Remove prepare_re_set_context
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84
85 typedef struct symbol *symbolp;
86 DEF_VEC_P (symbolp);
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 static unsigned int dwarf_line_debug = 0;
98
99 /* When non-zero, cross-check physname against demangler. */
100 static int check_physname = 0;
101
102 /* When non-zero, do not reject deprecated .gdb_index sections. */
103 static int use_deprecated_index_sections = 0;
104
105 static const struct objfile_data *dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
130 struct dwarf2_section_info
131 {
132 union
133 {
134 /* If this is a real section, the bfd section. */
135 asection *section;
136 /* If this is a virtual section, pointer to the containing ("real")
137 section. */
138 struct dwarf2_section_info *containing_section;
139 } s;
140 /* Pointer to section data, only valid if readin. */
141 const gdb_byte *buffer;
142 /* The size of the section, real or virtual. */
143 bfd_size_type size;
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
147 /* True if we have tried to read this section. */
148 char readin;
149 /* True if this is a virtual section, False otherwise.
150 This specifies which of s.section and s.containing_section to use. */
151 char is_virtual;
152 };
153
154 typedef struct dwarf2_section_info dwarf2_section_info_def;
155 DEF_VEC_O (dwarf2_section_info_def);
156
157 /* All offsets in the index are of this type. It must be
158 architecture-independent. */
159 typedef uint32_t offset_type;
160
161 DEF_VEC_I (offset_type);
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure only legit values are used. */
171 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
179 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
185 /* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187 struct mapped_index
188 {
189 /* Index data format version. */
190 int version;
191
192 /* The total length of the buffer. */
193 off_t total_size;
194
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
197
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
200
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
203
204 /* Size in slots, each slot is 2 offset_types. */
205 offset_type symbol_table_slots;
206
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209 };
210
211 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212 DEF_VEC_P (dwarf2_per_cu_ptr);
213
214 struct tu_stats
215 {
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221 };
222
223 /* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
226 struct dwarf2_per_objfile
227 {
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
233
234 ~dwarf2_per_objfile ();
235
236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240 private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247 public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
265
266 /* Back link. */
267 struct objfile *objfile = NULL;
268
269 /* Table of all the compilation units. This is used to locate
270 the target compilation unit of a particular reference. */
271 struct dwarf2_per_cu_data **all_comp_units = NULL;
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
274 int n_comp_units = 0;
275
276 /* The number of .debug_types-related CUs. */
277 int n_type_units = 0;
278
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
281 int n_allocated_type_units = 0;
282
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
285 struct signatured_type **all_type_units = NULL;
286
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
289 htab_t type_unit_groups {};
290
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
293 htab_t signatured_types {};
294
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
297 struct tu_stats tu_stats {};
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
301 dwarf2_per_cu_data *read_in_chain = NULL;
302
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
305 htab_t dwo_files {};
306
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
309
310 /* The DWP file if there is one, or NULL. */
311 struct dwp_file *dwp_file = NULL;
312
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
315 struct dwz_file *dwz_file = NULL;
316
317 /* A flag indicating whether this objfile has a section loaded at a
318 VMA of 0. */
319 bool has_section_at_zero = false;
320
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
323 bool using_index = false;
324
325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
326 mapped_index *index_table = NULL;
327
328 /* When using index_table, this keeps track of all quick_file_names entries.
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
335 htab_t quick_file_names_table {};
336
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
339 bool reading_partial_symbols = false;
340
341 /* Table mapping type DIEs to their struct type *.
342 This is NULL if not allocated yet.
343 The mapping is done via (CU/TU + DIE offset) -> type. */
344 htab_t die_type_hash {};
345
346 /* The CUs we recently read. */
347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
350 htab_t line_header_hash {};
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
355 };
356
357 static struct dwarf2_per_objfile *dwarf2_per_objfile;
358
359 /* Default names of the debugging sections. */
360
361 /* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
364 static const struct dwarf2_debug_sections dwarf2_elf_names =
365 {
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
370 { ".debug_loclists", ".zdebug_loclists" },
371 { ".debug_macinfo", ".zdebug_macinfo" },
372 { ".debug_macro", ".zdebug_macro" },
373 { ".debug_str", ".zdebug_str" },
374 { ".debug_line_str", ".zdebug_line_str" },
375 { ".debug_ranges", ".zdebug_ranges" },
376 { ".debug_rnglists", ".zdebug_rnglists" },
377 { ".debug_types", ".zdebug_types" },
378 { ".debug_addr", ".zdebug_addr" },
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
381 { ".gdb_index", ".zgdb_index" },
382 23
383 };
384
385 /* List of DWO/DWP sections. */
386
387 static const struct dwop_section_names
388 {
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
393 struct dwarf2_section_names loclists_dwo;
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
401 }
402 dwop_section_names =
403 {
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
416 };
417
418 /* local data types */
419
420 /* The data in a compilation unit header, after target2host
421 translation, looks like this. */
422 struct comp_unit_head
423 {
424 unsigned int length;
425 short version;
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
428 sect_offset abbrev_sect_off;
429
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
432
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
435
436 enum dwarf_unit_type unit_type;
437
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
440 sect_offset sect_off;
441
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
444 cu_offset first_die_cu_offset;
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
451 cu_offset type_cu_offset_in_tu;
452 };
453
454 /* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456 struct delayed_method_info
457 {
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472 };
473
474 typedef struct delayed_method_info delayed_method_info;
475 DEF_VEC_O (delayed_method_info);
476
477 /* Internal state when decoding a particular compilation unit. */
478 struct dwarf2_cu
479 {
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
483 /* The header of the compilation unit. */
484 struct comp_unit_head header;
485
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
496 const char *producer;
497
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
513
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
528 /* Backlink to our per_cu entry. */
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
536 htab_t die_hash;
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
554
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
575 Note this value comes from the Fission stub CU/TU's DIE. */
576 ULONGEST addr_base;
577
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
580 Note this value comes from the Fission stub CU/TU's DIE.
581 Also note that the value is zero in the non-DWO case so this value can
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
588 ULONGEST ranges_base;
589
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
597 unsigned int has_loclist : 1;
598
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
605 unsigned int producer_is_gcc_lt_4_3 : 1;
606 unsigned int producer_is_icc_lt_14 : 1;
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
613 };
614
615 /* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
617 read_symtab_private field of the psymtab. */
618
619 struct dwarf2_per_cu_data
620 {
621 /* The start offset and length of this compilation unit.
622 NOTE: Unlike comp_unit_head.length, this length includes
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
626 sect_offset sect_off;
627 unsigned int length;
628
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
634 unsigned int queued : 1;
635
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
645 unsigned int is_debug_types : 1;
646
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
669 struct dwarf2_section_info *section;
670
671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
674 struct dwarf2_cu *cu;
675
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
679 struct objfile *objfile;
680
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
686 or NULL for unread partial units. */
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
692
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
712 };
713
714 /* Entry in the signatured_types hash table. */
715
716 struct signatured_type
717 {
718 /* The "per_cu" object of this type.
719 This struct is used iff per_cu.is_debug_types.
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
724 /* The type's signature. */
725 ULONGEST signature;
726
727 /* Offset in the TU of the type's DIE, as read from the TU header.
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
751 };
752
753 typedef struct signatured_type *sig_type_ptr;
754 DEF_VEC_P (sig_type_ptr);
755
756 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759 struct stmt_list_hash
760 {
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
765 sect_offset line_sect_off;
766 };
767
768 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771 struct type_unit_group
772 {
773 /* dwarf2read.c's main "handle" on a TU symtab.
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
778 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
779 struct dwarf2_per_cu_data per_cu;
780
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
785
786 /* The compunit symtab.
787 Type units in a group needn't all be defined in the same source file,
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
790
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807 };
808
809 /* These sections are what may appear in a (real or virtual) DWO file. */
810
811 struct dwo_sections
812 {
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
816 struct dwarf2_section_info loclists;
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
823 VEC (dwarf2_section_info_def) *types;
824 };
825
826 /* CUs/TUs in DWP/DWO files. */
827
828 struct dwo_unit
829 {
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
839 struct dwarf2_section_info *section;
840
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847 };
848
849 /* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853 enum dwp_v2_section_ids
854 {
855 DW_SECT_MIN = 1
856 };
857
858 /* Data for one DWO file.
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
868
869 struct dwo_file
870 {
871 /* The DW_AT_GNU_dwo_name attribute.
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
879
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
883
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
887 struct dwo_sections sections;
888
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898 };
899
900 /* These sections are what may appear in a DWP file. */
901
902 struct dwp_sections
903 {
904 /* These are used by both DWP version 1 and 2. */
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
925 };
926
927 /* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
929
930 struct virtual_v1_dwo_sections
931 {
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
939 That is recorded here, and copied to dwo_unit.section. */
940 struct dwarf2_section_info info_or_types;
941 };
942
943 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948 struct virtual_v2_dwo_sections
949 {
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972 };
973
974 /* Contents of DWP hash tables. */
975
976 struct dwp_hash_table
977 {
978 uint32_t version, nr_columns;
979 uint32_t nr_units, nr_slots;
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991 #define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
1003 };
1004
1005 /* Data for one DWP file. */
1006
1007 struct dwp_file
1008 {
1009 /* Name of the file. */
1010 const char *name;
1011
1012 /* File format version. */
1013 int version;
1014
1015 /* The bfd. */
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
1021 /* Table of CUs in the file. */
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
1030
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035 };
1036
1037 /* This represents a '.dwz' file. */
1038
1039 struct dwz_file
1040 {
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
1047 struct dwarf2_section_info gdb_index;
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051 };
1052
1053 /* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
1056 struct exists to abstract away the constant parameters of die reading. */
1057
1058 struct die_reader_specs
1059 {
1060 /* The bfd of die_section. */
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1067 struct dwo_file *dwo_file;
1068
1069 /* The section the die comes from.
1070 This is either .debug_info or .debug_types, or the .dwo variants. */
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
1074 const gdb_byte *buffer;
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
1081 };
1082
1083 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1084 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1085 const gdb_byte *info_ptr,
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
1090 /* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093 enum class dir_index : unsigned int {};
1094
1095 /* Likewise, a 1-based file name index. */
1096 enum class file_name_index : unsigned int {};
1097
1098 struct file_entry
1099 {
1100 file_entry () = default;
1101
1102 file_entry (const char *name_, dir_index d_index_,
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
1105 d_index (d_index_),
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
1112 const char *include_dir (const line_header *lh) const;
1113
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
1118 /* The directory index (1-based). */
1119 dir_index d_index {};
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
1128 /* The associated symbol table, if any. */
1129 struct symtab *symtab {};
1130 };
1131
1132 /* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135 struct line_header
1136 {
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
1145 void add_file_name (const char *name, dir_index d_index,
1146 unsigned int mod_time, unsigned int length);
1147
1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1149 is out of bounds. */
1150 const char *include_dir_at (dir_index index) const
1151 {
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
1157 return NULL;
1158 return include_dirs[vec_index];
1159 }
1160
1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1162 is out of bounds. */
1163 file_entry *file_name_at (file_name_index index)
1164 {
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
1170 return NULL;
1171 return &file_names[vec_index];
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
1182 /* Offset of line number information in .debug_line section. */
1183 sect_offset sect_off {};
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1203
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
1207
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
1210
1211 /* The start and end of the statement program following this
1212 header. These point into dwarf2_per_objfile->line_buffer. */
1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
1214 };
1215
1216 typedef std::unique_ptr<line_header> line_header_up;
1217
1218 const char *
1219 file_entry::include_dir (const line_header *lh) const
1220 {
1221 return lh->include_dir_at (d_index);
1222 }
1223
1224 /* When we construct a partial symbol table entry we only
1225 need this much information. */
1226 struct partial_die_info
1227 {
1228 /* Offset of this DIE. */
1229 sect_offset sect_off;
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
1241 unsigned int may_be_inlined : 1;
1242
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
1268 /* The name of this DIE. Normally the value of DW_AT_name, but
1269 sometimes a default name for unnamed DIEs. */
1270 const char *name;
1271
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
1278 const char *scope;
1279
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
1287 sect_offset sect_off;
1288 } d;
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
1293
1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1295 DW_AT_sibling, if any. */
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
1298 const gdb_byte *sibling;
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
1303 sect_offset spec_offset;
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
1308 };
1309
1310 /* This data structure holds the information of an abbrev. */
1311 struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321 struct attr_abbrev
1322 {
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
1328 };
1329
1330 /* Size of abbrev_table.abbrev_hash_table. */
1331 #define ABBREV_HASH_SIZE 121
1332
1333 /* Top level data structure to contain an abbreviation table. */
1334
1335 struct abbrev_table
1336 {
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
1339 sect_offset sect_off;
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349 };
1350
1351 /* Attributes have a name and a value. */
1352 struct attribute
1353 {
1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
1362 union
1363 {
1364 const char *str;
1365 struct dwarf_block *blk;
1366 ULONGEST unsnd;
1367 LONGEST snd;
1368 CORE_ADDR addr;
1369 ULONGEST signature;
1370 }
1371 u;
1372 };
1373
1374 /* This data structure holds a complete die structure. */
1375 struct die_info
1376 {
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
1386
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
1393 /* Offset in .debug_info or .debug_types section. */
1394 sect_offset sect_off;
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
1399 together via their SIBLING fields. */
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
1403
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
1408 };
1409
1410 /* Get at parts of an attribute structure. */
1411
1412 #define DW_STRING(attr) ((attr)->u.str)
1413 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1414 #define DW_UNSND(attr) ((attr)->u.unsnd)
1415 #define DW_BLOCK(attr) ((attr)->u.blk)
1416 #define DW_SND(attr) ((attr)->u.snd)
1417 #define DW_ADDR(attr) ((attr)->u.addr)
1418 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1419
1420 /* Blocks are a bunch of untyped bytes. */
1421 struct dwarf_block
1422 {
1423 size_t size;
1424
1425 /* Valid only if SIZE is not zero. */
1426 const gdb_byte *data;
1427 };
1428
1429 #ifndef ATTR_ALLOC_CHUNK
1430 #define ATTR_ALLOC_CHUNK 4
1431 #endif
1432
1433 /* Allocate fields for structs, unions and enums in this size. */
1434 #ifndef DW_FIELD_ALLOC_CHUNK
1435 #define DW_FIELD_ALLOC_CHUNK 4
1436 #endif
1437
1438 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441 static int bits_per_byte = 8;
1442
1443 struct nextfield
1444 {
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449 };
1450
1451 struct nextfnfield
1452 {
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455 };
1456
1457 struct fnfieldlist
1458 {
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462 };
1463
1464 struct typedef_field_list
1465 {
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468 };
1469
1470 /* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473 struct field_info
1474 {
1475 /* List of data member and baseclasses fields. */
1476 struct nextfield *fields, *baseclasses;
1477
1478 /* Number of fields (including baseclasses). */
1479 int nfields;
1480
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
1483
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
1486
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
1490 struct fnfieldlist *fnfieldlists;
1491
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1497 struct typedef_field_list *typedef_field_list;
1498 unsigned typedef_field_list_count;
1499 };
1500
1501 /* One item on the queue of compilation units to read in full symbols
1502 for. */
1503 struct dwarf2_queue_item
1504 {
1505 struct dwarf2_per_cu_data *per_cu;
1506 enum language pretend_language;
1507 struct dwarf2_queue_item *next;
1508 };
1509
1510 /* The current queue. */
1511 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
1513 /* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
1518 static int dwarf_max_cache_age = 5;
1519 static void
1520 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
1522 {
1523 fprintf_filtered (file, _("The upper bound on the age of cached "
1524 "DWARF compilation units is %s.\n"),
1525 value);
1526 }
1527 \f
1528 /* local function prototypes */
1529
1530 static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532 static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
1534 static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
1537 static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
1540 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
1545 static void dwarf2_build_psymtabs_hard (struct objfile *);
1546
1547 static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
1549 int, struct dwarf2_cu *);
1550
1551 static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
1553
1554 static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1556 int set_addrmap, struct dwarf2_cu *cu);
1557
1558 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1559 CORE_ADDR *highpc, int set_addrmap,
1560 struct dwarf2_cu *cu);
1561
1562 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
1564
1565 static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1567 int need_pc, struct dwarf2_cu *cu);
1568
1569 static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
1571
1572 static void psymtab_to_symtab_1 (struct partial_symtab *);
1573
1574 static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577 static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580 static void abbrev_table_free (struct abbrev_table *);
1581
1582 static void abbrev_table_free_cleanup (void *);
1583
1584 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
1586
1587 static void dwarf2_free_abbrev_table (void *);
1588
1589 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1590
1591 static struct partial_die_info *load_partial_dies
1592 (const struct die_reader_specs *, const gdb_byte *, int);
1593
1594 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
1599
1600 static struct partial_die_info *find_partial_die (sect_offset, int,
1601 struct dwarf2_cu *);
1602
1603 static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
1606 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
1609
1610 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1611
1612 static int read_1_signed_byte (bfd *, const gdb_byte *);
1613
1614 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1615
1616 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1617
1618 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1619
1620 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1621 unsigned int *);
1622
1623 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1624
1625 static LONGEST read_checked_initial_length_and_offset
1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1627 unsigned int *, unsigned int *);
1628
1629 static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
1631 unsigned int *);
1632
1633 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1634
1635 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
1638 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1639
1640 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1641
1642 static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
1645
1646 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
1649
1650 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1651
1652 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1653
1654 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
1656 unsigned int *);
1657
1658 static const char *read_str_index (const struct die_reader_specs *reader,
1659 ULONGEST str_index);
1660
1661 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1662
1663 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
1665
1666 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1667 unsigned int);
1668
1669 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
1672 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
1675 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1676
1677 static struct die_info *die_specification (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1681 struct dwarf2_cu *cu);
1682
1683 static void dwarf_decode_lines (struct line_header *, const char *,
1684 struct dwarf2_cu *, struct partial_symtab *,
1685 CORE_ADDR, int decode_mapping);
1686
1687 static void dwarf2_start_subfile (const char *, const char *);
1688
1689 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
1692
1693 static struct symbol *new_symbol (struct die_info *, struct type *,
1694 struct dwarf2_cu *);
1695
1696 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
1699 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1700 struct dwarf2_cu *);
1701
1702 static void dwarf2_const_value_attr (const struct attribute *attr,
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
1706 struct dwarf2_cu *cu, LONGEST *value,
1707 const gdb_byte **bytes,
1708 struct dwarf2_locexpr_baton **baton);
1709
1710 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1711
1712 static int need_gnat_info (struct dwarf2_cu *);
1713
1714 static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
1722
1723 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1724 struct dwarf2_cu *);
1725
1726 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1727
1728 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
1730 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1731
1732 static char *typename_concat (struct obstack *obs, const char *prefix,
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
1735
1736 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
1740 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1741
1742 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
1746 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
1749 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1750 values. Keep the items ordered with increasing constraints compliance. */
1751 enum pc_bounds_kind
1752 {
1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1754 PC_BOUNDS_NOT_PRESENT,
1755
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765 };
1766
1767 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
1771
1772 static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_field (struct field_info *, struct die_info *,
1780 struct dwarf2_cu *);
1781
1782 static void dwarf2_attach_fields_to_type (struct field_info *,
1783 struct type *, struct dwarf2_cu *);
1784
1785 static void dwarf2_add_member_fn (struct field_info *,
1786 struct die_info *, struct type *,
1787 struct dwarf2_cu *);
1788
1789 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1790 struct type *,
1791 struct dwarf2_cu *);
1792
1793 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1794
1795 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1796
1797 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1798
1799 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct using_direct **using_directives (enum language);
1802
1803 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
1805 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
1807 static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
1810 static const char *namespace_name (struct die_info *die,
1811 int *is_anonymous, struct dwarf2_cu *);
1812
1813 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1814
1815 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1816
1817 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1818 struct dwarf2_cu *);
1819
1820 static struct die_info *read_die_and_siblings_1
1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1822 struct die_info *);
1823
1824 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
1827 struct die_info *parent);
1828
1829 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
1832
1833 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
1836
1837 static void process_die (struct die_info *, struct dwarf2_cu *);
1838
1839 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
1841
1842 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1843
1844 static const char *dwarf2_full_name (const char *name,
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
1848 static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
1851 static struct die_info *dwarf2_extension (struct die_info *die,
1852 struct dwarf2_cu **);
1853
1854 static const char *dwarf_tag_name (unsigned int);
1855
1856 static const char *dwarf_attr_name (unsigned int);
1857
1858 static const char *dwarf_form_name (unsigned int);
1859
1860 static const char *dwarf_bool_name (unsigned int);
1861
1862 static const char *dwarf_type_encoding_name (unsigned int);
1863
1864 static struct die_info *sibling_die (struct die_info *);
1865
1866 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868 static void dump_die_for_error (struct die_info *);
1869
1870 static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
1872
1873 /*static*/ void dump_die (struct die_info *, int max_level);
1874
1875 static void store_in_ref_table (struct die_info *,
1876 struct dwarf2_cu *);
1877
1878 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1879
1880 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1881
1882 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1883 const struct attribute *,
1884 struct dwarf2_cu **);
1885
1886 static struct die_info *follow_die_ref (struct die_info *,
1887 const struct attribute *,
1888 struct dwarf2_cu **);
1889
1890 static struct die_info *follow_die_sig (struct die_info *,
1891 const struct attribute *,
1892 struct dwarf2_cu **);
1893
1894 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897 static struct type *get_DW_AT_signature_type (struct die_info *,
1898 const struct attribute *,
1899 struct dwarf2_cu *);
1900
1901 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1902
1903 static void read_signatured_type (struct signatured_type *);
1904
1905 static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
1909 /* memory allocation interface */
1910
1911 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1912
1913 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1914
1915 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1916
1917 static int attr_form_is_block (const struct attribute *);
1918
1919 static int attr_form_is_section_offset (const struct attribute *);
1920
1921 static int attr_form_is_constant (const struct attribute *);
1922
1923 static int attr_form_is_ref (const struct attribute *);
1924
1925 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
1927 const struct attribute *attr);
1928
1929 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1930 struct symbol *sym,
1931 struct dwarf2_cu *cu,
1932 int is_block);
1933
1934 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
1937
1938 static void free_stack_comp_unit (void *);
1939
1940 static hashval_t partial_die_hash (const void *item);
1941
1942 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
1944 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1946
1947 static void init_one_comp_unit (struct dwarf2_cu *cu,
1948 struct dwarf2_per_cu_data *per_cu);
1949
1950 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
1953
1954 static void free_heap_comp_unit (void *);
1955
1956 static void free_cached_comp_units (void *);
1957
1958 static void age_cached_comp_units (void);
1959
1960 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1961
1962 static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1964
1965 static void create_all_comp_units (struct objfile *);
1966
1967 static int create_all_type_units (struct objfile *);
1968
1969 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
1974
1975 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
1978 static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
1981 static void dwarf2_mark (struct dwarf2_cu *);
1982
1983 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
1985 static struct type *get_die_type_at_offset (sect_offset,
1986 struct dwarf2_per_cu_data *);
1987
1988 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1989
1990 static void dwarf2_release_queue (void *dummy);
1991
1992 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
1995 static void process_queue (void);
1996
1997 /* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000 struct file_and_directory
2001 {
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014 };
2015
2016 static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
2018
2019 static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
2022 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023 enum class rcuh_kind { COMPILE, TYPE };
2024
2025 static const gdb_byte *read_and_check_comp_unit_head
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2029 rcuh_kind section_kind);
2030
2031 static void init_cutu_and_read_dies
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
2036 static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
2039
2040 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2041
2042 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
2044 static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
2047
2048 static struct dwp_file *get_dwp_file (void);
2049
2050 static struct dwo_unit *lookup_dwo_comp_unit
2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2052
2053 static struct dwo_unit *lookup_dwo_type_unit
2054 (struct signatured_type *, const char *, const char *);
2055
2056 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
2058 static void free_dwo_file_cleanup (void *);
2059
2060 static void process_cu_includes (void);
2061
2062 static void check_producer (struct dwarf2_cu *cu);
2063
2064 static void free_line_header_voidp (void *arg);
2065 \f
2066 /* Various complaints about symbol reading that don't abort the process. */
2067
2068 static void
2069 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070 {
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073 }
2074
2075 static void
2076 dwarf2_debug_line_missing_file_complaint (void)
2077 {
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080 }
2081
2082 static void
2083 dwarf2_debug_line_missing_end_sequence_complaint (void)
2084 {
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088 }
2089
2090 static void
2091 dwarf2_complex_location_expr_complaint (void)
2092 {
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094 }
2095
2096 static void
2097 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099 {
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103 }
2104
2105 static void
2106 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107 {
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
2111 get_section_name (section),
2112 get_section_file_name (section));
2113 }
2114
2115 static void
2116 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117 {
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122 }
2123
2124 static void
2125 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126 {
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130 }
2131
2132 /* Hash function for line_header_hash. */
2133
2134 static hashval_t
2135 line_header_hash (const struct line_header *ofs)
2136 {
2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2138 }
2139
2140 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142 static hashval_t
2143 line_header_hash_voidp (const void *item)
2144 {
2145 const struct line_header *ofs = (const struct line_header *) item;
2146
2147 return line_header_hash (ofs);
2148 }
2149
2150 /* Equality function for line_header_hash. */
2151
2152 static int
2153 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154 {
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2157
2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160 }
2161
2162 \f
2163 #if WORDS_BIGENDIAN
2164
2165 /* Convert VALUE between big- and little-endian. */
2166 static offset_type
2167 byte_swap (offset_type value)
2168 {
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176 }
2177
2178 #define MAYBE_SWAP(V) byte_swap (V)
2179
2180 #else
2181 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2182 #endif /* WORDS_BIGENDIAN */
2183
2184 /* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187 static CORE_ADDR
2188 attr_value_as_address (struct attribute *attr)
2189 {
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212 }
2213
2214 /* The suffix for an index file. */
2215 #define INDEX_SUFFIX ".gdb-index"
2216
2217 /* See declaration. */
2218
2219 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222 {
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230 }
2231
2232 dwarf2_per_objfile::~dwarf2_per_objfile ()
2233 {
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244 }
2245
2246 /* See declaration. */
2247
2248 void
2249 dwarf2_per_objfile::free_cached_comp_units ()
2250 {
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261 }
2262
2263 /* Try to locate the sections we need for DWARF 2 debugging
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
2267
2268 int
2269 dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
2271 {
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2279
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2282 }
2283 return (!dwarf2_per_objfile->info.is_virtual
2284 && dwarf2_per_objfile->info.s.section != NULL
2285 && !dwarf2_per_objfile->abbrev.is_virtual
2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
2287 }
2288
2289 /* Return the containing section of virtual section SECTION. */
2290
2291 static struct dwarf2_section_info *
2292 get_containing_section (const struct dwarf2_section_info *section)
2293 {
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
2296 }
2297
2298 /* Return the bfd owner of SECTION. */
2299
2300 static struct bfd *
2301 get_section_bfd_owner (const struct dwarf2_section_info *section)
2302 {
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
2308 return section->s.section->owner;
2309 }
2310
2311 /* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314 static asection *
2315 get_section_bfd_section (const struct dwarf2_section_info *section)
2316 {
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
2322 return section->s.section;
2323 }
2324
2325 /* Return the name of SECTION. */
2326
2327 static const char *
2328 get_section_name (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334 }
2335
2336 /* Return the name of the file SECTION is in. */
2337
2338 static const char *
2339 get_section_file_name (const struct dwarf2_section_info *section)
2340 {
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344 }
2345
2346 /* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349 static int
2350 get_section_id (const struct dwarf2_section_info *section)
2351 {
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357 }
2358
2359 /* Return the flags of SECTION.
2360 SECTION (or containing section if this is a virtual section) must exist. */
2361
2362 static int
2363 get_section_flags (const struct dwarf2_section_info *section)
2364 {
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369 }
2370
2371 /* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
2373
2374 static int
2375 section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
2377 {
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
2385 }
2386
2387 /* See declaration. */
2388
2389 void
2390 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
2392 {
2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
2394
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
2398 else if (section_is_p (sectp->name, &names.info))
2399 {
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.abbrev))
2404 {
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.line))
2409 {
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.loc))
2414 {
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.loclists))
2419 {
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.macinfo))
2424 {
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.macro))
2429 {
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.str))
2434 {
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.line_str))
2439 {
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.addr))
2444 {
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.frame))
2449 {
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.eh_frame))
2454 {
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.ranges))
2459 {
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &names.rnglists))
2464 {
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &names.types))
2469 {
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
2473 type_section.s.section = sectp;
2474 type_section.size = bfd_get_section_size (sectp);
2475
2476 VEC_safe_push (dwarf2_section_info_def, this->types,
2477 &type_section);
2478 }
2479 else if (section_is_p (sectp->name, &names.gdb_index))
2480 {
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
2483 }
2484
2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2486 && bfd_section_vma (abfd, sectp) == 0)
2487 this->has_section_at_zero = true;
2488 }
2489
2490 /* A helper function that decides whether a section is empty,
2491 or not present. */
2492
2493 static int
2494 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2495 {
2496 if (section->is_virtual)
2497 return section->size == 0;
2498 return section->s.section == NULL || section->size == 0;
2499 }
2500
2501 /* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
2505 If the section is compressed, uncompress it before returning. */
2506
2507 static void
2508 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2509 {
2510 asection *sectp;
2511 bfd *abfd;
2512 gdb_byte *buf, *retbuf;
2513
2514 if (info->readin)
2515 return;
2516 info->buffer = NULL;
2517 info->readin = 1;
2518
2519 if (dwarf2_section_empty_p (info))
2520 return;
2521
2522 sectp = get_section_bfd_section (info);
2523
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
2552 {
2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2554 return;
2555 }
2556
2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2558 info->buffer = buf;
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
2581 }
2582
2583 /* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590 static bfd_size_type
2591 dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593 {
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597 }
2598
2599 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2600 SECTION_NAME. */
2601
2602 void
2603 dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
2605 asection **sectp, const gdb_byte **bufp,
2606 bfd_size_type *sizep)
2607 {
2608 struct dwarf2_per_objfile *data
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
2611 struct dwarf2_section_info *info;
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
2633
2634 dwarf2_read_section (objfile, info);
2635
2636 *sectp = get_section_bfd_section (info);
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639 }
2640
2641 /* A helper function to find the sections for a .dwz file. */
2642
2643 static void
2644 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645 {
2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
2652 dwz_file->abbrev.s.section = sectp;
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
2657 dwz_file->info.s.section = sectp;
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
2662 dwz_file->str.s.section = sectp;
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
2667 dwz_file->line.s.section = sectp;
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
2672 dwz_file->macro.s.section = sectp;
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
2677 dwz_file->gdb_index.s.section = sectp;
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
2680 }
2681
2682 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
2685
2686 static struct dwz_file *
2687 dwarf2_get_dwz_file (void)
2688 {
2689 const char *filename;
2690 struct dwz_file *result;
2691 bfd_size_type buildid_len_arg;
2692 size_t buildid_len;
2693 bfd_byte *buildid;
2694
2695 if (dwarf2_per_objfile->dwz_file != NULL)
2696 return dwarf2_per_objfile->dwz_file;
2697
2698 bfd_set_error (bfd_error_no_error);
2699 gdb::unique_xmalloc_ptr<char> data
2700 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2701 &buildid_len_arg, &buildid));
2702 if (data == NULL)
2703 {
2704 if (bfd_get_error () == bfd_error_no_error)
2705 return NULL;
2706 error (_("could not read '.gnu_debugaltlink' section: %s"),
2707 bfd_errmsg (bfd_get_error ()));
2708 }
2709
2710 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2711
2712 buildid_len = (size_t) buildid_len_arg;
2713
2714 filename = data.get ();
2715
2716 std::string abs_storage;
2717 if (!IS_ABSOLUTE_PATH (filename))
2718 {
2719 gdb::unique_xmalloc_ptr<char> abs
2720 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2721
2722 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2723 filename = abs_storage.c_str ();
2724 }
2725
2726 /* First try the file name given in the section. If that doesn't
2727 work, try to use the build-id instead. */
2728 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2729 if (dwz_bfd != NULL)
2730 {
2731 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2732 dwz_bfd.release ();
2733 }
2734
2735 if (dwz_bfd == NULL)
2736 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2737
2738 if (dwz_bfd == NULL)
2739 error (_("could not find '.gnu_debugaltlink' file for %s"),
2740 objfile_name (dwarf2_per_objfile->objfile));
2741
2742 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2743 struct dwz_file);
2744 result->dwz_bfd = dwz_bfd.release ();
2745
2746 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2747
2748 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2749 dwarf2_per_objfile->dwz_file = result;
2750 return result;
2751 }
2752 \f
2753 /* DWARF quick_symbols_functions support. */
2754
2755 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2756 unique line tables, so we maintain a separate table of all .debug_line
2757 derived entries to support the sharing.
2758 All the quick functions need is the list of file names. We discard the
2759 line_header when we're done and don't need to record it here. */
2760 struct quick_file_names
2761 {
2762 /* The data used to construct the hash key. */
2763 struct stmt_list_hash hash;
2764
2765 /* The number of entries in file_names, real_names. */
2766 unsigned int num_file_names;
2767
2768 /* The file names from the line table, after being run through
2769 file_full_name. */
2770 const char **file_names;
2771
2772 /* The file names from the line table after being run through
2773 gdb_realpath. These are computed lazily. */
2774 const char **real_names;
2775 };
2776
2777 /* When using the index (and thus not using psymtabs), each CU has an
2778 object of this type. This is used to hold information needed by
2779 the various "quick" methods. */
2780 struct dwarf2_per_cu_quick_data
2781 {
2782 /* The file table. This can be NULL if there was no file table
2783 or it's currently not read in.
2784 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2785 struct quick_file_names *file_names;
2786
2787 /* The corresponding symbol table. This is NULL if symbols for this
2788 CU have not yet been read. */
2789 struct compunit_symtab *compunit_symtab;
2790
2791 /* A temporary mark bit used when iterating over all CUs in
2792 expand_symtabs_matching. */
2793 unsigned int mark : 1;
2794
2795 /* True if we've tried to read the file table and found there isn't one.
2796 There will be no point in trying to read it again next time. */
2797 unsigned int no_file_data : 1;
2798 };
2799
2800 /* Utility hash function for a stmt_list_hash. */
2801
2802 static hashval_t
2803 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2804 {
2805 hashval_t v = 0;
2806
2807 if (stmt_list_hash->dwo_unit != NULL)
2808 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2809 v += to_underlying (stmt_list_hash->line_sect_off);
2810 return v;
2811 }
2812
2813 /* Utility equality function for a stmt_list_hash. */
2814
2815 static int
2816 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2817 const struct stmt_list_hash *rhs)
2818 {
2819 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2820 return 0;
2821 if (lhs->dwo_unit != NULL
2822 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2823 return 0;
2824
2825 return lhs->line_sect_off == rhs->line_sect_off;
2826 }
2827
2828 /* Hash function for a quick_file_names. */
2829
2830 static hashval_t
2831 hash_file_name_entry (const void *e)
2832 {
2833 const struct quick_file_names *file_data
2834 = (const struct quick_file_names *) e;
2835
2836 return hash_stmt_list_entry (&file_data->hash);
2837 }
2838
2839 /* Equality function for a quick_file_names. */
2840
2841 static int
2842 eq_file_name_entry (const void *a, const void *b)
2843 {
2844 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2845 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2846
2847 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2848 }
2849
2850 /* Delete function for a quick_file_names. */
2851
2852 static void
2853 delete_file_name_entry (void *e)
2854 {
2855 struct quick_file_names *file_data = (struct quick_file_names *) e;
2856 int i;
2857
2858 for (i = 0; i < file_data->num_file_names; ++i)
2859 {
2860 xfree ((void*) file_data->file_names[i]);
2861 if (file_data->real_names)
2862 xfree ((void*) file_data->real_names[i]);
2863 }
2864
2865 /* The space for the struct itself lives on objfile_obstack,
2866 so we don't free it here. */
2867 }
2868
2869 /* Create a quick_file_names hash table. */
2870
2871 static htab_t
2872 create_quick_file_names_table (unsigned int nr_initial_entries)
2873 {
2874 return htab_create_alloc (nr_initial_entries,
2875 hash_file_name_entry, eq_file_name_entry,
2876 delete_file_name_entry, xcalloc, xfree);
2877 }
2878
2879 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2880 have to be created afterwards. You should call age_cached_comp_units after
2881 processing PER_CU->CU. dw2_setup must have been already called. */
2882
2883 static void
2884 load_cu (struct dwarf2_per_cu_data *per_cu)
2885 {
2886 if (per_cu->is_debug_types)
2887 load_full_type_unit (per_cu);
2888 else
2889 load_full_comp_unit (per_cu, language_minimal);
2890
2891 if (per_cu->cu == NULL)
2892 return; /* Dummy CU. */
2893
2894 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2895 }
2896
2897 /* Read in the symbols for PER_CU. */
2898
2899 static void
2900 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901 {
2902 struct cleanup *back_to;
2903
2904 /* Skip type_unit_groups, reading the type units they contain
2905 is handled elsewhere. */
2906 if (IS_TYPE_UNIT_GROUP (per_cu))
2907 return;
2908
2909 back_to = make_cleanup (dwarf2_release_queue, NULL);
2910
2911 if (dwarf2_per_objfile->using_index
2912 ? per_cu->v.quick->compunit_symtab == NULL
2913 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2914 {
2915 queue_comp_unit (per_cu, language_minimal);
2916 load_cu (per_cu);
2917
2918 /* If we just loaded a CU from a DWO, and we're working with an index
2919 that may badly handle TUs, load all the TUs in that DWO as well.
2920 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2921 if (!per_cu->is_debug_types
2922 && per_cu->cu != NULL
2923 && per_cu->cu->dwo_unit != NULL
2924 && dwarf2_per_objfile->index_table != NULL
2925 && dwarf2_per_objfile->index_table->version <= 7
2926 /* DWP files aren't supported yet. */
2927 && get_dwp_file () == NULL)
2928 queue_and_load_all_dwo_tus (per_cu);
2929 }
2930
2931 process_queue ();
2932
2933 /* Age the cache, releasing compilation units that have not
2934 been used recently. */
2935 age_cached_comp_units ();
2936
2937 do_cleanups (back_to);
2938 }
2939
2940 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2941 the objfile from which this CU came. Returns the resulting symbol
2942 table. */
2943
2944 static struct compunit_symtab *
2945 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2946 {
2947 gdb_assert (dwarf2_per_objfile->using_index);
2948 if (!per_cu->v.quick->compunit_symtab)
2949 {
2950 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2951 scoped_restore decrementer = increment_reading_symtab ();
2952 dw2_do_instantiate_symtab (per_cu);
2953 process_cu_includes ();
2954 do_cleanups (back_to);
2955 }
2956
2957 return per_cu->v.quick->compunit_symtab;
2958 }
2959
2960 /* Return the CU/TU given its index.
2961
2962 This is intended for loops like:
2963
2964 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2965 + dwarf2_per_objfile->n_type_units); ++i)
2966 {
2967 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2968
2969 ...;
2970 }
2971 */
2972
2973 static struct dwarf2_per_cu_data *
2974 dw2_get_cutu (int index)
2975 {
2976 if (index >= dwarf2_per_objfile->n_comp_units)
2977 {
2978 index -= dwarf2_per_objfile->n_comp_units;
2979 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2980 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2981 }
2982
2983 return dwarf2_per_objfile->all_comp_units[index];
2984 }
2985
2986 /* Return the CU given its index.
2987 This differs from dw2_get_cutu in that it's for when you know INDEX
2988 refers to a CU. */
2989
2990 static struct dwarf2_per_cu_data *
2991 dw2_get_cu (int index)
2992 {
2993 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2994
2995 return dwarf2_per_objfile->all_comp_units[index];
2996 }
2997
2998 /* A helper for create_cus_from_index that handles a given list of
2999 CUs. */
3000
3001 static void
3002 create_cus_from_index_list (struct objfile *objfile,
3003 const gdb_byte *cu_list, offset_type n_elements,
3004 struct dwarf2_section_info *section,
3005 int is_dwz,
3006 int base_offset)
3007 {
3008 offset_type i;
3009
3010 for (i = 0; i < n_elements; i += 2)
3011 {
3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3017 cu_list += 2 * 8;
3018
3019 dwarf2_per_cu_data *the_cu
3020 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3021 struct dwarf2_per_cu_data);
3022 the_cu->sect_off = sect_off;
3023 the_cu->length = length;
3024 the_cu->objfile = objfile;
3025 the_cu->section = section;
3026 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3027 struct dwarf2_per_cu_quick_data);
3028 the_cu->is_dwz = is_dwz;
3029 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3030 }
3031 }
3032
3033 /* Read the CU list from the mapped index, and use it to create all
3034 the CU objects for this objfile. */
3035
3036 static void
3037 create_cus_from_index (struct objfile *objfile,
3038 const gdb_byte *cu_list, offset_type cu_list_elements,
3039 const gdb_byte *dwz_list, offset_type dwz_elements)
3040 {
3041 struct dwz_file *dwz;
3042
3043 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3044 dwarf2_per_objfile->all_comp_units =
3045 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3046 dwarf2_per_objfile->n_comp_units);
3047
3048 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3049 &dwarf2_per_objfile->info, 0, 0);
3050
3051 if (dwz_elements == 0)
3052 return;
3053
3054 dwz = dwarf2_get_dwz_file ();
3055 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3056 cu_list_elements / 2);
3057 }
3058
3059 /* Create the signatured type hash table from the index. */
3060
3061 static void
3062 create_signatured_type_table_from_index (struct objfile *objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 offset_type i;
3068 htab_t sig_types_hash;
3069
3070 dwarf2_per_objfile->n_type_units
3071 = dwarf2_per_objfile->n_allocated_type_units
3072 = elements / 3;
3073 dwarf2_per_objfile->all_type_units =
3074 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3075
3076 sig_types_hash = allocate_signatured_type_table (objfile);
3077
3078 for (i = 0; i < elements; i += 3)
3079 {
3080 struct signatured_type *sig_type;
3081 ULONGEST signature;
3082 void **slot;
3083 cu_offset type_offset_in_tu;
3084
3085 gdb_static_assert (sizeof (ULONGEST) >= 8);
3086 sect_offset sect_off
3087 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3088 type_offset_in_tu
3089 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3090 BFD_ENDIAN_LITTLE);
3091 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3092 bytes += 3 * 8;
3093
3094 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3095 struct signatured_type);
3096 sig_type->signature = signature;
3097 sig_type->type_offset_in_tu = type_offset_in_tu;
3098 sig_type->per_cu.is_debug_types = 1;
3099 sig_type->per_cu.section = section;
3100 sig_type->per_cu.sect_off = sect_off;
3101 sig_type->per_cu.objfile = objfile;
3102 sig_type->per_cu.v.quick
3103 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3104 struct dwarf2_per_cu_quick_data);
3105
3106 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3107 *slot = sig_type;
3108
3109 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3110 }
3111
3112 dwarf2_per_objfile->signatured_types = sig_types_hash;
3113 }
3114
3115 /* Read the address map data from the mapped index, and use it to
3116 populate the objfile's psymtabs_addrmap. */
3117
3118 static void
3119 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3120 {
3121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3122 const gdb_byte *iter, *end;
3123 struct addrmap *mutable_map;
3124 CORE_ADDR baseaddr;
3125
3126 auto_obstack temp_obstack;
3127
3128 mutable_map = addrmap_create_mutable (&temp_obstack);
3129
3130 iter = index->address_table;
3131 end = iter + index->address_table_size;
3132
3133 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3134
3135 while (iter < end)
3136 {
3137 ULONGEST hi, lo, cu_index;
3138 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3139 iter += 8;
3140 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3141 iter += 8;
3142 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3143 iter += 4;
3144
3145 if (lo > hi)
3146 {
3147 complaint (&symfile_complaints,
3148 _(".gdb_index address table has invalid range (%s - %s)"),
3149 hex_string (lo), hex_string (hi));
3150 continue;
3151 }
3152
3153 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3154 {
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid CU number %u"),
3157 (unsigned) cu_index);
3158 continue;
3159 }
3160
3161 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3162 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3163 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3164 }
3165
3166 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3167 &objfile->objfile_obstack);
3168 }
3169
3170 /* The hash function for strings in the mapped index. This is the same as
3171 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3172 implementation. This is necessary because the hash function is tied to the
3173 format of the mapped index file. The hash values do not have to match with
3174 SYMBOL_HASH_NEXT.
3175
3176 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3177
3178 static hashval_t
3179 mapped_index_string_hash (int index_version, const void *p)
3180 {
3181 const unsigned char *str = (const unsigned char *) p;
3182 hashval_t r = 0;
3183 unsigned char c;
3184
3185 while ((c = *str++) != 0)
3186 {
3187 if (index_version >= 5)
3188 c = tolower (c);
3189 r = r * 67 + c - 113;
3190 }
3191
3192 return r;
3193 }
3194
3195 /* Find a slot in the mapped index INDEX for the object named NAME.
3196 If NAME is found, set *VEC_OUT to point to the CU vector in the
3197 constant pool and return true. If NAME cannot be found, return
3198 false. */
3199
3200 static bool
3201 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3202 offset_type **vec_out)
3203 {
3204 offset_type hash;
3205 offset_type slot, step;
3206 int (*cmp) (const char *, const char *);
3207
3208 gdb::unique_xmalloc_ptr<char> without_params;
3209 if (current_language->la_language == language_cplus
3210 || current_language->la_language == language_fortran
3211 || current_language->la_language == language_d)
3212 {
3213 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3214 not contain any. */
3215
3216 if (strchr (name, '(') != NULL)
3217 {
3218 without_params = cp_remove_params (name);
3219
3220 if (without_params != NULL)
3221 name = without_params.get ();
3222 }
3223 }
3224
3225 /* Index version 4 did not support case insensitive searches. But the
3226 indices for case insensitive languages are built in lowercase, therefore
3227 simulate our NAME being searched is also lowercased. */
3228 hash = mapped_index_string_hash ((index->version == 4
3229 && case_sensitivity == case_sensitive_off
3230 ? 5 : index->version),
3231 name);
3232
3233 slot = hash & (index->symbol_table_slots - 1);
3234 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3235 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3236
3237 for (;;)
3238 {
3239 /* Convert a slot number to an offset into the table. */
3240 offset_type i = 2 * slot;
3241 const char *str;
3242 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3243 return false;
3244
3245 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3246 if (!cmp (name, str))
3247 {
3248 *vec_out = (offset_type *) (index->constant_pool
3249 + MAYBE_SWAP (index->symbol_table[i + 1]));
3250 return true;
3251 }
3252
3253 slot = (slot + step) & (index->symbol_table_slots - 1);
3254 }
3255 }
3256
3257 /* A helper function that reads the .gdb_index from SECTION and fills
3258 in MAP. FILENAME is the name of the file containing the section;
3259 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3260 ok to use deprecated sections.
3261
3262 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3263 out parameters that are filled in with information about the CU and
3264 TU lists in the section.
3265
3266 Returns 1 if all went well, 0 otherwise. */
3267
3268 static int
3269 read_index_from_section (struct objfile *objfile,
3270 const char *filename,
3271 int deprecated_ok,
3272 struct dwarf2_section_info *section,
3273 struct mapped_index *map,
3274 const gdb_byte **cu_list,
3275 offset_type *cu_list_elements,
3276 const gdb_byte **types_list,
3277 offset_type *types_list_elements)
3278 {
3279 const gdb_byte *addr;
3280 offset_type version;
3281 offset_type *metadata;
3282 int i;
3283
3284 if (dwarf2_section_empty_p (section))
3285 return 0;
3286
3287 /* Older elfutils strip versions could keep the section in the main
3288 executable while splitting it for the separate debug info file. */
3289 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3290 return 0;
3291
3292 dwarf2_read_section (objfile, section);
3293
3294 addr = section->buffer;
3295 /* Version check. */
3296 version = MAYBE_SWAP (*(offset_type *) addr);
3297 /* Versions earlier than 3 emitted every copy of a psymbol. This
3298 causes the index to behave very poorly for certain requests. Version 3
3299 contained incomplete addrmap. So, it seems better to just ignore such
3300 indices. */
3301 if (version < 4)
3302 {
3303 static int warning_printed = 0;
3304 if (!warning_printed)
3305 {
3306 warning (_("Skipping obsolete .gdb_index section in %s."),
3307 filename);
3308 warning_printed = 1;
3309 }
3310 return 0;
3311 }
3312 /* Index version 4 uses a different hash function than index version
3313 5 and later.
3314
3315 Versions earlier than 6 did not emit psymbols for inlined
3316 functions. Using these files will cause GDB not to be able to
3317 set breakpoints on inlined functions by name, so we ignore these
3318 indices unless the user has done
3319 "set use-deprecated-index-sections on". */
3320 if (version < 6 && !deprecated_ok)
3321 {
3322 static int warning_printed = 0;
3323 if (!warning_printed)
3324 {
3325 warning (_("\
3326 Skipping deprecated .gdb_index section in %s.\n\
3327 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3328 to use the section anyway."),
3329 filename);
3330 warning_printed = 1;
3331 }
3332 return 0;
3333 }
3334 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3335 of the TU (for symbols coming from TUs),
3336 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3337 Plus gold-generated indices can have duplicate entries for global symbols,
3338 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3339 These are just performance bugs, and we can't distinguish gdb-generated
3340 indices from gold-generated ones, so issue no warning here. */
3341
3342 /* Indexes with higher version than the one supported by GDB may be no
3343 longer backward compatible. */
3344 if (version > 8)
3345 return 0;
3346
3347 map->version = version;
3348 map->total_size = section->size;
3349
3350 metadata = (offset_type *) (addr + sizeof (offset_type));
3351
3352 i = 0;
3353 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3354 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3355 / 8);
3356 ++i;
3357
3358 *types_list = addr + MAYBE_SWAP (metadata[i]);
3359 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3360 - MAYBE_SWAP (metadata[i]))
3361 / 8);
3362 ++i;
3363
3364 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3365 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3366 - MAYBE_SWAP (metadata[i]));
3367 ++i;
3368
3369 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3370 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3371 - MAYBE_SWAP (metadata[i]))
3372 / (2 * sizeof (offset_type)));
3373 ++i;
3374
3375 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3376
3377 return 1;
3378 }
3379
3380
3381 /* Read the index file. If everything went ok, initialize the "quick"
3382 elements of all the CUs and return 1. Otherwise, return 0. */
3383
3384 static int
3385 dwarf2_read_index (struct objfile *objfile)
3386 {
3387 struct mapped_index local_map, *map;
3388 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3389 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3390 struct dwz_file *dwz;
3391
3392 if (!read_index_from_section (objfile, objfile_name (objfile),
3393 use_deprecated_index_sections,
3394 &dwarf2_per_objfile->gdb_index, &local_map,
3395 &cu_list, &cu_list_elements,
3396 &types_list, &types_list_elements))
3397 return 0;
3398
3399 /* Don't use the index if it's empty. */
3400 if (local_map.symbol_table_slots == 0)
3401 return 0;
3402
3403 /* If there is a .dwz file, read it so we can get its CU list as
3404 well. */
3405 dwz = dwarf2_get_dwz_file ();
3406 if (dwz != NULL)
3407 {
3408 struct mapped_index dwz_map;
3409 const gdb_byte *dwz_types_ignore;
3410 offset_type dwz_types_elements_ignore;
3411
3412 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3413 1,
3414 &dwz->gdb_index, &dwz_map,
3415 &dwz_list, &dwz_list_elements,
3416 &dwz_types_ignore,
3417 &dwz_types_elements_ignore))
3418 {
3419 warning (_("could not read '.gdb_index' section from %s; skipping"),
3420 bfd_get_filename (dwz->dwz_bfd));
3421 return 0;
3422 }
3423 }
3424
3425 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3426 dwz_list_elements);
3427
3428 if (types_list_elements)
3429 {
3430 struct dwarf2_section_info *section;
3431
3432 /* We can only handle a single .debug_types when we have an
3433 index. */
3434 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3435 return 0;
3436
3437 section = VEC_index (dwarf2_section_info_def,
3438 dwarf2_per_objfile->types, 0);
3439
3440 create_signatured_type_table_from_index (objfile, section, types_list,
3441 types_list_elements);
3442 }
3443
3444 create_addrmap_from_index (objfile, &local_map);
3445
3446 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3447 *map = local_map;
3448
3449 dwarf2_per_objfile->index_table = map;
3450 dwarf2_per_objfile->using_index = 1;
3451 dwarf2_per_objfile->quick_file_names_table =
3452 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3453
3454 return 1;
3455 }
3456
3457 /* A helper for the "quick" functions which sets the global
3458 dwarf2_per_objfile according to OBJFILE. */
3459
3460 static void
3461 dw2_setup (struct objfile *objfile)
3462 {
3463 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3464 objfile_data (objfile, dwarf2_objfile_data_key));
3465 gdb_assert (dwarf2_per_objfile);
3466 }
3467
3468 /* die_reader_func for dw2_get_file_names. */
3469
3470 static void
3471 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3472 const gdb_byte *info_ptr,
3473 struct die_info *comp_unit_die,
3474 int has_children,
3475 void *data)
3476 {
3477 struct dwarf2_cu *cu = reader->cu;
3478 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3479 struct objfile *objfile = dwarf2_per_objfile->objfile;
3480 struct dwarf2_per_cu_data *lh_cu;
3481 struct attribute *attr;
3482 int i;
3483 void **slot;
3484 struct quick_file_names *qfn;
3485
3486 gdb_assert (! this_cu->is_debug_types);
3487
3488 /* Our callers never want to match partial units -- instead they
3489 will match the enclosing full CU. */
3490 if (comp_unit_die->tag == DW_TAG_partial_unit)
3491 {
3492 this_cu->v.quick->no_file_data = 1;
3493 return;
3494 }
3495
3496 lh_cu = this_cu;
3497 slot = NULL;
3498
3499 line_header_up lh;
3500 sect_offset line_offset {};
3501
3502 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3503 if (attr)
3504 {
3505 struct quick_file_names find_entry;
3506
3507 line_offset = (sect_offset) DW_UNSND (attr);
3508
3509 /* We may have already read in this line header (TU line header sharing).
3510 If we have we're done. */
3511 find_entry.hash.dwo_unit = cu->dwo_unit;
3512 find_entry.hash.line_sect_off = line_offset;
3513 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3514 &find_entry, INSERT);
3515 if (*slot != NULL)
3516 {
3517 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3518 return;
3519 }
3520
3521 lh = dwarf_decode_line_header (line_offset, cu);
3522 }
3523 if (lh == NULL)
3524 {
3525 lh_cu->v.quick->no_file_data = 1;
3526 return;
3527 }
3528
3529 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3530 qfn->hash.dwo_unit = cu->dwo_unit;
3531 qfn->hash.line_sect_off = line_offset;
3532 gdb_assert (slot != NULL);
3533 *slot = qfn;
3534
3535 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3536
3537 qfn->num_file_names = lh->file_names.size ();
3538 qfn->file_names =
3539 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3540 for (i = 0; i < lh->file_names.size (); ++i)
3541 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3542 qfn->real_names = NULL;
3543
3544 lh_cu->v.quick->file_names = qfn;
3545 }
3546
3547 /* A helper for the "quick" functions which attempts to read the line
3548 table for THIS_CU. */
3549
3550 static struct quick_file_names *
3551 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3552 {
3553 /* This should never be called for TUs. */
3554 gdb_assert (! this_cu->is_debug_types);
3555 /* Nor type unit groups. */
3556 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3557
3558 if (this_cu->v.quick->file_names != NULL)
3559 return this_cu->v.quick->file_names;
3560 /* If we know there is no line data, no point in looking again. */
3561 if (this_cu->v.quick->no_file_data)
3562 return NULL;
3563
3564 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3565
3566 if (this_cu->v.quick->no_file_data)
3567 return NULL;
3568 return this_cu->v.quick->file_names;
3569 }
3570
3571 /* A helper for the "quick" functions which computes and caches the
3572 real path for a given file name from the line table. */
3573
3574 static const char *
3575 dw2_get_real_path (struct objfile *objfile,
3576 struct quick_file_names *qfn, int index)
3577 {
3578 if (qfn->real_names == NULL)
3579 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3580 qfn->num_file_names, const char *);
3581
3582 if (qfn->real_names[index] == NULL)
3583 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3584
3585 return qfn->real_names[index];
3586 }
3587
3588 static struct symtab *
3589 dw2_find_last_source_symtab (struct objfile *objfile)
3590 {
3591 struct compunit_symtab *cust;
3592 int index;
3593
3594 dw2_setup (objfile);
3595 index = dwarf2_per_objfile->n_comp_units - 1;
3596 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3597 if (cust == NULL)
3598 return NULL;
3599 return compunit_primary_filetab (cust);
3600 }
3601
3602 /* Traversal function for dw2_forget_cached_source_info. */
3603
3604 static int
3605 dw2_free_cached_file_names (void **slot, void *info)
3606 {
3607 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3608
3609 if (file_data->real_names)
3610 {
3611 int i;
3612
3613 for (i = 0; i < file_data->num_file_names; ++i)
3614 {
3615 xfree ((void*) file_data->real_names[i]);
3616 file_data->real_names[i] = NULL;
3617 }
3618 }
3619
3620 return 1;
3621 }
3622
3623 static void
3624 dw2_forget_cached_source_info (struct objfile *objfile)
3625 {
3626 dw2_setup (objfile);
3627
3628 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3629 dw2_free_cached_file_names, NULL);
3630 }
3631
3632 /* Helper function for dw2_map_symtabs_matching_filename that expands
3633 the symtabs and calls the iterator. */
3634
3635 static int
3636 dw2_map_expand_apply (struct objfile *objfile,
3637 struct dwarf2_per_cu_data *per_cu,
3638 const char *name, const char *real_path,
3639 gdb::function_view<bool (symtab *)> callback)
3640 {
3641 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3642
3643 /* Don't visit already-expanded CUs. */
3644 if (per_cu->v.quick->compunit_symtab)
3645 return 0;
3646
3647 /* This may expand more than one symtab, and we want to iterate over
3648 all of them. */
3649 dw2_instantiate_symtab (per_cu);
3650
3651 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3652 last_made, callback);
3653 }
3654
3655 /* Implementation of the map_symtabs_matching_filename method. */
3656
3657 static bool
3658 dw2_map_symtabs_matching_filename
3659 (struct objfile *objfile, const char *name, const char *real_path,
3660 gdb::function_view<bool (symtab *)> callback)
3661 {
3662 int i;
3663 const char *name_basename = lbasename (name);
3664
3665 dw2_setup (objfile);
3666
3667 /* The rule is CUs specify all the files, including those used by
3668 any TU, so there's no need to scan TUs here. */
3669
3670 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3671 {
3672 int j;
3673 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3674 struct quick_file_names *file_data;
3675
3676 /* We only need to look at symtabs not already expanded. */
3677 if (per_cu->v.quick->compunit_symtab)
3678 continue;
3679
3680 file_data = dw2_get_file_names (per_cu);
3681 if (file_data == NULL)
3682 continue;
3683
3684 for (j = 0; j < file_data->num_file_names; ++j)
3685 {
3686 const char *this_name = file_data->file_names[j];
3687 const char *this_real_name;
3688
3689 if (compare_filenames_for_search (this_name, name))
3690 {
3691 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3692 callback))
3693 return true;
3694 continue;
3695 }
3696
3697 /* Before we invoke realpath, which can get expensive when many
3698 files are involved, do a quick comparison of the basenames. */
3699 if (! basenames_may_differ
3700 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3701 continue;
3702
3703 this_real_name = dw2_get_real_path (objfile, file_data, j);
3704 if (compare_filenames_for_search (this_real_name, name))
3705 {
3706 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3707 callback))
3708 return true;
3709 continue;
3710 }
3711
3712 if (real_path != NULL)
3713 {
3714 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3715 gdb_assert (IS_ABSOLUTE_PATH (name));
3716 if (this_real_name != NULL
3717 && FILENAME_CMP (real_path, this_real_name) == 0)
3718 {
3719 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3720 callback))
3721 return true;
3722 continue;
3723 }
3724 }
3725 }
3726 }
3727
3728 return false;
3729 }
3730
3731 /* Struct used to manage iterating over all CUs looking for a symbol. */
3732
3733 struct dw2_symtab_iterator
3734 {
3735 /* The internalized form of .gdb_index. */
3736 struct mapped_index *index;
3737 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3738 int want_specific_block;
3739 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3740 Unused if !WANT_SPECIFIC_BLOCK. */
3741 int block_index;
3742 /* The kind of symbol we're looking for. */
3743 domain_enum domain;
3744 /* The list of CUs from the index entry of the symbol,
3745 or NULL if not found. */
3746 offset_type *vec;
3747 /* The next element in VEC to look at. */
3748 int next;
3749 /* The number of elements in VEC, or zero if there is no match. */
3750 int length;
3751 /* Have we seen a global version of the symbol?
3752 If so we can ignore all further global instances.
3753 This is to work around gold/15646, inefficient gold-generated
3754 indices. */
3755 int global_seen;
3756 };
3757
3758 /* Initialize the index symtab iterator ITER.
3759 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3760 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3761
3762 static void
3763 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3764 struct mapped_index *index,
3765 int want_specific_block,
3766 int block_index,
3767 domain_enum domain,
3768 const char *name)
3769 {
3770 iter->index = index;
3771 iter->want_specific_block = want_specific_block;
3772 iter->block_index = block_index;
3773 iter->domain = domain;
3774 iter->next = 0;
3775 iter->global_seen = 0;
3776
3777 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3778 iter->length = MAYBE_SWAP (*iter->vec);
3779 else
3780 {
3781 iter->vec = NULL;
3782 iter->length = 0;
3783 }
3784 }
3785
3786 /* Return the next matching CU or NULL if there are no more. */
3787
3788 static struct dwarf2_per_cu_data *
3789 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3790 {
3791 for ( ; iter->next < iter->length; ++iter->next)
3792 {
3793 offset_type cu_index_and_attrs =
3794 MAYBE_SWAP (iter->vec[iter->next + 1]);
3795 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3796 struct dwarf2_per_cu_data *per_cu;
3797 int want_static = iter->block_index != GLOBAL_BLOCK;
3798 /* This value is only valid for index versions >= 7. */
3799 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3800 gdb_index_symbol_kind symbol_kind =
3801 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3802 /* Only check the symbol attributes if they're present.
3803 Indices prior to version 7 don't record them,
3804 and indices >= 7 may elide them for certain symbols
3805 (gold does this). */
3806 int attrs_valid =
3807 (iter->index->version >= 7
3808 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3809
3810 /* Don't crash on bad data. */
3811 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3812 + dwarf2_per_objfile->n_type_units))
3813 {
3814 complaint (&symfile_complaints,
3815 _(".gdb_index entry has bad CU index"
3816 " [in module %s]"),
3817 objfile_name (dwarf2_per_objfile->objfile));
3818 continue;
3819 }
3820
3821 per_cu = dw2_get_cutu (cu_index);
3822
3823 /* Skip if already read in. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 /* Check static vs global. */
3828 if (attrs_valid)
3829 {
3830 if (iter->want_specific_block
3831 && want_static != is_static)
3832 continue;
3833 /* Work around gold/15646. */
3834 if (!is_static && iter->global_seen)
3835 continue;
3836 if (!is_static)
3837 iter->global_seen = 1;
3838 }
3839
3840 /* Only check the symbol's kind if it has one. */
3841 if (attrs_valid)
3842 {
3843 switch (iter->domain)
3844 {
3845 case VAR_DOMAIN:
3846 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3847 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3848 /* Some types are also in VAR_DOMAIN. */
3849 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3850 continue;
3851 break;
3852 case STRUCT_DOMAIN:
3853 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3854 continue;
3855 break;
3856 case LABEL_DOMAIN:
3857 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3858 continue;
3859 break;
3860 default:
3861 break;
3862 }
3863 }
3864
3865 ++iter->next;
3866 return per_cu;
3867 }
3868
3869 return NULL;
3870 }
3871
3872 static struct compunit_symtab *
3873 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3874 const char *name, domain_enum domain)
3875 {
3876 struct compunit_symtab *stab_best = NULL;
3877 struct mapped_index *index;
3878
3879 dw2_setup (objfile);
3880
3881 index = dwarf2_per_objfile->index_table;
3882
3883 /* index is NULL if OBJF_READNOW. */
3884 if (index)
3885 {
3886 struct dw2_symtab_iterator iter;
3887 struct dwarf2_per_cu_data *per_cu;
3888
3889 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3890
3891 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3892 {
3893 struct symbol *sym, *with_opaque = NULL;
3894 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3895 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3896 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3897
3898 sym = block_find_symbol (block, name, domain,
3899 block_find_non_opaque_type_preferred,
3900 &with_opaque);
3901
3902 /* Some caution must be observed with overloaded functions
3903 and methods, since the index will not contain any overload
3904 information (but NAME might contain it). */
3905
3906 if (sym != NULL
3907 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3908 return stab;
3909 if (with_opaque != NULL
3910 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3911 stab_best = stab;
3912
3913 /* Keep looking through other CUs. */
3914 }
3915 }
3916
3917 return stab_best;
3918 }
3919
3920 static void
3921 dw2_print_stats (struct objfile *objfile)
3922 {
3923 int i, total, count;
3924
3925 dw2_setup (objfile);
3926 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3927 count = 0;
3928 for (i = 0; i < total; ++i)
3929 {
3930 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3931
3932 if (!per_cu->v.quick->compunit_symtab)
3933 ++count;
3934 }
3935 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3936 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3937 }
3938
3939 /* This dumps minimal information about the index.
3940 It is called via "mt print objfiles".
3941 One use is to verify .gdb_index has been loaded by the
3942 gdb.dwarf2/gdb-index.exp testcase. */
3943
3944 static void
3945 dw2_dump (struct objfile *objfile)
3946 {
3947 dw2_setup (objfile);
3948 gdb_assert (dwarf2_per_objfile->using_index);
3949 printf_filtered (".gdb_index:");
3950 if (dwarf2_per_objfile->index_table != NULL)
3951 {
3952 printf_filtered (" version %d\n",
3953 dwarf2_per_objfile->index_table->version);
3954 }
3955 else
3956 printf_filtered (" faked for \"readnow\"\n");
3957 printf_filtered ("\n");
3958 }
3959
3960 static void
3961 dw2_relocate (struct objfile *objfile,
3962 const struct section_offsets *new_offsets,
3963 const struct section_offsets *delta)
3964 {
3965 /* There's nothing to relocate here. */
3966 }
3967
3968 static void
3969 dw2_expand_symtabs_for_function (struct objfile *objfile,
3970 const char *func_name)
3971 {
3972 struct mapped_index *index;
3973
3974 dw2_setup (objfile);
3975
3976 index = dwarf2_per_objfile->index_table;
3977
3978 /* index is NULL if OBJF_READNOW. */
3979 if (index)
3980 {
3981 struct dw2_symtab_iterator iter;
3982 struct dwarf2_per_cu_data *per_cu;
3983
3984 /* Note: It doesn't matter what we pass for block_index here. */
3985 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3986 func_name);
3987
3988 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3989 dw2_instantiate_symtab (per_cu);
3990 }
3991 }
3992
3993 static void
3994 dw2_expand_all_symtabs (struct objfile *objfile)
3995 {
3996 int i;
3997
3998 dw2_setup (objfile);
3999
4000 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4001 + dwarf2_per_objfile->n_type_units); ++i)
4002 {
4003 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4004
4005 dw2_instantiate_symtab (per_cu);
4006 }
4007 }
4008
4009 static void
4010 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4011 const char *fullname)
4012 {
4013 int i;
4014
4015 dw2_setup (objfile);
4016
4017 /* We don't need to consider type units here.
4018 This is only called for examining code, e.g. expand_line_sal.
4019 There can be an order of magnitude (or more) more type units
4020 than comp units, and we avoid them if we can. */
4021
4022 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4023 {
4024 int j;
4025 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4026 struct quick_file_names *file_data;
4027
4028 /* We only need to look at symtabs not already expanded. */
4029 if (per_cu->v.quick->compunit_symtab)
4030 continue;
4031
4032 file_data = dw2_get_file_names (per_cu);
4033 if (file_data == NULL)
4034 continue;
4035
4036 for (j = 0; j < file_data->num_file_names; ++j)
4037 {
4038 const char *this_fullname = file_data->file_names[j];
4039
4040 if (filename_cmp (this_fullname, fullname) == 0)
4041 {
4042 dw2_instantiate_symtab (per_cu);
4043 break;
4044 }
4045 }
4046 }
4047 }
4048
4049 static void
4050 dw2_map_matching_symbols (struct objfile *objfile,
4051 const char * name, domain_enum domain,
4052 int global,
4053 int (*callback) (struct block *,
4054 struct symbol *, void *),
4055 void *data, symbol_compare_ftype *match,
4056 symbol_compare_ftype *ordered_compare)
4057 {
4058 /* Currently unimplemented; used for Ada. The function can be called if the
4059 current language is Ada for a non-Ada objfile using GNU index. As Ada
4060 does not look for non-Ada symbols this function should just return. */
4061 }
4062
4063 static void
4064 dw2_expand_symtabs_matching
4065 (struct objfile *objfile,
4066 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4067 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4068 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4069 enum search_domain kind)
4070 {
4071 int i;
4072 offset_type iter;
4073 struct mapped_index *index;
4074
4075 dw2_setup (objfile);
4076
4077 /* index_table is NULL if OBJF_READNOW. */
4078 if (!dwarf2_per_objfile->index_table)
4079 return;
4080 index = dwarf2_per_objfile->index_table;
4081
4082 if (file_matcher != NULL)
4083 {
4084 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4085 htab_eq_pointer,
4086 NULL, xcalloc, xfree));
4087 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
4090
4091 /* The rule is CUs specify all the files, including those used by
4092 any TU, so there's no need to scan TUs here. */
4093
4094 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4095 {
4096 int j;
4097 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4098 struct quick_file_names *file_data;
4099 void **slot;
4100
4101 QUIT;
4102
4103 per_cu->v.quick->mark = 0;
4104
4105 /* We only need to look at symtabs not already expanded. */
4106 if (per_cu->v.quick->compunit_symtab)
4107 continue;
4108
4109 file_data = dw2_get_file_names (per_cu);
4110 if (file_data == NULL)
4111 continue;
4112
4113 if (htab_find (visited_not_found.get (), file_data) != NULL)
4114 continue;
4115 else if (htab_find (visited_found.get (), file_data) != NULL)
4116 {
4117 per_cu->v.quick->mark = 1;
4118 continue;
4119 }
4120
4121 for (j = 0; j < file_data->num_file_names; ++j)
4122 {
4123 const char *this_real_name;
4124
4125 if (file_matcher (file_data->file_names[j], false))
4126 {
4127 per_cu->v.quick->mark = 1;
4128 break;
4129 }
4130
4131 /* Before we invoke realpath, which can get expensive when many
4132 files are involved, do a quick comparison of the basenames. */
4133 if (!basenames_may_differ
4134 && !file_matcher (lbasename (file_data->file_names[j]),
4135 true))
4136 continue;
4137
4138 this_real_name = dw2_get_real_path (objfile, file_data, j);
4139 if (file_matcher (this_real_name, false))
4140 {
4141 per_cu->v.quick->mark = 1;
4142 break;
4143 }
4144 }
4145
4146 slot = htab_find_slot (per_cu->v.quick->mark
4147 ? visited_found.get ()
4148 : visited_not_found.get (),
4149 file_data, INSERT);
4150 *slot = file_data;
4151 }
4152 }
4153
4154 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4155 {
4156 offset_type idx = 2 * iter;
4157 const char *name;
4158 offset_type *vec, vec_len, vec_idx;
4159 int global_seen = 0;
4160
4161 QUIT;
4162
4163 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4164 continue;
4165
4166 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4167
4168 if (!symbol_matcher (name))
4169 continue;
4170
4171 /* The name was matched, now expand corresponding CUs that were
4172 marked. */
4173 vec = (offset_type *) (index->constant_pool
4174 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4175 vec_len = MAYBE_SWAP (vec[0]);
4176 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4177 {
4178 struct dwarf2_per_cu_data *per_cu;
4179 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4180 /* This value is only valid for index versions >= 7. */
4181 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4182 gdb_index_symbol_kind symbol_kind =
4183 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4184 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4185 /* Only check the symbol attributes if they're present.
4186 Indices prior to version 7 don't record them,
4187 and indices >= 7 may elide them for certain symbols
4188 (gold does this). */
4189 int attrs_valid =
4190 (index->version >= 7
4191 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4192
4193 /* Work around gold/15646. */
4194 if (attrs_valid)
4195 {
4196 if (!is_static && global_seen)
4197 continue;
4198 if (!is_static)
4199 global_seen = 1;
4200 }
4201
4202 /* Only check the symbol's kind if it has one. */
4203 if (attrs_valid)
4204 {
4205 switch (kind)
4206 {
4207 case VARIABLES_DOMAIN:
4208 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4209 continue;
4210 break;
4211 case FUNCTIONS_DOMAIN:
4212 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4213 continue;
4214 break;
4215 case TYPES_DOMAIN:
4216 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4217 continue;
4218 break;
4219 default:
4220 break;
4221 }
4222 }
4223
4224 /* Don't crash on bad data. */
4225 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4226 + dwarf2_per_objfile->n_type_units))
4227 {
4228 complaint (&symfile_complaints,
4229 _(".gdb_index entry has bad CU index"
4230 " [in module %s]"), objfile_name (objfile));
4231 continue;
4232 }
4233
4234 per_cu = dw2_get_cutu (cu_index);
4235 if (file_matcher == NULL || per_cu->v.quick->mark)
4236 {
4237 int symtab_was_null =
4238 (per_cu->v.quick->compunit_symtab == NULL);
4239
4240 dw2_instantiate_symtab (per_cu);
4241
4242 if (expansion_notify != NULL
4243 && symtab_was_null
4244 && per_cu->v.quick->compunit_symtab != NULL)
4245 {
4246 expansion_notify (per_cu->v.quick->compunit_symtab);
4247 }
4248 }
4249 }
4250 }
4251 }
4252
4253 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4254 symtab. */
4255
4256 static struct compunit_symtab *
4257 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4258 CORE_ADDR pc)
4259 {
4260 int i;
4261
4262 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4263 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4264 return cust;
4265
4266 if (cust->includes == NULL)
4267 return NULL;
4268
4269 for (i = 0; cust->includes[i]; ++i)
4270 {
4271 struct compunit_symtab *s = cust->includes[i];
4272
4273 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4274 if (s != NULL)
4275 return s;
4276 }
4277
4278 return NULL;
4279 }
4280
4281 static struct compunit_symtab *
4282 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4283 struct bound_minimal_symbol msymbol,
4284 CORE_ADDR pc,
4285 struct obj_section *section,
4286 int warn_if_readin)
4287 {
4288 struct dwarf2_per_cu_data *data;
4289 struct compunit_symtab *result;
4290
4291 dw2_setup (objfile);
4292
4293 if (!objfile->psymtabs_addrmap)
4294 return NULL;
4295
4296 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4297 pc);
4298 if (!data)
4299 return NULL;
4300
4301 if (warn_if_readin && data->v.quick->compunit_symtab)
4302 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4303 paddress (get_objfile_arch (objfile), pc));
4304
4305 result
4306 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4307 pc);
4308 gdb_assert (result != NULL);
4309 return result;
4310 }
4311
4312 static void
4313 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4314 void *data, int need_fullname)
4315 {
4316 dw2_setup (objfile);
4317
4318 if (!dwarf2_per_objfile->filenames_cache)
4319 {
4320 dwarf2_per_objfile->filenames_cache.emplace ();
4321
4322 htab_up visited (htab_create_alloc (10,
4323 htab_hash_pointer, htab_eq_pointer,
4324 NULL, xcalloc, xfree));
4325
4326 /* The rule is CUs specify all the files, including those used
4327 by any TU, so there's no need to scan TUs here. We can
4328 ignore file names coming from already-expanded CUs. */
4329
4330 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4331 {
4332 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4333
4334 if (per_cu->v.quick->compunit_symtab)
4335 {
4336 void **slot = htab_find_slot (visited.get (),
4337 per_cu->v.quick->file_names,
4338 INSERT);
4339
4340 *slot = per_cu->v.quick->file_names;
4341 }
4342 }
4343
4344 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4345 {
4346 int j;
4347 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4348 struct quick_file_names *file_data;
4349 void **slot;
4350
4351 /* We only need to look at symtabs not already expanded. */
4352 if (per_cu->v.quick->compunit_symtab)
4353 continue;
4354
4355 file_data = dw2_get_file_names (per_cu);
4356 if (file_data == NULL)
4357 continue;
4358
4359 slot = htab_find_slot (visited.get (), file_data, INSERT);
4360 if (*slot)
4361 {
4362 /* Already visited. */
4363 continue;
4364 }
4365 *slot = file_data;
4366
4367 for (int j = 0; j < file_data->num_file_names; ++j)
4368 {
4369 const char *filename = file_data->file_names[j];
4370 dwarf2_per_objfile->filenames_cache->seen (filename);
4371 }
4372 }
4373 }
4374
4375 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4376 {
4377 gdb::unique_xmalloc_ptr<char> this_real_name;
4378
4379 if (need_fullname)
4380 this_real_name = gdb_realpath (filename);
4381 (*fun) (filename, this_real_name.get (), data);
4382 });
4383 }
4384
4385 static int
4386 dw2_has_symbols (struct objfile *objfile)
4387 {
4388 return 1;
4389 }
4390
4391 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4392 {
4393 dw2_has_symbols,
4394 dw2_find_last_source_symtab,
4395 dw2_forget_cached_source_info,
4396 dw2_map_symtabs_matching_filename,
4397 dw2_lookup_symbol,
4398 dw2_print_stats,
4399 dw2_dump,
4400 dw2_relocate,
4401 dw2_expand_symtabs_for_function,
4402 dw2_expand_all_symtabs,
4403 dw2_expand_symtabs_with_fullname,
4404 dw2_map_matching_symbols,
4405 dw2_expand_symtabs_matching,
4406 dw2_find_pc_sect_compunit_symtab,
4407 dw2_map_symbol_filenames
4408 };
4409
4410 /* Initialize for reading DWARF for this objfile. Return 0 if this
4411 file will use psymtabs, or 1 if using the GNU index. */
4412
4413 int
4414 dwarf2_initialize_objfile (struct objfile *objfile)
4415 {
4416 /* If we're about to read full symbols, don't bother with the
4417 indices. In this case we also don't care if some other debug
4418 format is making psymtabs, because they are all about to be
4419 expanded anyway. */
4420 if ((objfile->flags & OBJF_READNOW))
4421 {
4422 int i;
4423
4424 dwarf2_per_objfile->using_index = 1;
4425 create_all_comp_units (objfile);
4426 create_all_type_units (objfile);
4427 dwarf2_per_objfile->quick_file_names_table =
4428 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4429
4430 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4431 + dwarf2_per_objfile->n_type_units); ++i)
4432 {
4433 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4434
4435 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4436 struct dwarf2_per_cu_quick_data);
4437 }
4438
4439 /* Return 1 so that gdb sees the "quick" functions. However,
4440 these functions will be no-ops because we will have expanded
4441 all symtabs. */
4442 return 1;
4443 }
4444
4445 if (dwarf2_read_index (objfile))
4446 return 1;
4447
4448 return 0;
4449 }
4450
4451 \f
4452
4453 /* Build a partial symbol table. */
4454
4455 void
4456 dwarf2_build_psymtabs (struct objfile *objfile)
4457 {
4458
4459 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4460 {
4461 init_psymbol_list (objfile, 1024);
4462 }
4463
4464 TRY
4465 {
4466 /* This isn't really ideal: all the data we allocate on the
4467 objfile's obstack is still uselessly kept around. However,
4468 freeing it seems unsafe. */
4469 psymtab_discarder psymtabs (objfile);
4470 dwarf2_build_psymtabs_hard (objfile);
4471 psymtabs.keep ();
4472 }
4473 CATCH (except, RETURN_MASK_ERROR)
4474 {
4475 exception_print (gdb_stderr, except);
4476 }
4477 END_CATCH
4478 }
4479
4480 /* Return the total length of the CU described by HEADER. */
4481
4482 static unsigned int
4483 get_cu_length (const struct comp_unit_head *header)
4484 {
4485 return header->initial_length_size + header->length;
4486 }
4487
4488 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4489
4490 static inline bool
4491 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4492 {
4493 sect_offset bottom = cu_header->sect_off;
4494 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4495
4496 return sect_off >= bottom && sect_off < top;
4497 }
4498
4499 /* Find the base address of the compilation unit for range lists and
4500 location lists. It will normally be specified by DW_AT_low_pc.
4501 In DWARF-3 draft 4, the base address could be overridden by
4502 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4503 compilation units with discontinuous ranges. */
4504
4505 static void
4506 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4507 {
4508 struct attribute *attr;
4509
4510 cu->base_known = 0;
4511 cu->base_address = 0;
4512
4513 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4514 if (attr)
4515 {
4516 cu->base_address = attr_value_as_address (attr);
4517 cu->base_known = 1;
4518 }
4519 else
4520 {
4521 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4522 if (attr)
4523 {
4524 cu->base_address = attr_value_as_address (attr);
4525 cu->base_known = 1;
4526 }
4527 }
4528 }
4529
4530 /* Read in the comp unit header information from the debug_info at info_ptr.
4531 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4532 NOTE: This leaves members offset, first_die_offset to be filled in
4533 by the caller. */
4534
4535 static const gdb_byte *
4536 read_comp_unit_head (struct comp_unit_head *cu_header,
4537 const gdb_byte *info_ptr,
4538 struct dwarf2_section_info *section,
4539 rcuh_kind section_kind)
4540 {
4541 int signed_addr;
4542 unsigned int bytes_read;
4543 const char *filename = get_section_file_name (section);
4544 bfd *abfd = get_section_bfd_owner (section);
4545
4546 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4547 cu_header->initial_length_size = bytes_read;
4548 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4549 info_ptr += bytes_read;
4550 cu_header->version = read_2_bytes (abfd, info_ptr);
4551 info_ptr += 2;
4552 if (cu_header->version < 5)
4553 switch (section_kind)
4554 {
4555 case rcuh_kind::COMPILE:
4556 cu_header->unit_type = DW_UT_compile;
4557 break;
4558 case rcuh_kind::TYPE:
4559 cu_header->unit_type = DW_UT_type;
4560 break;
4561 default:
4562 internal_error (__FILE__, __LINE__,
4563 _("read_comp_unit_head: invalid section_kind"));
4564 }
4565 else
4566 {
4567 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4568 (read_1_byte (abfd, info_ptr));
4569 info_ptr += 1;
4570 switch (cu_header->unit_type)
4571 {
4572 case DW_UT_compile:
4573 if (section_kind != rcuh_kind::COMPILE)
4574 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4575 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4576 filename);
4577 break;
4578 case DW_UT_type:
4579 section_kind = rcuh_kind::TYPE;
4580 break;
4581 default:
4582 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4583 "(is %d, should be %d or %d) [in module %s]"),
4584 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4585 }
4586
4587 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4588 info_ptr += 1;
4589 }
4590 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4591 cu_header,
4592 &bytes_read);
4593 info_ptr += bytes_read;
4594 if (cu_header->version < 5)
4595 {
4596 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4597 info_ptr += 1;
4598 }
4599 signed_addr = bfd_get_sign_extend_vma (abfd);
4600 if (signed_addr < 0)
4601 internal_error (__FILE__, __LINE__,
4602 _("read_comp_unit_head: dwarf from non elf file"));
4603 cu_header->signed_addr_p = signed_addr;
4604
4605 if (section_kind == rcuh_kind::TYPE)
4606 {
4607 LONGEST type_offset;
4608
4609 cu_header->signature = read_8_bytes (abfd, info_ptr);
4610 info_ptr += 8;
4611
4612 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4613 info_ptr += bytes_read;
4614 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4615 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4616 error (_("Dwarf Error: Too big type_offset in compilation unit "
4617 "header (is %s) [in module %s]"), plongest (type_offset),
4618 filename);
4619 }
4620
4621 return info_ptr;
4622 }
4623
4624 /* Helper function that returns the proper abbrev section for
4625 THIS_CU. */
4626
4627 static struct dwarf2_section_info *
4628 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4629 {
4630 struct dwarf2_section_info *abbrev;
4631
4632 if (this_cu->is_dwz)
4633 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4634 else
4635 abbrev = &dwarf2_per_objfile->abbrev;
4636
4637 return abbrev;
4638 }
4639
4640 /* Subroutine of read_and_check_comp_unit_head and
4641 read_and_check_type_unit_head to simplify them.
