATE_GNAT_AUX_TYPE (type);
16280 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16281 }
16282 }
16283
16284 /* Return the containing type of the die in question using its
16285 DW_AT_containing_type attribute. */
16286
16287 static struct type *
16288 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16289 {
16290 struct attribute *type_attr;
16291
16292 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16293 if (!type_attr)
16294 error (_("Dwarf Error: Problem turning containing type into gdb type "
16295 "[in module %s]"), cu->objfile->name);
16296
16297 return lookup_die_type (die, type_attr, cu);
16298 }
16299
16300 /* Look up the type of DIE in CU using its type attribute ATTR.
16301 If there is no type substitute an error marker. */
16302
16303 static struct type *
16304 lookup_die_type (struct die_info *die, struct attribute *attr,
16305 struct dwarf2_cu *cu)
16306 {
16307 struct objfile *objfile = cu->objfile;
16308 struct type *this_type;
16309
16310 /* First see if we have it cached. */
16311
16312 if (attr->form == DW_FORM_GNU_ref_alt)
16313 {
16314 struct dwarf2_per_cu_data *per_cu;
16315 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16316
16317 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16318 this_type = get_die_type_at_offset (offset, per_cu);
16319 }
16320 else if (is_ref_attr (attr))
16321 {
16322 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16323
16324 this_type = get_die_type_at_offset (offset, cu->per_cu);
16325 }
16326 else if (attr->form == DW_FORM_ref_sig8)
16327 {
16328 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16329
16330 /* sig_type will be NULL if the signatured type is missing from
16331 the debug info. */
16332 if (sig_type == NULL)
16333 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16334 "at 0x%x [in module %s]"),
16335 die->offset.sect_off, objfile->name);
16336
16337 gdb_assert (sig_type->per_cu.is_debug_types);
16338 /* If we haven't filled in type_offset_in_section yet, then we
16339 haven't read the type in yet. */
16340 this_type = NULL;
16341 if (sig_type->type_offset_in_section.sect_off != 0)
16342 {
16343 this_type =
16344 get_die_type_at_offset (sig_type->type_offset_in_section,
16345 &sig_type->per_cu);
16346 }
16347 }
16348 else
16349 {
16350 dump_die_for_error (die);
16351 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16352 dwarf_attr_name (attr->name), objfile->name);
16353 }
16354
16355 /* If not cached we need to read it in. */
16356
16357 if (this_type == NULL)
16358 {
16359 struct die_info *type_die;
16360 struct dwarf2_cu *type_cu = cu;
16361
16362 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16363 /* If we found the type now, it's probably because the type came
16364 from an inter-CU reference and the type's CU got expanded before
16365 ours. */
16366 this_type = get_die_type (type_die, type_cu);
16367 if (this_type == NULL)
16368 this_type = read_type_die_1 (type_die, type_cu);
16369 }
16370
16371 /* If we still don't have a type use an error marker. */
16372
16373 if (this_type == NULL)
16374 {
16375 char *message, *saved;
16376
16377 /* read_type_die already issued a complaint. */
16378 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16379 objfile->name,
16380 cu->header.offset.sect_off,
16381 die->offset.sect_off);
16382 saved = obstack_copy0 (&objfile->objfile_obstack,
16383 message, strlen (message));
16384 xfree (message);
16385
16386 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16387 }
16388
16389 return this_type;
16390 }
16391
16392 /* Return the type in DIE, CU.
16393 Returns NULL for invalid types.
16394
16395 This first does a lookup in the appropriate type_hash table,
16396 and only reads the die in if necessary.
16397
16398 NOTE: This can be called when reading in partial or full symbols. */
16399
16400 static struct type *
16401 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16402 {
16403 struct type *this_type;
16404
16405 this_type = get_die_type (die, cu);
16406 if (this_type)
16407 return this_type;
16408
16409 return read_type_die_1 (die, cu);
16410 }
16411
16412 /* Read the type in DIE, CU.
16413 Returns NULL for invalid types. */
16414
16415 static struct type *
16416 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16417 {
16418 struct type *this_type = NULL;
16419
16420 switch (die->tag)
16421 {
16422 case DW_TAG_class_type:
16423 case DW_TAG_interface_type:
16424 case DW_TAG_structure_type:
16425 case DW_TAG_union_type:
16426 this_type = read_structure_type (die, cu);
16427 break;
16428 case DW_TAG_enumeration_type:
16429 this_type = read_enumeration_type (die, cu);
16430 break;
16431 case DW_TAG_subprogram:
16432 case DW_TAG_subroutine_type:
16433 case DW_TAG_inlined_subroutine:
16434 this_type = read_subroutine_type (die, cu);
16435 break;
16436 case DW_TAG_array_type:
16437 this_type = read_array_type (die, cu);
16438 break;
16439 case DW_TAG_set_type:
16440 this_type = read_set_type (die, cu);
16441 break;
16442 case DW_TAG_pointer_type:
16443 this_type = read_tag_pointer_type (die, cu);
16444 break;
16445 case DW_TAG_ptr_to_member_type:
16446 this_type = read_tag_ptr_to_member_type (die, cu);
16447 break;
16448 case DW_TAG_reference_type:
16449 this_type = read_tag_reference_type (die, cu);
16450 break;
16451 case DW_TAG_const_type:
16452 this_type = read_tag_const_type (die, cu);
16453 break;
16454 case DW_TAG_volatile_type:
16455 this_type = read_tag_volatile_type (die, cu);
16456 break;
16457 case DW_TAG_string_type:
16458 this_type = read_tag_string_type (die, cu);
16459 break;
16460 case DW_TAG_typedef:
16461 this_type = read_typedef (die, cu);
16462 break;
16463 case DW_TAG_subrange_type:
16464 this_type = read_subrange_type (die, cu);
16465 break;
16466 case DW_TAG_base_type:
16467 this_type = read_base_type (die, cu);
16468 break;
16469 case DW_TAG_unspecified_type:
16470 this_type = read_unspecified_type (die, cu);
16471 break;
16472 case DW_TAG_namespace:
16473 this_type = read_namespace_type (die, cu);
16474 break;
16475 case DW_TAG_module:
16476 this_type = read_module_type (die, cu);
16477 break;
16478 default:
16479 complaint (&symfile_complaints,
16480 _("unexpected tag in read_type_die: '%s'"),
16481 dwarf_tag_name (die->tag));
16482 break;
16483 }
16484
16485 return this_type;
16486 }
16487
16488 /* See if we can figure out if the class lives in a namespace. We do
16489 this by looking for a member function; its demangled name will
16490 contain namespace info, if there is any.
16491 Return the computed name or NULL.
16492 Space for the result is allocated on the objfile's obstack.
16493 This is the full-die version of guess_partial_die_structure_name.
16494 In this case we know DIE has no useful parent. */
16495
16496 static char *
16497 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16498 {
16499 struct die_info *spec_die;
16500 struct dwarf2_cu *spec_cu;
16501 struct die_info *child;
16502
16503 spec_cu = cu;
16504 spec_die = die_specification (die, &spec_cu);
16505 if (spec_die != NULL)
16506 {
16507 die = spec_die;
16508 cu = spec_cu;
16509 }
16510
16511 for (child = die->child;
16512 child != NULL;
16513 child = child->sibling)
16514 {
16515 if (child->tag == DW_TAG_subprogram)
16516 {
16517 struct attribute *attr;
16518
16519 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16520 if (attr == NULL)
16521 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16522 if (attr != NULL)
16523 {
16524 char *actual_name
16525 = language_class_name_from_physname (cu->language_defn,
16526 DW_STRING (attr));
16527 char *name = NULL;
16528
16529 if (actual_name != NULL)
16530 {
16531 char *die_name = dwarf2_name (die, cu);
16532
16533 if (die_name != NULL
16534 && strcmp (die_name, actual_name) != 0)
16535 {
16536 /* Strip off the class name from the full name.
16537 We want the prefix. */
16538 int die_name_len = strlen (die_name);
16539 int actual_name_len = strlen (actual_name);
16540
16541 /* Test for '::' as a sanity check. */
16542 if (actual_name_len > die_name_len + 2
16543 && actual_name[actual_name_len
16544 - die_name_len - 1] == ':')
16545 name =
16546 obsavestring (actual_name,
16547 actual_name_len - die_name_len - 2,
16548 &cu->objfile->objfile_obstack);
16549 }
16550 }
16551 xfree (actual_name);
16552 return name;
16553 }
16554 }
16555 }
16556
16557 return NULL;
16558 }
16559
16560 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16561 prefix part in such case. See
16562 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16563
16564 static char *
16565 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16566 {
16567 struct attribute *attr;
16568 char *base;
16569
16570 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16571 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16572 return NULL;
16573
16574 attr = dwarf2_attr (die, DW_AT_name, cu);
16575 if (attr != NULL && DW_STRING (attr) != NULL)
16576 return NULL;
16577
16578 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16579 if (attr == NULL)
16580 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16581 if (attr == NULL || DW_STRING (attr) == NULL)
16582 return NULL;
16583
16584 /* dwarf2_name had to be already called. */
16585 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16586
16587 /* Strip the base name, keep any leading namespaces/classes. */
16588 base = strrchr (DW_STRING (attr), ':');
16589 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16590 return "";
16591
16592 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16593 &cu->objfile->objfile_obstack);
16594 }
16595
16596 /* Return the name of the namespace/class that DIE is defined within,
16597 or "" if we can't tell. The caller should not xfree the result.
16598
16599 For example, if we're within the method foo() in the following
16600 code:
16601
16602 namespace N {
16603 class C {
16604 void foo () {
16605 }
16606 };
16607 }
16608
16609 then determine_prefix on foo's die will return "N::C". */
16610
16611 static const char *
16612 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16613 {
16614 struct die_info *parent, *spec_die;
16615 struct dwarf2_cu *spec_cu;
16616 struct type *parent_type;
16617 char *retval;
16618
16619 if (cu->language != language_cplus && cu->language != language_java
16620 && cu->language != language_fortran)
16621 return "";
16622
16623 retval = anonymous_struct_prefix (die, cu);
16624 if (retval)
16625 return retval;
16626
16627 /* We have to be careful in the presence of DW_AT_specification.
16628 For example, with GCC 3.4, given the code
16629
16630 namespace N {
16631 void foo() {
16632 // Definition of N::foo.
16633 }
16634 }
16635
16636 then we'll have a tree of DIEs like this:
16637
16638 1: DW_TAG_compile_unit
16639 2: DW_TAG_namespace // N
16640 3: DW_TAG_subprogram // declaration of N::foo
16641 4: DW_TAG_subprogram // definition of N::foo
16642 DW_AT_specification // refers to die #3
16643
16644 Thus, when processing die #4, we have to pretend that we're in
16645 the context of its DW_AT_specification, namely the contex of die
16646 #3. */
16647 spec_cu = cu;
16648 spec_die = die_specification (die, &spec_cu);
16649 if (spec_die == NULL)
16650 parent = die->parent;
16651 else
16652 {
16653 parent = spec_die->parent;
16654 cu = spec_cu;
16655 }
16656
16657 if (parent == NULL)
16658 return "";
16659 else if (parent->building_fullname)
16660 {
16661 const char *name;
16662 const char *parent_name;
16663
16664 /* It has been seen on RealView 2.2 built binaries,
16665 DW_TAG_template_type_param types actually _defined_ as
16666 children of the parent class:
16667
16668 enum E {};
16669 template class <class Enum> Class{};
16670 Class<enum E> class_e;
16671
16672 1: DW_TAG_class_type (Class)
16673 2: DW_TAG_enumeration_type (E)
16674 3: DW_TAG_enumerator (enum1:0)
16675 3: DW_TAG_enumerator (enum2:1)
16676 ...
16677 2: DW_TAG_template_type_param
16678 DW_AT_type DW_FORM_ref_udata (E)
16679
16680 Besides being broken debug info, it can put GDB into an
16681 infinite loop. Consider:
16682
16683 When we're building the full name for Class<E>, we'll start
16684 at Class, and go look over its template type parameters,
16685 finding E. We'll then try to build the full name of E, and
16686 reach here. We're now trying to build the full name of E,
16687 and look over the parent DIE for containing scope. In the
16688 broken case, if we followed the parent DIE of E, we'd again
16689 find Class, and once again go look at its template type
16690 arguments, etc., etc. Simply don't consider such parent die
16691 as source-level parent of this die (it can't be, the language
16692 doesn't allow it), and break the loop here. */
16693 name = dwarf2_name (die, cu);
16694 parent_name = dwarf2_name (parent, cu);
16695 complaint (&symfile_complaints,
16696 _("template param type '%s' defined within parent '%s'"),
16697 name ? name : "<unknown>",
16698 parent_name ? parent_name : "<unknown>");
16699 return "";
16700 }
16701 else
16702 switch (parent->tag)
16703 {
16704 case DW_TAG_namespace:
16705 parent_type = read_type_die (parent, cu);
16706 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16707 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16708 Work around this problem here. */
16709 if (cu->language == language_cplus
16710 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16711 return "";
16712 /* We give a name to even anonymous namespaces. */
16713 return TYPE_TAG_NAME (parent_type);
16714 case DW_TAG_class_type:
16715 case DW_TAG_interface_type:
16716 case DW_TAG_structure_type:
16717 case DW_TAG_union_type:
16718 case DW_TAG_module:
16719 parent_type = read_type_die (parent, cu);
16720 if (TYPE_TAG_NAME (parent_type) != NULL)
16721 return TYPE_TAG_NAME (parent_type);
16722 else
16723 /* An anonymous structure is only allowed non-static data
16724 members; no typedefs, no member functions, et cetera.
16725 So it does not need a prefix. */
16726 return "";
16727 case DW_TAG_compile_unit:
16728 case DW_TAG_partial_unit:
16729 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16730 if (cu->language == language_cplus
16731 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16732 && die->child != NULL
16733 && (die->tag == DW_TAG_class_type
16734 || die->tag == DW_TAG_structure_type
16735 || die->tag == DW_TAG_union_type))
16736 {
16737 char *name = guess_full_die_structure_name (die, cu);
16738 if (name != NULL)
16739 return name;
16740 }
16741 return "";
16742 default:
16743 return determine_prefix (parent, cu);
16744 }
16745 }
16746
16747 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16748 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16749 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16750 an obconcat, otherwise allocate storage for the result. The CU argument is
16751 used to determine the language and hence, the appropriate separator. */
16752
16753 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16754
16755 static char *
16756 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16757 int physname, struct dwarf2_cu *cu)
16758 {
16759 const char *lead = "";
16760 const char *sep;
16761
16762 if (suffix == NULL || suffix[0] == '\0'
16763 || prefix == NULL || prefix[0] == '\0')
16764 sep = "";
16765 else if (cu->language == language_java)
16766 sep = ".";
16767 else if (cu->language == language_fortran && physname)
16768 {
16769 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16770 DW_AT_MIPS_linkage_name is preferred and used instead. */
16771
16772 lead = "__";
16773 sep = "_MOD_";
16774 }
16775 else
16776 sep = "::";
16777
16778 if (prefix == NULL)
16779 prefix = "";
16780 if (suffix == NULL)
16781 suffix = "";
16782
16783 if (obs == NULL)
16784 {
16785 char *retval
16786 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16787
16788 strcpy (retval, lead);
16789 strcat (retval, prefix);
16790 strcat (retval, sep);
16791 strcat (retval, suffix);
16792 return retval;
16793 }
16794 else
16795 {
16796 /* We have an obstack. */
16797 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16798 }
16799 }
16800
16801 /* Return sibling of die, NULL if no sibling. */
16802
16803 static struct die_info *
16804 sibling_die (struct die_info *die)
16805 {
16806 return die->sibling;
16807 }
16808
16809 /* Get name of a die, return NULL if not found. */
16810
16811 static char *
16812 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16813 struct obstack *obstack)
16814 {
16815 if (name && cu->language == language_cplus)
16816 {
16817 char *canon_name = cp_canonicalize_string (name);
16818
16819 if (canon_name != NULL)
16820 {
16821 if (strcmp (canon_name, name) != 0)
16822 name = obsavestring (canon_name, strlen (canon_name),
16823 obstack);
16824 xfree (canon_name);
16825 }
16826 }
16827
16828 return name;
16829 }
16830
16831 /* Get name of a die, return NULL if not found. */
16832
16833 static char *
16834 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16835 {
16836 struct attribute *attr;
16837
16838 attr = dwarf2_attr (die, DW_AT_name, cu);
16839 if ((!attr || !DW_STRING (attr))
16840 && die->tag != DW_TAG_class_type
16841 && die->tag != DW_TAG_interface_type
16842 && die->tag != DW_TAG_structure_type
16843 && die->tag != DW_TAG_union_type)
16844 return NULL;
16845
16846 switch (die->tag)
16847 {
16848 case DW_TAG_compile_unit:
16849 case DW_TAG_partial_unit:
16850 /* Compilation units have a DW_AT_name that is a filename, not
16851 a source language identifier. */
16852 case DW_TAG_enumeration_type:
16853 case DW_TAG_enumerator:
16854 /* These tags always have simple identifiers already; no need
16855 to canonicalize them. */
16856 return DW_STRING (attr);
16857
16858 case DW_TAG_subprogram:
16859 /* Java constructors will all be named "<init>", so return
16860 the class name when we see this special case. */
16861 if (cu->language == language_java
16862 && DW_STRING (attr) != NULL
16863 && strcmp (DW_STRING (attr), "<init>") == 0)
16864 {
16865 struct dwarf2_cu *spec_cu = cu;
16866 struct die_info *spec_die;
16867
16868 /* GCJ will output '<init>' for Java constructor names.
