*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256 };
257
258 /* Fixed size for the DIE hash table. */
259 #ifndef REF_HASH_SIZE
260 #define REF_HASH_SIZE 1021
261 #endif
262
263 /* Internal state when decoding a particular compilation unit. */
264 struct dwarf2_cu
265 {
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
380 htab_t type_hash;
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
384 };
385
386 /* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389 struct line_header
390 {
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
418 {
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
423 int included_p; /* Non-zero if referenced by the Line Number Program. */
424 } *file_names;
425
426 /* The start and end of the statement program following this
427 header. These point into dwarf2_per_objfile->line_buffer. */
428 char *statement_program_start, *statement_program_end;
429 };
430
431 /* When we construct a partial symbol table entry we only
432 need this much information. */
433 struct partial_die_info
434 {
435 /* Offset of this DIE. */
436 unsigned int offset;
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag) tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
451 unsigned int has_stmt_list : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
461 char *name;
462 char *dirname;
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
478 char *sibling;
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493 /* This data structure holds the information of an abbrev. */
494 struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504 struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510 /* This data structure holds a complete die structure. */
511 struct die_info
512 {
513 enum dwarf_tag tag; /* Tag indicating type of die */
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
528
529 struct type *type; /* Cached type information */
530 };
531
532 /* Attributes have a name and a value */
533 struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
541 unsigned long unsnd;
542 long int snd;
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
548 struct function_range
549 {
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554 };
555
556 /* Get at parts of an attribute structure */
557
558 #define DW_STRING(attr) ((attr)->u.str)
559 #define DW_UNSND(attr) ((attr)->u.unsnd)
560 #define DW_BLOCK(attr) ((attr)->u.blk)
561 #define DW_SND(attr) ((attr)->u.snd)
562 #define DW_ADDR(attr) ((attr)->u.addr)
563
564 /* Blocks are a bunch of untyped bytes. */
565 struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
571 #ifndef ATTR_ALLOC_CHUNK
572 #define ATTR_ALLOC_CHUNK 4
573 #endif
574
575 /* Allocate fields for structs, unions and enums in this size. */
576 #ifndef DW_FIELD_ALLOC_CHUNK
577 #define DW_FIELD_ALLOC_CHUNK 4
578 #endif
579
580 /* A zeroed version of a partial die for initialization purposes. */
581 static struct partial_die_info zeroed_partial_die;
582
583 /* FIXME: decode_locdesc sets these variables to describe the location
584 to the caller. These ought to be a structure or something. If
585 none of the flags are set, the object lives at the address returned
586 by decode_locdesc. */
587
588 static int isreg; /* Object lives in register.
589 decode_locdesc's return value is
590 the register number. */
591
592 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
593 but this would require a corresponding change in unpack_field_as_long
594 and friends. */
595 static int bits_per_byte = 8;
596
597 /* The routines that read and process dies for a C struct or C++ class
598 pass lists of data member fields and lists of member function fields
599 in an instance of a field_info structure, as defined below. */
600 struct field_info
601 {
602 /* List of data member and baseclasses fields. */
603 struct nextfield
604 {
605 struct nextfield *next;
606 int accessibility;
607 int virtuality;
608 struct field field;
609 }
610 *fields;
611
612 /* Number of fields. */
613 int nfields;
614
615 /* Number of baseclasses. */
616 int nbaseclasses;
617
618 /* Set if the accesibility of one of the fields is not public. */
619 int non_public_fields;
620
621 /* Member function fields array, entries are allocated in the order they
622 are encountered in the object file. */
623 struct nextfnfield
624 {
625 struct nextfnfield *next;
626 struct fn_field fnfield;
627 }
628 *fnfields;
629
630 /* Member function fieldlist array, contains name of possibly overloaded
631 member function, number of overloaded member functions and a pointer
632 to the head of the member function field chain. */
633 struct fnfieldlist
634 {
635 char *name;
636 int length;
637 struct nextfnfield *head;
638 }
639 *fnfieldlists;
640
641 /* Number of entries in the fnfieldlists array. */
642 int nfnfields;
643 };
644
645 /* One item on the queue of compilation units to read in full symbols
646 for. */
647 struct dwarf2_queue_item
648 {
649 struct dwarf2_per_cu_data *per_cu;
650 struct dwarf2_queue_item *next;
651 };
652
653 /* The current queue. */
654 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
655
656 /* Loaded secondary compilation units are kept in memory until they
657 have not been referenced for the processing of this many
658 compilation units. Set this to zero to disable caching. Cache
659 sizes of up to at least twenty will improve startup time for
660 typical inter-CU-reference binaries, at an obvious memory cost. */
661 static int dwarf2_max_cache_age = 5;
662 static void
663 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
664 struct cmd_list_element *c, const char *value)
665 {
666 fprintf_filtered (file, _("\
667 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
668 value);
669 }
670
671
672 /* Various complaints about symbol reading that don't abort the process */
673
674 static void
675 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
676 {
677 complaint (&symfile_complaints,
678 _("statement list doesn't fit in .debug_line section"));
679 }
680
681 static void
682 dwarf2_complex_location_expr_complaint (void)
683 {
684 complaint (&symfile_complaints, _("location expression too complex"));
685 }
686
687 static void
688 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
689 int arg3)
690 {
691 complaint (&symfile_complaints,
692 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
693 arg2, arg3);
694 }
695
696 static void
697 dwarf2_macros_too_long_complaint (void)
698 {
699 complaint (&symfile_complaints,
700 _("macro info runs off end of `.debug_macinfo' section"));
701 }
702
703 static void
704 dwarf2_macro_malformed_definition_complaint (const char *arg1)
705 {
706 complaint (&symfile_complaints,
707 _("macro debug info contains a malformed macro definition:\n`%s'"),
708 arg1);
709 }
710
711 static void
712 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
713 {
714 complaint (&symfile_complaints,
715 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
716 }
717
718 /* local function prototypes */
719
720 static void dwarf2_locate_sections (bfd *, asection *, void *);
721
722 #if 0
723 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
724 #endif
725
726 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
727 struct objfile *);
728
729 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
730 struct partial_die_info *,
731 struct partial_symtab *);
732
733 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
734
735 static void scan_partial_symbols (struct partial_die_info *,
736 CORE_ADDR *, CORE_ADDR *,
737 struct dwarf2_cu *);
738
739 static void add_partial_symbol (struct partial_die_info *,
740 struct dwarf2_cu *);
741
742 static int pdi_needs_namespace (enum dwarf_tag tag);
743
744 static void add_partial_namespace (struct partial_die_info *pdi,
745 CORE_ADDR *lowpc, CORE_ADDR *highpc,
746 struct dwarf2_cu *cu);
747
748 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
749 struct dwarf2_cu *cu);
750
751 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
752 char *info_ptr,
753 bfd *abfd,
754 struct dwarf2_cu *cu);
755
756 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
757
758 static void psymtab_to_symtab_1 (struct partial_symtab *);
759
760 char *dwarf2_read_section (struct objfile *, asection *);
761
762 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
763
764 static void dwarf2_free_abbrev_table (void *);
765
766 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
767
768 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
769 struct dwarf2_cu *);
770
771 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
772 struct dwarf2_cu *);
773
774 static char *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, char *, struct dwarf2_cu *);
777
778 static struct partial_die_info *find_partial_die (unsigned long,
779 struct dwarf2_cu *);
780
781 static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
784 static char *read_full_die (struct die_info **, bfd *, char *,
785 struct dwarf2_cu *, int *);
786
787 static char *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, char *, struct dwarf2_cu *);
789
790 static char *read_attribute_value (struct attribute *, unsigned,
791 bfd *, char *, struct dwarf2_cu *);
792
793 static unsigned int read_1_byte (bfd *, char *);
794
795 static int read_1_signed_byte (bfd *, char *);
796
797 static unsigned int read_2_bytes (bfd *, char *);
798
799 static unsigned int read_4_bytes (bfd *, char *);
800
801 static unsigned long read_8_bytes (bfd *, char *);
802
803 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
804 int *bytes_read);
805
806 static LONGEST read_initial_length (bfd *, char *,
807 struct comp_unit_head *, int *bytes_read);
808
809 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
810 int *bytes_read);
811
812 static char *read_n_bytes (bfd *, char *, unsigned int);
813
814 static char *read_string (bfd *, char *, unsigned int *);
815
816 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
817 unsigned int *);
818
819 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
820
821 static long read_signed_leb128 (bfd *, char *, unsigned int *);
822
823 static char *skip_leb128 (bfd *, char *);
824
825 static void set_cu_language (unsigned int, struct dwarf2_cu *);
826
827 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
828 struct dwarf2_cu *);
829
830 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
831 struct dwarf2_cu *cu);
832
833 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
834
835 static struct die_info *die_specification (struct die_info *die,
836 struct dwarf2_cu *);
837
838 static void free_line_header (struct line_header *lh);
839
840 static void add_file_name (struct line_header *, char *, unsigned int,
841 unsigned int, unsigned int);
842
843 static struct line_header *(dwarf_decode_line_header
844 (unsigned int offset,
845 bfd *abfd, struct dwarf2_cu *cu));
846
847 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
848 struct dwarf2_cu *, struct partial_symtab *);
849
850 static void dwarf2_start_subfile (char *, char *);
851
852 static struct symbol *new_symbol (struct die_info *, struct type *,
853 struct dwarf2_cu *);
854
855 static void dwarf2_const_value (struct attribute *, struct symbol *,
856 struct dwarf2_cu *);
857
858 static void dwarf2_const_value_data (struct attribute *attr,
859 struct symbol *sym,
860 int bits);
861
862 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
863
864 static struct type *die_containing_type (struct die_info *,
865 struct dwarf2_cu *);
866
867 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
868
869 static void read_type_die (struct die_info *, struct dwarf2_cu *);
870
871 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
872
873 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
874 struct dwarf2_cu *);
875
876 static void read_typedef (struct die_info *, struct dwarf2_cu *);
877
878 static void read_base_type (struct die_info *, struct dwarf2_cu *);
879
880 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
881
882 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
883
884 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
885
886 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
887
888 static int dwarf2_get_pc_bounds (struct die_info *,
889 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
890
891 static void get_scope_pc_bounds (struct die_info *,
892 CORE_ADDR *, CORE_ADDR *,
893 struct dwarf2_cu *);
894
895 static void dwarf2_add_field (struct field_info *, struct die_info *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_attach_fields_to_type (struct field_info *,
899 struct type *, struct dwarf2_cu *);
900
901 static void dwarf2_add_member_fn (struct field_info *,
902 struct die_info *, struct type *,
903 struct dwarf2_cu *);
904
905 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
906 struct type *, struct dwarf2_cu *);
907
908 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
909
910 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
911
912 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
913
914 static void read_common_block (struct die_info *, struct dwarf2_cu *);
915
916 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
917
918 static const char *namespace_name (struct die_info *die,
919 int *is_anonymous, struct dwarf2_cu *);
920
921 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
922
923 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
924
925 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
926
927 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
928
929 static void read_array_type (struct die_info *, struct dwarf2_cu *);
930
931 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
932 struct dwarf2_cu *);
933
934 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
935
936 static void read_tag_ptr_to_member_type (struct die_info *,
937 struct dwarf2_cu *);
938
939 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
940
941 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
942
943 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
944
945 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
946
947 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
948
949 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
950
951 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
952 struct dwarf2_cu *,
953 char **new_info_ptr,
954 struct die_info *parent);
955
956 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
957 struct dwarf2_cu *,
958 char **new_info_ptr,
959 struct die_info *parent);
960
961 static void free_die_list (struct die_info *);
962
963 static void process_die (struct die_info *, struct dwarf2_cu *);
964
965 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
966
967 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
968
969 static struct die_info *dwarf2_extension (struct die_info *die,
970 struct dwarf2_cu *);
971
972 static char *dwarf_tag_name (unsigned int);
973
974 static char *dwarf_attr_name (unsigned int);
975
976 static char *dwarf_form_name (unsigned int);
977
978 static char *dwarf_stack_op_name (unsigned int);
979
980 static char *dwarf_bool_name (unsigned int);
981
982 static char *dwarf_type_encoding_name (unsigned int);
983
984 #if 0
985 static char *dwarf_cfi_name (unsigned int);
986
987 struct die_info *copy_die (struct die_info *);
988 #endif
989
990 static struct die_info *sibling_die (struct die_info *);
991
992 static void dump_die (struct die_info *);
993
994 static void dump_die_list (struct die_info *);
995
996 static void store_in_ref_table (unsigned int, struct die_info *,
997 struct dwarf2_cu *);
998
999 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1000 struct dwarf2_cu *);
1001
1002 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1003
1004 static struct die_info *follow_die_ref (struct die_info *,
1005 struct attribute *,
1006 struct dwarf2_cu *);
1007
1008 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1009 struct dwarf2_cu *);
1010
1011 /* memory allocation interface */
1012
1013 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1014
1015 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1016
1017 static struct die_info *dwarf_alloc_die (void);
1018
1019 static void initialize_cu_func_list (struct dwarf2_cu *);
1020
1021 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf_decode_macros (struct line_header *, unsigned int,
1025 char *, bfd *, struct dwarf2_cu *);
1026
1027 static int attr_form_is_block (struct attribute *);
1028
1029 static void
1030 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1031 struct dwarf2_cu *cu);
1032
1033 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1034 struct dwarf2_cu *cu);
1035
1036 static void free_stack_comp_unit (void *);
1037
1038 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1039
1040 static void dummy_obstack_deallocate (void *object, void *data);
1041
1042 static hashval_t partial_die_hash (const void *item);
1043
1044 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1045
1046 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1047 (unsigned long offset, struct objfile *objfile);
1048
1049 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1050 (unsigned long offset, struct objfile *objfile);
1051
1052 static void free_one_comp_unit (void *);
1053
1054 static void free_cached_comp_units (void *);
1055
1056 static void age_cached_comp_units (void);