4642 Perform various error checking on the header. */
4643
4644 static void
4645 error_check_comp_unit_head (struct comp_unit_head *header,
4646 struct dwarf2_section_info *section,
4647 struct dwarf2_section_info *abbrev_section)
4648 {
4649 const char *filename = get_section_file_name (section);
4650
4651 if (header->version < 2 || header->version > 5)
4652 error (_("Dwarf Error: wrong version in compilation unit header "
4653 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4654 filename);
4655
4656 if (to_underlying (header->abbrev_sect_off)
4657 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4658 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4659 "(offset 0x%x + 6) [in module %s]"),
4660 to_underlying (header->abbrev_sect_off),
4661 to_underlying (header->sect_off),
4662 filename);
4663
4664 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4665 avoid potential 32-bit overflow. */
4666 if (((ULONGEST) header->sect_off + get_cu_length (header))
4667 > section->size)
4668 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4669 "(offset 0x%x + 0) [in module %s]"),
4670 header->length, to_underlying (header->sect_off),
4671 filename);
4672 }
4673
4674 /* Read in a CU/TU header and perform some basic error checking.
4675 The contents of the header are stored in HEADER.
4676 The result is a pointer to the start of the first DIE. */
4677
4678 static const gdb_byte *
4679 read_and_check_comp_unit_head (struct comp_unit_head *header,
4680 struct dwarf2_section_info *section,
4681 struct dwarf2_section_info *abbrev_section,
4682 const gdb_byte *info_ptr,
4683 rcuh_kind section_kind)
4684 {
4685 const gdb_byte *beg_of_comp_unit = info_ptr;
4686 bfd *abfd = get_section_bfd_owner (section);
4687
4688 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4689
4690 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4691
4692 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4693
4694 error_check_comp_unit_head (header, section, abbrev_section);
4695
4696 return info_ptr;
4697 }
4698
4699 /* Fetch the abbreviation table offset from a comp or type unit header. */
4700
4701 static sect_offset
4702 read_abbrev_offset (struct dwarf2_section_info *section,
4703 sect_offset sect_off)
4704 {
4705 bfd *abfd = get_section_bfd_owner (section);
4706 const gdb_byte *info_ptr;
4707 unsigned int initial_length_size, offset_size;
4708 uint16_t version;
4709
4710 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4711 info_ptr = section->buffer + to_underlying (sect_off);
4712 read_initial_length (abfd, info_ptr, &initial_length_size);
4713 offset_size = initial_length_size == 4 ? 4 : 8;
4714 info_ptr += initial_length_size;
4715
4716 version = read_2_bytes (abfd, info_ptr);
4717 info_ptr += 2;
4718 if (version >= 5)
4719 {
4720 /* Skip unit type and address size. */
4721 info_ptr += 2;
4722 }
4723
4724 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4725 }
4726
4727 /* Allocate a new partial symtab for file named NAME and mark this new
4728 partial symtab as being an include of PST. */
4729
4730 static void
4731 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4732 struct objfile *objfile)
4733 {
4734 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4735
4736 if (!IS_ABSOLUTE_PATH (subpst->filename))
4737 {
4738 /* It shares objfile->objfile_obstack. */
4739 subpst->dirname = pst->dirname;
4740 }
4741
4742 subpst->textlow = 0;
4743 subpst->texthigh = 0;
4744
4745 subpst->dependencies
4746 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4747 subpst->dependencies[0] = pst;
4748 subpst->number_of_dependencies = 1;
4749
4750 subpst->globals_offset = 0;
4751 subpst->n_global_syms = 0;
4752 subpst->statics_offset = 0;
4753 subpst->n_static_syms = 0;
4754 subpst->compunit_symtab = NULL;
4755 subpst->read_symtab = pst->read_symtab;
4756 subpst->readin = 0;
4757
4758 /* No private part is necessary for include psymtabs. This property
4759 can be used to differentiate between such include psymtabs and
4760 the regular ones. */
4761 subpst->read_symtab_private = NULL;
4762 }
4763
4764 /* Read the Line Number Program data and extract the list of files
4765 included by the source file represented by PST. Build an include
4766 partial symtab for each of these included files. */
4767
4768 static void
4769 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4770 struct die_info *die,
4771 struct partial_symtab *pst)
4772 {
4773 line_header_up lh;
4774 struct attribute *attr;
4775
4776 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4777 if (attr)
4778 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4779 if (lh == NULL)
4780 return; /* No linetable, so no includes. */
4781
4782 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4783 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4784 }
4785
4786 static hashval_t
4787 hash_signatured_type (const void *item)
4788 {
4789 const struct signatured_type *sig_type
4790 = (const struct signatured_type *) item;
4791
4792 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4793 return sig_type->signature;
4794 }
4795
4796 static int
4797 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4798 {
4799 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4800 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4801
4802 return lhs->signature == rhs->signature;
4803 }
4804
4805 /* Allocate a hash table for signatured types. */
4806
4807 static htab_t
4808 allocate_signatured_type_table (struct objfile *objfile)
4809 {
4810 return htab_create_alloc_ex (41,
4811 hash_signatured_type,
4812 eq_signatured_type,
4813 NULL,
4814 &objfile->objfile_obstack,
4815 hashtab_obstack_allocate,
4816 dummy_obstack_deallocate);
4817 }
4818
4819 /* A helper function to add a signatured type CU to a table. */
4820
4821 static int
4822 add_signatured_type_cu_to_table (void **slot, void *datum)
4823 {
4824 struct signatured_type *sigt = (struct signatured_type *) *slot;
4825 struct signatured_type ***datap = (struct signatured_type ***) datum;
4826
4827 **datap = sigt;
4828 ++*datap;
4829
4830 return 1;
4831 }
4832
4833 /* A helper for create_debug_types_hash_table. Read types from SECTION
4834 and fill them into TYPES_HTAB. It will process only type units,
4835 therefore DW_UT_type. */
4836
4837 static void
4838 create_debug_type_hash_table (struct dwo_file *dwo_file,
4839 dwarf2_section_info *section, htab_t &types_htab,
4840 rcuh_kind section_kind)
4841 {
4842 struct objfile *objfile = dwarf2_per_objfile->objfile;
4843 struct dwarf2_section_info *abbrev_section;
4844 bfd *abfd;
4845 const gdb_byte *info_ptr, *end_ptr;
4846
4847 abbrev_section = (dwo_file != NULL
4848 ? &dwo_file->sections.abbrev
4849 : &dwarf2_per_objfile->abbrev);
4850
4851 if (dwarf_read_debug)
4852 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4853 get_section_name (section),
4854 get_section_file_name (abbrev_section));
4855
4856 dwarf2_read_section (objfile, section);
4857 info_ptr = section->buffer;
4858
4859 if (info_ptr == NULL)
4860 return;
4861
4862 /* We can't set abfd until now because the section may be empty or
4863 not present, in which case the bfd is unknown. */
4864 abfd = get_section_bfd_owner (section);
4865
4866 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4867 because we don't need to read any dies: the signature is in the
4868 header. */
4869
4870 end_ptr = info_ptr + section->size;
4871 while (info_ptr < end_ptr)
4872 {
4873 struct signatured_type *sig_type;
4874 struct dwo_unit *dwo_tu;
4875 void **slot;
4876 const gdb_byte *ptr = info_ptr;
4877 struct comp_unit_head header;
4878 unsigned int length;
4879
4880 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4881
4882 /* Initialize it due to a false compiler warning. */
4883 header.signature = -1;
4884 header.type_cu_offset_in_tu = (cu_offset) -1;
4885
4886 /* We need to read the type's signature in order to build the hash
4887 table, but we don't need anything else just yet. */
4888
4889 ptr = read_and_check_comp_unit_head (&header, section,
4890 abbrev_section, ptr, section_kind);
4891
4892 length = get_cu_length (&header);
4893
4894 /* Skip dummy type units. */
4895 if (ptr >= info_ptr + length
4896 || peek_abbrev_code (abfd, ptr) == 0
4897 || header.unit_type != DW_UT_type)
4898 {
4899 info_ptr += length;
4900 continue;
4901 }
4902
4903 if (types_htab == NULL)
4904 {
4905 if (dwo_file)
4906 types_htab = allocate_dwo_unit_table (objfile);
4907 else
4908 types_htab = allocate_signatured_type_table (objfile);
4909 }
4910
4911 if (dwo_file)
4912 {
4913 sig_type = NULL;
4914 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4915 struct dwo_unit);
4916 dwo_tu->dwo_file = dwo_file;
4917 dwo_tu->signature = header.signature;
4918 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4919 dwo_tu->section = section;
4920 dwo_tu->sect_off = sect_off;
4921 dwo_tu->length = length;
4922 }
4923 else
4924 {
4925 /* N.B.: type_offset is not usable if this type uses a DWO file.
4926 The real type_offset is in the DWO file. */
4927 dwo_tu = NULL;
4928 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4929 struct signatured_type);
4930 sig_type->signature = header.signature;
4931 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4932 sig_type->per_cu.objfile = objfile;
4933 sig_type->per_cu.is_debug_types = 1;
4934 sig_type->per_cu.section = section;
4935 sig_type->per_cu.sect_off = sect_off;
4936 sig_type->per_cu.length = length;
4937 }
4938
4939 slot = htab_find_slot (types_htab,
4940 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4941 INSERT);
4942 gdb_assert (slot != NULL);
4943 if (*slot != NULL)
4944 {
4945 sect_offset dup_sect_off;
4946
4947 if (dwo_file)
4948 {
4949 const struct dwo_unit *dup_tu
4950 = (const struct dwo_unit *) *slot;
4951
4952 dup_sect_off = dup_tu->sect_off;
4953 }
4954 else
4955 {
4956 const struct signatured_type *dup_tu
4957 = (const struct signatured_type *) *slot;
4958
4959 dup_sect_off = dup_tu->per_cu.sect_off;
4960 }
4961
4962 complaint (&symfile_complaints,
4963 _("debug type entry at offset 0x%x is duplicate to"
4964 " the entry at offset 0x%x, signature %s"),
4965 to_underlying (sect_off), to_underlying (dup_sect_off),
4966 hex_string (header.signature));
4967 }
4968 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4969
4970 if (dwarf_read_debug > 1)
4971 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4972 to_underlying (sect_off),
4973 hex_string (header.signature));
4974
4975 info_ptr += length;
4976 }
4977 }
4978
4979 /* Create the hash table of all entries in the .debug_types
4980 (or .debug_types.dwo) section(s).
4981 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4982 otherwise it is NULL.
4983
4984 The result is a pointer to the hash table or NULL if there are no types.
4985
4986 Note: This function processes DWO files only, not DWP files. */
4987
4988 static void
4989 create_debug_types_hash_table (struct dwo_file *dwo_file,
4990 VEC (dwarf2_section_info_def) *types,
4991 htab_t &types_htab)
4992 {
4993 int ix;
4994 struct dwarf2_section_info *section;
4995
4996 if (VEC_empty (dwarf2_section_info_def, types))
4997 return;
4998
4999 for (ix = 0;
5000 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5001 ++ix)
5002 create_debug_type_hash_table (dwo_file, section, types_htab,
5003 rcuh_kind::TYPE);
5004 }
5005
5006 /* Create the hash table of all entries in the .debug_types section,
5007 and initialize all_type_units.
5008 The result is zero if there is an error (e.g. missing .debug_types section),
5009 otherwise non-zero. */
5010
5011 static int
5012 create_all_type_units (struct objfile *objfile)
5013 {
5014 htab_t types_htab = NULL;
5015 struct signatured_type **iter;
5016
5017 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5018 rcuh_kind::COMPILE);
5019 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5020 if (types_htab == NULL)
5021 {
5022 dwarf2_per_objfile->signatured_types = NULL;
5023 return 0;
5024 }
5025
5026 dwarf2_per_objfile->signatured_types = types_htab;
5027
5028 dwarf2_per_objfile->n_type_units
5029 = dwarf2_per_objfile->n_allocated_type_units
5030 = htab_elements (types_htab);
5031 dwarf2_per_objfile->all_type_units =
5032 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5033 iter = &dwarf2_per_objfile->all_type_units[0];
5034 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5035 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5036 == dwarf2_per_objfile->n_type_units);
5037
5038 return 1;
5039 }
5040
5041 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5042 If SLOT is non-NULL, it is the entry to use in the hash table.
5043 Otherwise we find one. */
5044
5045 static struct signatured_type *
5046 add_type_unit (ULONGEST sig, void **slot)
5047 {
5048 struct objfile *objfile = dwarf2_per_objfile->objfile;
5049 int n_type_units = dwarf2_per_objfile->n_type_units;
5050 struct signatured_type *sig_type;
5051
5052 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5053 ++n_type_units;
5054 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5055 {
5056 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5057 dwarf2_per_objfile->n_allocated_type_units = 1;
5058 dwarf2_per_objfile->n_allocated_type_units *= 2;
5059 dwarf2_per_objfile->all_type_units
5060 = XRESIZEVEC (struct signatured_type *,
5061 dwarf2_per_objfile->all_type_units,
5062 dwarf2_per_objfile->n_allocated_type_units);
5063 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5064 }
5065 dwarf2_per_objfile->n_type_units = n_type_units;
5066
5067 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5068 struct signatured_type);
5069 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5070 sig_type->signature = sig;
5071 sig_type->per_cu.is_debug_types = 1;
5072 if (dwarf2_per_objfile->using_index)
5073 {
5074 sig_type->per_cu.v.quick =
5075 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5076 struct dwarf2_per_cu_quick_data);
5077 }
5078
5079 if (slot == NULL)
5080 {
5081 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5082 sig_type, INSERT);
5083 }
5084 gdb_assert (*slot == NULL);
5085 *slot = sig_type;
5086 /* The rest of sig_type must be filled in by the caller. */
5087 return sig_type;
5088 }
5089
5090 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5091 Fill in SIG_ENTRY with DWO_ENTRY. */
5092
5093 static void
5094 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5095 struct signatured_type *sig_entry,
5096 struct dwo_unit *dwo_entry)
5097 {
5098 /* Make sure we're not clobbering something we don't expect to. */
5099 gdb_assert (! sig_entry->per_cu.queued);
5100 gdb_assert (sig_entry->per_cu.cu == NULL);
5101 if (dwarf2_per_objfile->using_index)
5102 {
5103 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5104 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5105 }
5106 else
5107 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5108 gdb_assert (sig_entry->signature == dwo_entry->signature);
5109 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5110 gdb_assert (sig_entry->type_unit_group == NULL);
5111 gdb_assert (sig_entry->dwo_unit == NULL);
5112
5113 sig_entry->per_cu.section = dwo_entry->section;
5114 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5115 sig_entry->per_cu.length = dwo_entry->length;
5116 sig_entry->per_cu.reading_dwo_directly = 1;
5117 sig_entry->per_cu.objfile = objfile;
5118 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5119 sig_entry->dwo_unit = dwo_entry;
5120 }
5121
5122 /* Subroutine of lookup_signatured_type.
5123 If we haven't read the TU yet, create the signatured_type data structure
5124 for a TU to be read in directly from a DWO file, bypassing the stub.
5125 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5126 using .gdb_index, then when reading a CU we want to stay in the DWO file
5127 containing that CU. Otherwise we could end up reading several other DWO
5128 files (due to comdat folding) to process the transitive closure of all the
5129 mentioned TUs, and that can be slow. The current DWO file will have every
5130 type signature that it needs.
5131 We only do this for .gdb_index because in the psymtab case we already have
5132 to read all the DWOs to build the type unit groups. */
5133
5134 static struct signatured_type *
5135 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5136 {
5137 struct objfile *objfile = dwarf2_per_objfile->objfile;
5138 struct dwo_file *dwo_file;
5139 struct dwo_unit find_dwo_entry, *dwo_entry;
5140 struct signatured_type find_sig_entry, *sig_entry;
5141 void **slot;
5142
5143 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5144
5145 /* If TU skeletons have been removed then we may not have read in any
5146 TUs yet. */
5147 if (dwarf2_per_objfile->signatured_types == NULL)
5148 {
5149 dwarf2_per_objfile->signatured_types
5150 = allocate_signatured_type_table (objfile);
5151 }
5152
5153 /* We only ever need to read in one copy of a signatured type.
5154 Use the global signatured_types array to do our own comdat-folding
5155 of types. If this is the first time we're reading this TU, and
5156 the TU has an entry in .gdb_index, replace the recorded data from
5157 .gdb_index with this TU. */
5158
5159 find_sig_entry.signature = sig;
5160 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5161 &find_sig_entry, INSERT);
5162 sig_entry = (struct signatured_type *) *slot;
5163
5164 /* We can get here with the TU already read, *or* in the process of being
5165 read. Don't reassign the global entry to point to this DWO if that's
5166 the case. Also note that if the TU is already being read, it may not
5167 have come from a DWO, the program may be a mix of Fission-compiled
5168 code and non-Fission-compiled code. */
5169
5170 /* Have we already tried to read this TU?
5171 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5172 needn't exist in the global table yet). */
5173 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5174 return sig_entry;
5175
5176 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5177 dwo_unit of the TU itself. */
5178 dwo_file = cu->dwo_unit->dwo_file;
5179
5180 /* Ok, this is the first time we're reading this TU. */
5181 if (dwo_file->tus == NULL)
5182 return NULL;
5183 find_dwo_entry.signature = sig;
5184 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5185 if (dwo_entry == NULL)
5186 return NULL;
5187
5188 /* If the global table doesn't have an entry for this TU, add one. */
5189 if (sig_entry == NULL)
5190 sig_entry = add_type_unit (sig, slot);
5191
5192 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5193 sig_entry->per_cu.tu_read = 1;
5194 return sig_entry;
5195 }
5196
5197 /* Subroutine of lookup_signatured_type.
5198 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5199 then try the DWP file. If the TU stub (skeleton) has been removed then
5200 it won't be in .gdb_index. */
5201
5202 static struct signatured_type *
5203 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5204 {
5205 struct objfile *objfile = dwarf2_per_objfile->objfile;
5206 struct dwp_file *dwp_file = get_dwp_file ();
5207 struct dwo_unit *dwo_entry;
5208 struct signatured_type find_sig_entry, *sig_entry;
5209 void **slot;
5210
5211 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5212 gdb_assert (dwp_file != NULL);
5213
5214 /* If TU skeletons have been removed then we may not have read in any
5215 TUs yet. */
5216 if (dwarf2_per_objfile->signatured_types == NULL)
5217 {
5218 dwarf2_per_objfile->signatured_types
5219 = allocate_signatured_type_table (objfile);
5220 }
5221
5222 find_sig_entry.signature = sig;
5223 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5224 &find_sig_entry, INSERT);
5225 sig_entry = (struct signatured_type *) *slot;
5226
5227 /* Have we already tried to read this TU?
5228 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5229 needn't exist in the global table yet). */
5230 if (sig_entry != NULL)
5231 return sig_entry;
5232
5233 if (dwp_file->tus == NULL)
5234 return NULL;
5235 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5236 sig, 1 /* is_debug_types */);
5237 if (dwo_entry == NULL)
5238 return NULL;
5239
5240 sig_entry = add_type_unit (sig, slot);
5241 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5242
5243 return sig_entry;
5244 }
5245
5246 /* Lookup a signature based type for DW_FORM_ref_sig8.
5247 Returns NULL if signature SIG is not present in the table.
5248 It is up to the caller to complain about this. */
5249
5250 static struct signatured_type *
5251 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5252 {
5253 if (cu->dwo_unit
5254 && dwarf2_per_objfile->using_index)
5255 {
5256 /* We're in a DWO/DWP file, and we're using .gdb_index.
5257 These cases require special processing. */
5258 if (get_dwp_file () == NULL)
5259 return lookup_dwo_signatured_type (cu, sig);
5260 else
5261 return lookup_dwp_signatured_type (cu, sig);
5262 }
5263 else
5264 {
5265 struct signatured_type find_entry, *entry;
5266
5267 if (dwarf2_per_objfile->signatured_types == NULL)
5268 return NULL;
5269 find_entry.signature = sig;
5270 entry = ((struct signatured_type *)
5271 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5272 return entry;
5273 }
5274 }
5275 \f
5276 /* Low level DIE reading support. */
5277
5278 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5279
5280 static void
5281 init_cu_die_reader (struct die_reader_specs *reader,
5282 struct dwarf2_cu *cu,
5283 struct dwarf2_section_info *section,
5284 struct dwo_file *dwo_file)
5285 {
5286 gdb_assert (section->readin && section->buffer != NULL);
5287 reader->abfd = get_section_bfd_owner (section);
5288 reader->cu = cu;
5289 reader->dwo_file = dwo_file;
5290 reader->die_section = section;
5291 reader->buffer = section->buffer;
5292 reader->buffer_end = section->buffer + section->size;
5293 reader->comp_dir = NULL;
5294 }
5295
5296 /* Subroutine of init_cutu_and_read_dies to simplify it.
5297 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5298 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5299 already.
5300
5301 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5302 from it to the DIE in the DWO. If NULL we are skipping the stub.
5303 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5304 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5305 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5306 STUB_COMP_DIR may be non-NULL.
5307 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5308 are filled in with the info of the DIE from the DWO file.
5309 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5310 provided an abbrev table to use.
5311 The result is non-zero if a valid (non-dummy) DIE was found. */
5312
5313 static int
5314 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5315 struct dwo_unit *dwo_unit,
5316 int abbrev_table_provided,
5317 struct die_info *stub_comp_unit_die,
5318 const char *stub_comp_dir,
5319 struct die_reader_specs *result_reader,
5320 const gdb_byte **result_info_ptr,
5321 struct die_info **result_comp_unit_die,
5322 int *result_has_children)
5323 {
5324 struct objfile *objfile = dwarf2_per_objfile->objfile;
5325 struct dwarf2_cu *cu = this_cu->cu;
5326 struct dwarf2_section_info *section;
5327 bfd *abfd;
5328 const gdb_byte *begin_info_ptr, *info_ptr;
5329 ULONGEST signature; /* Or dwo_id. */
5330 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5331 int i,num_extra_attrs;
5332 struct dwarf2_section_info *dwo_abbrev_section;
5333 struct attribute *attr;
5334 struct die_info *comp_unit_die;
5335
5336 /* At most one of these may be provided. */
5337 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5338
5339 /* These attributes aren't processed until later:
5340 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5341 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5342 referenced later. However, these attributes are found in the stub
5343 which we won't have later. In order to not impose this complication
5344 on the rest of the code, we read them here and copy them to the
5345 DWO CU/TU die. */
5346
5347 stmt_list = NULL;
5348 low_pc = NULL;
5349 high_pc = NULL;
5350 ranges = NULL;
5351 comp_dir = NULL;
5352
5353 if (stub_comp_unit_die != NULL)
5354 {
5355 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5356 DWO file. */
5357 if (! this_cu->is_debug_types)
5358 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5359 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5360 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5361 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5362 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5363
5364 /* There should be a DW_AT_addr_base attribute here (if needed).
5365 We need the value before we can process DW_FORM_GNU_addr_index. */
5366 cu->addr_base = 0;
5367 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5368 if (attr)
5369 cu->addr_base = DW_UNSND (attr);
5370
5371 /* There should be a DW_AT_ranges_base attribute here (if needed).
5372 We need the value before we can process DW_AT_ranges. */
5373 cu->ranges_base = 0;
5374 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5375 if (attr)
5376 cu->ranges_base = DW_UNSND (attr);
5377 }
5378 else if (stub_comp_dir != NULL)
5379 {
5380 /* Reconstruct the comp_dir attribute to simplify the code below. */
5381 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5382 comp_dir->name = DW_AT_comp_dir;
5383 comp_dir->form = DW_FORM_string;
5384 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5385 DW_STRING (comp_dir) = stub_comp_dir;
5386 }
5387
5388 /* Set up for reading the DWO CU/TU. */
5389 cu->dwo_unit = dwo_unit;
5390 section = dwo_unit->section;
5391 dwarf2_read_section (objfile, section);
5392 abfd = get_section_bfd_owner (section);
5393 begin_info_ptr = info_ptr = (section->buffer
5394 + to_underlying (dwo_unit->sect_off));
5395 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5396 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5397
5398 if (this_cu->is_debug_types)
5399 {
5400 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5401
5402 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5403 dwo_abbrev_section,
5404 info_ptr, rcuh_kind::TYPE);
5405 /* This is not an assert because it can be caused by bad debug info. */
5406 if (sig_type->signature != cu->header.signature)
5407 {
5408 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5409 " TU at offset 0x%x [in module %s]"),
5410 hex_string (sig_type->signature),
5411 hex_string (cu->header.signature),
5412 to_underlying (dwo_unit->sect_off),
5413 bfd_get_filename (abfd));
5414 }
5415 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5416 /* For DWOs coming from DWP files, we don't know the CU length
5417 nor the type's offset in the TU until now. */
5418 dwo_unit->length = get_cu_length (&cu->header);
5419 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5420
5421 /* Establish the type offset that can be used to lookup the type.
5422 For DWO files, we don't know it until now. */
5423 sig_type->type_offset_in_section
5424 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5425 }
5426 else
5427 {
5428 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5429 dwo_abbrev_section,
5430 info_ptr, rcuh_kind::COMPILE);
5431 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5432 /* For DWOs coming from DWP files, we don't know the CU length
5433 until now. */
5434 dwo_unit->length = get_cu_length (&cu->header);
5435 }
5436
5437 /* Replace the CU's original abbrev table with the DWO's.
5438 Reminder: We can't read the abbrev table until we've read the header. */
5439 if (abbrev_table_provided)
5440 {
5441 /* Don't free the provided abbrev table, the caller of
5442 init_cutu_and_read_dies owns it. */
5443 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5444 /* Ensure the DWO abbrev table gets freed. */
5445 make_cleanup (dwarf2_free_abbrev_table, cu);
5446 }
5447 else
5448 {
5449 dwarf2_free_abbrev_table (cu);
5450 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5451 /* Leave any existing abbrev table cleanup as is. */
5452 }
5453
5454 /* Read in the die, but leave space to copy over the attributes
5455 from the stub. This has the benefit of simplifying the rest of
5456 the code - all the work to maintain the illusion of a single
5457 DW_TAG_{compile,type}_unit DIE is done here. */
5458 num_extra_attrs = ((stmt_list != NULL)
5459 + (low_pc != NULL)
5460 + (high_pc != NULL)
5461 + (ranges != NULL)
5462 + (comp_dir != NULL));
5463 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5464 result_has_children, num_extra_attrs);
5465
5466 /* Copy over the attributes from the stub to the DIE we just read in. */
5467 comp_unit_die = *result_comp_unit_die;
5468 i = comp_unit_die->num_attrs;
5469 if (stmt_list != NULL)
5470 comp_unit_die->attrs[i++] = *stmt_list;
5471 if (low_pc != NULL)
5472 comp_unit_die->attrs[i++] = *low_pc;
5473 if (high_pc != NULL)
5474 comp_unit_die->attrs[i++] = *high_pc;
5475 if (ranges != NULL)
5476 comp_unit_die->attrs[i++] = *ranges;
5477 if (comp_dir != NULL)
5478 comp_unit_die->attrs[i++] = *comp_dir;
5479 comp_unit_die->num_attrs += num_extra_attrs;
5480
5481 if (dwarf_die_debug)
5482 {
5483 fprintf_unfiltered (gdb_stdlog,
5484 "Read die from %s@0x%x of %s:\n",
5485 get_section_name (section),
5486 (unsigned) (begin_info_ptr - section->buffer),
5487 bfd_get_filename (abfd));
5488 dump_die (comp_unit_die, dwarf_die_debug);
5489 }
5490
5491 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5492 TUs by skipping the stub and going directly to the entry in the DWO file.
5493 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5494 to get it via circuitous means. Blech. */
5495 if (comp_dir != NULL)
5496 result_reader->comp_dir = DW_STRING (comp_dir);
5497
5498 /* Skip dummy compilation units. */
5499 if (info_ptr >= begin_info_ptr + dwo_unit->length
5500 || peek_abbrev_code (abfd, info_ptr) == 0)
5501 return 0;
5502
5503 *result_info_ptr = info_ptr;
5504 return 1;
5505 }
5506
5507 /* Subroutine of init_cutu_and_read_dies to simplify it.
5508 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5509 Returns NULL if the specified DWO unit cannot be found. */
5510
5511 static struct dwo_unit *
5512 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5513 struct die_info *comp_unit_die)
5514 {
5515 struct dwarf2_cu *cu = this_cu->cu;
5516 struct attribute *attr;
5517 ULONGEST signature;
5518 struct dwo_unit *dwo_unit;
5519 const char *comp_dir, *dwo_name;
5520
5521 gdb_assert (cu != NULL);
5522
5523 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5524 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5525 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5526
5527 if (this_cu->is_debug_types)
5528 {
5529 struct signatured_type *sig_type;
5530
5531 /* Since this_cu is the first member of struct signatured_type,
5532 we can go from a pointer to one to a pointer to the other. */
5533 sig_type = (struct signatured_type *) this_cu;
5534 signature = sig_type->signature;
5535 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5536 }
5537 else
5538 {
5539 struct attribute *attr;
5540
5541 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5542 if (! attr)
5543 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5544 " [in module %s]"),
5545 dwo_name, objfile_name (this_cu->objfile));
5546 signature = DW_UNSND (attr);
5547 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5548 signature);
5549 }
5550
5551 return dwo_unit;
5552 }
5553
5554 /* Subroutine of init_cutu_and_read_dies to simplify it.
5555 See it for a description of the parameters.
5556 Read a TU directly from a DWO file, bypassing the stub.
5557
5558 Note: This function could be a little bit simpler if we shared cleanups
5559 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5560 to do, so we keep this function self-contained. Or we could move this
5561 into our caller, but it's complex enough already. */
5562
5563 static void
5564 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5565 int use_existing_cu, int keep,
5566 die_reader_func_ftype *die_reader_func,
5567 void *data)
5568 {
5569 struct dwarf2_cu *cu;
5570 struct signatured_type *sig_type;
5571 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5572 struct die_reader_specs reader;
5573 const gdb_byte *info_ptr;
5574 struct die_info *comp_unit_die;
5575 int has_children;
5576
5577 /* Verify we can do the following downcast, and that we have the
5578 data we need. */
5579 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5580 sig_type = (struct signatured_type *) this_cu;
5581 gdb_assert (sig_type->dwo_unit != NULL);
5582
5583 cleanups = make_cleanup (null_cleanup, NULL);
5584
5585 if (use_existing_cu && this_cu->cu != NULL)
5586 {
5587 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5588 cu = this_cu->cu;
5589 /* There's no need to do the rereading_dwo_cu handling that
5590 init_cutu_and_read_dies does since we don't read the stub. */
5591 }
5592 else
5593 {
5594 /* If !use_existing_cu, this_cu->cu must be NULL. */
5595 gdb_assert (this_cu->cu == NULL);
5596 cu = XNEW (struct dwarf2_cu);
5597 init_one_comp_unit (cu, this_cu);
5598 /* If an error occurs while loading, release our storage. */
5599 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5600 }
5601
5602 /* A future optimization, if needed, would be to use an existing
5603 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5604 could share abbrev tables. */
5605
5606 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5607 0 /* abbrev_table_provided */,
5608 NULL /* stub_comp_unit_die */,
5609 sig_type->dwo_unit->dwo_file->comp_dir,
5610 &reader, &info_ptr,
5611 &comp_unit_die, &has_children) == 0)
5612 {
5613 /* Dummy die. */
5614 do_cleanups (cleanups);
5615 return;
5616 }
5617
5618 /* All the "real" work is done here. */
5619 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5620
5621 /* This duplicates the code in init_cutu_and_read_dies,
5622 but the alternative is making the latter more complex.
5623 This function is only for the special case of using DWO files directly:
5624 no point in overly complicating the general case just to handle this. */
5625 if (free_cu_cleanup != NULL)
5626 {
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
5632
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
5636
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
5643 }
5644
5645 do_cleanups (cleanups);
5646 }
5647
5648 /* Initialize a CU (or TU) and read its DIEs.
5649 If the CU defers to a DWO file, read the DWO file as well.
5650
5651 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5652 Otherwise the table specified in the comp unit header is read in and used.
5653 This is an optimization for when we already have the abbrev table.
5654
5655 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5656 Otherwise, a new CU is allocated with xmalloc.
5657
5658 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5659 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5660
5661 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5662 linker) then DIE_READER_FUNC will not get called. */
5663
5664 static void
5665 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5666 struct abbrev_table *abbrev_table,
5667 int use_existing_cu, int keep,
5668 die_reader_func_ftype *die_reader_func,
5669 void *data)
5670 {
5671 struct objfile *objfile = dwarf2_per_objfile->objfile;
5672 struct dwarf2_section_info *section = this_cu->section;
5673 bfd *abfd = get_section_bfd_owner (section);
5674 struct dwarf2_cu *cu;
5675 const gdb_byte *begin_info_ptr, *info_ptr;
5676 struct die_reader_specs reader;
5677 struct die_info *comp_unit_die;
5678 int has_children;
5679 struct attribute *attr;
5680 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5681 struct signatured_type *sig_type = NULL;
5682 struct dwarf2_section_info *abbrev_section;
5683 /* Non-zero if CU currently points to a DWO file and we need to
5684 reread it. When this happens we need to reread the skeleton die
5685 before we can reread the DWO file (this only applies to CUs, not TUs). */
5686 int rereading_dwo_cu = 0;
5687
5688 if (dwarf_die_debug)
5689 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5690 this_cu->is_debug_types ? "type" : "comp",
5691 to_underlying (this_cu->sect_off));
5692
5693 if (use_existing_cu)
5694 gdb_assert (keep);
5695
5696 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5697 file (instead of going through the stub), short-circuit all of this. */
5698 if (this_cu->reading_dwo_directly)
5699 {
5700 /* Narrow down the scope of possibilities to have to understand. */
5701 gdb_assert (this_cu->is_debug_types);
5702 gdb_assert (abbrev_table == NULL);
5703 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5704 die_reader_func, data);
5705 return;
5706 }
5707
5708 cleanups = make_cleanup (null_cleanup, NULL);
5709
5710 /* This is cheap if the section is already read in. */
5711 dwarf2_read_section (objfile, section);
5712
5713 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5714
5715 abbrev_section = get_abbrev_section_for_cu (this_cu);
5716
5717 if (use_existing_cu && this_cu->cu != NULL)
5718 {
5719 cu = this_cu->cu;
5720 /* If this CU is from a DWO file we need to start over, we need to
5721 refetch the attributes from the skeleton CU.
5722 This could be optimized by retrieving those attributes from when we
5723 were here the first time: the previous comp_unit_die was stored in
5724 comp_unit_obstack. But there's no data yet that we need this
5725 optimization. */
5726 if (cu->dwo_unit != NULL)
5727 rereading_dwo_cu = 1;
5728 }
5729 else
5730 {
5731 /* If !use_existing_cu, this_cu->cu must be NULL. */
5732 gdb_assert (this_cu->cu == NULL);
5733 cu = XNEW (struct dwarf2_cu);
5734 init_one_comp_unit (cu, this_cu);
5735 /* If an error occurs while loading, release our storage. */
5736 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5737 }
5738
5739 /* Get the header. */
5740 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5741 {
5742 /* We already have the header, there's no need to read it in again. */
5743 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5744 }
5745 else
5746 {
5747 if (this_cu->is_debug_types)
5748 {
5749 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5750 abbrev_section, info_ptr,
5751 rcuh_kind::TYPE);
5752
5753 /* Since per_cu is the first member of struct signatured_type,
5754 we can go from a pointer to one to a pointer to the other. */
5755 sig_type = (struct signatured_type *) this_cu;
5756 gdb_assert (sig_type->signature == cu->header.signature);
5757 gdb_assert (sig_type->type_offset_in_tu
5758 == cu->header.type_cu_offset_in_tu);
5759 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5760
5761 /* LENGTH has not been set yet for type units if we're
5762 using .gdb_index. */
5763 this_cu->length = get_cu_length (&cu->header);
5764
5765 /* Establish the type offset that can be used to lookup the type. */
5766 sig_type->type_offset_in_section =
5767 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5768
5769 this_cu->dwarf_version = cu->header.version;
5770 }
5771 else
5772 {
5773 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5774 abbrev_section,
5775 info_ptr,
5776 rcuh_kind::COMPILE);
5777
5778 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5779 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5780 this_cu->dwarf_version = cu->header.version;
5781 }
5782 }
5783
5784 /* Skip dummy compilation units. */
5785 if (info_ptr >= begin_info_ptr + this_cu->length
5786 || peek_abbrev_code (abfd, info_ptr) == 0)
5787 {
5788 do_cleanups (cleanups);
5789 return;
5790 }
5791
5792 /* If we don't have them yet, read the abbrevs for this compilation unit.
5793 And if we need to read them now, make sure they're freed when we're
5794 done. Note that it's important that if the CU had an abbrev table
5795 on entry we don't free it when we're done: Somewhere up the call stack
5796 it may be in use. */
5797 if (abbrev_table != NULL)
5798 {
5799 gdb_assert (cu->abbrev_table == NULL);
5800 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5801 cu->abbrev_table = abbrev_table;
5802 }
5803 else if (cu->abbrev_table == NULL)
5804 {
5805 dwarf2_read_abbrevs (cu, abbrev_section);
5806 make_cleanup (dwarf2_free_abbrev_table, cu);
5807 }
5808 else if (rereading_dwo_cu)
5809 {
5810 dwarf2_free_abbrev_table (cu);
5811 dwarf2_read_abbrevs (cu, abbrev_section);
5812 }
5813
5814 /* Read the top level CU/TU die. */
5815 init_cu_die_reader (&reader, cu, section, NULL);
5816 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5817
5818 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5819 from the DWO file.
5820 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5821 DWO CU, that this test will fail (the attribute will not be present). */
5822 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5823 if (attr)
5824 {
5825 struct dwo_unit *dwo_unit;
5826 struct die_info *dwo_comp_unit_die;
5827
5828 if (has_children)
5829 {
5830 complaint (&symfile_complaints,
5831 _("compilation unit with DW_AT_GNU_dwo_name"
5832 " has children (offset 0x%x) [in module %s]"),
5833 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5834 }
5835 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5836 if (dwo_unit != NULL)
5837 {
5838 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5839 abbrev_table != NULL,
5840 comp_unit_die, NULL,
5841 &reader, &info_ptr,
5842 &dwo_comp_unit_die, &has_children) == 0)
5843 {
5844 /* Dummy die. */
5845 do_cleanups (cleanups);
5846 return;
5847 }
5848 comp_unit_die = dwo_comp_unit_die;
5849 }
5850 else
5851 {
5852 /* Yikes, we couldn't find the rest of the DIE, we only have
5853 the stub. A complaint has already been logged. There's
5854 not much more we can do except pass on the stub DIE to
5855 die_reader_func. We don't want to throw an error on bad
5856 debug info. */
5857 }
5858 }
5859
5860 /* All of the above is setup for this call. Yikes. */
5861 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5862
5863 /* Done, clean up. */
5864 if (free_cu_cleanup != NULL)
5865 {
5866 if (keep)
5867 {
5868 /* We've successfully allocated this compilation unit. Let our
5869 caller clean it up when finished with it. */
5870 discard_cleanups (free_cu_cleanup);
5871
5872 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5873 So we have to manually free the abbrev table. */
5874 dwarf2_free_abbrev_table (cu);
5875
5876 /* Link this CU into read_in_chain. */
5877 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5878 dwarf2_per_objfile->read_in_chain = this_cu;
5879 }
5880 else
5881 do_cleanups (free_cu_cleanup);
5882 }
5883
5884 do_cleanups (cleanups);
5885 }
5886
5887 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5888 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5889 to have already done the lookup to find the DWO file).
5890
5891 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5892 THIS_CU->is_debug_types, but nothing else.
5893
5894 We fill in THIS_CU->length.
5895
5896 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5897 linker) then DIE_READER_FUNC will not get called.
5898
5899 THIS_CU->cu is always freed when done.
5900 This is done in order to not leave THIS_CU->cu in a state where we have
5901 to care whether it refers to the "main" CU or the DWO CU. */
5902
5903 static void
5904 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5905 struct dwo_file *dwo_file,
5906 die_reader_func_ftype *die_reader_func,
5907 void *data)
5908 {
5909 struct objfile *objfile = dwarf2_per_objfile->objfile;
5910 struct dwarf2_section_info *section = this_cu->section;
5911 bfd *abfd = get_section_bfd_owner (section);
5912 struct dwarf2_section_info *abbrev_section;
5913 struct dwarf2_cu cu;
5914 const gdb_byte *begin_info_ptr, *info_ptr;
5915 struct die_reader_specs reader;
5916 struct cleanup *cleanups;
5917 struct die_info *comp_unit_die;
5918 int has_children;
5919
5920 if (dwarf_die_debug)
5921 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5922 this_cu->is_debug_types ? "type" : "comp",
5923 to_underlying (this_cu->sect_off));
5924
5925 gdb_assert (this_cu->cu == NULL);
5926
5927 abbrev_section = (dwo_file != NULL
5928 ? &dwo_file->sections.abbrev
5929 : get_abbrev_section_for_cu (this_cu));
5930
5931 /* This is cheap if the section is already read in. */
5932 dwarf2_read_section (objfile, section);
5933
5934 init_one_comp_unit (&cu, this_cu);
5935
5936 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5937
5938 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5939 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5940 abbrev_section, info_ptr,
5941 (this_cu->is_debug_types
5942 ? rcuh_kind::TYPE
5943 : rcuh_kind::COMPILE));
5944
5945 this_cu->length = get_cu_length (&cu.header);
5946
5947 /* Skip dummy compilation units. */
5948 if (info_ptr >= begin_info_ptr + this_cu->length
5949 || peek_abbrev_code (abfd, info_ptr) == 0)
5950 {
5951 do_cleanups (cleanups);
5952 return;
5953 }
5954
5955 dwarf2_read_abbrevs (&cu, abbrev_section);
5956 make_cleanup (dwarf2_free_abbrev_table, &cu);
5957
5958 init_cu_die_reader (&reader, &cu, section, dwo_file);
5959 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5960
5961 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5962
5963 do_cleanups (cleanups);
5964 }
5965
5966 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5967 does not lookup the specified DWO file.
5968 This cannot be used to read DWO files.
5969
5970 THIS_CU->cu is always freed when done.
5971 This is done in order to not leave THIS_CU->cu in a state where we have
5972 to care whether it refers to the "main" CU or the DWO CU.
5973 We can revisit this if the data shows there's a performance issue. */
5974
5975 static void
5976 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5977 die_reader_func_ftype *die_reader_func,
5978 void *data)
5979 {
5980 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5981 }
5982 \f
5983 /* Type Unit Groups.
5984
5985 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5986 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5987 so that all types coming from the same compilation (.o file) are grouped
5988 together. A future step could be to put the types in the same symtab as
5989 the CU the types ultimately came from. */
5990
5991 static hashval_t
5992 hash_type_unit_group (const void *item)
5993 {
5994 const struct type_unit_group *tu_group
5995 = (const struct type_unit_group *) item;
5996
5997 return hash_stmt_list_entry (&tu_group->hash);
5998 }
5999
6000 static int
6001 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6002 {
6003 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6004 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6005
6006 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6007 }
6008
6009 /* Allocate a hash table for type unit groups. */
6010
6011 static htab_t
6012 allocate_type_unit_groups_table (void)
6013 {
6014 return htab_create_alloc_ex (3,
6015 hash_type_unit_group,
6016 eq_type_unit_group,
6017 NULL,
6018 &dwarf2_per_objfile->objfile->objfile_obstack,
6019 hashtab_obstack_allocate,
6020 dummy_obstack_deallocate);
6021 }
6022
6023 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6024 partial symtabs. We combine several TUs per psymtab to not let the size
6025 of any one psymtab grow too big. */
6026 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6027 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6028
6029 /* Helper routine for get_type_unit_group.
6030 Create the type_unit_group object used to hold one or more TUs. */
6031
6032 static struct type_unit_group *
6033 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6034 {
6035 struct objfile *objfile = dwarf2_per_objfile->objfile;
6036 struct dwarf2_per_cu_data *per_cu;
6037 struct type_unit_group *tu_group;
6038
6039 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6040 struct type_unit_group);
6041 per_cu = &tu_group->per_cu;
6042 per_cu->objfile = objfile;
6043
6044 if (dwarf2_per_objfile->using_index)
6045 {
6046 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6047 struct dwarf2_per_cu_quick_data);
6048 }
6049 else
6050 {
6051 unsigned int line_offset = to_underlying (line_offset_struct);
6052 struct partial_symtab *pst;
6053 char *name;
6054
6055 /* Give the symtab a useful name for debug purposes. */
6056 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6057 name = xstrprintf ("<type_units_%d>",
6058 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6059 else
6060 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6061
6062 pst = create_partial_symtab (per_cu, name);
6063 pst->anonymous = 1;
6064
6065 xfree (name);
6066 }
6067
6068 tu_group->hash.dwo_unit = cu->dwo_unit;
6069 tu_group->hash.line_sect_off = line_offset_struct;
6070
6071 return tu_group;
6072 }
6073
6074 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6075 STMT_LIST is a DW_AT_stmt_list attribute. */
6076
6077 static struct type_unit_group *
6078 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6079 {
6080 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6081 struct type_unit_group *tu_group;
6082 void **slot;
6083 unsigned int line_offset;
6084 struct type_unit_group type_unit_group_for_lookup;
6085
6086 if (dwarf2_per_objfile->type_unit_groups == NULL)
6087 {
6088 dwarf2_per_objfile->type_unit_groups =
6089 allocate_type_unit_groups_table ();
6090 }
6091
6092 /* Do we need to create a new group, or can we use an existing one? */
6093
6094 if (stmt_list)
6095 {
6096 line_offset = DW_UNSND (stmt_list);
6097 ++tu_stats->nr_symtab_sharers;
6098 }
6099 else
6100 {
6101 /* Ugh, no stmt_list. Rare, but we have to handle it.
6102 We can do various things here like create one group per TU or
6103 spread them over multiple groups to split up the expansion work.
6104 To avoid worst case scenarios (too many groups or too large groups)
6105 we, umm, group them in bunches. */
6106 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6107 | (tu_stats->nr_stmt_less_type_units
6108 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6109 ++tu_stats->nr_stmt_less_type_units;
6110 }
6111
6112 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6113 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6114 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6115 &type_unit_group_for_lookup, INSERT);
6116 if (*slot != NULL)
6117 {
6118 tu_group = (struct type_unit_group *) *slot;
6119 gdb_assert (tu_group != NULL);
6120 }
6121 else
6122 {
6123 sect_offset line_offset_struct = (sect_offset) line_offset;
6124 tu_group = create_type_unit_group (cu, line_offset_struct);
6125 *slot = tu_group;
6126 ++tu_stats->nr_symtabs;
6127 }
6128
6129 return tu_group;
6130 }
6131 \f
6132 /* Partial symbol tables. */
6133
6134 /* Create a psymtab named NAME and assign it to PER_CU.
6135
6136 The caller must fill in the following details:
6137 dirname, textlow, texthigh. */
6138
6139 static struct partial_symtab *
6140 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6141 {
6142 struct objfile *objfile = per_cu->objfile;
6143 struct partial_symtab *pst;
6144
6145 pst = start_psymtab_common (objfile, name, 0,
6146 objfile->global_psymbols.next,
6147 objfile->static_psymbols.next);
6148
6149 pst->psymtabs_addrmap_supported = 1;
6150
6151 /* This is the glue that links PST into GDB's symbol API. */
6152 pst->read_symtab_private = per_cu;
6153 pst->read_symtab = dwarf2_read_symtab;
6154 per_cu->v.psymtab = pst;
6155
6156 return pst;
6157 }
6158
6159 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6160 type. */
6161
6162 struct process_psymtab_comp_unit_data
6163 {
6164 /* True if we are reading a DW_TAG_partial_unit. */
6165
6166 int want_partial_unit;
6167
6168 /* The "pretend" language that is used if the CU doesn't declare a
6169 language. */
6170
6171 enum language pretend_language;
6172 };
6173
6174 /* die_reader_func for process_psymtab_comp_unit. */
6175
6176 static void
6177 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6178 const gdb_byte *info_ptr,
6179 struct die_info *comp_unit_die,
6180 int has_children,
6181 void *data)
6182 {
6183 struct dwarf2_cu *cu = reader->cu;
6184 struct objfile *objfile = cu->objfile;
6185 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6186 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6187 CORE_ADDR baseaddr;
6188 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6189 struct partial_symtab *pst;
6190 enum pc_bounds_kind cu_bounds_kind;
6191 const char *filename;
6192 struct process_psymtab_comp_unit_data *info
6193 = (struct process_psymtab_comp_unit_data *) data;
6194
6195 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6196 return;
6197
6198 gdb_assert (! per_cu->is_debug_types);
6199
6200 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6201
6202 cu->list_in_scope = &file_symbols;
6203
6204 /* Allocate a new partial symbol table structure. */
6205 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6206 if (filename == NULL)
6207 filename = "";
6208
6209 pst = create_partial_symtab (per_cu, filename);
6210
6211 /* This must be done before calling dwarf2_build_include_psymtabs. */
6212 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6213
6214 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6215
6216 dwarf2_find_base_address (comp_unit_die, cu);
6217
6218 /* Possibly set the default values of LOWPC and HIGHPC from
6219 `DW_AT_ranges'. */
6220 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6221 &best_highpc, cu, pst);
6222 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6223 /* Store the contiguous range if it is not empty; it can be empty for
6224 CUs with no code. */
6225 addrmap_set_empty (objfile->psymtabs_addrmap,
6226 gdbarch_adjust_dwarf2_addr (gdbarch,
6227 best_lowpc + baseaddr),
6228 gdbarch_adjust_dwarf2_addr (gdbarch,
6229 best_highpc + baseaddr) - 1,
6230 pst);
6231
6232 /* Check if comp unit has_children.
6233 If so, read the rest of the partial symbols from this comp unit.
6234 If not, there's no more debug_info for this comp unit. */
6235 if (has_children)
6236 {
6237 struct partial_die_info *first_die;
6238 CORE_ADDR lowpc, highpc;
6239
6240 lowpc = ((CORE_ADDR) -1);
6241 highpc = ((CORE_ADDR) 0);
6242
6243 first_die = load_partial_dies (reader, info_ptr, 1);
6244
6245 scan_partial_symbols (first_die, &lowpc, &highpc,
6246 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6247
6248 /* If we didn't find a lowpc, set it to highpc to avoid
6249 complaints from `maint check'. */
6250 if (lowpc == ((CORE_ADDR) -1))
6251 lowpc = highpc;
6252
6253 /* If the compilation unit didn't have an explicit address range,
6254 then use the information extracted from its child dies. */
6255 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6256 {
6257 best_lowpc = lowpc;
6258 best_highpc = highpc;
6259 }
6260 }
6261 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6262 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6263
6264 end_psymtab_common (objfile, pst);
6265
6266 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6267 {
6268 int i;
6269 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6270 struct dwarf2_per_cu_data *iter;
6271
6272 /* Fill in 'dependencies' here; we fill in 'users' in a
6273 post-pass. */
6274 pst->number_of_dependencies = len;
6275 pst->dependencies =
6276 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6277 for (i = 0;
6278 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6279 i, iter);
6280 ++i)
6281 pst->dependencies[i] = iter->v.psymtab;
6282
6283 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6284 }
6285
6286 /* Get the list of files included in the current compilation unit,
6287 and build a psymtab for each of them. */
6288 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6289
6290 if (dwarf_read_debug)
6291 {
6292 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6293
6294 fprintf_unfiltered (gdb_stdlog,
6295 "Psymtab for %s unit @0x%x: %s - %s"
6296 ", %d global, %d static syms\n",
6297 per_cu->is_debug_types ? "type" : "comp",
6298 to_underlying (per_cu->sect_off),
6299 paddress (gdbarch, pst->textlow),
6300 paddress (gdbarch, pst->texthigh),
6301 pst->n_global_syms, pst->n_static_syms);
6302 }
6303 }
6304
6305 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6306 Process compilation unit THIS_CU for a psymtab. */
6307
6308 static void
6309 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6310 int want_partial_unit,
6311 enum language pretend_language)
6312 {
6313 /* If this compilation unit was already read in, free the
6314 cached copy in order to read it in again. This is
6315 necessary because we skipped some symbols when we first
6316 read in the compilation unit (see load_partial_dies).
6317 This problem could be avoided, but the benefit is unclear. */
6318 if (this_cu->cu != NULL)
6319 free_one_cached_comp_unit (this_cu);
6320
6321 if (this_cu->is_debug_types)
6322 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6323 NULL);
6324 else
6325 {
6326 process_psymtab_comp_unit_data info;
6327 info.want_partial_unit = want_partial_unit;
6328 info.pretend_language = pretend_language;
6329 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6330 process_psymtab_comp_unit_reader, &info);
6331 }
6332
6333 /* Age out any secondary CUs. */
6334 age_cached_comp_units ();
6335 }
6336
6337 /* Reader function for build_type_psymtabs. */
6338
6339 static void
6340 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6341 const gdb_byte *info_ptr,
6342 struct die_info *type_unit_die,
6343 int has_children,
6344 void *data)
6345 {
6346 struct objfile *objfile = dwarf2_per_objfile->objfile;
6347 struct dwarf2_cu *cu = reader->cu;
6348 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6349 struct signatured_type *sig_type;
6350 struct type_unit_group *tu_group;
6351 struct attribute *attr;
6352 struct partial_die_info *first_die;
6353 CORE_ADDR lowpc, highpc;
6354 struct partial_symtab *pst;
6355
6356 gdb_assert (data == NULL);
6357 gdb_assert (per_cu->is_debug_types);
6358 sig_type = (struct signatured_type *) per_cu;
6359
6360 if (! has_children)
6361 return;
6362
6363 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6364 tu_group = get_type_unit_group (cu, attr);
6365
6366 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6367
6368 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6369 cu->list_in_scope = &file_symbols;
6370 pst = create_partial_symtab (per_cu, "");
6371 pst->anonymous = 1;
6372
6373 first_die = load_partial_dies (reader, info_ptr, 1);
6374
6375 lowpc = (CORE_ADDR) -1;
6376 highpc = (CORE_ADDR) 0;
6377 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6378
6379 end_psymtab_common (objfile, pst);
6380 }
6381
6382 /* Struct used to sort TUs by their abbreviation table offset. */
6383
6384 struct tu_abbrev_offset
6385 {
6386 struct signatured_type *sig_type;
6387 sect_offset abbrev_offset;
6388 };
6389
6390 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6391
6392 static int
6393 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6394 {
6395 const struct tu_abbrev_offset * const *a
6396 = (const struct tu_abbrev_offset * const*) ap;
6397 const struct tu_abbrev_offset * const *b
6398 = (const struct tu_abbrev_offset * const*) bp;
6399 sect_offset aoff = (*a)->abbrev_offset;
6400 sect_offset boff = (*b)->abbrev_offset;
6401
6402 return (aoff > boff) - (aoff < boff);
6403 }
6404
6405 /* Efficiently read all the type units.
6406 This does the bulk of the work for build_type_psymtabs.
6407
6408 The efficiency is because we sort TUs by the abbrev table they use and
6409 only read each abbrev table once. In one program there are 200K TUs
6410 sharing 8K abbrev tables.
6411
6412 The main purpose of this function is to support building the
6413 dwarf2_per_objfile->type_unit_groups table.
6414 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6415 can collapse the search space by grouping them by stmt_list.
6416 The savings can be significant, in the same program from above the 200K TUs
6417 share 8K stmt_list tables.
6418
6419 FUNC is expected to call get_type_unit_group, which will create the
6420 struct type_unit_group if necessary and add it to
6421 dwarf2_per_objfile->type_unit_groups. */
6422
6423 static void
6424 build_type_psymtabs_1 (void)
6425 {
6426 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6427 struct cleanup *cleanups;
6428 struct abbrev_table *abbrev_table;
6429 sect_offset abbrev_offset;
6430 struct tu_abbrev_offset *sorted_by_abbrev;
6431 int i;
6432
6433 /* It's up to the caller to not call us multiple times. */
6434 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6435
6436 if (dwarf2_per_objfile->n_type_units == 0)
6437 return;
6438
6439 /* TUs typically share abbrev tables, and there can be way more TUs than
6440 abbrev tables. Sort by abbrev table to reduce the number of times we
6441 read each abbrev table in.
6442 Alternatives are to punt or to maintain a cache of abbrev tables.
6443 This is simpler and efficient enough for now.
6444
6445 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6446 symtab to use). Typically TUs with the same abbrev offset have the same
6447 stmt_list value too so in practice this should work well.
6448
6449 The basic algorithm here is:
6450
6451 sort TUs by abbrev table
6452 for each TU with same abbrev table:
6453 read abbrev table if first user
6454 read TU top level DIE
6455 [IWBN if DWO skeletons had DW_AT_stmt_list]
6456 call FUNC */
6457
6458 if (dwarf_read_debug)
6459 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6460
6461 /* Sort in a separate table to maintain the order of all_type_units
6462 for .gdb_index: TU indices directly index all_type_units. */
6463 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6464 dwarf2_per_objfile->n_type_units);
6465 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6466 {
6467 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6468
6469 sorted_by_abbrev[i].sig_type = sig_type;
6470 sorted_by_abbrev[i].abbrev_offset =
6471 read_abbrev_offset (sig_type->per_cu.section,
6472 sig_type->per_cu.sect_off);
6473 }
6474 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6475 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6476 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6477
6478 abbrev_offset = (sect_offset) ~(unsigned) 0;
6479 abbrev_table = NULL;
6480 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6481
6482 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6483 {
6484 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6485
6486 /* Switch to the next abbrev table if necessary. */
6487 if (abbrev_table == NULL
6488 || tu->abbrev_offset != abbrev_offset)
6489 {
6490 if (abbrev_table != NULL)
6491 {
6492 abbrev_table_free (abbrev_table);
6493 /* Reset to NULL in case abbrev_table_read_table throws
6494 an error: abbrev_table_free_cleanup will get called. */
6495 abbrev_table = NULL;
6496 }
6497 abbrev_offset = tu->abbrev_offset;
6498 abbrev_table =
6499 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6500 abbrev_offset);
6501 ++tu_stats->nr_uniq_abbrev_tables;
6502 }
6503
6504 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6505 build_type_psymtabs_reader, NULL);
6506 }
6507
6508 do_cleanups (cleanups);
6509 }
6510
6511 /* Print collected type unit statistics. */
6512
6513 static void
6514 print_tu_stats (void)
6515 {
6516 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6517
6518 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6519 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6520 dwarf2_per_objfile->n_type_units);
6521 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6522 tu_stats->nr_uniq_abbrev_tables);
6523 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6524 tu_stats->nr_symtabs);
6525 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6526 tu_stats->nr_symtab_sharers);
6527 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6528 tu_stats->nr_stmt_less_type_units);
6529 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6530 tu_stats->nr_all_type_units_reallocs);
6531 }
6532
6533 /* Traversal function for build_type_psymtabs. */
6534
6535 static int
6536 build_type_psymtab_dependencies (void **slot, void *info)
6537 {
6538 struct objfile *objfile = dwarf2_per_objfile->objfile;
6539 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6540 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6541 struct partial_symtab *pst = per_cu->v.psymtab;
6542 int len = VEC_length (sig_type_ptr, tu_group->tus);
6543 struct signatured_type *iter;
6544 int i;
6545
6546 gdb_assert (len > 0);
6547 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6548
6549 pst->number_of_dependencies = len;
6550 pst->dependencies =
6551 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6552 for (i = 0;
6553 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6554 ++i)
6555 {
6556 gdb_assert (iter->per_cu.is_debug_types);
6557 pst->dependencies[i] = iter->per_cu.v.psymtab;
6558 iter->type_unit_group = tu_group;
6559 }
6560
6561 VEC_free (sig_type_ptr, tu_group->tus);
6562
6563 return 1;
6564 }
6565
6566 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6567 Build partial symbol tables for the .debug_types comp-units. */
6568
6569 static void
6570 build_type_psymtabs (struct objfile *objfile)
6571 {
6572 if (! create_all_type_units (objfile))
6573 return;
6574
6575 build_type_psymtabs_1 ();
6576 }
6577
6578 /* Traversal function for process_skeletonless_type_unit.
6579 Read a TU in a DWO file and build partial symbols for it. */
6580
6581 static int
6582 process_skeletonless_type_unit (void **slot, void *info)
6583 {
6584 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6585 struct objfile *objfile = (struct objfile *) info;
6586 struct signatured_type find_entry, *entry;
6587
6588 /* If this TU doesn't exist in the global table, add it and read it in. */
6589
6590 if (dwarf2_per_objfile->signatured_types == NULL)
6591 {
6592 dwarf2_per_objfile->signatured_types
6593 = allocate_signatured_type_table (objfile);
6594 }
6595
6596 find_entry.signature = dwo_unit->signature;
6597 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6598 INSERT);
6599 /* If we've already seen this type there's nothing to do. What's happening
6600 is we're doing our own version of comdat-folding here. */
6601 if (*slot != NULL)
6602 return 1;
6603
6604 /* This does the job that create_all_type_units would have done for
6605 this TU. */
6606 entry = add_type_unit (dwo_unit->signature, slot);
6607 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6608 *slot = entry;
6609
6610 /* This does the job that build_type_psymtabs_1 would have done. */
6611 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6612 build_type_psymtabs_reader, NULL);
6613
6614 return 1;
6615 }
6616
6617 /* Traversal function for process_skeletonless_type_units. */
6618
6619 static int
6620 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6621 {
6622 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6623
6624 if (dwo_file->tus != NULL)
6625 {
6626 htab_traverse_noresize (dwo_file->tus,
6627 process_skeletonless_type_unit, info);
6628 }
6629
6630 return 1;
6631 }
6632
6633 /* Scan all TUs of DWO files, verifying we've processed them.
6634 This is needed in case a TU was emitted without its skeleton.
6635 Note: This can't be done until we know what all the DWO files are. */
6636
6637 static void
6638 process_skeletonless_type_units (struct objfile *objfile)
6639 {
6640 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6641 if (get_dwp_file () == NULL
6642 && dwarf2_per_objfile->dwo_files != NULL)
6643 {
6644 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6645 process_dwo_file_for_skeletonless_type_units,
6646 objfile);
6647 }
6648 }
6649
6650 /* Compute the 'user' field for each psymtab in OBJFILE. */
6651
6652 static void
6653 set_partial_user (struct objfile *objfile)
6654 {
6655 int i;
6656
6657 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6658 {
6659 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6660 struct partial_symtab *pst = per_cu->v.psymtab;
6661 int j;
6662
6663 if (pst == NULL)
6664 continue;
6665
6666 for (j = 0; j < pst->number_of_dependencies; ++j)
6667 {
6668 /* Set the 'user' field only if it is not already set. */
6669 if (pst->dependencies[j]->user == NULL)
6670 pst->dependencies[j]->user = pst;
6671 }
6672 }
6673 }
6674
6675 /* Build the partial symbol table by doing a quick pass through the
6676 .debug_info and .debug_abbrev sections. */
6677
6678 static void
6679 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6680 {
6681 struct cleanup *back_to;
6682 int i;
6683
6684 if (dwarf_read_debug)
6685 {
6686 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6687 objfile_name (objfile));
6688 }
6689
6690 dwarf2_per_objfile->reading_partial_symbols = 1;
6691
6692 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6693
6694 /* Any cached compilation units will be linked by the per-objfile
6695 read_in_chain. Make sure to free them when we're done. */
6696 back_to = make_cleanup (free_cached_comp_units, NULL);
6697
6698 build_type_psymtabs (objfile);
6699
6700 create_all_comp_units (objfile);
6701
6702 /* Create a temporary address map on a temporary obstack. We later
6703 copy this to the final obstack. */
6704 auto_obstack temp_obstack;
6705
6706 scoped_restore save_psymtabs_addrmap
6707 = make_scoped_restore (&objfile->psymtabs_addrmap,
6708 addrmap_create_mutable (&temp_obstack));
6709
6710 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6711 {
6712 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6713
6714 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6715 }
6716
6717 /* This has to wait until we read the CUs, we need the list of DWOs. */
6718 process_skeletonless_type_units (objfile);
6719
6720 /* Now that all TUs have been processed we can fill in the dependencies. */
6721 if (dwarf2_per_objfile->type_unit_groups != NULL)
6722 {
6723 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6724 build_type_psymtab_dependencies, NULL);
6725 }
6726
6727 if (dwarf_read_debug)
6728 print_tu_stats ();
6729
6730 set_partial_user (objfile);
6731
6732 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6733 &objfile->objfile_obstack);
6734 /* At this point we want to keep the address map. */
6735 save_psymtabs_addrmap.release ();
6736
6737 do_cleanups (back_to);
6738
6739 if (dwarf_read_debug)
6740 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6741 objfile_name (objfile));
6742 }
6743
6744 /* die_reader_func for load_partial_comp_unit. */
6745
6746 static void
6747 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6748 const gdb_byte *info_ptr,
6749 struct die_info *comp_unit_die,
6750 int has_children,
6751 void *data)
6752 {
6753 struct dwarf2_cu *cu = reader->cu;
6754
6755 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6756
6757 /* Check if comp unit has_children.
6758 If so, read the rest of the partial symbols from this comp unit.
6759 If not, there's no more debug_info for this comp unit. */
6760 if (has_children)
6761 load_partial_dies (reader, info_ptr, 0);
6762 }
6763
6764 /* Load the partial DIEs for a secondary CU into memory.
6765 This is also used when rereading a primary CU with load_all_dies. */
6766
6767 static void
6768 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6769 {
6770 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6771 load_partial_comp_unit_reader, NULL);
6772 }
6773
6774 static void
6775 read_comp_units_from_section (struct objfile *objfile,
6776 struct dwarf2_section_info *section,
6777 struct dwarf2_section_info *abbrev_section,
6778 unsigned int is_dwz,
6779 int *n_allocated,
6780 int *n_comp_units,
6781 struct dwarf2_per_cu_data ***all_comp_units)
6782 {
6783 const gdb_byte *info_ptr;
6784 bfd *abfd = get_section_bfd_owner (section);
6785
6786 if (dwarf_read_debug)
6787 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6788 get_section_name (section),
6789 get_section_file_name (section));
6790
6791 dwarf2_read_section (objfile, section);
6792
6793 info_ptr = section->buffer;
6794
6795 while (info_ptr < section->buffer + section->size)
6796 {
6797 struct dwarf2_per_cu_data *this_cu;
6798
6799 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6800
6801 comp_unit_head cu_header;
6802 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6803 info_ptr, rcuh_kind::COMPILE);
6804
6805 /* Save the compilation unit for later lookup. */
6806 if (cu_header.unit_type != DW_UT_type)
6807 {
6808 this_cu = XOBNEW (&objfile->objfile_obstack,
6809 struct dwarf2_per_cu_data);
6810 memset (this_cu, 0, sizeof (*this_cu));
6811 }
6812 else
6813 {
6814 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6815 struct signatured_type);
6816 memset (sig_type, 0, sizeof (*sig_type));
6817 sig_type->signature = cu_header.signature;
6818 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6819 this_cu = &sig_type->per_cu;
6820 }
6821 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
6822 this_cu->sect_off = sect_off;
6823 this_cu->length = cu_header.length + cu_header.initial_length_size;
6824 this_cu->is_dwz = is_dwz;
6825 this_cu->objfile = objfile;
6826 this_cu->section = section;
6827
6828 if (*n_comp_units == *n_allocated)
6829 {
6830 *n_allocated *= 2;
6831 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6832 *all_comp_units, *n_allocated);
6833 }
6834 (*all_comp_units)[*n_comp_units] = this_cu;
6835 ++*n_comp_units;
6836
6837 info_ptr = info_ptr + this_cu->length;
6838 }
6839 }
6840
6841 /* Create a list of all compilation units in OBJFILE.
6842 This is only done for -readnow and building partial symtabs. */
6843
6844 static void
6845 create_all_comp_units (struct objfile *objfile)
6846 {
6847 int n_allocated;
6848 int n_comp_units;
6849 struct dwarf2_per_cu_data **all_comp_units;
6850 struct dwz_file *dwz;
6851
6852 n_comp_units = 0;
6853 n_allocated = 10;
6854 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6855
6856 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6857 &dwarf2_per_objfile->abbrev, 0,
6858 &n_allocated, &n_comp_units, &all_comp_units);
6859
6860 dwz = dwarf2_get_dwz_file ();
6861 if (dwz != NULL)
6862 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
6863 &n_allocated, &n_comp_units,
6864 &all_comp_units);
6865
6866 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6867 struct dwarf2_per_cu_data *,
6868 n_comp_units);
6869 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6870 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6871 xfree (all_comp_units);
6872 dwarf2_per_objfile->n_comp_units = n_comp_units;
6873 }
6874
6875 /* Process all loaded DIEs for compilation unit CU, starting at
6876 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6877 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6878 DW_AT_ranges). See the comments of add_partial_subprogram on how
6879 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6880
6881 static void
6882 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6883 CORE_ADDR *highpc, int set_addrmap,
6884 struct dwarf2_cu *cu)
6885 {
6886 struct partial_die_info *pdi;
6887
6888 /* Now, march along the PDI's, descending into ones which have
6889 interesting children but skipping the children of the other ones,
6890 until we reach the end of the compilation unit. */
6891
6892 pdi = first_die;
6893
6894 while (pdi != NULL)
6895 {
6896 fixup_partial_die (pdi, cu);
6897
6898 /* Anonymous namespaces or modules have no name but have interesting
6899 children, so we need to look at them. Ditto for anonymous
6900 enums. */
6901
6902 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6903 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6904 || pdi->tag == DW_TAG_imported_unit)
6905 {
6906 switch (pdi->tag)
6907 {
6908 case DW_TAG_subprogram:
6909 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6910 break;
6911 case DW_TAG_constant:
6912 case DW_TAG_variable:
6913 case DW_TAG_typedef:
6914 case DW_TAG_union_type:
6915 if (!pdi->is_declaration)
6916 {
6917 add_partial_symbol (pdi, cu);
6918 }
6919 break;
6920 case DW_TAG_class_type:
6921 case DW_TAG_interface_type:
6922 case DW_TAG_structure_type:
6923 if (!pdi->is_declaration)
6924 {
6925 add_partial_symbol (pdi, cu);
6926 }
6927 if (cu->language == language_rust && pdi->has_children)
6928 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6929 set_addrmap, cu);
6930 break;
6931 case DW_TAG_enumeration_type:
6932 if (!pdi->is_declaration)
6933 add_partial_enumeration (pdi, cu);
6934 break;
6935 case DW_TAG_base_type:
6936 case DW_TAG_subrange_type:
6937 /* File scope base type definitions are added to the partial
6938 symbol table. */
6939 add_partial_symbol (pdi, cu);
6940 break;
6941 case DW_TAG_namespace:
6942 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6943 break;
6944 case DW_TAG_module:
6945 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6946 break;
6947 case DW_TAG_imported_unit:
6948 {
6949 struct dwarf2_per_cu_data *per_cu;
6950
6951 /* For now we don't handle imported units in type units. */
6952 if (cu->per_cu->is_debug_types)
6953 {
6954 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6955 " supported in type units [in module %s]"),
6956 objfile_name (cu->objfile));
6957 }
6958
6959 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6960 pdi->is_dwz,
6961 cu->objfile);
6962
6963 /* Go read the partial unit, if needed. */
6964 if (per_cu->v.psymtab == NULL)
6965 process_psymtab_comp_unit (per_cu, 1, cu->language);
6966
6967 VEC_safe_push (dwarf2_per_cu_ptr,
6968 cu->per_cu->imported_symtabs, per_cu);
6969 }
6970 break;
6971 case DW_TAG_imported_declaration:
6972 add_partial_symbol (pdi, cu);
6973 break;
6974 default:
6975 break;
6976 }
6977 }
6978
6979 /* If the die has a sibling, skip to the sibling. */
6980
6981 pdi = pdi->die_sibling;
6982 }
6983 }
6984
6985 /* Functions used to compute the fully scoped name of a partial DIE.
6986
6987 Normally, this is simple. For C++, the parent DIE's fully scoped
6988 name is concatenated with "::" and the partial DIE's name.
6989 Enumerators are an exception; they use the scope of their parent
6990 enumeration type, i.e. the name of the enumeration type is not
6991 prepended to the enumerator.
6992
6993 There are two complexities. One is DW_AT_specification; in this
6994 case "parent" means the parent of the target of the specification,
6995 instead of the direct parent of the DIE. The other is compilers
6996 which do not emit DW_TAG_namespace; in this case we try to guess
6997 the fully qualified name of structure types from their members'
6998 linkage names. This must be done using the DIE's children rather
6999 than the children of any DW_AT_specification target. We only need
7000 to do this for structures at the top level, i.e. if the target of
7001 any DW_AT_specification (if any; otherwise the DIE itself) does not
7002 have a parent. */
7003
7004 /* Compute the scope prefix associated with PDI's parent, in
7005 compilation unit CU. The result will be allocated on CU's
7006 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7007 field. NULL is returned if no prefix is necessary. */
7008 static const char *
7009 partial_die_parent_scope (struct partial_die_info *pdi,
7010 struct dwarf2_cu *cu)
7011 {
7012 const char *grandparent_scope;
7013 struct partial_die_info *parent, *real_pdi;
7014
7015 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7016 then this means the parent of the specification DIE. */
7017
7018 real_pdi = pdi;
7019 while (real_pdi->has_specification)
7020 real_pdi = find_partial_die (real_pdi->spec_offset,
7021 real_pdi->spec_is_dwz, cu);
7022
7023 parent = real_pdi->die_parent;
7024 if (parent == NULL)
7025 return NULL;
7026
7027 if (parent->scope_set)
7028 return parent->scope;
7029
7030 fixup_partial_die (parent, cu);
7031
7032 grandparent_scope = partial_die_parent_scope (parent, cu);
7033
7034 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7035 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7036 Work around this problem here. */
7037 if (cu->language == language_cplus
7038 && parent->tag == DW_TAG_namespace
7039 && strcmp (parent->name, "::") == 0
7040 && grandparent_scope == NULL)
7041 {
7042 parent->scope = NULL;
7043 parent->scope_set = 1;
7044 return NULL;
7045 }
7046
7047 if (pdi->tag == DW_TAG_enumerator)
7048 /* Enumerators should not get the name of the enumeration as a prefix. */
7049 parent->scope = grandparent_scope;
7050 else if (parent->tag == DW_TAG_namespace
7051 || parent->tag == DW_TAG_module
7052 || parent->tag == DW_TAG_structure_type
7053 || parent->tag == DW_TAG_class_type
7054 || parent->tag == DW_TAG_interface_type
7055 || parent->tag == DW_TAG_union_type
7056 || parent->tag == DW_TAG_enumeration_type)
7057 {
7058 if (grandparent_scope == NULL)
7059 parent->scope = parent->name;
7060 else
7061 parent->scope = typename_concat (&cu->comp_unit_obstack,
7062 grandparent_scope,
7063 parent->name, 0, cu);
7064 }
7065 else
7066 {
7067 /* FIXME drow/2004-04-01: What should we be doing with
7068 function-local names? For partial symbols, we should probably be
7069 ignoring them. */
7070 complaint (&symfile_complaints,
7071 _("unhandled containing DIE tag %d for DIE at %d"),
7072 parent->tag, to_underlying (pdi->sect_off));
7073 parent->scope = grandparent_scope;
7074 }
7075
7076 parent->scope_set = 1;
7077 return parent->scope;
7078 }
7079
7080 /* Return the fully scoped name associated with PDI, from compilation unit
7081 CU. The result will be allocated with malloc. */
7082
7083 static char *
7084 partial_die_full_name (struct partial_die_info *pdi,
7085 struct dwarf2_cu *cu)
7086 {
7087 const char *parent_scope;
7088
7089 /* If this is a template instantiation, we can not work out the
7090 template arguments from partial DIEs. So, unfortunately, we have
7091 to go through the full DIEs. At least any work we do building
7092 types here will be reused if full symbols are loaded later. */
7093 if (pdi->has_template_arguments)
7094 {
7095 fixup_partial_die (pdi, cu);
7096
7097 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7098 {
7099 struct die_info *die;
7100 struct attribute attr;
7101 struct dwarf2_cu *ref_cu = cu;
7102
7103 /* DW_FORM_ref_addr is using section offset. */
7104 attr.name = (enum dwarf_attribute) 0;
7105 attr.form = DW_FORM_ref_addr;
7106 attr.u.unsnd = to_underlying (pdi->sect_off);
7107 die = follow_die_ref (NULL, &attr, &ref_cu);
7108
7109 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7110 }
7111 }
7112
7113 parent_scope = partial_die_parent_scope (pdi, cu);
7114 if (parent_scope == NULL)
7115 return NULL;
7116 else
7117 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7118 }
7119
7120 static void
7121 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7122 {
7123 struct objfile *objfile = cu->objfile;
7124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7125 CORE_ADDR addr = 0;
7126 const char *actual_name = NULL;
7127 CORE_ADDR baseaddr;
7128 char *built_actual_name;
7129
7130 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7131
7132 built_actual_name = partial_die_full_name (pdi, cu);
7133 if (built_actual_name != NULL)
7134 actual_name = built_actual_name;
7135
7136 if (actual_name == NULL)
7137 actual_name = pdi->name;
7138
7139 switch (pdi->tag)
7140 {
7141 case DW_TAG_subprogram:
7142 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7143 if (pdi->is_external || cu->language == language_ada)
7144 {
7145 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7146 of the global scope. But in Ada, we want to be able to access
7147 nested procedures globally. So all Ada subprograms are stored
7148 in the global scope. */
7149 add_psymbol_to_list (actual_name, strlen (actual_name),
7150 built_actual_name != NULL,
7151 VAR_DOMAIN, LOC_BLOCK,
7152 &objfile->global_psymbols,
7153 addr, cu->language, objfile);
7154 }
7155 else
7156 {
7157 add_psymbol_to_list (actual_name, strlen (actual_name),
7158 built_actual_name != NULL,
7159 VAR_DOMAIN, LOC_BLOCK,
7160 &objfile->static_psymbols,
7161 addr, cu->language, objfile);
7162 }
7163
7164 if (pdi->main_subprogram && actual_name != NULL)
7165 set_objfile_main_name (objfile, actual_name, cu->language);
7166 break;
7167 case DW_TAG_constant:
7168 {
7169 struct psymbol_allocation_list *list;
7170
7171 if (pdi->is_external)
7172 list = &objfile->global_psymbols;
7173 else
7174 list = &objfile->static_psymbols;
7175 add_psymbol_to_list (actual_name, strlen (actual_name),
7176 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7177 list, 0, cu->language, objfile);
7178 }
7179 break;
7180 case DW_TAG_variable:
7181 if (pdi->d.locdesc)
7182 addr = decode_locdesc (pdi->d.locdesc, cu);
7183
7184 if (pdi->d.locdesc
7185 && addr == 0
7186 && !dwarf2_per_objfile->has_section_at_zero)
7187 {
7188 /* A global or static variable may also have been stripped
7189 out by the linker if unused, in which case its address
7190 will be nullified; do not add such variables into partial
7191 symbol table then. */
7192 }
7193 else if (pdi->is_external)
7194 {
7195 /* Global Variable.
7196 Don't enter into the minimal symbol tables as there is
7197 a minimal symbol table entry from the ELF symbols already.
7198 Enter into partial symbol table if it has a location
7199 descriptor or a type.
7200 If the location descriptor is missing, new_symbol will create
7201 a LOC_UNRESOLVED symbol, the address of the variable will then
7202 be determined from the minimal symbol table whenever the variable
7203 is referenced.
7204 The address for the partial symbol table entry is not
7205 used by GDB, but it comes in handy for debugging partial symbol
7206 table building. */
7207
7208 if (pdi->d.locdesc || pdi->has_type)
7209 add_psymbol_to_list (actual_name, strlen (actual_name),
7210 built_actual_name != NULL,
7211 VAR_DOMAIN, LOC_STATIC,
7212 &objfile->global_psymbols,
7213 addr + baseaddr,
7214 cu->language, objfile);
7215 }
7216 else
7217 {
7218 int has_loc = pdi->d.locdesc != NULL;
7219
7220 /* Static Variable. Skip symbols whose value we cannot know (those
7221 without location descriptors or constant values). */
7222 if (!has_loc && !pdi->has_const_value)
7223 {
7224 xfree (built_actual_name);
7225 return;
7226 }
7227
7228 add_psymbol_to_list (actual_name, strlen (actual_name),
7229 built_actual_name != NULL,
7230 VAR_DOMAIN, LOC_STATIC,
7231 &objfile->static_psymbols,
7232 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7233 cu->language, objfile);
7234 }
7235 break;
7236 case DW_TAG_typedef:
7237 case DW_TAG_base_type:
7238 case DW_TAG_subrange_type:
7239 add_psymbol_to_list (actual_name, strlen (actual_name),
7240 built_actual_name != NULL,
7241 VAR_DOMAIN, LOC_TYPEDEF,
7242 &objfile->static_psymbols,
7243 0, cu->language, objfile);
7244 break;
7245 case DW_TAG_imported_declaration:
7246 case DW_TAG_namespace:
7247 add_psymbol_to_list (actual_name, strlen (actual_name),
7248 built_actual_name != NULL,
7249 VAR_DOMAIN, LOC_TYPEDEF,
7250 &objfile->global_psymbols,
7251 0, cu->language, objfile);
7252 break;
7253 case DW_TAG_module:
7254 add_psymbol_to_list (actual_name, strlen (actual_name),
7255 built_actual_name != NULL,
7256 MODULE_DOMAIN, LOC_TYPEDEF,
7257 &objfile->global_psymbols,
7258 0, cu->language, objfile);
7259 break;
7260 case DW_TAG_class_type:
7261 case DW_TAG_interface_type:
7262 case DW_TAG_structure_type:
7263 case DW_TAG_union_type:
7264 case DW_TAG_enumeration_type:
7265 /* Skip external references. The DWARF standard says in the section
7266 about "Structure, Union, and Class Type Entries": "An incomplete
7267 structure, union or class type is represented by a structure,
7268 union or class entry that does not have a byte size attribute
7269 and that has a DW_AT_declaration attribute." */
7270 if (!pdi->has_byte_size && pdi->is_declaration)
7271 {
7272 xfree (built_actual_name);
7273 return;
7274 }
7275
7276 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7277 static vs. global. */
7278 add_psymbol_to_list (actual_name, strlen (actual_name),
7279 built_actual_name != NULL,
7280 STRUCT_DOMAIN, LOC_TYPEDEF,
7281 cu->language == language_cplus
7282 ? &objfile->global_psymbols
7283 : &objfile->static_psymbols,
7284 0, cu->language, objfile);
7285
7286 break;
7287 case DW_TAG_enumerator:
7288 add_psymbol_to_list (actual_name, strlen (actual_name),
7289 built_actual_name != NULL,
7290 VAR_DOMAIN, LOC_CONST,
7291 cu->language == language_cplus
7292 ? &objfile->global_psymbols
7293 : &objfile->static_psymbols,
7294 0, cu->language, objfile);
7295 break;
7296 default:
7297 break;
7298 }
7299
7300 xfree (built_actual_name);
7301 }
7302
7303 /* Read a partial die corresponding to a namespace; also, add a symbol
7304 corresponding to that namespace to the symbol table. NAMESPACE is
7305 the name of the enclosing namespace. */
7306
7307 static void
7308 add_partial_namespace (struct partial_die_info *pdi,
7309 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7310 int set_addrmap, struct dwarf2_cu *cu)
7311 {
7312 /* Add a symbol for the namespace. */
7313
7314 add_partial_symbol (pdi, cu);
7315
7316 /* Now scan partial symbols in that namespace. */
7317
7318 if (pdi->has_children)
7319 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7320 }
7321
7322 /* Read a partial die corresponding to a Fortran module. */
7323
7324 static void
7325 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7326 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7327 {
7328 /* Add a symbol for the namespace. */
7329
7330 add_partial_symbol (pdi, cu);
7331
7332 /* Now scan partial symbols in that module. */
7333
7334 if (pdi->has_children)
7335 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7336 }
7337
7338 /* Read a partial die corresponding to a subprogram and create a partial
7339 symbol for that subprogram. When the CU language allows it, this
7340 routine also defines a partial symbol for each nested subprogram
7341 that this subprogram contains. If SET_ADDRMAP is true, record the
7342 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7343 and highest PC values found in PDI.