16869 For this special case, return the name of the parent class. */
16870
16871 /* GCJ may output suprogram DIEs with AT_specification set.
16872 If so, use the name of the specified DIE. */
16873 spec_die = die_specification (die, &spec_cu);
16874 if (spec_die != NULL)
16875 return dwarf2_name (spec_die, spec_cu);
16876
16877 do
16878 {
16879 die = die->parent;
16880 if (die->tag == DW_TAG_class_type)
16881 return dwarf2_name (die, cu);
16882 }
16883 while (die->tag != DW_TAG_compile_unit
16884 && die->tag != DW_TAG_partial_unit);
16885 }
16886 break;
16887
16888 case DW_TAG_class_type:
16889 case DW_TAG_interface_type:
16890 case DW_TAG_structure_type:
16891 case DW_TAG_union_type:
16892 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16893 structures or unions. These were of the form "._%d" in GCC 4.1,
16894 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16895 and GCC 4.4. We work around this problem by ignoring these. */
16896 if (attr && DW_STRING (attr)
16897 && (strncmp (DW_STRING (attr), "._", 2) == 0
16898 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16899 return NULL;
16900
16901 /* GCC might emit a nameless typedef that has a linkage name. See
16902 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16903 if (!attr || DW_STRING (attr) == NULL)
16904 {
16905 char *demangled = NULL;
16906
16907 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16908 if (attr == NULL)
16909 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16910
16911 if (attr == NULL || DW_STRING (attr) == NULL)
16912 return NULL;
16913
16914 /* Avoid demangling DW_STRING (attr) the second time on a second
16915 call for the same DIE. */
16916 if (!DW_STRING_IS_CANONICAL (attr))
16917 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16918
16919 if (demangled)
16920 {
16921 char *base;
16922
16923 /* FIXME: we already did this for the partial symbol... */
16924 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16925 &cu->objfile->objfile_obstack);
16926 DW_STRING_IS_CANONICAL (attr) = 1;
16927 xfree (demangled);
16928
16929 /* Strip any leading namespaces/classes, keep only the base name.
16930 DW_AT_name for named DIEs does not contain the prefixes. */
16931 base = strrchr (DW_STRING (attr), ':');
16932 if (base && base > DW_STRING (attr) && base[-1] == ':')
16933 return &base[1];
16934 else
16935 return DW_STRING (attr);
16936 }
16937 }
16938 break;
16939
16940 default:
16941 break;
16942 }
16943
16944 if (!DW_STRING_IS_CANONICAL (attr))
16945 {
16946 DW_STRING (attr)
16947 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16948 &cu->objfile->objfile_obstack);
16949 DW_STRING_IS_CANONICAL (attr) = 1;
16950 }
16951 return DW_STRING (attr);
16952 }
16953
16954 /* Return the die that this die in an extension of, or NULL if there
16955 is none. *EXT_CU is the CU containing DIE on input, and the CU
16956 containing the return value on output. */
16957
16958 static struct die_info *
16959 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16960 {
16961 struct attribute *attr;
16962
16963 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16964 if (attr == NULL)
16965 return NULL;
16966
16967 return follow_die_ref (die, attr, ext_cu);
16968 }
16969
16970 /* Convert a DIE tag into its string name. */
16971
16972 static const char *
16973 dwarf_tag_name (unsigned tag)
16974 {
16975 const char *name = get_DW_TAG_name (tag);
16976
16977 if (name == NULL)
16978 return "DW_TAG_<unknown>";
16979
16980 return name;
16981 }
16982
16983 /* Convert a DWARF attribute code into its string name. */
16984
16985 static const char *
16986 dwarf_attr_name (unsigned attr)
16987 {
16988 const char *name;
16989
16990 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16991 if (attr == DW_AT_MIPS_fde)
16992 return "DW_AT_MIPS_fde";
16993 #else
16994 if (attr == DW_AT_HP_block_index)
16995 return "DW_AT_HP_block_index";
16996 #endif
16997
16998 name = get_DW_AT_name (attr);
16999
17000 if (name == NULL)
17001 return "DW_AT_<unknown>";
17002
17003 return name;
17004 }
17005
17006 /* Convert a DWARF value form code into its string name. */
17007
17008 static const char *
17009 dwarf_form_name (unsigned form)
17010 {
17011 const char *name = get_DW_FORM_name (form);
17012
17013 if (name == NULL)
17014 return "DW_FORM_<unknown>";
17015
17016 return name;
17017 }
17018
17019 static char *
17020 dwarf_bool_name (unsigned mybool)
17021 {
17022 if (mybool)
17023 return "TRUE";
17024 else
17025 return "FALSE";
17026 }
17027
17028 /* Convert a DWARF type code into its string name. */
17029
17030 static const char *
17031 dwarf_type_encoding_name (unsigned enc)
17032 {
17033 const char *name = get_DW_ATE_name (enc);
17034
17035 if (name == NULL)
17036 return "DW_ATE_<unknown>";
17037
17038 return name;
17039 }
17040
17041 static void
17042 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17043 {
17044 unsigned int i;
17045
17046 print_spaces (indent, f);
17047 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17048 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17049
17050 if (die->parent != NULL)
17051 {
17052 print_spaces (indent, f);
17053 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17054 die->parent->offset.sect_off);
17055 }
17056
17057 print_spaces (indent, f);
17058 fprintf_unfiltered (f, " has children: %s\n",
17059 dwarf_bool_name (die->child != NULL));
17060
17061 print_spaces (indent, f);
17062 fprintf_unfiltered (f, " attributes:\n");
17063
17064 for (i = 0; i < die->num_attrs; ++i)
17065 {
17066 print_spaces (indent, f);
17067 fprintf_unfiltered (f, " %s (%s) ",
17068 dwarf_attr_name (die->attrs[i].name),
17069 dwarf_form_name (die->attrs[i].form));
17070
17071 switch (die->attrs[i].form)
17072 {
17073 case DW_FORM_addr:
17074 case DW_FORM_GNU_addr_index:
17075 fprintf_unfiltered (f, "address: ");
17076 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17077 break;
17078 case DW_FORM_block2:
17079 case DW_FORM_block4:
17080 case DW_FORM_block:
17081 case DW_FORM_block1:
17082 fprintf_unfiltered (f, "block: size %s",
17083 pulongest (DW_BLOCK (&die->attrs[i])->size));
17084 break;
17085 case DW_FORM_exprloc:
17086 fprintf_unfiltered (f, "expression: size %s",
17087 pulongest (DW_BLOCK (&die->attrs[i])->size));
17088 break;
17089 case DW_FORM_ref_addr:
17090 fprintf_unfiltered (f, "ref address: ");
17091 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17092 break;
17093 case DW_FORM_GNU_ref_alt:
17094 fprintf_unfiltered (f, "alt ref address: ");
17095 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17096 break;
17097 case DW_FORM_ref1:
17098 case DW_FORM_ref2:
17099 case DW_FORM_ref4:
17100 case DW_FORM_ref8:
17101 case DW_FORM_ref_udata:
17102 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17103 (long) (DW_UNSND (&die->attrs[i])));
17104 break;
17105 case DW_FORM_data1:
17106 case DW_FORM_data2:
17107 case DW_FORM_data4:
17108 case DW_FORM_data8:
17109 case DW_FORM_udata:
17110 case DW_FORM_sdata:
17111 fprintf_unfiltered (f, "constant: %s",
17112 pulongest (DW_UNSND (&die->attrs[i])));
17113 break;
17114 case DW_FORM_sec_offset:
17115 fprintf_unfiltered (f, "section offset: %s",
17116 pulongest (DW_UNSND (&die->attrs[i])));
17117 break;
17118 case DW_FORM_ref_sig8:
17119 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17120 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17121 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17122 else
17123 fprintf_unfiltered (f, "signatured type, offset: unknown");
17124 break;
17125 case DW_FORM_string:
17126 case DW_FORM_strp:
17127 case DW_FORM_GNU_str_index:
17128 case DW_FORM_GNU_strp_alt:
17129 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17130 DW_STRING (&die->attrs[i])
17131 ? DW_STRING (&die->attrs[i]) : "",
17132 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17133 break;
17134 case DW_FORM_flag:
17135 if (DW_UNSND (&die->attrs[i]))
17136 fprintf_unfiltered (f, "flag: TRUE");
17137 else
17138 fprintf_unfiltered (f, "flag: FALSE");
17139 break;
17140 case DW_FORM_flag_present:
17141 fprintf_unfiltered (f, "flag: TRUE");
17142 break;
17143 case DW_FORM_indirect:
17144 /* The reader will have reduced the indirect form to
17145 the "base form" so this form should not occur. */
17146 fprintf_unfiltered (f,
17147 "unexpected attribute form: DW_FORM_indirect");
17148 break;
17149 default:
17150 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17151 die->attrs[i].form);
17152 break;
17153 }
17154 fprintf_unfiltered (f, "\n");
17155 }
17156 }
17157
17158 static void
17159 dump_die_for_error (struct die_info *die)
17160 {
17161 dump_die_shallow (gdb_stderr, 0, die);
17162 }
17163
17164 static void
17165 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17166 {
17167 int indent = level * 4;
17168
17169 gdb_assert (die != NULL);
17170
17171 if (level >= max_level)
17172 return;
17173
17174 dump_die_shallow (f, indent, die);
17175
17176 if (die->child != NULL)
17177 {
17178 print_spaces (indent, f);
17179 fprintf_unfiltered (f, " Children:");
17180 if (level + 1 < max_level)
17181 {
17182 fprintf_unfiltered (f, "\n");
17183 dump_die_1 (f, level + 1, max_level, die->child);
17184 }
17185 else
17186 {
17187 fprintf_unfiltered (f,
17188 " [not printed, max nesting level reached]\n");
17189 }
17190 }
17191
17192 if (die->sibling != NULL && level > 0)
17193 {
17194 dump_die_1 (f, level, max_level, die->sibling);
17195 }
17196 }
17197
17198 /* This is called from the pdie macro in gdbinit.in.
17199 It's not static so gcc will keep a copy callable from gdb. */
17200
17201 void
17202 dump_die (struct die_info *die, int max_level)
17203 {
17204 dump_die_1 (gdb_stdlog, 0, max_level, die);
17205 }
17206
17207 static void
17208 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17209 {
17210 void **slot;
17211
17212 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17213 INSERT);
17214
17215 *slot = die;
17216 }
17217
17218 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17219 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17220
17221 static int
17222 is_ref_attr (struct attribute *attr)
17223 {
17224 switch (attr->form)
17225 {
17226 case DW_FORM_ref_addr:
17227 case DW_FORM_ref1:
17228 case DW_FORM_ref2:
17229 case DW_FORM_ref4:
17230 case DW_FORM_ref8:
17231 case DW_FORM_ref_udata:
17232 case DW_FORM_GNU_ref_alt:
17233 return 1;
17234 default:
17235 return 0;
17236 }
17237 }
17238
17239 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17240 required kind. */
17241
17242 static sect_offset
17243 dwarf2_get_ref_die_offset (struct attribute *attr)
17244 {
17245 sect_offset retval = { DW_UNSND (attr) };
17246
17247 if (is_ref_attr (attr))
17248 return retval;
17249
17250 retval.sect_off = 0;
17251 complaint (&symfile_complaints,
17252 _("unsupported die ref attribute form: '%s'"),
17253 dwarf_form_name (attr->form));
17254 return retval;
17255 }
17256
17257 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17258 * the value held by the attribute is not constant. */
17259
17260 static LONGEST
17261 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17262 {
17263 if (attr->form == DW_FORM_sdata)
17264 return DW_SND (attr);
17265 else if (attr->form == DW_FORM_udata
17266 || attr->form == DW_FORM_data1
17267 || attr->form == DW_FORM_data2
17268 || attr->form == DW_FORM_data4
17269 || attr->form == DW_FORM_data8)
17270 return DW_UNSND (attr);
17271 else
17272 {
17273 complaint (&symfile_complaints,
17274 _("Attribute value is not a constant (%s)"),
17275 dwarf_form_name (attr->form));
17276 return default_value;
17277 }
17278 }
17279
17280 /* Follow reference or signature attribute ATTR of SRC_DIE.
17281 On entry *REF_CU is the CU of SRC_DIE.
17282 On exit *REF_CU is the CU of the result. */
17283
17284 static struct die_info *
17285 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17286 struct dwarf2_cu **ref_cu)
17287 {
17288 struct die_info *die;
17289
17290 if (is_ref_attr (attr))
17291 die = follow_die_ref (src_die, attr, ref_cu);
17292 else if (attr->form == DW_FORM_ref_sig8)
17293 die = follow_die_sig (src_die, attr, ref_cu);
17294 else
17295 {
17296 dump_die_for_error (src_die);
17297 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17298 (*ref_cu)->objfile->name);
17299 }
17300
17301 return die;
17302 }
17303
17304 /* Follow reference OFFSET.
17305 On entry *REF_CU is the CU of the source die referencing OFFSET.
17306 On exit *REF_CU is the CU of the result.
17307 Returns NULL if OFFSET is invalid. */
17308
17309 static struct die_info *
17310 follow_die_offset (sect_offset offset, int offset_in_dwz,
17311 struct dwarf2_cu **ref_cu)
17312 {
17313 struct die_info temp_die;
17314 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17315
17316 gdb_assert (cu->per_cu != NULL);
17317
17318 target_cu = cu;
17319
17320 if (cu->per_cu->is_debug_types)
17321 {
17322 /* .debug_types CUs cannot reference anything outside their CU.
17323 If they need to, they have to reference a signatured type via
17324 DW_FORM_ref_sig8. */
17325 if (! offset_in_cu_p (&cu->header, offset))
17326 return NULL;
17327 }
17328 else if (offset_in_dwz != cu->per_cu->is_dwz
17329 || ! offset_in_cu_p (&cu->header, offset))
17330 {
17331 struct dwarf2_per_cu_data *per_cu;
17332
17333 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17334 cu->objfile);
17335
17336 /* If necessary, add it to the queue and load its DIEs. */
17337 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17338 load_full_comp_unit (per_cu, cu->language);
17339
17340 target_cu = per_cu->cu;
17341 }
17342 else if (cu->dies == NULL)
17343 {
17344 /* We're loading full DIEs during partial symbol reading. */
17345 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17346 load_full_comp_unit (cu->per_cu, language_minimal);
17347 }
17348
17349 *ref_cu = target_cu;
17350 temp_die.offset = offset;
17351 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17352 }
17353
17354 /* Follow reference attribute ATTR of SRC_DIE.
