cli-script.c: Simplify using std::string, eliminate cleanups
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75 #include <algorithm>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1610 values. Keep the items ordered with increasing constraints compliance. */
1611 enum pc_bounds_kind
1612 {
1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1614 PC_BOUNDS_NOT_PRESENT,
1615
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625 };
1626
1627 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
1631
1632 static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
1636 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
1639 static void dwarf2_add_field (struct field_info *, struct die_info *,
1640 struct dwarf2_cu *);
1641
1642 static void dwarf2_attach_fields_to_type (struct field_info *,
1643 struct type *, struct dwarf2_cu *);
1644
1645 static void dwarf2_add_member_fn (struct field_info *,
1646 struct die_info *, struct type *,
1647 struct dwarf2_cu *);
1648
1649 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1650 struct type *,
1651 struct dwarf2_cu *);
1652
1653 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1654
1655 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1656
1657 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1658
1659 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
1661 static struct using_direct **using_directives (enum language);
1662
1663 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
1665 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
1670 static const char *namespace_name (struct die_info *die,
1671 int *is_anonymous, struct dwarf2_cu *);
1672
1673 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1674
1675 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1676
1677 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1678 struct dwarf2_cu *);
1679
1680 static struct die_info *read_die_and_siblings_1
1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1682 struct die_info *);
1683
1684 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
1687 struct die_info *parent);
1688
1689 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
1692
1693 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
1696
1697 static void process_die (struct die_info *, struct dwarf2_cu *);
1698
1699 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
1701
1702 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1703
1704 static const char *dwarf2_full_name (const char *name,
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
1708 static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
1711 static struct die_info *dwarf2_extension (struct die_info *die,
1712 struct dwarf2_cu **);
1713
1714 static const char *dwarf_tag_name (unsigned int);
1715
1716 static const char *dwarf_attr_name (unsigned int);
1717
1718 static const char *dwarf_form_name (unsigned int);
1719
1720 static char *dwarf_bool_name (unsigned int);
1721
1722 static const char *dwarf_type_encoding_name (unsigned int);
1723
1724 static struct die_info *sibling_die (struct die_info *);
1725
1726 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728 static void dump_die_for_error (struct die_info *);
1729
1730 static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
1732
1733 /*static*/ void dump_die (struct die_info *, int max_level);
1734
1735 static void store_in_ref_table (struct die_info *,
1736 struct dwarf2_cu *);
1737
1738 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1739
1740 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1741
1742 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1743 const struct attribute *,
1744 struct dwarf2_cu **);
1745
1746 static struct die_info *follow_die_ref (struct die_info *,
1747 const struct attribute *,
1748 struct dwarf2_cu **);
1749
1750 static struct die_info *follow_die_sig (struct die_info *,
1751 const struct attribute *,
1752 struct dwarf2_cu **);
1753
1754 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757 static struct type *get_DW_AT_signature_type (struct die_info *,
1758 const struct attribute *,
1759 struct dwarf2_cu *);
1760
1761 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1762
1763 static void read_signatured_type (struct signatured_type *);
1764
1765 static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
1769 /* memory allocation interface */
1770
1771 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1772
1773 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1774
1775 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1776
1777 static int attr_form_is_block (const struct attribute *);
1778
1779 static int attr_form_is_section_offset (const struct attribute *);
1780
1781 static int attr_form_is_constant (const struct attribute *);
1782
1783 static int attr_form_is_ref (const struct attribute *);
1784
1785 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
1787 const struct attribute *attr);
1788
1789 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1790 struct symbol *sym,
1791 struct dwarf2_cu *cu,
1792 int is_block);
1793
1794 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
1797
1798 static void free_stack_comp_unit (void *);
1799
1800 static hashval_t partial_die_hash (const void *item);
1801
1802 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
1804 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1806
1807 static void init_one_comp_unit (struct dwarf2_cu *cu,
1808 struct dwarf2_per_cu_data *per_cu);
1809
1810 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
1813
1814 static void free_heap_comp_unit (void *);
1815
1816 static void free_cached_comp_units (void *);
1817
1818 static void age_cached_comp_units (void);
1819
1820 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1821
1822 static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1824
1825 static void create_all_comp_units (struct objfile *);
1826
1827 static int create_all_type_units (struct objfile *);
1828
1829 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
1831
1832 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
1834
1835 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
1841 static void dwarf2_mark (struct dwarf2_cu *);
1842
1843 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
1845 static struct type *get_die_type_at_offset (sect_offset,
1846 struct dwarf2_per_cu_data *);
1847
1848 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1849
1850 static void dwarf2_release_queue (void *dummy);
1851
1852 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
1855 static void process_queue (void);
1856
1857 static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
1859 const char **name, const char **comp_dir);
1860
1861 static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
1864 static const gdb_byte *read_and_check_comp_unit_head
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1868 int is_debug_types_section);
1869
1870 static void init_cutu_and_read_dies
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
1875 static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
1878
1879 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1880
1881 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
1883 static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
1886
1887 static struct dwp_file *get_dwp_file (void);
1888
1889 static struct dwo_unit *lookup_dwo_comp_unit
1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1891
1892 static struct dwo_unit *lookup_dwo_type_unit
1893 (struct signatured_type *, const char *, const char *);
1894
1895 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
1897 static void free_dwo_file_cleanup (void *);
1898
1899 static void process_cu_includes (void);
1900
1901 static void check_producer (struct dwarf2_cu *cu);
1902
1903 static void free_line_header_voidp (void *arg);
1904 \f
1905 /* Various complaints about symbol reading that don't abort the process. */
1906
1907 static void
1908 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909 {
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912 }
1913
1914 static void
1915 dwarf2_debug_line_missing_file_complaint (void)
1916 {
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919 }
1920
1921 static void
1922 dwarf2_debug_line_missing_end_sequence_complaint (void)
1923 {
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927 }
1928
1929 static void
1930 dwarf2_complex_location_expr_complaint (void)
1931 {
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933 }
1934
1935 static void
1936 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938 {
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942 }
1943
1944 static void
1945 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946 {
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
1950 get_section_name (section),
1951 get_section_file_name (section));
1952 }
1953
1954 static void
1955 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956 {
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961 }
1962
1963 static void
1964 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965 {
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969 }
1970
1971 /* Hash function for line_header_hash. */
1972
1973 static hashval_t
1974 line_header_hash (const struct line_header *ofs)
1975 {
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977 }
1978
1979 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981 static hashval_t
1982 line_header_hash_voidp (const void *item)
1983 {
1984 const struct line_header *ofs = (const struct line_header *) item;
1985
1986 return line_header_hash (ofs);
1987 }
1988
1989 /* Equality function for line_header_hash. */
1990
1991 static int
1992 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993 {
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999 }
2000
2001 \f
2002 #if WORDS_BIGENDIAN
2003
2004 /* Convert VALUE between big- and little-endian. */
2005 static offset_type
2006 byte_swap (offset_type value)
2007 {
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015 }
2016
2017 #define MAYBE_SWAP(V) byte_swap (V)
2018
2019 #else
2020 #define MAYBE_SWAP(V) (V)
2021 #endif /* WORDS_BIGENDIAN */
2022
2023 /* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026 static CORE_ADDR
2027 attr_value_as_address (struct attribute *attr)
2028 {
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051 }
2052
2053 /* The suffix for an index file. */
2054 #define INDEX_SUFFIX ".gdb-index"
2055
2056 /* Try to locate the sections we need for DWARF 2 debugging
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
2060
2061 int
2062 dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
2064 {
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2072
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
2076
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
2081 return (!dwarf2_per_objfile->info.is_virtual
2082 && dwarf2_per_objfile->info.s.section != NULL
2083 && !dwarf2_per_objfile->abbrev.is_virtual
2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
2085 }
2086
2087 /* Return the containing section of virtual section SECTION. */
2088
2089 static struct dwarf2_section_info *
2090 get_containing_section (const struct dwarf2_section_info *section)
2091 {
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
2094 }
2095
2096 /* Return the bfd owner of SECTION. */
2097
2098 static struct bfd *
2099 get_section_bfd_owner (const struct dwarf2_section_info *section)
2100 {
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
2106 return section->s.section->owner;
2107 }
2108
2109 /* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112 static asection *
2113 get_section_bfd_section (const struct dwarf2_section_info *section)
2114 {
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
2120 return section->s.section;
2121 }
2122
2123 /* Return the name of SECTION. */
2124
2125 static const char *
2126 get_section_name (const struct dwarf2_section_info *section)
2127 {
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132 }
2133
2134 /* Return the name of the file SECTION is in. */
2135
2136 static const char *
2137 get_section_file_name (const struct dwarf2_section_info *section)
2138 {
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142 }
2143
2144 /* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147 static int
2148 get_section_id (const struct dwarf2_section_info *section)
2149 {
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155 }
2156
2157 /* Return the flags of SECTION.
2158 SECTION (or containing section if this is a virtual section) must exist. */
2159
2160 static int
2161 get_section_flags (const struct dwarf2_section_info *section)
2162 {
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167 }
2168
2169 /* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
2171
2172 static int
2173 section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
2175 {
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
2183 }
2184
2185 /* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189 static void
2190 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2191 {
2192 const struct dwarf2_debug_sections *names;
2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
2204 {
2205 dwarf2_per_objfile->info.s.section = sectp;
2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->abbrev))
2209 {
2210 dwarf2_per_objfile->abbrev.s.section = sectp;
2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->line))
2214 {
2215 dwarf2_per_objfile->line.s.section = sectp;
2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->loc))
2219 {
2220 dwarf2_per_objfile->loc.s.section = sectp;
2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->macinfo))
2224 {
2225 dwarf2_per_objfile->macinfo.s.section = sectp;
2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
2230 dwarf2_per_objfile->macro.s.section = sectp;
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->str))
2234 {
2235 dwarf2_per_objfile->str.s.section = sectp;
2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
2240 dwarf2_per_objfile->addr.s.section = sectp;
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
2243 else if (section_is_p (sectp->name, &names->frame))
2244 {
2245 dwarf2_per_objfile->frame.s.section = sectp;
2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2247 }
2248 else if (section_is_p (sectp->name, &names->eh_frame))
2249 {
2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2252 }
2253 else if (section_is_p (sectp->name, &names->ranges))
2254 {
2255 dwarf2_per_objfile->ranges.s.section = sectp;
2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2257 }
2258 else if (section_is_p (sectp->name, &names->types))
2259 {
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
2263 type_section.s.section = sectp;
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
2268 }
2269 else if (section_is_p (sectp->name, &names->gdb_index))
2270 {
2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
2274
2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
2278 }
2279
2280 /* A helper function that decides whether a section is empty,
2281 or not present. */
2282
2283 static int
2284 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2285 {
2286 if (section->is_virtual)
2287 return section->size == 0;
2288 return section->s.section == NULL || section->size == 0;
2289 }
2290
2291 /* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
2295 If the section is compressed, uncompress it before returning. */
2296
2297 static void
2298 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2299 {
2300 asection *sectp;
2301 bfd *abfd;
2302 gdb_byte *buf, *retbuf;
2303
2304 if (info->readin)
2305 return;
2306 info->buffer = NULL;
2307 info->readin = 1;
2308
2309 if (dwarf2_section_empty_p (info))
2310 return;
2311
2312 sectp = get_section_bfd_section (info);
2313
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
2342 {
2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2344 return;
2345 }
2346
2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2348 info->buffer = buf;
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
2371 }
2372
2373 /* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380 static bfd_size_type
2381 dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383 {
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387 }
2388
2389 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2390 SECTION_NAME. */
2391
2392 void
2393 dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
2395 asection **sectp, const gdb_byte **bufp,
2396 bfd_size_type *sizep)
2397 {
2398 struct dwarf2_per_objfile *data
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
2401 struct dwarf2_section_info *info;
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
2423
2424 dwarf2_read_section (objfile, info);
2425
2426 *sectp = get_section_bfd_section (info);
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429 }
2430
2431 /* A helper function to find the sections for a .dwz file. */
2432
2433 static void
2434 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435 {
2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
2442 dwz_file->abbrev.s.section = sectp;
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
2447 dwz_file->info.s.section = sectp;
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
2452 dwz_file->str.s.section = sectp;
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
2457 dwz_file->line.s.section = sectp;
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
2462 dwz_file->macro.s.section = sectp;
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
2467 dwz_file->gdb_index.s.section = sectp;
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
2470 }
2471
2472 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
2475
2476 static struct dwz_file *
2477 dwarf2_get_dwz_file (void)
2478 {
2479 bfd *dwz_bfd;
2480 char *data;
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
2484 bfd_size_type buildid_len_arg;
2485 size_t buildid_len;
2486 bfd_byte *buildid;
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2493 &buildid_len_arg, &buildid);
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
2501 cleanup = make_cleanup (xfree, data);
2502 make_cleanup (xfree, buildid);
2503
2504 buildid_len = (size_t) buildid_len_arg;
2505
2506 filename = (const char *) data;
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2524 if (dwz_bfd != NULL)
2525 {
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
2531 }
2532
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2549 dwarf2_per_objfile->dwz_file = result;
2550 return result;
2551 }
2552 \f
2553 /* DWARF quick_symbols_functions support. */
2554
2555 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560 struct quick_file_names
2561 {
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575 };
2576
2577 /* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580 struct dwarf2_per_cu_quick_data
2581 {
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
2589 struct compunit_symtab *compunit_symtab;
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598 };
2599
2600 /* Utility hash function for a stmt_list_hash. */
2601
2602 static hashval_t
2603 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604 {
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611 }
2612
2613 /* Utility equality function for a stmt_list_hash. */
2614
2615 static int
2616 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618 {
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626 }
2627
2628 /* Hash function for a quick_file_names. */
2629
2630 static hashval_t
2631 hash_file_name_entry (const void *e)
2632 {
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
2635
2636 return hash_stmt_list_entry (&file_data->hash);
2637 }
2638
2639 /* Equality function for a quick_file_names. */
2640
2641 static int
2642 eq_file_name_entry (const void *a, const void *b)
2643 {
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2646
2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2648 }
2649
2650 /* Delete function for a quick_file_names. */
2651
2652 static void
2653 delete_file_name_entry (void *e)
2654 {
2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667 }
2668
2669 /* Create a quick_file_names hash table. */
2670
2671 static htab_t
2672 create_quick_file_names_table (unsigned int nr_initial_entries)
2673 {
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677 }
2678
2679 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683 static void
2684 load_cu (struct dwarf2_per_cu_data *per_cu)
2685 {
2686 if (per_cu->is_debug_types)
2687 load_full_type_unit (per_cu);
2688 else
2689 load_full_comp_unit (per_cu, language_minimal);
2690
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2695 }
2696
2697 /* Read in the symbols for PER_CU. */
2698
2699 static void
2700 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2701 {
2702 struct cleanup *back_to;
2703
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
2711 if (dwarf2_per_objfile->using_index
2712 ? per_cu->v.quick->compunit_symtab == NULL
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
2722 && per_cu->cu != NULL
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
2729 }
2730
2731 process_queue ();
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738 }
2739
2740 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2743
2744 static struct compunit_symtab *
2745 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2746 {
2747 gdb_assert (dwarf2_per_objfile->using_index);
2748 if (!per_cu->v.quick->compunit_symtab)
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
2752 dw2_do_instantiate_symtab (per_cu);
2753 process_cu_includes ();
2754 do_cleanups (back_to);
2755 }
2756
2757 return per_cu->v.quick->compunit_symtab;
2758 }
2759
2760 /* Return the CU/TU given its index.
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2768
2769 ...;
2770 }
2771 */
2772
2773 static struct dwarf2_per_cu_data *
2774 dw2_get_cutu (int index)
2775 {
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
2778 index -= dwarf2_per_objfile->n_comp_units;
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784 }
2785
2786 /* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
2789
2790 static struct dwarf2_per_cu_data *
2791 dw2_get_cu (int index)
2792 {
2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2794
2795 return dwarf2_per_objfile->all_comp_units[index];
2796 }
2797
2798 /* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2800
2801 static void
2802 create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
2807 {
2808 offset_type i;
2809
2810 for (i = 0; i < n_elements; i += 2)
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
2822 the_cu->offset.sect_off = offset;
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
2825 the_cu->section = section;
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2830 }
2831 }
2832
2833 /* Read the CU list from the mapped index, and use it to create all
2834 the CU objects for this objfile. */
2835
2836 static void
2837 create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840 {
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2847
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2850
2851 if (dwz_elements == 0)
2852 return;
2853
2854 dwz = dwarf2_get_dwz_file ();
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2857 }
2858
2859 /* Create the signatured type hash table from the index. */
2860
2861 static void
2862 create_signatured_type_table_from_index (struct objfile *objfile,
2863 struct dwarf2_section_info *section,
2864 const gdb_byte *bytes,
2865 offset_type elements)
2866 {
2867 offset_type i;
2868 htab_t sig_types_hash;
2869
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2875
2876 sig_types_hash = allocate_signatured_type_table (objfile);
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
2882 void **slot;
2883
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2892 struct signatured_type);
2893 sig_type->signature = signature;
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
2896 sig_type->per_cu.section = section;
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
2905
2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2907 }
2908
2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
2910 }
2911
2912 /* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2914
2915 static void
2916 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917 {
2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
2943
2944 if (lo > hi)
2945 {
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
2948 hex_string (lo), hex_string (hi));
2949 continue;
2950 }
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
2957 continue;
2958 }
2959
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968 }
2969
2970 /* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2977
2978 static hashval_t
2979 mapped_index_string_hash (int index_version, const void *p)
2980 {
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
2991
2992 return r;
2993 }
2994
2995 /* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2998
2999 static int
3000 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002 {
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
3005 offset_type slot, step;
3006 int (*cmp) (const char *, const char *);
3007
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
3014
3015 if (strchr (name, '(') != NULL)
3016 {
3017 char *without_params = cp_remove_params (name);
3018
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
3024 }
3025 }
3026
3027 /* Index version 4 did not support case insensitive searches. But the
3028 indices for case insensitive languages are built in lowercase, therefore
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
3049
3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3051 if (!cmp (name, str))
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
3055 do_cleanups (back_to);
3056 return 1;
3057 }
3058
3059 slot = (slot + step) & (index->symbol_table_slots - 1);
3060 }
3061 }
3062
3063 /* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
3073
3074 static int
3075 read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
3084 {
3085 const gdb_byte *addr;
3086 offset_type version;
3087 offset_type *metadata;
3088 int i;
3089
3090 if (dwarf2_section_empty_p (section))
3091 return 0;
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3096 return 0;
3097
3098 dwarf2_read_section (objfile, section);
3099
3100 addr = section->buffer;
3101 /* Version check. */
3102 version = MAYBE_SWAP (*(offset_type *) addr);
3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
3104 causes the index to behave very poorly for certain requests. Version 3
3105 contained incomplete addrmap. So, it seems better to just ignore such
3106 indices. */
3107 if (version < 4)
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
3113 filename);
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
3126 if (version < 6 && !deprecated_ok)
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
3131 warning (_("\
3132 Skipping deprecated .gdb_index section in %s.\n\
3133 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134 to use the section anyway."),
3135 filename);
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
3147
3148 /* Indexes with higher version than the one supported by GDB may be no
3149 longer backward compatible. */
3150 if (version > 8)
3151 return 0;
3152
3153 map->version = version;
3154 map->total_size = section->size;
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
3157
3158 i = 0;
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
3162 ++i;
3163
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
3168 ++i;
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
3179 ++i;
3180
3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3182
3183 return 1;
3184 }
3185
3186
3187 /* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190 static int
3191 dwarf2_read_index (struct objfile *objfile)
3192 {
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3196 struct dwz_file *dwz;
3197
3198 if (!read_index_from_section (objfile, objfile_name (objfile),
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
3205 /* Don't use the index if it's empty. */
3206 if (local_map.symbol_table_slots == 0)
3207 return 0;
3208
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
3213 {
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
3233
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
3248 }
3249
3250 create_addrmap_from_index (objfile, &local_map);
3251
3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3253 *map = local_map;
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3259
3260 return 1;
3261 }
3262
3263 /* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
3265
3266 static void
3267 dw2_setup (struct objfile *objfile)
3268 {
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
3271 gdb_assert (dwarf2_per_objfile);
3272 }
3273
3274 /* die_reader_func for dw2_get_file_names. */
3275
3276 static void
3277 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3278 const gdb_byte *info_ptr,
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
3282 {
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
3286 struct dwarf2_per_cu_data *lh_cu;
3287 struct line_header *lh;
3288 struct attribute *attr;
3289 int i;
3290 const char *name, *comp_dir;
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
3294
3295 gdb_assert (! this_cu->is_debug_types);
3296
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
3305 lh_cu = this_cu;
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3311 if (attr)
3312 {
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3326 return;
3327 }
3328
3329 lh = dwarf_decode_line_header (line_offset, cu);
3330 }
3331 if (lh == NULL)
3332 {
3333 lh_cu->v.quick->no_file_data = 1;
3334 return;
3335 }
3336
3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
3342
3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3344
3345 qfn->num_file_names = lh->num_file_names;
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3348 for (i = 0; i < lh->num_file_names; ++i)
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
3351
3352 free_line_header (lh);
3353
3354 lh_cu->v.quick->file_names = qfn;
3355 }
3356
3357 /* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360 static struct quick_file_names *
3361 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3362 {
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3367
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
3379 }
3380
3381 /* A helper for the "quick" functions which computes and caches the
3382 real path for a given file name from the line table. */
3383
3384 static const char *
3385 dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
3387 {
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3390 qfn->num_file_names, const char *);
3391
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3394
3395 return qfn->real_names[index];
3396 }
3397
3398 static struct symtab *
3399 dw2_find_last_source_symtab (struct objfile *objfile)
3400 {
3401 struct compunit_symtab *cust;
3402 int index;
3403
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
3410 }
3411
3412 /* Traversal function for dw2_forget_cached_source_info. */
3413
3414 static int
3415 dw2_free_cached_file_names (void **slot, void *info)
3416 {
3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3418
3419 if (file_data->real_names)
3420 {
3421 int i;
3422
3423 for (i = 0; i < file_data->num_file_names; ++i)
3424 {
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
3427 }
3428 }
3429
3430 return 1;
3431 }
3432
3433 static void
3434 dw2_forget_cached_source_info (struct objfile *objfile)
3435 {
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
3440 }
3441
3442 /* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445 static int
3446 dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
3448 const char *name, const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3453
3454 /* Don't visit already-expanded CUs. */
3455 if (per_cu->v.quick->compunit_symtab)
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
3460 dw2_instantiate_symtab (per_cu);
3461
3462 return iterate_over_some_symtabs (name, real_path, callback, data,
3463 objfile->compunit_symtabs, last_made);
3464 }
3465
3466 /* Implementation of the map_symtabs_matching_filename method. */
3467
3468 static int
3469 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3470 const char *real_path,
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
3473 {
3474 int i;
3475 const char *name_basename = lbasename (name);
3476
3477 dw2_setup (objfile);
3478
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
3481
3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3483 {
3484 int j;
3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3486 struct quick_file_names *file_data;
3487
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->compunit_symtab)
3490 continue;
3491
3492 file_data = dw2_get_file_names (per_cu);
3493 if (file_data == NULL)
3494 continue;
3495
3496 for (j = 0; j < file_data->num_file_names; ++j)
3497 {
3498 const char *this_name = file_data->file_names[j];
3499 const char *this_real_name;
3500
3501 if (compare_filenames_for_search (this_name, name))
3502 {
3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3504 callback, data))
3505 return 1;
3506 continue;
3507 }
3508
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
3517 {
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
3521 continue;
3522 }
3523
3524 if (real_path != NULL)
3525 {
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
3528 if (this_real_name != NULL
3529 && FILENAME_CMP (real_path, this_real_name) == 0)
3530 {
3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3532 callback, data))
3533 return 1;
3534 continue;
3535 }
3536 }
3537 }
3538 }
3539
3540 return 0;
3541 }
3542
3543 /* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545 struct dw2_symtab_iterator
3546 {
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
3568 };
3569
3570 /* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3573
3574 static void
3575 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581 {
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
3587 iter->global_seen = 0;
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596 }
3597
3598 /* Return the next matching CU or NULL if there are no more. */
3599
3600 static struct dwarf2_per_cu_data *
3601 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602 {
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3608 struct dwarf2_per_cu_data *per_cu;
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3630 continue;
3631 }
3632
3633 per_cu = dw2_get_cutu (cu_index);
3634
3635 /* Skip if already read in. */
3636 if (per_cu->v.quick->compunit_symtab)
3637 continue;
3638
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682 }
3683
3684 static struct compunit_symtab *
3685 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
3687 {
3688 struct compunit_symtab *stab_best = NULL;
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3702
3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3704 {
3705 struct symbol *sym, *with_opaque = NULL;
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3709
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
3717
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
3724
3725 /* Keep looking through other CUs. */
3726 }
3727 }
3728
3729 return stab_best;
3730 }
3731
3732 static void
3733 dw2_print_stats (struct objfile *objfile)
3734 {
3735 int i, total, count;
3736
3737 dw2_setup (objfile);
3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3739 count = 0;
3740 for (i = 0; i < total; ++i)
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743
3744 if (!per_cu->v.quick->compunit_symtab)
3745 ++count;
3746 }
3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749 }
3750
3751 /* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
3756 static void
3757 dw2_dump (struct objfile *objfile)
3758 {
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
3770 }
3771
3772 static void
3773 dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
3776 {
3777 /* There's nothing to relocate here. */
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783 {
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
3803 }
3804
3805 static void
3806 dw2_expand_all_symtabs (struct objfile *objfile)
3807 {
3808 int i;
3809
3810 dw2_setup (objfile);
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3813 + dwarf2_per_objfile->n_type_units); ++i)
3814 {
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816
3817 dw2_instantiate_symtab (per_cu);
3818 }
3819 }
3820
3821 static void
3822 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
3824 {
3825 int i;
3826
3827 dw2_setup (objfile);
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3835 {
3836 int j;
3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3838 struct quick_file_names *file_data;
3839
3840 /* We only need to look at symtabs not already expanded. */
3841 if (per_cu->v.quick->compunit_symtab)
3842 continue;
3843
3844 file_data = dw2_get_file_names (per_cu);
3845 if (file_data == NULL)
3846 continue;
3847
3848 for (j = 0; j < file_data->num_file_names; ++j)
3849 {
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
3853 {
3854 dw2_instantiate_symtab (per_cu);
3855 break;
3856 }
3857 }
3858 }
3859 }
3860
3861 static void
3862 dw2_map_matching_symbols (struct objfile *objfile,
3863 const char * name, domain_enum domain,
3864 int global,
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
3869 {
3870 /* Currently unimplemented; used for Ada. The function can be called if the
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
3873 }
3874
3875 static void
3876 dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3880 expand_symtabs_exp_notify_ftype *expansion_notify,
3881 enum search_domain kind,
3882 void *data)
3883 {
3884 int i;
3885 offset_type iter;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 /* index_table is NULL if OBJF_READNOW. */
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
3893 index = dwarf2_per_objfile->index_table;
3894
3895 if (file_matcher != NULL)
3896 {
3897 struct cleanup *cleanup;
3898 htab_t visited_found, visited_not_found;
3899
3900 visited_found = htab_create_alloc (10,
3901 htab_hash_pointer, htab_eq_pointer,
3902 NULL, xcalloc, xfree);
3903 cleanup = make_cleanup_htab_delete (visited_found);
3904 visited_not_found = htab_create_alloc (10,
3905 htab_hash_pointer, htab_eq_pointer,
3906 NULL, xcalloc, xfree);
3907 make_cleanup_htab_delete (visited_not_found);
3908
3909 /* The rule is CUs specify all the files, including those used by
3910 any TU, so there's no need to scan TUs here. */
3911
3912 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3913 {
3914 int j;
3915 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3916 struct quick_file_names *file_data;
3917 void **slot;
3918
3919 QUIT;
3920
3921 per_cu->v.quick->mark = 0;
3922
3923 /* We only need to look at symtabs not already expanded. */
3924 if (per_cu->v.quick->compunit_symtab)
3925 continue;
3926
3927 file_data = dw2_get_file_names (per_cu);
3928 if (file_data == NULL)
3929 continue;
3930
3931 if (htab_find (visited_not_found, file_data) != NULL)
3932 continue;
3933 else if (htab_find (visited_found, file_data) != NULL)
3934 {
3935 per_cu->v.quick->mark = 1;
3936 continue;
3937 }
3938
3939 for (j = 0; j < file_data->num_file_names; ++j)
3940 {
3941 const char *this_real_name;
3942
3943 if (file_matcher (file_data->file_names[j], data, 0))
3944 {
3945 per_cu->v.quick->mark = 1;
3946 break;
3947 }
3948
3949 /* Before we invoke realpath, which can get expensive when many
3950 files are involved, do a quick comparison of the basenames. */
3951 if (!basenames_may_differ
3952 && !file_matcher (lbasename (file_data->file_names[j]),
3953 data, 1))
3954 continue;
3955
3956 this_real_name = dw2_get_real_path (objfile, file_data, j);
3957 if (file_matcher (this_real_name, data, 0))
3958 {
3959 per_cu->v.quick->mark = 1;
3960 break;
3961 }
3962 }
3963
3964 slot = htab_find_slot (per_cu->v.quick->mark
3965 ? visited_found
3966 : visited_not_found,
3967 file_data, INSERT);
3968 *slot = file_data;
3969 }
3970
3971 do_cleanups (cleanup);
3972 }
3973
3974 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3975 {
3976 offset_type idx = 2 * iter;
3977 const char *name;
3978 offset_type *vec, vec_len, vec_idx;
3979 int global_seen = 0;
3980
3981 QUIT;
3982
3983 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3984 continue;
3985
3986 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3987
3988 if (! (*symbol_matcher) (name, data))
3989 continue;
3990
3991 /* The name was matched, now expand corresponding CUs that were
3992 marked. */
3993 vec = (offset_type *) (index->constant_pool
3994 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3995 vec_len = MAYBE_SWAP (vec[0]);
3996 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3997 {
3998 struct dwarf2_per_cu_data *per_cu;
3999 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4000 /* This value is only valid for index versions >= 7. */
4001 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4002 gdb_index_symbol_kind symbol_kind =
4003 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4004 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4005 /* Only check the symbol attributes if they're present.
4006 Indices prior to version 7 don't record them,
4007 and indices >= 7 may elide them for certain symbols
4008 (gold does this). */
4009 int attrs_valid =
4010 (index->version >= 7
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4012
4013 /* Work around gold/15646. */
4014 if (attrs_valid)
4015 {
4016 if (!is_static && global_seen)
4017 continue;
4018 if (!is_static)
4019 global_seen = 1;
4020 }
4021
4022 /* Only check the symbol's kind if it has one. */
4023 if (attrs_valid)
4024 {
4025 switch (kind)
4026 {
4027 case VARIABLES_DOMAIN:
4028 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4029 continue;
4030 break;
4031 case FUNCTIONS_DOMAIN:
4032 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4033 continue;
4034 break;
4035 case TYPES_DOMAIN:
4036 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4037 continue;
4038 break;
4039 default:
4040 break;
4041 }
4042 }
4043
4044 /* Don't crash on bad data. */
4045 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4046 + dwarf2_per_objfile->n_type_units))
4047 {
4048 complaint (&symfile_complaints,
4049 _(".gdb_index entry has bad CU index"
4050 " [in module %s]"), objfile_name (objfile));
4051 continue;
4052 }
4053
4054 per_cu = dw2_get_cutu (cu_index);
4055 if (file_matcher == NULL || per_cu->v.quick->mark)
4056 {
4057 int symtab_was_null =
4058 (per_cu->v.quick->compunit_symtab == NULL);
4059
4060 dw2_instantiate_symtab (per_cu);
4061
4062 if (expansion_notify != NULL
4063 && symtab_was_null
4064 && per_cu->v.quick->compunit_symtab != NULL)
4065 {
4066 expansion_notify (per_cu->v.quick->compunit_symtab,
4067 data);
4068 }
4069 }
4070 }
4071 }
4072 }
4073
4074 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4075 symtab. */
4076
4077 static struct compunit_symtab *
4078 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4079 CORE_ADDR pc)
4080 {
4081 int i;
4082
4083 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4084 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4085 return cust;
4086
4087 if (cust->includes == NULL)
4088 return NULL;
4089
4090 for (i = 0; cust->includes[i]; ++i)
4091 {
4092 struct compunit_symtab *s = cust->includes[i];
4093
4094 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4095 if (s != NULL)
4096 return s;
4097 }
4098
4099 return NULL;
4100 }
4101
4102 static struct compunit_symtab *
4103 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4104 struct bound_minimal_symbol msymbol,
4105 CORE_ADDR pc,
4106 struct obj_section *section,
4107 int warn_if_readin)
4108 {
4109 struct dwarf2_per_cu_data *data;
4110 struct compunit_symtab *result;
4111
4112 dw2_setup (objfile);
4113
4114 if (!objfile->psymtabs_addrmap)
4115 return NULL;
4116
4117 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4118 pc);
4119 if (!data)
4120 return NULL;
4121
4122 if (warn_if_readin && data->v.quick->compunit_symtab)
4123 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4124 paddress (get_objfile_arch (objfile), pc));
4125
4126 result
4127 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4128 pc);
4129 gdb_assert (result != NULL);
4130 return result;
4131 }
4132
4133 static void
4134 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4135 void *data, int need_fullname)
4136 {
4137 int i;
4138 struct cleanup *cleanup;
4139 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4140 NULL, xcalloc, xfree);
4141
4142 cleanup = make_cleanup_htab_delete (visited);
4143 dw2_setup (objfile);
4144
4145 /* The rule is CUs specify all the files, including those used by
4146 any TU, so there's no need to scan TUs here.
4147 We can ignore file names coming from already-expanded CUs. */
4148
4149 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4150 {
4151 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4152
4153 if (per_cu->v.quick->compunit_symtab)
4154 {
4155 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4156 INSERT);
4157
4158 *slot = per_cu->v.quick->file_names;
4159 }
4160 }
4161
4162 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4163 {
4164 int j;
4165 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4166 struct quick_file_names *file_data;
4167 void **slot;
4168
4169 /* We only need to look at symtabs not already expanded. */
4170 if (per_cu->v.quick->compunit_symtab)
4171 continue;
4172
4173 file_data = dw2_get_file_names (per_cu);
4174 if (file_data == NULL)
4175 continue;
4176
4177 slot = htab_find_slot (visited, file_data, INSERT);
4178 if (*slot)
4179 {
4180 /* Already visited. */
4181 continue;
4182 }
4183 *slot = file_data;
4184
4185 for (j = 0; j < file_data->num_file_names; ++j)
4186 {
4187 const char *this_real_name;
4188
4189 if (need_fullname)
4190 this_real_name = dw2_get_real_path (objfile, file_data, j);
4191 else
4192 this_real_name = NULL;
4193 (*fun) (file_data->file_names[j], this_real_name, data);
4194 }
4195 }
4196
4197 do_cleanups (cleanup);
4198 }
4199
4200 static int
4201 dw2_has_symbols (struct objfile *objfile)
4202 {
4203 return 1;
4204 }
4205
4206 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4207 {
4208 dw2_has_symbols,
4209 dw2_find_last_source_symtab,
4210 dw2_forget_cached_source_info,
4211 dw2_map_symtabs_matching_filename,
4212 dw2_lookup_symbol,
4213 dw2_print_stats,
4214 dw2_dump,
4215 dw2_relocate,
4216 dw2_expand_symtabs_for_function,
4217 dw2_expand_all_symtabs,
4218 dw2_expand_symtabs_with_fullname,
4219 dw2_map_matching_symbols,
4220 dw2_expand_symtabs_matching,
4221 dw2_find_pc_sect_compunit_symtab,
4222 dw2_map_symbol_filenames
4223 };
4224
4225 /* Initialize for reading DWARF for this objfile. Return 0 if this
4226 file will use psymtabs, or 1 if using the GNU index. */
4227
4228 int
4229 dwarf2_initialize_objfile (struct objfile *objfile)
4230 {
4231 /* If we're about to read full symbols, don't bother with the
4232 indices. In this case we also don't care if some other debug
4233 format is making psymtabs, because they are all about to be
4234 expanded anyway. */
4235 if ((objfile->flags & OBJF_READNOW))
4236 {
4237 int i;
4238
4239 dwarf2_per_objfile->using_index = 1;
4240 create_all_comp_units (objfile);
4241 create_all_type_units (objfile);
4242 dwarf2_per_objfile->quick_file_names_table =
4243 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4244
4245 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4246 + dwarf2_per_objfile->n_type_units); ++i)
4247 {
4248 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4249
4250 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4251 struct dwarf2_per_cu_quick_data);
4252 }
4253
4254 /* Return 1 so that gdb sees the "quick" functions. However,
4255 these functions will be no-ops because we will have expanded
4256 all symtabs. */
4257 return 1;
4258 }
4259
4260 if (dwarf2_read_index (objfile))
4261 return 1;
4262
4263 return 0;
4264 }
4265
4266 \f
4267
4268 /* Build a partial symbol table. */
4269
4270 void
4271 dwarf2_build_psymtabs (struct objfile *objfile)
4272 {
4273
4274 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4275 {
4276 init_psymbol_list (objfile, 1024);
4277 }
4278
4279 TRY
4280 {
4281 /* This isn't really ideal: all the data we allocate on the
4282 objfile's obstack is still uselessly kept around. However,
4283 freeing it seems unsafe. */
4284 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4285
4286 dwarf2_build_psymtabs_hard (objfile);
4287 discard_cleanups (cleanups);
4288 }
4289 CATCH (except, RETURN_MASK_ERROR)
4290 {
4291 exception_print (gdb_stderr, except);
4292 }
4293 END_CATCH
4294 }
4295
4296 /* Return the total length of the CU described by HEADER. */
4297
4298 static unsigned int
4299 get_cu_length (const struct comp_unit_head *header)
4300 {
4301 return header->initial_length_size + header->length;
4302 }
4303
4304 /* Return TRUE if OFFSET is within CU_HEADER. */
4305
4306 static inline int
4307 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4308 {
4309 sect_offset bottom = { cu_header->offset.sect_off };
4310 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4311
4312 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4313 }
4314
4315 /* Find the base address of the compilation unit for range lists and
4316 location lists. It will normally be specified by DW_AT_low_pc.
4317 In DWARF-3 draft 4, the base address could be overridden by
4318 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4319 compilation units with discontinuous ranges. */
4320
4321 static void
4322 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4323 {
4324 struct attribute *attr;
4325
4326 cu->base_known = 0;
4327 cu->base_address = 0;
4328
4329 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4330 if (attr)
4331 {
4332 cu->base_address = attr_value_as_address (attr);
4333 cu->base_known = 1;
4334 }
4335 else
4336 {
4337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4338 if (attr)
4339 {
4340 cu->base_address = attr_value_as_address (attr);
4341 cu->base_known = 1;
4342 }
4343 }
4344 }
4345
4346 /* Read in the comp unit header information from the debug_info at info_ptr.
4347 NOTE: This leaves members offset, first_die_offset to be filled in
4348 by the caller. */
4349
4350 static const gdb_byte *
4351 read_comp_unit_head (struct comp_unit_head *cu_header,
4352 const gdb_byte *info_ptr, bfd *abfd)
4353 {
4354 int signed_addr;
4355 unsigned int bytes_read;
4356
4357 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4358 cu_header->initial_length_size = bytes_read;
4359 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4360 info_ptr += bytes_read;
4361 cu_header->version = read_2_bytes (abfd, info_ptr);
4362 info_ptr += 2;
4363 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4364 &bytes_read);
4365 info_ptr += bytes_read;
4366 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4367 info_ptr += 1;
4368 signed_addr = bfd_get_sign_extend_vma (abfd);
4369 if (signed_addr < 0)
4370 internal_error (__FILE__, __LINE__,
4371 _("read_comp_unit_head: dwarf from non elf file"));
4372 cu_header->signed_addr_p = signed_addr;
4373
4374 return info_ptr;
4375 }
4376
4377 /* Helper function that returns the proper abbrev section for
4378 THIS_CU. */
4379
4380 static struct dwarf2_section_info *
4381 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4382 {
4383 struct dwarf2_section_info *abbrev;
4384
4385 if (this_cu->is_dwz)
4386 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4387 else
4388 abbrev = &dwarf2_per_objfile->abbrev;
4389
4390 return abbrev;
4391 }
4392
4393 /* Subroutine of read_and_check_comp_unit_head and
4394 read_and_check_type_unit_head to simplify them.
4395 Perform various error checking on the header. */
4396
4397 static void
4398 error_check_comp_unit_head (struct comp_unit_head *header,
4399 struct dwarf2_section_info *section,
4400 struct dwarf2_section_info *abbrev_section)
4401 {
4402 const char *filename = get_section_file_name (section);
4403
4404 if (header->version != 2 && header->version != 3 && header->version != 4)
4405 error (_("Dwarf Error: wrong version in compilation unit header "
4406 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4407 filename);
4408
4409 if (header->abbrev_offset.sect_off
4410 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4411 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4412 "(offset 0x%lx + 6) [in module %s]"),
4413 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4414 filename);
4415
4416 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4417 avoid potential 32-bit overflow. */
4418 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4419 > section->size)
4420 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4421 "(offset 0x%lx + 0) [in module %s]"),
4422 (long) header->length, (long) header->offset.sect_off,
4423 filename);
4424 }
4425
4426 /* Read in a CU/TU header and perform some basic error checking.
4427 The contents of the header are stored in HEADER.
4428 The result is a pointer to the start of the first DIE. */
4429
4430 static const gdb_byte *
4431 read_and_check_comp_unit_head (struct comp_unit_head *header,
4432 struct dwarf2_section_info *section,
4433 struct dwarf2_section_info *abbrev_section,
4434 const gdb_byte *info_ptr,
4435 int is_debug_types_section)
4436 {
4437 const gdb_byte *beg_of_comp_unit = info_ptr;
4438 bfd *abfd = get_section_bfd_owner (section);
4439
4440 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4441
4442 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4443
4444 /* If we're reading a type unit, skip over the signature and
4445 type_offset fields. */
4446 if (is_debug_types_section)
4447 info_ptr += 8 /*signature*/ + header->offset_size;
4448
4449 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4450
4451 error_check_comp_unit_head (header, section, abbrev_section);
4452
4453 return info_ptr;
4454 }
4455
4456 /* Read in the types comp unit header information from .debug_types entry at
4457 types_ptr. The result is a pointer to one past the end of the header. */
4458
4459 static const gdb_byte *
4460 read_and_check_type_unit_head (struct comp_unit_head *header,
4461 struct dwarf2_section_info *section,
4462 struct dwarf2_section_info *abbrev_section,
4463 const gdb_byte *info_ptr,
4464 ULONGEST *signature,
4465 cu_offset *type_offset_in_tu)
4466 {
4467 const gdb_byte *beg_of_comp_unit = info_ptr;
4468 bfd *abfd = get_section_bfd_owner (section);
4469
4470 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4471
4472 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4473
4474 /* If we're reading a type unit, skip over the signature and
4475 type_offset fields. */
4476 if (signature != NULL)
4477 *signature = read_8_bytes (abfd, info_ptr);
4478 info_ptr += 8;
4479 if (type_offset_in_tu != NULL)
4480 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4481 header->offset_size);
4482 info_ptr += header->offset_size;
4483
4484 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4485
4486 error_check_comp_unit_head (header, section, abbrev_section);
4487
4488 return info_ptr;
4489 }
4490
4491 /* Fetch the abbreviation table offset from a comp or type unit header. */
4492
4493 static sect_offset
4494 read_abbrev_offset (struct dwarf2_section_info *section,
4495 sect_offset offset)
4496 {
4497 bfd *abfd = get_section_bfd_owner (section);
4498 const gdb_byte *info_ptr;
4499 unsigned int initial_length_size, offset_size;
4500 sect_offset abbrev_offset;
4501
4502 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4503 info_ptr = section->buffer + offset.sect_off;
4504 read_initial_length (abfd, info_ptr, &initial_length_size);
4505 offset_size = initial_length_size == 4 ? 4 : 8;
4506 info_ptr += initial_length_size + 2 /*version*/;
4507 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4508 return abbrev_offset;
4509 }
4510
4511 /* Allocate a new partial symtab for file named NAME and mark this new
4512 partial symtab as being an include of PST. */
4513
4514 static void
4515 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4516 struct objfile *objfile)
4517 {
4518 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4519
4520 if (!IS_ABSOLUTE_PATH (subpst->filename))
4521 {
4522 /* It shares objfile->objfile_obstack. */
4523 subpst->dirname = pst->dirname;
4524 }
4525
4526 subpst->textlow = 0;
4527 subpst->texthigh = 0;
4528
4529 subpst->dependencies
4530 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4531 subpst->dependencies[0] = pst;
4532 subpst->number_of_dependencies = 1;
4533
4534 subpst->globals_offset = 0;
4535 subpst->n_global_syms = 0;
4536 subpst->statics_offset = 0;
4537 subpst->n_static_syms = 0;
4538 subpst->compunit_symtab = NULL;
4539 subpst->read_symtab = pst->read_symtab;
4540 subpst->readin = 0;
4541
4542 /* No private part is necessary for include psymtabs. This property
4543 can be used to differentiate between such include psymtabs and
4544 the regular ones. */
4545 subpst->read_symtab_private = NULL;
4546 }
4547
4548 /* Read the Line Number Program data and extract the list of files
4549 included by the source file represented by PST. Build an include
4550 partial symtab for each of these included files. */
4551
4552 static void
4553 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4554 struct die_info *die,
4555 struct partial_symtab *pst)
4556 {
4557 struct line_header *lh = NULL;
4558 struct attribute *attr;
4559
4560 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4561 if (attr)
4562 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4563 if (lh == NULL)
4564 return; /* No linetable, so no includes. */
4565
4566 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4567 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4568
4569 free_line_header (lh);
4570 }
4571
4572 static hashval_t
4573 hash_signatured_type (const void *item)
4574 {
4575 const struct signatured_type *sig_type
4576 = (const struct signatured_type *) item;
4577
4578 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4579 return sig_type->signature;
4580 }
4581
4582 static int
4583 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4584 {
4585 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4586 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4587
4588 return lhs->signature == rhs->signature;
4589 }
4590
4591 /* Allocate a hash table for signatured types. */
4592
4593 static htab_t
4594 allocate_signatured_type_table (struct objfile *objfile)
4595 {
4596 return htab_create_alloc_ex (41,
4597 hash_signatured_type,
4598 eq_signatured_type,
4599 NULL,
4600 &objfile->objfile_obstack,
4601 hashtab_obstack_allocate,
4602 dummy_obstack_deallocate);
4603 }
4604
4605 /* A helper function to add a signatured type CU to a table. */
4606
4607 static int
4608 add_signatured_type_cu_to_table (void **slot, void *datum)
4609 {
4610 struct signatured_type *sigt = (struct signatured_type *) *slot;
4611 struct signatured_type ***datap = (struct signatured_type ***) datum;
4612
4613 **datap = sigt;
4614 ++*datap;
4615
4616 return 1;
4617 }
4618
4619 /* Create the hash table of all entries in the .debug_types
4620 (or .debug_types.dwo) section(s).
4621 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4622 otherwise it is NULL.
4623
4624 The result is a pointer to the hash table or NULL if there are no types.
4625
4626 Note: This function processes DWO files only, not DWP files. */
4627
4628 static htab_t
4629 create_debug_types_hash_table (struct dwo_file *dwo_file,
4630 VEC (dwarf2_section_info_def) *types)
4631 {
4632 struct objfile *objfile = dwarf2_per_objfile->objfile;
4633 htab_t types_htab = NULL;
4634 int ix;
4635 struct dwarf2_section_info *section;
4636 struct dwarf2_section_info *abbrev_section;
4637
4638 if (VEC_empty (dwarf2_section_info_def, types))
4639 return NULL;
4640
4641 abbrev_section = (dwo_file != NULL
4642 ? &dwo_file->sections.abbrev
4643 : &dwarf2_per_objfile->abbrev);
4644
4645 if (dwarf_read_debug)
4646 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4647 dwo_file ? ".dwo" : "",
4648 get_section_file_name (abbrev_section));
4649
4650 for (ix = 0;
4651 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4652 ++ix)
4653 {
4654 bfd *abfd;
4655 const gdb_byte *info_ptr, *end_ptr;
4656
4657 dwarf2_read_section (objfile, section);
4658 info_ptr = section->buffer;
4659
4660 if (info_ptr == NULL)
4661 continue;
4662
4663 /* We can't set abfd until now because the section may be empty or
4664 not present, in which case the bfd is unknown. */
4665 abfd = get_section_bfd_owner (section);
4666
4667 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4668 because we don't need to read any dies: the signature is in the
4669 header. */
4670
4671 end_ptr = info_ptr + section->size;
4672 while (info_ptr < end_ptr)
4673 {
4674 sect_offset offset;
4675 cu_offset type_offset_in_tu;
4676 ULONGEST signature;
4677 struct signatured_type *sig_type;
4678 struct dwo_unit *dwo_tu;
4679 void **slot;
4680 const gdb_byte *ptr = info_ptr;
4681 struct comp_unit_head header;
4682 unsigned int length;
4683
4684 offset.sect_off = ptr - section->buffer;
4685
4686 /* We need to read the type's signature in order to build the hash
4687 table, but we don't need anything else just yet. */
4688
4689 ptr = read_and_check_type_unit_head (&header, section,
4690 abbrev_section, ptr,
4691 &signature, &type_offset_in_tu);
4692
4693 length = get_cu_length (&header);
4694
4695 /* Skip dummy type units. */
4696 if (ptr >= info_ptr + length
4697 || peek_abbrev_code (abfd, ptr) == 0)
4698 {
4699 info_ptr += length;
4700 continue;
4701 }
4702
4703 if (types_htab == NULL)
4704 {
4705 if (dwo_file)
4706 types_htab = allocate_dwo_unit_table (objfile);
4707 else
4708 types_htab = allocate_signatured_type_table (objfile);
4709 }
4710
4711 if (dwo_file)
4712 {
4713 sig_type = NULL;
4714 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4715 struct dwo_unit);
4716 dwo_tu->dwo_file = dwo_file;
4717 dwo_tu->signature = signature;
4718 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4719 dwo_tu->section = section;
4720 dwo_tu->offset = offset;
4721 dwo_tu->length = length;
4722 }
4723 else
4724 {
4725 /* N.B.: type_offset is not usable if this type uses a DWO file.
4726 The real type_offset is in the DWO file. */
4727 dwo_tu = NULL;
4728 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4729 struct signatured_type);
4730 sig_type->signature = signature;
4731 sig_type->type_offset_in_tu = type_offset_in_tu;
4732 sig_type->per_cu.objfile = objfile;
4733 sig_type->per_cu.is_debug_types = 1;
4734 sig_type->per_cu.section = section;
4735 sig_type->per_cu.offset = offset;
4736 sig_type->per_cu.length = length;
4737 }
4738
4739 slot = htab_find_slot (types_htab,
4740 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4741 INSERT);
4742 gdb_assert (slot != NULL);
4743 if (*slot != NULL)
4744 {
4745 sect_offset dup_offset;
4746
4747 if (dwo_file)
4748 {
4749 const struct dwo_unit *dup_tu
4750 = (const struct dwo_unit *) *slot;
4751
4752 dup_offset = dup_tu->offset;
4753 }
4754 else
4755 {
4756 const struct signatured_type *dup_tu
4757 = (const struct signatured_type *) *slot;
4758
4759 dup_offset = dup_tu->per_cu.offset;
4760 }
4761
4762 complaint (&symfile_complaints,
4763 _("debug type entry at offset 0x%x is duplicate to"
4764 " the entry at offset 0x%x, signature %s"),
4765 offset.sect_off, dup_offset.sect_off,
4766 hex_string (signature));
4767 }
4768 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4769
4770 if (dwarf_read_debug > 1)
4771 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4772 offset.sect_off,
4773 hex_string (signature));
4774
4775 info_ptr += length;
4776 }
4777 }
4778
4779 return types_htab;
4780 }
4781
4782 /* Create the hash table of all entries in the .debug_types section,
4783 and initialize all_type_units.
4784 The result is zero if there is an error (e.g. missing .debug_types section),
4785 otherwise non-zero. */
4786
4787 static int
4788 create_all_type_units (struct objfile *objfile)
4789 {
4790 htab_t types_htab;
4791 struct signatured_type **iter;
4792
4793 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4794 if (types_htab == NULL)
4795 {
4796 dwarf2_per_objfile->signatured_types = NULL;
4797 return 0;
4798 }
4799
4800 dwarf2_per_objfile->signatured_types = types_htab;
4801
4802 dwarf2_per_objfile->n_type_units
4803 = dwarf2_per_objfile->n_allocated_type_units
4804 = htab_elements (types_htab);
4805 dwarf2_per_objfile->all_type_units =
4806 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4807 iter = &dwarf2_per_objfile->all_type_units[0];
4808 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4809 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4810 == dwarf2_per_objfile->n_type_units);
4811
4812 return 1;
4813 }
4814
4815 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4816 If SLOT is non-NULL, it is the entry to use in the hash table.
4817 Otherwise we find one. */
4818
4819 static struct signatured_type *
4820 add_type_unit (ULONGEST sig, void **slot)
4821 {
4822 struct objfile *objfile = dwarf2_per_objfile->objfile;
4823 int n_type_units = dwarf2_per_objfile->n_type_units;
4824 struct signatured_type *sig_type;
4825
4826 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4827 ++n_type_units;
4828 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4829 {
4830 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4831 dwarf2_per_objfile->n_allocated_type_units = 1;
4832 dwarf2_per_objfile->n_allocated_type_units *= 2;
4833 dwarf2_per_objfile->all_type_units
4834 = XRESIZEVEC (struct signatured_type *,
4835 dwarf2_per_objfile->all_type_units,
4836 dwarf2_per_objfile->n_allocated_type_units);
4837 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4838 }
4839 dwarf2_per_objfile->n_type_units = n_type_units;
4840
4841 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4842 struct signatured_type);
4843 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4844 sig_type->signature = sig;
4845 sig_type->per_cu.is_debug_types = 1;
4846 if (dwarf2_per_objfile->using_index)
4847 {
4848 sig_type->per_cu.v.quick =
4849 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4850 struct dwarf2_per_cu_quick_data);
4851 }
4852
4853 if (slot == NULL)
4854 {
4855 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4856 sig_type, INSERT);
4857 }
4858 gdb_assert (*slot == NULL);
4859 *slot = sig_type;
4860 /* The rest of sig_type must be filled in by the caller. */
4861 return sig_type;
4862 }
4863
4864 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4865 Fill in SIG_ENTRY with DWO_ENTRY. */
4866
4867 static void
4868 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4869 struct signatured_type *sig_entry,
4870 struct dwo_unit *dwo_entry)
4871 {
4872 /* Make sure we're not clobbering something we don't expect to. */
4873 gdb_assert (! sig_entry->per_cu.queued);
4874 gdb_assert (sig_entry->per_cu.cu == NULL);
4875 if (dwarf2_per_objfile->using_index)
4876 {
4877 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4878 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4879 }
4880 else
4881 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4882 gdb_assert (sig_entry->signature == dwo_entry->signature);
4883 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4884 gdb_assert (sig_entry->type_unit_group == NULL);
4885 gdb_assert (sig_entry->dwo_unit == NULL);
4886
4887 sig_entry->per_cu.section = dwo_entry->section;
4888 sig_entry->per_cu.offset = dwo_entry->offset;
4889 sig_entry->per_cu.length = dwo_entry->length;
4890 sig_entry->per_cu.reading_dwo_directly = 1;
4891 sig_entry->per_cu.objfile = objfile;
4892 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4893 sig_entry->dwo_unit = dwo_entry;
4894 }
4895
4896 /* Subroutine of lookup_signatured_type.
4897 If we haven't read the TU yet, create the signatured_type data structure
4898 for a TU to be read in directly from a DWO file, bypassing the stub.
4899 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4900 using .gdb_index, then when reading a CU we want to stay in the DWO file
4901 containing that CU. Otherwise we could end up reading several other DWO
4902 files (due to comdat folding) to process the transitive closure of all the
4903 mentioned TUs, and that can be slow. The current DWO file will have every
4904 type signature that it needs.
4905 We only do this for .gdb_index because in the psymtab case we already have
4906 to read all the DWOs to build the type unit groups. */
4907
4908 static struct signatured_type *
4909 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910 {
4911 struct objfile *objfile = dwarf2_per_objfile->objfile;
4912 struct dwo_file *dwo_file;
4913 struct dwo_unit find_dwo_entry, *dwo_entry;
4914 struct signatured_type find_sig_entry, *sig_entry;
4915 void **slot;
4916
4917 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4918
4919 /* If TU skeletons have been removed then we may not have read in any
4920 TUs yet. */
4921 if (dwarf2_per_objfile->signatured_types == NULL)
4922 {
4923 dwarf2_per_objfile->signatured_types
4924 = allocate_signatured_type_table (objfile);
4925 }
4926
4927 /* We only ever need to read in one copy of a signatured type.
4928 Use the global signatured_types array to do our own comdat-folding
4929 of types. If this is the first time we're reading this TU, and
4930 the TU has an entry in .gdb_index, replace the recorded data from
4931 .gdb_index with this TU. */
4932
4933 find_sig_entry.signature = sig;
4934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4935 &find_sig_entry, INSERT);
4936 sig_entry = (struct signatured_type *) *slot;
4937
4938 /* We can get here with the TU already read, *or* in the process of being
4939 read. Don't reassign the global entry to point to this DWO if that's
4940 the case. Also note that if the TU is already being read, it may not
4941 have come from a DWO, the program may be a mix of Fission-compiled
4942 code and non-Fission-compiled code. */
4943
4944 /* Have we already tried to read this TU?
4945 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4946 needn't exist in the global table yet). */
4947 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4948 return sig_entry;
4949
4950 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4951 dwo_unit of the TU itself. */
4952 dwo_file = cu->dwo_unit->dwo_file;
4953
4954 /* Ok, this is the first time we're reading this TU. */
4955 if (dwo_file->tus == NULL)
4956 return NULL;
4957 find_dwo_entry.signature = sig;
4958 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4959 if (dwo_entry == NULL)
4960 return NULL;
4961
4962 /* If the global table doesn't have an entry for this TU, add one. */
4963 if (sig_entry == NULL)
4964 sig_entry = add_type_unit (sig, slot);
4965
4966 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4967 sig_entry->per_cu.tu_read = 1;
4968 return sig_entry;
4969 }
4970
4971 /* Subroutine of lookup_signatured_type.
4972 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4973 then try the DWP file. If the TU stub (skeleton) has been removed then
4974 it won't be in .gdb_index. */
4975
4976 static struct signatured_type *
4977 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4978 {
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwp_file *dwp_file = get_dwp_file ();
4981 struct dwo_unit *dwo_entry;
4982 struct signatured_type find_sig_entry, *sig_entry;
4983 void **slot;
4984
4985 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4986 gdb_assert (dwp_file != NULL);
4987
4988 /* If TU skeletons have been removed then we may not have read in any
4989 TUs yet. */
4990 if (dwarf2_per_objfile->signatured_types == NULL)
4991 {
4992 dwarf2_per_objfile->signatured_types
4993 = allocate_signatured_type_table (objfile);
4994 }
4995
4996 find_sig_entry.signature = sig;
4997 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4998 &find_sig_entry, INSERT);
4999 sig_entry = (struct signatured_type *) *slot;
5000
5001 /* Have we already tried to read this TU?
5002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5003 needn't exist in the global table yet). */
5004 if (sig_entry != NULL)
5005 return sig_entry;
5006
5007 if (dwp_file->tus == NULL)
5008 return NULL;
5009 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5010 sig, 1 /* is_debug_types */);
5011 if (dwo_entry == NULL)
5012 return NULL;
5013
5014 sig_entry = add_type_unit (sig, slot);
5015 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5016
5017 return sig_entry;
5018 }
5019
5020 /* Lookup a signature based type for DW_FORM_ref_sig8.
5021 Returns NULL if signature SIG is not present in the table.
5022 It is up to the caller to complain about this. */
5023
5024 static struct signatured_type *
5025 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5026 {
5027 if (cu->dwo_unit
5028 && dwarf2_per_objfile->using_index)
5029 {
5030 /* We're in a DWO/DWP file, and we're using .gdb_index.
5031 These cases require special processing. */
5032 if (get_dwp_file () == NULL)
5033 return lookup_dwo_signatured_type (cu, sig);
5034 else
5035 return lookup_dwp_signatured_type (cu, sig);
5036 }
5037 else
5038 {
5039 struct signatured_type find_entry, *entry;
5040
5041 if (dwarf2_per_objfile->signatured_types == NULL)
5042 return NULL;
5043 find_entry.signature = sig;
5044 entry = ((struct signatured_type *)
5045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5046 return entry;
5047 }
5048 }
5049 \f
5050 /* Low level DIE reading support. */
5051
5052 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5053
5054 static void
5055 init_cu_die_reader (struct die_reader_specs *reader,
5056 struct dwarf2_cu *cu,
5057 struct dwarf2_section_info *section,
5058 struct dwo_file *dwo_file)
5059 {
5060 gdb_assert (section->readin && section->buffer != NULL);
5061 reader->abfd = get_section_bfd_owner (section);
5062 reader->cu = cu;
5063 reader->dwo_file = dwo_file;
5064 reader->die_section = section;
5065 reader->buffer = section->buffer;
5066 reader->buffer_end = section->buffer + section->size;
5067 reader->comp_dir = NULL;
5068 }
5069
5070 /* Subroutine of init_cutu_and_read_dies to simplify it.
5071 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5072 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5073 already.
5074
5075 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5076 from it to the DIE in the DWO. If NULL we are skipping the stub.
5077 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5078 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5079 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5080 STUB_COMP_DIR may be non-NULL.
5081 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5082 are filled in with the info of the DIE from the DWO file.
5083 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5084 provided an abbrev table to use.
5085 The result is non-zero if a valid (non-dummy) DIE was found. */
5086
5087 static int
5088 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5089 struct dwo_unit *dwo_unit,
5090 int abbrev_table_provided,
5091 struct die_info *stub_comp_unit_die,
5092 const char *stub_comp_dir,
5093 struct die_reader_specs *result_reader,
5094 const gdb_byte **result_info_ptr,
5095 struct die_info **result_comp_unit_die,
5096 int *result_has_children)
5097 {
5098 struct objfile *objfile = dwarf2_per_objfile->objfile;
5099 struct dwarf2_cu *cu = this_cu->cu;
5100 struct dwarf2_section_info *section;
5101 bfd *abfd;
5102 const gdb_byte *begin_info_ptr, *info_ptr;
5103 ULONGEST signature; /* Or dwo_id. */
5104 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5105 int i,num_extra_attrs;
5106 struct dwarf2_section_info *dwo_abbrev_section;
5107 struct attribute *attr;
5108 struct die_info *comp_unit_die;
5109
5110 /* At most one of these may be provided. */
5111 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5112
5113 /* These attributes aren't processed until later:
5114 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5115 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5116 referenced later. However, these attributes are found in the stub
5117 which we won't have later. In order to not impose this complication
5118 on the rest of the code, we read them here and copy them to the
5119 DWO CU/TU die. */
5120
5121 stmt_list = NULL;
5122 low_pc = NULL;
5123 high_pc = NULL;
5124 ranges = NULL;
5125 comp_dir = NULL;
5126
5127 if (stub_comp_unit_die != NULL)
5128 {
5129 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5130 DWO file. */
5131 if (! this_cu->is_debug_types)
5132 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5133 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5134 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5135 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5136 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5137
5138 /* There should be a DW_AT_addr_base attribute here (if needed).
5139 We need the value before we can process DW_FORM_GNU_addr_index. */
5140 cu->addr_base = 0;
5141 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5142 if (attr)
5143 cu->addr_base = DW_UNSND (attr);
5144
5145 /* There should be a DW_AT_ranges_base attribute here (if needed).
5146 We need the value before we can process DW_AT_ranges. */
5147 cu->ranges_base = 0;
5148 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5149 if (attr)
5150 cu->ranges_base = DW_UNSND (attr);
5151 }
5152 else if (stub_comp_dir != NULL)
5153 {
5154 /* Reconstruct the comp_dir attribute to simplify the code below. */
5155 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5156 comp_dir->name = DW_AT_comp_dir;
5157 comp_dir->form = DW_FORM_string;
5158 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5159 DW_STRING (comp_dir) = stub_comp_dir;
5160 }
5161
5162 /* Set up for reading the DWO CU/TU. */
5163 cu->dwo_unit = dwo_unit;
5164 section = dwo_unit->section;
5165 dwarf2_read_section (objfile, section);
5166 abfd = get_section_bfd_owner (section);
5167 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5168 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5169 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5170
5171 if (this_cu->is_debug_types)
5172 {
5173 ULONGEST header_signature;
5174 cu_offset type_offset_in_tu;
5175 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5176
5177 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr,
5180 &header_signature,
5181 &type_offset_in_tu);
5182 /* This is not an assert because it can be caused by bad debug info. */
5183 if (sig_type->signature != header_signature)
5184 {
5185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5186 " TU at offset 0x%x [in module %s]"),
5187 hex_string (sig_type->signature),
5188 hex_string (header_signature),
5189 dwo_unit->offset.sect_off,
5190 bfd_get_filename (abfd));
5191 }
5192 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5193 /* For DWOs coming from DWP files, we don't know the CU length
5194 nor the type's offset in the TU until now. */
5195 dwo_unit->length = get_cu_length (&cu->header);
5196 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5197
5198 /* Establish the type offset that can be used to lookup the type.
5199 For DWO files, we don't know it until now. */
5200 sig_type->type_offset_in_section.sect_off =
5201 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5202 }
5203 else
5204 {
5205 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5206 dwo_abbrev_section,
5207 info_ptr, 0);
5208 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5209 /* For DWOs coming from DWP files, we don't know the CU length
5210 until now. */
5211 dwo_unit->length = get_cu_length (&cu->header);
5212 }
5213
5214 /* Replace the CU's original abbrev table with the DWO's.
5215 Reminder: We can't read the abbrev table until we've read the header. */
5216 if (abbrev_table_provided)
5217 {
5218 /* Don't free the provided abbrev table, the caller of
5219 init_cutu_and_read_dies owns it. */
5220 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5221 /* Ensure the DWO abbrev table gets freed. */
5222 make_cleanup (dwarf2_free_abbrev_table, cu);
5223 }
5224 else
5225 {
5226 dwarf2_free_abbrev_table (cu);
5227 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5228 /* Leave any existing abbrev table cleanup as is. */
5229 }
5230
5231 /* Read in the die, but leave space to copy over the attributes
5232 from the stub. This has the benefit of simplifying the rest of
5233 the code - all the work to maintain the illusion of a single
5234 DW_TAG_{compile,type}_unit DIE is done here. */
5235 num_extra_attrs = ((stmt_list != NULL)
5236 + (low_pc != NULL)
5237 + (high_pc != NULL)
5238 + (ranges != NULL)
5239 + (comp_dir != NULL));
5240 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5241 result_has_children, num_extra_attrs);
5242
5243 /* Copy over the attributes from the stub to the DIE we just read in. */
5244 comp_unit_die = *result_comp_unit_die;
5245 i = comp_unit_die->num_attrs;
5246 if (stmt_list != NULL)
5247 comp_unit_die->attrs[i++] = *stmt_list;
5248 if (low_pc != NULL)
5249 comp_unit_die->attrs[i++] = *low_pc;
5250 if (high_pc != NULL)
5251 comp_unit_die->attrs[i++] = *high_pc;
5252 if (ranges != NULL)
5253 comp_unit_die->attrs[i++] = *ranges;
5254 if (comp_dir != NULL)
5255 comp_unit_die->attrs[i++] = *comp_dir;
5256 comp_unit_die->num_attrs += num_extra_attrs;
5257
5258 if (dwarf_die_debug)
5259 {
5260 fprintf_unfiltered (gdb_stdlog,
5261 "Read die from %s@0x%x of %s:\n",
5262 get_section_name (section),
5263 (unsigned) (begin_info_ptr - section->buffer),
5264 bfd_get_filename (abfd));
5265 dump_die (comp_unit_die, dwarf_die_debug);
5266 }
5267
5268 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5269 TUs by skipping the stub and going directly to the entry in the DWO file.
5270 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5271 to get it via circuitous means. Blech. */
5272 if (comp_dir != NULL)
5273 result_reader->comp_dir = DW_STRING (comp_dir);
5274
5275 /* Skip dummy compilation units. */
5276 if (info_ptr >= begin_info_ptr + dwo_unit->length
5277 || peek_abbrev_code (abfd, info_ptr) == 0)
5278 return 0;
5279
5280 *result_info_ptr = info_ptr;
5281 return 1;
5282 }
5283
5284 /* Subroutine of init_cutu_and_read_dies to simplify it.
5285 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5286 Returns NULL if the specified DWO unit cannot be found. */
5287
5288 static struct dwo_unit *
5289 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5290 struct die_info *comp_unit_die)
5291 {
5292 struct dwarf2_cu *cu = this_cu->cu;
5293 struct attribute *attr;
5294 ULONGEST signature;
5295 struct dwo_unit *dwo_unit;
5296 const char *comp_dir, *dwo_name;
5297
5298 gdb_assert (cu != NULL);
5299
5300 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5301 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5302 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5303
5304 if (this_cu->is_debug_types)
5305 {
5306 struct signatured_type *sig_type;
5307
5308 /* Since this_cu is the first member of struct signatured_type,
5309 we can go from a pointer to one to a pointer to the other. */
5310 sig_type = (struct signatured_type *) this_cu;
5311 signature = sig_type->signature;
5312 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5313 }
5314 else
5315 {
5316 struct attribute *attr;
5317
5318 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5319 if (! attr)
5320 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5321 " [in module %s]"),
5322 dwo_name, objfile_name (this_cu->objfile));
5323 signature = DW_UNSND (attr);
5324 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5325 signature);
5326 }
5327
5328 return dwo_unit;
5329 }
5330
5331 /* Subroutine of init_cutu_and_read_dies to simplify it.
5332 See it for a description of the parameters.
5333 Read a TU directly from a DWO file, bypassing the stub.
5334
5335 Note: This function could be a little bit simpler if we shared cleanups
5336 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5337 to do, so we keep this function self-contained. Or we could move this
5338 into our caller, but it's complex enough already. */
5339
5340 static void
5341 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5342 int use_existing_cu, int keep,
5343 die_reader_func_ftype *die_reader_func,
5344 void *data)
5345 {
5346 struct dwarf2_cu *cu;
5347 struct signatured_type *sig_type;
5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5349 struct die_reader_specs reader;
5350 const gdb_byte *info_ptr;
5351 struct die_info *comp_unit_die;
5352 int has_children;
5353
5354 /* Verify we can do the following downcast, and that we have the
5355 data we need. */
5356 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->dwo_unit != NULL);
5359
5360 cleanups = make_cleanup (null_cleanup, NULL);
5361
5362 if (use_existing_cu && this_cu->cu != NULL)
5363 {
5364 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5365 cu = this_cu->cu;
5366 /* There's no need to do the rereading_dwo_cu handling that
5367 init_cutu_and_read_dies does since we don't read the stub. */
5368 }
5369 else
5370 {
5371 /* If !use_existing_cu, this_cu->cu must be NULL. */
5372 gdb_assert (this_cu->cu == NULL);
5373 cu = XNEW (struct dwarf2_cu);
5374 init_one_comp_unit (cu, this_cu);
5375 /* If an error occurs while loading, release our storage. */
5376 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5377 }
5378
5379 /* A future optimization, if needed, would be to use an existing
5380 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5381 could share abbrev tables. */
5382
5383 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5384 0 /* abbrev_table_provided */,
5385 NULL /* stub_comp_unit_die */,
5386 sig_type->dwo_unit->dwo_file->comp_dir,
5387 &reader, &info_ptr,
5388 &comp_unit_die, &has_children) == 0)
5389 {
5390 /* Dummy die. */
5391 do_cleanups (cleanups);
5392 return;
5393 }
5394
5395 /* All the "real" work is done here. */
5396 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5397
5398 /* This duplicates the code in init_cutu_and_read_dies,
5399 but the alternative is making the latter more complex.
5400 This function is only for the special case of using DWO files directly:
5401 no point in overly complicating the general case just to handle this. */
5402 if (free_cu_cleanup != NULL)
5403 {
5404 if (keep)
5405 {
5406 /* We've successfully allocated this compilation unit. Let our
5407 caller clean it up when finished with it. */
5408 discard_cleanups (free_cu_cleanup);
5409
5410 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5411 So we have to manually free the abbrev table. */
5412 dwarf2_free_abbrev_table (cu);
5413
5414 /* Link this CU into read_in_chain. */
5415 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5416 dwarf2_per_objfile->read_in_chain = this_cu;
5417 }
5418 else
5419 do_cleanups (free_cu_cleanup);
5420 }
5421
5422 do_cleanups (cleanups);
5423 }
5424
5425 /* Initialize a CU (or TU) and read its DIEs.
5426 If the CU defers to a DWO file, read the DWO file as well.
5427
5428 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5429 Otherwise the table specified in the comp unit header is read in and used.
5430 This is an optimization for when we already have the abbrev table.
5431
5432 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5433 Otherwise, a new CU is allocated with xmalloc.
5434
5435 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5436 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5437
5438 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5439 linker) then DIE_READER_FUNC will not get called. */
5440
5441 static void
5442 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5443 struct abbrev_table *abbrev_table,
5444 int use_existing_cu, int keep,
5445 die_reader_func_ftype *die_reader_func,
5446 void *data)
5447 {
5448 struct objfile *objfile = dwarf2_per_objfile->objfile;
5449 struct dwarf2_section_info *section = this_cu->section;
5450 bfd *abfd = get_section_bfd_owner (section);
5451 struct dwarf2_cu *cu;
5452 const gdb_byte *begin_info_ptr, *info_ptr;
5453 struct die_reader_specs reader;
5454 struct die_info *comp_unit_die;
5455 int has_children;
5456 struct attribute *attr;
5457 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5458 struct signatured_type *sig_type = NULL;
5459 struct dwarf2_section_info *abbrev_section;
5460 /* Non-zero if CU currently points to a DWO file and we need to
5461 reread it. When this happens we need to reread the skeleton die
5462 before we can reread the DWO file (this only applies to CUs, not TUs). */
5463 int rereading_dwo_cu = 0;
5464
5465 if (dwarf_die_debug)
5466 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5467 this_cu->is_debug_types ? "type" : "comp",
5468 this_cu->offset.sect_off);
5469
5470 if (use_existing_cu)
5471 gdb_assert (keep);
5472
5473 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5474 file (instead of going through the stub), short-circuit all of this. */
5475 if (this_cu->reading_dwo_directly)
5476 {
5477 /* Narrow down the scope of possibilities to have to understand. */
5478 gdb_assert (this_cu->is_debug_types);
5479 gdb_assert (abbrev_table == NULL);
5480 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5481 die_reader_func, data);
5482 return;
5483 }
5484
5485 cleanups = make_cleanup (null_cleanup, NULL);
5486
5487 /* This is cheap if the section is already read in. */
5488 dwarf2_read_section (objfile, section);
5489
5490 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5491
5492 abbrev_section = get_abbrev_section_for_cu (this_cu);
5493
5494 if (use_existing_cu && this_cu->cu != NULL)
5495 {
5496 cu = this_cu->cu;
5497 /* If this CU is from a DWO file we need to start over, we need to
5498 refetch the attributes from the skeleton CU.
5499 This could be optimized by retrieving those attributes from when we
5500 were here the first time: the previous comp_unit_die was stored in
5501 comp_unit_obstack. But there's no data yet that we need this
5502 optimization. */
5503 if (cu->dwo_unit != NULL)
5504 rereading_dwo_cu = 1;
5505 }
5506 else
5507 {
5508 /* If !use_existing_cu, this_cu->cu must be NULL. */
5509 gdb_assert (this_cu->cu == NULL);
5510 cu = XNEW (struct dwarf2_cu);
5511 init_one_comp_unit (cu, this_cu);
5512 /* If an error occurs while loading, release our storage. */
5513 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5514 }
5515
5516 /* Get the header. */
5517 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5518 {
5519 /* We already have the header, there's no need to read it in again. */
5520 info_ptr += cu->header.first_die_offset.cu_off;
5521 }
5522 else
5523 {
5524 if (this_cu->is_debug_types)
5525 {
5526 ULONGEST signature;
5527 cu_offset type_offset_in_tu;
5528
5529 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5530 abbrev_section, info_ptr,
5531 &signature,
5532 &type_offset_in_tu);
5533
5534 /* Since per_cu is the first member of struct signatured_type,
5535 we can go from a pointer to one to a pointer to the other. */
5536 sig_type = (struct signatured_type *) this_cu;
5537 gdb_assert (sig_type->signature == signature);
5538 gdb_assert (sig_type->type_offset_in_tu.cu_off
5539 == type_offset_in_tu.cu_off);
5540 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5541
5542 /* LENGTH has not been set yet for type units if we're
5543 using .gdb_index. */
5544 this_cu->length = get_cu_length (&cu->header);
5545
5546 /* Establish the type offset that can be used to lookup the type. */
5547 sig_type->type_offset_in_section.sect_off =
5548 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5549 }
5550 else
5551 {
5552 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5553 abbrev_section,
5554 info_ptr, 0);
5555
5556 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5557 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5558 }
5559 }
5560
5561 /* Skip dummy compilation units. */
5562 if (info_ptr >= begin_info_ptr + this_cu->length
5563 || peek_abbrev_code (abfd, info_ptr) == 0)
5564 {
5565 do_cleanups (cleanups);
5566 return;
5567 }
5568
5569 /* If we don't have them yet, read the abbrevs for this compilation unit.