7344
7345 PDI may also be a lexical block, in which case we simply search
7346 recursively for subprograms defined inside that lexical block.
7347 Again, this is only performed when the CU language allows this
7348 type of definitions. */
7349
7350 static void
7351 add_partial_subprogram (struct partial_die_info *pdi,
7352 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7353 int set_addrmap, struct dwarf2_cu *cu)
7354 {
7355 if (pdi->tag == DW_TAG_subprogram)
7356 {
7357 if (pdi->has_pc_info)
7358 {
7359 if (pdi->lowpc < *lowpc)
7360 *lowpc = pdi->lowpc;
7361 if (pdi->highpc > *highpc)
7362 *highpc = pdi->highpc;
7363 if (set_addrmap)
7364 {
7365 struct objfile *objfile = cu->objfile;
7366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7367 CORE_ADDR baseaddr;
7368 CORE_ADDR highpc;
7369 CORE_ADDR lowpc;
7370
7371 baseaddr = ANOFFSET (objfile->section_offsets,
7372 SECT_OFF_TEXT (objfile));
7373 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7374 pdi->lowpc + baseaddr);
7375 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7376 pdi->highpc + baseaddr);
7377 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7378 cu->per_cu->v.psymtab);
7379 }
7380 }
7381
7382 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7383 {
7384 if (!pdi->is_declaration)
7385 /* Ignore subprogram DIEs that do not have a name, they are
7386 illegal. Do not emit a complaint at this point, we will
7387 do so when we convert this psymtab into a symtab. */
7388 if (pdi->name)
7389 add_partial_symbol (pdi, cu);
7390 }
7391 }
7392
7393 if (! pdi->has_children)
7394 return;
7395
7396 if (cu->language == language_ada)
7397 {
7398 pdi = pdi->die_child;
7399 while (pdi != NULL)
7400 {
7401 fixup_partial_die (pdi, cu);
7402 if (pdi->tag == DW_TAG_subprogram
7403 || pdi->tag == DW_TAG_lexical_block)
7404 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7405 pdi = pdi->die_sibling;
7406 }
7407 }
7408 }
7409
7410 /* Read a partial die corresponding to an enumeration type. */
7411
7412 static void
7413 add_partial_enumeration (struct partial_die_info *enum_pdi,
7414 struct dwarf2_cu *cu)
7415 {
7416 struct partial_die_info *pdi;
7417
7418 if (enum_pdi->name != NULL)
7419 add_partial_symbol (enum_pdi, cu);
7420
7421 pdi = enum_pdi->die_child;
7422 while (pdi)
7423 {
7424 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7425 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7426 else
7427 add_partial_symbol (pdi, cu);
7428 pdi = pdi->die_sibling;
7429 }
7430 }
7431
7432 /* Return the initial uleb128 in the die at INFO_PTR. */
7433
7434 static unsigned int
7435 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7436 {
7437 unsigned int bytes_read;
7438
7439 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7440 }
7441
7442 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7443 Return the corresponding abbrev, or NULL if the number is zero (indicating
7444 an empty DIE). In either case *BYTES_READ will be set to the length of
7445 the initial number. */
7446
7447 static struct abbrev_info *
7448 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7449 struct dwarf2_cu *cu)
7450 {
7451 bfd *abfd = cu->objfile->obfd;
7452 unsigned int abbrev_number;
7453 struct abbrev_info *abbrev;
7454
7455 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7456
7457 if (abbrev_number == 0)
7458 return NULL;
7459
7460 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7461 if (!abbrev)
7462 {
7463 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7464 " at offset 0x%x [in module %s]"),
7465 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7466 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7467 }
7468
7469 return abbrev;
7470 }
7471
7472 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7473 Returns a pointer to the end of a series of DIEs, terminated by an empty
7474 DIE. Any children of the skipped DIEs will also be skipped. */
7475
7476 static const gdb_byte *
7477 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7478 {
7479 struct dwarf2_cu *cu = reader->cu;
7480 struct abbrev_info *abbrev;
7481 unsigned int bytes_read;
7482
7483 while (1)
7484 {
7485 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7486 if (abbrev == NULL)
7487 return info_ptr + bytes_read;
7488 else
7489 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7490 }
7491 }
7492
7493 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7494 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7495 abbrev corresponding to that skipped uleb128 should be passed in
7496 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7497 children. */
7498
7499 static const gdb_byte *
7500 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7501 struct abbrev_info *abbrev)
7502 {
7503 unsigned int bytes_read;
7504 struct attribute attr;
7505 bfd *abfd = reader->abfd;
7506 struct dwarf2_cu *cu = reader->cu;
7507 const gdb_byte *buffer = reader->buffer;
7508 const gdb_byte *buffer_end = reader->buffer_end;
7509 unsigned int form, i;
7510
7511 for (i = 0; i < abbrev->num_attrs; i++)
7512 {
7513 /* The only abbrev we care about is DW_AT_sibling. */
7514 if (abbrev->attrs[i].name == DW_AT_sibling)
7515 {
7516 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7517 if (attr.form == DW_FORM_ref_addr)
7518 complaint (&symfile_complaints,
7519 _("ignoring absolute DW_AT_sibling"));
7520 else
7521 {
7522 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7523 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7524
7525 if (sibling_ptr < info_ptr)
7526 complaint (&symfile_complaints,
7527 _("DW_AT_sibling points backwards"));
7528 else if (sibling_ptr > reader->buffer_end)
7529 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7530 else
7531 return sibling_ptr;
7532 }
7533 }
7534
7535 /* If it isn't DW_AT_sibling, skip this attribute. */
7536 form = abbrev->attrs[i].form;
7537 skip_attribute:
7538 switch (form)
7539 {
7540 case DW_FORM_ref_addr:
7541 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7542 and later it is offset sized. */
7543 if (cu->header.version == 2)
7544 info_ptr += cu->header.addr_size;
7545 else
7546 info_ptr += cu->header.offset_size;
7547 break;
7548 case DW_FORM_GNU_ref_alt:
7549 info_ptr += cu->header.offset_size;
7550 break;
7551 case DW_FORM_addr:
7552 info_ptr += cu->header.addr_size;
7553 break;
7554 case DW_FORM_data1:
7555 case DW_FORM_ref1:
7556 case DW_FORM_flag:
7557 info_ptr += 1;
7558 break;
7559 case DW_FORM_flag_present:
7560 case DW_FORM_implicit_const:
7561 break;
7562 case DW_FORM_data2:
7563 case DW_FORM_ref2:
7564 info_ptr += 2;
7565 break;
7566 case DW_FORM_data4:
7567 case DW_FORM_ref4:
7568 info_ptr += 4;
7569 break;
7570 case DW_FORM_data8:
7571 case DW_FORM_ref8:
7572 case DW_FORM_ref_sig8:
7573 info_ptr += 8;
7574 break;
7575 case DW_FORM_data16:
7576 info_ptr += 16;
7577 break;
7578 case DW_FORM_string:
7579 read_direct_string (abfd, info_ptr, &bytes_read);
7580 info_ptr += bytes_read;
7581 break;
7582 case DW_FORM_sec_offset:
7583 case DW_FORM_strp:
7584 case DW_FORM_GNU_strp_alt:
7585 info_ptr += cu->header.offset_size;
7586 break;
7587 case DW_FORM_exprloc:
7588 case DW_FORM_block:
7589 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7590 info_ptr += bytes_read;
7591 break;
7592 case DW_FORM_block1:
7593 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7594 break;
7595 case DW_FORM_block2:
7596 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7597 break;
7598 case DW_FORM_block4:
7599 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7600 break;
7601 case DW_FORM_sdata:
7602 case DW_FORM_udata:
7603 case DW_FORM_ref_udata:
7604 case DW_FORM_GNU_addr_index:
7605 case DW_FORM_GNU_str_index:
7606 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7607 break;
7608 case DW_FORM_indirect:
7609 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7610 info_ptr += bytes_read;
7611 /* We need to continue parsing from here, so just go back to
7612 the top. */
7613 goto skip_attribute;
7614
7615 default:
7616 error (_("Dwarf Error: Cannot handle %s "
7617 "in DWARF reader [in module %s]"),
7618 dwarf_form_name (form),
7619 bfd_get_filename (abfd));
7620 }
7621 }
7622
7623 if (abbrev->has_children)
7624 return skip_children (reader, info_ptr);
7625 else
7626 return info_ptr;
7627 }
7628
7629 /* Locate ORIG_PDI's sibling.
7630 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7631
7632 static const gdb_byte *
7633 locate_pdi_sibling (const struct die_reader_specs *reader,
7634 struct partial_die_info *orig_pdi,
7635 const gdb_byte *info_ptr)
7636 {
7637 /* Do we know the sibling already? */
7638
7639 if (orig_pdi->sibling)
7640 return orig_pdi->sibling;
7641
7642 /* Are there any children to deal with? */
7643
7644 if (!orig_pdi->has_children)
7645 return info_ptr;
7646
7647 /* Skip the children the long way. */
7648
7649 return skip_children (reader, info_ptr);
7650 }
7651
7652 /* Expand this partial symbol table into a full symbol table. SELF is
7653 not NULL. */
7654
7655 static void
7656 dwarf2_read_symtab (struct partial_symtab *self,
7657 struct objfile *objfile)
7658 {
7659 if (self->readin)
7660 {
7661 warning (_("bug: psymtab for %s is already read in."),
7662 self->filename);
7663 }
7664 else
7665 {
7666 if (info_verbose)
7667 {
7668 printf_filtered (_("Reading in symbols for %s..."),
7669 self->filename);
7670 gdb_flush (gdb_stdout);
7671 }
7672
7673 /* Restore our global data. */
7674 dwarf2_per_objfile
7675 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7676 dwarf2_objfile_data_key);
7677
7678 /* If this psymtab is constructed from a debug-only objfile, the
7679 has_section_at_zero flag will not necessarily be correct. We
7680 can get the correct value for this flag by looking at the data
7681 associated with the (presumably stripped) associated objfile. */
7682 if (objfile->separate_debug_objfile_backlink)
7683 {
7684 struct dwarf2_per_objfile *dpo_backlink
7685 = ((struct dwarf2_per_objfile *)
7686 objfile_data (objfile->separate_debug_objfile_backlink,
7687 dwarf2_objfile_data_key));
7688
7689 dwarf2_per_objfile->has_section_at_zero
7690 = dpo_backlink->has_section_at_zero;
7691 }
7692
7693 dwarf2_per_objfile->reading_partial_symbols = 0;
7694
7695 psymtab_to_symtab_1 (self);
7696
7697 /* Finish up the debug error message. */
7698 if (info_verbose)
7699 printf_filtered (_("done.\n"));
7700 }
7701
7702 process_cu_includes ();
7703 }
7704 \f
7705 /* Reading in full CUs. */
7706
7707 /* Add PER_CU to the queue. */
7708
7709 static void
7710 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7711 enum language pretend_language)
7712 {
7713 struct dwarf2_queue_item *item;
7714
7715 per_cu->queued = 1;
7716 item = XNEW (struct dwarf2_queue_item);
7717 item->per_cu = per_cu;
7718 item->pretend_language = pretend_language;
7719 item->next = NULL;
7720
7721 if (dwarf2_queue == NULL)
7722 dwarf2_queue = item;
7723 else
7724 dwarf2_queue_tail->next = item;
7725
7726 dwarf2_queue_tail = item;
7727 }
7728
7729 /* If PER_CU is not yet queued, add it to the queue.
7730 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7731 dependency.
7732 The result is non-zero if PER_CU was queued, otherwise the result is zero
7733 meaning either PER_CU is already queued or it is already loaded.
7734
7735 N.B. There is an invariant here that if a CU is queued then it is loaded.
7736 The caller is required to load PER_CU if we return non-zero. */
7737
7738 static int
7739 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7740 struct dwarf2_per_cu_data *per_cu,
7741 enum language pretend_language)
7742 {
7743 /* We may arrive here during partial symbol reading, if we need full
7744 DIEs to process an unusual case (e.g. template arguments). Do
7745 not queue PER_CU, just tell our caller to load its DIEs. */
7746 if (dwarf2_per_objfile->reading_partial_symbols)
7747 {
7748 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7749 return 1;
7750 return 0;
7751 }
7752
7753 /* Mark the dependence relation so that we don't flush PER_CU
7754 too early. */
7755 if (dependent_cu != NULL)
7756 dwarf2_add_dependence (dependent_cu, per_cu);
7757
7758 /* If it's already on the queue, we have nothing to do. */
7759 if (per_cu->queued)
7760 return 0;
7761
7762 /* If the compilation unit is already loaded, just mark it as
7763 used. */
7764 if (per_cu->cu != NULL)
7765 {
7766 per_cu->cu->last_used = 0;
7767 return 0;
7768 }
7769
7770 /* Add it to the queue. */
7771 queue_comp_unit (per_cu, pretend_language);
7772
7773 return 1;
7774 }
7775
7776 /* Process the queue. */
7777
7778 static void
7779 process_queue (void)
7780 {
7781 struct dwarf2_queue_item *item, *next_item;
7782
7783 if (dwarf_read_debug)
7784 {
7785 fprintf_unfiltered (gdb_stdlog,
7786 "Expanding one or more symtabs of objfile %s ...\n",
7787 objfile_name (dwarf2_per_objfile->objfile));
7788 }
7789
7790 /* The queue starts out with one item, but following a DIE reference
7791 may load a new CU, adding it to the end of the queue. */
7792 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7793 {
7794 if ((dwarf2_per_objfile->using_index
7795 ? !item->per_cu->v.quick->compunit_symtab
7796 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7797 /* Skip dummy CUs. */
7798 && item->per_cu->cu != NULL)
7799 {
7800 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7801 unsigned int debug_print_threshold;
7802 char buf[100];
7803
7804 if (per_cu->is_debug_types)
7805 {
7806 struct signatured_type *sig_type =
7807 (struct signatured_type *) per_cu;
7808
7809 sprintf (buf, "TU %s at offset 0x%x",
7810 hex_string (sig_type->signature),
7811 to_underlying (per_cu->sect_off));
7812 /* There can be 100s of TUs.
7813 Only print them in verbose mode. */
7814 debug_print_threshold = 2;
7815 }
7816 else
7817 {
7818 sprintf (buf, "CU at offset 0x%x",
7819 to_underlying (per_cu->sect_off));
7820 debug_print_threshold = 1;
7821 }
7822
7823 if (dwarf_read_debug >= debug_print_threshold)
7824 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7825
7826 if (per_cu->is_debug_types)
7827 process_full_type_unit (per_cu, item->pretend_language);
7828 else
7829 process_full_comp_unit (per_cu, item->pretend_language);
7830
7831 if (dwarf_read_debug >= debug_print_threshold)
7832 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7833 }
7834
7835 item->per_cu->queued = 0;
7836 next_item = item->next;
7837 xfree (item);
7838 }
7839
7840 dwarf2_queue_tail = NULL;
7841
7842 if (dwarf_read_debug)
7843 {
7844 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7845 objfile_name (dwarf2_per_objfile->objfile));
7846 }
7847 }
7848
7849 /* Free all allocated queue entries. This function only releases anything if
7850 an error was thrown; if the queue was processed then it would have been
7851 freed as we went along. */
7852
7853 static void
7854 dwarf2_release_queue (void *dummy)
7855 {
7856 struct dwarf2_queue_item *item, *last;
7857
7858 item = dwarf2_queue;
7859 while (item)
7860 {
7861 /* Anything still marked queued is likely to be in an
7862 inconsistent state, so discard it. */
7863 if (item->per_cu->queued)
7864 {
7865 if (item->per_cu->cu != NULL)
7866 free_one_cached_comp_unit (item->per_cu);
7867 item->per_cu->queued = 0;
7868 }
7869
7870 last = item;
7871 item = item->next;
7872 xfree (last);
7873 }
7874
7875 dwarf2_queue = dwarf2_queue_tail = NULL;
7876 }
7877
7878 /* Read in full symbols for PST, and anything it depends on. */
7879
7880 static void
7881 psymtab_to_symtab_1 (struct partial_symtab *pst)
7882 {
7883 struct dwarf2_per_cu_data *per_cu;
7884 int i;
7885
7886 if (pst->readin)
7887 return;
7888
7889 for (i = 0; i < pst->number_of_dependencies; i++)
7890 if (!pst->dependencies[i]->readin
7891 && pst->dependencies[i]->user == NULL)
7892 {
7893 /* Inform about additional files that need to be read in. */
7894 if (info_verbose)
7895 {
7896 /* FIXME: i18n: Need to make this a single string. */
7897 fputs_filtered (" ", gdb_stdout);
7898 wrap_here ("");
7899 fputs_filtered ("and ", gdb_stdout);
7900 wrap_here ("");
7901 printf_filtered ("%s...", pst->dependencies[i]->filename);
7902 wrap_here (""); /* Flush output. */
7903 gdb_flush (gdb_stdout);
7904 }
7905 psymtab_to_symtab_1 (pst->dependencies[i]);
7906 }
7907
7908 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7909
7910 if (per_cu == NULL)
7911 {
7912 /* It's an include file, no symbols to read for it.
7913 Everything is in the parent symtab. */
7914 pst->readin = 1;
7915 return;
7916 }
7917
7918 dw2_do_instantiate_symtab (per_cu);
7919 }
7920
7921 /* Trivial hash function for die_info: the hash value of a DIE
7922 is its offset in .debug_info for this objfile. */
7923
7924 static hashval_t
7925 die_hash (const void *item)
7926 {
7927 const struct die_info *die = (const struct die_info *) item;
7928
7929 return to_underlying (die->sect_off);
7930 }
7931
7932 /* Trivial comparison function for die_info structures: two DIEs
7933 are equal if they have the same offset. */
7934
7935 static int
7936 die_eq (const void *item_lhs, const void *item_rhs)
7937 {
7938 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7939 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7940
7941 return die_lhs->sect_off == die_rhs->sect_off;
7942 }
7943
7944 /* die_reader_func for load_full_comp_unit.
7945 This is identical to read_signatured_type_reader,
7946 but is kept separate for now. */
7947
7948 static void
7949 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7950 const gdb_byte *info_ptr,
7951 struct die_info *comp_unit_die,
7952 int has_children,
7953 void *data)
7954 {
7955 struct dwarf2_cu *cu = reader->cu;
7956 enum language *language_ptr = (enum language *) data;
7957
7958 gdb_assert (cu->die_hash == NULL);
7959 cu->die_hash =
7960 htab_create_alloc_ex (cu->header.length / 12,
7961 die_hash,
7962 die_eq,
7963 NULL,
7964 &cu->comp_unit_obstack,
7965 hashtab_obstack_allocate,
7966 dummy_obstack_deallocate);
7967
7968 if (has_children)
7969 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7970 &info_ptr, comp_unit_die);
7971 cu->dies = comp_unit_die;
7972 /* comp_unit_die is not stored in die_hash, no need. */
7973
7974 /* We try not to read any attributes in this function, because not
7975 all CUs needed for references have been loaded yet, and symbol
7976 table processing isn't initialized. But we have to set the CU language,
7977 or we won't be able to build types correctly.
7978 Similarly, if we do not read the producer, we can not apply
7979 producer-specific interpretation. */
7980 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7981 }
7982
7983 /* Load the DIEs associated with PER_CU into memory. */
7984
7985 static void
7986 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7987 enum language pretend_language)
7988 {
7989 gdb_assert (! this_cu->is_debug_types);
7990
7991 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7992 load_full_comp_unit_reader, &pretend_language);
7993 }
7994
7995 /* Add a DIE to the delayed physname list. */
7996
7997 static void
7998 add_to_method_list (struct type *type, int fnfield_index, int index,
7999 const char *name, struct die_info *die,
8000 struct dwarf2_cu *cu)
8001 {
8002 struct delayed_method_info mi;
8003 mi.type = type;
8004 mi.fnfield_index = fnfield_index;
8005 mi.index = index;
8006 mi.name = name;
8007 mi.die = die;
8008 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8009 }
8010
8011 /* A cleanup for freeing the delayed method list. */
8012
8013 static void
8014 free_delayed_list (void *ptr)
8015 {
8016 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8017 if (cu->method_list != NULL)
8018 {
8019 VEC_free (delayed_method_info, cu->method_list);
8020 cu->method_list = NULL;
8021 }
8022 }
8023
8024 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8025 "const" / "volatile". If so, decrements LEN by the length of the
8026 modifier and return true. Otherwise return false. */
8027
8028 template<size_t N>
8029 static bool
8030 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8031 {
8032 size_t mod_len = sizeof (mod) - 1;
8033 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8034 {
8035 len -= mod_len;
8036 return true;
8037 }
8038 return false;
8039 }
8040
8041 /* Compute the physnames of any methods on the CU's method list.
8042
8043 The computation of method physnames is delayed in order to avoid the
8044 (bad) condition that one of the method's formal parameters is of an as yet
8045 incomplete type. */
8046
8047 static void
8048 compute_delayed_physnames (struct dwarf2_cu *cu)
8049 {
8050 int i;
8051 struct delayed_method_info *mi;
8052
8053 /* Only C++ delays computing physnames. */
8054 if (VEC_empty (delayed_method_info, cu->method_list))
8055 return;
8056 gdb_assert (cu->language == language_cplus);
8057
8058 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8059 {
8060 const char *physname;
8061 struct fn_fieldlist *fn_flp
8062 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8063 physname = dwarf2_physname (mi->name, mi->die, cu);
8064 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8065 = physname ? physname : "";
8066
8067 /* Since there's no tag to indicate whether a method is a
8068 const/volatile overload, extract that information out of the
8069 demangled name. */
8070 if (physname != NULL)
8071 {
8072 size_t len = strlen (physname);
8073
8074 while (1)
8075 {
8076 if (physname[len] == ')') /* shortcut */
8077 break;
8078 else if (check_modifier (physname, len, " const"))
8079 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8080 else if (check_modifier (physname, len, " volatile"))
8081 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8082 else
8083 break;
8084 }
8085 }
8086 }
8087 }
8088
8089 /* Go objects should be embedded in a DW_TAG_module DIE,
8090 and it's not clear if/how imported objects will appear.
8091 To keep Go support simple until that's worked out,
8092 go back through what we've read and create something usable.
8093 We could do this while processing each DIE, and feels kinda cleaner,
8094 but that way is more invasive.
8095 This is to, for example, allow the user to type "p var" or "b main"
8096 without having to specify the package name, and allow lookups
8097 of module.object to work in contexts that use the expression
8098 parser. */
8099
8100 static void
8101 fixup_go_packaging (struct dwarf2_cu *cu)
8102 {
8103 char *package_name = NULL;
8104 struct pending *list;
8105 int i;
8106
8107 for (list = global_symbols; list != NULL; list = list->next)
8108 {
8109 for (i = 0; i < list->nsyms; ++i)
8110 {
8111 struct symbol *sym = list->symbol[i];
8112
8113 if (SYMBOL_LANGUAGE (sym) == language_go
8114 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8115 {
8116 char *this_package_name = go_symbol_package_name (sym);
8117
8118 if (this_package_name == NULL)
8119 continue;
8120 if (package_name == NULL)
8121 package_name = this_package_name;
8122 else
8123 {
8124 if (strcmp (package_name, this_package_name) != 0)
8125 complaint (&symfile_complaints,
8126 _("Symtab %s has objects from two different Go packages: %s and %s"),
8127 (symbol_symtab (sym) != NULL
8128 ? symtab_to_filename_for_display
8129 (symbol_symtab (sym))
8130 : objfile_name (cu->objfile)),
8131 this_package_name, package_name);
8132 xfree (this_package_name);
8133 }
8134 }
8135 }
8136 }
8137
8138 if (package_name != NULL)
8139 {
8140 struct objfile *objfile = cu->objfile;
8141 const char *saved_package_name
8142 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8143 package_name,
8144 strlen (package_name));
8145 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8146 saved_package_name);
8147 struct symbol *sym;
8148
8149 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8150
8151 sym = allocate_symbol (objfile);
8152 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8153 SYMBOL_SET_NAMES (sym, saved_package_name,
8154 strlen (saved_package_name), 0, objfile);
8155 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8156 e.g., "main" finds the "main" module and not C's main(). */
8157 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8158 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8159 SYMBOL_TYPE (sym) = type;
8160
8161 add_symbol_to_list (sym, &global_symbols);
8162
8163 xfree (package_name);
8164 }
8165 }
8166
8167 /* Return the symtab for PER_CU. This works properly regardless of
8168 whether we're using the index or psymtabs. */
8169
8170 static struct compunit_symtab *
8171 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8172 {
8173 return (dwarf2_per_objfile->using_index
8174 ? per_cu->v.quick->compunit_symtab
8175 : per_cu->v.psymtab->compunit_symtab);
8176 }
8177
8178 /* A helper function for computing the list of all symbol tables
8179 included by PER_CU. */
8180
8181 static void
8182 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8183 htab_t all_children, htab_t all_type_symtabs,
8184 struct dwarf2_per_cu_data *per_cu,
8185 struct compunit_symtab *immediate_parent)
8186 {
8187 void **slot;
8188 int ix;
8189 struct compunit_symtab *cust;
8190 struct dwarf2_per_cu_data *iter;
8191
8192 slot = htab_find_slot (all_children, per_cu, INSERT);
8193 if (*slot != NULL)
8194 {
8195 /* This inclusion and its children have been processed. */
8196 return;
8197 }
8198
8199 *slot = per_cu;
8200 /* Only add a CU if it has a symbol table. */
8201 cust = get_compunit_symtab (per_cu);
8202 if (cust != NULL)
8203 {
8204 /* If this is a type unit only add its symbol table if we haven't
8205 seen it yet (type unit per_cu's can share symtabs). */
8206 if (per_cu->is_debug_types)
8207 {
8208 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8209 if (*slot == NULL)
8210 {
8211 *slot = cust;
8212 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8213 if (cust->user == NULL)
8214 cust->user = immediate_parent;
8215 }
8216 }
8217 else
8218 {
8219 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8220 if (cust->user == NULL)
8221 cust->user = immediate_parent;
8222 }
8223 }
8224
8225 for (ix = 0;
8226 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8227 ++ix)
8228 {
8229 recursively_compute_inclusions (result, all_children,
8230 all_type_symtabs, iter, cust);
8231 }
8232 }
8233
8234 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8235 PER_CU. */
8236
8237 static void
8238 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8239 {
8240 gdb_assert (! per_cu->is_debug_types);
8241
8242 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8243 {
8244 int ix, len;
8245 struct dwarf2_per_cu_data *per_cu_iter;
8246 struct compunit_symtab *compunit_symtab_iter;
8247 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8248 htab_t all_children, all_type_symtabs;
8249 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8250
8251 /* If we don't have a symtab, we can just skip this case. */
8252 if (cust == NULL)
8253 return;
8254
8255 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8256 NULL, xcalloc, xfree);
8257 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8258 NULL, xcalloc, xfree);
8259
8260 for (ix = 0;
8261 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8262 ix, per_cu_iter);
8263 ++ix)
8264 {
8265 recursively_compute_inclusions (&result_symtabs, all_children,
8266 all_type_symtabs, per_cu_iter,
8267 cust);
8268 }
8269
8270 /* Now we have a transitive closure of all the included symtabs. */
8271 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8272 cust->includes
8273 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8274 struct compunit_symtab *, len + 1);
8275 for (ix = 0;
8276 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8277 compunit_symtab_iter);
8278 ++ix)
8279 cust->includes[ix] = compunit_symtab_iter;
8280 cust->includes[len] = NULL;
8281
8282 VEC_free (compunit_symtab_ptr, result_symtabs);
8283 htab_delete (all_children);
8284 htab_delete (all_type_symtabs);
8285 }
8286 }
8287
8288 /* Compute the 'includes' field for the symtabs of all the CUs we just
8289 read. */
8290
8291 static void
8292 process_cu_includes (void)
8293 {
8294 int ix;
8295 struct dwarf2_per_cu_data *iter;
8296
8297 for (ix = 0;
8298 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8299 ix, iter);
8300 ++ix)
8301 {
8302 if (! iter->is_debug_types)
8303 compute_compunit_symtab_includes (iter);
8304 }
8305
8306 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8307 }
8308
8309 /* Generate full symbol information for PER_CU, whose DIEs have
8310 already been loaded into memory. */
8311
8312 static void
8313 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8314 enum language pretend_language)
8315 {
8316 struct dwarf2_cu *cu = per_cu->cu;
8317 struct objfile *objfile = per_cu->objfile;
8318 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8319 CORE_ADDR lowpc, highpc;
8320 struct compunit_symtab *cust;
8321 struct cleanup *back_to, *delayed_list_cleanup;
8322 CORE_ADDR baseaddr;
8323 struct block *static_block;
8324 CORE_ADDR addr;
8325
8326 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8327
8328 buildsym_init ();
8329 back_to = make_cleanup (really_free_pendings, NULL);
8330 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8331
8332 cu->list_in_scope = &file_symbols;
8333
8334 cu->language = pretend_language;
8335 cu->language_defn = language_def (cu->language);
8336
8337 /* Do line number decoding in read_file_scope () */
8338 process_die (cu->dies, cu);
8339
8340 /* For now fudge the Go package. */
8341 if (cu->language == language_go)
8342 fixup_go_packaging (cu);
8343
8344 /* Now that we have processed all the DIEs in the CU, all the types
8345 should be complete, and it should now be safe to compute all of the
8346 physnames. */
8347 compute_delayed_physnames (cu);
8348 do_cleanups (delayed_list_cleanup);
8349
8350 /* Some compilers don't define a DW_AT_high_pc attribute for the
8351 compilation unit. If the DW_AT_high_pc is missing, synthesize
8352 it, by scanning the DIE's below the compilation unit. */
8353 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8354
8355 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8356 static_block = end_symtab_get_static_block (addr, 0, 1);
8357
8358 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8359 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8360 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8361 addrmap to help ensure it has an accurate map of pc values belonging to
8362 this comp unit. */
8363 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8364
8365 cust = end_symtab_from_static_block (static_block,
8366 SECT_OFF_TEXT (objfile), 0);
8367
8368 if (cust != NULL)
8369 {
8370 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8371
8372 /* Set symtab language to language from DW_AT_language. If the
8373 compilation is from a C file generated by language preprocessors, do
8374 not set the language if it was already deduced by start_subfile. */
8375 if (!(cu->language == language_c
8376 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8377 COMPUNIT_FILETABS (cust)->language = cu->language;
8378
8379 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8380 produce DW_AT_location with location lists but it can be possibly
8381 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8382 there were bugs in prologue debug info, fixed later in GCC-4.5
8383 by "unwind info for epilogues" patch (which is not directly related).
8384
8385 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8386 needed, it would be wrong due to missing DW_AT_producer there.
8387
8388 Still one can confuse GDB by using non-standard GCC compilation
8389 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8390 */
8391 if (cu->has_loclist && gcc_4_minor >= 5)
8392 cust->locations_valid = 1;
8393
8394 if (gcc_4_minor >= 5)
8395 cust->epilogue_unwind_valid = 1;
8396
8397 cust->call_site_htab = cu->call_site_htab;
8398 }
8399
8400 if (dwarf2_per_objfile->using_index)
8401 per_cu->v.quick->compunit_symtab = cust;
8402 else
8403 {
8404 struct partial_symtab *pst = per_cu->v.psymtab;
8405 pst->compunit_symtab = cust;
8406 pst->readin = 1;
8407 }
8408
8409 /* Push it for inclusion processing later. */
8410 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8411
8412 do_cleanups (back_to);
8413 }
8414
8415 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8416 already been loaded into memory. */
8417
8418 static void
8419 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8420 enum language pretend_language)
8421 {
8422 struct dwarf2_cu *cu = per_cu->cu;
8423 struct objfile *objfile = per_cu->objfile;
8424 struct compunit_symtab *cust;
8425 struct cleanup *back_to, *delayed_list_cleanup;
8426 struct signatured_type *sig_type;
8427
8428 gdb_assert (per_cu->is_debug_types);
8429 sig_type = (struct signatured_type *) per_cu;
8430
8431 buildsym_init ();
8432 back_to = make_cleanup (really_free_pendings, NULL);
8433 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8434
8435 cu->list_in_scope = &file_symbols;
8436
8437 cu->language = pretend_language;
8438 cu->language_defn = language_def (cu->language);
8439
8440 /* The symbol tables are set up in read_type_unit_scope. */
8441 process_die (cu->dies, cu);
8442
8443 /* For now fudge the Go package. */
8444 if (cu->language == language_go)
8445 fixup_go_packaging (cu);
8446
8447 /* Now that we have processed all the DIEs in the CU, all the types
8448 should be complete, and it should now be safe to compute all of the
8449 physnames. */
8450 compute_delayed_physnames (cu);
8451 do_cleanups (delayed_list_cleanup);
8452
8453 /* TUs share symbol tables.
8454 If this is the first TU to use this symtab, complete the construction
8455 of it with end_expandable_symtab. Otherwise, complete the addition of
8456 this TU's symbols to the existing symtab. */
8457 if (sig_type->type_unit_group->compunit_symtab == NULL)
8458 {
8459 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8460 sig_type->type_unit_group->compunit_symtab = cust;
8461
8462 if (cust != NULL)
8463 {
8464 /* Set symtab language to language from DW_AT_language. If the
8465 compilation is from a C file generated by language preprocessors,
8466 do not set the language if it was already deduced by
8467 start_subfile. */
8468 if (!(cu->language == language_c
8469 && COMPUNIT_FILETABS (cust)->language != language_c))
8470 COMPUNIT_FILETABS (cust)->language = cu->language;
8471 }
8472 }
8473 else
8474 {
8475 augment_type_symtab ();
8476 cust = sig_type->type_unit_group->compunit_symtab;
8477 }
8478
8479 if (dwarf2_per_objfile->using_index)
8480 per_cu->v.quick->compunit_symtab = cust;
8481 else
8482 {
8483 struct partial_symtab *pst = per_cu->v.psymtab;
8484 pst->compunit_symtab = cust;
8485 pst->readin = 1;
8486 }
8487
8488 do_cleanups (back_to);
8489 }
8490
8491 /* Process an imported unit DIE. */
8492
8493 static void
8494 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8495 {
8496 struct attribute *attr;
8497
8498 /* For now we don't handle imported units in type units. */
8499 if (cu->per_cu->is_debug_types)
8500 {
8501 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8502 " supported in type units [in module %s]"),
8503 objfile_name (cu->objfile));
8504 }
8505
8506 attr = dwarf2_attr (die, DW_AT_import, cu);
8507 if (attr != NULL)
8508 {
8509 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8510 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8511 dwarf2_per_cu_data *per_cu
8512 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8513
8514 /* If necessary, add it to the queue and load its DIEs. */
8515 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8516 load_full_comp_unit (per_cu, cu->language);
8517
8518 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8519 per_cu);
8520 }
8521 }
8522
8523 /* RAII object that represents a process_die scope: i.e.,
8524 starts/finishes processing a DIE. */
8525 class process_die_scope
8526 {
8527 public:
8528 process_die_scope (die_info *die, dwarf2_cu *cu)
8529 : m_die (die), m_cu (cu)
8530 {
8531 /* We should only be processing DIEs not already in process. */
8532 gdb_assert (!m_die->in_process);
8533 m_die->in_process = true;
8534 }
8535
8536 ~process_die_scope ()
8537 {
8538 m_die->in_process = false;
8539
8540 /* If we're done processing the DIE for the CU that owns the line
8541 header, we don't need the line header anymore. */
8542 if (m_cu->line_header_die_owner == m_die)
8543 {
8544 delete m_cu->line_header;
8545 m_cu->line_header = NULL;
8546 m_cu->line_header_die_owner = NULL;
8547 }
8548 }
8549
8550 private:
8551 die_info *m_die;
8552 dwarf2_cu *m_cu;
8553 };
8554
8555 /* Process a die and its children. */
8556
8557 static void
8558 process_die (struct die_info *die, struct dwarf2_cu *cu)
8559 {
8560 process_die_scope scope (die, cu);
8561
8562 switch (die->tag)
8563 {
8564 case DW_TAG_padding:
8565 break;
8566 case DW_TAG_compile_unit:
8567 case DW_TAG_partial_unit:
8568 read_file_scope (die, cu);
8569 break;
8570 case DW_TAG_type_unit:
8571 read_type_unit_scope (die, cu);
8572 break;
8573 case DW_TAG_subprogram:
8574 case DW_TAG_inlined_subroutine:
8575 read_func_scope (die, cu);
8576 break;
8577 case DW_TAG_lexical_block:
8578 case DW_TAG_try_block:
8579 case DW_TAG_catch_block:
8580 read_lexical_block_scope (die, cu);
8581 break;
8582 case DW_TAG_call_site:
8583 case DW_TAG_GNU_call_site:
8584 read_call_site_scope (die, cu);
8585 break;
8586 case DW_TAG_class_type:
8587 case DW_TAG_interface_type:
8588 case DW_TAG_structure_type:
8589 case DW_TAG_union_type:
8590 process_structure_scope (die, cu);
8591 break;
8592 case DW_TAG_enumeration_type:
8593 process_enumeration_scope (die, cu);
8594 break;
8595
8596 /* These dies have a type, but processing them does not create
8597 a symbol or recurse to process the children. Therefore we can
8598 read them on-demand through read_type_die. */
8599 case DW_TAG_subroutine_type:
8600 case DW_TAG_set_type:
8601 case DW_TAG_array_type:
8602 case DW_TAG_pointer_type:
8603 case DW_TAG_ptr_to_member_type:
8604 case DW_TAG_reference_type:
8605 case DW_TAG_rvalue_reference_type:
8606 case DW_TAG_string_type:
8607 break;
8608
8609 case DW_TAG_base_type:
8610 case DW_TAG_subrange_type:
8611 case DW_TAG_typedef:
8612 /* Add a typedef symbol for the type definition, if it has a
8613 DW_AT_name. */
8614 new_symbol (die, read_type_die (die, cu), cu);
8615 break;
8616 case DW_TAG_common_block:
8617 read_common_block (die, cu);
8618 break;
8619 case DW_TAG_common_inclusion:
8620 break;
8621 case DW_TAG_namespace:
8622 cu->processing_has_namespace_info = 1;
8623 read_namespace (die, cu);
8624 break;
8625 case DW_TAG_module:
8626 cu->processing_has_namespace_info = 1;
8627 read_module (die, cu);
8628 break;
8629 case DW_TAG_imported_declaration:
8630 cu->processing_has_namespace_info = 1;
8631 if (read_namespace_alias (die, cu))
8632 break;
8633 /* The declaration is not a global namespace alias: fall through. */
8634 case DW_TAG_imported_module:
8635 cu->processing_has_namespace_info = 1;
8636 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8637 || cu->language != language_fortran))
8638 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8639 dwarf_tag_name (die->tag));
8640 read_import_statement (die, cu);
8641 break;
8642
8643 case DW_TAG_imported_unit:
8644 process_imported_unit_die (die, cu);
8645 break;
8646
8647 default:
8648 new_symbol (die, NULL, cu);
8649 break;
8650 }
8651 }
8652 \f
8653 /* DWARF name computation. */
8654
8655 /* A helper function for dwarf2_compute_name which determines whether DIE
8656 needs to have the name of the scope prepended to the name listed in the
8657 die. */
8658
8659 static int
8660 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8661 {
8662 struct attribute *attr;
8663
8664 switch (die->tag)
8665 {
8666 case DW_TAG_namespace:
8667 case DW_TAG_typedef:
8668 case DW_TAG_class_type:
8669 case DW_TAG_interface_type:
8670 case DW_TAG_structure_type:
8671 case DW_TAG_union_type:
8672 case DW_TAG_enumeration_type:
8673 case DW_TAG_enumerator:
8674 case DW_TAG_subprogram:
8675 case DW_TAG_inlined_subroutine:
8676 case DW_TAG_member:
8677 case DW_TAG_imported_declaration:
8678 return 1;
8679
8680 case DW_TAG_variable:
8681 case DW_TAG_constant:
8682 /* We only need to prefix "globally" visible variables. These include
8683 any variable marked with DW_AT_external or any variable that
8684 lives in a namespace. [Variables in anonymous namespaces
8685 require prefixing, but they are not DW_AT_external.] */
8686
8687 if (dwarf2_attr (die, DW_AT_specification, cu))
8688 {
8689 struct dwarf2_cu *spec_cu = cu;
8690
8691 return die_needs_namespace (die_specification (die, &spec_cu),
8692 spec_cu);
8693 }
8694
8695 attr = dwarf2_attr (die, DW_AT_external, cu);
8696 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8697 && die->parent->tag != DW_TAG_module)
8698 return 0;
8699 /* A variable in a lexical block of some kind does not need a
8700 namespace, even though in C++ such variables may be external
8701 and have a mangled name. */
8702 if (die->parent->tag == DW_TAG_lexical_block
8703 || die->parent->tag == DW_TAG_try_block
8704 || die->parent->tag == DW_TAG_catch_block
8705 || die->parent->tag == DW_TAG_subprogram)
8706 return 0;
8707 return 1;
8708
8709 default:
8710 return 0;
8711 }
8712 }
8713
8714 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8715 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8716 defined for the given DIE. */
8717
8718 static struct attribute *
8719 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8720 {
8721 struct attribute *attr;
8722
8723 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8724 if (attr == NULL)
8725 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8726
8727 return attr;
8728 }
8729
8730 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8731 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8732 defined for the given DIE. */
8733
8734 static const char *
8735 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8736 {
8737 const char *linkage_name;
8738
8739 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8740 if (linkage_name == NULL)
8741 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8742
8743 return linkage_name;
8744 }
8745
8746 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8747 compute the physname for the object, which include a method's:
8748 - formal parameters (C++),
8749 - receiver type (Go),
8750
8751 The term "physname" is a bit confusing.
8752 For C++, for example, it is the demangled name.
8753 For Go, for example, it's the mangled name.
8754
8755 For Ada, return the DIE's linkage name rather than the fully qualified
8756 name. PHYSNAME is ignored..
8757
8758 The result is allocated on the objfile_obstack and canonicalized. */
8759
8760 static const char *
8761 dwarf2_compute_name (const char *name,
8762 struct die_info *die, struct dwarf2_cu *cu,
8763 int physname)
8764 {
8765 struct objfile *objfile = cu->objfile;
8766
8767 if (name == NULL)
8768 name = dwarf2_name (die, cu);
8769
8770 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8771 but otherwise compute it by typename_concat inside GDB.
8772 FIXME: Actually this is not really true, or at least not always true.
8773 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8774 Fortran names because there is no mangling standard. So new_symbol_full
8775 will set the demangled name to the result of dwarf2_full_name, and it is
8776 the demangled name that GDB uses if it exists. */
8777 if (cu->language == language_ada
8778 || (cu->language == language_fortran && physname))
8779 {
8780 /* For Ada unit, we prefer the linkage name over the name, as
8781 the former contains the exported name, which the user expects
8782 to be able to reference. Ideally, we want the user to be able
8783 to reference this entity using either natural or linkage name,
8784 but we haven't started looking at this enhancement yet. */
8785 const char *linkage_name = dw2_linkage_name (die, cu);
8786
8787 if (linkage_name != NULL)
8788 return linkage_name;
8789 }
8790
8791 /* These are the only languages we know how to qualify names in. */
8792 if (name != NULL
8793 && (cu->language == language_cplus
8794 || cu->language == language_fortran || cu->language == language_d
8795 || cu->language == language_rust))
8796 {
8797 if (die_needs_namespace (die, cu))
8798 {
8799 long length;
8800 const char *prefix;
8801 const char *canonical_name = NULL;
8802
8803 string_file buf;
8804
8805 prefix = determine_prefix (die, cu);
8806 if (*prefix != '\0')
8807 {
8808 char *prefixed_name = typename_concat (NULL, prefix, name,
8809 physname, cu);
8810
8811 buf.puts (prefixed_name);
8812 xfree (prefixed_name);
8813 }
8814 else
8815 buf.puts (name);
8816
8817 /* Template parameters may be specified in the DIE's DW_AT_name, or
8818 as children with DW_TAG_template_type_param or
8819 DW_TAG_value_type_param. If the latter, add them to the name
8820 here. If the name already has template parameters, then
8821 skip this step; some versions of GCC emit both, and
8822 it is more efficient to use the pre-computed name.
8823
8824 Something to keep in mind about this process: it is very
8825 unlikely, or in some cases downright impossible, to produce
8826 something that will match the mangled name of a function.
8827 If the definition of the function has the same debug info,
8828 we should be able to match up with it anyway. But fallbacks
8829 using the minimal symbol, for instance to find a method
8830 implemented in a stripped copy of libstdc++, will not work.
8831 If we do not have debug info for the definition, we will have to
8832 match them up some other way.
8833
8834 When we do name matching there is a related problem with function
8835 templates; two instantiated function templates are allowed to
8836 differ only by their return types, which we do not add here. */
8837
8838 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8839 {
8840 struct attribute *attr;
8841 struct die_info *child;
8842 int first = 1;
8843
8844 die->building_fullname = 1;
8845
8846 for (child = die->child; child != NULL; child = child->sibling)
8847 {
8848 struct type *type;
8849 LONGEST value;
8850 const gdb_byte *bytes;
8851 struct dwarf2_locexpr_baton *baton;
8852 struct value *v;
8853
8854 if (child->tag != DW_TAG_template_type_param
8855 && child->tag != DW_TAG_template_value_param)
8856 continue;
8857
8858 if (first)
8859 {
8860 buf.puts ("<");
8861 first = 0;
8862 }
8863 else
8864 buf.puts (", ");
8865
8866 attr = dwarf2_attr (child, DW_AT_type, cu);
8867 if (attr == NULL)
8868 {
8869 complaint (&symfile_complaints,
8870 _("template parameter missing DW_AT_type"));
8871 buf.puts ("UNKNOWN_TYPE");
8872 continue;
8873 }
8874 type = die_type (child, cu);
8875
8876 if (child->tag == DW_TAG_template_type_param)
8877 {
8878 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8879 continue;
8880 }
8881
8882 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8883 if (attr == NULL)
8884 {
8885 complaint (&symfile_complaints,
8886 _("template parameter missing "
8887 "DW_AT_const_value"));
8888 buf.puts ("UNKNOWN_VALUE");
8889 continue;
8890 }
8891
8892 dwarf2_const_value_attr (attr, type, name,
8893 &cu->comp_unit_obstack, cu,
8894 &value, &bytes, &baton);
8895
8896 if (TYPE_NOSIGN (type))
8897 /* GDB prints characters as NUMBER 'CHAR'. If that's
8898 changed, this can use value_print instead. */
8899 c_printchar (value, type, &buf);
8900 else
8901 {
8902 struct value_print_options opts;
8903
8904 if (baton != NULL)
8905 v = dwarf2_evaluate_loc_desc (type, NULL,
8906 baton->data,
8907 baton->size,
8908 baton->per_cu);
8909 else if (bytes != NULL)
8910 {
8911 v = allocate_value (type);
8912 memcpy (value_contents_writeable (v), bytes,
8913 TYPE_LENGTH (type));
8914 }
8915 else
8916 v = value_from_longest (type, value);
8917
8918 /* Specify decimal so that we do not depend on
8919 the radix. */
8920 get_formatted_print_options (&opts, 'd');
8921 opts.raw = 1;
8922 value_print (v, &buf, &opts);
8923 release_value (v);
8924 value_free (v);
8925 }
8926 }
8927
8928 die->building_fullname = 0;
8929
8930 if (!first)
8931 {
8932 /* Close the argument list, with a space if necessary
8933 (nested templates). */
8934 if (!buf.empty () && buf.string ().back () == '>')
8935 buf.puts (" >");
8936 else
8937 buf.puts (">");
8938 }
8939 }
8940
8941 /* For C++ methods, append formal parameter type
8942 information, if PHYSNAME. */
8943
8944 if (physname && die->tag == DW_TAG_subprogram
8945 && cu->language == language_cplus)
8946 {
8947 struct type *type = read_type_die (die, cu);
8948
8949 c_type_print_args (type, &buf, 1, cu->language,
8950 &type_print_raw_options);
8951
8952 if (cu->language == language_cplus)
8953 {
8954 /* Assume that an artificial first parameter is
8955 "this", but do not crash if it is not. RealView
8956 marks unnamed (and thus unused) parameters as
8957 artificial; there is no way to differentiate
8958 the two cases. */
8959 if (TYPE_NFIELDS (type) > 0
8960 && TYPE_FIELD_ARTIFICIAL (type, 0)
8961 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8962 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8963 0))))
8964 buf.puts (" const");
8965 }
8966 }
8967
8968 const std::string &intermediate_name = buf.string ();
8969
8970 if (cu->language == language_cplus)
8971 canonical_name
8972 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8973 &objfile->per_bfd->storage_obstack);
8974
8975 /* If we only computed INTERMEDIATE_NAME, or if
8976 INTERMEDIATE_NAME is already canonical, then we need to
8977 copy it to the appropriate obstack. */
8978 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8979 name = ((const char *)
8980 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8981 intermediate_name.c_str (),
8982 intermediate_name.length ()));
8983 else
8984 name = canonical_name;
8985 }
8986 }
8987
8988 return name;
8989 }
8990
8991 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8992 If scope qualifiers are appropriate they will be added. The result
8993 will be allocated on the storage_obstack, or NULL if the DIE does
8994 not have a name. NAME may either be from a previous call to
8995 dwarf2_name or NULL.
8996
8997 The output string will be canonicalized (if C++). */
8998
8999 static const char *
9000 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9001 {
9002 return dwarf2_compute_name (name, die, cu, 0);
9003 }
9004
9005 /* Construct a physname for the given DIE in CU. NAME may either be
9006 from a previous call to dwarf2_name or NULL. The result will be
9007 allocated on the objfile_objstack or NULL if the DIE does not have a
9008 name.
9009
9010 The output string will be canonicalized (if C++). */
9011
9012 static const char *
9013 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9014 {
9015 struct objfile *objfile = cu->objfile;
9016 const char *retval, *mangled = NULL, *canon = NULL;
9017 int need_copy = 1;
9018
9019 /* In this case dwarf2_compute_name is just a shortcut not building anything
9020 on its own. */
9021 if (!die_needs_namespace (die, cu))
9022 return dwarf2_compute_name (name, die, cu, 1);
9023
9024 mangled = dw2_linkage_name (die, cu);
9025
9026 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9027 See https://github.com/rust-lang/rust/issues/32925. */
9028 if (cu->language == language_rust && mangled != NULL
9029 && strchr (mangled, '{') != NULL)
9030 mangled = NULL;
9031
9032 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9033 has computed. */
9034 gdb::unique_xmalloc_ptr<char> demangled;
9035 if (mangled != NULL)
9036 {
9037 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9038 type. It is easier for GDB users to search for such functions as
9039 `name(params)' than `long name(params)'. In such case the minimal
9040 symbol names do not match the full symbol names but for template
9041 functions there is never a need to look up their definition from their
9042 declaration so the only disadvantage remains the minimal symbol
9043 variant `long name(params)' does not have the proper inferior type.
9044 */
9045
9046 if (cu->language == language_go)
9047 {
9048 /* This is a lie, but we already lie to the caller new_symbol_full.
9049 new_symbol_full assumes we return the mangled name.
9050 This just undoes that lie until things are cleaned up. */
9051 }
9052 else
9053 {
9054 demangled.reset (gdb_demangle (mangled,
9055 (DMGL_PARAMS | DMGL_ANSI
9056 | DMGL_RET_DROP)));
9057 }
9058 if (demangled)
9059 canon = demangled.get ();
9060 else
9061 {
9062 canon = mangled;
9063 need_copy = 0;
9064 }
9065 }
9066
9067 if (canon == NULL || check_physname)
9068 {
9069 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9070
9071 if (canon != NULL && strcmp (physname, canon) != 0)
9072 {
9073 /* It may not mean a bug in GDB. The compiler could also
9074 compute DW_AT_linkage_name incorrectly. But in such case
9075 GDB would need to be bug-to-bug compatible. */
9076
9077 complaint (&symfile_complaints,
9078 _("Computed physname <%s> does not match demangled <%s> "
9079 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9080 physname, canon, mangled, to_underlying (die->sect_off),
9081 objfile_name (objfile));
9082
9083 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9084 is available here - over computed PHYSNAME. It is safer
9085 against both buggy GDB and buggy compilers. */
9086
9087 retval = canon;
9088 }
9089 else
9090 {
9091 retval = physname;
9092 need_copy = 0;
9093 }
9094 }
9095 else
9096 retval = canon;
9097
9098 if (need_copy)
9099 retval = ((const char *)
9100 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9101 retval, strlen (retval)));
9102
9103 return retval;
9104 }
9105
9106 /* Inspect DIE in CU for a namespace alias. If one exists, record
9107 a new symbol for it.
9108
9109 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9110
9111 static int
9112 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9113 {
9114 struct attribute *attr;
9115
9116 /* If the die does not have a name, this is not a namespace
9117 alias. */
9118 attr = dwarf2_attr (die, DW_AT_name, cu);
9119 if (attr != NULL)
9120 {
9121 int num;
9122 struct die_info *d = die;
9123 struct dwarf2_cu *imported_cu = cu;
9124
9125 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9126 keep inspecting DIEs until we hit the underlying import. */
9127 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9128 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9129 {
9130 attr = dwarf2_attr (d, DW_AT_import, cu);
9131 if (attr == NULL)
9132 break;
9133
9134 d = follow_die_ref (d, attr, &imported_cu);
9135 if (d->tag != DW_TAG_imported_declaration)
9136 break;
9137 }
9138
9139 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9140 {
9141 complaint (&symfile_complaints,
9142 _("DIE at 0x%x has too many recursively imported "
9143 "declarations"), to_underlying (d->sect_off));
9144 return 0;
9145 }
9146
9147 if (attr != NULL)
9148 {
9149 struct type *type;
9150 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9151
9152 type = get_die_type_at_offset (sect_off, cu->per_cu);
9153 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9154 {
9155 /* This declaration is a global namespace alias. Add
9156 a symbol for it whose type is the aliased namespace. */
9157 new_symbol (die, type, cu);
9158 return 1;
9159 }
9160 }
9161 }
9162
9163 return 0;
9164 }
9165
9166 /* Return the using directives repository (global or local?) to use in the
9167 current context for LANGUAGE.
9168
9169 For Ada, imported declarations can materialize renamings, which *may* be
9170 global. However it is impossible (for now?) in DWARF to distinguish
9171 "external" imported declarations and "static" ones. As all imported
9172 declarations seem to be static in all other languages, make them all CU-wide
9173 global only in Ada. */
9174
9175 static struct using_direct **
9176 using_directives (enum language language)
9177 {
9178 if (language == language_ada && context_stack_depth == 0)
9179 return &global_using_directives;
9180 else
9181 return &local_using_directives;
9182 }
9183
9184 /* Read the import statement specified by the given die and record it. */
9185
9186 static void
9187 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9188 {
9189 struct objfile *objfile = cu->objfile;
9190 struct attribute *import_attr;
9191 struct die_info *imported_die, *child_die;
9192 struct dwarf2_cu *imported_cu;
9193 const char *imported_name;
9194 const char *imported_name_prefix;
9195 const char *canonical_name;
9196 const char *import_alias;
9197 const char *imported_declaration = NULL;
9198 const char *import_prefix;
9199 std::vector<const char *> excludes;
9200
9201 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9202 if (import_attr == NULL)
9203 {
9204 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9205 dwarf_tag_name (die->tag));
9206 return;
9207 }
9208
9209 imported_cu = cu;
9210 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9211 imported_name = dwarf2_name (imported_die, imported_cu);
9212 if (imported_name == NULL)
9213 {
9214 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9215
9216 The import in the following code:
9217 namespace A
9218 {
9219 typedef int B;
9220 }
9221
9222 int main ()
9223 {
9224 using A::B;
9225 B b;
9226 return b;
9227 }
9228
9229 ...
9230 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9231 <52> DW_AT_decl_file : 1
9232 <53> DW_AT_decl_line : 6
9233 <54> DW_AT_import : <0x75>
9234 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9235 <59> DW_AT_name : B
9236 <5b> DW_AT_decl_file : 1
9237 <5c> DW_AT_decl_line : 2
9238 <5d> DW_AT_type : <0x6e>
9239 ...
9240 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9241 <76> DW_AT_byte_size : 4
9242 <77> DW_AT_encoding : 5 (signed)
9243
9244 imports the wrong die ( 0x75 instead of 0x58 ).
9245 This case will be ignored until the gcc bug is fixed. */
9246 return;
9247 }
9248
9249 /* Figure out the local name after import. */
9250 import_alias = dwarf2_name (die, cu);
9251
9252 /* Figure out where the statement is being imported to. */
9253 import_prefix = determine_prefix (die, cu);
9254
9255 /* Figure out what the scope of the imported die is and prepend it
9256 to the name of the imported die. */
9257 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9258
9259 if (imported_die->tag != DW_TAG_namespace
9260 && imported_die->tag != DW_TAG_module)
9261 {
9262 imported_declaration = imported_name;
9263 canonical_name = imported_name_prefix;
9264 }
9265 else if (strlen (imported_name_prefix) > 0)
9266 canonical_name = obconcat (&objfile->objfile_obstack,
9267 imported_name_prefix,
9268 (cu->language == language_d ? "." : "::"),
9269 imported_name, (char *) NULL);
9270 else
9271 canonical_name = imported_name;
9272
9273 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9274 for (child_die = die->child; child_die && child_die->tag;
9275 child_die = sibling_die (child_die))
9276 {
9277 /* DWARF-4: A Fortran use statement with a “rename list” may be
9278 represented by an imported module entry with an import attribute
9279 referring to the module and owned entries corresponding to those
9280 entities that are renamed as part of being imported. */
9281
9282 if (child_die->tag != DW_TAG_imported_declaration)
9283 {
9284 complaint (&symfile_complaints,
9285 _("child DW_TAG_imported_declaration expected "
9286 "- DIE at 0x%x [in module %s]"),
9287 to_underlying (child_die->sect_off), objfile_name (objfile));
9288 continue;
9289 }
9290
9291 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9292 if (import_attr == NULL)
9293 {
9294 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9295 dwarf_tag_name (child_die->tag));
9296 continue;
9297 }
9298
9299 imported_cu = cu;
9300 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9301 &imported_cu);
9302 imported_name = dwarf2_name (imported_die, imported_cu);
9303 if (imported_name == NULL)
9304 {
9305 complaint (&symfile_complaints,
9306 _("child DW_TAG_imported_declaration has unknown "
9307 "imported name - DIE at 0x%x [in module %s]"),
9308 to_underlying (child_die->sect_off), objfile_name (objfile));
9309 continue;
9310 }
9311
9312 excludes.push_back (imported_name);
9313
9314 process_die (child_die, cu);
9315 }
9316
9317 add_using_directive (using_directives (cu->language),
9318 import_prefix,
9319 canonical_name,
9320 import_alias,
9321 imported_declaration,
9322 excludes,
9323 0,
9324 &objfile->objfile_obstack);
9325 }
9326
9327 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9328 types, but gives them a size of zero. Starting with version 14,
9329 ICC is compatible with GCC. */
9330
9331 static int
9332 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9333 {
9334 if (!cu->checked_producer)
9335 check_producer (cu);
9336
9337 return cu->producer_is_icc_lt_14;
9338 }
9339
9340 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9341 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9342 this, it was first present in GCC release 4.3.0. */
9343
9344 static int
9345 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9346 {
9347 if (!cu->checked_producer)
9348 check_producer (cu);
9349
9350 return cu->producer_is_gcc_lt_4_3;
9351 }
9352
9353 static file_and_directory
9354 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9355 {
9356 file_and_directory res;
9357
9358 /* Find the filename. Do not use dwarf2_name here, since the filename
9359 is not a source language identifier. */
9360 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9361 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9362
9363 if (res.comp_dir == NULL
9364 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9365 && IS_ABSOLUTE_PATH (res.name))
9366 {
9367 res.comp_dir_storage = ldirname (res.name);
9368 if (!res.comp_dir_storage.empty ())
9369 res.comp_dir = res.comp_dir_storage.c_str ();
9370 }
9371 if (res.comp_dir != NULL)
9372 {
9373 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9374 directory, get rid of it. */
9375 const char *cp = strchr (res.comp_dir, ':');
9376
9377 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9378 res.comp_dir = cp + 1;
9379 }
9380
9381 if (res.name == NULL)
9382 res.name = "<unknown>";
9383
9384 return res;
9385 }
9386
9387 /* Handle DW_AT_stmt_list for a compilation unit.
9388 DIE is the DW_TAG_compile_unit die for CU.
9389 COMP_DIR is the compilation directory. LOWPC is passed to
9390 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9391
9392 static void
9393 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9394 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9395 {
9396 struct objfile *objfile = dwarf2_per_objfile->objfile;
9397 struct attribute *attr;
9398 struct line_header line_header_local;
9399 hashval_t line_header_local_hash;
9400 unsigned u;
9401 void **slot;
9402 int decode_mapping;
9403
9404 gdb_assert (! cu->per_cu->is_debug_types);
9405
9406 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9407 if (attr == NULL)
9408 return;
9409
9410 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9411
9412 /* The line header hash table is only created if needed (it exists to
9413 prevent redundant reading of the line table for partial_units).
9414 If we're given a partial_unit, we'll need it. If we're given a
9415 compile_unit, then use the line header hash table if it's already
9416 created, but don't create one just yet. */
9417
9418 if (dwarf2_per_objfile->line_header_hash == NULL
9419 && die->tag == DW_TAG_partial_unit)
9420 {
9421 dwarf2_per_objfile->line_header_hash
9422 = htab_create_alloc_ex (127, line_header_hash_voidp,
9423 line_header_eq_voidp,
9424 free_line_header_voidp,
9425 &objfile->objfile_obstack,
9426 hashtab_obstack_allocate,
9427 dummy_obstack_deallocate);
9428 }
9429
9430 line_header_local.sect_off = line_offset;
9431 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9432 line_header_local_hash = line_header_hash (&line_header_local);
9433 if (dwarf2_per_objfile->line_header_hash != NULL)
9434 {
9435 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9436 &line_header_local,
9437 line_header_local_hash, NO_INSERT);
9438
9439 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9440 is not present in *SLOT (since if there is something in *SLOT then
9441 it will be for a partial_unit). */
9442 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9443 {
9444 gdb_assert (*slot != NULL);
9445 cu->line_header = (struct line_header *) *slot;
9446 return;
9447 }
9448 }
9449
9450 /* dwarf_decode_line_header does not yet provide sufficient information.
9451 We always have to call also dwarf_decode_lines for it. */
9452 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9453 if (lh == NULL)
9454 return;
9455
9456 cu->line_header = lh.release ();
9457 cu->line_header_die_owner = die;
9458
9459 if (dwarf2_per_objfile->line_header_hash == NULL)
9460 slot = NULL;
9461 else
9462 {
9463 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9464 &line_header_local,
9465 line_header_local_hash, INSERT);
9466 gdb_assert (slot != NULL);
9467 }
9468 if (slot != NULL && *slot == NULL)
9469 {
9470 /* This newly decoded line number information unit will be owned
9471 by line_header_hash hash table. */
9472 *slot = cu->line_header;
9473 cu->line_header_die_owner = NULL;
9474 }
9475 else
9476 {
9477 /* We cannot free any current entry in (*slot) as that struct line_header
9478 may be already used by multiple CUs. Create only temporary decoded
9479 line_header for this CU - it may happen at most once for each line
9480 number information unit. And if we're not using line_header_hash
9481 then this is what we want as well. */
9482 gdb_assert (die->tag != DW_TAG_partial_unit);
9483 }
9484 decode_mapping = (die->tag != DW_TAG_partial_unit);
9485 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9486 decode_mapping);
9487
9488 }
9489
9490 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9491
9492 static void
9493 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9494 {
9495 struct objfile *objfile = dwarf2_per_objfile->objfile;
9496 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9497 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9498 CORE_ADDR highpc = ((CORE_ADDR) 0);
9499 struct attribute *attr;
9500 struct die_info *child_die;
9501 CORE_ADDR baseaddr;
9502
9503 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9504
9505 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9506
9507 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9508 from finish_block. */
9509 if (lowpc == ((CORE_ADDR) -1))
9510 lowpc = highpc;
9511 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9512
9513 file_and_directory fnd = find_file_and_directory (die, cu);
9514
9515 prepare_one_comp_unit (cu, die, cu->language);
9516
9517 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9518 standardised yet. As a workaround for the language detection we fall
9519 back to the DW_AT_producer string. */
9520 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9521 cu->language = language_opencl;
9522
9523 /* Similar hack for Go. */
9524 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9525 set_cu_language (DW_LANG_Go, cu);
9526
9527 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9528
9529 /* Decode line number information if present. We do this before
9530 processing child DIEs, so that the line header table is available
9531 for DW_AT_decl_file. */
9532 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9533
9534 /* Process all dies in compilation unit. */
9535 if (die->child != NULL)
9536 {
9537 child_die = die->child;
9538 while (child_die && child_die->tag)
9539 {
9540 process_die (child_die, cu);
9541 child_die = sibling_die (child_die);
9542 }
9543 }
9544
9545 /* Decode macro information, if present. Dwarf 2 macro information
9546 refers to information in the line number info statement program
9547 header, so we can only read it if we've read the header
9548 successfully. */
9549 attr = dwarf2_attr (die, DW_AT_macros, cu);
9550 if (attr == NULL)
9551 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9552 if (attr && cu->line_header)
9553 {
9554 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9555 complaint (&symfile_complaints,
9556 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9557
9558 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9559 }
9560 else
9561 {
9562 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9563 if (attr && cu->line_header)
9564 {
9565 unsigned int macro_offset = DW_UNSND (attr);
9566
9567 dwarf_decode_macros (cu, macro_offset, 0);
9568 }
9569 }
9570 }
9571
9572 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9573 Create the set of symtabs used by this TU, or if this TU is sharing
9574 symtabs with another TU and the symtabs have already been created
9575 then restore those symtabs in the line header.
9576 We don't need the pc/line-number mapping for type units. */
9577
9578 static void
9579 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9580 {
9581 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9582 struct type_unit_group *tu_group;
9583 int first_time;
9584 struct attribute *attr;
9585 unsigned int i;
9586 struct signatured_type *sig_type;
9587
9588 gdb_assert (per_cu->is_debug_types);
9589 sig_type = (struct signatured_type *) per_cu;
9590
9591 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9592
9593 /* If we're using .gdb_index (includes -readnow) then
9594 per_cu->type_unit_group may not have been set up yet. */
9595 if (sig_type->type_unit_group == NULL)
9596 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9597 tu_group = sig_type->type_unit_group;
9598
9599 /* If we've already processed this stmt_list there's no real need to
9600 do it again, we could fake it and just recreate the part we need
9601 (file name,index -> symtab mapping). If data shows this optimization
9602 is useful we can do it then. */
9603 first_time = tu_group->compunit_symtab == NULL;
9604
9605 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9606 debug info. */
9607 line_header_up lh;
9608 if (attr != NULL)
9609 {
9610 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9611 lh = dwarf_decode_line_header (line_offset, cu);
9612 }
9613 if (lh == NULL)
9614 {
9615 if (first_time)
9616 dwarf2_start_symtab (cu, "", NULL, 0);
9617 else
9618 {
9619 gdb_assert (tu_group->symtabs == NULL);
9620 restart_symtab (tu_group->compunit_symtab, "", 0);
9621 }
9622 return;
9623 }
9624
9625 cu->line_header = lh.release ();
9626 cu->line_header_die_owner = die;
9627
9628 if (first_time)
9629 {
9630 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9631
9632 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9633 still initializing it, and our caller (a few levels up)
9634 process_full_type_unit still needs to know if this is the first
9635 time. */
9636
9637 tu_group->num_symtabs = cu->line_header->file_names.size ();
9638 tu_group->symtabs = XNEWVEC (struct symtab *,
9639 cu->line_header->file_names.size ());
9640
9641 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9642 {
9643 file_entry &fe = cu->line_header->file_names[i];
9644
9645 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9646
9647 if (current_subfile->symtab == NULL)
9648 {
9649 /* NOTE: start_subfile will recognize when it's been
9650 passed a file it has already seen. So we can't
9651 assume there's a simple mapping from
9652 cu->line_header->file_names to subfiles, plus
9653 cu->line_header->file_names may contain dups. */
9654 current_subfile->symtab
9655 = allocate_symtab (cust, current_subfile->name);
9656 }
9657
9658 fe.symtab = current_subfile->symtab;
9659 tu_group->symtabs[i] = fe.symtab;
9660 }
9661 }
9662 else
9663 {
9664 restart_symtab (tu_group->compunit_symtab, "", 0);
9665
9666 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9667 {
9668 file_entry &fe = cu->line_header->file_names[i];
9669
9670 fe.symtab = tu_group->symtabs[i];
9671 }
9672 }
9673
9674 /* The main symtab is allocated last. Type units don't have DW_AT_name
9675 so they don't have a "real" (so to speak) symtab anyway.
9676 There is later code that will assign the main symtab to all symbols
9677 that don't have one. We need to handle the case of a symbol with a
9678 missing symtab (DW_AT_decl_file) anyway. */
9679 }
9680
9681 /* Process DW_TAG_type_unit.
9682 For TUs we want to skip the first top level sibling if it's not the
9683 actual type being defined by this TU. In this case the first top
9684 level sibling is there to provide context only. */
9685
9686 static void
9687 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9688 {
9689 struct die_info *child_die;
9690
9691 prepare_one_comp_unit (cu, die, language_minimal);
9692
9693 /* Initialize (or reinitialize) the machinery for building symtabs.
9694 We do this before processing child DIEs, so that the line header table
9695 is available for DW_AT_decl_file. */
9696 setup_type_unit_groups (die, cu);
9697
9698 if (die->child != NULL)
9699 {
9700 child_die = die->child;
9701 while (child_die && child_die->tag)
9702 {
9703 process_die (child_die, cu);
9704 child_die = sibling_die (child_die);
9705 }
9706 }
9707 }
9708 \f
9709 /* DWO/DWP files.
9710
9711 http://gcc.gnu.org/wiki/DebugFission
9712 http://gcc.gnu.org/wiki/DebugFissionDWP
9713
9714 To simplify handling of both DWO files ("object" files with the DWARF info)
9715 and DWP files (a file with the DWOs packaged up into one file), we treat
9716 DWP files as having a collection of virtual DWO files. */
9717
9718 static hashval_t
9719 hash_dwo_file (const void *item)
9720 {
9721 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9722 hashval_t hash;
9723
9724 hash = htab_hash_string (dwo_file->dwo_name);
9725 if (dwo_file->comp_dir != NULL)
9726 hash += htab_hash_string (dwo_file->comp_dir);
9727 return hash;
9728 }
9729
9730 static int
9731 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9732 {
9733 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9734 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9735
9736 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9737 return 0;
9738 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9739 return lhs->comp_dir == rhs->comp_dir;
9740 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9741 }
9742
9743 /* Allocate a hash table for DWO files. */
9744
9745 static htab_t
9746 allocate_dwo_file_hash_table (void)
9747 {
9748 struct objfile *objfile = dwarf2_per_objfile->objfile;
9749
9750 return htab_create_alloc_ex (41,
9751 hash_dwo_file,
9752 eq_dwo_file,
9753 NULL,
9754 &objfile->objfile_obstack,
9755 hashtab_obstack_allocate,
9756 dummy_obstack_deallocate);
9757 }
9758
9759 /* Lookup DWO file DWO_NAME. */
9760
9761 static void **
9762 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9763 {
9764 struct dwo_file find_entry;
9765 void **slot;
9766
9767 if (dwarf2_per_objfile->dwo_files == NULL)
9768 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9769
9770 memset (&find_entry, 0, sizeof (find_entry));
9771 find_entry.dwo_name = dwo_name;
9772 find_entry.comp_dir = comp_dir;
9773 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9774
9775 return slot;
9776 }
9777
9778 static hashval_t
9779 hash_dwo_unit (const void *item)
9780 {
9781 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9782
9783 /* This drops the top 32 bits of the id, but is ok for a hash. */
9784 return dwo_unit->signature;
9785 }
9786
9787 static int
9788 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9789 {
9790 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9791 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9792
9793 /* The signature is assumed to be unique within the DWO file.
9794 So while object file CU dwo_id's always have the value zero,
9795 that's OK, assuming each object file DWO file has only one CU,
9796 and that's the rule for now. */
9797 return lhs->signature == rhs->signature;
9798 }
9799
9800 /* Allocate a hash table for DWO CUs,TUs.
9801 There is one of these tables for each of CUs,TUs for each DWO file. */
9802
9803 static htab_t
9804 allocate_dwo_unit_table (struct objfile *objfile)
9805 {
9806 /* Start out with a pretty small number.
9807 Generally DWO files contain only one CU and maybe some TUs. */
9808 return htab_create_alloc_ex (3,
9809 hash_dwo_unit,
9810 eq_dwo_unit,
9811 NULL,
9812 &objfile->objfile_obstack,
9813 hashtab_obstack_allocate,
9814 dummy_obstack_deallocate);
9815 }
9816
9817 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9818
9819 struct create_dwo_cu_data
9820 {
9821 struct dwo_file *dwo_file;
9822 struct dwo_unit dwo_unit;
9823 };
9824
9825 /* die_reader_func for create_dwo_cu. */
9826
9827 static void
9828 create_dwo_cu_reader (const struct die_reader_specs *reader,
9829 const gdb_byte *info_ptr,
9830 struct die_info *comp_unit_die,
9831 int has_children,
9832 void *datap)
9833 {
9834 struct dwarf2_cu *cu = reader->cu;
9835 sect_offset sect_off = cu->per_cu->sect_off;
9836 struct dwarf2_section_info *section = cu->per_cu->section;
9837 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9838 struct dwo_file *dwo_file = data->dwo_file;
9839 struct dwo_unit *dwo_unit = &data->dwo_unit;
9840 struct attribute *attr;
9841
9842 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9843 if (attr == NULL)
9844 {
9845 complaint (&symfile_complaints,
9846 _("Dwarf Error: debug entry at offset 0x%x is missing"
9847 " its dwo_id [in module %s]"),
9848 to_underlying (sect_off), dwo_file->dwo_name);
9849 return;
9850 }
9851
9852 dwo_unit->dwo_file = dwo_file;
9853 dwo_unit->signature = DW_UNSND (attr);
9854 dwo_unit->section = section;
9855 dwo_unit->sect_off = sect_off;
9856 dwo_unit->length = cu->per_cu->length;
9857
9858 if (dwarf_read_debug)
9859 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9860 to_underlying (sect_off),
9861 hex_string (dwo_unit->signature));
9862 }
9863
9864 /* Create the dwo_units for the CUs in a DWO_FILE.
9865 Note: This function processes DWO files only, not DWP files. */
9866
9867 static void
9868 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9869 htab_t &cus_htab)
9870 {
9871 struct objfile *objfile = dwarf2_per_objfile->objfile;
9872 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9873 const gdb_byte *info_ptr, *end_ptr;
9874
9875 dwarf2_read_section (objfile, &section);
9876 info_ptr = section.buffer;
9877
9878 if (info_ptr == NULL)
9879 return;
9880
9881 if (dwarf_read_debug)
9882 {
9883 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9884 get_section_name (&section),
9885 get_section_file_name (&section));
9886 }
9887
9888 end_ptr = info_ptr + section.size;
9889 while (info_ptr < end_ptr)
9890 {
9891 struct dwarf2_per_cu_data per_cu;
9892 struct create_dwo_cu_data create_dwo_cu_data;
9893 struct dwo_unit *dwo_unit;
9894 void **slot;
9895 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9896
9897 memset (&create_dwo_cu_data.dwo_unit, 0,
9898 sizeof (create_dwo_cu_data.dwo_unit));
9899 memset (&per_cu, 0, sizeof (per_cu));
9900 per_cu.objfile = objfile;
9901 per_cu.is_debug_types = 0;
9902 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9903 per_cu.section = &section;
9904 create_dwo_cu_data.dwo_file = &dwo_file;
9905
9906 init_cutu_and_read_dies_no_follow (
9907 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9908 info_ptr += per_cu.length;
9909
9910 // If the unit could not be parsed, skip it.
9911 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9912 continue;
9913
9914 if (cus_htab == NULL)
9915 cus_htab = allocate_dwo_unit_table (objfile);
9916
9917 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9918 *dwo_unit = create_dwo_cu_data.dwo_unit;
9919 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9920 gdb_assert (slot != NULL);
9921 if (*slot != NULL)
9922 {
9923 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9924 sect_offset dup_sect_off = dup_cu->sect_off;
9925
9926 complaint (&symfile_complaints,
9927 _("debug cu entry at offset 0x%x is duplicate to"
9928 " the entry at offset 0x%x, signature %s"),
9929 to_underlying (sect_off), to_underlying (dup_sect_off),
9930 hex_string (dwo_unit->signature));
9931 }
9932 *slot = (void *)dwo_unit;
9933 }
9934 }
9935
9936 /* DWP file .debug_{cu,tu}_index section format:
9937 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9938
9939 DWP Version 1:
9940
9941 Both index sections have the same format, and serve to map a 64-bit
9942 signature to a set of section numbers. Each section begins with a header,
9943 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9944 indexes, and a pool of 32-bit section numbers. The index sections will be
9945 aligned at 8-byte boundaries in the file.
9946
9947 The index section header consists of:
9948
9949 V, 32 bit version number
9950 -, 32 bits unused
9951 N, 32 bit number of compilation units or type units in the index
9952 M, 32 bit number of slots in the hash table
9953
9954 Numbers are recorded using the byte order of the application binary.
9955
9956 The hash table begins at offset 16 in the section, and consists of an array
9957 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9958 order of the application binary). Unused slots in the hash table are 0.
9959 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9960
9961 The parallel table begins immediately after the hash table
9962 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9963 array of 32-bit indexes (using the byte order of the application binary),
9964 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9965 table contains a 32-bit index into the pool of section numbers. For unused
9966 hash table slots, the corresponding entry in the parallel table will be 0.
9967
9968 The pool of section numbers begins immediately following the hash table
9969 (at offset 16 + 12 * M from the beginning of the section). The pool of
9970 section numbers consists of an array of 32-bit words (using the byte order
9971 of the application binary). Each item in the array is indexed starting
9972 from 0. The hash table entry provides the index of the first section
9973 number in the set. Additional section numbers in the set follow, and the
9974 set is terminated by a 0 entry (section number 0 is not used in ELF).
9975
9976 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9977 section must be the first entry in the set, and the .debug_abbrev.dwo must
9978 be the second entry. Other members of the set may follow in any order.
9979
9980 ---
9981
9982 DWP Version 2:
9983
9984 DWP Version 2 combines all the .debug_info, etc. sections into one,
9985 and the entries in the index tables are now offsets into these sections.
9986 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9987 section.
9988
9989 Index Section Contents:
9990 Header
9991 Hash Table of Signatures dwp_hash_table.hash_table
9992 Parallel Table of Indices dwp_hash_table.unit_table
9993 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9994 Table of Section Sizes dwp_hash_table.v2.sizes
9995
9996 The index section header consists of:
9997
9998 V, 32 bit version number
9999 L, 32 bit number of columns in the table of section offsets
10000 N, 32 bit number of compilation units or type units in the index
10001 M, 32 bit number of slots in the hash table
10002
10003 Numbers are recorded using the byte order of the application binary.
10004
10005 The hash table has the same format as version 1.
10006 The parallel table of indices has the same format as version 1,
10007 except that the entries are origin-1 indices into the table of sections
10008 offsets and the table of section sizes.
10009
10010 The table of offsets begins immediately following the parallel table
10011 (at offset 16 + 12 * M from the beginning of the section). The table is
10012 a two-dimensional array of 32-bit words (using the byte order of the
10013 application binary), with L columns and N+1 rows, in row-major order.
10014 Each row in the array is indexed starting from 0. The first row provides
10015 a key to the remaining rows: each column in this row provides an identifier
10016 for a debug section, and the offsets in the same column of subsequent rows
10017 refer to that section. The section identifiers are:
10018
10019 DW_SECT_INFO 1 .debug_info.dwo
10020 DW_SECT_TYPES 2 .debug_types.dwo
10021 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10022 DW_SECT_LINE 4 .debug_line.dwo
10023 DW_SECT_LOC 5 .debug_loc.dwo
10024 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10025 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10026 DW_SECT_MACRO 8 .debug_macro.dwo
10027
10028 The offsets provided by the CU and TU index sections are the base offsets
10029 for the contributions made by each CU or TU to the corresponding section
10030 in the package file. Each CU and TU header contains an abbrev_offset
10031 field, used to find the abbreviations table for that CU or TU within the
10032 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10033 be interpreted as relative to the base offset given in the index section.
10034 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10035 should be interpreted as relative to the base offset for .debug_line.dwo,
10036 and offsets into other debug sections obtained from DWARF attributes should
10037 also be interpreted as relative to the corresponding base offset.
10038
10039 The table of sizes begins immediately following the table of offsets.
10040 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10041 with L columns and N rows, in row-major order. Each row in the array is
10042 indexed starting from 1 (row 0 is shared by the two tables).
10043
10044 ---
10045
10046 Hash table lookup is handled the same in version 1 and 2:
10047
10048 We assume that N and M will not exceed 2^32 - 1.
10049 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10050
10051 Given a 64-bit compilation unit signature or a type signature S, an entry
10052 in the hash table is located as follows:
10053
10054 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10055 the low-order k bits all set to 1.
10056
10057 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10058
10059 3) If the hash table entry at index H matches the signature, use that
10060 entry. If the hash table entry at index H is unused (all zeroes),
10061 terminate the search: the signature is not present in the table.
10062
10063 4) Let H = (H + H') modulo M. Repeat at Step 3.
10064
10065 Because M > N and H' and M are relatively prime, the search is guaranteed
10066 to stop at an unused slot or find the match. */
10067
10068 /* Create a hash table to map DWO IDs to their CU/TU entry in
10069 .debug_{info,types}.dwo in DWP_FILE.