17355 On entry *REF_CU is the CU of SRC_DIE.
17356 On exit *REF_CU is the CU of the result. */
17357
17358 static struct die_info *
17359 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17360 struct dwarf2_cu **ref_cu)
17361 {
17362 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17363 struct dwarf2_cu *cu = *ref_cu;
17364 struct die_info *die;
17365
17366 die = follow_die_offset (offset,
17367 (attr->form == DW_FORM_GNU_ref_alt
17368 || cu->per_cu->is_dwz),
17369 ref_cu);
17370 if (!die)
17371 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17372 "at 0x%x [in module %s]"),
17373 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17374
17375 return die;
17376 }
17377
17378 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17379 Returned value is intended for DW_OP_call*. Returned
17380 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17381
17382 struct dwarf2_locexpr_baton
17383 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17384 struct dwarf2_per_cu_data *per_cu,
17385 CORE_ADDR (*get_frame_pc) (void *baton),
17386 void *baton)
17387 {
17388 struct dwarf2_cu *cu;
17389 struct die_info *die;
17390 struct attribute *attr;
17391 struct dwarf2_locexpr_baton retval;
17392
17393 dw2_setup (per_cu->objfile);
17394
17395 if (per_cu->cu == NULL)
17396 load_cu (per_cu);
17397 cu = per_cu->cu;
17398
17399 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17400 if (!die)
17401 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17402 offset.sect_off, per_cu->objfile->name);
17403
17404 attr = dwarf2_attr (die, DW_AT_location, cu);
17405 if (!attr)
17406 {
17407 /* DWARF: "If there is no such attribute, then there is no effect.".
17408 DATA is ignored if SIZE is 0. */
17409
17410 retval.data = NULL;
17411 retval.size = 0;
17412 }
17413 else if (attr_form_is_section_offset (attr))
17414 {
17415 struct dwarf2_loclist_baton loclist_baton;
17416 CORE_ADDR pc = (*get_frame_pc) (baton);
17417 size_t size;
17418
17419 fill_in_loclist_baton (cu, &loclist_baton, attr);
17420
17421 retval.data = dwarf2_find_location_expression (&loclist_baton,
17422 &size, pc);
17423 retval.size = size;
17424 }
17425 else
17426 {
17427 if (!attr_form_is_block (attr))
17428 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17429 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17430 offset.sect_off, per_cu->objfile->name);
17431
17432 retval.data = DW_BLOCK (attr)->data;
17433 retval.size = DW_BLOCK (attr)->size;
17434 }
17435 retval.per_cu = cu->per_cu;
17436
17437 age_cached_comp_units ();
17438
17439 return retval;
17440 }
17441
17442 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17443 offset. */
17444
17445 struct dwarf2_locexpr_baton
17446 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17447 struct dwarf2_per_cu_data *per_cu,
17448 CORE_ADDR (*get_frame_pc) (void *baton),
17449 void *baton)
17450 {
17451 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17452
17453 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17454 }
17455
17456 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17457 PER_CU. */
17458
17459 struct type *
17460 dwarf2_get_die_type (cu_offset die_offset,
17461 struct dwarf2_per_cu_data *per_cu)
17462 {
17463 sect_offset die_offset_sect;
17464
17465 dw2_setup (per_cu->objfile);
17466
17467 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17468 return get_die_type_at_offset (die_offset_sect, per_cu);
17469 }
17470
17471 /* Follow the signature attribute ATTR in SRC_DIE.
17472 On entry *REF_CU is the CU of SRC_DIE.
17473 On exit *REF_CU is the CU of the result. */
17474
17475 static struct die_info *
17476 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17477 struct dwarf2_cu **ref_cu)
17478 {
17479 struct objfile *objfile = (*ref_cu)->objfile;
17480 struct die_info temp_die;
17481 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17482 struct dwarf2_cu *sig_cu;
17483 struct die_info *die;
17484
17485 /* sig_type will be NULL if the signatured type is missing from
17486 the debug info. */
17487 if (sig_type == NULL)
17488 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17489 "at 0x%x [in module %s]"),
17490 src_die->offset.sect_off, objfile->name);
17491
17492 /* If necessary, add it to the queue and load its DIEs. */
17493
17494 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17495 read_signatured_type (sig_type);
17496
17497 gdb_assert (sig_type->per_cu.cu != NULL);
17498
17499 sig_cu = sig_type->per_cu.cu;
17500 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17501 temp_die.offset = sig_type->type_offset_in_section;
17502 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17503 temp_die.offset.sect_off);
17504 if (die)
17505 {
17506 *ref_cu = sig_cu;
17507 return die;
17508 }
17509
17510 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17511 "from DIE at 0x%x [in module %s]"),
17512 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17513 }
17514
17515 /* Given an offset of a signatured type, return its signatured_type. */
17516
17517 static struct signatured_type *
17518 lookup_signatured_type_at_offset (struct objfile *objfile,
17519 struct dwarf2_section_info *section,
17520 sect_offset offset)
17521 {
17522 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17523 unsigned int length, initial_length_size;
17524 unsigned int sig_offset;
17525 struct signatured_type find_entry, *sig_type;
17526
17527 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17528 sig_offset = (initial_length_size
17529 + 2 /*version*/
17530 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17531 + 1 /*address_size*/);
17532 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17533 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17534
17535 /* This is only used to lookup previously recorded types.
17536 If we didn't find it, it's our bug. */
17537 gdb_assert (sig_type != NULL);
17538 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17539
17540 return sig_type;
17541 }
17542
17543 /* Load the DIEs associated with type unit PER_CU into memory. */
17544
17545 static void
17546 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17547 {
17548 struct signatured_type *sig_type;
17549
17550 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17551 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17552
17553 /* We have the per_cu, but we need the signatured_type.
17554 Fortunately this is an easy translation. */
17555 gdb_assert (per_cu->is_debug_types);
17556 sig_type = (struct signatured_type *) per_cu;
17557
17558 gdb_assert (per_cu->cu == NULL);
17559
17560 read_signatured_type (sig_type);
17561
17562 gdb_assert (per_cu->cu != NULL);
17563 }
17564
17565 /* die_reader_func for read_signatured_type.
17566 This is identical to load_full_comp_unit_reader,
17567 but is kept separate for now. */
17568
17569 static void
17570 read_signatured_type_reader (const struct die_reader_specs *reader,
17571 gdb_byte *info_ptr,
17572 struct die_info *comp_unit_die,
17573 int has_children,
17574 void *data)
17575 {
17576 struct dwarf2_cu *cu = reader->cu;
17577
17578 gdb_assert (cu->die_hash == NULL);
17579 cu->die_hash =
17580 htab_create_alloc_ex (cu->header.length / 12,
17581 die_hash,
17582 die_eq,
17583 NULL,
17584 &cu->comp_unit_obstack,
17585 hashtab_obstack_allocate,
17586 dummy_obstack_deallocate);
17587
17588 if (has_children)
17589 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17590 &info_ptr, comp_unit_die);
17591 cu->dies = comp_unit_die;
17592 /* comp_unit_die is not stored in die_hash, no need. */
17593
17594 /* We try not to read any attributes in this function, because not
17595 all CUs needed for references have been loaded yet, and symbol
17596 table processing isn't initialized. But we have to set the CU language,
17597 or we won't be able to build types correctly.
17598 Similarly, if we do not read the producer, we can not apply
17599 producer-specific interpretation. */
17600 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17601 }
17602
17603 /* Read in a signatured type and build its CU and DIEs.
17604 If the type is a stub for the real type in a DWO file,
17605 read in the real type from the DWO file as well. */
17606
17607 static void
17608 read_signatured_type (struct signatured_type *sig_type)
17609 {
17610 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17611
17612 gdb_assert (per_cu->is_debug_types);
17613 gdb_assert (per_cu->cu == NULL);
17614
17615 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17616 read_signatured_type_reader, NULL);
17617 }
17618
17619 /* Decode simple location descriptions.
17620 Given a pointer to a dwarf block that defines a location, compute
17621 the location and return the value.
17622
17623 NOTE drow/2003-11-18: This function is called in two situations
17624 now: for the address of static or global variables (partial symbols
17625 only) and for offsets into structures which are expected to be
17626 (more or less) constant. The partial symbol case should go away,
17627 and only the constant case should remain. That will let this
17628 function complain more accurately. A few special modes are allowed
17629 without complaint for global variables (for instance, global
17630 register values and thread-local values).
17631
17632 A location description containing no operations indicates that the
17633 object is optimized out. The return value is 0 for that case.
17634 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17635 callers will only want a very basic result and this can become a
17636 complaint.
17637
17638 Note that stack[0] is unused except as a default error return. */
17639
17640 static CORE_ADDR
17641 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17642 {
17643 struct objfile *objfile = cu->objfile;
17644 size_t i;
17645 size_t size = blk->size;
17646 gdb_byte *data = blk->data;
17647 CORE_ADDR stack[64];
17648 int stacki;
17649 unsigned int bytes_read, unsnd;
17650 gdb_byte op;
17651
17652 i = 0;
17653 stacki = 0;
17654 stack[stacki] = 0;
17655 stack[++stacki] = 0;
17656
17657 while (i < size)
17658 {
17659 op = data[i++];
17660 switch (op)
17661 {
17662 case DW_OP_lit0:
17663 case DW_OP_lit1:
17664 case DW_OP_lit2:
17665 case DW_OP_lit3:
17666 case DW_OP_lit4:
17667 case DW_OP_lit5:
17668 case DW_OP_lit6:
17669 case DW_OP_lit7:
17670 case DW_OP_lit8:
17671 case DW_OP_lit9:
17672 case DW_OP_lit10:
17673 case DW_OP_lit11:
17674 case DW_OP_lit12:
17675 case DW_OP_lit13:
17676 case DW_OP_lit14:
17677 case DW_OP_lit15:
17678 case DW_OP_lit16:
17679 case DW_OP_lit17:
17680 case DW_OP_lit18:
17681 case DW_OP_lit19:
17682 case DW_OP_lit20:
17683 case DW_OP_lit21:
17684 case DW_OP_lit22:
17685 case DW_OP_lit23:
17686 case DW_OP_lit24:
17687 case DW_OP_lit25:
17688 case DW_OP_lit26:
17689 case DW_OP_lit27:
17690 case DW_OP_lit28:
17691 case DW_OP_lit29:
17692 case DW_OP_lit30:
17693 case DW_OP_lit31:
17694 stack[++stacki] = op - DW_OP_lit0;
17695 break;
17696
17697 case DW_OP_reg0:
17698 case DW_OP_reg1:
17699 case DW_OP_reg2:
17700 case DW_OP_reg3:
17701 case DW_OP_reg4:
17702 case DW_OP_reg5:
17703 case DW_OP_reg6:
17704 case DW_OP_reg7:
17705 case DW_OP_reg8:
17706 case DW_OP_reg9:
17707 case DW_OP_reg10:
17708 case DW_OP_reg11:
17709 case DW_OP_reg12:
17710 case DW_OP_reg13:
17711 case DW_OP_reg14:
17712 case DW_OP_reg15:
17713 case DW_OP_reg16:
17714 case DW_OP_reg17:
17715 case DW_OP_reg18:
17716 case DW_OP_reg19:
17717 case DW_OP_reg20:
17718 case DW_OP_reg21:
17719 case DW_OP_reg22:
17720 case DW_OP_reg23:
17721 case DW_OP_reg24:
17722 case DW_OP_reg25:
17723 case DW_OP_reg26:
17724 case DW_OP_reg27:
17725 case DW_OP_reg28:
17726 case DW_OP_reg29:
17727 case DW_OP_reg30:
17728 case DW_OP_reg31:
17729 stack[++stacki] = op - DW_OP_reg0;
17730 if (i < size)
17731 dwarf2_complex_location_expr_complaint ();
17732 break;
17733
17734 case DW_OP_regx:
17735 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17736 i += bytes_read;
17737 stack[++stacki] = unsnd;
17738 if (i < size)
17739 dwarf2_complex_location_expr_complaint ();
17740 break;
17741
17742 case DW_OP_addr:
17743 stack[++stacki] = read_address (objfile->obfd, &data[i],
17744 cu, &bytes_read);
17745 i += bytes_read;
17746 break;
17747
17748 case DW_OP_const1u:
17749 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17750 i += 1;
17751 break;
17752
17753 case DW_OP_const1s:
17754 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17755 i += 1;
17756 break;
17757
17758 case DW_OP_const2u:
17759 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17760 i += 2;
17761 break;
17762
17763 case DW_OP_const2s:
17764 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17765 i += 2;
17766 break;
17767
17768 case DW_OP_const4u:
17769 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17770 i += 4;
17771 break;
17772
17773 case DW_OP_const4s:
17774 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17775 i += 4;
17776 break;
17777
17778 case DW_OP_const8u:
17779 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17780 i += 8;
17781 break;
17782
17783 case DW_OP_constu:
17784 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17785 &bytes_read);
17786 i += bytes_read;
17787 break;
17788
17789 case DW_OP_consts:
17790 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17791 i += bytes_read;
17792 break;
17793
17794 case DW_OP_dup:
17795 stack[stacki + 1] = stack[stacki];
17796 stacki++;
17797 break;
17798
17799 case DW_OP_plus:
17800 stack[stacki - 1] += stack[stacki];
17801 stacki--;
17802 break;
17803
17804 case DW_OP_plus_uconst:
17805 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17806 &bytes_read);
17807 i += bytes_read;
17808 break;
17809
17810 case DW_OP_minus:
17811 stack[stacki - 1] -= stack[stacki];
17812 stacki--;
17813 break;
17814
17815 case DW_OP_deref:
17816 /* If we're not the last op, then we definitely can't encode
17817 this using GDB's address_class enum. This is valid for partial
17818 global symbols, although the variable's address will be bogus
17819 in the psymtab. */
17820 if (i < size)
17821 dwarf2_complex_location_expr_complaint ();
17822 break;
17823
17824 case DW_OP_GNU_push_tls_address:
17825 /* The top of the stack has the offset from the beginning
17826 of the thread control block at which the variable is located. */
17827 /* Nothing should follow this operator, so the top of stack would
17828 be returned. */
17829 /* This is valid for partial global symbols, but the variable's
17830 address will be bogus in the psymtab. Make it always at least
17831 non-zero to not look as a variable garbage collected by linker
17832 which have DW_OP_addr 0. */
17833 if (i < size)
17834 dwarf2_complex_location_expr_complaint ();
17835 stack[stacki]++;
17836 break;
17837
17838 case DW_OP_GNU_uninit:
17839 break;
17840
17841 case DW_OP_GNU_addr_index:
17842 case DW_OP_GNU_const_index:
17843 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17844 &bytes_read);
17845 i += bytes_read;
17846 break;
17847
17848 default:
17849 {
17850 const char *name = get_DW_OP_name (op);
17851
17852 if (name)
17853 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17854 name);
17855 else
17856 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17857 op);
17858 }
17859
17860 return (stack[stacki]);
17861 }
17862
17863 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17864 outside of the allocated space. Also enforce minimum>0. */
17865 if (stacki >= ARRAY_SIZE (stack) - 1)
17866 {
17867 complaint (&symfile_complaints,
17868 _("location description stack overflow"));
17869 return 0;
17870 }
17871
17872 if (stacki <= 0)
17873 {
17874 complaint (&symfile_complaints,
17875 _("location description stack underflow"));
17876 return 0;
17877 }
17878 }
17879 return (stack[stacki]);
17880 }
17881
17882 /* memory allocation interface */
17883
17884 static struct dwarf_block *
17885 dwarf_alloc_block (struct dwarf2_cu *cu)
17886 {
17887 struct dwarf_block *blk;
17888
17889 blk = (struct dwarf_block *)
17890 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17891 return (blk);
17892 }
17893
17894 static struct die_info *
17895 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17896 {
17897 struct die_info *die;
17898 size_t size = sizeof (struct die_info);
17899
17900 if (num_attrs > 1)
17901 size += (num_attrs - 1) * sizeof (struct attribute);
17902
17903 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17904 memset (die, 0, sizeof (struct die_info));
17905 return (die);
17906 }
17907
17908 \f
17909 /* Macro support. */
17910
17911 /* Return the full name of file number I in *LH's file name table.