1057
1058 static void free_one_cached_comp_unit (void *);
1059
1060 static void set_die_type (struct die_info *, struct type *,
1061 struct dwarf2_cu *);
1062
1063 static void reset_die_and_siblings_types (struct die_info *,
1064 struct dwarf2_cu *);
1065
1066 static void create_all_comp_units (struct objfile *);
1067
1068 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1069
1070 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1071
1072 static void dwarf2_add_dependence (struct dwarf2_cu *,
1073 struct dwarf2_per_cu_data *);
1074
1075 static void dwarf2_mark (struct dwarf2_cu *);
1076
1077 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1078
1079 /* Try to locate the sections we need for DWARF 2 debugging
1080 information and return true if we have enough to do something. */
1081
1082 int
1083 dwarf2_has_info (struct objfile *objfile)
1084 {
1085 struct dwarf2_per_objfile *data;
1086
1087 /* Initialize per-objfile state. */
1088 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1089 memset (data, 0, sizeof (*data));
1090 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1091 dwarf2_per_objfile = data;
1092
1093 dwarf_info_section = 0;
1094 dwarf_abbrev_section = 0;
1095 dwarf_line_section = 0;
1096 dwarf_str_section = 0;
1097 dwarf_macinfo_section = 0;
1098 dwarf_frame_section = 0;
1099 dwarf_eh_frame_section = 0;
1100 dwarf_ranges_section = 0;
1101 dwarf_loc_section = 0;
1102
1103 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1104 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1105 }
1106
1107 /* This function is mapped across the sections and remembers the
1108 offset and size of each of the debugging sections we are interested
1109 in. */
1110
1111 static void
1112 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1113 {
1114 if (strcmp (sectp->name, INFO_SECTION) == 0)
1115 {
1116 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1117 dwarf_info_section = sectp;
1118 }
1119 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1122 dwarf_abbrev_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1127 dwarf_line_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1132 dwarf_pubnames_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1137 dwarf_aranges_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1142 dwarf_loc_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1147 dwarf_macinfo_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, STR_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1152 dwarf_str_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1157 dwarf_frame_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1160 {
1161 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1162 if (aflag & SEC_HAS_CONTENTS)
1163 {
1164 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1165 dwarf_eh_frame_section = sectp;
1166 }
1167 }
1168 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1169 {
1170 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1171 dwarf_ranges_section = sectp;
1172 }
1173 }
1174
1175 /* Build a partial symbol table. */
1176
1177 void
1178 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1179 {
1180 /* We definitely need the .debug_info and .debug_abbrev sections */
1181
1182 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1183 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1184
1185 if (dwarf_line_section)
1186 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1187 else
1188 dwarf2_per_objfile->line_buffer = NULL;
1189
1190 if (dwarf_str_section)
1191 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1192 else
1193 dwarf2_per_objfile->str_buffer = NULL;
1194
1195 if (dwarf_macinfo_section)
1196 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1197 dwarf_macinfo_section);
1198 else
1199 dwarf2_per_objfile->macinfo_buffer = NULL;
1200
1201 if (dwarf_ranges_section)
1202 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1203 else
1204 dwarf2_per_objfile->ranges_buffer = NULL;
1205
1206 if (dwarf_loc_section)
1207 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1208 else
1209 dwarf2_per_objfile->loc_buffer = NULL;
1210
1211 if (mainline
1212 || (objfile->global_psymbols.size == 0
1213 && objfile->static_psymbols.size == 0))
1214 {
1215 init_psymbol_list (objfile, 1024);
1216 }
1217
1218 #if 0
1219 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1220 {
1221 /* Things are significantly easier if we have .debug_aranges and
1222 .debug_pubnames sections */
1223
1224 dwarf2_build_psymtabs_easy (objfile, mainline);
1225 }
1226 else
1227 #endif
1228 /* only test this case for now */
1229 {
1230 /* In this case we have to work a bit harder */
1231 dwarf2_build_psymtabs_hard (objfile, mainline);
1232 }
1233 }
1234
1235 #if 0
1236 /* Build the partial symbol table from the information in the
1237 .debug_pubnames and .debug_aranges sections. */
1238
1239 static void
1240 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1241 {
1242 bfd *abfd = objfile->obfd;
1243 char *aranges_buffer, *pubnames_buffer;
1244 char *aranges_ptr, *pubnames_ptr;
1245 unsigned int entry_length, version, info_offset, info_size;
1246
1247 pubnames_buffer = dwarf2_read_section (objfile,
1248 dwarf_pubnames_section);
1249 pubnames_ptr = pubnames_buffer;
1250 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1251 {
1252 struct comp_unit_head cu_header;
1253 int bytes_read;
1254
1255 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1256 &bytes_read);
1257 pubnames_ptr += bytes_read;
1258 version = read_1_byte (abfd, pubnames_ptr);
1259 pubnames_ptr += 1;
1260 info_offset = read_4_bytes (abfd, pubnames_ptr);
1261 pubnames_ptr += 4;
1262 info_size = read_4_bytes (abfd, pubnames_ptr);
1263 pubnames_ptr += 4;
1264 }
1265
1266 aranges_buffer = dwarf2_read_section (objfile,
1267 dwarf_aranges_section);
1268
1269 }
1270 #endif
1271
1272 /* Read in the comp unit header information from the debug_info at
1273 info_ptr. */
1274
1275 static char *
1276 read_comp_unit_head (struct comp_unit_head *cu_header,
1277 char *info_ptr, bfd *abfd)
1278 {
1279 int signed_addr;
1280 int bytes_read;
1281 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1282 &bytes_read);
1283 info_ptr += bytes_read;
1284 cu_header->version = read_2_bytes (abfd, info_ptr);
1285 info_ptr += 2;
1286 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1287 &bytes_read);
1288 info_ptr += bytes_read;
1289 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1290 info_ptr += 1;
1291 signed_addr = bfd_get_sign_extend_vma (abfd);
1292 if (signed_addr < 0)
1293 internal_error (__FILE__, __LINE__,
1294 _("read_comp_unit_head: dwarf from non elf file"));
1295 cu_header->signed_addr_p = signed_addr;
1296 return info_ptr;
1297 }
1298
1299 static char *
1300 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1301 bfd *abfd)
1302 {
1303 char *beg_of_comp_unit = info_ptr;
1304
1305 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1306
1307 if (header->version != 2)
1308 error (_("Dwarf Error: wrong version in compilation unit header "
1309 "(is %d, should be %d) [in module %s]"), header->version,
1310 2, bfd_get_filename (abfd));
1311
1312 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1313 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1314 "(offset 0x%lx + 6) [in module %s]"),
1315 (long) header->abbrev_offset,
1316 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1317 bfd_get_filename (abfd));
1318
1319 if (beg_of_comp_unit + header->length + header->initial_length_size
1320 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1321 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1322 "(offset 0x%lx + 0) [in module %s]"),
1323 (long) header->length,
1324 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1325 bfd_get_filename (abfd));
1326
1327 return info_ptr;
1328 }
1329
1330 /* Allocate a new partial symtab for file named NAME and mark this new
1331 partial symtab as being an include of PST. */
1332
1333 static void
1334 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1335 struct objfile *objfile)
1336 {
1337 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1338
1339 subpst->section_offsets = pst->section_offsets;
1340 subpst->textlow = 0;
1341 subpst->texthigh = 0;
1342
1343 subpst->dependencies = (struct partial_symtab **)
1344 obstack_alloc (&objfile->objfile_obstack,
1345 sizeof (struct partial_symtab *));
1346 subpst->dependencies[0] = pst;
1347 subpst->number_of_dependencies = 1;
1348
1349 subpst->globals_offset = 0;
1350 subpst->n_global_syms = 0;
1351 subpst->statics_offset = 0;
1352 subpst->n_static_syms = 0;
1353 subpst->symtab = NULL;
1354 subpst->read_symtab = pst->read_symtab;
1355 subpst->readin = 0;
1356
1357 /* No private part is necessary for include psymtabs. This property
1358 can be used to differentiate between such include psymtabs and
1359 the regular ones. */
1360 subpst->read_symtab_private = NULL;
1361 }
1362
1363 /* Read the Line Number Program data and extract the list of files
1364 included by the source file represented by PST. Build an include
1365 partial symtab for each of these included files.
1366
1367 This procedure assumes that there *is* a Line Number Program in
1368 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1369 before calling this procedure. */
1370
1371 static void
1372 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1373 struct partial_die_info *pdi,
1374 struct partial_symtab *pst)
1375 {
1376 struct objfile *objfile = cu->objfile;
1377 bfd *abfd = objfile->obfd;
1378 struct line_header *lh;
1379
1380 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1381 if (lh == NULL)
1382 return; /* No linetable, so no includes. */
1383
1384 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1385
1386 free_line_header (lh);
1387 }
1388
1389
1390 /* Build the partial symbol table by doing a quick pass through the
1391 .debug_info and .debug_abbrev sections. */
1392
1393 static void
1394 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1395 {
1396 /* Instead of reading this into a big buffer, we should probably use
1397 mmap() on architectures that support it. (FIXME) */
1398 bfd *abfd = objfile->obfd;
1399 char *info_ptr;
1400 char *beg_of_comp_unit;
1401 struct partial_die_info comp_unit_die;
1402 struct partial_symtab *pst;
1403 struct cleanup *back_to;
1404 CORE_ADDR lowpc, highpc, baseaddr;
1405
1406 info_ptr = dwarf2_per_objfile->info_buffer;
1407
1408 /* Any cached compilation units will be linked by the per-objfile
1409 read_in_chain. Make sure to free them when we're done. */
1410 back_to = make_cleanup (free_cached_comp_units, NULL);
1411
1412 create_all_comp_units (objfile);
1413
1414 /* Since the objects we're extracting from .debug_info vary in
1415 length, only the individual functions to extract them (like
1416 read_comp_unit_head and load_partial_die) can really know whether
1417 the buffer is large enough to hold another complete object.
1418
1419 At the moment, they don't actually check that. If .debug_info
1420 holds just one extra byte after the last compilation unit's dies,
1421 then read_comp_unit_head will happily read off the end of the
1422 buffer. read_partial_die is similarly casual. Those functions
1423 should be fixed.
1424
1425 For this loop condition, simply checking whether there's any data
1426 left at all should be sufficient. */
1427 while (info_ptr < (dwarf2_per_objfile->info_buffer
1428 + dwarf2_per_objfile->info_size))
1429 {
1430 struct cleanup *back_to_inner;
1431 struct dwarf2_cu cu;
1432 struct abbrev_info *abbrev;
1433 unsigned int bytes_read;
1434 struct dwarf2_per_cu_data *this_cu;
1435
1436 beg_of_comp_unit = info_ptr;
1437
1438 memset (&cu, 0, sizeof (cu));
1439
1440 obstack_init (&cu.comp_unit_obstack);
1441
1442 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1443
1444 cu.objfile = objfile;
1445 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1446
1447 /* Complete the cu_header */
1448 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1449 cu.header.first_die_ptr = info_ptr;
1450 cu.header.cu_head_ptr = beg_of_comp_unit;
1451
1452 cu.list_in_scope = &file_symbols;
1453
1454 /* Read the abbrevs for this compilation unit into a table */
1455 dwarf2_read_abbrevs (abfd, &cu);
1456 make_cleanup (dwarf2_free_abbrev_table, &cu);
1457
1458 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1459
1460 /* Read the compilation unit die */
1461 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1462 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1463 abfd, info_ptr, &cu);
1464
1465 /* Set the language we're debugging */
1466 set_cu_language (comp_unit_die.language, &cu);
1467
1468 /* Allocate a new partial symbol table structure */
1469 pst = start_psymtab_common (objfile, objfile->section_offsets,
1470 comp_unit_die.name ? comp_unit_die.name : "",
1471 comp_unit_die.lowpc,
1472 objfile->global_psymbols.next,
1473 objfile->static_psymbols.next);
1474
1475 if (comp_unit_die.dirname)
1476 pst->dirname = xstrdup (comp_unit_die.dirname);
1477
1478 pst->read_symtab_private = (char *) this_cu;
1479
1480 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1481
1482 /* Store the function that reads in the rest of the symbol table */
1483 pst->read_symtab = dwarf2_psymtab_to_symtab;
1484
1485 /* If this compilation unit was already read in, free the
1486 cached copy in order to read it in again. This is
1487 necessary because we skipped some symbols when we first
1488 read in the compilation unit (see load_partial_dies).
1489 This problem could be avoided, but the benefit is
1490 unclear. */
1491 if (this_cu->cu != NULL)
1492 free_one_cached_comp_unit (this_cu->cu);
1493
1494 cu.per_cu = this_cu;
1495
1496 /* Note that this is a pointer to our stack frame, being
1497 added to a global data structure. It will be cleaned up
1498 in free_stack_comp_unit when we finish with this
1499 compilation unit. */
1500 this_cu->cu = &cu;
1501
1502 this_cu->psymtab = pst;
1503
1504 /* Check if comp unit has_children.
1505 If so, read the rest of the partial symbols from this comp unit.
1506 If not, there's no more debug_info for this comp unit. */
1507 if (comp_unit_die.has_children)
1508 {
1509 struct partial_die_info *first_die;
1510
1511 lowpc = ((CORE_ADDR) -1);
1512 highpc = ((CORE_ADDR) 0);
1513
1514 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1515
1516 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1517
1518 /* If we didn't find a lowpc, set it to highpc to avoid
1519 complaints from `maint check'. */
1520 if (lowpc == ((CORE_ADDR) -1))
1521 lowpc = highpc;
1522
1523 /* If the compilation unit didn't have an explicit address range,
1524 then use the information extracted from its child dies. */
1525 if (! comp_unit_die.has_pc_info)
1526 {
1527 comp_unit_die.lowpc = lowpc;
1528 comp_unit_die.highpc = highpc;
1529 }
1530 }
1531 pst->textlow = comp_unit_die.lowpc + baseaddr;
1532 pst->texthigh = comp_unit_die.highpc + baseaddr;
1533
1534 pst->n_global_syms = objfile->global_psymbols.next -
1535 (objfile->global_psymbols.list + pst->globals_offset);
1536 pst->n_static_syms = objfile->static_psymbols.next -
1537 (objfile->static_psymbols.list + pst->statics_offset);
1538 sort_pst_symbols (pst);
1539
1540 /* If there is already a psymtab or symtab for a file of this
1541 name, remove it. (If there is a symtab, more drastic things
1542 also happen.) This happens in VxWorks. */
1543 free_named_symtabs (pst->filename);
1544
1545 info_ptr = beg_of_comp_unit + cu.header.length
1546 + cu.header.initial_length_size;
1547
1548 if (comp_unit_die.has_stmt_list)
1549 {
1550 /* Get the list of files included in the current compilation unit,
1551 and build a psymtab for each of them. */
1552 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1553 }
1554
1555 do_cleanups (back_to_inner);
1556 }
1557 do_cleanups (back_to);
1558 }
1559
1560 /* Load the DIEs for a secondary CU into memory. */
1561
1562 static void
1563 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1564 {
1565 bfd *abfd = objfile->obfd;
1566 char *info_ptr, *beg_of_comp_unit;
1567 struct partial_die_info comp_unit_die;
1568 struct dwarf2_cu *cu;
1569 struct abbrev_info *abbrev;
1570 unsigned int bytes_read;
1571 struct cleanup *back_to;
1572
1573 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1574 beg_of_comp_unit = info_ptr;
1575
1576 cu = xmalloc (sizeof (struct dwarf2_cu));
1577 memset (cu, 0, sizeof (struct dwarf2_cu));
1578
1579 obstack_init (&cu->comp_unit_obstack);
1580
1581 cu->objfile = objfile;
1582 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1583
1584 /* Complete the cu_header. */
1585 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1586 cu->header.first_die_ptr = info_ptr;
1587 cu->header.cu_head_ptr = beg_of_comp_unit;
1588
1589 /* Read the abbrevs for this compilation unit into a table. */
1590 dwarf2_read_abbrevs (abfd, cu);
1591 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1592
1593 /* Read the compilation unit die. */
1594 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1595 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1596 abfd, info_ptr, cu);
1597
1598 /* Set the language we're debugging. */
1599 set_cu_language (comp_unit_die.language, cu);
1600
1601 /* Link this compilation unit into the compilation unit tree. */
1602 this_cu->cu = cu;
1603 cu->per_cu = this_cu;
1604
1605 /* Check if comp unit has_children.