10070 Returns NULL if there isn't one.
10071 Note: This function processes DWP files only, not DWO files. */
10072
10073 static struct dwp_hash_table *
10074 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10075 {
10076 struct objfile *objfile = dwarf2_per_objfile->objfile;
10077 bfd *dbfd = dwp_file->dbfd;
10078 const gdb_byte *index_ptr, *index_end;
10079 struct dwarf2_section_info *index;
10080 uint32_t version, nr_columns, nr_units, nr_slots;
10081 struct dwp_hash_table *htab;
10082
10083 if (is_debug_types)
10084 index = &dwp_file->sections.tu_index;
10085 else
10086 index = &dwp_file->sections.cu_index;
10087
10088 if (dwarf2_section_empty_p (index))
10089 return NULL;
10090 dwarf2_read_section (objfile, index);
10091
10092 index_ptr = index->buffer;
10093 index_end = index_ptr + index->size;
10094
10095 version = read_4_bytes (dbfd, index_ptr);
10096 index_ptr += 4;
10097 if (version == 2)
10098 nr_columns = read_4_bytes (dbfd, index_ptr);
10099 else
10100 nr_columns = 0;
10101 index_ptr += 4;
10102 nr_units = read_4_bytes (dbfd, index_ptr);
10103 index_ptr += 4;
10104 nr_slots = read_4_bytes (dbfd, index_ptr);
10105 index_ptr += 4;
10106
10107 if (version != 1 && version != 2)
10108 {
10109 error (_("Dwarf Error: unsupported DWP file version (%s)"
10110 " [in module %s]"),
10111 pulongest (version), dwp_file->name);
10112 }
10113 if (nr_slots != (nr_slots & -nr_slots))
10114 {
10115 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10116 " is not power of 2 [in module %s]"),
10117 pulongest (nr_slots), dwp_file->name);
10118 }
10119
10120 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10121 htab->version = version;
10122 htab->nr_columns = nr_columns;
10123 htab->nr_units = nr_units;
10124 htab->nr_slots = nr_slots;
10125 htab->hash_table = index_ptr;
10126 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10127
10128 /* Exit early if the table is empty. */
10129 if (nr_slots == 0 || nr_units == 0
10130 || (version == 2 && nr_columns == 0))
10131 {
10132 /* All must be zero. */
10133 if (nr_slots != 0 || nr_units != 0
10134 || (version == 2 && nr_columns != 0))
10135 {
10136 complaint (&symfile_complaints,
10137 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10138 " all zero [in modules %s]"),
10139 dwp_file->name);
10140 }
10141 return htab;
10142 }
10143
10144 if (version == 1)
10145 {
10146 htab->section_pool.v1.indices =
10147 htab->unit_table + sizeof (uint32_t) * nr_slots;
10148 /* It's harder to decide whether the section is too small in v1.
10149 V1 is deprecated anyway so we punt. */
10150 }
10151 else
10152 {
10153 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10154 int *ids = htab->section_pool.v2.section_ids;
10155 /* Reverse map for error checking. */
10156 int ids_seen[DW_SECT_MAX + 1];
10157 int i;
10158
10159 if (nr_columns < 2)
10160 {
10161 error (_("Dwarf Error: bad DWP hash table, too few columns"
10162 " in section table [in module %s]"),
10163 dwp_file->name);
10164 }
10165 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10166 {
10167 error (_("Dwarf Error: bad DWP hash table, too many columns"
10168 " in section table [in module %s]"),
10169 dwp_file->name);
10170 }
10171 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10172 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10173 for (i = 0; i < nr_columns; ++i)
10174 {
10175 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10176
10177 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10178 {
10179 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10180 " in section table [in module %s]"),
10181 id, dwp_file->name);
10182 }
10183 if (ids_seen[id] != -1)
10184 {
10185 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10186 " id %d in section table [in module %s]"),
10187 id, dwp_file->name);
10188 }
10189 ids_seen[id] = i;
10190 ids[i] = id;
10191 }
10192 /* Must have exactly one info or types section. */
10193 if (((ids_seen[DW_SECT_INFO] != -1)
10194 + (ids_seen[DW_SECT_TYPES] != -1))
10195 != 1)
10196 {
10197 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10198 " DWO info/types section [in module %s]"),
10199 dwp_file->name);
10200 }
10201 /* Must have an abbrev section. */
10202 if (ids_seen[DW_SECT_ABBREV] == -1)
10203 {
10204 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10205 " section [in module %s]"),
10206 dwp_file->name);
10207 }
10208 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10209 htab->section_pool.v2.sizes =
10210 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10211 * nr_units * nr_columns);
10212 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10213 * nr_units * nr_columns))
10214 > index_end)
10215 {
10216 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10217 " [in module %s]"),
10218 dwp_file->name);
10219 }
10220 }
10221
10222 return htab;
10223 }
10224
10225 /* Update SECTIONS with the data from SECTP.
10226
10227 This function is like the other "locate" section routines that are
10228 passed to bfd_map_over_sections, but in this context the sections to
10229 read comes from the DWP V1 hash table, not the full ELF section table.
10230
10231 The result is non-zero for success, or zero if an error was found. */
10232
10233 static int
10234 locate_v1_virtual_dwo_sections (asection *sectp,
10235 struct virtual_v1_dwo_sections *sections)
10236 {
10237 const struct dwop_section_names *names = &dwop_section_names;
10238
10239 if (section_is_p (sectp->name, &names->abbrev_dwo))
10240 {
10241 /* There can be only one. */
10242 if (sections->abbrev.s.section != NULL)
10243 return 0;
10244 sections->abbrev.s.section = sectp;
10245 sections->abbrev.size = bfd_get_section_size (sectp);
10246 }
10247 else if (section_is_p (sectp->name, &names->info_dwo)
10248 || section_is_p (sectp->name, &names->types_dwo))
10249 {
10250 /* There can be only one. */
10251 if (sections->info_or_types.s.section != NULL)
10252 return 0;
10253 sections->info_or_types.s.section = sectp;
10254 sections->info_or_types.size = bfd_get_section_size (sectp);
10255 }
10256 else if (section_is_p (sectp->name, &names->line_dwo))
10257 {
10258 /* There can be only one. */
10259 if (sections->line.s.section != NULL)
10260 return 0;
10261 sections->line.s.section = sectp;
10262 sections->line.size = bfd_get_section_size (sectp);
10263 }
10264 else if (section_is_p (sectp->name, &names->loc_dwo))
10265 {
10266 /* There can be only one. */
10267 if (sections->loc.s.section != NULL)
10268 return 0;
10269 sections->loc.s.section = sectp;
10270 sections->loc.size = bfd_get_section_size (sectp);
10271 }
10272 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10273 {
10274 /* There can be only one. */
10275 if (sections->macinfo.s.section != NULL)
10276 return 0;
10277 sections->macinfo.s.section = sectp;
10278 sections->macinfo.size = bfd_get_section_size (sectp);
10279 }
10280 else if (section_is_p (sectp->name, &names->macro_dwo))
10281 {
10282 /* There can be only one. */
10283 if (sections->macro.s.section != NULL)
10284 return 0;
10285 sections->macro.s.section = sectp;
10286 sections->macro.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10289 {
10290 /* There can be only one. */
10291 if (sections->str_offsets.s.section != NULL)
10292 return 0;
10293 sections->str_offsets.s.section = sectp;
10294 sections->str_offsets.size = bfd_get_section_size (sectp);
10295 }
10296 else
10297 {
10298 /* No other kind of section is valid. */
10299 return 0;
10300 }
10301
10302 return 1;
10303 }
10304
10305 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10306 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10307 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10308 This is for DWP version 1 files. */
10309
10310 static struct dwo_unit *
10311 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10312 uint32_t unit_index,
10313 const char *comp_dir,
10314 ULONGEST signature, int is_debug_types)
10315 {
10316 struct objfile *objfile = dwarf2_per_objfile->objfile;
10317 const struct dwp_hash_table *dwp_htab =
10318 is_debug_types ? dwp_file->tus : dwp_file->cus;
10319 bfd *dbfd = dwp_file->dbfd;
10320 const char *kind = is_debug_types ? "TU" : "CU";
10321 struct dwo_file *dwo_file;
10322 struct dwo_unit *dwo_unit;
10323 struct virtual_v1_dwo_sections sections;
10324 void **dwo_file_slot;
10325 int i;
10326
10327 gdb_assert (dwp_file->version == 1);
10328
10329 if (dwarf_read_debug)
10330 {
10331 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10332 kind,
10333 pulongest (unit_index), hex_string (signature),
10334 dwp_file->name);
10335 }
10336
10337 /* Fetch the sections of this DWO unit.
10338 Put a limit on the number of sections we look for so that bad data
10339 doesn't cause us to loop forever. */
10340
10341 #define MAX_NR_V1_DWO_SECTIONS \
10342 (1 /* .debug_info or .debug_types */ \
10343 + 1 /* .debug_abbrev */ \
10344 + 1 /* .debug_line */ \
10345 + 1 /* .debug_loc */ \
10346 + 1 /* .debug_str_offsets */ \
10347 + 1 /* .debug_macro or .debug_macinfo */ \
10348 + 1 /* trailing zero */)
10349
10350 memset (&sections, 0, sizeof (sections));
10351
10352 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10353 {
10354 asection *sectp;
10355 uint32_t section_nr =
10356 read_4_bytes (dbfd,
10357 dwp_htab->section_pool.v1.indices
10358 + (unit_index + i) * sizeof (uint32_t));
10359
10360 if (section_nr == 0)
10361 break;
10362 if (section_nr >= dwp_file->num_sections)
10363 {
10364 error (_("Dwarf Error: bad DWP hash table, section number too large"
10365 " [in module %s]"),
10366 dwp_file->name);
10367 }
10368
10369 sectp = dwp_file->elf_sections[section_nr];
10370 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10371 {
10372 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10373 " [in module %s]"),
10374 dwp_file->name);
10375 }
10376 }
10377
10378 if (i < 2
10379 || dwarf2_section_empty_p (&sections.info_or_types)
10380 || dwarf2_section_empty_p (&sections.abbrev))
10381 {
10382 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10383 " [in module %s]"),
10384 dwp_file->name);
10385 }
10386 if (i == MAX_NR_V1_DWO_SECTIONS)
10387 {
10388 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10389 " [in module %s]"),
10390 dwp_file->name);
10391 }
10392
10393 /* It's easier for the rest of the code if we fake a struct dwo_file and
10394 have dwo_unit "live" in that. At least for now.
10395
10396 The DWP file can be made up of a random collection of CUs and TUs.
10397 However, for each CU + set of TUs that came from the same original DWO
10398 file, we can combine them back into a virtual DWO file to save space
10399 (fewer struct dwo_file objects to allocate). Remember that for really
10400 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10401
10402 std::string virtual_dwo_name =
10403 string_printf ("virtual-dwo/%d-%d-%d-%d",
10404 get_section_id (&sections.abbrev),
10405 get_section_id (&sections.line),
10406 get_section_id (&sections.loc),
10407 get_section_id (&sections.str_offsets));
10408 /* Can we use an existing virtual DWO file? */
10409 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10410 /* Create one if necessary. */
10411 if (*dwo_file_slot == NULL)
10412 {
10413 if (dwarf_read_debug)
10414 {
10415 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10416 virtual_dwo_name.c_str ());
10417 }
10418 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10419 dwo_file->dwo_name
10420 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10421 virtual_dwo_name.c_str (),
10422 virtual_dwo_name.size ());
10423 dwo_file->comp_dir = comp_dir;
10424 dwo_file->sections.abbrev = sections.abbrev;
10425 dwo_file->sections.line = sections.line;
10426 dwo_file->sections.loc = sections.loc;
10427 dwo_file->sections.macinfo = sections.macinfo;
10428 dwo_file->sections.macro = sections.macro;
10429 dwo_file->sections.str_offsets = sections.str_offsets;
10430 /* The "str" section is global to the entire DWP file. */
10431 dwo_file->sections.str = dwp_file->sections.str;
10432 /* The info or types section is assigned below to dwo_unit,
10433 there's no need to record it in dwo_file.
10434 Also, we can't simply record type sections in dwo_file because
10435 we record a pointer into the vector in dwo_unit. As we collect more
10436 types we'll grow the vector and eventually have to reallocate space
10437 for it, invalidating all copies of pointers into the previous
10438 contents. */
10439 *dwo_file_slot = dwo_file;
10440 }
10441 else
10442 {
10443 if (dwarf_read_debug)
10444 {
10445 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10446 virtual_dwo_name.c_str ());
10447 }
10448 dwo_file = (struct dwo_file *) *dwo_file_slot;
10449 }
10450
10451 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10452 dwo_unit->dwo_file = dwo_file;
10453 dwo_unit->signature = signature;
10454 dwo_unit->section =
10455 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10456 *dwo_unit->section = sections.info_or_types;
10457 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10458
10459 return dwo_unit;
10460 }
10461
10462 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10463 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10464 piece within that section used by a TU/CU, return a virtual section
10465 of just that piece. */
10466
10467 static struct dwarf2_section_info
10468 create_dwp_v2_section (struct dwarf2_section_info *section,
10469 bfd_size_type offset, bfd_size_type size)
10470 {
10471 struct dwarf2_section_info result;
10472 asection *sectp;
10473
10474 gdb_assert (section != NULL);
10475 gdb_assert (!section->is_virtual);
10476
10477 memset (&result, 0, sizeof (result));
10478 result.s.containing_section = section;
10479 result.is_virtual = 1;
10480
10481 if (size == 0)
10482 return result;
10483
10484 sectp = get_section_bfd_section (section);
10485
10486 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10487 bounds of the real section. This is a pretty-rare event, so just
10488 flag an error (easier) instead of a warning and trying to cope. */
10489 if (sectp == NULL
10490 || offset + size > bfd_get_section_size (sectp))
10491 {
10492 bfd *abfd = sectp->owner;
10493
10494 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10495 " in section %s [in module %s]"),
10496 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10497 objfile_name (dwarf2_per_objfile->objfile));
10498 }
10499
10500 result.virtual_offset = offset;
10501 result.size = size;
10502 return result;
10503 }
10504
10505 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10506 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10507 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10508 This is for DWP version 2 files. */
10509
10510 static struct dwo_unit *
10511 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10512 uint32_t unit_index,
10513 const char *comp_dir,
10514 ULONGEST signature, int is_debug_types)
10515 {
10516 struct objfile *objfile = dwarf2_per_objfile->objfile;
10517 const struct dwp_hash_table *dwp_htab =
10518 is_debug_types ? dwp_file->tus : dwp_file->cus;
10519 bfd *dbfd = dwp_file->dbfd;
10520 const char *kind = is_debug_types ? "TU" : "CU";
10521 struct dwo_file *dwo_file;
10522 struct dwo_unit *dwo_unit;
10523 struct virtual_v2_dwo_sections sections;
10524 void **dwo_file_slot;
10525 int i;
10526
10527 gdb_assert (dwp_file->version == 2);
10528
10529 if (dwarf_read_debug)
10530 {
10531 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10532 kind,
10533 pulongest (unit_index), hex_string (signature),
10534 dwp_file->name);
10535 }
10536
10537 /* Fetch the section offsets of this DWO unit. */
10538
10539 memset (&sections, 0, sizeof (sections));
10540
10541 for (i = 0; i < dwp_htab->nr_columns; ++i)
10542 {
10543 uint32_t offset = read_4_bytes (dbfd,
10544 dwp_htab->section_pool.v2.offsets
10545 + (((unit_index - 1) * dwp_htab->nr_columns
10546 + i)
10547 * sizeof (uint32_t)));
10548 uint32_t size = read_4_bytes (dbfd,
10549 dwp_htab->section_pool.v2.sizes
10550 + (((unit_index - 1) * dwp_htab->nr_columns
10551 + i)
10552 * sizeof (uint32_t)));
10553
10554 switch (dwp_htab->section_pool.v2.section_ids[i])
10555 {
10556 case DW_SECT_INFO:
10557 case DW_SECT_TYPES:
10558 sections.info_or_types_offset = offset;
10559 sections.info_or_types_size = size;
10560 break;
10561 case DW_SECT_ABBREV:
10562 sections.abbrev_offset = offset;
10563 sections.abbrev_size = size;
10564 break;
10565 case DW_SECT_LINE:
10566 sections.line_offset = offset;
10567 sections.line_size = size;
10568 break;
10569 case DW_SECT_LOC:
10570 sections.loc_offset = offset;
10571 sections.loc_size = size;
10572 break;
10573 case DW_SECT_STR_OFFSETS:
10574 sections.str_offsets_offset = offset;
10575 sections.str_offsets_size = size;
10576 break;
10577 case DW_SECT_MACINFO:
10578 sections.macinfo_offset = offset;
10579 sections.macinfo_size = size;
10580 break;
10581 case DW_SECT_MACRO:
10582 sections.macro_offset = offset;
10583 sections.macro_size = size;
10584 break;
10585 }
10586 }
10587
10588 /* It's easier for the rest of the code if we fake a struct dwo_file and
10589 have dwo_unit "live" in that. At least for now.
10590
10591 The DWP file can be made up of a random collection of CUs and TUs.
10592 However, for each CU + set of TUs that came from the same original DWO
10593 file, we can combine them back into a virtual DWO file to save space
10594 (fewer struct dwo_file objects to allocate). Remember that for really
10595 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10596
10597 std::string virtual_dwo_name =
10598 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
10599 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10600 (long) (sections.line_size ? sections.line_offset : 0),
10601 (long) (sections.loc_size ? sections.loc_offset : 0),
10602 (long) (sections.str_offsets_size
10603 ? sections.str_offsets_offset : 0));
10604 /* Can we use an existing virtual DWO file? */
10605 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10606 /* Create one if necessary. */
10607 if (*dwo_file_slot == NULL)
10608 {
10609 if (dwarf_read_debug)
10610 {
10611 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10612 virtual_dwo_name.c_str ());
10613 }
10614 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10615 dwo_file->dwo_name
10616 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10617 virtual_dwo_name.c_str (),
10618 virtual_dwo_name.size ());
10619 dwo_file->comp_dir = comp_dir;
10620 dwo_file->sections.abbrev =
10621 create_dwp_v2_section (&dwp_file->sections.abbrev,
10622 sections.abbrev_offset, sections.abbrev_size);
10623 dwo_file->sections.line =
10624 create_dwp_v2_section (&dwp_file->sections.line,
10625 sections.line_offset, sections.line_size);
10626 dwo_file->sections.loc =
10627 create_dwp_v2_section (&dwp_file->sections.loc,
10628 sections.loc_offset, sections.loc_size);
10629 dwo_file->sections.macinfo =
10630 create_dwp_v2_section (&dwp_file->sections.macinfo,
10631 sections.macinfo_offset, sections.macinfo_size);
10632 dwo_file->sections.macro =
10633 create_dwp_v2_section (&dwp_file->sections.macro,
10634 sections.macro_offset, sections.macro_size);
10635 dwo_file->sections.str_offsets =
10636 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10637 sections.str_offsets_offset,
10638 sections.str_offsets_size);
10639 /* The "str" section is global to the entire DWP file. */
10640 dwo_file->sections.str = dwp_file->sections.str;
10641 /* The info or types section is assigned below to dwo_unit,
10642 there's no need to record it in dwo_file.
10643 Also, we can't simply record type sections in dwo_file because
10644 we record a pointer into the vector in dwo_unit. As we collect more
10645 types we'll grow the vector and eventually have to reallocate space
10646 for it, invalidating all copies of pointers into the previous
10647 contents. */
10648 *dwo_file_slot = dwo_file;
10649 }
10650 else
10651 {
10652 if (dwarf_read_debug)
10653 {
10654 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10655 virtual_dwo_name.c_str ());
10656 }
10657 dwo_file = (struct dwo_file *) *dwo_file_slot;
10658 }
10659
10660 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10661 dwo_unit->dwo_file = dwo_file;
10662 dwo_unit->signature = signature;
10663 dwo_unit->section =
10664 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10665 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10666 ? &dwp_file->sections.types
10667 : &dwp_file->sections.info,
10668 sections.info_or_types_offset,
10669 sections.info_or_types_size);
10670 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10671
10672 return dwo_unit;
10673 }
10674
10675 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10676 Returns NULL if the signature isn't found. */
10677
10678 static struct dwo_unit *
10679 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10680 ULONGEST signature, int is_debug_types)
10681 {
10682 const struct dwp_hash_table *dwp_htab =
10683 is_debug_types ? dwp_file->tus : dwp_file->cus;
10684 bfd *dbfd = dwp_file->dbfd;
10685 uint32_t mask = dwp_htab->nr_slots - 1;
10686 uint32_t hash = signature & mask;
10687 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10688 unsigned int i;
10689 void **slot;
10690 struct dwo_unit find_dwo_cu;
10691
10692 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10693 find_dwo_cu.signature = signature;
10694 slot = htab_find_slot (is_debug_types
10695 ? dwp_file->loaded_tus
10696 : dwp_file->loaded_cus,
10697 &find_dwo_cu, INSERT);
10698
10699 if (*slot != NULL)
10700 return (struct dwo_unit *) *slot;
10701
10702 /* Use a for loop so that we don't loop forever on bad debug info. */
10703 for (i = 0; i < dwp_htab->nr_slots; ++i)
10704 {
10705 ULONGEST signature_in_table;
10706
10707 signature_in_table =
10708 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10709 if (signature_in_table == signature)
10710 {
10711 uint32_t unit_index =
10712 read_4_bytes (dbfd,
10713 dwp_htab->unit_table + hash * sizeof (uint32_t));
10714
10715 if (dwp_file->version == 1)
10716 {
10717 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10718 comp_dir, signature,
10719 is_debug_types);
10720 }
10721 else
10722 {
10723 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10724 comp_dir, signature,
10725 is_debug_types);
10726 }
10727 return (struct dwo_unit *) *slot;
10728 }
10729 if (signature_in_table == 0)
10730 return NULL;
10731 hash = (hash + hash2) & mask;
10732 }
10733
10734 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10735 " [in module %s]"),
10736 dwp_file->name);
10737 }
10738
10739 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10740 Open the file specified by FILE_NAME and hand it off to BFD for
10741 preliminary analysis. Return a newly initialized bfd *, which
10742 includes a canonicalized copy of FILE_NAME.
10743 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10744 SEARCH_CWD is true if the current directory is to be searched.
10745 It will be searched before debug-file-directory.
10746 If successful, the file is added to the bfd include table of the
10747 objfile's bfd (see gdb_bfd_record_inclusion).
10748 If unable to find/open the file, return NULL.
10749 NOTE: This function is derived from symfile_bfd_open. */
10750
10751 static gdb_bfd_ref_ptr
10752 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10753 {
10754 int desc, flags;
10755 char *absolute_name;
10756 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10757 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10758 to debug_file_directory. */
10759 char *search_path;
10760 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10761
10762 if (search_cwd)
10763 {
10764 if (*debug_file_directory != '\0')
10765 search_path = concat (".", dirname_separator_string,
10766 debug_file_directory, (char *) NULL);
10767 else
10768 search_path = xstrdup (".");
10769 }
10770 else
10771 search_path = xstrdup (debug_file_directory);
10772
10773 flags = OPF_RETURN_REALPATH;
10774 if (is_dwp)
10775 flags |= OPF_SEARCH_IN_PATH;
10776 desc = openp (search_path, flags, file_name,
10777 O_RDONLY | O_BINARY, &absolute_name);
10778 xfree (search_path);
10779 if (desc < 0)
10780 return NULL;
10781
10782 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10783 xfree (absolute_name);
10784 if (sym_bfd == NULL)
10785 return NULL;
10786 bfd_set_cacheable (sym_bfd.get (), 1);
10787
10788 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10789 return NULL;
10790
10791 /* Success. Record the bfd as having been included by the objfile's bfd.
10792 This is important because things like demangled_names_hash lives in the
10793 objfile's per_bfd space and may have references to things like symbol
10794 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10795 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10796
10797 return sym_bfd;
10798 }
10799
10800 /* Try to open DWO file FILE_NAME.
10801 COMP_DIR is the DW_AT_comp_dir attribute.
10802 The result is the bfd handle of the file.
10803 If there is a problem finding or opening the file, return NULL.
10804 Upon success, the canonicalized path of the file is stored in the bfd,
10805 same as symfile_bfd_open. */
10806
10807 static gdb_bfd_ref_ptr
10808 open_dwo_file (const char *file_name, const char *comp_dir)
10809 {
10810 if (IS_ABSOLUTE_PATH (file_name))
10811 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10812
10813 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10814
10815 if (comp_dir != NULL)
10816 {
10817 char *path_to_try = concat (comp_dir, SLASH_STRING,
10818 file_name, (char *) NULL);
10819
10820 /* NOTE: If comp_dir is a relative path, this will also try the
10821 search path, which seems useful. */
10822 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10823 1 /*search_cwd*/));
10824 xfree (path_to_try);
10825 if (abfd != NULL)
10826 return abfd;
10827 }
10828
10829 /* That didn't work, try debug-file-directory, which, despite its name,
10830 is a list of paths. */
10831
10832 if (*debug_file_directory == '\0')
10833 return NULL;
10834
10835 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10836 }
10837
10838 /* This function is mapped across the sections and remembers the offset and
10839 size of each of the DWO debugging sections we are interested in. */
10840
10841 static void
10842 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10843 {
10844 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10845 const struct dwop_section_names *names = &dwop_section_names;
10846
10847 if (section_is_p (sectp->name, &names->abbrev_dwo))
10848 {
10849 dwo_sections->abbrev.s.section = sectp;
10850 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10851 }
10852 else if (section_is_p (sectp->name, &names->info_dwo))
10853 {
10854 dwo_sections->info.s.section = sectp;
10855 dwo_sections->info.size = bfd_get_section_size (sectp);
10856 }
10857 else if (section_is_p (sectp->name, &names->line_dwo))
10858 {
10859 dwo_sections->line.s.section = sectp;
10860 dwo_sections->line.size = bfd_get_section_size (sectp);
10861 }
10862 else if (section_is_p (sectp->name, &names->loc_dwo))
10863 {
10864 dwo_sections->loc.s.section = sectp;
10865 dwo_sections->loc.size = bfd_get_section_size (sectp);
10866 }
10867 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10868 {
10869 dwo_sections->macinfo.s.section = sectp;
10870 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10871 }
10872 else if (section_is_p (sectp->name, &names->macro_dwo))
10873 {
10874 dwo_sections->macro.s.section = sectp;
10875 dwo_sections->macro.size = bfd_get_section_size (sectp);
10876 }
10877 else if (section_is_p (sectp->name, &names->str_dwo))
10878 {
10879 dwo_sections->str.s.section = sectp;
10880 dwo_sections->str.size = bfd_get_section_size (sectp);
10881 }
10882 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10883 {
10884 dwo_sections->str_offsets.s.section = sectp;
10885 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10886 }
10887 else if (section_is_p (sectp->name, &names->types_dwo))
10888 {
10889 struct dwarf2_section_info type_section;
10890
10891 memset (&type_section, 0, sizeof (type_section));
10892 type_section.s.section = sectp;
10893 type_section.size = bfd_get_section_size (sectp);
10894 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10895 &type_section);
10896 }
10897 }
10898
10899 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10900 by PER_CU. This is for the non-DWP case.
10901 The result is NULL if DWO_NAME can't be found. */
10902
10903 static struct dwo_file *
10904 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10905 const char *dwo_name, const char *comp_dir)
10906 {
10907 struct objfile *objfile = dwarf2_per_objfile->objfile;
10908 struct dwo_file *dwo_file;
10909 struct cleanup *cleanups;
10910
10911 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10912 if (dbfd == NULL)
10913 {
10914 if (dwarf_read_debug)
10915 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10916 return NULL;
10917 }
10918 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10919 dwo_file->dwo_name = dwo_name;
10920 dwo_file->comp_dir = comp_dir;
10921 dwo_file->dbfd = dbfd.release ();
10922
10923 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10924
10925 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10926 &dwo_file->sections);
10927
10928 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10929
10930 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10931 dwo_file->tus);
10932
10933 discard_cleanups (cleanups);
10934
10935 if (dwarf_read_debug)
10936 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10937
10938 return dwo_file;
10939 }
10940
10941 /* This function is mapped across the sections and remembers the offset and
10942 size of each of the DWP debugging sections common to version 1 and 2 that
10943 we are interested in. */
10944
10945 static void
10946 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10947 void *dwp_file_ptr)
10948 {
10949 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10950 const struct dwop_section_names *names = &dwop_section_names;
10951 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10952
10953 /* Record the ELF section number for later lookup: this is what the
10954 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10955 gdb_assert (elf_section_nr < dwp_file->num_sections);
10956 dwp_file->elf_sections[elf_section_nr] = sectp;
10957
10958 /* Look for specific sections that we need. */
10959 if (section_is_p (sectp->name, &names->str_dwo))
10960 {
10961 dwp_file->sections.str.s.section = sectp;
10962 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10963 }
10964 else if (section_is_p (sectp->name, &names->cu_index))
10965 {
10966 dwp_file->sections.cu_index.s.section = sectp;
10967 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10968 }
10969 else if (section_is_p (sectp->name, &names->tu_index))
10970 {
10971 dwp_file->sections.tu_index.s.section = sectp;
10972 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10973 }
10974 }
10975
10976 /* This function is mapped across the sections and remembers the offset and
10977 size of each of the DWP version 2 debugging sections that we are interested
10978 in. This is split into a separate function because we don't know if we
10979 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10980
10981 static void
10982 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10983 {
10984 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10985 const struct dwop_section_names *names = &dwop_section_names;
10986 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10987
10988 /* Record the ELF section number for later lookup: this is what the
10989 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10990 gdb_assert (elf_section_nr < dwp_file->num_sections);
10991 dwp_file->elf_sections[elf_section_nr] = sectp;
10992
10993 /* Look for specific sections that we need. */
10994 if (section_is_p (sectp->name, &names->abbrev_dwo))
10995 {
10996 dwp_file->sections.abbrev.s.section = sectp;
10997 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10998 }
10999 else if (section_is_p (sectp->name, &names->info_dwo))
11000 {
11001 dwp_file->sections.info.s.section = sectp;
11002 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11003 }
11004 else if (section_is_p (sectp->name, &names->line_dwo))
11005 {
11006 dwp_file->sections.line.s.section = sectp;
11007 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11008 }
11009 else if (section_is_p (sectp->name, &names->loc_dwo))
11010 {
11011 dwp_file->sections.loc.s.section = sectp;
11012 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11013 }
11014 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11015 {
11016 dwp_file->sections.macinfo.s.section = sectp;
11017 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11018 }
11019 else if (section_is_p (sectp->name, &names->macro_dwo))
11020 {
11021 dwp_file->sections.macro.s.section = sectp;
11022 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11023 }
11024 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11025 {
11026 dwp_file->sections.str_offsets.s.section = sectp;
11027 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11028 }
11029 else if (section_is_p (sectp->name, &names->types_dwo))
11030 {
11031 dwp_file->sections.types.s.section = sectp;
11032 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11033 }
11034 }
11035
11036 /* Hash function for dwp_file loaded CUs/TUs. */
11037
11038 static hashval_t
11039 hash_dwp_loaded_cutus (const void *item)
11040 {
11041 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11042
11043 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11044 return dwo_unit->signature;
11045 }
11046
11047 /* Equality function for dwp_file loaded CUs/TUs. */
11048
11049 static int
11050 eq_dwp_loaded_cutus (const void *a, const void *b)
11051 {
11052 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11053 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11054
11055 return dua->signature == dub->signature;
11056 }
11057
11058 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11059
11060 static htab_t
11061 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11062 {
11063 return htab_create_alloc_ex (3,
11064 hash_dwp_loaded_cutus,
11065 eq_dwp_loaded_cutus,
11066 NULL,
11067 &objfile->objfile_obstack,
11068 hashtab_obstack_allocate,
11069 dummy_obstack_deallocate);
11070 }
11071
11072 /* Try to open DWP file FILE_NAME.
11073 The result is the bfd handle of the file.
11074 If there is a problem finding or opening the file, return NULL.
11075 Upon success, the canonicalized path of the file is stored in the bfd,
11076 same as symfile_bfd_open. */
11077
11078 static gdb_bfd_ref_ptr
11079 open_dwp_file (const char *file_name)
11080 {
11081 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11082 1 /*search_cwd*/));
11083 if (abfd != NULL)
11084 return abfd;
11085
11086 /* Work around upstream bug 15652.
11087 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11088 [Whether that's a "bug" is debatable, but it is getting in our way.]
11089 We have no real idea where the dwp file is, because gdb's realpath-ing
11090 of the executable's path may have discarded the needed info.
11091 [IWBN if the dwp file name was recorded in the executable, akin to
11092 .gnu_debuglink, but that doesn't exist yet.]
11093 Strip the directory from FILE_NAME and search again. */
11094 if (*debug_file_directory != '\0')
11095 {
11096 /* Don't implicitly search the current directory here.
11097 If the user wants to search "." to handle this case,
11098 it must be added to debug-file-directory. */
11099 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11100 0 /*search_cwd*/);
11101 }
11102
11103 return NULL;
11104 }
11105
11106 /* Initialize the use of the DWP file for the current objfile.
11107 By convention the name of the DWP file is ${objfile}.dwp.
11108 The result is NULL if it can't be found. */
11109
11110 static struct dwp_file *
11111 open_and_init_dwp_file (void)
11112 {
11113 struct objfile *objfile = dwarf2_per_objfile->objfile;
11114 struct dwp_file *dwp_file;
11115
11116 /* Try to find first .dwp for the binary file before any symbolic links
11117 resolving. */
11118
11119 /* If the objfile is a debug file, find the name of the real binary
11120 file and get the name of dwp file from there. */
11121 std::string dwp_name;
11122 if (objfile->separate_debug_objfile_backlink != NULL)
11123 {
11124 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11125 const char *backlink_basename = lbasename (backlink->original_name);
11126
11127 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11128 }
11129 else
11130 dwp_name = objfile->original_name;
11131
11132 dwp_name += ".dwp";
11133
11134 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11135 if (dbfd == NULL
11136 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11137 {
11138 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11139 dwp_name = objfile_name (objfile);
11140 dwp_name += ".dwp";
11141 dbfd = open_dwp_file (dwp_name.c_str ());
11142 }
11143
11144 if (dbfd == NULL)
11145 {
11146 if (dwarf_read_debug)
11147 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11148 return NULL;
11149 }
11150 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11151 dwp_file->name = bfd_get_filename (dbfd.get ());
11152 dwp_file->dbfd = dbfd.release ();
11153
11154 /* +1: section 0 is unused */
11155 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11156 dwp_file->elf_sections =
11157 OBSTACK_CALLOC (&objfile->objfile_obstack,
11158 dwp_file->num_sections, asection *);
11159
11160 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11161 dwp_file);
11162
11163 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11164
11165 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11166
11167 /* The DWP file version is stored in the hash table. Oh well. */
11168 if (dwp_file->cus && dwp_file->tus
11169 && dwp_file->cus->version != dwp_file->tus->version)
11170 {
11171 /* Technically speaking, we should try to limp along, but this is
11172 pretty bizarre. We use pulongest here because that's the established
11173 portability solution (e.g, we cannot use %u for uint32_t). */
11174 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11175 " TU version %s [in DWP file %s]"),
11176 pulongest (dwp_file->cus->version),
11177 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11178 }
11179
11180 if (dwp_file->cus)
11181 dwp_file->version = dwp_file->cus->version;
11182 else if (dwp_file->tus)
11183 dwp_file->version = dwp_file->tus->version;
11184 else
11185 dwp_file->version = 2;
11186
11187 if (dwp_file->version == 2)
11188 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11189 dwp_file);
11190
11191 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11192 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11193
11194 if (dwarf_read_debug)
11195 {
11196 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11197 fprintf_unfiltered (gdb_stdlog,
11198 " %s CUs, %s TUs\n",
11199 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11200 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11201 }
11202
11203 return dwp_file;
11204 }
11205
11206 /* Wrapper around open_and_init_dwp_file, only open it once. */
11207
11208 static struct dwp_file *
11209 get_dwp_file (void)
11210 {
11211 if (! dwarf2_per_objfile->dwp_checked)
11212 {
11213 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11214 dwarf2_per_objfile->dwp_checked = 1;
11215 }
11216 return dwarf2_per_objfile->dwp_file;
11217 }
11218
11219 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11220 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11221 or in the DWP file for the objfile, referenced by THIS_UNIT.
11222 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11223 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11224
11225 This is called, for example, when wanting to read a variable with a
11226 complex location. Therefore we don't want to do file i/o for every call.
11227 Therefore we don't want to look for a DWO file on every call.
11228 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11229 then we check if we've already seen DWO_NAME, and only THEN do we check
11230 for a DWO file.
11231
11232 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11233 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11234
11235 static struct dwo_unit *
11236 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11237 const char *dwo_name, const char *comp_dir,
11238 ULONGEST signature, int is_debug_types)
11239 {
11240 struct objfile *objfile = dwarf2_per_objfile->objfile;
11241 const char *kind = is_debug_types ? "TU" : "CU";
11242 void **dwo_file_slot;
11243 struct dwo_file *dwo_file;
11244 struct dwp_file *dwp_file;
11245
11246 /* First see if there's a DWP file.
11247 If we have a DWP file but didn't find the DWO inside it, don't
11248 look for the original DWO file. It makes gdb behave differently
11249 depending on whether one is debugging in the build tree. */
11250
11251 dwp_file = get_dwp_file ();
11252 if (dwp_file != NULL)
11253 {
11254 const struct dwp_hash_table *dwp_htab =
11255 is_debug_types ? dwp_file->tus : dwp_file->cus;
11256
11257 if (dwp_htab != NULL)
11258 {
11259 struct dwo_unit *dwo_cutu =
11260 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11261 signature, is_debug_types);
11262
11263 if (dwo_cutu != NULL)
11264 {
11265 if (dwarf_read_debug)
11266 {
11267 fprintf_unfiltered (gdb_stdlog,
11268 "Virtual DWO %s %s found: @%s\n",
11269 kind, hex_string (signature),
11270 host_address_to_string (dwo_cutu));
11271 }
11272 return dwo_cutu;
11273 }
11274 }
11275 }
11276 else
11277 {
11278 /* No DWP file, look for the DWO file. */
11279
11280 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11281 if (*dwo_file_slot == NULL)
11282 {
11283 /* Read in the file and build a table of the CUs/TUs it contains. */
11284 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11285 }
11286 /* NOTE: This will be NULL if unable to open the file. */
11287 dwo_file = (struct dwo_file *) *dwo_file_slot;
11288
11289 if (dwo_file != NULL)
11290 {
11291 struct dwo_unit *dwo_cutu = NULL;
11292
11293 if (is_debug_types && dwo_file->tus)
11294 {
11295 struct dwo_unit find_dwo_cutu;
11296
11297 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11298 find_dwo_cutu.signature = signature;
11299 dwo_cutu
11300 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11301 }
11302 else if (!is_debug_types && dwo_file->cus)
11303 {
11304 struct dwo_unit find_dwo_cutu;
11305
11306 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11307 find_dwo_cutu.signature = signature;
11308 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11309 &find_dwo_cutu);
11310 }
11311
11312 if (dwo_cutu != NULL)
11313 {
11314 if (dwarf_read_debug)
11315 {
11316 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11317 kind, dwo_name, hex_string (signature),
11318 host_address_to_string (dwo_cutu));
11319 }
11320 return dwo_cutu;
11321 }
11322 }
11323 }
11324
11325 /* We didn't find it. This could mean a dwo_id mismatch, or
11326 someone deleted the DWO/DWP file, or the search path isn't set up
11327 correctly to find the file. */
11328
11329 if (dwarf_read_debug)
11330 {
11331 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11332 kind, dwo_name, hex_string (signature));
11333 }
11334
11335 /* This is a warning and not a complaint because it can be caused by
11336 pilot error (e.g., user accidentally deleting the DWO). */
11337 {
11338 /* Print the name of the DWP file if we looked there, helps the user
11339 better diagnose the problem. */
11340 std::string dwp_text;
11341
11342 if (dwp_file != NULL)
11343 dwp_text = string_printf (" [in DWP file %s]",
11344 lbasename (dwp_file->name));
11345
11346 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11347 " [in module %s]"),
11348 kind, dwo_name, hex_string (signature),
11349 dwp_text.c_str (),
11350 this_unit->is_debug_types ? "TU" : "CU",
11351 to_underlying (this_unit->sect_off), objfile_name (objfile));
11352 }
11353 return NULL;
11354 }
11355
11356 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11357 See lookup_dwo_cutu_unit for details. */
11358
11359 static struct dwo_unit *
11360 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11361 const char *dwo_name, const char *comp_dir,
11362 ULONGEST signature)
11363 {
11364 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11365 }
11366
11367 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11368 See lookup_dwo_cutu_unit for details. */
11369
11370 static struct dwo_unit *
11371 lookup_dwo_type_unit (struct signatured_type *this_tu,
11372 const char *dwo_name, const char *comp_dir)
11373 {
11374 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11375 }
11376
11377 /* Traversal function for queue_and_load_all_dwo_tus. */
11378
11379 static int
11380 queue_and_load_dwo_tu (void **slot, void *info)
11381 {
11382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11383 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11384 ULONGEST signature = dwo_unit->signature;
11385 struct signatured_type *sig_type =
11386 lookup_dwo_signatured_type (per_cu->cu, signature);
11387
11388 if (sig_type != NULL)
11389 {
11390 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11391
11392 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11393 a real dependency of PER_CU on SIG_TYPE. That is detected later
11394 while processing PER_CU. */
11395 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11396 load_full_type_unit (sig_cu);
11397 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11398 }
11399
11400 return 1;
11401 }
11402
11403 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11404 The DWO may have the only definition of the type, though it may not be
11405 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11406 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11407
11408 static void
11409 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11410 {
11411 struct dwo_unit *dwo_unit;
11412 struct dwo_file *dwo_file;
11413
11414 gdb_assert (!per_cu->is_debug_types);
11415 gdb_assert (get_dwp_file () == NULL);
11416 gdb_assert (per_cu->cu != NULL);
11417
11418 dwo_unit = per_cu->cu->dwo_unit;
11419 gdb_assert (dwo_unit != NULL);
11420
11421 dwo_file = dwo_unit->dwo_file;
11422 if (dwo_file->tus != NULL)
11423 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11424 }
11425
11426 /* Free all resources associated with DWO_FILE.
11427 Close the DWO file and munmap the sections.
11428 All memory should be on the objfile obstack. */
11429
11430 static void
11431 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11432 {
11433
11434 /* Note: dbfd is NULL for virtual DWO files. */
11435 gdb_bfd_unref (dwo_file->dbfd);
11436
11437 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11438 }
11439
11440 /* Wrapper for free_dwo_file for use in cleanups. */
11441
11442 static void
11443 free_dwo_file_cleanup (void *arg)
11444 {
11445 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11446 struct objfile *objfile = dwarf2_per_objfile->objfile;
11447
11448 free_dwo_file (dwo_file, objfile);
11449 }
11450
11451 /* Traversal function for free_dwo_files. */
11452
11453 static int
11454 free_dwo_file_from_slot (void **slot, void *info)
11455 {
11456 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11457 struct objfile *objfile = (struct objfile *) info;
11458
11459 free_dwo_file (dwo_file, objfile);
11460
11461 return 1;
11462 }
11463
11464 /* Free all resources associated with DWO_FILES. */
11465
11466 static void
11467 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11468 {
11469 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11470 }
11471 \f
11472 /* Read in various DIEs. */
11473
11474 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11475 Inherit only the children of the DW_AT_abstract_origin DIE not being
11476 already referenced by DW_AT_abstract_origin from the children of the
11477 current DIE. */
11478
11479 static void
11480 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11481 {
11482 struct die_info *child_die;
11483 sect_offset *offsetp;
11484 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11485 struct die_info *origin_die;
11486 /* Iterator of the ORIGIN_DIE children. */
11487 struct die_info *origin_child_die;
11488 struct attribute *attr;
11489 struct dwarf2_cu *origin_cu;
11490 struct pending **origin_previous_list_in_scope;
11491
11492 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11493 if (!attr)
11494 return;
11495
11496 /* Note that following die references may follow to a die in a
11497 different cu. */
11498
11499 origin_cu = cu;
11500 origin_die = follow_die_ref (die, attr, &origin_cu);
11501
11502 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11503 symbols in. */
11504 origin_previous_list_in_scope = origin_cu->list_in_scope;
11505 origin_cu->list_in_scope = cu->list_in_scope;
11506
11507 if (die->tag != origin_die->tag
11508 && !(die->tag == DW_TAG_inlined_subroutine
11509 && origin_die->tag == DW_TAG_subprogram))
11510 complaint (&symfile_complaints,
11511 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11512 to_underlying (die->sect_off),
11513 to_underlying (origin_die->sect_off));
11514
11515 std::vector<sect_offset> offsets;
11516
11517 for (child_die = die->child;
11518 child_die && child_die->tag;
11519 child_die = sibling_die (child_die))
11520 {
11521 struct die_info *child_origin_die;
11522 struct dwarf2_cu *child_origin_cu;
11523
11524 /* We are trying to process concrete instance entries:
11525 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11526 it's not relevant to our analysis here. i.e. detecting DIEs that are
11527 present in the abstract instance but not referenced in the concrete
11528 one. */
11529 if (child_die->tag == DW_TAG_call_site
11530 || child_die->tag == DW_TAG_GNU_call_site)
11531 continue;
11532
11533 /* For each CHILD_DIE, find the corresponding child of
11534 ORIGIN_DIE. If there is more than one layer of
11535 DW_AT_abstract_origin, follow them all; there shouldn't be,
11536 but GCC versions at least through 4.4 generate this (GCC PR
11537 40573). */
11538 child_origin_die = child_die;
11539 child_origin_cu = cu;
11540 while (1)
11541 {
11542 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11543 child_origin_cu);
11544 if (attr == NULL)
11545 break;
11546 child_origin_die = follow_die_ref (child_origin_die, attr,
11547 &child_origin_cu);
11548 }
11549
11550 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11551 counterpart may exist. */
11552 if (child_origin_die != child_die)
11553 {
11554 if (child_die->tag != child_origin_die->tag
11555 && !(child_die->tag == DW_TAG_inlined_subroutine
11556 && child_origin_die->tag == DW_TAG_subprogram))
11557 complaint (&symfile_complaints,
11558 _("Child DIE 0x%x and its abstract origin 0x%x have "
11559 "different tags"),
11560 to_underlying (child_die->sect_off),
11561 to_underlying (child_origin_die->sect_off));
11562 if (child_origin_die->parent != origin_die)
11563 complaint (&symfile_complaints,
11564 _("Child DIE 0x%x and its abstract origin 0x%x have "
11565 "different parents"),
11566 to_underlying (child_die->sect_off),
11567 to_underlying (child_origin_die->sect_off));
11568 else
11569 offsets.push_back (child_origin_die->sect_off);
11570 }
11571 }
11572 std::sort (offsets.begin (), offsets.end ());
11573 sect_offset *offsets_end = offsets.data () + offsets.size ();
11574 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
11575 if (offsetp[-1] == *offsetp)
11576 complaint (&symfile_complaints,
11577 _("Multiple children of DIE 0x%x refer "
11578 "to DIE 0x%x as their abstract origin"),
11579 to_underlying (die->sect_off), to_underlying (*offsetp));
11580
11581 offsetp = offsets.data ();
11582 origin_child_die = origin_die->child;
11583 while (origin_child_die && origin_child_die->tag)
11584 {
11585 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11586 while (offsetp < offsets_end
11587 && *offsetp < origin_child_die->sect_off)
11588 offsetp++;
11589 if (offsetp >= offsets_end
11590 || *offsetp > origin_child_die->sect_off)
11591 {
11592 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11593 Check whether we're already processing ORIGIN_CHILD_DIE.
11594 This can happen with mutually referenced abstract_origins.
11595 PR 16581. */
11596 if (!origin_child_die->in_process)
11597 process_die (origin_child_die, origin_cu);
11598 }
11599 origin_child_die = sibling_die (origin_child_die);
11600 }
11601 origin_cu->list_in_scope = origin_previous_list_in_scope;
11602 }
11603
11604 static void
11605 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11606 {
11607 struct objfile *objfile = cu->objfile;
11608 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11609 struct context_stack *newobj;
11610 CORE_ADDR lowpc;
11611 CORE_ADDR highpc;
11612 struct die_info *child_die;
11613 struct attribute *attr, *call_line, *call_file;
11614 const char *name;
11615 CORE_ADDR baseaddr;
11616 struct block *block;
11617 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11618 VEC (symbolp) *template_args = NULL;
11619 struct template_symbol *templ_func = NULL;
11620
11621 if (inlined_func)
11622 {
11623 /* If we do not have call site information, we can't show the
11624 caller of this inlined function. That's too confusing, so
11625 only use the scope for local variables. */
11626 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11627 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11628 if (call_line == NULL || call_file == NULL)
11629 {
11630 read_lexical_block_scope (die, cu);
11631 return;
11632 }
11633 }
11634
11635 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11636
11637 name = dwarf2_name (die, cu);
11638
11639 /* Ignore functions with missing or empty names. These are actually
11640 illegal according to the DWARF standard. */
11641 if (name == NULL)
11642 {
11643 complaint (&symfile_complaints,
11644 _("missing name for subprogram DIE at %d"),
11645 to_underlying (die->sect_off));
11646 return;
11647 }
11648
11649 /* Ignore functions with missing or invalid low and high pc attributes. */
11650 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11651 <= PC_BOUNDS_INVALID)
11652 {
11653 attr = dwarf2_attr (die, DW_AT_external, cu);
11654 if (!attr || !DW_UNSND (attr))
11655 complaint (&symfile_complaints,
11656 _("cannot get low and high bounds "
11657 "for subprogram DIE at %d"),
11658 to_underlying (die->sect_off));
11659 return;
11660 }
11661
11662 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11663 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11664
11665 /* If we have any template arguments, then we must allocate a
11666 different sort of symbol. */
11667 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11668 {
11669 if (child_die->tag == DW_TAG_template_type_param
11670 || child_die->tag == DW_TAG_template_value_param)
11671 {
11672 templ_func = allocate_template_symbol (objfile);
11673 templ_func->base.is_cplus_template_function = 1;
11674 break;
11675 }
11676 }
11677
11678 newobj = push_context (0, lowpc);
11679 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11680 (struct symbol *) templ_func);
11681
11682 /* If there is a location expression for DW_AT_frame_base, record
11683 it. */
11684 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11685 if (attr)
11686 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11687
11688 /* If there is a location for the static link, record it. */
11689 newobj->static_link = NULL;
11690 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11691 if (attr)
11692 {
11693 newobj->static_link
11694 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11695 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11696 }
11697
11698 cu->list_in_scope = &local_symbols;
11699
11700 if (die->child != NULL)
11701 {
11702 child_die = die->child;
11703 while (child_die && child_die->tag)
11704 {
11705 if (child_die->tag == DW_TAG_template_type_param
11706 || child_die->tag == DW_TAG_template_value_param)
11707 {
11708 struct symbol *arg = new_symbol (child_die, NULL, cu);
11709
11710 if (arg != NULL)
11711 VEC_safe_push (symbolp, template_args, arg);
11712 }
11713 else
11714 process_die (child_die, cu);
11715 child_die = sibling_die (child_die);
11716 }
11717 }
11718
11719 inherit_abstract_dies (die, cu);
11720
11721 /* If we have a DW_AT_specification, we might need to import using
11722 directives from the context of the specification DIE. See the
11723 comment in determine_prefix. */
11724 if (cu->language == language_cplus
11725 && dwarf2_attr (die, DW_AT_specification, cu))
11726 {
11727 struct dwarf2_cu *spec_cu = cu;
11728 struct die_info *spec_die = die_specification (die, &spec_cu);
11729
11730 while (spec_die)
11731 {
11732 child_die = spec_die->child;
11733 while (child_die && child_die->tag)
11734 {
11735 if (child_die->tag == DW_TAG_imported_module)
11736 process_die (child_die, spec_cu);
11737 child_die = sibling_die (child_die);
11738 }
11739
11740 /* In some cases, GCC generates specification DIEs that
11741 themselves contain DW_AT_specification attributes. */
11742 spec_die = die_specification (spec_die, &spec_cu);
11743 }
11744 }
11745
11746 newobj = pop_context ();
11747 /* Make a block for the local symbols within. */
11748 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11749 newobj->static_link, lowpc, highpc);
11750
11751 /* For C++, set the block's scope. */
11752 if ((cu->language == language_cplus
11753 || cu->language == language_fortran
11754 || cu->language == language_d
11755 || cu->language == language_rust)
11756 && cu->processing_has_namespace_info)
11757 block_set_scope (block, determine_prefix (die, cu),
11758 &objfile->objfile_obstack);
11759
11760 /* If we have address ranges, record them. */
11761 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11762
11763 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11764
11765 /* Attach template arguments to function. */
11766 if (! VEC_empty (symbolp, template_args))
11767 {
11768 gdb_assert (templ_func != NULL);
11769
11770 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11771 templ_func->template_arguments
11772 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11773 templ_func->n_template_arguments);
11774 memcpy (templ_func->template_arguments,
11775 VEC_address (symbolp, template_args),
11776 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11777 VEC_free (symbolp, template_args);
11778 }
11779
11780 /* In C++, we can have functions nested inside functions (e.g., when
11781 a function declares a class that has methods). This means that
11782 when we finish processing a function scope, we may need to go
11783 back to building a containing block's symbol lists. */
11784 local_symbols = newobj->locals;
11785 local_using_directives = newobj->local_using_directives;
11786
11787 /* If we've finished processing a top-level function, subsequent
11788 symbols go in the file symbol list. */
11789 if (outermost_context_p ())
11790 cu->list_in_scope = &file_symbols;
11791 }
11792
11793 /* Process all the DIES contained within a lexical block scope. Start
11794 a new scope, process the dies, and then close the scope. */
11795
11796 static void
11797 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11798 {
11799 struct objfile *objfile = cu->objfile;
11800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11801 struct context_stack *newobj;
11802 CORE_ADDR lowpc, highpc;
11803 struct die_info *child_die;
11804 CORE_ADDR baseaddr;
11805
11806 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11807
11808 /* Ignore blocks with missing or invalid low and high pc attributes. */
11809 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11810 as multiple lexical blocks? Handling children in a sane way would
11811 be nasty. Might be easier to properly extend generic blocks to
11812 describe ranges. */
11813 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11814 {
11815 case PC_BOUNDS_NOT_PRESENT:
11816 /* DW_TAG_lexical_block has no attributes, process its children as if
11817 there was no wrapping by that DW_TAG_lexical_block.
11818 GCC does no longer produces such DWARF since GCC r224161. */
11819 for (child_die = die->child;
11820 child_die != NULL && child_die->tag;
11821 child_die = sibling_die (child_die))
11822 process_die (child_die, cu);
11823 return;
11824 case PC_BOUNDS_INVALID:
11825 return;
11826 }
11827 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11828 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11829
11830 push_context (0, lowpc);
11831 if (die->child != NULL)
11832 {
11833 child_die = die->child;
11834 while (child_die && child_die->tag)
11835 {
11836 process_die (child_die, cu);
11837 child_die = sibling_die (child_die);
11838 }
11839 }
11840 inherit_abstract_dies (die, cu);
11841 newobj = pop_context ();
11842
11843 if (local_symbols != NULL || local_using_directives != NULL)
11844 {
11845 struct block *block
11846 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11847 newobj->start_addr, highpc);
11848
11849 /* Note that recording ranges after traversing children, as we
11850 do here, means that recording a parent's ranges entails
11851 walking across all its children's ranges as they appear in
11852 the address map, which is quadratic behavior.
11853
11854 It would be nicer to record the parent's ranges before
11855 traversing its children, simply overriding whatever you find
11856 there. But since we don't even decide whether to create a
11857 block until after we've traversed its children, that's hard
11858 to do. */
11859 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11860 }
11861 local_symbols = newobj->locals;
11862 local_using_directives = newobj->local_using_directives;
11863 }
11864
11865 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11866
11867 static void
11868 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11869 {
11870 struct objfile *objfile = cu->objfile;
11871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11872 CORE_ADDR pc, baseaddr;
11873 struct attribute *attr;
11874 struct call_site *call_site, call_site_local;
11875 void **slot;
11876 int nparams;
11877 struct die_info *child_die;
11878
11879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11880
11881 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11882 if (attr == NULL)
11883 {
11884 /* This was a pre-DWARF-5 GNU extension alias
11885 for DW_AT_call_return_pc. */
11886 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11887 }
11888 if (!attr)
11889 {
11890 complaint (&symfile_complaints,
11891 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11892 "DIE 0x%x [in module %s]"),
11893 to_underlying (die->sect_off), objfile_name (objfile));
11894 return;
11895 }
11896 pc = attr_value_as_address (attr) + baseaddr;
11897 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11898
11899 if (cu->call_site_htab == NULL)
11900 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11901 NULL, &objfile->objfile_obstack,
11902 hashtab_obstack_allocate, NULL);
11903 call_site_local.pc = pc;
11904 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11905 if (*slot != NULL)
11906 {
11907 complaint (&symfile_complaints,
11908 _("Duplicate PC %s for DW_TAG_call_site "
11909 "DIE 0x%x [in module %s]"),
11910 paddress (gdbarch, pc), to_underlying (die->sect_off),
11911 objfile_name (objfile));
11912 return;
11913 }
11914
11915 /* Count parameters at the caller. */
11916
11917 nparams = 0;
11918 for (child_die = die->child; child_die && child_die->tag;
11919 child_die = sibling_die (child_die))
11920 {
11921 if (child_die->tag != DW_TAG_call_site_parameter
11922 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11923 {
11924 complaint (&symfile_complaints,
11925 _("Tag %d is not DW_TAG_call_site_parameter in "
11926 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11927 child_die->tag, to_underlying (child_die->sect_off),
11928 objfile_name (objfile));
11929 continue;
11930 }
11931
11932 nparams++;
11933 }
11934
11935 call_site
11936 = ((struct call_site *)
11937 obstack_alloc (&objfile->objfile_obstack,
11938 sizeof (*call_site)
11939 + (sizeof (*call_site->parameter) * (nparams - 1))));
11940 *slot = call_site;
11941 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11942 call_site->pc = pc;
11943
11944 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11945 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11946 {
11947 struct die_info *func_die;
11948
11949 /* Skip also over DW_TAG_inlined_subroutine. */
11950 for (func_die = die->parent;
11951 func_die && func_die->tag != DW_TAG_subprogram
11952 && func_die->tag != DW_TAG_subroutine_type;
11953 func_die = func_die->parent);
11954
11955 /* DW_AT_call_all_calls is a superset
11956 of DW_AT_call_all_tail_calls. */
11957 if (func_die
11958 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11959 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11960 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11961 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11962 {
11963 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11964 not complete. But keep CALL_SITE for look ups via call_site_htab,
11965 both the initial caller containing the real return address PC and
11966 the final callee containing the current PC of a chain of tail
11967 calls do not need to have the tail call list complete. But any
11968 function candidate for a virtual tail call frame searched via
11969 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11970 determined unambiguously. */
11971 }
11972 else
11973 {
11974 struct type *func_type = NULL;
11975
11976 if (func_die)
11977 func_type = get_die_type (func_die, cu);
11978 if (func_type != NULL)
11979 {
11980 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11981
11982 /* Enlist this call site to the function. */
11983 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11984 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11985 }
11986 else
11987 complaint (&symfile_complaints,
11988 _("Cannot find function owning DW_TAG_call_site "
11989 "DIE 0x%x [in module %s]"),
11990 to_underlying (die->sect_off), objfile_name (objfile));
11991 }
11992 }
11993
11994 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11995 if (attr == NULL)
11996 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11997 if (attr == NULL)
11998 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11999 if (attr == NULL)
12000 {
12001 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12002 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12003 }
12004 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12005 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12006 /* Keep NULL DWARF_BLOCK. */;
12007 else if (attr_form_is_block (attr))
12008 {
12009 struct dwarf2_locexpr_baton *dlbaton;
12010
12011 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12012 dlbaton->data = DW_BLOCK (attr)->data;
12013 dlbaton->size = DW_BLOCK (attr)->size;
12014 dlbaton->per_cu = cu->per_cu;
12015
12016 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12017 }
12018 else if (attr_form_is_ref (attr))
12019 {
12020 struct dwarf2_cu *target_cu = cu;
12021 struct die_info *target_die;
12022
12023 target_die = follow_die_ref (die, attr, &target_cu);
12024 gdb_assert (target_cu->objfile == objfile);
12025 if (die_is_declaration (target_die, target_cu))
12026 {
12027 const char *target_physname;
12028
12029 /* Prefer the mangled name; otherwise compute the demangled one. */
12030 target_physname = dw2_linkage_name (target_die, target_cu);
12031 if (target_physname == NULL)
12032 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12033 if (target_physname == NULL)
12034 complaint (&symfile_complaints,
12035 _("DW_AT_call_target target DIE has invalid "
12036 "physname, for referencing DIE 0x%x [in module %s]"),
12037 to_underlying (die->sect_off), objfile_name (objfile));
12038 else
12039 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12040 }
12041 else
12042 {
12043 CORE_ADDR lowpc;
12044
12045 /* DW_AT_entry_pc should be preferred. */
12046 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12047 <= PC_BOUNDS_INVALID)
12048 complaint (&symfile_complaints,
12049 _("DW_AT_call_target target DIE has invalid "
12050 "low pc, for referencing DIE 0x%x [in module %s]"),
12051 to_underlying (die->sect_off), objfile_name (objfile));
12052 else
12053 {
12054 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12055 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12056 }
12057 }
12058 }
12059 else
12060 complaint (&symfile_complaints,
12061 _("DW_TAG_call_site DW_AT_call_target is neither "
12062 "block nor reference, for DIE 0x%x [in module %s]"),
12063 to_underlying (die->sect_off), objfile_name (objfile));
12064
12065 call_site->per_cu = cu->per_cu;
12066
12067 for (child_die = die->child;
12068 child_die && child_die->tag;
12069 child_die = sibling_die (child_die))
12070 {
12071 struct call_site_parameter *parameter;
12072 struct attribute *loc, *origin;
12073
12074 if (child_die->tag != DW_TAG_call_site_parameter
12075 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12076 {
12077 /* Already printed the complaint above. */
12078 continue;
12079 }
12080
12081 gdb_assert (call_site->parameter_count < nparams);
12082 parameter = &call_site->parameter[call_site->parameter_count];
12083
12084 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12085 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12086 register is contained in DW_AT_call_value. */
12087
12088 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12089 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12090 if (origin == NULL)
12091 {
12092 /* This was a pre-DWARF-5 GNU extension alias
12093 for DW_AT_call_parameter. */
12094 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12095 }
12096 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12097 {
12098 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12099
12100 sect_offset sect_off
12101 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12102 if (!offset_in_cu_p (&cu->header, sect_off))
12103 {
12104 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12105 binding can be done only inside one CU. Such referenced DIE
12106 therefore cannot be even moved to DW_TAG_partial_unit. */
12107 complaint (&symfile_complaints,
12108 _("DW_AT_call_parameter offset is not in CU for "
12109 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12110 to_underlying (child_die->sect_off),
12111 objfile_name (objfile));
12112 continue;
12113 }
12114 parameter->u.param_cu_off
12115 = (cu_offset) (sect_off - cu->header.sect_off);
12116 }
12117 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12118 {
12119 complaint (&symfile_complaints,
12120 _("No DW_FORM_block* DW_AT_location for "
12121 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12122 to_underlying (child_die->sect_off), objfile_name (objfile));
12123 continue;
12124 }
12125 else
12126 {
12127 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12128 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12129 if (parameter->u.dwarf_reg != -1)
12130 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12131 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12132 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12133 &parameter->u.fb_offset))
12134 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12135 else
12136 {
12137 complaint (&symfile_complaints,
12138 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12139 "for DW_FORM_block* DW_AT_location is supported for "
12140 "DW_TAG_call_site child DIE 0x%x "
12141 "[in module %s]"),
12142 to_underlying (child_die->sect_off),
12143 objfile_name (objfile));
12144 continue;
12145 }
12146 }
12147
12148 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12149 if (attr == NULL)
12150 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12151 if (!attr_form_is_block (attr))
12152 {
12153 complaint (&symfile_complaints,
12154 _("No DW_FORM_block* DW_AT_call_value for "
12155 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12156 to_underlying (child_die->sect_off),
12157 objfile_name (objfile));
12158 continue;
12159 }
12160 parameter->value = DW_BLOCK (attr)->data;
12161 parameter->value_size = DW_BLOCK (attr)->size;
12162
12163 /* Parameters are not pre-cleared by memset above. */
12164 parameter->data_value = NULL;
12165 parameter->data_value_size = 0;
12166 call_site->parameter_count++;
12167
12168 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12169 if (attr == NULL)
12170 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12171 if (attr)
12172 {
12173 if (!attr_form_is_block (attr))
12174 complaint (&symfile_complaints,
12175 _("No DW_FORM_block* DW_AT_call_data_value for "
12176 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12177 to_underlying (child_die->sect_off),
12178 objfile_name (objfile));
12179 else
12180 {
12181 parameter->data_value = DW_BLOCK (attr)->data;
12182 parameter->data_value_size = DW_BLOCK (attr)->size;
12183 }
12184 }
12185 }
12186 }
12187
12188 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12189 reading .debug_rnglists.
12190 Callback's type should be:
12191 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12192 Return true if the attributes are present and valid, otherwise,
12193 return false. */
12194
12195 template <typename Callback>
12196 static bool
12197 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12198 Callback &&callback)
12199 {
12200 struct objfile *objfile = cu->objfile;
12201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12202 struct comp_unit_head *cu_header = &cu->header;
12203 bfd *obfd = objfile->obfd;
12204 unsigned int addr_size = cu_header->addr_size;
12205 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12206 /* Base address selection entry. */
12207 CORE_ADDR base;
12208 int found_base;
12209 unsigned int dummy;
12210 const gdb_byte *buffer;
12211 CORE_ADDR low = 0;
12212 CORE_ADDR high = 0;
12213 CORE_ADDR baseaddr;
12214 bool overflow = false;
12215
12216 found_base = cu->base_known;
12217 base = cu->base_address;
12218
12219 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12220 if (offset >= dwarf2_per_objfile->rnglists.size)
12221 {
12222 complaint (&symfile_complaints,
12223 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12224 offset);
12225 return false;
12226 }
12227 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12228
12229 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12230
12231 while (1)
12232 {
12233 /* Initialize it due to a false compiler warning. */
12234 CORE_ADDR range_beginning = 0, range_end = 0;
12235 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12236 + dwarf2_per_objfile->rnglists.size);
12237 unsigned int bytes_read;
12238
12239 if (buffer == buf_end)
12240 {
12241 overflow = true;
12242 break;
12243 }
12244 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12245 switch (rlet)
12246 {
12247 case DW_RLE_end_of_list:
12248 break;
12249 case DW_RLE_base_address:
12250 if (buffer + cu->header.addr_size > buf_end)
12251 {
12252 overflow = true;
12253 break;
12254 }
12255 base = read_address (obfd, buffer, cu, &bytes_read);
12256 found_base = 1;
12257 buffer += bytes_read;
12258 break;
12259 case DW_RLE_start_length:
12260 if (buffer + cu->header.addr_size > buf_end)
12261 {
12262 overflow = true;
12263 break;
12264 }
12265 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12266 buffer += bytes_read;
12267 range_end = (range_beginning
12268 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12269 buffer += bytes_read;
12270 if (buffer > buf_end)
12271 {
12272 overflow = true;
12273 break;
12274 }
12275 break;
12276 case DW_RLE_offset_pair:
12277 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12278 buffer += bytes_read;
12279 if (buffer > buf_end)
12280 {
12281 overflow = true;
12282 break;
12283 }
12284 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12285 buffer += bytes_read;
12286 if (buffer > buf_end)
12287 {
12288 overflow = true;
12289 break;
12290 }
12291 break;
12292 case DW_RLE_start_end:
12293 if (buffer + 2 * cu->header.addr_size > buf_end)
12294 {
12295 overflow = true;
12296 break;
12297 }
12298 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12299 buffer += bytes_read;
12300 range_end = read_address (obfd, buffer, cu, &bytes_read);
12301 buffer += bytes_read;
12302 break;
12303 default:
12304 complaint (&symfile_complaints,
12305 _("Invalid .debug_rnglists data (no base address)"));
12306 return false;
12307 }
12308 if (rlet == DW_RLE_end_of_list || overflow)
12309 break;
12310 if (rlet == DW_RLE_base_address)
12311 continue;
12312
12313 if (!found_base)
12314 {
12315 /* We have no valid base address for the ranges
12316 data. */
12317 complaint (&symfile_complaints,
12318 _("Invalid .debug_rnglists data (no base address)"));
12319 return false;
12320 }
12321
12322 if (range_beginning > range_end)
12323 {
12324 /* Inverted range entries are invalid. */
12325 complaint (&symfile_complaints,
12326 _("Invalid .debug_rnglists data (inverted range)"));
12327 return false;
12328 }
12329
12330 /* Empty range entries have no effect. */
12331 if (range_beginning == range_end)
12332 continue;
12333
12334 range_beginning += base;
12335 range_end += base;
12336
12337 /* A not-uncommon case of bad debug info.
12338 Don't pollute the addrmap with bad data. */
12339 if (range_beginning + baseaddr == 0
12340 && !dwarf2_per_objfile->has_section_at_zero)
12341 {
12342 complaint (&symfile_complaints,
12343 _(".debug_rnglists entry has start address of zero"
12344 " [in module %s]"), objfile_name (objfile));
12345 continue;
12346 }
12347
12348 callback (range_beginning, range_end);
12349 }
12350
12351 if (overflow)
12352 {
12353 complaint (&symfile_complaints,
12354 _("Offset %d is not terminated "
12355 "for DW_AT_ranges attribute"),
12356 offset);
12357 return false;
12358 }
12359
12360 return true;
12361 }
12362
12363 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12364 Callback's type should be:
12365 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12366 Return 1 if the attributes are present and valid, otherwise, return 0. */
12367
12368 template <typename Callback>
12369 static int
12370 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12371 Callback &&callback)
12372 {
12373 struct objfile *objfile = cu->objfile;
12374 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12375 struct comp_unit_head *cu_header = &cu->header;
12376 bfd *obfd = objfile->obfd;
12377 unsigned int addr_size = cu_header->addr_size;
12378 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12379 /* Base address selection entry. */
12380 CORE_ADDR base;
12381 int found_base;
12382 unsigned int dummy;
12383 const gdb_byte *buffer;
12384 CORE_ADDR baseaddr;
12385
12386 if (cu_header->version >= 5)
12387 return dwarf2_rnglists_process (offset, cu, callback);
12388
12389 found_base = cu->base_known;
12390 base = cu->base_address;
12391
12392 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12393 if (offset >= dwarf2_per_objfile->ranges.size)
12394 {
12395 complaint (&symfile_complaints,
12396 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12397 offset);
12398 return 0;
12399 }
12400 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12401
12402 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12403
12404 while (1)
12405 {
12406 CORE_ADDR range_beginning, range_end;
12407
12408 range_beginning = read_address (obfd, buffer, cu, &dummy);
12409 buffer += addr_size;
12410 range_end = read_address (obfd, buffer, cu, &dummy);
12411 buffer += addr_size;
12412 offset += 2 * addr_size;
12413
12414 /* An end of list marker is a pair of zero addresses. */
12415 if (range_beginning == 0 && range_end == 0)
12416 /* Found the end of list entry. */
12417 break;
12418
12419 /* Each base address selection entry is a pair of 2 values.
12420 The first is the largest possible address, the second is
12421 the base address. Check for a base address here. */
12422 if ((range_beginning & mask) == mask)
12423 {
12424 /* If we found the largest possible address, then we already
12425 have the base address in range_end. */
12426 base = range_end;
12427 found_base = 1;
12428 continue;
12429 }
12430
12431 if (!found_base)
12432 {
12433 /* We have no valid base address for the ranges
12434 data. */
12435 complaint (&symfile_complaints,
12436 _("Invalid .debug_ranges data (no base address)"));
12437 return 0;
12438 }
12439
12440 if (range_beginning > range_end)
12441 {
12442 /* Inverted range entries are invalid. */
12443 complaint (&symfile_complaints,
12444 _("Invalid .debug_ranges data (inverted range)"));
12445 return 0;
12446 }
12447
12448 /* Empty range entries have no effect. */
12449 if (range_beginning == range_end)
12450 continue;
12451
12452 range_beginning += base;
12453 range_end += base;
12454
12455 /* A not-uncommon case of bad debug info.
12456 Don't pollute the addrmap with bad data. */
12457 if (range_beginning + baseaddr == 0
12458 && !dwarf2_per_objfile->has_section_at_zero)
12459 {
12460 complaint (&symfile_complaints,
12461 _(".debug_ranges entry has start address of zero"
12462 " [in module %s]"), objfile_name (objfile));
12463 continue;
12464 }
12465
12466 callback (range_beginning, range_end);
12467 }
12468
12469 return 1;
12470 }
12471
12472 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12473 Return 1 if the attributes are present and valid, otherwise, return 0.
12474 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12475
12476 static int
12477 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12478 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12479 struct partial_symtab *ranges_pst)
12480 {
12481 struct objfile *objfile = cu->objfile;
12482 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12483 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12484 SECT_OFF_TEXT (objfile));
12485 int low_set = 0;
12486 CORE_ADDR low = 0;
12487 CORE_ADDR high = 0;
12488 int retval;
12489
12490 retval = dwarf2_ranges_process (offset, cu,
12491 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12492 {
12493 if (ranges_pst != NULL)
12494 {
12495 CORE_ADDR lowpc;
12496 CORE_ADDR highpc;
12497
12498 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12499 range_beginning + baseaddr);
12500 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12501 range_end + baseaddr);
12502 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12503 ranges_pst);
12504 }
12505
12506 /* FIXME: This is recording everything as a low-high
12507 segment of consecutive addresses. We should have a
12508 data structure for discontiguous block ranges
12509 instead. */
12510 if (! low_set)
12511 {
12512 low = range_beginning;
12513 high = range_end;
12514 low_set = 1;
12515 }
12516 else
12517 {
12518 if (range_beginning < low)
12519 low = range_beginning;
12520 if (range_end > high)
12521 high = range_end;
12522 }
12523 });
12524 if (!retval)
12525 return 0;
12526
12527 if (! low_set)
12528 /* If the first entry is an end-of-list marker, the range
12529 describes an empty scope, i.e. no instructions. */
12530 return 0;
12531
12532 if (low_return)
12533 *low_return = low;
12534 if (high_return)
12535 *high_return = high;
12536 return 1;
12537 }
12538
12539 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12540 definition for the return value. *LOWPC and *HIGHPC are set iff
12541 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12542
12543 static enum pc_bounds_kind
12544 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12545 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12546 struct partial_symtab *pst)
12547 {
12548 struct attribute *attr;
12549 struct attribute *attr_high;
12550 CORE_ADDR low = 0;
12551 CORE_ADDR high = 0;
12552 enum pc_bounds_kind ret;
12553
12554 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12555 if (attr_high)
12556 {
12557 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12558 if (attr)
12559 {
12560 low = attr_value_as_address (attr);
12561 high = attr_value_as_address (attr_high);
12562 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12563 high += low;
12564 }
12565 else
12566 /* Found high w/o low attribute. */
12567 return PC_BOUNDS_INVALID;
12568
12569 /* Found consecutive range of addresses. */
12570 ret = PC_BOUNDS_HIGH_LOW;
12571 }
12572 else
12573 {
12574 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12575 if (attr != NULL)
12576 {
12577 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12578 We take advantage of the fact that DW_AT_ranges does not appear
12579 in DW_TAG_compile_unit of DWO files. */
12580 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12581 unsigned int ranges_offset = (DW_UNSND (attr)
12582 + (need_ranges_base
12583 ? cu->ranges_base
12584 : 0));
12585
12586 /* Value of the DW_AT_ranges attribute is the offset in the
12587 .debug_ranges section. */
12588 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12589 return PC_BOUNDS_INVALID;
12590 /* Found discontinuous range of addresses. */
12591 ret = PC_BOUNDS_RANGES;
12592 }
12593 else
12594 return PC_BOUNDS_NOT_PRESENT;
12595 }
12596
12597 /* read_partial_die has also the strict LOW < HIGH requirement. */
12598 if (high <= low)
12599 return PC_BOUNDS_INVALID;
12600
12601 /* When using the GNU linker, .gnu.linkonce. sections are used to
12602 eliminate duplicate copies of functions and vtables and such.
12603 The linker will arbitrarily choose one and discard the others.
12604 The AT_*_pc values for such functions refer to local labels in
12605 these sections. If the section from that file was discarded, the
12606 labels are not in the output, so the relocs get a value of 0.
12607 If this is a discarded function, mark the pc bounds as invalid,
12608 so that GDB will ignore it. */
12609 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12610 return PC_BOUNDS_INVALID;
12611
12612 *lowpc = low;
12613 if (highpc)
12614 *highpc = high;
12615 return ret;
12616 }
12617
12618 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12619 its low and high PC addresses. Do nothing if these addresses could not
12620 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12621 and HIGHPC to the high address if greater than HIGHPC. */
12622
12623 static void
12624 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12625 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12626 struct dwarf2_cu *cu)
12627 {
12628 CORE_ADDR low, high;
12629 struct die_info *child = die->child;
12630
12631 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12632 {
12633 *lowpc = std::min (*lowpc, low);
12634 *highpc = std::max (*highpc, high);
12635 }
12636
12637 /* If the language does not allow nested subprograms (either inside
12638 subprograms or lexical blocks), we're done. */
12639 if (cu->language != language_ada)
12640 return;
12641
12642 /* Check all the children of the given DIE. If it contains nested
12643 subprograms, then check their pc bounds. Likewise, we need to
12644 check lexical blocks as well, as they may also contain subprogram
12645 definitions. */
12646 while (child && child->tag)
12647 {
12648 if (child->tag == DW_TAG_subprogram
12649 || child->tag == DW_TAG_lexical_block)
12650 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12651 child = sibling_die (child);
12652 }
12653 }
12654
12655 /* Get the low and high pc's represented by the scope DIE, and store
12656 them in *LOWPC and *HIGHPC. If the correct values can't be
12657 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12658
12659 static void
12660 get_scope_pc_bounds (struct die_info *die,
12661 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12662 struct dwarf2_cu *cu)
12663 {
12664 CORE_ADDR best_low = (CORE_ADDR) -1;
12665 CORE_ADDR best_high = (CORE_ADDR) 0;
12666 CORE_ADDR current_low, current_high;
12667
12668 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12669 >= PC_BOUNDS_RANGES)
12670 {
12671 best_low = current_low;
12672 best_high = current_high;
12673 }
12674 else
12675 {
12676 struct die_info *child = die->child;
12677
12678 while (child && child->tag)
12679 {
12680 switch (child->tag) {
12681 case DW_TAG_subprogram:
12682 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12683 break;
12684 case DW_TAG_namespace:
12685 case DW_TAG_module:
12686 /* FIXME: carlton/2004-01-16: Should we do this for
12687 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12688 that current GCC's always emit the DIEs corresponding
12689 to definitions of methods of classes as children of a
12690 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12691 the DIEs giving the declarations, which could be
12692 anywhere). But I don't see any reason why the
12693 standards says that they have to be there. */
12694 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12695
12696 if (current_low != ((CORE_ADDR) -1))
12697 {
12698 best_low = std::min (best_low, current_low);
12699 best_high = std::max (best_high, current_high);
12700 }
12701 break;
12702 default:
12703 /* Ignore. */
12704 break;
12705 }
12706
12707 child = sibling_die (child);
12708 }
12709 }
12710
12711 *lowpc = best_low;
12712 *highpc = best_high;
12713 }
12714
12715 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12716 in DIE. */
12717
12718 static void
12719 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12720 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12721 {
12722 struct objfile *objfile = cu->objfile;
12723 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12724 struct attribute *attr;
12725 struct attribute *attr_high;
12726
12727 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12728 if (attr_high)
12729 {
12730 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12731 if (attr)
12732 {
12733 CORE_ADDR low = attr_value_as_address (attr);
12734 CORE_ADDR high = attr_value_as_address (attr_high);
12735
12736 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12737 high += low;
12738
12739 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12740 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12741 record_block_range (block, low, high - 1);
12742 }
12743 }
12744
12745 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12746 if (attr)
12747 {
12748 bfd *obfd = objfile->obfd;
12749 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12750 We take advantage of the fact that DW_AT_ranges does not appear
12751 in DW_TAG_compile_unit of DWO files. */
12752 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12753
12754 /* The value of the DW_AT_ranges attribute is the offset of the
12755 address range list in the .debug_ranges section. */
12756 unsigned long offset = (DW_UNSND (attr)
12757 + (need_ranges_base ? cu->ranges_base : 0));
12758 const gdb_byte *buffer;
12759
12760 /* For some target architectures, but not others, the
12761 read_address function sign-extends the addresses it returns.
12762 To recognize base address selection entries, we need a
12763 mask. */
12764 unsigned int addr_size = cu->header.addr_size;
12765 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12766
12767 /* The base address, to which the next pair is relative. Note
12768 that this 'base' is a DWARF concept: most entries in a range
12769 list are relative, to reduce the number of relocs against the
12770 debugging information. This is separate from this function's
12771 'baseaddr' argument, which GDB uses to relocate debugging
12772 information from a shared library based on the address at
12773 which the library was loaded. */
12774 CORE_ADDR base = cu->base_address;
12775 int base_known = cu->base_known;
12776
12777 dwarf2_ranges_process (offset, cu,
12778 [&] (CORE_ADDR start, CORE_ADDR end)
12779 {
12780 start += baseaddr;
12781 end += baseaddr;
12782 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12783 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12784 record_block_range (block, start, end - 1);
12785 });
12786 }
12787 }
12788
12789 /* Check whether the producer field indicates either of GCC < 4.6, or the
12790 Intel C/C++ compiler, and cache the result in CU. */
12791
12792 static void
12793 check_producer (struct dwarf2_cu *cu)
12794 {
12795 int major, minor;
12796
12797 if (cu->producer == NULL)
12798 {
12799 /* For unknown compilers expect their behavior is DWARF version
12800 compliant.
12801
12802 GCC started to support .debug_types sections by -gdwarf-4 since
12803 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12804 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12805 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12806 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12807 }
12808 else if (producer_is_gcc (cu->producer, &major, &minor))
12809 {
12810 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12811 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12812 }
12813 else if (producer_is_icc (cu->producer, &major, &minor))
12814 cu->producer_is_icc_lt_14 = major < 14;
12815 else
12816 {
12817 /* For other non-GCC compilers, expect their behavior is DWARF version
12818 compliant. */
12819 }
12820
12821 cu->checked_producer = 1;
12822 }
12823
12824 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12825 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12826 during 4.6.0 experimental. */
12827
12828 static int
12829 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12830 {
12831 if (!cu->checked_producer)
12832 check_producer (cu);
12833
12834 return cu->producer_is_gxx_lt_4_6;
12835 }
12836
12837 /* Return the default accessibility type if it is not overriden by
12838 DW_AT_accessibility. */
12839
12840 static enum dwarf_access_attribute
12841 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12842 {
12843 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12844 {
12845 /* The default DWARF 2 accessibility for members is public, the default
12846 accessibility for inheritance is private. */
12847
12848 if (die->tag != DW_TAG_inheritance)
12849 return DW_ACCESS_public;
12850 else
12851 return DW_ACCESS_private;
12852 }
12853 else
12854 {
12855 /* DWARF 3+ defines the default accessibility a different way. The same
12856 rules apply now for DW_TAG_inheritance as for the members and it only
12857 depends on the container kind. */
12858
12859 if (die->parent->tag == DW_TAG_class_type)
12860 return DW_ACCESS_private;
12861 else
12862 return DW_ACCESS_public;
12863 }
12864 }
12865
12866 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12867 offset. If the attribute was not found return 0, otherwise return
12868 1. If it was found but could not properly be handled, set *OFFSET
12869 to 0. */
12870
12871 static int
12872 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12873 LONGEST *offset)
12874 {
12875 struct attribute *attr;
12876
12877 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12878 if (attr != NULL)
12879 {
12880 *offset = 0;
12881
12882 /* Note that we do not check for a section offset first here.