17912 Use COMP_DIR as the name of the current directory of the
17913 compilation. The result is allocated using xmalloc; the caller is
17914 responsible for freeing it. */
17915 static char *
17916 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17917 {
17918 /* Is the file number a valid index into the line header's file name
17919 table? Remember that file numbers start with one, not zero. */
17920 if (1 <= file && file <= lh->num_file_names)
17921 {
17922 struct file_entry *fe = &lh->file_names[file - 1];
17923
17924 if (IS_ABSOLUTE_PATH (fe->name))
17925 return xstrdup (fe->name);
17926 else
17927 {
17928 const char *dir;
17929 int dir_len;
17930 char *full_name;
17931
17932 if (fe->dir_index)
17933 dir = lh->include_dirs[fe->dir_index - 1];
17934 else
17935 dir = comp_dir;
17936
17937 if (dir)
17938 {
17939 dir_len = strlen (dir);
17940 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17941 strcpy (full_name, dir);
17942 full_name[dir_len] = '/';
17943 strcpy (full_name + dir_len + 1, fe->name);
17944 return full_name;
17945 }
17946 else
17947 return xstrdup (fe->name);
17948 }
17949 }
17950 else
17951 {
17952 /* The compiler produced a bogus file number. We can at least
17953 record the macro definitions made in the file, even if we
17954 won't be able to find the file by name. */
17955 char fake_name[80];
17956
17957 xsnprintf (fake_name, sizeof (fake_name),
17958 "<bad macro file number %d>", file);
17959
17960 complaint (&symfile_complaints,
17961 _("bad file number in macro information (%d)"),
17962 file);
17963
17964 return xstrdup (fake_name);
17965 }
17966 }
17967
17968
17969 static struct macro_source_file *
17970 macro_start_file (int file, int line,
17971 struct macro_source_file *current_file,
17972 const char *comp_dir,
17973 struct line_header *lh, struct objfile *objfile)
17974 {
17975 /* The full name of this source file. */
17976 char *full_name = file_full_name (file, lh, comp_dir);
17977
17978 /* We don't create a macro table for this compilation unit
17979 at all until we actually get a filename. */
17980 if (! pending_macros)
17981 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17982 objfile->per_bfd->macro_cache);
17983
17984 if (! current_file)
17985 {
17986 /* If we have no current file, then this must be the start_file
17987 directive for the compilation unit's main source file. */
17988 current_file = macro_set_main (pending_macros, full_name);
17989 macro_define_special (pending_macros);
17990 }
17991 else
17992 current_file = macro_include (current_file, line, full_name);
17993
17994 xfree (full_name);
17995
17996 return current_file;
17997 }
17998
17999
18000 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18001 followed by a null byte. */
18002 static char *
18003 copy_string (const char *buf, int len)
18004 {
18005 char *s = xmalloc (len + 1);
18006
18007 memcpy (s, buf, len);
18008 s[len] = '\0';
18009 return s;
18010 }
18011
18012
18013 static const char *
18014 consume_improper_spaces (const char *p, const char *body)
18015 {
18016 if (*p == ' ')
18017 {
18018 complaint (&symfile_complaints,
18019 _("macro definition contains spaces "
18020 "in formal argument list:\n`%s'"),
18021 body);
18022
18023 while (*p == ' ')
18024 p++;
18025 }
18026
18027 return p;
18028 }
18029
18030
18031 static void
18032 parse_macro_definition (struct macro_source_file *file, int line,
18033 const char *body)
18034 {
18035 const char *p;
18036
18037 /* The body string takes one of two forms. For object-like macro
18038 definitions, it should be:
18039
18040 <macro name> " " <definition>
18041
18042 For function-like macro definitions, it should be:
18043
18044 <macro name> "() " <definition>
18045 or
18046 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18047
18048 Spaces may appear only where explicitly indicated, and in the
18049 <definition>.
18050
18051 The Dwarf 2 spec says that an object-like macro's name is always
18052 followed by a space, but versions of GCC around March 2002 omit
18053 the space when the macro's definition is the empty string.
18054
18055 The Dwarf 2 spec says that there should be no spaces between the
18056 formal arguments in a function-like macro's formal argument list,
18057 but versions of GCC around March 2002 include spaces after the
18058 commas. */
18059
18060
18061 /* Find the extent of the macro name. The macro name is terminated
18062 by either a space or null character (for an object-like macro) or
18063 an opening paren (for a function-like macro). */
18064 for (p = body; *p; p++)
18065 if (*p == ' ' || *p == '(')
18066 break;
18067
18068 if (*p == ' ' || *p == '\0')
18069 {
18070 /* It's an object-like macro. */
18071 int name_len = p - body;
18072 char *name = copy_string (body, name_len);
18073 const char *replacement;
18074
18075 if (*p == ' ')
18076 replacement = body + name_len + 1;
18077 else
18078 {
18079 dwarf2_macro_malformed_definition_complaint (body);
18080 replacement = body + name_len;
18081 }
18082
18083 macro_define_object (file, line, name, replacement);
18084
18085 xfree (name);
18086 }
18087 else if (*p == '(')
18088 {
18089 /* It's a function-like macro. */
18090 char *name = copy_string (body, p - body);
18091 int argc = 0;
18092 int argv_size = 1;
18093 char **argv = xmalloc (argv_size * sizeof (*argv));
18094
18095 p++;
18096
18097 p = consume_improper_spaces (p, body);
18098
18099 /* Parse the formal argument list. */
18100 while (*p && *p != ')')
18101 {
18102 /* Find the extent of the current argument name. */
18103 const char *arg_start = p;
18104
18105 while (*p && *p != ',' && *p != ')' && *p != ' ')
18106 p++;
18107
18108 if (! *p || p == arg_start)
18109 dwarf2_macro_malformed_definition_complaint (body);
18110 else
18111 {
18112 /* Make sure argv has room for the new argument. */
18113 if (argc >= argv_size)
18114 {
18115 argv_size *= 2;
18116 argv = xrealloc (argv, argv_size * sizeof (*argv));
18117 }
18118
18119 argv[argc++] = copy_string (arg_start, p - arg_start);
18120 }
18121
18122 p = consume_improper_spaces (p, body);
18123
18124 /* Consume the comma, if present. */
18125 if (*p == ',')
18126 {
18127 p++;
18128
18129 p = consume_improper_spaces (p, body);
18130 }
18131 }
18132
18133 if (*p == ')')
18134 {
18135 p++;
18136
18137 if (*p == ' ')
18138 /* Perfectly formed definition, no complaints. */
18139 macro_define_function (file, line, name,
18140 argc, (const char **) argv,
18141 p + 1);
18142 else if (*p == '\0')
18143 {
18144 /* Complain, but do define it. */
18145 dwarf2_macro_malformed_definition_complaint (body);
18146 macro_define_function (file, line, name,
18147 argc, (const char **) argv,
18148 p);
18149 }
18150 else
18151 /* Just complain. */
18152 dwarf2_macro_malformed_definition_complaint (body);
18153 }
18154 else
18155 /* Just complain. */
18156 dwarf2_macro_malformed_definition_complaint (body);
18157
18158 xfree (name);
18159 {
18160 int i;
18161
18162 for (i = 0; i < argc; i++)
18163 xfree (argv[i]);
18164 }
18165 xfree (argv);
18166 }
18167 else
18168 dwarf2_macro_malformed_definition_complaint (body);
18169 }
18170
18171 /* Skip some bytes from BYTES according to the form given in FORM.
18172 Returns the new pointer. */
18173
18174 static gdb_byte *
18175 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18176 enum dwarf_form form,
18177 unsigned int offset_size,
18178 struct dwarf2_section_info *section)
18179 {
18180 unsigned int bytes_read;
18181
18182 switch (form)
18183 {
18184 case DW_FORM_data1:
18185 case DW_FORM_flag:
18186 ++bytes;
18187 break;
18188
18189 case DW_FORM_data2:
18190 bytes += 2;
18191 break;
18192
18193 case DW_FORM_data4:
18194 bytes += 4;
18195 break;
18196
18197 case DW_FORM_data8:
18198 bytes += 8;
18199 break;
18200
18201 case DW_FORM_string:
18202 read_direct_string (abfd, bytes, &bytes_read);
18203 bytes += bytes_read;
18204 break;
18205
18206 case DW_FORM_sec_offset:
18207 case DW_FORM_strp:
18208 case DW_FORM_GNU_strp_alt:
18209 bytes += offset_size;
18210 break;
18211
18212 case DW_FORM_block:
18213 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18214 bytes += bytes_read;
18215 break;
18216
18217 case DW_FORM_block1:
18218 bytes += 1 + read_1_byte (abfd, bytes);
18219 break;
18220 case DW_FORM_block2:
18221 bytes += 2 + read_2_bytes (abfd, bytes);
18222 break;
18223 case DW_FORM_block4:
18224 bytes += 4 + read_4_bytes (abfd, bytes);
18225 break;
18226
18227 case DW_FORM_sdata:
18228 case DW_FORM_udata:
18229 case DW_FORM_GNU_addr_index:
18230 case DW_FORM_GNU_str_index:
18231 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18232 if (bytes == NULL)
18233 {
18234 dwarf2_section_buffer_overflow_complaint (section);
18235 return NULL;
18236 }
18237 break;
18238
18239 default:
18240 {
18241 complain:
18242 complaint (&symfile_complaints,
18243 _("invalid form 0x%x in `%s'"),
18244 form,
18245 section->asection->name);
18246 return NULL;
18247 }
18248 }
18249
18250 return bytes;
18251 }
18252
18253 /* A helper for dwarf_decode_macros that handles skipping an unknown
18254 opcode. Returns an updated pointer to the macro data buffer; or,
18255 on error, issues a complaint and returns NULL. */
18256
18257 static gdb_byte *
18258 skip_unknown_opcode (unsigned int opcode,
18259 gdb_byte **opcode_definitions,
18260 gdb_byte *mac_ptr, gdb_byte *mac_end,
18261 bfd *abfd,
18262 unsigned int offset_size,
18263 struct dwarf2_section_info *section)
18264 {
18265 unsigned int bytes_read, i;
18266 unsigned long arg;
18267 gdb_byte *defn;
18268
18269 if (opcode_definitions[opcode] == NULL)
18270 {
18271 complaint (&symfile_complaints,
18272 _("unrecognized DW_MACFINO opcode 0x%x"),
18273 opcode);
18274 return NULL;
18275 }
18276
18277 defn = opcode_definitions[opcode];
18278 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18279 defn += bytes_read;
18280
18281 for (i = 0; i < arg; ++i)
18282 {
18283 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18284 section);
18285 if (mac_ptr == NULL)
18286 {
18287 /* skip_form_bytes already issued the complaint. */
18288 return NULL;
18289 }
18290 }
18291
18292 return mac_ptr;
18293 }
18294
18295 /* A helper function which parses the header of a macro section.
18296 If the macro section is the extended (for now called "GNU") type,
18297 then this updates *OFFSET_SIZE. Returns a pointer to just after
18298 the header, or issues a complaint and returns NULL on error. */
18299
18300 static gdb_byte *
18301 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18302 bfd *abfd,
18303 gdb_byte *mac_ptr,
18304 unsigned int *offset_size,
18305 int section_is_gnu)
18306 {
18307 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18308
18309 if (section_is_gnu)
18310 {
18311 unsigned int version, flags;
18312
18313 version = read_2_bytes (abfd, mac_ptr);
18314 if (version != 4)
18315 {
18316 complaint (&symfile_complaints,
18317 _("unrecognized version `%d' in .debug_macro section"),
18318 version);
18319 return NULL;
18320 }
18321 mac_ptr += 2;
18322
18323 flags = read_1_byte (abfd, mac_ptr);
18324 ++mac_ptr;
18325 *offset_size = (flags & 1) ? 8 : 4;
18326
18327 if ((flags & 2) != 0)
18328 /* We don't need the line table offset. */
18329 mac_ptr += *offset_size;
18330
18331 /* Vendor opcode descriptions. */
18332 if ((flags & 4) != 0)
18333 {
18334 unsigned int i, count;
18335
18336 count = read_1_byte (abfd, mac_ptr);
18337 ++mac_ptr;
18338 for (i = 0; i < count; ++i)
18339 {
18340 unsigned int opcode, bytes_read;
18341 unsigned long arg;
18342
18343 opcode = read_1_byte (abfd, mac_ptr);
18344 ++mac_ptr;
18345 opcode_definitions[opcode] = mac_ptr;
18346 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18347 mac_ptr += bytes_read;
18348 mac_ptr += arg;
18349 }
18350 }
18351 }
18352
18353 return mac_ptr;
18354 }
18355
18356 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18357 including DW_MACRO_GNU_transparent_include. */
18358
18359 static void
18360 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18361 struct macro_source_file *current_file,
18362 struct line_header *lh, char *comp_dir,
18363 struct dwarf2_section_info *section,
18364 int section_is_gnu, int section_is_dwz,
18365 unsigned int offset_size,
18366 struct objfile *objfile,
18367 htab_t include_hash)
18368 {
18369 enum dwarf_macro_record_type macinfo_type;
18370 int at_commandline;
18371 gdb_byte *opcode_definitions[256];
18372
18373 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18374 &offset_size, section_is_gnu);
18375 if (mac_ptr == NULL)
18376 {
18377 /* We already issued a complaint. */
18378 return;
18379 }
18380
18381 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18382 GDB is still reading the definitions from command line. First
18383 DW_MACINFO_start_file will need to be ignored as it was already executed
18384 to create CURRENT_FILE for the main source holding also the command line
18385 definitions. On first met DW_MACINFO_start_file this flag is reset to
18386 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18387
18388 at_commandline = 1;
18389
18390 do
18391 {
18392 /* Do we at least have room for a macinfo type byte? */
18393 if (mac_ptr >= mac_end)
18394 {
18395 dwarf2_section_buffer_overflow_complaint (section);
18396 break;
18397 }
18398
18399 macinfo_type = read_1_byte (abfd, mac_ptr);
18400 mac_ptr++;
18401
18402 /* Note that we rely on the fact that the corresponding GNU and
18403 DWARF constants are the same. */
18404 switch (macinfo_type)
18405 {
18406 /* A zero macinfo type indicates the end of the macro
18407 information. */
18408 case 0:
18409 break;
18410
18411 case DW_MACRO_GNU_define:
18412 case DW_MACRO_GNU_undef:
18413 case DW_MACRO_GNU_define_indirect:
18414 case DW_MACRO_GNU_undef_indirect:
18415 case DW_MACRO_GNU_define_indirect_alt:
18416 case DW_MACRO_GNU_undef_indirect_alt:
18417 {
18418 unsigned int bytes_read;
18419 int line;
18420 char *body;
18421 int is_define;
18422
18423 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18424 mac_ptr += bytes_read;
18425
18426 if (macinfo_type == DW_MACRO_GNU_define
18427 || macinfo_type == DW_MACRO_GNU_undef)