1606 If so, read the rest of the partial symbols from this comp unit.
1607 If not, there's no more debug_info for this comp unit. */
1608 if (comp_unit_die.has_children)
1609 load_partial_dies (abfd, info_ptr, 0, cu);
1610
1611 do_cleanups (back_to);
1612 }
1613
1614 /* Create a list of all compilation units in OBJFILE. We do this only
1615 if an inter-comp-unit reference is found; presumably if there is one,
1616 there will be many, and one will occur early in the .debug_info section.
1617 So there's no point in building this list incrementally. */
1618
1619 static void
1620 create_all_comp_units (struct objfile *objfile)
1621 {
1622 int n_allocated;
1623 int n_comp_units;
1624 struct dwarf2_per_cu_data **all_comp_units;
1625 char *info_ptr = dwarf2_per_objfile->info_buffer;
1626
1627 n_comp_units = 0;
1628 n_allocated = 10;
1629 all_comp_units = xmalloc (n_allocated
1630 * sizeof (struct dwarf2_per_cu_data *));
1631
1632 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1633 {
1634 struct comp_unit_head cu_header;
1635 char *beg_of_comp_unit;
1636 struct dwarf2_per_cu_data *this_cu;
1637 unsigned long offset;
1638 int bytes_read;
1639
1640 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1641
1642 /* Read just enough information to find out where the next
1643 compilation unit is. */
1644 cu_header.initial_length_size = 0;
1645 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1646 &cu_header, &bytes_read);
1647
1648 /* Save the compilation unit for later lookup. */
1649 this_cu = obstack_alloc (&objfile->objfile_obstack,
1650 sizeof (struct dwarf2_per_cu_data));
1651 memset (this_cu, 0, sizeof (*this_cu));
1652 this_cu->offset = offset;
1653 this_cu->length = cu_header.length + cu_header.initial_length_size;
1654
1655 if (n_comp_units == n_allocated)
1656 {
1657 n_allocated *= 2;
1658 all_comp_units = xrealloc (all_comp_units,
1659 n_allocated
1660 * sizeof (struct dwarf2_per_cu_data *));
1661 }
1662 all_comp_units[n_comp_units++] = this_cu;
1663
1664 info_ptr = info_ptr + this_cu->length;
1665 }
1666
1667 dwarf2_per_objfile->all_comp_units
1668 = obstack_alloc (&objfile->objfile_obstack,
1669 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1670 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1671 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1672 xfree (all_comp_units);
1673 dwarf2_per_objfile->n_comp_units = n_comp_units;
1674 }
1675
1676 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1677 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1678 in CU. */
1679
1680 static void
1681 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1682 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1683 {
1684 struct objfile *objfile = cu->objfile;
1685 bfd *abfd = objfile->obfd;
1686 struct partial_die_info *pdi;
1687
1688 /* Now, march along the PDI's, descending into ones which have
1689 interesting children but skipping the children of the other ones,
1690 until we reach the end of the compilation unit. */
1691
1692 pdi = first_die;
1693
1694 while (pdi != NULL)
1695 {
1696 fixup_partial_die (pdi, cu);
1697
1698 /* Anonymous namespaces have no name but have interesting
1699 children, so we need to look at them. Ditto for anonymous
1700 enums. */
1701
1702 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1703 || pdi->tag == DW_TAG_enumeration_type)
1704 {
1705 switch (pdi->tag)
1706 {
1707 case DW_TAG_subprogram:
1708 if (pdi->has_pc_info)
1709 {
1710 if (pdi->lowpc < *lowpc)
1711 {
1712 *lowpc = pdi->lowpc;
1713 }
1714 if (pdi->highpc > *highpc)
1715 {
1716 *highpc = pdi->highpc;
1717 }
1718 if (!pdi->is_declaration)
1719 {
1720 add_partial_symbol (pdi, cu);
1721 }
1722 }
1723 break;
1724 case DW_TAG_variable:
1725 case DW_TAG_typedef:
1726 case DW_TAG_union_type:
1727 if (!pdi->is_declaration)
1728 {
1729 add_partial_symbol (pdi, cu);
1730 }
1731 break;
1732 case DW_TAG_class_type:
1733 case DW_TAG_structure_type:
1734 if (!pdi->is_declaration)
1735 {
1736 add_partial_symbol (pdi, cu);
1737 }
1738 break;
1739 case DW_TAG_enumeration_type:
1740 if (!pdi->is_declaration)
1741 add_partial_enumeration (pdi, cu);
1742 break;
1743 case DW_TAG_base_type:
1744 case DW_TAG_subrange_type:
1745 /* File scope base type definitions are added to the partial
1746 symbol table. */
1747 add_partial_symbol (pdi, cu);
1748 break;
1749 case DW_TAG_namespace:
1750 add_partial_namespace (pdi, lowpc, highpc, cu);
1751 break;
1752 default:
1753 break;
1754 }
1755 }
1756
1757 /* If the die has a sibling, skip to the sibling. */
1758
1759 pdi = pdi->die_sibling;
1760 }
1761 }
1762
1763 /* Functions used to compute the fully scoped name of a partial DIE.
1764
1765 Normally, this is simple. For C++, the parent DIE's fully scoped
1766 name is concatenated with "::" and the partial DIE's name. For
1767 Java, the same thing occurs except that "." is used instead of "::".
1768 Enumerators are an exception; they use the scope of their parent
1769 enumeration type, i.e. the name of the enumeration type is not
1770 prepended to the enumerator.
1771
1772 There are two complexities. One is DW_AT_specification; in this
1773 case "parent" means the parent of the target of the specification,
1774 instead of the direct parent of the DIE. The other is compilers
1775 which do not emit DW_TAG_namespace; in this case we try to guess
1776 the fully qualified name of structure types from their members'
1777 linkage names. This must be done using the DIE's children rather
1778 than the children of any DW_AT_specification target. We only need
1779 to do this for structures at the top level, i.e. if the target of
1780 any DW_AT_specification (if any; otherwise the DIE itself) does not
1781 have a parent. */
1782
1783 /* Compute the scope prefix associated with PDI's parent, in
1784 compilation unit CU. The result will be allocated on CU's
1785 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1786 field. NULL is returned if no prefix is necessary. */
1787 static char *
1788 partial_die_parent_scope (struct partial_die_info *pdi,
1789 struct dwarf2_cu *cu)
1790 {
1791 char *grandparent_scope;
1792 struct partial_die_info *parent, *real_pdi;
1793
1794 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1795 then this means the parent of the specification DIE. */
1796
1797 real_pdi = pdi;
1798 while (real_pdi->has_specification)
1799 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1800
1801 parent = real_pdi->die_parent;
1802 if (parent == NULL)
1803 return NULL;
1804
1805 if (parent->scope_set)
1806 return parent->scope;
1807
1808 fixup_partial_die (parent, cu);
1809
1810 grandparent_scope = partial_die_parent_scope (parent, cu);
1811
1812 if (parent->tag == DW_TAG_namespace
1813 || parent->tag == DW_TAG_structure_type
1814 || parent->tag == DW_TAG_class_type
1815 || parent->tag == DW_TAG_union_type)
1816 {
1817 if (grandparent_scope == NULL)
1818 parent->scope = parent->name;
1819 else
1820 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1821 parent->name, cu);
1822 }
1823 else if (parent->tag == DW_TAG_enumeration_type)
1824 /* Enumerators should not get the name of the enumeration as a prefix. */
1825 parent->scope = grandparent_scope;
1826 else
1827 {
1828 /* FIXME drow/2004-04-01: What should we be doing with
1829 function-local names? For partial symbols, we should probably be
1830 ignoring them. */
1831 complaint (&symfile_complaints,
1832 _("unhandled containing DIE tag %d for DIE at %d"),
1833 parent->tag, pdi->offset);
1834 parent->scope = grandparent_scope;
1835 }
1836
1837 parent->scope_set = 1;
1838 return parent->scope;
1839 }
1840
1841 /* Return the fully scoped name associated with PDI, from compilation unit
1842 CU. The result will be allocated with malloc. */
1843 static char *
1844 partial_die_full_name (struct partial_die_info *pdi,
1845 struct dwarf2_cu *cu)
1846 {
1847 char *parent_scope;
1848
1849 parent_scope = partial_die_parent_scope (pdi, cu);
1850 if (parent_scope == NULL)
1851 return NULL;
1852 else
1853 return typename_concat (NULL, parent_scope, pdi->name, cu);
1854 }
1855
1856 static void
1857 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1858 {
1859 struct objfile *objfile = cu->objfile;
1860 CORE_ADDR addr = 0;
1861 char *actual_name;
1862 const char *my_prefix;
1863 const struct partial_symbol *psym = NULL;
1864 CORE_ADDR baseaddr;
1865 int built_actual_name = 0;
1866
1867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1868
1869 actual_name = NULL;
1870
1871 if (pdi_needs_namespace (pdi->tag))
1872 {
1873 actual_name = partial_die_full_name (pdi, cu);
1874 if (actual_name)
1875 built_actual_name = 1;
1876 }
1877
1878 if (actual_name == NULL)
1879 actual_name = pdi->name;
1880
1881 switch (pdi->tag)
1882 {
1883 case DW_TAG_subprogram:
1884 if (pdi->is_external)
1885 {
1886 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1887 mst_text, objfile); */
1888 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1889 VAR_DOMAIN, LOC_BLOCK,
1890 &objfile->global_psymbols,
1891 0, pdi->lowpc + baseaddr,
1892 cu->language, objfile);
1893 }
1894 else
1895 {
1896 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1897 mst_file_text, objfile); */
1898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1899 VAR_DOMAIN, LOC_BLOCK,
1900 &objfile->static_psymbols,
1901 0, pdi->lowpc + baseaddr,
1902 cu->language, objfile);
1903 }
1904 break;
1905 case DW_TAG_variable:
1906 if (pdi->is_external)
1907 {
1908 /* Global Variable.
1909 Don't enter into the minimal symbol tables as there is
1910 a minimal symbol table entry from the ELF symbols already.
1911 Enter into partial symbol table if it has a location
1912 descriptor or a type.
1913 If the location descriptor is missing, new_symbol will create
1914 a LOC_UNRESOLVED symbol, the address of the variable will then
1915 be determined from the minimal symbol table whenever the variable
1916 is referenced.