12883 This is because DW_AT_data_member_location is new in DWARF 4,
12884 so if we see it, we can assume that a constant form is really
12885 a constant and not a section offset. */
12886 if (attr_form_is_constant (attr))
12887 *offset = dwarf2_get_attr_constant_value (attr, 0);
12888 else if (attr_form_is_section_offset (attr))
12889 dwarf2_complex_location_expr_complaint ();
12890 else if (attr_form_is_block (attr))
12891 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12892 else
12893 dwarf2_complex_location_expr_complaint ();
12894
12895 return 1;
12896 }
12897
12898 return 0;
12899 }
12900
12901 /* Add an aggregate field to the field list. */
12902
12903 static void
12904 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12905 struct dwarf2_cu *cu)
12906 {
12907 struct objfile *objfile = cu->objfile;
12908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12909 struct nextfield *new_field;
12910 struct attribute *attr;
12911 struct field *fp;
12912 const char *fieldname = "";
12913
12914 /* Allocate a new field list entry and link it in. */
12915 new_field = XNEW (struct nextfield);
12916 make_cleanup (xfree, new_field);
12917 memset (new_field, 0, sizeof (struct nextfield));
12918
12919 if (die->tag == DW_TAG_inheritance)
12920 {
12921 new_field->next = fip->baseclasses;
12922 fip->baseclasses = new_field;
12923 }
12924 else
12925 {
12926 new_field->next = fip->fields;
12927 fip->fields = new_field;
12928 }
12929 fip->nfields++;
12930
12931 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12932 if (attr)
12933 new_field->accessibility = DW_UNSND (attr);
12934 else
12935 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12936 if (new_field->accessibility != DW_ACCESS_public)
12937 fip->non_public_fields = 1;
12938
12939 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12940 if (attr)
12941 new_field->virtuality = DW_UNSND (attr);
12942 else
12943 new_field->virtuality = DW_VIRTUALITY_none;
12944
12945 fp = &new_field->field;
12946
12947 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12948 {
12949 LONGEST offset;
12950
12951 /* Data member other than a C++ static data member. */
12952
12953 /* Get type of field. */
12954 fp->type = die_type (die, cu);
12955
12956 SET_FIELD_BITPOS (*fp, 0);
12957
12958 /* Get bit size of field (zero if none). */
12959 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12960 if (attr)
12961 {
12962 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12963 }
12964 else
12965 {
12966 FIELD_BITSIZE (*fp) = 0;
12967 }
12968
12969 /* Get bit offset of field. */
12970 if (handle_data_member_location (die, cu, &offset))
12971 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12972 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12973 if (attr)
12974 {
12975 if (gdbarch_bits_big_endian (gdbarch))
12976 {
12977 /* For big endian bits, the DW_AT_bit_offset gives the
12978 additional bit offset from the MSB of the containing
12979 anonymous object to the MSB of the field. We don't
12980 have to do anything special since we don't need to
12981 know the size of the anonymous object. */
12982 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12983 }
12984 else
12985 {
12986 /* For little endian bits, compute the bit offset to the
12987 MSB of the anonymous object, subtract off the number of
12988 bits from the MSB of the field to the MSB of the
12989 object, and then subtract off the number of bits of
12990 the field itself. The result is the bit offset of
12991 the LSB of the field. */
12992 int anonymous_size;
12993 int bit_offset = DW_UNSND (attr);
12994
12995 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12996 if (attr)
12997 {
12998 /* The size of the anonymous object containing
12999 the bit field is explicit, so use the
13000 indicated size (in bytes). */
13001 anonymous_size = DW_UNSND (attr);
13002 }
13003 else
13004 {
13005 /* The size of the anonymous object containing
13006 the bit field must be inferred from the type
13007 attribute of the data member containing the
13008 bit field. */
13009 anonymous_size = TYPE_LENGTH (fp->type);
13010 }
13011 SET_FIELD_BITPOS (*fp,
13012 (FIELD_BITPOS (*fp)
13013 + anonymous_size * bits_per_byte
13014 - bit_offset - FIELD_BITSIZE (*fp)));
13015 }
13016 }
13017 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13018 if (attr != NULL)
13019 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13020 + dwarf2_get_attr_constant_value (attr, 0)));
13021
13022 /* Get name of field. */
13023 fieldname = dwarf2_name (die, cu);
13024 if (fieldname == NULL)
13025 fieldname = "";
13026
13027 /* The name is already allocated along with this objfile, so we don't
13028 need to duplicate it for the type. */
13029 fp->name = fieldname;
13030
13031 /* Change accessibility for artificial fields (e.g. virtual table
13032 pointer or virtual base class pointer) to private. */
13033 if (dwarf2_attr (die, DW_AT_artificial, cu))
13034 {
13035 FIELD_ARTIFICIAL (*fp) = 1;
13036 new_field->accessibility = DW_ACCESS_private;
13037 fip->non_public_fields = 1;
13038 }
13039 }
13040 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13041 {
13042 /* C++ static member. */
13043
13044 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13045 is a declaration, but all versions of G++ as of this writing
13046 (so through at least 3.2.1) incorrectly generate
13047 DW_TAG_variable tags. */
13048
13049 const char *physname;
13050
13051 /* Get name of field. */
13052 fieldname = dwarf2_name (die, cu);
13053 if (fieldname == NULL)
13054 return;
13055
13056 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13057 if (attr
13058 /* Only create a symbol if this is an external value.
13059 new_symbol checks this and puts the value in the global symbol
13060 table, which we want. If it is not external, new_symbol
13061 will try to put the value in cu->list_in_scope which is wrong. */
13062 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13063 {
13064 /* A static const member, not much different than an enum as far as
13065 we're concerned, except that we can support more types. */
13066 new_symbol (die, NULL, cu);
13067 }
13068
13069 /* Get physical name. */
13070 physname = dwarf2_physname (fieldname, die, cu);
13071
13072 /* The name is already allocated along with this objfile, so we don't
13073 need to duplicate it for the type. */
13074 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13075 FIELD_TYPE (*fp) = die_type (die, cu);
13076 FIELD_NAME (*fp) = fieldname;
13077 }
13078 else if (die->tag == DW_TAG_inheritance)
13079 {
13080 LONGEST offset;
13081
13082 /* C++ base class field. */
13083 if (handle_data_member_location (die, cu, &offset))
13084 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13085 FIELD_BITSIZE (*fp) = 0;
13086 FIELD_TYPE (*fp) = die_type (die, cu);
13087 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13088 fip->nbaseclasses++;
13089 }
13090 }
13091
13092 /* Add a typedef defined in the scope of the FIP's class. */
13093
13094 static void
13095 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13096 struct dwarf2_cu *cu)
13097 {
13098 struct typedef_field_list *new_field;
13099 struct typedef_field *fp;
13100
13101 /* Allocate a new field list entry and link it in. */
13102 new_field = XCNEW (struct typedef_field_list);
13103 make_cleanup (xfree, new_field);
13104
13105 gdb_assert (die->tag == DW_TAG_typedef);
13106
13107 fp = &new_field->field;
13108
13109 /* Get name of field. */
13110 fp->name = dwarf2_name (die, cu);
13111 if (fp->name == NULL)
13112 return;
13113
13114 fp->type = read_type_die (die, cu);
13115
13116 new_field->next = fip->typedef_field_list;
13117 fip->typedef_field_list = new_field;
13118 fip->typedef_field_list_count++;
13119 }
13120
13121 /* Create the vector of fields, and attach it to the type. */
13122
13123 static void
13124 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13125 struct dwarf2_cu *cu)
13126 {
13127 int nfields = fip->nfields;
13128
13129 /* Record the field count, allocate space for the array of fields,
13130 and create blank accessibility bitfields if necessary. */
13131 TYPE_NFIELDS (type) = nfields;
13132 TYPE_FIELDS (type) = (struct field *)
13133 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13134 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13135
13136 if (fip->non_public_fields && cu->language != language_ada)
13137 {
13138 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13139
13140 TYPE_FIELD_PRIVATE_BITS (type) =
13141 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13142 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13143
13144 TYPE_FIELD_PROTECTED_BITS (type) =
13145 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13146 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13147
13148 TYPE_FIELD_IGNORE_BITS (type) =
13149 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13150 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13151 }
13152
13153 /* If the type has baseclasses, allocate and clear a bit vector for
13154 TYPE_FIELD_VIRTUAL_BITS. */
13155 if (fip->nbaseclasses && cu->language != language_ada)
13156 {
13157 int num_bytes = B_BYTES (fip->nbaseclasses);
13158 unsigned char *pointer;
13159
13160 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13161 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13162 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13163 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13164 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13165 }
13166
13167 /* Copy the saved-up fields into the field vector. Start from the head of
13168 the list, adding to the tail of the field array, so that they end up in
13169 the same order in the array in which they were added to the list. */
13170 while (nfields-- > 0)
13171 {
13172 struct nextfield *fieldp;
13173
13174 if (fip->fields)
13175 {
13176 fieldp = fip->fields;
13177 fip->fields = fieldp->next;
13178 }
13179 else
13180 {
13181 fieldp = fip->baseclasses;
13182 fip->baseclasses = fieldp->next;
13183 }
13184
13185 TYPE_FIELD (type, nfields) = fieldp->field;
13186 switch (fieldp->accessibility)
13187 {
13188 case DW_ACCESS_private:
13189 if (cu->language != language_ada)
13190 SET_TYPE_FIELD_PRIVATE (type, nfields);
13191 break;
13192
13193 case DW_ACCESS_protected:
13194 if (cu->language != language_ada)
13195 SET_TYPE_FIELD_PROTECTED (type, nfields);
13196 break;
13197
13198 case DW_ACCESS_public:
13199 break;
13200
13201 default:
13202 /* Unknown accessibility. Complain and treat it as public. */
13203 {
13204 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13205 fieldp->accessibility);
13206 }
13207 break;
13208 }
13209 if (nfields < fip->nbaseclasses)
13210 {
13211 switch (fieldp->virtuality)
13212 {
13213 case DW_VIRTUALITY_virtual:
13214 case DW_VIRTUALITY_pure_virtual:
13215 if (cu->language == language_ada)
13216 error (_("unexpected virtuality in component of Ada type"));
13217 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13218 break;
13219 }
13220 }
13221 }
13222 }
13223
13224 /* Return true if this member function is a constructor, false
13225 otherwise. */
13226
13227 static int
13228 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13229 {
13230 const char *fieldname;
13231 const char *type_name;
13232 int len;
13233
13234 if (die->parent == NULL)
13235 return 0;
13236
13237 if (die->parent->tag != DW_TAG_structure_type
13238 && die->parent->tag != DW_TAG_union_type
13239 && die->parent->tag != DW_TAG_class_type)
13240 return 0;
13241
13242 fieldname = dwarf2_name (die, cu);
13243 type_name = dwarf2_name (die->parent, cu);
13244 if (fieldname == NULL || type_name == NULL)
13245 return 0;
13246
13247 len = strlen (fieldname);
13248 return (strncmp (fieldname, type_name, len) == 0
13249 && (type_name[len] == '\0' || type_name[len] == '<'));
13250 }
13251
13252 /* Add a member function to the proper fieldlist. */
13253
13254 static void
13255 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13256 struct type *type, struct dwarf2_cu *cu)
13257 {
13258 struct objfile *objfile = cu->objfile;
13259 struct attribute *attr;
13260 struct fnfieldlist *flp;
13261 int i;
13262 struct fn_field *fnp;
13263 const char *fieldname;
13264 struct nextfnfield *new_fnfield;
13265 struct type *this_type;
13266 enum dwarf_access_attribute accessibility;
13267
13268 if (cu->language == language_ada)
13269 error (_("unexpected member function in Ada type"));
13270
13271 /* Get name of member function. */
13272 fieldname = dwarf2_name (die, cu);
13273 if (fieldname == NULL)
13274 return;
13275
13276 /* Look up member function name in fieldlist. */
13277 for (i = 0; i < fip->nfnfields; i++)
13278 {
13279 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13280 break;
13281 }
13282
13283 /* Create new list element if necessary. */
13284 if (i < fip->nfnfields)
13285 flp = &fip->fnfieldlists[i];
13286 else
13287 {
13288 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13289 {
13290 fip->fnfieldlists = (struct fnfieldlist *)
13291 xrealloc (fip->fnfieldlists,
13292 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13293 * sizeof (struct fnfieldlist));
13294 if (fip->nfnfields == 0)
13295 make_cleanup (free_current_contents, &fip->fnfieldlists);
13296 }
13297 flp = &fip->fnfieldlists[fip->nfnfields];
13298 flp->name = fieldname;
13299 flp->length = 0;
13300 flp->head = NULL;
13301 i = fip->nfnfields++;
13302 }
13303
13304 /* Create a new member function field and chain it to the field list
13305 entry. */
13306 new_fnfield = XNEW (struct nextfnfield);
13307 make_cleanup (xfree, new_fnfield);
13308 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13309 new_fnfield->next = flp->head;
13310 flp->head = new_fnfield;
13311 flp->length++;
13312
13313 /* Fill in the member function field info. */
13314 fnp = &new_fnfield->fnfield;
13315
13316 /* Delay processing of the physname until later. */
13317 if (cu->language == language_cplus)
13318 {
13319 add_to_method_list (type, i, flp->length - 1, fieldname,
13320 die, cu);
13321 }
13322 else
13323 {
13324 const char *physname = dwarf2_physname (fieldname, die, cu);
13325 fnp->physname = physname ? physname : "";
13326 }
13327
13328 fnp->type = alloc_type (objfile);
13329 this_type = read_type_die (die, cu);
13330 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13331 {
13332 int nparams = TYPE_NFIELDS (this_type);
13333
13334 /* TYPE is the domain of this method, and THIS_TYPE is the type
13335 of the method itself (TYPE_CODE_METHOD). */
13336 smash_to_method_type (fnp->type, type,
13337 TYPE_TARGET_TYPE (this_type),
13338 TYPE_FIELDS (this_type),
13339 TYPE_NFIELDS (this_type),
13340 TYPE_VARARGS (this_type));
13341
13342 /* Handle static member functions.
13343 Dwarf2 has no clean way to discern C++ static and non-static
13344 member functions. G++ helps GDB by marking the first
13345 parameter for non-static member functions (which is the this
13346 pointer) as artificial. We obtain this information from
13347 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13348 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13349 fnp->voffset = VOFFSET_STATIC;
13350 }
13351 else
13352 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13353 dwarf2_full_name (fieldname, die, cu));
13354
13355 /* Get fcontext from DW_AT_containing_type if present. */
13356 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13357 fnp->fcontext = die_containing_type (die, cu);
13358
13359 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13360 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13361
13362 /* Get accessibility. */
13363 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13364 if (attr)
13365 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13366 else
13367 accessibility = dwarf2_default_access_attribute (die, cu);
13368 switch (accessibility)
13369 {
13370 case DW_ACCESS_private:
13371 fnp->is_private = 1;
13372 break;
13373 case DW_ACCESS_protected:
13374 fnp->is_protected = 1;
13375 break;
13376 }
13377
13378 /* Check for artificial methods. */
13379 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13380 if (attr && DW_UNSND (attr) != 0)
13381 fnp->is_artificial = 1;
13382
13383 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13384
13385 /* Get index in virtual function table if it is a virtual member
13386 function. For older versions of GCC, this is an offset in the
13387 appropriate virtual table, as specified by DW_AT_containing_type.
13388 For everyone else, it is an expression to be evaluated relative
13389 to the object address. */
13390
13391 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13392 if (attr)
13393 {
13394 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13395 {
13396 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13397 {
13398 /* Old-style GCC. */
13399 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13400 }
13401 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13402 || (DW_BLOCK (attr)->size > 1
13403 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13404 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13405 {
13406 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13407 if ((fnp->voffset % cu->header.addr_size) != 0)
13408 dwarf2_complex_location_expr_complaint ();
13409 else
13410 fnp->voffset /= cu->header.addr_size;
13411 fnp->voffset += 2;
13412 }
13413 else
13414 dwarf2_complex_location_expr_complaint ();
13415
13416 if (!fnp->fcontext)
13417 {
13418 /* If there is no `this' field and no DW_AT_containing_type,
13419 we cannot actually find a base class context for the
13420 vtable! */
13421 if (TYPE_NFIELDS (this_type) == 0
13422 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13423 {
13424 complaint (&symfile_complaints,
13425 _("cannot determine context for virtual member "
13426 "function \"%s\" (offset %d)"),
13427 fieldname, to_underlying (die->sect_off));
13428 }
13429 else
13430 {
13431 fnp->fcontext
13432 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13433 }
13434 }
13435 }
13436 else if (attr_form_is_section_offset (attr))
13437 {
13438 dwarf2_complex_location_expr_complaint ();
13439 }
13440 else
13441 {
13442 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13443 fieldname);
13444 }
13445 }
13446 else
13447 {
13448 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13449 if (attr && DW_UNSND (attr))
13450 {
13451 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13452 complaint (&symfile_complaints,
13453 _("Member function \"%s\" (offset %d) is virtual "
13454 "but the vtable offset is not specified"),
13455 fieldname, to_underlying (die->sect_off));
13456 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13457 TYPE_CPLUS_DYNAMIC (type) = 1;
13458 }
13459 }
13460 }
13461
13462 /* Create the vector of member function fields, and attach it to the type. */
13463
13464 static void
13465 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13466 struct dwarf2_cu *cu)
13467 {
13468 struct fnfieldlist *flp;
13469 int i;
13470
13471 if (cu->language == language_ada)
13472 error (_("unexpected member functions in Ada type"));
13473
13474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13475 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13476 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13477
13478 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13479 {
13480 struct nextfnfield *nfp = flp->head;
13481 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13482 int k;
13483
13484 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13485 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13486 fn_flp->fn_fields = (struct fn_field *)
13487 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13488 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13489 fn_flp->fn_fields[k] = nfp->fnfield;
13490 }
13491
13492 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13493 }
13494
13495 /* Returns non-zero if NAME is the name of a vtable member in CU's
13496 language, zero otherwise. */
13497 static int
13498 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13499 {
13500 static const char vptr[] = "_vptr";
13501 static const char vtable[] = "vtable";
13502
13503 /* Look for the C++ form of the vtable. */
13504 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13505 return 1;
13506
13507 return 0;
13508 }
13509
13510 /* GCC outputs unnamed structures that are really pointers to member
13511 functions, with the ABI-specified layout. If TYPE describes
13512 such a structure, smash it into a member function type.
13513
13514 GCC shouldn't do this; it should just output pointer to member DIEs.
13515 This is GCC PR debug/28767. */
13516
13517 static void
13518 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13519 {
13520 struct type *pfn_type, *self_type, *new_type;
13521
13522 /* Check for a structure with no name and two children. */
13523 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13524 return;
13525
13526 /* Check for __pfn and __delta members. */
13527 if (TYPE_FIELD_NAME (type, 0) == NULL
13528 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13529 || TYPE_FIELD_NAME (type, 1) == NULL
13530 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13531 return;
13532
13533 /* Find the type of the method. */
13534 pfn_type = TYPE_FIELD_TYPE (type, 0);
13535 if (pfn_type == NULL
13536 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13537 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13538 return;
13539
13540 /* Look for the "this" argument. */
13541 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13542 if (TYPE_NFIELDS (pfn_type) == 0
13543 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13544 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13545 return;
13546
13547 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13548 new_type = alloc_type (objfile);
13549 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13550 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13551 TYPE_VARARGS (pfn_type));
13552 smash_to_methodptr_type (type, new_type);
13553 }
13554
13555
13556 /* Called when we find the DIE that starts a structure or union scope
13557 (definition) to create a type for the structure or union. Fill in
13558 the type's name and general properties; the members will not be
13559 processed until process_structure_scope. A symbol table entry for
13560 the type will also not be done until process_structure_scope (assuming
13561 the type has a name).
13562
13563 NOTE: we need to call these functions regardless of whether or not the
13564 DIE has a DW_AT_name attribute, since it might be an anonymous
13565 structure or union. This gets the type entered into our set of
13566 user defined types. */
13567
13568 static struct type *
13569 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13570 {
13571 struct objfile *objfile = cu->objfile;
13572 struct type *type;
13573 struct attribute *attr;
13574 const char *name;
13575
13576 /* If the definition of this type lives in .debug_types, read that type.
13577 Don't follow DW_AT_specification though, that will take us back up
13578 the chain and we want to go down. */
13579 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13580 if (attr)
13581 {
13582 type = get_DW_AT_signature_type (die, attr, cu);
13583
13584 /* The type's CU may not be the same as CU.
13585 Ensure TYPE is recorded with CU in die_type_hash. */
13586 return set_die_type (die, type, cu);
13587 }
13588
13589 type = alloc_type (objfile);
13590 INIT_CPLUS_SPECIFIC (type);
13591
13592 name = dwarf2_name (die, cu);
13593 if (name != NULL)
13594 {
13595 if (cu->language == language_cplus
13596 || cu->language == language_d
13597 || cu->language == language_rust)
13598 {
13599 const char *full_name = dwarf2_full_name (name, die, cu);
13600
13601 /* dwarf2_full_name might have already finished building the DIE's
13602 type. If so, there is no need to continue. */
13603 if (get_die_type (die, cu) != NULL)
13604 return get_die_type (die, cu);
13605
13606 TYPE_TAG_NAME (type) = full_name;
13607 if (die->tag == DW_TAG_structure_type
13608 || die->tag == DW_TAG_class_type)
13609 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13610 }
13611 else
13612 {
13613 /* The name is already allocated along with this objfile, so
13614 we don't need to duplicate it for the type. */
13615 TYPE_TAG_NAME (type) = name;
13616 if (die->tag == DW_TAG_class_type)
13617 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13618 }
13619 }
13620
13621 if (die->tag == DW_TAG_structure_type)
13622 {
13623 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13624 }
13625 else if (die->tag == DW_TAG_union_type)
13626 {
13627 TYPE_CODE (type) = TYPE_CODE_UNION;
13628 }
13629 else
13630 {
13631 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13632 }
13633
13634 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13635 TYPE_DECLARED_CLASS (type) = 1;
13636
13637 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13638 if (attr)
13639 {
13640 if (attr_form_is_constant (attr))
13641 TYPE_LENGTH (type) = DW_UNSND (attr);
13642 else
13643 {
13644 /* For the moment, dynamic type sizes are not supported
13645 by GDB's struct type. The actual size is determined
13646 on-demand when resolving the type of a given object,
13647 so set the type's length to zero for now. Otherwise,
13648 we record an expression as the length, and that expression
13649 could lead to a very large value, which could eventually
13650 lead to us trying to allocate that much memory when creating
13651 a value of that type. */
13652 TYPE_LENGTH (type) = 0;
13653 }
13654 }
13655 else
13656 {
13657 TYPE_LENGTH (type) = 0;
13658 }
13659
13660 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
13661 {
13662 /* ICC<14 does not output the required DW_AT_declaration on
13663 incomplete types, but gives them a size of zero. */
13664 TYPE_STUB (type) = 1;
13665 }
13666 else
13667 TYPE_STUB_SUPPORTED (type) = 1;
13668
13669 if (die_is_declaration (die, cu))
13670 TYPE_STUB (type) = 1;
13671 else if (attr == NULL && die->child == NULL
13672 && producer_is_realview (cu->producer))
13673 /* RealView does not output the required DW_AT_declaration
13674 on incomplete types. */
13675 TYPE_STUB (type) = 1;
13676
13677 /* We need to add the type field to the die immediately so we don't
13678 infinitely recurse when dealing with pointers to the structure
13679 type within the structure itself. */
13680 set_die_type (die, type, cu);
13681
13682 /* set_die_type should be already done. */
13683 set_descriptive_type (type, die, cu);
13684
13685 return type;
13686 }
13687
13688 /* Finish creating a structure or union type, including filling in
13689 its members and creating a symbol for it. */
13690
13691 static void
13692 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13693 {
13694 struct objfile *objfile = cu->objfile;
13695 struct die_info *child_die;
13696 struct type *type;
13697
13698 type = get_die_type (die, cu);
13699 if (type == NULL)
13700 type = read_structure_type (die, cu);
13701
13702 if (die->child != NULL && ! die_is_declaration (die, cu))
13703 {
13704 struct field_info fi;
13705 VEC (symbolp) *template_args = NULL;
13706 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13707
13708 memset (&fi, 0, sizeof (struct field_info));
13709
13710 child_die = die->child;
13711
13712 while (child_die && child_die->tag)
13713 {
13714 if (child_die->tag == DW_TAG_member
13715 || child_die->tag == DW_TAG_variable)
13716 {
13717 /* NOTE: carlton/2002-11-05: A C++ static data member
13718 should be a DW_TAG_member that is a declaration, but
13719 all versions of G++ as of this writing (so through at
13720 least 3.2.1) incorrectly generate DW_TAG_variable
13721 tags for them instead. */
13722 dwarf2_add_field (&fi, child_die, cu);
13723 }
13724 else if (child_die->tag == DW_TAG_subprogram)
13725 {
13726 /* Rust doesn't have member functions in the C++ sense.
13727 However, it does emit ordinary functions as children
13728 of a struct DIE. */
13729 if (cu->language == language_rust)
13730 read_func_scope (child_die, cu);
13731 else
13732 {
13733 /* C++ member function. */
13734 dwarf2_add_member_fn (&fi, child_die, type, cu);
13735 }
13736 }
13737 else if (child_die->tag == DW_TAG_inheritance)
13738 {
13739 /* C++ base class field. */
13740 dwarf2_add_field (&fi, child_die, cu);
13741 }
13742 else if (child_die->tag == DW_TAG_typedef)
13743 dwarf2_add_typedef (&fi, child_die, cu);
13744 else if (child_die->tag == DW_TAG_template_type_param
13745 || child_die->tag == DW_TAG_template_value_param)
13746 {
13747 struct symbol *arg = new_symbol (child_die, NULL, cu);
13748
13749 if (arg != NULL)
13750 VEC_safe_push (symbolp, template_args, arg);
13751 }
13752
13753 child_die = sibling_die (child_die);
13754 }
13755
13756 /* Attach template arguments to type. */
13757 if (! VEC_empty (symbolp, template_args))
13758 {
13759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13760 TYPE_N_TEMPLATE_ARGUMENTS (type)
13761 = VEC_length (symbolp, template_args);
13762 TYPE_TEMPLATE_ARGUMENTS (type)
13763 = XOBNEWVEC (&objfile->objfile_obstack,
13764 struct symbol *,
13765 TYPE_N_TEMPLATE_ARGUMENTS (type));
13766 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13767 VEC_address (symbolp, template_args),
13768 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13769 * sizeof (struct symbol *)));
13770 VEC_free (symbolp, template_args);
13771 }
13772
13773 /* Attach fields and member functions to the type. */
13774 if (fi.nfields)
13775 dwarf2_attach_fields_to_type (&fi, type, cu);
13776 if (fi.nfnfields)
13777 {
13778 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13779
13780 /* Get the type which refers to the base class (possibly this
13781 class itself) which contains the vtable pointer for the current
13782 class from the DW_AT_containing_type attribute. This use of
13783 DW_AT_containing_type is a GNU extension. */
13784
13785 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13786 {
13787 struct type *t = die_containing_type (die, cu);
13788
13789 set_type_vptr_basetype (type, t);
13790 if (type == t)
13791 {
13792 int i;
13793
13794 /* Our own class provides vtbl ptr. */
13795 for (i = TYPE_NFIELDS (t) - 1;
13796 i >= TYPE_N_BASECLASSES (t);
13797 --i)
13798 {
13799 const char *fieldname = TYPE_FIELD_NAME (t, i);
13800
13801 if (is_vtable_name (fieldname, cu))
13802 {
13803 set_type_vptr_fieldno (type, i);
13804 break;
13805 }
13806 }
13807
13808 /* Complain if virtual function table field not found. */
13809 if (i < TYPE_N_BASECLASSES (t))
13810 complaint (&symfile_complaints,
13811 _("virtual function table pointer "
13812 "not found when defining class '%s'"),
13813 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13814 "");
13815 }
13816 else
13817 {
13818 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13819 }
13820 }
13821 else if (cu->producer
13822 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13823 {
13824 /* The IBM XLC compiler does not provide direct indication
13825 of the containing type, but the vtable pointer is
13826 always named __vfp. */
13827
13828 int i;
13829
13830 for (i = TYPE_NFIELDS (type) - 1;
13831 i >= TYPE_N_BASECLASSES (type);
13832 --i)
13833 {
13834 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13835 {
13836 set_type_vptr_fieldno (type, i);
13837 set_type_vptr_basetype (type, type);
13838 break;
13839 }
13840 }
13841 }
13842 }
13843
13844 /* Copy fi.typedef_field_list linked list elements content into the
13845 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13846 if (fi.typedef_field_list)
13847 {
13848 int i = fi.typedef_field_list_count;
13849
13850 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13851 TYPE_TYPEDEF_FIELD_ARRAY (type)
13852 = ((struct typedef_field *)
13853 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13854 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13855
13856 /* Reverse the list order to keep the debug info elements order. */
13857 while (--i >= 0)
13858 {
13859 struct typedef_field *dest, *src;
13860
13861 dest = &TYPE_TYPEDEF_FIELD (type, i);
13862 src = &fi.typedef_field_list->field;
13863 fi.typedef_field_list = fi.typedef_field_list->next;
13864 *dest = *src;
13865 }
13866 }
13867
13868 do_cleanups (back_to);
13869 }
13870
13871 quirk_gcc_member_function_pointer (type, objfile);
13872
13873 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13874 snapshots) has been known to create a die giving a declaration
13875 for a class that has, as a child, a die giving a definition for a
13876 nested class. So we have to process our children even if the
13877 current die is a declaration. Normally, of course, a declaration
13878 won't have any children at all. */
13879
13880 child_die = die->child;
13881
13882 while (child_die != NULL && child_die->tag)
13883 {
13884 if (child_die->tag == DW_TAG_member
13885 || child_die->tag == DW_TAG_variable
13886 || child_die->tag == DW_TAG_inheritance
13887 || child_die->tag == DW_TAG_template_value_param
13888 || child_die->tag == DW_TAG_template_type_param)
13889 {
13890 /* Do nothing. */
13891 }
13892 else
13893 process_die (child_die, cu);
13894
13895 child_die = sibling_die (child_die);
13896 }
13897
13898 /* Do not consider external references. According to the DWARF standard,
13899 these DIEs are identified by the fact that they have no byte_size
13900 attribute, and a declaration attribute. */
13901 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13902 || !die_is_declaration (die, cu))
13903 new_symbol (die, type, cu);
13904 }
13905
13906 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13907 update TYPE using some information only available in DIE's children. */
13908
13909 static void
13910 update_enumeration_type_from_children (struct die_info *die,
13911 struct type *type,
13912 struct dwarf2_cu *cu)
13913 {
13914 struct die_info *child_die;
13915 int unsigned_enum = 1;
13916 int flag_enum = 1;
13917 ULONGEST mask = 0;
13918
13919 auto_obstack obstack;
13920
13921 for (child_die = die->child;
13922 child_die != NULL && child_die->tag;
13923 child_die = sibling_die (child_die))
13924 {
13925 struct attribute *attr;
13926 LONGEST value;
13927 const gdb_byte *bytes;
13928 struct dwarf2_locexpr_baton *baton;
13929 const char *name;
13930
13931 if (child_die->tag != DW_TAG_enumerator)
13932 continue;
13933
13934 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13935 if (attr == NULL)
13936 continue;
13937
13938 name = dwarf2_name (child_die, cu);
13939 if (name == NULL)
13940 name = "<anonymous enumerator>";
13941
13942 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13943 &value, &bytes, &baton);
13944 if (value < 0)
13945 {
13946 unsigned_enum = 0;
13947 flag_enum = 0;
13948 }
13949 else if ((mask & value) != 0)
13950 flag_enum = 0;
13951 else
13952 mask |= value;
13953
13954 /* If we already know that the enum type is neither unsigned, nor
13955 a flag type, no need to look at the rest of the enumerates. */
13956 if (!unsigned_enum && !flag_enum)
13957 break;
13958 }
13959
13960 if (unsigned_enum)
13961 TYPE_UNSIGNED (type) = 1;
13962 if (flag_enum)
13963 TYPE_FLAG_ENUM (type) = 1;
13964 }
13965
13966 /* Given a DW_AT_enumeration_type die, set its type. We do not
13967 complete the type's fields yet, or create any symbols. */
13968
13969 static struct type *
13970 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13971 {
13972 struct objfile *objfile = cu->objfile;
13973 struct type *type;
13974 struct attribute *attr;
13975 const char *name;
13976
13977 /* If the definition of this type lives in .debug_types, read that type.
13978 Don't follow DW_AT_specification though, that will take us back up
13979 the chain and we want to go down. */
13980 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13981 if (attr)
13982 {
13983 type = get_DW_AT_signature_type (die, attr, cu);
13984
13985 /* The type's CU may not be the same as CU.
13986 Ensure TYPE is recorded with CU in die_type_hash. */
13987 return set_die_type (die, type, cu);
13988 }
13989
13990 type = alloc_type (objfile);
13991
13992 TYPE_CODE (type) = TYPE_CODE_ENUM;
13993 name = dwarf2_full_name (NULL, die, cu);
13994 if (name != NULL)
13995 TYPE_TAG_NAME (type) = name;
13996
13997 attr = dwarf2_attr (die, DW_AT_type, cu);
13998 if (attr != NULL)
13999 {
14000 struct type *underlying_type = die_type (die, cu);
14001
14002 TYPE_TARGET_TYPE (type) = underlying_type;
14003 }
14004
14005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14006 if (attr)
14007 {
14008 TYPE_LENGTH (type) = DW_UNSND (attr);
14009 }
14010 else
14011 {
14012 TYPE_LENGTH (type) = 0;
14013 }
14014
14015 /* The enumeration DIE can be incomplete. In Ada, any type can be
14016 declared as private in the package spec, and then defined only
14017 inside the package body. Such types are known as Taft Amendment
14018 Types. When another package uses such a type, an incomplete DIE
14019 may be generated by the compiler. */
14020 if (die_is_declaration (die, cu))
14021 TYPE_STUB (type) = 1;
14022
14023 /* Finish the creation of this type by using the enum's children.
14024 We must call this even when the underlying type has been provided
14025 so that we can determine if we're looking at a "flag" enum. */
14026 update_enumeration_type_from_children (die, type, cu);
14027
14028 /* If this type has an underlying type that is not a stub, then we
14029 may use its attributes. We always use the "unsigned" attribute
14030 in this situation, because ordinarily we guess whether the type
14031 is unsigned -- but the guess can be wrong and the underlying type
14032 can tell us the reality. However, we defer to a local size
14033 attribute if one exists, because this lets the compiler override
14034 the underlying type if needed. */
14035 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14036 {
14037 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14038 if (TYPE_LENGTH (type) == 0)
14039 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14040 }
14041
14042 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14043
14044 return set_die_type (die, type, cu);
14045 }
14046
14047 /* Given a pointer to a die which begins an enumeration, process all
14048 the dies that define the members of the enumeration, and create the
14049 symbol for the enumeration type.
14050
14051 NOTE: We reverse the order of the element list. */
14052
14053 static void
14054 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14055 {
14056 struct type *this_type;
14057
14058 this_type = get_die_type (die, cu);
14059 if (this_type == NULL)
14060 this_type = read_enumeration_type (die, cu);
14061
14062 if (die->child != NULL)
14063 {
14064 struct die_info *child_die;
14065 struct symbol *sym;
14066 struct field *fields = NULL;
14067 int num_fields = 0;
14068 const char *name;
14069
14070 child_die = die->child;
14071 while (child_die && child_die->tag)
14072 {
14073 if (child_die->tag != DW_TAG_enumerator)
14074 {
14075 process_die (child_die, cu);
14076 }
14077 else
14078 {
14079 name = dwarf2_name (child_die, cu);
14080 if (name)
14081 {
14082 sym = new_symbol (child_die, this_type, cu);
14083
14084 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14085 {
14086 fields = (struct field *)
14087 xrealloc (fields,
14088 (num_fields + DW_FIELD_ALLOC_CHUNK)
14089 * sizeof (struct field));
14090 }
14091
14092 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14093 FIELD_TYPE (fields[num_fields]) = NULL;
14094 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14095 FIELD_BITSIZE (fields[num_fields]) = 0;
14096
14097 num_fields++;
14098 }
14099 }
14100
14101 child_die = sibling_die (child_die);
14102 }
14103
14104 if (num_fields)
14105 {
14106 TYPE_NFIELDS (this_type) = num_fields;
14107 TYPE_FIELDS (this_type) = (struct field *)
14108 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14109 memcpy (TYPE_FIELDS (this_type), fields,
14110 sizeof (struct field) * num_fields);
14111 xfree (fields);
14112 }
14113 }
14114
14115 /* If we are reading an enum from a .debug_types unit, and the enum
14116 is a declaration, and the enum is not the signatured type in the
14117 unit, then we do not want to add a symbol for it. Adding a
14118 symbol would in some cases obscure the true definition of the
14119 enum, giving users an incomplete type when the definition is
14120 actually available. Note that we do not want to do this for all
14121 enums which are just declarations, because C++0x allows forward
14122 enum declarations. */
14123 if (cu->per_cu->is_debug_types
14124 && die_is_declaration (die, cu))
14125 {
14126 struct signatured_type *sig_type;
14127
14128 sig_type = (struct signatured_type *) cu->per_cu;
14129 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14130 if (sig_type->type_offset_in_section != die->sect_off)
14131 return;
14132 }
14133
14134 new_symbol (die, this_type, cu);
14135 }
14136
14137 /* Extract all information from a DW_TAG_array_type DIE and put it in
14138 the DIE's type field. For now, this only handles one dimensional
14139 arrays. */
14140
14141 static struct type *
14142 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14143 {
14144 struct objfile *objfile = cu->objfile;
14145 struct die_info *child_die;
14146 struct type *type;
14147 struct type *element_type, *range_type, *index_type;
14148 struct attribute *attr;
14149 const char *name;
14150 unsigned int bit_stride = 0;
14151
14152 element_type = die_type (die, cu);
14153
14154 /* The die_type call above may have already set the type for this DIE. */
14155 type = get_die_type (die, cu);
14156 if (type)
14157 return type;
14158
14159 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14160 if (attr != NULL)
14161 bit_stride = DW_UNSND (attr) * 8;
14162
14163 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14164 if (attr != NULL)
14165 bit_stride = DW_UNSND (attr);
14166
14167 /* Irix 6.2 native cc creates array types without children for
14168 arrays with unspecified length. */
14169 if (die->child == NULL)
14170 {
14171 index_type = objfile_type (objfile)->builtin_int;
14172 range_type = create_static_range_type (NULL, index_type, 0, -1);
14173 type = create_array_type_with_stride (NULL, element_type, range_type,
14174 bit_stride);
14175 return set_die_type (die, type, cu);
14176 }
14177
14178 std::vector<struct type *> range_types;
14179 child_die = die->child;
14180 while (child_die && child_die->tag)
14181 {
14182 if (child_die->tag == DW_TAG_subrange_type)
14183 {
14184 struct type *child_type = read_type_die (child_die, cu);
14185
14186 if (child_type != NULL)
14187 {
14188 /* The range type was succesfully read. Save it for the
14189 array type creation. */
14190 range_types.push_back (child_type);
14191 }
14192 }
14193 child_die = sibling_die (child_die);
14194 }
14195
14196 /* Dwarf2 dimensions are output from left to right, create the
14197 necessary array types in backwards order. */
14198
14199 type = element_type;
14200
14201 if (read_array_order (die, cu) == DW_ORD_col_major)
14202 {
14203 int i = 0;
14204
14205 while (i < range_types.size ())
14206 type = create_array_type_with_stride (NULL, type, range_types[i++],
14207 bit_stride);
14208 }
14209 else
14210 {
14211 size_t ndim = range_types.size ();
14212 while (ndim-- > 0)
14213 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14214 bit_stride);
14215 }
14216
14217 /* Understand Dwarf2 support for vector types (like they occur on
14218 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14219 array type. This is not part of the Dwarf2/3 standard yet, but a
14220 custom vendor extension. The main difference between a regular
14221 array and the vector variant is that vectors are passed by value
14222 to functions. */
14223 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14224 if (attr)
14225 make_vector_type (type);
14226
14227 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14228 implementation may choose to implement triple vectors using this
14229 attribute. */
14230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14231 if (attr)
14232 {
14233 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14234 TYPE_LENGTH (type) = DW_UNSND (attr);
14235 else
14236 complaint (&symfile_complaints,
14237 _("DW_AT_byte_size for array type smaller "
14238 "than the total size of elements"));
14239 }
14240
14241 name = dwarf2_name (die, cu);
14242 if (name)
14243 TYPE_NAME (type) = name;
14244
14245 /* Install the type in the die. */
14246 set_die_type (die, type, cu);
14247
14248 /* set_die_type should be already done. */
14249 set_descriptive_type (type, die, cu);
14250
14251 return type;
14252 }
14253
14254 static enum dwarf_array_dim_ordering
14255 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14256 {
14257 struct attribute *attr;
14258
14259 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14260
14261 if (attr)
14262 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14263
14264 /* GNU F77 is a special case, as at 08/2004 array type info is the
14265 opposite order to the dwarf2 specification, but data is still
14266 laid out as per normal fortran.
14267
14268 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14269 version checking. */
14270
14271 if (cu->language == language_fortran
14272 && cu->producer && strstr (cu->producer, "GNU F77"))
14273 {
14274 return DW_ORD_row_major;
14275 }
14276
14277 switch (cu->language_defn->la_array_ordering)
14278 {
14279 case array_column_major:
14280 return DW_ORD_col_major;
14281 case array_row_major:
14282 default:
14283 return DW_ORD_row_major;
14284 };
14285 }
14286
14287 /* Extract all information from a DW_TAG_set_type DIE and put it in
14288 the DIE's type field. */
14289
14290 static struct type *
14291 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14292 {
14293 struct type *domain_type, *set_type;
14294 struct attribute *attr;
14295
14296 domain_type = die_type (die, cu);
14297
14298 /* The die_type call above may have already set the type for this DIE. */
14299 set_type = get_die_type (die, cu);
14300 if (set_type)
14301 return set_type;
14302
14303 set_type = create_set_type (NULL, domain_type);
14304
14305 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14306 if (attr)
14307 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14308
14309 return set_die_type (die, set_type, cu);
14310 }
14311
14312 /* A helper for read_common_block that creates a locexpr baton.
14313 SYM is the symbol which we are marking as computed.
14314 COMMON_DIE is the DIE for the common block.
14315 COMMON_LOC is the location expression attribute for the common
14316 block itself.
14317 MEMBER_LOC is the location expression attribute for the particular
14318 member of the common block that we are processing.
14319 CU is the CU from which the above come. */
14320
14321 static void
14322 mark_common_block_symbol_computed (struct symbol *sym,
14323 struct die_info *common_die,
14324 struct attribute *common_loc,
14325 struct attribute *member_loc,
14326 struct dwarf2_cu *cu)
14327 {
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 struct dwarf2_locexpr_baton *baton;
14330 gdb_byte *ptr;
14331 unsigned int cu_off;
14332 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14333 LONGEST offset = 0;
14334
14335 gdb_assert (common_loc && member_loc);
14336 gdb_assert (attr_form_is_block (common_loc));
14337 gdb_assert (attr_form_is_block (member_loc)
14338 || attr_form_is_constant (member_loc));
14339
14340 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14341 baton->per_cu = cu->per_cu;
14342 gdb_assert (baton->per_cu);
14343
14344 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14345
14346 if (attr_form_is_constant (member_loc))
14347 {
14348 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14349 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14350 }
14351 else
14352 baton->size += DW_BLOCK (member_loc)->size;
14353
14354 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14355 baton->data = ptr;
14356
14357 *ptr++ = DW_OP_call4;
14358 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14359 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14360 ptr += 4;
14361
14362 if (attr_form_is_constant (member_loc))
14363 {
14364 *ptr++ = DW_OP_addr;
14365 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14366 ptr += cu->header.addr_size;
14367 }
14368 else
14369 {
14370 /* We have to copy the data here, because DW_OP_call4 will only
14371 use a DW_AT_location attribute. */
14372 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14373 ptr += DW_BLOCK (member_loc)->size;
14374 }
14375
14376 *ptr++ = DW_OP_plus;
14377 gdb_assert (ptr - baton->data == baton->size);
14378
14379 SYMBOL_LOCATION_BATON (sym) = baton;
14380 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14381 }
14382
14383 /* Create appropriate locally-scoped variables for all the
14384 DW_TAG_common_block entries. Also create a struct common_block
14385 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14386 is used to sepate the common blocks name namespace from regular
14387 variable names. */
14388
14389 static void
14390 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14391 {
14392 struct attribute *attr;
14393
14394 attr = dwarf2_attr (die, DW_AT_location, cu);
14395 if (attr)
14396 {
14397 /* Support the .debug_loc offsets. */
14398 if (attr_form_is_block (attr))
14399 {
14400 /* Ok. */
14401 }
14402 else if (attr_form_is_section_offset (attr))
14403 {
14404 dwarf2_complex_location_expr_complaint ();
14405 attr = NULL;
14406 }
14407 else
14408 {
14409 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14410 "common block member");
14411 attr = NULL;
14412 }
14413 }
14414
14415 if (die->child != NULL)
14416 {
14417 struct objfile *objfile = cu->objfile;
14418 struct die_info *child_die;
14419 size_t n_entries = 0, size;
14420 struct common_block *common_block;
14421 struct symbol *sym;
14422
14423 for (child_die = die->child;
14424 child_die && child_die->tag;
14425 child_die = sibling_die (child_die))
14426 ++n_entries;
14427
14428 size = (sizeof (struct common_block)
14429 + (n_entries - 1) * sizeof (struct symbol *));
14430 common_block
14431 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14432 size);
14433 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14434 common_block->n_entries = 0;
14435
14436 for (child_die = die->child;
14437 child_die && child_die->tag;
14438 child_die = sibling_die (child_die))
14439 {
14440 /* Create the symbol in the DW_TAG_common_block block in the current
14441 symbol scope. */
14442 sym = new_symbol (child_die, NULL, cu);
14443 if (sym != NULL)
14444 {
14445 struct attribute *member_loc;
14446
14447 common_block->contents[common_block->n_entries++] = sym;
14448
14449 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14450 cu);
14451 if (member_loc)
14452 {
14453 /* GDB has handled this for a long time, but it is
14454 not specified by DWARF. It seems to have been
14455 emitted by gfortran at least as recently as:
14456 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14457 complaint (&symfile_complaints,
14458 _("Variable in common block has "
14459 "DW_AT_data_member_location "
14460 "- DIE at 0x%x [in module %s]"),
14461 to_underlying (child_die->sect_off),
14462 objfile_name (cu->objfile));
14463
14464 if (attr_form_is_section_offset (member_loc))
14465 dwarf2_complex_location_expr_complaint ();
14466 else if (attr_form_is_constant (member_loc)
14467 || attr_form_is_block (member_loc))
14468 {
14469 if (attr)
14470 mark_common_block_symbol_computed (sym, die, attr,
14471 member_loc, cu);
14472 }
14473 else
14474 dwarf2_complex_location_expr_complaint ();
14475 }
14476 }
14477 }
14478
14479 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14480 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14481 }
14482 }
14483
14484 /* Create a type for a C++ namespace. */
14485
14486 static struct type *
14487 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14488 {
14489 struct objfile *objfile = cu->objfile;
14490 const char *previous_prefix, *name;
14491 int is_anonymous;
14492 struct type *type;
14493
14494 /* For extensions, reuse the type of the original namespace. */
14495 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14496 {
14497 struct die_info *ext_die;
14498 struct dwarf2_cu *ext_cu = cu;
14499
14500 ext_die = dwarf2_extension (die, &ext_cu);
14501 type = read_type_die (ext_die, ext_cu);
14502
14503 /* EXT_CU may not be the same as CU.
14504 Ensure TYPE is recorded with CU in die_type_hash. */
14505 return set_die_type (die, type, cu);
14506 }
14507
14508 name = namespace_name (die, &is_anonymous, cu);
14509
14510 /* Now build the name of the current namespace. */
14511
14512 previous_prefix = determine_prefix (die, cu);
14513 if (previous_prefix[0] != '\0')
14514 name = typename_concat (&objfile->objfile_obstack,
14515 previous_prefix, name, 0, cu);
14516
14517 /* Create the type. */
14518 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14519 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14520
14521 return set_die_type (die, type, cu);
14522 }
14523
14524 /* Read a namespace scope. */
14525
14526 static void
14527 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14528 {
14529 struct objfile *objfile = cu->objfile;
14530 int is_anonymous;
14531
14532 /* Add a symbol associated to this if we haven't seen the namespace
14533 before. Also, add a using directive if it's an anonymous
14534 namespace. */
14535
14536 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14537 {
14538 struct type *type;
14539
14540 type = read_type_die (die, cu);
14541 new_symbol (die, type, cu);
14542
14543 namespace_name (die, &is_anonymous, cu);
14544 if (is_anonymous)
14545 {
14546 const char *previous_prefix = determine_prefix (die, cu);
14547
14548 std::vector<const char *> excludes;
14549 add_using_directive (using_directives (cu->language),
14550 previous_prefix, TYPE_NAME (type), NULL,
14551 NULL, excludes, 0, &objfile->objfile_obstack);
14552 }
14553 }
14554
14555 if (die->child != NULL)
14556 {
14557 struct die_info *child_die = die->child;
14558
14559 while (child_die && child_die->tag)
14560 {
14561 process_die (child_die, cu);
14562 child_die = sibling_die (child_die);
14563 }
14564 }
14565 }
14566
14567 /* Read a Fortran module as type. This DIE can be only a declaration used for
14568 imported module. Still we need that type as local Fortran "use ... only"
14569 declaration imports depend on the created type in determine_prefix. */
14570
14571 static struct type *
14572 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14573 {
14574 struct objfile *objfile = cu->objfile;
14575 const char *module_name;
14576 struct type *type;
14577
14578 module_name = dwarf2_name (die, cu);
14579 if (!module_name)
14580 complaint (&symfile_complaints,
14581 _("DW_TAG_module has no name, offset 0x%x"),
14582 to_underlying (die->sect_off));
14583 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14584
14585 /* determine_prefix uses TYPE_TAG_NAME. */
14586 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14587
14588 return set_die_type (die, type, cu);
14589 }
14590
14591 /* Read a Fortran module. */
14592
14593 static void
14594 read_module (struct die_info *die, struct dwarf2_cu *cu)
14595 {
14596 struct die_info *child_die = die->child;
14597 struct type *type;
14598
14599 type = read_type_die (die, cu);
14600 new_symbol (die, type, cu);
14601
14602 while (child_die && child_die->tag)
14603 {
14604 process_die (child_die, cu);
14605 child_die = sibling_die (child_die);
14606 }
14607 }
14608
14609 /* Return the name of the namespace represented by DIE. Set
14610 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14611 namespace. */
14612
14613 static const char *
14614 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14615 {
14616 struct die_info *current_die;
14617 const char *name = NULL;
14618
14619 /* Loop through the extensions until we find a name. */
14620
14621 for (current_die = die;
14622 current_die != NULL;
14623 current_die = dwarf2_extension (die, &cu))
14624 {
14625 /* We don't use dwarf2_name here so that we can detect the absence
14626 of a name -> anonymous namespace. */
14627 name = dwarf2_string_attr (die, DW_AT_name, cu);
14628
14629 if (name != NULL)
14630 break;
14631 }
14632
14633 /* Is it an anonymous namespace? */
14634
14635 *is_anonymous = (name == NULL);
14636 if (*is_anonymous)
14637 name = CP_ANONYMOUS_NAMESPACE_STR;
14638
14639 return name;
14640 }
14641
14642 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14643 the user defined type vector. */
14644
14645 static struct type *
14646 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14647 {
14648 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14649 struct comp_unit_head *cu_header = &cu->header;
14650 struct type *type;
14651 struct attribute *attr_byte_size;
14652 struct attribute *attr_address_class;
14653 int byte_size, addr_class;
14654 struct type *target_type;
14655
14656 target_type = die_type (die, cu);
14657
14658 /* The die_type call above may have already set the type for this DIE. */
14659 type = get_die_type (die, cu);
14660 if (type)
14661 return type;
14662
14663 type = lookup_pointer_type (target_type);
14664
14665 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14666 if (attr_byte_size)
14667 byte_size = DW_UNSND (attr_byte_size);
14668 else
14669 byte_size = cu_header->addr_size;
14670
14671 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14672 if (attr_address_class)
14673 addr_class = DW_UNSND (attr_address_class);
14674 else
14675 addr_class = DW_ADDR_none;
14676
14677 /* If the pointer size or address class is different than the
14678 default, create a type variant marked as such and set the
14679 length accordingly. */
14680 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14681 {
14682 if (gdbarch_address_class_type_flags_p (gdbarch))
14683 {
14684 int type_flags;
14685
14686 type_flags = gdbarch_address_class_type_flags
14687 (gdbarch, byte_size, addr_class);
14688 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14689 == 0);
14690 type = make_type_with_address_space (type, type_flags);
14691 }
14692 else if (TYPE_LENGTH (type) != byte_size)
14693 {
14694 complaint (&symfile_complaints,
14695 _("invalid pointer size %d"), byte_size);
14696 }
14697 else
14698 {
14699 /* Should we also complain about unhandled address classes? */
14700 }
14701 }
14702
14703 TYPE_LENGTH (type) = byte_size;
14704 return set_die_type (die, type, cu);
14705 }
14706
14707 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14708 the user defined type vector. */
14709
14710 static struct type *
14711 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14712 {
14713 struct type *type;
14714 struct type *to_type;
14715 struct type *domain;
14716
14717 to_type = die_type (die, cu);
14718 domain = die_containing_type (die, cu);
14719
14720 /* The calls above may have already set the type for this DIE. */
14721 type = get_die_type (die, cu);
14722 if (type)
14723 return type;
14724
14725 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14726 type = lookup_methodptr_type (to_type);
14727 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14728 {
14729 struct type *new_type = alloc_type (cu->objfile);
14730
14731 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14732 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14733 TYPE_VARARGS (to_type));
14734 type = lookup_methodptr_type (new_type);
14735 }
14736 else
14737 type = lookup_memberptr_type (to_type, domain);
14738
14739 return set_die_type (die, type, cu);
14740 }
14741
14742 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14743 the user defined type vector. */
14744
14745 static struct type *
14746 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14747 enum type_code refcode)
14748 {
14749 struct comp_unit_head *cu_header = &cu->header;
14750 struct type *type, *target_type;
14751 struct attribute *attr;
14752
14753 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14754
14755 target_type = die_type (die, cu);
14756
14757 /* The die_type call above may have already set the type for this DIE. */
14758 type = get_die_type (die, cu);
14759 if (type)
14760 return type;
14761
14762 type = lookup_reference_type (target_type, refcode);
14763 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14764 if (attr)
14765 {
14766 TYPE_LENGTH (type) = DW_UNSND (attr);
14767 }
14768 else
14769 {
14770 TYPE_LENGTH (type) = cu_header->addr_size;
14771 }
14772 return set_die_type (die, type, cu);
14773 }
14774
14775 /* Add the given cv-qualifiers to the element type of the array. GCC
14776 outputs DWARF type qualifiers that apply to an array, not the
14777 element type. But GDB relies on the array element type to carry
14778 the cv-qualifiers. This mimics section 6.7.3 of the C99
14779 specification. */
14780
14781 static struct type *
14782 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14783 struct type *base_type, int cnst, int voltl)
14784 {
14785 struct type *el_type, *inner_array;
14786
14787 base_type = copy_type (base_type);
14788 inner_array = base_type;
14789
14790 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14791 {
14792 TYPE_TARGET_TYPE (inner_array) =
14793 copy_type (TYPE_TARGET_TYPE (inner_array));
14794 inner_array = TYPE_TARGET_TYPE (inner_array);
14795 }
14796
14797 el_type = TYPE_TARGET_TYPE (inner_array);
14798 cnst |= TYPE_CONST (el_type);
14799 voltl |= TYPE_VOLATILE (el_type);
14800 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14801
14802 return set_die_type (die, base_type, cu);
14803 }
14804
14805 static struct type *
14806 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14807 {
14808 struct type *base_type, *cv_type;
14809
14810 base_type = die_type (die, cu);
14811
14812 /* The die_type call above may have already set the type for this DIE. */
14813 cv_type = get_die_type (die, cu);
14814 if (cv_type)
14815 return cv_type;
14816
14817 /* In case the const qualifier is applied to an array type, the element type
14818 is so qualified, not the array type (section 6.7.3 of C99). */
14819 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14820 return add_array_cv_type (die, cu, base_type, 1, 0);
14821
14822 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14823 return set_die_type (die, cv_type, cu);
14824 }
14825
14826 static struct type *
14827 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14828 {
14829 struct type *base_type, *cv_type;
14830
14831 base_type = die_type (die, cu);
14832
14833 /* The die_type call above may have already set the type for this DIE. */
14834 cv_type = get_die_type (die, cu);
14835 if (cv_type)
14836 return cv_type;
14837
14838 /* In case the volatile qualifier is applied to an array type, the
14839 element type is so qualified, not the array type (section 6.7.3
14840 of C99). */
14841 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14842 return add_array_cv_type (die, cu, base_type, 0, 1);
14843
14844 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14845 return set_die_type (die, cv_type, cu);
14846 }
14847
14848 /* Handle DW_TAG_restrict_type. */
14849
14850 static struct type *
14851 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14852 {
14853 struct type *base_type, *cv_type;
14854
14855 base_type = die_type (die, cu);
14856
14857 /* The die_type call above may have already set the type for this DIE. */
14858 cv_type = get_die_type (die, cu);
14859 if (cv_type)
14860 return cv_type;
14861
14862 cv_type = make_restrict_type (base_type);
14863 return set_die_type (die, cv_type, cu);
14864 }
14865
14866 /* Handle DW_TAG_atomic_type. */
14867
14868 static struct type *
14869 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14870 {
14871 struct type *base_type, *cv_type;
14872
14873 base_type = die_type (die, cu);
14874
14875 /* The die_type call above may have already set the type for this DIE. */
14876 cv_type = get_die_type (die, cu);
14877 if (cv_type)
14878 return cv_type;
14879
14880 cv_type = make_atomic_type (base_type);
14881 return set_die_type (die, cv_type, cu);
14882 }
14883
14884 /* Extract all information from a DW_TAG_string_type DIE and add to
14885 the user defined type vector. It isn't really a user defined type,
14886 but it behaves like one, with other DIE's using an AT_user_def_type
14887 attribute to reference it. */
14888
14889 static struct type *
14890 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14891 {
14892 struct objfile *objfile = cu->objfile;
14893 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14894 struct type *type, *range_type, *index_type, *char_type;
14895 struct attribute *attr;
14896 unsigned int length;
14897
14898 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14899 if (attr)
14900 {
14901 length = DW_UNSND (attr);
14902 }
14903 else
14904 {
14905 /* Check for the DW_AT_byte_size attribute. */
14906 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14907 if (attr)
14908 {
14909 length = DW_UNSND (attr);
14910 }
14911 else
14912 {
14913 length = 1;
14914 }
14915 }
14916
14917 index_type = objfile_type (objfile)->builtin_int;
14918 range_type = create_static_range_type (NULL, index_type, 1, length);
14919 char_type = language_string_char_type (cu->language_defn, gdbarch);
14920 type = create_string_type (NULL, char_type, range_type);
14921
14922 return set_die_type (die, type, cu);
14923 }
14924
14925 /* Assuming that DIE corresponds to a function, returns nonzero
14926 if the function is prototyped. */
14927
14928 static int
14929 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14930 {
14931 struct attribute *attr;
14932
14933 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14934 if (attr && (DW_UNSND (attr) != 0))
14935 return 1;
14936
14937 /* The DWARF standard implies that the DW_AT_prototyped attribute
14938 is only meaninful for C, but the concept also extends to other
14939 languages that allow unprototyped functions (Eg: Objective C).
14940 For all other languages, assume that functions are always
14941 prototyped. */
14942 if (cu->language != language_c
14943 && cu->language != language_objc
14944 && cu->language != language_opencl)
14945 return 1;
14946
14947 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14948 prototyped and unprototyped functions; default to prototyped,
14949 since that is more common in modern code (and RealView warns
14950 about unprototyped functions). */
14951 if (producer_is_realview (cu->producer))
14952 return 1;
14953
14954 return 0;
14955 }
14956
14957 /* Handle DIES due to C code like:
14958
14959 struct foo
14960 {
14961 int (*funcp)(int a, long l);
14962 int b;
14963 };
14964
14965 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14966
14967 static struct type *
14968 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14969 {
14970 struct objfile *objfile = cu->objfile;
14971 struct type *type; /* Type that this function returns. */
14972 struct type *ftype; /* Function that returns above type. */
14973 struct attribute *attr;
14974
14975 type = die_type (die, cu);
14976
14977 /* The die_type call above may have already set the type for this DIE. */
14978 ftype = get_die_type (die, cu);
14979 if (ftype)
14980 return ftype;
14981
14982 ftype = lookup_function_type (type);
14983
14984 if (prototyped_function_p (die, cu))
14985 TYPE_PROTOTYPED (ftype) = 1;
14986
14987 /* Store the calling convention in the type if it's available in
14988 the subroutine die. Otherwise set the calling convention to
14989 the default value DW_CC_normal. */
14990 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14991 if (attr)
14992 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14993 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14994 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14995 else
14996 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14997
14998 /* Record whether the function returns normally to its caller or not
14999 if the DWARF producer set that information. */
15000 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15001 if (attr && (DW_UNSND (attr) != 0))
15002 TYPE_NO_RETURN (ftype) = 1;
15003
15004 /* We need to add the subroutine type to the die immediately so
15005 we don't infinitely recurse when dealing with parameters
15006 declared as the same subroutine type. */
15007 set_die_type (die, ftype, cu);
15008
15009 if (die->child != NULL)
15010 {
15011 struct type *void_type = objfile_type (objfile)->builtin_void;
15012 struct die_info *child_die;
15013 int nparams, iparams;
15014
15015 /* Count the number of parameters.
15016 FIXME: GDB currently ignores vararg functions, but knows about
15017 vararg member functions. */
15018 nparams = 0;
15019 child_die = die->child;
15020 while (child_die && child_die->tag)
15021 {
15022 if (child_die->tag == DW_TAG_formal_parameter)
15023 nparams++;
15024 else if (child_die->tag == DW_TAG_unspecified_parameters)
15025 TYPE_VARARGS (ftype) = 1;
15026 child_die = sibling_die (child_die);
15027 }
15028
15029 /* Allocate storage for parameters and fill them in. */
15030 TYPE_NFIELDS (ftype) = nparams;
15031 TYPE_FIELDS (ftype) = (struct field *)
15032 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15033
15034 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15035 even if we error out during the parameters reading below. */
15036 for (iparams = 0; iparams < nparams; iparams++)
15037 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15038
15039 iparams = 0;
15040 child_die = die->child;
15041 while (child_die && child_die->tag)
15042 {
15043 if (child_die->tag == DW_TAG_formal_parameter)
15044 {
15045 struct type *arg_type;
15046
15047 /* DWARF version 2 has no clean way to discern C++
15048 static and non-static member functions. G++ helps
15049 GDB by marking the first parameter for non-static
15050 member functions (which is the this pointer) as
15051 artificial. We pass this information to
15052 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15053
15054 DWARF version 3 added DW_AT_object_pointer, which GCC
15055 4.5 does not yet generate. */
15056 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15057 if (attr)
15058 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15059 else
15060 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15061 arg_type = die_type (child_die, cu);
15062
15063 /* RealView does not mark THIS as const, which the testsuite
15064 expects. GCC marks THIS as const in method definitions,
15065 but not in the class specifications (GCC PR 43053). */
15066 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15067 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15068 {
15069 int is_this = 0;
15070 struct dwarf2_cu *arg_cu = cu;
15071 const char *name = dwarf2_name (child_die, cu);
15072
15073 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15074 if (attr)
15075 {
15076 /* If the compiler emits this, use it. */
15077 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15078 is_this = 1;
15079 }
15080 else if (name && strcmp (name, "this") == 0)
15081 /* Function definitions will have the argument names. */
15082 is_this = 1;
15083 else if (name == NULL && iparams == 0)
15084 /* Declarations may not have the names, so like
15085 elsewhere in GDB, assume an artificial first
15086 argument is "this". */
15087 is_this = 1;
15088
15089 if (is_this)
15090 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15091 arg_type, 0);
15092 }
15093
15094 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15095 iparams++;
15096 }
15097 child_die = sibling_die (child_die);
15098 }
15099 }
15100
15101 return ftype;
15102 }
15103
15104 static struct type *
15105 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15106 {
15107 struct objfile *objfile = cu->objfile;
15108 const char *name = NULL;
15109 struct type *this_type, *target_type;
15110
15111 name = dwarf2_full_name (NULL, die, cu);
15112 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15113 TYPE_TARGET_STUB (this_type) = 1;
15114 set_die_type (die, this_type, cu);
15115 target_type = die_type (die, cu);
15116 if (target_type != this_type)
15117 TYPE_TARGET_TYPE (this_type) = target_type;
15118 else
15119 {
15120 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15121 spec and cause infinite loops in GDB. */
15122 complaint (&symfile_complaints,
15123 _("Self-referential DW_TAG_typedef "
15124 "- DIE at 0x%x [in module %s]"),
15125 to_underlying (die->sect_off), objfile_name (objfile));
15126 TYPE_TARGET_TYPE (this_type) = NULL;
15127 }
15128 return this_type;
15129 }
15130
15131 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15132 (which may be different from NAME) to the architecture back-end to allow
15133 it to guess the correct format if necessary. */
15134
15135 static struct type *
15136 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15137 const char *name_hint)
15138 {
15139 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15140 const struct floatformat **format;
15141 struct type *type;
15142
15143 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15144 if (format)
15145 type = init_float_type (objfile, bits, name, format);
15146 else
15147 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15148
15149 return type;
15150 }
15151
15152 /* Find a representation of a given base type and install
15153 it in the TYPE field of the die. */
15154
15155 static struct type *
15156 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15157 {
15158 struct objfile *objfile = cu->objfile;
15159 struct type *type;
15160 struct attribute *attr;
15161 int encoding = 0, bits = 0;
15162 const char *name;
15163
15164 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15165 if (attr)
15166 {
15167 encoding = DW_UNSND (attr);
15168 }
15169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15170 if (attr)
15171 {
15172 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15173 }
15174 name = dwarf2_name (die, cu);
15175 if (!name)
15176 {
15177 complaint (&symfile_complaints,
15178 _("DW_AT_name missing from DW_TAG_base_type"));
15179 }
15180
15181 switch (encoding)
15182 {
15183 case DW_ATE_address:
15184 /* Turn DW_ATE_address into a void * pointer. */
15185 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15186 type = init_pointer_type (objfile, bits, name, type);
15187 break;
15188 case DW_ATE_boolean:
15189 type = init_boolean_type (objfile, bits, 1, name);
15190 break;
15191 case DW_ATE_complex_float:
15192 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15193 type = init_complex_type (objfile, name, type);
15194 break;
15195 case DW_ATE_decimal_float:
15196 type = init_decfloat_type (objfile, bits, name);
15197 break;
15198 case DW_ATE_float:
15199 type = dwarf2_init_float_type (objfile, bits, name, name);
15200 break;
15201 case DW_ATE_signed:
15202 type = init_integer_type (objfile, bits, 0, name);
15203 break;
15204 case DW_ATE_unsigned:
15205 if (cu->language == language_fortran
15206 && name
15207 && startswith (name, "character("))
15208 type = init_character_type (objfile, bits, 1, name);
15209 else
15210 type = init_integer_type (objfile, bits, 1, name);
15211 break;
15212 case DW_ATE_signed_char:
15213 if (cu->language == language_ada || cu->language == language_m2
15214 || cu->language == language_pascal
15215 || cu->language == language_fortran)
15216 type = init_character_type (objfile, bits, 0, name);
15217 else
15218 type = init_integer_type (objfile, bits, 0, name);
15219 break;
15220 case DW_ATE_unsigned_char:
15221 if (cu->language == language_ada || cu->language == language_m2
15222 || cu->language == language_pascal
15223 || cu->language == language_fortran
15224 || cu->language == language_rust)
15225 type = init_character_type (objfile, bits, 1, name);
15226 else
15227 type = init_integer_type (objfile, bits, 1, name);
15228 break;
15229 case DW_ATE_UTF:
15230 {
15231 gdbarch *arch = get_objfile_arch (objfile);
15232
15233 if (bits == 16)
15234 type = builtin_type (arch)->builtin_char16;
15235 else if (bits == 32)
15236 type = builtin_type (arch)->builtin_char32;
15237 else
15238 {
15239 complaint (&symfile_complaints,
15240 _("unsupported DW_ATE_UTF bit size: '%d'"),
15241 bits);
15242 type = init_integer_type (objfile, bits, 1, name);
15243 }
15244 return set_die_type (die, type, cu);
15245 }
15246 break;
15247
15248 default:
15249 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15250 dwarf_type_encoding_name (encoding));
15251 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15252 break;
15253 }
15254
15255 if (name && strcmp (name, "char") == 0)
15256 TYPE_NOSIGN (type) = 1;
15257
15258 return set_die_type (die, type, cu);
15259 }
15260
15261 /* Parse dwarf attribute if it's a block, reference or constant and put the
15262 resulting value of the attribute into struct bound_prop.
15263 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15264
15265 static int
15266 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15267 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15268 {
15269 struct dwarf2_property_baton *baton;
15270 struct obstack *obstack = &cu->objfile->objfile_obstack;
15271
15272 if (attr == NULL || prop == NULL)
15273 return 0;
15274
15275 if (attr_form_is_block (attr))
15276 {
15277 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15278 baton->referenced_type = NULL;
15279 baton->locexpr.per_cu = cu->per_cu;
15280 baton->locexpr.size = DW_BLOCK (attr)->size;
15281 baton->locexpr.data = DW_BLOCK (attr)->data;
15282 prop->data.baton = baton;
15283 prop->kind = PROP_LOCEXPR;
15284 gdb_assert (prop->data.baton != NULL);
15285 }
15286 else if (attr_form_is_ref (attr))
15287 {
15288 struct dwarf2_cu *target_cu = cu;
15289 struct die_info *target_die;
15290 struct attribute *target_attr;
15291
15292 target_die = follow_die_ref (die, attr, &target_cu);
15293 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15294 if (target_attr == NULL)
15295 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15296 target_cu);
15297 if (target_attr == NULL)
15298 return 0;
15299
15300 switch (target_attr->name)
15301 {
15302 case DW_AT_location:
15303 if (attr_form_is_section_offset (target_attr))
15304 {
15305 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15306 baton->referenced_type = die_type (target_die, target_cu);
15307 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15308 prop->data.baton = baton;
15309 prop->kind = PROP_LOCLIST;
15310 gdb_assert (prop->data.baton != NULL);
15311 }
15312 else if (attr_form_is_block (target_attr))
15313 {
15314 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15315 baton->referenced_type = die_type (target_die, target_cu);
15316 baton->locexpr.per_cu = cu->per_cu;
15317 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15318 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15319 prop->data.baton = baton;
15320 prop->kind = PROP_LOCEXPR;
15321 gdb_assert (prop->data.baton != NULL);
15322 }
15323 else
15324 {
15325 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15326 "dynamic property");
15327 return 0;
15328 }
15329 break;
15330 case DW_AT_data_member_location:
15331 {
15332 LONGEST offset;
15333
15334 if (!handle_data_member_location (target_die, target_cu,
15335 &offset))
15336 return 0;
15337
15338 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15339 baton->referenced_type = read_type_die (target_die->parent,
15340 target_cu);
15341 baton->offset_info.offset = offset;
15342 baton->offset_info.type = die_type (target_die, target_cu);
15343 prop->data.baton = baton;
15344 prop->kind = PROP_ADDR_OFFSET;
15345 break;
15346 }
15347 }
15348 }
15349 else if (attr_form_is_constant (attr))
15350 {
15351 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15352 prop->kind = PROP_CONST;
15353 }
15354 else
15355 {
15356 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15357 dwarf2_name (die, cu));
15358 return 0;
15359 }
15360
15361 return 1;
15362 }
15363
15364 /* Read the given DW_AT_subrange DIE. */
15365
15366 static struct type *
15367 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15368 {
15369 struct type *base_type, *orig_base_type;
15370 struct type *range_type;
15371 struct attribute *attr;
15372 struct dynamic_prop low, high;
15373 int low_default_is_valid;
15374 int high_bound_is_count = 0;
15375 const char *name;
15376 LONGEST negative_mask;
15377
15378 orig_base_type = die_type (die, cu);
15379 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15380 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15381 creating the range type, but we use the result of check_typedef
15382 when examining properties of the type. */
15383 base_type = check_typedef (orig_base_type);
15384
15385 /* The die_type call above may have already set the type for this DIE. */
15386 range_type = get_die_type (die, cu);
15387 if (range_type)
15388 return range_type;
15389
15390 low.kind = PROP_CONST;
15391 high.kind = PROP_CONST;
15392 high.data.const_val = 0;
15393
15394 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15395 omitting DW_AT_lower_bound. */
15396 switch (cu->language)
15397 {
15398 case language_c:
15399 case language_cplus:
15400 low.data.const_val = 0;
15401 low_default_is_valid = 1;
15402 break;
15403 case language_fortran:
15404 low.data.const_val = 1;
15405 low_default_is_valid = 1;
15406 break;
15407 case language_d:
15408 case language_objc:
15409 case language_rust:
15410 low.data.const_val = 0;
15411 low_default_is_valid = (cu->header.version >= 4);
15412 break;
15413 case language_ada:
15414 case language_m2:
15415 case language_pascal:
15416 low.data.const_val = 1;
15417 low_default_is_valid = (cu->header.version >= 4);
15418 break;
15419 default:
15420 low.data.const_val = 0;
15421 low_default_is_valid = 0;
15422 break;
15423 }
15424
15425 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15426 if (attr)
15427 attr_to_dynamic_prop (attr, die, cu, &low);
15428 else if (!low_default_is_valid)
15429 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15430 "- DIE at 0x%x [in module %s]"),
15431 to_underlying (die->sect_off), objfile_name (cu->objfile));
15432
15433 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15434 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15435 {
15436 attr = dwarf2_attr (die, DW_AT_count, cu);
15437 if (attr_to_dynamic_prop (attr, die, cu, &high))
15438 {
15439 /* If bounds are constant do the final calculation here. */
15440 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15441 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15442 else
15443 high_bound_is_count = 1;
15444 }
15445 }
15446
15447 /* Dwarf-2 specifications explicitly allows to create subrange types
15448 without specifying a base type.
15449 In that case, the base type must be set to the type of
15450 the lower bound, upper bound or count, in that order, if any of these
15451 three attributes references an object that has a type.
15452 If no base type is found, the Dwarf-2 specifications say that
15453 a signed integer type of size equal to the size of an address should
15454 be used.
15455 For the following C code: `extern char gdb_int [];'
15456 GCC produces an empty range DIE.
15457 FIXME: muller/2010-05-28: Possible references to object for low bound,
15458 high bound or count are not yet handled by this code. */
15459 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15460 {
15461 struct objfile *objfile = cu->objfile;
15462 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15463 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15464 struct type *int_type = objfile_type (objfile)->builtin_int;
15465
15466 /* Test "int", "long int", and "long long int" objfile types,
15467 and select the first one having a size above or equal to the
15468 architecture address size. */
15469 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15470 base_type = int_type;
15471 else
15472 {
15473 int_type = objfile_type (objfile)->builtin_long;
15474 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15475 base_type = int_type;
15476 else
15477 {
15478 int_type = objfile_type (objfile)->builtin_long_long;
15479 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15480 base_type = int_type;
15481 }
15482 }
15483 }
15484
15485 /* Normally, the DWARF producers are expected to use a signed
15486 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15487 But this is unfortunately not always the case, as witnessed
15488 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15489 is used instead. To work around that ambiguity, we treat
15490 the bounds as signed, and thus sign-extend their values, when
15491 the base type is signed. */
15492 negative_mask =
15493 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15494 if (low.kind == PROP_CONST
15495 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15496 low.data.const_val |= negative_mask;
15497 if (high.kind == PROP_CONST
15498 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15499 high.data.const_val |= negative_mask;
15500
15501 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15502
15503 if (high_bound_is_count)
15504 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15505
15506 /* Ada expects an empty array on no boundary attributes. */
15507 if (attr == NULL && cu->language != language_ada)
15508 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15509
15510 name = dwarf2_name (die, cu);
15511 if (name)
15512 TYPE_NAME (range_type) = name;
15513
15514 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15515 if (attr)
15516 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15517
15518 set_die_type (die, range_type, cu);
15519
15520 /* set_die_type should be already done. */
15521 set_descriptive_type (range_type, die, cu);
15522
15523 return range_type;
15524 }
15525
15526 static struct type *
15527 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15528 {
15529 struct type *type;
15530
15531 /* For now, we only support the C meaning of an unspecified type: void. */
15532
15533 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15534 TYPE_NAME (type) = dwarf2_name (die, cu);
15535
15536 return set_die_type (die, type, cu);
15537 }
15538
15539 /* Read a single die and all its descendents. Set the die's sibling
15540 field to NULL; set other fields in the die correctly, and set all
15541 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15542 location of the info_ptr after reading all of those dies. PARENT
15543 is the parent of the die in question. */
15544
15545 static struct die_info *
15546 read_die_and_children (const struct die_reader_specs *reader,
15547 const gdb_byte *info_ptr,
15548 const gdb_byte **new_info_ptr,
15549 struct die_info *parent)
15550 {
15551 struct die_info *die;
15552 const gdb_byte *cur_ptr;
15553 int has_children;
15554
15555 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15556 if (die == NULL)
15557 {
15558 *new_info_ptr = cur_ptr;
15559 return NULL;
15560 }
15561 store_in_ref_table (die, reader->cu);
15562
15563 if (has_children)
15564 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15565 else
15566 {
15567 die->child = NULL;
15568 *new_info_ptr = cur_ptr;
15569 }
15570
15571 die->sibling = NULL;
15572 die->parent = parent;
15573 return die;
15574 }
15575
15576 /* Read a die, all of its descendents, and all of its siblings; set
15577 all of the fields of all of the dies correctly. Arguments are as
15578 in read_die_and_children. */
15579
15580 static struct die_info *
15581 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15582 const gdb_byte *info_ptr,
15583 const gdb_byte **new_info_ptr,
15584 struct die_info *parent)
15585 {
15586 struct die_info *first_die, *last_sibling;
15587 const gdb_byte *cur_ptr;
15588
15589 cur_ptr = info_ptr;
15590 first_die = last_sibling = NULL;
15591
15592 while (1)
15593 {
15594 struct die_info *die
15595 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15596
15597 if (die == NULL)
15598 {
15599 *new_info_ptr = cur_ptr;
15600 return first_die;
15601 }
15602
15603 if (!first_die)
15604 first_die = die;
15605 else
15606 last_sibling->sibling = die;
15607
15608 last_sibling = die;
15609 }
15610 }
15611
15612 /* Read a die, all of its descendents, and all of its siblings; set
15613 all of the fields of all of the dies correctly. Arguments are as
15614 in read_die_and_children.
15615 This the main entry point for reading a DIE and all its children. */
15616
15617 static struct die_info *
15618 read_die_and_siblings (const struct die_reader_specs *reader,
15619 const gdb_byte *info_ptr,
15620 const gdb_byte **new_info_ptr,
15621 struct die_info *parent)
15622 {
15623 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15624 new_info_ptr, parent);
15625
15626 if (dwarf_die_debug)
15627 {
15628 fprintf_unfiltered (gdb_stdlog,
15629 "Read die from %s@0x%x of %s:\n",
15630 get_section_name (reader->die_section),
15631 (unsigned) (info_ptr - reader->die_section->buffer),
15632 bfd_get_filename (reader->abfd));
15633 dump_die (die, dwarf_die_debug);
15634 }
15635
15636 return die;
15637 }
15638
15639 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15640 attributes.
15641 The caller is responsible for filling in the extra attributes
15642 and updating (*DIEP)->num_attrs.
15643 Set DIEP to point to a newly allocated die with its information,
15644 except for its child, sibling, and parent fields.
15645 Set HAS_CHILDREN to tell whether the die has children or not. */
15646
15647 static const gdb_byte *
15648 read_full_die_1 (const struct die_reader_specs *reader,
15649 struct die_info **diep, const gdb_byte *info_ptr,
15650 int *has_children, int num_extra_attrs)
15651 {
15652 unsigned int abbrev_number, bytes_read, i;
15653 struct abbrev_info *abbrev;
15654 struct die_info *die;
15655 struct dwarf2_cu *cu = reader->cu;
15656 bfd *abfd = reader->abfd;
15657
15658 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15659 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15660 info_ptr += bytes_read;
15661 if (!abbrev_number)
15662 {
15663 *diep = NULL;
15664 *has_children = 0;
15665 return info_ptr;
15666 }
15667
15668 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15669 if (!abbrev)
15670 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15671 abbrev_number,
15672 bfd_get_filename (abfd));
15673
15674 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15675 die->sect_off = sect_off;
15676 die->tag = abbrev->tag;
15677 die->abbrev = abbrev_number;
15678
15679 /* Make the result usable.
15680 The caller needs to update num_attrs after adding the extra
15681 attributes. */
15682 die->num_attrs = abbrev->num_attrs;
15683
15684 for (i = 0; i < abbrev->num_attrs; ++i)
15685 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15686 info_ptr);
15687
15688 *diep = die;
15689 *has_children = abbrev->has_children;
15690 return info_ptr;
15691 }
15692
15693 /* Read a die and all its attributes.
15694 Set DIEP to point to a newly allocated die with its information,
15695 except for its child, sibling, and parent fields.
15696 Set HAS_CHILDREN to tell whether the die has children or not. */
15697
15698 static const gdb_byte *
15699 read_full_die (const struct die_reader_specs *reader,
15700 struct die_info **diep, const gdb_byte *info_ptr,
15701 int *has_children)
15702 {
15703 const gdb_byte *result;
15704
15705 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15706
15707 if (dwarf_die_debug)
15708 {
15709 fprintf_unfiltered (gdb_stdlog,
15710 "Read die from %s@0x%x of %s:\n",
15711 get_section_name (reader->die_section),
15712 (unsigned) (info_ptr - reader->die_section->buffer),
15713 bfd_get_filename (reader->abfd));
15714 dump_die (*diep, dwarf_die_debug);
15715 }
15716
15717 return result;
15718 }
15719 \f
15720 /* Abbreviation tables.
15721
15722 In DWARF version 2, the description of the debugging information is
15723 stored in a separate .debug_abbrev section. Before we read any
15724 dies from a section we read in all abbreviations and install them
15725 in a hash table. */
15726
15727 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15728
15729 static struct abbrev_info *
15730 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15731 {
15732 struct abbrev_info *abbrev;
15733
15734 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15735 memset (abbrev, 0, sizeof (struct abbrev_info));
15736
15737 return abbrev;
15738 }
15739
15740 /* Add an abbreviation to the table. */
15741
15742 static void
15743 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15744 unsigned int abbrev_number,
15745 struct abbrev_info *abbrev)
15746 {
15747 unsigned int hash_number;
15748
15749 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15750 abbrev->next = abbrev_table->abbrevs[hash_number];
15751 abbrev_table->abbrevs[hash_number] = abbrev;
15752 }
15753
15754 /* Look up an abbrev in the table.