5570 And if we need to read them now, make sure they're freed when we're
5571 done. Note that it's important that if the CU had an abbrev table
5572 on entry we don't free it when we're done: Somewhere up the call stack
5573 it may be in use. */
5574 if (abbrev_table != NULL)
5575 {
5576 gdb_assert (cu->abbrev_table == NULL);
5577 gdb_assert (cu->header.abbrev_offset.sect_off
5578 == abbrev_table->offset.sect_off);
5579 cu->abbrev_table = abbrev_table;
5580 }
5581 else if (cu->abbrev_table == NULL)
5582 {
5583 dwarf2_read_abbrevs (cu, abbrev_section);
5584 make_cleanup (dwarf2_free_abbrev_table, cu);
5585 }
5586 else if (rereading_dwo_cu)
5587 {
5588 dwarf2_free_abbrev_table (cu);
5589 dwarf2_read_abbrevs (cu, abbrev_section);
5590 }
5591
5592 /* Read the top level CU/TU die. */
5593 init_cu_die_reader (&reader, cu, section, NULL);
5594 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5595
5596 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5597 from the DWO file.
5598 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5599 DWO CU, that this test will fail (the attribute will not be present). */
5600 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5601 if (attr)
5602 {
5603 struct dwo_unit *dwo_unit;
5604 struct die_info *dwo_comp_unit_die;
5605
5606 if (has_children)
5607 {
5608 complaint (&symfile_complaints,
5609 _("compilation unit with DW_AT_GNU_dwo_name"
5610 " has children (offset 0x%x) [in module %s]"),
5611 this_cu->offset.sect_off, bfd_get_filename (abfd));
5612 }
5613 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5614 if (dwo_unit != NULL)
5615 {
5616 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5617 abbrev_table != NULL,
5618 comp_unit_die, NULL,
5619 &reader, &info_ptr,
5620 &dwo_comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626 comp_unit_die = dwo_comp_unit_die;
5627 }
5628 else
5629 {
5630 /* Yikes, we couldn't find the rest of the DIE, we only have
5631 the stub. A complaint has already been logged. There's
5632 not much more we can do except pass on the stub DIE to
5633 die_reader_func. We don't want to throw an error on bad
5634 debug info. */
5635 }
5636 }
5637
5638 /* All of the above is setup for this call. Yikes. */
5639 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5640
5641 /* Done, clean up. */
5642 if (free_cu_cleanup != NULL)
5643 {
5644 if (keep)
5645 {
5646 /* We've successfully allocated this compilation unit. Let our
5647 caller clean it up when finished with it. */
5648 discard_cleanups (free_cu_cleanup);
5649
5650 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5651 So we have to manually free the abbrev table. */
5652 dwarf2_free_abbrev_table (cu);
5653
5654 /* Link this CU into read_in_chain. */
5655 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5656 dwarf2_per_objfile->read_in_chain = this_cu;
5657 }
5658 else
5659 do_cleanups (free_cu_cleanup);
5660 }
5661
5662 do_cleanups (cleanups);
5663 }
5664
5665 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5666 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5667 to have already done the lookup to find the DWO file).
5668
5669 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5670 THIS_CU->is_debug_types, but nothing else.
5671
5672 We fill in THIS_CU->length.
5673
5674 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5675 linker) then DIE_READER_FUNC will not get called.
5676
5677 THIS_CU->cu is always freed when done.
5678 This is done in order to not leave THIS_CU->cu in a state where we have
5679 to care whether it refers to the "main" CU or the DWO CU. */
5680
5681 static void
5682 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5683 struct dwo_file *dwo_file,
5684 die_reader_func_ftype *die_reader_func,
5685 void *data)
5686 {
5687 struct objfile *objfile = dwarf2_per_objfile->objfile;
5688 struct dwarf2_section_info *section = this_cu->section;
5689 bfd *abfd = get_section_bfd_owner (section);
5690 struct dwarf2_section_info *abbrev_section;
5691 struct dwarf2_cu cu;
5692 const gdb_byte *begin_info_ptr, *info_ptr;
5693 struct die_reader_specs reader;
5694 struct cleanup *cleanups;
5695 struct die_info *comp_unit_die;
5696 int has_children;
5697
5698 if (dwarf_die_debug)
5699 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5700 this_cu->is_debug_types ? "type" : "comp",
5701 this_cu->offset.sect_off);
5702
5703 gdb_assert (this_cu->cu == NULL);
5704
5705 abbrev_section = (dwo_file != NULL
5706 ? &dwo_file->sections.abbrev
5707 : get_abbrev_section_for_cu (this_cu));
5708
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
5712 init_one_comp_unit (&cu, this_cu);
5713
5714 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5715
5716 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5717 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5718 abbrev_section, info_ptr,
5719 this_cu->is_debug_types);
5720
5721 this_cu->length = get_cu_length (&cu.header);
5722
5723 /* Skip dummy compilation units. */
5724 if (info_ptr >= begin_info_ptr + this_cu->length
5725 || peek_abbrev_code (abfd, info_ptr) == 0)
5726 {
5727 do_cleanups (cleanups);
5728 return;
5729 }
5730
5731 dwarf2_read_abbrevs (&cu, abbrev_section);
5732 make_cleanup (dwarf2_free_abbrev_table, &cu);
5733
5734 init_cu_die_reader (&reader, &cu, section, dwo_file);
5735 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5736
5737 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5738
5739 do_cleanups (cleanups);
5740 }
5741
5742 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5743 does not lookup the specified DWO file.
5744 This cannot be used to read DWO files.
5745
5746 THIS_CU->cu is always freed when done.
5747 This is done in order to not leave THIS_CU->cu in a state where we have
5748 to care whether it refers to the "main" CU or the DWO CU.
5749 We can revisit this if the data shows there's a performance issue. */
5750
5751 static void
5752 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5753 die_reader_func_ftype *die_reader_func,
5754 void *data)
5755 {
5756 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5757 }
5758 \f
5759 /* Type Unit Groups.
5760
5761 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5762 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5763 so that all types coming from the same compilation (.o file) are grouped
5764 together. A future step could be to put the types in the same symtab as
5765 the CU the types ultimately came from. */
5766
5767 static hashval_t
5768 hash_type_unit_group (const void *item)
5769 {
5770 const struct type_unit_group *tu_group
5771 = (const struct type_unit_group *) item;
5772
5773 return hash_stmt_list_entry (&tu_group->hash);
5774 }
5775
5776 static int
5777 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5778 {
5779 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5780 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5781
5782 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5783 }
5784
5785 /* Allocate a hash table for type unit groups. */
5786
5787 static htab_t
5788 allocate_type_unit_groups_table (void)
5789 {
5790 return htab_create_alloc_ex (3,
5791 hash_type_unit_group,
5792 eq_type_unit_group,
5793 NULL,
5794 &dwarf2_per_objfile->objfile->objfile_obstack,
5795 hashtab_obstack_allocate,
5796 dummy_obstack_deallocate);
5797 }
5798
5799 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5800 partial symtabs. We combine several TUs per psymtab to not let the size
5801 of any one psymtab grow too big. */
5802 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5803 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5804
5805 /* Helper routine for get_type_unit_group.
5806 Create the type_unit_group object used to hold one or more TUs. */
5807
5808 static struct type_unit_group *
5809 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5810 {
5811 struct objfile *objfile = dwarf2_per_objfile->objfile;
5812 struct dwarf2_per_cu_data *per_cu;
5813 struct type_unit_group *tu_group;
5814
5815 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5816 struct type_unit_group);
5817 per_cu = &tu_group->per_cu;
5818 per_cu->objfile = objfile;
5819
5820 if (dwarf2_per_objfile->using_index)
5821 {
5822 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5823 struct dwarf2_per_cu_quick_data);
5824 }
5825 else
5826 {
5827 unsigned int line_offset = line_offset_struct.sect_off;
5828 struct partial_symtab *pst;
5829 char *name;
5830
5831 /* Give the symtab a useful name for debug purposes. */
5832 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5833 name = xstrprintf ("<type_units_%d>",
5834 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5835 else
5836 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5837
5838 pst = create_partial_symtab (per_cu, name);
5839 pst->anonymous = 1;
5840
5841 xfree (name);
5842 }
5843
5844 tu_group->hash.dwo_unit = cu->dwo_unit;
5845 tu_group->hash.line_offset = line_offset_struct;
5846
5847 return tu_group;
5848 }
5849
5850 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5851 STMT_LIST is a DW_AT_stmt_list attribute. */
5852
5853 static struct type_unit_group *
5854 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5855 {
5856 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5857 struct type_unit_group *tu_group;
5858 void **slot;
5859 unsigned int line_offset;
5860 struct type_unit_group type_unit_group_for_lookup;
5861
5862 if (dwarf2_per_objfile->type_unit_groups == NULL)
5863 {
5864 dwarf2_per_objfile->type_unit_groups =
5865 allocate_type_unit_groups_table ();
5866 }
5867
5868 /* Do we need to create a new group, or can we use an existing one? */
5869
5870 if (stmt_list)
5871 {
5872 line_offset = DW_UNSND (stmt_list);
5873 ++tu_stats->nr_symtab_sharers;
5874 }
5875 else
5876 {
5877 /* Ugh, no stmt_list. Rare, but we have to handle it.
5878 We can do various things here like create one group per TU or
5879 spread them over multiple groups to split up the expansion work.
5880 To avoid worst case scenarios (too many groups or too large groups)
5881 we, umm, group them in bunches. */
5882 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5883 | (tu_stats->nr_stmt_less_type_units
5884 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5885 ++tu_stats->nr_stmt_less_type_units;
5886 }
5887
5888 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5889 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5890 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5891 &type_unit_group_for_lookup, INSERT);
5892 if (*slot != NULL)
5893 {
5894 tu_group = (struct type_unit_group *) *slot;
5895 gdb_assert (tu_group != NULL);
5896 }
5897 else
5898 {
5899 sect_offset line_offset_struct;
5900
5901 line_offset_struct.sect_off = line_offset;
5902 tu_group = create_type_unit_group (cu, line_offset_struct);
5903 *slot = tu_group;
5904 ++tu_stats->nr_symtabs;
5905 }
5906
5907 return tu_group;
5908 }
5909 \f
5910 /* Partial symbol tables. */
5911
5912 /* Create a psymtab named NAME and assign it to PER_CU.
5913
5914 The caller must fill in the following details:
5915 dirname, textlow, texthigh. */
5916
5917 static struct partial_symtab *
5918 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5919 {
5920 struct objfile *objfile = per_cu->objfile;
5921 struct partial_symtab *pst;
5922
5923 pst = start_psymtab_common (objfile, name, 0,
5924 objfile->global_psymbols.next,
5925 objfile->static_psymbols.next);
5926
5927 pst->psymtabs_addrmap_supported = 1;
5928
5929 /* This is the glue that links PST into GDB's symbol API. */
5930 pst->read_symtab_private = per_cu;
5931 pst->read_symtab = dwarf2_read_symtab;
5932 per_cu->v.psymtab = pst;
5933
5934 return pst;
5935 }
5936
5937 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5938 type. */
5939
5940 struct process_psymtab_comp_unit_data
5941 {
5942 /* True if we are reading a DW_TAG_partial_unit. */
5943
5944 int want_partial_unit;
5945
5946 /* The "pretend" language that is used if the CU doesn't declare a
5947 language. */
5948
5949 enum language pretend_language;
5950 };
5951
5952 /* die_reader_func for process_psymtab_comp_unit. */
5953
5954 static void
5955 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5956 const gdb_byte *info_ptr,
5957 struct die_info *comp_unit_die,
5958 int has_children,
5959 void *data)
5960 {
5961 struct dwarf2_cu *cu = reader->cu;
5962 struct objfile *objfile = cu->objfile;
5963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5964 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5965 CORE_ADDR baseaddr;
5966 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5967 struct partial_symtab *pst;
5968 enum pc_bounds_kind cu_bounds_kind;
5969 const char *filename;
5970 struct process_psymtab_comp_unit_data *info
5971 = (struct process_psymtab_comp_unit_data *) data;
5972
5973 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5974 return;
5975
5976 gdb_assert (! per_cu->is_debug_types);
5977
5978 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5979
5980 cu->list_in_scope = &file_symbols;
5981
5982 /* Allocate a new partial symbol table structure. */
5983 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5984 if (filename == NULL)
5985 filename = "";
5986
5987 pst = create_partial_symtab (per_cu, filename);
5988
5989 /* This must be done before calling dwarf2_build_include_psymtabs. */
5990 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5991
5992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5993
5994 dwarf2_find_base_address (comp_unit_die, cu);
5995
5996 /* Possibly set the default values of LOWPC and HIGHPC from
5997 `DW_AT_ranges'. */
5998 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5999 &best_highpc, cu, pst);
6000 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6001 /* Store the contiguous range if it is not empty; it can be empty for
6002 CUs with no code. */
6003 addrmap_set_empty (objfile->psymtabs_addrmap,
6004 gdbarch_adjust_dwarf2_addr (gdbarch,
6005 best_lowpc + baseaddr),
6006 gdbarch_adjust_dwarf2_addr (gdbarch,
6007 best_highpc + baseaddr) - 1,
6008 pst);
6009
6010 /* Check if comp unit has_children.
6011 If so, read the rest of the partial symbols from this comp unit.
6012 If not, there's no more debug_info for this comp unit. */
6013 if (has_children)
6014 {
6015 struct partial_die_info *first_die;
6016 CORE_ADDR lowpc, highpc;
6017
6018 lowpc = ((CORE_ADDR) -1);
6019 highpc = ((CORE_ADDR) 0);
6020
6021 first_die = load_partial_dies (reader, info_ptr, 1);
6022
6023 scan_partial_symbols (first_die, &lowpc, &highpc,
6024 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6025
6026 /* If we didn't find a lowpc, set it to highpc to avoid
6027 complaints from `maint check'. */
6028 if (lowpc == ((CORE_ADDR) -1))
6029 lowpc = highpc;
6030
6031 /* If the compilation unit didn't have an explicit address range,
6032 then use the information extracted from its child dies. */
6033 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6034 {
6035 best_lowpc = lowpc;
6036 best_highpc = highpc;
6037 }
6038 }
6039 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6040 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6041
6042 end_psymtab_common (objfile, pst);
6043
6044 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6045 {
6046 int i;
6047 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6048 struct dwarf2_per_cu_data *iter;
6049
6050 /* Fill in 'dependencies' here; we fill in 'users' in a
6051 post-pass. */
6052 pst->number_of_dependencies = len;
6053 pst->dependencies =
6054 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6055 for (i = 0;
6056 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6057 i, iter);
6058 ++i)
6059 pst->dependencies[i] = iter->v.psymtab;
6060
6061 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6062 }
6063
6064 /* Get the list of files included in the current compilation unit,
6065 and build a psymtab for each of them. */
6066 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6067
6068 if (dwarf_read_debug)
6069 {
6070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6071
6072 fprintf_unfiltered (gdb_stdlog,
6073 "Psymtab for %s unit @0x%x: %s - %s"
6074 ", %d global, %d static syms\n",
6075 per_cu->is_debug_types ? "type" : "comp",
6076 per_cu->offset.sect_off,
6077 paddress (gdbarch, pst->textlow),
6078 paddress (gdbarch, pst->texthigh),
6079 pst->n_global_syms, pst->n_static_syms);
6080 }
6081 }
6082
6083 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6084 Process compilation unit THIS_CU for a psymtab. */
6085
6086 static void
6087 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6088 int want_partial_unit,
6089 enum language pretend_language)
6090 {
6091 struct process_psymtab_comp_unit_data info;
6092
6093 /* If this compilation unit was already read in, free the
6094 cached copy in order to read it in again. This is
6095 necessary because we skipped some symbols when we first
6096 read in the compilation unit (see load_partial_dies).
6097 This problem could be avoided, but the benefit is unclear. */
6098 if (this_cu->cu != NULL)
6099 free_one_cached_comp_unit (this_cu);
6100
6101 gdb_assert (! this_cu->is_debug_types);
6102 info.want_partial_unit = want_partial_unit;
6103 info.pretend_language = pretend_language;
6104 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6105 process_psymtab_comp_unit_reader,
6106 &info);
6107
6108 /* Age out any secondary CUs. */
6109 age_cached_comp_units ();
6110 }
6111
6112 /* Reader function for build_type_psymtabs. */
6113
6114 static void
6115 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6116 const gdb_byte *info_ptr,
6117 struct die_info *type_unit_die,
6118 int has_children,
6119 void *data)
6120 {
6121 struct objfile *objfile = dwarf2_per_objfile->objfile;
6122 struct dwarf2_cu *cu = reader->cu;
6123 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6124 struct signatured_type *sig_type;
6125 struct type_unit_group *tu_group;
6126 struct attribute *attr;
6127 struct partial_die_info *first_die;
6128 CORE_ADDR lowpc, highpc;
6129 struct partial_symtab *pst;
6130
6131 gdb_assert (data == NULL);
6132 gdb_assert (per_cu->is_debug_types);
6133 sig_type = (struct signatured_type *) per_cu;
6134
6135 if (! has_children)
6136 return;
6137
6138 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6139 tu_group = get_type_unit_group (cu, attr);
6140
6141 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6142
6143 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6144 cu->list_in_scope = &file_symbols;
6145 pst = create_partial_symtab (per_cu, "");
6146 pst->anonymous = 1;
6147
6148 first_die = load_partial_dies (reader, info_ptr, 1);
6149
6150 lowpc = (CORE_ADDR) -1;
6151 highpc = (CORE_ADDR) 0;
6152 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6153
6154 end_psymtab_common (objfile, pst);
6155 }
6156
6157 /* Struct used to sort TUs by their abbreviation table offset. */
6158
6159 struct tu_abbrev_offset
6160 {
6161 struct signatured_type *sig_type;
6162 sect_offset abbrev_offset;
6163 };
6164
6165 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6166
6167 static int
6168 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6169 {
6170 const struct tu_abbrev_offset * const *a
6171 = (const struct tu_abbrev_offset * const*) ap;
6172 const struct tu_abbrev_offset * const *b
6173 = (const struct tu_abbrev_offset * const*) bp;
6174 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6175 unsigned int boff = (*b)->abbrev_offset.sect_off;
6176
6177 return (aoff > boff) - (aoff < boff);
6178 }
6179
6180 /* Efficiently read all the type units.
6181 This does the bulk of the work for build_type_psymtabs.
6182
6183 The efficiency is because we sort TUs by the abbrev table they use and
6184 only read each abbrev table once. In one program there are 200K TUs
6185 sharing 8K abbrev tables.
6186
6187 The main purpose of this function is to support building the
6188 dwarf2_per_objfile->type_unit_groups table.
6189 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6190 can collapse the search space by grouping them by stmt_list.
6191 The savings can be significant, in the same program from above the 200K TUs
6192 share 8K stmt_list tables.
6193
6194 FUNC is expected to call get_type_unit_group, which will create the
6195 struct type_unit_group if necessary and add it to
6196 dwarf2_per_objfile->type_unit_groups. */
6197
6198 static void
6199 build_type_psymtabs_1 (void)
6200 {
6201 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6202 struct cleanup *cleanups;
6203 struct abbrev_table *abbrev_table;
6204 sect_offset abbrev_offset;
6205 struct tu_abbrev_offset *sorted_by_abbrev;
6206 int i;
6207
6208 /* It's up to the caller to not call us multiple times. */
6209 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6210
6211 if (dwarf2_per_objfile->n_type_units == 0)
6212 return;
6213
6214 /* TUs typically share abbrev tables, and there can be way more TUs than
6215 abbrev tables. Sort by abbrev table to reduce the number of times we
6216 read each abbrev table in.
6217 Alternatives are to punt or to maintain a cache of abbrev tables.
6218 This is simpler and efficient enough for now.
6219
6220 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6221 symtab to use). Typically TUs with the same abbrev offset have the same
6222 stmt_list value too so in practice this should work well.
6223
6224 The basic algorithm here is:
6225
6226 sort TUs by abbrev table
6227 for each TU with same abbrev table:
6228 read abbrev table if first user
6229 read TU top level DIE
6230 [IWBN if DWO skeletons had DW_AT_stmt_list]
6231 call FUNC */
6232
6233 if (dwarf_read_debug)
6234 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6235
6236 /* Sort in a separate table to maintain the order of all_type_units
6237 for .gdb_index: TU indices directly index all_type_units. */
6238 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6239 dwarf2_per_objfile->n_type_units);
6240 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6241 {
6242 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6243
6244 sorted_by_abbrev[i].sig_type = sig_type;
6245 sorted_by_abbrev[i].abbrev_offset =
6246 read_abbrev_offset (sig_type->per_cu.section,
6247 sig_type->per_cu.offset);
6248 }
6249 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6250 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6251 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6252
6253 abbrev_offset.sect_off = ~(unsigned) 0;
6254 abbrev_table = NULL;
6255 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6256
6257 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6258 {
6259 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6260
6261 /* Switch to the next abbrev table if necessary. */
6262 if (abbrev_table == NULL
6263 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6264 {
6265 if (abbrev_table != NULL)
6266 {
6267 abbrev_table_free (abbrev_table);
6268 /* Reset to NULL in case abbrev_table_read_table throws
6269 an error: abbrev_table_free_cleanup will get called. */
6270 abbrev_table = NULL;
6271 }
6272 abbrev_offset = tu->abbrev_offset;
6273 abbrev_table =
6274 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6275 abbrev_offset);
6276 ++tu_stats->nr_uniq_abbrev_tables;
6277 }
6278
6279 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6280 build_type_psymtabs_reader, NULL);
6281 }
6282
6283 do_cleanups (cleanups);
6284 }
6285
6286 /* Print collected type unit statistics. */
6287
6288 static void
6289 print_tu_stats (void)
6290 {
6291 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6292
6293 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6294 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6295 dwarf2_per_objfile->n_type_units);
6296 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6297 tu_stats->nr_uniq_abbrev_tables);
6298 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6299 tu_stats->nr_symtabs);
6300 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6301 tu_stats->nr_symtab_sharers);
6302 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6303 tu_stats->nr_stmt_less_type_units);
6304 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6305 tu_stats->nr_all_type_units_reallocs);
6306 }
6307
6308 /* Traversal function for build_type_psymtabs. */
6309
6310 static int
6311 build_type_psymtab_dependencies (void **slot, void *info)
6312 {
6313 struct objfile *objfile = dwarf2_per_objfile->objfile;
6314 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6315 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6316 struct partial_symtab *pst = per_cu->v.psymtab;
6317 int len = VEC_length (sig_type_ptr, tu_group->tus);
6318 struct signatured_type *iter;
6319 int i;
6320
6321 gdb_assert (len > 0);
6322 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6323
6324 pst->number_of_dependencies = len;
6325 pst->dependencies =
6326 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6327 for (i = 0;
6328 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6329 ++i)
6330 {
6331 gdb_assert (iter->per_cu.is_debug_types);
6332 pst->dependencies[i] = iter->per_cu.v.psymtab;
6333 iter->type_unit_group = tu_group;
6334 }
6335
6336 VEC_free (sig_type_ptr, tu_group->tus);
6337
6338 return 1;
6339 }
6340
6341 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6342 Build partial symbol tables for the .debug_types comp-units. */
6343
6344 static void
6345 build_type_psymtabs (struct objfile *objfile)
6346 {
6347 if (! create_all_type_units (objfile))
6348 return;
6349
6350 build_type_psymtabs_1 ();
6351 }
6352
6353 /* Traversal function for process_skeletonless_type_unit.
6354 Read a TU in a DWO file and build partial symbols for it. */
6355
6356 static int
6357 process_skeletonless_type_unit (void **slot, void *info)
6358 {
6359 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6360 struct objfile *objfile = (struct objfile *) info;
6361 struct signatured_type find_entry, *entry;
6362
6363 /* If this TU doesn't exist in the global table, add it and read it in. */
6364
6365 if (dwarf2_per_objfile->signatured_types == NULL)
6366 {
6367 dwarf2_per_objfile->signatured_types
6368 = allocate_signatured_type_table (objfile);
6369 }
6370
6371 find_entry.signature = dwo_unit->signature;
6372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6373 INSERT);
6374 /* If we've already seen this type there's nothing to do. What's happening
6375 is we're doing our own version of comdat-folding here. */
6376 if (*slot != NULL)
6377 return 1;
6378
6379 /* This does the job that create_all_type_units would have done for
6380 this TU. */
6381 entry = add_type_unit (dwo_unit->signature, slot);
6382 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6383 *slot = entry;
6384
6385 /* This does the job that build_type_psymtabs_1 would have done. */
6386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6387 build_type_psymtabs_reader, NULL);
6388
6389 return 1;
6390 }
6391
6392 /* Traversal function for process_skeletonless_type_units. */
6393
6394 static int
6395 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6396 {
6397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6398
6399 if (dwo_file->tus != NULL)
6400 {
6401 htab_traverse_noresize (dwo_file->tus,
6402 process_skeletonless_type_unit, info);
6403 }
6404
6405 return 1;
6406 }
6407
6408 /* Scan all TUs of DWO files, verifying we've processed them.
6409 This is needed in case a TU was emitted without its skeleton.
6410 Note: This can't be done until we know what all the DWO files are. */
6411
6412 static void
6413 process_skeletonless_type_units (struct objfile *objfile)
6414 {
6415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6416 if (get_dwp_file () == NULL
6417 && dwarf2_per_objfile->dwo_files != NULL)
6418 {
6419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6420 process_dwo_file_for_skeletonless_type_units,
6421 objfile);
6422 }
6423 }
6424
6425 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6426
6427 static void
6428 psymtabs_addrmap_cleanup (void *o)
6429 {
6430 struct objfile *objfile = (struct objfile *) o;
6431
6432 objfile->psymtabs_addrmap = NULL;
6433 }
6434
6435 /* Compute the 'user' field for each psymtab in OBJFILE. */
6436
6437 static void
6438 set_partial_user (struct objfile *objfile)
6439 {
6440 int i;
6441
6442 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6443 {
6444 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6445 struct partial_symtab *pst = per_cu->v.psymtab;
6446 int j;
6447
6448 if (pst == NULL)
6449 continue;
6450
6451 for (j = 0; j < pst->number_of_dependencies; ++j)
6452 {
6453 /* Set the 'user' field only if it is not already set. */
6454 if (pst->dependencies[j]->user == NULL)
6455 pst->dependencies[j]->user = pst;
6456 }
6457 }
6458 }
6459
6460 /* Build the partial symbol table by doing a quick pass through the
6461 .debug_info and .debug_abbrev sections. */
6462
6463 static void
6464 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6465 {
6466 struct cleanup *back_to, *addrmap_cleanup;
6467 struct obstack temp_obstack;
6468 int i;
6469
6470 if (dwarf_read_debug)
6471 {
6472 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6473 objfile_name (objfile));
6474 }
6475
6476 dwarf2_per_objfile->reading_partial_symbols = 1;
6477
6478 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6479
6480 /* Any cached compilation units will be linked by the per-objfile
6481 read_in_chain. Make sure to free them when we're done. */
6482 back_to = make_cleanup (free_cached_comp_units, NULL);
6483
6484 build_type_psymtabs (objfile);
6485
6486 create_all_comp_units (objfile);
6487
6488 /* Create a temporary address map on a temporary obstack. We later
6489 copy this to the final obstack. */
6490 obstack_init (&temp_obstack);
6491 make_cleanup_obstack_free (&temp_obstack);
6492 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6493 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6494
6495 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6496 {
6497 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6498
6499 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6500 }
6501
6502 /* This has to wait until we read the CUs, we need the list of DWOs. */
6503 process_skeletonless_type_units (objfile);
6504
6505 /* Now that all TUs have been processed we can fill in the dependencies. */
6506 if (dwarf2_per_objfile->type_unit_groups != NULL)
6507 {
6508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6509 build_type_psymtab_dependencies, NULL);
6510 }
6511
6512 if (dwarf_read_debug)
6513 print_tu_stats ();
6514
6515 set_partial_user (objfile);
6516
6517 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6518 &objfile->objfile_obstack);
6519 discard_cleanups (addrmap_cleanup);
6520
6521 do_cleanups (back_to);
6522
6523 if (dwarf_read_debug)
6524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6525 objfile_name (objfile));
6526 }
6527
6528 /* die_reader_func for load_partial_comp_unit. */
6529
6530 static void
6531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6532 const gdb_byte *info_ptr,
6533 struct die_info *comp_unit_die,
6534 int has_children,
6535 void *data)
6536 {
6537 struct dwarf2_cu *cu = reader->cu;
6538
6539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6540
6541 /* Check if comp unit has_children.
6542 If so, read the rest of the partial symbols from this comp unit.
6543 If not, there's no more debug_info for this comp unit. */
6544 if (has_children)
6545 load_partial_dies (reader, info_ptr, 0);
6546 }
6547
6548 /* Load the partial DIEs for a secondary CU into memory.
6549 This is also used when rereading a primary CU with load_all_dies. */
6550
6551 static void
6552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6553 {
6554 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6555 load_partial_comp_unit_reader, NULL);
6556 }
6557
6558 static void
6559 read_comp_units_from_section (struct objfile *objfile,
6560 struct dwarf2_section_info *section,
6561 unsigned int is_dwz,
6562 int *n_allocated,
6563 int *n_comp_units,
6564 struct dwarf2_per_cu_data ***all_comp_units)
6565 {
6566 const gdb_byte *info_ptr;
6567 bfd *abfd = get_section_bfd_owner (section);
6568
6569 if (dwarf_read_debug)
6570 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6571 get_section_name (section),
6572 get_section_file_name (section));
6573
6574 dwarf2_read_section (objfile, section);
6575
6576 info_ptr = section->buffer;
6577
6578 while (info_ptr < section->buffer + section->size)
6579 {
6580 unsigned int length, initial_length_size;
6581 struct dwarf2_per_cu_data *this_cu;
6582 sect_offset offset;
6583
6584 offset.sect_off = info_ptr - section->buffer;
6585
6586 /* Read just enough information to find out where the next
6587 compilation unit is. */
6588 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6589
6590 /* Save the compilation unit for later lookup. */
6591 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6592 memset (this_cu, 0, sizeof (*this_cu));
6593 this_cu->offset = offset;
6594 this_cu->length = length + initial_length_size;
6595 this_cu->is_dwz = is_dwz;
6596 this_cu->objfile = objfile;
6597 this_cu->section = section;
6598
6599 if (*n_comp_units == *n_allocated)
6600 {
6601 *n_allocated *= 2;
6602 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6603 *all_comp_units, *n_allocated);
6604 }
6605 (*all_comp_units)[*n_comp_units] = this_cu;
6606 ++*n_comp_units;
6607
6608 info_ptr = info_ptr + this_cu->length;
6609 }
6610 }
6611
6612 /* Create a list of all compilation units in OBJFILE.
6613 This is only done for -readnow and building partial symtabs. */
6614
6615 static void
6616 create_all_comp_units (struct objfile *objfile)
6617 {
6618 int n_allocated;
6619 int n_comp_units;
6620 struct dwarf2_per_cu_data **all_comp_units;
6621 struct dwz_file *dwz;
6622
6623 n_comp_units = 0;
6624 n_allocated = 10;
6625 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6626
6627 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6628 &n_allocated, &n_comp_units, &all_comp_units);
6629
6630 dwz = dwarf2_get_dwz_file ();
6631 if (dwz != NULL)
6632 read_comp_units_from_section (objfile, &dwz->info, 1,
6633 &n_allocated, &n_comp_units,
6634 &all_comp_units);
6635
6636 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6637 struct dwarf2_per_cu_data *,
6638 n_comp_units);
6639 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6640 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6641 xfree (all_comp_units);
6642 dwarf2_per_objfile->n_comp_units = n_comp_units;
6643 }
6644
6645 /* Process all loaded DIEs for compilation unit CU, starting at
6646 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6647 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6648 DW_AT_ranges). See the comments of add_partial_subprogram on how
6649 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6650
6651 static void
6652 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6653 CORE_ADDR *highpc, int set_addrmap,
6654 struct dwarf2_cu *cu)
6655 {
6656 struct partial_die_info *pdi;
6657
6658 /* Now, march along the PDI's, descending into ones which have
6659 interesting children but skipping the children of the other ones,
6660 until we reach the end of the compilation unit. */
6661
6662 pdi = first_die;
6663
6664 while (pdi != NULL)
6665 {
6666 fixup_partial_die (pdi, cu);
6667
6668 /* Anonymous namespaces or modules have no name but have interesting
6669 children, so we need to look at them. Ditto for anonymous
6670 enums. */
6671
6672 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6673 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6674 || pdi->tag == DW_TAG_imported_unit)
6675 {
6676 switch (pdi->tag)
6677 {
6678 case DW_TAG_subprogram:
6679 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6680 break;
6681 case DW_TAG_constant:
6682 case DW_TAG_variable:
6683 case DW_TAG_typedef:
6684 case DW_TAG_union_type:
6685 if (!pdi->is_declaration)
6686 {
6687 add_partial_symbol (pdi, cu);
6688 }
6689 break;
6690 case DW_TAG_class_type:
6691 case DW_TAG_interface_type:
6692 case DW_TAG_structure_type:
6693 if (!pdi->is_declaration)
6694 {
6695 add_partial_symbol (pdi, cu);
6696 }
6697 if (cu->language == language_rust && pdi->has_children)
6698 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6699 set_addrmap, cu);
6700 break;
6701 case DW_TAG_enumeration_type:
6702 if (!pdi->is_declaration)
6703 add_partial_enumeration (pdi, cu);
6704 break;
6705 case DW_TAG_base_type:
6706 case DW_TAG_subrange_type:
6707 /* File scope base type definitions are added to the partial
6708 symbol table. */
6709 add_partial_symbol (pdi, cu);
6710 break;
6711 case DW_TAG_namespace:
6712 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6713 break;
6714 case DW_TAG_module:
6715 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6716 break;
6717 case DW_TAG_imported_unit:
6718 {
6719 struct dwarf2_per_cu_data *per_cu;
6720
6721 /* For now we don't handle imported units in type units. */
6722 if (cu->per_cu->is_debug_types)
6723 {
6724 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6725 " supported in type units [in module %s]"),
6726 objfile_name (cu->objfile));
6727 }
6728
6729 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6730 pdi->is_dwz,
6731 cu->objfile);
6732
6733 /* Go read the partial unit, if needed. */
6734 if (per_cu->v.psymtab == NULL)
6735 process_psymtab_comp_unit (per_cu, 1, cu->language);
6736
6737 VEC_safe_push (dwarf2_per_cu_ptr,
6738 cu->per_cu->imported_symtabs, per_cu);
6739 }
6740 break;
6741 case DW_TAG_imported_declaration:
6742 add_partial_symbol (pdi, cu);
6743 break;
6744 default:
6745 break;
6746 }
6747 }
6748
6749 /* If the die has a sibling, skip to the sibling. */
6750
6751 pdi = pdi->die_sibling;
6752 }
6753 }
6754
6755 /* Functions used to compute the fully scoped name of a partial DIE.
6756
6757 Normally, this is simple. For C++, the parent DIE's fully scoped
6758 name is concatenated with "::" and the partial DIE's name.
6759 Enumerators are an exception; they use the scope of their parent
6760 enumeration type, i.e. the name of the enumeration type is not
6761 prepended to the enumerator.
6762
6763 There are two complexities. One is DW_AT_specification; in this
6764 case "parent" means the parent of the target of the specification,
6765 instead of the direct parent of the DIE. The other is compilers
6766 which do not emit DW_TAG_namespace; in this case we try to guess
6767 the fully qualified name of structure types from their members'
6768 linkage names. This must be done using the DIE's children rather
6769 than the children of any DW_AT_specification target. We only need
6770 to do this for structures at the top level, i.e. if the target of
6771 any DW_AT_specification (if any; otherwise the DIE itself) does not
6772 have a parent. */
6773
6774 /* Compute the scope prefix associated with PDI's parent, in
6775 compilation unit CU. The result will be allocated on CU's
6776 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6777 field. NULL is returned if no prefix is necessary. */
6778 static const char *
6779 partial_die_parent_scope (struct partial_die_info *pdi,
6780 struct dwarf2_cu *cu)
6781 {
6782 const char *grandparent_scope;
6783 struct partial_die_info *parent, *real_pdi;
6784
6785 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6786 then this means the parent of the specification DIE. */
6787
6788 real_pdi = pdi;
6789 while (real_pdi->has_specification)
6790 real_pdi = find_partial_die (real_pdi->spec_offset,
6791 real_pdi->spec_is_dwz, cu);
6792
6793 parent = real_pdi->die_parent;
6794 if (parent == NULL)
6795 return NULL;
6796
6797 if (parent->scope_set)
6798 return parent->scope;
6799
6800 fixup_partial_die (parent, cu);
6801
6802 grandparent_scope = partial_die_parent_scope (parent, cu);
6803
6804 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6805 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6806 Work around this problem here. */
6807 if (cu->language == language_cplus
6808 && parent->tag == DW_TAG_namespace
6809 && strcmp (parent->name, "::") == 0
6810 && grandparent_scope == NULL)
6811 {
6812 parent->scope = NULL;
6813 parent->scope_set = 1;
6814 return NULL;
6815 }
6816
6817 if (pdi->tag == DW_TAG_enumerator)
6818 /* Enumerators should not get the name of the enumeration as a prefix. */
6819 parent->scope = grandparent_scope;
6820 else if (parent->tag == DW_TAG_namespace
6821 || parent->tag == DW_TAG_module
6822 || parent->tag == DW_TAG_structure_type
6823 || parent->tag == DW_TAG_class_type
6824 || parent->tag == DW_TAG_interface_type
6825 || parent->tag == DW_TAG_union_type
6826 || parent->tag == DW_TAG_enumeration_type)
6827 {
6828 if (grandparent_scope == NULL)
6829 parent->scope = parent->name;
6830 else
6831 parent->scope = typename_concat (&cu->comp_unit_obstack,
6832 grandparent_scope,
6833 parent->name, 0, cu);
6834 }
6835 else
6836 {
6837 /* FIXME drow/2004-04-01: What should we be doing with
6838 function-local names? For partial symbols, we should probably be
6839 ignoring them. */
6840 complaint (&symfile_complaints,
6841 _("unhandled containing DIE tag %d for DIE at %d"),
6842 parent->tag, pdi->offset.sect_off);
6843 parent->scope = grandparent_scope;
6844 }
6845
6846 parent->scope_set = 1;
6847 return parent->scope;
6848 }
6849
6850 /* Return the fully scoped name associated with PDI, from compilation unit
6851 CU. The result will be allocated with malloc. */
6852
6853 static char *
6854 partial_die_full_name (struct partial_die_info *pdi,
6855 struct dwarf2_cu *cu)
6856 {
6857 const char *parent_scope;
6858
6859 /* If this is a template instantiation, we can not work out the
6860 template arguments from partial DIEs. So, unfortunately, we have
6861 to go through the full DIEs. At least any work we do building
6862 types here will be reused if full symbols are loaded later. */
6863 if (pdi->has_template_arguments)
6864 {
6865 fixup_partial_die (pdi, cu);
6866
6867 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6868 {
6869 struct die_info *die;
6870 struct attribute attr;
6871 struct dwarf2_cu *ref_cu = cu;
6872
6873 /* DW_FORM_ref_addr is using section offset. */
6874 attr.name = (enum dwarf_attribute) 0;
6875 attr.form = DW_FORM_ref_addr;
6876 attr.u.unsnd = pdi->offset.sect_off;
6877 die = follow_die_ref (NULL, &attr, &ref_cu);
6878
6879 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6880 }
6881 }
6882
6883 parent_scope = partial_die_parent_scope (pdi, cu);
6884 if (parent_scope == NULL)
6885 return NULL;
6886 else
6887 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6888 }
6889
6890 static void
6891 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6892 {
6893 struct objfile *objfile = cu->objfile;
6894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6895 CORE_ADDR addr = 0;
6896 const char *actual_name = NULL;
6897 CORE_ADDR baseaddr;
6898 char *built_actual_name;
6899
6900 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6901
6902 built_actual_name = partial_die_full_name (pdi, cu);
6903 if (built_actual_name != NULL)
6904 actual_name = built_actual_name;
6905
6906 if (actual_name == NULL)
6907 actual_name = pdi->name;
6908
6909 switch (pdi->tag)
6910 {
6911 case DW_TAG_subprogram:
6912 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6913 if (pdi->is_external || cu->language == language_ada)
6914 {
6915 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6916 of the global scope. But in Ada, we want to be able to access
6917 nested procedures globally. So all Ada subprograms are stored
6918 in the global scope. */
6919 add_psymbol_to_list (actual_name, strlen (actual_name),
6920 built_actual_name != NULL,
6921 VAR_DOMAIN, LOC_BLOCK,
6922 &objfile->global_psymbols,
6923 addr, cu->language, objfile);
6924 }
6925 else
6926 {
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 VAR_DOMAIN, LOC_BLOCK,
6930 &objfile->static_psymbols,
6931 addr, cu->language, objfile);
6932 }
6933 break;
6934 case DW_TAG_constant:
6935 {
6936 struct psymbol_allocation_list *list;
6937
6938 if (pdi->is_external)
6939 list = &objfile->global_psymbols;
6940 else
6941 list = &objfile->static_psymbols;
6942 add_psymbol_to_list (actual_name, strlen (actual_name),
6943 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6944 list, 0, cu->language, objfile);
6945 }
6946 break;
6947 case DW_TAG_variable:
6948 if (pdi->d.locdesc)
6949 addr = decode_locdesc (pdi->d.locdesc, cu);
6950
6951 if (pdi->d.locdesc
6952 && addr == 0
6953 && !dwarf2_per_objfile->has_section_at_zero)
6954 {
6955 /* A global or static variable may also have been stripped
6956 out by the linker if unused, in which case its address
6957 will be nullified; do not add such variables into partial
6958 symbol table then. */
6959 }
6960 else if (pdi->is_external)
6961 {
6962 /* Global Variable.
6963 Don't enter into the minimal symbol tables as there is
6964 a minimal symbol table entry from the ELF symbols already.
6965 Enter into partial symbol table if it has a location
6966 descriptor or a type.
6967 If the location descriptor is missing, new_symbol will create
6968 a LOC_UNRESOLVED symbol, the address of the variable will then
6969 be determined from the minimal symbol table whenever the variable
6970 is referenced.
6971 The address for the partial symbol table entry is not
6972 used by GDB, but it comes in handy for debugging partial symbol
6973 table building. */
6974
6975 if (pdi->d.locdesc || pdi->has_type)
6976 add_psymbol_to_list (actual_name, strlen (actual_name),
6977 built_actual_name != NULL,
6978 VAR_DOMAIN, LOC_STATIC,
6979 &objfile->global_psymbols,
6980 addr + baseaddr,
6981 cu->language, objfile);
6982 }
6983 else
6984 {
6985 int has_loc = pdi->d.locdesc != NULL;
6986
6987 /* Static Variable. Skip symbols whose value we cannot know (those
6988 without location descriptors or constant values). */
6989 if (!has_loc && !pdi->has_const_value)
6990 {
6991 xfree (built_actual_name);
6992 return;
6993 }
6994
6995 add_psymbol_to_list (actual_name, strlen (actual_name),
6996 built_actual_name != NULL,
6997 VAR_DOMAIN, LOC_STATIC,
6998 &objfile->static_psymbols,
6999 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7000 cu->language, objfile);
7001 }
7002 break;
7003 case DW_TAG_typedef:
7004 case DW_TAG_base_type:
7005 case DW_TAG_subrange_type:
7006 add_psymbol_to_list (actual_name, strlen (actual_name),
7007 built_actual_name != NULL,
7008 VAR_DOMAIN, LOC_TYPEDEF,
7009 &objfile->static_psymbols,
7010 0, cu->language, objfile);
7011 break;
7012 case DW_TAG_imported_declaration:
7013 case DW_TAG_namespace:
7014 add_psymbol_to_list (actual_name, strlen (actual_name),
7015 built_actual_name != NULL,
7016 VAR_DOMAIN, LOC_TYPEDEF,
7017 &objfile->global_psymbols,
7018 0, cu->language, objfile);
7019 break;
7020 case DW_TAG_module:
7021 add_psymbol_to_list (actual_name, strlen (actual_name),
7022 built_actual_name != NULL,
7023 MODULE_DOMAIN, LOC_TYPEDEF,
7024 &objfile->global_psymbols,
7025 0, cu->language, objfile);
7026 break;
7027 case DW_TAG_class_type:
7028 case DW_TAG_interface_type:
7029 case DW_TAG_structure_type:
7030 case DW_TAG_union_type:
7031 case DW_TAG_enumeration_type:
7032 /* Skip external references. The DWARF standard says in the section
7033 about "Structure, Union, and Class Type Entries": "An incomplete
7034 structure, union or class type is represented by a structure,
7035 union or class entry that does not have a byte size attribute
7036 and that has a DW_AT_declaration attribute." */
7037 if (!pdi->has_byte_size && pdi->is_declaration)
7038 {
7039 xfree (built_actual_name);
7040 return;
7041 }
7042
7043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7044 static vs. global. */
7045 add_psymbol_to_list (actual_name, strlen (actual_name),
7046 built_actual_name != NULL,
7047 STRUCT_DOMAIN, LOC_TYPEDEF,
7048 cu->language == language_cplus
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
7051 0, cu->language, objfile);
7052
7053 break;
7054 case DW_TAG_enumerator:
7055 add_psymbol_to_list (actual_name, strlen (actual_name),
7056 built_actual_name != NULL,
7057 VAR_DOMAIN, LOC_CONST,
7058 cu->language == language_cplus
7059 ? &objfile->global_psymbols
7060 : &objfile->static_psymbols,
7061 0, cu->language, objfile);
7062 break;
7063 default:
7064 break;
7065 }
7066
7067 xfree (built_actual_name);
7068 }
7069
7070 /* Read a partial die corresponding to a namespace; also, add a symbol
7071 corresponding to that namespace to the symbol table. NAMESPACE is
7072 the name of the enclosing namespace. */
7073
7074 static void
7075 add_partial_namespace (struct partial_die_info *pdi,
7076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7077 int set_addrmap, struct dwarf2_cu *cu)
7078 {
7079 /* Add a symbol for the namespace. */
7080
7081 add_partial_symbol (pdi, cu);
7082
7083 /* Now scan partial symbols in that namespace. */
7084
7085 if (pdi->has_children)
7086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7087 }
7088
7089 /* Read a partial die corresponding to a Fortran module. */
7090
7091 static void
7092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7094 {
7095 /* Add a symbol for the namespace. */
7096
7097 add_partial_symbol (pdi, cu);
7098
7099 /* Now scan partial symbols in that module. */
7100
7101 if (pdi->has_children)
7102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7103 }
7104
7105 /* Read a partial die corresponding to a subprogram and create a partial
7106 symbol for that subprogram. When the CU language allows it, this
7107 routine also defines a partial symbol for each nested subprogram
7108 that this subprogram contains. If SET_ADDRMAP is true, record the
7109 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7110 and highest PC values found in PDI.
7111
7112 PDI may also be a lexical block, in which case we simply search
7113 recursively for subprograms defined inside that lexical block.
7114 Again, this is only performed when the CU language allows this
7115 type of definitions. */
7116
7117 static void
7118 add_partial_subprogram (struct partial_die_info *pdi,
7119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7120 int set_addrmap, struct dwarf2_cu *cu)
7121 {
7122 if (pdi->tag == DW_TAG_subprogram)
7123 {
7124 if (pdi->has_pc_info)
7125 {
7126 if (pdi->lowpc < *lowpc)
7127 *lowpc = pdi->lowpc;
7128 if (pdi->highpc > *highpc)
7129 *highpc = pdi->highpc;
7130 if (set_addrmap)
7131 {
7132 struct objfile *objfile = cu->objfile;
7133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7134 CORE_ADDR baseaddr;
7135 CORE_ADDR highpc;
7136 CORE_ADDR lowpc;
7137
7138 baseaddr = ANOFFSET (objfile->section_offsets,
7139 SECT_OFF_TEXT (objfile));
7140 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->lowpc + baseaddr);
7142 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7143 pdi->highpc + baseaddr);
7144 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7145 cu->per_cu->v.psymtab);
7146 }
7147 }
7148
7149 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7150 {
7151 if (!pdi->is_declaration)
7152 /* Ignore subprogram DIEs that do not have a name, they are
7153 illegal. Do not emit a complaint at this point, we will
7154 do so when we convert this psymtab into a symtab. */
7155 if (pdi->name)
7156 add_partial_symbol (pdi, cu);
7157 }
7158 }
7159
7160 if (! pdi->has_children)
7161 return;
7162
7163 if (cu->language == language_ada)
7164 {
7165 pdi = pdi->die_child;
7166 while (pdi != NULL)
7167 {
7168 fixup_partial_die (pdi, cu);
7169 if (pdi->tag == DW_TAG_subprogram
7170 || pdi->tag == DW_TAG_lexical_block)
7171 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7172 pdi = pdi->die_sibling;
7173 }
7174 }
7175 }
7176
7177 /* Read a partial die corresponding to an enumeration type. */
7178
7179 static void
7180 add_partial_enumeration (struct partial_die_info *enum_pdi,
7181 struct dwarf2_cu *cu)
7182 {
7183 struct partial_die_info *pdi;
7184
7185 if (enum_pdi->name != NULL)
7186 add_partial_symbol (enum_pdi, cu);
7187
7188 pdi = enum_pdi->die_child;
7189 while (pdi)
7190 {
7191 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7192 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7193 else
7194 add_partial_symbol (pdi, cu);
7195 pdi = pdi->die_sibling;
7196 }
7197 }
7198
7199 /* Return the initial uleb128 in the die at INFO_PTR. */
7200
7201 static unsigned int
7202 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7203 {
7204 unsigned int bytes_read;
7205
7206 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7207 }
7208
7209 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7210 Return the corresponding abbrev, or NULL if the number is zero (indicating
7211 an empty DIE). In either case *BYTES_READ will be set to the length of
7212 the initial number. */
7213
7214 static struct abbrev_info *
7215 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7216 struct dwarf2_cu *cu)
7217 {
7218 bfd *abfd = cu->objfile->obfd;
7219 unsigned int abbrev_number;
7220 struct abbrev_info *abbrev;
7221
7222 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7223
7224 if (abbrev_number == 0)
7225 return NULL;
7226
7227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7228 if (!abbrev)
7229 {
7230 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7231 " at offset 0x%x [in module %s]"),
7232 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7233 cu->header.offset.sect_off, bfd_get_filename (abfd));
7234 }
7235
7236 return abbrev;
7237 }
7238
7239 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7240 Returns a pointer to the end of a series of DIEs, terminated by an empty
7241 DIE. Any children of the skipped DIEs will also be skipped. */
7242
7243 static const gdb_byte *
7244 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7245 {
7246 struct dwarf2_cu *cu = reader->cu;
7247 struct abbrev_info *abbrev;
7248 unsigned int bytes_read;
7249
7250 while (1)
7251 {
7252 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7253 if (abbrev == NULL)
7254 return info_ptr + bytes_read;
7255 else
7256 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7257 }
7258 }
7259
7260 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7261 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7262 abbrev corresponding to that skipped uleb128 should be passed in
7263 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7264 children. */
7265
7266 static const gdb_byte *
7267 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7268 struct abbrev_info *abbrev)
7269 {
7270 unsigned int bytes_read;
7271 struct attribute attr;
7272 bfd *abfd = reader->abfd;
7273 struct dwarf2_cu *cu = reader->cu;
7274 const gdb_byte *buffer = reader->buffer;
7275 const gdb_byte *buffer_end = reader->buffer_end;
7276 unsigned int form, i;
7277
7278 for (i = 0; i < abbrev->num_attrs; i++)
7279 {
7280 /* The only abbrev we care about is DW_AT_sibling. */
7281 if (abbrev->attrs[i].name == DW_AT_sibling)
7282 {
7283 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7284 if (attr.form == DW_FORM_ref_addr)
7285 complaint (&symfile_complaints,
7286 _("ignoring absolute DW_AT_sibling"));
7287 else
7288 {
7289 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7290 const gdb_byte *sibling_ptr = buffer + off;
7291
7292 if (sibling_ptr < info_ptr)
7293 complaint (&symfile_complaints,
7294 _("DW_AT_sibling points backwards"));
7295 else if (sibling_ptr > reader->buffer_end)
7296 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7297 else
7298 return sibling_ptr;
7299 }
7300 }
7301
7302 /* If it isn't DW_AT_sibling, skip this attribute. */
7303 form = abbrev->attrs[i].form;
7304 skip_attribute:
7305 switch (form)
7306 {
7307 case DW_FORM_ref_addr:
7308 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7309 and later it is offset sized. */
7310 if (cu->header.version == 2)
7311 info_ptr += cu->header.addr_size;
7312 else
7313 info_ptr += cu->header.offset_size;
7314 break;
7315 case DW_FORM_GNU_ref_alt:
7316 info_ptr += cu->header.offset_size;
7317 break;
7318 case DW_FORM_addr:
7319 info_ptr += cu->header.addr_size;
7320 break;
7321 case DW_FORM_data1:
7322 case DW_FORM_ref1:
7323 case DW_FORM_flag:
7324 info_ptr += 1;
7325 break;
7326 case DW_FORM_flag_present:
7327 break;
7328 case DW_FORM_data2:
7329 case DW_FORM_ref2:
7330 info_ptr += 2;
7331 break;
7332 case DW_FORM_data4:
7333 case DW_FORM_ref4:
7334 info_ptr += 4;
7335 break;
7336 case DW_FORM_data8:
7337 case DW_FORM_ref8:
7338 case DW_FORM_ref_sig8:
7339 info_ptr += 8;
7340 break;
7341 case DW_FORM_string:
7342 read_direct_string (abfd, info_ptr, &bytes_read);
7343 info_ptr += bytes_read;
7344 break;
7345 case DW_FORM_sec_offset:
7346 case DW_FORM_strp:
7347 case DW_FORM_GNU_strp_alt:
7348 info_ptr += cu->header.offset_size;
7349 break;
7350 case DW_FORM_exprloc:
7351 case DW_FORM_block:
7352 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7353 info_ptr += bytes_read;
7354 break;
7355 case DW_FORM_block1:
7356 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7357 break;
7358 case DW_FORM_block2:
7359 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7360 break;
7361 case DW_FORM_block4:
7362 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7363 break;
7364 case DW_FORM_sdata:
7365 case DW_FORM_udata:
7366 case DW_FORM_ref_udata:
7367 case DW_FORM_GNU_addr_index:
7368 case DW_FORM_GNU_str_index:
7369 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7370 break;
7371 case DW_FORM_indirect:
7372 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7373 info_ptr += bytes_read;
7374 /* We need to continue parsing from here, so just go back to
7375 the top. */
7376 goto skip_attribute;
7377
7378 default:
7379 error (_("Dwarf Error: Cannot handle %s "
7380 "in DWARF reader [in module %s]"),
7381 dwarf_form_name (form),
7382 bfd_get_filename (abfd));
7383 }
7384 }
7385
7386 if (abbrev->has_children)
7387 return skip_children (reader, info_ptr);
7388 else
7389 return info_ptr;
7390 }
7391
7392 /* Locate ORIG_PDI's sibling.
7393 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7394
7395 static const gdb_byte *
7396 locate_pdi_sibling (const struct die_reader_specs *reader,
7397 struct partial_die_info *orig_pdi,
7398 const gdb_byte *info_ptr)
7399 {
7400 /* Do we know the sibling already? */
7401
7402 if (orig_pdi->sibling)
7403 return orig_pdi->sibling;
7404
7405 /* Are there any children to deal with? */
7406
7407 if (!orig_pdi->has_children)
7408 return info_ptr;
7409
7410 /* Skip the children the long way. */
7411
7412 return skip_children (reader, info_ptr);
7413 }
7414
7415 /* Expand this partial symbol table into a full symbol table. SELF is
7416 not NULL. */
7417
7418 static void
7419 dwarf2_read_symtab (struct partial_symtab *self,
7420 struct objfile *objfile)
7421 {
7422 if (self->readin)
7423 {
7424 warning (_("bug: psymtab for %s is already read in."),
7425 self->filename);
7426 }
7427 else
7428 {
7429 if (info_verbose)
7430 {
7431 printf_filtered (_("Reading in symbols for %s..."),
7432 self->filename);
7433 gdb_flush (gdb_stdout);
7434 }
7435
7436 /* Restore our global data. */
7437 dwarf2_per_objfile
7438 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7439 dwarf2_objfile_data_key);
7440
7441 /* If this psymtab is constructed from a debug-only objfile, the
7442 has_section_at_zero flag will not necessarily be correct. We
7443 can get the correct value for this flag by looking at the data
7444 associated with the (presumably stripped) associated objfile. */
7445 if (objfile->separate_debug_objfile_backlink)
7446 {
7447 struct dwarf2_per_objfile *dpo_backlink
7448 = ((struct dwarf2_per_objfile *)
7449 objfile_data (objfile->separate_debug_objfile_backlink,
7450 dwarf2_objfile_data_key));
7451
7452 dwarf2_per_objfile->has_section_at_zero
7453 = dpo_backlink->has_section_at_zero;
7454 }
7455
7456 dwarf2_per_objfile->reading_partial_symbols = 0;
7457
7458 psymtab_to_symtab_1 (self);
7459
7460 /* Finish up the debug error message. */
7461 if (info_verbose)
7462 printf_filtered (_("done.\n"));
7463 }
7464
7465 process_cu_includes ();
7466 }
7467 \f
7468 /* Reading in full CUs. */
7469
7470 /* Add PER_CU to the queue. */
7471
7472 static void
7473 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
7475 {
7476 struct dwarf2_queue_item *item;
7477
7478 per_cu->queued = 1;
7479 item = XNEW (struct dwarf2_queue_item);
7480 item->per_cu = per_cu;
7481 item->pretend_language = pretend_language;
7482 item->next = NULL;
7483
7484 if (dwarf2_queue == NULL)
7485 dwarf2_queue = item;
7486 else
7487 dwarf2_queue_tail->next = item;
7488
7489 dwarf2_queue_tail = item;
7490 }
7491
7492 /* If PER_CU is not yet queued, add it to the queue.
7493 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7494 dependency.
7495 The result is non-zero if PER_CU was queued, otherwise the result is zero
7496 meaning either PER_CU is already queued or it is already loaded.
7497
7498 N.B. There is an invariant here that if a CU is queued then it is loaded.
7499 The caller is required to load PER_CU if we return non-zero. */
7500
7501 static int
7502 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7503 struct dwarf2_per_cu_data *per_cu,
7504 enum language pretend_language)
7505 {
7506 /* We may arrive here during partial symbol reading, if we need full
7507 DIEs to process an unusual case (e.g. template arguments). Do
7508 not queue PER_CU, just tell our caller to load its DIEs. */
7509 if (dwarf2_per_objfile->reading_partial_symbols)
7510 {
7511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7512 return 1;
7513 return 0;
7514 }
7515
7516 /* Mark the dependence relation so that we don't flush PER_CU
7517 too early. */
7518 if (dependent_cu != NULL)
7519 dwarf2_add_dependence (dependent_cu, per_cu);
7520
7521 /* If it's already on the queue, we have nothing to do. */
7522 if (per_cu->queued)
7523 return 0;
7524
7525 /* If the compilation unit is already loaded, just mark it as
7526 used. */
7527 if (per_cu->cu != NULL)
7528 {
7529 per_cu->cu->last_used = 0;
7530 return 0;
7531 }
7532
7533 /* Add it to the queue. */
7534 queue_comp_unit (per_cu, pretend_language);
7535
7536 return 1;
7537 }
7538
7539 /* Process the queue. */
7540
7541 static void
7542 process_queue (void)
7543 {
7544 struct dwarf2_queue_item *item, *next_item;
7545
7546 if (dwarf_read_debug)
7547 {
7548 fprintf_unfiltered (gdb_stdlog,
7549 "Expanding one or more symtabs of objfile %s ...\n",
7550 objfile_name (dwarf2_per_objfile->objfile));
7551 }
7552
7553 /* The queue starts out with one item, but following a DIE reference
7554 may load a new CU, adding it to the end of the queue. */
7555 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7556 {
7557 if ((dwarf2_per_objfile->using_index
7558 ? !item->per_cu->v.quick->compunit_symtab
7559 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7560 /* Skip dummy CUs. */
7561 && item->per_cu->cu != NULL)
7562 {
7563 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7564 unsigned int debug_print_threshold;
7565 char buf[100];
7566
7567 if (per_cu->is_debug_types)
7568 {
7569 struct signatured_type *sig_type =
7570 (struct signatured_type *) per_cu;
7571
7572 sprintf (buf, "TU %s at offset 0x%x",
7573 hex_string (sig_type->signature),
7574 per_cu->offset.sect_off);
7575 /* There can be 100s of TUs.
7576 Only print them in verbose mode. */
7577 debug_print_threshold = 2;
7578 }
7579 else
7580 {
7581 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7582 debug_print_threshold = 1;
7583 }
7584
7585 if (dwarf_read_debug >= debug_print_threshold)
7586 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7587
7588 if (per_cu->is_debug_types)
7589 process_full_type_unit (per_cu, item->pretend_language);
7590 else
7591 process_full_comp_unit (per_cu, item->pretend_language);
7592
7593 if (dwarf_read_debug >= debug_print_threshold)
7594 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7595 }
7596
7597 item->per_cu->queued = 0;
7598 next_item = item->next;
7599 xfree (item);
7600 }
7601
7602 dwarf2_queue_tail = NULL;
7603
7604 if (dwarf_read_debug)
7605 {
7606 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7607 objfile_name (dwarf2_per_objfile->objfile));
7608 }
7609 }
7610
7611 /* Free all allocated queue entries. This function only releases anything if
7612 an error was thrown; if the queue was processed then it would have been
7613 freed as we went along. */
7614
7615 static void
7616 dwarf2_release_queue (void *dummy)
7617 {
7618 struct dwarf2_queue_item *item, *last;
7619
7620 item = dwarf2_queue;
7621 while (item)
7622 {
7623 /* Anything still marked queued is likely to be in an
7624 inconsistent state, so discard it. */
7625 if (item->per_cu->queued)
7626 {
7627 if (item->per_cu->cu != NULL)
7628 free_one_cached_comp_unit (item->per_cu);
7629 item->per_cu->queued = 0;
7630 }
7631
7632 last = item;
7633 item = item->next;
7634 xfree (last);
7635 }
7636
7637 dwarf2_queue = dwarf2_queue_tail = NULL;
7638 }
7639
7640 /* Read in full symbols for PST, and anything it depends on. */
7641
7642 static void
7643 psymtab_to_symtab_1 (struct partial_symtab *pst)
7644 {
7645 struct dwarf2_per_cu_data *per_cu;
7646 int i;
7647
7648 if (pst->readin)
7649 return;
7650
7651 for (i = 0; i < pst->number_of_dependencies; i++)
7652 if (!pst->dependencies[i]->readin
7653 && pst->dependencies[i]->user == NULL)
7654 {
7655 /* Inform about additional files that need to be read in. */
7656 if (info_verbose)
7657 {
7658 /* FIXME: i18n: Need to make this a single string. */
7659 fputs_filtered (" ", gdb_stdout);
7660 wrap_here ("");
7661 fputs_filtered ("and ", gdb_stdout);
7662 wrap_here ("");
7663 printf_filtered ("%s...", pst->dependencies[i]->filename);
7664 wrap_here (""); /* Flush output. */
7665 gdb_flush (gdb_stdout);
7666 }
7667 psymtab_to_symtab_1 (pst->dependencies[i]);
7668 }
7669
7670 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7671
7672 if (per_cu == NULL)
7673 {
7674 /* It's an include file, no symbols to read for it.
7675 Everything is in the parent symtab. */
7676 pst->readin = 1;
7677 return;
7678 }
7679
7680 dw2_do_instantiate_symtab (per_cu);
7681 }
7682
7683 /* Trivial hash function for die_info: the hash value of a DIE
7684 is its offset in .debug_info for this objfile. */
7685
7686 static hashval_t
7687 die_hash (const void *item)
7688 {
7689 const struct die_info *die = (const struct die_info *) item;
7690
7691 return die->offset.sect_off;
7692 }
7693
7694 /* Trivial comparison function for die_info structures: two DIEs
7695 are equal if they have the same offset. */
7696
7697 static int
7698 die_eq (const void *item_lhs, const void *item_rhs)
7699 {
7700 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7701 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7702
7703 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7704 }
7705
7706 /* die_reader_func for load_full_comp_unit.
7707 This is identical to read_signatured_type_reader,
7708 but is kept separate for now. */
7709
7710 static void
7711 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7712 const gdb_byte *info_ptr,
7713 struct die_info *comp_unit_die,
7714 int has_children,
7715 void *data)
7716 {
7717 struct dwarf2_cu *cu = reader->cu;
7718 enum language *language_ptr = (enum language *) data;
7719
7720 gdb_assert (cu->die_hash == NULL);
7721 cu->die_hash =
7722 htab_create_alloc_ex (cu->header.length / 12,
7723 die_hash,
7724 die_eq,
7725 NULL,
7726 &cu->comp_unit_obstack,
7727 hashtab_obstack_allocate,
7728 dummy_obstack_deallocate);
7729
7730 if (has_children)
7731 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7732 &info_ptr, comp_unit_die);
7733 cu->dies = comp_unit_die;
7734 /* comp_unit_die is not stored in die_hash, no need. */
7735
7736 /* We try not to read any attributes in this function, because not
7737 all CUs needed for references have been loaded yet, and symbol
7738 table processing isn't initialized. But we have to set the CU language,
7739 or we won't be able to build types correctly.
7740 Similarly, if we do not read the producer, we can not apply
7741 producer-specific interpretation. */
7742 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7743 }
7744
7745 /* Load the DIEs associated with PER_CU into memory. */
7746
7747 static void
7748 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7749 enum language pretend_language)
7750 {
7751 gdb_assert (! this_cu->is_debug_types);
7752
7753 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7754 load_full_comp_unit_reader, &pretend_language);
7755 }
7756
7757 /* Add a DIE to the delayed physname list. */
7758
7759 static void
7760 add_to_method_list (struct type *type, int fnfield_index, int index,
7761 const char *name, struct die_info *die,
7762 struct dwarf2_cu *cu)
7763 {
7764 struct delayed_method_info mi;
7765 mi.type = type;
7766 mi.fnfield_index = fnfield_index;
7767 mi.index = index;
7768 mi.name = name;
7769 mi.die = die;
7770 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7771 }
7772
7773 /* A cleanup for freeing the delayed method list. */
7774
7775 static void
7776 free_delayed_list (void *ptr)
7777 {
7778 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7779 if (cu->method_list != NULL)
7780 {
7781 VEC_free (delayed_method_info, cu->method_list);
7782 cu->method_list = NULL;
7783 }
7784 }
7785
7786 /* Compute the physnames of any methods on the CU's method list.
7787
7788 The computation of method physnames is delayed in order to avoid the
7789 (bad) condition that one of the method's formal parameters is of an as yet
7790 incomplete type. */
7791
7792 static void
7793 compute_delayed_physnames (struct dwarf2_cu *cu)
7794 {
7795 int i;
7796 struct delayed_method_info *mi;
7797 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7798 {
7799 const char *physname;
7800 struct fn_fieldlist *fn_flp
7801 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7802 physname = dwarf2_physname (mi->name, mi->die, cu);
7803 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7804 = physname ? physname : "";
7805 }
7806 }
7807
7808 /* Go objects should be embedded in a DW_TAG_module DIE,
7809 and it's not clear if/how imported objects will appear.
7810 To keep Go support simple until that's worked out,
7811 go back through what we've read and create something usable.
7812 We could do this while processing each DIE, and feels kinda cleaner,
7813 but that way is more invasive.
7814 This is to, for example, allow the user to type "p var" or "b main"
7815 without having to specify the package name, and allow lookups
7816 of module.object to work in contexts that use the expression
7817 parser. */
7818
7819 static void
7820 fixup_go_packaging (struct dwarf2_cu *cu)
7821 {
7822 char *package_name = NULL;
7823 struct pending *list;
7824 int i;
7825
7826 for (list = global_symbols; list != NULL; list = list->next)
7827 {
7828 for (i = 0; i < list->nsyms; ++i)
7829 {
7830 struct symbol *sym = list->symbol[i];
7831
7832 if (SYMBOL_LANGUAGE (sym) == language_go
7833 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7834 {
7835 char *this_package_name = go_symbol_package_name (sym);
7836
7837 if (this_package_name == NULL)
7838 continue;
7839 if (package_name == NULL)
7840 package_name = this_package_name;
7841 else
7842 {
7843 if (strcmp (package_name, this_package_name) != 0)
7844 complaint (&symfile_complaints,
7845 _("Symtab %s has objects from two different Go packages: %s and %s"),
7846 (symbol_symtab (sym) != NULL
7847 ? symtab_to_filename_for_display
7848 (symbol_symtab (sym))
7849 : objfile_name (cu->objfile)),
7850 this_package_name, package_name);
7851 xfree (this_package_name);
7852 }
7853 }
7854 }
7855 }
7856
7857 if (package_name != NULL)
7858 {
7859 struct objfile *objfile = cu->objfile;
7860 const char *saved_package_name
7861 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7862 package_name,
7863 strlen (package_name));
7864 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7865 saved_package_name);
7866 struct symbol *sym;
7867
7868 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7869
7870 sym = allocate_symbol (objfile);
7871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7872 SYMBOL_SET_NAMES (sym, saved_package_name,
7873 strlen (saved_package_name), 0, objfile);
7874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7875 e.g., "main" finds the "main" module and not C's main(). */
7876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7878 SYMBOL_TYPE (sym) = type;
7879
7880 add_symbol_to_list (sym, &global_symbols);
7881
7882 xfree (package_name);
7883 }
7884 }
7885
7886 /* Return the symtab for PER_CU. This works properly regardless of
7887 whether we're using the index or psymtabs. */
7888
7889 static struct compunit_symtab *
7890 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7891 {
7892 return (dwarf2_per_objfile->using_index
7893 ? per_cu->v.quick->compunit_symtab
7894 : per_cu->v.psymtab->compunit_symtab);
7895 }
7896
7897 /* A helper function for computing the list of all symbol tables
7898 included by PER_CU. */
7899
7900 static void
7901 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7902 htab_t all_children, htab_t all_type_symtabs,
7903 struct dwarf2_per_cu_data *per_cu,
7904 struct compunit_symtab *immediate_parent)
7905 {
7906 void **slot;
7907 int ix;
7908 struct compunit_symtab *cust;
7909 struct dwarf2_per_cu_data *iter;
7910
7911 slot = htab_find_slot (all_children, per_cu, INSERT);
7912 if (*slot != NULL)
7913 {
7914 /* This inclusion and its children have been processed. */
7915 return;
7916 }
7917
7918 *slot = per_cu;
7919 /* Only add a CU if it has a symbol table. */
7920 cust = get_compunit_symtab (per_cu);
7921 if (cust != NULL)
7922 {
7923 /* If this is a type unit only add its symbol table if we haven't
7924 seen it yet (type unit per_cu's can share symtabs). */
7925 if (per_cu->is_debug_types)
7926 {
7927 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7928 if (*slot == NULL)
7929 {
7930 *slot = cust;
7931 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7932 if (cust->user == NULL)
7933 cust->user = immediate_parent;
7934 }
7935 }
7936 else
7937 {
7938 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7939 if (cust->user == NULL)
7940 cust->user = immediate_parent;
7941 }
7942 }
7943
7944 for (ix = 0;
7945 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7946 ++ix)
7947 {
7948 recursively_compute_inclusions (result, all_children,
7949 all_type_symtabs, iter, cust);
7950 }
7951 }
7952
7953 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7954 PER_CU. */
7955
7956 static void
7957 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7958 {
7959 gdb_assert (! per_cu->is_debug_types);
7960
7961 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7962 {
7963 int ix, len;
7964 struct dwarf2_per_cu_data *per_cu_iter;
7965 struct compunit_symtab *compunit_symtab_iter;
7966 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7967 htab_t all_children, all_type_symtabs;
7968 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7969
7970 /* If we don't have a symtab, we can just skip this case. */
7971 if (cust == NULL)
7972 return;
7973
7974 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
7976 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7977 NULL, xcalloc, xfree);
7978
7979 for (ix = 0;
7980 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7981 ix, per_cu_iter);
7982 ++ix)
7983 {
7984 recursively_compute_inclusions (&result_symtabs, all_children,
7985 all_type_symtabs, per_cu_iter,
7986 cust);
7987 }
7988
7989 /* Now we have a transitive closure of all the included symtabs. */
7990 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7991 cust->includes
7992 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7993 struct compunit_symtab *, len + 1);
7994 for (ix = 0;
7995 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7996 compunit_symtab_iter);
7997 ++ix)
7998 cust->includes[ix] = compunit_symtab_iter;
7999 cust->includes[len] = NULL;
8000
8001 VEC_free (compunit_symtab_ptr, result_symtabs);
8002 htab_delete (all_children);
8003 htab_delete (all_type_symtabs);
8004 }
8005 }
8006
8007 /* Compute the 'includes' field for the symtabs of all the CUs we just
8008 read. */
8009
8010 static void
8011 process_cu_includes (void)
8012 {
8013 int ix;
8014 struct dwarf2_per_cu_data *iter;
8015
8016 for (ix = 0;
8017 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8018 ix, iter);
8019 ++ix)
8020 {
8021 if (! iter->is_debug_types)
8022 compute_compunit_symtab_includes (iter);
8023 }
8024
8025 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8026 }
8027
8028 /* Generate full symbol information for PER_CU, whose DIEs have
8029 already been loaded into memory. */
8030
8031 static void
8032 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8033 enum language pretend_language)
8034 {
8035 struct dwarf2_cu *cu = per_cu->cu;
8036 struct objfile *objfile = per_cu->objfile;
8037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8038 CORE_ADDR lowpc, highpc;
8039 struct compunit_symtab *cust;
8040 struct cleanup *back_to, *delayed_list_cleanup;
8041 CORE_ADDR baseaddr;
8042 struct block *static_block;
8043 CORE_ADDR addr;
8044
8045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8046
8047 buildsym_init ();
8048 back_to = make_cleanup (really_free_pendings, NULL);
8049 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8050
8051 cu->list_in_scope = &file_symbols;
8052
8053 cu->language = pretend_language;
8054 cu->language_defn = language_def (cu->language);
8055
8056 /* Do line number decoding in read_file_scope () */
8057 process_die (cu->dies, cu);
8058
8059 /* For now fudge the Go package. */
8060 if (cu->language == language_go)
8061 fixup_go_packaging (cu);
8062
8063 /* Now that we have processed all the DIEs in the CU, all the types
8064 should be complete, and it should now be safe to compute all of the
8065 physnames. */
8066 compute_delayed_physnames (cu);
8067 do_cleanups (delayed_list_cleanup);
8068
8069 /* Some compilers don't define a DW_AT_high_pc attribute for the
8070 compilation unit. If the DW_AT_high_pc is missing, synthesize
8071 it, by scanning the DIE's below the compilation unit. */
8072 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8073
8074 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8075 static_block = end_symtab_get_static_block (addr, 0, 1);
8076
8077 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8078 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8079 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8080 addrmap to help ensure it has an accurate map of pc values belonging to
8081 this comp unit. */
8082 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8083
8084 cust = end_symtab_from_static_block (static_block,
8085 SECT_OFF_TEXT (objfile), 0);
8086
8087 if (cust != NULL)
8088 {
8089 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8090
8091 /* Set symtab language to language from DW_AT_language. If the
8092 compilation is from a C file generated by language preprocessors, do
8093 not set the language if it was already deduced by start_subfile. */
8094 if (!(cu->language == language_c
8095 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8096 COMPUNIT_FILETABS (cust)->language = cu->language;
8097
8098 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8099 produce DW_AT_location with location lists but it can be possibly
8100 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8101 there were bugs in prologue debug info, fixed later in GCC-4.5
8102 by "unwind info for epilogues" patch (which is not directly related).
8103
8104 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8105 needed, it would be wrong due to missing DW_AT_producer there.
8106
8107 Still one can confuse GDB by using non-standard GCC compilation
8108 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8109 */
8110 if (cu->has_loclist && gcc_4_minor >= 5)
8111 cust->locations_valid = 1;
8112
8113 if (gcc_4_minor >= 5)
8114 cust->epilogue_unwind_valid = 1;
8115
8116 cust->call_site_htab = cu->call_site_htab;
8117 }
8118
8119 if (dwarf2_per_objfile->using_index)
8120 per_cu->v.quick->compunit_symtab = cust;
8121 else
8122 {
8123 struct partial_symtab *pst = per_cu->v.psymtab;
8124 pst->compunit_symtab = cust;
8125 pst->readin = 1;
8126 }
8127
8128 /* Push it for inclusion processing later. */
8129 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8130
8131 do_cleanups (back_to);
8132 }
8133
8134 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8135 already been loaded into memory. */
8136
8137 static void
8138 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8139 enum language pretend_language)
8140 {
8141 struct dwarf2_cu *cu = per_cu->cu;
8142 struct objfile *objfile = per_cu->objfile;
8143 struct compunit_symtab *cust;
8144 struct cleanup *back_to, *delayed_list_cleanup;
8145 struct signatured_type *sig_type;
8146
8147 gdb_assert (per_cu->is_debug_types);
8148 sig_type = (struct signatured_type *) per_cu;
8149
8150 buildsym_init ();
8151 back_to = make_cleanup (really_free_pendings, NULL);
8152 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8153
8154 cu->list_in_scope = &file_symbols;
8155
8156 cu->language = pretend_language;
8157 cu->language_defn = language_def (cu->language);
8158
8159 /* The symbol tables are set up in read_type_unit_scope. */
8160 process_die (cu->dies, cu);
8161
8162 /* For now fudge the Go package. */
8163 if (cu->language == language_go)
8164 fixup_go_packaging (cu);
8165
8166 /* Now that we have processed all the DIEs in the CU, all the types
8167 should be complete, and it should now be safe to compute all of the
8168 physnames. */
8169 compute_delayed_physnames (cu);
8170 do_cleanups (delayed_list_cleanup);
8171
8172 /* TUs share symbol tables.