1917 The address for the partial symbol table entry is not
1918 used by GDB, but it comes in handy for debugging partial symbol
1919 table building. */
1920
1921 if (pdi->locdesc)
1922 addr = decode_locdesc (pdi->locdesc, cu);
1923 if (pdi->locdesc || pdi->has_type)
1924 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1925 VAR_DOMAIN, LOC_STATIC,
1926 &objfile->global_psymbols,
1927 0, addr + baseaddr,
1928 cu->language, objfile);
1929 }
1930 else
1931 {
1932 /* Static Variable. Skip symbols without location descriptors. */
1933 if (pdi->locdesc == NULL)
1934 return;
1935 addr = decode_locdesc (pdi->locdesc, cu);
1936 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1937 mst_file_data, objfile); */
1938 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1939 VAR_DOMAIN, LOC_STATIC,
1940 &objfile->static_psymbols,
1941 0, addr + baseaddr,
1942 cu->language, objfile);
1943 }
1944 break;
1945 case DW_TAG_typedef:
1946 case DW_TAG_base_type:
1947 case DW_TAG_subrange_type:
1948 add_psymbol_to_list (actual_name, strlen (actual_name),
1949 VAR_DOMAIN, LOC_TYPEDEF,
1950 &objfile->static_psymbols,
1951 0, (CORE_ADDR) 0, cu->language, objfile);
1952 break;
1953 case DW_TAG_namespace:
1954 add_psymbol_to_list (actual_name, strlen (actual_name),
1955 VAR_DOMAIN, LOC_TYPEDEF,
1956 &objfile->global_psymbols,
1957 0, (CORE_ADDR) 0, cu->language, objfile);
1958 break;
1959 case DW_TAG_class_type:
1960 case DW_TAG_structure_type:
1961 case DW_TAG_union_type:
1962 case DW_TAG_enumeration_type:
1963 /* Skip aggregate types without children, these are external
1964 references. */
1965 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1966 static vs. global. */
1967 if (pdi->has_children == 0)
1968 return;
1969 add_psymbol_to_list (actual_name, strlen (actual_name),
1970 STRUCT_DOMAIN, LOC_TYPEDEF,
1971 (cu->language == language_cplus
1972 || cu->language == language_java)
1973 ? &objfile->global_psymbols
1974 : &objfile->static_psymbols,
1975 0, (CORE_ADDR) 0, cu->language, objfile);
1976
1977 if (cu->language == language_cplus
1978 || cu->language == language_java)
1979 {
1980 /* For C++ and Java, these implicitly act as typedefs as well. */
1981 add_psymbol_to_list (actual_name, strlen (actual_name),
1982 VAR_DOMAIN, LOC_TYPEDEF,
1983 &objfile->global_psymbols,
1984 0, (CORE_ADDR) 0, cu->language, objfile);
1985 }
1986 break;
1987 case DW_TAG_enumerator:
1988 add_psymbol_to_list (actual_name, strlen (actual_name),
1989 VAR_DOMAIN, LOC_CONST,
1990 (cu->language == language_cplus
1991 || cu->language == language_java)
1992 ? &objfile->global_psymbols
1993 : &objfile->static_psymbols,
1994 0, (CORE_ADDR) 0, cu->language, objfile);
1995 break;
1996 default:
1997 break;
1998 }
1999
2000 /* Check to see if we should scan the name for possible namespace
2001 info. Only do this if this is C++, if we don't have namespace
2002 debugging info in the file, if the psym is of an appropriate type
2003 (otherwise we'll have psym == NULL), and if we actually had a
2004 mangled name to begin with. */
2005
2006 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2007 cases which do not set PSYM above? */
2008
2009 if (cu->language == language_cplus
2010 && cu->has_namespace_info == 0
2011 && psym != NULL
2012 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2013 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2014 objfile);
2015
2016 if (built_actual_name)
2017 xfree (actual_name);
2018 }
2019
2020 /* Determine whether a die of type TAG living in a C++ class or
2021 namespace needs to have the name of the scope prepended to the
2022 name listed in the die. */
2023
2024 static int
2025 pdi_needs_namespace (enum dwarf_tag tag)
2026 {
2027 switch (tag)
2028 {
2029 case DW_TAG_namespace:
2030 case DW_TAG_typedef:
2031 case DW_TAG_class_type:
2032 case DW_TAG_structure_type:
2033 case DW_TAG_union_type:
2034 case DW_TAG_enumeration_type:
2035 case DW_TAG_enumerator:
2036 return 1;
2037 default:
2038 return 0;
2039 }
2040 }
2041
2042 /* Read a partial die corresponding to a namespace; also, add a symbol
2043 corresponding to that namespace to the symbol table. NAMESPACE is
2044 the name of the enclosing namespace. */
2045
2046 static void
2047 add_partial_namespace (struct partial_die_info *pdi,
2048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2049 struct dwarf2_cu *cu)
2050 {
2051 struct objfile *objfile = cu->objfile;
2052
2053 /* Add a symbol for the namespace. */
2054
2055 add_partial_symbol (pdi, cu);
2056
2057 /* Now scan partial symbols in that namespace. */
2058
2059 if (pdi->has_children)
2060 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2061 }
2062
2063 /* See if we can figure out if the class lives in a namespace. We do
2064 this by looking for a member function; its demangled name will
2065 contain namespace info, if there is any. */
2066
2067 static void
2068 guess_structure_name (struct partial_die_info *struct_pdi,
2069 struct dwarf2_cu *cu)
2070 {
2071 if ((cu->language == language_cplus
2072 || cu->language == language_java)
2073 && cu->has_namespace_info == 0
2074 && struct_pdi->has_children)
2075 {
2076 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2077 what template types look like, because the demangler
2078 frequently doesn't give the same name as the debug info. We
2079 could fix this by only using the demangled name to get the
2080 prefix (but see comment in read_structure_type). */
2081
2082 struct partial_die_info *child_pdi = struct_pdi->die_child;
2083 struct partial_die_info *real_pdi;
2084
2085 /* If this DIE (this DIE's specification, if any) has a parent, then
2086 we should not do this. We'll prepend the parent's fully qualified
2087 name when we create the partial symbol. */
2088
2089 real_pdi = struct_pdi;
2090 while (real_pdi->has_specification)
2091 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2092
2093 if (real_pdi->die_parent != NULL)
2094 return;
2095
2096 while (child_pdi != NULL)
2097 {
2098 if (child_pdi->tag == DW_TAG_subprogram)
2099 {
2100 char *actual_class_name
2101 = language_class_name_from_physname (cu->language_defn,
2102 child_pdi->name);
2103 if (actual_class_name != NULL)
2104 {
2105 struct_pdi->name
2106 = obsavestring (actual_class_name,
2107 strlen (actual_class_name),
2108 &cu->comp_unit_obstack);
2109 xfree (actual_class_name);
2110 }
2111 break;
2112 }
2113
2114 child_pdi = child_pdi->die_sibling;
2115 }
2116 }
2117 }
2118
2119 /* Read a partial die corresponding to an enumeration type. */
2120
2121 static void
2122 add_partial_enumeration (struct partial_die_info *enum_pdi,
2123 struct dwarf2_cu *cu)
2124 {
2125 struct objfile *objfile = cu->objfile;
2126 bfd *abfd = objfile->obfd;
2127 struct partial_die_info *pdi;
2128
2129 if (enum_pdi->name != NULL)
2130 add_partial_symbol (enum_pdi, cu);
2131
2132 pdi = enum_pdi->die_child;
2133 while (pdi)
2134 {
2135 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2136 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2137 else
2138 add_partial_symbol (pdi, cu);
2139 pdi = pdi->die_sibling;
2140 }
2141 }
2142
2143 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2144 Return the corresponding abbrev, or NULL if the number is zero (indicating
2145 an empty DIE). In either case *BYTES_READ will be set to the length of
2146 the initial number. */
2147
2148 static struct abbrev_info *
2149 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2150 {
2151 bfd *abfd = cu->objfile->obfd;
2152 unsigned int abbrev_number;
2153 struct abbrev_info *abbrev;
2154
2155 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2156
2157 if (abbrev_number == 0)
2158 return NULL;
2159
2160 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2161 if (!abbrev)
2162 {
2163 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2164 bfd_get_filename (abfd));
2165 }
2166
2167 return abbrev;
2168 }
2169
2170 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2171 pointer to the end of a series of DIEs, terminated by an empty
2172 DIE. Any children of the skipped DIEs will also be skipped. */
2173
2174 static char *
2175 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2176 {
2177 struct abbrev_info *abbrev;
2178 unsigned int bytes_read;
2179
2180 while (1)
2181 {
2182 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2183 if (abbrev == NULL)
2184 return info_ptr + bytes_read;
2185 else
2186 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2187 }
2188 }
2189
2190 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2191 should point just after the initial uleb128 of a DIE, and the
2192 abbrev corresponding to that skipped uleb128 should be passed in
2193 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2194 children. */
2195
2196 static char *
2197 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2198 struct dwarf2_cu *cu)
2199 {
2200 unsigned int bytes_read;
2201 struct attribute attr;
2202 bfd *abfd = cu->objfile->obfd;
2203 unsigned int form, i;
2204
2205 for (i = 0; i < abbrev->num_attrs; i++)
2206 {
2207 /* The only abbrev we care about is DW_AT_sibling. */
2208 if (abbrev->attrs[i].name == DW_AT_sibling)
2209 {
2210 read_attribute (&attr, &abbrev->attrs[i],
2211 abfd, info_ptr, cu);
2212 if (attr.form == DW_FORM_ref_addr)
2213 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2214 else
2215 return dwarf2_per_objfile->info_buffer
2216 + dwarf2_get_ref_die_offset (&attr, cu);
2217 }
2218
2219 /* If it isn't DW_AT_sibling, skip this attribute. */
2220 form = abbrev->attrs[i].form;
2221 skip_attribute:
2222 switch (form)
2223 {
2224 case DW_FORM_addr:
2225 case DW_FORM_ref_addr:
2226 info_ptr += cu->header.addr_size;
2227 break;
2228 case DW_FORM_data1:
2229 case DW_FORM_ref1:
2230 case DW_FORM_flag:
2231 info_ptr += 1;
2232 break;
2233 case DW_FORM_data2:
2234 case DW_FORM_ref2:
2235 info_ptr += 2;
2236 break;
2237 case DW_FORM_data4:
2238 case DW_FORM_ref4:
2239 info_ptr += 4;
2240 break;
2241 case DW_FORM_data8:
2242 case DW_FORM_ref8:
2243 info_ptr += 8;
2244 break;
2245 case DW_FORM_string:
2246 read_string (abfd, info_ptr, &bytes_read);
2247 info_ptr += bytes_read;
2248 break;
2249 case DW_FORM_strp:
2250 info_ptr += cu->header.offset_size;
2251 break;
2252 case DW_FORM_block:
2253 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2254 info_ptr += bytes_read;
2255 break;
2256 case DW_FORM_block1:
2257 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2258 break;
2259 case DW_FORM_block2:
2260 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2261 break;
2262 case DW_FORM_block4:
2263 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2264 break;
2265 case DW_FORM_sdata:
2266 case DW_FORM_udata:
2267 case DW_FORM_ref_udata:
2268 info_ptr = skip_leb128 (abfd, info_ptr);
2269 break;
2270 case DW_FORM_indirect:
2271 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2272 info_ptr += bytes_read;
2273 /* We need to continue parsing from here, so just go back to
2274 the top. */
2275 goto skip_attribute;
2276
2277 default:
2278 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2279 dwarf_form_name (form),
2280 bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 if (abbrev->has_children)
2285 return skip_children (info_ptr, cu);
2286 else
2287 return info_ptr;
2288 }
2289
2290 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2291 the next DIE after ORIG_PDI. */
2292
2293 static char *
2294 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2295 bfd *abfd, struct dwarf2_cu *cu)
2296 {
2297 /* Do we know the sibling already? */
2298
2299 if (orig_pdi->sibling)
2300 return orig_pdi->sibling;
2301
2302 /* Are there any children to deal with? */
2303
2304 if (!orig_pdi->has_children)
2305 return info_ptr;
2306
2307 /* Skip the children the long way. */
2308
2309 return skip_children (info_ptr, cu);
2310 }
2311
2312 /* Expand this partial symbol table into a full symbol table. */
2313
2314 static void
2315 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2316 {
2317 /* FIXME: This is barely more than a stub. */
2318 if (pst != NULL)
2319 {
2320 if (pst->readin)
2321 {
2322 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2323 }
2324 else
2325 {
2326 if (info_verbose)
2327 {
2328 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2329 gdb_flush (gdb_stdout);
2330 }
2331
2332 /* Restore our global data. */
2333 dwarf2_per_objfile = objfile_data (pst->objfile,
2334 dwarf2_objfile_data_key);
2335
2336 psymtab_to_symtab_1 (pst);
2337
2338 /* Finish up the debug error message. */
2339 if (info_verbose)
2340 printf_filtered (_("done.\n"));
2341 }
2342 }
2343 }
2344
2345 /* Add PER_CU to the queue. */
2346
2347 static void
2348 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2349 {
2350 struct dwarf2_queue_item *item;
2351
2352 per_cu->queued = 1;
2353 item = xmalloc (sizeof (*item));
2354 item->per_cu = per_cu;
2355 item->next = NULL;
2356
2357 if (dwarf2_queue == NULL)
2358 dwarf2_queue = item;
2359 else
2360 dwarf2_queue_tail->next = item;
2361
2362 dwarf2_queue_tail = item;
2363 }
2364
2365 /* Process the queue. */
2366
2367 static void
2368 process_queue (struct objfile *objfile)
2369 {
2370 struct dwarf2_queue_item *item, *next_item;
2371
2372 /* Initially, there is just one item on the queue. Load its DIEs,
2373 and the DIEs of any other compilation units it requires,
2374 transitively. */
2375
2376 for (item = dwarf2_queue; item != NULL; item = item->next)
2377 {
2378 /* Read in this compilation unit. This may add new items to
2379 the end of the queue. */
2380 load_full_comp_unit (item->per_cu);
2381
2382 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2383 dwarf2_per_objfile->read_in_chain = item->per_cu;
2384
2385 /* If this compilation unit has already had full symbols created,
2386 reset the TYPE fields in each DIE. */
2387 if (item->per_cu->psymtab->readin)
2388 reset_die_and_siblings_types (item->per_cu->cu->dies,
2389 item->per_cu->cu);
2390 }
2391
2392 /* Now everything left on the queue needs to be read in. Process
2393 them, one at a time, removing from the queue as we finish. */
2394 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2395 {
2396 if (!item->per_cu->psymtab->readin)
2397 process_full_comp_unit (item->per_cu);
2398
2399 item->per_cu->queued = 0;
2400 next_item = item->next;
2401 xfree (item);
2402 }
2403
2404 dwarf2_queue_tail = NULL;
2405 }
2406
2407 /* Free all allocated queue entries. This function only releases anything if
2408 an error was thrown; if the queue was processed then it would have been
2409 freed as we went along. */
2410
2411 static void
2412 dwarf2_release_queue (void *dummy)
2413 {
2414 struct dwarf2_queue_item *item, *last;
2415
2416 item = dwarf2_queue;
2417 while (item)
2418 {
2419 /* Anything still marked queued is likely to be in an
2420 inconsistent state, so discard it. */
2421 if (item->per_cu->queued)
2422 {
2423 if (item->per_cu->cu != NULL)
2424 free_one_cached_comp_unit (item->per_cu->cu);
2425 item->per_cu->queued = 0;
2426 }
2427
2428 last = item;
2429 item = item->next;
2430 xfree (last);
2431 }
2432
2433 dwarf2_queue = dwarf2_queue_tail = NULL;
2434 }
2435
2436 /* Read in full symbols for PST, and anything it depends on. */
2437
2438 static void
2439 psymtab_to_symtab_1 (struct partial_symtab *pst)
2440 {
2441 struct dwarf2_per_cu_data *per_cu;
2442 struct cleanup *back_to;
2443 int i;
2444
2445 for (i = 0; i < pst->number_of_dependencies; i++)
2446 if (!pst->dependencies[i]->readin)
2447 {
2448 /* Inform about additional files that need to be read in. */
2449 if (info_verbose)
2450 {
2451 /* FIXME: i18n: Need to make this a single string. */
2452 fputs_filtered (" ", gdb_stdout);
2453 wrap_here ("");
2454 fputs_filtered ("and ", gdb_stdout);
2455 wrap_here ("");
2456 printf_filtered ("%s...", pst->dependencies[i]->filename);
2457 wrap_here (""); /* Flush output */
2458 gdb_flush (gdb_stdout);
2459 }
2460 psymtab_to_symtab_1 (pst->dependencies[i]);
2461 }
2462
2463 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2464
2465 if (per_cu == NULL)
2466 {
2467 /* It's an include file, no symbols to read for it.
2468 Everything is in the parent symtab. */
2469 pst->readin = 1;
2470 return;
2471 }
2472
2473 back_to = make_cleanup (dwarf2_release_queue, NULL);
2474
2475 queue_comp_unit (per_cu);
2476
2477 process_queue (pst->objfile);
2478
2479 /* Age the cache, releasing compilation units that have not
2480 been used recently. */
2481 age_cached_comp_units ();
2482
2483 do_cleanups (back_to);
2484 }
2485
2486 /* Load the DIEs associated with PST and PER_CU into memory. */
2487
2488 static struct dwarf2_cu *
2489 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2490 {
2491 struct partial_symtab *pst = per_cu->psymtab;
2492 bfd *abfd = pst->objfile->obfd;
2493 struct dwarf2_cu *cu;
2494 unsigned long offset;
2495 char *info_ptr;
2496 struct cleanup *back_to, *free_cu_cleanup;
2497 struct attribute *attr;
2498 CORE_ADDR baseaddr;
2499
2500 /* Set local variables from the partial symbol table info. */
2501 offset = per_cu->offset;
2502
2503 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2504
2505 cu = xmalloc (sizeof (struct dwarf2_cu));
2506 memset (cu, 0, sizeof (struct dwarf2_cu));
2507
2508 /* If an error occurs while loading, release our storage. */
2509 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2510
2511 cu->objfile = pst->objfile;
2512
2513 /* read in the comp_unit header */
2514 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2515
2516 /* Read the abbrevs for this compilation unit */
2517 dwarf2_read_abbrevs (abfd, cu);
2518 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2519
2520 cu->header.offset = offset;
2521
2522 cu->per_cu = per_cu;
2523 per_cu->cu = cu;
2524
2525 /* We use this obstack for block values in dwarf_alloc_block. */
2526 obstack_init (&cu->comp_unit_obstack);
2527
2528 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2529
2530 /* We try not to read any attributes in this function, because not
2531 all objfiles needed for references have been loaded yet, and symbol
2532 table processing isn't initialized. But we have to set the CU language,
2533 or we won't be able to build types correctly. */
2534 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2535 if (attr)
2536 set_cu_language (DW_UNSND (attr), cu);
2537 else
2538 set_cu_language (language_minimal, cu);
2539
2540 do_cleanups (back_to);
2541
2542 /* We've successfully allocated this compilation unit. Let our caller
2543 clean it up when finished with it. */
2544 discard_cleanups (free_cu_cleanup);
2545
2546 return cu;
2547 }
2548
2549 /* Generate full symbol information for PST and CU, whose DIEs have
2550 already been loaded into memory. */
2551
2552 static void
2553 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2554 {
2555 struct partial_symtab *pst = per_cu->psymtab;
2556 struct dwarf2_cu *cu = per_cu->cu;
2557 struct objfile *objfile = pst->objfile;
2558 bfd *abfd = objfile->obfd;
2559 CORE_ADDR lowpc, highpc;
2560 struct symtab *symtab;
2561 struct cleanup *back_to;
2562 struct attribute *attr;
2563 CORE_ADDR baseaddr;
2564
2565 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2566
2567 /* We're in the global namespace. */
2568 processing_current_prefix = "";
2569
2570 buildsym_init ();
2571 back_to = make_cleanup (really_free_pendings, NULL);
2572
2573 cu->list_in_scope = &file_symbols;
2574
2575 /* Find the base address of the compilation unit for range lists and
2576 location lists. It will normally be specified by DW_AT_low_pc.