18428 {
18429 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18430 mac_ptr += bytes_read;
18431 }
18432 else
18433 {
18434 LONGEST str_offset;
18435
18436 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18437 mac_ptr += offset_size;
18438
18439 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18440 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18441 || section_is_dwz)
18442 {
18443 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18444
18445 body = read_indirect_string_from_dwz (dwz, str_offset);
18446 }
18447 else
18448 body = read_indirect_string_at_offset (abfd, str_offset);
18449 }
18450
18451 is_define = (macinfo_type == DW_MACRO_GNU_define
18452 || macinfo_type == DW_MACRO_GNU_define_indirect
18453 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18454 if (! current_file)
18455 {
18456 /* DWARF violation as no main source is present. */
18457 complaint (&symfile_complaints,
18458 _("debug info with no main source gives macro %s "
18459 "on line %d: %s"),
18460 is_define ? _("definition") : _("undefinition"),
18461 line, body);
18462 break;
18463 }
18464 if ((line == 0 && !at_commandline)
18465 || (line != 0 && at_commandline))
18466 complaint (&symfile_complaints,
18467 _("debug info gives %s macro %s with %s line %d: %s"),
18468 at_commandline ? _("command-line") : _("in-file"),
18469 is_define ? _("definition") : _("undefinition"),
18470 line == 0 ? _("zero") : _("non-zero"), line, body);
18471
18472 if (is_define)
18473 parse_macro_definition (current_file, line, body);
18474 else
18475 {
18476 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18477 || macinfo_type == DW_MACRO_GNU_undef_indirect
18478 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18479 macro_undef (current_file, line, body);
18480 }
18481 }
18482 break;
18483
18484 case DW_MACRO_GNU_start_file:
18485 {
18486 unsigned int bytes_read;
18487 int line, file;
18488
18489 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18490 mac_ptr += bytes_read;
18491 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18492 mac_ptr += bytes_read;
18493
18494 if ((line == 0 && !at_commandline)
18495 || (line != 0 && at_commandline))
18496 complaint (&symfile_complaints,
18497 _("debug info gives source %d included "
18498 "from %s at %s line %d"),
18499 file, at_commandline ? _("command-line") : _("file"),
18500 line == 0 ? _("zero") : _("non-zero"), line);
18501
18502 if (at_commandline)
18503 {
18504 /* This DW_MACRO_GNU_start_file was executed in the
18505 pass one. */
18506 at_commandline = 0;
18507 }
18508 else
18509 current_file = macro_start_file (file, line,
18510 current_file, comp_dir,
18511 lh, objfile);
18512 }
18513 break;
18514
18515 case DW_MACRO_GNU_end_file:
18516 if (! current_file)
18517 complaint (&symfile_complaints,
18518 _("macro debug info has an unmatched "
18519 "`close_file' directive"));
18520 else
18521 {
18522 current_file = current_file->included_by;
18523 if (! current_file)
18524 {
18525 enum dwarf_macro_record_type next_type;
18526
18527 /* GCC circa March 2002 doesn't produce the zero
18528 type byte marking the end of the compilation
18529 unit. Complain if it's not there, but exit no
18530 matter what. */
18531
18532 /* Do we at least have room for a macinfo type byte? */
18533 if (mac_ptr >= mac_end)
18534 {
18535 dwarf2_section_buffer_overflow_complaint (section);
18536 return;
18537 }
18538
18539 /* We don't increment mac_ptr here, so this is just
18540 a look-ahead. */
18541 next_type = read_1_byte (abfd, mac_ptr);
18542 if (next_type != 0)
18543 complaint (&symfile_complaints,
18544 _("no terminating 0-type entry for "
18545 "macros in `.debug_macinfo' section"));
18546
18547 return;
18548 }
18549 }
18550 break;
18551
18552 case DW_MACRO_GNU_transparent_include:
18553 case DW_MACRO_GNU_transparent_include_alt:
18554 {
18555 LONGEST offset;
18556 void **slot;
18557 bfd *include_bfd = abfd;
18558 struct dwarf2_section_info *include_section = section;
18559 struct dwarf2_section_info alt_section;
18560 gdb_byte *include_mac_end = mac_end;
18561 int is_dwz = section_is_dwz;
18562 gdb_byte *new_mac_ptr;
18563
18564 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18565 mac_ptr += offset_size;
18566
18567 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18568 {
18569 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18570
18571 dwarf2_read_section (dwarf2_per_objfile->objfile,
18572 &dwz->macro);
18573
18574 include_bfd = dwz->macro.asection->owner;
18575 include_section = &dwz->macro;
18576 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18577 is_dwz = 1;
18578 }
18579
18580 new_mac_ptr = include_section->buffer + offset;
18581 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18582
18583 if (*slot != NULL)
18584 {
18585 /* This has actually happened; see
18586 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18587 complaint (&symfile_complaints,
18588 _("recursive DW_MACRO_GNU_transparent_include in "
18589 ".debug_macro section"));
18590 }
18591 else
18592 {
18593 *slot = new_mac_ptr;
18594
18595 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18596 include_mac_end, current_file,
18597 lh, comp_dir,
18598 section, section_is_gnu, is_dwz,
18599 offset_size, objfile, include_hash);
18600
18601 htab_remove_elt (include_hash, new_mac_ptr);
18602 }
18603 }
18604 break;
18605
18606 case DW_MACINFO_vendor_ext:
18607 if (!section_is_gnu)
18608 {
18609 unsigned int bytes_read;
18610 int constant;
18611
18612 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18613 mac_ptr += bytes_read;
18614 read_direct_string (abfd, mac_ptr, &bytes_read);
18615 mac_ptr += bytes_read;
18616
18617 /* We don't recognize any vendor extensions. */
18618 break;
18619 }
18620 /* FALLTHROUGH */
18621
18622 default:
18623 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18624 mac_ptr, mac_end, abfd, offset_size,
18625 section);
18626 if (mac_ptr == NULL)
18627 return;
18628 break;
18629 }
18630 } while (macinfo_type != 0);
18631 }
18632
18633 static void
18634 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18635 char *comp_dir, int section_is_gnu)
18636 {
18637 struct objfile *objfile = dwarf2_per_objfile->objfile;
18638 struct line_header *lh = cu->line_header;
18639 bfd *abfd;
18640 gdb_byte *mac_ptr, *mac_end;
18641 struct macro_source_file *current_file = 0;
18642 enum dwarf_macro_record_type macinfo_type;
18643 unsigned int offset_size = cu->header.offset_size;
18644 gdb_byte *opcode_definitions[256];
18645 struct cleanup *cleanup;
18646 htab_t include_hash;
18647 void **slot;
18648 struct dwarf2_section_info *section;
18649 const char *section_name;
18650
18651 if (cu->dwo_unit != NULL)
18652 {
18653 if (section_is_gnu)
18654 {
18655 section = &cu->dwo_unit->dwo_file->sections.macro;
18656 section_name = ".debug_macro.dwo";
18657 }
18658 else
18659 {
18660 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18661 section_name = ".debug_macinfo.dwo";
18662 }
18663 }
18664 else
18665 {
18666 if (section_is_gnu)
18667 {
18668 section = &dwarf2_per_objfile->macro;
18669 section_name = ".debug_macro";
18670 }
18671 else
18672 {
18673 section = &dwarf2_per_objfile->macinfo;
18674 section_name = ".debug_macinfo";
18675 }
18676 }
18677
18678 dwarf2_read_section (objfile, section);
18679 if (section->buffer == NULL)
18680 {
18681 complaint (&symfile_complaints, _("missing %s section"), section_name);
18682 return;
18683 }
18684 abfd = section->asection->owner;
18685
18686 /* First pass: Find the name of the base filename.
18687 This filename is needed in order to process all macros whose definition
18688 (or undefinition) comes from the command line. These macros are defined
18689 before the first DW_MACINFO_start_file entry, and yet still need to be
18690 associated to the base file.
18691
18692 To determine the base file name, we scan the macro definitions until we
18693 reach the first DW_MACINFO_start_file entry. We then initialize
18694 CURRENT_FILE accordingly so that any macro definition found before the
18695 first DW_MACINFO_start_file can still be associated to the base file. */
18696
18697 mac_ptr = section->buffer + offset;
18698 mac_end = section->buffer + section->size;
18699
18700 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18701 &offset_size, section_is_gnu);
18702 if (mac_ptr == NULL)
18703 {
18704 /* We already issued a complaint. */
18705 return;
18706 }
18707
18708 do
18709 {
18710 /* Do we at least have room for a macinfo type byte? */
18711 if (mac_ptr >= mac_end)
18712 {
18713 /* Complaint is printed during the second pass as GDB will probably
18714 stop the first pass earlier upon finding
18715 DW_MACINFO_start_file. */
18716 break;
18717 }
18718
18719 macinfo_type = read_1_byte (abfd, mac_ptr);
18720 mac_ptr++;
18721
18722 /* Note that we rely on the fact that the corresponding GNU and
18723 DWARF constants are the same. */
18724 switch (macinfo_type)
18725 {
18726 /* A zero macinfo type indicates the end of the macro
18727 information. */
18728 case 0:
18729 break;
18730
18731 case DW_MACRO_GNU_define:
18732 case DW_MACRO_GNU_undef:
18733 /* Only skip the data by MAC_PTR. */
18734 {
18735 unsigned int bytes_read;
18736
18737 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18738 mac_ptr += bytes_read;
18739 read_direct_string (abfd, mac_ptr, &bytes_read);
18740 mac_ptr += bytes_read;
18741 }
18742 break;
18743
18744 case DW_MACRO_GNU_start_file:
18745 {
18746 unsigned int bytes_read;
18747 int line, file;
18748
18749 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18750 mac_ptr += bytes_read;
18751 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18752 mac_ptr += bytes_read;
18753
18754 current_file = macro_start_file (file, line, current_file,
18755 comp_dir, lh, objfile);
18756 }
18757 break;
18758
18759 case DW_MACRO_GNU_end_file:
18760 /* No data to skip by MAC_PTR. */
18761 break;
18762
18763 case DW_MACRO_GNU_define_indirect:
18764 case DW_MACRO_GNU_undef_indirect:
18765 case DW_MACRO_GNU_define_indirect_alt:
18766 case DW_MACRO_GNU_undef_indirect_alt:
18767 {
18768 unsigned int bytes_read;
18769
18770 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18771 mac_ptr += bytes_read;
18772 mac_ptr += offset_size;
18773 }
18774 break;
18775
18776 case DW_MACRO_GNU_transparent_include:
18777 case DW_MACRO_GNU_transparent_include_alt:
18778 /* Note that, according to the spec, a transparent include
18779 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18780 skip this opcode. */
18781 mac_ptr += offset_size;
18782 break;
18783
18784 case DW_MACINFO_vendor_ext:
18785 /* Only skip the data by MAC_PTR. */
18786 if (!section_is_gnu)
18787 {
18788 unsigned int bytes_read;
18789
18790 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18791 mac_ptr += bytes_read;
18792 read_direct_string (abfd, mac_ptr, &bytes_read);
18793 mac_ptr += bytes_read;
18794 }
18795 /* FALLTHROUGH */
18796
18797 default:
18798 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18799 mac_ptr, mac_end, abfd, offset_size,
18800 section);
18801 if (mac_ptr == NULL)
18802 return;
18803 break;
18804 }
18805 } while (macinfo_type != 0 && current_file == NULL);
18806
18807 /* Second pass: Process all entries.
18808
18809 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18810 command-line macro definitions/undefinitions. This flag is unset when we
18811 reach the first DW_MACINFO_start_file entry. */
18812
18813 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18814 NULL, xcalloc, xfree);
18815 cleanup = make_cleanup_htab_delete (include_hash);
18816 mac_ptr = section->buffer + offset;
18817 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18818 *slot = mac_ptr;
18819 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18820 current_file, lh, comp_dir, section,
18821 section_is_gnu, 0,
18822 offset_size, objfile, include_hash);
18823 do_cleanups (cleanup);
18824 }
18825
18826 /* Check if the attribute's form is a DW_FORM_block*
18827 if so return true else false. */
18828
18829 static int
18830 attr_form_is_block (struct attribute *attr)
18831 {
18832 return (attr == NULL ? 0 :
18833 attr->form == DW_FORM_block1
18834 || attr->form == DW_FORM_block2
18835 || attr->form == DW_FORM_block4
18836 || attr->form == DW_FORM_block
18837 || attr->form == DW_FORM_exprloc);
18838 }
18839
18840 /* Return non-zero if ATTR's value is a section offset --- classes
18841 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18842 You may use DW_UNSND (attr) to retrieve such offsets.
18843
18844 Section 7.5.4, "Attribute Encodings", explains that no attribute
18845 may have a value that belongs to more than one of these classes; it
18846 would be ambiguous if we did, because we use the same forms for all
18847 of them. */
18848
18849 static int
18850 attr_form_is_section_offset (struct attribute *attr)
18851 {
18852 return (attr->form == DW_FORM_data4
18853 || attr->form == DW_FORM_data8
18854 || attr->form == DW_FORM_sec_offset);
18855 }
18856
18857 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18858 zero otherwise. When this function returns true, you can apply
18859 dwarf2_get_attr_constant_value to it.
18860
18861 However, note that for some attributes you must check
18862 attr_form_is_section_offset before using this test. DW_FORM_data4
18863 and DW_FORM_data8 are members of both the constant class, and of
18864 the classes that contain offsets into other debug sections
18865 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18866 that, if an attribute's can be either a constant or one of the
18867 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18868 taken as section offsets, not constants. */
18869
18870 static int
18871 attr_form_is_constant (struct attribute *attr)
18872 {
18873 switch (attr->form)
18874 {
18875 case DW_FORM_sdata:
18876 case DW_FORM_udata:
18877 case DW_FORM_data1:
18878 case DW_FORM_data2:
18879 case DW_FORM_data4:
18880 case DW_FORM_data8:
18881 return 1;
18882 default:
18883 return 0;
18884 }
18885 }
18886
18887 /* Return the .debug_loc section to use for CU.