8173 If this is the first TU to use this symtab, complete the construction
8174 of it with end_expandable_symtab. Otherwise, complete the addition of
8175 this TU's symbols to the existing symtab. */
8176 if (sig_type->type_unit_group->compunit_symtab == NULL)
8177 {
8178 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8179 sig_type->type_unit_group->compunit_symtab = cust;
8180
8181 if (cust != NULL)
8182 {
8183 /* Set symtab language to language from DW_AT_language. If the
8184 compilation is from a C file generated by language preprocessors,
8185 do not set the language if it was already deduced by
8186 start_subfile. */
8187 if (!(cu->language == language_c
8188 && COMPUNIT_FILETABS (cust)->language != language_c))
8189 COMPUNIT_FILETABS (cust)->language = cu->language;
8190 }
8191 }
8192 else
8193 {
8194 augment_type_symtab ();
8195 cust = sig_type->type_unit_group->compunit_symtab;
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
8199 per_cu->v.quick->compunit_symtab = cust;
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
8203 pst->compunit_symtab = cust;
8204 pst->readin = 1;
8205 }
8206
8207 do_cleanups (back_to);
8208 }
8209
8210 /* Process an imported unit DIE. */
8211
8212 static void
8213 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8214 {
8215 struct attribute *attr;
8216
8217 /* For now we don't handle imported units in type units. */
8218 if (cu->per_cu->is_debug_types)
8219 {
8220 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8221 " supported in type units [in module %s]"),
8222 objfile_name (cu->objfile));
8223 }
8224
8225 attr = dwarf2_attr (die, DW_AT_import, cu);
8226 if (attr != NULL)
8227 {
8228 struct dwarf2_per_cu_data *per_cu;
8229 sect_offset offset;
8230 int is_dwz;
8231
8232 offset = dwarf2_get_ref_die_offset (attr);
8233 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8234 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8235
8236 /* If necessary, add it to the queue and load its DIEs. */
8237 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8238 load_full_comp_unit (per_cu, cu->language);
8239
8240 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8241 per_cu);
8242 }
8243 }
8244
8245 /* Reset the in_process bit of a die. */
8246
8247 static void
8248 reset_die_in_process (void *arg)
8249 {
8250 struct die_info *die = (struct die_info *) arg;
8251
8252 die->in_process = 0;
8253 }
8254
8255 /* Process a die and its children. */
8256
8257 static void
8258 process_die (struct die_info *die, struct dwarf2_cu *cu)
8259 {
8260 struct cleanup *in_process;
8261
8262 /* We should only be processing those not already in process. */
8263 gdb_assert (!die->in_process);
8264
8265 die->in_process = 1;
8266 in_process = make_cleanup (reset_die_in_process,die);
8267
8268 switch (die->tag)
8269 {
8270 case DW_TAG_padding:
8271 break;
8272 case DW_TAG_compile_unit:
8273 case DW_TAG_partial_unit:
8274 read_file_scope (die, cu);
8275 break;
8276 case DW_TAG_type_unit:
8277 read_type_unit_scope (die, cu);
8278 break;
8279 case DW_TAG_subprogram:
8280 case DW_TAG_inlined_subroutine:
8281 read_func_scope (die, cu);
8282 break;
8283 case DW_TAG_lexical_block:
8284 case DW_TAG_try_block:
8285 case DW_TAG_catch_block:
8286 read_lexical_block_scope (die, cu);
8287 break;
8288 case DW_TAG_GNU_call_site:
8289 read_call_site_scope (die, cu);
8290 break;
8291 case DW_TAG_class_type:
8292 case DW_TAG_interface_type:
8293 case DW_TAG_structure_type:
8294 case DW_TAG_union_type:
8295 process_structure_scope (die, cu);
8296 break;
8297 case DW_TAG_enumeration_type:
8298 process_enumeration_scope (die, cu);
8299 break;
8300
8301 /* These dies have a type, but processing them does not create
8302 a symbol or recurse to process the children. Therefore we can
8303 read them on-demand through read_type_die. */
8304 case DW_TAG_subroutine_type:
8305 case DW_TAG_set_type:
8306 case DW_TAG_array_type:
8307 case DW_TAG_pointer_type:
8308 case DW_TAG_ptr_to_member_type:
8309 case DW_TAG_reference_type:
8310 case DW_TAG_string_type:
8311 break;
8312
8313 case DW_TAG_base_type:
8314 case DW_TAG_subrange_type:
8315 case DW_TAG_typedef:
8316 /* Add a typedef symbol for the type definition, if it has a
8317 DW_AT_name. */
8318 new_symbol (die, read_type_die (die, cu), cu);
8319 break;
8320 case DW_TAG_common_block:
8321 read_common_block (die, cu);
8322 break;
8323 case DW_TAG_common_inclusion:
8324 break;
8325 case DW_TAG_namespace:
8326 cu->processing_has_namespace_info = 1;
8327 read_namespace (die, cu);
8328 break;
8329 case DW_TAG_module:
8330 cu->processing_has_namespace_info = 1;
8331 read_module (die, cu);
8332 break;
8333 case DW_TAG_imported_declaration:
8334 cu->processing_has_namespace_info = 1;
8335 if (read_namespace_alias (die, cu))
8336 break;
8337 /* The declaration is not a global namespace alias: fall through. */
8338 case DW_TAG_imported_module:
8339 cu->processing_has_namespace_info = 1;
8340 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8341 || cu->language != language_fortran))
8342 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8343 dwarf_tag_name (die->tag));
8344 read_import_statement (die, cu);
8345 break;
8346
8347 case DW_TAG_imported_unit:
8348 process_imported_unit_die (die, cu);
8349 break;
8350
8351 default:
8352 new_symbol (die, NULL, cu);
8353 break;
8354 }
8355
8356 do_cleanups (in_process);
8357 }
8358 \f
8359 /* DWARF name computation. */
8360
8361 /* A helper function for dwarf2_compute_name which determines whether DIE
8362 needs to have the name of the scope prepended to the name listed in the
8363 die. */
8364
8365 static int
8366 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8367 {
8368 struct attribute *attr;
8369
8370 switch (die->tag)
8371 {
8372 case DW_TAG_namespace:
8373 case DW_TAG_typedef:
8374 case DW_TAG_class_type:
8375 case DW_TAG_interface_type:
8376 case DW_TAG_structure_type:
8377 case DW_TAG_union_type:
8378 case DW_TAG_enumeration_type:
8379 case DW_TAG_enumerator:
8380 case DW_TAG_subprogram:
8381 case DW_TAG_inlined_subroutine:
8382 case DW_TAG_member:
8383 case DW_TAG_imported_declaration:
8384 return 1;
8385
8386 case DW_TAG_variable:
8387 case DW_TAG_constant:
8388 /* We only need to prefix "globally" visible variables. These include
8389 any variable marked with DW_AT_external or any variable that
8390 lives in a namespace. [Variables in anonymous namespaces
8391 require prefixing, but they are not DW_AT_external.] */
8392
8393 if (dwarf2_attr (die, DW_AT_specification, cu))
8394 {
8395 struct dwarf2_cu *spec_cu = cu;
8396
8397 return die_needs_namespace (die_specification (die, &spec_cu),
8398 spec_cu);
8399 }
8400
8401 attr = dwarf2_attr (die, DW_AT_external, cu);
8402 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8403 && die->parent->tag != DW_TAG_module)
8404 return 0;
8405 /* A variable in a lexical block of some kind does not need a
8406 namespace, even though in C++ such variables may be external
8407 and have a mangled name. */
8408 if (die->parent->tag == DW_TAG_lexical_block
8409 || die->parent->tag == DW_TAG_try_block
8410 || die->parent->tag == DW_TAG_catch_block
8411 || die->parent->tag == DW_TAG_subprogram)
8412 return 0;
8413 return 1;
8414
8415 default:
8416 return 0;
8417 }
8418 }
8419
8420 /* Retrieve the last character from a mem_file. */
8421
8422 static void
8423 do_ui_file_peek_last (void *object, const char *buffer, long length)
8424 {
8425 char *last_char_p = (char *) object;
8426
8427 if (length > 0)
8428 *last_char_p = buffer[length - 1];
8429 }
8430
8431 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8432 compute the physname for the object, which include a method's:
8433 - formal parameters (C++),
8434 - receiver type (Go),
8435
8436 The term "physname" is a bit confusing.
8437 For C++, for example, it is the demangled name.
8438 For Go, for example, it's the mangled name.
8439
8440 For Ada, return the DIE's linkage name rather than the fully qualified
8441 name. PHYSNAME is ignored..
8442
8443 The result is allocated on the objfile_obstack and canonicalized. */
8444
8445 static const char *
8446 dwarf2_compute_name (const char *name,
8447 struct die_info *die, struct dwarf2_cu *cu,
8448 int physname)
8449 {
8450 struct objfile *objfile = cu->objfile;
8451
8452 if (name == NULL)
8453 name = dwarf2_name (die, cu);
8454
8455 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8456 but otherwise compute it by typename_concat inside GDB.
8457 FIXME: Actually this is not really true, or at least not always true.
8458 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8459 Fortran names because there is no mangling standard. So new_symbol_full
8460 will set the demangled name to the result of dwarf2_full_name, and it is
8461 the demangled name that GDB uses if it exists. */
8462 if (cu->language == language_ada
8463 || (cu->language == language_fortran && physname))
8464 {
8465 /* For Ada unit, we prefer the linkage name over the name, as
8466 the former contains the exported name, which the user expects
8467 to be able to reference. Ideally, we want the user to be able
8468 to reference this entity using either natural or linkage name,
8469 but we haven't started looking at this enhancement yet. */
8470 const char *linkage_name;
8471
8472 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8473 if (linkage_name == NULL)
8474 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8475 if (linkage_name != NULL)
8476 return linkage_name;
8477 }
8478
8479 /* These are the only languages we know how to qualify names in. */
8480 if (name != NULL
8481 && (cu->language == language_cplus
8482 || cu->language == language_fortran || cu->language == language_d
8483 || cu->language == language_rust))
8484 {
8485 if (die_needs_namespace (die, cu))
8486 {
8487 long length;
8488 const char *prefix;
8489 struct ui_file *buf;
8490 char *intermediate_name;
8491 const char *canonical_name = NULL;
8492
8493 prefix = determine_prefix (die, cu);
8494 buf = mem_fileopen ();
8495 if (*prefix != '\0')
8496 {
8497 char *prefixed_name = typename_concat (NULL, prefix, name,
8498 physname, cu);
8499
8500 fputs_unfiltered (prefixed_name, buf);
8501 xfree (prefixed_name);
8502 }
8503 else
8504 fputs_unfiltered (name, buf);
8505
8506 /* Template parameters may be specified in the DIE's DW_AT_name, or
8507 as children with DW_TAG_template_type_param or
8508 DW_TAG_value_type_param. If the latter, add them to the name
8509 here. If the name already has template parameters, then
8510 skip this step; some versions of GCC emit both, and
8511 it is more efficient to use the pre-computed name.
8512
8513 Something to keep in mind about this process: it is very
8514 unlikely, or in some cases downright impossible, to produce
8515 something that will match the mangled name of a function.
8516 If the definition of the function has the same debug info,
8517 we should be able to match up with it anyway. But fallbacks
8518 using the minimal symbol, for instance to find a method
8519 implemented in a stripped copy of libstdc++, will not work.
8520 If we do not have debug info for the definition, we will have to
8521 match them up some other way.
8522
8523 When we do name matching there is a related problem with function
8524 templates; two instantiated function templates are allowed to
8525 differ only by their return types, which we do not add here. */
8526
8527 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8528 {
8529 struct attribute *attr;
8530 struct die_info *child;
8531 int first = 1;
8532
8533 die->building_fullname = 1;
8534
8535 for (child = die->child; child != NULL; child = child->sibling)
8536 {
8537 struct type *type;
8538 LONGEST value;
8539 const gdb_byte *bytes;
8540 struct dwarf2_locexpr_baton *baton;
8541 struct value *v;
8542
8543 if (child->tag != DW_TAG_template_type_param
8544 && child->tag != DW_TAG_template_value_param)
8545 continue;
8546
8547 if (first)
8548 {
8549 fputs_unfiltered ("<", buf);
8550 first = 0;
8551 }
8552 else
8553 fputs_unfiltered (", ", buf);
8554
8555 attr = dwarf2_attr (child, DW_AT_type, cu);
8556 if (attr == NULL)
8557 {
8558 complaint (&symfile_complaints,
8559 _("template parameter missing DW_AT_type"));
8560 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8561 continue;
8562 }
8563 type = die_type (child, cu);
8564
8565 if (child->tag == DW_TAG_template_type_param)
8566 {
8567 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8568 continue;
8569 }
8570
8571 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8572 if (attr == NULL)
8573 {
8574 complaint (&symfile_complaints,
8575 _("template parameter missing "
8576 "DW_AT_const_value"));
8577 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8578 continue;
8579 }
8580
8581 dwarf2_const_value_attr (attr, type, name,
8582 &cu->comp_unit_obstack, cu,
8583 &value, &bytes, &baton);
8584
8585 if (TYPE_NOSIGN (type))
8586 /* GDB prints characters as NUMBER 'CHAR'. If that's
8587 changed, this can use value_print instead. */
8588 c_printchar (value, type, buf);
8589 else
8590 {
8591 struct value_print_options opts;
8592
8593 if (baton != NULL)
8594 v = dwarf2_evaluate_loc_desc (type, NULL,
8595 baton->data,
8596 baton->size,
8597 baton->per_cu);
8598 else if (bytes != NULL)
8599 {
8600 v = allocate_value (type);
8601 memcpy (value_contents_writeable (v), bytes,
8602 TYPE_LENGTH (type));
8603 }
8604 else
8605 v = value_from_longest (type, value);
8606
8607 /* Specify decimal so that we do not depend on
8608 the radix. */
8609 get_formatted_print_options (&opts, 'd');
8610 opts.raw = 1;
8611 value_print (v, buf, &opts);
8612 release_value (v);
8613 value_free (v);
8614 }
8615 }
8616
8617 die->building_fullname = 0;
8618
8619 if (!first)
8620 {
8621 /* Close the argument list, with a space if necessary
8622 (nested templates). */
8623 char last_char = '\0';
8624 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8625 if (last_char == '>')
8626 fputs_unfiltered (" >", buf);
8627 else
8628 fputs_unfiltered (">", buf);
8629 }
8630 }
8631
8632 /* For C++ methods, append formal parameter type
8633 information, if PHYSNAME. */
8634
8635 if (physname && die->tag == DW_TAG_subprogram
8636 && cu->language == language_cplus)
8637 {
8638 struct type *type = read_type_die (die, cu);
8639
8640 c_type_print_args (type, buf, 1, cu->language,
8641 &type_print_raw_options);
8642
8643 if (cu->language == language_cplus)
8644 {
8645 /* Assume that an artificial first parameter is
8646 "this", but do not crash if it is not. RealView
8647 marks unnamed (and thus unused) parameters as
8648 artificial; there is no way to differentiate
8649 the two cases. */
8650 if (TYPE_NFIELDS (type) > 0
8651 && TYPE_FIELD_ARTIFICIAL (type, 0)
8652 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8653 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8654 0))))
8655 fputs_unfiltered (" const", buf);
8656 }
8657 }
8658
8659 intermediate_name = ui_file_xstrdup (buf, &length);
8660 ui_file_delete (buf);
8661
8662 if (cu->language == language_cplus)
8663 canonical_name
8664 = dwarf2_canonicalize_name (intermediate_name, cu,
8665 &objfile->per_bfd->storage_obstack);
8666
8667 /* If we only computed INTERMEDIATE_NAME, or if
8668 INTERMEDIATE_NAME is already canonical, then we need to
8669 copy it to the appropriate obstack. */
8670 if (canonical_name == NULL || canonical_name == intermediate_name)
8671 name = ((const char *)
8672 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8673 intermediate_name,
8674 strlen (intermediate_name)));
8675 else
8676 name = canonical_name;
8677
8678 xfree (intermediate_name);
8679 }
8680 }
8681
8682 return name;
8683 }
8684
8685 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8686 If scope qualifiers are appropriate they will be added. The result
8687 will be allocated on the storage_obstack, or NULL if the DIE does
8688 not have a name. NAME may either be from a previous call to
8689 dwarf2_name or NULL.
8690
8691 The output string will be canonicalized (if C++). */
8692
8693 static const char *
8694 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8695 {
8696 return dwarf2_compute_name (name, die, cu, 0);
8697 }
8698
8699 /* Construct a physname for the given DIE in CU. NAME may either be
8700 from a previous call to dwarf2_name or NULL. The result will be
8701 allocated on the objfile_objstack or NULL if the DIE does not have a
8702 name.
8703
8704 The output string will be canonicalized (if C++). */
8705
8706 static const char *
8707 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8708 {
8709 struct objfile *objfile = cu->objfile;
8710 const char *retval, *mangled = NULL, *canon = NULL;
8711 struct cleanup *back_to;
8712 int need_copy = 1;
8713
8714 /* In this case dwarf2_compute_name is just a shortcut not building anything
8715 on its own. */
8716 if (!die_needs_namespace (die, cu))
8717 return dwarf2_compute_name (name, die, cu, 1);
8718
8719 back_to = make_cleanup (null_cleanup, NULL);
8720
8721 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8722 if (mangled == NULL)
8723 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8724
8725 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8726 See https://github.com/rust-lang/rust/issues/32925. */
8727 if (cu->language == language_rust && mangled != NULL
8728 && strchr (mangled, '{') != NULL)
8729 mangled = NULL;
8730
8731 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8732 has computed. */
8733 if (mangled != NULL)
8734 {
8735 char *demangled;
8736
8737 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8738 type. It is easier for GDB users to search for such functions as
8739 `name(params)' than `long name(params)'. In such case the minimal
8740 symbol names do not match the full symbol names but for template
8741 functions there is never a need to look up their definition from their
8742 declaration so the only disadvantage remains the minimal symbol
8743 variant `long name(params)' does not have the proper inferior type.
8744 */
8745
8746 if (cu->language == language_go)
8747 {
8748 /* This is a lie, but we already lie to the caller new_symbol_full.
8749 new_symbol_full assumes we return the mangled name.
8750 This just undoes that lie until things are cleaned up. */
8751 demangled = NULL;
8752 }
8753 else
8754 {
8755 demangled = gdb_demangle (mangled,
8756 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8757 }
8758 if (demangled)
8759 {
8760 make_cleanup (xfree, demangled);
8761 canon = demangled;
8762 }
8763 else
8764 {
8765 canon = mangled;
8766 need_copy = 0;
8767 }
8768 }
8769
8770 if (canon == NULL || check_physname)
8771 {
8772 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8773
8774 if (canon != NULL && strcmp (physname, canon) != 0)
8775 {
8776 /* It may not mean a bug in GDB. The compiler could also
8777 compute DW_AT_linkage_name incorrectly. But in such case
8778 GDB would need to be bug-to-bug compatible. */
8779
8780 complaint (&symfile_complaints,
8781 _("Computed physname <%s> does not match demangled <%s> "
8782 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8783 physname, canon, mangled, die->offset.sect_off,
8784 objfile_name (objfile));
8785
8786 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8787 is available here - over computed PHYSNAME. It is safer
8788 against both buggy GDB and buggy compilers. */
8789
8790 retval = canon;
8791 }
8792 else
8793 {
8794 retval = physname;
8795 need_copy = 0;
8796 }
8797 }
8798 else
8799 retval = canon;
8800
8801 if (need_copy)
8802 retval = ((const char *)
8803 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8804 retval, strlen (retval)));
8805
8806 do_cleanups (back_to);
8807 return retval;
8808 }
8809
8810 /* Inspect DIE in CU for a namespace alias. If one exists, record
8811 a new symbol for it.
8812
8813 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8814
8815 static int
8816 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8817 {
8818 struct attribute *attr;
8819
8820 /* If the die does not have a name, this is not a namespace
8821 alias. */
8822 attr = dwarf2_attr (die, DW_AT_name, cu);
8823 if (attr != NULL)
8824 {
8825 int num;
8826 struct die_info *d = die;
8827 struct dwarf2_cu *imported_cu = cu;
8828
8829 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8830 keep inspecting DIEs until we hit the underlying import. */
8831 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8832 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8833 {
8834 attr = dwarf2_attr (d, DW_AT_import, cu);
8835 if (attr == NULL)
8836 break;
8837
8838 d = follow_die_ref (d, attr, &imported_cu);
8839 if (d->tag != DW_TAG_imported_declaration)
8840 break;
8841 }
8842
8843 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8844 {
8845 complaint (&symfile_complaints,
8846 _("DIE at 0x%x has too many recursively imported "
8847 "declarations"), d->offset.sect_off);
8848 return 0;
8849 }
8850
8851 if (attr != NULL)
8852 {
8853 struct type *type;
8854 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8855
8856 type = get_die_type_at_offset (offset, cu->per_cu);
8857 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8858 {
8859 /* This declaration is a global namespace alias. Add
8860 a symbol for it whose type is the aliased namespace. */
8861 new_symbol (die, type, cu);
8862 return 1;
8863 }
8864 }
8865 }
8866
8867 return 0;
8868 }
8869
8870 /* Return the using directives repository (global or local?) to use in the
8871 current context for LANGUAGE.
8872
8873 For Ada, imported declarations can materialize renamings, which *may* be
8874 global. However it is impossible (for now?) in DWARF to distinguish
8875 "external" imported declarations and "static" ones. As all imported
8876 declarations seem to be static in all other languages, make them all CU-wide
8877 global only in Ada. */
8878
8879 static struct using_direct **
8880 using_directives (enum language language)
8881 {
8882 if (language == language_ada && context_stack_depth == 0)
8883 return &global_using_directives;
8884 else
8885 return &local_using_directives;
8886 }
8887
8888 /* Read the import statement specified by the given die and record it. */
8889
8890 static void
8891 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8892 {
8893 struct objfile *objfile = cu->objfile;
8894 struct attribute *import_attr;
8895 struct die_info *imported_die, *child_die;
8896 struct dwarf2_cu *imported_cu;
8897 const char *imported_name;
8898 const char *imported_name_prefix;
8899 const char *canonical_name;
8900 const char *import_alias;
8901 const char *imported_declaration = NULL;
8902 const char *import_prefix;
8903 VEC (const_char_ptr) *excludes = NULL;
8904 struct cleanup *cleanups;
8905
8906 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8907 if (import_attr == NULL)
8908 {
8909 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8910 dwarf_tag_name (die->tag));
8911 return;
8912 }
8913
8914 imported_cu = cu;
8915 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8916 imported_name = dwarf2_name (imported_die, imported_cu);
8917 if (imported_name == NULL)
8918 {
8919 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8920
8921 The import in the following code:
8922 namespace A
8923 {
8924 typedef int B;
8925 }
8926
8927 int main ()
8928 {
8929 using A::B;
8930 B b;
8931 return b;
8932 }
8933
8934 ...
8935 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8936 <52> DW_AT_decl_file : 1
8937 <53> DW_AT_decl_line : 6
8938 <54> DW_AT_import : <0x75>
8939 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8940 <59> DW_AT_name : B
8941 <5b> DW_AT_decl_file : 1
8942 <5c> DW_AT_decl_line : 2
8943 <5d> DW_AT_type : <0x6e>
8944 ...
8945 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8946 <76> DW_AT_byte_size : 4
8947 <77> DW_AT_encoding : 5 (signed)
8948
8949 imports the wrong die ( 0x75 instead of 0x58 ).
8950 This case will be ignored until the gcc bug is fixed. */
8951 return;
8952 }
8953
8954 /* Figure out the local name after import. */
8955 import_alias = dwarf2_name (die, cu);
8956
8957 /* Figure out where the statement is being imported to. */
8958 import_prefix = determine_prefix (die, cu);
8959
8960 /* Figure out what the scope of the imported die is and prepend it
8961 to the name of the imported die. */
8962 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8963
8964 if (imported_die->tag != DW_TAG_namespace
8965 && imported_die->tag != DW_TAG_module)
8966 {
8967 imported_declaration = imported_name;
8968 canonical_name = imported_name_prefix;
8969 }
8970 else if (strlen (imported_name_prefix) > 0)
8971 canonical_name = obconcat (&objfile->objfile_obstack,
8972 imported_name_prefix,
8973 (cu->language == language_d ? "." : "::"),
8974 imported_name, (char *) NULL);
8975 else
8976 canonical_name = imported_name;
8977
8978 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8979
8980 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8981 for (child_die = die->child; child_die && child_die->tag;
8982 child_die = sibling_die (child_die))
8983 {
8984 /* DWARF-4: A Fortran use statement with a “rename list” may be
8985 represented by an imported module entry with an import attribute
8986 referring to the module and owned entries corresponding to those
8987 entities that are renamed as part of being imported. */
8988
8989 if (child_die->tag != DW_TAG_imported_declaration)
8990 {
8991 complaint (&symfile_complaints,
8992 _("child DW_TAG_imported_declaration expected "
8993 "- DIE at 0x%x [in module %s]"),
8994 child_die->offset.sect_off, objfile_name (objfile));
8995 continue;
8996 }
8997
8998 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8999 if (import_attr == NULL)
9000 {
9001 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9002 dwarf_tag_name (child_die->tag));
9003 continue;
9004 }
9005
9006 imported_cu = cu;
9007 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9008 &imported_cu);
9009 imported_name = dwarf2_name (imported_die, imported_cu);
9010 if (imported_name == NULL)
9011 {
9012 complaint (&symfile_complaints,
9013 _("child DW_TAG_imported_declaration has unknown "
9014 "imported name - DIE at 0x%x [in module %s]"),
9015 child_die->offset.sect_off, objfile_name (objfile));
9016 continue;
9017 }
9018
9019 VEC_safe_push (const_char_ptr, excludes, imported_name);
9020
9021 process_die (child_die, cu);
9022 }
9023
9024 add_using_directive (using_directives (cu->language),
9025 import_prefix,
9026 canonical_name,
9027 import_alias,
9028 imported_declaration,
9029 excludes,
9030 0,
9031 &objfile->objfile_obstack);
9032
9033 do_cleanups (cleanups);
9034 }
9035
9036 /* Cleanup function for handle_DW_AT_stmt_list. */
9037
9038 static void
9039 free_cu_line_header (void *arg)
9040 {
9041 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9042
9043 free_line_header (cu->line_header);
9044 cu->line_header = NULL;
9045 }
9046
9047 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9048 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9049 this, it was first present in GCC release 4.3.0. */
9050
9051 static int
9052 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9053 {
9054 if (!cu->checked_producer)
9055 check_producer (cu);
9056
9057 return cu->producer_is_gcc_lt_4_3;
9058 }
9059
9060 static void
9061 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9062 const char **name, const char **comp_dir)
9063 {
9064 /* Find the filename. Do not use dwarf2_name here, since the filename
9065 is not a source language identifier. */
9066 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9067 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9068
9069 if (*comp_dir == NULL
9070 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9071 && IS_ABSOLUTE_PATH (*name))
9072 {
9073 char *d = ldirname (*name);
9074
9075 *comp_dir = d;
9076 if (d != NULL)
9077 make_cleanup (xfree, d);
9078 }
9079 if (*comp_dir != NULL)
9080 {
9081 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9082 directory, get rid of it. */
9083 const char *cp = strchr (*comp_dir, ':');
9084
9085 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9086 *comp_dir = cp + 1;
9087 }
9088
9089 if (*name == NULL)
9090 *name = "<unknown>";
9091 }
9092
9093 /* Handle DW_AT_stmt_list for a compilation unit.
9094 DIE is the DW_TAG_compile_unit die for CU.
9095 COMP_DIR is the compilation directory. LOWPC is passed to
9096 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9097
9098 static void
9099 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9100 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9101 {
9102 struct objfile *objfile = dwarf2_per_objfile->objfile;
9103 struct attribute *attr;
9104 unsigned int line_offset;
9105 struct line_header line_header_local;
9106 hashval_t line_header_local_hash;
9107 unsigned u;
9108 void **slot;
9109 int decode_mapping;
9110
9111 gdb_assert (! cu->per_cu->is_debug_types);
9112
9113 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9114 if (attr == NULL)
9115 return;
9116
9117 line_offset = DW_UNSND (attr);
9118
9119 /* The line header hash table is only created if needed (it exists to
9120 prevent redundant reading of the line table for partial_units).
9121 If we're given a partial_unit, we'll need it. If we're given a
9122 compile_unit, then use the line header hash table if it's already
9123 created, but don't create one just yet. */
9124
9125 if (dwarf2_per_objfile->line_header_hash == NULL
9126 && die->tag == DW_TAG_partial_unit)
9127 {
9128 dwarf2_per_objfile->line_header_hash
9129 = htab_create_alloc_ex (127, line_header_hash_voidp,
9130 line_header_eq_voidp,
9131 free_line_header_voidp,
9132 &objfile->objfile_obstack,
9133 hashtab_obstack_allocate,
9134 dummy_obstack_deallocate);
9135 }
9136
9137 line_header_local.offset.sect_off = line_offset;
9138 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9139 line_header_local_hash = line_header_hash (&line_header_local);
9140 if (dwarf2_per_objfile->line_header_hash != NULL)
9141 {
9142 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9143 &line_header_local,
9144 line_header_local_hash, NO_INSERT);
9145
9146 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9147 is not present in *SLOT (since if there is something in *SLOT then
9148 it will be for a partial_unit). */
9149 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9150 {
9151 gdb_assert (*slot != NULL);
9152 cu->line_header = (struct line_header *) *slot;
9153 return;
9154 }
9155 }
9156
9157 /* dwarf_decode_line_header does not yet provide sufficient information.
9158 We always have to call also dwarf_decode_lines for it. */
9159 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9160 if (cu->line_header == NULL)
9161 return;
9162
9163 if (dwarf2_per_objfile->line_header_hash == NULL)
9164 slot = NULL;
9165 else
9166 {
9167 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9168 &line_header_local,
9169 line_header_local_hash, INSERT);
9170 gdb_assert (slot != NULL);
9171 }
9172 if (slot != NULL && *slot == NULL)
9173 {
9174 /* This newly decoded line number information unit will be owned
9175 by line_header_hash hash table. */
9176 *slot = cu->line_header;
9177 }
9178 else
9179 {
9180 /* We cannot free any current entry in (*slot) as that struct line_header
9181 may be already used by multiple CUs. Create only temporary decoded
9182 line_header for this CU - it may happen at most once for each line
9183 number information unit. And if we're not using line_header_hash
9184 then this is what we want as well. */
9185 gdb_assert (die->tag != DW_TAG_partial_unit);
9186 make_cleanup (free_cu_line_header, cu);
9187 }
9188 decode_mapping = (die->tag != DW_TAG_partial_unit);
9189 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9190 decode_mapping);
9191 }
9192
9193 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9194
9195 static void
9196 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9197 {
9198 struct objfile *objfile = dwarf2_per_objfile->objfile;
9199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9200 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9201 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9202 CORE_ADDR highpc = ((CORE_ADDR) 0);
9203 struct attribute *attr;
9204 const char *name = NULL;
9205 const char *comp_dir = NULL;
9206 struct die_info *child_die;
9207 CORE_ADDR baseaddr;
9208
9209 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9210
9211 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9212
9213 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9214 from finish_block. */
9215 if (lowpc == ((CORE_ADDR) -1))
9216 lowpc = highpc;
9217 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9218
9219 find_file_and_directory (die, cu, &name, &comp_dir);
9220
9221 prepare_one_comp_unit (cu, die, cu->language);
9222
9223 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9224 standardised yet. As a workaround for the language detection we fall
9225 back to the DW_AT_producer string. */
9226 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9227 cu->language = language_opencl;
9228
9229 /* Similar hack for Go. */
9230 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9231 set_cu_language (DW_LANG_Go, cu);
9232
9233 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9234
9235 /* Decode line number information if present. We do this before
9236 processing child DIEs, so that the line header table is available
9237 for DW_AT_decl_file. */
9238 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9239
9240 /* Process all dies in compilation unit. */
9241 if (die->child != NULL)
9242 {
9243 child_die = die->child;
9244 while (child_die && child_die->tag)
9245 {
9246 process_die (child_die, cu);
9247 child_die = sibling_die (child_die);
9248 }
9249 }
9250
9251 /* Decode macro information, if present. Dwarf 2 macro information
9252 refers to information in the line number info statement program
9253 header, so we can only read it if we've read the header
9254 successfully. */
9255 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9256 if (attr && cu->line_header)
9257 {
9258 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9259 complaint (&symfile_complaints,
9260 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9261
9262 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9263 }
9264 else
9265 {
9266 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9267 if (attr && cu->line_header)
9268 {
9269 unsigned int macro_offset = DW_UNSND (attr);
9270
9271 dwarf_decode_macros (cu, macro_offset, 0);
9272 }
9273 }
9274
9275 do_cleanups (back_to);
9276 }
9277
9278 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9279 Create the set of symtabs used by this TU, or if this TU is sharing
9280 symtabs with another TU and the symtabs have already been created
9281 then restore those symtabs in the line header.
9282 We don't need the pc/line-number mapping for type units. */
9283
9284 static void
9285 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9286 {
9287 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9288 struct type_unit_group *tu_group;
9289 int first_time;
9290 struct line_header *lh;
9291 struct attribute *attr;
9292 unsigned int i, line_offset;
9293 struct signatured_type *sig_type;
9294
9295 gdb_assert (per_cu->is_debug_types);
9296 sig_type = (struct signatured_type *) per_cu;
9297
9298 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9299
9300 /* If we're using .gdb_index (includes -readnow) then
9301 per_cu->type_unit_group may not have been set up yet. */
9302 if (sig_type->type_unit_group == NULL)
9303 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9304 tu_group = sig_type->type_unit_group;
9305
9306 /* If we've already processed this stmt_list there's no real need to
9307 do it again, we could fake it and just recreate the part we need
9308 (file name,index -> symtab mapping). If data shows this optimization
9309 is useful we can do it then. */
9310 first_time = tu_group->compunit_symtab == NULL;
9311
9312 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9313 debug info. */
9314 lh = NULL;
9315 if (attr != NULL)
9316 {
9317 line_offset = DW_UNSND (attr);
9318 lh = dwarf_decode_line_header (line_offset, cu);
9319 }
9320 if (lh == NULL)
9321 {
9322 if (first_time)
9323 dwarf2_start_symtab (cu, "", NULL, 0);
9324 else
9325 {
9326 gdb_assert (tu_group->symtabs == NULL);
9327 restart_symtab (tu_group->compunit_symtab, "", 0);
9328 }
9329 return;
9330 }
9331
9332 cu->line_header = lh;
9333 make_cleanup (free_cu_line_header, cu);
9334
9335 if (first_time)
9336 {
9337 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9338
9339 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9340 still initializing it, and our caller (a few levels up)
9341 process_full_type_unit still needs to know if this is the first
9342 time. */
9343
9344 tu_group->num_symtabs = lh->num_file_names;
9345 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9346
9347 for (i = 0; i < lh->num_file_names; ++i)
9348 {
9349 const char *dir = NULL;
9350 struct file_entry *fe = &lh->file_names[i];
9351
9352 if (fe->dir_index && lh->include_dirs != NULL)
9353 dir = lh->include_dirs[fe->dir_index - 1];
9354 dwarf2_start_subfile (fe->name, dir);
9355
9356 if (current_subfile->symtab == NULL)
9357 {
9358 /* NOTE: start_subfile will recognize when it's been passed
9359 a file it has already seen. So we can't assume there's a
9360 simple mapping from lh->file_names to subfiles, plus
9361 lh->file_names may contain dups. */
9362 current_subfile->symtab
9363 = allocate_symtab (cust, current_subfile->name);
9364 }
9365
9366 fe->symtab = current_subfile->symtab;
9367 tu_group->symtabs[i] = fe->symtab;
9368 }
9369 }
9370 else
9371 {
9372 restart_symtab (tu_group->compunit_symtab, "", 0);
9373
9374 for (i = 0; i < lh->num_file_names; ++i)
9375 {
9376 struct file_entry *fe = &lh->file_names[i];
9377
9378 fe->symtab = tu_group->symtabs[i];
9379 }
9380 }
9381
9382 /* The main symtab is allocated last. Type units don't have DW_AT_name
9383 so they don't have a "real" (so to speak) symtab anyway.
9384 There is later code that will assign the main symtab to all symbols
9385 that don't have one. We need to handle the case of a symbol with a
9386 missing symtab (DW_AT_decl_file) anyway. */
9387 }
9388
9389 /* Process DW_TAG_type_unit.
9390 For TUs we want to skip the first top level sibling if it's not the
9391 actual type being defined by this TU. In this case the first top
9392 level sibling is there to provide context only. */
9393
9394 static void
9395 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9396 {
9397 struct die_info *child_die;
9398
9399 prepare_one_comp_unit (cu, die, language_minimal);
9400
9401 /* Initialize (or reinitialize) the machinery for building symtabs.
9402 We do this before processing child DIEs, so that the line header table
9403 is available for DW_AT_decl_file. */
9404 setup_type_unit_groups (die, cu);
9405
9406 if (die->child != NULL)
9407 {
9408 child_die = die->child;
9409 while (child_die && child_die->tag)
9410 {
9411 process_die (child_die, cu);
9412 child_die = sibling_die (child_die);
9413 }
9414 }
9415 }
9416 \f
9417 /* DWO/DWP files.
9418
9419 http://gcc.gnu.org/wiki/DebugFission
9420 http://gcc.gnu.org/wiki/DebugFissionDWP
9421
9422 To simplify handling of both DWO files ("object" files with the DWARF info)
9423 and DWP files (a file with the DWOs packaged up into one file), we treat
9424 DWP files as having a collection of virtual DWO files. */
9425
9426 static hashval_t
9427 hash_dwo_file (const void *item)
9428 {
9429 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9430 hashval_t hash;
9431
9432 hash = htab_hash_string (dwo_file->dwo_name);
9433 if (dwo_file->comp_dir != NULL)
9434 hash += htab_hash_string (dwo_file->comp_dir);
9435 return hash;
9436 }
9437
9438 static int
9439 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9440 {
9441 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9442 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9443
9444 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9445 return 0;
9446 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9447 return lhs->comp_dir == rhs->comp_dir;
9448 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9449 }
9450
9451 /* Allocate a hash table for DWO files. */
9452
9453 static htab_t
9454 allocate_dwo_file_hash_table (void)
9455 {
9456 struct objfile *objfile = dwarf2_per_objfile->objfile;
9457
9458 return htab_create_alloc_ex (41,
9459 hash_dwo_file,
9460 eq_dwo_file,
9461 NULL,
9462 &objfile->objfile_obstack,
9463 hashtab_obstack_allocate,
9464 dummy_obstack_deallocate);
9465 }
9466
9467 /* Lookup DWO file DWO_NAME. */
9468
9469 static void **
9470 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9471 {
9472 struct dwo_file find_entry;
9473 void **slot;
9474
9475 if (dwarf2_per_objfile->dwo_files == NULL)
9476 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9477
9478 memset (&find_entry, 0, sizeof (find_entry));
9479 find_entry.dwo_name = dwo_name;
9480 find_entry.comp_dir = comp_dir;
9481 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9482
9483 return slot;
9484 }
9485
9486 static hashval_t
9487 hash_dwo_unit (const void *item)
9488 {
9489 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9490
9491 /* This drops the top 32 bits of the id, but is ok for a hash. */
9492 return dwo_unit->signature;
9493 }
9494
9495 static int
9496 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9497 {
9498 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9499 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9500
9501 /* The signature is assumed to be unique within the DWO file.
9502 So while object file CU dwo_id's always have the value zero,
9503 that's OK, assuming each object file DWO file has only one CU,
9504 and that's the rule for now. */
9505 return lhs->signature == rhs->signature;
9506 }
9507
9508 /* Allocate a hash table for DWO CUs,TUs.
9509 There is one of these tables for each of CUs,TUs for each DWO file. */
9510
9511 static htab_t
9512 allocate_dwo_unit_table (struct objfile *objfile)
9513 {
9514 /* Start out with a pretty small number.
9515 Generally DWO files contain only one CU and maybe some TUs. */
9516 return htab_create_alloc_ex (3,
9517 hash_dwo_unit,
9518 eq_dwo_unit,
9519 NULL,
9520 &objfile->objfile_obstack,
9521 hashtab_obstack_allocate,
9522 dummy_obstack_deallocate);
9523 }
9524
9525 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9526
9527 struct create_dwo_cu_data
9528 {
9529 struct dwo_file *dwo_file;
9530 struct dwo_unit dwo_unit;
9531 };
9532
9533 /* die_reader_func for create_dwo_cu. */
9534
9535 static void
9536 create_dwo_cu_reader (const struct die_reader_specs *reader,
9537 const gdb_byte *info_ptr,
9538 struct die_info *comp_unit_die,
9539 int has_children,
9540 void *datap)
9541 {
9542 struct dwarf2_cu *cu = reader->cu;
9543 sect_offset offset = cu->per_cu->offset;
9544 struct dwarf2_section_info *section = cu->per_cu->section;
9545 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9546 struct dwo_file *dwo_file = data->dwo_file;
9547 struct dwo_unit *dwo_unit = &data->dwo_unit;
9548 struct attribute *attr;
9549
9550 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9551 if (attr == NULL)
9552 {
9553 complaint (&symfile_complaints,
9554 _("Dwarf Error: debug entry at offset 0x%x is missing"
9555 " its dwo_id [in module %s]"),
9556 offset.sect_off, dwo_file->dwo_name);
9557 return;
9558 }
9559
9560 dwo_unit->dwo_file = dwo_file;
9561 dwo_unit->signature = DW_UNSND (attr);
9562 dwo_unit->section = section;
9563 dwo_unit->offset = offset;
9564 dwo_unit->length = cu->per_cu->length;
9565
9566 if (dwarf_read_debug)
9567 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9568 offset.sect_off, hex_string (dwo_unit->signature));
9569 }
9570
9571 /* Create the dwo_unit for the lone CU in DWO_FILE.
9572 Note: This function processes DWO files only, not DWP files. */
9573
9574 static struct dwo_unit *
9575 create_dwo_cu (struct dwo_file *dwo_file)
9576 {
9577 struct objfile *objfile = dwarf2_per_objfile->objfile;
9578 struct dwarf2_section_info *section = &dwo_file->sections.info;
9579 const gdb_byte *info_ptr, *end_ptr;
9580 struct create_dwo_cu_data create_dwo_cu_data;
9581 struct dwo_unit *dwo_unit;
9582
9583 dwarf2_read_section (objfile, section);
9584 info_ptr = section->buffer;
9585
9586 if (info_ptr == NULL)
9587 return NULL;
9588
9589 if (dwarf_read_debug)
9590 {
9591 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9592 get_section_name (section),
9593 get_section_file_name (section));
9594 }
9595
9596 create_dwo_cu_data.dwo_file = dwo_file;
9597 dwo_unit = NULL;
9598
9599 end_ptr = info_ptr + section->size;
9600 while (info_ptr < end_ptr)
9601 {
9602 struct dwarf2_per_cu_data per_cu;
9603
9604 memset (&create_dwo_cu_data.dwo_unit, 0,
9605 sizeof (create_dwo_cu_data.dwo_unit));
9606 memset (&per_cu, 0, sizeof (per_cu));
9607 per_cu.objfile = objfile;
9608 per_cu.is_debug_types = 0;
9609 per_cu.offset.sect_off = info_ptr - section->buffer;
9610 per_cu.section = section;
9611
9612 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9613 create_dwo_cu_reader,
9614 &create_dwo_cu_data);
9615
9616 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9617 {
9618 /* If we've already found one, complain. We only support one
9619 because having more than one requires hacking the dwo_name of
9620 each to match, which is highly unlikely to happen. */
9621 if (dwo_unit != NULL)
9622 {
9623 complaint (&symfile_complaints,
9624 _("Multiple CUs in DWO file %s [in module %s]"),
9625 dwo_file->dwo_name, objfile_name (objfile));
9626 break;
9627 }
9628
9629 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9630 *dwo_unit = create_dwo_cu_data.dwo_unit;
9631 }
9632
9633 info_ptr += per_cu.length;
9634 }
9635
9636 return dwo_unit;
9637 }
9638
9639 /* DWP file .debug_{cu,tu}_index section format:
9640 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9641
9642 DWP Version 1:
9643
9644 Both index sections have the same format, and serve to map a 64-bit
9645 signature to a set of section numbers. Each section begins with a header,
9646 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9647 indexes, and a pool of 32-bit section numbers. The index sections will be
9648 aligned at 8-byte boundaries in the file.
9649
9650 The index section header consists of:
9651
9652 V, 32 bit version number
9653 -, 32 bits unused
9654 N, 32 bit number of compilation units or type units in the index
9655 M, 32 bit number of slots in the hash table
9656
9657 Numbers are recorded using the byte order of the application binary.
9658
9659 The hash table begins at offset 16 in the section, and consists of an array
9660 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9661 order of the application binary). Unused slots in the hash table are 0.
9662 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9663
9664 The parallel table begins immediately after the hash table
9665 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9666 array of 32-bit indexes (using the byte order of the application binary),
9667 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9668 table contains a 32-bit index into the pool of section numbers. For unused
9669 hash table slots, the corresponding entry in the parallel table will be 0.
9670
9671 The pool of section numbers begins immediately following the hash table
9672 (at offset 16 + 12 * M from the beginning of the section). The pool of
9673 section numbers consists of an array of 32-bit words (using the byte order
9674 of the application binary). Each item in the array is indexed starting
9675 from 0. The hash table entry provides the index of the first section
9676 number in the set. Additional section numbers in the set follow, and the
9677 set is terminated by a 0 entry (section number 0 is not used in ELF).
9678
9679 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9680 section must be the first entry in the set, and the .debug_abbrev.dwo must
9681 be the second entry. Other members of the set may follow in any order.
9682
9683 ---
9684
9685 DWP Version 2:
9686
9687 DWP Version 2 combines all the .debug_info, etc. sections into one,
9688 and the entries in the index tables are now offsets into these sections.
9689 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9690 section.
9691
9692 Index Section Contents:
9693 Header
9694 Hash Table of Signatures dwp_hash_table.hash_table
9695 Parallel Table of Indices dwp_hash_table.unit_table
9696 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9697 Table of Section Sizes dwp_hash_table.v2.sizes
9698
9699 The index section header consists of:
9700
9701 V, 32 bit version number
9702 L, 32 bit number of columns in the table of section offsets
9703 N, 32 bit number of compilation units or type units in the index
9704 M, 32 bit number of slots in the hash table
9705
9706 Numbers are recorded using the byte order of the application binary.
9707
9708 The hash table has the same format as version 1.
9709 The parallel table of indices has the same format as version 1,
9710 except that the entries are origin-1 indices into the table of sections
9711 offsets and the table of section sizes.
9712
9713 The table of offsets begins immediately following the parallel table
9714 (at offset 16 + 12 * M from the beginning of the section). The table is
9715 a two-dimensional array of 32-bit words (using the byte order of the
9716 application binary), with L columns and N+1 rows, in row-major order.
9717 Each row in the array is indexed starting from 0. The first row provides
9718 a key to the remaining rows: each column in this row provides an identifier
9719 for a debug section, and the offsets in the same column of subsequent rows
9720 refer to that section. The section identifiers are:
9721
9722 DW_SECT_INFO 1 .debug_info.dwo
9723 DW_SECT_TYPES 2 .debug_types.dwo
9724 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9725 DW_SECT_LINE 4 .debug_line.dwo
9726 DW_SECT_LOC 5 .debug_loc.dwo
9727 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9728 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9729 DW_SECT_MACRO 8 .debug_macro.dwo
9730
9731 The offsets provided by the CU and TU index sections are the base offsets
9732 for the contributions made by each CU or TU to the corresponding section
9733 in the package file. Each CU and TU header contains an abbrev_offset
9734 field, used to find the abbreviations table for that CU or TU within the
9735 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9736 be interpreted as relative to the base offset given in the index section.
9737 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9738 should be interpreted as relative to the base offset for .debug_line.dwo,
9739 and offsets into other debug sections obtained from DWARF attributes should
9740 also be interpreted as relative to the corresponding base offset.
9741
9742 The table of sizes begins immediately following the table of offsets.
9743 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9744 with L columns and N rows, in row-major order. Each row in the array is
9745 indexed starting from 1 (row 0 is shared by the two tables).
9746
9747 ---
9748
9749 Hash table lookup is handled the same in version 1 and 2:
9750
9751 We assume that N and M will not exceed 2^32 - 1.
9752 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9753
9754 Given a 64-bit compilation unit signature or a type signature S, an entry
9755 in the hash table is located as follows:
9756
9757 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9758 the low-order k bits all set to 1.
9759
9760 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9761
9762 3) If the hash table entry at index H matches the signature, use that
9763 entry. If the hash table entry at index H is unused (all zeroes),
9764 terminate the search: the signature is not present in the table.
9765
9766 4) Let H = (H + H') modulo M. Repeat at Step 3.
9767
9768 Because M > N and H' and M are relatively prime, the search is guaranteed
9769 to stop at an unused slot or find the match. */
9770
9771 /* Create a hash table to map DWO IDs to their CU/TU entry in
9772 .debug_{info,types}.dwo in DWP_FILE.
9773 Returns NULL if there isn't one.
9774 Note: This function processes DWP files only, not DWO files. */
9775
9776 static struct dwp_hash_table *
9777 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9778 {
9779 struct objfile *objfile = dwarf2_per_objfile->objfile;
9780 bfd *dbfd = dwp_file->dbfd;
9781 const gdb_byte *index_ptr, *index_end;
9782 struct dwarf2_section_info *index;
9783 uint32_t version, nr_columns, nr_units, nr_slots;
9784 struct dwp_hash_table *htab;
9785
9786 if (is_debug_types)
9787 index = &dwp_file->sections.tu_index;
9788 else
9789 index = &dwp_file->sections.cu_index;
9790
9791 if (dwarf2_section_empty_p (index))
9792 return NULL;
9793 dwarf2_read_section (objfile, index);
9794
9795 index_ptr = index->buffer;
9796 index_end = index_ptr + index->size;
9797
9798 version = read_4_bytes (dbfd, index_ptr);
9799 index_ptr += 4;
9800 if (version == 2)
9801 nr_columns = read_4_bytes (dbfd, index_ptr);
9802 else
9803 nr_columns = 0;
9804 index_ptr += 4;
9805 nr_units = read_4_bytes (dbfd, index_ptr);
9806 index_ptr += 4;
9807 nr_slots = read_4_bytes (dbfd, index_ptr);
9808 index_ptr += 4;
9809
9810 if (version != 1 && version != 2)
9811 {
9812 error (_("Dwarf Error: unsupported DWP file version (%s)"
9813 " [in module %s]"),
9814 pulongest (version), dwp_file->name);
9815 }
9816 if (nr_slots != (nr_slots & -nr_slots))
9817 {
9818 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9819 " is not power of 2 [in module %s]"),
9820 pulongest (nr_slots), dwp_file->name);
9821 }
9822
9823 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9824 htab->version = version;
9825 htab->nr_columns = nr_columns;
9826 htab->nr_units = nr_units;
9827 htab->nr_slots = nr_slots;
9828 htab->hash_table = index_ptr;
9829 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9830
9831 /* Exit early if the table is empty. */
9832 if (nr_slots == 0 || nr_units == 0
9833 || (version == 2 && nr_columns == 0))
9834 {
9835 /* All must be zero. */
9836 if (nr_slots != 0 || nr_units != 0
9837 || (version == 2 && nr_columns != 0))
9838 {
9839 complaint (&symfile_complaints,
9840 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9841 " all zero [in modules %s]"),
9842 dwp_file->name);
9843 }
9844 return htab;
9845 }
9846
9847 if (version == 1)
9848 {
9849 htab->section_pool.v1.indices =
9850 htab->unit_table + sizeof (uint32_t) * nr_slots;
9851 /* It's harder to decide whether the section is too small in v1.
9852 V1 is deprecated anyway so we punt. */
9853 }
9854 else
9855 {
9856 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9857 int *ids = htab->section_pool.v2.section_ids;
9858 /* Reverse map for error checking. */
9859 int ids_seen[DW_SECT_MAX + 1];
9860 int i;
9861
9862 if (nr_columns < 2)
9863 {
9864 error (_("Dwarf Error: bad DWP hash table, too few columns"
9865 " in section table [in module %s]"),
9866 dwp_file->name);
9867 }
9868 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9869 {
9870 error (_("Dwarf Error: bad DWP hash table, too many columns"
9871 " in section table [in module %s]"),
9872 dwp_file->name);
9873 }
9874 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9875 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9876 for (i = 0; i < nr_columns; ++i)
9877 {
9878 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9879
9880 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9883 " in section table [in module %s]"),
9884 id, dwp_file->name);
9885 }
9886 if (ids_seen[id] != -1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9889 " id %d in section table [in module %s]"),
9890 id, dwp_file->name);
9891 }
9892 ids_seen[id] = i;
9893 ids[i] = id;
9894 }
9895 /* Must have exactly one info or types section. */
9896 if (((ids_seen[DW_SECT_INFO] != -1)
9897 + (ids_seen[DW_SECT_TYPES] != -1))
9898 != 1)
9899 {
9900 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9901 " DWO info/types section [in module %s]"),
9902 dwp_file->name);
9903 }
9904 /* Must have an abbrev section. */
9905 if (ids_seen[DW_SECT_ABBREV] == -1)
9906 {
9907 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9908 " section [in module %s]"),
9909 dwp_file->name);
9910 }
9911 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9912 htab->section_pool.v2.sizes =
9913 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9914 * nr_units * nr_columns);
9915 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9916 * nr_units * nr_columns))
9917 > index_end)
9918 {
9919 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9920 " [in module %s]"),
9921 dwp_file->name);
9922 }
9923 }
9924
9925 return htab;
9926 }
9927
9928 /* Update SECTIONS with the data from SECTP.
9929
9930 This function is like the other "locate" section routines that are
9931 passed to bfd_map_over_sections, but in this context the sections to
9932 read comes from the DWP V1 hash table, not the full ELF section table.
9933
9934 The result is non-zero for success, or zero if an error was found. */
9935
9936 static int
9937 locate_v1_virtual_dwo_sections (asection *sectp,
9938 struct virtual_v1_dwo_sections *sections)
9939 {
9940 const struct dwop_section_names *names = &dwop_section_names;
9941
9942 if (section_is_p (sectp->name, &names->abbrev_dwo))
9943 {
9944 /* There can be only one. */
9945 if (sections->abbrev.s.section != NULL)
9946 return 0;
9947 sections->abbrev.s.section = sectp;
9948 sections->abbrev.size = bfd_get_section_size (sectp);
9949 }
9950 else if (section_is_p (sectp->name, &names->info_dwo)
9951 || section_is_p (sectp->name, &names->types_dwo))
9952 {
9953 /* There can be only one. */
9954 if (sections->info_or_types.s.section != NULL)
9955 return 0;
9956 sections->info_or_types.s.section = sectp;
9957 sections->info_or_types.size = bfd_get_section_size (sectp);
9958 }
9959 else if (section_is_p (sectp->name, &names->line_dwo))
9960 {
9961 /* There can be only one. */
9962 if (sections->line.s.section != NULL)
9963 return 0;
9964 sections->line.s.section = sectp;
9965 sections->line.size = bfd_get_section_size (sectp);
9966 }
9967 else if (section_is_p (sectp->name, &names->loc_dwo))
9968 {
9969 /* There can be only one. */
9970 if (sections->loc.s.section != NULL)
9971 return 0;
9972 sections->loc.s.section = sectp;
9973 sections->loc.size = bfd_get_section_size (sectp);
9974 }
9975 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9976 {
9977 /* There can be only one. */
9978 if (sections->macinfo.s.section != NULL)
9979 return 0;
9980 sections->macinfo.s.section = sectp;
9981 sections->macinfo.size = bfd_get_section_size (sectp);
9982 }
9983 else if (section_is_p (sectp->name, &names->macro_dwo))
9984 {
9985 /* There can be only one. */
9986 if (sections->macro.s.section != NULL)
9987 return 0;
9988 sections->macro.s.section = sectp;
9989 sections->macro.size = bfd_get_section_size (sectp);
9990 }
9991 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9992 {
9993 /* There can be only one. */
9994 if (sections->str_offsets.s.section != NULL)
9995 return 0;
9996 sections->str_offsets.s.section = sectp;
9997 sections->str_offsets.size = bfd_get_section_size (sectp);
9998 }
9999 else
10000 {
10001 /* No other kind of section is valid. */
10002 return 0;
10003 }
10004
10005 return 1;
10006 }
10007
10008 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10009 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10010 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10011 This is for DWP version 1 files. */
10012
10013 static struct dwo_unit *
10014 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10015 uint32_t unit_index,
10016 const char *comp_dir,
10017 ULONGEST signature, int is_debug_types)
10018 {
10019 struct objfile *objfile = dwarf2_per_objfile->objfile;
10020 const struct dwp_hash_table *dwp_htab =
10021 is_debug_types ? dwp_file->tus : dwp_file->cus;
10022 bfd *dbfd = dwp_file->dbfd;
10023 const char *kind = is_debug_types ? "TU" : "CU";
10024 struct dwo_file *dwo_file;
10025 struct dwo_unit *dwo_unit;
10026 struct virtual_v1_dwo_sections sections;
10027 void **dwo_file_slot;
10028 char *virtual_dwo_name;
10029 struct cleanup *cleanups;
10030 int i;
10031
10032 gdb_assert (dwp_file->version == 1);
10033
10034 if (dwarf_read_debug)
10035 {
10036 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10037 kind,
10038 pulongest (unit_index), hex_string (signature),
10039 dwp_file->name);
10040 }
10041
10042 /* Fetch the sections of this DWO unit.
10043 Put a limit on the number of sections we look for so that bad data
10044 doesn't cause us to loop forever. */
10045
10046 #define MAX_NR_V1_DWO_SECTIONS \
10047 (1 /* .debug_info or .debug_types */ \
10048 + 1 /* .debug_abbrev */ \
10049 + 1 /* .debug_line */ \
10050 + 1 /* .debug_loc */ \
10051 + 1 /* .debug_str_offsets */ \
10052 + 1 /* .debug_macro or .debug_macinfo */ \
10053 + 1 /* trailing zero */)
10054
10055 memset (&sections, 0, sizeof (sections));
10056 cleanups = make_cleanup (null_cleanup, 0);
10057
10058 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10059 {
10060 asection *sectp;
10061 uint32_t section_nr =
10062 read_4_bytes (dbfd,
10063 dwp_htab->section_pool.v1.indices
10064 + (unit_index + i) * sizeof (uint32_t));
10065
10066 if (section_nr == 0)
10067 break;
10068 if (section_nr >= dwp_file->num_sections)
10069 {
10070 error (_("Dwarf Error: bad DWP hash table, section number too large"
10071 " [in module %s]"),
10072 dwp_file->name);
10073 }
10074
10075 sectp = dwp_file->elf_sections[section_nr];
10076 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10077 {
10078 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10079 " [in module %s]"),
10080 dwp_file->name);
10081 }
10082 }
10083
10084 if (i < 2
10085 || dwarf2_section_empty_p (&sections.info_or_types)
10086 || dwarf2_section_empty_p (&sections.abbrev))
10087 {
10088 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10089 " [in module %s]"),
10090 dwp_file->name);
10091 }
10092 if (i == MAX_NR_V1_DWO_SECTIONS)
10093 {
10094 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10095 " [in module %s]"),
10096 dwp_file->name);
10097 }
10098
10099 /* It's easier for the rest of the code if we fake a struct dwo_file and
10100 have dwo_unit "live" in that. At least for now.
10101
10102 The DWP file can be made up of a random collection of CUs and TUs.
10103 However, for each CU + set of TUs that came from the same original DWO
10104 file, we can combine them back into a virtual DWO file to save space
10105 (fewer struct dwo_file objects to allocate). Remember that for really
10106 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10107
10108 virtual_dwo_name =
10109 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10110 get_section_id (&sections.abbrev),
10111 get_section_id (&sections.line),
10112 get_section_id (&sections.loc),
10113 get_section_id (&sections.str_offsets));
10114 make_cleanup (xfree, virtual_dwo_name);
10115 /* Can we use an existing virtual DWO file? */
10116 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10117 /* Create one if necessary. */
10118 if (*dwo_file_slot == NULL)
10119 {
10120 if (dwarf_read_debug)
10121 {
10122 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10123 virtual_dwo_name);
10124 }
10125 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10126 dwo_file->dwo_name
10127 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10128 virtual_dwo_name,
10129 strlen (virtual_dwo_name));
10130 dwo_file->comp_dir = comp_dir;
10131 dwo_file->sections.abbrev = sections.abbrev;
10132 dwo_file->sections.line = sections.line;
10133 dwo_file->sections.loc = sections.loc;
10134 dwo_file->sections.macinfo = sections.macinfo;
10135 dwo_file->sections.macro = sections.macro;
10136 dwo_file->sections.str_offsets = sections.str_offsets;
10137 /* The "str" section is global to the entire DWP file. */
10138 dwo_file->sections.str = dwp_file->sections.str;
10139 /* The info or types section is assigned below to dwo_unit,
10140 there's no need to record it in dwo_file.
10141 Also, we can't simply record type sections in dwo_file because
10142 we record a pointer into the vector in dwo_unit. As we collect more
10143 types we'll grow the vector and eventually have to reallocate space
10144 for it, invalidating all copies of pointers into the previous
10145 contents. */
10146 *dwo_file_slot = dwo_file;
10147 }
10148 else
10149 {
10150 if (dwarf_read_debug)
10151 {
10152 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10153 virtual_dwo_name);
10154 }
10155 dwo_file = (struct dwo_file *) *dwo_file_slot;
10156 }
10157 do_cleanups (cleanups);
10158
10159 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10160 dwo_unit->dwo_file = dwo_file;
10161 dwo_unit->signature = signature;
10162 dwo_unit->section =
10163 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10164 *dwo_unit->section = sections.info_or_types;
10165 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10166
10167 return dwo_unit;
10168 }
10169
10170 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10171 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10172 piece within that section used by a TU/CU, return a virtual section
10173 of just that piece. */
10174
10175 static struct dwarf2_section_info
10176 create_dwp_v2_section (struct dwarf2_section_info *section,
10177 bfd_size_type offset, bfd_size_type size)
10178 {
10179 struct dwarf2_section_info result;
10180 asection *sectp;
10181
10182 gdb_assert (section != NULL);
10183 gdb_assert (!section->is_virtual);
10184
10185 memset (&result, 0, sizeof (result));
10186 result.s.containing_section = section;
10187 result.is_virtual = 1;
10188
10189 if (size == 0)
10190 return result;
10191
10192 sectp = get_section_bfd_section (section);
10193
10194 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10195 bounds of the real section. This is a pretty-rare event, so just
10196 flag an error (easier) instead of a warning and trying to cope. */
10197 if (sectp == NULL
10198 || offset + size > bfd_get_section_size (sectp))
10199 {
10200 bfd *abfd = sectp->owner;
10201
10202 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10203 " in section %s [in module %s]"),
10204 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10205 objfile_name (dwarf2_per_objfile->objfile));
10206 }
10207
10208 result.virtual_offset = offset;
10209 result.size = size;
10210 return result;
10211 }
10212
10213 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10214 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10215 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10216 This is for DWP version 2 files. */
10217
10218 static struct dwo_unit *
10219 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10220 uint32_t unit_index,
10221 const char *comp_dir,
10222 ULONGEST signature, int is_debug_types)
10223 {
10224 struct objfile *objfile = dwarf2_per_objfile->objfile;
10225 const struct dwp_hash_table *dwp_htab =
10226 is_debug_types ? dwp_file->tus : dwp_file->cus;
10227 bfd *dbfd = dwp_file->dbfd;
10228 const char *kind = is_debug_types ? "TU" : "CU";
10229 struct dwo_file *dwo_file;
10230 struct dwo_unit *dwo_unit;
10231 struct virtual_v2_dwo_sections sections;
10232 void **dwo_file_slot;
10233 char *virtual_dwo_name;
10234 struct cleanup *cleanups;
10235 int i;
10236
10237 gdb_assert (dwp_file->version == 2);
10238
10239 if (dwarf_read_debug)
10240 {
10241 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10242 kind,
10243 pulongest (unit_index), hex_string (signature),
10244 dwp_file->name);
10245 }
10246
10247 /* Fetch the section offsets of this DWO unit. */
10248
10249 memset (&sections, 0, sizeof (sections));
10250 cleanups = make_cleanup (null_cleanup, 0);
10251
10252 for (i = 0; i < dwp_htab->nr_columns; ++i)
10253 {
10254 uint32_t offset = read_4_bytes (dbfd,
10255 dwp_htab->section_pool.v2.offsets
10256 + (((unit_index - 1) * dwp_htab->nr_columns
10257 + i)
10258 * sizeof (uint32_t)));
10259 uint32_t size = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.sizes
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264
10265 switch (dwp_htab->section_pool.v2.section_ids[i])
10266 {
10267 case DW_SECT_INFO:
10268 case DW_SECT_TYPES:
10269 sections.info_or_types_offset = offset;
10270 sections.info_or_types_size = size;
10271 break;
10272 case DW_SECT_ABBREV:
10273 sections.abbrev_offset = offset;
10274 sections.abbrev_size = size;
10275 break;
10276 case DW_SECT_LINE:
10277 sections.line_offset = offset;
10278 sections.line_size = size;
10279 break;
10280 case DW_SECT_LOC:
10281 sections.loc_offset = offset;
10282 sections.loc_size = size;
10283 break;
10284 case DW_SECT_STR_OFFSETS:
10285 sections.str_offsets_offset = offset;
10286 sections.str_offsets_size = size;
10287 break;
10288 case DW_SECT_MACINFO:
10289 sections.macinfo_offset = offset;
10290 sections.macinfo_size = size;
10291 break;
10292 case DW_SECT_MACRO:
10293 sections.macro_offset = offset;
10294 sections.macro_size = size;
10295 break;
10296 }
10297 }
10298
10299 /* It's easier for the rest of the code if we fake a struct dwo_file and
10300 have dwo_unit "live" in that. At least for now.
10301
10302 The DWP file can be made up of a random collection of CUs and TUs.
10303 However, for each CU + set of TUs that came from the same original DWO
10304 file, we can combine them back into a virtual DWO file to save space
10305 (fewer struct dwo_file objects to allocate). Remember that for really
10306 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10307
10308 virtual_dwo_name =
10309 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10310 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10311 (long) (sections.line_size ? sections.line_offset : 0),
10312 (long) (sections.loc_size ? sections.loc_offset : 0),
10313 (long) (sections.str_offsets_size
10314 ? sections.str_offsets_offset : 0));
10315 make_cleanup (xfree, virtual_dwo_name);
10316 /* Can we use an existing virtual DWO file? */
10317 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10318 /* Create one if necessary. */
10319 if (*dwo_file_slot == NULL)
10320 {
10321 if (dwarf_read_debug)
10322 {
10323 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10324 virtual_dwo_name);
10325 }
10326 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10327 dwo_file->dwo_name
10328 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10329 virtual_dwo_name,
10330 strlen (virtual_dwo_name));
10331 dwo_file->comp_dir = comp_dir;
10332 dwo_file->sections.abbrev =
10333 create_dwp_v2_section (&dwp_file->sections.abbrev,
10334 sections.abbrev_offset, sections.abbrev_size);
10335 dwo_file->sections.line =
10336 create_dwp_v2_section (&dwp_file->sections.line,
10337 sections.line_offset, sections.line_size);
10338 dwo_file->sections.loc =
10339 create_dwp_v2_section (&dwp_file->sections.loc,
10340 sections.loc_offset, sections.loc_size);
10341 dwo_file->sections.macinfo =
10342 create_dwp_v2_section (&dwp_file->sections.macinfo,
10343 sections.macinfo_offset, sections.macinfo_size);
10344 dwo_file->sections.macro =
10345 create_dwp_v2_section (&dwp_file->sections.macro,
10346 sections.macro_offset, sections.macro_size);
10347 dwo_file->sections.str_offsets =
10348 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10349 sections.str_offsets_offset,
10350 sections.str_offsets_size);
10351 /* The "str" section is global to the entire DWP file. */
10352 dwo_file->sections.str = dwp_file->sections.str;
10353 /* The info or types section is assigned below to dwo_unit,
10354 there's no need to record it in dwo_file.
10355 Also, we can't simply record type sections in dwo_file because
10356 we record a pointer into the vector in dwo_unit. As we collect more
10357 types we'll grow the vector and eventually have to reallocate space
10358 for it, invalidating all copies of pointers into the previous
10359 contents. */
10360 *dwo_file_slot = dwo_file;
10361 }
10362 else
10363 {
10364 if (dwarf_read_debug)
10365 {
10366 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10367 virtual_dwo_name);
10368 }
10369 dwo_file = (struct dwo_file *) *dwo_file_slot;
10370 }
10371 do_cleanups (cleanups);
10372
10373 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10374 dwo_unit->dwo_file = dwo_file;
10375 dwo_unit->signature = signature;
10376 dwo_unit->section =
10377 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10378 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10379 ? &dwp_file->sections.types
10380 : &dwp_file->sections.info,
10381 sections.info_or_types_offset,
10382 sections.info_or_types_size);
10383 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10384
10385 return dwo_unit;
10386 }
10387
10388 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10389 Returns NULL if the signature isn't found. */
10390
10391 static struct dwo_unit *
10392 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10393 ULONGEST signature, int is_debug_types)
10394 {
10395 const struct dwp_hash_table *dwp_htab =
10396 is_debug_types ? dwp_file->tus : dwp_file->cus;
10397 bfd *dbfd = dwp_file->dbfd;
10398 uint32_t mask = dwp_htab->nr_slots - 1;
10399 uint32_t hash = signature & mask;
10400 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10401 unsigned int i;
10402 void **slot;
10403 struct dwo_unit find_dwo_cu;
10404
10405 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10406 find_dwo_cu.signature = signature;
10407 slot = htab_find_slot (is_debug_types
10408 ? dwp_file->loaded_tus
10409 : dwp_file->loaded_cus,
10410 &find_dwo_cu, INSERT);
10411
10412 if (*slot != NULL)
10413 return (struct dwo_unit *) *slot;
10414
10415 /* Use a for loop so that we don't loop forever on bad debug info. */
10416 for (i = 0; i < dwp_htab->nr_slots; ++i)
10417 {
10418 ULONGEST signature_in_table;
10419
10420 signature_in_table =
10421 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10422 if (signature_in_table == signature)
10423 {
10424 uint32_t unit_index =
10425 read_4_bytes (dbfd,
10426 dwp_htab->unit_table + hash * sizeof (uint32_t));
10427
10428 if (dwp_file->version == 1)
10429 {
10430 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10431 comp_dir, signature,
10432 is_debug_types);
10433 }
10434 else
10435 {
10436 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10437 comp_dir, signature,
10438 is_debug_types);
10439 }
10440 return (struct dwo_unit *) *slot;
10441 }
10442 if (signature_in_table == 0)
10443 return NULL;
10444 hash = (hash + hash2) & mask;
10445 }
10446
10447 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10448 " [in module %s]"),
10449 dwp_file->name);
10450 }
10451
10452 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10453 Open the file specified by FILE_NAME and hand it off to BFD for
10454 preliminary analysis. Return a newly initialized bfd *, which
10455 includes a canonicalized copy of FILE_NAME.
10456 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10457 SEARCH_CWD is true if the current directory is to be searched.
10458 It will be searched before debug-file-directory.
10459 If successful, the file is added to the bfd include table of the
10460 objfile's bfd (see gdb_bfd_record_inclusion).
10461 If unable to find/open the file, return NULL.
10462 NOTE: This function is derived from symfile_bfd_open. */
10463
10464 static bfd *
10465 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10466 {
10467 bfd *sym_bfd;
10468 int desc, flags;
10469 char *absolute_name;
10470 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10471 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10472 to debug_file_directory. */
10473 char *search_path;
10474 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10475
10476 if (search_cwd)
10477 {
10478 if (*debug_file_directory != '\0')
10479 search_path = concat (".", dirname_separator_string,
10480 debug_file_directory, (char *) NULL);
10481 else
10482 search_path = xstrdup (".");
10483 }
10484 else
10485 search_path = xstrdup (debug_file_directory);
10486
10487 flags = OPF_RETURN_REALPATH;
10488 if (is_dwp)
10489 flags |= OPF_SEARCH_IN_PATH;
10490 desc = openp (search_path, flags, file_name,
10491 O_RDONLY | O_BINARY, &absolute_name);
10492 xfree (search_path);
10493 if (desc < 0)
10494 return NULL;
10495
10496 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10497 xfree (absolute_name);
10498 if (sym_bfd == NULL)
10499 return NULL;
10500 bfd_set_cacheable (sym_bfd, 1);
10501
10502 if (!bfd_check_format (sym_bfd, bfd_object))
10503 {
10504 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10505 return NULL;
10506 }
10507
10508 /* Success. Record the bfd as having been included by the objfile's bfd.
10509 This is important because things like demangled_names_hash lives in the
10510 objfile's per_bfd space and may have references to things like symbol
10511 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10512 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10513
10514 return sym_bfd;
10515 }
10516
10517 /* Try to open DWO file FILE_NAME.
10518 COMP_DIR is the DW_AT_comp_dir attribute.
10519 The result is the bfd handle of the file.
10520 If there is a problem finding or opening the file, return NULL.
10521 Upon success, the canonicalized path of the file is stored in the bfd,
10522 same as symfile_bfd_open. */
10523
10524 static bfd *
10525 open_dwo_file (const char *file_name, const char *comp_dir)
10526 {
10527 bfd *abfd;
10528
10529 if (IS_ABSOLUTE_PATH (file_name))
10530 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10531
10532 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10533
10534 if (comp_dir != NULL)
10535 {
10536 char *path_to_try = concat (comp_dir, SLASH_STRING,
10537 file_name, (char *) NULL);
10538
10539 /* NOTE: If comp_dir is a relative path, this will also try the
10540 search path, which seems useful. */
10541 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10542 xfree (path_to_try);
10543 if (abfd != NULL)
10544 return abfd;
10545 }
10546
10547 /* That didn't work, try debug-file-directory, which, despite its name,
10548 is a list of paths. */
10549
10550 if (*debug_file_directory == '\0')
10551 return NULL;
10552
10553 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10554 }
10555
10556 /* This function is mapped across the sections and remembers the offset and
10557 size of each of the DWO debugging sections we are interested in. */
10558
10559 static void
10560 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10561 {
10562 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10563 const struct dwop_section_names *names = &dwop_section_names;
10564
10565 if (section_is_p (sectp->name, &names->abbrev_dwo))
10566 {
10567 dwo_sections->abbrev.s.section = sectp;
10568 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10569 }
10570 else if (section_is_p (sectp->name, &names->info_dwo))
10571 {
10572 dwo_sections->info.s.section = sectp;
10573 dwo_sections->info.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->line_dwo))
10576 {
10577 dwo_sections->line.s.section = sectp;
10578 dwo_sections->line.size = bfd_get_section_size (sectp);
10579 }
10580 else if (section_is_p (sectp->name, &names->loc_dwo))
10581 {
10582 dwo_sections->loc.s.section = sectp;
10583 dwo_sections->loc.size = bfd_get_section_size (sectp);
10584 }
10585 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10586 {
10587 dwo_sections->macinfo.s.section = sectp;
10588 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10589 }
10590 else if (section_is_p (sectp->name, &names->macro_dwo))
10591 {
10592 dwo_sections->macro.s.section = sectp;
10593 dwo_sections->macro.size = bfd_get_section_size (sectp);
10594 }
10595 else if (section_is_p (sectp->name, &names->str_dwo))
10596 {
10597 dwo_sections->str.s.section = sectp;
10598 dwo_sections->str.size = bfd_get_section_size (sectp);
10599 }
10600 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10601 {
10602 dwo_sections->str_offsets.s.section = sectp;
10603 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10604 }
10605 else if (section_is_p (sectp->name, &names->types_dwo))
10606 {
10607 struct dwarf2_section_info type_section;
10608
10609 memset (&type_section, 0, sizeof (type_section));
10610 type_section.s.section = sectp;
10611 type_section.size = bfd_get_section_size (sectp);
10612 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10613 &type_section);
10614 }
10615 }
10616
10617 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10618 by PER_CU. This is for the non-DWP case.