2577 In DWARF-3 draft 4, the base address could be overridden by
2578 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2579 compilation units with discontinuous ranges. */
2580
2581 cu->header.base_known = 0;
2582 cu->header.base_address = 0;
2583
2584 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2585 if (attr)
2586 {
2587 cu->header.base_address = DW_ADDR (attr);
2588 cu->header.base_known = 1;
2589 }
2590 else
2591 {
2592 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2593 if (attr)
2594 {
2595 cu->header.base_address = DW_ADDR (attr);
2596 cu->header.base_known = 1;
2597 }
2598 }
2599
2600 /* Do line number decoding in read_file_scope () */
2601 process_die (cu->dies, cu);
2602
2603 /* Some compilers don't define a DW_AT_high_pc attribute for the
2604 compilation unit. If the DW_AT_high_pc is missing, synthesize
2605 it, by scanning the DIE's below the compilation unit. */
2606 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2607
2608 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2609
2610 /* Set symtab language to language from DW_AT_language.
2611 If the compilation is from a C file generated by language preprocessors,
2612 do not set the language if it was already deduced by start_subfile. */
2613 if (symtab != NULL
2614 && !(cu->language == language_c && symtab->language != language_c))
2615 {
2616 symtab->language = cu->language;
2617 }
2618 pst->symtab = symtab;
2619 pst->readin = 1;
2620
2621 do_cleanups (back_to);
2622 }
2623
2624 /* Process a die and its children. */
2625
2626 static void
2627 process_die (struct die_info *die, struct dwarf2_cu *cu)
2628 {
2629 switch (die->tag)
2630 {
2631 case DW_TAG_padding:
2632 break;
2633 case DW_TAG_compile_unit:
2634 read_file_scope (die, cu);
2635 break;
2636 case DW_TAG_subprogram:
2637 read_subroutine_type (die, cu);
2638 read_func_scope (die, cu);
2639 break;
2640 case DW_TAG_inlined_subroutine:
2641 /* FIXME: These are ignored for now.
2642 They could be used to set breakpoints on all inlined instances
2643 of a function and make GDB `next' properly over inlined functions. */
2644 break;
2645 case DW_TAG_lexical_block:
2646 case DW_TAG_try_block:
2647 case DW_TAG_catch_block:
2648 read_lexical_block_scope (die, cu);
2649 break;
2650 case DW_TAG_class_type:
2651 case DW_TAG_structure_type:
2652 case DW_TAG_union_type:
2653 read_structure_type (die, cu);
2654 process_structure_scope (die, cu);
2655 break;
2656 case DW_TAG_enumeration_type:
2657 read_enumeration_type (die, cu);
2658 process_enumeration_scope (die, cu);
2659 break;
2660
2661 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2662 a symbol or process any children. Therefore it doesn't do anything
2663 that won't be done on-demand by read_type_die. */
2664 case DW_TAG_subroutine_type:
2665 read_subroutine_type (die, cu);
2666 break;
2667 case DW_TAG_array_type:
2668 read_array_type (die, cu);
2669 break;
2670 case DW_TAG_pointer_type:
2671 read_tag_pointer_type (die, cu);
2672 break;
2673 case DW_TAG_ptr_to_member_type:
2674 read_tag_ptr_to_member_type (die, cu);
2675 break;
2676 case DW_TAG_reference_type:
2677 read_tag_reference_type (die, cu);
2678 break;
2679 case DW_TAG_string_type:
2680 read_tag_string_type (die, cu);
2681 break;
2682 /* END FIXME */
2683
2684 case DW_TAG_base_type:
2685 read_base_type (die, cu);
2686 /* Add a typedef symbol for the type definition, if it has a
2687 DW_AT_name. */
2688 new_symbol (die, die->type, cu);
2689 break;
2690 case DW_TAG_subrange_type:
2691 read_subrange_type (die, cu);
2692 /* Add a typedef symbol for the type definition, if it has a
2693 DW_AT_name. */
2694 new_symbol (die, die->type, cu);
2695 break;
2696 case DW_TAG_common_block:
2697 read_common_block (die, cu);
2698 break;
2699 case DW_TAG_common_inclusion:
2700 break;
2701 case DW_TAG_namespace:
2702 processing_has_namespace_info = 1;
2703 read_namespace (die, cu);
2704 break;
2705 case DW_TAG_imported_declaration:
2706 case DW_TAG_imported_module:
2707 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2708 information contained in these. DW_TAG_imported_declaration
2709 dies shouldn't have children; DW_TAG_imported_module dies
2710 shouldn't in the C++ case, but conceivably could in the
2711 Fortran case, so we'll have to replace this gdb_assert if
2712 Fortran compilers start generating that info. */
2713 processing_has_namespace_info = 1;
2714 gdb_assert (die->child == NULL);
2715 break;
2716 default:
2717 new_symbol (die, NULL, cu);
2718 break;
2719 }
2720 }
2721
2722 static void
2723 initialize_cu_func_list (struct dwarf2_cu *cu)
2724 {
2725 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2726 }
2727
2728 static void
2729 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2730 {
2731 struct objfile *objfile = cu->objfile;
2732 struct comp_unit_head *cu_header = &cu->header;
2733 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2734 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2735 CORE_ADDR highpc = ((CORE_ADDR) 0);
2736 struct attribute *attr;
2737 char *name = "<unknown>";
2738 char *comp_dir = NULL;
2739 struct die_info *child_die;
2740 bfd *abfd = objfile->obfd;
2741 struct line_header *line_header = 0;
2742 CORE_ADDR baseaddr;
2743
2744 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2745
2746 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2747
2748 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2749 from finish_block. */
2750 if (lowpc == ((CORE_ADDR) -1))
2751 lowpc = highpc;
2752 lowpc += baseaddr;
2753 highpc += baseaddr;
2754
2755 attr = dwarf2_attr (die, DW_AT_name, cu);
2756 if (attr)
2757 {
2758 name = DW_STRING (attr);
2759 }
2760 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2761 if (attr)
2762 {
2763 comp_dir = DW_STRING (attr);
2764 if (comp_dir)
2765 {
2766 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2767 directory, get rid of it. */
2768 char *cp = strchr (comp_dir, ':');
2769
2770 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2771 comp_dir = cp + 1;
2772 }
2773 }
2774
2775 attr = dwarf2_attr (die, DW_AT_language, cu);
2776 if (attr)
2777 {
2778 set_cu_language (DW_UNSND (attr), cu);
2779 }
2780
2781 attr = dwarf2_attr (die, DW_AT_producer, cu);
2782 if (attr)
2783 cu->producer = DW_STRING (attr);
2784
2785 /* We assume that we're processing GCC output. */
2786 processing_gcc_compilation = 2;
2787 #if 0
2788 /* FIXME:Do something here. */
2789 if (dip->at_producer != NULL)
2790 {
2791 handle_producer (dip->at_producer);
2792 }
2793 #endif
2794
2795 /* The compilation unit may be in a different language or objfile,
2796 zero out all remembered fundamental types. */
2797 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2798
2799 start_symtab (name, comp_dir, lowpc);
2800 record_debugformat ("DWARF 2");
2801
2802 initialize_cu_func_list (cu);
2803
2804 /* Process all dies in compilation unit. */
2805 if (die->child != NULL)
2806 {
2807 child_die = die->child;
2808 while (child_die && child_die->tag)
2809 {
2810 process_die (child_die, cu);
2811 child_die = sibling_die (child_die);
2812 }
2813 }
2814
2815 /* Decode line number information if present. */
2816 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2817 if (attr)
2818 {
2819 unsigned int line_offset = DW_UNSND (attr);
2820 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2821 if (line_header)
2822 {
2823 make_cleanup ((make_cleanup_ftype *) free_line_header,
2824 (void *) line_header);
2825 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2826 }
2827 }
2828
2829 /* Decode macro information, if present. Dwarf 2 macro information
2830 refers to information in the line number info statement program
2831 header, so we can only read it if we've read the header
2832 successfully. */
2833 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2834 if (attr && line_header)
2835 {
2836 unsigned int macro_offset = DW_UNSND (attr);
2837 dwarf_decode_macros (line_header, macro_offset,
2838 comp_dir, abfd, cu);
2839 }
2840 do_cleanups (back_to);
2841 }
2842
2843 static void
2844 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2845 struct dwarf2_cu *cu)
2846 {
2847 struct function_range *thisfn;
2848
2849 thisfn = (struct function_range *)
2850 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2851 thisfn->name = name;
2852 thisfn->lowpc = lowpc;
2853 thisfn->highpc = highpc;
2854 thisfn->seen_line = 0;
2855 thisfn->next = NULL;
2856
2857 if (cu->last_fn == NULL)
2858 cu->first_fn = thisfn;
2859 else
2860 cu->last_fn->next = thisfn;
2861
2862 cu->last_fn = thisfn;
2863 }
2864
2865 static void
2866 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2867 {
2868 struct objfile *objfile = cu->objfile;
2869 struct context_stack *new;
2870 CORE_ADDR lowpc;
2871 CORE_ADDR highpc;
2872 struct die_info *child_die;
2873 struct attribute *attr;
2874 char *name;
2875 const char *previous_prefix = processing_current_prefix;
2876 struct cleanup *back_to = NULL;
2877 CORE_ADDR baseaddr;
2878
2879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2880
2881 name = dwarf2_linkage_name (die, cu);
2882
2883 /* Ignore functions with missing or empty names and functions with
2884 missing or invalid low and high pc attributes. */
2885 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2886 return;
2887
2888 if (cu->language == language_cplus
2889 || cu->language == language_java)
2890 {
2891 struct die_info *spec_die = die_specification (die, cu);
2892
2893 /* NOTE: carlton/2004-01-23: We have to be careful in the
2894 presence of DW_AT_specification. For example, with GCC 3.4,
2895 given the code
2896
2897 namespace N {
2898 void foo() {
2899 // Definition of N::foo.
2900 }
2901 }
2902
2903 then we'll have a tree of DIEs like this:
2904
2905 1: DW_TAG_compile_unit
2906 2: DW_TAG_namespace // N
2907 3: DW_TAG_subprogram // declaration of N::foo
2908 4: DW_TAG_subprogram // definition of N::foo
2909 DW_AT_specification // refers to die #3
2910
2911 Thus, when processing die #4, we have to pretend that we're
2912 in the context of its DW_AT_specification, namely the contex
2913 of die #3. */
2914
2915 if (spec_die != NULL)
2916 {
2917 char *specification_prefix = determine_prefix (spec_die, cu);
2918 processing_current_prefix = specification_prefix;
2919 back_to = make_cleanup (xfree, specification_prefix);
2920 }
2921 }
2922
2923 lowpc += baseaddr;
2924 highpc += baseaddr;
2925
2926 /* Record the function range for dwarf_decode_lines. */
2927 add_to_cu_func_list (name, lowpc, highpc, cu);
2928
2929 new = push_context (0, lowpc);
2930 new->name = new_symbol (die, die->type, cu);
2931
2932 /* If there is a location expression for DW_AT_frame_base, record
2933 it. */
2934 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2935 if (attr)
2936 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2937 expression is being recorded directly in the function's symbol
2938 and not in a separate frame-base object. I guess this hack is
2939 to avoid adding some sort of frame-base adjunct/annex to the
2940 function's symbol :-(. The problem with doing this is that it
2941 results in a function symbol with a location expression that
2942 has nothing to do with the location of the function, ouch! The
2943 relationship should be: a function's symbol has-a frame base; a
2944 frame-base has-a location expression. */
2945 dwarf2_symbol_mark_computed (attr, new->name, cu);
2946
2947 cu->list_in_scope = &local_symbols;
2948
2949 if (die->child != NULL)
2950 {
2951 child_die = die->child;
2952 while (child_die && child_die->tag)
2953 {
2954 process_die (child_die, cu);
2955 child_die = sibling_die (child_die);
2956 }
2957 }
2958
2959 new = pop_context ();
2960 /* Make a block for the local symbols within. */
2961 finish_block (new->name, &local_symbols, new->old_blocks,
2962 lowpc, highpc, objfile);
2963
2964 /* In C++, we can have functions nested inside functions (e.g., when
2965 a function declares a class that has methods). This means that
2966 when we finish processing a function scope, we may need to go
2967 back to building a containing block's symbol lists. */
2968 local_symbols = new->locals;
2969 param_symbols = new->params;
2970
2971 /* If we've finished processing a top-level function, subsequent
2972 symbols go in the file symbol list. */
2973 if (outermost_context_p ())
2974 cu->list_in_scope = &file_symbols;
2975
2976 processing_current_prefix = previous_prefix;
2977 if (back_to != NULL)
2978 do_cleanups (back_to);
2979 }
2980
2981 /* Process all the DIES contained within a lexical block scope. Start
2982 a new scope, process the dies, and then close the scope. */
2983
2984 static void
2985 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2986 {
2987 struct objfile *objfile = cu->objfile;
2988 struct context_stack *new;
2989 CORE_ADDR lowpc, highpc;
2990 struct die_info *child_die;
2991 CORE_ADDR baseaddr;
2992
2993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2994
2995 /* Ignore blocks with missing or invalid low and high pc attributes. */
2996 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2997 as multiple lexical blocks? Handling children in a sane way would
2998 be nasty. Might be easier to properly extend generic blocks to
2999 describe ranges. */
3000 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3001 return;
3002 lowpc += baseaddr;
3003 highpc += baseaddr;
3004
3005 push_context (0, lowpc);
3006 if (die->child != NULL)
3007 {
3008 child_die = die->child;
3009 while (child_die && child_die->tag)
3010 {
3011 process_die (child_die, cu);
3012 child_die = sibling_die (child_die);
3013 }
3014 }
3015 new = pop_context ();
3016
3017 if (local_symbols != NULL)
3018 {
3019 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3020 highpc, objfile);
3021 }
3022 local_symbols = new->locals;
3023 }
3024
3025 /* Get low and high pc attributes from a die. Return 1 if the attributes
3026 are present and valid, otherwise, return 0. Return -1 if the range is
3027 discontinuous, i.e. derived from DW_AT_ranges information. */
3028 static int
3029 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3030 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3031 {
3032 struct objfile *objfile = cu->objfile;
3033 struct comp_unit_head *cu_header = &cu->header;
3034 struct attribute *attr;
3035 bfd *obfd = objfile->obfd;
3036 CORE_ADDR low = 0;
3037 CORE_ADDR high = 0;
3038 int ret = 0;
3039
3040 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3041 if (attr)
3042 {
3043 high = DW_ADDR (attr);
3044 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3045 if (attr)
3046 low = DW_ADDR (attr);
3047 else
3048 /* Found high w/o low attribute. */
3049 return 0;
3050
3051 /* Found consecutive range of addresses. */
3052 ret = 1;
3053 }
3054 else
3055 {
3056 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3057 if (attr != NULL)
3058 {
3059 unsigned int addr_size = cu_header->addr_size;
3060 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3061 /* Value of the DW_AT_ranges attribute is the offset in the
3062 .debug_ranges section. */
3063 unsigned int offset = DW_UNSND (attr);
3064 /* Base address selection entry. */
3065 CORE_ADDR base;
3066 int found_base;
3067 int dummy;
3068 char *buffer;
3069 CORE_ADDR marker;
3070 int low_set;
3071
3072 found_base = cu_header->base_known;
3073 base = cu_header->base_address;
3074
3075 if (offset >= dwarf2_per_objfile->ranges_size)
3076 {
3077 complaint (&symfile_complaints,
3078 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3079 offset);
3080 return 0;
3081 }
3082 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3083
3084 /* Read in the largest possible address. */
3085 marker = read_address (obfd, buffer, cu, &dummy);
3086 if ((marker & mask) == mask)
3087 {
3088 /* If we found the largest possible address, then
3089 read the base address. */
3090 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3091 buffer += 2 * addr_size;
3092 offset += 2 * addr_size;
3093 found_base = 1;
3094 }
3095
3096 low_set = 0;
3097
3098 while (1)
3099 {
3100 CORE_ADDR range_beginning, range_end;
3101
3102 range_beginning = read_address (obfd, buffer, cu, &dummy);
3103 buffer += addr_size;
3104 range_end = read_address (obfd, buffer, cu, &dummy);
3105 buffer += addr_size;
3106 offset += 2 * addr_size;
3107
3108 /* An end of list marker is a pair of zero addresses. */
3109 if (range_beginning == 0 && range_end == 0)
3110 /* Found the end of list entry. */
3111 break;
3112
3113 /* Each base address selection entry is a pair of 2 values.