18888 For DWO files use .debug_loc.dwo. */
18889
18890 static struct dwarf2_section_info *
18891 cu_debug_loc_section (struct dwarf2_cu *cu)
18892 {
18893 if (cu->dwo_unit)
18894 return &cu->dwo_unit->dwo_file->sections.loc;
18895 return &dwarf2_per_objfile->loc;
18896 }
18897
18898 /* A helper function that fills in a dwarf2_loclist_baton. */
18899
18900 static void
18901 fill_in_loclist_baton (struct dwarf2_cu *cu,
18902 struct dwarf2_loclist_baton *baton,
18903 struct attribute *attr)
18904 {
18905 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18906
18907 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18908
18909 baton->per_cu = cu->per_cu;
18910 gdb_assert (baton->per_cu);
18911 /* We don't know how long the location list is, but make sure we
18912 don't run off the edge of the section. */
18913 baton->size = section->size - DW_UNSND (attr);
18914 baton->data = section->buffer + DW_UNSND (attr);
18915 baton->base_address = cu->base_address;
18916 baton->from_dwo = cu->dwo_unit != NULL;
18917 }
18918
18919 static void
18920 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18921 struct dwarf2_cu *cu)
18922 {
18923 struct objfile *objfile = dwarf2_per_objfile->objfile;
18924 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18925
18926 if (attr_form_is_section_offset (attr)
18927 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18928 the section. If so, fall through to the complaint in the
18929 other branch. */
18930 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18931 {
18932 struct dwarf2_loclist_baton *baton;
18933
18934 baton = obstack_alloc (&objfile->objfile_obstack,
18935 sizeof (struct dwarf2_loclist_baton));
18936
18937 fill_in_loclist_baton (cu, baton, attr);
18938
18939 if (cu->base_known == 0)
18940 complaint (&symfile_complaints,
18941 _("Location list used without "
18942 "specifying the CU base address."));
18943
18944 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18945 SYMBOL_LOCATION_BATON (sym) = baton;
18946 }
18947 else
18948 {
18949 struct dwarf2_locexpr_baton *baton;
18950
18951 baton = obstack_alloc (&objfile->objfile_obstack,
18952 sizeof (struct dwarf2_locexpr_baton));
18953 baton->per_cu = cu->per_cu;
18954 gdb_assert (baton->per_cu);
18955
18956 if (attr_form_is_block (attr))
18957 {
18958 /* Note that we're just copying the block's data pointer
18959 here, not the actual data. We're still pointing into the
18960 info_buffer for SYM's objfile; right now we never release
18961 that buffer, but when we do clean up properly this may
18962 need to change. */
18963 baton->size = DW_BLOCK (attr)->size;
18964 baton->data = DW_BLOCK (attr)->data;
18965 }
18966 else
18967 {
18968 dwarf2_invalid_attrib_class_complaint ("location description",
18969 SYMBOL_NATURAL_NAME (sym));
18970 baton->size = 0;
18971 }
18972
18973 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18974 SYMBOL_LOCATION_BATON (sym) = baton;
18975 }
18976 }
18977
18978 /* Return the OBJFILE associated with the compilation unit CU. If CU
18979 came from a separate debuginfo file, then the master objfile is
18980 returned. */
18981
18982 struct objfile *
18983 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18984 {
18985 struct objfile *objfile = per_cu->objfile;
18986
18987 /* Return the master objfile, so that we can report and look up the
18988 correct file containing this variable. */
18989 if (objfile->separate_debug_objfile_backlink)
18990 objfile = objfile->separate_debug_objfile_backlink;
18991
18992 return objfile;
18993 }
18994
18995 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18996 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18997 CU_HEADERP first. */
18998
18999 static const struct comp_unit_head *
19000 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19001 struct dwarf2_per_cu_data *per_cu)
19002 {
19003 gdb_byte *info_ptr;
19004
19005 if (per_cu->cu)
19006 return &per_cu->cu->header;
19007
19008 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19009
19010 memset (cu_headerp, 0, sizeof (*cu_headerp));
19011 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19012
19013 return cu_headerp;
19014 }
19015
19016 /* Return the address size given in the compilation unit header for CU. */
19017
19018 int
19019 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19020 {
19021 struct comp_unit_head cu_header_local;
19022 const struct comp_unit_head *cu_headerp;
19023
19024 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19025
19026 return cu_headerp->addr_size;
19027 }
19028
19029 /* Return the offset size given in the compilation unit header for CU. */
19030
19031 int
19032 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19033 {
19034 struct comp_unit_head cu_header_local;
19035 const struct comp_unit_head *cu_headerp;
19036
19037 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19038
19039 return cu_headerp->offset_size;
19040 }
19041
19042 /* See its dwarf2loc.h declaration. */
19043
19044 int
19045 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19046 {
19047 struct comp_unit_head cu_header_local;
19048 const struct comp_unit_head *cu_headerp;
19049
19050 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19051
19052 if (cu_headerp->version == 2)
19053 return cu_headerp->addr_size;
19054 else
19055 return cu_headerp->offset_size;
19056 }
19057
19058 /* Return the text offset of the CU. The returned offset comes from
19059 this CU's objfile. If this objfile came from a separate debuginfo
19060 file, then the offset may be different from the corresponding
19061 offset in the parent objfile. */
19062
19063 CORE_ADDR
19064 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19065 {
19066 struct objfile *objfile = per_cu->objfile;
19067
19068 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19069 }
19070
19071 /* Locate the .debug_info compilation unit from CU's objfile which contains
19072 the DIE at OFFSET. Raises an error on failure. */
19073
19074 static struct dwarf2_per_cu_data *
19075 dwarf2_find_containing_comp_unit (sect_offset offset,
19076 unsigned int offset_in_dwz,
19077 struct objfile *objfile)
19078 {
19079 struct dwarf2_per_cu_data *this_cu;
19080 int low, high;
19081 const sect_offset *cu_off;
19082
19083 low = 0;
19084 high = dwarf2_per_objfile->n_comp_units - 1;
19085 while (high > low)
19086 {
19087 struct dwarf2_per_cu_data *mid_cu;
19088 int mid = low + (high - low) / 2;
19089
19090 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19091 cu_off = &mid_cu->offset;
19092 if (mid_cu->is_dwz > offset_in_dwz
19093 || (mid_cu->is_dwz == offset_in_dwz
19094 && cu_off->sect_off >= offset.sect_off))
19095 high = mid;
19096 else
19097 low = mid + 1;
19098 }
19099 gdb_assert (low == high);
19100 this_cu = dwarf2_per_objfile->all_comp_units[low];
19101 cu_off = &this_cu->offset;
19102 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19103 {
19104 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19105 error (_("Dwarf Error: could not find partial DIE containing "
19106 "offset 0x%lx [in module %s]"),
19107 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19108
19109 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19110 <= offset.sect_off);
19111 return dwarf2_per_objfile->all_comp_units[low-1];
19112 }
19113 else
19114 {
19115 this_cu = dwarf2_per_objfile->all_comp_units[low];
19116 if (low == dwarf2_per_objfile->n_comp_units - 1
19117 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19118 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19119 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19120 return this_cu;
19121 }
19122 }
19123
19124 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19125
19126 static void
19127 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19128 {
19129 memset (cu, 0, sizeof (*cu));
19130 per_cu->cu = cu;
19131 cu->per_cu = per_cu;
19132 cu->objfile = per_cu->objfile;
19133 obstack_init (&cu->comp_unit_obstack);
19134 }
19135
19136 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19137
19138 static void
19139 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19140 enum language pretend_language)
19141 {
19142 struct attribute *attr;
19143
19144 /* Set the language we're debugging. */
19145 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19146 if (attr)
19147 set_cu_language (DW_UNSND (attr), cu);
19148 else
19149 {
19150 cu->language = pretend_language;
19151 cu->language_defn = language_def (cu->language);
19152 }
19153
19154 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19155 if (attr)
19156 cu->producer = DW_STRING (attr);
19157 }
19158
19159 /* Release one cached compilation unit, CU. We unlink it from the tree
19160 of compilation units, but we don't remove it from the read_in_chain;
19161 the caller is responsible for that.
19162 NOTE: DATA is a void * because this function is also used as a
19163 cleanup routine. */
19164
19165 static void
19166 free_heap_comp_unit (void *data)
19167 {
19168 struct dwarf2_cu *cu = data;
19169
19170 gdb_assert (cu->per_cu != NULL);
19171 cu->per_cu->cu = NULL;
19172 cu->per_cu = NULL;
19173
19174 obstack_free (&cu->comp_unit_obstack, NULL);
19175
19176 xfree (cu);
19177 }
19178
19179 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19180 when we're finished with it. We can't free the pointer itself, but be
19181 sure to unlink it from the cache. Also release any associated storage. */
19182
19183 static void
19184 free_stack_comp_unit (void *data)
19185 {
19186 struct dwarf2_cu *cu = data;
19187
19188 gdb_assert (cu->per_cu != NULL);
19189 cu->per_cu->cu = NULL;
19190 cu->per_cu = NULL;
19191
19192 obstack_free (&cu->comp_unit_obstack, NULL);
19193 cu->partial_dies = NULL;
19194 }
19195
19196 /* Free all cached compilation units. */
19197
19198 static void
19199 free_cached_comp_units (void *data)
19200 {
19201 struct dwarf2_per_cu_data *per_cu, **last_chain;
19202
19203 per_cu = dwarf2_per_objfile->read_in_chain;
19204 last_chain = &dwarf2_per_objfile->read_in_chain;
19205 while (per_cu != NULL)
19206 {
19207 struct dwarf2_per_cu_data *next_cu;
19208
19209 next_cu = per_cu->cu->read_in_chain;
19210
19211 free_heap_comp_unit (per_cu->cu);
19212 *last_chain = next_cu;
19213
19214 per_cu = next_cu;
19215 }
19216 }
19217
19218 /* Increase the age counter on each cached compilation unit, and free
19219 any that are too old. */
19220
19221 static void
19222 age_cached_comp_units (void)
19223 {
19224 struct dwarf2_per_cu_data *per_cu, **last_chain;
19225
19226 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19227 per_cu = dwarf2_per_objfile->read_in_chain;
19228 while (per_cu != NULL)
19229 {
19230 per_cu->cu->last_used ++;
19231 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19232 dwarf2_mark (per_cu->cu);
19233 per_cu = per_cu->cu->read_in_chain;
19234 }
19235
19236 per_cu = dwarf2_per_objfile->read_in_chain;
19237 last_chain = &dwarf2_per_objfile->read_in_chain;
19238 while (per_cu != NULL)
19239 {
19240 struct dwarf2_per_cu_data *next_cu;
19241
19242 next_cu = per_cu->cu->read_in_chain;
19243
19244 if (!per_cu->cu->mark)
19245 {
19246 free_heap_comp_unit (per_cu->cu);
19247 *last_chain = next_cu;
19248 }
19249 else
19250 last_chain = &per_cu->cu->read_in_chain;
19251
19252 per_cu = next_cu;
19253 }
19254 }
19255
19256 /* Remove a single compilation unit from the cache. */
19257
19258 static void
19259 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19260 {
19261 struct dwarf2_per_cu_data *per_cu, **last_chain;
19262
19263 per_cu = dwarf2_per_objfile->read_in_chain;
19264 last_chain = &dwarf2_per_objfile->read_in_chain;
19265 while (per_cu != NULL)
19266 {
19267 struct dwarf2_per_cu_data *next_cu;
19268
19269 next_cu = per_cu->cu->read_in_chain;
19270
19271 if (per_cu == target_per_cu)
19272 {
19273 free_heap_comp_unit (per_cu->cu);
19274 per_cu->cu = NULL;
19275 *last_chain = next_cu;
19276 break;
19277 }
19278 else
19279 last_chain = &per_cu->cu->read_in_chain;
19280
19281 per_cu = next_cu;
19282 }
19283 }
19284
19285 /* Release all extra memory associated with OBJFILE. */
19286
19287 void
19288 dwarf2_free_objfile (struct objfile *objfile)
19289 {
19290 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19291
19292 if (dwarf2_per_objfile == NULL)
19293 return;
19294
19295 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19296 free_cached_comp_units (NULL);
19297
19298 if (dwarf2_per_objfile->quick_file_names_table)
19299 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19300
19301 /* Everything else should be on the objfile obstack. */
19302 }
19303
19304 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19305 We store these in a hash table separate from the DIEs, and preserve them
19306 when the DIEs are flushed out of cache.
19307
19308 The CU "per_cu" pointer is needed because offset alone is not enough to
19309 uniquely identify the type. A file may have multiple .debug_types sections,
19310 or the type may come from a DWO file. We have to use something in
19311 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19312 routine, get_die_type_at_offset, from outside this file, and thus won't
19313 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19314 of the objfile. */
19315
19316 struct dwarf2_per_cu_offset_and_type
19317 {
19318 const struct dwarf2_per_cu_data *per_cu;
19319 sect_offset offset;
19320 struct type *type;
19321 };
19322
19323 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19324
19325 static hashval_t
19326 per_cu_offset_and_type_hash (const void *item)
19327 {
19328 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19329
19330 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19331 }
19332
19333 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19334
19335 static int
19336 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19337 {
19338 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19339 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19340
19341 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19342 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19343 }
19344
19345 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19346 table if necessary. For convenience, return TYPE.
19347
19348 The DIEs reading must have careful ordering to:
19349 * Not cause infite loops trying to read in DIEs as a prerequisite for
19350 reading current DIE.
19351 * Not trying to dereference contents of still incompletely read in types
19352 while reading in other DIEs.
19353 * Enable referencing still incompletely read in types just by a pointer to
19354 the type without accessing its fields.
19355
19356 Therefore caller should follow these rules:
19357 * Try to fetch any prerequisite types we may need to build this DIE type
19358 before building the type and calling set_die_type.
19359 * After building type call set_die_type for current DIE as soon as
19360 possible before fetching more types to complete the current type.
19361 * Make the type as complete as possible before fetching more types. */
19362
19363 static struct type *
19364 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19365 {
19366 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19367 struct objfile *objfile = cu->objfile;
19368
19369 /* For Ada types, make sure that the gnat-specific data is always
19370 initialized (if not already set). There are a few types where
19371 we should not be doing so, because the type-specific area is
19372 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19373 where the type-specific area is used to store the floatformat).
19374 But this is not a problem, because the gnat-specific information
19375 is actually not needed for these types. */
19376 if (need_gnat_info (cu)
19377 && TYPE_CODE (type) != TYPE_CODE_FUNC
19378 && TYPE_CODE (type) != TYPE_CODE_FLT
19379 && !HAVE_GNAT_AUX_INFO (type))
19380 INIT_GNAT_SPECIFIC (type);
19381
19382 if (dwarf2_per_objfile->die_type_hash == NULL)
19383 {
19384 dwarf2_per_objfile->die_type_hash =
19385 htab_create_alloc_ex (127,
19386 per_cu_offset_and_type_hash,
19387 per_cu_offset_and_type_eq,
19388 NULL,
19389 &objfile->objfile_obstack,
19390 hashtab_obstack_allocate,
19391 dummy_obstack_deallocate);
19392 }
19393
19394 ofs.per_cu = cu->per_cu;
19395 ofs.offset = die->offset;
19396 ofs.type = type;
19397 slot = (struct dwarf2_per_cu_offset_and_type **)
19398 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19399 if (*slot)
19400 complaint (&symfile_complaints,
19401 _("A problem internal to GDB: DIE 0x%x has type already set"),
19402 die->offset.sect_off);
19403 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19404 **slot = ofs;
19405 return type;
19406 }
19407
19408 /* Look up the type for the die at OFFSET in the appropriate type_hash
19409 table, or return NULL if the die does not have a saved type. */
19410
19411 static struct type *
19412 get_die_type_at_offset (sect_offset offset,
19413 struct dwarf2_per_cu_data *per_cu)
19414 {
19415 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19416
19417 if (dwarf2_per_objfile->die_type_hash == NULL)
19418 return NULL;
19419
19420 ofs.per_cu = per_cu;
19421 ofs.offset = offset;
19422 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19423 if (slot)
19424 return slot->type;
19425 else
19426 return NULL;
19427 }
19428
19429 /* Look up the type for DIE in the appropriate type_hash table,
19430 or return NULL if DIE does not have a saved type. */
19431
19432 static struct type *
19433 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19434 {
19435 return get_die_type_at_offset (die->offset, cu->per_cu);
19436 }
19437
19438 /* Add a dependence relationship from CU to REF_PER_CU. */
19439
19440 static void
19441 dwarf2_add_dependence (struct dwarf2_cu *cu,
19442 struct dwarf2_per_cu_data *ref_per_cu)
19443 {
19444 void **slot;
19445
19446 if (cu->dependencies == NULL)
19447 cu->dependencies
19448 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19449 NULL, &cu->comp_unit_obstack,
19450 hashtab_obstack_allocate,
19451 dummy_obstack_deallocate);
19452
19453 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19454 if (*slot == NULL)
19455 *slot = ref_per_cu;
19456 }
19457
19458 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19459 Set the mark field in every compilation unit in the
19460 cache that we must keep because we are keeping CU. */
19461
19462 static int
19463 dwarf2_mark_helper (void **slot, void *data)
19464 {
19465 struct dwarf2_per_cu_data *per_cu;
19466
19467 per_cu = (struct dwarf2_per_cu_data *) *slot;
19468
19469 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19470 reading of the chain. As such dependencies remain valid it is not much
19471 useful to track and undo them during QUIT cleanups. */
19472 if (per_cu->cu == NULL)
19473 return 1;
19474
19475 if (per_cu->cu->mark)
19476 return 1;
19477 per_cu->cu->mark = 1;
19478
19479 if (per_cu->cu->dependencies != NULL)
19480 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19481
19482 return 1;
19483 }
19484
19485 /* Set the mark field in CU and in every other compilation unit in the
19486 cache that we must keep because we are keeping CU. */
19487
19488 static void
19489 dwarf2_mark (struct dwarf2_cu *cu)
19490 {
19491 if (cu->mark)
19492 return;
19493 cu->mark = 1;
19494 if (cu->dependencies != NULL)
19495 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19496 }
19497
19498 static void
19499 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19500 {
19501 while (per_cu)
19502 {
19503 per_cu->cu->mark = 0;
19504 per_cu = per_cu->cu->read_in_chain;
19505 }
19506 }
19507
19508 /* Trivial hash function for partial_die_info: the hash value of a DIE
19509 is its offset in .debug_info for this objfile. */
19510
19511 static hashval_t
19512 partial_die_hash (const void *item)
19513 {
19514 const struct partial_die_info *part_die = item;
19515
19516 return part_die->offset.sect_off;
19517 }
19518
19519 /* Trivial comparison function for partial_die_info structures: two DIEs
19520 are equal if they have the same offset. */
19521
19522 static int
19523 partial_die_eq (const void *item_lhs, const void *item_rhs)
19524 {
19525 const struct partial_die_info *part_die_lhs = item_lhs;
19526 const struct partial_die_info *part_die_rhs = item_rhs;
19527
19528 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19529 }
19530
19531 static struct cmd_list_element *set_dwarf2_cmdlist;
19532 static struct cmd_list_element *show_dwarf2_cmdlist;
19533
19534 static void
19535 set_dwarf2_cmd (char *args, int from_tty)
19536 {
19537 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19538 }
19539
19540 static void
19541 show_dwarf2_cmd (char *args, int from_tty)
19542 {
19543 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19544 }
19545
19546 /* Free data associated with OBJFILE, if necessary. */
19547
19548 static void
19549 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19550 {
19551 struct dwarf2_per_objfile *data = d;
19552 int ix;
19553
19554 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19555 VEC_free (dwarf2_per_cu_ptr,
19556 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
19557
19558 VEC_free (dwarf2_section_info_def, data->types);
19559
19560 if (data->dwo_files)
19561 free_dwo_files (data->dwo_files, objfile);
19562
19563 if (data->dwz_file && data->dwz_file->dwz_bfd)
19564 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19565 }
19566
19567 \f
19568 /* The "save gdb-index" command. */
19569
19570 /* The contents of the hash table we create when building the string
19571 table. */
19572 struct strtab_entry
19573 {
19574 offset_type offset;
19575 const char *str;
19576 };
19577
19578 /* Hash function for a strtab_entry.