10619 The result is NULL if DWO_NAME can't be found. */
10620
10621 static struct dwo_file *
10622 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10623 const char *dwo_name, const char *comp_dir)
10624 {
10625 struct objfile *objfile = dwarf2_per_objfile->objfile;
10626 struct dwo_file *dwo_file;
10627 bfd *dbfd;
10628 struct cleanup *cleanups;
10629
10630 dbfd = open_dwo_file (dwo_name, comp_dir);
10631 if (dbfd == NULL)
10632 {
10633 if (dwarf_read_debug)
10634 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10635 return NULL;
10636 }
10637 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10638 dwo_file->dwo_name = dwo_name;
10639 dwo_file->comp_dir = comp_dir;
10640 dwo_file->dbfd = dbfd;
10641
10642 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10643
10644 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10645
10646 dwo_file->cu = create_dwo_cu (dwo_file);
10647
10648 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10649 dwo_file->sections.types);
10650
10651 discard_cleanups (cleanups);
10652
10653 if (dwarf_read_debug)
10654 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10655
10656 return dwo_file;
10657 }
10658
10659 /* This function is mapped across the sections and remembers the offset and
10660 size of each of the DWP debugging sections common to version 1 and 2 that
10661 we are interested in. */
10662
10663 static void
10664 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10665 void *dwp_file_ptr)
10666 {
10667 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10668 const struct dwop_section_names *names = &dwop_section_names;
10669 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10670
10671 /* Record the ELF section number for later lookup: this is what the
10672 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10673 gdb_assert (elf_section_nr < dwp_file->num_sections);
10674 dwp_file->elf_sections[elf_section_nr] = sectp;
10675
10676 /* Look for specific sections that we need. */
10677 if (section_is_p (sectp->name, &names->str_dwo))
10678 {
10679 dwp_file->sections.str.s.section = sectp;
10680 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10681 }
10682 else if (section_is_p (sectp->name, &names->cu_index))
10683 {
10684 dwp_file->sections.cu_index.s.section = sectp;
10685 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10686 }
10687 else if (section_is_p (sectp->name, &names->tu_index))
10688 {
10689 dwp_file->sections.tu_index.s.section = sectp;
10690 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10691 }
10692 }
10693
10694 /* This function is mapped across the sections and remembers the offset and
10695 size of each of the DWP version 2 debugging sections that we are interested
10696 in. This is split into a separate function because we don't know if we
10697 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10698
10699 static void
10700 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10701 {
10702 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10703 const struct dwop_section_names *names = &dwop_section_names;
10704 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10705
10706 /* Record the ELF section number for later lookup: this is what the
10707 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10708 gdb_assert (elf_section_nr < dwp_file->num_sections);
10709 dwp_file->elf_sections[elf_section_nr] = sectp;
10710
10711 /* Look for specific sections that we need. */
10712 if (section_is_p (sectp->name, &names->abbrev_dwo))
10713 {
10714 dwp_file->sections.abbrev.s.section = sectp;
10715 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10716 }
10717 else if (section_is_p (sectp->name, &names->info_dwo))
10718 {
10719 dwp_file->sections.info.s.section = sectp;
10720 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10721 }
10722 else if (section_is_p (sectp->name, &names->line_dwo))
10723 {
10724 dwp_file->sections.line.s.section = sectp;
10725 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10726 }
10727 else if (section_is_p (sectp->name, &names->loc_dwo))
10728 {
10729 dwp_file->sections.loc.s.section = sectp;
10730 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10731 }
10732 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10733 {
10734 dwp_file->sections.macinfo.s.section = sectp;
10735 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10736 }
10737 else if (section_is_p (sectp->name, &names->macro_dwo))
10738 {
10739 dwp_file->sections.macro.s.section = sectp;
10740 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10741 }
10742 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10743 {
10744 dwp_file->sections.str_offsets.s.section = sectp;
10745 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10746 }
10747 else if (section_is_p (sectp->name, &names->types_dwo))
10748 {
10749 dwp_file->sections.types.s.section = sectp;
10750 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10751 }
10752 }
10753
10754 /* Hash function for dwp_file loaded CUs/TUs. */
10755
10756 static hashval_t
10757 hash_dwp_loaded_cutus (const void *item)
10758 {
10759 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10760
10761 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10762 return dwo_unit->signature;
10763 }
10764
10765 /* Equality function for dwp_file loaded CUs/TUs. */
10766
10767 static int
10768 eq_dwp_loaded_cutus (const void *a, const void *b)
10769 {
10770 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10771 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10772
10773 return dua->signature == dub->signature;
10774 }
10775
10776 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10777
10778 static htab_t
10779 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10780 {
10781 return htab_create_alloc_ex (3,
10782 hash_dwp_loaded_cutus,
10783 eq_dwp_loaded_cutus,
10784 NULL,
10785 &objfile->objfile_obstack,
10786 hashtab_obstack_allocate,
10787 dummy_obstack_deallocate);
10788 }
10789
10790 /* Try to open DWP file FILE_NAME.
10791 The result is the bfd handle of the file.
10792 If there is a problem finding or opening the file, return NULL.
10793 Upon success, the canonicalized path of the file is stored in the bfd,
10794 same as symfile_bfd_open. */
10795
10796 static bfd *
10797 open_dwp_file (const char *file_name)
10798 {
10799 bfd *abfd;
10800
10801 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10802 if (abfd != NULL)
10803 return abfd;
10804
10805 /* Work around upstream bug 15652.
10806 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10807 [Whether that's a "bug" is debatable, but it is getting in our way.]
10808 We have no real idea where the dwp file is, because gdb's realpath-ing
10809 of the executable's path may have discarded the needed info.
10810 [IWBN if the dwp file name was recorded in the executable, akin to
10811 .gnu_debuglink, but that doesn't exist yet.]
10812 Strip the directory from FILE_NAME and search again. */
10813 if (*debug_file_directory != '\0')
10814 {
10815 /* Don't implicitly search the current directory here.
10816 If the user wants to search "." to handle this case,
10817 it must be added to debug-file-directory. */
10818 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10819 0 /*search_cwd*/);
10820 }
10821
10822 return NULL;
10823 }
10824
10825 /* Initialize the use of the DWP file for the current objfile.
10826 By convention the name of the DWP file is ${objfile}.dwp.
10827 The result is NULL if it can't be found. */
10828
10829 static struct dwp_file *
10830 open_and_init_dwp_file (void)
10831 {
10832 struct objfile *objfile = dwarf2_per_objfile->objfile;
10833 struct dwp_file *dwp_file;
10834 char *dwp_name;
10835 bfd *dbfd;
10836 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10837
10838 /* Try to find first .dwp for the binary file before any symbolic links
10839 resolving. */
10840
10841 /* If the objfile is a debug file, find the name of the real binary
10842 file and get the name of dwp file from there. */
10843 if (objfile->separate_debug_objfile_backlink != NULL)
10844 {
10845 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10846 const char *backlink_basename = lbasename (backlink->original_name);
10847 char *debug_dirname = ldirname (objfile->original_name);
10848
10849 make_cleanup (xfree, debug_dirname);
10850 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10851 SLASH_STRING, backlink_basename);
10852 }
10853 else
10854 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10855 make_cleanup (xfree, dwp_name);
10856
10857 dbfd = open_dwp_file (dwp_name);
10858 if (dbfd == NULL
10859 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10860 {
10861 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10862 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10863 make_cleanup (xfree, dwp_name);
10864 dbfd = open_dwp_file (dwp_name);
10865 }
10866
10867 if (dbfd == NULL)
10868 {
10869 if (dwarf_read_debug)
10870 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10871 do_cleanups (cleanups);
10872 return NULL;
10873 }
10874 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10875 dwp_file->name = bfd_get_filename (dbfd);
10876 dwp_file->dbfd = dbfd;
10877 do_cleanups (cleanups);
10878
10879 /* +1: section 0 is unused */
10880 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10881 dwp_file->elf_sections =
10882 OBSTACK_CALLOC (&objfile->objfile_obstack,
10883 dwp_file->num_sections, asection *);
10884
10885 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10886
10887 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10888
10889 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10890
10891 /* The DWP file version is stored in the hash table. Oh well. */
10892 if (dwp_file->cus->version != dwp_file->tus->version)
10893 {
10894 /* Technically speaking, we should try to limp along, but this is
10895 pretty bizarre. We use pulongest here because that's the established
10896 portability solution (e.g, we cannot use %u for uint32_t). */
10897 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10898 " TU version %s [in DWP file %s]"),
10899 pulongest (dwp_file->cus->version),
10900 pulongest (dwp_file->tus->version), dwp_name);
10901 }
10902 dwp_file->version = dwp_file->cus->version;
10903
10904 if (dwp_file->version == 2)
10905 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10906
10907 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10908 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10909
10910 if (dwarf_read_debug)
10911 {
10912 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10913 fprintf_unfiltered (gdb_stdlog,
10914 " %s CUs, %s TUs\n",
10915 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10916 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10917 }
10918
10919 return dwp_file;
10920 }
10921
10922 /* Wrapper around open_and_init_dwp_file, only open it once. */
10923
10924 static struct dwp_file *
10925 get_dwp_file (void)
10926 {
10927 if (! dwarf2_per_objfile->dwp_checked)
10928 {
10929 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10930 dwarf2_per_objfile->dwp_checked = 1;
10931 }
10932 return dwarf2_per_objfile->dwp_file;
10933 }
10934
10935 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10936 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10937 or in the DWP file for the objfile, referenced by THIS_UNIT.
10938 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10939 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10940
10941 This is called, for example, when wanting to read a variable with a
10942 complex location. Therefore we don't want to do file i/o for every call.
10943 Therefore we don't want to look for a DWO file on every call.
10944 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10945 then we check if we've already seen DWO_NAME, and only THEN do we check
10946 for a DWO file.
10947
10948 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10949 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10950
10951 static struct dwo_unit *
10952 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10953 const char *dwo_name, const char *comp_dir,
10954 ULONGEST signature, int is_debug_types)
10955 {
10956 struct objfile *objfile = dwarf2_per_objfile->objfile;
10957 const char *kind = is_debug_types ? "TU" : "CU";
10958 void **dwo_file_slot;
10959 struct dwo_file *dwo_file;
10960 struct dwp_file *dwp_file;
10961
10962 /* First see if there's a DWP file.
10963 If we have a DWP file but didn't find the DWO inside it, don't
10964 look for the original DWO file. It makes gdb behave differently
10965 depending on whether one is debugging in the build tree. */
10966
10967 dwp_file = get_dwp_file ();
10968 if (dwp_file != NULL)
10969 {
10970 const struct dwp_hash_table *dwp_htab =
10971 is_debug_types ? dwp_file->tus : dwp_file->cus;
10972
10973 if (dwp_htab != NULL)
10974 {
10975 struct dwo_unit *dwo_cutu =
10976 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10977 signature, is_debug_types);
10978
10979 if (dwo_cutu != NULL)
10980 {
10981 if (dwarf_read_debug)
10982 {
10983 fprintf_unfiltered (gdb_stdlog,
10984 "Virtual DWO %s %s found: @%s\n",
10985 kind, hex_string (signature),
10986 host_address_to_string (dwo_cutu));
10987 }
10988 return dwo_cutu;
10989 }
10990 }
10991 }
10992 else
10993 {
10994 /* No DWP file, look for the DWO file. */
10995
10996 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10997 if (*dwo_file_slot == NULL)
10998 {
10999 /* Read in the file and build a table of the CUs/TUs it contains. */
11000 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11001 }
11002 /* NOTE: This will be NULL if unable to open the file. */
11003 dwo_file = (struct dwo_file *) *dwo_file_slot;
11004
11005 if (dwo_file != NULL)
11006 {
11007 struct dwo_unit *dwo_cutu = NULL;
11008
11009 if (is_debug_types && dwo_file->tus)
11010 {
11011 struct dwo_unit find_dwo_cutu;
11012
11013 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11014 find_dwo_cutu.signature = signature;
11015 dwo_cutu
11016 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11017 }
11018 else if (!is_debug_types && dwo_file->cu)
11019 {
11020 if (signature == dwo_file->cu->signature)
11021 dwo_cutu = dwo_file->cu;
11022 }
11023
11024 if (dwo_cutu != NULL)
11025 {
11026 if (dwarf_read_debug)
11027 {
11028 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11029 kind, dwo_name, hex_string (signature),
11030 host_address_to_string (dwo_cutu));
11031 }
11032 return dwo_cutu;
11033 }
11034 }
11035 }
11036
11037 /* We didn't find it. This could mean a dwo_id mismatch, or
11038 someone deleted the DWO/DWP file, or the search path isn't set up
11039 correctly to find the file. */
11040
11041 if (dwarf_read_debug)
11042 {
11043 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11044 kind, dwo_name, hex_string (signature));
11045 }
11046
11047 /* This is a warning and not a complaint because it can be caused by
11048 pilot error (e.g., user accidentally deleting the DWO). */
11049 {
11050 /* Print the name of the DWP file if we looked there, helps the user
11051 better diagnose the problem. */
11052 char *dwp_text = NULL;
11053 struct cleanup *cleanups;
11054
11055 if (dwp_file != NULL)
11056 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11057 cleanups = make_cleanup (xfree, dwp_text);
11058
11059 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11060 " [in module %s]"),
11061 kind, dwo_name, hex_string (signature),
11062 dwp_text != NULL ? dwp_text : "",
11063 this_unit->is_debug_types ? "TU" : "CU",
11064 this_unit->offset.sect_off, objfile_name (objfile));
11065
11066 do_cleanups (cleanups);
11067 }
11068 return NULL;
11069 }
11070
11071 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11072 See lookup_dwo_cutu_unit for details. */
11073
11074 static struct dwo_unit *
11075 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11076 const char *dwo_name, const char *comp_dir,
11077 ULONGEST signature)
11078 {
11079 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11080 }
11081
11082 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11083 See lookup_dwo_cutu_unit for details. */
11084
11085 static struct dwo_unit *
11086 lookup_dwo_type_unit (struct signatured_type *this_tu,
11087 const char *dwo_name, const char *comp_dir)
11088 {
11089 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11090 }
11091
11092 /* Traversal function for queue_and_load_all_dwo_tus. */
11093
11094 static int
11095 queue_and_load_dwo_tu (void **slot, void *info)
11096 {
11097 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11098 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11099 ULONGEST signature = dwo_unit->signature;
11100 struct signatured_type *sig_type =
11101 lookup_dwo_signatured_type (per_cu->cu, signature);
11102
11103 if (sig_type != NULL)
11104 {
11105 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11106
11107 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11108 a real dependency of PER_CU on SIG_TYPE. That is detected later
11109 while processing PER_CU. */
11110 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11111 load_full_type_unit (sig_cu);
11112 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11113 }
11114
11115 return 1;
11116 }
11117
11118 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11119 The DWO may have the only definition of the type, though it may not be
11120 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11122
11123 static void
11124 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11125 {
11126 struct dwo_unit *dwo_unit;
11127 struct dwo_file *dwo_file;
11128
11129 gdb_assert (!per_cu->is_debug_types);
11130 gdb_assert (get_dwp_file () == NULL);
11131 gdb_assert (per_cu->cu != NULL);
11132
11133 dwo_unit = per_cu->cu->dwo_unit;
11134 gdb_assert (dwo_unit != NULL);
11135
11136 dwo_file = dwo_unit->dwo_file;
11137 if (dwo_file->tus != NULL)
11138 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11139 }
11140
11141 /* Free all resources associated with DWO_FILE.
11142 Close the DWO file and munmap the sections.
11143 All memory should be on the objfile obstack. */
11144
11145 static void
11146 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11147 {
11148
11149 /* Note: dbfd is NULL for virtual DWO files. */
11150 gdb_bfd_unref (dwo_file->dbfd);
11151
11152 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11153 }
11154
11155 /* Wrapper for free_dwo_file for use in cleanups. */
11156
11157 static void
11158 free_dwo_file_cleanup (void *arg)
11159 {
11160 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11161 struct objfile *objfile = dwarf2_per_objfile->objfile;
11162
11163 free_dwo_file (dwo_file, objfile);
11164 }
11165
11166 /* Traversal function for free_dwo_files. */
11167
11168 static int
11169 free_dwo_file_from_slot (void **slot, void *info)
11170 {
11171 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11172 struct objfile *objfile = (struct objfile *) info;
11173
11174 free_dwo_file (dwo_file, objfile);
11175
11176 return 1;
11177 }
11178
11179 /* Free all resources associated with DWO_FILES. */
11180
11181 static void
11182 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11183 {
11184 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11185 }
11186 \f
11187 /* Read in various DIEs. */
11188
11189 /* qsort helper for inherit_abstract_dies. */
11190
11191 static int
11192 unsigned_int_compar (const void *ap, const void *bp)
11193 {
11194 unsigned int a = *(unsigned int *) ap;
11195 unsigned int b = *(unsigned int *) bp;
11196
11197 return (a > b) - (b > a);
11198 }
11199
11200 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11201 Inherit only the children of the DW_AT_abstract_origin DIE not being
11202 already referenced by DW_AT_abstract_origin from the children of the
11203 current DIE. */
11204
11205 static void
11206 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11207 {
11208 struct die_info *child_die;
11209 unsigned die_children_count;
11210 /* CU offsets which were referenced by children of the current DIE. */
11211 sect_offset *offsets;
11212 sect_offset *offsets_end, *offsetp;
11213 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11214 struct die_info *origin_die;
11215 /* Iterator of the ORIGIN_DIE children. */
11216 struct die_info *origin_child_die;
11217 struct cleanup *cleanups;
11218 struct attribute *attr;
11219 struct dwarf2_cu *origin_cu;
11220 struct pending **origin_previous_list_in_scope;
11221
11222 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11223 if (!attr)
11224 return;
11225
11226 /* Note that following die references may follow to a die in a
11227 different cu. */
11228
11229 origin_cu = cu;
11230 origin_die = follow_die_ref (die, attr, &origin_cu);
11231
11232 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11233 symbols in. */
11234 origin_previous_list_in_scope = origin_cu->list_in_scope;
11235 origin_cu->list_in_scope = cu->list_in_scope;
11236
11237 if (die->tag != origin_die->tag
11238 && !(die->tag == DW_TAG_inlined_subroutine
11239 && origin_die->tag == DW_TAG_subprogram))
11240 complaint (&symfile_complaints,
11241 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11242 die->offset.sect_off, origin_die->offset.sect_off);
11243
11244 child_die = die->child;
11245 die_children_count = 0;
11246 while (child_die && child_die->tag)
11247 {
11248 child_die = sibling_die (child_die);
11249 die_children_count++;
11250 }
11251 offsets = XNEWVEC (sect_offset, die_children_count);
11252 cleanups = make_cleanup (xfree, offsets);
11253
11254 offsets_end = offsets;
11255 for (child_die = die->child;
11256 child_die && child_die->tag;
11257 child_die = sibling_die (child_die))
11258 {
11259 struct die_info *child_origin_die;
11260 struct dwarf2_cu *child_origin_cu;
11261
11262 /* We are trying to process concrete instance entries:
11263 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11264 it's not relevant to our analysis here. i.e. detecting DIEs that are
11265 present in the abstract instance but not referenced in the concrete
11266 one. */
11267 if (child_die->tag == DW_TAG_GNU_call_site)
11268 continue;
11269
11270 /* For each CHILD_DIE, find the corresponding child of
11271 ORIGIN_DIE. If there is more than one layer of
11272 DW_AT_abstract_origin, follow them all; there shouldn't be,
11273 but GCC versions at least through 4.4 generate this (GCC PR
11274 40573). */
11275 child_origin_die = child_die;
11276 child_origin_cu = cu;
11277 while (1)
11278 {
11279 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11280 child_origin_cu);
11281 if (attr == NULL)
11282 break;
11283 child_origin_die = follow_die_ref (child_origin_die, attr,
11284 &child_origin_cu);
11285 }
11286
11287 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11288 counterpart may exist. */
11289 if (child_origin_die != child_die)
11290 {
11291 if (child_die->tag != child_origin_die->tag
11292 && !(child_die->tag == DW_TAG_inlined_subroutine
11293 && child_origin_die->tag == DW_TAG_subprogram))
11294 complaint (&symfile_complaints,
11295 _("Child DIE 0x%x and its abstract origin 0x%x have "
11296 "different tags"), child_die->offset.sect_off,
11297 child_origin_die->offset.sect_off);
11298 if (child_origin_die->parent != origin_die)
11299 complaint (&symfile_complaints,
11300 _("Child DIE 0x%x and its abstract origin 0x%x have "
11301 "different parents"), child_die->offset.sect_off,
11302 child_origin_die->offset.sect_off);
11303 else
11304 *offsets_end++ = child_origin_die->offset;
11305 }
11306 }
11307 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11308 unsigned_int_compar);
11309 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11310 if (offsetp[-1].sect_off == offsetp->sect_off)
11311 complaint (&symfile_complaints,
11312 _("Multiple children of DIE 0x%x refer "
11313 "to DIE 0x%x as their abstract origin"),
11314 die->offset.sect_off, offsetp->sect_off);
11315
11316 offsetp = offsets;
11317 origin_child_die = origin_die->child;
11318 while (origin_child_die && origin_child_die->tag)
11319 {
11320 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11321 while (offsetp < offsets_end
11322 && offsetp->sect_off < origin_child_die->offset.sect_off)
11323 offsetp++;
11324 if (offsetp >= offsets_end
11325 || offsetp->sect_off > origin_child_die->offset.sect_off)
11326 {
11327 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11328 Check whether we're already processing ORIGIN_CHILD_DIE.
11329 This can happen with mutually referenced abstract_origins.
11330 PR 16581. */
11331 if (!origin_child_die->in_process)
11332 process_die (origin_child_die, origin_cu);
11333 }
11334 origin_child_die = sibling_die (origin_child_die);
11335 }
11336 origin_cu->list_in_scope = origin_previous_list_in_scope;
11337
11338 do_cleanups (cleanups);
11339 }
11340
11341 static void
11342 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11343 {
11344 struct objfile *objfile = cu->objfile;
11345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11346 struct context_stack *newobj;
11347 CORE_ADDR lowpc;
11348 CORE_ADDR highpc;
11349 struct die_info *child_die;
11350 struct attribute *attr, *call_line, *call_file;
11351 const char *name;
11352 CORE_ADDR baseaddr;
11353 struct block *block;
11354 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11355 VEC (symbolp) *template_args = NULL;
11356 struct template_symbol *templ_func = NULL;
11357
11358 if (inlined_func)
11359 {
11360 /* If we do not have call site information, we can't show the
11361 caller of this inlined function. That's too confusing, so
11362 only use the scope for local variables. */
11363 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11364 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11365 if (call_line == NULL || call_file == NULL)
11366 {
11367 read_lexical_block_scope (die, cu);
11368 return;
11369 }
11370 }
11371
11372 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11373
11374 name = dwarf2_name (die, cu);
11375
11376 /* Ignore functions with missing or empty names. These are actually
11377 illegal according to the DWARF standard. */
11378 if (name == NULL)
11379 {
11380 complaint (&symfile_complaints,
11381 _("missing name for subprogram DIE at %d"),
11382 die->offset.sect_off);
11383 return;
11384 }
11385
11386 /* Ignore functions with missing or invalid low and high pc attributes. */
11387 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11388 <= PC_BOUNDS_INVALID)
11389 {
11390 attr = dwarf2_attr (die, DW_AT_external, cu);
11391 if (!attr || !DW_UNSND (attr))
11392 complaint (&symfile_complaints,
11393 _("cannot get low and high bounds "
11394 "for subprogram DIE at %d"),
11395 die->offset.sect_off);
11396 return;
11397 }
11398
11399 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11400 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11401
11402 /* If we have any template arguments, then we must allocate a
11403 different sort of symbol. */
11404 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11405 {
11406 if (child_die->tag == DW_TAG_template_type_param
11407 || child_die->tag == DW_TAG_template_value_param)
11408 {
11409 templ_func = allocate_template_symbol (objfile);
11410 templ_func->base.is_cplus_template_function = 1;
11411 break;
11412 }
11413 }
11414
11415 newobj = push_context (0, lowpc);
11416 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11417 (struct symbol *) templ_func);
11418
11419 /* If there is a location expression for DW_AT_frame_base, record
11420 it. */
11421 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11422 if (attr)
11423 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11424
11425 /* If there is a location for the static link, record it. */
11426 newobj->static_link = NULL;
11427 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11428 if (attr)
11429 {
11430 newobj->static_link
11431 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11432 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11433 }
11434
11435 cu->list_in_scope = &local_symbols;
11436
11437 if (die->child != NULL)
11438 {
11439 child_die = die->child;
11440 while (child_die && child_die->tag)
11441 {
11442 if (child_die->tag == DW_TAG_template_type_param
11443 || child_die->tag == DW_TAG_template_value_param)
11444 {
11445 struct symbol *arg = new_symbol (child_die, NULL, cu);
11446
11447 if (arg != NULL)
11448 VEC_safe_push (symbolp, template_args, arg);
11449 }
11450 else
11451 process_die (child_die, cu);
11452 child_die = sibling_die (child_die);
11453 }
11454 }
11455
11456 inherit_abstract_dies (die, cu);
11457
11458 /* If we have a DW_AT_specification, we might need to import using
11459 directives from the context of the specification DIE. See the
11460 comment in determine_prefix. */
11461 if (cu->language == language_cplus
11462 && dwarf2_attr (die, DW_AT_specification, cu))
11463 {
11464 struct dwarf2_cu *spec_cu = cu;
11465 struct die_info *spec_die = die_specification (die, &spec_cu);
11466
11467 while (spec_die)
11468 {
11469 child_die = spec_die->child;
11470 while (child_die && child_die->tag)
11471 {
11472 if (child_die->tag == DW_TAG_imported_module)
11473 process_die (child_die, spec_cu);
11474 child_die = sibling_die (child_die);
11475 }
11476
11477 /* In some cases, GCC generates specification DIEs that
11478 themselves contain DW_AT_specification attributes. */
11479 spec_die = die_specification (spec_die, &spec_cu);
11480 }
11481 }
11482
11483 newobj = pop_context ();
11484 /* Make a block for the local symbols within. */
11485 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11486 newobj->static_link, lowpc, highpc);
11487
11488 /* For C++, set the block's scope. */
11489 if ((cu->language == language_cplus
11490 || cu->language == language_fortran
11491 || cu->language == language_d
11492 || cu->language == language_rust)
11493 && cu->processing_has_namespace_info)
11494 block_set_scope (block, determine_prefix (die, cu),
11495 &objfile->objfile_obstack);
11496
11497 /* If we have address ranges, record them. */
11498 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11499
11500 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11501
11502 /* Attach template arguments to function. */
11503 if (! VEC_empty (symbolp, template_args))
11504 {
11505 gdb_assert (templ_func != NULL);
11506
11507 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11508 templ_func->template_arguments
11509 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11510 templ_func->n_template_arguments);
11511 memcpy (templ_func->template_arguments,
11512 VEC_address (symbolp, template_args),
11513 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11514 VEC_free (symbolp, template_args);
11515 }
11516
11517 /* In C++, we can have functions nested inside functions (e.g., when
11518 a function declares a class that has methods). This means that
11519 when we finish processing a function scope, we may need to go
11520 back to building a containing block's symbol lists. */
11521 local_symbols = newobj->locals;
11522 local_using_directives = newobj->local_using_directives;
11523
11524 /* If we've finished processing a top-level function, subsequent
11525 symbols go in the file symbol list. */
11526 if (outermost_context_p ())
11527 cu->list_in_scope = &file_symbols;
11528 }
11529
11530 /* Process all the DIES contained within a lexical block scope. Start
11531 a new scope, process the dies, and then close the scope. */
11532
11533 static void
11534 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11535 {
11536 struct objfile *objfile = cu->objfile;
11537 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11538 struct context_stack *newobj;
11539 CORE_ADDR lowpc, highpc;
11540 struct die_info *child_die;
11541 CORE_ADDR baseaddr;
11542
11543 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11544
11545 /* Ignore blocks with missing or invalid low and high pc attributes. */
11546 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11547 as multiple lexical blocks? Handling children in a sane way would
11548 be nasty. Might be easier to properly extend generic blocks to
11549 describe ranges. */
11550 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11551 {
11552 case PC_BOUNDS_NOT_PRESENT:
11553 /* DW_TAG_lexical_block has no attributes, process its children as if
11554 there was no wrapping by that DW_TAG_lexical_block.
11555 GCC does no longer produces such DWARF since GCC r224161. */
11556 for (child_die = die->child;
11557 child_die != NULL && child_die->tag;
11558 child_die = sibling_die (child_die))
11559 process_die (child_die, cu);
11560 return;
11561 case PC_BOUNDS_INVALID:
11562 return;
11563 }
11564 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11565 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11566
11567 push_context (0, lowpc);
11568 if (die->child != NULL)
11569 {
11570 child_die = die->child;
11571 while (child_die && child_die->tag)
11572 {
11573 process_die (child_die, cu);
11574 child_die = sibling_die (child_die);
11575 }
11576 }
11577 inherit_abstract_dies (die, cu);
11578 newobj = pop_context ();
11579
11580 if (local_symbols != NULL || local_using_directives != NULL)
11581 {
11582 struct block *block
11583 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11584 newobj->start_addr, highpc);
11585
11586 /* Note that recording ranges after traversing children, as we
11587 do here, means that recording a parent's ranges entails
11588 walking across all its children's ranges as they appear in
11589 the address map, which is quadratic behavior.
11590
11591 It would be nicer to record the parent's ranges before
11592 traversing its children, simply overriding whatever you find
11593 there. But since we don't even decide whether to create a
11594 block until after we've traversed its children, that's hard
11595 to do. */
11596 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11597 }
11598 local_symbols = newobj->locals;
11599 local_using_directives = newobj->local_using_directives;
11600 }
11601
11602 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11603
11604 static void
11605 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11606 {
11607 struct objfile *objfile = cu->objfile;
11608 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11609 CORE_ADDR pc, baseaddr;
11610 struct attribute *attr;
11611 struct call_site *call_site, call_site_local;
11612 void **slot;
11613 int nparams;
11614 struct die_info *child_die;
11615
11616 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11617
11618 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11619 if (!attr)
11620 {
11621 complaint (&symfile_complaints,
11622 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11623 "DIE 0x%x [in module %s]"),
11624 die->offset.sect_off, objfile_name (objfile));
11625 return;
11626 }
11627 pc = attr_value_as_address (attr) + baseaddr;
11628 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11629
11630 if (cu->call_site_htab == NULL)
11631 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11632 NULL, &objfile->objfile_obstack,
11633 hashtab_obstack_allocate, NULL);
11634 call_site_local.pc = pc;
11635 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11636 if (*slot != NULL)
11637 {
11638 complaint (&symfile_complaints,
11639 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11640 "DIE 0x%x [in module %s]"),
11641 paddress (gdbarch, pc), die->offset.sect_off,
11642 objfile_name (objfile));
11643 return;
11644 }
11645
11646 /* Count parameters at the caller. */
11647
11648 nparams = 0;
11649 for (child_die = die->child; child_die && child_die->tag;
11650 child_die = sibling_die (child_die))
11651 {
11652 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11653 {
11654 complaint (&symfile_complaints,
11655 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11656 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11657 child_die->tag, child_die->offset.sect_off,
11658 objfile_name (objfile));
11659 continue;
11660 }
11661
11662 nparams++;
11663 }
11664
11665 call_site
11666 = ((struct call_site *)
11667 obstack_alloc (&objfile->objfile_obstack,
11668 sizeof (*call_site)
11669 + (sizeof (*call_site->parameter) * (nparams - 1))));
11670 *slot = call_site;
11671 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11672 call_site->pc = pc;
11673
11674 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11675 {
11676 struct die_info *func_die;
11677
11678 /* Skip also over DW_TAG_inlined_subroutine. */
11679 for (func_die = die->parent;
11680 func_die && func_die->tag != DW_TAG_subprogram
11681 && func_die->tag != DW_TAG_subroutine_type;
11682 func_die = func_die->parent);
11683
11684 /* DW_AT_GNU_all_call_sites is a superset
11685 of DW_AT_GNU_all_tail_call_sites. */
11686 if (func_die
11687 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11688 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11689 {
11690 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11691 not complete. But keep CALL_SITE for look ups via call_site_htab,
11692 both the initial caller containing the real return address PC and
11693 the final callee containing the current PC of a chain of tail
11694 calls do not need to have the tail call list complete. But any
11695 function candidate for a virtual tail call frame searched via
11696 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11697 determined unambiguously. */
11698 }
11699 else
11700 {
11701 struct type *func_type = NULL;
11702
11703 if (func_die)
11704 func_type = get_die_type (func_die, cu);
11705 if (func_type != NULL)
11706 {
11707 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11708
11709 /* Enlist this call site to the function. */
11710 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11711 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11712 }
11713 else
11714 complaint (&symfile_complaints,
11715 _("Cannot find function owning DW_TAG_GNU_call_site "
11716 "DIE 0x%x [in module %s]"),
11717 die->offset.sect_off, objfile_name (objfile));
11718 }
11719 }
11720
11721 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11722 if (attr == NULL)
11723 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11724 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11725 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11726 /* Keep NULL DWARF_BLOCK. */;
11727 else if (attr_form_is_block (attr))
11728 {
11729 struct dwarf2_locexpr_baton *dlbaton;
11730
11731 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11732 dlbaton->data = DW_BLOCK (attr)->data;
11733 dlbaton->size = DW_BLOCK (attr)->size;
11734 dlbaton->per_cu = cu->per_cu;
11735
11736 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11737 }
11738 else if (attr_form_is_ref (attr))
11739 {
11740 struct dwarf2_cu *target_cu = cu;
11741 struct die_info *target_die;
11742
11743 target_die = follow_die_ref (die, attr, &target_cu);
11744 gdb_assert (target_cu->objfile == objfile);
11745 if (die_is_declaration (target_die, target_cu))
11746 {
11747 const char *target_physname;
11748
11749 /* Prefer the mangled name; otherwise compute the demangled one. */
11750 target_physname = dwarf2_string_attr (target_die,
11751 DW_AT_linkage_name,
11752 target_cu);
11753 if (target_physname == NULL)
11754 target_physname = dwarf2_string_attr (target_die,
11755 DW_AT_MIPS_linkage_name,
11756 target_cu);
11757 if (target_physname == NULL)
11758 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11759 if (target_physname == NULL)
11760 complaint (&symfile_complaints,
11761 _("DW_AT_GNU_call_site_target target DIE has invalid "
11762 "physname, for referencing DIE 0x%x [in module %s]"),
11763 die->offset.sect_off, objfile_name (objfile));
11764 else
11765 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11766 }
11767 else
11768 {
11769 CORE_ADDR lowpc;
11770
11771 /* DW_AT_entry_pc should be preferred. */
11772 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11773 <= PC_BOUNDS_INVALID)
11774 complaint (&symfile_complaints,
11775 _("DW_AT_GNU_call_site_target target DIE has invalid "
11776 "low pc, for referencing DIE 0x%x [in module %s]"),
11777 die->offset.sect_off, objfile_name (objfile));
11778 else
11779 {
11780 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11781 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11782 }
11783 }
11784 }
11785 else
11786 complaint (&symfile_complaints,
11787 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11788 "block nor reference, for DIE 0x%x [in module %s]"),
11789 die->offset.sect_off, objfile_name (objfile));
11790
11791 call_site->per_cu = cu->per_cu;
11792
11793 for (child_die = die->child;
11794 child_die && child_die->tag;
11795 child_die = sibling_die (child_die))
11796 {
11797 struct call_site_parameter *parameter;
11798 struct attribute *loc, *origin;
11799
11800 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11801 {
11802 /* Already printed the complaint above. */
11803 continue;
11804 }
11805
11806 gdb_assert (call_site->parameter_count < nparams);
11807 parameter = &call_site->parameter[call_site->parameter_count];
11808
11809 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11810 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11811 register is contained in DW_AT_GNU_call_site_value. */
11812
11813 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11814 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11815 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11816 {
11817 sect_offset offset;
11818
11819 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11820 offset = dwarf2_get_ref_die_offset (origin);
11821 if (!offset_in_cu_p (&cu->header, offset))
11822 {
11823 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11824 binding can be done only inside one CU. Such referenced DIE
11825 therefore cannot be even moved to DW_TAG_partial_unit. */
11826 complaint (&symfile_complaints,
11827 _("DW_AT_abstract_origin offset is not in CU for "
11828 "DW_TAG_GNU_call_site child DIE 0x%x "
11829 "[in module %s]"),
11830 child_die->offset.sect_off, objfile_name (objfile));
11831 continue;
11832 }
11833 parameter->u.param_offset.cu_off = (offset.sect_off
11834 - cu->header.offset.sect_off);
11835 }
11836 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11837 {
11838 complaint (&symfile_complaints,
11839 _("No DW_FORM_block* DW_AT_location for "
11840 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11841 child_die->offset.sect_off, objfile_name (objfile));
11842 continue;
11843 }
11844 else
11845 {
11846 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11847 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11848 if (parameter->u.dwarf_reg != -1)
11849 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11850 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11851 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11852 &parameter->u.fb_offset))
11853 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11854 else
11855 {
11856 complaint (&symfile_complaints,
11857 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11858 "for DW_FORM_block* DW_AT_location is supported for "
11859 "DW_TAG_GNU_call_site child DIE 0x%x "
11860 "[in module %s]"),
11861 child_die->offset.sect_off, objfile_name (objfile));
11862 continue;
11863 }
11864 }
11865
11866 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11867 if (!attr_form_is_block (attr))
11868 {
11869 complaint (&symfile_complaints,
11870 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11871 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11872 child_die->offset.sect_off, objfile_name (objfile));
11873 continue;
11874 }
11875 parameter->value = DW_BLOCK (attr)->data;
11876 parameter->value_size = DW_BLOCK (attr)->size;
11877
11878 /* Parameters are not pre-cleared by memset above. */
11879 parameter->data_value = NULL;
11880 parameter->data_value_size = 0;
11881 call_site->parameter_count++;
11882
11883 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11884 if (attr)
11885 {
11886 if (!attr_form_is_block (attr))
11887 complaint (&symfile_complaints,
11888 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11889 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11890 child_die->offset.sect_off, objfile_name (objfile));
11891 else
11892 {
11893 parameter->data_value = DW_BLOCK (attr)->data;
11894 parameter->data_value_size = DW_BLOCK (attr)->size;
11895 }
11896 }
11897 }
11898 }
11899
11900 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11901 Return 1 if the attributes are present and valid, otherwise, return 0.
11902 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11903
11904 static int
11905 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11906 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11907 struct partial_symtab *ranges_pst)
11908 {
11909 struct objfile *objfile = cu->objfile;
11910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11911 struct comp_unit_head *cu_header = &cu->header;
11912 bfd *obfd = objfile->obfd;
11913 unsigned int addr_size = cu_header->addr_size;
11914 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11915 /* Base address selection entry. */
11916 CORE_ADDR base;
11917 int found_base;
11918 unsigned int dummy;
11919 const gdb_byte *buffer;
11920 int low_set;
11921 CORE_ADDR low = 0;
11922 CORE_ADDR high = 0;
11923 CORE_ADDR baseaddr;
11924
11925 found_base = cu->base_known;
11926 base = cu->base_address;
11927
11928 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11929 if (offset >= dwarf2_per_objfile->ranges.size)
11930 {
11931 complaint (&symfile_complaints,
11932 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11933 offset);
11934 return 0;
11935 }
11936 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11937
11938 low_set = 0;
11939
11940 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11941
11942 while (1)
11943 {
11944 CORE_ADDR range_beginning, range_end;
11945
11946 range_beginning = read_address (obfd, buffer, cu, &dummy);
11947 buffer += addr_size;
11948 range_end = read_address (obfd, buffer, cu, &dummy);
11949 buffer += addr_size;
11950 offset += 2 * addr_size;
11951
11952 /* An end of list marker is a pair of zero addresses. */
11953 if (range_beginning == 0 && range_end == 0)
11954 /* Found the end of list entry. */
11955 break;
11956
11957 /* Each base address selection entry is a pair of 2 values.
11958 The first is the largest possible address, the second is
11959 the base address. Check for a base address here. */
11960 if ((range_beginning & mask) == mask)
11961 {
11962 /* If we found the largest possible address, then we already
11963 have the base address in range_end. */
11964 base = range_end;
11965 found_base = 1;
11966 continue;
11967 }
11968
11969 if (!found_base)
11970 {
11971 /* We have no valid base address for the ranges
11972 data. */
11973 complaint (&symfile_complaints,
11974 _("Invalid .debug_ranges data (no base address)"));
11975 return 0;
11976 }
11977
11978 if (range_beginning > range_end)
11979 {
11980 /* Inverted range entries are invalid. */
11981 complaint (&symfile_complaints,
11982 _("Invalid .debug_ranges data (inverted range)"));
11983 return 0;
11984 }
11985
11986 /* Empty range entries have no effect. */
11987 if (range_beginning == range_end)
11988 continue;
11989
11990 range_beginning += base;
11991 range_end += base;
11992
11993 /* A not-uncommon case of bad debug info.
11994 Don't pollute the addrmap with bad data. */
11995 if (range_beginning + baseaddr == 0
11996 && !dwarf2_per_objfile->has_section_at_zero)
11997 {
11998 complaint (&symfile_complaints,
11999 _(".debug_ranges entry has start address of zero"
12000 " [in module %s]"), objfile_name (objfile));
12001 continue;
12002 }
12003
12004 if (ranges_pst != NULL)
12005 {
12006 CORE_ADDR lowpc;
12007 CORE_ADDR highpc;
12008
12009 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12010 range_beginning + baseaddr);
12011 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12012 range_end + baseaddr);
12013 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12014 ranges_pst);
12015 }
12016
12017 /* FIXME: This is recording everything as a low-high
12018 segment of consecutive addresses. We should have a
12019 data structure for discontiguous block ranges
12020 instead. */
12021 if (! low_set)
12022 {
12023 low = range_beginning;
12024 high = range_end;
12025 low_set = 1;
12026 }
12027 else
12028 {
12029 if (range_beginning < low)
12030 low = range_beginning;
12031 if (range_end > high)
12032 high = range_end;
12033 }
12034 }
12035
12036 if (! low_set)
12037 /* If the first entry is an end-of-list marker, the range
12038 describes an empty scope, i.e. no instructions. */
12039 return 0;
12040
12041 if (low_return)
12042 *low_return = low;
12043 if (high_return)
12044 *high_return = high;
12045 return 1;
12046 }
12047
12048 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12049 definition for the return value. *LOWPC and *HIGHPC are set iff
12050 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12051
12052 static enum pc_bounds_kind
12053 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12054 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12055 struct partial_symtab *pst)
12056 {
12057 struct attribute *attr;
12058 struct attribute *attr_high;
12059 CORE_ADDR low = 0;
12060 CORE_ADDR high = 0;
12061 enum pc_bounds_kind ret;
12062
12063 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12064 if (attr_high)
12065 {
12066 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12067 if (attr)
12068 {
12069 low = attr_value_as_address (attr);
12070 high = attr_value_as_address (attr_high);
12071 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12072 high += low;
12073 }
12074 else
12075 /* Found high w/o low attribute. */
12076 return PC_BOUNDS_INVALID;
12077
12078 /* Found consecutive range of addresses. */
12079 ret = PC_BOUNDS_HIGH_LOW;
12080 }
12081 else
12082 {
12083 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12084 if (attr != NULL)
12085 {
12086 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12087 We take advantage of the fact that DW_AT_ranges does not appear
12088 in DW_TAG_compile_unit of DWO files. */
12089 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12090 unsigned int ranges_offset = (DW_UNSND (attr)
12091 + (need_ranges_base
12092 ? cu->ranges_base
12093 : 0));
12094
12095 /* Value of the DW_AT_ranges attribute is the offset in the
12096 .debug_ranges section. */
12097 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12098 return PC_BOUNDS_INVALID;
12099 /* Found discontinuous range of addresses. */
12100 ret = PC_BOUNDS_RANGES;
12101 }
12102 else
12103 return PC_BOUNDS_NOT_PRESENT;
12104 }
12105
12106 /* read_partial_die has also the strict LOW < HIGH requirement. */
12107 if (high <= low)
12108 return PC_BOUNDS_INVALID;
12109
12110 /* When using the GNU linker, .gnu.linkonce. sections are used to
12111 eliminate duplicate copies of functions and vtables and such.
12112 The linker will arbitrarily choose one and discard the others.
12113 The AT_*_pc values for such functions refer to local labels in
12114 these sections. If the section from that file was discarded, the
12115 labels are not in the output, so the relocs get a value of 0.
12116 If this is a discarded function, mark the pc bounds as invalid,
12117 so that GDB will ignore it. */
12118 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12119 return PC_BOUNDS_INVALID;
12120
12121 *lowpc = low;
12122 if (highpc)
12123 *highpc = high;
12124 return ret;
12125 }
12126
12127 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12128 its low and high PC addresses. Do nothing if these addresses could not
12129 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12130 and HIGHPC to the high address if greater than HIGHPC. */
12131
12132 static void
12133 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12134 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12135 struct dwarf2_cu *cu)
12136 {
12137 CORE_ADDR low, high;
12138 struct die_info *child = die->child;
12139
12140 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12141 {
12142 *lowpc = std::min (*lowpc, low);
12143 *highpc = std::max (*highpc, high);
12144 }
12145
12146 /* If the language does not allow nested subprograms (either inside
12147 subprograms or lexical blocks), we're done. */
12148 if (cu->language != language_ada)
12149 return;
12150
12151 /* Check all the children of the given DIE. If it contains nested
12152 subprograms, then check their pc bounds. Likewise, we need to
12153 check lexical blocks as well, as they may also contain subprogram
12154 definitions. */
12155 while (child && child->tag)
12156 {
12157 if (child->tag == DW_TAG_subprogram
12158 || child->tag == DW_TAG_lexical_block)
12159 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12160 child = sibling_die (child);
12161 }
12162 }
12163
12164 /* Get the low and high pc's represented by the scope DIE, and store
12165 them in *LOWPC and *HIGHPC. If the correct values can't be
12166 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12167
12168 static void
12169 get_scope_pc_bounds (struct die_info *die,
12170 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12171 struct dwarf2_cu *cu)
12172 {
12173 CORE_ADDR best_low = (CORE_ADDR) -1;
12174 CORE_ADDR best_high = (CORE_ADDR) 0;
12175 CORE_ADDR current_low, current_high;
12176
12177 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12178 >= PC_BOUNDS_RANGES)
12179 {
12180 best_low = current_low;
12181 best_high = current_high;
12182 }
12183 else
12184 {
12185 struct die_info *child = die->child;
12186
12187 while (child && child->tag)
12188 {
12189 switch (child->tag) {
12190 case DW_TAG_subprogram:
12191 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12192 break;
12193 case DW_TAG_namespace:
12194 case DW_TAG_module:
12195 /* FIXME: carlton/2004-01-16: Should we do this for
12196 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12197 that current GCC's always emit the DIEs corresponding
12198 to definitions of methods of classes as children of a
12199 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12200 the DIEs giving the declarations, which could be
12201 anywhere). But I don't see any reason why the
12202 standards says that they have to be there. */
12203 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12204
12205 if (current_low != ((CORE_ADDR) -1))
12206 {
12207 best_low = std::min (best_low, current_low);
12208 best_high = std::max (best_high, current_high);
12209 }
12210 break;
12211 default:
12212 /* Ignore. */
12213 break;
12214 }
12215
12216 child = sibling_die (child);
12217 }
12218 }
12219
12220 *lowpc = best_low;
12221 *highpc = best_high;
12222 }
12223
12224 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12225 in DIE. */
12226
12227 static void
12228 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12229 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12230 {
12231 struct objfile *objfile = cu->objfile;
12232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12233 struct attribute *attr;
12234 struct attribute *attr_high;
12235
12236 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12237 if (attr_high)
12238 {
12239 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12240 if (attr)
12241 {
12242 CORE_ADDR low = attr_value_as_address (attr);
12243 CORE_ADDR high = attr_value_as_address (attr_high);
12244
12245 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12246 high += low;
12247
12248 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12249 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12250 record_block_range (block, low, high - 1);
12251 }
12252 }
12253
12254 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12255 if (attr)
12256 {
12257 bfd *obfd = objfile->obfd;
12258 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12259 We take advantage of the fact that DW_AT_ranges does not appear
12260 in DW_TAG_compile_unit of DWO files. */
12261 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12262
12263 /* The value of the DW_AT_ranges attribute is the offset of the
12264 address range list in the .debug_ranges section. */
12265 unsigned long offset = (DW_UNSND (attr)
12266 + (need_ranges_base ? cu->ranges_base : 0));
12267 const gdb_byte *buffer;
12268
12269 /* For some target architectures, but not others, the
12270 read_address function sign-extends the addresses it returns.
12271 To recognize base address selection entries, we need a
12272 mask. */
12273 unsigned int addr_size = cu->header.addr_size;
12274 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12275
12276 /* The base address, to which the next pair is relative. Note
12277 that this 'base' is a DWARF concept: most entries in a range
12278 list are relative, to reduce the number of relocs against the
12279 debugging information. This is separate from this function's
12280 'baseaddr' argument, which GDB uses to relocate debugging
12281 information from a shared library based on the address at
12282 which the library was loaded. */
12283 CORE_ADDR base = cu->base_address;
12284 int base_known = cu->base_known;
12285
12286 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12287 if (offset >= dwarf2_per_objfile->ranges.size)
12288 {
12289 complaint (&symfile_complaints,
12290 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12291 offset);
12292 return;
12293 }
12294 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12295
12296 for (;;)
12297 {
12298 unsigned int bytes_read;
12299 CORE_ADDR start, end;
12300
12301 start = read_address (obfd, buffer, cu, &bytes_read);
12302 buffer += bytes_read;
12303 end = read_address (obfd, buffer, cu, &bytes_read);
12304 buffer += bytes_read;
12305
12306 /* Did we find the end of the range list? */
12307 if (start == 0 && end == 0)
12308 break;
12309
12310 /* Did we find a base address selection entry? */
12311 else if ((start & base_select_mask) == base_select_mask)
12312 {
12313 base = end;
12314 base_known = 1;
12315 }
12316
12317 /* We found an ordinary address range. */
12318 else
12319 {
12320 if (!base_known)
12321 {
12322 complaint (&symfile_complaints,
12323 _("Invalid .debug_ranges data "
12324 "(no base address)"));
12325 return;
12326 }
12327
12328 if (start > end)
12329 {
12330 /* Inverted range entries are invalid. */
12331 complaint (&symfile_complaints,
12332 _("Invalid .debug_ranges data "
12333 "(inverted range)"));
12334 return;
12335 }
12336
12337 /* Empty range entries have no effect. */
12338 if (start == end)
12339 continue;
12340
12341 start += base + baseaddr;
12342 end += base + baseaddr;
12343
12344 /* A not-uncommon case of bad debug info.
12345 Don't pollute the addrmap with bad data. */
12346 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12347 {
12348 complaint (&symfile_complaints,
12349 _(".debug_ranges entry has start address of zero"
12350 " [in module %s]"), objfile_name (objfile));
12351 continue;
12352 }
12353
12354 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12355 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12356 record_block_range (block, start, end - 1);
12357 }
12358 }
12359 }
12360 }
12361
12362 /* Check whether the producer field indicates either of GCC < 4.6, or the
12363 Intel C/C++ compiler, and cache the result in CU. */
12364
12365 static void
12366 check_producer (struct dwarf2_cu *cu)
12367 {
12368 int major, minor;
12369
12370 if (cu->producer == NULL)
12371 {
12372 /* For unknown compilers expect their behavior is DWARF version
12373 compliant.
12374
12375 GCC started to support .debug_types sections by -gdwarf-4 since
12376 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12377 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12378 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12379 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12380 }
12381 else if (producer_is_gcc (cu->producer, &major, &minor))
12382 {
12383 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12384 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12385 }
12386 else if (startswith (cu->producer, "Intel(R) C"))
12387 cu->producer_is_icc = 1;
12388 else
12389 {
12390 /* For other non-GCC compilers, expect their behavior is DWARF version
12391 compliant. */
12392 }
12393
12394 cu->checked_producer = 1;
12395 }
12396
12397 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12398 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12399 during 4.6.0 experimental. */
12400
12401 static int
12402 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12403 {
12404 if (!cu->checked_producer)
12405 check_producer (cu);
12406
12407 return cu->producer_is_gxx_lt_4_6;
12408 }
12409
12410 /* Return the default accessibility type if it is not overriden by
12411 DW_AT_accessibility. */
12412
12413 static enum dwarf_access_attribute
12414 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12415 {
12416 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12417 {
12418 /* The default DWARF 2 accessibility for members is public, the default
12419 accessibility for inheritance is private. */
12420
12421 if (die->tag != DW_TAG_inheritance)
12422 return DW_ACCESS_public;
12423 else
12424 return DW_ACCESS_private;
12425 }
12426 else
12427 {
12428 /* DWARF 3+ defines the default accessibility a different way. The same
12429 rules apply now for DW_TAG_inheritance as for the members and it only
12430 depends on the container kind. */
12431
12432 if (die->parent->tag == DW_TAG_class_type)
12433 return DW_ACCESS_private;
12434 else
12435 return DW_ACCESS_public;
12436 }
12437 }
12438
12439 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12440 offset. If the attribute was not found return 0, otherwise return
12441 1. If it was found but could not properly be handled, set *OFFSET
12442 to 0. */
12443
12444 static int
12445 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12446 LONGEST *offset)
12447 {
12448 struct attribute *attr;
12449
12450 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12451 if (attr != NULL)
12452 {
12453 *offset = 0;
12454
12455 /* Note that we do not check for a section offset first here.
12456 This is because DW_AT_data_member_location is new in DWARF 4,
12457 so if we see it, we can assume that a constant form is really
12458 a constant and not a section offset. */
12459 if (attr_form_is_constant (attr))
12460 *offset = dwarf2_get_attr_constant_value (attr, 0);
12461 else if (attr_form_is_section_offset (attr))
12462 dwarf2_complex_location_expr_complaint ();
12463 else if (attr_form_is_block (attr))
12464 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12465 else
12466 dwarf2_complex_location_expr_complaint ();
12467
12468 return 1;
12469 }
12470
12471 return 0;
12472 }
12473
12474 /* Add an aggregate field to the field list. */
12475
12476 static void
12477 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12478 struct dwarf2_cu *cu)
12479 {
12480 struct objfile *objfile = cu->objfile;
12481 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12482 struct nextfield *new_field;
12483 struct attribute *attr;
12484 struct field *fp;
12485 const char *fieldname = "";
12486
12487 /* Allocate a new field list entry and link it in. */
12488 new_field = XNEW (struct nextfield);
12489 make_cleanup (xfree, new_field);
12490 memset (new_field, 0, sizeof (struct nextfield));
12491
12492 if (die->tag == DW_TAG_inheritance)
12493 {
12494 new_field->next = fip->baseclasses;
12495 fip->baseclasses = new_field;
12496 }
12497 else
12498 {
12499 new_field->next = fip->fields;
12500 fip->fields = new_field;
12501 }
12502 fip->nfields++;
12503
12504 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12505 if (attr)
12506 new_field->accessibility = DW_UNSND (attr);
12507 else
12508 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12509 if (new_field->accessibility != DW_ACCESS_public)
12510 fip->non_public_fields = 1;
12511
12512 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12513 if (attr)
12514 new_field->virtuality = DW_UNSND (attr);
12515 else
12516 new_field->virtuality = DW_VIRTUALITY_none;
12517
12518 fp = &new_field->field;
12519
12520 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12521 {
12522 LONGEST offset;
12523
12524 /* Data member other than a C++ static data member. */
12525
12526 /* Get type of field. */
12527 fp->type = die_type (die, cu);
12528
12529 SET_FIELD_BITPOS (*fp, 0);
12530
12531 /* Get bit size of field (zero if none). */
12532 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12533 if (attr)
12534 {
12535 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12536 }
12537 else
12538 {
12539 FIELD_BITSIZE (*fp) = 0;
12540 }
12541
12542 /* Get bit offset of field. */
12543 if (handle_data_member_location (die, cu, &offset))
12544 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12545 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12546 if (attr)
12547 {
12548 if (gdbarch_bits_big_endian (gdbarch))
12549 {
12550 /* For big endian bits, the DW_AT_bit_offset gives the
12551 additional bit offset from the MSB of the containing
12552 anonymous object to the MSB of the field. We don't
12553 have to do anything special since we don't need to
12554 know the size of the anonymous object. */
12555 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12556 }
12557 else
12558 {
12559 /* For little endian bits, compute the bit offset to the
12560 MSB of the anonymous object, subtract off the number of
12561 bits from the MSB of the field to the MSB of the
12562 object, and then subtract off the number of bits of
12563 the field itself. The result is the bit offset of
12564 the LSB of the field. */
12565 int anonymous_size;
12566 int bit_offset = DW_UNSND (attr);
12567
12568 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12569 if (attr)
12570 {
12571 /* The size of the anonymous object containing
12572 the bit field is explicit, so use the
12573 indicated size (in bytes). */
12574 anonymous_size = DW_UNSND (attr);
12575 }
12576 else
12577 {
12578 /* The size of the anonymous object containing
12579 the bit field must be inferred from the type
12580 attribute of the data member containing the
12581 bit field. */
12582 anonymous_size = TYPE_LENGTH (fp->type);
12583 }
12584 SET_FIELD_BITPOS (*fp,
12585 (FIELD_BITPOS (*fp)
12586 + anonymous_size * bits_per_byte
12587 - bit_offset - FIELD_BITSIZE (*fp)));
12588 }
12589 }
12590
12591 /* Get name of field. */
12592 fieldname = dwarf2_name (die, cu);
12593 if (fieldname == NULL)
12594 fieldname = "";
12595
12596 /* The name is already allocated along with this objfile, so we don't
12597 need to duplicate it for the type. */
12598 fp->name = fieldname;
12599
12600 /* Change accessibility for artificial fields (e.g. virtual table
12601 pointer or virtual base class pointer) to private. */
12602 if (dwarf2_attr (die, DW_AT_artificial, cu))
12603 {
12604 FIELD_ARTIFICIAL (*fp) = 1;
12605 new_field->accessibility = DW_ACCESS_private;
12606 fip->non_public_fields = 1;
12607 }
12608 }
12609 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12610 {
12611 /* C++ static member. */
12612
12613 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12614 is a declaration, but all versions of G++ as of this writing
12615 (so through at least 3.2.1) incorrectly generate
12616 DW_TAG_variable tags. */
12617
12618 const char *physname;
12619
12620 /* Get name of field. */
12621 fieldname = dwarf2_name (die, cu);
12622 if (fieldname == NULL)
12623 return;
12624
12625 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12626 if (attr
12627 /* Only create a symbol if this is an external value.
12628 new_symbol checks this and puts the value in the global symbol
12629 table, which we want. If it is not external, new_symbol
12630 will try to put the value in cu->list_in_scope which is wrong. */
12631 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12632 {
12633 /* A static const member, not much different than an enum as far as
12634 we're concerned, except that we can support more types. */
12635 new_symbol (die, NULL, cu);
12636 }
12637
12638 /* Get physical name. */
12639 physname = dwarf2_physname (fieldname, die, cu);
12640
12641 /* The name is already allocated along with this objfile, so we don't
12642 need to duplicate it for the type. */
12643 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12644 FIELD_TYPE (*fp) = die_type (die, cu);
12645 FIELD_NAME (*fp) = fieldname;
12646 }
12647 else if (die->tag == DW_TAG_inheritance)
12648 {
12649 LONGEST offset;
12650
12651 /* C++ base class field. */
12652 if (handle_data_member_location (die, cu, &offset))
12653 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12654 FIELD_BITSIZE (*fp) = 0;
12655 FIELD_TYPE (*fp) = die_type (die, cu);
12656 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12657 fip->nbaseclasses++;
12658 }
12659 }
12660
12661 /* Add a typedef defined in the scope of the FIP's class. */
12662
12663 static void
12664 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12665 struct dwarf2_cu *cu)
12666 {
12667 struct typedef_field_list *new_field;
12668 struct typedef_field *fp;
12669
12670 /* Allocate a new field list entry and link it in. */
12671 new_field = XCNEW (struct typedef_field_list);
12672 make_cleanup (xfree, new_field);
12673
12674 gdb_assert (die->tag == DW_TAG_typedef);
12675
12676 fp = &new_field->field;
12677
12678 /* Get name of field. */
12679 fp->name = dwarf2_name (die, cu);
12680 if (fp->name == NULL)
12681 return;
12682
12683 fp->type = read_type_die (die, cu);
12684
12685 new_field->next = fip->typedef_field_list;
12686 fip->typedef_field_list = new_field;
12687 fip->typedef_field_list_count++;
12688 }
12689
12690 /* Create the vector of fields, and attach it to the type. */
12691
12692 static void
12693 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12694 struct dwarf2_cu *cu)
12695 {
12696 int nfields = fip->nfields;
12697
12698 /* Record the field count, allocate space for the array of fields,
12699 and create blank accessibility bitfields if necessary. */
12700 TYPE_NFIELDS (type) = nfields;
12701 TYPE_FIELDS (type) = (struct field *)
12702 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12703 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12704
12705 if (fip->non_public_fields && cu->language != language_ada)
12706 {
12707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12708
12709 TYPE_FIELD_PRIVATE_BITS (type) =
12710 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12711 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12712
12713 TYPE_FIELD_PROTECTED_BITS (type) =
12714 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12715 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12716
12717 TYPE_FIELD_IGNORE_BITS (type) =
12718 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12719 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12720 }
12721
12722 /* If the type has baseclasses, allocate and clear a bit vector for
12723 TYPE_FIELD_VIRTUAL_BITS. */
12724 if (fip->nbaseclasses && cu->language != language_ada)
12725 {
12726 int num_bytes = B_BYTES (fip->nbaseclasses);
12727 unsigned char *pointer;
12728
12729 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12730 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12731 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12732 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12733 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12734 }
12735
12736 /* Copy the saved-up fields into the field vector. Start from the head of
12737 the list, adding to the tail of the field array, so that they end up in
12738 the same order in the array in which they were added to the list. */
12739 while (nfields-- > 0)
12740 {
12741 struct nextfield *fieldp;
12742
12743 if (fip->fields)
12744 {
12745 fieldp = fip->fields;
12746 fip->fields = fieldp->next;
12747 }
12748 else
12749 {
12750 fieldp = fip->baseclasses;
12751 fip->baseclasses = fieldp->next;
12752 }
12753
12754 TYPE_FIELD (type, nfields) = fieldp->field;
12755 switch (fieldp->accessibility)
12756 {
12757 case DW_ACCESS_private:
12758 if (cu->language != language_ada)
12759 SET_TYPE_FIELD_PRIVATE (type, nfields);
12760 break;
12761
12762 case DW_ACCESS_protected:
12763 if (cu->language != language_ada)
12764 SET_TYPE_FIELD_PROTECTED (type, nfields);
12765 break;
12766
12767 case DW_ACCESS_public:
12768 break;
12769
12770 default:
12771 /* Unknown accessibility. Complain and treat it as public. */
12772 {
12773 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12774 fieldp->accessibility);
12775 }
12776 break;
12777 }
12778 if (nfields < fip->nbaseclasses)
12779 {
12780 switch (fieldp->virtuality)
12781 {
12782 case DW_VIRTUALITY_virtual:
12783 case DW_VIRTUALITY_pure_virtual:
12784 if (cu->language == language_ada)
12785 error (_("unexpected virtuality in component of Ada type"));
12786 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12787 break;
12788 }
12789 }
12790 }
12791 }
12792
12793 /* Return true if this member function is a constructor, false
12794 otherwise. */
12795
12796 static int
12797 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12798 {
12799 const char *fieldname;
12800 const char *type_name;
12801 int len;
12802
12803 if (die->parent == NULL)
12804 return 0;
12805
12806 if (die->parent->tag != DW_TAG_structure_type
12807 && die->parent->tag != DW_TAG_union_type
12808 && die->parent->tag != DW_TAG_class_type)
12809 return 0;
12810
12811 fieldname = dwarf2_name (die, cu);
12812 type_name = dwarf2_name (die->parent, cu);
12813 if (fieldname == NULL || type_name == NULL)
12814 return 0;
12815
12816 len = strlen (fieldname);
12817 return (strncmp (fieldname, type_name, len) == 0
12818 && (type_name[len] == '\0' || type_name[len] == '<'));
12819 }
12820
12821 /* Add a member function to the proper fieldlist. */
12822
12823 static void
12824 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12825 struct type *type, struct dwarf2_cu *cu)
12826 {
12827 struct objfile *objfile = cu->objfile;
12828 struct attribute *attr;
12829 struct fnfieldlist *flp;
12830 int i;
12831 struct fn_field *fnp;
12832 const char *fieldname;
12833 struct nextfnfield *new_fnfield;
12834 struct type *this_type;
12835 enum dwarf_access_attribute accessibility;
12836
12837 if (cu->language == language_ada)
12838 error (_("unexpected member function in Ada type"));
12839
12840 /* Get name of member function. */
12841 fieldname = dwarf2_name (die, cu);
12842 if (fieldname == NULL)
12843 return;
12844
12845 /* Look up member function name in fieldlist. */
12846 for (i = 0; i < fip->nfnfields; i++)
12847 {
12848 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12849 break;
12850 }
12851
12852 /* Create new list element if necessary. */
12853 if (i < fip->nfnfields)
12854 flp = &fip->fnfieldlists[i];
12855 else
12856 {
12857 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12858 {
12859 fip->fnfieldlists = (struct fnfieldlist *)
12860 xrealloc (fip->fnfieldlists,
12861 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12862 * sizeof (struct fnfieldlist));
12863 if (fip->nfnfields == 0)
12864 make_cleanup (free_current_contents, &fip->fnfieldlists);
12865 }
12866 flp = &fip->fnfieldlists[fip->nfnfields];
12867 flp->name = fieldname;
12868 flp->length = 0;
12869 flp->head = NULL;
12870 i = fip->nfnfields++;
12871 }
12872
12873 /* Create a new member function field and chain it to the field list
12874 entry. */
12875 new_fnfield = XNEW (struct nextfnfield);
12876 make_cleanup (xfree, new_fnfield);
12877 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12878 new_fnfield->next = flp->head;
12879 flp->head = new_fnfield;
12880 flp->length++;
12881
12882 /* Fill in the member function field info. */
12883 fnp = &new_fnfield->fnfield;
12884
12885 /* Delay processing of the physname until later. */
12886 if (cu->language == language_cplus)
12887 {
12888 add_to_method_list (type, i, flp->length - 1, fieldname,
12889 die, cu);
12890 }
12891 else
12892 {
12893 const char *physname = dwarf2_physname (fieldname, die, cu);
12894 fnp->physname = physname ? physname : "";
12895 }
12896
12897 fnp->type = alloc_type (objfile);
12898 this_type = read_type_die (die, cu);
12899 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12900 {
12901 int nparams = TYPE_NFIELDS (this_type);
12902
12903 /* TYPE is the domain of this method, and THIS_TYPE is the type
12904 of the method itself (TYPE_CODE_METHOD). */
12905 smash_to_method_type (fnp->type, type,
12906 TYPE_TARGET_TYPE (this_type),
12907 TYPE_FIELDS (this_type),
12908 TYPE_NFIELDS (this_type),
12909 TYPE_VARARGS (this_type));
12910
12911 /* Handle static member functions.
12912 Dwarf2 has no clean way to discern C++ static and non-static
12913 member functions. G++ helps GDB by marking the first
12914 parameter for non-static member functions (which is the this
12915 pointer) as artificial. We obtain this information from
12916 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12917 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12918 fnp->voffset = VOFFSET_STATIC;
12919 }
12920 else
12921 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12922 dwarf2_full_name (fieldname, die, cu));
12923
12924 /* Get fcontext from DW_AT_containing_type if present. */
12925 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12926 fnp->fcontext = die_containing_type (die, cu);
12927
12928 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12929 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12930
12931 /* Get accessibility. */
12932 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12933 if (attr)
12934 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12935 else
12936 accessibility = dwarf2_default_access_attribute (die, cu);
12937 switch (accessibility)
12938 {
12939 case DW_ACCESS_private:
12940 fnp->is_private = 1;
12941 break;
12942 case DW_ACCESS_protected:
12943 fnp->is_protected = 1;
12944 break;
12945 }
12946
12947 /* Check for artificial methods. */
12948 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12949 if (attr && DW_UNSND (attr) != 0)
12950 fnp->is_artificial = 1;
12951
12952 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12953
12954 /* Get index in virtual function table if it is a virtual member
12955 function. For older versions of GCC, this is an offset in the
12956 appropriate virtual table, as specified by DW_AT_containing_type.
12957 For everyone else, it is an expression to be evaluated relative
12958 to the object address. */
12959
12960 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12961 if (attr)
12962 {
12963 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12964 {
12965 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12966 {
12967 /* Old-style GCC. */
12968 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12969 }
12970 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12971 || (DW_BLOCK (attr)->size > 1
12972 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12973 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12974 {
12975 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12976 if ((fnp->voffset % cu->header.addr_size) != 0)
12977 dwarf2_complex_location_expr_complaint ();
12978 else
12979 fnp->voffset /= cu->header.addr_size;
12980 fnp->voffset += 2;
12981 }
12982 else
12983 dwarf2_complex_location_expr_complaint ();
12984
12985 if (!fnp->fcontext)
12986 {
12987 /* If there is no `this' field and no DW_AT_containing_type,
12988 we cannot actually find a base class context for the
12989 vtable! */
12990 if (TYPE_NFIELDS (this_type) == 0
12991 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12992 {
12993 complaint (&symfile_complaints,
12994 _("cannot determine context for virtual member "
12995 "function \"%s\" (offset %d)"),
12996 fieldname, die->offset.sect_off);
12997 }
12998 else
12999 {
13000 fnp->fcontext
13001 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13002 }
13003 }
13004 }
13005 else if (attr_form_is_section_offset (attr))
13006 {
13007 dwarf2_complex_location_expr_complaint ();
13008 }
13009 else
13010 {
13011 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13012 fieldname);
13013 }
13014 }
13015 else
13016 {
13017 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13018 if (attr && DW_UNSND (attr))
13019 {
13020 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13021 complaint (&symfile_complaints,
13022 _("Member function \"%s\" (offset %d) is virtual "
13023 "but the vtable offset is not specified"),
13024 fieldname, die->offset.sect_off);
13025 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13026 TYPE_CPLUS_DYNAMIC (type) = 1;
13027 }
13028 }
13029 }
13030
13031 /* Create the vector of member function fields, and attach it to the type. */
13032
13033 static void
13034 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13035 struct dwarf2_cu *cu)
13036 {
13037 struct fnfieldlist *flp;
13038 int i;
13039
13040 if (cu->language == language_ada)
13041 error (_("unexpected member functions in Ada type"));
13042
13043 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13044 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13045 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13046
13047 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13048 {
13049 struct nextfnfield *nfp = flp->head;
13050 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13051 int k;
13052
13053 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13054 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13055 fn_flp->fn_fields = (struct fn_field *)
13056 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13057 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13058 fn_flp->fn_fields[k] = nfp->fnfield;
13059 }
13060
13061 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13062 }
13063
13064 /* Returns non-zero if NAME is the name of a vtable member in CU's
13065 language, zero otherwise. */
13066 static int
13067 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13068 {
13069 static const char vptr[] = "_vptr";
13070 static const char vtable[] = "vtable";
13071
13072 /* Look for the C++ form of the vtable. */
13073 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13074 return 1;
13075
13076 return 0;
13077 }
13078
13079 /* GCC outputs unnamed structures that are really pointers to member
13080 functions, with the ABI-specified layout. If TYPE describes
13081 such a structure, smash it into a member function type.
13082
13083 GCC shouldn't do this; it should just output pointer to member DIEs.
13084 This is GCC PR debug/28767. */
13085
13086 static void
13087 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13088 {
13089 struct type *pfn_type, *self_type, *new_type;
13090
13091 /* Check for a structure with no name and two children. */
13092 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13093 return;
13094
13095 /* Check for __pfn and __delta members. */
13096 if (TYPE_FIELD_NAME (type, 0) == NULL
13097 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13098 || TYPE_FIELD_NAME (type, 1) == NULL
13099 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13100 return;
13101
13102 /* Find the type of the method. */
13103 pfn_type = TYPE_FIELD_TYPE (type, 0);
13104 if (pfn_type == NULL
13105 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13106 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13107 return;
13108
13109 /* Look for the "this" argument. */
13110 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13111 if (TYPE_NFIELDS (pfn_type) == 0
13112 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13113 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13114 return;
13115
13116 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13117 new_type = alloc_type (objfile);
13118 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13119 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13120 TYPE_VARARGS (pfn_type));
13121 smash_to_methodptr_type (type, new_type);
13122 }
13123
13124 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13125 (icc). */
13126
13127 static int
13128 producer_is_icc (struct dwarf2_cu *cu)
13129 {
13130 if (!cu->checked_producer)
13131 check_producer (cu);
13132
13133 return cu->producer_is_icc;
13134 }
13135
13136 /* Called when we find the DIE that starts a structure or union scope
13137 (definition) to create a type for the structure or union. Fill in
13138 the type's name and general properties; the members will not be
13139 processed until process_structure_scope. A symbol table entry for
13140 the type will also not be done until process_structure_scope (assuming
13141 the type has a name).
13142
13143 NOTE: we need to call these functions regardless of whether or not the
13144 DIE has a DW_AT_name attribute, since it might be an anonymous
13145 structure or union. This gets the type entered into our set of
13146 user defined types. */
13147
13148 static struct type *
13149 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13150 {
13151 struct objfile *objfile = cu->objfile;
13152 struct type *type;
13153 struct attribute *attr;
13154 const char *name;
13155
13156 /* If the definition of this type lives in .debug_types, read that type.
13157 Don't follow DW_AT_specification though, that will take us back up
13158 the chain and we want to go down. */
13159 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13160 if (attr)
13161 {
13162 type = get_DW_AT_signature_type (die, attr, cu);
13163
13164 /* The type's CU may not be the same as CU.
13165 Ensure TYPE is recorded with CU in die_type_hash. */
13166 return set_die_type (die, type, cu);
13167 }
13168
13169 type = alloc_type (objfile);
13170 INIT_CPLUS_SPECIFIC (type);
13171
13172 name = dwarf2_name (die, cu);
13173 if (name != NULL)
13174 {
13175 if (cu->language == language_cplus
13176 || cu->language == language_d
13177 || cu->language == language_rust)
13178 {
13179 const char *full_name = dwarf2_full_name (name, die, cu);
13180
13181 /* dwarf2_full_name might have already finished building the DIE's
13182 type. If so, there is no need to continue. */
13183 if (get_die_type (die, cu) != NULL)
13184 return get_die_type (die, cu);
13185
13186 TYPE_TAG_NAME (type) = full_name;
13187 if (die->tag == DW_TAG_structure_type
13188 || die->tag == DW_TAG_class_type)
13189 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13190 }
13191 else
13192 {
13193 /* The name is already allocated along with this objfile, so
13194 we don't need to duplicate it for the type. */
13195 TYPE_TAG_NAME (type) = name;
13196 if (die->tag == DW_TAG_class_type)
13197 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13198 }
13199 }
13200
13201 if (die->tag == DW_TAG_structure_type)
13202 {
13203 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13204 }
13205 else if (die->tag == DW_TAG_union_type)
13206 {
13207 TYPE_CODE (type) = TYPE_CODE_UNION;
13208 }
13209 else
13210 {
13211 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13212 }
13213
13214 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13215 TYPE_DECLARED_CLASS (type) = 1;
13216
13217 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13218 if (attr)
13219 {
13220 if (attr_form_is_constant (attr))
13221 TYPE_LENGTH (type) = DW_UNSND (attr);
13222 else
13223 {
13224 /* For the moment, dynamic type sizes are not supported
13225 by GDB's struct type. The actual size is determined
13226 on-demand when resolving the type of a given object,
13227 so set the type's length to zero for now. Otherwise,
13228 we record an expression as the length, and that expression
13229 could lead to a very large value, which could eventually
13230 lead to us trying to allocate that much memory when creating
13231 a value of that type. */
13232 TYPE_LENGTH (type) = 0;
13233 }
13234 }
13235 else
13236 {
13237 TYPE_LENGTH (type) = 0;
13238 }
13239
13240 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13241 {
13242 /* ICC does not output the required DW_AT_declaration
13243 on incomplete types, but gives them a size of zero. */
13244 TYPE_STUB (type) = 1;
13245 }
13246 else
13247 TYPE_STUB_SUPPORTED (type) = 1;
13248
13249 if (die_is_declaration (die, cu))
13250 TYPE_STUB (type) = 1;
13251 else if (attr == NULL && die->child == NULL
13252 && producer_is_realview (cu->producer))
13253 /* RealView does not output the required DW_AT_declaration
13254 on incomplete types. */
13255 TYPE_STUB (type) = 1;
13256
13257 /* We need to add the type field to the die immediately so we don't
13258 infinitely recurse when dealing with pointers to the structure
13259 type within the structure itself. */
13260 set_die_type (die, type, cu);
13261
13262 /* set_die_type should be already done. */
13263 set_descriptive_type (type, die, cu);
13264
13265 return type;
13266 }
13267
13268 /* Finish creating a structure or union type, including filling in
13269 its members and creating a symbol for it. */
13270
13271 static void
13272 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13273 {
13274 struct objfile *objfile = cu->objfile;
13275 struct die_info *child_die;
13276 struct type *type;
13277
13278 type = get_die_type (die, cu);
13279 if (type == NULL)
13280 type = read_structure_type (die, cu);
13281
13282 if (die->child != NULL && ! die_is_declaration (die, cu))
13283 {
13284 struct field_info fi;
13285 VEC (symbolp) *template_args = NULL;
13286 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13287
13288 memset (&fi, 0, sizeof (struct field_info));
13289
13290 child_die = die->child;
13291
13292 while (child_die && child_die->tag)
13293 {
13294 if (child_die->tag == DW_TAG_member
13295 || child_die->tag == DW_TAG_variable)
13296 {
13297 /* NOTE: carlton/2002-11-05: A C++ static data member
13298 should be a DW_TAG_member that is a declaration, but
13299 all versions of G++ as of this writing (so through at
13300 least 3.2.1) incorrectly generate DW_TAG_variable
13301 tags for them instead. */
13302 dwarf2_add_field (&fi, child_die, cu);
13303 }
13304 else if (child_die->tag == DW_TAG_subprogram)
13305 {
13306 /* Rust doesn't have member functions in the C++ sense.