15755 Returns NULL if the abbrev is not found. */
15756
15757 static struct abbrev_info *
15758 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15759 unsigned int abbrev_number)
15760 {
15761 unsigned int hash_number;
15762 struct abbrev_info *abbrev;
15763
15764 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15765 abbrev = abbrev_table->abbrevs[hash_number];
15766
15767 while (abbrev)
15768 {
15769 if (abbrev->number == abbrev_number)
15770 return abbrev;
15771 abbrev = abbrev->next;
15772 }
15773 return NULL;
15774 }
15775
15776 /* Read in an abbrev table. */
15777
15778 static struct abbrev_table *
15779 abbrev_table_read_table (struct dwarf2_section_info *section,
15780 sect_offset sect_off)
15781 {
15782 struct objfile *objfile = dwarf2_per_objfile->objfile;
15783 bfd *abfd = get_section_bfd_owner (section);
15784 struct abbrev_table *abbrev_table;
15785 const gdb_byte *abbrev_ptr;
15786 struct abbrev_info *cur_abbrev;
15787 unsigned int abbrev_number, bytes_read, abbrev_name;
15788 unsigned int abbrev_form;
15789 struct attr_abbrev *cur_attrs;
15790 unsigned int allocated_attrs;
15791
15792 abbrev_table = XNEW (struct abbrev_table);
15793 abbrev_table->sect_off = sect_off;
15794 obstack_init (&abbrev_table->abbrev_obstack);
15795 abbrev_table->abbrevs =
15796 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15797 ABBREV_HASH_SIZE);
15798 memset (abbrev_table->abbrevs, 0,
15799 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15800
15801 dwarf2_read_section (objfile, section);
15802 abbrev_ptr = section->buffer + to_underlying (sect_off);
15803 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15804 abbrev_ptr += bytes_read;
15805
15806 allocated_attrs = ATTR_ALLOC_CHUNK;
15807 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15808
15809 /* Loop until we reach an abbrev number of 0. */
15810 while (abbrev_number)
15811 {
15812 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15813
15814 /* read in abbrev header */
15815 cur_abbrev->number = abbrev_number;
15816 cur_abbrev->tag
15817 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15818 abbrev_ptr += bytes_read;
15819 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15820 abbrev_ptr += 1;
15821
15822 /* now read in declarations */
15823 for (;;)
15824 {
15825 LONGEST implicit_const;
15826
15827 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15828 abbrev_ptr += bytes_read;
15829 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15830 abbrev_ptr += bytes_read;
15831 if (abbrev_form == DW_FORM_implicit_const)
15832 {
15833 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15834 &bytes_read);
15835 abbrev_ptr += bytes_read;
15836 }
15837 else
15838 {
15839 /* Initialize it due to a false compiler warning. */
15840 implicit_const = -1;
15841 }
15842
15843 if (abbrev_name == 0)
15844 break;
15845
15846 if (cur_abbrev->num_attrs == allocated_attrs)
15847 {
15848 allocated_attrs += ATTR_ALLOC_CHUNK;
15849 cur_attrs
15850 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15851 }
15852
15853 cur_attrs[cur_abbrev->num_attrs].name
15854 = (enum dwarf_attribute) abbrev_name;
15855 cur_attrs[cur_abbrev->num_attrs].form
15856 = (enum dwarf_form) abbrev_form;
15857 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15858 ++cur_abbrev->num_attrs;
15859 }
15860
15861 cur_abbrev->attrs =
15862 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15863 cur_abbrev->num_attrs);
15864 memcpy (cur_abbrev->attrs, cur_attrs,
15865 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15866
15867 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15868
15869 /* Get next abbreviation.
15870 Under Irix6 the abbreviations for a compilation unit are not
15871 always properly terminated with an abbrev number of 0.
15872 Exit loop if we encounter an abbreviation which we have
15873 already read (which means we are about to read the abbreviations
15874 for the next compile unit) or if the end of the abbreviation
15875 table is reached. */
15876 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15877 break;
15878 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15879 abbrev_ptr += bytes_read;
15880 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15881 break;
15882 }
15883
15884 xfree (cur_attrs);
15885 return abbrev_table;
15886 }
15887
15888 /* Free the resources held by ABBREV_TABLE. */
15889
15890 static void
15891 abbrev_table_free (struct abbrev_table *abbrev_table)
15892 {
15893 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15894 xfree (abbrev_table);
15895 }
15896
15897 /* Same as abbrev_table_free but as a cleanup.
15898 We pass in a pointer to the pointer to the table so that we can
15899 set the pointer to NULL when we're done. It also simplifies
15900 build_type_psymtabs_1. */
15901
15902 static void
15903 abbrev_table_free_cleanup (void *table_ptr)
15904 {
15905 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15906
15907 if (*abbrev_table_ptr != NULL)
15908 abbrev_table_free (*abbrev_table_ptr);
15909 *abbrev_table_ptr = NULL;
15910 }
15911
15912 /* Read the abbrev table for CU from ABBREV_SECTION. */
15913
15914 static void
15915 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15916 struct dwarf2_section_info *abbrev_section)
15917 {
15918 cu->abbrev_table =
15919 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15920 }
15921
15922 /* Release the memory used by the abbrev table for a compilation unit. */
15923
15924 static void
15925 dwarf2_free_abbrev_table (void *ptr_to_cu)
15926 {
15927 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15928
15929 if (cu->abbrev_table != NULL)
15930 abbrev_table_free (cu->abbrev_table);
15931 /* Set this to NULL so that we SEGV if we try to read it later,
15932 and also because free_comp_unit verifies this is NULL. */
15933 cu->abbrev_table = NULL;
15934 }
15935 \f
15936 /* Returns nonzero if TAG represents a type that we might generate a partial
15937 symbol for. */
15938
15939 static int
15940 is_type_tag_for_partial (int tag)
15941 {
15942 switch (tag)
15943 {
15944 #if 0
15945 /* Some types that would be reasonable to generate partial symbols for,
15946 that we don't at present. */
15947 case DW_TAG_array_type:
15948 case DW_TAG_file_type:
15949 case DW_TAG_ptr_to_member_type:
15950 case DW_TAG_set_type:
15951 case DW_TAG_string_type:
15952 case DW_TAG_subroutine_type:
15953 #endif
15954 case DW_TAG_base_type:
15955 case DW_TAG_class_type:
15956 case DW_TAG_interface_type:
15957 case DW_TAG_enumeration_type:
15958 case DW_TAG_structure_type:
15959 case DW_TAG_subrange_type:
15960 case DW_TAG_typedef:
15961 case DW_TAG_union_type:
15962 return 1;
15963 default:
15964 return 0;
15965 }
15966 }
15967
15968 /* Load all DIEs that are interesting for partial symbols into memory. */
15969
15970 static struct partial_die_info *
15971 load_partial_dies (const struct die_reader_specs *reader,
15972 const gdb_byte *info_ptr, int building_psymtab)
15973 {
15974 struct dwarf2_cu *cu = reader->cu;
15975 struct objfile *objfile = cu->objfile;
15976 struct partial_die_info *part_die;
15977 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15978 struct abbrev_info *abbrev;
15979 unsigned int bytes_read;
15980 unsigned int load_all = 0;
15981 int nesting_level = 1;
15982
15983 parent_die = NULL;
15984 last_die = NULL;
15985
15986 gdb_assert (cu->per_cu != NULL);
15987 if (cu->per_cu->load_all_dies)
15988 load_all = 1;
15989
15990 cu->partial_dies
15991 = htab_create_alloc_ex (cu->header.length / 12,
15992 partial_die_hash,
15993 partial_die_eq,
15994 NULL,
15995 &cu->comp_unit_obstack,
15996 hashtab_obstack_allocate,
15997 dummy_obstack_deallocate);
15998
15999 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16000
16001 while (1)
16002 {
16003 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16004
16005 /* A NULL abbrev means the end of a series of children. */
16006 if (abbrev == NULL)
16007 {
16008 if (--nesting_level == 0)
16009 {
16010 /* PART_DIE was probably the last thing allocated on the
16011 comp_unit_obstack, so we could call obstack_free
16012 here. We don't do that because the waste is small,
16013 and will be cleaned up when we're done with this
16014 compilation unit. This way, we're also more robust
16015 against other users of the comp_unit_obstack. */
16016 return first_die;
16017 }
16018 info_ptr += bytes_read;
16019 last_die = parent_die;
16020 parent_die = parent_die->die_parent;
16021 continue;
16022 }
16023
16024 /* Check for template arguments. We never save these; if
16025 they're seen, we just mark the parent, and go on our way. */
16026 if (parent_die != NULL
16027 && cu->language == language_cplus
16028 && (abbrev->tag == DW_TAG_template_type_param
16029 || abbrev->tag == DW_TAG_template_value_param))
16030 {
16031 parent_die->has_template_arguments = 1;
16032
16033 if (!load_all)
16034 {
16035 /* We don't need a partial DIE for the template argument. */
16036 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16037 continue;
16038 }
16039 }
16040
16041 /* We only recurse into c++ subprograms looking for template arguments.
16042 Skip their other children. */
16043 if (!load_all
16044 && cu->language == language_cplus
16045 && parent_die != NULL
16046 && parent_die->tag == DW_TAG_subprogram)
16047 {
16048 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16049 continue;
16050 }
16051
16052 /* Check whether this DIE is interesting enough to save. Normally
16053 we would not be interested in members here, but there may be
16054 later variables referencing them via DW_AT_specification (for
16055 static members). */
16056 if (!load_all
16057 && !is_type_tag_for_partial (abbrev->tag)
16058 && abbrev->tag != DW_TAG_constant
16059 && abbrev->tag != DW_TAG_enumerator
16060 && abbrev->tag != DW_TAG_subprogram
16061 && abbrev->tag != DW_TAG_lexical_block
16062 && abbrev->tag != DW_TAG_variable
16063 && abbrev->tag != DW_TAG_namespace
16064 && abbrev->tag != DW_TAG_module
16065 && abbrev->tag != DW_TAG_member
16066 && abbrev->tag != DW_TAG_imported_unit
16067 && abbrev->tag != DW_TAG_imported_declaration)
16068 {
16069 /* Otherwise we skip to the next sibling, if any. */
16070 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16071 continue;
16072 }
16073
16074 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16075 info_ptr);
16076
16077 /* This two-pass algorithm for processing partial symbols has a
16078 high cost in cache pressure. Thus, handle some simple cases
16079 here which cover the majority of C partial symbols. DIEs
16080 which neither have specification tags in them, nor could have
16081 specification tags elsewhere pointing at them, can simply be
16082 processed and discarded.
16083
16084 This segment is also optional; scan_partial_symbols and
16085 add_partial_symbol will handle these DIEs if we chain
16086 them in normally. When compilers which do not emit large
16087 quantities of duplicate debug information are more common,
16088 this code can probably be removed. */
16089
16090 /* Any complete simple types at the top level (pretty much all
16091 of them, for a language without namespaces), can be processed
16092 directly. */
16093 if (parent_die == NULL
16094 && part_die->has_specification == 0
16095 && part_die->is_declaration == 0
16096 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16097 || part_die->tag == DW_TAG_base_type
16098 || part_die->tag == DW_TAG_subrange_type))
16099 {
16100 if (building_psymtab && part_die->name != NULL)
16101 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16102 VAR_DOMAIN, LOC_TYPEDEF,
16103 &objfile->static_psymbols,
16104 0, cu->language, objfile);
16105 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16106 continue;
16107 }
16108
16109 /* The exception for DW_TAG_typedef with has_children above is
16110 a workaround of GCC PR debug/47510. In the case of this complaint
16111 type_name_no_tag_or_error will error on such types later.
16112
16113 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16114 it could not find the child DIEs referenced later, this is checked
16115 above. In correct DWARF DW_TAG_typedef should have no children. */
16116
16117 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16118 complaint (&symfile_complaints,
16119 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16120 "- DIE at 0x%x [in module %s]"),
16121 to_underlying (part_die->sect_off), objfile_name (objfile));
16122
16123 /* If we're at the second level, and we're an enumerator, and
16124 our parent has no specification (meaning possibly lives in a
16125 namespace elsewhere), then we can add the partial symbol now
16126 instead of queueing it. */
16127 if (part_die->tag == DW_TAG_enumerator
16128 && parent_die != NULL
16129 && parent_die->die_parent == NULL
16130 && parent_die->tag == DW_TAG_enumeration_type
16131 && parent_die->has_specification == 0)
16132 {
16133 if (part_die->name == NULL)
16134 complaint (&symfile_complaints,
16135 _("malformed enumerator DIE ignored"));
16136 else if (building_psymtab)
16137 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16138 VAR_DOMAIN, LOC_CONST,
16139 cu->language == language_cplus
16140 ? &objfile->global_psymbols
16141 : &objfile->static_psymbols,
16142 0, cu->language, objfile);
16143
16144 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16145 continue;
16146 }
16147
16148 /* We'll save this DIE so link it in. */
16149 part_die->die_parent = parent_die;
16150 part_die->die_sibling = NULL;
16151 part_die->die_child = NULL;
16152
16153 if (last_die && last_die == parent_die)
16154 last_die->die_child = part_die;
16155 else if (last_die)
16156 last_die->die_sibling = part_die;
16157
16158 last_die = part_die;
16159
16160 if (first_die == NULL)
16161 first_die = part_die;
16162
16163 /* Maybe add the DIE to the hash table. Not all DIEs that we
16164 find interesting need to be in the hash table, because we
16165 also have the parent/sibling/child chains; only those that we
16166 might refer to by offset later during partial symbol reading.
16167
16168 For now this means things that might have be the target of a
16169 DW_AT_specification, DW_AT_abstract_origin, or
16170 DW_AT_extension. DW_AT_extension will refer only to
16171 namespaces; DW_AT_abstract_origin refers to functions (and
16172 many things under the function DIE, but we do not recurse
16173 into function DIEs during partial symbol reading) and
16174 possibly variables as well; DW_AT_specification refers to
16175 declarations. Declarations ought to have the DW_AT_declaration
16176 flag. It happens that GCC forgets to put it in sometimes, but
16177 only for functions, not for types.
16178
16179 Adding more things than necessary to the hash table is harmless
16180 except for the performance cost. Adding too few will result in
16181 wasted time in find_partial_die, when we reread the compilation
16182 unit with load_all_dies set. */
16183
16184 if (load_all
16185 || abbrev->tag == DW_TAG_constant
16186 || abbrev->tag == DW_TAG_subprogram
16187 || abbrev->tag == DW_TAG_variable
16188 || abbrev->tag == DW_TAG_namespace
16189 || part_die->is_declaration)
16190 {
16191 void **slot;
16192
16193 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16194 to_underlying (part_die->sect_off),
16195 INSERT);
16196 *slot = part_die;
16197 }
16198
16199 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16200
16201 /* For some DIEs we want to follow their children (if any). For C
16202 we have no reason to follow the children of structures; for other
16203 languages we have to, so that we can get at method physnames
16204 to infer fully qualified class names, for DW_AT_specification,
16205 and for C++ template arguments. For C++, we also look one level
16206 inside functions to find template arguments (if the name of the
16207 function does not already contain the template arguments).
16208
16209 For Ada, we need to scan the children of subprograms and lexical
16210 blocks as well because Ada allows the definition of nested
16211 entities that could be interesting for the debugger, such as
16212 nested subprograms for instance. */
16213 if (last_die->has_children
16214 && (load_all
16215 || last_die->tag == DW_TAG_namespace
16216 || last_die->tag == DW_TAG_module
16217 || last_die->tag == DW_TAG_enumeration_type
16218 || (cu->language == language_cplus
16219 && last_die->tag == DW_TAG_subprogram
16220 && (last_die->name == NULL
16221 || strchr (last_die->name, '<') == NULL))
16222 || (cu->language != language_c
16223 && (last_die->tag == DW_TAG_class_type
16224 || last_die->tag == DW_TAG_interface_type
16225 || last_die->tag == DW_TAG_structure_type
16226 || last_die->tag == DW_TAG_union_type))
16227 || (cu->language == language_ada
16228 && (last_die->tag == DW_TAG_subprogram
16229 || last_die->tag == DW_TAG_lexical_block))))
16230 {
16231 nesting_level++;
16232 parent_die = last_die;
16233 continue;
16234 }
16235
16236 /* Otherwise we skip to the next sibling, if any. */
16237 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16238
16239 /* Back to the top, do it again. */
16240 }
16241 }
16242
16243 /* Read a minimal amount of information into the minimal die structure. */
16244
16245 static const gdb_byte *
16246 read_partial_die (const struct die_reader_specs *reader,
16247 struct partial_die_info *part_die,
16248 struct abbrev_info *abbrev, unsigned int abbrev_len,
16249 const gdb_byte *info_ptr)
16250 {
16251 struct dwarf2_cu *cu = reader->cu;
16252 struct objfile *objfile = cu->objfile;
16253 const gdb_byte *buffer = reader->buffer;
16254 unsigned int i;
16255 struct attribute attr;
16256 int has_low_pc_attr = 0;
16257 int has_high_pc_attr = 0;
16258 int high_pc_relative = 0;
16259
16260 memset (part_die, 0, sizeof (struct partial_die_info));
16261
16262 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16263
16264 info_ptr += abbrev_len;
16265
16266 if (abbrev == NULL)
16267 return info_ptr;
16268
16269 part_die->tag = abbrev->tag;
16270 part_die->has_children = abbrev->has_children;
16271
16272 for (i = 0; i < abbrev->num_attrs; ++i)
16273 {
16274 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16275
16276 /* Store the data if it is of an attribute we want to keep in a
16277 partial symbol table. */
16278 switch (attr.name)
16279 {
16280 case DW_AT_name:
16281 switch (part_die->tag)
16282 {
16283 case DW_TAG_compile_unit:
16284 case DW_TAG_partial_unit:
16285 case DW_TAG_type_unit:
16286 /* Compilation units have a DW_AT_name that is a filename, not
16287 a source language identifier. */
16288 case DW_TAG_enumeration_type:
16289 case DW_TAG_enumerator:
16290 /* These tags always have simple identifiers already; no need
16291 to canonicalize them. */
16292 part_die->name = DW_STRING (&attr);
16293 break;
16294 default:
16295 part_die->name
16296 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16297 &objfile->per_bfd->storage_obstack);
16298 break;
16299 }
16300 break;
16301 case DW_AT_linkage_name:
16302 case DW_AT_MIPS_linkage_name:
16303 /* Note that both forms of linkage name might appear. We
16304 assume they will be the same, and we only store the last
16305 one we see. */
16306 if (cu->language == language_ada)
16307 part_die->name = DW_STRING (&attr);
16308 part_die->linkage_name = DW_STRING (&attr);
16309 break;
16310 case DW_AT_low_pc:
16311 has_low_pc_attr = 1;
16312 part_die->lowpc = attr_value_as_address (&attr);
16313 break;
16314 case DW_AT_high_pc:
16315 has_high_pc_attr = 1;
16316 part_die->highpc = attr_value_as_address (&attr);
16317 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16318 high_pc_relative = 1;
16319 break;
16320 case DW_AT_location:
16321 /* Support the .debug_loc offsets. */
16322 if (attr_form_is_block (&attr))
16323 {
16324 part_die->d.locdesc = DW_BLOCK (&attr);
16325 }
16326 else if (attr_form_is_section_offset (&attr))
16327 {
16328 dwarf2_complex_location_expr_complaint ();
16329 }
16330 else
16331 {
16332 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16333 "partial symbol information");
16334 }
16335 break;
16336 case DW_AT_external:
16337 part_die->is_external = DW_UNSND (&attr);
16338 break;
16339 case DW_AT_declaration:
16340 part_die->is_declaration = DW_UNSND (&attr);
16341 break;
16342 case DW_AT_type:
16343 part_die->has_type = 1;
16344 break;
16345 case DW_AT_abstract_origin:
16346 case DW_AT_specification:
16347 case DW_AT_extension:
16348 part_die->has_specification = 1;
16349 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16350 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16351 || cu->per_cu->is_dwz);
16352 break;
16353 case DW_AT_sibling:
16354 /* Ignore absolute siblings, they might point outside of
16355 the current compile unit. */
16356 if (attr.form == DW_FORM_ref_addr)
16357 complaint (&symfile_complaints,
16358 _("ignoring absolute DW_AT_sibling"));
16359 else
16360 {
16361 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16362 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16363
16364 if (sibling_ptr < info_ptr)
16365 complaint (&symfile_complaints,
16366 _("DW_AT_sibling points backwards"));
16367 else if (sibling_ptr > reader->buffer_end)
16368 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16369 else
16370 part_die->sibling = sibling_ptr;
16371 }
16372 break;
16373 case DW_AT_byte_size:
16374 part_die->has_byte_size = 1;
16375 break;
16376 case DW_AT_const_value:
16377 part_die->has_const_value = 1;
16378 break;
16379 case DW_AT_calling_convention:
16380 /* DWARF doesn't provide a way to identify a program's source-level
16381 entry point. DW_AT_calling_convention attributes are only meant
16382 to describe functions' calling conventions.
16383
16384 However, because it's a necessary piece of information in
16385 Fortran, and before DWARF 4 DW_CC_program was the only
16386 piece of debugging information whose definition refers to
16387 a 'main program' at all, several compilers marked Fortran
16388 main programs with DW_CC_program --- even when those
16389 functions use the standard calling conventions.
16390
16391 Although DWARF now specifies a way to provide this
16392 information, we support this practice for backward
16393 compatibility. */
16394 if (DW_UNSND (&attr) == DW_CC_program
16395 && cu->language == language_fortran)
16396 part_die->main_subprogram = 1;
16397 break;
16398 case DW_AT_inline:
16399 if (DW_UNSND (&attr) == DW_INL_inlined
16400 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16401 part_die->may_be_inlined = 1;
16402 break;
16403
16404 case DW_AT_import:
16405 if (part_die->tag == DW_TAG_imported_unit)
16406 {
16407 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16408 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16409 || cu->per_cu->is_dwz);
16410 }
16411 break;
16412
16413 case DW_AT_main_subprogram:
16414 part_die->main_subprogram = DW_UNSND (&attr);
16415 break;
16416
16417 default:
16418 break;
16419 }
16420 }
16421
16422 if (high_pc_relative)
16423 part_die->highpc += part_die->lowpc;
16424
16425 if (has_low_pc_attr && has_high_pc_attr)
16426 {
16427 /* When using the GNU linker, .gnu.linkonce. sections are used to
16428 eliminate duplicate copies of functions and vtables and such.
16429 The linker will arbitrarily choose one and discard the others.
16430 The AT_*_pc values for such functions refer to local labels in
16431 these sections. If the section from that file was discarded, the
16432 labels are not in the output, so the relocs get a value of 0.
16433 If this is a discarded function, mark the pc bounds as invalid,
16434 so that GDB will ignore it. */
16435 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16436 {
16437 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16438
16439 complaint (&symfile_complaints,
16440 _("DW_AT_low_pc %s is zero "
16441 "for DIE at 0x%x [in module %s]"),
16442 paddress (gdbarch, part_die->lowpc),
16443 to_underlying (part_die->sect_off), objfile_name (objfile));
16444 }
16445 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16446 else if (part_die->lowpc >= part_die->highpc)
16447 {
16448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16449
16450 complaint (&symfile_complaints,
16451 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16452 "for DIE at 0x%x [in module %s]"),
16453 paddress (gdbarch, part_die->lowpc),
16454 paddress (gdbarch, part_die->highpc),
16455 to_underlying (part_die->sect_off),
16456 objfile_name (objfile));
16457 }
16458 else
16459 part_die->has_pc_info = 1;
16460 }
16461
16462 return info_ptr;
16463 }
16464
16465 /* Find a cached partial DIE at OFFSET in CU. */
16466
16467 static struct partial_die_info *
16468 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16469 {
16470 struct partial_die_info *lookup_die = NULL;
16471 struct partial_die_info part_die;
16472
16473 part_die.sect_off = sect_off;
16474 lookup_die = ((struct partial_die_info *)
16475 htab_find_with_hash (cu->partial_dies, &part_die,
16476 to_underlying (sect_off)));
16477
16478 return lookup_die;
16479 }
16480
16481 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16482 except in the case of .debug_types DIEs which do not reference
16483 outside their CU (they do however referencing other types via
16484 DW_FORM_ref_sig8). */
16485
16486 static struct partial_die_info *
16487 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16488 {
16489 struct objfile *objfile = cu->objfile;
16490 struct dwarf2_per_cu_data *per_cu = NULL;
16491 struct partial_die_info *pd = NULL;
16492
16493 if (offset_in_dwz == cu->per_cu->is_dwz
16494 && offset_in_cu_p (&cu->header, sect_off))
16495 {
16496 pd = find_partial_die_in_comp_unit (sect_off, cu);
16497 if (pd != NULL)
16498 return pd;
16499 /* We missed recording what we needed.
16500 Load all dies and try again. */
16501 per_cu = cu->per_cu;
16502 }
16503 else
16504 {
16505 /* TUs don't reference other CUs/TUs (except via type signatures). */
16506 if (cu->per_cu->is_debug_types)
16507 {
16508 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16509 " external reference to offset 0x%x [in module %s].\n"),
16510 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16511 bfd_get_filename (objfile->obfd));
16512 }
16513 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16514 objfile);
16515
16516 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16517 load_partial_comp_unit (per_cu);
16518
16519 per_cu->cu->last_used = 0;
16520 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16521 }
16522
16523 /* If we didn't find it, and not all dies have been loaded,
16524 load them all and try again. */
16525
16526 if (pd == NULL && per_cu->load_all_dies == 0)
16527 {
16528 per_cu->load_all_dies = 1;
16529
16530 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16531 THIS_CU->cu may already be in use. So we can't just free it and
16532 replace its DIEs with the ones we read in. Instead, we leave those
16533 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16534 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16535 set. */
16536 load_partial_comp_unit (per_cu);
16537
16538 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16539 }
16540
16541 if (pd == NULL)
16542 internal_error (__FILE__, __LINE__,
16543 _("could not find partial DIE 0x%x "
16544 "in cache [from module %s]\n"),
16545 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16546 return pd;
16547 }
16548
16549 /* See if we can figure out if the class lives in a namespace. We do
16550 this by looking for a member function; its demangled name will
16551 contain namespace info, if there is any. */
16552
16553 static void
16554 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16555 struct dwarf2_cu *cu)
16556 {
16557 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16558 what template types look like, because the demangler
16559 frequently doesn't give the same name as the debug info. We
16560 could fix this by only using the demangled name to get the
16561 prefix (but see comment in read_structure_type). */
16562
16563 struct partial_die_info *real_pdi;
16564 struct partial_die_info *child_pdi;
16565
16566 /* If this DIE (this DIE's specification, if any) has a parent, then
16567 we should not do this. We'll prepend the parent's fully qualified
16568 name when we create the partial symbol. */
16569
16570 real_pdi = struct_pdi;
16571 while (real_pdi->has_specification)
16572 real_pdi = find_partial_die (real_pdi->spec_offset,
16573 real_pdi->spec_is_dwz, cu);
16574
16575 if (real_pdi->die_parent != NULL)
16576 return;
16577
16578 for (child_pdi = struct_pdi->die_child;
16579 child_pdi != NULL;
16580 child_pdi = child_pdi->die_sibling)
16581 {
16582 if (child_pdi->tag == DW_TAG_subprogram
16583 && child_pdi->linkage_name != NULL)
16584 {
16585 char *actual_class_name
16586 = language_class_name_from_physname (cu->language_defn,
16587 child_pdi->linkage_name);
16588 if (actual_class_name != NULL)
16589 {
16590 struct_pdi->name
16591 = ((const char *)
16592 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16593 actual_class_name,
16594 strlen (actual_class_name)));
16595 xfree (actual_class_name);
16596 }
16597 break;
16598 }
16599 }
16600 }
16601
16602 /* Adjust PART_DIE before generating a symbol for it. This function
16603 may set the is_external flag or change the DIE's name. */
16604
16605 static void
16606 fixup_partial_die (struct partial_die_info *part_die,
16607 struct dwarf2_cu *cu)
16608 {
16609 /* Once we've fixed up a die, there's no point in doing so again.
16610 This also avoids a memory leak if we were to call
16611 guess_partial_die_structure_name multiple times. */
16612 if (part_die->fixup_called)
16613 return;
16614
16615 /* If we found a reference attribute and the DIE has no name, try
16616 to find a name in the referred to DIE. */
16617
16618 if (part_die->name == NULL && part_die->has_specification)
16619 {
16620 struct partial_die_info *spec_die;
16621
16622 spec_die = find_partial_die (part_die->spec_offset,
16623 part_die->spec_is_dwz, cu);
16624
16625 fixup_partial_die (spec_die, cu);
16626
16627 if (spec_die->name)
16628 {
16629 part_die->name = spec_die->name;
16630
16631 /* Copy DW_AT_external attribute if it is set. */
16632 if (spec_die->is_external)
16633 part_die->is_external = spec_die->is_external;
16634 }
16635 }
16636
16637 /* Set default names for some unnamed DIEs. */
16638
16639 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16640 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16641
16642 /* If there is no parent die to provide a namespace, and there are
16643 children, see if we can determine the namespace from their linkage
16644 name. */
16645 if (cu->language == language_cplus
16646 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16647 && part_die->die_parent == NULL
16648 && part_die->has_children
16649 && (part_die->tag == DW_TAG_class_type
16650 || part_die->tag == DW_TAG_structure_type
16651 || part_die->tag == DW_TAG_union_type))
16652 guess_partial_die_structure_name (part_die, cu);
16653
16654 /* GCC might emit a nameless struct or union that has a linkage
16655 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16656 if (part_die->name == NULL
16657 && (part_die->tag == DW_TAG_class_type
16658 || part_die->tag == DW_TAG_interface_type
16659 || part_die->tag == DW_TAG_structure_type
16660 || part_die->tag == DW_TAG_union_type)
16661 && part_die->linkage_name != NULL)
16662 {
16663 char *demangled;
16664
16665 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16666 if (demangled)
16667 {
16668 const char *base;
16669
16670 /* Strip any leading namespaces/classes, keep only the base name.
16671 DW_AT_name for named DIEs does not contain the prefixes. */
16672 base = strrchr (demangled, ':');
16673 if (base && base > demangled && base[-1] == ':')
16674 base++;
16675 else
16676 base = demangled;
16677
16678 part_die->name
16679 = ((const char *)
16680 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16681 base, strlen (base)));
16682 xfree (demangled);
16683 }
16684 }
16685
16686 part_die->fixup_called = 1;
16687 }
16688
16689 /* Read an attribute value described by an attribute form. */
16690
16691 static const gdb_byte *
16692 read_attribute_value (const struct die_reader_specs *reader,
16693 struct attribute *attr, unsigned form,
16694 LONGEST implicit_const, const gdb_byte *info_ptr)
16695 {
16696 struct dwarf2_cu *cu = reader->cu;
16697 struct objfile *objfile = cu->objfile;
16698 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16699 bfd *abfd = reader->abfd;
16700 struct comp_unit_head *cu_header = &cu->header;
16701 unsigned int bytes_read;
16702 struct dwarf_block *blk;
16703
16704 attr->form = (enum dwarf_form) form;
16705 switch (form)
16706 {
16707 case DW_FORM_ref_addr:
16708 if (cu->header.version == 2)
16709 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16710 else
16711 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16712 &cu->header, &bytes_read);
16713 info_ptr += bytes_read;
16714 break;
16715 case DW_FORM_GNU_ref_alt:
16716 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16717 info_ptr += bytes_read;
16718 break;
16719 case DW_FORM_addr:
16720 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16721 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16722 info_ptr += bytes_read;
16723 break;
16724 case DW_FORM_block2:
16725 blk = dwarf_alloc_block (cu);
16726 blk->size = read_2_bytes (abfd, info_ptr);
16727 info_ptr += 2;
16728 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16729 info_ptr += blk->size;
16730 DW_BLOCK (attr) = blk;
16731 break;
16732 case DW_FORM_block4:
16733 blk = dwarf_alloc_block (cu);
16734 blk->size = read_4_bytes (abfd, info_ptr);
16735 info_ptr += 4;
16736 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16737 info_ptr += blk->size;
16738 DW_BLOCK (attr) = blk;
16739 break;
16740 case DW_FORM_data2:
16741 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16742 info_ptr += 2;
16743 break;
16744 case DW_FORM_data4:
16745 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16746 info_ptr += 4;
16747 break;
16748 case DW_FORM_data8:
16749 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16750 info_ptr += 8;
16751 break;
16752 case DW_FORM_data16:
16753 blk = dwarf_alloc_block (cu);
16754 blk->size = 16;
16755 blk->data = read_n_bytes (abfd, info_ptr, 16);
16756 info_ptr += 16;
16757 DW_BLOCK (attr) = blk;
16758 break;
16759 case DW_FORM_sec_offset:
16760 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16761 info_ptr += bytes_read;
16762 break;
16763 case DW_FORM_string:
16764 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16765 DW_STRING_IS_CANONICAL (attr) = 0;
16766 info_ptr += bytes_read;
16767 break;
16768 case DW_FORM_strp:
16769 if (!cu->per_cu->is_dwz)
16770 {
16771 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16772 &bytes_read);
16773 DW_STRING_IS_CANONICAL (attr) = 0;
16774 info_ptr += bytes_read;
16775 break;
16776 }
16777 /* FALLTHROUGH */
16778 case DW_FORM_line_strp:
16779 if (!cu->per_cu->is_dwz)
16780 {
16781 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16782 cu_header, &bytes_read);
16783 DW_STRING_IS_CANONICAL (attr) = 0;
16784 info_ptr += bytes_read;
16785 break;
16786 }
16787 /* FALLTHROUGH */
16788 case DW_FORM_GNU_strp_alt:
16789 {
16790 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16791 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16792 &bytes_read);
16793
16794 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16795 DW_STRING_IS_CANONICAL (attr) = 0;
16796 info_ptr += bytes_read;
16797 }
16798 break;
16799 case DW_FORM_exprloc:
16800 case DW_FORM_block:
16801 blk = dwarf_alloc_block (cu);
16802 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16803 info_ptr += bytes_read;
16804 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16805 info_ptr += blk->size;
16806 DW_BLOCK (attr) = blk;
16807 break;
16808 case DW_FORM_block1:
16809 blk = dwarf_alloc_block (cu);
16810 blk->size = read_1_byte (abfd, info_ptr);
16811 info_ptr += 1;
16812 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16813 info_ptr += blk->size;
16814 DW_BLOCK (attr) = blk;
16815 break;
16816 case DW_FORM_data1:
16817 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16818 info_ptr += 1;
16819 break;
16820 case DW_FORM_flag:
16821 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16822 info_ptr += 1;
16823 break;
16824 case DW_FORM_flag_present:
16825 DW_UNSND (attr) = 1;
16826 break;
16827 case DW_FORM_sdata:
16828 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16829 info_ptr += bytes_read;
16830 break;
16831 case DW_FORM_udata:
16832 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16833 info_ptr += bytes_read;
16834 break;
16835 case DW_FORM_ref1:
16836 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16837 + read_1_byte (abfd, info_ptr));
16838 info_ptr += 1;
16839 break;
16840 case DW_FORM_ref2:
16841 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16842 + read_2_bytes (abfd, info_ptr));
16843 info_ptr += 2;
16844 break;
16845 case DW_FORM_ref4:
16846 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16847 + read_4_bytes (abfd, info_ptr));
16848 info_ptr += 4;
16849 break;
16850 case DW_FORM_ref8:
16851 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16852 + read_8_bytes (abfd, info_ptr));
16853 info_ptr += 8;
16854 break;
16855 case DW_FORM_ref_sig8:
16856 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16857 info_ptr += 8;
16858 break;
16859 case DW_FORM_ref_udata:
16860 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16861 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16862 info_ptr += bytes_read;
16863 break;
16864 case DW_FORM_indirect:
16865 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16866 info_ptr += bytes_read;
16867 if (form == DW_FORM_implicit_const)
16868 {
16869 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16870 info_ptr += bytes_read;
16871 }
16872 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16873 info_ptr);
16874 break;
16875 case DW_FORM_implicit_const:
16876 DW_SND (attr) = implicit_const;
16877 break;
16878 case DW_FORM_GNU_addr_index:
16879 if (reader->dwo_file == NULL)
16880 {
16881 /* For now flag a hard error.
16882 Later we can turn this into a complaint. */
16883 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16884 dwarf_form_name (form),
16885 bfd_get_filename (abfd));
16886 }
16887 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16888 info_ptr += bytes_read;
16889 break;
16890 case DW_FORM_GNU_str_index:
16891 if (reader->dwo_file == NULL)
16892 {
16893 /* For now flag a hard error.
16894 Later we can turn this into a complaint if warranted. */
16895 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16896 dwarf_form_name (form),
16897 bfd_get_filename (abfd));
16898 }
16899 {
16900 ULONGEST str_index =
16901 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16902
16903 DW_STRING (attr) = read_str_index (reader, str_index);
16904 DW_STRING_IS_CANONICAL (attr) = 0;
16905 info_ptr += bytes_read;
16906 }
16907 break;
16908 default:
16909 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16910 dwarf_form_name (form),
16911 bfd_get_filename (abfd));
16912 }
16913
16914 /* Super hack. */
16915 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16916 attr->form = DW_FORM_GNU_ref_alt;
16917
16918 /* We have seen instances where the compiler tried to emit a byte
16919 size attribute of -1 which ended up being encoded as an unsigned
16920 0xffffffff. Although 0xffffffff is technically a valid size value,
16921 an object of this size seems pretty unlikely so we can relatively
16922 safely treat these cases as if the size attribute was invalid and
16923 treat them as zero by default. */
16924 if (attr->name == DW_AT_byte_size
16925 && form == DW_FORM_data4
16926 && DW_UNSND (attr) >= 0xffffffff)
16927 {
16928 complaint
16929 (&symfile_complaints,
16930 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16931 hex_string (DW_UNSND (attr)));
16932 DW_UNSND (attr) = 0;
16933 }
16934
16935 return info_ptr;
16936 }
16937
16938 /* Read an attribute described by an abbreviated attribute. */
16939
16940 static const gdb_byte *
16941 read_attribute (const struct die_reader_specs *reader,
16942 struct attribute *attr, struct attr_abbrev *abbrev,
16943 const gdb_byte *info_ptr)
16944 {
16945 attr->name = abbrev->name;
16946 return read_attribute_value (reader, attr, abbrev->form,
16947 abbrev->implicit_const, info_ptr);
16948 }
16949
16950 /* Read dwarf information from a buffer. */
16951
16952 static unsigned int
16953 read_1_byte (bfd *abfd, const gdb_byte *buf)
16954 {
16955 return bfd_get_8 (abfd, buf);
16956 }
16957
16958 static int
16959 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16960 {
16961 return bfd_get_signed_8 (abfd, buf);
16962 }
16963
16964 static unsigned int
16965 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16966 {
16967 return bfd_get_16 (abfd, buf);
16968 }
16969
16970 static int
16971 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16972 {
16973 return bfd_get_signed_16 (abfd, buf);
16974 }
16975
16976 static unsigned int
16977 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16978 {
16979 return bfd_get_32 (abfd, buf);
16980 }
16981
16982 static int
16983 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16984 {
16985 return bfd_get_signed_32 (abfd, buf);
16986 }
16987
16988 static ULONGEST
16989 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16990 {
16991 return bfd_get_64 (abfd, buf);
16992 }
16993
16994 static CORE_ADDR
16995 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16996 unsigned int *bytes_read)
16997 {
16998 struct comp_unit_head *cu_header = &cu->header;
16999 CORE_ADDR retval = 0;
17000
17001 if (cu_header->signed_addr_p)
17002 {
17003 switch (cu_header->addr_size)
17004 {
17005 case 2:
17006 retval = bfd_get_signed_16 (abfd, buf);
17007 break;
17008 case 4:
17009 retval = bfd_get_signed_32 (abfd, buf);
17010 break;
17011 case 8:
17012 retval = bfd_get_signed_64 (abfd, buf);
17013 break;
17014 default:
17015 internal_error (__FILE__, __LINE__,
17016 _("read_address: bad switch, signed [in module %s]"),
17017 bfd_get_filename (abfd));
17018 }
17019 }
17020 else
17021 {
17022 switch (cu_header->addr_size)
17023 {
17024 case 2:
17025 retval = bfd_get_16 (abfd, buf);
17026 break;
17027 case 4:
17028 retval = bfd_get_32 (abfd, buf);
17029 break;
17030 case 8:
17031 retval = bfd_get_64 (abfd, buf);
17032 break;
17033 default:
17034 internal_error (__FILE__, __LINE__,
17035 _("read_address: bad switch, "
17036 "unsigned [in module %s]"),
17037 bfd_get_filename (abfd));
17038 }
17039 }
17040
17041 *bytes_read = cu_header->addr_size;
17042 return retval;
17043 }
17044
17045 /* Read the initial length from a section. The (draft) DWARF 3
17046 specification allows the initial length to take up either 4 bytes
17047 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17048 bytes describe the length and all offsets will be 8 bytes in length
17049 instead of 4.
17050
17051 An older, non-standard 64-bit format is also handled by this
17052 function. The older format in question stores the initial length
17053 as an 8-byte quantity without an escape value. Lengths greater
17054 than 2^32 aren't very common which means that the initial 4 bytes
17055 is almost always zero. Since a length value of zero doesn't make
17056 sense for the 32-bit format, this initial zero can be considered to
17057 be an escape value which indicates the presence of the older 64-bit
17058 format. As written, the code can't detect (old format) lengths
17059 greater than 4GB. If it becomes necessary to handle lengths
17060 somewhat larger than 4GB, we could allow other small values (such
17061 as the non-sensical values of 1, 2, and 3) to also be used as
17062 escape values indicating the presence of the old format.
17063
17064 The value returned via bytes_read should be used to increment the
17065 relevant pointer after calling read_initial_length().
17066
17067 [ Note: read_initial_length() and read_offset() are based on the
17068 document entitled "DWARF Debugging Information Format", revision
17069 3, draft 8, dated November 19, 2001. This document was obtained
17070 from:
17071
17072 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17073
17074 This document is only a draft and is subject to change. (So beware.)
17075
17076 Details regarding the older, non-standard 64-bit format were
17077 determined empirically by examining 64-bit ELF files produced by
17078 the SGI toolchain on an IRIX 6.5 machine.
17079
17080 - Kevin, July 16, 2002
17081 ] */
17082
17083 static LONGEST
17084 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17085 {
17086 LONGEST length = bfd_get_32 (abfd, buf);
17087
17088 if (length == 0xffffffff)
17089 {
17090 length = bfd_get_64 (abfd, buf + 4);
17091 *bytes_read = 12;
17092 }
17093 else if (length == 0)
17094 {
17095 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17096 length = bfd_get_64 (abfd, buf);
17097 *bytes_read = 8;
17098 }
17099 else
17100 {
17101 *bytes_read = 4;
17102 }
17103
17104 return length;
17105 }
17106
17107 /* Cover function for read_initial_length.
17108 Returns the length of the object at BUF, and stores the size of the
17109 initial length in *BYTES_READ and stores the size that offsets will be in
17110 *OFFSET_SIZE.
17111 If the initial length size is not equivalent to that specified in
17112 CU_HEADER then issue a complaint.
17113 This is useful when reading non-comp-unit headers. */
17114
17115 static LONGEST
17116 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17117 const struct comp_unit_head *cu_header,
17118 unsigned int *bytes_read,
17119 unsigned int *offset_size)
17120 {
17121 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17122
17123 gdb_assert (cu_header->initial_length_size == 4
17124 || cu_header->initial_length_size == 8
17125 || cu_header->initial_length_size == 12);
17126
17127 if (cu_header->initial_length_size != *bytes_read)
17128 complaint (&symfile_complaints,
17129 _("intermixed 32-bit and 64-bit DWARF sections"));
17130
17131 *offset_size = (*bytes_read == 4) ? 4 : 8;
17132 return length;
17133 }
17134
17135 /* Read an offset from the data stream. The size of the offset is
17136 given by cu_header->offset_size. */
17137
17138 static LONGEST
17139 read_offset (bfd *abfd, const gdb_byte *buf,
17140 const struct comp_unit_head *cu_header,
17141 unsigned int *bytes_read)
17142 {
17143 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17144
17145 *bytes_read = cu_header->offset_size;
17146 return offset;
17147 }
17148
17149 /* Read an offset from the data stream. */
17150
17151 static LONGEST
17152 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17153 {
17154 LONGEST retval = 0;
17155
17156 switch (offset_size)
17157 {
17158 case 4:
17159 retval = bfd_get_32 (abfd, buf);
17160 break;
17161 case 8:
17162 retval = bfd_get_64 (abfd, buf);
17163 break;
17164 default:
17165 internal_error (__FILE__, __LINE__,
17166 _("read_offset_1: bad switch [in module %s]"),
17167 bfd_get_filename (abfd));
17168 }
17169
17170 return retval;
17171 }
17172
17173 static const gdb_byte *
17174 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17175 {
17176 /* If the size of a host char is 8 bits, we can return a pointer
17177 to the buffer, otherwise we have to copy the data to a buffer
17178 allocated on the temporary obstack. */
17179 gdb_assert (HOST_CHAR_BIT == 8);
17180 return buf;
17181 }
17182
17183 static const char *
17184 read_direct_string (bfd *abfd, const gdb_byte *buf,
17185 unsigned int *bytes_read_ptr)
17186 {
17187 /* If the size of a host char is 8 bits, we can return a pointer
17188 to the string, otherwise we have to copy the string to a buffer
17189 allocated on the temporary obstack. */
17190 gdb_assert (HOST_CHAR_BIT == 8);
17191 if (*buf == '\0')
17192 {
17193 *bytes_read_ptr = 1;
17194 return NULL;
17195 }
17196 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17197 return (const char *) buf;
17198 }
17199
17200 /* Return pointer to string at section SECT offset STR_OFFSET with error
17201 reporting strings FORM_NAME and SECT_NAME. */
17202
17203 static const char *
17204 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17205 struct dwarf2_section_info *sect,
17206 const char *form_name,
17207 const char *sect_name)
17208 {
17209 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17210 if (sect->buffer == NULL)
17211 error (_("%s used without %s section [in module %s]"),
17212 form_name, sect_name, bfd_get_filename (abfd));
17213 if (str_offset >= sect->size)
17214 error (_("%s pointing outside of %s section [in module %s]"),
17215 form_name, sect_name, bfd_get_filename (abfd));
17216 gdb_assert (HOST_CHAR_BIT == 8);
17217 if (sect->buffer[str_offset] == '\0')
17218 return NULL;
17219 return (const char *) (sect->buffer + str_offset);
17220 }
17221
17222 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17223
17224 static const char *
17225 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17226 {
17227 return read_indirect_string_at_offset_from (abfd, str_offset,
17228 &dwarf2_per_objfile->str,
17229 "DW_FORM_strp", ".debug_str");
17230 }
17231
17232 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17233
17234 static const char *
17235 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17236 {
17237 return read_indirect_string_at_offset_from (abfd, str_offset,
17238 &dwarf2_per_objfile->line_str,
17239 "DW_FORM_line_strp",
17240 ".debug_line_str");
17241 }
17242
17243 /* Read a string at offset STR_OFFSET in the .debug_str section from
17244 the .dwz file DWZ. Throw an error if the offset is too large. If
17245 the string consists of a single NUL byte, return NULL; otherwise
17246 return a pointer to the string. */
17247
17248 static const char *
17249 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17250 {
17251 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17252
17253 if (dwz->str.buffer == NULL)
17254 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17255 "section [in module %s]"),
17256 bfd_get_filename (dwz->dwz_bfd));
17257 if (str_offset >= dwz->str.size)
17258 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17259 ".debug_str section [in module %s]"),
17260 bfd_get_filename (dwz->dwz_bfd));
17261 gdb_assert (HOST_CHAR_BIT == 8);
17262 if (dwz->str.buffer[str_offset] == '\0')
17263 return NULL;
17264 return (const char *) (dwz->str.buffer + str_offset);
17265 }
17266
17267 /* Return pointer to string at .debug_str offset as read from BUF.
17268 BUF is assumed to be in a compilation unit described by CU_HEADER.
17269 Return *BYTES_READ_PTR count of bytes read from BUF. */
17270
17271 static const char *
17272 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17273 const struct comp_unit_head *cu_header,
17274 unsigned int *bytes_read_ptr)
17275 {
17276 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17277
17278 return read_indirect_string_at_offset (abfd, str_offset);
17279 }
17280
17281 /* Return pointer to string at .debug_line_str offset as read from BUF.
17282 BUF is assumed to be in a compilation unit described by CU_HEADER.
17283 Return *BYTES_READ_PTR count of bytes read from BUF. */
17284
17285 static const char *
17286 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17287 const struct comp_unit_head *cu_header,
17288 unsigned int *bytes_read_ptr)
17289 {
17290 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17291
17292 return read_indirect_line_string_at_offset (abfd, str_offset);
17293 }
17294
17295 ULONGEST
17296 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17297 unsigned int *bytes_read_ptr)
17298 {
17299 ULONGEST result;
17300 unsigned int num_read;
17301 int shift;
17302 unsigned char byte;
17303
17304 result = 0;
17305 shift = 0;
17306 num_read = 0;
17307 while (1)
17308 {
17309 byte = bfd_get_8 (abfd, buf);
17310 buf++;
17311 num_read++;
17312 result |= ((ULONGEST) (byte & 127) << shift);
17313 if ((byte & 128) == 0)
17314 {
17315 break;
17316 }
17317 shift += 7;
17318 }
17319 *bytes_read_ptr = num_read;
17320 return result;
17321 }
17322
17323 static LONGEST
17324 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17325 unsigned int *bytes_read_ptr)
17326 {
17327 LONGEST result;
17328 int shift, num_read;
17329 unsigned char byte;
17330
17331 result = 0;
17332 shift = 0;
17333 num_read = 0;
17334 while (1)
17335 {
17336 byte = bfd_get_8 (abfd, buf);
17337 buf++;
17338 num_read++;
17339 result |= ((LONGEST) (byte & 127) << shift);
17340 shift += 7;
17341 if ((byte & 128) == 0)
17342 {
17343 break;
17344 }
17345 }
17346 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17347 result |= -(((LONGEST) 1) << shift);
17348 *bytes_read_ptr = num_read;
17349 return result;
17350 }
17351
17352 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17353 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17354 ADDR_SIZE is the size of addresses from the CU header. */
17355
17356 static CORE_ADDR
17357 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17358 {
17359 struct objfile *objfile = dwarf2_per_objfile->objfile;
17360 bfd *abfd = objfile->obfd;
17361 const gdb_byte *info_ptr;
17362
17363 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17364 if (dwarf2_per_objfile->addr.buffer == NULL)
17365 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17366 objfile_name (objfile));
17367 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17368 error (_("DW_FORM_addr_index pointing outside of "
17369 ".debug_addr section [in module %s]"),
17370 objfile_name (objfile));
17371 info_ptr = (dwarf2_per_objfile->addr.buffer
17372 + addr_base + addr_index * addr_size);
17373 if (addr_size == 4)
17374 return bfd_get_32 (abfd, info_ptr);
17375 else
17376 return bfd_get_64 (abfd, info_ptr);
17377 }
17378
17379 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17380
17381 static CORE_ADDR
17382 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17383 {
17384 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17385 }
17386
17387 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17388
17389 static CORE_ADDR
17390 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17391 unsigned int *bytes_read)
17392 {
17393 bfd *abfd = cu->objfile->obfd;
17394 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17395
17396 return read_addr_index (cu, addr_index);
17397 }
17398
17399 /* Data structure to pass results from dwarf2_read_addr_index_reader
17400 back to dwarf2_read_addr_index. */
17401
17402 struct dwarf2_read_addr_index_data
17403 {
17404 ULONGEST addr_base;
17405 int addr_size;
17406 };
17407
17408 /* die_reader_func for dwarf2_read_addr_index. */
17409
17410 static void
17411 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17412 const gdb_byte *info_ptr,
17413 struct die_info *comp_unit_die,
17414 int has_children,
17415 void *data)
17416 {
17417 struct dwarf2_cu *cu = reader->cu;
17418 struct dwarf2_read_addr_index_data *aidata =
17419 (struct dwarf2_read_addr_index_data *) data;
17420
17421 aidata->addr_base = cu->addr_base;
17422 aidata->addr_size = cu->header.addr_size;
17423 }
17424
17425 /* Given an index in .debug_addr, fetch the value.
17426 NOTE: This can be called during dwarf expression evaluation,
17427 long after the debug information has been read, and thus per_cu->cu
17428 may no longer exist. */
17429
17430 CORE_ADDR
17431 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17432 unsigned int addr_index)
17433 {
17434 struct objfile *objfile = per_cu->objfile;
17435 struct dwarf2_cu *cu = per_cu->cu;
17436 ULONGEST addr_base;
17437 int addr_size;
17438
17439 /* This is intended to be called from outside this file. */
17440 dw2_setup (objfile);
17441
17442 /* We need addr_base and addr_size.
17443 If we don't have PER_CU->cu, we have to get it.
17444 Nasty, but the alternative is storing the needed info in PER_CU,
17445 which at this point doesn't seem justified: it's not clear how frequently
17446 it would get used and it would increase the size of every PER_CU.
17447 Entry points like dwarf2_per_cu_addr_size do a similar thing
17448 so we're not in uncharted territory here.
17449 Alas we need to be a bit more complicated as addr_base is contained
17450 in the DIE.
17451
17452 We don't need to read the entire CU(/TU).
17453 We just need the header and top level die.
17454
17455 IWBN to use the aging mechanism to let us lazily later discard the CU.
17456 For now we skip this optimization. */
17457
17458 if (cu != NULL)
17459 {
17460 addr_base = cu->addr_base;
17461 addr_size = cu->header.addr_size;
17462 }
17463 else
17464 {
17465 struct dwarf2_read_addr_index_data aidata;
17466
17467 /* Note: We can't use init_cutu_and_read_dies_simple here,
17468 we need addr_base. */
17469 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17470 dwarf2_read_addr_index_reader, &aidata);
17471 addr_base = aidata.addr_base;
17472 addr_size = aidata.addr_size;
17473 }
17474
17475 return read_addr_index_1 (addr_index, addr_base, addr_size);
17476 }
17477
17478 /* Given a DW_FORM_GNU_str_index, fetch the string.
17479 This is only used by the Fission support. */
17480
17481 static const char *
17482 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17483 {
17484 struct objfile *objfile = dwarf2_per_objfile->objfile;
17485 const char *objf_name = objfile_name (objfile);
17486 bfd *abfd = objfile->obfd;
17487 struct dwarf2_cu *cu = reader->cu;
17488 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17489 struct dwarf2_section_info *str_offsets_section =
17490 &reader->dwo_file->sections.str_offsets;
17491 const gdb_byte *info_ptr;
17492 ULONGEST str_offset;
17493 static const char form_name[] = "DW_FORM_GNU_str_index";
17494
17495 dwarf2_read_section (objfile, str_section);
17496 dwarf2_read_section (objfile, str_offsets_section);
17497 if (str_section->buffer == NULL)
17498 error (_("%s used without .debug_str.dwo section"
17499 " in CU at offset 0x%x [in module %s]"),
17500 form_name, to_underlying (cu->header.sect_off), objf_name);
17501 if (str_offsets_section->buffer == NULL)
17502 error (_("%s used without .debug_str_offsets.dwo section"
17503 " in CU at offset 0x%x [in module %s]"),
17504 form_name, to_underlying (cu->header.sect_off), objf_name);
17505 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17506 error (_("%s pointing outside of .debug_str_offsets.dwo"
17507 " section in CU at offset 0x%x [in module %s]"),
17508 form_name, to_underlying (cu->header.sect_off), objf_name);
17509 info_ptr = (str_offsets_section->buffer
17510 + str_index * cu->header.offset_size);
17511 if (cu->header.offset_size == 4)
17512 str_offset = bfd_get_32 (abfd, info_ptr);
17513 else
17514 str_offset = bfd_get_64 (abfd, info_ptr);
17515 if (str_offset >= str_section->size)
17516 error (_("Offset from %s pointing outside of"
17517 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17518 form_name, to_underlying (cu->header.sect_off), objf_name);
17519 return (const char *) (str_section->buffer + str_offset);
17520 }
17521
17522 /* Return the length of an LEB128 number in BUF. */
17523
17524 static int
17525 leb128_size (const gdb_byte *buf)
17526 {
17527 const gdb_byte *begin = buf;
17528 gdb_byte byte;
17529
17530 while (1)
17531 {
17532 byte = *buf++;
17533 if ((byte & 128) == 0)
17534 return buf - begin;
17535 }
17536 }
17537
17538 static void
17539 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17540 {
17541 switch (lang)
17542 {
17543 case DW_LANG_C89:
17544 case DW_LANG_C99:
17545 case DW_LANG_C11:
17546 case DW_LANG_C:
17547 case DW_LANG_UPC:
17548 cu->language = language_c;
17549 break;
17550 case DW_LANG_Java:
17551 case DW_LANG_C_plus_plus:
17552 case DW_LANG_C_plus_plus_11:
17553 case DW_LANG_C_plus_plus_14:
17554 cu->language = language_cplus;
17555 break;
17556 case DW_LANG_D:
17557 cu->language = language_d;
17558 break;
17559 case DW_LANG_Fortran77:
17560 case DW_LANG_Fortran90:
17561 case DW_LANG_Fortran95:
17562 case DW_LANG_Fortran03:
17563 case DW_LANG_Fortran08:
17564 cu->language = language_fortran;
17565 break;
17566 case DW_LANG_Go:
17567 cu->language = language_go;
17568 break;
17569 case DW_LANG_Mips_Assembler:
17570 cu->language = language_asm;
17571 break;
17572 case DW_LANG_Ada83:
17573 case DW_LANG_Ada95:
17574 cu->language = language_ada;
17575 break;
17576 case DW_LANG_Modula2:
17577 cu->language = language_m2;
17578 break;
17579 case DW_LANG_Pascal83:
17580 cu->language = language_pascal;
17581 break;
17582 case DW_LANG_ObjC:
17583 cu->language = language_objc;
17584 break;
17585 case DW_LANG_Rust:
17586 case DW_LANG_Rust_old:
17587 cu->language = language_rust;
17588 break;
17589 case DW_LANG_Cobol74:
17590 case DW_LANG_Cobol85:
17591 default:
17592 cu->language = language_minimal;
17593 break;
17594 }
17595 cu->language_defn = language_def (cu->language);
17596 }
17597
17598 /* Return the named attribute or NULL if not there. */
17599
17600 static struct attribute *
17601 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17602 {
17603 for (;;)
17604 {
17605 unsigned int i;
17606 struct attribute *spec = NULL;
17607
17608 for (i = 0; i < die->num_attrs; ++i)
17609 {
17610 if (die->attrs[i].name == name)
17611 return &die->attrs[i];
17612 if (die->attrs[i].name == DW_AT_specification
17613 || die->attrs[i].name == DW_AT_abstract_origin)
17614 spec = &die->attrs[i];
17615 }
17616
17617 if (!spec)
17618 break;
17619
17620 die = follow_die_ref (die, spec, &cu);
17621 }
17622
17623 return NULL;
17624 }
17625
17626 /* Return the named attribute or NULL if not there,
17627 but do not follow DW_AT_specification, etc.
17628 This is for use in contexts where we're reading .debug_types dies.
17629 Following DW_AT_specification, DW_AT_abstract_origin will take us
17630 back up the chain, and we want to go down. */
17631
17632 static struct attribute *
17633 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17634 {
17635 unsigned int i;
17636
17637 for (i = 0; i < die->num_attrs; ++i)
17638 if (die->attrs[i].name == name)
17639 return &die->attrs[i];
17640
17641 return NULL;
17642 }
17643
17644 /* Return the string associated with a string-typed attribute, or NULL if it
17645 is either not found or is of an incorrect type. */
17646
17647 static const char *
17648 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17649 {
17650 struct attribute *attr;
17651 const char *str = NULL;
17652
17653 attr = dwarf2_attr (die, name, cu);
17654
17655 if (attr != NULL)
17656 {
17657 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17658 || attr->form == DW_FORM_string
17659 || attr->form == DW_FORM_GNU_str_index
17660 || attr->form == DW_FORM_GNU_strp_alt)
17661 str = DW_STRING (attr);
17662 else
17663 complaint (&symfile_complaints,
17664 _("string type expected for attribute %s for "
17665 "DIE at 0x%x in module %s"),
17666 dwarf_attr_name (name), to_underlying (die->sect_off),
17667 objfile_name (cu->objfile));
17668 }
17669
17670 return str;
17671 }
17672
17673 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17674 and holds a non-zero value. This function should only be used for
17675 DW_FORM_flag or DW_FORM_flag_present attributes. */
17676
17677 static int
17678 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17679 {
17680 struct attribute *attr = dwarf2_attr (die, name, cu);
17681
17682 return (attr && DW_UNSND (attr));
17683 }
17684
17685 static int
17686 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17687 {
17688 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17689 which value is non-zero. However, we have to be careful with
17690 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17691 (via dwarf2_flag_true_p) follows this attribute. So we may
17692 end up accidently finding a declaration attribute that belongs
17693 to a different DIE referenced by the specification attribute,
17694 even though the given DIE does not have a declaration attribute. */
17695 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17696 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17697 }
17698
17699 /* Return the die giving the specification for DIE, if there is
17700 one. *SPEC_CU is the CU containing DIE on input, and the CU
17701 containing the return value on output. If there is no
17702 specification, but there is an abstract origin, that is
17703 returned. */
17704
17705 static struct die_info *
17706 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17707 {
17708 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17709 *spec_cu);
17710
17711 if (spec_attr == NULL)
17712 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17713
17714 if (spec_attr == NULL)
17715 return NULL;
17716 else
17717 return follow_die_ref (die, spec_attr, spec_cu);
17718 }
17719
17720 /* Stub for free_line_header to match void * callback types. */
17721
17722 static void
17723 free_line_header_voidp (void *arg)
17724 {
17725 struct line_header *lh = (struct line_header *) arg;
17726
17727 delete lh;
17728 }
17729
17730 void
17731 line_header::add_include_dir (const char *include_dir)
17732 {
17733 if (dwarf_line_debug >= 2)
17734 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17735 include_dirs.size () + 1, include_dir);
17736
17737 include_dirs.push_back (include_dir);
17738 }
17739
17740 void
17741 line_header::add_file_name (const char *name,
17742 dir_index d_index,
17743 unsigned int mod_time,
17744 unsigned int length)
17745 {
17746 if (dwarf_line_debug >= 2)
17747 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17748 (unsigned) file_names.size () + 1, name);
17749
17750 file_names.emplace_back (name, d_index, mod_time, length);
17751 }
17752
17753 /* A convenience function to find the proper .debug_line section for a CU. */
17754
17755 static struct dwarf2_section_info *
17756 get_debug_line_section (struct dwarf2_cu *cu)
17757 {
17758 struct dwarf2_section_info *section;
17759
17760 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17761 DWO file. */
17762 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17763 section = &cu->dwo_unit->dwo_file->sections.line;
17764 else if (cu->per_cu->is_dwz)
17765 {
17766 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17767
17768 section = &dwz->line;
17769 }
17770 else
17771 section = &dwarf2_per_objfile->line;
17772
17773 return section;
17774 }
17775
17776 /* Read directory or file name entry format, starting with byte of
17777 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17778 entries count and the entries themselves in the described entry
17779 format. */
17780
17781 static void
17782 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17783 struct line_header *lh,
17784 const struct comp_unit_head *cu_header,
17785 void (*callback) (struct line_header *lh,
17786 const char *name,
17787 dir_index d_index,
17788 unsigned int mod_time,
17789 unsigned int length))
17790 {
17791 gdb_byte format_count, formati;
17792 ULONGEST data_count, datai;
17793 const gdb_byte *buf = *bufp;
17794 const gdb_byte *format_header_data;
17795 int i;
17796 unsigned int bytes_read;
17797
17798 format_count = read_1_byte (abfd, buf);
17799 buf += 1;
17800 format_header_data = buf;
17801 for (formati = 0; formati < format_count; formati++)
17802 {
17803 read_unsigned_leb128 (abfd, buf, &bytes_read);
17804 buf += bytes_read;
17805 read_unsigned_leb128 (abfd, buf, &bytes_read);
17806 buf += bytes_read;
17807 }
17808
17809 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17810 buf += bytes_read;
17811 for (datai = 0; datai < data_count; datai++)
17812 {
17813 const gdb_byte *format = format_header_data;
17814 struct file_entry fe;
17815
17816 for (formati = 0; formati < format_count; formati++)
17817 {
17818 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17819 format += bytes_read;
17820
17821 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17822 format += bytes_read;
17823
17824 gdb::optional<const char *> string;
17825 gdb::optional<unsigned int> uint;
17826
17827 switch (form)
17828 {
17829 case DW_FORM_string:
17830 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17831 buf += bytes_read;
17832 break;
17833
17834 case DW_FORM_line_strp:
17835 string.emplace (read_indirect_line_string (abfd, buf,
17836 cu_header,
17837 &bytes_read));
17838 buf += bytes_read;
17839 break;
17840
17841 case DW_FORM_data1:
17842 uint.emplace (read_1_byte (abfd, buf));
17843 buf += 1;
17844 break;
17845
17846 case DW_FORM_data2:
17847 uint.emplace (read_2_bytes (abfd, buf));
17848 buf += 2;
17849 break;
17850
17851 case DW_FORM_data4:
17852 uint.emplace (read_4_bytes (abfd, buf));
17853 buf += 4;
17854 break;
17855
17856 case DW_FORM_data8:
17857 uint.emplace (read_8_bytes (abfd, buf));
17858 buf += 8;
17859 break;
17860
17861 case DW_FORM_udata:
17862 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17863 buf += bytes_read;
17864 break;
17865
17866 case DW_FORM_block:
17867 /* It is valid only for DW_LNCT_timestamp which is ignored by
17868 current GDB. */
17869 break;
17870 }
17871
17872 switch (content_type)
17873 {
17874 case DW_LNCT_path:
17875 if (string.has_value ())
17876 fe.name = *string;
17877 break;
17878 case DW_LNCT_directory_index:
17879 if (uint.has_value ())
17880 fe.d_index = (dir_index) *uint;
17881 break;
17882 case DW_LNCT_timestamp:
17883 if (uint.has_value ())
17884 fe.mod_time = *uint;
17885 break;
17886 case DW_LNCT_size:
17887 if (uint.has_value ())
17888 fe.length = *uint;
17889 break;
17890 case DW_LNCT_MD5:
17891 break;
17892 default:
17893 complaint (&symfile_complaints,
17894 _("Unknown format content type %s"),
17895 pulongest (content_type));
17896 }
17897 }
17898
17899 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17900 }
17901
17902 *bufp = buf;
17903 }
17904
17905 /* Read the statement program header starting at OFFSET in
17906 .debug_line, or .debug_line.dwo. Return a pointer
17907 to a struct line_header, allocated using xmalloc.
17908 Returns NULL if there is a problem reading the header, e.g., if it
17909 has a version we don't understand.
17910
17911 NOTE: the strings in the include directory and file name tables of
17912 the returned object point into the dwarf line section buffer,
17913 and must not be freed. */
17914
17915 static line_header_up
17916 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17917 {
17918 const gdb_byte *line_ptr;
17919 unsigned int bytes_read, offset_size;
17920 int i;
17921 const char *cur_dir, *cur_file;
17922 struct dwarf2_section_info *section;
17923 bfd *abfd;
17924
17925 section = get_debug_line_section (cu);
17926 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17927 if (section->buffer == NULL)
17928 {
17929 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17930 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17931 else
17932 complaint (&symfile_complaints, _("missing .debug_line section"));
17933 return 0;
17934 }
17935
17936 /* We can't do this until we know the section is non-empty.
17937 Only then do we know we have such a section. */
17938 abfd = get_section_bfd_owner (section);
17939
17940 /* Make sure that at least there's room for the total_length field.
17941 That could be 12 bytes long, but we're just going to fudge that. */
17942 if (to_underlying (sect_off) + 4 >= section->size)
17943 {
17944 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17945 return 0;
17946 }
17947
17948 line_header_up lh (new line_header ());
17949
17950 lh->sect_off = sect_off;
17951 lh->offset_in_dwz = cu->per_cu->is_dwz;
17952
17953 line_ptr = section->buffer + to_underlying (sect_off);
17954
17955 /* Read in the header. */
17956 lh->total_length =
17957 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17958 &bytes_read, &offset_size);
17959 line_ptr += bytes_read;
17960 if (line_ptr + lh->total_length > (section->buffer + section->size))
17961 {
17962 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17963 return 0;
17964 }
17965 lh->statement_program_end = line_ptr + lh->total_length;
17966 lh->version = read_2_bytes (abfd, line_ptr);
17967 line_ptr += 2;
17968 if (lh->version > 5)
17969 {
17970 /* This is a version we don't understand. The format could have
17971 changed in ways we don't handle properly so just punt. */
17972 complaint (&symfile_complaints,
17973 _("unsupported version in .debug_line section"));
17974 return NULL;
17975 }
17976 if (lh->version >= 5)
17977 {
17978 gdb_byte segment_selector_size;
17979
17980 /* Skip address size. */
17981 read_1_byte (abfd, line_ptr);
17982 line_ptr += 1;
17983
17984 segment_selector_size = read_1_byte (abfd, line_ptr);
17985 line_ptr += 1;
17986 if (segment_selector_size != 0)
17987 {
17988 complaint (&symfile_complaints,
17989 _("unsupported segment selector size %u "
17990 "in .debug_line section"),
17991 segment_selector_size);
17992 return NULL;
17993 }
17994 }
17995 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17996 line_ptr += offset_size;
17997 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17998 line_ptr += 1;
17999 if (lh->version >= 4)
18000 {
18001 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18002 line_ptr += 1;
18003 }
18004 else
18005 lh->maximum_ops_per_instruction = 1;
18006
18007 if (lh->maximum_ops_per_instruction == 0)
18008 {
18009 lh->maximum_ops_per_instruction = 1;
18010 complaint (&symfile_complaints,
18011 _("invalid maximum_ops_per_instruction "
18012 "in `.debug_line' section"));
18013 }
18014
18015 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18016 line_ptr += 1;
18017 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18018 line_ptr += 1;
18019 lh->line_range = read_1_byte (abfd, line_ptr);
18020 line_ptr += 1;
18021 lh->opcode_base = read_1_byte (abfd, line_ptr);
18022 line_ptr += 1;
18023 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18024
18025 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18026 for (i = 1; i < lh->opcode_base; ++i)
18027 {
18028 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18029 line_ptr += 1;
18030 }
18031
18032 if (lh->version >= 5)
18033 {
18034 /* Read directory table. */
18035 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18036 [] (struct line_header *lh, const char *name,
18037 dir_index d_index, unsigned int mod_time,
18038 unsigned int length)
18039 {
18040 lh->add_include_dir (name);
18041 });
18042
18043 /* Read file name table. */
18044 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18045 [] (struct line_header *lh, const char *name,
18046 dir_index d_index, unsigned int mod_time,
18047 unsigned int length)
18048 {
18049 lh->add_file_name (name, d_index, mod_time, length);
18050 });
18051 }
18052 else
18053 {
18054 /* Read directory table. */
18055 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18056 {
18057 line_ptr += bytes_read;
18058 lh->add_include_dir (cur_dir);
18059 }
18060 line_ptr += bytes_read;
18061
18062 /* Read file name table. */
18063 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18064 {
18065 unsigned int mod_time, length;
18066 dir_index d_index;
18067
18068 line_ptr += bytes_read;
18069 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18070 line_ptr += bytes_read;
18071 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18072 line_ptr += bytes_read;
18073 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18074 line_ptr += bytes_read;
18075
18076 lh->add_file_name (cur_file, d_index, mod_time, length);
18077 }
18078 line_ptr += bytes_read;
18079 }
18080 lh->statement_program_start = line_ptr;
18081
18082 if (line_ptr > (section->buffer + section->size))
18083 complaint (&symfile_complaints,
18084 _("line number info header doesn't "
18085 "fit in `.debug_line' section"));
18086
18087 return lh;
18088 }
18089
18090 /* Subroutine of dwarf_decode_lines to simplify it.
18091 Return the file name of the psymtab for included file FILE_INDEX
18092 in line header LH of PST.
18093 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18094 If space for the result is malloc'd, it will be freed by a cleanup.
18095 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18096
18097 The function creates dangling cleanup registration. */
18098
18099 static const char *
18100 psymtab_include_file_name (const struct line_header *lh, int file_index,
18101 const struct partial_symtab *pst,
18102 const char *comp_dir)
18103 {
18104 const file_entry &fe = lh->file_names[file_index];
18105 const char *include_name = fe.name;
18106 const char *include_name_to_compare = include_name;
18107 const char *pst_filename;
18108 char *copied_name = NULL;
18109 int file_is_pst;
18110
18111 const char *dir_name = fe.include_dir (lh);
18112
18113 if (!IS_ABSOLUTE_PATH (include_name)
18114 && (dir_name != NULL || comp_dir != NULL))
18115 {
18116 /* Avoid creating a duplicate psymtab for PST.
18117 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18118 Before we do the comparison, however, we need to account
18119 for DIR_NAME and COMP_DIR.
18120 First prepend dir_name (if non-NULL). If we still don't
18121 have an absolute path prepend comp_dir (if non-NULL).
18122 However, the directory we record in the include-file's
18123 psymtab does not contain COMP_DIR (to match the
18124 corresponding symtab(s)).
18125
18126 Example:
18127
18128 bash$ cd /tmp
18129 bash$ gcc -g ./hello.c
18130 include_name = "hello.c"
18131 dir_name = "."
18132 DW_AT_comp_dir = comp_dir = "/tmp"
18133 DW_AT_name = "./hello.c"
18134
18135 */
18136
18137 if (dir_name != NULL)
18138 {
18139 char *tem = concat (dir_name, SLASH_STRING,
18140 include_name, (char *)NULL);
18141
18142 make_cleanup (xfree, tem);
18143 include_name = tem;
18144 include_name_to_compare = include_name;
18145 }
18146 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18147 {
18148 char *tem = concat (comp_dir, SLASH_STRING,
18149 include_name, (char *)NULL);
18150
18151 make_cleanup (xfree, tem);
18152 include_name_to_compare = tem;
18153 }
18154 }
18155
18156 pst_filename = pst->filename;
18157 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18158 {
18159 copied_name = concat (pst->dirname, SLASH_STRING,
18160 pst_filename, (char *)NULL);
18161 pst_filename = copied_name;
18162 }
18163
18164 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18165
18166 if (copied_name != NULL)
18167 xfree (copied_name);
18168
18169 if (file_is_pst)
18170 return NULL;
18171 return include_name;
18172 }
18173
18174 /* State machine to track the state of the line number program. */
18175
18176 class lnp_state_machine
18177 {
18178 public:
18179 /* Initialize a machine state for the start of a line number
18180 program. */
18181 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18182
18183 file_entry *current_file ()
18184 {
18185 /* lh->file_names is 0-based, but the file name numbers in the
18186 statement program are 1-based. */
18187 return m_line_header->file_name_at (m_file);
18188 }
18189
18190 /* Record the line in the state machine. END_SEQUENCE is true if
18191 we're processing the end of a sequence. */
18192 void record_line (bool end_sequence);
18193
18194 /* Check address and if invalid nop-out the rest of the lines in this
18195 sequence. */
18196 void check_line_address (struct dwarf2_cu *cu,
18197 const gdb_byte *line_ptr,
18198 CORE_ADDR lowpc, CORE_ADDR address);
18199
18200 void handle_set_discriminator (unsigned int discriminator)
18201 {
18202 m_discriminator = discriminator;
18203 m_line_has_non_zero_discriminator |= discriminator != 0;
18204 }
18205
18206 /* Handle DW_LNE_set_address. */
18207 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18208 {
18209 m_op_index = 0;
18210 address += baseaddr;
18211 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18212 }
18213
18214 /* Handle DW_LNS_advance_pc. */
18215 void handle_advance_pc (CORE_ADDR adjust);
18216
18217 /* Handle a special opcode. */
18218 void handle_special_opcode (unsigned char op_code);
18219
18220 /* Handle DW_LNS_advance_line. */
18221 void handle_advance_line (int line_delta)
18222 {
18223 advance_line (line_delta);
18224 }
18225
18226 /* Handle DW_LNS_set_file. */
18227 void handle_set_file (file_name_index file);
18228
18229 /* Handle DW_LNS_negate_stmt. */
18230 void handle_negate_stmt ()
18231 {
18232 m_is_stmt = !m_is_stmt;
18233 }
18234
18235 /* Handle DW_LNS_const_add_pc. */
18236 void handle_const_add_pc ();
18237
18238 /* Handle DW_LNS_fixed_advance_pc. */
18239 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18240 {
18241 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18242 m_op_index = 0;
18243 }
18244
18245 /* Handle DW_LNS_copy. */
18246 void handle_copy ()
18247 {
18248 record_line (false);
18249 m_discriminator = 0;
18250 }
18251
18252 /* Handle DW_LNE_end_sequence. */
18253 void handle_end_sequence ()
18254 {
18255 m_record_line_callback = ::record_line;
18256 }
18257
18258 private:
18259 /* Advance the line by LINE_DELTA. */
18260 void advance_line (int line_delta)
18261 {
18262 m_line += line_delta;
18263
18264 if (line_delta != 0)
18265 m_line_has_non_zero_discriminator = m_discriminator != 0;
18266 }
18267
18268 gdbarch *m_gdbarch;
18269
18270 /* True if we're recording lines.
18271 Otherwise we're building partial symtabs and are just interested in
18272 finding include files mentioned by the line number program. */
18273 bool m_record_lines_p;
18274
18275 /* The line number header. */
18276 line_header *m_line_header;
18277
18278 /* These are part of the standard DWARF line number state machine,
18279 and initialized according to the DWARF spec. */
18280
18281 unsigned char m_op_index = 0;
18282 /* The line table index (1-based) of the current file. */
18283 file_name_index m_file = (file_name_index) 1;
18284 unsigned int m_line = 1;
18285
18286 /* These are initialized in the constructor. */
18287
18288 CORE_ADDR m_address;
18289 bool m_is_stmt;
18290 unsigned int m_discriminator;
18291
18292 /* Additional bits of state we need to track. */
18293
18294 /* The last file that we called dwarf2_start_subfile for.
18295 This is only used for TLLs. */
18296 unsigned int m_last_file = 0;
18297 /* The last file a line number was recorded for. */
18298 struct subfile *m_last_subfile = NULL;
18299
18300 /* The function to call to record a line. */
18301 record_line_ftype *m_record_line_callback = NULL;
18302
18303 /* The last line number that was recorded, used to coalesce
18304 consecutive entries for the same line. This can happen, for
18305 example, when discriminators are present. PR 17276. */
18306 unsigned int m_last_line = 0;
18307 bool m_line_has_non_zero_discriminator = false;
18308 };
18309
18310 void
18311 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18312 {
18313 CORE_ADDR addr_adj = (((m_op_index + adjust)
18314 / m_line_header->maximum_ops_per_instruction)
18315 * m_line_header->minimum_instruction_length);
18316 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18317 m_op_index = ((m_op_index + adjust)
18318 % m_line_header->maximum_ops_per_instruction);
18319 }
18320
18321 void
18322 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18323 {
18324 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18325 CORE_ADDR addr_adj = (((m_op_index
18326 + (adj_opcode / m_line_header->line_range))
18327 / m_line_header->maximum_ops_per_instruction)
18328 * m_line_header->minimum_instruction_length);
18329 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18330 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18331 % m_line_header->maximum_ops_per_instruction);
18332
18333 int line_delta = (m_line_header->line_base
18334 + (adj_opcode % m_line_header->line_range));
18335 advance_line (line_delta);
18336 record_line (false);
18337 m_discriminator = 0;
18338 }
18339
18340 void
18341 lnp_state_machine::handle_set_file (file_name_index file)
18342 {
18343 m_file = file;
18344
18345 const file_entry *fe = current_file ();
18346 if (fe == NULL)
18347 dwarf2_debug_line_missing_file_complaint ();
18348 else if (m_record_lines_p)
18349 {
18350 const char *dir = fe->include_dir (m_line_header);
18351
18352 m_last_subfile = current_subfile;
18353 m_line_has_non_zero_discriminator = m_discriminator != 0;
18354 dwarf2_start_subfile (fe->name, dir);
18355 }
18356 }
18357
18358 void
18359 lnp_state_machine::handle_const_add_pc ()
18360 {
18361 CORE_ADDR adjust
18362 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18363
18364 CORE_ADDR addr_adj
18365 = (((m_op_index + adjust)
18366 / m_line_header->maximum_ops_per_instruction)
18367 * m_line_header->minimum_instruction_length);
18368
18369 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18370 m_op_index = ((m_op_index + adjust)
18371 % m_line_header->maximum_ops_per_instruction);
18372 }
18373
18374 /* Ignore this record_line request. */
18375
18376 static void
18377 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18378 {
18379 return;
18380 }
18381
18382 /* Return non-zero if we should add LINE to the line number table.
18383 LINE is the line to add, LAST_LINE is the last line that was added,
18384 LAST_SUBFILE is the subfile for LAST_LINE.
18385 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18386 had a non-zero discriminator.
18387
18388 We have to be careful in the presence of discriminators.
18389 E.g., for this line:
18390
18391 for (i = 0; i < 100000; i++);
18392
18393 clang can emit four line number entries for that one line,
18394 each with a different discriminator.
18395 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18396
18397 However, we want gdb to coalesce all four entries into one.
18398 Otherwise the user could stepi into the middle of the line and
18399 gdb would get confused about whether the pc really was in the
18400 middle of the line.
18401
18402 Things are further complicated by the fact that two consecutive
18403 line number entries for the same line is a heuristic used by gcc
18404 to denote the end of the prologue. So we can't just discard duplicate
18405 entries, we have to be selective about it. The heuristic we use is
18406 that we only collapse consecutive entries for the same line if at least
18407 one of those entries has a non-zero discriminator. PR 17276.
18408
18409 Note: Addresses in the line number state machine can never go backwards
18410 within one sequence, thus this coalescing is ok. */
18411
18412 static int
18413 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18414 int line_has_non_zero_discriminator,
18415 struct subfile *last_subfile)
18416 {
18417 if (current_subfile != last_subfile)
18418 return 1;
18419 if (line != last_line)
18420 return 1;
18421 /* Same line for the same file that we've seen already.
18422 As a last check, for pr 17276, only record the line if the line
18423 has never had a non-zero discriminator. */
18424 if (!line_has_non_zero_discriminator)
18425 return 1;
18426 return 0;
18427 }
18428
18429 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18430 in the line table of subfile SUBFILE. */
18431
18432 static void
18433 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18434 unsigned int line, CORE_ADDR address,
18435 record_line_ftype p_record_line)
18436 {
18437 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18438
18439 if (dwarf_line_debug)
18440 {
18441 fprintf_unfiltered (gdb_stdlog,
18442 "Recording line %u, file %s, address %s\n",
18443 line, lbasename (subfile->name),
18444 paddress (gdbarch, address));
18445 }
18446
18447 (*p_record_line) (subfile, line, addr);
18448 }
18449
18450 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18451 Mark the end of a set of line number records.
18452 The arguments are the same as for dwarf_record_line_1.
18453 If SUBFILE is NULL the request is ignored. */
18454
18455 static void
18456 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18457 CORE_ADDR address, record_line_ftype p_record_line)
18458 {
18459 if (subfile == NULL)
18460 return;
18461
18462 if (dwarf_line_debug)
18463 {
18464 fprintf_unfiltered (gdb_stdlog,
18465 "Finishing current line, file %s, address %s\n",
18466 lbasename (subfile->name),
18467 paddress (gdbarch, address));
18468 }
18469
18470 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18471 }
18472
18473 void
18474 lnp_state_machine::record_line (bool end_sequence)
18475 {
18476 if (dwarf_line_debug)
18477 {
18478 fprintf_unfiltered (gdb_stdlog,
18479 "Processing actual line %u: file %u,"
18480 " address %s, is_stmt %u, discrim %u\n",
18481 m_line, to_underlying (m_file),
18482 paddress (m_gdbarch, m_address),
18483 m_is_stmt, m_discriminator);
18484 }
18485
18486 file_entry *fe = current_file ();
18487
18488 if (fe == NULL)
18489 dwarf2_debug_line_missing_file_complaint ();
18490 /* For now we ignore lines not starting on an instruction boundary.