3114 The first is the largest possible address, the second is
3115 the base address. Check for a base address here. */
3116 if ((range_beginning & mask) == mask)
3117 {
3118 /* If we found the largest possible address, then
3119 read the base address. */
3120 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3121 found_base = 1;
3122 continue;
3123 }
3124
3125 if (!found_base)
3126 {
3127 /* We have no valid base address for the ranges
3128 data. */
3129 complaint (&symfile_complaints,
3130 _("Invalid .debug_ranges data (no base address)"));
3131 return 0;
3132 }
3133
3134 range_beginning += base;
3135 range_end += base;
3136
3137 /* FIXME: This is recording everything as a low-high
3138 segment of consecutive addresses. We should have a
3139 data structure for discontiguous block ranges
3140 instead. */
3141 if (! low_set)
3142 {
3143 low = range_beginning;
3144 high = range_end;
3145 low_set = 1;
3146 }
3147 else
3148 {
3149 if (range_beginning < low)
3150 low = range_beginning;
3151 if (range_end > high)
3152 high = range_end;
3153 }
3154 }
3155
3156 if (! low_set)
3157 /* If the first entry is an end-of-list marker, the range
3158 describes an empty scope, i.e. no instructions. */
3159 return 0;
3160
3161 ret = -1;
3162 }
3163 }
3164
3165 if (high < low)
3166 return 0;
3167
3168 /* When using the GNU linker, .gnu.linkonce. sections are used to
3169 eliminate duplicate copies of functions and vtables and such.
3170 The linker will arbitrarily choose one and discard the others.
3171 The AT_*_pc values for such functions refer to local labels in
3172 these sections. If the section from that file was discarded, the
3173 labels are not in the output, so the relocs get a value of 0.
3174 If this is a discarded function, mark the pc bounds as invalid,
3175 so that GDB will ignore it. */
3176 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3177 return 0;
3178
3179 *lowpc = low;
3180 *highpc = high;
3181 return ret;
3182 }
3183
3184 /* Get the low and high pc's represented by the scope DIE, and store
3185 them in *LOWPC and *HIGHPC. If the correct values can't be
3186 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3187
3188 static void
3189 get_scope_pc_bounds (struct die_info *die,
3190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3191 struct dwarf2_cu *cu)
3192 {
3193 CORE_ADDR best_low = (CORE_ADDR) -1;
3194 CORE_ADDR best_high = (CORE_ADDR) 0;
3195 CORE_ADDR current_low, current_high;
3196
3197 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3198 {
3199 best_low = current_low;
3200 best_high = current_high;
3201 }
3202 else
3203 {
3204 struct die_info *child = die->child;
3205
3206 while (child && child->tag)
3207 {
3208 switch (child->tag) {
3209 case DW_TAG_subprogram:
3210 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3211 {
3212 best_low = min (best_low, current_low);
3213 best_high = max (best_high, current_high);
3214 }
3215 break;
3216 case DW_TAG_namespace:
3217 /* FIXME: carlton/2004-01-16: Should we do this for
3218 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3219 that current GCC's always emit the DIEs corresponding
3220 to definitions of methods of classes as children of a
3221 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3222 the DIEs giving the declarations, which could be
3223 anywhere). But I don't see any reason why the
3224 standards says that they have to be there. */
3225 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3226
3227 if (current_low != ((CORE_ADDR) -1))
3228 {
3229 best_low = min (best_low, current_low);
3230 best_high = max (best_high, current_high);
3231 }
3232 break;
3233 default:
3234 /* Ignore. */
3235 break;
3236 }
3237
3238 child = sibling_die (child);
3239 }
3240 }
3241
3242 *lowpc = best_low;
3243 *highpc = best_high;
3244 }
3245
3246 /* Add an aggregate field to the field list. */
3247
3248 static void
3249 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3250 struct dwarf2_cu *cu)
3251 {
3252 struct objfile *objfile = cu->objfile;
3253 struct nextfield *new_field;
3254 struct attribute *attr;
3255 struct field *fp;
3256 char *fieldname = "";
3257
3258 /* Allocate a new field list entry and link it in. */
3259 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3260 make_cleanup (xfree, new_field);
3261 memset (new_field, 0, sizeof (struct nextfield));
3262 new_field->next = fip->fields;
3263 fip->fields = new_field;
3264 fip->nfields++;
3265
3266 /* Handle accessibility and virtuality of field.
3267 The default accessibility for members is public, the default
3268 accessibility for inheritance is private. */
3269 if (die->tag != DW_TAG_inheritance)
3270 new_field->accessibility = DW_ACCESS_public;
3271 else
3272 new_field->accessibility = DW_ACCESS_private;
3273 new_field->virtuality = DW_VIRTUALITY_none;
3274
3275 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3276 if (attr)
3277 new_field->accessibility = DW_UNSND (attr);
3278 if (new_field->accessibility != DW_ACCESS_public)
3279 fip->non_public_fields = 1;
3280 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3281 if (attr)
3282 new_field->virtuality = DW_UNSND (attr);
3283
3284 fp = &new_field->field;
3285
3286 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3287 {
3288 /* Data member other than a C++ static data member. */
3289
3290 /* Get type of field. */
3291 fp->type = die_type (die, cu);
3292
3293 FIELD_STATIC_KIND (*fp) = 0;
3294
3295 /* Get bit size of field (zero if none). */
3296 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3297 if (attr)
3298 {
3299 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3300 }
3301 else
3302 {
3303 FIELD_BITSIZE (*fp) = 0;
3304 }
3305
3306 /* Get bit offset of field. */
3307 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3308 if (attr)
3309 {
3310 FIELD_BITPOS (*fp) =
3311 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3312 }
3313 else
3314 FIELD_BITPOS (*fp) = 0;
3315 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3316 if (attr)
3317 {
3318 if (BITS_BIG_ENDIAN)
3319 {
3320 /* For big endian bits, the DW_AT_bit_offset gives the
3321 additional bit offset from the MSB of the containing
3322 anonymous object to the MSB of the field. We don't
3323 have to do anything special since we don't need to
3324 know the size of the anonymous object. */
3325 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3326 }
3327 else
3328 {
3329 /* For little endian bits, compute the bit offset to the
3330 MSB of the anonymous object, subtract off the number of
3331 bits from the MSB of the field to the MSB of the
3332 object, and then subtract off the number of bits of
3333 the field itself. The result is the bit offset of
3334 the LSB of the field. */
3335 int anonymous_size;
3336 int bit_offset = DW_UNSND (attr);
3337
3338 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3339 if (attr)
3340 {
3341 /* The size of the anonymous object containing
3342 the bit field is explicit, so use the
3343 indicated size (in bytes). */
3344 anonymous_size = DW_UNSND (attr);
3345 }
3346 else
3347 {
3348 /* The size of the anonymous object containing
3349 the bit field must be inferred from the type
3350 attribute of the data member containing the
3351 bit field. */
3352 anonymous_size = TYPE_LENGTH (fp->type);
3353 }
3354 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3355 - bit_offset - FIELD_BITSIZE (*fp);
3356 }
3357 }
3358
3359 /* Get name of field. */
3360 attr = dwarf2_attr (die, DW_AT_name, cu);
3361 if (attr && DW_STRING (attr))
3362 fieldname = DW_STRING (attr);
3363
3364 /* The name is already allocated along with this objfile, so we don't
3365 need to duplicate it for the type. */
3366 fp->name = fieldname;
3367
3368 /* Change accessibility for artificial fields (e.g. virtual table
3369 pointer or virtual base class pointer) to private. */
3370 if (dwarf2_attr (die, DW_AT_artificial, cu))
3371 {
3372 new_field->accessibility = DW_ACCESS_private;
3373 fip->non_public_fields = 1;
3374 }
3375 }
3376 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3377 {
3378 /* C++ static member. */
3379
3380 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3381 is a declaration, but all versions of G++ as of this writing
3382 (so through at least 3.2.1) incorrectly generate
3383 DW_TAG_variable tags. */
3384
3385 char *physname;
3386
3387 /* Get name of field. */
3388 attr = dwarf2_attr (die, DW_AT_name, cu);
3389 if (attr && DW_STRING (attr))
3390 fieldname = DW_STRING (attr);
3391 else
3392 return;
3393
3394 /* Get physical name. */
3395 physname = dwarf2_linkage_name (die, cu);
3396
3397 /* The name is already allocated along with this objfile, so we don't
3398 need to duplicate it for the type. */
3399 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3400 FIELD_TYPE (*fp) = die_type (die, cu);
3401 FIELD_NAME (*fp) = fieldname;
3402 }
3403 else if (die->tag == DW_TAG_inheritance)
3404 {
3405 /* C++ base class field. */
3406 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3407 if (attr)
3408 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3409 * bits_per_byte);
3410 FIELD_BITSIZE (*fp) = 0;
3411 FIELD_STATIC_KIND (*fp) = 0;
3412 FIELD_TYPE (*fp) = die_type (die, cu);
3413 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3414 fip->nbaseclasses++;
3415 }
3416 }
3417
3418 /* Create the vector of fields, and attach it to the type. */
3419
3420 static void
3421 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3422 struct dwarf2_cu *cu)
3423 {
3424 int nfields = fip->nfields;
3425
3426 /* Record the field count, allocate space for the array of fields,
3427 and create blank accessibility bitfields if necessary. */
3428 TYPE_NFIELDS (type) = nfields;
3429 TYPE_FIELDS (type) = (struct field *)
3430 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3431 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3432
3433 if (fip->non_public_fields)
3434 {
3435 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3436
3437 TYPE_FIELD_PRIVATE_BITS (type) =
3438 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3439 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3440
3441 TYPE_FIELD_PROTECTED_BITS (type) =
3442 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3443 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3444
3445 TYPE_FIELD_IGNORE_BITS (type) =
3446 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3447 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3448 }
3449
3450 /* If the type has baseclasses, allocate and clear a bit vector for
3451 TYPE_FIELD_VIRTUAL_BITS. */
3452 if (fip->nbaseclasses)
3453 {
3454 int num_bytes = B_BYTES (fip->nbaseclasses);
3455 char *pointer;
3456
3457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3458 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3459 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3460 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3461 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3462 }
3463
3464 /* Copy the saved-up fields into the field vector. Start from the head
3465 of the list, adding to the tail of the field array, so that they end
3466 up in the same order in the array in which they were added to the list. */
3467 while (nfields-- > 0)
3468 {
3469 TYPE_FIELD (type, nfields) = fip->fields->field;
3470 switch (fip->fields->accessibility)
3471 {
3472 case DW_ACCESS_private:
3473 SET_TYPE_FIELD_PRIVATE (type, nfields);
3474 break;
3475
3476 case DW_ACCESS_protected:
3477 SET_TYPE_FIELD_PROTECTED (type, nfields);
3478 break;
3479
3480 case DW_ACCESS_public:
3481 break;
3482
3483 default:
3484 /* Unknown accessibility. Complain and treat it as public. */
3485 {
3486 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3487 fip->fields->accessibility);
3488 }
3489 break;
3490 }
3491 if (nfields < fip->nbaseclasses)
3492 {
3493 switch (fip->fields->virtuality)
3494 {
3495 case DW_VIRTUALITY_virtual:
3496 case DW_VIRTUALITY_pure_virtual:
3497 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3498 break;
3499 }
3500 }
3501 fip->fields = fip->fields->next;
3502 }
3503 }
3504
3505 /* Add a member function to the proper fieldlist. */
3506
3507 static void
3508 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3509 struct type *type, struct dwarf2_cu *cu)
3510 {
3511 struct objfile *objfile = cu->objfile;
3512 struct attribute *attr;
3513 struct fnfieldlist *flp;
3514 int i;
3515 struct fn_field *fnp;
3516 char *fieldname;
3517 char *physname;
3518 struct nextfnfield *new_fnfield;
3519
3520 /* Get name of member function. */
3521 attr = dwarf2_attr (die, DW_AT_name, cu);
3522 if (attr && DW_STRING (attr))
3523 fieldname = DW_STRING (attr);
3524 else
3525 return;
3526
3527 /* Get the mangled name. */
3528 physname = dwarf2_linkage_name (die, cu);
3529
3530 /* Look up member function name in fieldlist. */
3531 for (i = 0; i < fip->nfnfields; i++)
3532 {
3533 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3534 break;
3535 }
3536
3537 /* Create new list element if necessary. */
3538 if (i < fip->nfnfields)
3539 flp = &fip->fnfieldlists[i];
3540 else
3541 {
3542 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3543 {
3544 fip->fnfieldlists = (struct fnfieldlist *)
3545 xrealloc (fip->fnfieldlists,
3546 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3547 * sizeof (struct fnfieldlist));
3548 if (fip->nfnfields == 0)
3549 make_cleanup (free_current_contents, &fip->fnfieldlists);
3550 }
3551 flp = &fip->fnfieldlists[fip->nfnfields];
3552 flp->name = fieldname;
3553 flp->length = 0;
3554 flp->head = NULL;
3555 fip->nfnfields++;
3556 }
3557
3558 /* Create a new member function field and chain it to the field list
3559 entry. */
3560 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3561 make_cleanup (xfree, new_fnfield);
3562 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3563 new_fnfield->next = flp->head;
3564 flp->head = new_fnfield;
3565 flp->length++;
3566
3567 /* Fill in the member function field info. */
3568 fnp = &new_fnfield->fnfield;
3569 /* The name is already allocated along with this objfile, so we don't
3570 need to duplicate it for the type. */
3571 fnp->physname = physname ? physname : "";
3572 fnp->type = alloc_type (objfile);
3573 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3574 {
3575 int nparams = TYPE_NFIELDS (die->type);
3576
3577 /* TYPE is the domain of this method, and DIE->TYPE is the type
3578 of the method itself (TYPE_CODE_METHOD). */
3579 smash_to_method_type (fnp->type, type,
3580 TYPE_TARGET_TYPE (die->type),
3581 TYPE_FIELDS (die->type),
3582 TYPE_NFIELDS (die->type),
3583 TYPE_VARARGS (die->type));
3584
3585 /* Handle static member functions.