13307 However, it does emit ordinary functions as children
13308 of a struct DIE. */
13309 if (cu->language == language_rust)
13310 read_func_scope (child_die, cu);
13311 else
13312 {
13313 /* C++ member function. */
13314 dwarf2_add_member_fn (&fi, child_die, type, cu);
13315 }
13316 }
13317 else if (child_die->tag == DW_TAG_inheritance)
13318 {
13319 /* C++ base class field. */
13320 dwarf2_add_field (&fi, child_die, cu);
13321 }
13322 else if (child_die->tag == DW_TAG_typedef)
13323 dwarf2_add_typedef (&fi, child_die, cu);
13324 else if (child_die->tag == DW_TAG_template_type_param
13325 || child_die->tag == DW_TAG_template_value_param)
13326 {
13327 struct symbol *arg = new_symbol (child_die, NULL, cu);
13328
13329 if (arg != NULL)
13330 VEC_safe_push (symbolp, template_args, arg);
13331 }
13332
13333 child_die = sibling_die (child_die);
13334 }
13335
13336 /* Attach template arguments to type. */
13337 if (! VEC_empty (symbolp, template_args))
13338 {
13339 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13340 TYPE_N_TEMPLATE_ARGUMENTS (type)
13341 = VEC_length (symbolp, template_args);
13342 TYPE_TEMPLATE_ARGUMENTS (type)
13343 = XOBNEWVEC (&objfile->objfile_obstack,
13344 struct symbol *,
13345 TYPE_N_TEMPLATE_ARGUMENTS (type));
13346 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13347 VEC_address (symbolp, template_args),
13348 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13349 * sizeof (struct symbol *)));
13350 VEC_free (symbolp, template_args);
13351 }
13352
13353 /* Attach fields and member functions to the type. */
13354 if (fi.nfields)
13355 dwarf2_attach_fields_to_type (&fi, type, cu);
13356 if (fi.nfnfields)
13357 {
13358 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13359
13360 /* Get the type which refers to the base class (possibly this
13361 class itself) which contains the vtable pointer for the current
13362 class from the DW_AT_containing_type attribute. This use of
13363 DW_AT_containing_type is a GNU extension. */
13364
13365 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13366 {
13367 struct type *t = die_containing_type (die, cu);
13368
13369 set_type_vptr_basetype (type, t);
13370 if (type == t)
13371 {
13372 int i;
13373
13374 /* Our own class provides vtbl ptr. */
13375 for (i = TYPE_NFIELDS (t) - 1;
13376 i >= TYPE_N_BASECLASSES (t);
13377 --i)
13378 {
13379 const char *fieldname = TYPE_FIELD_NAME (t, i);
13380
13381 if (is_vtable_name (fieldname, cu))
13382 {
13383 set_type_vptr_fieldno (type, i);
13384 break;
13385 }
13386 }
13387
13388 /* Complain if virtual function table field not found. */
13389 if (i < TYPE_N_BASECLASSES (t))
13390 complaint (&symfile_complaints,
13391 _("virtual function table pointer "
13392 "not found when defining class '%s'"),
13393 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13394 "");
13395 }
13396 else
13397 {
13398 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13399 }
13400 }
13401 else if (cu->producer
13402 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13403 {
13404 /* The IBM XLC compiler does not provide direct indication
13405 of the containing type, but the vtable pointer is
13406 always named __vfp. */
13407
13408 int i;
13409
13410 for (i = TYPE_NFIELDS (type) - 1;
13411 i >= TYPE_N_BASECLASSES (type);
13412 --i)
13413 {
13414 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13415 {
13416 set_type_vptr_fieldno (type, i);
13417 set_type_vptr_basetype (type, type);
13418 break;
13419 }
13420 }
13421 }
13422 }
13423
13424 /* Copy fi.typedef_field_list linked list elements content into the
13425 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13426 if (fi.typedef_field_list)
13427 {
13428 int i = fi.typedef_field_list_count;
13429
13430 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13431 TYPE_TYPEDEF_FIELD_ARRAY (type)
13432 = ((struct typedef_field *)
13433 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13434 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13435
13436 /* Reverse the list order to keep the debug info elements order. */
13437 while (--i >= 0)
13438 {
13439 struct typedef_field *dest, *src;
13440
13441 dest = &TYPE_TYPEDEF_FIELD (type, i);
13442 src = &fi.typedef_field_list->field;
13443 fi.typedef_field_list = fi.typedef_field_list->next;
13444 *dest = *src;
13445 }
13446 }
13447
13448 do_cleanups (back_to);
13449 }
13450
13451 quirk_gcc_member_function_pointer (type, objfile);
13452
13453 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13454 snapshots) has been known to create a die giving a declaration
13455 for a class that has, as a child, a die giving a definition for a
13456 nested class. So we have to process our children even if the
13457 current die is a declaration. Normally, of course, a declaration
13458 won't have any children at all. */
13459
13460 child_die = die->child;
13461
13462 while (child_die != NULL && child_die->tag)
13463 {
13464 if (child_die->tag == DW_TAG_member
13465 || child_die->tag == DW_TAG_variable
13466 || child_die->tag == DW_TAG_inheritance
13467 || child_die->tag == DW_TAG_template_value_param
13468 || child_die->tag == DW_TAG_template_type_param)
13469 {
13470 /* Do nothing. */
13471 }
13472 else
13473 process_die (child_die, cu);
13474
13475 child_die = sibling_die (child_die);
13476 }
13477
13478 /* Do not consider external references. According to the DWARF standard,
13479 these DIEs are identified by the fact that they have no byte_size
13480 attribute, and a declaration attribute. */
13481 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13482 || !die_is_declaration (die, cu))
13483 new_symbol (die, type, cu);
13484 }
13485
13486 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13487 update TYPE using some information only available in DIE's children. */
13488
13489 static void
13490 update_enumeration_type_from_children (struct die_info *die,
13491 struct type *type,
13492 struct dwarf2_cu *cu)
13493 {
13494 struct obstack obstack;
13495 struct die_info *child_die;
13496 int unsigned_enum = 1;
13497 int flag_enum = 1;
13498 ULONGEST mask = 0;
13499 struct cleanup *old_chain;
13500
13501 obstack_init (&obstack);
13502 old_chain = make_cleanup_obstack_free (&obstack);
13503
13504 for (child_die = die->child;
13505 child_die != NULL && child_die->tag;
13506 child_die = sibling_die (child_die))
13507 {
13508 struct attribute *attr;
13509 LONGEST value;
13510 const gdb_byte *bytes;
13511 struct dwarf2_locexpr_baton *baton;
13512 const char *name;
13513
13514 if (child_die->tag != DW_TAG_enumerator)
13515 continue;
13516
13517 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13518 if (attr == NULL)
13519 continue;
13520
13521 name = dwarf2_name (child_die, cu);
13522 if (name == NULL)
13523 name = "<anonymous enumerator>";
13524
13525 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13526 &value, &bytes, &baton);
13527 if (value < 0)
13528 {
13529 unsigned_enum = 0;
13530 flag_enum = 0;
13531 }
13532 else if ((mask & value) != 0)
13533 flag_enum = 0;
13534 else
13535 mask |= value;
13536
13537 /* If we already know that the enum type is neither unsigned, nor
13538 a flag type, no need to look at the rest of the enumerates. */
13539 if (!unsigned_enum && !flag_enum)
13540 break;
13541 }
13542
13543 if (unsigned_enum)
13544 TYPE_UNSIGNED (type) = 1;
13545 if (flag_enum)
13546 TYPE_FLAG_ENUM (type) = 1;
13547
13548 do_cleanups (old_chain);
13549 }
13550
13551 /* Given a DW_AT_enumeration_type die, set its type. We do not
13552 complete the type's fields yet, or create any symbols. */
13553
13554 static struct type *
13555 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13556 {
13557 struct objfile *objfile = cu->objfile;
13558 struct type *type;
13559 struct attribute *attr;
13560 const char *name;
13561
13562 /* If the definition of this type lives in .debug_types, read that type.
13563 Don't follow DW_AT_specification though, that will take us back up
13564 the chain and we want to go down. */
13565 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13566 if (attr)
13567 {
13568 type = get_DW_AT_signature_type (die, attr, cu);
13569
13570 /* The type's CU may not be the same as CU.
13571 Ensure TYPE is recorded with CU in die_type_hash. */
13572 return set_die_type (die, type, cu);
13573 }
13574
13575 type = alloc_type (objfile);
13576
13577 TYPE_CODE (type) = TYPE_CODE_ENUM;
13578 name = dwarf2_full_name (NULL, die, cu);
13579 if (name != NULL)
13580 TYPE_TAG_NAME (type) = name;
13581
13582 attr = dwarf2_attr (die, DW_AT_type, cu);
13583 if (attr != NULL)
13584 {
13585 struct type *underlying_type = die_type (die, cu);
13586
13587 TYPE_TARGET_TYPE (type) = underlying_type;
13588 }
13589
13590 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13591 if (attr)
13592 {
13593 TYPE_LENGTH (type) = DW_UNSND (attr);
13594 }
13595 else
13596 {
13597 TYPE_LENGTH (type) = 0;
13598 }
13599
13600 /* The enumeration DIE can be incomplete. In Ada, any type can be
13601 declared as private in the package spec, and then defined only
13602 inside the package body. Such types are known as Taft Amendment
13603 Types. When another package uses such a type, an incomplete DIE
13604 may be generated by the compiler. */
13605 if (die_is_declaration (die, cu))
13606 TYPE_STUB (type) = 1;
13607
13608 /* Finish the creation of this type by using the enum's children.
13609 We must call this even when the underlying type has been provided
13610 so that we can determine if we're looking at a "flag" enum. */
13611 update_enumeration_type_from_children (die, type, cu);
13612
13613 /* If this type has an underlying type that is not a stub, then we
13614 may use its attributes. We always use the "unsigned" attribute
13615 in this situation, because ordinarily we guess whether the type
13616 is unsigned -- but the guess can be wrong and the underlying type
13617 can tell us the reality. However, we defer to a local size
13618 attribute if one exists, because this lets the compiler override
13619 the underlying type if needed. */
13620 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13621 {
13622 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13623 if (TYPE_LENGTH (type) == 0)
13624 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13625 }
13626
13627 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13628
13629 return set_die_type (die, type, cu);
13630 }
13631
13632 /* Given a pointer to a die which begins an enumeration, process all
13633 the dies that define the members of the enumeration, and create the
13634 symbol for the enumeration type.
13635
13636 NOTE: We reverse the order of the element list. */
13637
13638 static void
13639 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13640 {
13641 struct type *this_type;
13642
13643 this_type = get_die_type (die, cu);
13644 if (this_type == NULL)
13645 this_type = read_enumeration_type (die, cu);
13646
13647 if (die->child != NULL)
13648 {
13649 struct die_info *child_die;
13650 struct symbol *sym;
13651 struct field *fields = NULL;
13652 int num_fields = 0;
13653 const char *name;
13654
13655 child_die = die->child;
13656 while (child_die && child_die->tag)
13657 {
13658 if (child_die->tag != DW_TAG_enumerator)
13659 {
13660 process_die (child_die, cu);
13661 }
13662 else
13663 {
13664 name = dwarf2_name (child_die, cu);
13665 if (name)
13666 {
13667 sym = new_symbol (child_die, this_type, cu);
13668
13669 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13670 {
13671 fields = (struct field *)
13672 xrealloc (fields,
13673 (num_fields + DW_FIELD_ALLOC_CHUNK)
13674 * sizeof (struct field));
13675 }
13676
13677 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13678 FIELD_TYPE (fields[num_fields]) = NULL;
13679 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13680 FIELD_BITSIZE (fields[num_fields]) = 0;
13681
13682 num_fields++;
13683 }
13684 }
13685
13686 child_die = sibling_die (child_die);
13687 }
13688
13689 if (num_fields)
13690 {
13691 TYPE_NFIELDS (this_type) = num_fields;
13692 TYPE_FIELDS (this_type) = (struct field *)
13693 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13694 memcpy (TYPE_FIELDS (this_type), fields,
13695 sizeof (struct field) * num_fields);
13696 xfree (fields);
13697 }
13698 }
13699
13700 /* If we are reading an enum from a .debug_types unit, and the enum
13701 is a declaration, and the enum is not the signatured type in the
13702 unit, then we do not want to add a symbol for it. Adding a
13703 symbol would in some cases obscure the true definition of the
13704 enum, giving users an incomplete type when the definition is
13705 actually available. Note that we do not want to do this for all
13706 enums which are just declarations, because C++0x allows forward
13707 enum declarations. */
13708 if (cu->per_cu->is_debug_types
13709 && die_is_declaration (die, cu))
13710 {
13711 struct signatured_type *sig_type;
13712
13713 sig_type = (struct signatured_type *) cu->per_cu;
13714 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13715 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13716 return;
13717 }
13718
13719 new_symbol (die, this_type, cu);
13720 }
13721
13722 /* Extract all information from a DW_TAG_array_type DIE and put it in
13723 the DIE's type field. For now, this only handles one dimensional
13724 arrays. */
13725
13726 static struct type *
13727 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13728 {
13729 struct objfile *objfile = cu->objfile;
13730 struct die_info *child_die;
13731 struct type *type;
13732 struct type *element_type, *range_type, *index_type;
13733 struct type **range_types = NULL;
13734 struct attribute *attr;
13735 int ndim = 0;
13736 struct cleanup *back_to;
13737 const char *name;
13738 unsigned int bit_stride = 0;
13739
13740 element_type = die_type (die, cu);
13741
13742 /* The die_type call above may have already set the type for this DIE. */
13743 type = get_die_type (die, cu);
13744 if (type)
13745 return type;
13746
13747 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13748 if (attr != NULL)
13749 bit_stride = DW_UNSND (attr) * 8;
13750
13751 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13752 if (attr != NULL)
13753 bit_stride = DW_UNSND (attr);
13754
13755 /* Irix 6.2 native cc creates array types without children for
13756 arrays with unspecified length. */
13757 if (die->child == NULL)
13758 {
13759 index_type = objfile_type (objfile)->builtin_int;
13760 range_type = create_static_range_type (NULL, index_type, 0, -1);
13761 type = create_array_type_with_stride (NULL, element_type, range_type,
13762 bit_stride);
13763 return set_die_type (die, type, cu);
13764 }
13765
13766 back_to = make_cleanup (null_cleanup, NULL);
13767 child_die = die->child;
13768 while (child_die && child_die->tag)
13769 {
13770 if (child_die->tag == DW_TAG_subrange_type)
13771 {
13772 struct type *child_type = read_type_die (child_die, cu);
13773
13774 if (child_type != NULL)
13775 {
13776 /* The range type was succesfully read. Save it for the
13777 array type creation. */
13778 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13779 {
13780 range_types = (struct type **)
13781 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13782 * sizeof (struct type *));
13783 if (ndim == 0)
13784 make_cleanup (free_current_contents, &range_types);
13785 }
13786 range_types[ndim++] = child_type;
13787 }
13788 }
13789 child_die = sibling_die (child_die);
13790 }
13791
13792 /* Dwarf2 dimensions are output from left to right, create the
13793 necessary array types in backwards order. */
13794
13795 type = element_type;
13796
13797 if (read_array_order (die, cu) == DW_ORD_col_major)
13798 {
13799 int i = 0;
13800
13801 while (i < ndim)
13802 type = create_array_type_with_stride (NULL, type, range_types[i++],
13803 bit_stride);
13804 }
13805 else
13806 {
13807 while (ndim-- > 0)
13808 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13809 bit_stride);
13810 }
13811
13812 /* Understand Dwarf2 support for vector types (like they occur on
13813 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13814 array type. This is not part of the Dwarf2/3 standard yet, but a
13815 custom vendor extension. The main difference between a regular
13816 array and the vector variant is that vectors are passed by value
13817 to functions. */
13818 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13819 if (attr)
13820 make_vector_type (type);
13821
13822 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13823 implementation may choose to implement triple vectors using this
13824 attribute. */
13825 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13826 if (attr)
13827 {
13828 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13829 TYPE_LENGTH (type) = DW_UNSND (attr);
13830 else
13831 complaint (&symfile_complaints,
13832 _("DW_AT_byte_size for array type smaller "
13833 "than the total size of elements"));
13834 }
13835
13836 name = dwarf2_name (die, cu);
13837 if (name)
13838 TYPE_NAME (type) = name;
13839
13840 /* Install the type in the die. */
13841 set_die_type (die, type, cu);
13842
13843 /* set_die_type should be already done. */
13844 set_descriptive_type (type, die, cu);
13845
13846 do_cleanups (back_to);
13847
13848 return type;
13849 }
13850
13851 static enum dwarf_array_dim_ordering
13852 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13853 {
13854 struct attribute *attr;
13855
13856 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13857
13858 if (attr)
13859 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13860
13861 /* GNU F77 is a special case, as at 08/2004 array type info is the
13862 opposite order to the dwarf2 specification, but data is still
13863 laid out as per normal fortran.
13864
13865 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13866 version checking. */
13867
13868 if (cu->language == language_fortran
13869 && cu->producer && strstr (cu->producer, "GNU F77"))
13870 {
13871 return DW_ORD_row_major;
13872 }
13873
13874 switch (cu->language_defn->la_array_ordering)
13875 {
13876 case array_column_major:
13877 return DW_ORD_col_major;
13878 case array_row_major:
13879 default:
13880 return DW_ORD_row_major;
13881 };
13882 }
13883
13884 /* Extract all information from a DW_TAG_set_type DIE and put it in
13885 the DIE's type field. */
13886
13887 static struct type *
13888 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13889 {
13890 struct type *domain_type, *set_type;
13891 struct attribute *attr;
13892
13893 domain_type = die_type (die, cu);
13894
13895 /* The die_type call above may have already set the type for this DIE. */
13896 set_type = get_die_type (die, cu);
13897 if (set_type)
13898 return set_type;
13899
13900 set_type = create_set_type (NULL, domain_type);
13901
13902 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13903 if (attr)
13904 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13905
13906 return set_die_type (die, set_type, cu);
13907 }
13908
13909 /* A helper for read_common_block that creates a locexpr baton.
13910 SYM is the symbol which we are marking as computed.
13911 COMMON_DIE is the DIE for the common block.
13912 COMMON_LOC is the location expression attribute for the common
13913 block itself.
13914 MEMBER_LOC is the location expression attribute for the particular
13915 member of the common block that we are processing.
13916 CU is the CU from which the above come. */
13917
13918 static void
13919 mark_common_block_symbol_computed (struct symbol *sym,
13920 struct die_info *common_die,
13921 struct attribute *common_loc,
13922 struct attribute *member_loc,
13923 struct dwarf2_cu *cu)
13924 {
13925 struct objfile *objfile = dwarf2_per_objfile->objfile;
13926 struct dwarf2_locexpr_baton *baton;
13927 gdb_byte *ptr;
13928 unsigned int cu_off;
13929 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13930 LONGEST offset = 0;
13931
13932 gdb_assert (common_loc && member_loc);
13933 gdb_assert (attr_form_is_block (common_loc));
13934 gdb_assert (attr_form_is_block (member_loc)
13935 || attr_form_is_constant (member_loc));
13936
13937 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13938 baton->per_cu = cu->per_cu;
13939 gdb_assert (baton->per_cu);
13940
13941 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13942
13943 if (attr_form_is_constant (member_loc))
13944 {
13945 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13946 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13947 }
13948 else
13949 baton->size += DW_BLOCK (member_loc)->size;
13950
13951 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13952 baton->data = ptr;
13953
13954 *ptr++ = DW_OP_call4;
13955 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13956 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13957 ptr += 4;
13958
13959 if (attr_form_is_constant (member_loc))
13960 {
13961 *ptr++ = DW_OP_addr;
13962 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13963 ptr += cu->header.addr_size;
13964 }
13965 else
13966 {
13967 /* We have to copy the data here, because DW_OP_call4 will only
13968 use a DW_AT_location attribute. */
13969 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13970 ptr += DW_BLOCK (member_loc)->size;
13971 }
13972
13973 *ptr++ = DW_OP_plus;
13974 gdb_assert (ptr - baton->data == baton->size);
13975
13976 SYMBOL_LOCATION_BATON (sym) = baton;
13977 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13978 }
13979
13980 /* Create appropriate locally-scoped variables for all the
13981 DW_TAG_common_block entries. Also create a struct common_block
13982 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13983 is used to sepate the common blocks name namespace from regular
13984 variable names. */
13985
13986 static void
13987 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13988 {
13989 struct attribute *attr;
13990
13991 attr = dwarf2_attr (die, DW_AT_location, cu);
13992 if (attr)
13993 {
13994 /* Support the .debug_loc offsets. */
13995 if (attr_form_is_block (attr))
13996 {
13997 /* Ok. */
13998 }
13999 else if (attr_form_is_section_offset (attr))
14000 {
14001 dwarf2_complex_location_expr_complaint ();
14002 attr = NULL;
14003 }
14004 else
14005 {
14006 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14007 "common block member");
14008 attr = NULL;
14009 }
14010 }
14011
14012 if (die->child != NULL)
14013 {
14014 struct objfile *objfile = cu->objfile;
14015 struct die_info *child_die;
14016 size_t n_entries = 0, size;
14017 struct common_block *common_block;
14018 struct symbol *sym;
14019
14020 for (child_die = die->child;
14021 child_die && child_die->tag;
14022 child_die = sibling_die (child_die))
14023 ++n_entries;
14024
14025 size = (sizeof (struct common_block)
14026 + (n_entries - 1) * sizeof (struct symbol *));
14027 common_block
14028 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14029 size);
14030 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14031 common_block->n_entries = 0;
14032
14033 for (child_die = die->child;
14034 child_die && child_die->tag;
14035 child_die = sibling_die (child_die))
14036 {
14037 /* Create the symbol in the DW_TAG_common_block block in the current
14038 symbol scope. */
14039 sym = new_symbol (child_die, NULL, cu);
14040 if (sym != NULL)
14041 {
14042 struct attribute *member_loc;
14043
14044 common_block->contents[common_block->n_entries++] = sym;
14045
14046 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14047 cu);
14048 if (member_loc)
14049 {
14050 /* GDB has handled this for a long time, but it is
14051 not specified by DWARF. It seems to have been
14052 emitted by gfortran at least as recently as:
14053 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14054 complaint (&symfile_complaints,
14055 _("Variable in common block has "
14056 "DW_AT_data_member_location "
14057 "- DIE at 0x%x [in module %s]"),
14058 child_die->offset.sect_off,
14059 objfile_name (cu->objfile));
14060
14061 if (attr_form_is_section_offset (member_loc))
14062 dwarf2_complex_location_expr_complaint ();
14063 else if (attr_form_is_constant (member_loc)
14064 || attr_form_is_block (member_loc))
14065 {
14066 if (attr)
14067 mark_common_block_symbol_computed (sym, die, attr,
14068 member_loc, cu);
14069 }
14070 else
14071 dwarf2_complex_location_expr_complaint ();
14072 }
14073 }
14074 }
14075
14076 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14077 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14078 }
14079 }
14080
14081 /* Create a type for a C++ namespace. */
14082
14083 static struct type *
14084 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14085 {
14086 struct objfile *objfile = cu->objfile;
14087 const char *previous_prefix, *name;
14088 int is_anonymous;
14089 struct type *type;
14090
14091 /* For extensions, reuse the type of the original namespace. */
14092 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14093 {
14094 struct die_info *ext_die;
14095 struct dwarf2_cu *ext_cu = cu;
14096
14097 ext_die = dwarf2_extension (die, &ext_cu);
14098 type = read_type_die (ext_die, ext_cu);
14099
14100 /* EXT_CU may not be the same as CU.
14101 Ensure TYPE is recorded with CU in die_type_hash. */
14102 return set_die_type (die, type, cu);
14103 }
14104
14105 name = namespace_name (die, &is_anonymous, cu);
14106
14107 /* Now build the name of the current namespace. */
14108
14109 previous_prefix = determine_prefix (die, cu);
14110 if (previous_prefix[0] != '\0')
14111 name = typename_concat (&objfile->objfile_obstack,
14112 previous_prefix, name, 0, cu);
14113
14114 /* Create the type. */
14115 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14116 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14117
14118 return set_die_type (die, type, cu);
14119 }
14120
14121 /* Read a namespace scope. */
14122
14123 static void
14124 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14125 {
14126 struct objfile *objfile = cu->objfile;
14127 int is_anonymous;
14128
14129 /* Add a symbol associated to this if we haven't seen the namespace
14130 before. Also, add a using directive if it's an anonymous
14131 namespace. */
14132
14133 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14134 {
14135 struct type *type;
14136
14137 type = read_type_die (die, cu);
14138 new_symbol (die, type, cu);
14139
14140 namespace_name (die, &is_anonymous, cu);
14141 if (is_anonymous)
14142 {
14143 const char *previous_prefix = determine_prefix (die, cu);
14144
14145 add_using_directive (using_directives (cu->language),
14146 previous_prefix, TYPE_NAME (type), NULL,
14147 NULL, NULL, 0, &objfile->objfile_obstack);
14148 }
14149 }
14150
14151 if (die->child != NULL)
14152 {
14153 struct die_info *child_die = die->child;
14154
14155 while (child_die && child_die->tag)
14156 {
14157 process_die (child_die, cu);
14158 child_die = sibling_die (child_die);
14159 }
14160 }
14161 }
14162
14163 /* Read a Fortran module as type. This DIE can be only a declaration used for
14164 imported module. Still we need that type as local Fortran "use ... only"
14165 declaration imports depend on the created type in determine_prefix. */
14166
14167 static struct type *
14168 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14169 {
14170 struct objfile *objfile = cu->objfile;
14171 const char *module_name;
14172 struct type *type;
14173
14174 module_name = dwarf2_name (die, cu);
14175 if (!module_name)
14176 complaint (&symfile_complaints,
14177 _("DW_TAG_module has no name, offset 0x%x"),
14178 die->offset.sect_off);
14179 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14180
14181 /* determine_prefix uses TYPE_TAG_NAME. */
14182 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14183
14184 return set_die_type (die, type, cu);
14185 }
14186
14187 /* Read a Fortran module. */
14188
14189 static void
14190 read_module (struct die_info *die, struct dwarf2_cu *cu)
14191 {
14192 struct die_info *child_die = die->child;
14193 struct type *type;
14194
14195 type = read_type_die (die, cu);
14196 new_symbol (die, type, cu);
14197
14198 while (child_die && child_die->tag)
14199 {
14200 process_die (child_die, cu);
14201 child_die = sibling_die (child_die);
14202 }
14203 }
14204
14205 /* Return the name of the namespace represented by DIE. Set
14206 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14207 namespace. */
14208
14209 static const char *
14210 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14211 {
14212 struct die_info *current_die;
14213 const char *name = NULL;
14214
14215 /* Loop through the extensions until we find a name. */
14216
14217 for (current_die = die;
14218 current_die != NULL;
14219 current_die = dwarf2_extension (die, &cu))
14220 {
14221 /* We don't use dwarf2_name here so that we can detect the absence
14222 of a name -> anonymous namespace. */
14223 name = dwarf2_string_attr (die, DW_AT_name, cu);
14224
14225 if (name != NULL)
14226 break;
14227 }
14228
14229 /* Is it an anonymous namespace? */
14230
14231 *is_anonymous = (name == NULL);
14232 if (*is_anonymous)
14233 name = CP_ANONYMOUS_NAMESPACE_STR;
14234
14235 return name;
14236 }
14237
14238 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14239 the user defined type vector. */
14240
14241 static struct type *
14242 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14243 {
14244 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14245 struct comp_unit_head *cu_header = &cu->header;
14246 struct type *type;
14247 struct attribute *attr_byte_size;
14248 struct attribute *attr_address_class;
14249 int byte_size, addr_class;
14250 struct type *target_type;
14251
14252 target_type = die_type (die, cu);
14253
14254 /* The die_type call above may have already set the type for this DIE. */
14255 type = get_die_type (die, cu);
14256 if (type)
14257 return type;
14258
14259 type = lookup_pointer_type (target_type);
14260
14261 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14262 if (attr_byte_size)
14263 byte_size = DW_UNSND (attr_byte_size);
14264 else
14265 byte_size = cu_header->addr_size;
14266
14267 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14268 if (attr_address_class)
14269 addr_class = DW_UNSND (attr_address_class);
14270 else
14271 addr_class = DW_ADDR_none;
14272
14273 /* If the pointer size or address class is different than the
14274 default, create a type variant marked as such and set the
14275 length accordingly. */
14276 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14277 {
14278 if (gdbarch_address_class_type_flags_p (gdbarch))
14279 {
14280 int type_flags;
14281
14282 type_flags = gdbarch_address_class_type_flags
14283 (gdbarch, byte_size, addr_class);
14284 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14285 == 0);
14286 type = make_type_with_address_space (type, type_flags);
14287 }
14288 else if (TYPE_LENGTH (type) != byte_size)
14289 {
14290 complaint (&symfile_complaints,
14291 _("invalid pointer size %d"), byte_size);
14292 }
14293 else
14294 {
14295 /* Should we also complain about unhandled address classes? */
14296 }
14297 }
14298
14299 TYPE_LENGTH (type) = byte_size;
14300 return set_die_type (die, type, cu);
14301 }
14302
14303 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14304 the user defined type vector. */
14305
14306 static struct type *
14307 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14308 {
14309 struct type *type;
14310 struct type *to_type;
14311 struct type *domain;
14312
14313 to_type = die_type (die, cu);
14314 domain = die_containing_type (die, cu);
14315
14316 /* The calls above may have already set the type for this DIE. */
14317 type = get_die_type (die, cu);
14318 if (type)
14319 return type;
14320
14321 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14322 type = lookup_methodptr_type (to_type);
14323 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14324 {
14325 struct type *new_type = alloc_type (cu->objfile);
14326
14327 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14328 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14329 TYPE_VARARGS (to_type));
14330 type = lookup_methodptr_type (new_type);
14331 }
14332 else
14333 type = lookup_memberptr_type (to_type, domain);
14334
14335 return set_die_type (die, type, cu);
14336 }
14337
14338 /* Extract all information from a DW_TAG_reference_type DIE and add to
14339 the user defined type vector. */
14340
14341 static struct type *
14342 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14343 {
14344 struct comp_unit_head *cu_header = &cu->header;
14345 struct type *type, *target_type;
14346 struct attribute *attr;
14347
14348 target_type = die_type (die, cu);
14349
14350 /* The die_type call above may have already set the type for this DIE. */
14351 type = get_die_type (die, cu);
14352 if (type)
14353 return type;
14354
14355 type = lookup_reference_type (target_type);
14356 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14357 if (attr)
14358 {
14359 TYPE_LENGTH (type) = DW_UNSND (attr);
14360 }
14361 else
14362 {
14363 TYPE_LENGTH (type) = cu_header->addr_size;
14364 }
14365 return set_die_type (die, type, cu);
14366 }
14367
14368 /* Add the given cv-qualifiers to the element type of the array. GCC
14369 outputs DWARF type qualifiers that apply to an array, not the
14370 element type. But GDB relies on the array element type to carry
14371 the cv-qualifiers. This mimics section 6.7.3 of the C99
14372 specification. */
14373
14374 static struct type *
14375 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14376 struct type *base_type, int cnst, int voltl)
14377 {
14378 struct type *el_type, *inner_array;
14379
14380 base_type = copy_type (base_type);
14381 inner_array = base_type;
14382
14383 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14384 {
14385 TYPE_TARGET_TYPE (inner_array) =
14386 copy_type (TYPE_TARGET_TYPE (inner_array));
14387 inner_array = TYPE_TARGET_TYPE (inner_array);
14388 }
14389
14390 el_type = TYPE_TARGET_TYPE (inner_array);
14391 cnst |= TYPE_CONST (el_type);
14392 voltl |= TYPE_VOLATILE (el_type);
14393 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14394
14395 return set_die_type (die, base_type, cu);
14396 }
14397
14398 static struct type *
14399 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14400 {
14401 struct type *base_type, *cv_type;
14402
14403 base_type = die_type (die, cu);
14404
14405 /* The die_type call above may have already set the type for this DIE. */
14406 cv_type = get_die_type (die, cu);
14407 if (cv_type)
14408 return cv_type;
14409
14410 /* In case the const qualifier is applied to an array type, the element type
14411 is so qualified, not the array type (section 6.7.3 of C99). */
14412 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14413 return add_array_cv_type (die, cu, base_type, 1, 0);
14414
14415 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14416 return set_die_type (die, cv_type, cu);
14417 }
14418
14419 static struct type *
14420 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14421 {
14422 struct type *base_type, *cv_type;
14423
14424 base_type = die_type (die, cu);
14425
14426 /* The die_type call above may have already set the type for this DIE. */
14427 cv_type = get_die_type (die, cu);
14428 if (cv_type)
14429 return cv_type;
14430
14431 /* In case the volatile qualifier is applied to an array type, the
14432 element type is so qualified, not the array type (section 6.7.3
14433 of C99). */
14434 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14435 return add_array_cv_type (die, cu, base_type, 0, 1);
14436
14437 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14438 return set_die_type (die, cv_type, cu);
14439 }
14440
14441 /* Handle DW_TAG_restrict_type. */
14442
14443 static struct type *
14444 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14445 {
14446 struct type *base_type, *cv_type;
14447
14448 base_type = die_type (die, cu);
14449
14450 /* The die_type call above may have already set the type for this DIE. */
14451 cv_type = get_die_type (die, cu);
14452 if (cv_type)
14453 return cv_type;
14454
14455 cv_type = make_restrict_type (base_type);
14456 return set_die_type (die, cv_type, cu);
14457 }
14458
14459 /* Handle DW_TAG_atomic_type. */
14460
14461 static struct type *
14462 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14463 {
14464 struct type *base_type, *cv_type;
14465
14466 base_type = die_type (die, cu);
14467
14468 /* The die_type call above may have already set the type for this DIE. */
14469 cv_type = get_die_type (die, cu);
14470 if (cv_type)
14471 return cv_type;
14472
14473 cv_type = make_atomic_type (base_type);
14474 return set_die_type (die, cv_type, cu);
14475 }
14476
14477 /* Extract all information from a DW_TAG_string_type DIE and add to
14478 the user defined type vector. It isn't really a user defined type,
14479 but it behaves like one, with other DIE's using an AT_user_def_type
14480 attribute to reference it. */
14481
14482 static struct type *
14483 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14484 {
14485 struct objfile *objfile = cu->objfile;
14486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14487 struct type *type, *range_type, *index_type, *char_type;
14488 struct attribute *attr;
14489 unsigned int length;
14490
14491 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14492 if (attr)
14493 {
14494 length = DW_UNSND (attr);
14495 }
14496 else
14497 {
14498 /* Check for the DW_AT_byte_size attribute. */
14499 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14500 if (attr)
14501 {
14502 length = DW_UNSND (attr);
14503 }
14504 else
14505 {
14506 length = 1;
14507 }
14508 }
14509
14510 index_type = objfile_type (objfile)->builtin_int;
14511 range_type = create_static_range_type (NULL, index_type, 1, length);
14512 char_type = language_string_char_type (cu->language_defn, gdbarch);
14513 type = create_string_type (NULL, char_type, range_type);
14514
14515 return set_die_type (die, type, cu);
14516 }
14517
14518 /* Assuming that DIE corresponds to a function, returns nonzero
14519 if the function is prototyped. */
14520
14521 static int
14522 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14523 {
14524 struct attribute *attr;
14525
14526 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14527 if (attr && (DW_UNSND (attr) != 0))
14528 return 1;
14529
14530 /* The DWARF standard implies that the DW_AT_prototyped attribute
14531 is only meaninful for C, but the concept also extends to other
14532 languages that allow unprototyped functions (Eg: Objective C).
14533 For all other languages, assume that functions are always
14534 prototyped. */
14535 if (cu->language != language_c
14536 && cu->language != language_objc
14537 && cu->language != language_opencl)
14538 return 1;
14539
14540 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14541 prototyped and unprototyped functions; default to prototyped,
14542 since that is more common in modern code (and RealView warns
14543 about unprototyped functions). */
14544 if (producer_is_realview (cu->producer))
14545 return 1;
14546
14547 return 0;
14548 }
14549
14550 /* Handle DIES due to C code like:
14551
14552 struct foo
14553 {
14554 int (*funcp)(int a, long l);
14555 int b;
14556 };
14557
14558 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14559
14560 static struct type *
14561 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14562 {
14563 struct objfile *objfile = cu->objfile;
14564 struct type *type; /* Type that this function returns. */
14565 struct type *ftype; /* Function that returns above type. */
14566 struct attribute *attr;
14567
14568 type = die_type (die, cu);
14569
14570 /* The die_type call above may have already set the type for this DIE. */
14571 ftype = get_die_type (die, cu);
14572 if (ftype)
14573 return ftype;
14574
14575 ftype = lookup_function_type (type);
14576
14577 if (prototyped_function_p (die, cu))
14578 TYPE_PROTOTYPED (ftype) = 1;
14579
14580 /* Store the calling convention in the type if it's available in
14581 the subroutine die. Otherwise set the calling convention to
14582 the default value DW_CC_normal. */
14583 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14584 if (attr)
14585 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14586 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14587 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14588 else
14589 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14590
14591 /* Record whether the function returns normally to its caller or not
14592 if the DWARF producer set that information. */
14593 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14594 if (attr && (DW_UNSND (attr) != 0))
14595 TYPE_NO_RETURN (ftype) = 1;
14596
14597 /* We need to add the subroutine type to the die immediately so
14598 we don't infinitely recurse when dealing with parameters
14599 declared as the same subroutine type. */
14600 set_die_type (die, ftype, cu);
14601
14602 if (die->child != NULL)
14603 {
14604 struct type *void_type = objfile_type (objfile)->builtin_void;
14605 struct die_info *child_die;
14606 int nparams, iparams;
14607
14608 /* Count the number of parameters.
14609 FIXME: GDB currently ignores vararg functions, but knows about
14610 vararg member functions. */
14611 nparams = 0;
14612 child_die = die->child;
14613 while (child_die && child_die->tag)
14614 {
14615 if (child_die->tag == DW_TAG_formal_parameter)
14616 nparams++;
14617 else if (child_die->tag == DW_TAG_unspecified_parameters)
14618 TYPE_VARARGS (ftype) = 1;
14619 child_die = sibling_die (child_die);
14620 }
14621
14622 /* Allocate storage for parameters and fill them in. */
14623 TYPE_NFIELDS (ftype) = nparams;
14624 TYPE_FIELDS (ftype) = (struct field *)
14625 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14626
14627 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14628 even if we error out during the parameters reading below. */
14629 for (iparams = 0; iparams < nparams; iparams++)
14630 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14631
14632 iparams = 0;
14633 child_die = die->child;
14634 while (child_die && child_die->tag)
14635 {
14636 if (child_die->tag == DW_TAG_formal_parameter)
14637 {
14638 struct type *arg_type;
14639
14640 /* DWARF version 2 has no clean way to discern C++
14641 static and non-static member functions. G++ helps
14642 GDB by marking the first parameter for non-static
14643 member functions (which is the this pointer) as
14644 artificial. We pass this information to
14645 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14646
14647 DWARF version 3 added DW_AT_object_pointer, which GCC
14648 4.5 does not yet generate. */
14649 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14650 if (attr)
14651 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14652 else
14653 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14654 arg_type = die_type (child_die, cu);
14655
14656 /* RealView does not mark THIS as const, which the testsuite
14657 expects. GCC marks THIS as const in method definitions,
14658 but not in the class specifications (GCC PR 43053). */
14659 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14660 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14661 {
14662 int is_this = 0;
14663 struct dwarf2_cu *arg_cu = cu;
14664 const char *name = dwarf2_name (child_die, cu);
14665
14666 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14667 if (attr)
14668 {
14669 /* If the compiler emits this, use it. */
14670 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14671 is_this = 1;
14672 }
14673 else if (name && strcmp (name, "this") == 0)
14674 /* Function definitions will have the argument names. */
14675 is_this = 1;
14676 else if (name == NULL && iparams == 0)
14677 /* Declarations may not have the names, so like
14678 elsewhere in GDB, assume an artificial first
14679 argument is "this". */
14680 is_this = 1;
14681
14682 if (is_this)
14683 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14684 arg_type, 0);
14685 }
14686
14687 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14688 iparams++;
14689 }
14690 child_die = sibling_die (child_die);
14691 }
14692 }
14693
14694 return ftype;
14695 }
14696
14697 static struct type *
14698 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14699 {
14700 struct objfile *objfile = cu->objfile;
14701 const char *name = NULL;
14702 struct type *this_type, *target_type;
14703
14704 name = dwarf2_full_name (NULL, die, cu);
14705 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14706 TYPE_TARGET_STUB (this_type) = 1;
14707 set_die_type (die, this_type, cu);
14708 target_type = die_type (die, cu);
14709 if (target_type != this_type)
14710 TYPE_TARGET_TYPE (this_type) = target_type;
14711 else
14712 {
14713 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14714 spec and cause infinite loops in GDB. */
14715 complaint (&symfile_complaints,
14716 _("Self-referential DW_TAG_typedef "
14717 "- DIE at 0x%x [in module %s]"),
14718 die->offset.sect_off, objfile_name (objfile));
14719 TYPE_TARGET_TYPE (this_type) = NULL;
14720 }
14721 return this_type;
14722 }
14723
14724 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14725 (which may be different from NAME) to the architecture back-end to allow
14726 it to guess the correct format if necessary. */
14727
14728 static struct type *
14729 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14730 const char *name_hint)
14731 {
14732 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14733 const struct floatformat **format;
14734 struct type *type;
14735
14736 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14737 if (format)
14738 type = init_float_type (objfile, bits, name, format);
14739 else
14740 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14741
14742 return type;
14743 }
14744
14745 /* Find a representation of a given base type and install
14746 it in the TYPE field of the die. */
14747
14748 static struct type *
14749 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14750 {
14751 struct objfile *objfile = cu->objfile;
14752 struct type *type;
14753 struct attribute *attr;
14754 int encoding = 0, bits = 0;
14755 const char *name;
14756
14757 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14758 if (attr)
14759 {
14760 encoding = DW_UNSND (attr);
14761 }
14762 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14763 if (attr)
14764 {
14765 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14766 }
14767 name = dwarf2_name (die, cu);
14768 if (!name)
14769 {
14770 complaint (&symfile_complaints,
14771 _("DW_AT_name missing from DW_TAG_base_type"));
14772 }
14773
14774 switch (encoding)
14775 {
14776 case DW_ATE_address:
14777 /* Turn DW_ATE_address into a void * pointer. */
14778 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14779 type = init_pointer_type (objfile, bits, name, type);
14780 break;
14781 case DW_ATE_boolean:
14782 type = init_boolean_type (objfile, bits, 1, name);
14783 break;
14784 case DW_ATE_complex_float:
14785 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14786 type = init_complex_type (objfile, name, type);
14787 break;
14788 case DW_ATE_decimal_float:
14789 type = init_decfloat_type (objfile, bits, name);
14790 break;
14791 case DW_ATE_float:
14792 type = dwarf2_init_float_type (objfile, bits, name, name);
14793 break;
14794 case DW_ATE_signed:
14795 type = init_integer_type (objfile, bits, 0, name);
14796 break;
14797 case DW_ATE_unsigned:
14798 if (cu->language == language_fortran
14799 && name
14800 && startswith (name, "character("))
14801 type = init_character_type (objfile, bits, 1, name);
14802 else
14803 type = init_integer_type (objfile, bits, 1, name);
14804 break;
14805 case DW_ATE_signed_char:
14806 if (cu->language == language_ada || cu->language == language_m2
14807 || cu->language == language_pascal
14808 || cu->language == language_fortran)
14809 type = init_character_type (objfile, bits, 0, name);
14810 else
14811 type = init_integer_type (objfile, bits, 0, name);
14812 break;
14813 case DW_ATE_unsigned_char:
14814 if (cu->language == language_ada || cu->language == language_m2
14815 || cu->language == language_pascal
14816 || cu->language == language_fortran
14817 || cu->language == language_rust)
14818 type = init_character_type (objfile, bits, 1, name);
14819 else
14820 type = init_integer_type (objfile, bits, 1, name);
14821 break;
14822 case DW_ATE_UTF:
14823 /* We just treat this as an integer and then recognize the
14824 type by name elsewhere. */
14825 type = init_integer_type (objfile, bits, 0, name);
14826 break;
14827
14828 default:
14829 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14830 dwarf_type_encoding_name (encoding));
14831 type = init_type (objfile, TYPE_CODE_ERROR,
14832 bits / TARGET_CHAR_BIT, name);
14833 break;
14834 }
14835
14836 if (name && strcmp (name, "char") == 0)
14837 TYPE_NOSIGN (type) = 1;
14838
14839 return set_die_type (die, type, cu);
14840 }
14841
14842 /* Parse dwarf attribute if it's a block, reference or constant and put the
14843 resulting value of the attribute into struct bound_prop.
14844 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14845
14846 static int
14847 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14848 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14849 {
14850 struct dwarf2_property_baton *baton;
14851 struct obstack *obstack = &cu->objfile->objfile_obstack;
14852
14853 if (attr == NULL || prop == NULL)
14854 return 0;
14855
14856 if (attr_form_is_block (attr))
14857 {
14858 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14859 baton->referenced_type = NULL;
14860 baton->locexpr.per_cu = cu->per_cu;
14861 baton->locexpr.size = DW_BLOCK (attr)->size;
14862 baton->locexpr.data = DW_BLOCK (attr)->data;
14863 prop->data.baton = baton;
14864 prop->kind = PROP_LOCEXPR;
14865 gdb_assert (prop->data.baton != NULL);
14866 }
14867 else if (attr_form_is_ref (attr))
14868 {
14869 struct dwarf2_cu *target_cu = cu;
14870 struct die_info *target_die;
14871 struct attribute *target_attr;
14872
14873 target_die = follow_die_ref (die, attr, &target_cu);
14874 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14875 if (target_attr == NULL)
14876 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14877 target_cu);
14878 if (target_attr == NULL)
14879 return 0;
14880
14881 switch (target_attr->name)
14882 {
14883 case DW_AT_location:
14884 if (attr_form_is_section_offset (target_attr))
14885 {
14886 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14887 baton->referenced_type = die_type (target_die, target_cu);
14888 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14889 prop->data.baton = baton;
14890 prop->kind = PROP_LOCLIST;
14891 gdb_assert (prop->data.baton != NULL);
14892 }
14893 else if (attr_form_is_block (target_attr))
14894 {
14895 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14896 baton->referenced_type = die_type (target_die, target_cu);
14897 baton->locexpr.per_cu = cu->per_cu;
14898 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14899 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14900 prop->data.baton = baton;
14901 prop->kind = PROP_LOCEXPR;
14902 gdb_assert (prop->data.baton != NULL);
14903 }
14904 else
14905 {
14906 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14907 "dynamic property");
14908 return 0;
14909 }
14910 break;
14911 case DW_AT_data_member_location:
14912 {
14913 LONGEST offset;
14914
14915 if (!handle_data_member_location (target_die, target_cu,
14916 &offset))
14917 return 0;
14918
14919 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14920 baton->referenced_type = read_type_die (target_die->parent,
14921 target_cu);
14922 baton->offset_info.offset = offset;
14923 baton->offset_info.type = die_type (target_die, target_cu);
14924 prop->data.baton = baton;
14925 prop->kind = PROP_ADDR_OFFSET;
14926 break;
14927 }
14928 }
14929 }
14930 else if (attr_form_is_constant (attr))
14931 {
14932 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14933 prop->kind = PROP_CONST;
14934 }
14935 else
14936 {
14937 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14938 dwarf2_name (die, cu));
14939 return 0;
14940 }
14941
14942 return 1;
14943 }
14944
14945 /* Read the given DW_AT_subrange DIE. */
14946
14947 static struct type *
14948 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14949 {
14950 struct type *base_type, *orig_base_type;
14951 struct type *range_type;
14952 struct attribute *attr;
14953 struct dynamic_prop low, high;
14954 int low_default_is_valid;
14955 int high_bound_is_count = 0;
14956 const char *name;
14957 LONGEST negative_mask;
14958
14959 orig_base_type = die_type (die, cu);
14960 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14961 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14962 creating the range type, but we use the result of check_typedef
14963 when examining properties of the type. */
14964 base_type = check_typedef (orig_base_type);
14965
14966 /* The die_type call above may have already set the type for this DIE. */
14967 range_type = get_die_type (die, cu);
14968 if (range_type)
14969 return range_type;
14970
14971 low.kind = PROP_CONST;
14972 high.kind = PROP_CONST;
14973 high.data.const_val = 0;
14974
14975 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14976 omitting DW_AT_lower_bound. */
14977 switch (cu->language)
14978 {
14979 case language_c:
14980 case language_cplus:
14981 low.data.const_val = 0;
14982 low_default_is_valid = 1;
14983 break;
14984 case language_fortran:
14985 low.data.const_val = 1;
14986 low_default_is_valid = 1;
14987 break;
14988 case language_d:
14989 case language_objc:
14990 case language_rust:
14991 low.data.const_val = 0;
14992 low_default_is_valid = (cu->header.version >= 4);
14993 break;
14994 case language_ada:
14995 case language_m2:
14996 case language_pascal:
14997 low.data.const_val = 1;
14998 low_default_is_valid = (cu->header.version >= 4);
14999 break;
15000 default:
15001 low.data.const_val = 0;
15002 low_default_is_valid = 0;
15003 break;
15004 }
15005
15006 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15007 if (attr)
15008 attr_to_dynamic_prop (attr, die, cu, &low);
15009 else if (!low_default_is_valid)
15010 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15011 "- DIE at 0x%x [in module %s]"),
15012 die->offset.sect_off, objfile_name (cu->objfile));
15013
15014 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15015 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15016 {
15017 attr = dwarf2_attr (die, DW_AT_count, cu);
15018 if (attr_to_dynamic_prop (attr, die, cu, &high))
15019 {
15020 /* If bounds are constant do the final calculation here. */
15021 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15022 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15023 else
15024 high_bound_is_count = 1;
15025 }
15026 }
15027
15028 /* Dwarf-2 specifications explicitly allows to create subrange types
15029 without specifying a base type.
15030 In that case, the base type must be set to the type of
15031 the lower bound, upper bound or count, in that order, if any of these
15032 three attributes references an object that has a type.
15033 If no base type is found, the Dwarf-2 specifications say that
15034 a signed integer type of size equal to the size of an address should
15035 be used.
15036 For the following C code: `extern char gdb_int [];'
15037 GCC produces an empty range DIE.
15038 FIXME: muller/2010-05-28: Possible references to object for low bound,
15039 high bound or count are not yet handled by this code. */
15040 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15041 {
15042 struct objfile *objfile = cu->objfile;
15043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15044 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15045 struct type *int_type = objfile_type (objfile)->builtin_int;
15046
15047 /* Test "int", "long int", and "long long int" objfile types,
15048 and select the first one having a size above or equal to the
15049 architecture address size. */
15050 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15051 base_type = int_type;
15052 else
15053 {
15054 int_type = objfile_type (objfile)->builtin_long;
15055 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15056 base_type = int_type;
15057 else
15058 {
15059 int_type = objfile_type (objfile)->builtin_long_long;
15060 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15061 base_type = int_type;
15062 }
15063 }
15064 }
15065
15066 /* Normally, the DWARF producers are expected to use a signed
15067 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15068 But this is unfortunately not always the case, as witnessed
15069 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15070 is used instead. To work around that ambiguity, we treat
15071 the bounds as signed, and thus sign-extend their values, when
15072 the base type is signed. */
15073 negative_mask =
15074 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15075 if (low.kind == PROP_CONST
15076 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15077 low.data.const_val |= negative_mask;
15078 if (high.kind == PROP_CONST
15079 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15080 high.data.const_val |= negative_mask;
15081
15082 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15083
15084 if (high_bound_is_count)
15085 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15086
15087 /* Ada expects an empty array on no boundary attributes. */
15088 if (attr == NULL && cu->language != language_ada)
15089 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15090
15091 name = dwarf2_name (die, cu);
15092 if (name)
15093 TYPE_NAME (range_type) = name;
15094
15095 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15096 if (attr)
15097 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15098
15099 set_die_type (die, range_type, cu);
15100
15101 /* set_die_type should be already done. */
15102 set_descriptive_type (range_type, die, cu);
15103
15104 return range_type;
15105 }
15106
15107 static struct type *
15108 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15109 {
15110 struct type *type;
15111
15112 /* For now, we only support the C meaning of an unspecified type: void. */
15113
15114 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15115 TYPE_NAME (type) = dwarf2_name (die, cu);
15116
15117 return set_die_type (die, type, cu);
15118 }
15119
15120 /* Read a single die and all its descendents. Set the die's sibling
15121 field to NULL; set other fields in the die correctly, and set all
15122 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15123 location of the info_ptr after reading all of those dies. PARENT
15124 is the parent of the die in question. */
15125
15126 static struct die_info *
15127 read_die_and_children (const struct die_reader_specs *reader,
15128 const gdb_byte *info_ptr,
15129 const gdb_byte **new_info_ptr,
15130 struct die_info *parent)
15131 {
15132 struct die_info *die;
15133 const gdb_byte *cur_ptr;
15134 int has_children;
15135
15136 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15137 if (die == NULL)
15138 {
15139 *new_info_ptr = cur_ptr;
15140 return NULL;
15141 }
15142 store_in_ref_table (die, reader->cu);
15143
15144 if (has_children)
15145 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15146 else
15147 {
15148 die->child = NULL;
15149 *new_info_ptr = cur_ptr;
15150 }
15151
15152 die->sibling = NULL;
15153 die->parent = parent;
15154 return die;
15155 }
15156
15157 /* Read a die, all of its descendents, and all of its siblings; set
15158 all of the fields of all of the dies correctly. Arguments are as
15159 in read_die_and_children. */
15160
15161 static struct die_info *
15162 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15163 const gdb_byte *info_ptr,
15164 const gdb_byte **new_info_ptr,
15165 struct die_info *parent)
15166 {
15167 struct die_info *first_die, *last_sibling;
15168 const gdb_byte *cur_ptr;
15169
15170 cur_ptr = info_ptr;
15171 first_die = last_sibling = NULL;
15172
15173 while (1)
15174 {
15175 struct die_info *die
15176 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15177
15178 if (die == NULL)
15179 {
15180 *new_info_ptr = cur_ptr;
15181 return first_die;
15182 }
15183
15184 if (!first_die)
15185 first_die = die;
15186 else
15187 last_sibling->sibling = die;
15188
15189 last_sibling = die;
15190 }
15191 }
15192
15193 /* Read a die, all of its descendents, and all of its siblings; set
15194 all of the fields of all of the dies correctly. Arguments are as
15195 in read_die_and_children.
15196 This the main entry point for reading a DIE and all its children. */
15197
15198 static struct die_info *
15199 read_die_and_siblings (const struct die_reader_specs *reader,
15200 const gdb_byte *info_ptr,
15201 const gdb_byte **new_info_ptr,
15202 struct die_info *parent)
15203 {
15204 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15205 new_info_ptr, parent);
15206
15207 if (dwarf_die_debug)
15208 {
15209 fprintf_unfiltered (gdb_stdlog,
15210 "Read die from %s@0x%x of %s:\n",
15211 get_section_name (reader->die_section),
15212 (unsigned) (info_ptr - reader->die_section->buffer),
15213 bfd_get_filename (reader->abfd));
15214 dump_die (die, dwarf_die_debug);
15215 }
15216
15217 return die;
15218 }
15219
15220 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15221 attributes.
15222 The caller is responsible for filling in the extra attributes
15223 and updating (*DIEP)->num_attrs.
15224 Set DIEP to point to a newly allocated die with its information,
15225 except for its child, sibling, and parent fields.
15226 Set HAS_CHILDREN to tell whether the die has children or not. */
15227
15228 static const gdb_byte *
15229 read_full_die_1 (const struct die_reader_specs *reader,
15230 struct die_info **diep, const gdb_byte *info_ptr,
15231 int *has_children, int num_extra_attrs)
15232 {
15233 unsigned int abbrev_number, bytes_read, i;
15234 sect_offset offset;
15235 struct abbrev_info *abbrev;
15236 struct die_info *die;
15237 struct dwarf2_cu *cu = reader->cu;
15238 bfd *abfd = reader->abfd;
15239
15240 offset.sect_off = info_ptr - reader->buffer;
15241 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15242 info_ptr += bytes_read;
15243 if (!abbrev_number)
15244 {
15245 *diep = NULL;
15246 *has_children = 0;
15247 return info_ptr;
15248 }
15249
15250 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15251 if (!abbrev)
15252 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15253 abbrev_number,
15254 bfd_get_filename (abfd));
15255
15256 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15257 die->offset = offset;
15258 die->tag = abbrev->tag;
15259 die->abbrev = abbrev_number;
15260
15261 /* Make the result usable.
15262 The caller needs to update num_attrs after adding the extra
15263 attributes. */
15264 die->num_attrs = abbrev->num_attrs;
15265
15266 for (i = 0; i < abbrev->num_attrs; ++i)
15267 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15268 info_ptr);
15269
15270 *diep = die;
15271 *has_children = abbrev->has_children;
15272 return info_ptr;
15273 }
15274
15275 /* Read a die and all its attributes.
15276 Set DIEP to point to a newly allocated die with its information,
15277 except for its child, sibling, and parent fields.
15278 Set HAS_CHILDREN to tell whether the die has children or not. */
15279
15280 static const gdb_byte *
15281 read_full_die (const struct die_reader_specs *reader,
15282 struct die_info **diep, const gdb_byte *info_ptr,
15283 int *has_children)
15284 {
15285 const gdb_byte *result;
15286
15287 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15288
15289 if (dwarf_die_debug)
15290 {
15291 fprintf_unfiltered (gdb_stdlog,
15292 "Read die from %s@0x%x of %s:\n",
15293 get_section_name (reader->die_section),
15294 (unsigned) (info_ptr - reader->die_section->buffer),
15295 bfd_get_filename (reader->abfd));
15296 dump_die (*diep, dwarf_die_debug);
15297 }
15298
15299 return result;
15300 }
15301 \f
15302 /* Abbreviation tables.
15303
15304 In DWARF version 2, the description of the debugging information is
15305 stored in a separate .debug_abbrev section. Before we read any
15306 dies from a section we read in all abbreviations and install them
15307 in a hash table. */
15308
15309 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15310
15311 static struct abbrev_info *
15312 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15313 {
15314 struct abbrev_info *abbrev;
15315
15316 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15317 memset (abbrev, 0, sizeof (struct abbrev_info));
15318
15319 return abbrev;
15320 }
15321
15322 /* Add an abbreviation to the table. */
15323
15324 static void
15325 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15326 unsigned int abbrev_number,
15327 struct abbrev_info *abbrev)
15328 {
15329 unsigned int hash_number;
15330
15331 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15332 abbrev->next = abbrev_table->abbrevs[hash_number];
15333 abbrev_table->abbrevs[hash_number] = abbrev;
15334 }
15335
15336 /* Look up an abbrev in the table.
15337 Returns NULL if the abbrev is not found. */
15338
15339 static struct abbrev_info *
15340 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15341 unsigned int abbrev_number)
15342 {
15343 unsigned int hash_number;
15344 struct abbrev_info *abbrev;
15345
15346 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15347 abbrev = abbrev_table->abbrevs[hash_number];
15348
15349 while (abbrev)
15350 {
15351 if (abbrev->number == abbrev_number)
15352 return abbrev;
15353 abbrev = abbrev->next;
15354 }
15355 return NULL;
15356 }
15357
15358 /* Read in an abbrev table. */
15359
15360 static struct abbrev_table *
15361 abbrev_table_read_table (struct dwarf2_section_info *section,
15362 sect_offset offset)
15363 {
15364 struct objfile *objfile = dwarf2_per_objfile->objfile;
15365 bfd *abfd = get_section_bfd_owner (section);
15366 struct abbrev_table *abbrev_table;
15367 const gdb_byte *abbrev_ptr;
15368 struct abbrev_info *cur_abbrev;
15369 unsigned int abbrev_number, bytes_read, abbrev_name;
15370 unsigned int abbrev_form;
15371 struct attr_abbrev *cur_attrs;
15372 unsigned int allocated_attrs;
15373
15374 abbrev_table = XNEW (struct abbrev_table);
15375 abbrev_table->offset = offset;
15376 obstack_init (&abbrev_table->abbrev_obstack);
15377 abbrev_table->abbrevs =
15378 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15379 ABBREV_HASH_SIZE);
15380 memset (abbrev_table->abbrevs, 0,
15381 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15382
15383 dwarf2_read_section (objfile, section);
15384 abbrev_ptr = section->buffer + offset.sect_off;
15385 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15386 abbrev_ptr += bytes_read;
15387
15388 allocated_attrs = ATTR_ALLOC_CHUNK;
15389 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15390
15391 /* Loop until we reach an abbrev number of 0. */
15392 while (abbrev_number)
15393 {
15394 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15395
15396 /* read in abbrev header */
15397 cur_abbrev->number = abbrev_number;
15398 cur_abbrev->tag
15399 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15402 abbrev_ptr += 1;
15403
15404 /* now read in declarations */
15405 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15406 abbrev_ptr += bytes_read;
15407 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15408 abbrev_ptr += bytes_read;
15409 while (abbrev_name)
15410 {
15411 if (cur_abbrev->num_attrs == allocated_attrs)
15412 {
15413 allocated_attrs += ATTR_ALLOC_CHUNK;
15414 cur_attrs
15415 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15416 }
15417
15418 cur_attrs[cur_abbrev->num_attrs].name
15419 = (enum dwarf_attribute) abbrev_name;
15420 cur_attrs[cur_abbrev->num_attrs++].form
15421 = (enum dwarf_form) abbrev_form;
15422 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15423 abbrev_ptr += bytes_read;
15424 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15425 abbrev_ptr += bytes_read;
15426 }
15427
15428 cur_abbrev->attrs =
15429 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15430 cur_abbrev->num_attrs);
15431 memcpy (cur_abbrev->attrs, cur_attrs,
15432 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15433
15434 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15435
15436 /* Get next abbreviation.
15437 Under Irix6 the abbreviations for a compilation unit are not
15438 always properly terminated with an abbrev number of 0.
15439 Exit loop if we encounter an abbreviation which we have
15440 already read (which means we are about to read the abbreviations
15441 for the next compile unit) or if the end of the abbreviation
15442 table is reached. */
15443 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15444 break;
15445 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15446 abbrev_ptr += bytes_read;
15447 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15448 break;
15449 }
15450
15451 xfree (cur_attrs);
15452 return abbrev_table;
15453 }
15454
15455 /* Free the resources held by ABBREV_TABLE. */
15456
15457 static void
15458 abbrev_table_free (struct abbrev_table *abbrev_table)
15459 {
15460 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15461 xfree (abbrev_table);
15462 }
15463
15464 /* Same as abbrev_table_free but as a cleanup.
15465 We pass in a pointer to the pointer to the table so that we can
15466 set the pointer to NULL when we're done. It also simplifies
15467 build_type_psymtabs_1. */
15468
15469 static void
15470 abbrev_table_free_cleanup (void *table_ptr)
15471 {
15472 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15473
15474 if (*abbrev_table_ptr != NULL)
15475 abbrev_table_free (*abbrev_table_ptr);
15476 *abbrev_table_ptr = NULL;
15477 }
15478
15479 /* Read the abbrev table for CU from ABBREV_SECTION. */
15480
15481 static void
15482 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15483 struct dwarf2_section_info *abbrev_section)
15484 {
15485 cu->abbrev_table =
15486 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15487 }
15488
15489 /* Release the memory used by the abbrev table for a compilation unit. */
15490
15491 static void
15492 dwarf2_free_abbrev_table (void *ptr_to_cu)
15493 {
15494 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15495
15496 if (cu->abbrev_table != NULL)
15497 abbrev_table_free (cu->abbrev_table);
15498 /* Set this to NULL so that we SEGV if we try to read it later,
15499 and also because free_comp_unit verifies this is NULL. */
15500 cu->abbrev_table = NULL;
15501 }
15502 \f
15503 /* Returns nonzero if TAG represents a type that we might generate a partial
15504 symbol for. */
15505
15506 static int
15507 is_type_tag_for_partial (int tag)
15508 {
15509 switch (tag)
15510 {
15511 #if 0
15512 /* Some types that would be reasonable to generate partial symbols for,
15513 that we don't at present. */
15514 case DW_TAG_array_type:
15515 case DW_TAG_file_type:
15516 case DW_TAG_ptr_to_member_type:
15517 case DW_TAG_set_type:
15518 case DW_TAG_string_type:
15519 case DW_TAG_subroutine_type:
15520 #endif
15521 case DW_TAG_base_type:
15522 case DW_TAG_class_type:
15523 case DW_TAG_interface_type:
15524 case DW_TAG_enumeration_type:
15525 case DW_TAG_structure_type:
15526 case DW_TAG_subrange_type:
15527 case DW_TAG_typedef:
15528 case DW_TAG_union_type:
15529 return 1;
15530 default:
15531 return 0;
15532 }
15533 }
15534
15535 /* Load all DIEs that are interesting for partial symbols into memory. */
15536
15537 static struct partial_die_info *
15538 load_partial_dies (const struct die_reader_specs *reader,
15539 const gdb_byte *info_ptr, int building_psymtab)
15540 {
15541 struct dwarf2_cu *cu = reader->cu;
15542 struct objfile *objfile = cu->objfile;
15543 struct partial_die_info *part_die;
15544 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15545 struct abbrev_info *abbrev;
15546 unsigned int bytes_read;
15547 unsigned int load_all = 0;
15548 int nesting_level = 1;
15549
15550 parent_die = NULL;
15551 last_die = NULL;
15552
15553 gdb_assert (cu->per_cu != NULL);
15554 if (cu->per_cu->load_all_dies)
15555 load_all = 1;
15556
15557 cu->partial_dies
15558 = htab_create_alloc_ex (cu->header.length / 12,
15559 partial_die_hash,
15560 partial_die_eq,
15561 NULL,
15562 &cu->comp_unit_obstack,
15563 hashtab_obstack_allocate,
15564 dummy_obstack_deallocate);
15565
15566 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15567
15568 while (1)
15569 {
15570 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15571
15572 /* A NULL abbrev means the end of a series of children. */
15573 if (abbrev == NULL)
15574 {
15575 if (--nesting_level == 0)
15576 {
15577 /* PART_DIE was probably the last thing allocated on the
15578 comp_unit_obstack, so we could call obstack_free
15579 here. We don't do that because the waste is small,
15580 and will be cleaned up when we're done with this
15581 compilation unit. This way, we're also more robust
15582 against other users of the comp_unit_obstack. */
15583 return first_die;
15584 }
15585 info_ptr += bytes_read;
15586 last_die = parent_die;
15587 parent_die = parent_die->die_parent;
15588 continue;
15589 }
15590
15591 /* Check for template arguments. We never save these; if
15592 they're seen, we just mark the parent, and go on our way. */
15593 if (parent_die != NULL
15594 && cu->language == language_cplus
15595 && (abbrev->tag == DW_TAG_template_type_param
15596 || abbrev->tag == DW_TAG_template_value_param))
15597 {
15598 parent_die->has_template_arguments = 1;
15599
15600 if (!load_all)
15601 {
15602 /* We don't need a partial DIE for the template argument. */
15603 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15604 continue;
15605 }
15606 }
15607
15608 /* We only recurse into c++ subprograms looking for template arguments.
15609 Skip their other children. */
15610 if (!load_all
15611 && cu->language == language_cplus
15612 && parent_die != NULL
15613 && parent_die->tag == DW_TAG_subprogram)
15614 {
15615 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15616 continue;
15617 }
15618
15619 /* Check whether this DIE is interesting enough to save. Normally
15620 we would not be interested in members here, but there may be
15621 later variables referencing them via DW_AT_specification (for
15622 static members). */
15623 if (!load_all
15624 && !is_type_tag_for_partial (abbrev->tag)
15625 && abbrev->tag != DW_TAG_constant
15626 && abbrev->tag != DW_TAG_enumerator
15627 && abbrev->tag != DW_TAG_subprogram
15628 && abbrev->tag != DW_TAG_lexical_block
15629 && abbrev->tag != DW_TAG_variable
15630 && abbrev->tag != DW_TAG_namespace
15631 && abbrev->tag != DW_TAG_module
15632 && abbrev->tag != DW_TAG_member
15633 && abbrev->tag != DW_TAG_imported_unit
15634 && abbrev->tag != DW_TAG_imported_declaration)
15635 {
15636 /* Otherwise we skip to the next sibling, if any. */
15637 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15638 continue;
15639 }
15640
15641 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15642 info_ptr);
15643
15644 /* This two-pass algorithm for processing partial symbols has a
15645 high cost in cache pressure. Thus, handle some simple cases
15646 here which cover the majority of C partial symbols. DIEs
15647 which neither have specification tags in them, nor could have
15648 specification tags elsewhere pointing at them, can simply be
15649 processed and discarded.
15650
15651 This segment is also optional; scan_partial_symbols and
15652 add_partial_symbol will handle these DIEs if we chain
15653 them in normally. When compilers which do not emit large
15654 quantities of duplicate debug information are more common,
15655 this code can probably be removed. */
15656
15657 /* Any complete simple types at the top level (pretty much all
15658 of them, for a language without namespaces), can be processed
15659 directly. */
15660 if (parent_die == NULL
15661 && part_die->has_specification == 0
15662 && part_die->is_declaration == 0
15663 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15664 || part_die->tag == DW_TAG_base_type
15665 || part_die->tag == DW_TAG_subrange_type))
15666 {
15667 if (building_psymtab && part_die->name != NULL)
15668 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15669 VAR_DOMAIN, LOC_TYPEDEF,
15670 &objfile->static_psymbols,
15671 0, cu->language, objfile);
15672 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15673 continue;
15674 }
15675
15676 /* The exception for DW_TAG_typedef with has_children above is
15677 a workaround of GCC PR debug/47510. In the case of this complaint
15678 type_name_no_tag_or_error will error on such types later.
15679
15680 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15681 it could not find the child DIEs referenced later, this is checked
15682 above. In correct DWARF DW_TAG_typedef should have no children. */
15683
15684 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15685 complaint (&symfile_complaints,
15686 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15687 "- DIE at 0x%x [in module %s]"),
15688 part_die->offset.sect_off, objfile_name (objfile));
15689
15690 /* If we're at the second level, and we're an enumerator, and
15691 our parent has no specification (meaning possibly lives in a
15692 namespace elsewhere), then we can add the partial symbol now
15693 instead of queueing it. */
15694 if (part_die->tag == DW_TAG_enumerator
15695 && parent_die != NULL
15696 && parent_die->die_parent == NULL
15697 && parent_die->tag == DW_TAG_enumeration_type
15698 && parent_die->has_specification == 0)
15699 {
15700 if (part_die->name == NULL)
15701 complaint (&symfile_complaints,
15702 _("malformed enumerator DIE ignored"));
15703 else if (building_psymtab)
15704 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15705 VAR_DOMAIN, LOC_CONST,
15706 cu->language == language_cplus
15707 ? &objfile->global_psymbols
15708 : &objfile->static_psymbols,
15709 0, cu->language, objfile);
15710
15711 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15712 continue;
15713 }
15714
15715 /* We'll save this DIE so link it in. */
15716 part_die->die_parent = parent_die;
15717 part_die->die_sibling = NULL;
15718 part_die->die_child = NULL;
15719
15720 if (last_die && last_die == parent_die)
15721 last_die->die_child = part_die;
15722 else if (last_die)
15723 last_die->die_sibling = part_die;
15724
15725 last_die = part_die;
15726
15727 if (first_die == NULL)
15728 first_die = part_die;
15729
15730 /* Maybe add the DIE to the hash table. Not all DIEs that we
15731 find interesting need to be in the hash table, because we
15732 also have the parent/sibling/child chains; only those that we
15733 might refer to by offset later during partial symbol reading.
15734
15735 For now this means things that might have be the target of a
15736 DW_AT_specification, DW_AT_abstract_origin, or
15737 DW_AT_extension. DW_AT_extension will refer only to
15738 namespaces; DW_AT_abstract_origin refers to functions (and
15739 many things under the function DIE, but we do not recurse
15740 into function DIEs during partial symbol reading) and
15741 possibly variables as well; DW_AT_specification refers to
15742 declarations. Declarations ought to have the DW_AT_declaration
15743 flag. It happens that GCC forgets to put it in sometimes, but
15744 only for functions, not for types.
15745
15746 Adding more things than necessary to the hash table is harmless
15747 except for the performance cost. Adding too few will result in
15748 wasted time in find_partial_die, when we reread the compilation
15749 unit with load_all_dies set. */
15750
15751 if (load_all
15752 || abbrev->tag == DW_TAG_constant
15753 || abbrev->tag == DW_TAG_subprogram
15754 || abbrev->tag == DW_TAG_variable
15755 || abbrev->tag == DW_TAG_namespace
15756 || part_die->is_declaration)
15757 {
15758 void **slot;
15759
15760 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15761 part_die->offset.sect_off, INSERT);
15762 *slot = part_die;
15763 }
15764
15765 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15766
15767 /* For some DIEs we want to follow their children (if any). For C
15768 we have no reason to follow the children of structures; for other
15769 languages we have to, so that we can get at method physnames
15770 to infer fully qualified class names, for DW_AT_specification,
15771 and for C++ template arguments. For C++, we also look one level
15772 inside functions to find template arguments (if the name of the
15773 function does not already contain the template arguments).
15774
15775 For Ada, we need to scan the children of subprograms and lexical
15776 blocks as well because Ada allows the definition of nested
15777 entities that could be interesting for the debugger, such as
15778 nested subprograms for instance. */
15779 if (last_die->has_children
15780 && (load_all
15781 || last_die->tag == DW_TAG_namespace
15782 || last_die->tag == DW_TAG_module
15783 || last_die->tag == DW_TAG_enumeration_type
15784 || (cu->language == language_cplus
15785 && last_die->tag == DW_TAG_subprogram
15786 && (last_die->name == NULL
15787 || strchr (last_die->name, '<') == NULL))
15788 || (cu->language != language_c
15789 && (last_die->tag == DW_TAG_class_type
15790 || last_die->tag == DW_TAG_interface_type
15791 || last_die->tag == DW_TAG_structure_type
15792 || last_die->tag == DW_TAG_union_type))
15793 || (cu->language == language_ada
15794 && (last_die->tag == DW_TAG_subprogram
15795 || last_die->tag == DW_TAG_lexical_block))))
15796 {
15797 nesting_level++;
15798 parent_die = last_die;
15799 continue;
15800 }
15801
15802 /* Otherwise we skip to the next sibling, if any. */
15803 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15804
15805 /* Back to the top, do it again. */
15806 }
15807 }
15808
15809 /* Read a minimal amount of information into the minimal die structure. */
15810
15811 static const gdb_byte *
15812 read_partial_die (const struct die_reader_specs *reader,
15813 struct partial_die_info *part_die,
15814 struct abbrev_info *abbrev, unsigned int abbrev_len,
15815 const gdb_byte *info_ptr)
15816 {
15817 struct dwarf2_cu *cu = reader->cu;
15818 struct objfile *objfile = cu->objfile;
15819 const gdb_byte *buffer = reader->buffer;
15820 unsigned int i;
15821 struct attribute attr;
15822 int has_low_pc_attr = 0;
15823 int has_high_pc_attr = 0;
15824 int high_pc_relative = 0;
15825
15826 memset (part_die, 0, sizeof (struct partial_die_info));
15827
15828 part_die->offset.sect_off = info_ptr - buffer;
15829
15830 info_ptr += abbrev_len;
15831
15832 if (abbrev == NULL)
15833 return info_ptr;
15834
15835 part_die->tag = abbrev->tag;
15836 part_die->has_children = abbrev->has_children;
15837
15838 for (i = 0; i < abbrev->num_attrs; ++i)
15839 {
15840 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15841
15842 /* Store the data if it is of an attribute we want to keep in a
15843 partial symbol table. */
15844 switch (attr.name)
15845 {
15846 case DW_AT_name:
15847 switch (part_die->tag)
15848 {
15849 case DW_TAG_compile_unit:
15850 case DW_TAG_partial_unit:
15851 case DW_TAG_type_unit:
15852 /* Compilation units have a DW_AT_name that is a filename, not
15853 a source language identifier. */
15854 case DW_TAG_enumeration_type:
15855 case DW_TAG_enumerator:
15856 /* These tags always have simple identifiers already; no need
15857 to canonicalize them. */
15858 part_die->name = DW_STRING (&attr);
15859 break;
15860 default:
15861 part_die->name
15862 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15863 &objfile->per_bfd->storage_obstack);
15864 break;
15865 }
15866 break;
15867 case DW_AT_linkage_name:
15868 case DW_AT_MIPS_linkage_name:
15869 /* Note that both forms of linkage name might appear. We
15870 assume they will be the same, and we only store the last
15871 one we see. */
15872 if (cu->language == language_ada)
15873 part_die->name = DW_STRING (&attr);
15874 part_die->linkage_name = DW_STRING (&attr);
15875 break;
15876 case DW_AT_low_pc:
15877 has_low_pc_attr = 1;
15878 part_die->lowpc = attr_value_as_address (&attr);
15879 break;
15880 case DW_AT_high_pc:
15881 has_high_pc_attr = 1;
15882 part_die->highpc = attr_value_as_address (&attr);
15883 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15884 high_pc_relative = 1;
15885 break;
15886 case DW_AT_location:
15887 /* Support the .debug_loc offsets. */
15888 if (attr_form_is_block (&attr))
15889 {
15890 part_die->d.locdesc = DW_BLOCK (&attr);
15891 }
15892 else if (attr_form_is_section_offset (&attr))
15893 {
15894 dwarf2_complex_location_expr_complaint ();
15895 }
15896 else
15897 {
15898 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15899 "partial symbol information");
15900 }
15901 break;
15902 case DW_AT_external:
15903 part_die->is_external = DW_UNSND (&attr);
15904 break;
15905 case DW_AT_declaration:
15906 part_die->is_declaration = DW_UNSND (&attr);
15907 break;
15908 case DW_AT_type:
15909 part_die->has_type = 1;
15910 break;
15911 case DW_AT_abstract_origin:
15912 case DW_AT_specification:
15913 case DW_AT_extension:
15914 part_die->has_specification = 1;
15915 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15916 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15917 || cu->per_cu->is_dwz);
15918 break;
15919 case DW_AT_sibling:
15920 /* Ignore absolute siblings, they might point outside of
15921 the current compile unit. */
15922 if (attr.form == DW_FORM_ref_addr)
15923 complaint (&symfile_complaints,
15924 _("ignoring absolute DW_AT_sibling"));
15925 else
15926 {
15927 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15928 const gdb_byte *sibling_ptr = buffer + off;
15929
15930 if (sibling_ptr < info_ptr)
15931 complaint (&symfile_complaints,
15932 _("DW_AT_sibling points backwards"));
15933 else if (sibling_ptr > reader->buffer_end)
15934 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15935 else
15936 part_die->sibling = sibling_ptr;
15937 }
15938 break;
15939 case DW_AT_byte_size:
15940 part_die->has_byte_size = 1;
15941 break;
15942 case DW_AT_const_value:
15943 part_die->has_const_value = 1;
15944 break;
15945 case DW_AT_calling_convention:
15946 /* DWARF doesn't provide a way to identify a program's source-level
15947 entry point. DW_AT_calling_convention attributes are only meant
15948 to describe functions' calling conventions.