18491 But not when processing end_sequence for compatibility with the
18492 previous version of the code. */
18493 else if (m_op_index == 0 || end_sequence)
18494 {
18495 fe->included_p = 1;
18496 if (m_record_lines_p && m_is_stmt)
18497 {
18498 if (m_last_subfile != current_subfile || end_sequence)
18499 {
18500 dwarf_finish_line (m_gdbarch, m_last_subfile,
18501 m_address, m_record_line_callback);
18502 }
18503
18504 if (!end_sequence)
18505 {
18506 if (dwarf_record_line_p (m_line, m_last_line,
18507 m_line_has_non_zero_discriminator,
18508 m_last_subfile))
18509 {
18510 dwarf_record_line_1 (m_gdbarch, current_subfile,
18511 m_line, m_address,
18512 m_record_line_callback);
18513 }
18514 m_last_subfile = current_subfile;
18515 m_last_line = m_line;
18516 }
18517 }
18518 }
18519 }
18520
18521 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18522 bool record_lines_p)
18523 {
18524 m_gdbarch = arch;
18525 m_record_lines_p = record_lines_p;
18526 m_line_header = lh;
18527
18528 m_record_line_callback = ::record_line;
18529
18530 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18531 was a line entry for it so that the backend has a chance to adjust it
18532 and also record it in case it needs it. This is currently used by MIPS
18533 code, cf. `mips_adjust_dwarf2_line'. */
18534 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18535 m_is_stmt = lh->default_is_stmt;
18536 m_discriminator = 0;
18537 }
18538
18539 void
18540 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18541 const gdb_byte *line_ptr,
18542 CORE_ADDR lowpc, CORE_ADDR address)
18543 {
18544 /* If address < lowpc then it's not a usable value, it's outside the
18545 pc range of the CU. However, we restrict the test to only address
18546 values of zero to preserve GDB's previous behaviour which is to
18547 handle the specific case of a function being GC'd by the linker. */
18548
18549 if (address == 0 && address < lowpc)
18550 {
18551 /* This line table is for a function which has been
18552 GCd by the linker. Ignore it. PR gdb/12528 */
18553
18554 struct objfile *objfile = cu->objfile;
18555 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18556
18557 complaint (&symfile_complaints,
18558 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18559 line_offset, objfile_name (objfile));
18560 m_record_line_callback = noop_record_line;
18561 /* Note: record_line_callback is left as noop_record_line until
18562 we see DW_LNE_end_sequence. */
18563 }
18564 }
18565
18566 /* Subroutine of dwarf_decode_lines to simplify it.
18567 Process the line number information in LH.
18568 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18569 program in order to set included_p for every referenced header. */
18570
18571 static void
18572 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18573 const int decode_for_pst_p, CORE_ADDR lowpc)
18574 {
18575 const gdb_byte *line_ptr, *extended_end;
18576 const gdb_byte *line_end;
18577 unsigned int bytes_read, extended_len;
18578 unsigned char op_code, extended_op;
18579 CORE_ADDR baseaddr;
18580 struct objfile *objfile = cu->objfile;
18581 bfd *abfd = objfile->obfd;
18582 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18583 /* True if we're recording line info (as opposed to building partial
18584 symtabs and just interested in finding include files mentioned by
18585 the line number program). */
18586 bool record_lines_p = !decode_for_pst_p;
18587
18588 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18589
18590 line_ptr = lh->statement_program_start;
18591 line_end = lh->statement_program_end;
18592
18593 /* Read the statement sequences until there's nothing left. */
18594 while (line_ptr < line_end)
18595 {
18596 /* The DWARF line number program state machine. Reset the state
18597 machine at the start of each sequence. */
18598 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18599 bool end_sequence = false;
18600
18601 if (record_lines_p)
18602 {
18603 /* Start a subfile for the current file of the state
18604 machine. */
18605 const file_entry *fe = state_machine.current_file ();
18606
18607 if (fe != NULL)
18608 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18609 }
18610
18611 /* Decode the table. */
18612 while (line_ptr < line_end && !end_sequence)
18613 {
18614 op_code = read_1_byte (abfd, line_ptr);
18615 line_ptr += 1;
18616
18617 if (op_code >= lh->opcode_base)
18618 {
18619 /* Special opcode. */
18620 state_machine.handle_special_opcode (op_code);
18621 }
18622 else switch (op_code)
18623 {
18624 case DW_LNS_extended_op:
18625 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18626 &bytes_read);
18627 line_ptr += bytes_read;
18628 extended_end = line_ptr + extended_len;
18629 extended_op = read_1_byte (abfd, line_ptr);
18630 line_ptr += 1;
18631 switch (extended_op)
18632 {
18633 case DW_LNE_end_sequence:
18634 state_machine.handle_end_sequence ();
18635 end_sequence = true;
18636 break;
18637 case DW_LNE_set_address:
18638 {
18639 CORE_ADDR address
18640 = read_address (abfd, line_ptr, cu, &bytes_read);
18641 line_ptr += bytes_read;
18642
18643 state_machine.check_line_address (cu, line_ptr,
18644 lowpc, address);
18645 state_machine.handle_set_address (baseaddr, address);
18646 }
18647 break;
18648 case DW_LNE_define_file:
18649 {
18650 const char *cur_file;
18651 unsigned int mod_time, length;
18652 dir_index dindex;
18653
18654 cur_file = read_direct_string (abfd, line_ptr,
18655 &bytes_read);
18656 line_ptr += bytes_read;
18657 dindex = (dir_index)
18658 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18659 line_ptr += bytes_read;
18660 mod_time =
18661 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18662 line_ptr += bytes_read;
18663 length =
18664 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18665 line_ptr += bytes_read;
18666 lh->add_file_name (cur_file, dindex, mod_time, length);
18667 }
18668 break;
18669 case DW_LNE_set_discriminator:
18670 {
18671 /* The discriminator is not interesting to the
18672 debugger; just ignore it. We still need to
18673 check its value though:
18674 if there are consecutive entries for the same
18675 (non-prologue) line we want to coalesce them.
18676 PR 17276. */
18677 unsigned int discr
18678 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18679 line_ptr += bytes_read;
18680
18681 state_machine.handle_set_discriminator (discr);
18682 }
18683 break;
18684 default:
18685 complaint (&symfile_complaints,
18686 _("mangled .debug_line section"));
18687 return;
18688 }
18689 /* Make sure that we parsed the extended op correctly. If e.g.
18690 we expected a different address size than the producer used,
18691 we may have read the wrong number of bytes. */
18692 if (line_ptr != extended_end)
18693 {
18694 complaint (&symfile_complaints,
18695 _("mangled .debug_line section"));
18696 return;
18697 }
18698 break;
18699 case DW_LNS_copy:
18700 state_machine.handle_copy ();
18701 break;
18702 case DW_LNS_advance_pc:
18703 {
18704 CORE_ADDR adjust
18705 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18706 line_ptr += bytes_read;
18707
18708 state_machine.handle_advance_pc (adjust);
18709 }
18710 break;
18711 case DW_LNS_advance_line:
18712 {
18713 int line_delta
18714 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18715 line_ptr += bytes_read;
18716
18717 state_machine.handle_advance_line (line_delta);
18718 }
18719 break;
18720 case DW_LNS_set_file:
18721 {
18722 file_name_index file
18723 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18724 &bytes_read);
18725 line_ptr += bytes_read;
18726
18727 state_machine.handle_set_file (file);
18728 }
18729 break;
18730 case DW_LNS_set_column:
18731 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18732 line_ptr += bytes_read;
18733 break;
18734 case DW_LNS_negate_stmt:
18735 state_machine.handle_negate_stmt ();
18736 break;
18737 case DW_LNS_set_basic_block:
18738 break;
18739 /* Add to the address register of the state machine the
18740 address increment value corresponding to special opcode
18741 255. I.e., this value is scaled by the minimum
18742 instruction length since special opcode 255 would have
18743 scaled the increment. */
18744 case DW_LNS_const_add_pc:
18745 state_machine.handle_const_add_pc ();
18746 break;
18747 case DW_LNS_fixed_advance_pc:
18748 {
18749 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18750 line_ptr += 2;
18751
18752 state_machine.handle_fixed_advance_pc (addr_adj);
18753 }
18754 break;
18755 default:
18756 {
18757 /* Unknown standard opcode, ignore it. */
18758 int i;
18759
18760 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18761 {
18762 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18763 line_ptr += bytes_read;
18764 }
18765 }
18766 }
18767 }
18768
18769 if (!end_sequence)
18770 dwarf2_debug_line_missing_end_sequence_complaint ();
18771
18772 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18773 in which case we still finish recording the last line). */
18774 state_machine.record_line (true);
18775 }
18776 }
18777
18778 /* Decode the Line Number Program (LNP) for the given line_header
18779 structure and CU. The actual information extracted and the type
18780 of structures created from the LNP depends on the value of PST.
18781
18782 1. If PST is NULL, then this procedure uses the data from the program
18783 to create all necessary symbol tables, and their linetables.
18784
18785 2. If PST is not NULL, this procedure reads the program to determine
18786 the list of files included by the unit represented by PST, and
18787 builds all the associated partial symbol tables.
18788
18789 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18790 It is used for relative paths in the line table.
18791 NOTE: When processing partial symtabs (pst != NULL),
18792 comp_dir == pst->dirname.
18793
18794 NOTE: It is important that psymtabs have the same file name (via strcmp)
18795 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18796 symtab we don't use it in the name of the psymtabs we create.
18797 E.g. expand_line_sal requires this when finding psymtabs to expand.
18798 A good testcase for this is mb-inline.exp.
18799
18800 LOWPC is the lowest address in CU (or 0 if not known).
18801
18802 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18803 for its PC<->lines mapping information. Otherwise only the filename
18804 table is read in. */
18805
18806 static void
18807 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18808 struct dwarf2_cu *cu, struct partial_symtab *pst,
18809 CORE_ADDR lowpc, int decode_mapping)
18810 {
18811 struct objfile *objfile = cu->objfile;
18812 const int decode_for_pst_p = (pst != NULL);
18813
18814 if (decode_mapping)
18815 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18816
18817 if (decode_for_pst_p)
18818 {
18819 int file_index;
18820
18821 /* Now that we're done scanning the Line Header Program, we can
18822 create the psymtab of each included file. */
18823 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18824 if (lh->file_names[file_index].included_p == 1)
18825 {
18826 const char *include_name =
18827 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18828 if (include_name != NULL)
18829 dwarf2_create_include_psymtab (include_name, pst, objfile);
18830 }
18831 }
18832 else
18833 {
18834 /* Make sure a symtab is created for every file, even files
18835 which contain only variables (i.e. no code with associated
18836 line numbers). */
18837 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18838 int i;
18839
18840 for (i = 0; i < lh->file_names.size (); i++)
18841 {
18842 file_entry &fe = lh->file_names[i];
18843
18844 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18845
18846 if (current_subfile->symtab == NULL)
18847 {
18848 current_subfile->symtab
18849 = allocate_symtab (cust, current_subfile->name);
18850 }
18851 fe.symtab = current_subfile->symtab;
18852 }
18853 }
18854 }
18855
18856 /* Start a subfile for DWARF. FILENAME is the name of the file and
18857 DIRNAME the name of the source directory which contains FILENAME
18858 or NULL if not known.
18859 This routine tries to keep line numbers from identical absolute and
18860 relative file names in a common subfile.
18861
18862 Using the `list' example from the GDB testsuite, which resides in
18863 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18864 of /srcdir/list0.c yields the following debugging information for list0.c:
18865
18866 DW_AT_name: /srcdir/list0.c
18867 DW_AT_comp_dir: /compdir
18868 files.files[0].name: list0.h
18869 files.files[0].dir: /srcdir
18870 files.files[1].name: list0.c
18871 files.files[1].dir: /srcdir
18872
18873 The line number information for list0.c has to end up in a single
18874 subfile, so that `break /srcdir/list0.c:1' works as expected.
18875 start_subfile will ensure that this happens provided that we pass the
18876 concatenation of files.files[1].dir and files.files[1].name as the
18877 subfile's name. */
18878
18879 static void
18880 dwarf2_start_subfile (const char *filename, const char *dirname)
18881 {
18882 char *copy = NULL;
18883
18884 /* In order not to lose the line information directory,
18885 we concatenate it to the filename when it makes sense.
18886 Note that the Dwarf3 standard says (speaking of filenames in line
18887 information): ``The directory index is ignored for file names
18888 that represent full path names''. Thus ignoring dirname in the
18889 `else' branch below isn't an issue. */
18890
18891 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18892 {
18893 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18894 filename = copy;
18895 }
18896
18897 start_subfile (filename);
18898
18899 if (copy != NULL)
18900 xfree (copy);
18901 }
18902
18903 /* Start a symtab for DWARF.
18904 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18905
18906 static struct compunit_symtab *
18907 dwarf2_start_symtab (struct dwarf2_cu *cu,
18908 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18909 {
18910 struct compunit_symtab *cust
18911 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18912
18913 record_debugformat ("DWARF 2");
18914 record_producer (cu->producer);
18915
18916 /* We assume that we're processing GCC output. */
18917 processing_gcc_compilation = 2;
18918
18919 cu->processing_has_namespace_info = 0;
18920
18921 return cust;
18922 }
18923
18924 static void
18925 var_decode_location (struct attribute *attr, struct symbol *sym,
18926 struct dwarf2_cu *cu)
18927 {
18928 struct objfile *objfile = cu->objfile;
18929 struct comp_unit_head *cu_header = &cu->header;
18930
18931 /* NOTE drow/2003-01-30: There used to be a comment and some special
18932 code here to turn a symbol with DW_AT_external and a
18933 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18934 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18935 with some versions of binutils) where shared libraries could have
18936 relocations against symbols in their debug information - the
18937 minimal symbol would have the right address, but the debug info
18938 would not. It's no longer necessary, because we will explicitly
18939 apply relocations when we read in the debug information now. */
18940
18941 /* A DW_AT_location attribute with no contents indicates that a
18942 variable has been optimized away. */
18943 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18944 {
18945 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18946 return;
18947 }
18948
18949 /* Handle one degenerate form of location expression specially, to
18950 preserve GDB's previous behavior when section offsets are
18951 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18952 then mark this symbol as LOC_STATIC. */
18953
18954 if (attr_form_is_block (attr)
18955 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18956 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18957 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18958 && (DW_BLOCK (attr)->size
18959 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18960 {
18961 unsigned int dummy;
18962
18963 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18964 SYMBOL_VALUE_ADDRESS (sym) =
18965 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18966 else
18967 SYMBOL_VALUE_ADDRESS (sym) =
18968 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18969 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18970 fixup_symbol_section (sym, objfile);
18971 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18972 SYMBOL_SECTION (sym));
18973 return;
18974 }
18975
18976 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18977 expression evaluator, and use LOC_COMPUTED only when necessary
18978 (i.e. when the value of a register or memory location is
18979 referenced, or a thread-local block, etc.). Then again, it might
18980 not be worthwhile. I'm assuming that it isn't unless performance
18981 or memory numbers show me otherwise. */
18982
18983 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18984
18985 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18986 cu->has_loclist = 1;
18987 }
18988
18989 /* Given a pointer to a DWARF information entry, figure out if we need
18990 to make a symbol table entry for it, and if so, create a new entry
18991 and return a pointer to it.
18992 If TYPE is NULL, determine symbol type from the die, otherwise
18993 used the passed type.
18994 If SPACE is not NULL, use it to hold the new symbol. If it is
18995 NULL, allocate a new symbol on the objfile's obstack. */
18996
18997 static struct symbol *
18998 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18999 struct symbol *space)
19000 {
19001 struct objfile *objfile = cu->objfile;
19002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19003 struct symbol *sym = NULL;
19004 const char *name;
19005 struct attribute *attr = NULL;
19006 struct attribute *attr2 = NULL;
19007 CORE_ADDR baseaddr;
19008 struct pending **list_to_add = NULL;
19009
19010 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19011
19012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19013
19014 name = dwarf2_name (die, cu);
19015 if (name)
19016 {
19017 const char *linkagename;
19018 int suppress_add = 0;
19019
19020 if (space)
19021 sym = space;
19022 else
19023 sym = allocate_symbol (objfile);
19024 OBJSTAT (objfile, n_syms++);
19025
19026 /* Cache this symbol's name and the name's demangled form (if any). */
19027 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19028 linkagename = dwarf2_physname (name, die, cu);
19029 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19030
19031 /* Fortran does not have mangling standard and the mangling does differ
19032 between gfortran, iFort etc. */
19033 if (cu->language == language_fortran
19034 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19035 symbol_set_demangled_name (&(sym->ginfo),
19036 dwarf2_full_name (name, die, cu),
19037 NULL);
19038
19039 /* Default assumptions.
19040 Use the passed type or decode it from the die. */
19041 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19042 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19043 if (type != NULL)
19044 SYMBOL_TYPE (sym) = type;
19045 else
19046 SYMBOL_TYPE (sym) = die_type (die, cu);
19047 attr = dwarf2_attr (die,
19048 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19049 cu);
19050 if (attr)
19051 {
19052 SYMBOL_LINE (sym) = DW_UNSND (attr);
19053 }
19054
19055 attr = dwarf2_attr (die,
19056 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19057 cu);
19058 if (attr)
19059 {
19060 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19061 struct file_entry *fe;
19062
19063 if (cu->line_header != NULL)
19064 fe = cu->line_header->file_name_at (file_index);
19065 else
19066 fe = NULL;
19067
19068 if (fe == NULL)
19069 complaint (&symfile_complaints,
19070 _("file index out of range"));
19071 else
19072 symbol_set_symtab (sym, fe->symtab);
19073 }
19074
19075 switch (die->tag)
19076 {
19077 case DW_TAG_label:
19078 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19079 if (attr)
19080 {
19081 CORE_ADDR addr;
19082
19083 addr = attr_value_as_address (attr);
19084 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19085 SYMBOL_VALUE_ADDRESS (sym) = addr;
19086 }
19087 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19088 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19089 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19090 add_symbol_to_list (sym, cu->list_in_scope);
19091 break;
19092 case DW_TAG_subprogram:
19093 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19094 finish_block. */
19095 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19096 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19097 if ((attr2 && (DW_UNSND (attr2) != 0))
19098 || cu->language == language_ada)
19099 {
19100 /* Subprograms marked external are stored as a global symbol.
19101 Ada subprograms, whether marked external or not, are always
19102 stored as a global symbol, because we want to be able to
19103 access them globally. For instance, we want to be able
19104 to break on a nested subprogram without having to
19105 specify the context. */
19106 list_to_add = &global_symbols;
19107 }
19108 else
19109 {
19110 list_to_add = cu->list_in_scope;
19111 }
19112 break;
19113 case DW_TAG_inlined_subroutine:
19114 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19115 finish_block. */
19116 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19117 SYMBOL_INLINED (sym) = 1;
19118 list_to_add = cu->list_in_scope;
19119 break;
19120 case DW_TAG_template_value_param:
19121 suppress_add = 1;
19122 /* Fall through. */
19123 case DW_TAG_constant:
19124 case DW_TAG_variable:
19125 case DW_TAG_member:
19126 /* Compilation with minimal debug info may result in
19127 variables with missing type entries. Change the
19128 misleading `void' type to something sensible. */
19129 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19130 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19131
19132 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19133 /* In the case of DW_TAG_member, we should only be called for
19134 static const members. */
19135 if (die->tag == DW_TAG_member)
19136 {
19137 /* dwarf2_add_field uses die_is_declaration,
19138 so we do the same. */
19139 gdb_assert (die_is_declaration (die, cu));
19140 gdb_assert (attr);
19141 }
19142 if (attr)
19143 {
19144 dwarf2_const_value (attr, sym, cu);
19145 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19146 if (!suppress_add)
19147 {
19148 if (attr2 && (DW_UNSND (attr2) != 0))
19149 list_to_add = &global_symbols;
19150 else
19151 list_to_add = cu->list_in_scope;
19152 }
19153 break;
19154 }
19155 attr = dwarf2_attr (die, DW_AT_location, cu);
19156 if (attr)
19157 {
19158 var_decode_location (attr, sym, cu);
19159 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19160
19161 /* Fortran explicitly imports any global symbols to the local
19162 scope by DW_TAG_common_block. */
19163 if (cu->language == language_fortran && die->parent
19164 && die->parent->tag == DW_TAG_common_block)
19165 attr2 = NULL;
19166
19167 if (SYMBOL_CLASS (sym) == LOC_STATIC
19168 && SYMBOL_VALUE_ADDRESS (sym) == 0
19169 && !dwarf2_per_objfile->has_section_at_zero)
19170 {
19171 /* When a static variable is eliminated by the linker,
19172 the corresponding debug information is not stripped
19173 out, but the variable address is set to null;
19174 do not add such variables into symbol table. */
19175 }
19176 else if (attr2 && (DW_UNSND (attr2) != 0))
19177 {
19178 /* Workaround gfortran PR debug/40040 - it uses
19179 DW_AT_location for variables in -fPIC libraries which may
19180 get overriden by other libraries/executable and get
19181 a different address. Resolve it by the minimal symbol
19182 which may come from inferior's executable using copy
19183 relocation. Make this workaround only for gfortran as for
19184 other compilers GDB cannot guess the minimal symbol
19185 Fortran mangling kind. */
19186 if (cu->language == language_fortran && die->parent
19187 && die->parent->tag == DW_TAG_module
19188 && cu->producer
19189 && startswith (cu->producer, "GNU Fortran"))
19190 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19191
19192 /* A variable with DW_AT_external is never static,
19193 but it may be block-scoped. */
19194 list_to_add = (cu->list_in_scope == &file_symbols
19195 ? &global_symbols : cu->list_in_scope);
19196 }
19197 else
19198 list_to_add = cu->list_in_scope;
19199 }
19200 else
19201 {
19202 /* We do not know the address of this symbol.
19203 If it is an external symbol and we have type information
19204 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19205 The address of the variable will then be determined from
19206 the minimal symbol table whenever the variable is
19207 referenced. */
19208 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19209
19210 /* Fortran explicitly imports any global symbols to the local
19211 scope by DW_TAG_common_block. */
19212 if (cu->language == language_fortran && die->parent
19213 && die->parent->tag == DW_TAG_common_block)
19214 {
19215 /* SYMBOL_CLASS doesn't matter here because
19216 read_common_block is going to reset it. */
19217 if (!suppress_add)
19218 list_to_add = cu->list_in_scope;
19219 }
19220 else if (attr2 && (DW_UNSND (attr2) != 0)
19221 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19222 {
19223 /* A variable with DW_AT_external is never static, but it
19224 may be block-scoped. */
19225 list_to_add = (cu->list_in_scope == &file_symbols
19226 ? &global_symbols : cu->list_in_scope);
19227
19228 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19229 }
19230 else if (!die_is_declaration (die, cu))
19231 {
19232 /* Use the default LOC_OPTIMIZED_OUT class. */
19233 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19234 if (!suppress_add)
19235 list_to_add = cu->list_in_scope;
19236 }
19237 }
19238 break;
19239 case DW_TAG_formal_parameter:
19240 /* If we are inside a function, mark this as an argument. If
19241 not, we might be looking at an argument to an inlined function
19242 when we do not have enough information to show inlined frames;
19243 pretend it's a local variable in that case so that the user can
19244 still see it. */
19245 if (context_stack_depth > 0
19246 && context_stack[context_stack_depth - 1].name != NULL)
19247 SYMBOL_IS_ARGUMENT (sym) = 1;
19248 attr = dwarf2_attr (die, DW_AT_location, cu);
19249 if (attr)
19250 {
19251 var_decode_location (attr, sym, cu);
19252 }
19253 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19254 if (attr)
19255 {
19256 dwarf2_const_value (attr, sym, cu);
19257 }
19258
19259 list_to_add = cu->list_in_scope;
19260 break;
19261 case DW_TAG_unspecified_parameters:
19262 /* From varargs functions; gdb doesn't seem to have any
19263 interest in this information, so just ignore it for now.
19264 (FIXME?) */
19265 break;
19266 case DW_TAG_template_type_param:
19267 suppress_add = 1;
19268 /* Fall through. */
19269 case DW_TAG_class_type:
19270 case DW_TAG_interface_type:
19271 case DW_TAG_structure_type:
19272 case DW_TAG_union_type:
19273 case DW_TAG_set_type:
19274 case DW_TAG_enumeration_type:
19275 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19276 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19277
19278 {
19279 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19280 really ever be static objects: otherwise, if you try
19281 to, say, break of a class's method and you're in a file
19282 which doesn't mention that class, it won't work unless
19283 the check for all static symbols in lookup_symbol_aux
19284 saves you. See the OtherFileClass tests in
19285 gdb.c++/namespace.exp. */
19286
19287 if (!suppress_add)
19288 {
19289 list_to_add = (cu->list_in_scope == &file_symbols
19290 && cu->language == language_cplus
19291 ? &global_symbols : cu->list_in_scope);
19292
19293 /* The semantics of C++ state that "struct foo {
19294 ... }" also defines a typedef for "foo". */
19295 if (cu->language == language_cplus
19296 || cu->language == language_ada
19297 || cu->language == language_d
19298 || cu->language == language_rust)
19299 {
19300 /* The symbol's name is already allocated along
19301 with this objfile, so we don't need to
19302 duplicate it for the type. */
19303 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19305 }
19306 }
19307 }
19308 break;
19309 case DW_TAG_typedef:
19310 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19311 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19312 list_to_add = cu->list_in_scope;
19313 break;
19314 case DW_TAG_base_type:
19315 case DW_TAG_subrange_type:
19316 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19317 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19318 list_to_add = cu->list_in_scope;
19319 break;
19320 case DW_TAG_enumerator:
19321 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19322 if (attr)
19323 {
19324 dwarf2_const_value (attr, sym, cu);
19325 }
19326 {
19327 /* NOTE: carlton/2003-11-10: See comment above in the
19328 DW_TAG_class_type, etc. block. */
19329
19330 list_to_add = (cu->list_in_scope == &file_symbols
19331 && cu->language == language_cplus
19332 ? &global_symbols : cu->list_in_scope);
19333 }
19334 break;
19335 case DW_TAG_imported_declaration:
19336 case DW_TAG_namespace:
19337 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19338 list_to_add = &global_symbols;
19339 break;
19340 case DW_TAG_module:
19341 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19342 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19343 list_to_add = &global_symbols;
19344 break;
19345 case DW_TAG_common_block:
19346 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19347 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19348 add_symbol_to_list (sym, cu->list_in_scope);
19349 break;
19350 default:
19351 /* Not a tag we recognize. Hopefully we aren't processing
19352 trash data, but since we must specifically ignore things
19353 we don't recognize, there is nothing else we should do at
19354 this point. */
19355 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19356 dwarf_tag_name (die->tag));
19357 break;
19358 }
19359
19360 if (suppress_add)
19361 {
19362 sym->hash_next = objfile->template_symbols;
19363 objfile->template_symbols = sym;
19364 list_to_add = NULL;
19365 }
19366
19367 if (list_to_add != NULL)
19368 add_symbol_to_list (sym, list_to_add);
19369
19370 /* For the benefit of old versions of GCC, check for anonymous
19371 namespaces based on the demangled name. */
19372 if (!cu->processing_has_namespace_info
19373 && cu->language == language_cplus)
19374 cp_scan_for_anonymous_namespaces (sym, objfile);
19375 }
19376 return (sym);
19377 }
19378
19379 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19380
19381 static struct symbol *
19382 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19383 {
19384 return new_symbol_full (die, type, cu, NULL);
19385 }
19386
19387 /* Given an attr with a DW_FORM_dataN value in host byte order,
19388 zero-extend it as appropriate for the symbol's type. The DWARF
19389 standard (v4) is not entirely clear about the meaning of using
19390 DW_FORM_dataN for a constant with a signed type, where the type is
19391 wider than the data. The conclusion of a discussion on the DWARF
19392 list was that this is unspecified. We choose to always zero-extend
19393 because that is the interpretation long in use by GCC. */
19394
19395 static gdb_byte *
19396 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19397 struct dwarf2_cu *cu, LONGEST *value, int bits)
19398 {
19399 struct objfile *objfile = cu->objfile;
19400 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19401 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19402 LONGEST l = DW_UNSND (attr);
19403
19404 if (bits < sizeof (*value) * 8)
19405 {
19406 l &= ((LONGEST) 1 << bits) - 1;
19407 *value = l;
19408 }
19409 else if (bits == sizeof (*value) * 8)
19410 *value = l;
19411 else
19412 {
19413 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19414 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19415 return bytes;
19416 }
19417
19418 return NULL;
19419 }
19420
19421 /* Read a constant value from an attribute. Either set *VALUE, or if
19422 the value does not fit in *VALUE, set *BYTES - either already
19423 allocated on the objfile obstack, or newly allocated on OBSTACK,
19424 or, set *BATON, if we translated the constant to a location
19425 expression. */
19426
19427 static void
19428 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19429 const char *name, struct obstack *obstack,
19430 struct dwarf2_cu *cu,
19431 LONGEST *value, const gdb_byte **bytes,
19432 struct dwarf2_locexpr_baton **baton)
19433 {
19434 struct objfile *objfile = cu->objfile;
19435 struct comp_unit_head *cu_header = &cu->header;
19436 struct dwarf_block *blk;
19437 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19438 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19439
19440 *value = 0;
19441 *bytes = NULL;
19442 *baton = NULL;
19443
19444 switch (attr->form)
19445 {
19446 case DW_FORM_addr:
19447 case DW_FORM_GNU_addr_index:
19448 {
19449 gdb_byte *data;
19450
19451 if (TYPE_LENGTH (type) != cu_header->addr_size)
19452 dwarf2_const_value_length_mismatch_complaint (name,
19453 cu_header->addr_size,
19454 TYPE_LENGTH (type));
19455 /* Symbols of this form are reasonably rare, so we just
19456 piggyback on the existing location code rather than writing
19457 a new implementation of symbol_computed_ops. */
19458 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19459 (*baton)->per_cu = cu->per_cu;
19460 gdb_assert ((*baton)->per_cu);
19461
19462 (*baton)->size = 2 + cu_header->addr_size;
19463 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19464 (*baton)->data = data;
19465
19466 data[0] = DW_OP_addr;
19467 store_unsigned_integer (&data[1], cu_header->addr_size,
19468 byte_order, DW_ADDR (attr));
19469 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19470 }
19471 break;
19472 case DW_FORM_string:
19473 case DW_FORM_strp:
19474 case DW_FORM_GNU_str_index:
19475 case DW_FORM_GNU_strp_alt:
19476 /* DW_STRING is already allocated on the objfile obstack, point
19477 directly to it. */
19478 *bytes = (const gdb_byte *) DW_STRING (attr);
19479 break;
19480 case DW_FORM_block1:
19481 case DW_FORM_block2:
19482 case DW_FORM_block4:
19483 case DW_FORM_block:
19484 case DW_FORM_exprloc:
19485 case DW_FORM_data16:
19486 blk = DW_BLOCK (attr);
19487 if (TYPE_LENGTH (type) != blk->size)
19488 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19489 TYPE_LENGTH (type));
19490 *bytes = blk->data;
19491 break;
19492
19493 /* The DW_AT_const_value attributes are supposed to carry the
19494 symbol's value "represented as it would be on the target
19495 architecture." By the time we get here, it's already been
19496 converted to host endianness, so we just need to sign- or
19497 zero-extend it as appropriate. */
19498 case DW_FORM_data1:
19499 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19500 break;
19501 case DW_FORM_data2:
19502 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19503 break;
19504 case DW_FORM_data4:
19505 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19506 break;
19507 case DW_FORM_data8:
19508 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19509 break;
19510
19511 case DW_FORM_sdata:
19512 case DW_FORM_implicit_const:
19513 *value = DW_SND (attr);
19514 break;
19515
19516 case DW_FORM_udata:
19517 *value = DW_UNSND (attr);
19518 break;
19519
19520 default:
19521 complaint (&symfile_complaints,
19522 _("unsupported const value attribute form: '%s'"),
19523 dwarf_form_name (attr->form));
19524 *value = 0;
19525 break;
19526 }
19527 }
19528
19529
19530 /* Copy constant value from an attribute to a symbol. */
19531
19532 static void
19533 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19534 struct dwarf2_cu *cu)
19535 {
19536 struct objfile *objfile = cu->objfile;
19537 LONGEST value;
19538 const gdb_byte *bytes;
19539 struct dwarf2_locexpr_baton *baton;
19540
19541 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19542 SYMBOL_PRINT_NAME (sym),
19543 &objfile->objfile_obstack, cu,
19544 &value, &bytes, &baton);
19545
19546 if (baton != NULL)
19547 {
19548 SYMBOL_LOCATION_BATON (sym) = baton;
19549 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19550 }
19551 else if (bytes != NULL)
19552 {
19553 SYMBOL_VALUE_BYTES (sym) = bytes;
19554 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19555 }
19556 else
19557 {
19558 SYMBOL_VALUE (sym) = value;
19559 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19560 }
19561 }
19562
19563 /* Return the type of the die in question using its DW_AT_type attribute. */
19564
19565 static struct type *
19566 die_type (struct die_info *die, struct dwarf2_cu *cu)
19567 {
19568 struct attribute *type_attr;
19569
19570 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19571 if (!type_attr)
19572 {
19573 /* A missing DW_AT_type represents a void type. */
19574 return objfile_type (cu->objfile)->builtin_void;
19575 }
19576
19577 return lookup_die_type (die, type_attr, cu);
19578 }
19579
19580 /* True iff CU's producer generates GNAT Ada auxiliary information
19581 that allows to find parallel types through that information instead
19582 of having to do expensive parallel lookups by type name. */
19583
19584 static int
19585 need_gnat_info (struct dwarf2_cu *cu)
19586 {
19587 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19588 of GNAT produces this auxiliary information, without any indication
19589 that it is produced. Part of enhancing the FSF version of GNAT
19590 to produce that information will be to put in place an indicator
19591 that we can use in order to determine whether the descriptive type
19592 info is available or not. One suggestion that has been made is
19593 to use a new attribute, attached to the CU die. For now, assume
19594 that the descriptive type info is not available. */
19595 return 0;
19596 }
19597
19598 /* Return the auxiliary type of the die in question using its
19599 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19600 attribute is not present. */
19601
19602 static struct type *
19603 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19604 {
19605 struct attribute *type_attr;
19606
19607 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19608 if (!type_attr)
19609 return NULL;
19610
19611 return lookup_die_type (die, type_attr, cu);
19612 }
19613
19614 /* If DIE has a descriptive_type attribute, then set the TYPE's
19615 descriptive type accordingly. */
19616
19617 static void
19618 set_descriptive_type (struct type *type, struct die_info *die,
19619 struct dwarf2_cu *cu)
19620 {
19621 struct type *descriptive_type = die_descriptive_type (die, cu);
19622
19623 if (descriptive_type)
19624 {
19625 ALLOCATE_GNAT_AUX_TYPE (type);
19626 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19627 }
19628 }
19629
19630 /* Return the containing type of the die in question using its
19631 DW_AT_containing_type attribute. */
19632
19633 static struct type *
19634 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19635 {
19636 struct attribute *type_attr;
19637
19638 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19639 if (!type_attr)
19640 error (_("Dwarf Error: Problem turning containing type into gdb type "
19641 "[in module %s]"), objfile_name (cu->objfile));
19642
19643 return lookup_die_type (die, type_attr, cu);
19644 }
19645
19646 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19647
19648 static struct type *
19649 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19650 {
19651 struct objfile *objfile = dwarf2_per_objfile->objfile;
19652 char *message, *saved;
19653
19654 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19655 objfile_name (objfile),
19656 to_underlying (cu->header.sect_off),
19657 to_underlying (die->sect_off));
19658 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19659 message, strlen (message));
19660 xfree (message);
19661
19662 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19663 }
19664
19665 /* Look up the type of DIE in CU using its type attribute ATTR.
19666 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19667 DW_AT_containing_type.
19668 If there is no type substitute an error marker. */
19669
19670 static struct type *
19671 lookup_die_type (struct die_info *die, const struct attribute *attr,
19672 struct dwarf2_cu *cu)
19673 {
19674 struct objfile *objfile = cu->objfile;
19675 struct type *this_type;
19676
19677 gdb_assert (attr->name == DW_AT_type
19678 || attr->name == DW_AT_GNAT_descriptive_type
19679 || attr->name == DW_AT_containing_type);
19680
19681 /* First see if we have it cached. */
19682
19683 if (attr->form == DW_FORM_GNU_ref_alt)
19684 {
19685 struct dwarf2_per_cu_data *per_cu;
19686 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19687
19688 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19689 this_type = get_die_type_at_offset (sect_off, per_cu);
19690 }
19691 else if (attr_form_is_ref (attr))
19692 {
19693 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19694
19695 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19696 }
19697 else if (attr->form == DW_FORM_ref_sig8)
19698 {
19699 ULONGEST signature = DW_SIGNATURE (attr);
19700
19701 return get_signatured_type (die, signature, cu);
19702 }
19703 else
19704 {
19705 complaint (&symfile_complaints,
19706 _("Dwarf Error: Bad type attribute %s in DIE"
19707 " at 0x%x [in module %s]"),
19708 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19709 objfile_name (objfile));
19710 return build_error_marker_type (cu, die);
19711 }
19712
19713 /* If not cached we need to read it in. */
19714
19715 if (this_type == NULL)
19716 {
19717 struct die_info *type_die = NULL;
19718 struct dwarf2_cu *type_cu = cu;
19719
19720 if (attr_form_is_ref (attr))
19721 type_die = follow_die_ref (die, attr, &type_cu);
19722 if (type_die == NULL)
19723 return build_error_marker_type (cu, die);
19724 /* If we find the type now, it's probably because the type came
19725 from an inter-CU reference and the type's CU got expanded before
19726 ours. */
19727 this_type = read_type_die (type_die, type_cu);
19728 }
19729
19730 /* If we still don't have a type use an error marker. */
19731
19732 if (this_type == NULL)
19733 return build_error_marker_type (cu, die);
19734
19735 return this_type;
19736 }
19737
19738 /* Return the type in DIE, CU.
19739 Returns NULL for invalid types.
19740
19741 This first does a lookup in die_type_hash,
19742 and only reads the die in if necessary.
19743
19744 NOTE: This can be called when reading in partial or full symbols. */
19745
19746 static struct type *
19747 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19748 {
19749 struct type *this_type;
19750
19751 this_type = get_die_type (die, cu);
19752 if (this_type)
19753 return this_type;
19754
19755 return read_type_die_1 (die, cu);
19756 }
19757
19758 /* Read the type in DIE, CU.
19759 Returns NULL for invalid types. */
19760
19761 static struct type *
19762 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19763 {
19764 struct type *this_type = NULL;
19765
19766 switch (die->tag)
19767 {
19768 case DW_TAG_class_type:
19769 case DW_TAG_interface_type:
19770 case DW_TAG_structure_type:
19771 case DW_TAG_union_type:
19772 this_type = read_structure_type (die, cu);
19773 break;
19774 case DW_TAG_enumeration_type:
19775 this_type = read_enumeration_type (die, cu);
19776 break;
19777 case DW_TAG_subprogram:
19778 case DW_TAG_subroutine_type:
19779 case DW_TAG_inlined_subroutine:
19780 this_type = read_subroutine_type (die, cu);
19781 break;
19782 case DW_TAG_array_type:
19783 this_type = read_array_type (die, cu);
19784 break;
19785 case DW_TAG_set_type:
19786 this_type = read_set_type (die, cu);
19787 break;
19788 case DW_TAG_pointer_type:
19789 this_type = read_tag_pointer_type (die, cu);
19790 break;
19791 case DW_TAG_ptr_to_member_type:
19792 this_type = read_tag_ptr_to_member_type (die, cu);
19793 break;
19794 case DW_TAG_reference_type:
19795 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19796 break;
19797 case DW_TAG_rvalue_reference_type:
19798 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19799 break;
19800 case DW_TAG_const_type:
19801 this_type = read_tag_const_type (die, cu);
19802 break;
19803 case DW_TAG_volatile_type:
19804 this_type = read_tag_volatile_type (die, cu);
19805 break;
19806 case DW_TAG_restrict_type:
19807 this_type = read_tag_restrict_type (die, cu);
19808 break;
19809 case DW_TAG_string_type:
19810 this_type = read_tag_string_type (die, cu);
19811 break;
19812 case DW_TAG_typedef:
19813 this_type = read_typedef (die, cu);
19814 break;
19815 case DW_TAG_subrange_type:
19816 this_type = read_subrange_type (die, cu);
19817 break;
19818 case DW_TAG_base_type:
19819 this_type = read_base_type (die, cu);
19820 break;
19821 case DW_TAG_unspecified_type:
19822 this_type = read_unspecified_type (die, cu);
19823 break;
19824 case DW_TAG_namespace:
19825 this_type = read_namespace_type (die, cu);
19826 break;
19827 case DW_TAG_module:
19828 this_type = read_module_type (die, cu);
19829 break;
19830 case DW_TAG_atomic_type:
19831 this_type = read_tag_atomic_type (die, cu);
19832 break;
19833 default:
19834 complaint (&symfile_complaints,
19835 _("unexpected tag in read_type_die: '%s'"),
19836 dwarf_tag_name (die->tag));
19837 break;
19838 }
19839
19840 return this_type;
19841 }
19842
19843 /* See if we can figure out if the class lives in a namespace. We do
19844 this by looking for a member function; its demangled name will
19845 contain namespace info, if there is any.
19846 Return the computed name or NULL.
19847 Space for the result is allocated on the objfile's obstack.
19848 This is the full-die version of guess_partial_die_structure_name.
19849 In this case we know DIE has no useful parent. */
19850
19851 static char *
19852 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19853 {
19854 struct die_info *spec_die;
19855 struct dwarf2_cu *spec_cu;
19856 struct die_info *child;
19857
19858 spec_cu = cu;
19859 spec_die = die_specification (die, &spec_cu);
19860 if (spec_die != NULL)
19861 {
19862 die = spec_die;
19863 cu = spec_cu;
19864 }
19865
19866 for (child = die->child;
19867 child != NULL;
19868 child = child->sibling)
19869 {
19870 if (child->tag == DW_TAG_subprogram)
19871 {
19872 const char *linkage_name = dw2_linkage_name (child, cu);
19873
19874 if (linkage_name != NULL)
19875 {
19876 char *actual_name
19877 = language_class_name_from_physname (cu->language_defn,
19878 linkage_name);
19879 char *name = NULL;
19880
19881 if (actual_name != NULL)
19882 {
19883 const char *die_name = dwarf2_name (die, cu);
19884
19885 if (die_name != NULL
19886 && strcmp (die_name, actual_name) != 0)
19887 {
19888 /* Strip off the class name from the full name.
19889 We want the prefix. */
19890 int die_name_len = strlen (die_name);
19891 int actual_name_len = strlen (actual_name);
19892
19893 /* Test for '::' as a sanity check. */
19894 if (actual_name_len > die_name_len + 2
19895 && actual_name[actual_name_len
19896 - die_name_len - 1] == ':')
19897 name = (char *) obstack_copy0 (
19898 &cu->objfile->per_bfd->storage_obstack,
19899 actual_name, actual_name_len - die_name_len - 2);
19900 }
19901 }
19902 xfree (actual_name);
19903 return name;
19904 }
19905 }
19906 }
19907
19908 return NULL;
19909 }
19910
19911 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19912 prefix part in such case. See
19913 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19914
19915 static const char *
19916 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19917 {
19918 struct attribute *attr;
19919 const char *base;
19920
19921 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19922 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19923 return NULL;
19924
19925 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19926 return NULL;
19927
19928 attr = dw2_linkage_name_attr (die, cu);
19929 if (attr == NULL || DW_STRING (attr) == NULL)
19930 return NULL;
19931
19932 /* dwarf2_name had to be already called. */
19933 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19934
19935 /* Strip the base name, keep any leading namespaces/classes. */
19936 base = strrchr (DW_STRING (attr), ':');
19937 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19938 return "";
19939
19940 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19941 DW_STRING (attr),
19942 &base[-1] - DW_STRING (attr));
19943 }
19944
19945 /* Return the name of the namespace/class that DIE is defined within,
19946 or "" if we can't tell. The caller should not xfree the result.
19947
19948 For example, if we're within the method foo() in the following
19949 code:
19950
19951 namespace N {
19952 class C {
19953 void foo () {
19954 }
19955 };
19956 }
19957
19958 then determine_prefix on foo's die will return "N::C". */
19959
19960 static const char *
19961 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19962 {
19963 struct die_info *parent, *spec_die;
19964 struct dwarf2_cu *spec_cu;
19965 struct type *parent_type;
19966 const char *retval;
19967
19968 if (cu->language != language_cplus
19969 && cu->language != language_fortran && cu->language != language_d
19970 && cu->language != language_rust)
19971 return "";
19972
19973 retval = anonymous_struct_prefix (die, cu);
19974 if (retval)
19975 return retval;
19976
19977 /* We have to be careful in the presence of DW_AT_specification.
19978 For example, with GCC 3.4, given the code
19979
19980 namespace N {
19981 void foo() {
19982 // Definition of N::foo.
19983 }
19984 }
19985
19986 then we'll have a tree of DIEs like this:
19987
19988 1: DW_TAG_compile_unit
19989 2: DW_TAG_namespace // N
19990 3: DW_TAG_subprogram // declaration of N::foo
19991 4: DW_TAG_subprogram // definition of N::foo
19992 DW_AT_specification // refers to die #3
19993
19994 Thus, when processing die #4, we have to pretend that we're in
19995 the context of its DW_AT_specification, namely the contex of die
19996 #3. */
19997 spec_cu = cu;
19998 spec_die = die_specification (die, &spec_cu);
19999 if (spec_die == NULL)
20000 parent = die->parent;
20001 else
20002 {
20003 parent = spec_die->parent;
20004 cu = spec_cu;
20005 }
20006
20007 if (parent == NULL)
20008 return "";
20009 else if (parent->building_fullname)
20010 {
20011 const char *name;
20012 const char *parent_name;
20013
20014 /* It has been seen on RealView 2.2 built binaries,
20015 DW_TAG_template_type_param types actually _defined_ as
20016 children of the parent class:
20017
20018 enum E {};
20019 template class <class Enum> Class{};
20020 Class<enum E> class_e;
20021
20022 1: DW_TAG_class_type (Class)
20023 2: DW_TAG_enumeration_type (E)
20024 3: DW_TAG_enumerator (enum1:0)
20025 3: DW_TAG_enumerator (enum2:1)
20026 ...
20027 2: DW_TAG_template_type_param
20028 DW_AT_type DW_FORM_ref_udata (E)
20029
20030 Besides being broken debug info, it can put GDB into an
20031 infinite loop. Consider:
20032
20033 When we're building the full name for Class<E>, we'll start
20034 at Class, and go look over its template type parameters,
20035 finding E. We'll then try to build the full name of E, and
20036 reach here. We're now trying to build the full name of E,
20037 and look over the parent DIE for containing scope. In the
20038 broken case, if we followed the parent DIE of E, we'd again
20039 find Class, and once again go look at its template type
20040 arguments, etc., etc. Simply don't consider such parent die
20041 as source-level parent of this die (it can't be, the language
20042 doesn't allow it), and break the loop here. */
20043 name = dwarf2_name (die, cu);
20044 parent_name = dwarf2_name (parent, cu);
20045 complaint (&symfile_complaints,
20046 _("template param type '%s' defined within parent '%s'"),
20047 name ? name : "<unknown>",
20048 parent_name ? parent_name : "<unknown>");
20049 return "";
20050 }
20051 else
20052 switch (parent->tag)
20053 {
20054 case DW_TAG_namespace:
20055 parent_type = read_type_die (parent, cu);
20056 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20057 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20058 Work around this problem here. */
20059 if (cu->language == language_cplus
20060 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20061 return "";
20062 /* We give a name to even anonymous namespaces. */
20063 return TYPE_TAG_NAME (parent_type);
20064 case DW_TAG_class_type:
20065 case DW_TAG_interface_type:
20066 case DW_TAG_structure_type:
20067 case DW_TAG_union_type:
20068 case DW_TAG_module:
20069 parent_type = read_type_die (parent, cu);
20070 if (TYPE_TAG_NAME (parent_type) != NULL)
20071 return TYPE_TAG_NAME (parent_type);
20072 else
20073 /* An anonymous structure is only allowed non-static data
20074 members; no typedefs, no member functions, et cetera.
20075 So it does not need a prefix. */
20076 return "";
20077 case DW_TAG_compile_unit:
20078 case DW_TAG_partial_unit:
20079 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20080 if (cu->language == language_cplus
20081 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20082 && die->child != NULL
20083 && (die->tag == DW_TAG_class_type
20084 || die->tag == DW_TAG_structure_type
20085 || die->tag == DW_TAG_union_type))
20086 {
20087 char *name = guess_full_die_structure_name (die, cu);
20088 if (name != NULL)
20089 return name;
20090 }
20091 return "";
20092 case DW_TAG_enumeration_type:
20093 parent_type = read_type_die (parent, cu);
20094 if (TYPE_DECLARED_CLASS (parent_type))
20095 {
20096 if (TYPE_TAG_NAME (parent_type) != NULL)
20097 return TYPE_TAG_NAME (parent_type);
20098 return "";
20099 }
20100 /* Fall through. */
20101 default:
20102 return determine_prefix (parent, cu);
20103 }
20104 }
20105
20106 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20107 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20108 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20109 an obconcat, otherwise allocate storage for the result. The CU argument is
20110 used to determine the language and hence, the appropriate separator. */
20111
20112 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20113
20114 static char *
20115 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20116 int physname, struct dwarf2_cu *cu)
20117 {
20118 const char *lead = "";
20119 const char *sep;
20120
20121 if (suffix == NULL || suffix[0] == '\0'
20122 || prefix == NULL || prefix[0] == '\0')
20123 sep = "";
20124 else if (cu->language == language_d)
20125 {
20126 /* For D, the 'main' function could be defined in any module, but it
20127 should never be prefixed. */
20128 if (strcmp (suffix, "D main") == 0)
20129 {
20130 prefix = "";
20131 sep = "";
20132 }
20133 else
20134 sep = ".";
20135 }
20136 else if (cu->language == language_fortran && physname)
20137 {
20138 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20139 DW_AT_MIPS_linkage_name is preferred and used instead. */
20140
20141 lead = "__";
20142 sep = "_MOD_";
20143 }
20144 else
20145 sep = "::";
20146
20147 if (prefix == NULL)
20148 prefix = "";
20149 if (suffix == NULL)
20150 suffix = "";
20151
20152 if (obs == NULL)
20153 {
20154 char *retval
20155 = ((char *)
20156 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20157
20158 strcpy (retval, lead);
20159 strcat (retval, prefix);
20160 strcat (retval, sep);
20161 strcat (retval, suffix);
20162 return retval;
20163 }
20164 else
20165 {
20166 /* We have an obstack. */
20167 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20168 }
20169 }
20170
20171 /* Return sibling of die, NULL if no sibling. */
20172
20173 static struct die_info *
20174 sibling_die (struct die_info *die)
20175 {
20176 return die->sibling;
20177 }
20178
20179 /* Get name of a die, return NULL if not found. */
20180
20181 static const char *
20182 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20183 struct obstack *obstack)
20184 {
20185 if (name && cu->language == language_cplus)
20186 {
20187 std::string canon_name = cp_canonicalize_string (name);
20188
20189 if (!canon_name.empty ())
20190 {
20191 if (canon_name != name)
20192 name = (const char *) obstack_copy0 (obstack,
20193 canon_name.c_str (),
20194 canon_name.length ());
20195 }
20196 }
20197
20198 return name;
20199 }
20200
20201 /* Get name of a die, return NULL if not found.
20202 Anonymous namespaces are converted to their magic string. */
20203
20204 static const char *
20205 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20206 {
20207 struct attribute *attr;
20208
20209 attr = dwarf2_attr (die, DW_AT_name, cu);
20210 if ((!attr || !DW_STRING (attr))
20211 && die->tag != DW_TAG_namespace
20212 && die->tag != DW_TAG_class_type
20213 && die->tag != DW_TAG_interface_type
20214 && die->tag != DW_TAG_structure_type
20215 && die->tag != DW_TAG_union_type)
20216 return NULL;
20217
20218 switch (die->tag)
20219 {
20220 case DW_TAG_compile_unit:
20221 case DW_TAG_partial_unit:
20222 /* Compilation units have a DW_AT_name that is a filename, not
20223 a source language identifier. */
20224 case DW_TAG_enumeration_type:
20225 case DW_TAG_enumerator:
20226 /* These tags always have simple identifiers already; no need
20227 to canonicalize them. */
20228 return DW_STRING (attr);
20229
20230 case DW_TAG_namespace:
20231 if (attr != NULL && DW_STRING (attr) != NULL)
20232 return DW_STRING (attr);
20233 return CP_ANONYMOUS_NAMESPACE_STR;
20234
20235 case DW_TAG_class_type:
20236 case DW_TAG_interface_type:
20237 case DW_TAG_structure_type:
20238 case DW_TAG_union_type:
20239 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20240 structures or unions. These were of the form "._%d" in GCC 4.1,
20241 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20242 and GCC 4.4. We work around this problem by ignoring these. */
20243 if (attr && DW_STRING (attr)
20244 && (startswith (DW_STRING (attr), "._")
20245 || startswith (DW_STRING (attr), "<anonymous")))
20246 return NULL;
20247
20248 /* GCC might emit a nameless typedef that has a linkage name. See
20249 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20250 if (!attr || DW_STRING (attr) == NULL)
20251 {
20252 char *demangled = NULL;
20253
20254 attr = dw2_linkage_name_attr (die, cu);
20255 if (attr == NULL || DW_STRING (attr) == NULL)
20256 return NULL;
20257
20258 /* Avoid demangling DW_STRING (attr) the second time on a second
20259 call for the same DIE. */
20260 if (!DW_STRING_IS_CANONICAL (attr))
20261 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20262
20263 if (demangled)
20264 {
20265 const char *base;
20266
20267 /* FIXME: we already did this for the partial symbol... */
20268 DW_STRING (attr)
20269 = ((const char *)
20270 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20271 demangled, strlen (demangled)));
20272 DW_STRING_IS_CANONICAL (attr) = 1;
20273 xfree (demangled);
20274
20275 /* Strip any leading namespaces/classes, keep only the base name.
20276 DW_AT_name for named DIEs does not contain the prefixes. */
20277 base = strrchr (DW_STRING (attr), ':');
20278 if (base && base > DW_STRING (attr) && base[-1] == ':')
20279 return &base[1];
20280 else
20281 return DW_STRING (attr);
20282 }
20283 }
20284 break;
20285
20286 default:
20287 break;
20288 }
20289
20290 if (!DW_STRING_IS_CANONICAL (attr))
20291 {
20292 DW_STRING (attr)
20293 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20294 &cu->objfile->per_bfd->storage_obstack);
20295 DW_STRING_IS_CANONICAL (attr) = 1;
20296 }
20297 return DW_STRING (attr);
20298 }
20299
20300 /* Return the die that this die in an extension of, or NULL if there
20301 is none. *EXT_CU is the CU containing DIE on input, and the CU
20302 containing the return value on output. */
20303
20304 static struct die_info *
20305 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20306 {
20307 struct attribute *attr;
20308
20309 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20310 if (attr == NULL)
20311 return NULL;
20312
20313 return follow_die_ref (die, attr, ext_cu);
20314 }
20315
20316 /* Convert a DIE tag into its string name. */
20317
20318 static const char *
20319 dwarf_tag_name (unsigned tag)
20320 {
20321 const char *name = get_DW_TAG_name (tag);
20322
20323 if (name == NULL)
20324 return "DW_TAG_<unknown>";
20325
20326 return name;
20327 }
20328
20329 /* Convert a DWARF attribute code into its string name. */
20330
20331 static const char *
20332 dwarf_attr_name (unsigned attr)
20333 {
20334 const char *name;
20335
20336 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20337 if (attr == DW_AT_MIPS_fde)
20338 return "DW_AT_MIPS_fde";
20339 #else
20340 if (attr == DW_AT_HP_block_index)
20341 return "DW_AT_HP_block_index";
20342 #endif
20343
20344 name = get_DW_AT_name (attr);
20345
20346 if (name == NULL)
20347 return "DW_AT_<unknown>";
20348
20349 return name;
20350 }
20351
20352 /* Convert a DWARF value form code into its string name. */
20353
20354 static const char *
20355 dwarf_form_name (unsigned form)
20356 {
20357 const char *name = get_DW_FORM_name (form);
20358
20359 if (name == NULL)
20360 return "DW_FORM_<unknown>";
20361
20362 return name;
20363 }
20364
20365 static const char *
20366 dwarf_bool_name (unsigned mybool)
20367 {
20368 if (mybool)
20369 return "TRUE";
20370 else
20371 return "FALSE";
20372 }
20373
20374 /* Convert a DWARF type code into its string name. */
20375
20376 static const char *
20377 dwarf_type_encoding_name (unsigned enc)
20378 {
20379 const char *name = get_DW_ATE_name (enc);
20380
20381 if (name == NULL)
20382 return "DW_ATE_<unknown>";
20383
20384 return name;
20385 }
20386
20387 static void
20388 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20389 {
20390 unsigned int i;
20391
20392 print_spaces (indent, f);
20393 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20394 dwarf_tag_name (die->tag), die->abbrev,
20395 to_underlying (die->sect_off));
20396
20397 if (die->parent != NULL)
20398 {
20399 print_spaces (indent, f);
20400 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20401 to_underlying (die->parent->sect_off));
20402 }
20403
20404 print_spaces (indent, f);
20405 fprintf_unfiltered (f, " has children: %s\n",
20406 dwarf_bool_name (die->child != NULL));
20407
20408 print_spaces (indent, f);
20409 fprintf_unfiltered (f, " attributes:\n");
20410
20411 for (i = 0; i < die->num_attrs; ++i)
20412 {
20413 print_spaces (indent, f);
20414 fprintf_unfiltered (f, " %s (%s) ",
20415 dwarf_attr_name (die->attrs[i].name),
20416 dwarf_form_name (die->attrs[i].form));
20417
20418 switch (die->attrs[i].form)
20419 {
20420 case DW_FORM_addr:
20421 case DW_FORM_GNU_addr_index:
20422 fprintf_unfiltered (f, "address: ");
20423 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20424 break;
20425 case DW_FORM_block2:
20426 case DW_FORM_block4:
20427 case DW_FORM_block:
20428 case DW_FORM_block1:
20429 fprintf_unfiltered (f, "block: size %s",
20430 pulongest (DW_BLOCK (&die->attrs[i])->size));
20431 break;
20432 case DW_FORM_exprloc:
20433 fprintf_unfiltered (f, "expression: size %s",
20434 pulongest (DW_BLOCK (&die->attrs[i])->size));
20435 break;
20436 case DW_FORM_data16:
20437 fprintf_unfiltered (f, "constant of 16 bytes");
20438 break;
20439 case DW_FORM_ref_addr:
20440 fprintf_unfiltered (f, "ref address: ");
20441 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20442 break;
20443 case DW_FORM_GNU_ref_alt:
20444 fprintf_unfiltered (f, "alt ref address: ");
20445 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20446 break;
20447 case DW_FORM_ref1:
20448 case DW_FORM_ref2:
20449 case DW_FORM_ref4:
20450 case DW_FORM_ref8:
20451 case DW_FORM_ref_udata:
20452 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20453 (long) (DW_UNSND (&die->attrs[i])));
20454 break;
20455 case DW_FORM_data1:
20456 case DW_FORM_data2:
20457 case DW_FORM_data4:
20458 case DW_FORM_data8:
20459 case DW_FORM_udata:
20460 case DW_FORM_sdata:
20461 fprintf_unfiltered (f, "constant: %s",
20462 pulongest (DW_UNSND (&die->attrs[i])));
20463 break;
20464 case DW_FORM_sec_offset:
20465 fprintf_unfiltered (f, "section offset: %s",
20466 pulongest (DW_UNSND (&die->attrs[i])));
20467 break;
20468 case DW_FORM_ref_sig8:
20469 fprintf_unfiltered (f, "signature: %s",
20470 hex_string (DW_SIGNATURE (&die->attrs[i])));
20471 break;
20472 case DW_FORM_string:
20473 case DW_FORM_strp:
20474 case DW_FORM_line_strp:
20475 case DW_FORM_GNU_str_index:
20476 case DW_FORM_GNU_strp_alt:
20477 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20478 DW_STRING (&die->attrs[i])
20479 ? DW_STRING (&die->attrs[i]) : "",
20480 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20481 break;
20482 case DW_FORM_flag:
20483 if (DW_UNSND (&die->attrs[i]))
20484 fprintf_unfiltered (f, "flag: TRUE");
20485 else
20486 fprintf_unfiltered (f, "flag: FALSE");
20487 break;
20488 case DW_FORM_flag_present:
20489 fprintf_unfiltered (f, "flag: TRUE");
20490 break;
20491 case DW_FORM_indirect:
20492 /* The reader will have reduced the indirect form to
20493 the "base form" so this form should not occur. */
20494 fprintf_unfiltered (f,
20495 "unexpected attribute form: DW_FORM_indirect");
20496 break;
20497 case DW_FORM_implicit_const:
20498 fprintf_unfiltered (f, "constant: %s",
20499 plongest (DW_SND (&die->attrs[i])));
20500 break;
20501 default:
20502 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20503 die->attrs[i].form);
20504 break;
20505 }
20506 fprintf_unfiltered (f, "\n");
20507 }
20508 }
20509
20510 static void
20511 dump_die_for_error (struct die_info *die)
20512 {
20513 dump_die_shallow (gdb_stderr, 0, die);
20514 }
20515
20516 static void
20517 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20518 {
20519 int indent = level * 4;
20520
20521 gdb_assert (die != NULL);
20522
20523 if (level >= max_level)
20524 return;
20525
20526 dump_die_shallow (f, indent, die);
20527
20528 if (die->child != NULL)
20529 {
20530 print_spaces (indent, f);
20531 fprintf_unfiltered (f, " Children:");
20532 if (level + 1 < max_level)
20533 {
20534 fprintf_unfiltered (f, "\n");
20535 dump_die_1 (f, level + 1, max_level, die->child);
20536 }
20537 else
20538 {
20539 fprintf_unfiltered (f,
20540 " [not printed, max nesting level reached]\n");
20541 }
20542 }
20543
20544 if (die->sibling != NULL && level > 0)
20545 {
20546 dump_die_1 (f, level, max_level, die->sibling);
20547 }
20548 }
20549
20550 /* This is called from the pdie macro in gdbinit.in.
20551 It's not static so gcc will keep a copy callable from gdb. */
20552
20553 void
20554 dump_die (struct die_info *die, int max_level)
20555 {
20556 dump_die_1 (gdb_stdlog, 0, max_level, die);
20557 }
20558
20559 static void
20560 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20561 {
20562 void **slot;
20563
20564 slot = htab_find_slot_with_hash (cu->die_hash, die,
20565 to_underlying (die->sect_off),
20566 INSERT);
20567
20568 *slot = die;
20569 }
20570
20571 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20572 required kind. */
20573
20574 static sect_offset
20575 dwarf2_get_ref_die_offset (const struct attribute *attr)
20576 {
20577 if (attr_form_is_ref (attr))
20578 return (sect_offset) DW_UNSND (attr);
20579
20580 complaint (&symfile_complaints,
20581 _("unsupported die ref attribute form: '%s'"),
20582 dwarf_form_name (attr->form));
20583 return {};
20584 }
20585
20586 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20587 * the value held by the attribute is not constant. */
20588
20589 static LONGEST
20590 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20591 {
20592 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20593 return DW_SND (attr);
20594 else if (attr->form == DW_FORM_udata
20595 || attr->form == DW_FORM_data1
20596 || attr->form == DW_FORM_data2
20597 || attr->form == DW_FORM_data4
20598 || attr->form == DW_FORM_data8)
20599 return DW_UNSND (attr);
20600 else
20601 {
20602 /* For DW_FORM_data16 see attr_form_is_constant. */
20603 complaint (&symfile_complaints,
20604 _("Attribute value is not a constant (%s)"),
20605 dwarf_form_name (attr->form));
20606 return default_value;
20607 }
20608 }
20609
20610 /* Follow reference or signature attribute ATTR of SRC_DIE.
20611 On entry *REF_CU is the CU of SRC_DIE.
20612 On exit *REF_CU is the CU of the result. */
20613
20614 static struct die_info *
20615 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20616 struct dwarf2_cu **ref_cu)
20617 {
20618 struct die_info *die;
20619
20620 if (attr_form_is_ref (attr))
20621 die = follow_die_ref (src_die, attr, ref_cu);
20622 else if (attr->form == DW_FORM_ref_sig8)
20623 die = follow_die_sig (src_die, attr, ref_cu);
20624 else
20625 {
20626 dump_die_for_error (src_die);
20627 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20628 objfile_name ((*ref_cu)->objfile));
20629 }
20630
20631 return die;
20632 }
20633
20634 /* Follow reference OFFSET.
20635 On entry *REF_CU is the CU of the source die referencing OFFSET.
20636 On exit *REF_CU is the CU of the result.
20637 Returns NULL if OFFSET is invalid. */
20638
20639 static struct die_info *
20640 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20641 struct dwarf2_cu **ref_cu)
20642 {
20643 struct die_info temp_die;
20644 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20645
20646 gdb_assert (cu->per_cu != NULL);
20647
20648 target_cu = cu;
20649
20650 if (cu->per_cu->is_debug_types)
20651 {
20652 /* .debug_types CUs cannot reference anything outside their CU.
20653 If they need to, they have to reference a signatured type via
20654 DW_FORM_ref_sig8. */
20655 if (!offset_in_cu_p (&cu->header, sect_off))
20656 return NULL;
20657 }
20658 else if (offset_in_dwz != cu->per_cu->is_dwz
20659 || !offset_in_cu_p (&cu->header, sect_off))
20660 {
20661 struct dwarf2_per_cu_data *per_cu;
20662
20663 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20664 cu->objfile);
20665
20666 /* If necessary, add it to the queue and load its DIEs. */
20667 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20668 load_full_comp_unit (per_cu, cu->language);
20669
20670 target_cu = per_cu->cu;
20671 }
20672 else if (cu->dies == NULL)
20673 {
20674 /* We're loading full DIEs during partial symbol reading. */
20675 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20676 load_full_comp_unit (cu->per_cu, language_minimal);
20677 }
20678
20679 *ref_cu = target_cu;
20680 temp_die.sect_off = sect_off;
20681 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20682 &temp_die,
20683 to_underlying (sect_off));
20684 }
20685
20686 /* Follow reference attribute ATTR of SRC_DIE.
20687 On entry *REF_CU is the CU of SRC_DIE.
20688 On exit *REF_CU is the CU of the result. */
20689
20690 static struct die_info *
20691 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20692 struct dwarf2_cu **ref_cu)
20693 {
20694 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20695 struct dwarf2_cu *cu = *ref_cu;
20696 struct die_info *die;
20697
20698 die = follow_die_offset (sect_off,
20699 (attr->form == DW_FORM_GNU_ref_alt
20700 || cu->per_cu->is_dwz),
20701 ref_cu);
20702 if (!die)
20703 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20704 "at 0x%x [in module %s]"),
20705 to_underlying (sect_off), to_underlying (src_die->sect_off),
20706 objfile_name (cu->objfile));
20707
20708 return die;
20709 }
20710
20711 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20712 Returned value is intended for DW_OP_call*. Returned
20713 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20714
20715 struct dwarf2_locexpr_baton
20716 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20717 struct dwarf2_per_cu_data *per_cu,
20718 CORE_ADDR (*get_frame_pc) (void *baton),
20719 void *baton)
20720 {
20721 struct dwarf2_cu *cu;
20722 struct die_info *die;
20723 struct attribute *attr;
20724 struct dwarf2_locexpr_baton retval;
20725
20726 dw2_setup (per_cu->objfile);
20727
20728 if (per_cu->cu == NULL)
20729 load_cu (per_cu);
20730 cu = per_cu->cu;
20731 if (cu == NULL)
20732 {
20733 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20734 Instead just throw an error, not much else we can do. */
20735 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20736 to_underlying (sect_off), objfile_name (per_cu->objfile));
20737 }
20738
20739 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20740 if (!die)
20741 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20742 to_underlying (sect_off), objfile_name (per_cu->objfile));
20743
20744 attr = dwarf2_attr (die, DW_AT_location, cu);
20745 if (!attr)
20746 {
20747 /* DWARF: "If there is no such attribute, then there is no effect.".
20748 DATA is ignored if SIZE is 0. */
20749
20750 retval.data = NULL;
20751 retval.size = 0;
20752 }
20753 else if (attr_form_is_section_offset (attr))
20754 {
20755 struct dwarf2_loclist_baton loclist_baton;
20756 CORE_ADDR pc = (*get_frame_pc) (baton);
20757 size_t size;
20758
20759 fill_in_loclist_baton (cu, &loclist_baton, attr);
20760
20761 retval.data = dwarf2_find_location_expression (&loclist_baton,
20762 &size, pc);
20763 retval.size = size;
20764 }
20765 else
20766 {
20767 if (!attr_form_is_block (attr))
20768 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20769 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20770 to_underlying (sect_off), objfile_name (per_cu->objfile));
20771
20772 retval.data = DW_BLOCK (attr)->data;
20773 retval.size = DW_BLOCK (attr)->size;
20774 }
20775 retval.per_cu = cu->per_cu;
20776
20777 age_cached_comp_units ();
20778
20779 return retval;
20780 }
20781
20782 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20783 offset. */
20784
20785 struct dwarf2_locexpr_baton
20786 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20787 struct dwarf2_per_cu_data *per_cu,
20788 CORE_ADDR (*get_frame_pc) (void *baton),
20789 void *baton)
20790 {
20791 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20792
20793 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20794 }
20795
20796 /* Write a constant of a given type as target-ordered bytes into
20797 OBSTACK. */
20798
20799 static const gdb_byte *
20800 write_constant_as_bytes (struct obstack *obstack,
20801 enum bfd_endian byte_order,
20802 struct type *type,
20803 ULONGEST value,
20804 LONGEST *len)
20805 {
20806 gdb_byte *result;
20807
20808 *len = TYPE_LENGTH (type);
20809 result = (gdb_byte *) obstack_alloc (obstack, *len);
20810 store_unsigned_integer (result, *len, byte_order, value);
20811
20812 return result;
20813 }
20814
20815 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20816 pointer to the constant bytes and set LEN to the length of the
20817 data. If memory is needed, allocate it on OBSTACK. If the DIE
20818 does not have a DW_AT_const_value, return NULL. */
20819
20820 const gdb_byte *
20821 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20822 struct dwarf2_per_cu_data *per_cu,
20823 struct obstack *obstack,
20824 LONGEST *len)
20825 {
20826 struct dwarf2_cu *cu;
20827 struct die_info *die;
20828 struct attribute *attr;
20829 const gdb_byte *result = NULL;
20830 struct type *type;
20831 LONGEST value;
20832 enum bfd_endian byte_order;
20833
20834 dw2_setup (per_cu->objfile);
20835
20836 if (per_cu->cu == NULL)
20837 load_cu (per_cu);
20838 cu = per_cu->cu;
20839 if (cu == NULL)
20840 {
20841 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20842 Instead just throw an error, not much else we can do. */
20843 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20844 to_underlying (sect_off), objfile_name (per_cu->objfile));
20845 }
20846
20847 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20848 if (!die)
20849 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20850 to_underlying (sect_off), objfile_name (per_cu->objfile));
20851
20852
20853 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20854 if (attr == NULL)
20855 return NULL;
20856
20857 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20858 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20859
20860 switch (attr->form)
20861 {
20862 case DW_FORM_addr:
20863 case DW_FORM_GNU_addr_index:
20864 {
20865 gdb_byte *tem;
20866
20867 *len = cu->header.addr_size;
20868 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20869 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20870 result = tem;
20871 }
20872 break;
20873 case DW_FORM_string:
20874 case DW_FORM_strp:
20875 case DW_FORM_GNU_str_index:
20876 case DW_FORM_GNU_strp_alt:
20877 /* DW_STRING is already allocated on the objfile obstack, point
20878 directly to it. */
20879 result = (const gdb_byte *) DW_STRING (attr);
20880 *len = strlen (DW_STRING (attr));
20881 break;
20882 case DW_FORM_block1:
20883 case DW_FORM_block2:
20884 case DW_FORM_block4:
20885 case DW_FORM_block:
20886 case DW_FORM_exprloc:
20887 case DW_FORM_data16:
20888 result = DW_BLOCK (attr)->data;
20889 *len = DW_BLOCK (attr)->size;
20890 break;
20891
20892 /* The DW_AT_const_value attributes are supposed to carry the
20893 symbol's value "represented as it would be on the target
20894 architecture." By the time we get here, it's already been
20895 converted to host endianness, so we just need to sign- or
20896 zero-extend it as appropriate. */
20897 case DW_FORM_data1:
20898 type = die_type (die, cu);
20899 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20900 if (result == NULL)
20901 result = write_constant_as_bytes (obstack, byte_order,
20902 type, value, len);
20903 break;
20904 case DW_FORM_data2:
20905 type = die_type (die, cu);
20906 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20907 if (result == NULL)
20908 result = write_constant_as_bytes (obstack, byte_order,
20909 type, value, len);
20910 break;
20911 case DW_FORM_data4:
20912 type = die_type (die, cu);
20913 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20914 if (result == NULL)
20915 result = write_constant_as_bytes (obstack, byte_order,
20916 type, value, len);
20917 break;
20918 case DW_FORM_data8:
20919 type = die_type (die, cu);
20920 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20921 if (result == NULL)
20922 result = write_constant_as_bytes (obstack, byte_order,
20923 type, value, len);
20924 break;
20925
20926 case DW_FORM_sdata:
20927 case DW_FORM_implicit_const:
20928 type = die_type (die, cu);
20929 result = write_constant_as_bytes (obstack, byte_order,
20930 type, DW_SND (attr), len);
20931 break;
20932
20933 case DW_FORM_udata:
20934 type = die_type (die, cu);
20935 result = write_constant_as_bytes (obstack, byte_order,
20936 type, DW_UNSND (attr), len);
20937 break;
20938
20939 default:
20940 complaint (&symfile_complaints,
20941 _("unsupported const value attribute form: '%s'"),
20942 dwarf_form_name (attr->form));
20943 break;
20944 }
20945
20946 return result;
20947 }
20948
20949 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20950 valid type for this die is found. */
20951
20952 struct type *
20953 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20954 struct dwarf2_per_cu_data *per_cu)
20955 {
20956 struct dwarf2_cu *cu;
20957 struct die_info *die;
20958
20959 dw2_setup (per_cu->objfile);
20960
20961 if (per_cu->cu == NULL)
20962 load_cu (per_cu);
20963 cu = per_cu->cu;
20964 if (!cu)
20965 return NULL;
20966
20967 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20968 if (!die)
20969 return NULL;
20970
20971 return die_type (die, cu);
20972 }
20973
20974 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20975 PER_CU. */
20976
20977 struct type *
20978 dwarf2_get_die_type (cu_offset die_offset,
20979 struct dwarf2_per_cu_data *per_cu)
20980 {
20981 dw2_setup (per_cu->objfile);
20982
20983 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
20984 return get_die_type_at_offset (die_offset_sect, per_cu);
20985 }
20986
20987 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20988 On entry *REF_CU is the CU of SRC_DIE.
20989 On exit *REF_CU is the CU of the result.
20990 Returns NULL if the referenced DIE isn't found. */
20991
20992 static struct die_info *
20993 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20994 struct dwarf2_cu **ref_cu)
20995 {
20996 struct die_info temp_die;
20997 struct dwarf2_cu *sig_cu;
20998 struct die_info *die;
20999
21000 /* While it might be nice to assert sig_type->type == NULL here,
21001 we can get here for DW_AT_imported_declaration where we need
21002 the DIE not the type. */
21003
21004 /* If necessary, add it to the queue and load its DIEs. */
21005
21006 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21007 read_signatured_type (sig_type);
21008
21009 sig_cu = sig_type->per_cu.cu;
21010 gdb_assert (sig_cu != NULL);
21011 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21012 temp_die.sect_off = sig_type->type_offset_in_section;
21013 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21014 to_underlying (temp_die.sect_off));
21015 if (die)
21016 {
21017 /* For .gdb_index version 7 keep track of included TUs.
21018 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21019 if (dwarf2_per_objfile->index_table != NULL
21020 && dwarf2_per_objfile->index_table->version <= 7)
21021 {
21022 VEC_safe_push (dwarf2_per_cu_ptr,
21023 (*ref_cu)->per_cu->imported_symtabs,
21024 sig_cu->per_cu);
21025 }
21026
21027 *ref_cu = sig_cu;
21028 return die;
21029 }
21030
21031 return NULL;
21032 }
21033
21034 /* Follow signatured type referenced by ATTR in SRC_DIE.
21035 On entry *REF_CU is the CU of SRC_DIE.
21036 On exit *REF_CU is the CU of the result.
21037 The result is the DIE of the type.
21038 If the referenced type cannot be found an error is thrown. */
21039
21040 static struct die_info *
21041 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21042 struct dwarf2_cu **ref_cu)
21043 {
21044 ULONGEST signature = DW_SIGNATURE (attr);
21045 struct signatured_type *sig_type;
21046 struct die_info *die;
21047
21048 gdb_assert (attr->form == DW_FORM_ref_sig8);
21049
21050 sig_type = lookup_signatured_type (*ref_cu, signature);
21051 /* sig_type will be NULL if the signatured type is missing from
21052 the debug info. */
21053 if (sig_type == NULL)
21054 {
21055 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21056 " from DIE at 0x%x [in module %s]"),
21057 hex_string (signature), to_underlying (src_die->sect_off),
21058 objfile_name ((*ref_cu)->objfile));
21059 }
21060
21061 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21062 if (die == NULL)
21063 {
21064 dump_die_for_error (src_die);
21065 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21066 " from DIE at 0x%x [in module %s]"),
21067 hex_string (signature), to_underlying (src_die->sect_off),
21068 objfile_name ((*ref_cu)->objfile));
21069 }
21070
21071 return die;
21072 }
21073
21074 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21075 reading in and processing the type unit if necessary. */
21076
21077 static struct type *
21078 get_signatured_type (struct die_info *die, ULONGEST signature,
21079 struct dwarf2_cu *cu)
21080 {
21081 struct signatured_type *sig_type;
21082 struct dwarf2_cu *type_cu;
21083 struct die_info *type_die;
21084 struct type *type;
21085
21086 sig_type = lookup_signatured_type (cu, signature);
21087 /* sig_type will be NULL if the signatured type is missing from
21088 the debug info. */
21089 if (sig_type == NULL)
21090 {
21091 complaint (&symfile_complaints,
21092 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21093 " from DIE at 0x%x [in module %s]"),
21094 hex_string (signature), to_underlying (die->sect_off),
21095 objfile_name (dwarf2_per_objfile->objfile));
21096 return build_error_marker_type (cu, die);
21097 }
21098
21099 /* If we already know the type we're done. */
21100 if (sig_type->type != NULL)
21101 return sig_type->type;
21102
21103 type_cu = cu;
21104 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21105 if (type_die != NULL)
21106 {
21107 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21108 is created. This is important, for example, because for c++ classes
21109 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21110 type = read_type_die (type_die, type_cu);
21111 if (type == NULL)
21112 {
21113 complaint (&symfile_complaints,
21114 _("Dwarf Error: Cannot build signatured type %s"
21115 " referenced from DIE at 0x%x [in module %s]"),
21116 hex_string (signature), to_underlying (die->sect_off),
21117 objfile_name (dwarf2_per_objfile->objfile));
21118 type = build_error_marker_type (cu, die);
21119 }
21120 }
21121 else
21122 {
21123 complaint (&symfile_complaints,
21124 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21125 " from DIE at 0x%x [in module %s]"),
21126 hex_string (signature), to_underlying (die->sect_off),
21127 objfile_name (dwarf2_per_objfile->objfile));
21128 type = build_error_marker_type (cu, die);
21129 }
21130 sig_type->type = type;
21131
21132 return type;
21133 }
21134
21135 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21136 reading in and processing the type unit if necessary. */
21137
21138 static struct type *
21139 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21140 struct dwarf2_cu *cu) /* ARI: editCase function */
21141 {
21142 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21143 if (attr_form_is_ref (attr))
21144 {
21145 struct dwarf2_cu *type_cu = cu;
21146 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21147
21148 return read_type_die (type_die, type_cu);
21149 }
21150 else if (attr->form == DW_FORM_ref_sig8)
21151 {
21152 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21153 }
21154 else
21155 {
21156 complaint (&symfile_complaints,
21157 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21158 " at 0x%x [in module %s]"),
21159 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21160 objfile_name (dwarf2_per_objfile->objfile));
21161 return build_error_marker_type (cu, die);
21162 }
21163 }
21164
21165 /* Load the DIEs associated with type unit PER_CU into memory. */
21166
21167 static void
21168 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21169 {
21170 struct signatured_type *sig_type;
21171
21172 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21173 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21174
21175 /* We have the per_cu, but we need the signatured_type.
21176 Fortunately this is an easy translation. */
21177 gdb_assert (per_cu->is_debug_types);
21178 sig_type = (struct signatured_type *) per_cu;
21179
21180 gdb_assert (per_cu->cu == NULL);
21181
21182 read_signatured_type (sig_type);
21183
21184 gdb_assert (per_cu->cu != NULL);
21185 }
21186
21187 /* die_reader_func for read_signatured_type.
21188 This is identical to load_full_comp_unit_reader,
21189 but is kept separate for now. */
21190
21191 static void
21192 read_signatured_type_reader (const struct die_reader_specs *reader,
21193 const gdb_byte *info_ptr,
21194 struct die_info *comp_unit_die,
21195 int has_children,
21196 void *data)
21197 {
21198 struct dwarf2_cu *cu = reader->cu;
21199
21200 gdb_assert (cu->die_hash == NULL);
21201 cu->die_hash =
21202 htab_create_alloc_ex (cu->header.length / 12,
21203 die_hash,
21204 die_eq,
21205 NULL,
21206 &cu->comp_unit_obstack,
21207 hashtab_obstack_allocate,
21208 dummy_obstack_deallocate);
21209
21210 if (has_children)
21211 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21212 &info_ptr, comp_unit_die);
21213 cu->dies = comp_unit_die;
21214 /* comp_unit_die is not stored in die_hash, no need. */
21215
21216 /* We try not to read any attributes in this function, because not
21217 all CUs needed for references have been loaded yet, and symbol
21218 table processing isn't initialized. But we have to set the CU language,
21219 or we won't be able to build types correctly.
21220 Similarly, if we do not read the producer, we can not apply
21221 producer-specific interpretation. */
21222 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21223 }
21224
21225 /* Read in a signatured type and build its CU and DIEs.
21226 If the type is a stub for the real type in a DWO file,
21227 read in the real type from the DWO file as well. */
21228
21229 static void
21230 read_signatured_type (struct signatured_type *sig_type)
21231 {
21232 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21233
21234 gdb_assert (per_cu->is_debug_types);
21235 gdb_assert (per_cu->cu == NULL);
21236
21237 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21238 read_signatured_type_reader, NULL);
21239 sig_type->per_cu.tu_read = 1;
21240 }
21241
21242 /* Decode simple location descriptions.
21243 Given a pointer to a dwarf block that defines a location, compute
21244 the location and return the value.
21245
21246 NOTE drow/2003-11-18: This function is called in two situations
21247 now: for the address of static or global variables (partial symbols
21248 only) and for offsets into structures which are expected to be
21249 (more or less) constant. The partial symbol case should go away,
21250 and only the constant case should remain. That will let this
21251 function complain more accurately. A few special modes are allowed
21252 without complaint for global variables (for instance, global
21253 register values and thread-local values).
21254
21255 A location description containing no operations indicates that the
21256 object is optimized out. The return value is 0 for that case.
21257 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21258 callers will only want a very basic result and this can become a
21259 complaint.