19579
19580 Function is used only during write_hash_table so no index format backward
19581 compatibility is needed. */
19582
19583 static hashval_t
19584 hash_strtab_entry (const void *e)
19585 {
19586 const struct strtab_entry *entry = e;
19587 return mapped_index_string_hash (INT_MAX, entry->str);
19588 }
19589
19590 /* Equality function for a strtab_entry. */
19591
19592 static int
19593 eq_strtab_entry (const void *a, const void *b)
19594 {
19595 const struct strtab_entry *ea = a;
19596 const struct strtab_entry *eb = b;
19597 return !strcmp (ea->str, eb->str);
19598 }
19599
19600 /* Create a strtab_entry hash table. */
19601
19602 static htab_t
19603 create_strtab (void)
19604 {
19605 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19606 xfree, xcalloc, xfree);
19607 }
19608
19609 /* Add a string to the constant pool. Return the string's offset in
19610 host order. */
19611
19612 static offset_type
19613 add_string (htab_t table, struct obstack *cpool, const char *str)
19614 {
19615 void **slot;
19616 struct strtab_entry entry;
19617 struct strtab_entry *result;
19618
19619 entry.str = str;
19620 slot = htab_find_slot (table, &entry, INSERT);
19621 if (*slot)
19622 result = *slot;
19623 else
19624 {
19625 result = XNEW (struct strtab_entry);
19626 result->offset = obstack_object_size (cpool);
19627 result->str = str;
19628 obstack_grow_str0 (cpool, str);
19629 *slot = result;
19630 }
19631 return result->offset;
19632 }
19633
19634 /* An entry in the symbol table. */
19635 struct symtab_index_entry
19636 {
19637 /* The name of the symbol. */
19638 const char *name;
19639 /* The offset of the name in the constant pool. */
19640 offset_type index_offset;
19641 /* A sorted vector of the indices of all the CUs that hold an object
19642 of this name. */
19643 VEC (offset_type) *cu_indices;
19644 };
19645
19646 /* The symbol table. This is a power-of-2-sized hash table. */
19647 struct mapped_symtab
19648 {
19649 offset_type n_elements;
19650 offset_type size;
19651 struct symtab_index_entry **data;
19652 };
19653
19654 /* Hash function for a symtab_index_entry. */
19655
19656 static hashval_t
19657 hash_symtab_entry (const void *e)
19658 {
19659 const struct symtab_index_entry *entry = e;
19660 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19661 sizeof (offset_type) * VEC_length (offset_type,
19662 entry->cu_indices),
19663 0);
19664 }
19665
19666 /* Equality function for a symtab_index_entry. */
19667
19668 static int
19669 eq_symtab_entry (const void *a, const void *b)
19670 {
19671 const struct symtab_index_entry *ea = a;
19672 const struct symtab_index_entry *eb = b;
19673 int len = VEC_length (offset_type, ea->cu_indices);
19674 if (len != VEC_length (offset_type, eb->cu_indices))
19675 return 0;
19676 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19677 VEC_address (offset_type, eb->cu_indices),
19678 sizeof (offset_type) * len);
19679 }
19680
19681 /* Destroy a symtab_index_entry. */
19682
19683 static void
19684 delete_symtab_entry (void *p)
19685 {
19686 struct symtab_index_entry *entry = p;
19687 VEC_free (offset_type, entry->cu_indices);
19688 xfree (entry);
19689 }
19690
19691 /* Create a hash table holding symtab_index_entry objects. */
19692
19693 static htab_t
19694 create_symbol_hash_table (void)
19695 {
19696 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19697 delete_symtab_entry, xcalloc, xfree);
19698 }
19699
19700 /* Create a new mapped symtab object. */
19701
19702 static struct mapped_symtab *
19703 create_mapped_symtab (void)
19704 {
19705 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19706 symtab->n_elements = 0;
19707 symtab->size = 1024;
19708 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19709 return symtab;
19710 }
19711
19712 /* Destroy a mapped_symtab. */
19713
19714 static void
19715 cleanup_mapped_symtab (void *p)
19716 {
19717 struct mapped_symtab *symtab = p;
19718 /* The contents of the array are freed when the other hash table is
19719 destroyed. */
19720 xfree (symtab->data);
19721 xfree (symtab);
19722 }
19723
19724 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19725 the slot.
19726
19727 Function is used only during write_hash_table so no index format backward
19728 compatibility is needed. */
19729
19730 static struct symtab_index_entry **
19731 find_slot (struct mapped_symtab *symtab, const char *name)
19732 {
19733 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19734
19735 index = hash & (symtab->size - 1);
19736 step = ((hash * 17) & (symtab->size - 1)) | 1;
19737
19738 for (;;)
19739 {
19740 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19741 return &symtab->data[index];
19742 index = (index + step) & (symtab->size - 1);
19743 }
19744 }
19745
19746 /* Expand SYMTAB's hash table. */
19747
19748 static void
19749 hash_expand (struct mapped_symtab *symtab)
19750 {
19751 offset_type old_size = symtab->size;
19752 offset_type i;
19753 struct symtab_index_entry **old_entries = symtab->data;
19754
19755 symtab->size *= 2;
19756 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19757
19758 for (i = 0; i < old_size; ++i)
19759 {
19760 if (old_entries[i])
19761 {
19762 struct symtab_index_entry **slot = find_slot (symtab,
19763 old_entries[i]->name);
19764 *slot = old_entries[i];
19765 }
19766 }
19767
19768 xfree (old_entries);
19769 }
19770
19771 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19772 CU_INDEX is the index of the CU in which the symbol appears.
19773 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19774
19775 static void
19776 add_index_entry (struct mapped_symtab *symtab, const char *name,
19777 int is_static, gdb_index_symbol_kind kind,
19778 offset_type cu_index)
19779 {
19780 struct symtab_index_entry **slot;
19781 offset_type cu_index_and_attrs;
19782
19783 ++symtab->n_elements;
19784 if (4 * symtab->n_elements / 3 >= symtab->size)
19785 hash_expand (symtab);
19786
19787 slot = find_slot (symtab, name);
19788 if (!*slot)
19789 {
19790 *slot = XNEW (struct symtab_index_entry);
19791 (*slot)->name = name;
19792 /* index_offset is set later. */
19793 (*slot)->cu_indices = NULL;
19794 }
19795
19796 cu_index_and_attrs = 0;
19797 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19798 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19799 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19800
19801 /* We don't want to record an index value twice as we want to avoid the
19802 duplication.
19803 We process all global symbols and then all static symbols
19804 (which would allow us to avoid the duplication by only having to check
19805 the last entry pushed), but a symbol could have multiple kinds in one CU.
19806 To keep things simple we don't worry about the duplication here and
19807 sort and uniqufy the list after we've processed all symbols. */
19808 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19809 }
19810
19811 /* qsort helper routine for uniquify_cu_indices. */
19812
19813 static int
19814 offset_type_compare (const void *ap, const void *bp)
19815 {
19816 offset_type a = *(offset_type *) ap;
19817 offset_type b = *(offset_type *) bp;
19818
19819 return (a > b) - (b > a);
19820 }
19821
19822 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19823
19824 static void
19825 uniquify_cu_indices (struct mapped_symtab *symtab)
19826 {
19827 int i;
19828
19829 for (i = 0; i < symtab->size; ++i)
19830 {
19831 struct symtab_index_entry *entry = symtab->data[i];
19832
19833 if (entry
19834 && entry->cu_indices != NULL)
19835 {
19836 unsigned int next_to_insert, next_to_check;
19837 offset_type last_value;
19838
19839 qsort (VEC_address (offset_type, entry->cu_indices),
19840 VEC_length (offset_type, entry->cu_indices),
19841 sizeof (offset_type), offset_type_compare);
19842
19843 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19844 next_to_insert = 1;
19845 for (next_to_check = 1;
19846 next_to_check < VEC_length (offset_type, entry->cu_indices);
19847 ++next_to_check)
19848 {
19849 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19850 != last_value)
19851 {
19852 last_value = VEC_index (offset_type, entry->cu_indices,
19853 next_to_check);
19854 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19855 last_value);
19856 ++next_to_insert;
19857 }
19858 }
19859 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19860 }
19861 }
19862 }
19863
19864 /* Add a vector of indices to the constant pool. */
19865
19866 static offset_type
19867 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19868 struct symtab_index_entry *entry)
19869 {
19870 void **slot;
19871
19872 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19873 if (!*slot)
19874 {
19875 offset_type len = VEC_length (offset_type, entry->cu_indices);
19876 offset_type val = MAYBE_SWAP (len);
19877 offset_type iter;
19878 int i;
19879
19880 *slot = entry;
19881 entry->index_offset = obstack_object_size (cpool);
19882
19883 obstack_grow (cpool, &val, sizeof (val));
19884 for (i = 0;
19885 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19886 ++i)
19887 {
19888 val = MAYBE_SWAP (iter);
19889 obstack_grow (cpool, &val, sizeof (val));
19890 }
19891 }
19892 else
19893 {
19894 struct symtab_index_entry *old_entry = *slot;
19895 entry->index_offset = old_entry->index_offset;
19896 entry = old_entry;
19897 }
19898 return entry->index_offset;
19899 }
19900
19901 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19902 constant pool entries going into the obstack CPOOL. */
19903
19904 static void
19905 write_hash_table (struct mapped_symtab *symtab,
19906 struct obstack *output, struct obstack *cpool)
19907 {
19908 offset_type i;
19909 htab_t symbol_hash_table;
19910 htab_t str_table;
19911
19912 symbol_hash_table = create_symbol_hash_table ();
19913 str_table = create_strtab ();
19914
19915 /* We add all the index vectors to the constant pool first, to
19916 ensure alignment is ok. */
19917 for (i = 0; i < symtab->size; ++i)
19918 {
19919 if (symtab->data[i])
19920 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19921 }
19922
19923 /* Now write out the hash table. */
19924 for (i = 0; i < symtab->size; ++i)
19925 {
19926 offset_type str_off, vec_off;
19927
19928 if (symtab->data[i])
19929 {
19930 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19931 vec_off = symtab->data[i]->index_offset;
19932 }
19933 else
19934 {
19935 /* While 0 is a valid constant pool index, it is not valid
19936 to have 0 for both offsets. */
19937 str_off = 0;
19938 vec_off = 0;
19939 }
19940
19941 str_off = MAYBE_SWAP (str_off);
19942 vec_off = MAYBE_SWAP (vec_off);
19943
19944 obstack_grow (output, &str_off, sizeof (str_off));
19945 obstack_grow (output, &vec_off, sizeof (vec_off));
19946 }
19947
19948 htab_delete (str_table);
19949 htab_delete (symbol_hash_table);
19950 }
19951
19952 /* Struct to map psymtab to CU index in the index file. */
19953 struct psymtab_cu_index_map
19954 {
19955 struct partial_symtab *psymtab;
19956 unsigned int cu_index;
19957 };
19958
19959 static hashval_t
19960 hash_psymtab_cu_index (const void *item)
19961 {
19962 const struct psymtab_cu_index_map *map = item;
19963
19964 return htab_hash_pointer (map->psymtab);
19965 }
19966
19967 static int
19968 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19969 {
19970 const struct psymtab_cu_index_map *lhs = item_lhs;
19971 const struct psymtab_cu_index_map *rhs = item_rhs;
19972
19973 return lhs->psymtab == rhs->psymtab;
19974 }
19975
19976 /* Helper struct for building the address table. */
19977 struct addrmap_index_data
19978 {
19979 struct objfile *objfile;
19980 struct obstack *addr_obstack;
19981 htab_t cu_index_htab;
19982
19983 /* Non-zero if the previous_* fields are valid.
19984 We can't write an entry until we see the next entry (since it is only then
19985 that we know the end of the entry). */
19986 int previous_valid;
19987 /* Index of the CU in the table of all CUs in the index file. */
19988 unsigned int previous_cu_index;
19989 /* Start address of the CU. */
19990 CORE_ADDR previous_cu_start;
19991 };
19992
19993 /* Write an address entry to OBSTACK. */
19994
19995 static void
19996 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19997 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19998 {
19999 offset_type cu_index_to_write;
20000 char addr[8];
20001 CORE_ADDR baseaddr;
20002
20003 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20004
20005 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20006 obstack_grow (obstack, addr, 8);
20007 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20008 obstack_grow (obstack, addr, 8);
20009 cu_index_to_write = MAYBE_SWAP (cu_index);
20010 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20011 }
20012
20013 /* Worker function for traversing an addrmap to build the address table. */
20014
20015 static int
20016 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20017 {
20018 struct addrmap_index_data *data = datap;
20019 struct partial_symtab *pst = obj;
20020
20021 if (data->previous_valid)
20022 add_address_entry (data->objfile, data->addr_obstack,
20023 data->previous_cu_start, start_addr,
20024 data->previous_cu_index);
20025
20026 data->previous_cu_start = start_addr;
20027 if (pst != NULL)
20028 {
20029 struct psymtab_cu_index_map find_map, *map;
20030 find_map.psymtab = pst;
20031 map = htab_find (data->cu_index_htab, &find_map);
20032 gdb_assert (map != NULL);
20033 data->previous_cu_index = map->cu_index;
20034 data->previous_valid = 1;
20035 }
20036 else
20037 data->previous_valid = 0;
20038
20039 return 0;
20040 }
20041
20042 /* Write OBJFILE's address map to OBSTACK.
20043 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20044 in the index file. */
20045
20046 static void
20047 write_address_map (struct objfile *objfile, struct obstack *obstack,
20048 htab_t cu_index_htab)
20049 {
20050 struct addrmap_index_data addrmap_index_data;
20051
20052 /* When writing the address table, we have to cope with the fact that
20053 the addrmap iterator only provides the start of a region; we have to
20054 wait until the next invocation to get the start of the next region. */
20055
20056 addrmap_index_data.objfile = objfile;
20057 addrmap_index_data.addr_obstack = obstack;
20058 addrmap_index_data.cu_index_htab = cu_index_htab;
20059 addrmap_index_data.previous_valid = 0;
20060
20061 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20062 &addrmap_index_data);
20063
20064 /* It's highly unlikely the last entry (end address = 0xff...ff)
20065 is valid, but we should still handle it.