15949
15950 However, because it's a necessary piece of information in
15951 Fortran, and because DW_CC_program is the only piece of debugging
15952 information whose definition refers to a 'main program' at all,
15953 several compilers have begun marking Fortran main programs with
15954 DW_CC_program --- even when those functions use the standard
15955 calling conventions.
15956
15957 So until DWARF specifies a way to provide this information and
15958 compilers pick up the new representation, we'll support this
15959 practice. */
15960 if (DW_UNSND (&attr) == DW_CC_program
15961 && cu->language == language_fortran
15962 && part_die->name != NULL)
15963 set_objfile_main_name (objfile, part_die->name, language_fortran);
15964 break;
15965 case DW_AT_inline:
15966 if (DW_UNSND (&attr) == DW_INL_inlined
15967 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15968 part_die->may_be_inlined = 1;
15969 break;
15970
15971 case DW_AT_import:
15972 if (part_die->tag == DW_TAG_imported_unit)
15973 {
15974 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15975 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15976 || cu->per_cu->is_dwz);
15977 }
15978 break;
15979
15980 default:
15981 break;
15982 }
15983 }
15984
15985 if (high_pc_relative)
15986 part_die->highpc += part_die->lowpc;
15987
15988 if (has_low_pc_attr && has_high_pc_attr)
15989 {
15990 /* When using the GNU linker, .gnu.linkonce. sections are used to
15991 eliminate duplicate copies of functions and vtables and such.
15992 The linker will arbitrarily choose one and discard the others.
15993 The AT_*_pc values for such functions refer to local labels in
15994 these sections. If the section from that file was discarded, the
15995 labels are not in the output, so the relocs get a value of 0.
15996 If this is a discarded function, mark the pc bounds as invalid,
15997 so that GDB will ignore it. */
15998 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15999 {
16000 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16001
16002 complaint (&symfile_complaints,
16003 _("DW_AT_low_pc %s is zero "
16004 "for DIE at 0x%x [in module %s]"),
16005 paddress (gdbarch, part_die->lowpc),
16006 part_die->offset.sect_off, objfile_name (objfile));
16007 }
16008 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16009 else if (part_die->lowpc >= part_die->highpc)
16010 {
16011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16012
16013 complaint (&symfile_complaints,
16014 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16015 "for DIE at 0x%x [in module %s]"),
16016 paddress (gdbarch, part_die->lowpc),
16017 paddress (gdbarch, part_die->highpc),
16018 part_die->offset.sect_off, objfile_name (objfile));
16019 }
16020 else
16021 part_die->has_pc_info = 1;
16022 }
16023
16024 return info_ptr;
16025 }
16026
16027 /* Find a cached partial DIE at OFFSET in CU. */
16028
16029 static struct partial_die_info *
16030 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16031 {
16032 struct partial_die_info *lookup_die = NULL;
16033 struct partial_die_info part_die;
16034
16035 part_die.offset = offset;
16036 lookup_die = ((struct partial_die_info *)
16037 htab_find_with_hash (cu->partial_dies, &part_die,
16038 offset.sect_off));
16039
16040 return lookup_die;
16041 }
16042
16043 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16044 except in the case of .debug_types DIEs which do not reference
16045 outside their CU (they do however referencing other types via
16046 DW_FORM_ref_sig8). */
16047
16048 static struct partial_die_info *
16049 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16050 {
16051 struct objfile *objfile = cu->objfile;
16052 struct dwarf2_per_cu_data *per_cu = NULL;
16053 struct partial_die_info *pd = NULL;
16054
16055 if (offset_in_dwz == cu->per_cu->is_dwz
16056 && offset_in_cu_p (&cu->header, offset))
16057 {
16058 pd = find_partial_die_in_comp_unit (offset, cu);
16059 if (pd != NULL)
16060 return pd;
16061 /* We missed recording what we needed.
16062 Load all dies and try again. */
16063 per_cu = cu->per_cu;
16064 }
16065 else
16066 {
16067 /* TUs don't reference other CUs/TUs (except via type signatures). */
16068 if (cu->per_cu->is_debug_types)
16069 {
16070 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16071 " external reference to offset 0x%lx [in module %s].\n"),
16072 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16073 bfd_get_filename (objfile->obfd));
16074 }
16075 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16076 objfile);
16077
16078 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16079 load_partial_comp_unit (per_cu);
16080
16081 per_cu->cu->last_used = 0;
16082 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16083 }
16084
16085 /* If we didn't find it, and not all dies have been loaded,
16086 load them all and try again. */
16087
16088 if (pd == NULL && per_cu->load_all_dies == 0)
16089 {
16090 per_cu->load_all_dies = 1;
16091
16092 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16093 THIS_CU->cu may already be in use. So we can't just free it and
16094 replace its DIEs with the ones we read in. Instead, we leave those
16095 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16096 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16097 set. */
16098 load_partial_comp_unit (per_cu);
16099
16100 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16101 }
16102
16103 if (pd == NULL)
16104 internal_error (__FILE__, __LINE__,
16105 _("could not find partial DIE 0x%x "
16106 "in cache [from module %s]\n"),
16107 offset.sect_off, bfd_get_filename (objfile->obfd));
16108 return pd;
16109 }
16110
16111 /* See if we can figure out if the class lives in a namespace. We do
16112 this by looking for a member function; its demangled name will
16113 contain namespace info, if there is any. */
16114
16115 static void
16116 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16117 struct dwarf2_cu *cu)
16118 {
16119 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16120 what template types look like, because the demangler
16121 frequently doesn't give the same name as the debug info. We
16122 could fix this by only using the demangled name to get the
16123 prefix (but see comment in read_structure_type). */
16124
16125 struct partial_die_info *real_pdi;
16126 struct partial_die_info *child_pdi;
16127
16128 /* If this DIE (this DIE's specification, if any) has a parent, then
16129 we should not do this. We'll prepend the parent's fully qualified
16130 name when we create the partial symbol. */
16131
16132 real_pdi = struct_pdi;
16133 while (real_pdi->has_specification)
16134 real_pdi = find_partial_die (real_pdi->spec_offset,
16135 real_pdi->spec_is_dwz, cu);
16136
16137 if (real_pdi->die_parent != NULL)
16138 return;
16139
16140 for (child_pdi = struct_pdi->die_child;
16141 child_pdi != NULL;
16142 child_pdi = child_pdi->die_sibling)
16143 {
16144 if (child_pdi->tag == DW_TAG_subprogram
16145 && child_pdi->linkage_name != NULL)
16146 {
16147 char *actual_class_name
16148 = language_class_name_from_physname (cu->language_defn,
16149 child_pdi->linkage_name);
16150 if (actual_class_name != NULL)
16151 {
16152 struct_pdi->name
16153 = ((const char *)
16154 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16155 actual_class_name,
16156 strlen (actual_class_name)));
16157 xfree (actual_class_name);
16158 }
16159 break;
16160 }
16161 }
16162 }
16163
16164 /* Adjust PART_DIE before generating a symbol for it. This function
16165 may set the is_external flag or change the DIE's name. */
16166
16167 static void
16168 fixup_partial_die (struct partial_die_info *part_die,
16169 struct dwarf2_cu *cu)
16170 {
16171 /* Once we've fixed up a die, there's no point in doing so again.
16172 This also avoids a memory leak if we were to call
16173 guess_partial_die_structure_name multiple times. */
16174 if (part_die->fixup_called)
16175 return;
16176
16177 /* If we found a reference attribute and the DIE has no name, try
16178 to find a name in the referred to DIE. */
16179
16180 if (part_die->name == NULL && part_die->has_specification)
16181 {
16182 struct partial_die_info *spec_die;
16183
16184 spec_die = find_partial_die (part_die->spec_offset,
16185 part_die->spec_is_dwz, cu);
16186
16187 fixup_partial_die (spec_die, cu);
16188
16189 if (spec_die->name)
16190 {
16191 part_die->name = spec_die->name;
16192
16193 /* Copy DW_AT_external attribute if it is set. */
16194 if (spec_die->is_external)
16195 part_die->is_external = spec_die->is_external;
16196 }
16197 }
16198
16199 /* Set default names for some unnamed DIEs. */
16200
16201 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16202 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16203
16204 /* If there is no parent die to provide a namespace, and there are
16205 children, see if we can determine the namespace from their linkage
16206 name. */
16207 if (cu->language == language_cplus
16208 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16209 && part_die->die_parent == NULL
16210 && part_die->has_children
16211 && (part_die->tag == DW_TAG_class_type
16212 || part_die->tag == DW_TAG_structure_type
16213 || part_die->tag == DW_TAG_union_type))
16214 guess_partial_die_structure_name (part_die, cu);
16215
16216 /* GCC might emit a nameless struct or union that has a linkage
16217 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16218 if (part_die->name == NULL
16219 && (part_die->tag == DW_TAG_class_type
16220 || part_die->tag == DW_TAG_interface_type
16221 || part_die->tag == DW_TAG_structure_type
16222 || part_die->tag == DW_TAG_union_type)
16223 && part_die->linkage_name != NULL)
16224 {
16225 char *demangled;
16226
16227 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16228 if (demangled)
16229 {
16230 const char *base;
16231
16232 /* Strip any leading namespaces/classes, keep only the base name.
16233 DW_AT_name for named DIEs does not contain the prefixes. */
16234 base = strrchr (demangled, ':');
16235 if (base && base > demangled && base[-1] == ':')
16236 base++;
16237 else
16238 base = demangled;
16239
16240 part_die->name
16241 = ((const char *)
16242 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16243 base, strlen (base)));
16244 xfree (demangled);
16245 }
16246 }
16247
16248 part_die->fixup_called = 1;
16249 }
16250
16251 /* Read an attribute value described by an attribute form. */
16252
16253 static const gdb_byte *
16254 read_attribute_value (const struct die_reader_specs *reader,
16255 struct attribute *attr, unsigned form,
16256 const gdb_byte *info_ptr)
16257 {
16258 struct dwarf2_cu *cu = reader->cu;
16259 struct objfile *objfile = cu->objfile;
16260 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16261 bfd *abfd = reader->abfd;
16262 struct comp_unit_head *cu_header = &cu->header;
16263 unsigned int bytes_read;
16264 struct dwarf_block *blk;
16265
16266 attr->form = (enum dwarf_form) form;
16267 switch (form)
16268 {
16269 case DW_FORM_ref_addr:
16270 if (cu->header.version == 2)
16271 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16272 else
16273 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16274 &cu->header, &bytes_read);
16275 info_ptr += bytes_read;
16276 break;
16277 case DW_FORM_GNU_ref_alt:
16278 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16279 info_ptr += bytes_read;
16280 break;
16281 case DW_FORM_addr:
16282 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16283 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16284 info_ptr += bytes_read;
16285 break;
16286 case DW_FORM_block2:
16287 blk = dwarf_alloc_block (cu);
16288 blk->size = read_2_bytes (abfd, info_ptr);
16289 info_ptr += 2;
16290 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16291 info_ptr += blk->size;
16292 DW_BLOCK (attr) = blk;
16293 break;
16294 case DW_FORM_block4:
16295 blk = dwarf_alloc_block (cu);
16296 blk->size = read_4_bytes (abfd, info_ptr);
16297 info_ptr += 4;
16298 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16299 info_ptr += blk->size;
16300 DW_BLOCK (attr) = blk;
16301 break;
16302 case DW_FORM_data2:
16303 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16304 info_ptr += 2;
16305 break;
16306 case DW_FORM_data4:
16307 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16308 info_ptr += 4;
16309 break;
16310 case DW_FORM_data8:
16311 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16312 info_ptr += 8;
16313 break;
16314 case DW_FORM_sec_offset:
16315 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16316 info_ptr += bytes_read;
16317 break;
16318 case DW_FORM_string:
16319 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16320 DW_STRING_IS_CANONICAL (attr) = 0;
16321 info_ptr += bytes_read;
16322 break;
16323 case DW_FORM_strp:
16324 if (!cu->per_cu->is_dwz)
16325 {
16326 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16327 &bytes_read);
16328 DW_STRING_IS_CANONICAL (attr) = 0;
16329 info_ptr += bytes_read;
16330 break;
16331 }
16332 /* FALLTHROUGH */
16333 case DW_FORM_GNU_strp_alt:
16334 {
16335 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16336 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16337 &bytes_read);
16338
16339 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16340 DW_STRING_IS_CANONICAL (attr) = 0;
16341 info_ptr += bytes_read;
16342 }
16343 break;
16344 case DW_FORM_exprloc:
16345 case DW_FORM_block:
16346 blk = dwarf_alloc_block (cu);
16347 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16348 info_ptr += bytes_read;
16349 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16350 info_ptr += blk->size;
16351 DW_BLOCK (attr) = blk;
16352 break;
16353 case DW_FORM_block1:
16354 blk = dwarf_alloc_block (cu);
16355 blk->size = read_1_byte (abfd, info_ptr);
16356 info_ptr += 1;
16357 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16358 info_ptr += blk->size;
16359 DW_BLOCK (attr) = blk;
16360 break;
16361 case DW_FORM_data1:
16362 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16363 info_ptr += 1;
16364 break;
16365 case DW_FORM_flag:
16366 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16367 info_ptr += 1;
16368 break;
16369 case DW_FORM_flag_present:
16370 DW_UNSND (attr) = 1;
16371 break;
16372 case DW_FORM_sdata:
16373 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16374 info_ptr += bytes_read;
16375 break;
16376 case DW_FORM_udata:
16377 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16378 info_ptr += bytes_read;
16379 break;
16380 case DW_FORM_ref1:
16381 DW_UNSND (attr) = (cu->header.offset.sect_off
16382 + read_1_byte (abfd, info_ptr));
16383 info_ptr += 1;
16384 break;
16385 case DW_FORM_ref2:
16386 DW_UNSND (attr) = (cu->header.offset.sect_off
16387 + read_2_bytes (abfd, info_ptr));
16388 info_ptr += 2;
16389 break;
16390 case DW_FORM_ref4:
16391 DW_UNSND (attr) = (cu->header.offset.sect_off
16392 + read_4_bytes (abfd, info_ptr));
16393 info_ptr += 4;
16394 break;
16395 case DW_FORM_ref8:
16396 DW_UNSND (attr) = (cu->header.offset.sect_off
16397 + read_8_bytes (abfd, info_ptr));
16398 info_ptr += 8;
16399 break;
16400 case DW_FORM_ref_sig8:
16401 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16402 info_ptr += 8;
16403 break;
16404 case DW_FORM_ref_udata:
16405 DW_UNSND (attr) = (cu->header.offset.sect_off
16406 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16407 info_ptr += bytes_read;
16408 break;
16409 case DW_FORM_indirect:
16410 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16411 info_ptr += bytes_read;
16412 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16413 break;
16414 case DW_FORM_GNU_addr_index:
16415 if (reader->dwo_file == NULL)
16416 {
16417 /* For now flag a hard error.
16418 Later we can turn this into a complaint. */
16419 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16420 dwarf_form_name (form),
16421 bfd_get_filename (abfd));
16422 }
16423 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16424 info_ptr += bytes_read;
16425 break;
16426 case DW_FORM_GNU_str_index:
16427 if (reader->dwo_file == NULL)
16428 {
16429 /* For now flag a hard error.
16430 Later we can turn this into a complaint if warranted. */
16431 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16432 dwarf_form_name (form),
16433 bfd_get_filename (abfd));
16434 }
16435 {
16436 ULONGEST str_index =
16437 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16438
16439 DW_STRING (attr) = read_str_index (reader, str_index);
16440 DW_STRING_IS_CANONICAL (attr) = 0;
16441 info_ptr += bytes_read;
16442 }
16443 break;
16444 default:
16445 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16446 dwarf_form_name (form),
16447 bfd_get_filename (abfd));
16448 }
16449
16450 /* Super hack. */
16451 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16452 attr->form = DW_FORM_GNU_ref_alt;
16453
16454 /* We have seen instances where the compiler tried to emit a byte
16455 size attribute of -1 which ended up being encoded as an unsigned
16456 0xffffffff. Although 0xffffffff is technically a valid size value,
16457 an object of this size seems pretty unlikely so we can relatively
16458 safely treat these cases as if the size attribute was invalid and
16459 treat them as zero by default. */
16460 if (attr->name == DW_AT_byte_size
16461 && form == DW_FORM_data4
16462 && DW_UNSND (attr) >= 0xffffffff)
16463 {
16464 complaint
16465 (&symfile_complaints,
16466 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16467 hex_string (DW_UNSND (attr)));
16468 DW_UNSND (attr) = 0;
16469 }
16470
16471 return info_ptr;
16472 }
16473
16474 /* Read an attribute described by an abbreviated attribute. */
16475
16476 static const gdb_byte *
16477 read_attribute (const struct die_reader_specs *reader,
16478 struct attribute *attr, struct attr_abbrev *abbrev,
16479 const gdb_byte *info_ptr)
16480 {
16481 attr->name = abbrev->name;
16482 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16483 }
16484
16485 /* Read dwarf information from a buffer. */
16486
16487 static unsigned int
16488 read_1_byte (bfd *abfd, const gdb_byte *buf)
16489 {
16490 return bfd_get_8 (abfd, buf);
16491 }
16492
16493 static int
16494 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16495 {
16496 return bfd_get_signed_8 (abfd, buf);
16497 }
16498
16499 static unsigned int
16500 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16501 {
16502 return bfd_get_16 (abfd, buf);
16503 }
16504
16505 static int
16506 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16507 {
16508 return bfd_get_signed_16 (abfd, buf);
16509 }
16510
16511 static unsigned int
16512 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16513 {
16514 return bfd_get_32 (abfd, buf);
16515 }
16516
16517 static int
16518 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16519 {
16520 return bfd_get_signed_32 (abfd, buf);
16521 }
16522
16523 static ULONGEST
16524 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16525 {
16526 return bfd_get_64 (abfd, buf);
16527 }
16528
16529 static CORE_ADDR
16530 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16531 unsigned int *bytes_read)
16532 {
16533 struct comp_unit_head *cu_header = &cu->header;
16534 CORE_ADDR retval = 0;
16535
16536 if (cu_header->signed_addr_p)
16537 {
16538 switch (cu_header->addr_size)
16539 {
16540 case 2:
16541 retval = bfd_get_signed_16 (abfd, buf);
16542 break;
16543 case 4:
16544 retval = bfd_get_signed_32 (abfd, buf);
16545 break;
16546 case 8:
16547 retval = bfd_get_signed_64 (abfd, buf);
16548 break;
16549 default:
16550 internal_error (__FILE__, __LINE__,
16551 _("read_address: bad switch, signed [in module %s]"),
16552 bfd_get_filename (abfd));
16553 }
16554 }
16555 else
16556 {
16557 switch (cu_header->addr_size)
16558 {
16559 case 2:
16560 retval = bfd_get_16 (abfd, buf);
16561 break;
16562 case 4:
16563 retval = bfd_get_32 (abfd, buf);
16564 break;
16565 case 8:
16566 retval = bfd_get_64 (abfd, buf);
16567 break;
16568 default:
16569 internal_error (__FILE__, __LINE__,
16570 _("read_address: bad switch, "
16571 "unsigned [in module %s]"),
16572 bfd_get_filename (abfd));
16573 }
16574 }
16575
16576 *bytes_read = cu_header->addr_size;
16577 return retval;
16578 }
16579
16580 /* Read the initial length from a section. The (draft) DWARF 3
16581 specification allows the initial length to take up either 4 bytes
16582 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16583 bytes describe the length and all offsets will be 8 bytes in length
16584 instead of 4.
16585
16586 An older, non-standard 64-bit format is also handled by this
16587 function. The older format in question stores the initial length
16588 as an 8-byte quantity without an escape value. Lengths greater
16589 than 2^32 aren't very common which means that the initial 4 bytes
16590 is almost always zero. Since a length value of zero doesn't make
16591 sense for the 32-bit format, this initial zero can be considered to
16592 be an escape value which indicates the presence of the older 64-bit
16593 format. As written, the code can't detect (old format) lengths
16594 greater than 4GB. If it becomes necessary to handle lengths
16595 somewhat larger than 4GB, we could allow other small values (such
16596 as the non-sensical values of 1, 2, and 3) to also be used as
16597 escape values indicating the presence of the old format.
16598
16599 The value returned via bytes_read should be used to increment the
16600 relevant pointer after calling read_initial_length().
16601
16602 [ Note: read_initial_length() and read_offset() are based on the
16603 document entitled "DWARF Debugging Information Format", revision
16604 3, draft 8, dated November 19, 2001. This document was obtained
16605 from:
16606
16607 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16608
16609 This document is only a draft and is subject to change. (So beware.)
16610
16611 Details regarding the older, non-standard 64-bit format were
16612 determined empirically by examining 64-bit ELF files produced by
16613 the SGI toolchain on an IRIX 6.5 machine.
16614
16615 - Kevin, July 16, 2002
16616 ] */
16617
16618 static LONGEST
16619 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16620 {
16621 LONGEST length = bfd_get_32 (abfd, buf);
16622
16623 if (length == 0xffffffff)
16624 {
16625 length = bfd_get_64 (abfd, buf + 4);
16626 *bytes_read = 12;
16627 }
16628 else if (length == 0)
16629 {
16630 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16631 length = bfd_get_64 (abfd, buf);
16632 *bytes_read = 8;
16633 }
16634 else
16635 {
16636 *bytes_read = 4;
16637 }
16638
16639 return length;
16640 }
16641
16642 /* Cover function for read_initial_length.
16643 Returns the length of the object at BUF, and stores the size of the
16644 initial length in *BYTES_READ and stores the size that offsets will be in
16645 *OFFSET_SIZE.
16646 If the initial length size is not equivalent to that specified in
16647 CU_HEADER then issue a complaint.
16648 This is useful when reading non-comp-unit headers. */
16649
16650 static LONGEST
16651 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16652 const struct comp_unit_head *cu_header,
16653 unsigned int *bytes_read,
16654 unsigned int *offset_size)
16655 {
16656 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16657
16658 gdb_assert (cu_header->initial_length_size == 4
16659 || cu_header->initial_length_size == 8
16660 || cu_header->initial_length_size == 12);
16661
16662 if (cu_header->initial_length_size != *bytes_read)
16663 complaint (&symfile_complaints,
16664 _("intermixed 32-bit and 64-bit DWARF sections"));
16665
16666 *offset_size = (*bytes_read == 4) ? 4 : 8;
16667 return length;
16668 }
16669
16670 /* Read an offset from the data stream. The size of the offset is
16671 given by cu_header->offset_size. */
16672
16673 static LONGEST
16674 read_offset (bfd *abfd, const gdb_byte *buf,
16675 const struct comp_unit_head *cu_header,
16676 unsigned int *bytes_read)
16677 {
16678 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16679
16680 *bytes_read = cu_header->offset_size;
16681 return offset;
16682 }
16683
16684 /* Read an offset from the data stream. */
16685
16686 static LONGEST
16687 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16688 {
16689 LONGEST retval = 0;
16690
16691 switch (offset_size)
16692 {
16693 case 4:
16694 retval = bfd_get_32 (abfd, buf);
16695 break;
16696 case 8:
16697 retval = bfd_get_64 (abfd, buf);
16698 break;
16699 default:
16700 internal_error (__FILE__, __LINE__,
16701 _("read_offset_1: bad switch [in module %s]"),
16702 bfd_get_filename (abfd));
16703 }
16704
16705 return retval;
16706 }
16707
16708 static const gdb_byte *
16709 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16710 {
16711 /* If the size of a host char is 8 bits, we can return a pointer
16712 to the buffer, otherwise we have to copy the data to a buffer
16713 allocated on the temporary obstack. */
16714 gdb_assert (HOST_CHAR_BIT == 8);
16715 return buf;
16716 }
16717
16718 static const char *
16719 read_direct_string (bfd *abfd, const gdb_byte *buf,
16720 unsigned int *bytes_read_ptr)
16721 {
16722 /* If the size of a host char is 8 bits, we can return a pointer
16723 to the string, otherwise we have to copy the string to a buffer
16724 allocated on the temporary obstack. */
16725 gdb_assert (HOST_CHAR_BIT == 8);
16726 if (*buf == '\0')
16727 {
16728 *bytes_read_ptr = 1;
16729 return NULL;
16730 }
16731 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16732 return (const char *) buf;
16733 }
16734
16735 static const char *
16736 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16737 {
16738 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16739 if (dwarf2_per_objfile->str.buffer == NULL)
16740 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16741 bfd_get_filename (abfd));
16742 if (str_offset >= dwarf2_per_objfile->str.size)
16743 error (_("DW_FORM_strp pointing outside of "
16744 ".debug_str section [in module %s]"),
16745 bfd_get_filename (abfd));
16746 gdb_assert (HOST_CHAR_BIT == 8);
16747 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16748 return NULL;
16749 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16750 }
16751
16752 /* Read a string at offset STR_OFFSET in the .debug_str section from
16753 the .dwz file DWZ. Throw an error if the offset is too large. If
16754 the string consists of a single NUL byte, return NULL; otherwise
16755 return a pointer to the string. */
16756
16757 static const char *
16758 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16759 {
16760 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16761
16762 if (dwz->str.buffer == NULL)
16763 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16764 "section [in module %s]"),
16765 bfd_get_filename (dwz->dwz_bfd));
16766 if (str_offset >= dwz->str.size)
16767 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16768 ".debug_str section [in module %s]"),
16769 bfd_get_filename (dwz->dwz_bfd));
16770 gdb_assert (HOST_CHAR_BIT == 8);
16771 if (dwz->str.buffer[str_offset] == '\0')
16772 return NULL;
16773 return (const char *) (dwz->str.buffer + str_offset);
16774 }
16775
16776 static const char *
16777 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16778 const struct comp_unit_head *cu_header,
16779 unsigned int *bytes_read_ptr)
16780 {
16781 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16782
16783 return read_indirect_string_at_offset (abfd, str_offset);
16784 }
16785
16786 static ULONGEST
16787 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16788 unsigned int *bytes_read_ptr)
16789 {
16790 ULONGEST result;
16791 unsigned int num_read;
16792 int shift;
16793 unsigned char byte;
16794
16795 result = 0;
16796 shift = 0;
16797 num_read = 0;
16798 while (1)
16799 {
16800 byte = bfd_get_8 (abfd, buf);
16801 buf++;
16802 num_read++;
16803 result |= ((ULONGEST) (byte & 127) << shift);
16804 if ((byte & 128) == 0)
16805 {
16806 break;
16807 }
16808 shift += 7;
16809 }
16810 *bytes_read_ptr = num_read;
16811 return result;
16812 }
16813
16814 static LONGEST
16815 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16816 unsigned int *bytes_read_ptr)
16817 {
16818 LONGEST result;
16819 int shift, num_read;
16820 unsigned char byte;
16821
16822 result = 0;
16823 shift = 0;
16824 num_read = 0;
16825 while (1)
16826 {
16827 byte = bfd_get_8 (abfd, buf);
16828 buf++;
16829 num_read++;
16830 result |= ((LONGEST) (byte & 127) << shift);
16831 shift += 7;
16832 if ((byte & 128) == 0)
16833 {
16834 break;
16835 }
16836 }
16837 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16838 result |= -(((LONGEST) 1) << shift);
16839 *bytes_read_ptr = num_read;
16840 return result;
16841 }
16842
16843 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16844 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16845 ADDR_SIZE is the size of addresses from the CU header. */
16846
16847 static CORE_ADDR
16848 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16849 {
16850 struct objfile *objfile = dwarf2_per_objfile->objfile;
16851 bfd *abfd = objfile->obfd;
16852 const gdb_byte *info_ptr;
16853
16854 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16855 if (dwarf2_per_objfile->addr.buffer == NULL)
16856 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16857 objfile_name (objfile));
16858 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16859 error (_("DW_FORM_addr_index pointing outside of "
16860 ".debug_addr section [in module %s]"),
16861 objfile_name (objfile));
16862 info_ptr = (dwarf2_per_objfile->addr.buffer
16863 + addr_base + addr_index * addr_size);
16864 if (addr_size == 4)
16865 return bfd_get_32 (abfd, info_ptr);
16866 else
16867 return bfd_get_64 (abfd, info_ptr);
16868 }
16869
16870 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16871
16872 static CORE_ADDR
16873 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16874 {
16875 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16876 }
16877
16878 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16879
16880 static CORE_ADDR
16881 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16882 unsigned int *bytes_read)
16883 {
16884 bfd *abfd = cu->objfile->obfd;
16885 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16886
16887 return read_addr_index (cu, addr_index);
16888 }
16889
16890 /* Data structure to pass results from dwarf2_read_addr_index_reader
16891 back to dwarf2_read_addr_index. */
16892
16893 struct dwarf2_read_addr_index_data
16894 {
16895 ULONGEST addr_base;
16896 int addr_size;
16897 };
16898
16899 /* die_reader_func for dwarf2_read_addr_index. */
16900
16901 static void
16902 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16903 const gdb_byte *info_ptr,
16904 struct die_info *comp_unit_die,
16905 int has_children,
16906 void *data)
16907 {
16908 struct dwarf2_cu *cu = reader->cu;
16909 struct dwarf2_read_addr_index_data *aidata =
16910 (struct dwarf2_read_addr_index_data *) data;
16911
16912 aidata->addr_base = cu->addr_base;
16913 aidata->addr_size = cu->header.addr_size;
16914 }
16915
16916 /* Given an index in .debug_addr, fetch the value.
16917 NOTE: This can be called during dwarf expression evaluation,
16918 long after the debug information has been read, and thus per_cu->cu
16919 may no longer exist. */
16920
16921 CORE_ADDR
16922 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16923 unsigned int addr_index)
16924 {
16925 struct objfile *objfile = per_cu->objfile;
16926 struct dwarf2_cu *cu = per_cu->cu;
16927 ULONGEST addr_base;
16928 int addr_size;
16929
16930 /* This is intended to be called from outside this file. */
16931 dw2_setup (objfile);
16932
16933 /* We need addr_base and addr_size.
16934 If we don't have PER_CU->cu, we have to get it.
16935 Nasty, but the alternative is storing the needed info in PER_CU,
16936 which at this point doesn't seem justified: it's not clear how frequently
16937 it would get used and it would increase the size of every PER_CU.
16938 Entry points like dwarf2_per_cu_addr_size do a similar thing
16939 so we're not in uncharted territory here.
16940 Alas we need to be a bit more complicated as addr_base is contained
16941 in the DIE.
16942
16943 We don't need to read the entire CU(/TU).
16944 We just need the header and top level die.
16945
16946 IWBN to use the aging mechanism to let us lazily later discard the CU.
16947 For now we skip this optimization. */
16948
16949 if (cu != NULL)
16950 {
16951 addr_base = cu->addr_base;
16952 addr_size = cu->header.addr_size;
16953 }
16954 else
16955 {
16956 struct dwarf2_read_addr_index_data aidata;
16957
16958 /* Note: We can't use init_cutu_and_read_dies_simple here,
16959 we need addr_base. */
16960 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16961 dwarf2_read_addr_index_reader, &aidata);
16962 addr_base = aidata.addr_base;
16963 addr_size = aidata.addr_size;
16964 }
16965
16966 return read_addr_index_1 (addr_index, addr_base, addr_size);
16967 }
16968
16969 /* Given a DW_FORM_GNU_str_index, fetch the string.
16970 This is only used by the Fission support. */
16971
16972 static const char *
16973 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16974 {
16975 struct objfile *objfile = dwarf2_per_objfile->objfile;
16976 const char *objf_name = objfile_name (objfile);
16977 bfd *abfd = objfile->obfd;
16978 struct dwarf2_cu *cu = reader->cu;
16979 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16980 struct dwarf2_section_info *str_offsets_section =
16981 &reader->dwo_file->sections.str_offsets;
16982 const gdb_byte *info_ptr;
16983 ULONGEST str_offset;
16984 static const char form_name[] = "DW_FORM_GNU_str_index";
16985
16986 dwarf2_read_section (objfile, str_section);
16987 dwarf2_read_section (objfile, str_offsets_section);
16988 if (str_section->buffer == NULL)
16989 error (_("%s used without .debug_str.dwo section"
16990 " in CU at offset 0x%lx [in module %s]"),
16991 form_name, (long) cu->header.offset.sect_off, objf_name);
16992 if (str_offsets_section->buffer == NULL)
16993 error (_("%s used without .debug_str_offsets.dwo section"
16994 " in CU at offset 0x%lx [in module %s]"),
16995 form_name, (long) cu->header.offset.sect_off, objf_name);
16996 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16997 error (_("%s pointing outside of .debug_str_offsets.dwo"
16998 " section in CU at offset 0x%lx [in module %s]"),
16999 form_name, (long) cu->header.offset.sect_off, objf_name);
17000 info_ptr = (str_offsets_section->buffer
17001 + str_index * cu->header.offset_size);
17002 if (cu->header.offset_size == 4)
17003 str_offset = bfd_get_32 (abfd, info_ptr);
17004 else
17005 str_offset = bfd_get_64 (abfd, info_ptr);
17006 if (str_offset >= str_section->size)
17007 error (_("Offset from %s pointing outside of"
17008 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17009 form_name, (long) cu->header.offset.sect_off, objf_name);
17010 return (const char *) (str_section->buffer + str_offset);
17011 }
17012
17013 /* Return the length of an LEB128 number in BUF. */
17014
17015 static int
17016 leb128_size (const gdb_byte *buf)
17017 {
17018 const gdb_byte *begin = buf;
17019 gdb_byte byte;
17020
17021 while (1)
17022 {
17023 byte = *buf++;
17024 if ((byte & 128) == 0)
17025 return buf - begin;
17026 }
17027 }
17028
17029 static void
17030 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17031 {
17032 switch (lang)
17033 {
17034 case DW_LANG_C89:
17035 case DW_LANG_C99:
17036 case DW_LANG_C11:
17037 case DW_LANG_C:
17038 case DW_LANG_UPC:
17039 cu->language = language_c;
17040 break;
17041 case DW_LANG_Java:
17042 case DW_LANG_C_plus_plus:
17043 case DW_LANG_C_plus_plus_11:
17044 case DW_LANG_C_plus_plus_14:
17045 cu->language = language_cplus;
17046 break;
17047 case DW_LANG_D:
17048 cu->language = language_d;
17049 break;
17050 case DW_LANG_Fortran77:
17051 case DW_LANG_Fortran90:
17052 case DW_LANG_Fortran95:
17053 case DW_LANG_Fortran03:
17054 case DW_LANG_Fortran08:
17055 cu->language = language_fortran;
17056 break;
17057 case DW_LANG_Go:
17058 cu->language = language_go;
17059 break;
17060 case DW_LANG_Mips_Assembler:
17061 cu->language = language_asm;
17062 break;
17063 case DW_LANG_Ada83:
17064 case DW_LANG_Ada95:
17065 cu->language = language_ada;
17066 break;
17067 case DW_LANG_Modula2:
17068 cu->language = language_m2;
17069 break;
17070 case DW_LANG_Pascal83:
17071 cu->language = language_pascal;
17072 break;
17073 case DW_LANG_ObjC:
17074 cu->language = language_objc;
17075 break;
17076 case DW_LANG_Rust:
17077 case DW_LANG_Rust_old:
17078 cu->language = language_rust;
17079 break;
17080 case DW_LANG_Cobol74:
17081 case DW_LANG_Cobol85:
17082 default:
17083 cu->language = language_minimal;
17084 break;
17085 }
17086 cu->language_defn = language_def (cu->language);
17087 }
17088
17089 /* Return the named attribute or NULL if not there. */
17090
17091 static struct attribute *
17092 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17093 {
17094 for (;;)
17095 {
17096 unsigned int i;
17097 struct attribute *spec = NULL;
17098
17099 for (i = 0; i < die->num_attrs; ++i)
17100 {
17101 if (die->attrs[i].name == name)
17102 return &die->attrs[i];
17103 if (die->attrs[i].name == DW_AT_specification
17104 || die->attrs[i].name == DW_AT_abstract_origin)
17105 spec = &die->attrs[i];
17106 }
17107
17108 if (!spec)
17109 break;
17110
17111 die = follow_die_ref (die, spec, &cu);
17112 }
17113
17114 return NULL;
17115 }
17116
17117 /* Return the named attribute or NULL if not there,
17118 but do not follow DW_AT_specification, etc.
17119 This is for use in contexts where we're reading .debug_types dies.
17120 Following DW_AT_specification, DW_AT_abstract_origin will take us
17121 back up the chain, and we want to go down. */
17122
17123 static struct attribute *
17124 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17125 {
17126 unsigned int i;
17127
17128 for (i = 0; i < die->num_attrs; ++i)
17129 if (die->attrs[i].name == name)
17130 return &die->attrs[i];
17131
17132 return NULL;
17133 }
17134
17135 /* Return the string associated with a string-typed attribute, or NULL if it
17136 is either not found or is of an incorrect type. */
17137
17138 static const char *
17139 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17140 {
17141 struct attribute *attr;
17142 const char *str = NULL;
17143
17144 attr = dwarf2_attr (die, name, cu);
17145
17146 if (attr != NULL)
17147 {
17148 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17149 || attr->form == DW_FORM_GNU_strp_alt)
17150 str = DW_STRING (attr);
17151 else
17152 complaint (&symfile_complaints,
17153 _("string type expected for attribute %s for "
17154 "DIE at 0x%x in module %s"),
17155 dwarf_attr_name (name), die->offset.sect_off,
17156 objfile_name (cu->objfile));
17157 }
17158
17159 return str;
17160 }
17161
17162 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17163 and holds a non-zero value. This function should only be used for
17164 DW_FORM_flag or DW_FORM_flag_present attributes. */
17165
17166 static int
17167 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17168 {
17169 struct attribute *attr = dwarf2_attr (die, name, cu);
17170
17171 return (attr && DW_UNSND (attr));
17172 }
17173
17174 static int
17175 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17176 {
17177 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17178 which value is non-zero. However, we have to be careful with
17179 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17180 (via dwarf2_flag_true_p) follows this attribute. So we may
17181 end up accidently finding a declaration attribute that belongs
17182 to a different DIE referenced by the specification attribute,
17183 even though the given DIE does not have a declaration attribute. */
17184 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17185 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17186 }
17187
17188 /* Return the die giving the specification for DIE, if there is
17189 one. *SPEC_CU is the CU containing DIE on input, and the CU
17190 containing the return value on output. If there is no
17191 specification, but there is an abstract origin, that is
17192 returned. */
17193
17194 static struct die_info *
17195 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17196 {
17197 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17198 *spec_cu);
17199
17200 if (spec_attr == NULL)
17201 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17202
17203 if (spec_attr == NULL)
17204 return NULL;
17205 else
17206 return follow_die_ref (die, spec_attr, spec_cu);
17207 }
17208
17209 /* Free the line_header structure *LH, and any arrays and strings it
17210 refers to.
17211 NOTE: This is also used as a "cleanup" function. */
17212
17213 static void
17214 free_line_header (struct line_header *lh)
17215 {
17216 if (lh->standard_opcode_lengths)
17217 xfree (lh->standard_opcode_lengths);
17218
17219 /* Remember that all the lh->file_names[i].name pointers are
17220 pointers into debug_line_buffer, and don't need to be freed. */
17221 if (lh->file_names)
17222 xfree (lh->file_names);
17223
17224 /* Similarly for the include directory names. */
17225 if (lh->include_dirs)
17226 xfree (lh->include_dirs);
17227
17228 xfree (lh);
17229 }
17230
17231 /* Stub for free_line_header to match void * callback types. */
17232
17233 static void
17234 free_line_header_voidp (void *arg)
17235 {
17236 struct line_header *lh = (struct line_header *) arg;
17237
17238 free_line_header (lh);
17239 }
17240
17241 /* Add an entry to LH's include directory table. */
17242
17243 static void
17244 add_include_dir (struct line_header *lh, const char *include_dir)
17245 {
17246 if (dwarf_line_debug >= 2)
17247 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17248 lh->num_include_dirs + 1, include_dir);
17249
17250 /* Grow the array if necessary. */
17251 if (lh->include_dirs_size == 0)
17252 {
17253 lh->include_dirs_size = 1; /* for testing */
17254 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17255 }
17256 else if (lh->num_include_dirs >= lh->include_dirs_size)
17257 {
17258 lh->include_dirs_size *= 2;
17259 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17260 lh->include_dirs_size);
17261 }
17262
17263 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17264 }
17265
17266 /* Add an entry to LH's file name table. */
17267
17268 static void
17269 add_file_name (struct line_header *lh,
17270 const char *name,
17271 unsigned int dir_index,
17272 unsigned int mod_time,
17273 unsigned int length)
17274 {
17275 struct file_entry *fe;
17276
17277 if (dwarf_line_debug >= 2)
17278 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17279 lh->num_file_names + 1, name);
17280
17281 /* Grow the array if necessary. */
17282 if (lh->file_names_size == 0)
17283 {
17284 lh->file_names_size = 1; /* for testing */
17285 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17286 }
17287 else if (lh->num_file_names >= lh->file_names_size)
17288 {
17289 lh->file_names_size *= 2;
17290 lh->file_names
17291 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17292 }
17293
17294 fe = &lh->file_names[lh->num_file_names++];
17295 fe->name = name;
17296 fe->dir_index = dir_index;
17297 fe->mod_time = mod_time;
17298 fe->length = length;
17299 fe->included_p = 0;
17300 fe->symtab = NULL;
17301 }
17302
17303 /* A convenience function to find the proper .debug_line section for a CU. */
17304
17305 static struct dwarf2_section_info *
17306 get_debug_line_section (struct dwarf2_cu *cu)
17307 {
17308 struct dwarf2_section_info *section;
17309
17310 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17311 DWO file. */
17312 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17313 section = &cu->dwo_unit->dwo_file->sections.line;
17314 else if (cu->per_cu->is_dwz)
17315 {
17316 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17317
17318 section = &dwz->line;
17319 }
17320 else
17321 section = &dwarf2_per_objfile->line;
17322
17323 return section;
17324 }
17325
17326 /* Read the statement program header starting at OFFSET in
17327 .debug_line, or .debug_line.dwo. Return a pointer
17328 to a struct line_header, allocated using xmalloc.
17329 Returns NULL if there is a problem reading the header, e.g., if it
17330 has a version we don't understand.
17331
17332 NOTE: the strings in the include directory and file name tables of
17333 the returned object point into the dwarf line section buffer,
17334 and must not be freed. */
17335
17336 static struct line_header *
17337 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17338 {
17339 struct cleanup *back_to;
17340 struct line_header *lh;
17341 const gdb_byte *line_ptr;
17342 unsigned int bytes_read, offset_size;
17343 int i;
17344 const char *cur_dir, *cur_file;
17345 struct dwarf2_section_info *section;
17346 bfd *abfd;
17347
17348 section = get_debug_line_section (cu);
17349 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17350 if (section->buffer == NULL)
17351 {
17352 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17353 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17354 else
17355 complaint (&symfile_complaints, _("missing .debug_line section"));
17356 return 0;
17357 }
17358
17359 /* We can't do this until we know the section is non-empty.
17360 Only then do we know we have such a section. */
17361 abfd = get_section_bfd_owner (section);
17362
17363 /* Make sure that at least there's room for the total_length field.
17364 That could be 12 bytes long, but we're just going to fudge that. */
17365 if (offset + 4 >= section->size)
17366 {
17367 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17368 return 0;
17369 }
17370
17371 lh = XNEW (struct line_header);
17372 memset (lh, 0, sizeof (*lh));
17373 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17374 (void *) lh);
17375
17376 lh->offset.sect_off = offset;
17377 lh->offset_in_dwz = cu->per_cu->is_dwz;
17378
17379 line_ptr = section->buffer + offset;
17380
17381 /* Read in the header. */
17382 lh->total_length =
17383 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17384 &bytes_read, &offset_size);
17385 line_ptr += bytes_read;
17386 if (line_ptr + lh->total_length > (section->buffer + section->size))
17387 {
17388 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17389 do_cleanups (back_to);
17390 return 0;
17391 }
17392 lh->statement_program_end = line_ptr + lh->total_length;
17393 lh->version = read_2_bytes (abfd, line_ptr);
17394 line_ptr += 2;
17395 if (lh->version > 4)
17396 {
17397 /* This is a version we don't understand. The format could have
17398 changed in ways we don't handle properly so just punt. */
17399 complaint (&symfile_complaints,
17400 _("unsupported version in .debug_line section"));
17401 return NULL;
17402 }
17403 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17404 line_ptr += offset_size;
17405 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17406 line_ptr += 1;
17407 if (lh->version >= 4)
17408 {
17409 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17410 line_ptr += 1;
17411 }
17412 else
17413 lh->maximum_ops_per_instruction = 1;
17414
17415 if (lh->maximum_ops_per_instruction == 0)
17416 {
17417 lh->maximum_ops_per_instruction = 1;
17418 complaint (&symfile_complaints,
17419 _("invalid maximum_ops_per_instruction "
17420 "in `.debug_line' section"));
17421 }
17422
17423 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17424 line_ptr += 1;
17425 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17426 line_ptr += 1;
17427 lh->line_range = read_1_byte (abfd, line_ptr);
17428 line_ptr += 1;
17429 lh->opcode_base = read_1_byte (abfd, line_ptr);
17430 line_ptr += 1;
17431 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17432
17433 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17434 for (i = 1; i < lh->opcode_base; ++i)
17435 {
17436 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17437 line_ptr += 1;
17438 }
17439
17440 /* Read directory table. */
17441 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17442 {
17443 line_ptr += bytes_read;
17444 add_include_dir (lh, cur_dir);
17445 }
17446 line_ptr += bytes_read;
17447
17448 /* Read file name table. */
17449 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17450 {
17451 unsigned int dir_index, mod_time, length;
17452
17453 line_ptr += bytes_read;
17454 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17455 line_ptr += bytes_read;
17456 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17457 line_ptr += bytes_read;
17458 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17459 line_ptr += bytes_read;
17460
17461 add_file_name (lh, cur_file, dir_index, mod_time, length);
17462 }
17463 line_ptr += bytes_read;
17464 lh->statement_program_start = line_ptr;
17465
17466 if (line_ptr > (section->buffer + section->size))
17467 complaint (&symfile_complaints,
17468 _("line number info header doesn't "
17469 "fit in `.debug_line' section"));
17470
17471 discard_cleanups (back_to);
17472 return lh;
17473 }
17474
17475 /* Subroutine of dwarf_decode_lines to simplify it.
17476 Return the file name of the psymtab for included file FILE_INDEX
17477 in line header LH of PST.
17478 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17479 If space for the result is malloc'd, it will be freed by a cleanup.
17480 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17481
17482 The function creates dangling cleanup registration. */
17483
17484 static const char *
17485 psymtab_include_file_name (const struct line_header *lh, int file_index,
17486 const struct partial_symtab *pst,
17487 const char *comp_dir)
17488 {
17489 const struct file_entry fe = lh->file_names [file_index];
17490 const char *include_name = fe.name;
17491 const char *include_name_to_compare = include_name;
17492 const char *dir_name = NULL;
17493 const char *pst_filename;
17494 char *copied_name = NULL;
17495 int file_is_pst;
17496
17497 if (fe.dir_index && lh->include_dirs != NULL)
17498 dir_name = lh->include_dirs[fe.dir_index - 1];
17499
17500 if (!IS_ABSOLUTE_PATH (include_name)
17501 && (dir_name != NULL || comp_dir != NULL))
17502 {
17503 /* Avoid creating a duplicate psymtab for PST.
17504 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17505 Before we do the comparison, however, we need to account
17506 for DIR_NAME and COMP_DIR.
17507 First prepend dir_name (if non-NULL). If we still don't
17508 have an absolute path prepend comp_dir (if non-NULL).
17509 However, the directory we record in the include-file's
17510 psymtab does not contain COMP_DIR (to match the
17511 corresponding symtab(s)).
17512
17513 Example:
17514
17515 bash$ cd /tmp
17516 bash$ gcc -g ./hello.c
17517 include_name = "hello.c"
17518 dir_name = "."
17519 DW_AT_comp_dir = comp_dir = "/tmp"
17520 DW_AT_name = "./hello.c"
17521
17522 */
17523
17524 if (dir_name != NULL)
17525 {
17526 char *tem = concat (dir_name, SLASH_STRING,
17527 include_name, (char *)NULL);
17528
17529 make_cleanup (xfree, tem);
17530 include_name = tem;
17531 include_name_to_compare = include_name;
17532 }
17533 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17534 {
17535 char *tem = concat (comp_dir, SLASH_STRING,
17536 include_name, (char *)NULL);
17537
17538 make_cleanup (xfree, tem);
17539 include_name_to_compare = tem;
17540 }
17541 }
17542
17543 pst_filename = pst->filename;
17544 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17545 {
17546 copied_name = concat (pst->dirname, SLASH_STRING,
17547 pst_filename, (char *)NULL);
17548 pst_filename = copied_name;
17549 }
17550
17551 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17552
17553 if (copied_name != NULL)
17554 xfree (copied_name);
17555
17556 if (file_is_pst)
17557 return NULL;
17558 return include_name;
17559 }
17560
17561 /* State machine to track the state of the line number program. */
17562
17563 typedef struct
17564 {
17565 /* These are part of the standard DWARF line number state machine. */
17566
17567 unsigned char op_index;
17568 unsigned int file;
17569 unsigned int line;
17570 CORE_ADDR address;
17571 int is_stmt;
17572 unsigned int discriminator;
17573
17574 /* Additional bits of state we need to track. */
17575
17576 /* The last file that we called dwarf2_start_subfile for.
17577 This is only used for TLLs. */
17578 unsigned int last_file;
17579 /* The last file a line number was recorded for. */
17580 struct subfile *last_subfile;
17581
17582 /* The function to call to record a line. */
17583 record_line_ftype *record_line;
17584
17585 /* The last line number that was recorded, used to coalesce
17586 consecutive entries for the same line. This can happen, for
17587 example, when discriminators are present. PR 17276. */
17588 unsigned int last_line;
17589 int line_has_non_zero_discriminator;
17590 } lnp_state_machine;
17591
17592 /* There's a lot of static state to pass to dwarf_record_line.
17593 This keeps it all together. */
17594
17595 typedef struct
17596 {
17597 /* The gdbarch. */
17598 struct gdbarch *gdbarch;
17599
17600 /* The line number header. */
17601 struct line_header *line_header;
17602
17603 /* Non-zero if we're recording lines.
17604 Otherwise we're building partial symtabs and are just interested in
17605 finding include files mentioned by the line number program. */
17606 int record_lines_p;
17607 } lnp_reader_state;
17608
17609 /* Ignore this record_line request. */
17610
17611 static void
17612 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17613 {
17614 return;
17615 }
17616
17617 /* Return non-zero if we should add LINE to the line number table.
17618 LINE is the line to add, LAST_LINE is the last line that was added,
17619 LAST_SUBFILE is the subfile for LAST_LINE.
17620 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17621 had a non-zero discriminator.
17622
17623 We have to be careful in the presence of discriminators.
17624 E.g., for this line:
17625
17626 for (i = 0; i < 100000; i++);
17627
17628 clang can emit four line number entries for that one line,
17629 each with a different discriminator.
17630 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17631
17632 However, we want gdb to coalesce all four entries into one.
17633 Otherwise the user could stepi into the middle of the line and
17634 gdb would get confused about whether the pc really was in the
17635 middle of the line.
17636
17637 Things are further complicated by the fact that two consecutive
17638 line number entries for the same line is a heuristic used by gcc
17639 to denote the end of the prologue. So we can't just discard duplicate
17640 entries, we have to be selective about it. The heuristic we use is
17641 that we only collapse consecutive entries for the same line if at least
17642 one of those entries has a non-zero discriminator. PR 17276.
17643
17644 Note: Addresses in the line number state machine can never go backwards
17645 within one sequence, thus this coalescing is ok. */
17646
17647 static int
17648 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17649 int line_has_non_zero_discriminator,
17650 struct subfile *last_subfile)
17651 {
17652 if (current_subfile != last_subfile)
17653 return 1;
17654 if (line != last_line)
17655 return 1;
17656 /* Same line for the same file that we've seen already.
17657 As a last check, for pr 17276, only record the line if the line
17658 has never had a non-zero discriminator. */
17659 if (!line_has_non_zero_discriminator)
17660 return 1;
17661 return 0;
17662 }
17663
17664 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17665 in the line table of subfile SUBFILE. */
17666
17667 static void
17668 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17669 unsigned int line, CORE_ADDR address,
17670 record_line_ftype p_record_line)
17671 {
17672 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17673
17674 if (dwarf_line_debug)
17675 {
17676 fprintf_unfiltered (gdb_stdlog,
17677 "Recording line %u, file %s, address %s\n",
17678 line, lbasename (subfile->name),
17679 paddress (gdbarch, address));
17680 }
17681
17682 (*p_record_line) (subfile, line, addr);
17683 }
17684
17685 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17686 Mark the end of a set of line number records.
17687 The arguments are the same as for dwarf_record_line_1.
17688 If SUBFILE is NULL the request is ignored. */
17689
17690 static void
17691 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17692 CORE_ADDR address, record_line_ftype p_record_line)
17693 {
17694 if (subfile == NULL)
17695 return;
17696
17697 if (dwarf_line_debug)
17698 {
17699 fprintf_unfiltered (gdb_stdlog,
17700 "Finishing current line, file %s, address %s\n",
17701 lbasename (subfile->name),
17702 paddress (gdbarch, address));
17703 }
17704
17705 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17706 }
17707
17708 /* Record the line in STATE.
17709 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17710
17711 static void
17712 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17713 int end_sequence)
17714 {
17715 const struct line_header *lh = reader->line_header;
17716 unsigned int file, line, discriminator;
17717 int is_stmt;
17718
17719 file = state->file;
17720 line = state->line;
17721 is_stmt = state->is_stmt;
17722 discriminator = state->discriminator;
17723
17724 if (dwarf_line_debug)
17725 {
17726 fprintf_unfiltered (gdb_stdlog,
17727 "Processing actual line %u: file %u,"
17728 " address %s, is_stmt %u, discrim %u\n",
17729 line, file,
17730 paddress (reader->gdbarch, state->address),
17731 is_stmt, discriminator);
17732 }
17733
17734 if (file == 0 || file - 1 >= lh->num_file_names)
17735 dwarf2_debug_line_missing_file_complaint ();
17736 /* For now we ignore lines not starting on an instruction boundary.
17737 But not when processing end_sequence for compatibility with the
17738 previous version of the code. */
17739 else if (state->op_index == 0 || end_sequence)
17740 {
17741 lh->file_names[file - 1].included_p = 1;
17742 if (reader->record_lines_p && is_stmt)
17743 {
17744 if (state->last_subfile != current_subfile || end_sequence)
17745 {
17746 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17747 state->address, state->record_line);
17748 }
17749
17750 if (!end_sequence)
17751 {
17752 if (dwarf_record_line_p (line, state->last_line,
17753 state->line_has_non_zero_discriminator,
17754 state->last_subfile))
17755 {
17756 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17757 line, state->address,
17758 state->record_line);
17759 }
17760 state->last_subfile = current_subfile;
17761 state->last_line = line;
17762 }
17763 }
17764 }
17765 }
17766
17767 /* Initialize STATE for the start of a line number program. */
17768
17769 static void
17770 init_lnp_state_machine (lnp_state_machine *state,
17771 const lnp_reader_state *reader)
17772 {
17773 memset (state, 0, sizeof (*state));
17774
17775 /* Just starting, there is no "last file". */
17776 state->last_file = 0;
17777 state->last_subfile = NULL;
17778
17779 state->record_line = record_line;
17780
17781 state->last_line = 0;
17782 state->line_has_non_zero_discriminator = 0;
17783
17784 /* Initialize these according to the DWARF spec. */
17785 state->op_index = 0;
17786 state->file = 1;
17787 state->line = 1;
17788 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17789 was a line entry for it so that the backend has a chance to adjust it
17790 and also record it in case it needs it. This is currently used by MIPS
17791 code, cf. `mips_adjust_dwarf2_line'. */
17792 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17793 state->is_stmt = reader->line_header->default_is_stmt;
17794 state->discriminator = 0;
17795 }
17796
17797 /* Check address and if invalid nop-out the rest of the lines in this
17798 sequence. */
17799
17800 static void
17801 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17802 const gdb_byte *line_ptr,
17803 CORE_ADDR lowpc, CORE_ADDR address)
17804 {
17805 /* If address < lowpc then it's not a usable value, it's outside the
17806 pc range of the CU. However, we restrict the test to only address
17807 values of zero to preserve GDB's previous behaviour which is to
17808 handle the specific case of a function being GC'd by the linker. */
17809
17810 if (address == 0 && address < lowpc)
17811 {
17812 /* This line table is for a function which has been
17813 GCd by the linker. Ignore it. PR gdb/12528 */
17814
17815 struct objfile *objfile = cu->objfile;
17816 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17817
17818 complaint (&symfile_complaints,
17819 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17820 line_offset, objfile_name (objfile));
17821 state->record_line = noop_record_line;
17822 /* Note: sm.record_line is left as noop_record_line
17823 until we see DW_LNE_end_sequence. */
17824 }
17825 }
17826
17827 /* Subroutine of dwarf_decode_lines to simplify it.
17828 Process the line number information in LH.
17829 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17830 program in order to set included_p for every referenced header. */
17831
17832 static void
17833 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17834 const int decode_for_pst_p, CORE_ADDR lowpc)
17835 {
17836 const gdb_byte *line_ptr, *extended_end;
17837 const gdb_byte *line_end;
17838 unsigned int bytes_read, extended_len;
17839 unsigned char op_code, extended_op;
17840 CORE_ADDR baseaddr;
17841 struct objfile *objfile = cu->objfile;
17842 bfd *abfd = objfile->obfd;
17843 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17844 /* Non-zero if we're recording line info (as opposed to building partial
17845 symtabs). */
17846 int record_lines_p = !decode_for_pst_p;
17847 /* A collection of things we need to pass to dwarf_record_line. */
17848 lnp_reader_state reader_state;
17849
17850 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17851
17852 line_ptr = lh->statement_program_start;
17853 line_end = lh->statement_program_end;
17854
17855 reader_state.gdbarch = gdbarch;
17856 reader_state.line_header = lh;
17857 reader_state.record_lines_p = record_lines_p;
17858
17859 /* Read the statement sequences until there's nothing left. */
17860 while (line_ptr < line_end)
17861 {
17862 /* The DWARF line number program state machine. */
17863 lnp_state_machine state_machine;
17864 int end_sequence = 0;
17865
17866 /* Reset the state machine at the start of each sequence. */
17867 init_lnp_state_machine (&state_machine, &reader_state);
17868
17869 if (record_lines_p && lh->num_file_names >= state_machine.file)
17870 {
17871 /* Start a subfile for the current file of the state machine. */
17872 /* lh->include_dirs and lh->file_names are 0-based, but the
17873 directory and file name numbers in the statement program
17874 are 1-based. */
17875 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17876 const char *dir = NULL;
17877
17878 if (fe->dir_index && lh->include_dirs != NULL)
17879 dir = lh->include_dirs[fe->dir_index - 1];
17880
17881 dwarf2_start_subfile (fe->name, dir);
17882 }
17883
17884 /* Decode the table. */
17885 while (line_ptr < line_end && !end_sequence)
17886 {
17887 op_code = read_1_byte (abfd, line_ptr);
17888 line_ptr += 1;
17889
17890 if (op_code >= lh->opcode_base)
17891 {
17892 /* Special opcode. */
17893 unsigned char adj_opcode;
17894 CORE_ADDR addr_adj;
17895 int line_delta;
17896
17897 adj_opcode = op_code - lh->opcode_base;
17898 addr_adj = (((state_machine.op_index
17899 + (adj_opcode / lh->line_range))
17900 / lh->maximum_ops_per_instruction)
17901 * lh->minimum_instruction_length);
17902 state_machine.address
17903 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17904 state_machine.op_index = ((state_machine.op_index
17905 + (adj_opcode / lh->line_range))
17906 % lh->maximum_ops_per_instruction);
17907 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17908 state_machine.line += line_delta;
17909 if (line_delta != 0)
17910 state_machine.line_has_non_zero_discriminator
17911 = state_machine.discriminator != 0;
17912
17913 dwarf_record_line (&reader_state, &state_machine, 0);
17914 state_machine.discriminator = 0;
17915 }
17916 else switch (op_code)
17917 {
17918 case DW_LNS_extended_op:
17919 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17920 &bytes_read);
17921 line_ptr += bytes_read;
17922 extended_end = line_ptr + extended_len;
17923 extended_op = read_1_byte (abfd, line_ptr);
17924 line_ptr += 1;
17925 switch (extended_op)
17926 {
17927 case DW_LNE_end_sequence:
17928 state_machine.record_line = record_line;
17929 end_sequence = 1;
17930 break;
17931 case DW_LNE_set_address:
17932 {
17933 CORE_ADDR address
17934 = read_address (abfd, line_ptr, cu, &bytes_read);
17935
17936 line_ptr += bytes_read;
17937 check_line_address (cu, &state_machine, line_ptr,
17938 lowpc, address);
17939 state_machine.op_index = 0;
17940 address += baseaddr;
17941 state_machine.address
17942 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17943 }
17944 break;
17945 case DW_LNE_define_file:
17946 {
17947 const char *cur_file;
17948 unsigned int dir_index, mod_time, length;
17949
17950 cur_file = read_direct_string (abfd, line_ptr,
17951 &bytes_read);
17952 line_ptr += bytes_read;
17953 dir_index =
17954 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17955 line_ptr += bytes_read;
17956 mod_time =
17957 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17958 line_ptr += bytes_read;
17959 length =
17960 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17961 line_ptr += bytes_read;
17962 add_file_name (lh, cur_file, dir_index, mod_time, length);
17963 }
17964 break;
17965 case DW_LNE_set_discriminator:
17966 /* The discriminator is not interesting to the debugger;
17967 just ignore it. We still need to check its value though:
17968 if there are consecutive entries for the same
17969 (non-prologue) line we want to coalesce them.
17970 PR 17276. */
17971 state_machine.discriminator
17972 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17973 state_machine.line_has_non_zero_discriminator
17974 |= state_machine.discriminator != 0;
17975 line_ptr += bytes_read;
17976 break;
17977 default:
17978 complaint (&symfile_complaints,
17979 _("mangled .debug_line section"));
17980 return;
17981 }
17982 /* Make sure that we parsed the extended op correctly. If e.g.
17983 we expected a different address size than the producer used,
17984 we may have read the wrong number of bytes. */
17985 if (line_ptr != extended_end)
17986 {
17987 complaint (&symfile_complaints,
17988 _("mangled .debug_line section"));
17989 return;
17990 }
17991 break;
17992 case DW_LNS_copy:
17993 dwarf_record_line (&reader_state, &state_machine, 0);
17994 state_machine.discriminator = 0;
17995 break;
17996 case DW_LNS_advance_pc:
17997 {
17998 CORE_ADDR adjust
17999 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18000 CORE_ADDR addr_adj;
18001
18002 addr_adj = (((state_machine.op_index + adjust)
18003 / lh->maximum_ops_per_instruction)
18004 * lh->minimum_instruction_length);
18005 state_machine.address
18006 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18007 state_machine.op_index = ((state_machine.op_index + adjust)
18008 % lh->maximum_ops_per_instruction);
18009 line_ptr += bytes_read;
18010 }
18011 break;
18012 case DW_LNS_advance_line:
18013 {
18014 int line_delta
18015 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18016
18017 state_machine.line += line_delta;
18018 if (line_delta != 0)
18019 state_machine.line_has_non_zero_discriminator
18020 = state_machine.discriminator != 0;
18021 line_ptr += bytes_read;
18022 }
18023 break;
18024 case DW_LNS_set_file:
18025 {
18026 /* The arrays lh->include_dirs and lh->file_names are
18027 0-based, but the directory and file name numbers in
18028 the statement program are 1-based. */
18029 struct file_entry *fe;
18030 const char *dir = NULL;
18031
18032 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18033 &bytes_read);
18034 line_ptr += bytes_read;
18035 if (state_machine.file == 0
18036 || state_machine.file - 1 >= lh->num_file_names)
18037 dwarf2_debug_line_missing_file_complaint ();
18038 else
18039 {
18040 fe = &lh->file_names[state_machine.file - 1];
18041 if (fe->dir_index && lh->include_dirs != NULL)
18042 dir = lh->include_dirs[fe->dir_index - 1];
18043 if (record_lines_p)
18044 {
18045 state_machine.last_subfile = current_subfile;
18046 state_machine.line_has_non_zero_discriminator
18047 = state_machine.discriminator != 0;
18048 dwarf2_start_subfile (fe->name, dir);
18049 }
18050 }
18051 }
18052 break;
18053 case DW_LNS_set_column:
18054 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18055 line_ptr += bytes_read;
18056 break;
18057 case DW_LNS_negate_stmt:
18058 state_machine.is_stmt = (!state_machine.is_stmt);
18059 break;
18060 case DW_LNS_set_basic_block:
18061 break;
18062 /* Add to the address register of the state machine the
18063 address increment value corresponding to special opcode
18064 255. I.e., this value is scaled by the minimum
18065 instruction length since special opcode 255 would have
18066 scaled the increment. */
18067 case DW_LNS_const_add_pc:
18068 {
18069 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18070 CORE_ADDR addr_adj;
18071
18072 addr_adj = (((state_machine.op_index + adjust)
18073 / lh->maximum_ops_per_instruction)
18074 * lh->minimum_instruction_length);
18075 state_machine.address
18076 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18077 state_machine.op_index = ((state_machine.op_index + adjust)
18078 % lh->maximum_ops_per_instruction);
18079 }
18080 break;
18081 case DW_LNS_fixed_advance_pc:
18082 {
18083 CORE_ADDR addr_adj;
18084
18085 addr_adj = read_2_bytes (abfd, line_ptr);
18086 state_machine.address
18087 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18088 state_machine.op_index = 0;
18089 line_ptr += 2;
18090 }
18091 break;
18092 default:
18093 {
18094 /* Unknown standard opcode, ignore it. */
18095 int i;
18096
18097 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18098 {
18099 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18100 line_ptr += bytes_read;
18101 }
18102 }
18103 }
18104 }
18105
18106 if (!end_sequence)
18107 dwarf2_debug_line_missing_end_sequence_complaint ();
18108
18109 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18110 in which case we still finish recording the last line). */
18111 dwarf_record_line (&reader_state, &state_machine, 1);
18112 }
18113 }
18114
18115 /* Decode the Line Number Program (LNP) for the given line_header
18116 structure and CU. The actual information extracted and the type
18117 of structures created from the LNP depends on the value of PST.
18118
18119 1. If PST is NULL, then this procedure uses the data from the program
18120 to create all necessary symbol tables, and their linetables.
18121
18122 2. If PST is not NULL, this procedure reads the program to determine
18123 the list of files included by the unit represented by PST, and
18124 builds all the associated partial symbol tables.
18125
18126 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18127 It is used for relative paths in the line table.
18128 NOTE: When processing partial symtabs (pst != NULL),
18129 comp_dir == pst->dirname.
18130
18131 NOTE: It is important that psymtabs have the same file name (via strcmp)
18132 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18133 symtab we don't use it in the name of the psymtabs we create.
18134 E.g. expand_line_sal requires this when finding psymtabs to expand.
18135 A good testcase for this is mb-inline.exp.
18136
18137 LOWPC is the lowest address in CU (or 0 if not known).
18138
18139 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18140 for its PC<->lines mapping information. Otherwise only the filename
18141 table is read in. */
18142
18143 static void
18144 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18145 struct dwarf2_cu *cu, struct partial_symtab *pst,
18146 CORE_ADDR lowpc, int decode_mapping)
18147 {
18148 struct objfile *objfile = cu->objfile;
18149 const int decode_for_pst_p = (pst != NULL);
18150
18151 if (decode_mapping)
18152 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18153
18154 if (decode_for_pst_p)
18155 {
18156 int file_index;
18157
18158 /* Now that we're done scanning the Line Header Program, we can
18159 create the psymtab of each included file. */
18160 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18161 if (lh->file_names[file_index].included_p == 1)
18162 {
18163 const char *include_name =
18164 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18165 if (include_name != NULL)
18166 dwarf2_create_include_psymtab (include_name, pst, objfile);
18167 }
18168 }
18169 else
18170 {
18171 /* Make sure a symtab is created for every file, even files
18172 which contain only variables (i.e. no code with associated
18173 line numbers). */
18174 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18175 int i;
18176
18177 for (i = 0; i < lh->num_file_names; i++)
18178 {
18179 const char *dir = NULL;
18180 struct file_entry *fe;
18181
18182 fe = &lh->file_names[i];
18183 if (fe->dir_index && lh->include_dirs != NULL)
18184 dir = lh->include_dirs[fe->dir_index - 1];
18185 dwarf2_start_subfile (fe->name, dir);
18186
18187 if (current_subfile->symtab == NULL)
18188 {
18189 current_subfile->symtab
18190 = allocate_symtab (cust, current_subfile->name);
18191 }
18192 fe->symtab = current_subfile->symtab;
18193 }
18194 }
18195 }
18196
18197 /* Start a subfile for DWARF. FILENAME is the name of the file and
18198 DIRNAME the name of the source directory which contains FILENAME
18199 or NULL if not known.
18200 This routine tries to keep line numbers from identical absolute and
18201 relative file names in a common subfile.
18202
18203 Using the `list' example from the GDB testsuite, which resides in
18204 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18205 of /srcdir/list0.c yields the following debugging information for list0.c:
18206
18207 DW_AT_name: /srcdir/list0.c
18208 DW_AT_comp_dir: /compdir
18209 files.files[0].name: list0.h
18210 files.files[0].dir: /srcdir
18211 files.files[1].name: list0.c
18212 files.files[1].dir: /srcdir
18213
18214 The line number information for list0.c has to end up in a single
18215 subfile, so that `break /srcdir/list0.c:1' works as expected.
18216 start_subfile will ensure that this happens provided that we pass the
18217 concatenation of files.files[1].dir and files.files[1].name as the
18218 subfile's name. */
18219
18220 static void
18221 dwarf2_start_subfile (const char *filename, const char *dirname)
18222 {
18223 char *copy = NULL;
18224
18225 /* In order not to lose the line information directory,
18226 we concatenate it to the filename when it makes sense.
18227 Note that the Dwarf3 standard says (speaking of filenames in line
18228 information): ``The directory index is ignored for file names
18229 that represent full path names''. Thus ignoring dirname in the
18230 `else' branch below isn't an issue. */
18231
18232 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18233 {
18234 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18235 filename = copy;
18236 }
18237
18238 start_subfile (filename);
18239
18240 if (copy != NULL)
18241 xfree (copy);
18242 }
18243
18244 /* Start a symtab for DWARF.
18245 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18246
18247 static struct compunit_symtab *
18248 dwarf2_start_symtab (struct dwarf2_cu *cu,
18249 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18250 {
18251 struct compunit_symtab *cust
18252 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18253
18254 record_debugformat ("DWARF 2");
18255 record_producer (cu->producer);
18256
18257 /* We assume that we're processing GCC output. */
18258 processing_gcc_compilation = 2;
18259
18260 cu->processing_has_namespace_info = 0;
18261
18262 return cust;
18263 }
18264
18265 static void
18266 var_decode_location (struct attribute *attr, struct symbol *sym,
18267 struct dwarf2_cu *cu)
18268 {
18269 struct objfile *objfile = cu->objfile;
18270 struct comp_unit_head *cu_header = &cu->header;
18271
18272 /* NOTE drow/2003-01-30: There used to be a comment and some special
18273 code here to turn a symbol with DW_AT_external and a
18274 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18275 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18276 with some versions of binutils) where shared libraries could have
18277 relocations against symbols in their debug information - the
18278 minimal symbol would have the right address, but the debug info
18279 would not. It's no longer necessary, because we will explicitly
18280 apply relocations when we read in the debug information now. */
18281
18282 /* A DW_AT_location attribute with no contents indicates that a
18283 variable has been optimized away. */
18284 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18285 {
18286 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18287 return;
18288 }
18289
18290 /* Handle one degenerate form of location expression specially, to
18291 preserve GDB's previous behavior when section offsets are
18292 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18293 then mark this symbol as LOC_STATIC. */
18294
18295 if (attr_form_is_block (attr)
18296 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18297 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18298 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18299 && (DW_BLOCK (attr)->size
18300 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18301 {
18302 unsigned int dummy;
18303
18304 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18305 SYMBOL_VALUE_ADDRESS (sym) =
18306 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18307 else
18308 SYMBOL_VALUE_ADDRESS (sym) =
18309 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18310 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18311 fixup_symbol_section (sym, objfile);
18312 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18313 SYMBOL_SECTION (sym));
18314 return;
18315 }
18316
18317 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18318 expression evaluator, and use LOC_COMPUTED only when necessary
18319 (i.e. when the value of a register or memory location is
18320 referenced, or a thread-local block, etc.). Then again, it might
18321 not be worthwhile. I'm assuming that it isn't unless performance
18322 or memory numbers show me otherwise. */
18323
18324 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18325
18326 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18327 cu->has_loclist = 1;
18328 }
18329
18330 /* Given a pointer to a DWARF information entry, figure out if we need
18331 to make a symbol table entry for it, and if so, create a new entry
18332 and return a pointer to it.
18333 If TYPE is NULL, determine symbol type from the die, otherwise
18334 used the passed type.
18335 If SPACE is not NULL, use it to hold the new symbol. If it is
18336 NULL, allocate a new symbol on the objfile's obstack. */
18337
18338 static struct symbol *
18339 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18340 struct symbol *space)
18341 {
18342 struct objfile *objfile = cu->objfile;
18343 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18344 struct symbol *sym = NULL;
18345 const char *name;
18346 struct attribute *attr = NULL;
18347 struct attribute *attr2 = NULL;
18348 CORE_ADDR baseaddr;
18349 struct pending **list_to_add = NULL;
18350
18351 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18352
18353 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18354
18355 name = dwarf2_name (die, cu);
18356 if (name)
18357 {
18358 const char *linkagename;
18359 int suppress_add = 0;
18360
18361 if (space)
18362 sym = space;
18363 else
18364 sym = allocate_symbol (objfile);
18365 OBJSTAT (objfile, n_syms++);
18366
18367 /* Cache this symbol's name and the name's demangled form (if any). */
18368 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18369 linkagename = dwarf2_physname (name, die, cu);
18370 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18371
18372 /* Fortran does not have mangling standard and the mangling does differ
18373 between gfortran, iFort etc. */
18374 if (cu->language == language_fortran
18375 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18376 symbol_set_demangled_name (&(sym->ginfo),
18377 dwarf2_full_name (name, die, cu),
18378 NULL);
18379
18380 /* Default assumptions.
18381 Use the passed type or decode it from the die. */
18382 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18383 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18384 if (type != NULL)
18385 SYMBOL_TYPE (sym) = type;
18386 else
18387 SYMBOL_TYPE (sym) = die_type (die, cu);
18388 attr = dwarf2_attr (die,
18389 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18390 cu);
18391 if (attr)
18392 {
18393 SYMBOL_LINE (sym) = DW_UNSND (attr);
18394 }
18395
18396 attr = dwarf2_attr (die,
18397 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18398 cu);
18399 if (attr)
18400 {
18401 int file_index = DW_UNSND (attr);
18402
18403 if (cu->line_header == NULL
18404 || file_index > cu->line_header->num_file_names)
18405 complaint (&symfile_complaints,
18406 _("file index out of range"));
18407 else if (file_index > 0)
18408 {
18409 struct file_entry *fe;
18410
18411 fe = &cu->line_header->file_names[file_index - 1];
18412 symbol_set_symtab (sym, fe->symtab);
18413 }
18414 }
18415
18416 switch (die->tag)
18417 {
18418 case DW_TAG_label:
18419 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18420 if (attr)
18421 {
18422 CORE_ADDR addr;
18423
18424 addr = attr_value_as_address (attr);
18425 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18426 SYMBOL_VALUE_ADDRESS (sym) = addr;
18427 }
18428 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18429 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18430 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18431 add_symbol_to_list (sym, cu->list_in_scope);
18432 break;
18433 case DW_TAG_subprogram:
18434 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18435 finish_block. */
18436 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18437 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18438 if ((attr2 && (DW_UNSND (attr2) != 0))
18439 || cu->language == language_ada)
18440 {
18441 /* Subprograms marked external are stored as a global symbol.