3586 Dwarf2 has no clean way to discern C++ static and non-static
3587 member functions. G++ helps GDB by marking the first
3588 parameter for non-static member functions (which is the
3589 this pointer) as artificial. We obtain this information
3590 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3591 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3592 fnp->voffset = VOFFSET_STATIC;
3593 }
3594 else
3595 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3596 physname);
3597
3598 /* Get fcontext from DW_AT_containing_type if present. */
3599 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3600 fnp->fcontext = die_containing_type (die, cu);
3601
3602 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3603 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3604
3605 /* Get accessibility. */
3606 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3607 if (attr)
3608 {
3609 switch (DW_UNSND (attr))
3610 {
3611 case DW_ACCESS_private:
3612 fnp->is_private = 1;
3613 break;
3614 case DW_ACCESS_protected:
3615 fnp->is_protected = 1;
3616 break;
3617 }
3618 }
3619
3620 /* Check for artificial methods. */
3621 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3622 if (attr && DW_UNSND (attr) != 0)
3623 fnp->is_artificial = 1;
3624
3625 /* Get index in virtual function table if it is a virtual member function. */
3626 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3627 if (attr)
3628 {
3629 /* Support the .debug_loc offsets */
3630 if (attr_form_is_block (attr))
3631 {
3632 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3633 }
3634 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3635 {
3636 dwarf2_complex_location_expr_complaint ();
3637 }
3638 else
3639 {
3640 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3641 fieldname);
3642 }
3643 }
3644 }
3645
3646 /* Create the vector of member function fields, and attach it to the type. */
3647
3648 static void
3649 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3650 struct dwarf2_cu *cu)
3651 {
3652 struct fnfieldlist *flp;
3653 int total_length = 0;
3654 int i;
3655
3656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3657 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3658 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3659
3660 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3661 {
3662 struct nextfnfield *nfp = flp->head;
3663 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3664 int k;
3665
3666 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3667 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3668 fn_flp->fn_fields = (struct fn_field *)
3669 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3670 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3671 fn_flp->fn_fields[k] = nfp->fnfield;
3672
3673 total_length += flp->length;
3674 }
3675
3676 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3677 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3678 }
3679
3680
3681 /* Returns non-zero if NAME is the name of a vtable member in CU's
3682 language, zero otherwise. */
3683 static int
3684 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3685 {
3686 static const char vptr[] = "_vptr";
3687 static const char vtable[] = "vtable";
3688
3689 /* Look for the C++ and Java forms of the vtable. */
3690 if ((cu->language == language_java
3691 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3692 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3693 && is_cplus_marker (name[sizeof (vptr) - 1])))
3694 return 1;
3695
3696 return 0;
3697 }
3698
3699
3700 /* Called when we find the DIE that starts a structure or union scope
3701 (definition) to process all dies that define the members of the
3702 structure or union.
3703
3704 NOTE: we need to call struct_type regardless of whether or not the
3705 DIE has an at_name attribute, since it might be an anonymous
3706 structure or union. This gets the type entered into our set of
3707 user defined types.
3708
3709 However, if the structure is incomplete (an opaque struct/union)
3710 then suppress creating a symbol table entry for it since gdb only
3711 wants to find the one with the complete definition. Note that if
3712 it is complete, we just call new_symbol, which does it's own
3713 checking about whether the struct/union is anonymous or not (and
3714 suppresses creating a symbol table entry itself). */
3715
3716 static void
3717 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3718 {
3719 struct objfile *objfile = cu->objfile;
3720 struct type *type;
3721 struct attribute *attr;
3722 const char *previous_prefix = processing_current_prefix;
3723 struct cleanup *back_to = NULL;
3724
3725 if (die->type)
3726 return;
3727
3728 type = alloc_type (objfile);
3729
3730 INIT_CPLUS_SPECIFIC (type);
3731 attr = dwarf2_attr (die, DW_AT_name, cu);
3732 if (attr && DW_STRING (attr))
3733 {
3734 if (cu->language == language_cplus
3735 || cu->language == language_java)
3736 {
3737 char *new_prefix = determine_class_name (die, cu);
3738 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3739 strlen (new_prefix),
3740 &objfile->objfile_obstack);
3741 back_to = make_cleanup (xfree, new_prefix);
3742 processing_current_prefix = new_prefix;
3743 }
3744 else
3745 {
3746 /* The name is already allocated along with this objfile, so
3747 we don't need to duplicate it for the type. */
3748 TYPE_TAG_NAME (type) = DW_STRING (attr);
3749 }
3750 }
3751
3752 if (die->tag == DW_TAG_structure_type)
3753 {
3754 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3755 }
3756 else if (die->tag == DW_TAG_union_type)
3757 {
3758 TYPE_CODE (type) = TYPE_CODE_UNION;
3759 }
3760 else
3761 {
3762 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3763 in gdbtypes.h. */
3764 TYPE_CODE (type) = TYPE_CODE_CLASS;
3765 }
3766
3767 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3768 if (attr)
3769 {
3770 TYPE_LENGTH (type) = DW_UNSND (attr);
3771 }
3772 else
3773 {
3774 TYPE_LENGTH (type) = 0;
3775 }
3776
3777 if (die_is_declaration (die, cu))
3778 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3779
3780 /* We need to add the type field to the die immediately so we don't
3781 infinitely recurse when dealing with pointers to the structure
3782 type within the structure itself. */
3783 set_die_type (die, type, cu);
3784
3785 if (die->child != NULL && ! die_is_declaration (die, cu))
3786 {
3787 struct field_info fi;
3788 struct die_info *child_die;
3789 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3790
3791 memset (&fi, 0, sizeof (struct field_info));
3792
3793 child_die = die->child;
3794
3795 while (child_die && child_die->tag)
3796 {
3797 if (child_die->tag == DW_TAG_member
3798 || child_die->tag == DW_TAG_variable)
3799 {
3800 /* NOTE: carlton/2002-11-05: A C++ static data member
3801 should be a DW_TAG_member that is a declaration, but
3802 all versions of G++ as of this writing (so through at
3803 least 3.2.1) incorrectly generate DW_TAG_variable
3804 tags for them instead. */
3805 dwarf2_add_field (&fi, child_die, cu);
3806 }
3807 else if (child_die->tag == DW_TAG_subprogram)
3808 {
3809 /* C++ member function. */
3810 read_type_die (child_die, cu);
3811 dwarf2_add_member_fn (&fi, child_die, type, cu);
3812 }
3813 else if (child_die->tag == DW_TAG_inheritance)
3814 {
3815 /* C++ base class field. */
3816 dwarf2_add_field (&fi, child_die, cu);
3817 }
3818 child_die = sibling_die (child_die);
3819 }
3820
3821 /* Attach fields and member functions to the type. */
3822 if (fi.nfields)
3823 dwarf2_attach_fields_to_type (&fi, type, cu);
3824 if (fi.nfnfields)
3825 {
3826 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3827
3828 /* Get the type which refers to the base class (possibly this
3829 class itself) which contains the vtable pointer for the current
3830 class from the DW_AT_containing_type attribute. */
3831
3832 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3833 {
3834 struct type *t = die_containing_type (die, cu);
3835
3836 TYPE_VPTR_BASETYPE (type) = t;
3837 if (type == t)
3838 {
3839 int i;
3840
3841 /* Our own class provides vtbl ptr. */
3842 for (i = TYPE_NFIELDS (t) - 1;
3843 i >= TYPE_N_BASECLASSES (t);
3844 --i)
3845 {
3846 char *fieldname = TYPE_FIELD_NAME (t, i);
3847
3848 if (is_vtable_name (fieldname, cu))
3849 {
3850 TYPE_VPTR_FIELDNO (type) = i;
3851 break;
3852 }
3853 }
3854
3855 /* Complain if virtual function table field not found. */
3856 if (i < TYPE_N_BASECLASSES (t))
3857 complaint (&symfile_complaints,
3858 _("virtual function table pointer not found when defining class '%s'"),
3859 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3860 "");
3861 }
3862 else
3863 {
3864 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3865 }
3866 }
3867 }
3868
3869 do_cleanups (back_to);
3870 }
3871
3872 processing_current_prefix = previous_prefix;
3873 if (back_to != NULL)
3874 do_cleanups (back_to);
3875 }
3876
3877 static void
3878 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3879 {
3880 struct objfile *objfile = cu->objfile;
3881 const char *previous_prefix = processing_current_prefix;
3882 struct die_info *child_die = die->child;
3883
3884 if (TYPE_TAG_NAME (die->type) != NULL)
3885 processing_current_prefix = TYPE_TAG_NAME (die->type);
3886
3887 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3888 snapshots) has been known to create a die giving a declaration
3889 for a class that has, as a child, a die giving a definition for a
3890 nested class. So we have to process our children even if the
3891 current die is a declaration. Normally, of course, a declaration
3892 won't have any children at all. */
3893
3894 while (child_die != NULL && child_die->tag)
3895 {
3896 if (child_die->tag == DW_TAG_member
3897 || child_die->tag == DW_TAG_variable
3898 || child_die->tag == DW_TAG_inheritance)
3899 {
3900 /* Do nothing. */
3901 }
3902 else
3903 process_die (child_die, cu);
3904
3905 child_die = sibling_die (child_die);
3906 }
3907
3908 if (die->child != NULL && ! die_is_declaration (die, cu))
3909 new_symbol (die, die->type, cu);
3910
3911 processing_current_prefix = previous_prefix;
3912 }
3913
3914 /* Given a DW_AT_enumeration_type die, set its type. We do not
3915 complete the type's fields yet, or create any symbols. */
3916
3917 static void
3918 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3919 {
3920 struct objfile *objfile = cu->objfile;
3921 struct type *type;
3922 struct attribute *attr;
3923
3924 if (die->type)
3925 return;
3926
3927 type = alloc_type (objfile);
3928
3929 TYPE_CODE (type) = TYPE_CODE_ENUM;
3930 attr = dwarf2_attr (die, DW_AT_name, cu);
3931 if (attr && DW_STRING (attr))
3932 {
3933 char *name = DW_STRING (attr);
3934
3935 if (processing_has_namespace_info)
3936 {
3937 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3938 processing_current_prefix,
3939 name, cu);
3940 }
3941 else
3942 {
3943 /* The name is already allocated along with this objfile, so
3944 we don't need to duplicate it for the type. */
3945 TYPE_TAG_NAME (type) = name;
3946 }
3947 }
3948
3949 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3950 if (attr)
3951 {
3952 TYPE_LENGTH (type) = DW_UNSND (attr);
3953 }
3954 else
3955 {
3956 TYPE_LENGTH (type) = 0;
3957 }
3958
3959 set_die_type (die, type, cu);
3960 }
3961
3962 /* Determine the name of the type represented by DIE, which should be
3963 a named C++ or Java compound type. Return the name in question; the caller
3964 is responsible for xfree()'ing it. */
3965
3966 static char *
3967 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3968 {
3969 struct cleanup *back_to = NULL;
3970 struct die_info *spec_die = die_specification (die, cu);
3971 char *new_prefix = NULL;
3972
3973 /* If this is the definition of a class that is declared by another
3974 die, then processing_current_prefix may not be accurate; see
3975 read_func_scope for a similar example. */
3976 if (spec_die != NULL)
3977 {
3978 char *specification_prefix = determine_prefix (spec_die, cu);
3979 processing_current_prefix = specification_prefix;
3980 back_to = make_cleanup (xfree, specification_prefix);
3981 }
3982
3983 /* If we don't have namespace debug info, guess the name by trying
3984 to demangle the names of members, just like we did in
3985 guess_structure_name. */
3986 if (!processing_has_namespace_info)
3987 {
3988 struct die_info *child;
3989
3990 for (child = die->child;
3991 child != NULL && child->tag != 0;
3992 child = sibling_die (child))
3993 {
3994 if (child->tag == DW_TAG_subprogram)
3995 {
3996 new_prefix
3997 = language_class_name_from_physname (cu->language_defn,
3998 dwarf2_linkage_name
3999 (child, cu));
4000
4001 if (new_prefix != NULL)
4002 break;
4003 }
4004 }
4005 }
4006
4007 if (new_prefix == NULL)
4008 {
4009 const char *name = dwarf2_name (die, cu);
4010 new_prefix = typename_concat (NULL, processing_current_prefix,
4011 name ? name : "<<anonymous>>",
4012 cu);
4013 }
4014
4015 if (back_to != NULL)
4016 do_cleanups (back_to);
4017
4018 return new_prefix;
4019 }
4020
4021 /* Given a pointer to a die which begins an enumeration, process all
4022 the dies that define the members of the enumeration, and create the
4023 symbol for the enumeration type.