20066 The end address is recorded as the start of the next region, but that
20067 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20068 anyway. */
20069 if (addrmap_index_data.previous_valid)
20070 add_address_entry (objfile, obstack,
20071 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20072 addrmap_index_data.previous_cu_index);
20073 }
20074
20075 /* Return the symbol kind of PSYM. */
20076
20077 static gdb_index_symbol_kind
20078 symbol_kind (struct partial_symbol *psym)
20079 {
20080 domain_enum domain = PSYMBOL_DOMAIN (psym);
20081 enum address_class aclass = PSYMBOL_CLASS (psym);
20082
20083 switch (domain)
20084 {
20085 case VAR_DOMAIN:
20086 switch (aclass)
20087 {
20088 case LOC_BLOCK:
20089 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20090 case LOC_TYPEDEF:
20091 return GDB_INDEX_SYMBOL_KIND_TYPE;
20092 case LOC_COMPUTED:
20093 case LOC_CONST_BYTES:
20094 case LOC_OPTIMIZED_OUT:
20095 case LOC_STATIC:
20096 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20097 case LOC_CONST:
20098 /* Note: It's currently impossible to recognize psyms as enum values
20099 short of reading the type info. For now punt. */
20100 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20101 default:
20102 /* There are other LOC_FOO values that one might want to classify
20103 as variables, but dwarf2read.c doesn't currently use them. */
20104 return GDB_INDEX_SYMBOL_KIND_OTHER;
20105 }
20106 case STRUCT_DOMAIN:
20107 return GDB_INDEX_SYMBOL_KIND_TYPE;
20108 default:
20109 return GDB_INDEX_SYMBOL_KIND_OTHER;
20110 }
20111 }
20112
20113 /* Add a list of partial symbols to SYMTAB. */
20114
20115 static void
20116 write_psymbols (struct mapped_symtab *symtab,
20117 htab_t psyms_seen,
20118 struct partial_symbol **psymp,
20119 int count,
20120 offset_type cu_index,
20121 int is_static)
20122 {
20123 for (; count-- > 0; ++psymp)
20124 {
20125 struct partial_symbol *psym = *psymp;
20126 void **slot;
20127
20128 if (SYMBOL_LANGUAGE (psym) == language_ada)
20129 error (_("Ada is not currently supported by the index"));
20130
20131 /* Only add a given psymbol once. */
20132 slot = htab_find_slot (psyms_seen, psym, INSERT);
20133 if (!*slot)
20134 {
20135 gdb_index_symbol_kind kind = symbol_kind (psym);
20136
20137 *slot = psym;
20138 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20139 is_static, kind, cu_index);
20140 }
20141 }
20142 }
20143
20144 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20145 exception if there is an error. */
20146
20147 static void
20148 write_obstack (FILE *file, struct obstack *obstack)
20149 {
20150 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20151 file)
20152 != obstack_object_size (obstack))
20153 error (_("couldn't data write to file"));
20154 }
20155
20156 /* Unlink a file if the argument is not NULL. */
20157
20158 static void
20159 unlink_if_set (void *p)
20160 {
20161 char **filename = p;
20162 if (*filename)
20163 unlink (*filename);
20164 }
20165
20166 /* A helper struct used when iterating over debug_types. */
20167 struct signatured_type_index_data
20168 {
20169 struct objfile *objfile;
20170 struct mapped_symtab *symtab;
20171 struct obstack *types_list;
20172 htab_t psyms_seen;
20173 int cu_index;
20174 };
20175
20176 /* A helper function that writes a single signatured_type to an
20177 obstack. */
20178
20179 static int
20180 write_one_signatured_type (void **slot, void *d)
20181 {
20182 struct signatured_type_index_data *info = d;
20183 struct signatured_type *entry = (struct signatured_type *) *slot;
20184 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20185 struct partial_symtab *psymtab = per_cu->v.psymtab;
20186 gdb_byte val[8];
20187
20188 write_psymbols (info->symtab,
20189 info->psyms_seen,
20190 info->objfile->global_psymbols.list
20191 + psymtab->globals_offset,
20192 psymtab->n_global_syms, info->cu_index,
20193 0);
20194 write_psymbols (info->symtab,
20195 info->psyms_seen,
20196 info->objfile->static_psymbols.list
20197 + psymtab->statics_offset,
20198 psymtab->n_static_syms, info->cu_index,
20199 1);
20200
20201 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20202 entry->per_cu.offset.sect_off);
20203 obstack_grow (info->types_list, val, 8);
20204 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20205 entry->type_offset_in_tu.cu_off);
20206 obstack_grow (info->types_list, val, 8);
20207 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20208 obstack_grow (info->types_list, val, 8);
20209
20210 ++info->cu_index;
20211
20212 return 1;
20213 }
20214
20215 /* Recurse into all "included" dependencies and write their symbols as
20216 if they appeared in this psymtab. */
20217
20218 static void
20219 recursively_write_psymbols (struct objfile *objfile,
20220 struct partial_symtab *psymtab,
20221 struct mapped_symtab *symtab,
20222 htab_t psyms_seen,
20223 offset_type cu_index)
20224 {
20225 int i;
20226
20227 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20228 if (psymtab->dependencies[i]->user != NULL)
20229 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20230 symtab, psyms_seen, cu_index);
20231
20232 write_psymbols (symtab,
20233 psyms_seen,
20234 objfile->global_psymbols.list + psymtab->globals_offset,
20235 psymtab->n_global_syms, cu_index,
20236 0);
20237 write_psymbols (symtab,
20238 psyms_seen,
20239 objfile->static_psymbols.list + psymtab->statics_offset,
20240 psymtab->n_static_syms, cu_index,
20241 1);
20242 }
20243
20244 /* Create an index file for OBJFILE in the directory DIR. */
20245
20246 static void
20247 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20248 {
20249 struct cleanup *cleanup;
20250 char *filename, *cleanup_filename;
20251 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20252 struct obstack cu_list, types_cu_list;
20253 int i;
20254 FILE *out_file;
20255 struct mapped_symtab *symtab;
20256 offset_type val, size_of_contents, total_len;
20257 struct stat st;
20258 htab_t psyms_seen;
20259 htab_t cu_index_htab;
20260 struct psymtab_cu_index_map *psymtab_cu_index_map;
20261
20262 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20263 return;
20264
20265 if (dwarf2_per_objfile->using_index)
20266 error (_("Cannot use an index to create the index"));
20267
20268 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20269 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20270
20271 if (stat (objfile->name, &st) < 0)
20272 perror_with_name (objfile->name);
20273
20274 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20275 INDEX_SUFFIX, (char *) NULL);
20276 cleanup = make_cleanup (xfree, filename);
20277
20278 out_file = fopen (filename, "wb");
20279 if (!out_file)
20280 error (_("Can't open `%s' for writing"), filename);
20281
20282 cleanup_filename = filename;
20283 make_cleanup (unlink_if_set, &cleanup_filename);
20284
20285 symtab = create_mapped_symtab ();
20286 make_cleanup (cleanup_mapped_symtab, symtab);
20287
20288 obstack_init (&addr_obstack);
20289 make_cleanup_obstack_free (&addr_obstack);
20290
20291 obstack_init (&cu_list);
20292 make_cleanup_obstack_free (&cu_list);
20293
20294 obstack_init (&types_cu_list);
20295 make_cleanup_obstack_free (&types_cu_list);
20296
20297 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20298 NULL, xcalloc, xfree);
20299 make_cleanup_htab_delete (psyms_seen);
20300
20301 /* While we're scanning CU's create a table that maps a psymtab pointer
20302 (which is what addrmap records) to its index (which is what is recorded
20303 in the index file). This will later be needed to write the address
20304 table. */
20305 cu_index_htab = htab_create_alloc (100,
20306 hash_psymtab_cu_index,
20307 eq_psymtab_cu_index,
20308 NULL, xcalloc, xfree);
20309 make_cleanup_htab_delete (cu_index_htab);
20310 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20311 xmalloc (sizeof (struct psymtab_cu_index_map)
20312 * dwarf2_per_objfile->n_comp_units);
20313 make_cleanup (xfree, psymtab_cu_index_map);
20314
20315 /* The CU list is already sorted, so we don't need to do additional
20316 work here. Also, the debug_types entries do not appear in
20317 all_comp_units, but only in their own hash table. */
20318 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20319 {
20320 struct dwarf2_per_cu_data *per_cu
20321 = dwarf2_per_objfile->all_comp_units[i];
20322 struct partial_symtab *psymtab = per_cu->v.psymtab;
20323 gdb_byte val[8];
20324 struct psymtab_cu_index_map *map;
20325 void **slot;
20326
20327 if (psymtab->user == NULL)
20328 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20329
20330 map = &psymtab_cu_index_map[i];
20331 map->psymtab = psymtab;
20332 map->cu_index = i;
20333 slot = htab_find_slot (cu_index_htab, map, INSERT);
20334 gdb_assert (slot != NULL);
20335 gdb_assert (*slot == NULL);
20336 *slot = map;
20337
20338 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20339 per_cu->offset.sect_off);
20340 obstack_grow (&cu_list, val, 8);
20341 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20342 obstack_grow (&cu_list, val, 8);
20343 }
20344
20345 /* Dump the address map. */
20346 write_address_map (objfile, &addr_obstack, cu_index_htab);
20347
20348 /* Write out the .debug_type entries, if any. */
20349 if (dwarf2_per_objfile->signatured_types)
20350 {
20351 struct signatured_type_index_data sig_data;
20352
20353 sig_data.objfile = objfile;
20354 sig_data.symtab = symtab;
20355 sig_data.types_list = &types_cu_list;
20356 sig_data.psyms_seen = psyms_seen;
20357 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20358 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20359 write_one_signatured_type, &sig_data);
20360 }
20361
20362 /* Now that we've processed all symbols we can shrink their cu_indices
20363 lists. */
20364 uniquify_cu_indices (symtab);
20365
20366 obstack_init (&constant_pool);
20367 make_cleanup_obstack_free (&constant_pool);
20368 obstack_init (&symtab_obstack);
20369 make_cleanup_obstack_free (&symtab_obstack);
20370 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20371
20372 obstack_init (&contents);
20373 make_cleanup_obstack_free (&contents);
20374 size_of_contents = 6 * sizeof (offset_type);
20375 total_len = size_of_contents;
20376
20377 /* The version number. */
20378 val = MAYBE_SWAP (7);
20379 obstack_grow (&contents, &val, sizeof (val));
20380
20381 /* The offset of the CU list from the start of the file. */
20382 val = MAYBE_SWAP (total_len);
20383 obstack_grow (&contents, &val, sizeof (val));
20384 total_len += obstack_object_size (&cu_list);
20385
20386 /* The offset of the types CU list from the start of the file. */
20387 val = MAYBE_SWAP (total_len);
20388 obstack_grow (&contents, &val, sizeof (val));
20389 total_len += obstack_object_size (&types_cu_list);
20390
20391 /* The offset of the address table from the start of the file. */
20392 val = MAYBE_SWAP (total_len);
20393 obstack_grow (&contents, &val, sizeof (val));
20394 total_len += obstack_object_size (&addr_obstack);
20395
20396 /* The offset of the symbol table from the start of the file. */
20397 val = MAYBE_SWAP (total_len);
20398 obstack_grow (&contents, &val, sizeof (val));
20399 total_len += obstack_object_size (&symtab_obstack);
20400
20401 /* The offset of the constant pool from the start of the file. */
20402 val = MAYBE_SWAP (total_len);
20403 obstack_grow (&contents, &val, sizeof (val));
20404 total_len += obstack_object_size (&constant_pool);
20405
20406 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20407
20408 write_obstack (out_file, &contents);
20409 write_obstack (out_file, &cu_list);
20410 write_obstack (out_file, &types_cu_list);
20411 write_obstack (out_file, &addr_obstack);
20412 write_obstack (out_file, &symtab_obstack);
20413 write_obstack (out_file, &constant_pool);
20414
20415 fclose (out_file);
20416
20417 /* We want to keep the file, so we set cleanup_filename to NULL
20418 here. See unlink_if_set. */
20419 cleanup_filename = NULL;
20420
20421 do_cleanups (cleanup);
20422 }
20423
20424 /* Implementation of the `save gdb-index' command.
20425
20426 Note that the file format used by this command is documented in the
20427 GDB manual. Any changes here must be documented there. */
20428
20429 static void
20430 save_gdb_index_command (char *arg, int from_tty)
20431 {
20432 struct objfile *objfile;
20433
20434 if (!arg || !*arg)
20435 error (_("usage: save gdb-index DIRECTORY"));
20436
20437 ALL_OBJFILES (objfile)
20438 {
20439 struct stat st;
20440
20441 /* If the objfile does not correspond to an actual file, skip it. */
20442 if (stat (objfile->name, &st) < 0)
20443 continue;
20444
20445 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20446 if (dwarf2_per_objfile)
20447 {
20448 volatile struct gdb_exception except;
20449
20450 TRY_CATCH (except, RETURN_MASK_ERROR)
20451 {
20452 write_psymtabs_to_index (objfile, arg);
20453 }
20454 if (except.reason < 0)
20455 exception_fprintf (gdb_stderr, except,
20456 _("Error while writing index for `%s': "),
20457 objfile->name);
20458 }
20459 }
20460 }
20461
20462 \f
20463
20464 int dwarf2_always_disassemble;
20465
20466 static void
20467 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20468 struct cmd_list_element *c, const char *value)
20469 {
20470 fprintf_filtered (file,
20471 _("Whether to always disassemble "
20472 "DWARF expressions is %s.\n"),
20473 value);
20474 }
20475
20476 static void
20477 show_check_physname (struct ui_file *file, int from_tty,
20478 struct cmd_list_element *c, const char *value)
20479 {
20480 fprintf_filtered (file,
20481 _("Whether to check \"physname\" is %s.\n"),
20482 value);
20483 }
20484
20485 void _initialize_dwarf2_read (void);
20486
20487 void
20488 _initialize_dwarf2_read (void)
20489 {
20490 struct cmd_list_element *c;
20491
20492 dwarf2_objfile_data_key
20493 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20494
20495 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20496 Set DWARF 2 specific variables.\n\
20497 Configure DWARF 2 variables such as the cache size"),
20498 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20499 0/*allow-unknown*/, &maintenance_set_cmdlist);
20500
20501 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20502 Show DWARF 2 specific variables\n\
20503 Show DWARF 2 variables such as the cache size"),
20504 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20505 0/*allow-unknown*/, &maintenance_show_cmdlist);
20506
20507 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20508 &dwarf2_max_cache_age, _("\
20509 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20510 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20511 A higher limit means that cached compilation units will be stored\n\
20512 in memory longer, and more total memory will be used. Zero disables\n\
20513 caching, which can slow down startup."),
20514 NULL,
20515 show_dwarf2_max_cache_age,
20516 &set_dwarf2_cmdlist,
20517 &show_dwarf2_cmdlist);
20518
20519 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20520 &dwarf2_always_disassemble, _("\
20521 Set whether `info address' always disassembles DWARF expressions."), _("\
20522 Show whether `info address' always disassembles DWARF expressions."), _("\
20523 When enabled, DWARF expressions are always printed in an assembly-like\n\
20524 syntax. When disabled, expressions will be printed in a more\n\
20525 conversational style, when possible."),
20526 NULL,
20527 show_dwarf2_always_disassemble,
20528 &set_dwarf2_cmdlist,
20529 &show_dwarf2_cmdlist);
20530
20531 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20532 Set debugging of the dwarf2 reader."), _("\
20533 Show debugging of the dwarf2 reader."), _("\
20534 When enabled, debugging messages are printed during dwarf2 reading\n\
20535 and symtab expansion."),
20536 NULL,
20537 NULL,
20538 &setdebuglist, &showdebuglist);
20539
20540 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20541 Set debugging of the dwarf2 DIE reader."), _("\
20542 Show debugging of the dwarf2 DIE reader."), _("\
20543 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20544 The value is the maximum depth to print."),
20545 NULL,
20546 NULL,
20547 &setdebuglist, &showdebuglist);
20548
20549 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20550 Set cross-checking of \"physname\" code against demangler."), _("\
20551 Show cross-checking of \"physname\" code against demangler."), _("\
20552 When enabled, GDB's internal \"physname\" code is checked against\n\
20553 the demangler."),
20554 NULL, show_check_physname,
20555 &setdebuglist, &showdebuglist);
20556
20557 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20558 no_class, &use_deprecated_index_sections, _("\
20559 Set whether to use deprecated gdb_index sections."), _("\
20560 Show whether to use deprecated gdb_index sections."), _("\
20561 When enabled, deprecated .gdb_index sections are used anyway.\n\
20562 Normally they are ignored either because of a missing feature or\n\
20563 performance issue.\n\
20564 Warning: This option must be enabled before gdb reads the file."),
20565 NULL,
20566 NULL,
20567 &setlist, &showlist);
20568
20569 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20570 _("\
20571 Save a gdb-index file.\n\
20572 Usage: save gdb-index DIRECTORY"),
20573 &save_cmdlist);
20574 set_cmd_completer (c, filename_completer);
20575 }
This page took 0.486753 seconds and 4 git commands to generate.