18442 Ada subprograms, whether marked external or not, are always
18443 stored as a global symbol, because we want to be able to
18444 access them globally. For instance, we want to be able
18445 to break on a nested subprogram without having to
18446 specify the context. */
18447 list_to_add = &global_symbols;
18448 }
18449 else
18450 {
18451 list_to_add = cu->list_in_scope;
18452 }
18453 break;
18454 case DW_TAG_inlined_subroutine:
18455 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18456 finish_block. */
18457 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18458 SYMBOL_INLINED (sym) = 1;
18459 list_to_add = cu->list_in_scope;
18460 break;
18461 case DW_TAG_template_value_param:
18462 suppress_add = 1;
18463 /* Fall through. */
18464 case DW_TAG_constant:
18465 case DW_TAG_variable:
18466 case DW_TAG_member:
18467 /* Compilation with minimal debug info may result in
18468 variables with missing type entries. Change the
18469 misleading `void' type to something sensible. */
18470 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18471 SYMBOL_TYPE (sym)
18472 = objfile_type (objfile)->nodebug_data_symbol;
18473
18474 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18475 /* In the case of DW_TAG_member, we should only be called for
18476 static const members. */
18477 if (die->tag == DW_TAG_member)
18478 {
18479 /* dwarf2_add_field uses die_is_declaration,
18480 so we do the same. */
18481 gdb_assert (die_is_declaration (die, cu));
18482 gdb_assert (attr);
18483 }
18484 if (attr)
18485 {
18486 dwarf2_const_value (attr, sym, cu);
18487 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18488 if (!suppress_add)
18489 {
18490 if (attr2 && (DW_UNSND (attr2) != 0))
18491 list_to_add = &global_symbols;
18492 else
18493 list_to_add = cu->list_in_scope;
18494 }
18495 break;
18496 }
18497 attr = dwarf2_attr (die, DW_AT_location, cu);
18498 if (attr)
18499 {
18500 var_decode_location (attr, sym, cu);
18501 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18502
18503 /* Fortran explicitly imports any global symbols to the local
18504 scope by DW_TAG_common_block. */
18505 if (cu->language == language_fortran && die->parent
18506 && die->parent->tag == DW_TAG_common_block)
18507 attr2 = NULL;
18508
18509 if (SYMBOL_CLASS (sym) == LOC_STATIC
18510 && SYMBOL_VALUE_ADDRESS (sym) == 0
18511 && !dwarf2_per_objfile->has_section_at_zero)
18512 {
18513 /* When a static variable is eliminated by the linker,
18514 the corresponding debug information is not stripped
18515 out, but the variable address is set to null;
18516 do not add such variables into symbol table. */
18517 }
18518 else if (attr2 && (DW_UNSND (attr2) != 0))
18519 {
18520 /* Workaround gfortran PR debug/40040 - it uses
18521 DW_AT_location for variables in -fPIC libraries which may
18522 get overriden by other libraries/executable and get
18523 a different address. Resolve it by the minimal symbol
18524 which may come from inferior's executable using copy
18525 relocation. Make this workaround only for gfortran as for
18526 other compilers GDB cannot guess the minimal symbol
18527 Fortran mangling kind. */
18528 if (cu->language == language_fortran && die->parent
18529 && die->parent->tag == DW_TAG_module
18530 && cu->producer
18531 && startswith (cu->producer, "GNU Fortran"))
18532 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18533
18534 /* A variable with DW_AT_external is never static,
18535 but it may be block-scoped. */
18536 list_to_add = (cu->list_in_scope == &file_symbols
18537 ? &global_symbols : cu->list_in_scope);
18538 }
18539 else
18540 list_to_add = cu->list_in_scope;
18541 }
18542 else
18543 {
18544 /* We do not know the address of this symbol.
18545 If it is an external symbol and we have type information
18546 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18547 The address of the variable will then be determined from
18548 the minimal symbol table whenever the variable is
18549 referenced. */
18550 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18551
18552 /* Fortran explicitly imports any global symbols to the local
18553 scope by DW_TAG_common_block. */
18554 if (cu->language == language_fortran && die->parent
18555 && die->parent->tag == DW_TAG_common_block)
18556 {
18557 /* SYMBOL_CLASS doesn't matter here because
18558 read_common_block is going to reset it. */
18559 if (!suppress_add)
18560 list_to_add = cu->list_in_scope;
18561 }
18562 else if (attr2 && (DW_UNSND (attr2) != 0)
18563 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18564 {
18565 /* A variable with DW_AT_external is never static, but it
18566 may be block-scoped. */
18567 list_to_add = (cu->list_in_scope == &file_symbols
18568 ? &global_symbols : cu->list_in_scope);
18569
18570 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18571 }
18572 else if (!die_is_declaration (die, cu))
18573 {
18574 /* Use the default LOC_OPTIMIZED_OUT class. */
18575 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18576 if (!suppress_add)
18577 list_to_add = cu->list_in_scope;
18578 }
18579 }
18580 break;
18581 case DW_TAG_formal_parameter:
18582 /* If we are inside a function, mark this as an argument. If
18583 not, we might be looking at an argument to an inlined function
18584 when we do not have enough information to show inlined frames;
18585 pretend it's a local variable in that case so that the user can
18586 still see it. */
18587 if (context_stack_depth > 0
18588 && context_stack[context_stack_depth - 1].name != NULL)
18589 SYMBOL_IS_ARGUMENT (sym) = 1;
18590 attr = dwarf2_attr (die, DW_AT_location, cu);
18591 if (attr)
18592 {
18593 var_decode_location (attr, sym, cu);
18594 }
18595 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18596 if (attr)
18597 {
18598 dwarf2_const_value (attr, sym, cu);
18599 }
18600
18601 list_to_add = cu->list_in_scope;
18602 break;
18603 case DW_TAG_unspecified_parameters:
18604 /* From varargs functions; gdb doesn't seem to have any
18605 interest in this information, so just ignore it for now.
18606 (FIXME?) */
18607 break;
18608 case DW_TAG_template_type_param:
18609 suppress_add = 1;
18610 /* Fall through. */
18611 case DW_TAG_class_type:
18612 case DW_TAG_interface_type:
18613 case DW_TAG_structure_type:
18614 case DW_TAG_union_type:
18615 case DW_TAG_set_type:
18616 case DW_TAG_enumeration_type:
18617 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18618 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18619
18620 {
18621 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
18622 really ever be static objects: otherwise, if you try
18623 to, say, break of a class's method and you're in a file
18624 which doesn't mention that class, it won't work unless
18625 the check for all static symbols in lookup_symbol_aux
18626 saves you. See the OtherFileClass tests in
18627 gdb.c++/namespace.exp. */
18628
18629 if (!suppress_add)
18630 {
18631 list_to_add = (cu->list_in_scope == &file_symbols
18632 && cu->language == language_cplus
18633 ? &global_symbols : cu->list_in_scope);
18634
18635 /* The semantics of C++ state that "struct foo {
18636 ... }" also defines a typedef for "foo". */
18637 if (cu->language == language_cplus
18638 || cu->language == language_ada
18639 || cu->language == language_d
18640 || cu->language == language_rust)
18641 {
18642 /* The symbol's name is already allocated along
18643 with this objfile, so we don't need to
18644 duplicate it for the type. */
18645 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18646 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18647 }
18648 }
18649 }
18650 break;
18651 case DW_TAG_typedef:
18652 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18653 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18654 list_to_add = cu->list_in_scope;
18655 break;
18656 case DW_TAG_base_type:
18657 case DW_TAG_subrange_type:
18658 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18659 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18660 list_to_add = cu->list_in_scope;
18661 break;
18662 case DW_TAG_enumerator:
18663 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18664 if (attr)
18665 {
18666 dwarf2_const_value (attr, sym, cu);
18667 }
18668 {
18669 /* NOTE: carlton/2003-11-10: See comment above in the
18670 DW_TAG_class_type, etc. block. */
18671
18672 list_to_add = (cu->list_in_scope == &file_symbols
18673 && cu->language == language_cplus
18674 ? &global_symbols : cu->list_in_scope);
18675 }
18676 break;
18677 case DW_TAG_imported_declaration:
18678 case DW_TAG_namespace:
18679 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18680 list_to_add = &global_symbols;
18681 break;
18682 case DW_TAG_module:
18683 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18684 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18685 list_to_add = &global_symbols;
18686 break;
18687 case DW_TAG_common_block:
18688 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18689 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18690 add_symbol_to_list (sym, cu->list_in_scope);
18691 break;
18692 default:
18693 /* Not a tag we recognize. Hopefully we aren't processing
18694 trash data, but since we must specifically ignore things
18695 we don't recognize, there is nothing else we should do at
18696 this point. */
18697 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18698 dwarf_tag_name (die->tag));
18699 break;
18700 }
18701
18702 if (suppress_add)
18703 {
18704 sym->hash_next = objfile->template_symbols;
18705 objfile->template_symbols = sym;
18706 list_to_add = NULL;
18707 }
18708
18709 if (list_to_add != NULL)
18710 add_symbol_to_list (sym, list_to_add);
18711
18712 /* For the benefit of old versions of GCC, check for anonymous
18713 namespaces based on the demangled name. */
18714 if (!cu->processing_has_namespace_info
18715 && cu->language == language_cplus)
18716 cp_scan_for_anonymous_namespaces (sym, objfile);
18717 }
18718 return (sym);
18719 }
18720
18721 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18722
18723 static struct symbol *
18724 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18725 {
18726 return new_symbol_full (die, type, cu, NULL);
18727 }
18728
18729 /* Given an attr with a DW_FORM_dataN value in host byte order,
18730 zero-extend it as appropriate for the symbol's type. The DWARF
18731 standard (v4) is not entirely clear about the meaning of using
18732 DW_FORM_dataN for a constant with a signed type, where the type is
18733 wider than the data. The conclusion of a discussion on the DWARF
18734 list was that this is unspecified. We choose to always zero-extend
18735 because that is the interpretation long in use by GCC. */
18736
18737 static gdb_byte *
18738 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18739 struct dwarf2_cu *cu, LONGEST *value, int bits)
18740 {
18741 struct objfile *objfile = cu->objfile;
18742 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18743 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18744 LONGEST l = DW_UNSND (attr);
18745
18746 if (bits < sizeof (*value) * 8)
18747 {
18748 l &= ((LONGEST) 1 << bits) - 1;
18749 *value = l;
18750 }
18751 else if (bits == sizeof (*value) * 8)
18752 *value = l;
18753 else
18754 {
18755 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18756 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18757 return bytes;
18758 }
18759
18760 return NULL;
18761 }
18762
18763 /* Read a constant value from an attribute. Either set *VALUE, or if
18764 the value does not fit in *VALUE, set *BYTES - either already
18765 allocated on the objfile obstack, or newly allocated on OBSTACK,
18766 or, set *BATON, if we translated the constant to a location
18767 expression. */
18768
18769 static void
18770 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18771 const char *name, struct obstack *obstack,
18772 struct dwarf2_cu *cu,
18773 LONGEST *value, const gdb_byte **bytes,
18774 struct dwarf2_locexpr_baton **baton)
18775 {
18776 struct objfile *objfile = cu->objfile;
18777 struct comp_unit_head *cu_header = &cu->header;
18778 struct dwarf_block *blk;
18779 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18780 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18781
18782 *value = 0;
18783 *bytes = NULL;
18784 *baton = NULL;
18785
18786 switch (attr->form)
18787 {
18788 case DW_FORM_addr:
18789 case DW_FORM_GNU_addr_index:
18790 {
18791 gdb_byte *data;
18792
18793 if (TYPE_LENGTH (type) != cu_header->addr_size)
18794 dwarf2_const_value_length_mismatch_complaint (name,
18795 cu_header->addr_size,
18796 TYPE_LENGTH (type));
18797 /* Symbols of this form are reasonably rare, so we just
18798 piggyback on the existing location code rather than writing
18799 a new implementation of symbol_computed_ops. */
18800 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18801 (*baton)->per_cu = cu->per_cu;
18802 gdb_assert ((*baton)->per_cu);
18803
18804 (*baton)->size = 2 + cu_header->addr_size;
18805 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18806 (*baton)->data = data;
18807
18808 data[0] = DW_OP_addr;
18809 store_unsigned_integer (&data[1], cu_header->addr_size,
18810 byte_order, DW_ADDR (attr));
18811 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18812 }
18813 break;
18814 case DW_FORM_string:
18815 case DW_FORM_strp:
18816 case DW_FORM_GNU_str_index:
18817 case DW_FORM_GNU_strp_alt:
18818 /* DW_STRING is already allocated on the objfile obstack, point
18819 directly to it. */
18820 *bytes = (const gdb_byte *) DW_STRING (attr);
18821 break;
18822 case DW_FORM_block1:
18823 case DW_FORM_block2:
18824 case DW_FORM_block4:
18825 case DW_FORM_block:
18826 case DW_FORM_exprloc:
18827 blk = DW_BLOCK (attr);
18828 if (TYPE_LENGTH (type) != blk->size)
18829 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18830 TYPE_LENGTH (type));
18831 *bytes = blk->data;
18832 break;
18833
18834 /* The DW_AT_const_value attributes are supposed to carry the
18835 symbol's value "represented as it would be on the target
18836 architecture." By the time we get here, it's already been
18837 converted to host endianness, so we just need to sign- or
18838 zero-extend it as appropriate. */
18839 case DW_FORM_data1:
18840 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18841 break;
18842 case DW_FORM_data2:
18843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18844 break;
18845 case DW_FORM_data4:
18846 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18847 break;
18848 case DW_FORM_data8:
18849 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18850 break;
18851
18852 case DW_FORM_sdata:
18853 *value = DW_SND (attr);
18854 break;
18855
18856 case DW_FORM_udata:
18857 *value = DW_UNSND (attr);
18858 break;
18859
18860 default:
18861 complaint (&symfile_complaints,
18862 _("unsupported const value attribute form: '%s'"),
18863 dwarf_form_name (attr->form));
18864 *value = 0;
18865 break;
18866 }
18867 }
18868
18869
18870 /* Copy constant value from an attribute to a symbol. */
18871
18872 static void
18873 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18874 struct dwarf2_cu *cu)
18875 {
18876 struct objfile *objfile = cu->objfile;
18877 LONGEST value;
18878 const gdb_byte *bytes;
18879 struct dwarf2_locexpr_baton *baton;
18880
18881 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18882 SYMBOL_PRINT_NAME (sym),
18883 &objfile->objfile_obstack, cu,
18884 &value, &bytes, &baton);
18885
18886 if (baton != NULL)
18887 {
18888 SYMBOL_LOCATION_BATON (sym) = baton;
18889 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18890 }
18891 else if (bytes != NULL)
18892 {
18893 SYMBOL_VALUE_BYTES (sym) = bytes;
18894 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18895 }
18896 else
18897 {
18898 SYMBOL_VALUE (sym) = value;
18899 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18900 }
18901 }
18902
18903 /* Return the type of the die in question using its DW_AT_type attribute. */
18904
18905 static struct type *
18906 die_type (struct die_info *die, struct dwarf2_cu *cu)
18907 {
18908 struct attribute *type_attr;
18909
18910 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18911 if (!type_attr)
18912 {
18913 /* A missing DW_AT_type represents a void type. */
18914 return objfile_type (cu->objfile)->builtin_void;
18915 }
18916
18917 return lookup_die_type (die, type_attr, cu);
18918 }
18919
18920 /* True iff CU's producer generates GNAT Ada auxiliary information
18921 that allows to find parallel types through that information instead
18922 of having to do expensive parallel lookups by type name. */
18923
18924 static int
18925 need_gnat_info (struct dwarf2_cu *cu)
18926 {
18927 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18928 of GNAT produces this auxiliary information, without any indication
18929 that it is produced. Part of enhancing the FSF version of GNAT
18930 to produce that information will be to put in place an indicator
18931 that we can use in order to determine whether the descriptive type
18932 info is available or not. One suggestion that has been made is
18933 to use a new attribute, attached to the CU die. For now, assume
18934 that the descriptive type info is not available. */
18935 return 0;
18936 }
18937
18938 /* Return the auxiliary type of the die in question using its
18939 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18940 attribute is not present. */
18941
18942 static struct type *
18943 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18944 {
18945 struct attribute *type_attr;
18946
18947 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18948 if (!type_attr)
18949 return NULL;
18950
18951 return lookup_die_type (die, type_attr, cu);
18952 }
18953
18954 /* If DIE has a descriptive_type attribute, then set the TYPE's
18955 descriptive type accordingly. */
18956
18957 static void
18958 set_descriptive_type (struct type *type, struct die_info *die,
18959 struct dwarf2_cu *cu)
18960 {
18961 struct type *descriptive_type = die_descriptive_type (die, cu);
18962
18963 if (descriptive_type)
18964 {
18965 ALLOCATE_GNAT_AUX_TYPE (type);
18966 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18967 }
18968 }
18969
18970 /* Return the containing type of the die in question using its
18971 DW_AT_containing_type attribute. */
18972
18973 static struct type *
18974 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18975 {
18976 struct attribute *type_attr;
18977
18978 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18979 if (!type_attr)
18980 error (_("Dwarf Error: Problem turning containing type into gdb type "
18981 "[in module %s]"), objfile_name (cu->objfile));
18982
18983 return lookup_die_type (die, type_attr, cu);
18984 }
18985
18986 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18987
18988 static struct type *
18989 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18990 {
18991 struct objfile *objfile = dwarf2_per_objfile->objfile;
18992 char *message, *saved;
18993
18994 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18995 objfile_name (objfile),
18996 cu->header.offset.sect_off,
18997 die->offset.sect_off);
18998 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18999 message, strlen (message));
19000 xfree (message);
19001
19002 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19003 }
19004
19005 /* Look up the type of DIE in CU using its type attribute ATTR.
19006 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19007 DW_AT_containing_type.
19008 If there is no type substitute an error marker. */
19009
19010 static struct type *
19011 lookup_die_type (struct die_info *die, const struct attribute *attr,
19012 struct dwarf2_cu *cu)
19013 {
19014 struct objfile *objfile = cu->objfile;
19015 struct type *this_type;
19016
19017 gdb_assert (attr->name == DW_AT_type
19018 || attr->name == DW_AT_GNAT_descriptive_type
19019 || attr->name == DW_AT_containing_type);
19020
19021 /* First see if we have it cached. */
19022
19023 if (attr->form == DW_FORM_GNU_ref_alt)
19024 {
19025 struct dwarf2_per_cu_data *per_cu;
19026 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19027
19028 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19029 this_type = get_die_type_at_offset (offset, per_cu);
19030 }
19031 else if (attr_form_is_ref (attr))
19032 {
19033 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19034
19035 this_type = get_die_type_at_offset (offset, cu->per_cu);
19036 }
19037 else if (attr->form == DW_FORM_ref_sig8)
19038 {
19039 ULONGEST signature = DW_SIGNATURE (attr);
19040
19041 return get_signatured_type (die, signature, cu);
19042 }
19043 else
19044 {
19045 complaint (&symfile_complaints,
19046 _("Dwarf Error: Bad type attribute %s in DIE"
19047 " at 0x%x [in module %s]"),
19048 dwarf_attr_name (attr->name), die->offset.sect_off,
19049 objfile_name (objfile));
19050 return build_error_marker_type (cu, die);
19051 }
19052
19053 /* If not cached we need to read it in. */
19054
19055 if (this_type == NULL)
19056 {
19057 struct die_info *type_die = NULL;
19058 struct dwarf2_cu *type_cu = cu;
19059
19060 if (attr_form_is_ref (attr))
19061 type_die = follow_die_ref (die, attr, &type_cu);
19062 if (type_die == NULL)
19063 return build_error_marker_type (cu, die);
19064 /* If we find the type now, it's probably because the type came
19065 from an inter-CU reference and the type's CU got expanded before
19066 ours. */
19067 this_type = read_type_die (type_die, type_cu);
19068 }
19069
19070 /* If we still don't have a type use an error marker. */
19071
19072 if (this_type == NULL)
19073 return build_error_marker_type (cu, die);
19074
19075 return this_type;
19076 }
19077
19078 /* Return the type in DIE, CU.
19079 Returns NULL for invalid types.
19080
19081 This first does a lookup in die_type_hash,
19082 and only reads the die in if necessary.
19083
19084 NOTE: This can be called when reading in partial or full symbols. */
19085
19086 static struct type *
19087 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19088 {
19089 struct type *this_type;
19090
19091 this_type = get_die_type (die, cu);
19092 if (this_type)
19093 return this_type;
19094
19095 return read_type_die_1 (die, cu);
19096 }
19097
19098 /* Read the type in DIE, CU.
19099 Returns NULL for invalid types. */
19100
19101 static struct type *
19102 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19103 {
19104 struct type *this_type = NULL;
19105
19106 switch (die->tag)
19107 {
19108 case DW_TAG_class_type:
19109 case DW_TAG_interface_type:
19110 case DW_TAG_structure_type:
19111 case DW_TAG_union_type:
19112 this_type = read_structure_type (die, cu);
19113 break;
19114 case DW_TAG_enumeration_type:
19115 this_type = read_enumeration_type (die, cu);
19116 break;
19117 case DW_TAG_subprogram:
19118 case DW_TAG_subroutine_type:
19119 case DW_TAG_inlined_subroutine:
19120 this_type = read_subroutine_type (die, cu);
19121 break;
19122 case DW_TAG_array_type:
19123 this_type = read_array_type (die, cu);
19124 break;
19125 case DW_TAG_set_type:
19126 this_type = read_set_type (die, cu);
19127 break;
19128 case DW_TAG_pointer_type:
19129 this_type = read_tag_pointer_type (die, cu);
19130 break;
19131 case DW_TAG_ptr_to_member_type:
19132 this_type = read_tag_ptr_to_member_type (die, cu);
19133 break;
19134 case DW_TAG_reference_type:
19135 this_type = read_tag_reference_type (die, cu);
19136 break;
19137 case DW_TAG_const_type:
19138 this_type = read_tag_const_type (die, cu);
19139 break;
19140 case DW_TAG_volatile_type:
19141 this_type = read_tag_volatile_type (die, cu);
19142 break;
19143 case DW_TAG_restrict_type:
19144 this_type = read_tag_restrict_type (die, cu);
19145 break;
19146 case DW_TAG_string_type:
19147 this_type = read_tag_string_type (die, cu);
19148 break;
19149 case DW_TAG_typedef:
19150 this_type = read_typedef (die, cu);
19151 break;
19152 case DW_TAG_subrange_type:
19153 this_type = read_subrange_type (die, cu);
19154 break;
19155 case DW_TAG_base_type:
19156 this_type = read_base_type (die, cu);
19157 break;
19158 case DW_TAG_unspecified_type:
19159 this_type = read_unspecified_type (die, cu);
19160 break;
19161 case DW_TAG_namespace:
19162 this_type = read_namespace_type (die, cu);
19163 break;
19164 case DW_TAG_module:
19165 this_type = read_module_type (die, cu);
19166 break;
19167 case DW_TAG_atomic_type:
19168 this_type = read_tag_atomic_type (die, cu);
19169 break;
19170 default:
19171 complaint (&symfile_complaints,
19172 _("unexpected tag in read_type_die: '%s'"),
19173 dwarf_tag_name (die->tag));
19174 break;
19175 }
19176
19177 return this_type;
19178 }
19179
19180 /* See if we can figure out if the class lives in a namespace. We do
19181 this by looking for a member function; its demangled name will
19182 contain namespace info, if there is any.
19183 Return the computed name or NULL.
19184 Space for the result is allocated on the objfile's obstack.
19185 This is the full-die version of guess_partial_die_structure_name.
19186 In this case we know DIE has no useful parent. */
19187
19188 static char *
19189 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19190 {
19191 struct die_info *spec_die;
19192 struct dwarf2_cu *spec_cu;
19193 struct die_info *child;
19194
19195 spec_cu = cu;
19196 spec_die = die_specification (die, &spec_cu);
19197 if (spec_die != NULL)
19198 {
19199 die = spec_die;
19200 cu = spec_cu;
19201 }
19202
19203 for (child = die->child;
19204 child != NULL;
19205 child = child->sibling)
19206 {
19207 if (child->tag == DW_TAG_subprogram)
19208 {
19209 const char *linkage_name;
19210
19211 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19212 if (linkage_name == NULL)
19213 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19214 cu);
19215 if (linkage_name != NULL)
19216 {
19217 char *actual_name
19218 = language_class_name_from_physname (cu->language_defn,
19219 linkage_name);
19220 char *name = NULL;
19221
19222 if (actual_name != NULL)
19223 {
19224 const char *die_name = dwarf2_name (die, cu);
19225
19226 if (die_name != NULL
19227 && strcmp (die_name, actual_name) != 0)
19228 {
19229 /* Strip off the class name from the full name.
19230 We want the prefix. */
19231 int die_name_len = strlen (die_name);
19232 int actual_name_len = strlen (actual_name);
19233
19234 /* Test for '::' as a sanity check. */
19235 if (actual_name_len > die_name_len + 2
19236 && actual_name[actual_name_len
19237 - die_name_len - 1] == ':')
19238 name = (char *) obstack_copy0 (
19239 &cu->objfile->per_bfd->storage_obstack,
19240 actual_name, actual_name_len - die_name_len - 2);
19241 }
19242 }
19243 xfree (actual_name);
19244 return name;
19245 }
19246 }
19247 }
19248
19249 return NULL;
19250 }
19251
19252 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19253 prefix part in such case. See
19254 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19255
19256 static char *
19257 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19258 {
19259 struct attribute *attr;
19260 const char *base;
19261
19262 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19263 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19264 return NULL;
19265
19266 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19267 return NULL;
19268
19269 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19270 if (attr == NULL)
19271 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19272 if (attr == NULL || DW_STRING (attr) == NULL)
19273 return NULL;
19274
19275 /* dwarf2_name had to be already called. */
19276 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19277
19278 /* Strip the base name, keep any leading namespaces/classes. */
19279 base = strrchr (DW_STRING (attr), ':');
19280 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19281 return "";
19282
19283 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19284 DW_STRING (attr),
19285 &base[-1] - DW_STRING (attr));
19286 }
19287
19288 /* Return the name of the namespace/class that DIE is defined within,
19289 or "" if we can't tell. The caller should not xfree the result.
19290
19291 For example, if we're within the method foo() in the following
19292 code:
19293
19294 namespace N {
19295 class C {
19296 void foo () {
19297 }
19298 };
19299 }
19300
19301 then determine_prefix on foo's die will return "N::C". */
19302
19303 static const char *
19304 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19305 {
19306 struct die_info *parent, *spec_die;
19307 struct dwarf2_cu *spec_cu;
19308 struct type *parent_type;
19309 char *retval;
19310
19311 if (cu->language != language_cplus
19312 && cu->language != language_fortran && cu->language != language_d
19313 && cu->language != language_rust)
19314 return "";
19315
19316 retval = anonymous_struct_prefix (die, cu);
19317 if (retval)
19318 return retval;
19319
19320 /* We have to be careful in the presence of DW_AT_specification.
19321 For example, with GCC 3.4, given the code
19322
19323 namespace N {
19324 void foo() {
19325 // Definition of N::foo.
19326 }
19327 }
19328
19329 then we'll have a tree of DIEs like this:
19330
19331 1: DW_TAG_compile_unit
19332 2: DW_TAG_namespace // N
19333 3: DW_TAG_subprogram // declaration of N::foo
19334 4: DW_TAG_subprogram // definition of N::foo
19335 DW_AT_specification // refers to die #3
19336
19337 Thus, when processing die #4, we have to pretend that we're in
19338 the context of its DW_AT_specification, namely the contex of die
19339 #3. */
19340 spec_cu = cu;
19341 spec_die = die_specification (die, &spec_cu);
19342 if (spec_die == NULL)
19343 parent = die->parent;
19344 else
19345 {
19346 parent = spec_die->parent;
19347 cu = spec_cu;
19348 }
19349
19350 if (parent == NULL)
19351 return "";
19352 else if (parent->building_fullname)
19353 {
19354 const char *name;
19355 const char *parent_name;
19356
19357 /* It has been seen on RealView 2.2 built binaries,
19358 DW_TAG_template_type_param types actually _defined_ as
19359 children of the parent class:
19360
19361 enum E {};
19362 template class <class Enum> Class{};
19363 Class<enum E> class_e;
19364
19365 1: DW_TAG_class_type (Class)
19366 2: DW_TAG_enumeration_type (E)
19367 3: DW_TAG_enumerator (enum1:0)
19368 3: DW_TAG_enumerator (enum2:1)
19369 ...
19370 2: DW_TAG_template_type_param
19371 DW_AT_type DW_FORM_ref_udata (E)
19372
19373 Besides being broken debug info, it can put GDB into an
19374 infinite loop. Consider:
19375
19376 When we're building the full name for Class<E>, we'll start
19377 at Class, and go look over its template type parameters,
19378 finding E. We'll then try to build the full name of E, and
19379 reach here. We're now trying to build the full name of E,
19380 and look over the parent DIE for containing scope. In the
19381 broken case, if we followed the parent DIE of E, we'd again
19382 find Class, and once again go look at its template type
19383 arguments, etc., etc. Simply don't consider such parent die
19384 as source-level parent of this die (it can't be, the language
19385 doesn't allow it), and break the loop here. */
19386 name = dwarf2_name (die, cu);
19387 parent_name = dwarf2_name (parent, cu);
19388 complaint (&symfile_complaints,
19389 _("template param type '%s' defined within parent '%s'"),
19390 name ? name : "<unknown>",
19391 parent_name ? parent_name : "<unknown>");
19392 return "";
19393 }
19394 else
19395 switch (parent->tag)
19396 {
19397 case DW_TAG_namespace:
19398 parent_type = read_type_die (parent, cu);
19399 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19400 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19401 Work around this problem here. */
19402 if (cu->language == language_cplus
19403 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19404 return "";
19405 /* We give a name to even anonymous namespaces. */
19406 return TYPE_TAG_NAME (parent_type);
19407 case DW_TAG_class_type:
19408 case DW_TAG_interface_type:
19409 case DW_TAG_structure_type:
19410 case DW_TAG_union_type:
19411 case DW_TAG_module:
19412 parent_type = read_type_die (parent, cu);
19413 if (TYPE_TAG_NAME (parent_type) != NULL)
19414 return TYPE_TAG_NAME (parent_type);
19415 else
19416 /* An anonymous structure is only allowed non-static data
19417 members; no typedefs, no member functions, et cetera.
19418 So it does not need a prefix. */
19419 return "";
19420 case DW_TAG_compile_unit:
19421 case DW_TAG_partial_unit:
19422 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19423 if (cu->language == language_cplus
19424 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19425 && die->child != NULL
19426 && (die->tag == DW_TAG_class_type
19427 || die->tag == DW_TAG_structure_type
19428 || die->tag == DW_TAG_union_type))
19429 {
19430 char *name = guess_full_die_structure_name (die, cu);
19431 if (name != NULL)
19432 return name;
19433 }
19434 return "";
19435 case DW_TAG_enumeration_type:
19436 parent_type = read_type_die (parent, cu);
19437 if (TYPE_DECLARED_CLASS (parent_type))
19438 {
19439 if (TYPE_TAG_NAME (parent_type) != NULL)
19440 return TYPE_TAG_NAME (parent_type);
19441 return "";
19442 }
19443 /* Fall through. */
19444 default:
19445 return determine_prefix (parent, cu);
19446 }
19447 }
19448
19449 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19450 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19451 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19452 an obconcat, otherwise allocate storage for the result. The CU argument is
19453 used to determine the language and hence, the appropriate separator. */
19454
19455 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19456
19457 static char *
19458 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19459 int physname, struct dwarf2_cu *cu)
19460 {
19461 const char *lead = "";
19462 const char *sep;
19463
19464 if (suffix == NULL || suffix[0] == '\0'
19465 || prefix == NULL || prefix[0] == '\0')
19466 sep = "";
19467 else if (cu->language == language_d)
19468 {
19469 /* For D, the 'main' function could be defined in any module, but it
19470 should never be prefixed. */
19471 if (strcmp (suffix, "D main") == 0)
19472 {
19473 prefix = "";
19474 sep = "";
19475 }
19476 else
19477 sep = ".";
19478 }
19479 else if (cu->language == language_fortran && physname)
19480 {
19481 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19482 DW_AT_MIPS_linkage_name is preferred and used instead. */
19483
19484 lead = "__";
19485 sep = "_MOD_";
19486 }
19487 else
19488 sep = "::";
19489
19490 if (prefix == NULL)
19491 prefix = "";
19492 if (suffix == NULL)
19493 suffix = "";
19494
19495 if (obs == NULL)
19496 {
19497 char *retval
19498 = ((char *)
19499 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19500
19501 strcpy (retval, lead);
19502 strcat (retval, prefix);
19503 strcat (retval, sep);
19504 strcat (retval, suffix);
19505 return retval;
19506 }
19507 else
19508 {
19509 /* We have an obstack. */
19510 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19511 }
19512 }
19513
19514 /* Return sibling of die, NULL if no sibling. */
19515
19516 static struct die_info *
19517 sibling_die (struct die_info *die)
19518 {
19519 return die->sibling;
19520 }
19521
19522 /* Get name of a die, return NULL if not found. */
19523
19524 static const char *
19525 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19526 struct obstack *obstack)
19527 {
19528 if (name && cu->language == language_cplus)
19529 {
19530 char *canon_name = cp_canonicalize_string (name);
19531
19532 if (canon_name != NULL)
19533 {
19534 if (strcmp (canon_name, name) != 0)
19535 name = (const char *) obstack_copy0 (obstack, canon_name,
19536 strlen (canon_name));
19537 xfree (canon_name);
19538 }
19539 }
19540
19541 return name;
19542 }
19543
19544 /* Get name of a die, return NULL if not found.
19545 Anonymous namespaces are converted to their magic string. */
19546
19547 static const char *
19548 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19549 {
19550 struct attribute *attr;
19551
19552 attr = dwarf2_attr (die, DW_AT_name, cu);
19553 if ((!attr || !DW_STRING (attr))
19554 && die->tag != DW_TAG_namespace
19555 && die->tag != DW_TAG_class_type
19556 && die->tag != DW_TAG_interface_type
19557 && die->tag != DW_TAG_structure_type
19558 && die->tag != DW_TAG_union_type)
19559 return NULL;
19560
19561 switch (die->tag)
19562 {
19563 case DW_TAG_compile_unit:
19564 case DW_TAG_partial_unit:
19565 /* Compilation units have a DW_AT_name that is a filename, not
19566 a source language identifier. */
19567 case DW_TAG_enumeration_type:
19568 case DW_TAG_enumerator:
19569 /* These tags always have simple identifiers already; no need
19570 to canonicalize them. */
19571 return DW_STRING (attr);
19572
19573 case DW_TAG_namespace:
19574 if (attr != NULL && DW_STRING (attr) != NULL)
19575 return DW_STRING (attr);
19576 return CP_ANONYMOUS_NAMESPACE_STR;
19577
19578 case DW_TAG_class_type:
19579 case DW_TAG_interface_type:
19580 case DW_TAG_structure_type:
19581 case DW_TAG_union_type:
19582 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19583 structures or unions. These were of the form "._%d" in GCC 4.1,
19584 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19585 and GCC 4.4. We work around this problem by ignoring these. */
19586 if (attr && DW_STRING (attr)
19587 && (startswith (DW_STRING (attr), "._")
19588 || startswith (DW_STRING (attr), "<anonymous")))
19589 return NULL;
19590
19591 /* GCC might emit a nameless typedef that has a linkage name. See
19592 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19593 if (!attr || DW_STRING (attr) == NULL)
19594 {
19595 char *demangled = NULL;
19596
19597 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19598 if (attr == NULL)
19599 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19600
19601 if (attr == NULL || DW_STRING (attr) == NULL)
19602 return NULL;
19603
19604 /* Avoid demangling DW_STRING (attr) the second time on a second
19605 call for the same DIE. */
19606 if (!DW_STRING_IS_CANONICAL (attr))
19607 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19608
19609 if (demangled)
19610 {
19611 const char *base;
19612
19613 /* FIXME: we already did this for the partial symbol... */
19614 DW_STRING (attr)
19615 = ((const char *)
19616 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19617 demangled, strlen (demangled)));
19618 DW_STRING_IS_CANONICAL (attr) = 1;
19619 xfree (demangled);
19620
19621 /* Strip any leading namespaces/classes, keep only the base name.
19622 DW_AT_name for named DIEs does not contain the prefixes. */
19623 base = strrchr (DW_STRING (attr), ':');
19624 if (base && base > DW_STRING (attr) && base[-1] == ':')
19625 return &base[1];
19626 else
19627 return DW_STRING (attr);
19628 }
19629 }
19630 break;
19631
19632 default:
19633 break;
19634 }
19635
19636 if (!DW_STRING_IS_CANONICAL (attr))
19637 {
19638 DW_STRING (attr)
19639 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19640 &cu->objfile->per_bfd->storage_obstack);
19641 DW_STRING_IS_CANONICAL (attr) = 1;
19642 }
19643 return DW_STRING (attr);
19644 }
19645
19646 /* Return the die that this die in an extension of, or NULL if there
19647 is none. *EXT_CU is the CU containing DIE on input, and the CU
19648 containing the return value on output. */
19649
19650 static struct die_info *
19651 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19652 {
19653 struct attribute *attr;
19654
19655 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19656 if (attr == NULL)
19657 return NULL;
19658
19659 return follow_die_ref (die, attr, ext_cu);
19660 }
19661
19662 /* Convert a DIE tag into its string name. */
19663
19664 static const char *
19665 dwarf_tag_name (unsigned tag)
19666 {
19667 const char *name = get_DW_TAG_name (tag);
19668
19669 if (name == NULL)
19670 return "DW_TAG_<unknown>";
19671
19672 return name;
19673 }
19674
19675 /* Convert a DWARF attribute code into its string name. */
19676
19677 static const char *
19678 dwarf_attr_name (unsigned attr)
19679 {
19680 const char *name;
19681
19682 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19683 if (attr == DW_AT_MIPS_fde)
19684 return "DW_AT_MIPS_fde";
19685 #else
19686 if (attr == DW_AT_HP_block_index)
19687 return "DW_AT_HP_block_index";
19688 #endif
19689
19690 name = get_DW_AT_name (attr);
19691
19692 if (name == NULL)
19693 return "DW_AT_<unknown>";
19694
19695 return name;
19696 }
19697
19698 /* Convert a DWARF value form code into its string name. */
19699
19700 static const char *
19701 dwarf_form_name (unsigned form)
19702 {
19703 const char *name = get_DW_FORM_name (form);
19704
19705 if (name == NULL)
19706 return "DW_FORM_<unknown>";
19707
19708 return name;
19709 }
19710
19711 static char *
19712 dwarf_bool_name (unsigned mybool)
19713 {
19714 if (mybool)
19715 return "TRUE";
19716 else
19717 return "FALSE";
19718 }
19719
19720 /* Convert a DWARF type code into its string name. */
19721
19722 static const char *
19723 dwarf_type_encoding_name (unsigned enc)
19724 {
19725 const char *name = get_DW_ATE_name (enc);
19726
19727 if (name == NULL)
19728 return "DW_ATE_<unknown>";
19729
19730 return name;
19731 }
19732
19733 static void
19734 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19735 {
19736 unsigned int i;
19737
19738 print_spaces (indent, f);
19739 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19740 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19741
19742 if (die->parent != NULL)
19743 {
19744 print_spaces (indent, f);
19745 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19746 die->parent->offset.sect_off);
19747 }
19748
19749 print_spaces (indent, f);
19750 fprintf_unfiltered (f, " has children: %s\n",
19751 dwarf_bool_name (die->child != NULL));
19752
19753 print_spaces (indent, f);
19754 fprintf_unfiltered (f, " attributes:\n");
19755
19756 for (i = 0; i < die->num_attrs; ++i)
19757 {
19758 print_spaces (indent, f);
19759 fprintf_unfiltered (f, " %s (%s) ",
19760 dwarf_attr_name (die->attrs[i].name),
19761 dwarf_form_name (die->attrs[i].form));
19762
19763 switch (die->attrs[i].form)
19764 {
19765 case DW_FORM_addr:
19766 case DW_FORM_GNU_addr_index:
19767 fprintf_unfiltered (f, "address: ");
19768 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19769 break;
19770 case DW_FORM_block2:
19771 case DW_FORM_block4:
19772 case DW_FORM_block:
19773 case DW_FORM_block1:
19774 fprintf_unfiltered (f, "block: size %s",
19775 pulongest (DW_BLOCK (&die->attrs[i])->size));
19776 break;
19777 case DW_FORM_exprloc:
19778 fprintf_unfiltered (f, "expression: size %s",
19779 pulongest (DW_BLOCK (&die->attrs[i])->size));
19780 break;
19781 case DW_FORM_ref_addr:
19782 fprintf_unfiltered (f, "ref address: ");
19783 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19784 break;
19785 case DW_FORM_GNU_ref_alt:
19786 fprintf_unfiltered (f, "alt ref address: ");
19787 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19788 break;
19789 case DW_FORM_ref1:
19790 case DW_FORM_ref2:
19791 case DW_FORM_ref4:
19792 case DW_FORM_ref8:
19793 case DW_FORM_ref_udata:
19794 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19795 (long) (DW_UNSND (&die->attrs[i])));
19796 break;
19797 case DW_FORM_data1:
19798 case DW_FORM_data2:
19799 case DW_FORM_data4:
19800 case DW_FORM_data8:
19801 case DW_FORM_udata:
19802 case DW_FORM_sdata:
19803 fprintf_unfiltered (f, "constant: %s",
19804 pulongest (DW_UNSND (&die->attrs[i])));
19805 break;
19806 case DW_FORM_sec_offset:
19807 fprintf_unfiltered (f, "section offset: %s",
19808 pulongest (DW_UNSND (&die->attrs[i])));
19809 break;
19810 case DW_FORM_ref_sig8:
19811 fprintf_unfiltered (f, "signature: %s",
19812 hex_string (DW_SIGNATURE (&die->attrs[i])));
19813 break;
19814 case DW_FORM_string:
19815 case DW_FORM_strp:
19816 case DW_FORM_GNU_str_index:
19817 case DW_FORM_GNU_strp_alt:
19818 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19819 DW_STRING (&die->attrs[i])
19820 ? DW_STRING (&die->attrs[i]) : "",
19821 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19822 break;
19823 case DW_FORM_flag:
19824 if (DW_UNSND (&die->attrs[i]))
19825 fprintf_unfiltered (f, "flag: TRUE");
19826 else
19827 fprintf_unfiltered (f, "flag: FALSE");
19828 break;
19829 case DW_FORM_flag_present:
19830 fprintf_unfiltered (f, "flag: TRUE");
19831 break;
19832 case DW_FORM_indirect:
19833 /* The reader will have reduced the indirect form to
19834 the "base form" so this form should not occur. */
19835 fprintf_unfiltered (f,
19836 "unexpected attribute form: DW_FORM_indirect");
19837 break;
19838 default:
19839 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19840 die->attrs[i].form);
19841 break;
19842 }
19843 fprintf_unfiltered (f, "\n");
19844 }
19845 }
19846
19847 static void
19848 dump_die_for_error (struct die_info *die)
19849 {
19850 dump_die_shallow (gdb_stderr, 0, die);
19851 }
19852
19853 static void
19854 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19855 {
19856 int indent = level * 4;
19857
19858 gdb_assert (die != NULL);
19859
19860 if (level >= max_level)
19861 return;
19862
19863 dump_die_shallow (f, indent, die);
19864
19865 if (die->child != NULL)
19866 {
19867 print_spaces (indent, f);
19868 fprintf_unfiltered (f, " Children:");
19869 if (level + 1 < max_level)
19870 {
19871 fprintf_unfiltered (f, "\n");
19872 dump_die_1 (f, level + 1, max_level, die->child);
19873 }
19874 else
19875 {
19876 fprintf_unfiltered (f,
19877 " [not printed, max nesting level reached]\n");
19878 }
19879 }
19880
19881 if (die->sibling != NULL && level > 0)
19882 {
19883 dump_die_1 (f, level, max_level, die->sibling);
19884 }
19885 }
19886
19887 /* This is called from the pdie macro in gdbinit.in.
19888 It's not static so gcc will keep a copy callable from gdb. */
19889
19890 void
19891 dump_die (struct die_info *die, int max_level)
19892 {
19893 dump_die_1 (gdb_stdlog, 0, max_level, die);
19894 }
19895
19896 static void
19897 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19898 {
19899 void **slot;
19900
19901 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19902 INSERT);
19903
19904 *slot = die;
19905 }
19906
19907 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19908 required kind. */
19909
19910 static sect_offset
19911 dwarf2_get_ref_die_offset (const struct attribute *attr)
19912 {
19913 sect_offset retval = { DW_UNSND (attr) };
19914
19915 if (attr_form_is_ref (attr))
19916 return retval;
19917
19918 retval.sect_off = 0;
19919 complaint (&symfile_complaints,
19920 _("unsupported die ref attribute form: '%s'"),
19921 dwarf_form_name (attr->form));
19922 return retval;
19923 }
19924
19925 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19926 * the value held by the attribute is not constant. */
19927
19928 static LONGEST
19929 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19930 {
19931 if (attr->form == DW_FORM_sdata)
19932 return DW_SND (attr);
19933 else if (attr->form == DW_FORM_udata
19934 || attr->form == DW_FORM_data1
19935 || attr->form == DW_FORM_data2
19936 || attr->form == DW_FORM_data4
19937 || attr->form == DW_FORM_data8)
19938 return DW_UNSND (attr);
19939 else
19940 {
19941 complaint (&symfile_complaints,
19942 _("Attribute value is not a constant (%s)"),
19943 dwarf_form_name (attr->form));
19944 return default_value;
19945 }
19946 }
19947
19948 /* Follow reference or signature attribute ATTR of SRC_DIE.
19949 On entry *REF_CU is the CU of SRC_DIE.
19950 On exit *REF_CU is the CU of the result. */
19951
19952 static struct die_info *
19953 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19954 struct dwarf2_cu **ref_cu)
19955 {
19956 struct die_info *die;
19957
19958 if (attr_form_is_ref (attr))
19959 die = follow_die_ref (src_die, attr, ref_cu);
19960 else if (attr->form == DW_FORM_ref_sig8)
19961 die = follow_die_sig (src_die, attr, ref_cu);
19962 else
19963 {
19964 dump_die_for_error (src_die);
19965 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19966 objfile_name ((*ref_cu)->objfile));
19967 }
19968
19969 return die;
19970 }
19971
19972 /* Follow reference OFFSET.
19973 On entry *REF_CU is the CU of the source die referencing OFFSET.
19974 On exit *REF_CU is the CU of the result.
19975 Returns NULL if OFFSET is invalid. */
19976
19977 static struct die_info *
19978 follow_die_offset (sect_offset offset, int offset_in_dwz,
19979 struct dwarf2_cu **ref_cu)
19980 {
19981 struct die_info temp_die;
19982 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19983
19984 gdb_assert (cu->per_cu != NULL);
19985
19986 target_cu = cu;
19987
19988 if (cu->per_cu->is_debug_types)
19989 {
19990 /* .debug_types CUs cannot reference anything outside their CU.
19991 If they need to, they have to reference a signatured type via
19992 DW_FORM_ref_sig8. */
19993 if (! offset_in_cu_p (&cu->header, offset))
19994 return NULL;
19995 }
19996 else if (offset_in_dwz != cu->per_cu->is_dwz
19997 || ! offset_in_cu_p (&cu->header, offset))
19998 {
19999 struct dwarf2_per_cu_data *per_cu;
20000
20001 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20002 cu->objfile);
20003
20004 /* If necessary, add it to the queue and load its DIEs. */
20005 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20006 load_full_comp_unit (per_cu, cu->language);
20007
20008 target_cu = per_cu->cu;
20009 }
20010 else if (cu->dies == NULL)
20011 {
20012 /* We're loading full DIEs during partial symbol reading. */
20013 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20014 load_full_comp_unit (cu->per_cu, language_minimal);
20015 }
20016
20017 *ref_cu = target_cu;
20018 temp_die.offset = offset;
20019 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20020 &temp_die, offset.sect_off);
20021 }
20022
20023 /* Follow reference attribute ATTR of SRC_DIE.
20024 On entry *REF_CU is the CU of SRC_DIE.
20025 On exit *REF_CU is the CU of the result. */
20026
20027 static struct die_info *
20028 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20029 struct dwarf2_cu **ref_cu)
20030 {
20031 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20032 struct dwarf2_cu *cu = *ref_cu;
20033 struct die_info *die;
20034
20035 die = follow_die_offset (offset,
20036 (attr->form == DW_FORM_GNU_ref_alt
20037 || cu->per_cu->is_dwz),
20038 ref_cu);
20039 if (!die)
20040 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20041 "at 0x%x [in module %s]"),
20042 offset.sect_off, src_die->offset.sect_off,
20043 objfile_name (cu->objfile));
20044
20045 return die;
20046 }
20047
20048 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20049 Returned value is intended for DW_OP_call*. Returned
20050 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20051
20052 struct dwarf2_locexpr_baton
20053 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20054 struct dwarf2_per_cu_data *per_cu,
20055 CORE_ADDR (*get_frame_pc) (void *baton),
20056 void *baton)
20057 {
20058 struct dwarf2_cu *cu;
20059 struct die_info *die;
20060 struct attribute *attr;
20061 struct dwarf2_locexpr_baton retval;
20062
20063 dw2_setup (per_cu->objfile);
20064
20065 if (per_cu->cu == NULL)
20066 load_cu (per_cu);
20067 cu = per_cu->cu;
20068 if (cu == NULL)
20069 {
20070 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20071 Instead just throw an error, not much else we can do. */
20072 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20073 offset.sect_off, objfile_name (per_cu->objfile));
20074 }
20075
20076 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20077 if (!die)
20078 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20079 offset.sect_off, objfile_name (per_cu->objfile));
20080
20081 attr = dwarf2_attr (die, DW_AT_location, cu);
20082 if (!attr)
20083 {
20084 /* DWARF: "If there is no such attribute, then there is no effect.".
20085 DATA is ignored if SIZE is 0. */
20086
20087 retval.data = NULL;
20088 retval.size = 0;
20089 }
20090 else if (attr_form_is_section_offset (attr))
20091 {
20092 struct dwarf2_loclist_baton loclist_baton;
20093 CORE_ADDR pc = (*get_frame_pc) (baton);
20094 size_t size;
20095
20096 fill_in_loclist_baton (cu, &loclist_baton, attr);
20097
20098 retval.data = dwarf2_find_location_expression (&loclist_baton,
20099 &size, pc);
20100 retval.size = size;
20101 }
20102 else
20103 {
20104 if (!attr_form_is_block (attr))
20105 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20106 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20107 offset.sect_off, objfile_name (per_cu->objfile));
20108
20109 retval.data = DW_BLOCK (attr)->data;
20110 retval.size = DW_BLOCK (attr)->size;
20111 }
20112 retval.per_cu = cu->per_cu;
20113
20114 age_cached_comp_units ();
20115
20116 return retval;
20117 }
20118
20119 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20120 offset. */
20121
20122 struct dwarf2_locexpr_baton
20123 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20124 struct dwarf2_per_cu_data *per_cu,
20125 CORE_ADDR (*get_frame_pc) (void *baton),
20126 void *baton)
20127 {
20128 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20129
20130 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20131 }
20132
20133 /* Write a constant of a given type as target-ordered bytes into
20134 OBSTACK. */
20135
20136 static const gdb_byte *
20137 write_constant_as_bytes (struct obstack *obstack,
20138 enum bfd_endian byte_order,
20139 struct type *type,
20140 ULONGEST value,
20141 LONGEST *len)
20142 {
20143 gdb_byte *result;
20144
20145 *len = TYPE_LENGTH (type);
20146 result = (gdb_byte *) obstack_alloc (obstack, *len);
20147 store_unsigned_integer (result, *len, byte_order, value);
20148
20149 return result;
20150 }
20151
20152 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20153 pointer to the constant bytes and set LEN to the length of the
20154 data. If memory is needed, allocate it on OBSTACK. If the DIE
20155 does not have a DW_AT_const_value, return NULL. */
20156
20157 const gdb_byte *
20158 dwarf2_fetch_constant_bytes (sect_offset offset,
20159 struct dwarf2_per_cu_data *per_cu,
20160 struct obstack *obstack,
20161 LONGEST *len)
20162 {
20163 struct dwarf2_cu *cu;
20164 struct die_info *die;
20165 struct attribute *attr;
20166 const gdb_byte *result = NULL;
20167 struct type *type;
20168 LONGEST value;
20169 enum bfd_endian byte_order;
20170
20171 dw2_setup (per_cu->objfile);
20172
20173 if (per_cu->cu == NULL)
20174 load_cu (per_cu);
20175 cu = per_cu->cu;
20176 if (cu == NULL)
20177 {
20178 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20179 Instead just throw an error, not much else we can do. */
20180 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20181 offset.sect_off, objfile_name (per_cu->objfile));
20182 }
20183
20184 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20185 if (!die)
20186 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20187 offset.sect_off, objfile_name (per_cu->objfile));
20188
20189
20190 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20191 if (attr == NULL)
20192 return NULL;
20193
20194 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20195 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20196
20197 switch (attr->form)
20198 {
20199 case DW_FORM_addr:
20200 case DW_FORM_GNU_addr_index:
20201 {
20202 gdb_byte *tem;
20203
20204 *len = cu->header.addr_size;
20205 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20206 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20207 result = tem;
20208 }
20209 break;
20210 case DW_FORM_string:
20211 case DW_FORM_strp:
20212 case DW_FORM_GNU_str_index:
20213 case DW_FORM_GNU_strp_alt:
20214 /* DW_STRING is already allocated on the objfile obstack, point
20215 directly to it. */
20216 result = (const gdb_byte *) DW_STRING (attr);
20217 *len = strlen (DW_STRING (attr));
20218 break;
20219 case DW_FORM_block1:
20220 case DW_FORM_block2:
20221 case DW_FORM_block4:
20222 case DW_FORM_block:
20223 case DW_FORM_exprloc:
20224 result = DW_BLOCK (attr)->data;
20225 *len = DW_BLOCK (attr)->size;
20226 break;
20227
20228 /* The DW_AT_const_value attributes are supposed to carry the
20229 symbol's value "represented as it would be on the target
20230 architecture." By the time we get here, it's already been
20231 converted to host endianness, so we just need to sign- or
20232 zero-extend it as appropriate. */
20233 case DW_FORM_data1:
20234 type = die_type (die, cu);
20235 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20236 if (result == NULL)
20237 result = write_constant_as_bytes (obstack, byte_order,
20238 type, value, len);
20239 break;
20240 case DW_FORM_data2:
20241 type = die_type (die, cu);
20242 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20243 if (result == NULL)
20244 result = write_constant_as_bytes (obstack, byte_order,
20245 type, value, len);
20246 break;
20247 case DW_FORM_data4:
20248 type = die_type (die, cu);
20249 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20250 if (result == NULL)
20251 result = write_constant_as_bytes (obstack, byte_order,
20252 type, value, len);
20253 break;
20254 case DW_FORM_data8:
20255 type = die_type (die, cu);
20256 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20257 if (result == NULL)
20258 result = write_constant_as_bytes (obstack, byte_order,
20259 type, value, len);
20260 break;
20261
20262 case DW_FORM_sdata:
20263 type = die_type (die, cu);
20264 result = write_constant_as_bytes (obstack, byte_order,
20265 type, DW_SND (attr), len);
20266 break;
20267
20268 case DW_FORM_udata:
20269 type = die_type (die, cu);
20270 result = write_constant_as_bytes (obstack, byte_order,
20271 type, DW_UNSND (attr), len);
20272 break;
20273
20274 default:
20275 complaint (&symfile_complaints,
20276 _("unsupported const value attribute form: '%s'"),
20277 dwarf_form_name (attr->form));
20278 break;
20279 }
20280
20281 return result;
20282 }
20283
20284 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20285 PER_CU. */
20286
20287 struct type *
20288 dwarf2_get_die_type (cu_offset die_offset,
20289 struct dwarf2_per_cu_data *per_cu)
20290 {
20291 sect_offset die_offset_sect;
20292
20293 dw2_setup (per_cu->objfile);
20294
20295 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20296 return get_die_type_at_offset (die_offset_sect, per_cu);
20297 }
20298
20299 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20300 On entry *REF_CU is the CU of SRC_DIE.
20301 On exit *REF_CU is the CU of the result.
20302 Returns NULL if the referenced DIE isn't found. */
20303
20304 static struct die_info *
20305 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20306 struct dwarf2_cu **ref_cu)
20307 {
20308 struct die_info temp_die;
20309 struct dwarf2_cu *sig_cu;
20310 struct die_info *die;
20311
20312 /* While it might be nice to assert sig_type->type == NULL here,
20313 we can get here for DW_AT_imported_declaration where we need
20314 the DIE not the type. */
20315
20316 /* If necessary, add it to the queue and load its DIEs. */
20317
20318 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20319 read_signatured_type (sig_type);
20320
20321 sig_cu = sig_type->per_cu.cu;
20322 gdb_assert (sig_cu != NULL);
20323 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20324 temp_die.offset = sig_type->type_offset_in_section;
20325 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20326 temp_die.offset.sect_off);
20327 if (die)
20328 {
20329 /* For .gdb_index version 7 keep track of included TUs.
20330 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20331 if (dwarf2_per_objfile->index_table != NULL
20332 && dwarf2_per_objfile->index_table->version <= 7)
20333 {
20334 VEC_safe_push (dwarf2_per_cu_ptr,
20335 (*ref_cu)->per_cu->imported_symtabs,
20336 sig_cu->per_cu);
20337 }
20338
20339 *ref_cu = sig_cu;
20340 return die;
20341 }
20342
20343 return NULL;
20344 }
20345
20346 /* Follow signatured type referenced by ATTR in SRC_DIE.
20347 On entry *REF_CU is the CU of SRC_DIE.
20348 On exit *REF_CU is the CU of the result.
20349 The result is the DIE of the type.
20350 If the referenced type cannot be found an error is thrown. */
20351
20352 static struct die_info *
20353 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20354 struct dwarf2_cu **ref_cu)
20355 {
20356 ULONGEST signature = DW_SIGNATURE (attr);
20357 struct signatured_type *sig_type;
20358 struct die_info *die;
20359
20360 gdb_assert (attr->form == DW_FORM_ref_sig8);
20361
20362 sig_type = lookup_signatured_type (*ref_cu, signature);
20363 /* sig_type will be NULL if the signatured type is missing from
20364 the debug info. */
20365 if (sig_type == NULL)
20366 {
20367 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20368 " from DIE at 0x%x [in module %s]"),
20369 hex_string (signature), src_die->offset.sect_off,
20370 objfile_name ((*ref_cu)->objfile));
20371 }
20372
20373 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20374 if (die == NULL)
20375 {
20376 dump_die_for_error (src_die);
20377 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20378 " from DIE at 0x%x [in module %s]"),
20379 hex_string (signature), src_die->offset.sect_off,
20380 objfile_name ((*ref_cu)->objfile));
20381 }
20382
20383 return die;
20384 }
20385
20386 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20387 reading in and processing the type unit if necessary. */
20388
20389 static struct type *
20390 get_signatured_type (struct die_info *die, ULONGEST signature,
20391 struct dwarf2_cu *cu)
20392 {
20393 struct signatured_type *sig_type;
20394 struct dwarf2_cu *type_cu;
20395 struct die_info *type_die;
20396 struct type *type;
20397
20398 sig_type = lookup_signatured_type (cu, signature);
20399 /* sig_type will be NULL if the signatured type is missing from
20400 the debug info. */
20401 if (sig_type == NULL)
20402 {
20403 complaint (&symfile_complaints,
20404 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20405 " from DIE at 0x%x [in module %s]"),
20406 hex_string (signature), die->offset.sect_off,
20407 objfile_name (dwarf2_per_objfile->objfile));
20408 return build_error_marker_type (cu, die);
20409 }
20410
20411 /* If we already know the type we're done. */
20412 if (sig_type->type != NULL)
20413 return sig_type->type;
20414
20415 type_cu = cu;
20416 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20417 if (type_die != NULL)
20418 {
20419 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20420 is created. This is important, for example, because for c++ classes
20421 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20422 type = read_type_die (type_die, type_cu);
20423 if (type == NULL)
20424 {
20425 complaint (&symfile_complaints,
20426 _("Dwarf Error: Cannot build signatured type %s"
20427 " referenced from DIE at 0x%x [in module %s]"),
20428 hex_string (signature), die->offset.sect_off,
20429 objfile_name (dwarf2_per_objfile->objfile));
20430 type = build_error_marker_type (cu, die);
20431 }
20432 }
20433 else
20434 {
20435 complaint (&symfile_complaints,
20436 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20437 " from DIE at 0x%x [in module %s]"),
20438 hex_string (signature), die->offset.sect_off,
20439 objfile_name (dwarf2_per_objfile->objfile));
20440 type = build_error_marker_type (cu, die);
20441 }
20442 sig_type->type = type;
20443
20444 return type;
20445 }
20446
20447 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20448 reading in and processing the type unit if necessary. */
20449
20450 static struct type *
20451 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20452 struct dwarf2_cu *cu) /* ARI: editCase function */
20453 {
20454 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20455 if (attr_form_is_ref (attr))
20456 {
20457 struct dwarf2_cu *type_cu = cu;
20458 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20459
20460 return read_type_die (type_die, type_cu);
20461 }
20462 else if (attr->form == DW_FORM_ref_sig8)
20463 {
20464 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20465 }
20466 else
20467 {
20468 complaint (&symfile_complaints,
20469 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20470 " at 0x%x [in module %s]"),
20471 dwarf_form_name (attr->form), die->offset.sect_off,
20472 objfile_name (dwarf2_per_objfile->objfile));
20473 return build_error_marker_type (cu, die);
20474 }
20475 }
20476
20477 /* Load the DIEs associated with type unit PER_CU into memory. */
20478
20479 static void
20480 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20481 {
20482 struct signatured_type *sig_type;
20483
20484 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20485 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20486
20487 /* We have the per_cu, but we need the signatured_type.
20488 Fortunately this is an easy translation. */
20489 gdb_assert (per_cu->is_debug_types);
20490 sig_type = (struct signatured_type *) per_cu;
20491
20492 gdb_assert (per_cu->cu == NULL);
20493
20494 read_signatured_type (sig_type);
20495
20496 gdb_assert (per_cu->cu != NULL);
20497 }
20498
20499 /* die_reader_func for read_signatured_type.
20500 This is identical to load_full_comp_unit_reader,
20501 but is kept separate for now. */
20502
20503 static void
20504 read_signatured_type_reader (const struct die_reader_specs *reader,
20505 const gdb_byte *info_ptr,
20506 struct die_info *comp_unit_die,
20507 int has_children,
20508 void *data)
20509 {
20510 struct dwarf2_cu *cu = reader->cu;
20511
20512 gdb_assert (cu->die_hash == NULL);
20513 cu->die_hash =
20514 htab_create_alloc_ex (cu->header.length / 12,
20515 die_hash,
20516 die_eq,
20517 NULL,
20518 &cu->comp_unit_obstack,
20519 hashtab_obstack_allocate,
20520 dummy_obstack_deallocate);
20521
20522 if (has_children)
20523 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20524 &info_ptr, comp_unit_die);
20525 cu->dies = comp_unit_die;
20526 /* comp_unit_die is not stored in die_hash, no need. */
20527
20528 /* We try not to read any attributes in this function, because not
20529 all CUs needed for references have been loaded yet, and symbol
20530 table processing isn't initialized. But we have to set the CU language,
20531 or we won't be able to build types correctly.
20532 Similarly, if we do not read the producer, we can not apply
20533 producer-specific interpretation. */
20534 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20535 }
20536
20537 /* Read in a signatured type and build its CU and DIEs.
20538 If the type is a stub for the real type in a DWO file,
20539 read in the real type from the DWO file as well. */
20540
20541 static void
20542 read_signatured_type (struct signatured_type *sig_type)
20543 {
20544 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20545
20546 gdb_assert (per_cu->is_debug_types);
20547 gdb_assert (per_cu->cu == NULL);
20548
20549 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20550 read_signatured_type_reader, NULL);
20551 sig_type->per_cu.tu_read = 1;
20552 }
20553
20554 /* Decode simple location descriptions.
20555 Given a pointer to a dwarf block that defines a location, compute
20556 the location and return the value.
20557
20558 NOTE drow/2003-11-18: This function is called in two situations
20559 now: for the address of static or global variables (partial symbols
20560 only) and for offsets into structures which are expected to be
20561 (more or less) constant. The partial symbol case should go away,
20562 and only the constant case should remain. That will let this
20563 function complain more accurately. A few special modes are allowed
20564 without complaint for global variables (for instance, global
20565 register values and thread-local values).
20566
20567 A location description containing no operations indicates that the
20568 object is optimized out. The return value is 0 for that case.
20569 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20570 callers will only want a very basic result and this can become a
20571 complaint.
20572
20573 Note that stack[0] is unused except as a default error return. */
20574
20575 static CORE_ADDR
20576 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20577 {
20578 struct objfile *objfile = cu->objfile;
20579 size_t i;
20580 size_t size = blk->size;
20581 const gdb_byte *data = blk->data;
20582 CORE_ADDR stack[64];
20583 int stacki;
20584 unsigned int bytes_read, unsnd;
20585 gdb_byte op;
20586
20587 i = 0;
20588 stacki = 0;
20589 stack[stacki] = 0;
20590 stack[++stacki] = 0;
20591
20592 while (i < size)
20593 {
20594 op = data[i++];
20595 switch (op)
20596 {
20597 case DW_OP_lit0:
20598 case DW_OP_lit1:
20599 case DW_OP_lit2:
20600 case DW_OP_lit3:
20601 case DW_OP_lit4:
20602 case DW_OP_lit5:
20603 case DW_OP_lit6:
20604 case DW_OP_lit7:
20605 case DW_OP_lit8:
20606 case DW_OP_lit9:
20607 case DW_OP_lit10:
20608 case DW_OP_lit11:
20609 case DW_OP_lit12:
20610 case DW_OP_lit13:
20611 case DW_OP_lit14:
20612 case DW_OP_lit15:
20613 case DW_OP_lit16:
20614 case DW_OP_lit17:
20615 case DW_OP_lit18:
20616 case DW_OP_lit19:
20617 case DW_OP_lit20:
20618 case DW_OP_lit21:
20619 case DW_OP_lit22:
20620 case DW_OP_lit23:
20621 case DW_OP_lit24:
20622 case DW_OP_lit25:
20623 case DW_OP_lit26:
20624 case DW_OP_lit27:
20625 case DW_OP_lit28:
20626 case DW_OP_lit29:
20627 case DW_OP_lit30:
20628 case DW_OP_lit31:
20629 stack[++stacki] = op - DW_OP_lit0;
20630 break;
20631
20632 case DW_OP_reg0:
20633 case DW_OP_reg1:
20634 case DW_OP_reg2:
20635 case DW_OP_reg3:
20636 case DW_OP_reg4:
20637 case DW_OP_reg5:
20638 case DW_OP_reg6:
20639 case DW_OP_reg7:
20640 case DW_OP_reg8:
20641 case DW_OP_reg9:
20642 case DW_OP_reg10:
20643 case DW_OP_reg11:
20644 case DW_OP_reg12:
20645 case DW_OP_reg13:
20646 case DW_OP_reg14:
20647 case DW_OP_reg15:
20648 case DW_OP_reg16:
20649 case DW_OP_reg17:
20650 case DW_OP_reg18:
20651 case DW_OP_reg19:
20652 case DW_OP_reg20:
20653 case DW_OP_reg21:
20654 case DW_OP_reg22:
20655 case DW_OP_reg23:
20656 case DW_OP_reg24:
20657 case DW_OP_reg25:
20658 case DW_OP_reg26:
20659 case DW_OP_reg27:
20660 case DW_OP_reg28:
20661 case DW_OP_reg29:
20662 case DW_OP_reg30:
20663 case DW_OP_reg31:
20664 stack[++stacki] = op - DW_OP_reg0;
20665 if (i < size)
20666 dwarf2_complex_location_expr_complaint ();
20667 break;
20668
20669 case DW_OP_regx:
20670 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20671 i += bytes_read;
20672 stack[++stacki] = unsnd;
20673 if (i < size)
20674 dwarf2_complex_location_expr_complaint ();
20675 break;
20676
20677 case DW_OP_addr:
20678 stack[++stacki] = read_address (objfile->obfd, &data[i],
20679 cu, &bytes_read);
20680 i += bytes_read;
20681 break;
20682
20683 case DW_OP_const1u:
20684 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20685 i += 1;
20686 break;
20687
20688 case DW_OP_const1s:
20689 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20690 i += 1;
20691 break;
20692
20693 case DW_OP_const2u:
20694 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20695 i += 2;
20696 break;
20697
20698 case DW_OP_const2s:
20699 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20700 i += 2;
20701 break;
20702
20703 case DW_OP_const4u:
20704 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20705 i += 4;
20706 break;
20707
20708 case DW_OP_const4s:
20709 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20710 i += 4;
20711 break;
20712
20713 case DW_OP_const8u:
20714 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20715 i += 8;
20716 break;
20717
20718 case DW_OP_constu:
20719 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20720 &bytes_read);
20721 i += bytes_read;
20722 break;
20723
20724 case DW_OP_consts:
20725 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20726 i += bytes_read;
20727 break;
20728
20729 case DW_OP_dup:
20730 stack[stacki + 1] = stack[stacki];
20731 stacki++;
20732 break;
20733
20734 case DW_OP_plus:
20735 stack[stacki - 1] += stack[stacki];
20736 stacki--;
20737 break;
20738
20739 case DW_OP_plus_uconst:
20740 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20741 &bytes_read);
20742 i += bytes_read;
20743 break;
20744
20745 case DW_OP_minus:
20746 stack[stacki - 1] -= stack[stacki];
20747 stacki--;
20748 break;
20749
20750 case DW_OP_deref:
20751 /* If we're not the last op, then we definitely can't encode
20752 this using GDB's address_class enum. This is valid for partial
20753 global symbols, although the variable's address will be bogus
20754 in the psymtab. */
20755 if (i < size)
20756 dwarf2_complex_location_expr_complaint ();
20757 break;
20758
20759 case DW_OP_GNU_push_tls_address:
20760 case DW_OP_form_tls_address:
20761 /* The top of the stack has the offset from the beginning
20762 of the thread control block at which the variable is located. */
20763 /* Nothing should follow this operator, so the top of stack would
20764 be returned. */
20765 /* This is valid for partial global symbols, but the variable's
20766 address will be bogus in the psymtab. Make it always at least
20767 non-zero to not look as a variable garbage collected by linker
20768 which have DW_OP_addr 0. */
20769 if (i < size)
20770 dwarf2_complex_location_expr_complaint ();
20771 stack[stacki]++;
20772 break;
20773
20774 case DW_OP_GNU_uninit:
20775 break;
20776
20777 case DW_OP_GNU_addr_index:
20778 case DW_OP_GNU_const_index:
20779 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20780 &bytes_read);
20781 i += bytes_read;
20782 break;
20783
20784 default:
20785 {
20786 const char *name = get_DW_OP_name (op);
20787
20788 if (name)
20789 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20790 name);
20791 else
20792 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20793 op);
20794 }
20795
20796 return (stack[stacki]);
20797 }
20798
20799 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20800 outside of the allocated space. Also enforce minimum>0. */
20801 if (stacki >= ARRAY_SIZE (stack) - 1)
20802 {
20803 complaint (&symfile_complaints,
20804 _("location description stack overflow"));
20805 return 0;
20806 }
20807
20808 if (stacki <= 0)
20809 {
20810 complaint (&symfile_complaints,
20811 _("location description stack underflow"));
20812 return 0;
20813 }
20814 }
20815 return (stack[stacki]);
20816 }
20817
20818 /* memory allocation interface */
20819
20820 static struct dwarf_block *
20821 dwarf_alloc_block (struct dwarf2_cu *cu)
20822 {
20823 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20824 }
20825
20826 static struct die_info *
20827 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20828 {
20829 struct die_info *die;
20830 size_t size = sizeof (struct die_info);
20831
20832 if (num_attrs > 1)
20833 size += (num_attrs - 1) * sizeof (struct attribute);
20834
20835 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20836 memset (die, 0, sizeof (struct die_info));
20837 return (die);
20838 }
20839
20840 \f
20841 /* Macro support. */
20842
20843 /* Return file name relative to the compilation directory of file number I in
20844 *LH's file name table. The result is allocated using xmalloc; the caller is
20845 responsible for freeing it. */
20846
20847 static char *
20848 file_file_name (int file, struct line_header *lh)
20849 {
20850 /* Is the file number a valid index into the line header's file name
20851 table? Remember that file numbers start with one, not zero. */
20852 if (1 <= file && file <= lh->num_file_names)
20853 {
20854 struct file_entry *fe = &lh->file_names[file - 1];
20855
20856 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20857 || lh->include_dirs == NULL)
20858 return xstrdup (fe->name);
20859 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20860 fe->name, (char *) NULL);
20861 }
20862 else
20863 {
20864 /* The compiler produced a bogus file number. We can at least
20865 record the macro definitions made in the file, even if we
20866 won't be able to find the file by name. */
20867 char fake_name[80];
20868
20869 xsnprintf (fake_name, sizeof (fake_name),
20870 "<bad macro file number %d>", file);
20871
20872 complaint (&symfile_complaints,
20873 _("bad file number in macro information (%d)"),
20874 file);
20875
20876 return xstrdup (fake_name);
20877 }
20878 }
20879
20880 /* Return the full name of file number I in *LH's file name table.
20881 Use COMP_DIR as the name of the current directory of the
20882 compilation. The result is allocated using xmalloc; the caller is
20883 responsible for freeing it. */
20884 static char *
20885 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20886 {
20887 /* Is the file number a valid index into the line header's file name
20888 table? Remember that file numbers start with one, not zero. */
20889 if (1 <= file && file <= lh->num_file_names)
20890 {
20891 char *relative = file_file_name (file, lh);
20892
20893 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20894 return relative;
20895 return reconcat (relative, comp_dir, SLASH_STRING,
20896 relative, (char *) NULL);
20897 }
20898 else
20899 return file_file_name (file, lh);
20900 }
20901
20902
20903 static struct macro_source_file *
20904 macro_start_file (int file, int line,
20905 struct macro_source_file *current_file,
20906 struct line_header *lh)
20907 {
20908 /* File name relative to the compilation directory of this source file. */
20909 char *file_name = file_file_name (file, lh);
20910
20911 if (! current_file)
20912 {
20913 /* Note: We don't create a macro table for this compilation unit
20914 at all until we actually get a filename. */
20915 struct macro_table *macro_table = get_macro_table ();
20916
20917 /* If we have no current file, then this must be the start_file
20918 directive for the compilation unit's main source file. */
20919 current_file = macro_set_main (macro_table, file_name);
20920 macro_define_special (macro_table);
20921 }
20922 else
20923 current_file = macro_include (current_file, line, file_name);
20924
20925 xfree (file_name);
20926
20927 return current_file;
20928 }
20929
20930
20931 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20932 followed by a null byte. */
20933 static char *
20934 copy_string (const char *buf, int len)
20935 {
20936 char *s = (char *) xmalloc (len + 1);
20937
20938 memcpy (s, buf, len);
20939 s[len] = '\0';
20940 return s;
20941 }
20942
20943
20944 static const char *
20945 consume_improper_spaces (const char *p, const char *body)
20946 {
20947 if (*p == ' ')
20948 {
20949 complaint (&symfile_complaints,
20950 _("macro definition contains spaces "
20951 "in formal argument list:\n`%s'"),
20952 body);
20953
20954 while (*p == ' ')
20955 p++;
20956 }
20957
20958 return p;
20959 }
20960
20961
20962 static void
20963 parse_macro_definition (struct macro_source_file *file, int line,
20964 const char *body)
20965 {
20966 const char *p;
20967
20968 /* The body string takes one of two forms. For object-like macro
20969 definitions, it should be:
20970
20971 <macro name> " " <definition>
20972
20973 For function-like macro definitions, it should be:
20974
20975 <macro name> "() " <definition>
20976 or
20977 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20978
20979 Spaces may appear only where explicitly indicated, and in the
20980 <definition>.
20981
20982 The Dwarf 2 spec says that an object-like macro's name is always
20983 followed by a space, but versions of GCC around March 2002 omit
20984 the space when the macro's definition is the empty string.