21260
21261 Note that stack[0] is unused except as a default error return. */
21262
21263 static CORE_ADDR
21264 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21265 {
21266 struct objfile *objfile = cu->objfile;
21267 size_t i;
21268 size_t size = blk->size;
21269 const gdb_byte *data = blk->data;
21270 CORE_ADDR stack[64];
21271 int stacki;
21272 unsigned int bytes_read, unsnd;
21273 gdb_byte op;
21274
21275 i = 0;
21276 stacki = 0;
21277 stack[stacki] = 0;
21278 stack[++stacki] = 0;
21279
21280 while (i < size)
21281 {
21282 op = data[i++];
21283 switch (op)
21284 {
21285 case DW_OP_lit0:
21286 case DW_OP_lit1:
21287 case DW_OP_lit2:
21288 case DW_OP_lit3:
21289 case DW_OP_lit4:
21290 case DW_OP_lit5:
21291 case DW_OP_lit6:
21292 case DW_OP_lit7:
21293 case DW_OP_lit8:
21294 case DW_OP_lit9:
21295 case DW_OP_lit10:
21296 case DW_OP_lit11:
21297 case DW_OP_lit12:
21298 case DW_OP_lit13:
21299 case DW_OP_lit14:
21300 case DW_OP_lit15:
21301 case DW_OP_lit16:
21302 case DW_OP_lit17:
21303 case DW_OP_lit18:
21304 case DW_OP_lit19:
21305 case DW_OP_lit20:
21306 case DW_OP_lit21:
21307 case DW_OP_lit22:
21308 case DW_OP_lit23:
21309 case DW_OP_lit24:
21310 case DW_OP_lit25:
21311 case DW_OP_lit26:
21312 case DW_OP_lit27:
21313 case DW_OP_lit28:
21314 case DW_OP_lit29:
21315 case DW_OP_lit30:
21316 case DW_OP_lit31:
21317 stack[++stacki] = op - DW_OP_lit0;
21318 break;
21319
21320 case DW_OP_reg0:
21321 case DW_OP_reg1:
21322 case DW_OP_reg2:
21323 case DW_OP_reg3:
21324 case DW_OP_reg4:
21325 case DW_OP_reg5:
21326 case DW_OP_reg6:
21327 case DW_OP_reg7:
21328 case DW_OP_reg8:
21329 case DW_OP_reg9:
21330 case DW_OP_reg10:
21331 case DW_OP_reg11:
21332 case DW_OP_reg12:
21333 case DW_OP_reg13:
21334 case DW_OP_reg14:
21335 case DW_OP_reg15:
21336 case DW_OP_reg16:
21337 case DW_OP_reg17:
21338 case DW_OP_reg18:
21339 case DW_OP_reg19:
21340 case DW_OP_reg20:
21341 case DW_OP_reg21:
21342 case DW_OP_reg22:
21343 case DW_OP_reg23:
21344 case DW_OP_reg24:
21345 case DW_OP_reg25:
21346 case DW_OP_reg26:
21347 case DW_OP_reg27:
21348 case DW_OP_reg28:
21349 case DW_OP_reg29:
21350 case DW_OP_reg30:
21351 case DW_OP_reg31:
21352 stack[++stacki] = op - DW_OP_reg0;
21353 if (i < size)
21354 dwarf2_complex_location_expr_complaint ();
21355 break;
21356
21357 case DW_OP_regx:
21358 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21359 i += bytes_read;
21360 stack[++stacki] = unsnd;
21361 if (i < size)
21362 dwarf2_complex_location_expr_complaint ();
21363 break;
21364
21365 case DW_OP_addr:
21366 stack[++stacki] = read_address (objfile->obfd, &data[i],
21367 cu, &bytes_read);
21368 i += bytes_read;
21369 break;
21370
21371 case DW_OP_const1u:
21372 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21373 i += 1;
21374 break;
21375
21376 case DW_OP_const1s:
21377 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21378 i += 1;
21379 break;
21380
21381 case DW_OP_const2u:
21382 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21383 i += 2;
21384 break;
21385
21386 case DW_OP_const2s:
21387 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21388 i += 2;
21389 break;
21390
21391 case DW_OP_const4u:
21392 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21393 i += 4;
21394 break;
21395
21396 case DW_OP_const4s:
21397 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21398 i += 4;
21399 break;
21400
21401 case DW_OP_const8u:
21402 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21403 i += 8;
21404 break;
21405
21406 case DW_OP_constu:
21407 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21408 &bytes_read);
21409 i += bytes_read;
21410 break;
21411
21412 case DW_OP_consts:
21413 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21414 i += bytes_read;
21415 break;
21416
21417 case DW_OP_dup:
21418 stack[stacki + 1] = stack[stacki];
21419 stacki++;
21420 break;
21421
21422 case DW_OP_plus:
21423 stack[stacki - 1] += stack[stacki];
21424 stacki--;
21425 break;
21426
21427 case DW_OP_plus_uconst:
21428 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21429 &bytes_read);
21430 i += bytes_read;
21431 break;
21432
21433 case DW_OP_minus:
21434 stack[stacki - 1] -= stack[stacki];
21435 stacki--;
21436 break;
21437
21438 case DW_OP_deref:
21439 /* If we're not the last op, then we definitely can't encode
21440 this using GDB's address_class enum. This is valid for partial
21441 global symbols, although the variable's address will be bogus
21442 in the psymtab. */
21443 if (i < size)
21444 dwarf2_complex_location_expr_complaint ();
21445 break;
21446
21447 case DW_OP_GNU_push_tls_address:
21448 case DW_OP_form_tls_address:
21449 /* The top of the stack has the offset from the beginning
21450 of the thread control block at which the variable is located. */
21451 /* Nothing should follow this operator, so the top of stack would
21452 be returned. */
21453 /* This is valid for partial global symbols, but the variable's
21454 address will be bogus in the psymtab. Make it always at least
21455 non-zero to not look as a variable garbage collected by linker
21456 which have DW_OP_addr 0. */
21457 if (i < size)
21458 dwarf2_complex_location_expr_complaint ();
21459 stack[stacki]++;
21460 break;
21461
21462 case DW_OP_GNU_uninit:
21463 break;
21464
21465 case DW_OP_GNU_addr_index:
21466 case DW_OP_GNU_const_index:
21467 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21468 &bytes_read);
21469 i += bytes_read;
21470 break;
21471
21472 default:
21473 {
21474 const char *name = get_DW_OP_name (op);
21475
21476 if (name)
21477 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21478 name);
21479 else
21480 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21481 op);
21482 }
21483
21484 return (stack[stacki]);
21485 }
21486
21487 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21488 outside of the allocated space. Also enforce minimum>0. */
21489 if (stacki >= ARRAY_SIZE (stack) - 1)
21490 {
21491 complaint (&symfile_complaints,
21492 _("location description stack overflow"));
21493 return 0;
21494 }
21495
21496 if (stacki <= 0)
21497 {
21498 complaint (&symfile_complaints,
21499 _("location description stack underflow"));
21500 return 0;
21501 }
21502 }
21503 return (stack[stacki]);
21504 }
21505
21506 /* memory allocation interface */
21507
21508 static struct dwarf_block *
21509 dwarf_alloc_block (struct dwarf2_cu *cu)
21510 {
21511 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21512 }
21513
21514 static struct die_info *
21515 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21516 {
21517 struct die_info *die;
21518 size_t size = sizeof (struct die_info);
21519
21520 if (num_attrs > 1)
21521 size += (num_attrs - 1) * sizeof (struct attribute);
21522
21523 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21524 memset (die, 0, sizeof (struct die_info));
21525 return (die);
21526 }
21527
21528 \f
21529 /* Macro support. */
21530
21531 /* Return file name relative to the compilation directory of file number I in
21532 *LH's file name table. The result is allocated using xmalloc; the caller is
21533 responsible for freeing it. */
21534
21535 static char *
21536 file_file_name (int file, struct line_header *lh)
21537 {
21538 /* Is the file number a valid index into the line header's file name
21539 table? Remember that file numbers start with one, not zero. */
21540 if (1 <= file && file <= lh->file_names.size ())
21541 {
21542 const file_entry &fe = lh->file_names[file - 1];
21543
21544 if (!IS_ABSOLUTE_PATH (fe.name))
21545 {
21546 const char *dir = fe.include_dir (lh);
21547 if (dir != NULL)
21548 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21549 }
21550 return xstrdup (fe.name);
21551 }
21552 else
21553 {
21554 /* The compiler produced a bogus file number. We can at least
21555 record the macro definitions made in the file, even if we
21556 won't be able to find the file by name. */
21557 char fake_name[80];
21558
21559 xsnprintf (fake_name, sizeof (fake_name),
21560 "<bad macro file number %d>", file);
21561
21562 complaint (&symfile_complaints,
21563 _("bad file number in macro information (%d)"),
21564 file);
21565
21566 return xstrdup (fake_name);
21567 }
21568 }
21569
21570 /* Return the full name of file number I in *LH's file name table.
21571 Use COMP_DIR as the name of the current directory of the
21572 compilation. The result is allocated using xmalloc; the caller is
21573 responsible for freeing it. */
21574 static char *
21575 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21576 {
21577 /* Is the file number a valid index into the line header's file name
21578 table? Remember that file numbers start with one, not zero. */
21579 if (1 <= file && file <= lh->file_names.size ())
21580 {
21581 char *relative = file_file_name (file, lh);
21582
21583 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21584 return relative;
21585 return reconcat (relative, comp_dir, SLASH_STRING,
21586 relative, (char *) NULL);
21587 }
21588 else
21589 return file_file_name (file, lh);
21590 }
21591
21592
21593 static struct macro_source_file *
21594 macro_start_file (int file, int line,
21595 struct macro_source_file *current_file,
21596 struct line_header *lh)
21597 {
21598 /* File name relative to the compilation directory of this source file. */
21599 char *file_name = file_file_name (file, lh);
21600
21601 if (! current_file)
21602 {
21603 /* Note: We don't create a macro table for this compilation unit
21604 at all until we actually get a filename. */
21605 struct macro_table *macro_table = get_macro_table ();
21606
21607 /* If we have no current file, then this must be the start_file
21608 directive for the compilation unit's main source file. */
21609 current_file = macro_set_main (macro_table, file_name);
21610 macro_define_special (macro_table);
21611 }
21612 else
21613 current_file = macro_include (current_file, line, file_name);
21614
21615 xfree (file_name);
21616
21617 return current_file;
21618 }
21619
21620 static const char *
21621 consume_improper_spaces (const char *p, const char *body)
21622 {
21623 if (*p == ' ')
21624 {
21625 complaint (&symfile_complaints,
21626 _("macro definition contains spaces "
21627 "in formal argument list:\n`%s'"),
21628 body);
21629
21630 while (*p == ' ')
21631 p++;
21632 }
21633
21634 return p;
21635 }
21636
21637
21638 static void
21639 parse_macro_definition (struct macro_source_file *file, int line,
21640 const char *body)
21641 {
21642 const char *p;
21643
21644 /* The body string takes one of two forms. For object-like macro
21645 definitions, it should be:
21646
21647 <macro name> " " <definition>
21648
21649 For function-like macro definitions, it should be:
21650
21651 <macro name> "() " <definition>
21652 or
21653 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21654
21655 Spaces may appear only where explicitly indicated, and in the
21656 <definition>.
21657
21658 The Dwarf 2 spec says that an object-like macro's name is always
21659 followed by a space, but versions of GCC around March 2002 omit
21660 the space when the macro's definition is the empty string.
21661
21662 The Dwarf 2 spec says that there should be no spaces between the
21663 formal arguments in a function-like macro's formal argument list,
21664 but versions of GCC around March 2002 include spaces after the
21665 commas. */
21666
21667
21668 /* Find the extent of the macro name. The macro name is terminated
21669 by either a space or null character (for an object-like macro) or
21670 an opening paren (for a function-like macro). */
21671 for (p = body; *p; p++)
21672 if (*p == ' ' || *p == '(')
21673 break;
21674
21675 if (*p == ' ' || *p == '\0')
21676 {
21677 /* It's an object-like macro. */
21678 int name_len = p - body;
21679 char *name = savestring (body, name_len);
21680 const char *replacement;
21681
21682 if (*p == ' ')
21683 replacement = body + name_len + 1;
21684 else
21685 {
21686 dwarf2_macro_malformed_definition_complaint (body);
21687 replacement = body + name_len;
21688 }
21689
21690 macro_define_object (file, line, name, replacement);
21691
21692 xfree (name);
21693 }
21694 else if (*p == '(')
21695 {
21696 /* It's a function-like macro. */
21697 char *name = savestring (body, p - body);
21698 int argc = 0;
21699 int argv_size = 1;
21700 char **argv = XNEWVEC (char *, argv_size);
21701
21702 p++;
21703
21704 p = consume_improper_spaces (p, body);
21705
21706 /* Parse the formal argument list. */
21707 while (*p && *p != ')')
21708 {
21709 /* Find the extent of the current argument name. */
21710 const char *arg_start = p;
21711
21712 while (*p && *p != ',' && *p != ')' && *p != ' ')
21713 p++;
21714
21715 if (! *p || p == arg_start)
21716 dwarf2_macro_malformed_definition_complaint (body);
21717 else
21718 {
21719 /* Make sure argv has room for the new argument. */
21720 if (argc >= argv_size)
21721 {
21722 argv_size *= 2;
21723 argv = XRESIZEVEC (char *, argv, argv_size);
21724 }
21725
21726 argv[argc++] = savestring (arg_start, p - arg_start);
21727 }
21728
21729 p = consume_improper_spaces (p, body);
21730
21731 /* Consume the comma, if present. */
21732 if (*p == ',')
21733 {
21734 p++;
21735
21736 p = consume_improper_spaces (p, body);
21737 }
21738 }
21739
21740 if (*p == ')')
21741 {
21742 p++;
21743
21744 if (*p == ' ')
21745 /* Perfectly formed definition, no complaints. */
21746 macro_define_function (file, line, name,
21747 argc, (const char **) argv,
21748 p + 1);
21749 else if (*p == '\0')
21750 {
21751 /* Complain, but do define it. */
21752 dwarf2_macro_malformed_definition_complaint (body);
21753 macro_define_function (file, line, name,
21754 argc, (const char **) argv,
21755 p);
21756 }
21757 else
21758 /* Just complain. */
21759 dwarf2_macro_malformed_definition_complaint (body);
21760 }
21761 else
21762 /* Just complain. */
21763 dwarf2_macro_malformed_definition_complaint (body);
21764
21765 xfree (name);
21766 {
21767 int i;
21768
21769 for (i = 0; i < argc; i++)
21770 xfree (argv[i]);
21771 }
21772 xfree (argv);
21773 }
21774 else
21775 dwarf2_macro_malformed_definition_complaint (body);
21776 }
21777
21778 /* Skip some bytes from BYTES according to the form given in FORM.
21779 Returns the new pointer. */
21780
21781 static const gdb_byte *
21782 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21783 enum dwarf_form form,
21784 unsigned int offset_size,
21785 struct dwarf2_section_info *section)
21786 {
21787 unsigned int bytes_read;
21788
21789 switch (form)
21790 {
21791 case DW_FORM_data1:
21792 case DW_FORM_flag:
21793 ++bytes;
21794 break;
21795
21796 case DW_FORM_data2:
21797 bytes += 2;
21798 break;
21799
21800 case DW_FORM_data4:
21801 bytes += 4;
21802 break;
21803
21804 case DW_FORM_data8:
21805 bytes += 8;
21806 break;
21807
21808 case DW_FORM_data16:
21809 bytes += 16;
21810 break;
21811
21812 case DW_FORM_string:
21813 read_direct_string (abfd, bytes, &bytes_read);
21814 bytes += bytes_read;
21815 break;
21816
21817 case DW_FORM_sec_offset:
21818 case DW_FORM_strp:
21819 case DW_FORM_GNU_strp_alt:
21820 bytes += offset_size;
21821 break;
21822
21823 case DW_FORM_block:
21824 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21825 bytes += bytes_read;
21826 break;
21827
21828 case DW_FORM_block1:
21829 bytes += 1 + read_1_byte (abfd, bytes);
21830 break;
21831 case DW_FORM_block2:
21832 bytes += 2 + read_2_bytes (abfd, bytes);
21833 break;
21834 case DW_FORM_block4:
21835 bytes += 4 + read_4_bytes (abfd, bytes);
21836 break;
21837
21838 case DW_FORM_sdata:
21839 case DW_FORM_udata:
21840 case DW_FORM_GNU_addr_index:
21841 case DW_FORM_GNU_str_index:
21842 bytes = gdb_skip_leb128 (bytes, buffer_end);
21843 if (bytes == NULL)
21844 {
21845 dwarf2_section_buffer_overflow_complaint (section);
21846 return NULL;
21847 }
21848 break;
21849
21850 case DW_FORM_implicit_const:
21851 break;
21852
21853 default:
21854 {
21855 complain:
21856 complaint (&symfile_complaints,
21857 _("invalid form 0x%x in `%s'"),
21858 form, get_section_name (section));
21859 return NULL;
21860 }
21861 }
21862
21863 return bytes;
21864 }
21865
21866 /* A helper for dwarf_decode_macros that handles skipping an unknown
21867 opcode. Returns an updated pointer to the macro data buffer; or,
21868 on error, issues a complaint and returns NULL. */
21869
21870 static const gdb_byte *
21871 skip_unknown_opcode (unsigned int opcode,
21872 const gdb_byte **opcode_definitions,
21873 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21874 bfd *abfd,
21875 unsigned int offset_size,
21876 struct dwarf2_section_info *section)
21877 {
21878 unsigned int bytes_read, i;
21879 unsigned long arg;
21880 const gdb_byte *defn;
21881
21882 if (opcode_definitions[opcode] == NULL)
21883 {
21884 complaint (&symfile_complaints,
21885 _("unrecognized DW_MACFINO opcode 0x%x"),
21886 opcode);
21887 return NULL;
21888 }
21889
21890 defn = opcode_definitions[opcode];
21891 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21892 defn += bytes_read;
21893
21894 for (i = 0; i < arg; ++i)
21895 {
21896 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21897 (enum dwarf_form) defn[i], offset_size,
21898 section);
21899 if (mac_ptr == NULL)
21900 {
21901 /* skip_form_bytes already issued the complaint. */
21902 return NULL;
21903 }
21904 }
21905
21906 return mac_ptr;
21907 }
21908
21909 /* A helper function which parses the header of a macro section.
21910 If the macro section is the extended (for now called "GNU") type,
21911 then this updates *OFFSET_SIZE. Returns a pointer to just after
21912 the header, or issues a complaint and returns NULL on error. */
21913
21914 static const gdb_byte *
21915 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21916 bfd *abfd,
21917 const gdb_byte *mac_ptr,
21918 unsigned int *offset_size,
21919 int section_is_gnu)
21920 {
21921 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21922
21923 if (section_is_gnu)
21924 {
21925 unsigned int version, flags;
21926
21927 version = read_2_bytes (abfd, mac_ptr);
21928 if (version != 4 && version != 5)
21929 {
21930 complaint (&symfile_complaints,
21931 _("unrecognized version `%d' in .debug_macro section"),
21932 version);
21933 return NULL;
21934 }
21935 mac_ptr += 2;
21936
21937 flags = read_1_byte (abfd, mac_ptr);
21938 ++mac_ptr;
21939 *offset_size = (flags & 1) ? 8 : 4;
21940
21941 if ((flags & 2) != 0)
21942 /* We don't need the line table offset. */
21943 mac_ptr += *offset_size;
21944
21945 /* Vendor opcode descriptions. */
21946 if ((flags & 4) != 0)
21947 {
21948 unsigned int i, count;
21949
21950 count = read_1_byte (abfd, mac_ptr);
21951 ++mac_ptr;
21952 for (i = 0; i < count; ++i)
21953 {
21954 unsigned int opcode, bytes_read;
21955 unsigned long arg;
21956
21957 opcode = read_1_byte (abfd, mac_ptr);
21958 ++mac_ptr;
21959 opcode_definitions[opcode] = mac_ptr;
21960 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21961 mac_ptr += bytes_read;
21962 mac_ptr += arg;
21963 }
21964 }
21965 }
21966
21967 return mac_ptr;
21968 }
21969
21970 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21971 including DW_MACRO_import. */
21972
21973 static void
21974 dwarf_decode_macro_bytes (bfd *abfd,
21975 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21976 struct macro_source_file *current_file,
21977 struct line_header *lh,
21978 struct dwarf2_section_info *section,
21979 int section_is_gnu, int section_is_dwz,
21980 unsigned int offset_size,
21981 htab_t include_hash)
21982 {
21983 struct objfile *objfile = dwarf2_per_objfile->objfile;
21984 enum dwarf_macro_record_type macinfo_type;
21985 int at_commandline;
21986 const gdb_byte *opcode_definitions[256];
21987
21988 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21989 &offset_size, section_is_gnu);
21990 if (mac_ptr == NULL)
21991 {
21992 /* We already issued a complaint. */
21993 return;
21994 }
21995
21996 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21997 GDB is still reading the definitions from command line. First
21998 DW_MACINFO_start_file will need to be ignored as it was already executed
21999 to create CURRENT_FILE for the main source holding also the command line
22000 definitions. On first met DW_MACINFO_start_file this flag is reset to
22001 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22002
22003 at_commandline = 1;
22004
22005 do
22006 {
22007 /* Do we at least have room for a macinfo type byte? */
22008 if (mac_ptr >= mac_end)
22009 {
22010 dwarf2_section_buffer_overflow_complaint (section);
22011 break;
22012 }
22013
22014 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22015 mac_ptr++;
22016
22017 /* Note that we rely on the fact that the corresponding GNU and
22018 DWARF constants are the same. */
22019 switch (macinfo_type)
22020 {
22021 /* A zero macinfo type indicates the end of the macro
22022 information. */
22023 case 0:
22024 break;
22025
22026 case DW_MACRO_define:
22027 case DW_MACRO_undef:
22028 case DW_MACRO_define_strp:
22029 case DW_MACRO_undef_strp:
22030 case DW_MACRO_define_sup:
22031 case DW_MACRO_undef_sup:
22032 {
22033 unsigned int bytes_read;
22034 int line;
22035 const char *body;
22036 int is_define;
22037
22038 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22039 mac_ptr += bytes_read;
22040
22041 if (macinfo_type == DW_MACRO_define
22042 || macinfo_type == DW_MACRO_undef)
22043 {
22044 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22045 mac_ptr += bytes_read;
22046 }
22047 else
22048 {
22049 LONGEST str_offset;
22050
22051 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22052 mac_ptr += offset_size;
22053
22054 if (macinfo_type == DW_MACRO_define_sup
22055 || macinfo_type == DW_MACRO_undef_sup
22056 || section_is_dwz)
22057 {
22058 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22059
22060 body = read_indirect_string_from_dwz (dwz, str_offset);
22061 }
22062 else
22063 body = read_indirect_string_at_offset (abfd, str_offset);
22064 }
22065
22066 is_define = (macinfo_type == DW_MACRO_define
22067 || macinfo_type == DW_MACRO_define_strp
22068 || macinfo_type == DW_MACRO_define_sup);
22069 if (! current_file)
22070 {
22071 /* DWARF violation as no main source is present. */
22072 complaint (&symfile_complaints,
22073 _("debug info with no main source gives macro %s "
22074 "on line %d: %s"),
22075 is_define ? _("definition") : _("undefinition"),
22076 line, body);
22077 break;
22078 }
22079 if ((line == 0 && !at_commandline)
22080 || (line != 0 && at_commandline))
22081 complaint (&symfile_complaints,
22082 _("debug info gives %s macro %s with %s line %d: %s"),
22083 at_commandline ? _("command-line") : _("in-file"),
22084 is_define ? _("definition") : _("undefinition"),
22085 line == 0 ? _("zero") : _("non-zero"), line, body);
22086
22087 if (is_define)
22088 parse_macro_definition (current_file, line, body);
22089 else
22090 {
22091 gdb_assert (macinfo_type == DW_MACRO_undef
22092 || macinfo_type == DW_MACRO_undef_strp
22093 || macinfo_type == DW_MACRO_undef_sup);
22094 macro_undef (current_file, line, body);
22095 }
22096 }
22097 break;
22098
22099 case DW_MACRO_start_file:
22100 {
22101 unsigned int bytes_read;
22102 int line, file;
22103
22104 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22105 mac_ptr += bytes_read;
22106 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22107 mac_ptr += bytes_read;
22108
22109 if ((line == 0 && !at_commandline)
22110 || (line != 0 && at_commandline))
22111 complaint (&symfile_complaints,
22112 _("debug info gives source %d included "
22113 "from %s at %s line %d"),
22114 file, at_commandline ? _("command-line") : _("file"),
22115 line == 0 ? _("zero") : _("non-zero"), line);
22116
22117 if (at_commandline)
22118 {
22119 /* This DW_MACRO_start_file was executed in the
22120 pass one. */
22121 at_commandline = 0;
22122 }
22123 else
22124 current_file = macro_start_file (file, line, current_file, lh);
22125 }
22126 break;
22127
22128 case DW_MACRO_end_file:
22129 if (! current_file)
22130 complaint (&symfile_complaints,
22131 _("macro debug info has an unmatched "
22132 "`close_file' directive"));
22133 else
22134 {
22135 current_file = current_file->included_by;
22136 if (! current_file)
22137 {
22138 enum dwarf_macro_record_type next_type;
22139
22140 /* GCC circa March 2002 doesn't produce the zero
22141 type byte marking the end of the compilation
22142 unit. Complain if it's not there, but exit no
22143 matter what. */
22144
22145 /* Do we at least have room for a macinfo type byte? */
22146 if (mac_ptr >= mac_end)
22147 {
22148 dwarf2_section_buffer_overflow_complaint (section);
22149 return;
22150 }
22151
22152 /* We don't increment mac_ptr here, so this is just
22153 a look-ahead. */
22154 next_type
22155 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22156 mac_ptr);
22157 if (next_type != 0)
22158 complaint (&symfile_complaints,
22159 _("no terminating 0-type entry for "
22160 "macros in `.debug_macinfo' section"));
22161
22162 return;
22163 }
22164 }
22165 break;
22166
22167 case DW_MACRO_import:
22168 case DW_MACRO_import_sup:
22169 {
22170 LONGEST offset;
22171 void **slot;
22172 bfd *include_bfd = abfd;
22173 struct dwarf2_section_info *include_section = section;
22174 const gdb_byte *include_mac_end = mac_end;
22175 int is_dwz = section_is_dwz;
22176 const gdb_byte *new_mac_ptr;
22177
22178 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22179 mac_ptr += offset_size;
22180
22181 if (macinfo_type == DW_MACRO_import_sup)
22182 {
22183 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22184
22185 dwarf2_read_section (objfile, &dwz->macro);
22186
22187 include_section = &dwz->macro;
22188 include_bfd = get_section_bfd_owner (include_section);
22189 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22190 is_dwz = 1;
22191 }
22192
22193 new_mac_ptr = include_section->buffer + offset;
22194 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22195
22196 if (*slot != NULL)
22197 {
22198 /* This has actually happened; see
22199 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22200 complaint (&symfile_complaints,
22201 _("recursive DW_MACRO_import in "
22202 ".debug_macro section"));
22203 }
22204 else
22205 {
22206 *slot = (void *) new_mac_ptr;
22207
22208 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22209 include_mac_end, current_file, lh,
22210 section, section_is_gnu, is_dwz,
22211 offset_size, include_hash);
22212
22213 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22214 }
22215 }
22216 break;
22217
22218 case DW_MACINFO_vendor_ext:
22219 if (!section_is_gnu)
22220 {
22221 unsigned int bytes_read;
22222
22223 /* This reads the constant, but since we don't recognize
22224 any vendor extensions, we ignore it. */
22225 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22226 mac_ptr += bytes_read;
22227 read_direct_string (abfd, mac_ptr, &bytes_read);
22228 mac_ptr += bytes_read;
22229
22230 /* We don't recognize any vendor extensions. */
22231 break;
22232 }
22233 /* FALLTHROUGH */
22234
22235 default:
22236 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22237 mac_ptr, mac_end, abfd, offset_size,
22238 section);
22239 if (mac_ptr == NULL)
22240 return;
22241 break;
22242 }
22243 } while (macinfo_type != 0);
22244 }
22245
22246 static void
22247 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22248 int section_is_gnu)
22249 {
22250 struct objfile *objfile = dwarf2_per_objfile->objfile;
22251 struct line_header *lh = cu->line_header;
22252 bfd *abfd;
22253 const gdb_byte *mac_ptr, *mac_end;
22254 struct macro_source_file *current_file = 0;
22255 enum dwarf_macro_record_type macinfo_type;
22256 unsigned int offset_size = cu->header.offset_size;
22257 const gdb_byte *opcode_definitions[256];
22258 void **slot;
22259 struct dwarf2_section_info *section;
22260 const char *section_name;
22261
22262 if (cu->dwo_unit != NULL)
22263 {
22264 if (section_is_gnu)
22265 {
22266 section = &cu->dwo_unit->dwo_file->sections.macro;
22267 section_name = ".debug_macro.dwo";
22268 }
22269 else
22270 {
22271 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22272 section_name = ".debug_macinfo.dwo";
22273 }
22274 }
22275 else
22276 {
22277 if (section_is_gnu)
22278 {
22279 section = &dwarf2_per_objfile->macro;
22280 section_name = ".debug_macro";
22281 }
22282 else
22283 {
22284 section = &dwarf2_per_objfile->macinfo;
22285 section_name = ".debug_macinfo";
22286 }
22287 }
22288
22289 dwarf2_read_section (objfile, section);
22290 if (section->buffer == NULL)
22291 {
22292 complaint (&symfile_complaints, _("missing %s section"), section_name);
22293 return;
22294 }
22295 abfd = get_section_bfd_owner (section);
22296
22297 /* First pass: Find the name of the base filename.
22298 This filename is needed in order to process all macros whose definition
22299 (or undefinition) comes from the command line. These macros are defined
22300 before the first DW_MACINFO_start_file entry, and yet still need to be
22301 associated to the base file.
22302
22303 To determine the base file name, we scan the macro definitions until we
22304 reach the first DW_MACINFO_start_file entry. We then initialize
22305 CURRENT_FILE accordingly so that any macro definition found before the
22306 first DW_MACINFO_start_file can still be associated to the base file. */
22307
22308 mac_ptr = section->buffer + offset;
22309 mac_end = section->buffer + section->size;
22310
22311 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22312 &offset_size, section_is_gnu);
22313 if (mac_ptr == NULL)
22314 {
22315 /* We already issued a complaint. */
22316 return;
22317 }
22318
22319 do
22320 {
22321 /* Do we at least have room for a macinfo type byte? */
22322 if (mac_ptr >= mac_end)
22323 {
22324 /* Complaint is printed during the second pass as GDB will probably
22325 stop the first pass earlier upon finding
22326 DW_MACINFO_start_file. */
22327 break;
22328 }
22329
22330 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22331 mac_ptr++;
22332
22333 /* Note that we rely on the fact that the corresponding GNU and
22334 DWARF constants are the same. */
22335 switch (macinfo_type)
22336 {
22337 /* A zero macinfo type indicates the end of the macro
22338 information. */
22339 case 0:
22340 break;
22341
22342 case DW_MACRO_define:
22343 case DW_MACRO_undef:
22344 /* Only skip the data by MAC_PTR. */
22345 {
22346 unsigned int bytes_read;
22347
22348 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22349 mac_ptr += bytes_read;
22350 read_direct_string (abfd, mac_ptr, &bytes_read);
22351 mac_ptr += bytes_read;
22352 }
22353 break;
22354
22355 case DW_MACRO_start_file:
22356 {
22357 unsigned int bytes_read;
22358 int line, file;
22359
22360 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22361 mac_ptr += bytes_read;
22362 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22363 mac_ptr += bytes_read;
22364
22365 current_file = macro_start_file (file, line, current_file, lh);
22366 }
22367 break;
22368
22369 case DW_MACRO_end_file:
22370 /* No data to skip by MAC_PTR. */
22371 break;
22372
22373 case DW_MACRO_define_strp:
22374 case DW_MACRO_undef_strp:
22375 case DW_MACRO_define_sup:
22376 case DW_MACRO_undef_sup:
22377 {
22378 unsigned int bytes_read;
22379
22380 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22381 mac_ptr += bytes_read;
22382 mac_ptr += offset_size;
22383 }
22384 break;
22385
22386 case DW_MACRO_import:
22387 case DW_MACRO_import_sup:
22388 /* Note that, according to the spec, a transparent include
22389 chain cannot call DW_MACRO_start_file. So, we can just
22390 skip this opcode. */
22391 mac_ptr += offset_size;
22392 break;
22393
22394 case DW_MACINFO_vendor_ext:
22395 /* Only skip the data by MAC_PTR. */
22396 if (!section_is_gnu)
22397 {
22398 unsigned int bytes_read;
22399
22400 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22401 mac_ptr += bytes_read;
22402 read_direct_string (abfd, mac_ptr, &bytes_read);
22403 mac_ptr += bytes_read;
22404 }
22405 /* FALLTHROUGH */
22406
22407 default:
22408 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22409 mac_ptr, mac_end, abfd, offset_size,
22410 section);
22411 if (mac_ptr == NULL)
22412 return;
22413 break;
22414 }
22415 } while (macinfo_type != 0 && current_file == NULL);
22416
22417 /* Second pass: Process all entries.
22418
22419 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22420 command-line macro definitions/undefinitions. This flag is unset when we
22421 reach the first DW_MACINFO_start_file entry. */
22422
22423 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22424 htab_eq_pointer,
22425 NULL, xcalloc, xfree));
22426 mac_ptr = section->buffer + offset;
22427 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22428 *slot = (void *) mac_ptr;
22429 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22430 current_file, lh, section,
22431 section_is_gnu, 0, offset_size,
22432 include_hash.get ());
22433 }
22434
22435 /* Check if the attribute's form is a DW_FORM_block*
22436 if so return true else false. */
22437
22438 static int
22439 attr_form_is_block (const struct attribute *attr)
22440 {
22441 return (attr == NULL ? 0 :
22442 attr->form == DW_FORM_block1
22443 || attr->form == DW_FORM_block2
22444 || attr->form == DW_FORM_block4
22445 || attr->form == DW_FORM_block
22446 || attr->form == DW_FORM_exprloc);
22447 }
22448
22449 /* Return non-zero if ATTR's value is a section offset --- classes
22450 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22451 You may use DW_UNSND (attr) to retrieve such offsets.
22452
22453 Section 7.5.4, "Attribute Encodings", explains that no attribute
22454 may have a value that belongs to more than one of these classes; it
22455 would be ambiguous if we did, because we use the same forms for all
22456 of them. */
22457
22458 static int
22459 attr_form_is_section_offset (const struct attribute *attr)
22460 {
22461 return (attr->form == DW_FORM_data4
22462 || attr->form == DW_FORM_data8
22463 || attr->form == DW_FORM_sec_offset);
22464 }
22465
22466 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22467 zero otherwise. When this function returns true, you can apply
22468 dwarf2_get_attr_constant_value to it.
22469
22470 However, note that for some attributes you must check
22471 attr_form_is_section_offset before using this test. DW_FORM_data4
22472 and DW_FORM_data8 are members of both the constant class, and of
22473 the classes that contain offsets into other debug sections
22474 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22475 that, if an attribute's can be either a constant or one of the
22476 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22477 taken as section offsets, not constants.
22478
22479 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22480 cannot handle that. */
22481
22482 static int
22483 attr_form_is_constant (const struct attribute *attr)
22484 {
22485 switch (attr->form)
22486 {
22487 case DW_FORM_sdata:
22488 case DW_FORM_udata:
22489 case DW_FORM_data1:
22490 case DW_FORM_data2:
22491 case DW_FORM_data4:
22492 case DW_FORM_data8:
22493 case DW_FORM_implicit_const:
22494 return 1;
22495 default:
22496 return 0;
22497 }
22498 }
22499
22500
22501 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22502 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22503
22504 static int
22505 attr_form_is_ref (const struct attribute *attr)
22506 {
22507 switch (attr->form)
22508 {
22509 case DW_FORM_ref_addr:
22510 case DW_FORM_ref1:
22511 case DW_FORM_ref2:
22512 case DW_FORM_ref4:
22513 case DW_FORM_ref8:
22514 case DW_FORM_ref_udata:
22515 case DW_FORM_GNU_ref_alt:
22516 return 1;
22517 default:
22518 return 0;
22519 }
22520 }
22521
22522 /* Return the .debug_loc section to use for CU.
22523 For DWO files use .debug_loc.dwo. */
22524
22525 static struct dwarf2_section_info *
22526 cu_debug_loc_section (struct dwarf2_cu *cu)
22527 {
22528 if (cu->dwo_unit)
22529 {
22530 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22531
22532 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22533 }
22534 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22535 : &dwarf2_per_objfile->loc);
22536 }
22537
22538 /* A helper function that fills in a dwarf2_loclist_baton. */
22539
22540 static void
22541 fill_in_loclist_baton (struct dwarf2_cu *cu,
22542 struct dwarf2_loclist_baton *baton,
22543 const struct attribute *attr)
22544 {
22545 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22546
22547 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22548
22549 baton->per_cu = cu->per_cu;
22550 gdb_assert (baton->per_cu);
22551 /* We don't know how long the location list is, but make sure we
22552 don't run off the edge of the section. */
22553 baton->size = section->size - DW_UNSND (attr);
22554 baton->data = section->buffer + DW_UNSND (attr);
22555 baton->base_address = cu->base_address;
22556 baton->from_dwo = cu->dwo_unit != NULL;
22557 }
22558
22559 static void
22560 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22561 struct dwarf2_cu *cu, int is_block)
22562 {
22563 struct objfile *objfile = dwarf2_per_objfile->objfile;
22564 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22565
22566 if (attr_form_is_section_offset (attr)
22567 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22568 the section. If so, fall through to the complaint in the
22569 other branch. */
22570 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22571 {
22572 struct dwarf2_loclist_baton *baton;
22573
22574 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22575
22576 fill_in_loclist_baton (cu, baton, attr);
22577
22578 if (cu->base_known == 0)
22579 complaint (&symfile_complaints,
22580 _("Location list used without "
22581 "specifying the CU base address."));
22582
22583 SYMBOL_ACLASS_INDEX (sym) = (is_block
22584 ? dwarf2_loclist_block_index
22585 : dwarf2_loclist_index);
22586 SYMBOL_LOCATION_BATON (sym) = baton;
22587 }
22588 else
22589 {
22590 struct dwarf2_locexpr_baton *baton;
22591
22592 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22593 baton->per_cu = cu->per_cu;
22594 gdb_assert (baton->per_cu);
22595
22596 if (attr_form_is_block (attr))
22597 {
22598 /* Note that we're just copying the block's data pointer
22599 here, not the actual data. We're still pointing into the
22600 info_buffer for SYM's objfile; right now we never release
22601 that buffer, but when we do clean up properly this may
22602 need to change. */
22603 baton->size = DW_BLOCK (attr)->size;
22604 baton->data = DW_BLOCK (attr)->data;
22605 }
22606 else
22607 {
22608 dwarf2_invalid_attrib_class_complaint ("location description",
22609 SYMBOL_NATURAL_NAME (sym));
22610 baton->size = 0;
22611 }
22612
22613 SYMBOL_ACLASS_INDEX (sym) = (is_block
22614 ? dwarf2_locexpr_block_index
22615 : dwarf2_locexpr_index);
22616 SYMBOL_LOCATION_BATON (sym) = baton;
22617 }
22618 }
22619
22620 /* Return the OBJFILE associated with the compilation unit CU. If CU
22621 came from a separate debuginfo file, then the master objfile is
22622 returned. */
22623
22624 struct objfile *
22625 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22626 {
22627 struct objfile *objfile = per_cu->objfile;
22628
22629 /* Return the master objfile, so that we can report and look up the
22630 correct file containing this variable. */
22631 if (objfile->separate_debug_objfile_backlink)
22632 objfile = objfile->separate_debug_objfile_backlink;
22633
22634 return objfile;
22635 }
22636
22637 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22638 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22639 CU_HEADERP first. */
22640
22641 static const struct comp_unit_head *
22642 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22643 struct dwarf2_per_cu_data *per_cu)
22644 {
22645 const gdb_byte *info_ptr;
22646
22647 if (per_cu->cu)
22648 return &per_cu->cu->header;
22649
22650 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22651
22652 memset (cu_headerp, 0, sizeof (*cu_headerp));
22653 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22654 rcuh_kind::COMPILE);
22655
22656 return cu_headerp;
22657 }
22658
22659 /* Return the address size given in the compilation unit header for CU. */
22660
22661 int
22662 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22663 {
22664 struct comp_unit_head cu_header_local;
22665 const struct comp_unit_head *cu_headerp;
22666
22667 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22668
22669 return cu_headerp->addr_size;
22670 }
22671
22672 /* Return the offset size given in the compilation unit header for CU. */
22673
22674 int
22675 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22676 {
22677 struct comp_unit_head cu_header_local;
22678 const struct comp_unit_head *cu_headerp;
22679
22680 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22681
22682 return cu_headerp->offset_size;
22683 }
22684
22685 /* See its dwarf2loc.h declaration. */
22686
22687 int
22688 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22689 {
22690 struct comp_unit_head cu_header_local;
22691 const struct comp_unit_head *cu_headerp;
22692
22693 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22694
22695 if (cu_headerp->version == 2)
22696 return cu_headerp->addr_size;
22697 else
22698 return cu_headerp->offset_size;
22699 }
22700
22701 /* Return the text offset of the CU. The returned offset comes from
22702 this CU's objfile. If this objfile came from a separate debuginfo
22703 file, then the offset may be different from the corresponding
22704 offset in the parent objfile. */
22705
22706 CORE_ADDR
22707 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22708 {
22709 struct objfile *objfile = per_cu->objfile;
22710
22711 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22712 }
22713
22714 /* Return DWARF version number of PER_CU. */
22715
22716 short
22717 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22718 {
22719 return per_cu->dwarf_version;
22720 }
22721
22722 /* Locate the .debug_info compilation unit from CU's objfile which contains
22723 the DIE at OFFSET. Raises an error on failure. */
22724
22725 static struct dwarf2_per_cu_data *
22726 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22727 unsigned int offset_in_dwz,
22728 struct objfile *objfile)
22729 {
22730 struct dwarf2_per_cu_data *this_cu;
22731 int low, high;
22732 const sect_offset *cu_off;
22733
22734 low = 0;
22735 high = dwarf2_per_objfile->n_comp_units - 1;
22736 while (high > low)
22737 {
22738 struct dwarf2_per_cu_data *mid_cu;
22739 int mid = low + (high - low) / 2;
22740
22741 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22742 cu_off = &mid_cu->sect_off;
22743 if (mid_cu->is_dwz > offset_in_dwz
22744 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22745 high = mid;
22746 else
22747 low = mid + 1;
22748 }
22749 gdb_assert (low == high);
22750 this_cu = dwarf2_per_objfile->all_comp_units[low];
22751 cu_off = &this_cu->sect_off;
22752 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22753 {
22754 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22755 error (_("Dwarf Error: could not find partial DIE containing "
22756 "offset 0x%x [in module %s]"),
22757 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22758
22759 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22760 <= sect_off);
22761 return dwarf2_per_objfile->all_comp_units[low-1];
22762 }
22763 else
22764 {
22765 this_cu = dwarf2_per_objfile->all_comp_units[low];
22766 if (low == dwarf2_per_objfile->n_comp_units - 1
22767 && sect_off >= this_cu->sect_off + this_cu->length)
22768 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22769 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22770 return this_cu;
22771 }
22772 }
22773
22774 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22775
22776 static void
22777 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22778 {
22779 memset (cu, 0, sizeof (*cu));
22780 per_cu->cu = cu;
22781 cu->per_cu = per_cu;
22782 cu->objfile = per_cu->objfile;
22783 obstack_init (&cu->comp_unit_obstack);
22784 }
22785
22786 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22787
22788 static void
22789 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22790 enum language pretend_language)
22791 {
22792 struct attribute *attr;
22793
22794 /* Set the language we're debugging. */
22795 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22796 if (attr)
22797 set_cu_language (DW_UNSND (attr), cu);
22798 else
22799 {
22800 cu->language = pretend_language;
22801 cu->language_defn = language_def (cu->language);
22802 }
22803
22804 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22805 }
22806
22807 /* Release one cached compilation unit, CU. We unlink it from the tree
22808 of compilation units, but we don't remove it from the read_in_chain;
22809 the caller is responsible for that.
22810 NOTE: DATA is a void * because this function is also used as a
22811 cleanup routine. */
22812
22813 static void
22814 free_heap_comp_unit (void *data)
22815 {
22816 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22817
22818 gdb_assert (cu->per_cu != NULL);
22819 cu->per_cu->cu = NULL;
22820 cu->per_cu = NULL;
22821
22822 obstack_free (&cu->comp_unit_obstack, NULL);
22823
22824 xfree (cu);
22825 }
22826
22827 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22828 when we're finished with it. We can't free the pointer itself, but be
22829 sure to unlink it from the cache. Also release any associated storage. */
22830
22831 static void
22832 free_stack_comp_unit (void *data)
22833 {
22834 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22835
22836 gdb_assert (cu->per_cu != NULL);
22837 cu->per_cu->cu = NULL;
22838 cu->per_cu = NULL;
22839
22840 obstack_free (&cu->comp_unit_obstack, NULL);
22841 cu->partial_dies = NULL;
22842 }
22843
22844 /* Free all cached compilation units. */
22845
22846 static void
22847 free_cached_comp_units (void *data)
22848 {
22849 dwarf2_per_objfile->free_cached_comp_units ();
22850 }
22851
22852 /* Increase the age counter on each cached compilation unit, and free
22853 any that are too old. */
22854
22855 static void
22856 age_cached_comp_units (void)
22857 {
22858 struct dwarf2_per_cu_data *per_cu, **last_chain;
22859
22860 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22861 per_cu = dwarf2_per_objfile->read_in_chain;
22862 while (per_cu != NULL)
22863 {
22864 per_cu->cu->last_used ++;
22865 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22866 dwarf2_mark (per_cu->cu);
22867 per_cu = per_cu->cu->read_in_chain;
22868 }
22869
22870 per_cu = dwarf2_per_objfile->read_in_chain;
22871 last_chain = &dwarf2_per_objfile->read_in_chain;
22872 while (per_cu != NULL)
22873 {
22874 struct dwarf2_per_cu_data *next_cu;
22875
22876 next_cu = per_cu->cu->read_in_chain;
22877
22878 if (!per_cu->cu->mark)
22879 {
22880 free_heap_comp_unit (per_cu->cu);
22881 *last_chain = next_cu;
22882 }
22883 else
22884 last_chain = &per_cu->cu->read_in_chain;
22885
22886 per_cu = next_cu;
22887 }
22888 }
22889
22890 /* Remove a single compilation unit from the cache. */
22891
22892 static void
22893 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22894 {
22895 struct dwarf2_per_cu_data *per_cu, **last_chain;
22896
22897 per_cu = dwarf2_per_objfile->read_in_chain;
22898 last_chain = &dwarf2_per_objfile->read_in_chain;
22899 while (per_cu != NULL)
22900 {
22901 struct dwarf2_per_cu_data *next_cu;
22902
22903 next_cu = per_cu->cu->read_in_chain;
22904
22905 if (per_cu == target_per_cu)
22906 {
22907 free_heap_comp_unit (per_cu->cu);
22908 per_cu->cu = NULL;
22909 *last_chain = next_cu;
22910 break;
22911 }
22912 else
22913 last_chain = &per_cu->cu->read_in_chain;
22914
22915 per_cu = next_cu;
22916 }
22917 }
22918
22919 /* Release all extra memory associated with OBJFILE. */
22920
22921 void
22922 dwarf2_free_objfile (struct objfile *objfile)
22923 {
22924 dwarf2_per_objfile
22925 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22926 dwarf2_objfile_data_key);
22927
22928 if (dwarf2_per_objfile == NULL)
22929 return;
22930
22931 dwarf2_per_objfile->~dwarf2_per_objfile ();
22932 }
22933
22934 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22935 We store these in a hash table separate from the DIEs, and preserve them
22936 when the DIEs are flushed out of cache.
22937
22938 The CU "per_cu" pointer is needed because offset alone is not enough to
22939 uniquely identify the type. A file may have multiple .debug_types sections,
22940 or the type may come from a DWO file. Furthermore, while it's more logical
22941 to use per_cu->section+offset, with Fission the section with the data is in
22942 the DWO file but we don't know that section at the point we need it.
22943 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22944 because we can enter the lookup routine, get_die_type_at_offset, from
22945 outside this file, and thus won't necessarily have PER_CU->cu.
22946 Fortunately, PER_CU is stable for the life of the objfile. */
22947
22948 struct dwarf2_per_cu_offset_and_type
22949 {
22950 const struct dwarf2_per_cu_data *per_cu;
22951 sect_offset sect_off;
22952 struct type *type;
22953 };
22954
22955 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22956
22957 static hashval_t
22958 per_cu_offset_and_type_hash (const void *item)
22959 {
22960 const struct dwarf2_per_cu_offset_and_type *ofs
22961 = (const struct dwarf2_per_cu_offset_and_type *) item;
22962
22963 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22964 }
22965
22966 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22967
22968 static int
22969 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22970 {
22971 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22972 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22973 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22974 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22975
22976 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22977 && ofs_lhs->sect_off == ofs_rhs->sect_off);
22978 }
22979
22980 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22981 table if necessary. For convenience, return TYPE.
22982
22983 The DIEs reading must have careful ordering to:
22984 * Not cause infite loops trying to read in DIEs as a prerequisite for
22985 reading current DIE.
22986 * Not trying to dereference contents of still incompletely read in types
22987 while reading in other DIEs.
22988 * Enable referencing still incompletely read in types just by a pointer to
22989 the type without accessing its fields.
22990
22991 Therefore caller should follow these rules:
22992 * Try to fetch any prerequisite types we may need to build this DIE type
22993 before building the type and calling set_die_type.
22994 * After building type call set_die_type for current DIE as soon as
22995 possible before fetching more types to complete the current type.
22996 * Make the type as complete as possible before fetching more types. */
22997
22998 static struct type *
22999 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23000 {
23001 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23002 struct objfile *objfile = cu->objfile;
23003 struct attribute *attr;
23004 struct dynamic_prop prop;
23005
23006 /* For Ada types, make sure that the gnat-specific data is always
23007 initialized (if not already set). There are a few types where
23008 we should not be doing so, because the type-specific area is
23009 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23010 where the type-specific area is used to store the floatformat).
23011 But this is not a problem, because the gnat-specific information
23012 is actually not needed for these types. */
23013 if (need_gnat_info (cu)
23014 && TYPE_CODE (type) != TYPE_CODE_FUNC
23015 && TYPE_CODE (type) != TYPE_CODE_FLT
23016 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23017 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23018 && TYPE_CODE (type) != TYPE_CODE_METHOD
23019 && !HAVE_GNAT_AUX_INFO (type))
23020 INIT_GNAT_SPECIFIC (type);
23021
23022 /* Read DW_AT_allocated and set in type. */
23023 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23024 if (attr_form_is_block (attr))
23025 {
23026 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23027 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23028 }
23029 else if (attr != NULL)
23030 {
23031 complaint (&symfile_complaints,
23032 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23033 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23034 to_underlying (die->sect_off));
23035 }
23036
23037 /* Read DW_AT_associated and set in type. */
23038 attr = dwarf2_attr (die, DW_AT_associated, cu);
23039 if (attr_form_is_block (attr))
23040 {
23041 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23042 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23043 }
23044 else if (attr != NULL)
23045 {
23046 complaint (&symfile_complaints,
23047 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23048 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23049 to_underlying (die->sect_off));
23050 }
23051
23052 /* Read DW_AT_data_location and set in type. */
23053 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23054 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23055 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23056
23057 if (dwarf2_per_objfile->die_type_hash == NULL)
23058 {
23059 dwarf2_per_objfile->die_type_hash =
23060 htab_create_alloc_ex (127,
23061 per_cu_offset_and_type_hash,
23062 per_cu_offset_and_type_eq,
23063 NULL,
23064 &objfile->objfile_obstack,
23065 hashtab_obstack_allocate,
23066 dummy_obstack_deallocate);
23067 }
23068
23069 ofs.per_cu = cu->per_cu;
23070 ofs.sect_off = die->sect_off;
23071 ofs.type = type;
23072 slot = (struct dwarf2_per_cu_offset_and_type **)
23073 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23074 if (*slot)
23075 complaint (&symfile_complaints,
23076 _("A problem internal to GDB: DIE 0x%x has type already set"),
23077 to_underlying (die->sect_off));
23078 *slot = XOBNEW (&objfile->objfile_obstack,
23079 struct dwarf2_per_cu_offset_and_type);
23080 **slot = ofs;
23081 return type;
23082 }
23083
23084 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23085 or return NULL if the die does not have a saved type. */
23086
23087 static struct type *
23088 get_die_type_at_offset (sect_offset sect_off,
23089 struct dwarf2_per_cu_data *per_cu)
23090 {
23091 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23092
23093 if (dwarf2_per_objfile->die_type_hash == NULL)
23094 return NULL;
23095
23096 ofs.per_cu = per_cu;
23097 ofs.sect_off = sect_off;
23098 slot = ((struct dwarf2_per_cu_offset_and_type *)
23099 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23100 if (slot)
23101 return slot->type;
23102 else
23103 return NULL;
23104 }
23105
23106 /* Look up the type for DIE in CU in die_type_hash,
23107 or return NULL if DIE does not have a saved type. */
23108
23109 static struct type *
23110 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23111 {
23112 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23113 }
23114
23115 /* Add a dependence relationship from CU to REF_PER_CU. */
23116
23117 static void
23118 dwarf2_add_dependence (struct dwarf2_cu *cu,
23119 struct dwarf2_per_cu_data *ref_per_cu)
23120 {
23121 void **slot;
23122
23123 if (cu->dependencies == NULL)
23124 cu->dependencies
23125 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23126 NULL, &cu->comp_unit_obstack,
23127 hashtab_obstack_allocate,
23128 dummy_obstack_deallocate);
23129
23130 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23131 if (*slot == NULL)
23132 *slot = ref_per_cu;
23133 }
23134
23135 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23136 Set the mark field in every compilation unit in the
23137 cache that we must keep because we are keeping CU. */
23138
23139 static int
23140 dwarf2_mark_helper (void **slot, void *data)
23141 {
23142 struct dwarf2_per_cu_data *per_cu;
23143
23144 per_cu = (struct dwarf2_per_cu_data *) *slot;
23145
23146 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23147 reading of the chain. As such dependencies remain valid it is not much
23148 useful to track and undo them during QUIT cleanups. */
23149 if (per_cu->cu == NULL)
23150 return 1;
23151
23152 if (per_cu->cu->mark)
23153 return 1;
23154 per_cu->cu->mark = 1;
23155
23156 if (per_cu->cu->dependencies != NULL)
23157 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23158
23159 return 1;
23160 }
23161
23162 /* Set the mark field in CU and in every other compilation unit in the
23163 cache that we must keep because we are keeping CU. */
23164
23165 static void
23166 dwarf2_mark (struct dwarf2_cu *cu)
23167 {
23168 if (cu->mark)
23169 return;
23170 cu->mark = 1;
23171 if (cu->dependencies != NULL)
23172 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23173 }
23174
23175 static void
23176 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23177 {
23178 while (per_cu)
23179 {
23180 per_cu->cu->mark = 0;
23181 per_cu = per_cu->cu->read_in_chain;
23182 }
23183 }
23184
23185 /* Trivial hash function for partial_die_info: the hash value of a DIE
23186 is its offset in .debug_info for this objfile. */
23187
23188 static hashval_t
23189 partial_die_hash (const void *item)
23190 {
23191 const struct partial_die_info *part_die
23192 = (const struct partial_die_info *) item;
23193
23194 return to_underlying (part_die->sect_off);
23195 }
23196
23197 /* Trivial comparison function for partial_die_info structures: two DIEs
23198 are equal if they have the same offset. */
23199
23200 static int
23201 partial_die_eq (const void *item_lhs, const void *item_rhs)
23202 {
23203 const struct partial_die_info *part_die_lhs
23204 = (const struct partial_die_info *) item_lhs;
23205 const struct partial_die_info *part_die_rhs
23206 = (const struct partial_die_info *) item_rhs;
23207
23208 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23209 }
23210
23211 static struct cmd_list_element *set_dwarf_cmdlist;
23212 static struct cmd_list_element *show_dwarf_cmdlist;
23213
23214 static void
23215 set_dwarf_cmd (char *args, int from_tty)
23216 {
23217 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23218 gdb_stdout);
23219 }
23220
23221 static void
23222 show_dwarf_cmd (char *args, int from_tty)
23223 {
23224 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23225 }
23226
23227 /* Free data associated with OBJFILE, if necessary. */
23228
23229 static void
23230 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23231 {
23232 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23233 int ix;
23234
23235 /* Make sure we don't accidentally use dwarf2_per_objfile while
23236 cleaning up. */
23237 dwarf2_per_objfile = NULL;
23238
23239 for (ix = 0; ix < data->n_comp_units; ++ix)
23240 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23241
23242 for (ix = 0; ix < data->n_type_units; ++ix)
23243 VEC_free (dwarf2_per_cu_ptr,
23244 data->all_type_units[ix]->per_cu.imported_symtabs);
23245 xfree (data->all_type_units);
23246
23247 VEC_free (dwarf2_section_info_def, data->types);
23248
23249 if (data->dwo_files)
23250 free_dwo_files (data->dwo_files, objfile);
23251 if (data->dwp_file)
23252 gdb_bfd_unref (data->dwp_file->dbfd);
23253
23254 if (data->dwz_file && data->dwz_file->dwz_bfd)
23255 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23256 }
23257
23258 \f
23259 /* The "save gdb-index" command. */
23260
23261 /* In-memory buffer to prepare data to be written later to a file. */
23262 class data_buf
23263 {
23264 public:
23265 /* Copy DATA to the end of the buffer. */
23266 template<typename T>
23267 void append_data (const T &data)
23268 {
23269 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23270 reinterpret_cast<const gdb_byte *> (&data + 1),
23271 grow (sizeof (data)));
23272 }
23273
23274 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23275 terminating zero is appended too. */
23276 void append_cstr0 (const char *cstr)
23277 {
23278 const size_t size = strlen (cstr) + 1;
23279 std::copy (cstr, cstr + size, grow (size));
23280 }
23281
23282 /* Accept a host-format integer in VAL and append it to the buffer
23283 as a target-format integer which is LEN bytes long. */
23284 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23285 {
23286 ::store_unsigned_integer (grow (len), len, byte_order, val);
23287 }
23288
23289 /* Return the size of the buffer. */
23290 size_t size () const
23291 {
23292 return m_vec.size ();
23293 }
23294
23295 /* Write the buffer to FILE. */
23296 void file_write (FILE *file) const
23297 {
23298 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23299 error (_("couldn't write data to file"));
23300 }
23301
23302 private:
23303 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23304 the start of the new block. */
23305 gdb_byte *grow (size_t size)
23306 {
23307 m_vec.resize (m_vec.size () + size);
23308 return &*m_vec.end () - size;
23309 }
23310
23311 gdb::byte_vector m_vec;
23312 };
23313
23314 /* An entry in the symbol table. */
23315 struct symtab_index_entry
23316 {
23317 /* The name of the symbol. */
23318 const char *name;
23319 /* The offset of the name in the constant pool. */
23320 offset_type index_offset;
23321 /* A sorted vector of the indices of all the CUs that hold an object
23322 of this name. */
23323 std::vector<offset_type> cu_indices;
23324 };
23325
23326 /* The symbol table. This is a power-of-2-sized hash table. */
23327 struct mapped_symtab
23328 {
23329 mapped_symtab ()
23330 {
23331 data.resize (1024);
23332 }
23333
23334 offset_type n_elements = 0;
23335 std::vector<symtab_index_entry> data;
23336 };
23337
23338 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23339 the slot.
23340
23341 Function is used only during write_hash_table so no index format backward
23342 compatibility is needed. */
23343
23344 static symtab_index_entry &
23345 find_slot (struct mapped_symtab *symtab, const char *name)
23346 {
23347 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23348
23349 index = hash & (symtab->data.size () - 1);
23350 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23351
23352 for (;;)
23353 {
23354 if (symtab->data[index].name == NULL
23355 || strcmp (name, symtab->data[index].name) == 0)
23356 return symtab->data[index];
23357 index = (index + step) & (symtab->data.size () - 1);
23358 }
23359 }
23360
23361 /* Expand SYMTAB's hash table. */
23362
23363 static void
23364 hash_expand (struct mapped_symtab *symtab)
23365 {
23366 auto old_entries = std::move (symtab->data);
23367
23368 symtab->data.clear ();
23369 symtab->data.resize (old_entries.size () * 2);
23370
23371 for (auto &it : old_entries)
23372 if (it.name != NULL)
23373 {
23374 auto &ref = find_slot (symtab, it.name);
23375 ref = std::move (it);
23376 }
23377 }
23378
23379 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23380 CU_INDEX is the index of the CU in which the symbol appears.
23381 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23382
23383 static void
23384 add_index_entry (struct mapped_symtab *symtab, const char *name,
23385 int is_static, gdb_index_symbol_kind kind,
23386 offset_type cu_index)
23387 {
23388 offset_type cu_index_and_attrs;
23389
23390 ++symtab->n_elements;
23391 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23392 hash_expand (symtab);
23393
23394 symtab_index_entry &slot = find_slot (symtab, name);
23395 if (slot.name == NULL)
23396 {
23397 slot.name = name;
23398 /* index_offset is set later. */
23399 }
23400
23401 cu_index_and_attrs = 0;
23402 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23403 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23404 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23405
23406 /* We don't want to record an index value twice as we want to avoid the
23407 duplication.
23408 We process all global symbols and then all static symbols
23409 (which would allow us to avoid the duplication by only having to check
23410 the last entry pushed), but a symbol could have multiple kinds in one CU.
23411 To keep things simple we don't worry about the duplication here and
23412 sort and uniqufy the list after we've processed all symbols. */
23413 slot.cu_indices.push_back (cu_index_and_attrs);
23414 }
23415
23416 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23417
23418 static void
23419 uniquify_cu_indices (struct mapped_symtab *symtab)
23420 {
23421 for (auto &entry : symtab->data)
23422 {
23423 if (entry.name != NULL && !entry.cu_indices.empty ())
23424 {
23425 auto &cu_indices = entry.cu_indices;
23426 std::sort (cu_indices.begin (), cu_indices.end ());
23427 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23428 cu_indices.erase (from, cu_indices.end ());
23429 }
23430 }
23431 }
23432
23433 /* A form of 'const char *' suitable for container keys. Only the
23434 pointer is stored. The strings themselves are compared, not the
23435 pointers. */
23436 class c_str_view
23437 {
23438 public:
23439 c_str_view (const char *cstr)
23440 : m_cstr (cstr)
23441 {}
23442
23443 bool operator== (const c_str_view &other) const
23444 {
23445 return strcmp (m_cstr, other.m_cstr) == 0;
23446 }
23447
23448 private:
23449 friend class c_str_view_hasher;
23450 const char *const m_cstr;
23451 };
23452
23453 /* A std::unordered_map::hasher for c_str_view that uses the right
23454 hash function for strings in a mapped index. */
23455 class c_str_view_hasher
23456 {
23457 public:
23458 size_t operator () (const c_str_view &x) const
23459 {
23460 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23461 }
23462 };
23463
23464 /* A std::unordered_map::hasher for std::vector<>. */
23465 template<typename T>
23466 class vector_hasher
23467 {
23468 public:
23469 size_t operator () (const std::vector<T> &key) const
23470 {
23471 return iterative_hash (key.data (),
23472 sizeof (key.front ()) * key.size (), 0);
23473 }
23474 };
23475
23476 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23477 constant pool entries going into the data buffer CPOOL. */
23478
23479 static void
23480 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23481 {
23482 {
23483 /* Elements are sorted vectors of the indices of all the CUs that
23484 hold an object of this name. */
23485 std::unordered_map<std::vector<offset_type>, offset_type,
23486 vector_hasher<offset_type>>
23487 symbol_hash_table;
23488
23489 /* We add all the index vectors to the constant pool first, to
23490 ensure alignment is ok. */
23491 for (symtab_index_entry &entry : symtab->data)
23492 {
23493 if (entry.name == NULL)
23494 continue;
23495 gdb_assert (entry.index_offset == 0);
23496
23497 /* Finding before inserting is faster than always trying to
23498 insert, because inserting always allocates a node, does the
23499 lookup, and then destroys the new node if another node
23500 already had the same key. C++17 try_emplace will avoid
23501 this. */
23502 const auto found
23503 = symbol_hash_table.find (entry.cu_indices);
23504 if (found != symbol_hash_table.end ())
23505 {
23506 entry.index_offset = found->second;
23507 continue;
23508 }
23509
23510 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23511 entry.index_offset = cpool.size ();
23512 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23513 for (const auto index : entry.cu_indices)
23514 cpool.append_data (MAYBE_SWAP (index));
23515 }
23516 }
23517
23518 /* Now write out the hash table. */
23519 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23520 for (const auto &entry : symtab->data)
23521 {
23522 offset_type str_off, vec_off;
23523
23524 if (entry.name != NULL)
23525 {
23526 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23527 if (insertpair.second)
23528 cpool.append_cstr0 (entry.name);
23529 str_off = insertpair.first->second;
23530 vec_off = entry.index_offset;
23531 }
23532 else
23533 {
23534 /* While 0 is a valid constant pool index, it is not valid
23535 to have 0 for both offsets. */
23536 str_off = 0;
23537 vec_off = 0;
23538 }
23539
23540 output.append_data (MAYBE_SWAP (str_off));
23541 output.append_data (MAYBE_SWAP (vec_off));
23542 }
23543 }
23544
23545 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23546
23547 /* Helper struct for building the address table. */
23548 struct addrmap_index_data
23549 {
23550 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23551 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23552 {}
23553
23554 struct objfile *objfile;
23555 data_buf &addr_vec;
23556 psym_index_map &cu_index_htab;
23557
23558 /* Non-zero if the previous_* fields are valid.
23559 We can't write an entry until we see the next entry (since it is only then
23560 that we know the end of the entry). */
23561 int previous_valid;
23562 /* Index of the CU in the table of all CUs in the index file. */
23563 unsigned int previous_cu_index;
23564 /* Start address of the CU. */
23565 CORE_ADDR previous_cu_start;
23566 };
23567
23568 /* Write an address entry to ADDR_VEC. */
23569
23570 static void
23571 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23572 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23573 {
23574 CORE_ADDR baseaddr;
23575
23576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23577
23578 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23579 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23580 addr_vec.append_data (MAYBE_SWAP (cu_index));
23581 }
23582
23583 /* Worker function for traversing an addrmap to build the address table. */
23584
23585 static int
23586 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23587 {
23588 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23589 struct partial_symtab *pst = (struct partial_symtab *) obj;
23590
23591 if (data->previous_valid)
23592 add_address_entry (data->objfile, data->addr_vec,
23593 data->previous_cu_start, start_addr,
23594 data->previous_cu_index);
23595
23596 data->previous_cu_start = start_addr;
23597 if (pst != NULL)
23598 {
23599 const auto it = data->cu_index_htab.find (pst);
23600 gdb_assert (it != data->cu_index_htab.cend ());
23601 data->previous_cu_index = it->second;
23602 data->previous_valid = 1;
23603 }
23604 else
23605 data->previous_valid = 0;
23606
23607 return 0;
23608 }
23609
23610 /* Write OBJFILE's address map to ADDR_VEC.
23611 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23612 in the index file. */
23613
23614 static void
23615 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23616 psym_index_map &cu_index_htab)
23617 {
23618 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23619
23620 /* When writing the address table, we have to cope with the fact that
23621 the addrmap iterator only provides the start of a region; we have to
23622 wait until the next invocation to get the start of the next region. */
23623
23624 addrmap_index_data.objfile = objfile;
23625 addrmap_index_data.previous_valid = 0;
23626
23627 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23628 &addrmap_index_data);
23629
23630 /* It's highly unlikely the last entry (end address = 0xff...ff)
23631 is valid, but we should still handle it.
23632 The end address is recorded as the start of the next region, but that
23633 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23634 anyway. */
23635 if (addrmap_index_data.previous_valid)
23636 add_address_entry (objfile, addr_vec,
23637 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23638 addrmap_index_data.previous_cu_index);
23639 }
23640
23641 /* Return the symbol kind of PSYM. */
23642
23643 static gdb_index_symbol_kind
23644 symbol_kind (struct partial_symbol *psym)
23645 {
23646 domain_enum domain = PSYMBOL_DOMAIN (psym);
23647 enum address_class aclass = PSYMBOL_CLASS (psym);
23648
23649 switch (domain)
23650 {
23651 case VAR_DOMAIN:
23652 switch (aclass)
23653 {
23654 case LOC_BLOCK:
23655 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23656 case LOC_TYPEDEF:
23657 return GDB_INDEX_SYMBOL_KIND_TYPE;
23658 case LOC_COMPUTED:
23659 case LOC_CONST_BYTES:
23660 case LOC_OPTIMIZED_OUT:
23661 case LOC_STATIC:
23662 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23663 case LOC_CONST:
23664 /* Note: It's currently impossible to recognize psyms as enum values
23665 short of reading the type info. For now punt. */
23666 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23667 default:
23668 /* There are other LOC_FOO values that one might want to classify
23669 as variables, but dwarf2read.c doesn't currently use them. */
23670 return GDB_INDEX_SYMBOL_KIND_OTHER;
23671 }
23672 case STRUCT_DOMAIN:
23673 return GDB_INDEX_SYMBOL_KIND_TYPE;
23674 default:
23675 return GDB_INDEX_SYMBOL_KIND_OTHER;
23676 }
23677 }
23678
23679 /* Add a list of partial symbols to SYMTAB. */
23680
23681 static void
23682 write_psymbols (struct mapped_symtab *symtab,
23683 std::unordered_set<partial_symbol *> &psyms_seen,
23684 struct partial_symbol **psymp,
23685 int count,
23686 offset_type cu_index,
23687 int is_static)
23688 {
23689 for (; count-- > 0; ++psymp)
23690 {
23691 struct partial_symbol *psym = *psymp;
23692
23693 if (SYMBOL_LANGUAGE (psym) == language_ada)
23694 error (_("Ada is not currently supported by the index"));
23695
23696 /* Only add a given psymbol once. */
23697 if (psyms_seen.insert (psym).second)
23698 {
23699 gdb_index_symbol_kind kind = symbol_kind (psym);
23700
23701 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23702 is_static, kind, cu_index);
23703 }
23704 }
23705 }
23706
23707 /* A helper struct used when iterating over debug_types. */
23708 struct signatured_type_index_data
23709 {
23710 signatured_type_index_data (data_buf &types_list_,
23711 std::unordered_set<partial_symbol *> &psyms_seen_)
23712 : types_list (types_list_), psyms_seen (psyms_seen_)
23713 {}
23714
23715 struct objfile *objfile;
23716 struct mapped_symtab *symtab;
23717 data_buf &types_list;
23718 std::unordered_set<partial_symbol *> &psyms_seen;
23719 int cu_index;
23720 };
23721
23722 /* A helper function that writes a single signatured_type to an
23723 obstack. */
23724
23725 static int
23726 write_one_signatured_type (void **slot, void *d)
23727 {
23728 struct signatured_type_index_data *info
23729 = (struct signatured_type_index_data *) d;
23730 struct signatured_type *entry = (struct signatured_type *) *slot;
23731 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23732
23733 write_psymbols (info->symtab,
23734 info->psyms_seen,
23735 info->objfile->global_psymbols.list
23736 + psymtab->globals_offset,
23737 psymtab->n_global_syms, info->cu_index,
23738 0);
23739 write_psymbols (info->symtab,
23740 info->psyms_seen,
23741 info->objfile->static_psymbols.list
23742 + psymtab->statics_offset,
23743 psymtab->n_static_syms, info->cu_index,
23744 1);
23745
23746 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23747 to_underlying (entry->per_cu.sect_off));
23748 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23749 to_underlying (entry->type_offset_in_tu));
23750 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23751
23752 ++info->cu_index;
23753
23754 return 1;
23755 }
23756
23757 /* Recurse into all "included" dependencies and count their symbols as
23758 if they appeared in this psymtab. */
23759
23760 static void
23761 recursively_count_psymbols (struct partial_symtab *psymtab,
23762 size_t &psyms_seen)
23763 {
23764 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23765 if (psymtab->dependencies[i]->user != NULL)
23766 recursively_count_psymbols (psymtab->dependencies[i],
23767 psyms_seen);
23768
23769 psyms_seen += psymtab->n_global_syms;
23770 psyms_seen += psymtab->n_static_syms;
23771 }
23772
23773 /* Recurse into all "included" dependencies and write their symbols as
23774 if they appeared in this psymtab. */
23775
23776 static void
23777 recursively_write_psymbols (struct objfile *objfile,
23778 struct partial_symtab *psymtab,
23779 struct mapped_symtab *symtab,
23780 std::unordered_set<partial_symbol *> &psyms_seen,
23781 offset_type cu_index)
23782 {
23783 int i;
23784
23785 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23786 if (psymtab->dependencies[i]->user != NULL)
23787 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23788 symtab, psyms_seen, cu_index);
23789
23790 write_psymbols (symtab,
23791 psyms_seen,
23792 objfile->global_psymbols.list + psymtab->globals_offset,
23793 psymtab->n_global_syms, cu_index,
23794 0);
23795 write_psymbols (symtab,
23796 psyms_seen,
23797 objfile->static_psymbols.list + psymtab->statics_offset,
23798 psymtab->n_static_syms, cu_index,
23799 1);
23800 }
23801
23802 /* Create an index file for OBJFILE in the directory DIR. */
23803
23804 static void
23805 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23806 {
23807 if (dwarf2_per_objfile->using_index)
23808 error (_("Cannot use an index to create the index"));
23809
23810 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23811 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23812
23813 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23814 return;
23815
23816 struct stat st;
23817 if (stat (objfile_name (objfile), &st) < 0)
23818 perror_with_name (objfile_name (objfile));
23819
23820 std::string filename (std::string (dir) + SLASH_STRING
23821 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23822
23823 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23824 if (!out_file)
23825 error (_("Can't open `%s' for writing"), filename.c_str ());
23826
23827 /* Order matters here; we want FILE to be closed before FILENAME is
23828 unlinked, because on MS-Windows one cannot delete a file that is
23829 still open. (Don't call anything here that might throw until
23830 file_closer is created.) */
23831 gdb::unlinker unlink_file (filename.c_str ());
23832 gdb_file_up close_out_file (out_file);
23833
23834 mapped_symtab symtab;
23835 data_buf cu_list;
23836
23837 /* While we're scanning CU's create a table that maps a psymtab pointer
23838 (which is what addrmap records) to its index (which is what is recorded
23839 in the index file). This will later be needed to write the address
23840 table. */
23841 psym_index_map cu_index_htab;
23842 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23843
23844 /* The CU list is already sorted, so we don't need to do additional
23845 work here. Also, the debug_types entries do not appear in
23846 all_comp_units, but only in their own hash table. */
23847
23848 /* The psyms_seen set is potentially going to be largish (~40k
23849 elements when indexing a -g3 build of GDB itself). Estimate the
23850 number of elements in order to avoid too many rehashes, which
23851 require rebuilding buckets and thus many trips to
23852 malloc/free. */
23853 size_t psyms_count = 0;
23854 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23855 {
23856 struct dwarf2_per_cu_data *per_cu
23857 = dwarf2_per_objfile->all_comp_units[i];
23858 struct partial_symtab *psymtab = per_cu->v.psymtab;
23859
23860 if (psymtab != NULL && psymtab->user == NULL)
23861 recursively_count_psymbols (psymtab, psyms_count);
23862 }
23863 /* Generating an index for gdb itself shows a ratio of
23864 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23865 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23866 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23867 {
23868 struct dwarf2_per_cu_data *per_cu
23869 = dwarf2_per_objfile->all_comp_units[i];
23870 struct partial_symtab *psymtab = per_cu->v.psymtab;
23871
23872 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23873 It may be referenced from a local scope but in such case it does not
23874 need to be present in .gdb_index. */
23875 if (psymtab == NULL)
23876 continue;
23877
23878 if (psymtab->user == NULL)
23879 recursively_write_psymbols (objfile, psymtab, &symtab,
23880 psyms_seen, i);
23881
23882 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23883 gdb_assert (insertpair.second);
23884
23885 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23886 to_underlying (per_cu->sect_off));
23887 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23888 }
23889
23890 /* Dump the address map. */
23891 data_buf addr_vec;
23892 write_address_map (objfile, addr_vec, cu_index_htab);
23893
23894 /* Write out the .debug_type entries, if any. */
23895 data_buf types_cu_list;
23896 if (dwarf2_per_objfile->signatured_types)
23897 {
23898 signatured_type_index_data sig_data (types_cu_list,
23899 psyms_seen);
23900
23901 sig_data.objfile = objfile;
23902 sig_data.symtab = &symtab;
23903 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23904 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23905 write_one_signatured_type, &sig_data);
23906 }
23907
23908 /* Now that we've processed all symbols we can shrink their cu_indices
23909 lists. */
23910 uniquify_cu_indices (&symtab);
23911
23912 data_buf symtab_vec, constant_pool;
23913 write_hash_table (&symtab, symtab_vec, constant_pool);
23914
23915 data_buf contents;
23916 const offset_type size_of_contents = 6 * sizeof (offset_type);
23917 offset_type total_len = size_of_contents;
23918
23919 /* The version number. */
23920 contents.append_data (MAYBE_SWAP (8));
23921
23922 /* The offset of the CU list from the start of the file. */
23923 contents.append_data (MAYBE_SWAP (total_len));
23924 total_len += cu_list.size ();
23925
23926 /* The offset of the types CU list from the start of the file. */
23927 contents.append_data (MAYBE_SWAP (total_len));
23928 total_len += types_cu_list.size ();
23929
23930 /* The offset of the address table from the start of the file. */
23931 contents.append_data (MAYBE_SWAP (total_len));
23932 total_len += addr_vec.size ();
23933
23934 /* The offset of the symbol table from the start of the file. */
23935 contents.append_data (MAYBE_SWAP (total_len));
23936 total_len += symtab_vec.size ();
23937
23938 /* The offset of the constant pool from the start of the file. */
23939 contents.append_data (MAYBE_SWAP (total_len));
23940 total_len += constant_pool.size ();
23941
23942 gdb_assert (contents.size () == size_of_contents);
23943
23944 contents.file_write (out_file);
23945 cu_list.file_write (out_file);
23946 types_cu_list.file_write (out_file);
23947 addr_vec.file_write (out_file);
23948 symtab_vec.file_write (out_file);
23949 constant_pool.file_write (out_file);
23950
23951 /* We want to keep the file. */
23952 unlink_file.keep ();
23953 }
23954
23955 /* Implementation of the `save gdb-index' command.
23956
23957 Note that the file format used by this command is documented in the
23958 GDB manual. Any changes here must be documented there. */
23959
23960 static void
23961 save_gdb_index_command (const char *arg, int from_tty)
23962 {
23963 struct objfile *objfile;
23964
23965 if (!arg || !*arg)
23966 error (_("usage: save gdb-index DIRECTORY"));
23967
23968 ALL_OBJFILES (objfile)
23969 {
23970 struct stat st;
23971
23972 /* If the objfile does not correspond to an actual file, skip it. */
23973 if (stat (objfile_name (objfile), &st) < 0)
23974 continue;
23975
23976 dwarf2_per_objfile
23977 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23978 dwarf2_objfile_data_key);
23979 if (dwarf2_per_objfile)
23980 {
23981
23982 TRY
23983 {
23984 write_psymtabs_to_index (objfile, arg);
23985 }
23986 CATCH (except, RETURN_MASK_ERROR)
23987 {
23988 exception_fprintf (gdb_stderr, except,
23989 _("Error while writing index for `%s': "),
23990 objfile_name (objfile));
23991 }
23992 END_CATCH
23993 }
23994 }
23995 }
23996
23997 \f
23998
23999 int dwarf_always_disassemble;
24000
24001 static void
24002 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24003 struct cmd_list_element *c, const char *value)
24004 {
24005 fprintf_filtered (file,
24006 _("Whether to always disassemble "
24007 "DWARF expressions is %s.\n"),
24008 value);
24009 }
24010
24011 static void
24012 show_check_physname (struct ui_file *file, int from_tty,
24013 struct cmd_list_element *c, const char *value)
24014 {
24015 fprintf_filtered (file,
24016 _("Whether to check \"physname\" is %s.\n"),
24017 value);
24018 }
24019
24020 void
24021 _initialize_dwarf2_read (void)
24022 {
24023 struct cmd_list_element *c;
24024
24025 dwarf2_objfile_data_key
24026 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24027
24028 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24029 Set DWARF specific variables.\n\
24030 Configure DWARF variables such as the cache size"),
24031 &set_dwarf_cmdlist, "maintenance set dwarf ",
24032 0/*allow-unknown*/, &maintenance_set_cmdlist);
24033
24034 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24035 Show DWARF specific variables\n\
24036 Show DWARF variables such as the cache size"),
24037 &show_dwarf_cmdlist, "maintenance show dwarf ",
24038 0/*allow-unknown*/, &maintenance_show_cmdlist);
24039
24040 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24041 &dwarf_max_cache_age, _("\
24042 Set the upper bound on the age of cached DWARF compilation units."), _("\
24043 Show the upper bound on the age of cached DWARF compilation units."), _("\
24044 A higher limit means that cached compilation units will be stored\n\
24045 in memory longer, and more total memory will be used. Zero disables\n\
24046 caching, which can slow down startup."),
24047 NULL,
24048 show_dwarf_max_cache_age,
24049 &set_dwarf_cmdlist,
24050 &show_dwarf_cmdlist);
24051
24052 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24053 &dwarf_always_disassemble, _("\
24054 Set whether `info address' always disassembles DWARF expressions."), _("\
24055 Show whether `info address' always disassembles DWARF expressions."), _("\
24056 When enabled, DWARF expressions are always printed in an assembly-like\n\
24057 syntax. When disabled, expressions will be printed in a more\n\
24058 conversational style, when possible."),
24059 NULL,
24060 show_dwarf_always_disassemble,
24061 &set_dwarf_cmdlist,
24062 &show_dwarf_cmdlist);
24063
24064 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24065 Set debugging of the DWARF reader."), _("\
24066 Show debugging of the DWARF reader."), _("\
24067 When enabled (non-zero), debugging messages are printed during DWARF\n\
24068 reading and symtab expansion. A value of 1 (one) provides basic\n\
24069 information. A value greater than 1 provides more verbose information."),
24070 NULL,
24071 NULL,
24072 &setdebuglist, &showdebuglist);
24073
24074 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24075 Set debugging of the DWARF DIE reader."), _("\
24076 Show debugging of the DWARF DIE reader."), _("\
24077 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24078 The value is the maximum depth to print."),
24079 NULL,
24080 NULL,
24081 &setdebuglist, &showdebuglist);
24082
24083 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24084 Set debugging of the dwarf line reader."), _("\
24085 Show debugging of the dwarf line reader."), _("\
24086 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24087 A value of 1 (one) provides basic information.\n\
24088 A value greater than 1 provides more verbose information."),
24089 NULL,
24090 NULL,
24091 &setdebuglist, &showdebuglist);
24092
24093 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24094 Set cross-checking of \"physname\" code against demangler."), _("\
24095 Show cross-checking of \"physname\" code against demangler."), _("\
24096 When enabled, GDB's internal \"physname\" code is checked against\n\
24097 the demangler."),
24098 NULL, show_check_physname,
24099 &setdebuglist, &showdebuglist);
24100
24101 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24102 no_class, &use_deprecated_index_sections, _("\
24103 Set whether to use deprecated gdb_index sections."), _("\
24104 Show whether to use deprecated gdb_index sections."), _("\
24105 When enabled, deprecated .gdb_index sections are used anyway.\n\
24106 Normally they are ignored either because of a missing feature or\n\
24107 performance issue.\n\
24108 Warning: This option must be enabled before gdb reads the file."),
24109 NULL,
24110 NULL,
24111 &setlist, &showlist);
24112
24113 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24114 _("\
24115 Save a gdb-index file.\n\
24116 Usage: save gdb-index DIRECTORY"),
24117 &save_cmdlist);
24118 set_cmd_completer (c, filename_completer);
24119
24120 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24121 &dwarf2_locexpr_funcs);
24122 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24123 &dwarf2_loclist_funcs);
24124
24125 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24126 &dwarf2_block_frame_base_locexpr_funcs);
24127 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24128 &dwarf2_block_frame_base_loclist_funcs);
24129 }
This page took 0.649569 seconds and 4 git commands to generate.