20985
20986 The Dwarf 2 spec says that there should be no spaces between the
20987 formal arguments in a function-like macro's formal argument list,
20988 but versions of GCC around March 2002 include spaces after the
20989 commas. */
20990
20991
20992 /* Find the extent of the macro name. The macro name is terminated
20993 by either a space or null character (for an object-like macro) or
20994 an opening paren (for a function-like macro). */
20995 for (p = body; *p; p++)
20996 if (*p == ' ' || *p == '(')
20997 break;
20998
20999 if (*p == ' ' || *p == '\0')
21000 {
21001 /* It's an object-like macro. */
21002 int name_len = p - body;
21003 char *name = copy_string (body, name_len);
21004 const char *replacement;
21005
21006 if (*p == ' ')
21007 replacement = body + name_len + 1;
21008 else
21009 {
21010 dwarf2_macro_malformed_definition_complaint (body);
21011 replacement = body + name_len;
21012 }
21013
21014 macro_define_object (file, line, name, replacement);
21015
21016 xfree (name);
21017 }
21018 else if (*p == '(')
21019 {
21020 /* It's a function-like macro. */
21021 char *name = copy_string (body, p - body);
21022 int argc = 0;
21023 int argv_size = 1;
21024 char **argv = XNEWVEC (char *, argv_size);
21025
21026 p++;
21027
21028 p = consume_improper_spaces (p, body);
21029
21030 /* Parse the formal argument list. */
21031 while (*p && *p != ')')
21032 {
21033 /* Find the extent of the current argument name. */
21034 const char *arg_start = p;
21035
21036 while (*p && *p != ',' && *p != ')' && *p != ' ')
21037 p++;
21038
21039 if (! *p || p == arg_start)
21040 dwarf2_macro_malformed_definition_complaint (body);
21041 else
21042 {
21043 /* Make sure argv has room for the new argument. */
21044 if (argc >= argv_size)
21045 {
21046 argv_size *= 2;
21047 argv = XRESIZEVEC (char *, argv, argv_size);
21048 }
21049
21050 argv[argc++] = copy_string (arg_start, p - arg_start);
21051 }
21052
21053 p = consume_improper_spaces (p, body);
21054
21055 /* Consume the comma, if present. */
21056 if (*p == ',')
21057 {
21058 p++;
21059
21060 p = consume_improper_spaces (p, body);
21061 }
21062 }
21063
21064 if (*p == ')')
21065 {
21066 p++;
21067
21068 if (*p == ' ')
21069 /* Perfectly formed definition, no complaints. */
21070 macro_define_function (file, line, name,
21071 argc, (const char **) argv,
21072 p + 1);
21073 else if (*p == '\0')
21074 {
21075 /* Complain, but do define it. */
21076 dwarf2_macro_malformed_definition_complaint (body);
21077 macro_define_function (file, line, name,
21078 argc, (const char **) argv,
21079 p);
21080 }
21081 else
21082 /* Just complain. */
21083 dwarf2_macro_malformed_definition_complaint (body);
21084 }
21085 else
21086 /* Just complain. */
21087 dwarf2_macro_malformed_definition_complaint (body);
21088
21089 xfree (name);
21090 {
21091 int i;
21092
21093 for (i = 0; i < argc; i++)
21094 xfree (argv[i]);
21095 }
21096 xfree (argv);
21097 }
21098 else
21099 dwarf2_macro_malformed_definition_complaint (body);
21100 }
21101
21102 /* Skip some bytes from BYTES according to the form given in FORM.
21103 Returns the new pointer. */
21104
21105 static const gdb_byte *
21106 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21107 enum dwarf_form form,
21108 unsigned int offset_size,
21109 struct dwarf2_section_info *section)
21110 {
21111 unsigned int bytes_read;
21112
21113 switch (form)
21114 {
21115 case DW_FORM_data1:
21116 case DW_FORM_flag:
21117 ++bytes;
21118 break;
21119
21120 case DW_FORM_data2:
21121 bytes += 2;
21122 break;
21123
21124 case DW_FORM_data4:
21125 bytes += 4;
21126 break;
21127
21128 case DW_FORM_data8:
21129 bytes += 8;
21130 break;
21131
21132 case DW_FORM_string:
21133 read_direct_string (abfd, bytes, &bytes_read);
21134 bytes += bytes_read;
21135 break;
21136
21137 case DW_FORM_sec_offset:
21138 case DW_FORM_strp:
21139 case DW_FORM_GNU_strp_alt:
21140 bytes += offset_size;
21141 break;
21142
21143 case DW_FORM_block:
21144 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21145 bytes += bytes_read;
21146 break;
21147
21148 case DW_FORM_block1:
21149 bytes += 1 + read_1_byte (abfd, bytes);
21150 break;
21151 case DW_FORM_block2:
21152 bytes += 2 + read_2_bytes (abfd, bytes);
21153 break;
21154 case DW_FORM_block4:
21155 bytes += 4 + read_4_bytes (abfd, bytes);
21156 break;
21157
21158 case DW_FORM_sdata:
21159 case DW_FORM_udata:
21160 case DW_FORM_GNU_addr_index:
21161 case DW_FORM_GNU_str_index:
21162 bytes = gdb_skip_leb128 (bytes, buffer_end);
21163 if (bytes == NULL)
21164 {
21165 dwarf2_section_buffer_overflow_complaint (section);
21166 return NULL;
21167 }
21168 break;
21169
21170 default:
21171 {
21172 complain:
21173 complaint (&symfile_complaints,
21174 _("invalid form 0x%x in `%s'"),
21175 form, get_section_name (section));
21176 return NULL;
21177 }
21178 }
21179
21180 return bytes;
21181 }
21182
21183 /* A helper for dwarf_decode_macros that handles skipping an unknown
21184 opcode. Returns an updated pointer to the macro data buffer; or,
21185 on error, issues a complaint and returns NULL. */
21186
21187 static const gdb_byte *
21188 skip_unknown_opcode (unsigned int opcode,
21189 const gdb_byte **opcode_definitions,
21190 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21191 bfd *abfd,
21192 unsigned int offset_size,
21193 struct dwarf2_section_info *section)
21194 {
21195 unsigned int bytes_read, i;
21196 unsigned long arg;
21197 const gdb_byte *defn;
21198
21199 if (opcode_definitions[opcode] == NULL)
21200 {
21201 complaint (&symfile_complaints,
21202 _("unrecognized DW_MACFINO opcode 0x%x"),
21203 opcode);
21204 return NULL;
21205 }
21206
21207 defn = opcode_definitions[opcode];
21208 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21209 defn += bytes_read;
21210
21211 for (i = 0; i < arg; ++i)
21212 {
21213 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21214 (enum dwarf_form) defn[i], offset_size,
21215 section);
21216 if (mac_ptr == NULL)
21217 {
21218 /* skip_form_bytes already issued the complaint. */
21219 return NULL;
21220 }
21221 }
21222
21223 return mac_ptr;
21224 }
21225
21226 /* A helper function which parses the header of a macro section.
21227 If the macro section is the extended (for now called "GNU") type,
21228 then this updates *OFFSET_SIZE. Returns a pointer to just after
21229 the header, or issues a complaint and returns NULL on error. */
21230
21231 static const gdb_byte *
21232 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21233 bfd *abfd,
21234 const gdb_byte *mac_ptr,
21235 unsigned int *offset_size,
21236 int section_is_gnu)
21237 {
21238 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21239
21240 if (section_is_gnu)
21241 {
21242 unsigned int version, flags;
21243
21244 version = read_2_bytes (abfd, mac_ptr);
21245 if (version != 4)
21246 {
21247 complaint (&symfile_complaints,
21248 _("unrecognized version `%d' in .debug_macro section"),
21249 version);
21250 return NULL;
21251 }
21252 mac_ptr += 2;
21253
21254 flags = read_1_byte (abfd, mac_ptr);
21255 ++mac_ptr;
21256 *offset_size = (flags & 1) ? 8 : 4;
21257
21258 if ((flags & 2) != 0)
21259 /* We don't need the line table offset. */
21260 mac_ptr += *offset_size;
21261
21262 /* Vendor opcode descriptions. */
21263 if ((flags & 4) != 0)
21264 {
21265 unsigned int i, count;
21266
21267 count = read_1_byte (abfd, mac_ptr);
21268 ++mac_ptr;
21269 for (i = 0; i < count; ++i)
21270 {
21271 unsigned int opcode, bytes_read;
21272 unsigned long arg;
21273
21274 opcode = read_1_byte (abfd, mac_ptr);
21275 ++mac_ptr;
21276 opcode_definitions[opcode] = mac_ptr;
21277 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21278 mac_ptr += bytes_read;
21279 mac_ptr += arg;
21280 }
21281 }
21282 }
21283
21284 return mac_ptr;
21285 }
21286
21287 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21288 including DW_MACRO_GNU_transparent_include. */
21289
21290 static void
21291 dwarf_decode_macro_bytes (bfd *abfd,
21292 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21293 struct macro_source_file *current_file,
21294 struct line_header *lh,
21295 struct dwarf2_section_info *section,
21296 int section_is_gnu, int section_is_dwz,
21297 unsigned int offset_size,
21298 htab_t include_hash)
21299 {
21300 struct objfile *objfile = dwarf2_per_objfile->objfile;
21301 enum dwarf_macro_record_type macinfo_type;
21302 int at_commandline;
21303 const gdb_byte *opcode_definitions[256];
21304
21305 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21306 &offset_size, section_is_gnu);
21307 if (mac_ptr == NULL)
21308 {
21309 /* We already issued a complaint. */
21310 return;
21311 }
21312
21313 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21314 GDB is still reading the definitions from command line. First
21315 DW_MACINFO_start_file will need to be ignored as it was already executed
21316 to create CURRENT_FILE for the main source holding also the command line
21317 definitions. On first met DW_MACINFO_start_file this flag is reset to
21318 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21319
21320 at_commandline = 1;
21321
21322 do
21323 {
21324 /* Do we at least have room for a macinfo type byte? */
21325 if (mac_ptr >= mac_end)
21326 {
21327 dwarf2_section_buffer_overflow_complaint (section);
21328 break;
21329 }
21330
21331 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21332 mac_ptr++;
21333
21334 /* Note that we rely on the fact that the corresponding GNU and
21335 DWARF constants are the same. */
21336 switch (macinfo_type)
21337 {
21338 /* A zero macinfo type indicates the end of the macro
21339 information. */
21340 case 0:
21341 break;
21342
21343 case DW_MACRO_GNU_define:
21344 case DW_MACRO_GNU_undef:
21345 case DW_MACRO_GNU_define_indirect:
21346 case DW_MACRO_GNU_undef_indirect:
21347 case DW_MACRO_GNU_define_indirect_alt:
21348 case DW_MACRO_GNU_undef_indirect_alt:
21349 {
21350 unsigned int bytes_read;
21351 int line;
21352 const char *body;
21353 int is_define;
21354
21355 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21356 mac_ptr += bytes_read;
21357
21358 if (macinfo_type == DW_MACRO_GNU_define
21359 || macinfo_type == DW_MACRO_GNU_undef)
21360 {
21361 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21362 mac_ptr += bytes_read;
21363 }
21364 else
21365 {
21366 LONGEST str_offset;
21367
21368 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21369 mac_ptr += offset_size;
21370
21371 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21372 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21373 || section_is_dwz)
21374 {
21375 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21376
21377 body = read_indirect_string_from_dwz (dwz, str_offset);
21378 }
21379 else
21380 body = read_indirect_string_at_offset (abfd, str_offset);
21381 }
21382
21383 is_define = (macinfo_type == DW_MACRO_GNU_define
21384 || macinfo_type == DW_MACRO_GNU_define_indirect
21385 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21386 if (! current_file)
21387 {
21388 /* DWARF violation as no main source is present. */
21389 complaint (&symfile_complaints,
21390 _("debug info with no main source gives macro %s "
21391 "on line %d: %s"),
21392 is_define ? _("definition") : _("undefinition"),
21393 line, body);
21394 break;
21395 }
21396 if ((line == 0 && !at_commandline)
21397 || (line != 0 && at_commandline))
21398 complaint (&symfile_complaints,
21399 _("debug info gives %s macro %s with %s line %d: %s"),
21400 at_commandline ? _("command-line") : _("in-file"),
21401 is_define ? _("definition") : _("undefinition"),
21402 line == 0 ? _("zero") : _("non-zero"), line, body);
21403
21404 if (is_define)
21405 parse_macro_definition (current_file, line, body);
21406 else
21407 {
21408 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21409 || macinfo_type == DW_MACRO_GNU_undef_indirect
21410 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21411 macro_undef (current_file, line, body);
21412 }
21413 }
21414 break;
21415
21416 case DW_MACRO_GNU_start_file:
21417 {
21418 unsigned int bytes_read;
21419 int line, file;
21420
21421 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21422 mac_ptr += bytes_read;
21423 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21424 mac_ptr += bytes_read;
21425
21426 if ((line == 0 && !at_commandline)
21427 || (line != 0 && at_commandline))
21428 complaint (&symfile_complaints,
21429 _("debug info gives source %d included "
21430 "from %s at %s line %d"),
21431 file, at_commandline ? _("command-line") : _("file"),
21432 line == 0 ? _("zero") : _("non-zero"), line);
21433
21434 if (at_commandline)
21435 {
21436 /* This DW_MACRO_GNU_start_file was executed in the
21437 pass one. */
21438 at_commandline = 0;
21439 }
21440 else
21441 current_file = macro_start_file (file, line, current_file, lh);
21442 }
21443 break;
21444
21445 case DW_MACRO_GNU_end_file:
21446 if (! current_file)
21447 complaint (&symfile_complaints,
21448 _("macro debug info has an unmatched "
21449 "`close_file' directive"));
21450 else
21451 {
21452 current_file = current_file->included_by;
21453 if (! current_file)
21454 {
21455 enum dwarf_macro_record_type next_type;
21456
21457 /* GCC circa March 2002 doesn't produce the zero
21458 type byte marking the end of the compilation
21459 unit. Complain if it's not there, but exit no
21460 matter what. */
21461
21462 /* Do we at least have room for a macinfo type byte? */
21463 if (mac_ptr >= mac_end)
21464 {
21465 dwarf2_section_buffer_overflow_complaint (section);
21466 return;
21467 }
21468
21469 /* We don't increment mac_ptr here, so this is just
21470 a look-ahead. */
21471 next_type
21472 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21473 mac_ptr);
21474 if (next_type != 0)
21475 complaint (&symfile_complaints,
21476 _("no terminating 0-type entry for "
21477 "macros in `.debug_macinfo' section"));
21478
21479 return;
21480 }
21481 }
21482 break;
21483
21484 case DW_MACRO_GNU_transparent_include:
21485 case DW_MACRO_GNU_transparent_include_alt:
21486 {
21487 LONGEST offset;
21488 void **slot;
21489 bfd *include_bfd = abfd;
21490 struct dwarf2_section_info *include_section = section;
21491 const gdb_byte *include_mac_end = mac_end;
21492 int is_dwz = section_is_dwz;
21493 const gdb_byte *new_mac_ptr;
21494
21495 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21496 mac_ptr += offset_size;
21497
21498 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21499 {
21500 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21501
21502 dwarf2_read_section (objfile, &dwz->macro);
21503
21504 include_section = &dwz->macro;
21505 include_bfd = get_section_bfd_owner (include_section);
21506 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21507 is_dwz = 1;
21508 }
21509
21510 new_mac_ptr = include_section->buffer + offset;
21511 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21512
21513 if (*slot != NULL)
21514 {
21515 /* This has actually happened; see
21516 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21517 complaint (&symfile_complaints,
21518 _("recursive DW_MACRO_GNU_transparent_include in "
21519 ".debug_macro section"));
21520 }
21521 else
21522 {
21523 *slot = (void *) new_mac_ptr;
21524
21525 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21526 include_mac_end, current_file, lh,
21527 section, section_is_gnu, is_dwz,
21528 offset_size, include_hash);
21529
21530 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21531 }
21532 }
21533 break;
21534
21535 case DW_MACINFO_vendor_ext:
21536 if (!section_is_gnu)
21537 {
21538 unsigned int bytes_read;
21539
21540 /* This reads the constant, but since we don't recognize
21541 any vendor extensions, we ignore it. */
21542 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21543 mac_ptr += bytes_read;
21544 read_direct_string (abfd, mac_ptr, &bytes_read);
21545 mac_ptr += bytes_read;
21546
21547 /* We don't recognize any vendor extensions. */
21548 break;
21549 }
21550 /* FALLTHROUGH */
21551
21552 default:
21553 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21554 mac_ptr, mac_end, abfd, offset_size,
21555 section);
21556 if (mac_ptr == NULL)
21557 return;
21558 break;
21559 }
21560 } while (macinfo_type != 0);
21561 }
21562
21563 static void
21564 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21565 int section_is_gnu)
21566 {
21567 struct objfile *objfile = dwarf2_per_objfile->objfile;
21568 struct line_header *lh = cu->line_header;
21569 bfd *abfd;
21570 const gdb_byte *mac_ptr, *mac_end;
21571 struct macro_source_file *current_file = 0;
21572 enum dwarf_macro_record_type macinfo_type;
21573 unsigned int offset_size = cu->header.offset_size;
21574 const gdb_byte *opcode_definitions[256];
21575 struct cleanup *cleanup;
21576 htab_t include_hash;
21577 void **slot;
21578 struct dwarf2_section_info *section;
21579 const char *section_name;
21580
21581 if (cu->dwo_unit != NULL)
21582 {
21583 if (section_is_gnu)
21584 {
21585 section = &cu->dwo_unit->dwo_file->sections.macro;
21586 section_name = ".debug_macro.dwo";
21587 }
21588 else
21589 {
21590 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21591 section_name = ".debug_macinfo.dwo";
21592 }
21593 }
21594 else
21595 {
21596 if (section_is_gnu)
21597 {
21598 section = &dwarf2_per_objfile->macro;
21599 section_name = ".debug_macro";
21600 }
21601 else
21602 {
21603 section = &dwarf2_per_objfile->macinfo;
21604 section_name = ".debug_macinfo";
21605 }
21606 }
21607
21608 dwarf2_read_section (objfile, section);
21609 if (section->buffer == NULL)
21610 {
21611 complaint (&symfile_complaints, _("missing %s section"), section_name);
21612 return;
21613 }
21614 abfd = get_section_bfd_owner (section);
21615
21616 /* First pass: Find the name of the base filename.
21617 This filename is needed in order to process all macros whose definition
21618 (or undefinition) comes from the command line. These macros are defined
21619 before the first DW_MACINFO_start_file entry, and yet still need to be
21620 associated to the base file.
21621
21622 To determine the base file name, we scan the macro definitions until we
21623 reach the first DW_MACINFO_start_file entry. We then initialize
21624 CURRENT_FILE accordingly so that any macro definition found before the
21625 first DW_MACINFO_start_file can still be associated to the base file. */
21626
21627 mac_ptr = section->buffer + offset;
21628 mac_end = section->buffer + section->size;
21629
21630 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21631 &offset_size, section_is_gnu);
21632 if (mac_ptr == NULL)
21633 {
21634 /* We already issued a complaint. */
21635 return;
21636 }
21637
21638 do
21639 {
21640 /* Do we at least have room for a macinfo type byte? */
21641 if (mac_ptr >= mac_end)
21642 {
21643 /* Complaint is printed during the second pass as GDB will probably
21644 stop the first pass earlier upon finding
21645 DW_MACINFO_start_file. */
21646 break;
21647 }
21648
21649 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21650 mac_ptr++;
21651
21652 /* Note that we rely on the fact that the corresponding GNU and
21653 DWARF constants are the same. */
21654 switch (macinfo_type)
21655 {
21656 /* A zero macinfo type indicates the end of the macro
21657 information. */
21658 case 0:
21659 break;
21660
21661 case DW_MACRO_GNU_define:
21662 case DW_MACRO_GNU_undef:
21663 /* Only skip the data by MAC_PTR. */
21664 {
21665 unsigned int bytes_read;
21666
21667 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21668 mac_ptr += bytes_read;
21669 read_direct_string (abfd, mac_ptr, &bytes_read);
21670 mac_ptr += bytes_read;
21671 }
21672 break;
21673
21674 case DW_MACRO_GNU_start_file:
21675 {
21676 unsigned int bytes_read;
21677 int line, file;
21678
21679 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21680 mac_ptr += bytes_read;
21681 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21682 mac_ptr += bytes_read;
21683
21684 current_file = macro_start_file (file, line, current_file, lh);
21685 }
21686 break;
21687
21688 case DW_MACRO_GNU_end_file:
21689 /* No data to skip by MAC_PTR. */
21690 break;
21691
21692 case DW_MACRO_GNU_define_indirect:
21693 case DW_MACRO_GNU_undef_indirect:
21694 case DW_MACRO_GNU_define_indirect_alt:
21695 case DW_MACRO_GNU_undef_indirect_alt:
21696 {
21697 unsigned int bytes_read;
21698
21699 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21700 mac_ptr += bytes_read;
21701 mac_ptr += offset_size;
21702 }
21703 break;
21704
21705 case DW_MACRO_GNU_transparent_include:
21706 case DW_MACRO_GNU_transparent_include_alt:
21707 /* Note that, according to the spec, a transparent include
21708 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21709 skip this opcode. */
21710 mac_ptr += offset_size;
21711 break;
21712
21713 case DW_MACINFO_vendor_ext:
21714 /* Only skip the data by MAC_PTR. */
21715 if (!section_is_gnu)
21716 {
21717 unsigned int bytes_read;
21718
21719 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21720 mac_ptr += bytes_read;
21721 read_direct_string (abfd, mac_ptr, &bytes_read);
21722 mac_ptr += bytes_read;
21723 }
21724 /* FALLTHROUGH */
21725
21726 default:
21727 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21728 mac_ptr, mac_end, abfd, offset_size,
21729 section);
21730 if (mac_ptr == NULL)
21731 return;
21732 break;
21733 }
21734 } while (macinfo_type != 0 && current_file == NULL);
21735
21736 /* Second pass: Process all entries.
21737
21738 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21739 command-line macro definitions/undefinitions. This flag is unset when we
21740 reach the first DW_MACINFO_start_file entry. */
21741
21742 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21743 NULL, xcalloc, xfree);
21744 cleanup = make_cleanup_htab_delete (include_hash);
21745 mac_ptr = section->buffer + offset;
21746 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21747 *slot = (void *) mac_ptr;
21748 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21749 current_file, lh, section,
21750 section_is_gnu, 0, offset_size, include_hash);
21751 do_cleanups (cleanup);
21752 }
21753
21754 /* Check if the attribute's form is a DW_FORM_block*
21755 if so return true else false. */
21756
21757 static int
21758 attr_form_is_block (const struct attribute *attr)
21759 {
21760 return (attr == NULL ? 0 :
21761 attr->form == DW_FORM_block1
21762 || attr->form == DW_FORM_block2
21763 || attr->form == DW_FORM_block4
21764 || attr->form == DW_FORM_block
21765 || attr->form == DW_FORM_exprloc);
21766 }
21767
21768 /* Return non-zero if ATTR's value is a section offset --- classes
21769 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21770 You may use DW_UNSND (attr) to retrieve such offsets.
21771
21772 Section 7.5.4, "Attribute Encodings", explains that no attribute
21773 may have a value that belongs to more than one of these classes; it
21774 would be ambiguous if we did, because we use the same forms for all
21775 of them. */
21776
21777 static int
21778 attr_form_is_section_offset (const struct attribute *attr)
21779 {
21780 return (attr->form == DW_FORM_data4
21781 || attr->form == DW_FORM_data8
21782 || attr->form == DW_FORM_sec_offset);
21783 }
21784
21785 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21786 zero otherwise. When this function returns true, you can apply
21787 dwarf2_get_attr_constant_value to it.
21788
21789 However, note that for some attributes you must check
21790 attr_form_is_section_offset before using this test. DW_FORM_data4
21791 and DW_FORM_data8 are members of both the constant class, and of
21792 the classes that contain offsets into other debug sections
21793 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21794 that, if an attribute's can be either a constant or one of the
21795 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21796 taken as section offsets, not constants. */
21797
21798 static int
21799 attr_form_is_constant (const struct attribute *attr)
21800 {
21801 switch (attr->form)
21802 {
21803 case DW_FORM_sdata:
21804 case DW_FORM_udata:
21805 case DW_FORM_data1:
21806 case DW_FORM_data2:
21807 case DW_FORM_data4:
21808 case DW_FORM_data8:
21809 return 1;
21810 default:
21811 return 0;
21812 }
21813 }
21814
21815
21816 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21817 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21818
21819 static int
21820 attr_form_is_ref (const struct attribute *attr)
21821 {
21822 switch (attr->form)
21823 {
21824 case DW_FORM_ref_addr:
21825 case DW_FORM_ref1:
21826 case DW_FORM_ref2:
21827 case DW_FORM_ref4:
21828 case DW_FORM_ref8:
21829 case DW_FORM_ref_udata:
21830 case DW_FORM_GNU_ref_alt:
21831 return 1;
21832 default:
21833 return 0;
21834 }
21835 }
21836
21837 /* Return the .debug_loc section to use for CU.
21838 For DWO files use .debug_loc.dwo. */
21839
21840 static struct dwarf2_section_info *
21841 cu_debug_loc_section (struct dwarf2_cu *cu)
21842 {
21843 if (cu->dwo_unit)
21844 return &cu->dwo_unit->dwo_file->sections.loc;
21845 return &dwarf2_per_objfile->loc;
21846 }
21847
21848 /* A helper function that fills in a dwarf2_loclist_baton. */
21849
21850 static void
21851 fill_in_loclist_baton (struct dwarf2_cu *cu,
21852 struct dwarf2_loclist_baton *baton,
21853 const struct attribute *attr)
21854 {
21855 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21856
21857 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21858
21859 baton->per_cu = cu->per_cu;
21860 gdb_assert (baton->per_cu);
21861 /* We don't know how long the location list is, but make sure we
21862 don't run off the edge of the section. */
21863 baton->size = section->size - DW_UNSND (attr);
21864 baton->data = section->buffer + DW_UNSND (attr);
21865 baton->base_address = cu->base_address;
21866 baton->from_dwo = cu->dwo_unit != NULL;
21867 }
21868
21869 static void
21870 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21871 struct dwarf2_cu *cu, int is_block)
21872 {
21873 struct objfile *objfile = dwarf2_per_objfile->objfile;
21874 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21875
21876 if (attr_form_is_section_offset (attr)
21877 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21878 the section. If so, fall through to the complaint in the
21879 other branch. */
21880 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21881 {
21882 struct dwarf2_loclist_baton *baton;
21883
21884 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21885
21886 fill_in_loclist_baton (cu, baton, attr);
21887
21888 if (cu->base_known == 0)
21889 complaint (&symfile_complaints,
21890 _("Location list used without "
21891 "specifying the CU base address."));
21892
21893 SYMBOL_ACLASS_INDEX (sym) = (is_block
21894 ? dwarf2_loclist_block_index
21895 : dwarf2_loclist_index);
21896 SYMBOL_LOCATION_BATON (sym) = baton;
21897 }
21898 else
21899 {
21900 struct dwarf2_locexpr_baton *baton;
21901
21902 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21903 baton->per_cu = cu->per_cu;
21904 gdb_assert (baton->per_cu);
21905
21906 if (attr_form_is_block (attr))
21907 {
21908 /* Note that we're just copying the block's data pointer
21909 here, not the actual data. We're still pointing into the
21910 info_buffer for SYM's objfile; right now we never release
21911 that buffer, but when we do clean up properly this may
21912 need to change. */
21913 baton->size = DW_BLOCK (attr)->size;
21914 baton->data = DW_BLOCK (attr)->data;
21915 }
21916 else
21917 {
21918 dwarf2_invalid_attrib_class_complaint ("location description",
21919 SYMBOL_NATURAL_NAME (sym));
21920 baton->size = 0;
21921 }
21922
21923 SYMBOL_ACLASS_INDEX (sym) = (is_block
21924 ? dwarf2_locexpr_block_index
21925 : dwarf2_locexpr_index);
21926 SYMBOL_LOCATION_BATON (sym) = baton;
21927 }
21928 }
21929
21930 /* Return the OBJFILE associated with the compilation unit CU. If CU
21931 came from a separate debuginfo file, then the master objfile is
21932 returned. */
21933
21934 struct objfile *
21935 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21936 {
21937 struct objfile *objfile = per_cu->objfile;
21938
21939 /* Return the master objfile, so that we can report and look up the
21940 correct file containing this variable. */
21941 if (objfile->separate_debug_objfile_backlink)
21942 objfile = objfile->separate_debug_objfile_backlink;
21943
21944 return objfile;
21945 }
21946
21947 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21948 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21949 CU_HEADERP first. */
21950
21951 static const struct comp_unit_head *
21952 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21953 struct dwarf2_per_cu_data *per_cu)
21954 {
21955 const gdb_byte *info_ptr;
21956
21957 if (per_cu->cu)
21958 return &per_cu->cu->header;
21959
21960 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21961
21962 memset (cu_headerp, 0, sizeof (*cu_headerp));
21963 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21964
21965 return cu_headerp;
21966 }
21967
21968 /* Return the address size given in the compilation unit header for CU. */
21969
21970 int
21971 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21972 {
21973 struct comp_unit_head cu_header_local;
21974 const struct comp_unit_head *cu_headerp;
21975
21976 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21977
21978 return cu_headerp->addr_size;
21979 }
21980
21981 /* Return the offset size given in the compilation unit header for CU. */
21982
21983 int
21984 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21985 {
21986 struct comp_unit_head cu_header_local;
21987 const struct comp_unit_head *cu_headerp;
21988
21989 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21990
21991 return cu_headerp->offset_size;
21992 }
21993
21994 /* See its dwarf2loc.h declaration. */
21995
21996 int
21997 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21998 {
21999 struct comp_unit_head cu_header_local;
22000 const struct comp_unit_head *cu_headerp;
22001
22002 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22003
22004 if (cu_headerp->version == 2)
22005 return cu_headerp->addr_size;
22006 else
22007 return cu_headerp->offset_size;
22008 }
22009
22010 /* Return the text offset of the CU. The returned offset comes from
22011 this CU's objfile. If this objfile came from a separate debuginfo
22012 file, then the offset may be different from the corresponding
22013 offset in the parent objfile. */
22014
22015 CORE_ADDR
22016 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22017 {
22018 struct objfile *objfile = per_cu->objfile;
22019
22020 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22021 }
22022
22023 /* Locate the .debug_info compilation unit from CU's objfile which contains
22024 the DIE at OFFSET. Raises an error on failure. */
22025
22026 static struct dwarf2_per_cu_data *
22027 dwarf2_find_containing_comp_unit (sect_offset offset,
22028 unsigned int offset_in_dwz,
22029 struct objfile *objfile)
22030 {
22031 struct dwarf2_per_cu_data *this_cu;
22032 int low, high;
22033 const sect_offset *cu_off;
22034
22035 low = 0;
22036 high = dwarf2_per_objfile->n_comp_units - 1;
22037 while (high > low)
22038 {
22039 struct dwarf2_per_cu_data *mid_cu;
22040 int mid = low + (high - low) / 2;
22041
22042 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22043 cu_off = &mid_cu->offset;
22044 if (mid_cu->is_dwz > offset_in_dwz
22045 || (mid_cu->is_dwz == offset_in_dwz
22046 && cu_off->sect_off >= offset.sect_off))
22047 high = mid;
22048 else
22049 low = mid + 1;
22050 }
22051 gdb_assert (low == high);
22052 this_cu = dwarf2_per_objfile->all_comp_units[low];
22053 cu_off = &this_cu->offset;
22054 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22055 {
22056 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22057 error (_("Dwarf Error: could not find partial DIE containing "
22058 "offset 0x%lx [in module %s]"),
22059 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22060
22061 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22062 <= offset.sect_off);
22063 return dwarf2_per_objfile->all_comp_units[low-1];
22064 }
22065 else
22066 {
22067 this_cu = dwarf2_per_objfile->all_comp_units[low];
22068 if (low == dwarf2_per_objfile->n_comp_units - 1
22069 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22070 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22071 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22072 return this_cu;
22073 }
22074 }
22075
22076 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22077
22078 static void
22079 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22080 {
22081 memset (cu, 0, sizeof (*cu));
22082 per_cu->cu = cu;
22083 cu->per_cu = per_cu;
22084 cu->objfile = per_cu->objfile;
22085 obstack_init (&cu->comp_unit_obstack);
22086 }
22087
22088 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22089
22090 static void
22091 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22092 enum language pretend_language)
22093 {
22094 struct attribute *attr;
22095
22096 /* Set the language we're debugging. */
22097 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22098 if (attr)
22099 set_cu_language (DW_UNSND (attr), cu);
22100 else
22101 {
22102 cu->language = pretend_language;
22103 cu->language_defn = language_def (cu->language);
22104 }
22105
22106 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22107 }
22108
22109 /* Release one cached compilation unit, CU. We unlink it from the tree
22110 of compilation units, but we don't remove it from the read_in_chain;
22111 the caller is responsible for that.
22112 NOTE: DATA is a void * because this function is also used as a
22113 cleanup routine. */
22114
22115 static void
22116 free_heap_comp_unit (void *data)
22117 {
22118 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22119
22120 gdb_assert (cu->per_cu != NULL);
22121 cu->per_cu->cu = NULL;
22122 cu->per_cu = NULL;
22123
22124 obstack_free (&cu->comp_unit_obstack, NULL);
22125
22126 xfree (cu);
22127 }
22128
22129 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22130 when we're finished with it. We can't free the pointer itself, but be
22131 sure to unlink it from the cache. Also release any associated storage. */
22132
22133 static void
22134 free_stack_comp_unit (void *data)
22135 {
22136 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22137
22138 gdb_assert (cu->per_cu != NULL);
22139 cu->per_cu->cu = NULL;
22140 cu->per_cu = NULL;
22141
22142 obstack_free (&cu->comp_unit_obstack, NULL);
22143 cu->partial_dies = NULL;
22144 }
22145
22146 /* Free all cached compilation units. */
22147
22148 static void
22149 free_cached_comp_units (void *data)
22150 {
22151 struct dwarf2_per_cu_data *per_cu, **last_chain;
22152
22153 per_cu = dwarf2_per_objfile->read_in_chain;
22154 last_chain = &dwarf2_per_objfile->read_in_chain;
22155 while (per_cu != NULL)
22156 {
22157 struct dwarf2_per_cu_data *next_cu;
22158
22159 next_cu = per_cu->cu->read_in_chain;
22160
22161 free_heap_comp_unit (per_cu->cu);
22162 *last_chain = next_cu;
22163
22164 per_cu = next_cu;
22165 }
22166 }
22167
22168 /* Increase the age counter on each cached compilation unit, and free
22169 any that are too old. */
22170
22171 static void
22172 age_cached_comp_units (void)
22173 {
22174 struct dwarf2_per_cu_data *per_cu, **last_chain;
22175
22176 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22177 per_cu = dwarf2_per_objfile->read_in_chain;
22178 while (per_cu != NULL)
22179 {
22180 per_cu->cu->last_used ++;
22181 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22182 dwarf2_mark (per_cu->cu);
22183 per_cu = per_cu->cu->read_in_chain;
22184 }
22185
22186 per_cu = dwarf2_per_objfile->read_in_chain;
22187 last_chain = &dwarf2_per_objfile->read_in_chain;
22188 while (per_cu != NULL)
22189 {
22190 struct dwarf2_per_cu_data *next_cu;
22191
22192 next_cu = per_cu->cu->read_in_chain;
22193
22194 if (!per_cu->cu->mark)
22195 {
22196 free_heap_comp_unit (per_cu->cu);
22197 *last_chain = next_cu;
22198 }
22199 else
22200 last_chain = &per_cu->cu->read_in_chain;
22201
22202 per_cu = next_cu;
22203 }
22204 }
22205
22206 /* Remove a single compilation unit from the cache. */
22207
22208 static void
22209 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22210 {
22211 struct dwarf2_per_cu_data *per_cu, **last_chain;
22212
22213 per_cu = dwarf2_per_objfile->read_in_chain;
22214 last_chain = &dwarf2_per_objfile->read_in_chain;
22215 while (per_cu != NULL)
22216 {
22217 struct dwarf2_per_cu_data *next_cu;
22218
22219 next_cu = per_cu->cu->read_in_chain;
22220
22221 if (per_cu == target_per_cu)
22222 {
22223 free_heap_comp_unit (per_cu->cu);
22224 per_cu->cu = NULL;
22225 *last_chain = next_cu;
22226 break;
22227 }
22228 else
22229 last_chain = &per_cu->cu->read_in_chain;
22230
22231 per_cu = next_cu;
22232 }
22233 }
22234
22235 /* Release all extra memory associated with OBJFILE. */
22236
22237 void
22238 dwarf2_free_objfile (struct objfile *objfile)
22239 {
22240 dwarf2_per_objfile
22241 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22242 dwarf2_objfile_data_key);
22243
22244 if (dwarf2_per_objfile == NULL)
22245 return;
22246
22247 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22248 free_cached_comp_units (NULL);
22249
22250 if (dwarf2_per_objfile->quick_file_names_table)
22251 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22252
22253 if (dwarf2_per_objfile->line_header_hash)
22254 htab_delete (dwarf2_per_objfile->line_header_hash);
22255
22256 /* Everything else should be on the objfile obstack. */
22257 }
22258
22259 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22260 We store these in a hash table separate from the DIEs, and preserve them
22261 when the DIEs are flushed out of cache.
22262
22263 The CU "per_cu" pointer is needed because offset alone is not enough to
22264 uniquely identify the type. A file may have multiple .debug_types sections,
22265 or the type may come from a DWO file. Furthermore, while it's more logical
22266 to use per_cu->section+offset, with Fission the section with the data is in
22267 the DWO file but we don't know that section at the point we need it.
22268 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22269 because we can enter the lookup routine, get_die_type_at_offset, from
22270 outside this file, and thus won't necessarily have PER_CU->cu.
22271 Fortunately, PER_CU is stable for the life of the objfile. */
22272
22273 struct dwarf2_per_cu_offset_and_type
22274 {
22275 const struct dwarf2_per_cu_data *per_cu;
22276 sect_offset offset;
22277 struct type *type;
22278 };
22279
22280 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22281
22282 static hashval_t
22283 per_cu_offset_and_type_hash (const void *item)
22284 {
22285 const struct dwarf2_per_cu_offset_and_type *ofs
22286 = (const struct dwarf2_per_cu_offset_and_type *) item;
22287
22288 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22289 }
22290
22291 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22292
22293 static int
22294 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22295 {
22296 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22297 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22298 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22299 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22300
22301 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22302 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22303 }
22304
22305 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22306 table if necessary. For convenience, return TYPE.
22307
22308 The DIEs reading must have careful ordering to:
22309 * Not cause infite loops trying to read in DIEs as a prerequisite for
22310 reading current DIE.
22311 * Not trying to dereference contents of still incompletely read in types
22312 while reading in other DIEs.
22313 * Enable referencing still incompletely read in types just by a pointer to
22314 the type without accessing its fields.
22315
22316 Therefore caller should follow these rules:
22317 * Try to fetch any prerequisite types we may need to build this DIE type
22318 before building the type and calling set_die_type.
22319 * After building type call set_die_type for current DIE as soon as
22320 possible before fetching more types to complete the current type.
22321 * Make the type as complete as possible before fetching more types. */
22322
22323 static struct type *
22324 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22325 {
22326 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22327 struct objfile *objfile = cu->objfile;
22328 struct attribute *attr;
22329 struct dynamic_prop prop;
22330
22331 /* For Ada types, make sure that the gnat-specific data is always
22332 initialized (if not already set). There are a few types where
22333 we should not be doing so, because the type-specific area is
22334 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22335 where the type-specific area is used to store the floatformat).
22336 But this is not a problem, because the gnat-specific information
22337 is actually not needed for these types. */
22338 if (need_gnat_info (cu)
22339 && TYPE_CODE (type) != TYPE_CODE_FUNC
22340 && TYPE_CODE (type) != TYPE_CODE_FLT
22341 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22342 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22343 && TYPE_CODE (type) != TYPE_CODE_METHOD
22344 && !HAVE_GNAT_AUX_INFO (type))
22345 INIT_GNAT_SPECIFIC (type);
22346
22347 /* Read DW_AT_allocated and set in type. */
22348 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22349 if (attr_form_is_block (attr))
22350 {
22351 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22352 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22353 }
22354 else if (attr != NULL)
22355 {
22356 complaint (&symfile_complaints,
22357 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22358 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22359 die->offset.sect_off);
22360 }
22361
22362 /* Read DW_AT_associated and set in type. */
22363 attr = dwarf2_attr (die, DW_AT_associated, cu);
22364 if (attr_form_is_block (attr))
22365 {
22366 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22367 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22368 }
22369 else if (attr != NULL)
22370 {
22371 complaint (&symfile_complaints,
22372 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22373 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22374 die->offset.sect_off);
22375 }
22376
22377 /* Read DW_AT_data_location and set in type. */
22378 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22379 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22380 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22381
22382 if (dwarf2_per_objfile->die_type_hash == NULL)
22383 {
22384 dwarf2_per_objfile->die_type_hash =
22385 htab_create_alloc_ex (127,
22386 per_cu_offset_and_type_hash,
22387 per_cu_offset_and_type_eq,
22388 NULL,
22389 &objfile->objfile_obstack,
22390 hashtab_obstack_allocate,
22391 dummy_obstack_deallocate);
22392 }
22393
22394 ofs.per_cu = cu->per_cu;
22395 ofs.offset = die->offset;
22396 ofs.type = type;
22397 slot = (struct dwarf2_per_cu_offset_and_type **)
22398 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22399 if (*slot)
22400 complaint (&symfile_complaints,
22401 _("A problem internal to GDB: DIE 0x%x has type already set"),
22402 die->offset.sect_off);
22403 *slot = XOBNEW (&objfile->objfile_obstack,
22404 struct dwarf2_per_cu_offset_and_type);
22405 **slot = ofs;
22406 return type;
22407 }
22408
22409 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22410 or return NULL if the die does not have a saved type. */
22411
22412 static struct type *
22413 get_die_type_at_offset (sect_offset offset,
22414 struct dwarf2_per_cu_data *per_cu)
22415 {
22416 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22417
22418 if (dwarf2_per_objfile->die_type_hash == NULL)
22419 return NULL;
22420
22421 ofs.per_cu = per_cu;
22422 ofs.offset = offset;
22423 slot = ((struct dwarf2_per_cu_offset_and_type *)
22424 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22425 if (slot)
22426 return slot->type;
22427 else
22428 return NULL;
22429 }
22430
22431 /* Look up the type for DIE in CU in die_type_hash,
22432 or return NULL if DIE does not have a saved type. */
22433
22434 static struct type *
22435 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22436 {
22437 return get_die_type_at_offset (die->offset, cu->per_cu);
22438 }
22439
22440 /* Add a dependence relationship from CU to REF_PER_CU. */
22441
22442 static void
22443 dwarf2_add_dependence (struct dwarf2_cu *cu,
22444 struct dwarf2_per_cu_data *ref_per_cu)
22445 {
22446 void **slot;
22447
22448 if (cu->dependencies == NULL)
22449 cu->dependencies
22450 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22451 NULL, &cu->comp_unit_obstack,
22452 hashtab_obstack_allocate,
22453 dummy_obstack_deallocate);
22454
22455 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22456 if (*slot == NULL)
22457 *slot = ref_per_cu;
22458 }
22459
22460 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22461 Set the mark field in every compilation unit in the
22462 cache that we must keep because we are keeping CU. */
22463
22464 static int
22465 dwarf2_mark_helper (void **slot, void *data)
22466 {
22467 struct dwarf2_per_cu_data *per_cu;
22468
22469 per_cu = (struct dwarf2_per_cu_data *) *slot;
22470
22471 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22472 reading of the chain. As such dependencies remain valid it is not much
22473 useful to track and undo them during QUIT cleanups. */
22474 if (per_cu->cu == NULL)
22475 return 1;
22476
22477 if (per_cu->cu->mark)
22478 return 1;
22479 per_cu->cu->mark = 1;
22480
22481 if (per_cu->cu->dependencies != NULL)
22482 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22483
22484 return 1;
22485 }
22486
22487 /* Set the mark field in CU and in every other compilation unit in the
22488 cache that we must keep because we are keeping CU. */
22489
22490 static void
22491 dwarf2_mark (struct dwarf2_cu *cu)
22492 {
22493 if (cu->mark)
22494 return;
22495 cu->mark = 1;
22496 if (cu->dependencies != NULL)
22497 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22498 }
22499
22500 static void
22501 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22502 {
22503 while (per_cu)
22504 {
22505 per_cu->cu->mark = 0;
22506 per_cu = per_cu->cu->read_in_chain;
22507 }
22508 }
22509
22510 /* Trivial hash function for partial_die_info: the hash value of a DIE
22511 is its offset in .debug_info for this objfile. */
22512
22513 static hashval_t
22514 partial_die_hash (const void *item)
22515 {
22516 const struct partial_die_info *part_die
22517 = (const struct partial_die_info *) item;
22518
22519 return part_die->offset.sect_off;
22520 }
22521
22522 /* Trivial comparison function for partial_die_info structures: two DIEs
22523 are equal if they have the same offset. */
22524
22525 static int
22526 partial_die_eq (const void *item_lhs, const void *item_rhs)
22527 {
22528 const struct partial_die_info *part_die_lhs
22529 = (const struct partial_die_info *) item_lhs;
22530 const struct partial_die_info *part_die_rhs
22531 = (const struct partial_die_info *) item_rhs;
22532
22533 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22534 }
22535
22536 static struct cmd_list_element *set_dwarf_cmdlist;
22537 static struct cmd_list_element *show_dwarf_cmdlist;
22538
22539 static void
22540 set_dwarf_cmd (char *args, int from_tty)
22541 {
22542 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22543 gdb_stdout);
22544 }
22545
22546 static void
22547 show_dwarf_cmd (char *args, int from_tty)
22548 {
22549 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22550 }
22551
22552 /* Free data associated with OBJFILE, if necessary. */
22553
22554 static void
22555 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22556 {
22557 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22558 int ix;
22559
22560 /* Make sure we don't accidentally use dwarf2_per_objfile while
22561 cleaning up. */
22562 dwarf2_per_objfile = NULL;
22563
22564 for (ix = 0; ix < data->n_comp_units; ++ix)
22565 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22566
22567 for (ix = 0; ix < data->n_type_units; ++ix)
22568 VEC_free (dwarf2_per_cu_ptr,
22569 data->all_type_units[ix]->per_cu.imported_symtabs);
22570 xfree (data->all_type_units);
22571
22572 VEC_free (dwarf2_section_info_def, data->types);
22573
22574 if (data->dwo_files)
22575 free_dwo_files (data->dwo_files, objfile);
22576 if (data->dwp_file)
22577 gdb_bfd_unref (data->dwp_file->dbfd);
22578
22579 if (data->dwz_file && data->dwz_file->dwz_bfd)
22580 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22581 }
22582
22583 \f
22584 /* The "save gdb-index" command. */
22585
22586 /* The contents of the hash table we create when building the string
22587 table. */
22588 struct strtab_entry
22589 {
22590 offset_type offset;
22591 const char *str;
22592 };
22593
22594 /* Hash function for a strtab_entry.
22595
22596 Function is used only during write_hash_table so no index format backward
22597 compatibility is needed. */
22598
22599 static hashval_t
22600 hash_strtab_entry (const void *e)
22601 {
22602 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22603 return mapped_index_string_hash (INT_MAX, entry->str);
22604 }
22605
22606 /* Equality function for a strtab_entry. */
22607
22608 static int
22609 eq_strtab_entry (const void *a, const void *b)
22610 {
22611 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22612 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22613 return !strcmp (ea->str, eb->str);
22614 }
22615
22616 /* Create a strtab_entry hash table. */
22617
22618 static htab_t
22619 create_strtab (void)
22620 {
22621 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22622 xfree, xcalloc, xfree);
22623 }
22624
22625 /* Add a string to the constant pool. Return the string's offset in
22626 host order. */
22627
22628 static offset_type
22629 add_string (htab_t table, struct obstack *cpool, const char *str)
22630 {
22631 void **slot;
22632 struct strtab_entry entry;
22633 struct strtab_entry *result;
22634
22635 entry.str = str;
22636 slot = htab_find_slot (table, &entry, INSERT);
22637 if (*slot)
22638 result = (struct strtab_entry *) *slot;
22639 else
22640 {
22641 result = XNEW (struct strtab_entry);
22642 result->offset = obstack_object_size (cpool);
22643 result->str = str;
22644 obstack_grow_str0 (cpool, str);
22645 *slot = result;
22646 }
22647 return result->offset;
22648 }
22649
22650 /* An entry in the symbol table. */
22651 struct symtab_index_entry
22652 {
22653 /* The name of the symbol. */
22654 const char *name;
22655 /* The offset of the name in the constant pool. */
22656 offset_type index_offset;
22657 /* A sorted vector of the indices of all the CUs that hold an object
22658 of this name. */
22659 VEC (offset_type) *cu_indices;
22660 };
22661
22662 /* The symbol table. This is a power-of-2-sized hash table. */
22663 struct mapped_symtab
22664 {
22665 offset_type n_elements;
22666 offset_type size;
22667 struct symtab_index_entry **data;
22668 };
22669
22670 /* Hash function for a symtab_index_entry. */
22671
22672 static hashval_t
22673 hash_symtab_entry (const void *e)
22674 {
22675 const struct symtab_index_entry *entry
22676 = (const struct symtab_index_entry *) e;
22677 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22678 sizeof (offset_type) * VEC_length (offset_type,
22679 entry->cu_indices),
22680 0);
22681 }
22682
22683 /* Equality function for a symtab_index_entry. */
22684
22685 static int
22686 eq_symtab_entry (const void *a, const void *b)
22687 {
22688 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22689 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22690 int len = VEC_length (offset_type, ea->cu_indices);
22691 if (len != VEC_length (offset_type, eb->cu_indices))
22692 return 0;
22693 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22694 VEC_address (offset_type, eb->cu_indices),
22695 sizeof (offset_type) * len);
22696 }
22697
22698 /* Destroy a symtab_index_entry. */
22699
22700 static void
22701 delete_symtab_entry (void *p)
22702 {
22703 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22704 VEC_free (offset_type, entry->cu_indices);
22705 xfree (entry);
22706 }
22707
22708 /* Create a hash table holding symtab_index_entry objects. */
22709
22710 static htab_t
22711 create_symbol_hash_table (void)
22712 {
22713 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22714 delete_symtab_entry, xcalloc, xfree);
22715 }
22716
22717 /* Create a new mapped symtab object. */
22718
22719 static struct mapped_symtab *
22720 create_mapped_symtab (void)
22721 {
22722 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22723 symtab->n_elements = 0;
22724 symtab->size = 1024;
22725 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22726 return symtab;
22727 }
22728
22729 /* Destroy a mapped_symtab. */
22730
22731 static void
22732 cleanup_mapped_symtab (void *p)
22733 {
22734 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22735 /* The contents of the array are freed when the other hash table is
22736 destroyed. */
22737 xfree (symtab->data);
22738 xfree (symtab);
22739 }
22740
22741 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22742 the slot.
22743
22744 Function is used only during write_hash_table so no index format backward
22745 compatibility is needed. */
22746
22747 static struct symtab_index_entry **
22748 find_slot (struct mapped_symtab *symtab, const char *name)
22749 {
22750 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22751
22752 index = hash & (symtab->size - 1);
22753 step = ((hash * 17) & (symtab->size - 1)) | 1;
22754
22755 for (;;)
22756 {
22757 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22758 return &symtab->data[index];
22759 index = (index + step) & (symtab->size - 1);
22760 }
22761 }
22762
22763 /* Expand SYMTAB's hash table. */
22764
22765 static void
22766 hash_expand (struct mapped_symtab *symtab)
22767 {
22768 offset_type old_size = symtab->size;
22769 offset_type i;
22770 struct symtab_index_entry **old_entries = symtab->data;
22771
22772 symtab->size *= 2;
22773 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22774
22775 for (i = 0; i < old_size; ++i)
22776 {
22777 if (old_entries[i])
22778 {
22779 struct symtab_index_entry **slot = find_slot (symtab,
22780 old_entries[i]->name);
22781 *slot = old_entries[i];
22782 }
22783 }
22784
22785 xfree (old_entries);
22786 }
22787
22788 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22789 CU_INDEX is the index of the CU in which the symbol appears.
22790 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22791
22792 static void
22793 add_index_entry (struct mapped_symtab *symtab, const char *name,
22794 int is_static, gdb_index_symbol_kind kind,
22795 offset_type cu_index)
22796 {
22797 struct symtab_index_entry **slot;
22798 offset_type cu_index_and_attrs;
22799
22800 ++symtab->n_elements;
22801 if (4 * symtab->n_elements / 3 >= symtab->size)
22802 hash_expand (symtab);
22803
22804 slot = find_slot (symtab, name);
22805 if (!*slot)
22806 {
22807 *slot = XNEW (struct symtab_index_entry);
22808 (*slot)->name = name;
22809 /* index_offset is set later. */
22810 (*slot)->cu_indices = NULL;
22811 }
22812
22813 cu_index_and_attrs = 0;
22814 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22815 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22816 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22817
22818 /* We don't want to record an index value twice as we want to avoid the
22819 duplication.
22820 We process all global symbols and then all static symbols
22821 (which would allow us to avoid the duplication by only having to check
22822 the last entry pushed), but a symbol could have multiple kinds in one CU.
22823 To keep things simple we don't worry about the duplication here and
22824 sort and uniqufy the list after we've processed all symbols. */
22825 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22826 }
22827
22828 /* qsort helper routine for uniquify_cu_indices. */
22829
22830 static int
22831 offset_type_compare (const void *ap, const void *bp)
22832 {
22833 offset_type a = *(offset_type *) ap;
22834 offset_type b = *(offset_type *) bp;
22835
22836 return (a > b) - (b > a);
22837 }
22838
22839 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22840
22841 static void
22842 uniquify_cu_indices (struct mapped_symtab *symtab)
22843 {
22844 int i;
22845
22846 for (i = 0; i < symtab->size; ++i)
22847 {
22848 struct symtab_index_entry *entry = symtab->data[i];
22849
22850 if (entry
22851 && entry->cu_indices != NULL)
22852 {
22853 unsigned int next_to_insert, next_to_check;
22854 offset_type last_value;
22855
22856 qsort (VEC_address (offset_type, entry->cu_indices),
22857 VEC_length (offset_type, entry->cu_indices),
22858 sizeof (offset_type), offset_type_compare);
22859
22860 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22861 next_to_insert = 1;
22862 for (next_to_check = 1;
22863 next_to_check < VEC_length (offset_type, entry->cu_indices);
22864 ++next_to_check)
22865 {
22866 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22867 != last_value)
22868 {
22869 last_value = VEC_index (offset_type, entry->cu_indices,
22870 next_to_check);
22871 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22872 last_value);
22873 ++next_to_insert;
22874 }
22875 }
22876 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22877 }
22878 }
22879 }
22880
22881 /* Add a vector of indices to the constant pool. */
22882
22883 static offset_type
22884 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22885 struct symtab_index_entry *entry)
22886 {
22887 void **slot;
22888
22889 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22890 if (!*slot)
22891 {
22892 offset_type len = VEC_length (offset_type, entry->cu_indices);
22893 offset_type val = MAYBE_SWAP (len);
22894 offset_type iter;
22895 int i;
22896
22897 *slot = entry;
22898 entry->index_offset = obstack_object_size (cpool);
22899
22900 obstack_grow (cpool, &val, sizeof (val));
22901 for (i = 0;
22902 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22903 ++i)
22904 {
22905 val = MAYBE_SWAP (iter);
22906 obstack_grow (cpool, &val, sizeof (val));
22907 }
22908 }
22909 else
22910 {
22911 struct symtab_index_entry *old_entry
22912 = (struct symtab_index_entry *) *slot;
22913 entry->index_offset = old_entry->index_offset;
22914 entry = old_entry;
22915 }
22916 return entry->index_offset;
22917 }
22918
22919 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22920 constant pool entries going into the obstack CPOOL. */
22921
22922 static void
22923 write_hash_table (struct mapped_symtab *symtab,
22924 struct obstack *output, struct obstack *cpool)
22925 {
22926 offset_type i;
22927 htab_t symbol_hash_table;
22928 htab_t str_table;
22929
22930 symbol_hash_table = create_symbol_hash_table ();
22931 str_table = create_strtab ();
22932
22933 /* We add all the index vectors to the constant pool first, to
22934 ensure alignment is ok. */
22935 for (i = 0; i < symtab->size; ++i)
22936 {
22937 if (symtab->data[i])
22938 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22939 }
22940
22941 /* Now write out the hash table. */
22942 for (i = 0; i < symtab->size; ++i)
22943 {
22944 offset_type str_off, vec_off;
22945
22946 if (symtab->data[i])
22947 {
22948 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22949 vec_off = symtab->data[i]->index_offset;
22950 }
22951 else
22952 {
22953 /* While 0 is a valid constant pool index, it is not valid
22954 to have 0 for both offsets. */
22955 str_off = 0;
22956 vec_off = 0;
22957 }
22958
22959 str_off = MAYBE_SWAP (str_off);
22960 vec_off = MAYBE_SWAP (vec_off);
22961
22962 obstack_grow (output, &str_off, sizeof (str_off));
22963 obstack_grow (output, &vec_off, sizeof (vec_off));
22964 }
22965
22966 htab_delete (str_table);
22967 htab_delete (symbol_hash_table);
22968 }
22969
22970 /* Struct to map psymtab to CU index in the index file. */
22971 struct psymtab_cu_index_map
22972 {
22973 struct partial_symtab *psymtab;
22974 unsigned int cu_index;
22975 };
22976
22977 static hashval_t
22978 hash_psymtab_cu_index (const void *item)
22979 {
22980 const struct psymtab_cu_index_map *map
22981 = (const struct psymtab_cu_index_map *) item;
22982
22983 return htab_hash_pointer (map->psymtab);
22984 }
22985
22986 static int
22987 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22988 {
22989 const struct psymtab_cu_index_map *lhs
22990 = (const struct psymtab_cu_index_map *) item_lhs;
22991 const struct psymtab_cu_index_map *rhs
22992 = (const struct psymtab_cu_index_map *) item_rhs;
22993
22994 return lhs->psymtab == rhs->psymtab;
22995 }
22996
22997 /* Helper struct for building the address table. */
22998 struct addrmap_index_data
22999 {
23000 struct objfile *objfile;
23001 struct obstack *addr_obstack;
23002 htab_t cu_index_htab;
23003
23004 /* Non-zero if the previous_* fields are valid.
23005 We can't write an entry until we see the next entry (since it is only then
23006 that we know the end of the entry). */
23007 int previous_valid;
23008 /* Index of the CU in the table of all CUs in the index file. */
23009 unsigned int previous_cu_index;
23010 /* Start address of the CU. */
23011 CORE_ADDR previous_cu_start;
23012 };
23013
23014 /* Write an address entry to OBSTACK. */
23015
23016 static void
23017 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23018 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23019 {
23020 offset_type cu_index_to_write;
23021 gdb_byte addr[8];
23022 CORE_ADDR baseaddr;
23023
23024 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23025
23026 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23027 obstack_grow (obstack, addr, 8);
23028 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23029 obstack_grow (obstack, addr, 8);
23030 cu_index_to_write = MAYBE_SWAP (cu_index);
23031 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23032 }
23033
23034 /* Worker function for traversing an addrmap to build the address table. */
23035
23036 static int
23037 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23038 {
23039 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23040 struct partial_symtab *pst = (struct partial_symtab *) obj;
23041
23042 if (data->previous_valid)
23043 add_address_entry (data->objfile, data->addr_obstack,
23044 data->previous_cu_start, start_addr,
23045 data->previous_cu_index);
23046
23047 data->previous_cu_start = start_addr;
23048 if (pst != NULL)
23049 {
23050 struct psymtab_cu_index_map find_map, *map;
23051 find_map.psymtab = pst;
23052 map = ((struct psymtab_cu_index_map *)
23053 htab_find (data->cu_index_htab, &find_map));
23054 gdb_assert (map != NULL);
23055 data->previous_cu_index = map->cu_index;
23056 data->previous_valid = 1;
23057 }
23058 else
23059 data->previous_valid = 0;
23060
23061 return 0;
23062 }
23063
23064 /* Write OBJFILE's address map to OBSTACK.
23065 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23066 in the index file. */
23067
23068 static void
23069 write_address_map (struct objfile *objfile, struct obstack *obstack,
23070 htab_t cu_index_htab)
23071 {
23072 struct addrmap_index_data addrmap_index_data;
23073
23074 /* When writing the address table, we have to cope with the fact that
23075 the addrmap iterator only provides the start of a region; we have to
23076 wait until the next invocation to get the start of the next region. */
23077
23078 addrmap_index_data.objfile = objfile;
23079 addrmap_index_data.addr_obstack = obstack;
23080 addrmap_index_data.cu_index_htab = cu_index_htab;
23081 addrmap_index_data.previous_valid = 0;
23082
23083 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23084 &addrmap_index_data);
23085
23086 /* It's highly unlikely the last entry (end address = 0xff...ff)
23087 is valid, but we should still handle it.
23088 The end address is recorded as the start of the next region, but that
23089 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23090 anyway. */
23091 if (addrmap_index_data.previous_valid)
23092 add_address_entry (objfile, obstack,
23093 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23094 addrmap_index_data.previous_cu_index);
23095 }
23096
23097 /* Return the symbol kind of PSYM. */
23098
23099 static gdb_index_symbol_kind
23100 symbol_kind (struct partial_symbol *psym)
23101 {
23102 domain_enum domain = PSYMBOL_DOMAIN (psym);
23103 enum address_class aclass = PSYMBOL_CLASS (psym);
23104
23105 switch (domain)
23106 {
23107 case VAR_DOMAIN:
23108 switch (aclass)
23109 {
23110 case LOC_BLOCK:
23111 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23112 case LOC_TYPEDEF:
23113 return GDB_INDEX_SYMBOL_KIND_TYPE;
23114 case LOC_COMPUTED:
23115 case LOC_CONST_BYTES:
23116 case LOC_OPTIMIZED_OUT:
23117 case LOC_STATIC:
23118 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23119 case LOC_CONST:
23120 /* Note: It's currently impossible to recognize psyms as enum values
23121 short of reading the type info. For now punt. */
23122 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23123 default:
23124 /* There are other LOC_FOO values that one might want to classify
23125 as variables, but dwarf2read.c doesn't currently use them. */
23126 return GDB_INDEX_SYMBOL_KIND_OTHER;
23127 }
23128 case STRUCT_DOMAIN:
23129 return GDB_INDEX_SYMBOL_KIND_TYPE;
23130 default:
23131 return GDB_INDEX_SYMBOL_KIND_OTHER;
23132 }
23133 }
23134
23135 /* Add a list of partial symbols to SYMTAB. */
23136
23137 static void
23138 write_psymbols (struct mapped_symtab *symtab,
23139 htab_t psyms_seen,
23140 struct partial_symbol **psymp,
23141 int count,
23142 offset_type cu_index,
23143 int is_static)
23144 {
23145 for (; count-- > 0; ++psymp)
23146 {
23147 struct partial_symbol *psym = *psymp;
23148 void **slot;
23149
23150 if (SYMBOL_LANGUAGE (psym) == language_ada)
23151 error (_("Ada is not currently supported by the index"));
23152
23153 /* Only add a given psymbol once. */
23154 slot = htab_find_slot (psyms_seen, psym, INSERT);
23155 if (!*slot)
23156 {
23157 gdb_index_symbol_kind kind = symbol_kind (psym);
23158
23159 *slot = psym;
23160 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23161 is_static, kind, cu_index);
23162 }
23163 }
23164 }
23165
23166 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23167 exception if there is an error. */
23168
23169 static void
23170 write_obstack (FILE *file, struct obstack *obstack)
23171 {
23172 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23173 file)
23174 != obstack_object_size (obstack))
23175 error (_("couldn't data write to file"));
23176 }
23177
23178 /* Unlink a file if the argument is not NULL. */
23179
23180 static void
23181 unlink_if_set (void *p)
23182 {
23183 char **filename = (char **) p;
23184 if (*filename)
23185 unlink (*filename);
23186 }
23187
23188 /* A helper struct used when iterating over debug_types. */
23189 struct signatured_type_index_data
23190 {
23191 struct objfile *objfile;
23192 struct mapped_symtab *symtab;
23193 struct obstack *types_list;
23194 htab_t psyms_seen;
23195 int cu_index;
23196 };
23197
23198 /* A helper function that writes a single signatured_type to an
23199 obstack. */
23200
23201 static int
23202 write_one_signatured_type (void **slot, void *d)
23203 {
23204 struct signatured_type_index_data *info
23205 = (struct signatured_type_index_data *) d;
23206 struct signatured_type *entry = (struct signatured_type *) *slot;
23207 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23208 gdb_byte val[8];
23209
23210 write_psymbols (info->symtab,
23211 info->psyms_seen,
23212 info->objfile->global_psymbols.list
23213 + psymtab->globals_offset,
23214 psymtab->n_global_syms, info->cu_index,
23215 0);
23216 write_psymbols (info->symtab,
23217 info->psyms_seen,
23218 info->objfile->static_psymbols.list
23219 + psymtab->statics_offset,
23220 psymtab->n_static_syms, info->cu_index,
23221 1);
23222
23223 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23224 entry->per_cu.offset.sect_off);
23225 obstack_grow (info->types_list, val, 8);
23226 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23227 entry->type_offset_in_tu.cu_off);
23228 obstack_grow (info->types_list, val, 8);
23229 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23230 obstack_grow (info->types_list, val, 8);
23231
23232 ++info->cu_index;
23233
23234 return 1;
23235 }
23236
23237 /* Recurse into all "included" dependencies and write their symbols as
23238 if they appeared in this psymtab. */
23239
23240 static void
23241 recursively_write_psymbols (struct objfile *objfile,
23242 struct partial_symtab *psymtab,
23243 struct mapped_symtab *symtab,
23244 htab_t psyms_seen,
23245 offset_type cu_index)
23246 {
23247 int i;
23248
23249 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23250 if (psymtab->dependencies[i]->user != NULL)
23251 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23252 symtab, psyms_seen, cu_index);
23253
23254 write_psymbols (symtab,
23255 psyms_seen,
23256 objfile->global_psymbols.list + psymtab->globals_offset,
23257 psymtab->n_global_syms, cu_index,
23258 0);
23259 write_psymbols (symtab,
23260 psyms_seen,
23261 objfile->static_psymbols.list + psymtab->statics_offset,
23262 psymtab->n_static_syms, cu_index,
23263 1);
23264 }
23265
23266 /* Create an index file for OBJFILE in the directory DIR. */
23267
23268 static void
23269 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23270 {
23271 struct cleanup *cleanup;
23272 char *filename, *cleanup_filename;
23273 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23274 struct obstack cu_list, types_cu_list;
23275 int i;
23276 FILE *out_file;
23277 struct mapped_symtab *symtab;
23278 offset_type val, size_of_contents, total_len;
23279 struct stat st;
23280 htab_t psyms_seen;
23281 htab_t cu_index_htab;
23282 struct psymtab_cu_index_map *psymtab_cu_index_map;
23283
23284 if (dwarf2_per_objfile->using_index)
23285 error (_("Cannot use an index to create the index"));
23286
23287 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23288 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23289
23290 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23291 return;
23292
23293 if (stat (objfile_name (objfile), &st) < 0)
23294 perror_with_name (objfile_name (objfile));
23295
23296 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23297 INDEX_SUFFIX, (char *) NULL);
23298 cleanup = make_cleanup (xfree, filename);
23299
23300 out_file = gdb_fopen_cloexec (filename, "wb");
23301 if (!out_file)
23302 error (_("Can't open `%s' for writing"), filename);
23303
23304 cleanup_filename = filename;
23305 make_cleanup (unlink_if_set, &cleanup_filename);
23306
23307 symtab = create_mapped_symtab ();
23308 make_cleanup (cleanup_mapped_symtab, symtab);
23309
23310 obstack_init (&addr_obstack);
23311 make_cleanup_obstack_free (&addr_obstack);
23312
23313 obstack_init (&cu_list);
23314 make_cleanup_obstack_free (&cu_list);
23315
23316 obstack_init (&types_cu_list);
23317 make_cleanup_obstack_free (&types_cu_list);
23318
23319 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23320 NULL, xcalloc, xfree);
23321 make_cleanup_htab_delete (psyms_seen);
23322
23323 /* While we're scanning CU's create a table that maps a psymtab pointer
23324 (which is what addrmap records) to its index (which is what is recorded
23325 in the index file). This will later be needed to write the address
23326 table. */
23327 cu_index_htab = htab_create_alloc (100,
23328 hash_psymtab_cu_index,
23329 eq_psymtab_cu_index,
23330 NULL, xcalloc, xfree);
23331 make_cleanup_htab_delete (cu_index_htab);
23332 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23333 dwarf2_per_objfile->n_comp_units);
23334 make_cleanup (xfree, psymtab_cu_index_map);
23335
23336 /* The CU list is already sorted, so we don't need to do additional
23337 work here. Also, the debug_types entries do not appear in
23338 all_comp_units, but only in their own hash table. */
23339 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23340 {
23341 struct dwarf2_per_cu_data *per_cu
23342 = dwarf2_per_objfile->all_comp_units[i];
23343 struct partial_symtab *psymtab = per_cu->v.psymtab;
23344 gdb_byte val[8];
23345 struct psymtab_cu_index_map *map;
23346 void **slot;
23347
23348 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23349 It may be referenced from a local scope but in such case it does not
23350 need to be present in .gdb_index. */
23351 if (psymtab == NULL)
23352 continue;
23353
23354 if (psymtab->user == NULL)
23355 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23356
23357 map = &psymtab_cu_index_map[i];
23358 map->psymtab = psymtab;
23359 map->cu_index = i;
23360 slot = htab_find_slot (cu_index_htab, map, INSERT);
23361 gdb_assert (slot != NULL);
23362 gdb_assert (*slot == NULL);
23363 *slot = map;
23364
23365 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23366 per_cu->offset.sect_off);
23367 obstack_grow (&cu_list, val, 8);
23368 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23369 obstack_grow (&cu_list, val, 8);
23370 }
23371
23372 /* Dump the address map. */
23373 write_address_map (objfile, &addr_obstack, cu_index_htab);
23374
23375 /* Write out the .debug_type entries, if any. */
23376 if (dwarf2_per_objfile->signatured_types)
23377 {
23378 struct signatured_type_index_data sig_data;
23379
23380 sig_data.objfile = objfile;
23381 sig_data.symtab = symtab;
23382 sig_data.types_list = &types_cu_list;
23383 sig_data.psyms_seen = psyms_seen;
23384 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23385 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23386 write_one_signatured_type, &sig_data);
23387 }
23388
23389 /* Now that we've processed all symbols we can shrink their cu_indices
23390 lists. */
23391 uniquify_cu_indices (symtab);
23392
23393 obstack_init (&constant_pool);
23394 make_cleanup_obstack_free (&constant_pool);
23395 obstack_init (&symtab_obstack);
23396 make_cleanup_obstack_free (&symtab_obstack);
23397 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23398
23399 obstack_init (&contents);
23400 make_cleanup_obstack_free (&contents);
23401 size_of_contents = 6 * sizeof (offset_type);
23402 total_len = size_of_contents;
23403
23404 /* The version number. */
23405 val = MAYBE_SWAP (8);
23406 obstack_grow (&contents, &val, sizeof (val));
23407
23408 /* The offset of the CU list from the start of the file. */
23409 val = MAYBE_SWAP (total_len);
23410 obstack_grow (&contents, &val, sizeof (val));
23411 total_len += obstack_object_size (&cu_list);
23412
23413 /* The offset of the types CU list from the start of the file. */
23414 val = MAYBE_SWAP (total_len);
23415 obstack_grow (&contents, &val, sizeof (val));
23416 total_len += obstack_object_size (&types_cu_list);
23417
23418 /* The offset of the address table from the start of the file. */
23419 val = MAYBE_SWAP (total_len);
23420 obstack_grow (&contents, &val, sizeof (val));
23421 total_len += obstack_object_size (&addr_obstack);
23422
23423 /* The offset of the symbol table from the start of the file. */
23424 val = MAYBE_SWAP (total_len);
23425 obstack_grow (&contents, &val, sizeof (val));
23426 total_len += obstack_object_size (&symtab_obstack);
23427
23428 /* The offset of the constant pool from the start of the file. */
23429 val = MAYBE_SWAP (total_len);
23430 obstack_grow (&contents, &val, sizeof (val));
23431 total_len += obstack_object_size (&constant_pool);
23432
23433 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23434
23435 write_obstack (out_file, &contents);
23436 write_obstack (out_file, &cu_list);
23437 write_obstack (out_file, &types_cu_list);
23438 write_obstack (out_file, &addr_obstack);
23439 write_obstack (out_file, &symtab_obstack);
23440 write_obstack (out_file, &constant_pool);
23441
23442 fclose (out_file);
23443
23444 /* We want to keep the file, so we set cleanup_filename to NULL
23445 here. See unlink_if_set. */
23446 cleanup_filename = NULL;
23447
23448 do_cleanups (cleanup);
23449 }
23450
23451 /* Implementation of the `save gdb-index' command.
23452
23453 Note that the file format used by this command is documented in the
23454 GDB manual. Any changes here must be documented there. */
23455
23456 static void
23457 save_gdb_index_command (char *arg, int from_tty)
23458 {
23459 struct objfile *objfile;
23460
23461 if (!arg || !*arg)
23462 error (_("usage: save gdb-index DIRECTORY"));
23463
23464 ALL_OBJFILES (objfile)
23465 {
23466 struct stat st;
23467
23468 /* If the objfile does not correspond to an actual file, skip it. */
23469 if (stat (objfile_name (objfile), &st) < 0)
23470 continue;
23471
23472 dwarf2_per_objfile
23473 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23474 dwarf2_objfile_data_key);
23475 if (dwarf2_per_objfile)
23476 {
23477
23478 TRY
23479 {
23480 write_psymtabs_to_index (objfile, arg);
23481 }
23482 CATCH (except, RETURN_MASK_ERROR)
23483 {
23484 exception_fprintf (gdb_stderr, except,
23485 _("Error while writing index for `%s': "),
23486 objfile_name (objfile));
23487 }
23488 END_CATCH
23489 }
23490 }
23491 }
23492
23493 \f
23494
23495 int dwarf_always_disassemble;
23496
23497 static void
23498 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23499 struct cmd_list_element *c, const char *value)
23500 {
23501 fprintf_filtered (file,
23502 _("Whether to always disassemble "
23503 "DWARF expressions is %s.\n"),
23504 value);
23505 }
23506
23507 static void
23508 show_check_physname (struct ui_file *file, int from_tty,
23509 struct cmd_list_element *c, const char *value)
23510 {
23511 fprintf_filtered (file,
23512 _("Whether to check \"physname\" is %s.\n"),
23513 value);
23514 }
23515
23516 void _initialize_dwarf2_read (void);
23517
23518 void
23519 _initialize_dwarf2_read (void)
23520 {
23521 struct cmd_list_element *c;
23522
23523 dwarf2_objfile_data_key
23524 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23525
23526 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23527 Set DWARF specific variables.\n\
23528 Configure DWARF variables such as the cache size"),
23529 &set_dwarf_cmdlist, "maintenance set dwarf ",
23530 0/*allow-unknown*/, &maintenance_set_cmdlist);
23531
23532 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23533 Show DWARF specific variables\n\
23534 Show DWARF variables such as the cache size"),
23535 &show_dwarf_cmdlist, "maintenance show dwarf ",
23536 0/*allow-unknown*/, &maintenance_show_cmdlist);
23537
23538 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23539 &dwarf_max_cache_age, _("\
23540 Set the upper bound on the age of cached DWARF compilation units."), _("\
23541 Show the upper bound on the age of cached DWARF compilation units."), _("\
23542 A higher limit means that cached compilation units will be stored\n\
23543 in memory longer, and more total memory will be used. Zero disables\n\
23544 caching, which can slow down startup."),
23545 NULL,
23546 show_dwarf_max_cache_age,
23547 &set_dwarf_cmdlist,
23548 &show_dwarf_cmdlist);
23549
23550 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23551 &dwarf_always_disassemble, _("\
23552 Set whether `info address' always disassembles DWARF expressions."), _("\
23553 Show whether `info address' always disassembles DWARF expressions."), _("\
23554 When enabled, DWARF expressions are always printed in an assembly-like\n\
23555 syntax. When disabled, expressions will be printed in a more\n\
23556 conversational style, when possible."),
23557 NULL,
23558 show_dwarf_always_disassemble,
23559 &set_dwarf_cmdlist,
23560 &show_dwarf_cmdlist);
23561
23562 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23563 Set debugging of the DWARF reader."), _("\
23564 Show debugging of the DWARF reader."), _("\
23565 When enabled (non-zero), debugging messages are printed during DWARF\n\
23566 reading and symtab expansion. A value of 1 (one) provides basic\n\
23567 information. A value greater than 1 provides more verbose information."),
23568 NULL,
23569 NULL,
23570 &setdebuglist, &showdebuglist);
23571
23572 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23573 Set debugging of the DWARF DIE reader."), _("\
23574 Show debugging of the DWARF DIE reader."), _("\
23575 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23576 The value is the maximum depth to print."),
23577 NULL,
23578 NULL,
23579 &setdebuglist, &showdebuglist);
23580
23581 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23582 Set debugging of the dwarf line reader."), _("\
23583 Show debugging of the dwarf line reader."), _("\
23584 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23585 A value of 1 (one) provides basic information.\n\
23586 A value greater than 1 provides more verbose information."),
23587 NULL,
23588 NULL,
23589 &setdebuglist, &showdebuglist);
23590
23591 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23592 Set cross-checking of \"physname\" code against demangler."), _("\
23593 Show cross-checking of \"physname\" code against demangler."), _("\
23594 When enabled, GDB's internal \"physname\" code is checked against\n\
23595 the demangler."),
23596 NULL, show_check_physname,
23597 &setdebuglist, &showdebuglist);
23598
23599 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23600 no_class, &use_deprecated_index_sections, _("\
23601 Set whether to use deprecated gdb_index sections."), _("\
23602 Show whether to use deprecated gdb_index sections."), _("\
23603 When enabled, deprecated .gdb_index sections are used anyway.\n\
23604 Normally they are ignored either because of a missing feature or\n\
23605 performance issue.\n\
23606 Warning: This option must be enabled before gdb reads the file."),
23607 NULL,
23608 NULL,
23609 &setlist, &showlist);
23610
23611 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23612 _("\
23613 Save a gdb-index file.\n\
23614 Usage: save gdb-index DIRECTORY"),
23615 &save_cmdlist);
23616 set_cmd_completer (c, filename_completer);
23617
23618 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23619 &dwarf2_locexpr_funcs);
23620 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23621 &dwarf2_loclist_funcs);
23622
23623 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23624 &dwarf2_block_frame_base_locexpr_funcs);
23625 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23626 &dwarf2_block_frame_base_loclist_funcs);
23627 }
This page took 0.558933 seconds and 4 git commands to generate.