4024
4025 NOTE: We reverse the order of the element list. */
4026
4027 static void
4028 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4029 {
4030 struct objfile *objfile = cu->objfile;
4031 struct die_info *child_die;
4032 struct field *fields;
4033 struct attribute *attr;
4034 struct symbol *sym;
4035 int num_fields;
4036 int unsigned_enum = 1;
4037
4038 num_fields = 0;
4039 fields = NULL;
4040 if (die->child != NULL)
4041 {
4042 child_die = die->child;
4043 while (child_die && child_die->tag)
4044 {
4045 if (child_die->tag != DW_TAG_enumerator)
4046 {
4047 process_die (child_die, cu);
4048 }
4049 else
4050 {
4051 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4052 if (attr)
4053 {
4054 sym = new_symbol (child_die, die->type, cu);
4055 if (SYMBOL_VALUE (sym) < 0)
4056 unsigned_enum = 0;
4057
4058 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4059 {
4060 fields = (struct field *)
4061 xrealloc (fields,
4062 (num_fields + DW_FIELD_ALLOC_CHUNK)
4063 * sizeof (struct field));
4064 }
4065
4066 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4067 FIELD_TYPE (fields[num_fields]) = NULL;
4068 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4069 FIELD_BITSIZE (fields[num_fields]) = 0;
4070 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4071
4072 num_fields++;
4073 }
4074 }
4075
4076 child_die = sibling_die (child_die);
4077 }
4078
4079 if (num_fields)
4080 {
4081 TYPE_NFIELDS (die->type) = num_fields;
4082 TYPE_FIELDS (die->type) = (struct field *)
4083 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4084 memcpy (TYPE_FIELDS (die->type), fields,
4085 sizeof (struct field) * num_fields);
4086 xfree (fields);
4087 }
4088 if (unsigned_enum)
4089 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4090 }
4091
4092 new_symbol (die, die->type, cu);
4093 }
4094
4095 /* Extract all information from a DW_TAG_array_type DIE and put it in
4096 the DIE's type field. For now, this only handles one dimensional
4097 arrays. */
4098
4099 static void
4100 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4101 {
4102 struct objfile *objfile = cu->objfile;
4103 struct die_info *child_die;
4104 struct type *type = NULL;
4105 struct type *element_type, *range_type, *index_type;
4106 struct type **range_types = NULL;
4107 struct attribute *attr;
4108 int ndim = 0;
4109 struct cleanup *back_to;
4110
4111 /* Return if we've already decoded this type. */
4112 if (die->type)
4113 {
4114 return;
4115 }
4116
4117 element_type = die_type (die, cu);
4118
4119 /* Irix 6.2 native cc creates array types without children for
4120 arrays with unspecified length. */
4121 if (die->child == NULL)
4122 {
4123 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4124 range_type = create_range_type (NULL, index_type, 0, -1);
4125 set_die_type (die, create_array_type (NULL, element_type, range_type),
4126 cu);
4127 return;
4128 }
4129
4130 back_to = make_cleanup (null_cleanup, NULL);
4131 child_die = die->child;
4132 while (child_die && child_die->tag)
4133 {
4134 if (child_die->tag == DW_TAG_subrange_type)
4135 {
4136 read_subrange_type (child_die, cu);
4137
4138 if (child_die->type != NULL)
4139 {
4140 /* The range type was succesfully read. Save it for
4141 the array type creation. */
4142 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4143 {
4144 range_types = (struct type **)
4145 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4146 * sizeof (struct type *));
4147 if (ndim == 0)
4148 make_cleanup (free_current_contents, &range_types);
4149 }
4150 range_types[ndim++] = child_die->type;
4151 }
4152 }
4153 child_die = sibling_die (child_die);
4154 }
4155
4156 /* Dwarf2 dimensions are output from left to right, create the
4157 necessary array types in backwards order. */
4158
4159 type = element_type;
4160
4161 if (read_array_order (die, cu) == DW_ORD_col_major)
4162 {
4163 int i = 0;
4164 while (i < ndim)
4165 type = create_array_type (NULL, type, range_types[i++]);
4166 }
4167 else
4168 {
4169 while (ndim-- > 0)
4170 type = create_array_type (NULL, type, range_types[ndim]);
4171 }
4172
4173 /* Understand Dwarf2 support for vector types (like they occur on
4174 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4175 array type. This is not part of the Dwarf2/3 standard yet, but a
4176 custom vendor extension. The main difference between a regular
4177 array and the vector variant is that vectors are passed by value
4178 to functions. */
4179 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4180 if (attr)
4181 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4182
4183 do_cleanups (back_to);
4184
4185 /* Install the type in the die. */
4186 set_die_type (die, type, cu);
4187 }
4188
4189 static enum dwarf_array_dim_ordering
4190 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4191 {
4192 struct attribute *attr;
4193
4194 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4195
4196 if (attr) return DW_SND (attr);
4197
4198 /*
4199 GNU F77 is a special case, as at 08/2004 array type info is the
4200 opposite order to the dwarf2 specification, but data is still
4201 laid out as per normal fortran.
4202
4203 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4204 version checking.
4205 */
4206
4207 if (cu->language == language_fortran &&
4208 cu->producer && strstr (cu->producer, "GNU F77"))
4209 {
4210 return DW_ORD_row_major;
4211 }
4212
4213 switch (cu->language_defn->la_array_ordering)
4214 {
4215 case array_column_major:
4216 return DW_ORD_col_major;
4217 case array_row_major:
4218 default:
4219 return DW_ORD_row_major;
4220 };
4221 }
4222
4223
4224 /* First cut: install each common block member as a global variable. */
4225
4226 static void
4227 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4228 {
4229 struct die_info *child_die;
4230 struct attribute *attr;
4231 struct symbol *sym;
4232 CORE_ADDR base = (CORE_ADDR) 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_location, cu);
4235 if (attr)
4236 {
4237 /* Support the .debug_loc offsets */
4238 if (attr_form_is_block (attr))
4239 {
4240 base = decode_locdesc (DW_BLOCK (attr), cu);
4241 }
4242 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4243 {
4244 dwarf2_complex_location_expr_complaint ();
4245 }
4246 else
4247 {
4248 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4249 "common block member");
4250 }
4251 }
4252 if (die->child != NULL)
4253 {
4254 child_die = die->child;
4255 while (child_die && child_die->tag)
4256 {
4257 sym = new_symbol (child_die, NULL, cu);
4258 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4259 if (attr)
4260 {
4261 SYMBOL_VALUE_ADDRESS (sym) =
4262 base + decode_locdesc (DW_BLOCK (attr), cu);
4263 add_symbol_to_list (sym, &global_symbols);
4264 }
4265 child_die = sibling_die (child_die);
4266 }
4267 }
4268 }
4269
4270 /* Read a C++ namespace. */
4271
4272 static void
4273 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4274 {
4275 struct objfile *objfile = cu->objfile;
4276 const char *previous_prefix = processing_current_prefix;
4277 const char *name;
4278 int is_anonymous;
4279 struct die_info *current_die;
4280 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4281
4282 name = namespace_name (die, &is_anonymous, cu);
4283
4284 /* Now build the name of the current namespace. */
4285
4286 if (previous_prefix[0] == '\0')
4287 {
4288 processing_current_prefix = name;
4289 }
4290 else
4291 {
4292 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4293 make_cleanup (xfree, temp_name);
4294 processing_current_prefix = temp_name;
4295 }
4296
4297 /* Add a symbol associated to this if we haven't seen the namespace
4298 before. Also, add a using directive if it's an anonymous
4299 namespace. */
4300
4301 if (dwarf2_extension (die, cu) == NULL)
4302 {
4303 struct type *type;
4304
4305 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4306 this cast will hopefully become unnecessary. */
4307 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4308 (char *) processing_current_prefix,
4309 objfile);
4310 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4311
4312 new_symbol (die, type, cu);
4313 set_die_type (die, type, cu);
4314
4315 if (is_anonymous)
4316 cp_add_using_directive (processing_current_prefix,
4317 strlen (previous_prefix),
4318 strlen (processing_current_prefix));
4319 }
4320
4321 if (die->child != NULL)
4322 {
4323 struct die_info *child_die = die->child;
4324
4325 while (child_die && child_die->tag)
4326 {
4327 process_die (child_die, cu);
4328 child_die = sibling_die (child_die);
4329 }
4330 }
4331
4332 processing_current_prefix = previous_prefix;
4333 do_cleanups (back_to);
4334 }
4335
4336 /* Return the name of the namespace represented by DIE. Set
4337 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4338 namespace. */
4339
4340 static const char *
4341 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4342 {
4343 struct die_info *current_die;
4344 const char *name = NULL;
4345
4346 /* Loop through the extensions until we find a name. */
4347
4348 for (current_die = die;
4349 current_die != NULL;
4350 current_die = dwarf2_extension (die, cu))
4351 {
4352 name = dwarf2_name (current_die, cu);
4353 if (name != NULL)
4354 break;
4355 }
4356
4357 /* Is it an anonymous namespace? */
4358
4359 *is_anonymous = (name == NULL);
4360 if (*is_anonymous)
4361 name = "(anonymous namespace)";
4362
4363 return name;
4364 }
4365
4366 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4367 the user defined type vector. */
4368
4369 static void
4370 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4371 {
4372 struct comp_unit_head *cu_header = &cu->header;
4373 struct type *type;
4374 struct attribute *attr_byte_size;
4375 struct attribute *attr_address_class;
4376 int byte_size, addr_class;
4377
4378 if (die->type)
4379 {
4380 return;
4381 }
4382
4383 type = lookup_pointer_type (die_type (die, cu));
4384
4385 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4386 if (attr_byte_size)
4387 byte_size = DW_UNSND (attr_byte_size);
4388 else
4389 byte_size = cu_header->addr_size;
4390
4391 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4392 if (attr_address_class)
4393 addr_class = DW_UNSND (attr_address_class);
4394 else
4395 addr_class = DW_ADDR_none;
4396
4397 /* If the pointer size or address class is different than the
4398 default, create a type variant marked as such and set the
4399 length accordingly. */
4400 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4401 {
4402 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4403 {
4404 int type_flags;
4405
4406 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4407 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4408 type = make_type_with_address_space (type, type_flags);
4409 }
4410 else if (TYPE_LENGTH (type) != byte_size)
4411 {
4412 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4413 }
4414 else {
4415 /* Should we also complain about unhandled address classes? */
4416 }
4417 }
4418
4419 TYPE_LENGTH (type) = byte_size;
4420 set_die_type (die, type, cu);
4421 }
4422
4423 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4424 the user defined type vector. */
4425
4426 static void
4427 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4428 {
4429 struct objfile *objfile = cu->objfile;
4430 struct type *type;
4431 struct type *to_type;
4432 struct type *domain;
4433
4434 if (die->type)
4435 {
4436 return;
4437 }
4438
4439 type = alloc_type (objfile);
4440 to_type = die_type (die, cu);
4441 domain = die_containing_type (die, cu);
4442 smash_to_member_type (type, domain, to_type);
4443
4444 set_die_type (die, type, cu);
4445 }
4446
4447 /* Extract all information from a DW_TAG_reference_type DIE and add to
4448 the user defined type vector. */
4449
4450 static void
4451 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4452 {
4453 struct comp_unit_head *cu_header = &cu->header;
4454 struct type *type;
4455 struct attribute *attr;
4456
4457 if (die->type)
4458 {
4459 return;
4460 }
4461
4462 type = lookup_reference_type (die_type (die, cu));
4463 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4464 if (attr)
4465 {
4466 TYPE_LENGTH (type) = DW_UNSND (attr);
4467 }
4468 else
4469 {
4470 TYPE_LENGTH (type) = cu_header->addr_size;
4471 }
4472 set_die_type (die, type, cu);
4473 }
4474
4475 static void
4476 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4477 {
4478 struct type *base_type;
4479
4480 if (die->type)
4481 {
4482 return;
4483 }
4484
4485 base_type = die_type (die, cu);
4486 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4487 cu);
4488 }
4489
4490 static void
4491 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4492 {
4493 struct type *base_type;
4494
4495 if (die->type)
4496 {
4497 return;
4498 }
4499
4500 base_type = die_type (die, cu);
4501 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4502 cu);
4503 }
4504
4505 /* Extract all information from a DW_TAG_string_type DIE and add to
4506 the user defined type vector. It isn't really a user defined type,
4507 but it behaves like one, with other DIE's using an AT_user_def_type
4508 attribute to reference it. */
4509
4510 static void
4511 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4512 {
4513 struct objfile *objfile = cu->objfile;
4514 struct type *type, *range_type, *index_type, *char_type;
4515 struct attribute *attr;
4516 unsigned int length;
4517
4518 if (die->type)
4519 {
4520 return;
4521 }
4522
4523 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4524 if (attr)
4525 {
4526 length = DW_UNSND (attr);
4527 }
4528 else
4529 {
4530 /* check for the DW_AT_byte_size attribute */
4531 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4532 if (attr)
4533 {
4534 length = DW_UNSND (attr);
4535 }
4536 else
4537 {
4538 length = 1;
4539 }
4540 }
4541 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4542 range_type = create_range_type (NULL, index_type, 1, length);
4543 if (cu->language == language_fortran)
4544 {
4545 /* Need to create a unique string type for bounds
4546 information */
4547 type = create_string_type (0, range_type);
4548 }
4549 else
4550 {
4551 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4552 type = create_string_type (char_type, range_type);
4553 }
4554 set_die_type (die, type, cu);
4555 }
4556
4557 /* Handle DIES due to C code like:
4558
4559 struct foo
4560 {
4561 int (*funcp)(int a, long l);
4562 int b;
4563 };
4564
4565 ('funcp' generates a DW_TAG_subroutine_type DIE)
4566 */
4567
4568 static void
4569 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4570 {
4571 struct type *type; /* Type that this function returns */
4572 struct type *ftype; /* Function that returns above type */
4573 struct attribute *attr;
4574
4575 /* Decode the type that this subroutine returns */
4576 if (die->type)
4577 {
4578 return;
4579 }
4580 type = die_type (die, cu);
4581 ftype = make_function_type (type, (struct type **) 0);
4582
4583 /* All functions in C++ and Java have prototypes. */
4584 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4585 if ((attr && (DW_UNSND (attr) != 0))
4586 || cu->language == language_cplus
4587 || cu->language == language_java)
4588 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4589
4590 if (die->child != NULL)
4591 {
4592 struct die_info *child_die;
4593 int nparams = 0;
4594 int iparams = 0;
4595
4596 /* Count the number of parameters.
4597 FIXME: GDB currently ignores vararg functions, but knows about
4598 vararg member functions. */
4599 child_die = die->child;
4600 while (child_die && child_die->tag)
4601 {
4602 if (child_die->tag == DW_TAG_formal_parameter)
4603 nparams++;
4604 else if (child_die->tag == DW_TAG_unspecified_parameters)
4605 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4606 child_die = sibling_die (child_die);
4607 }
4608
4609 /* Allocate storage for parameters and fill them in. */
4610 TYPE_NFIELDS (ftype) = nparams;
4611 TYPE_FIELDS (ftype) = (struct field *)
4612 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4613
4614 child_die = die->child;
4615 while (child_die && child_die->tag)
4616 {
4617 if (child_die->tag == DW_TAG_formal_parameter)
4618 {
4619 /* Dwarf2 has no clean way to discern C++ static and non-static
4620 member functions. G++ helps GDB by marking the first
4621 parameter for non-static member functions (which is the
4622 this pointer) as artificial. We pass this information
4623 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4624 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4625 if (attr)
4626 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4627 else
4628 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4629 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4630 iparams++;
4631 }
4632 child_die = sibling_die (child_die);
4633 }
4634 }
4635
4636 set_die_type (die, ftype, cu);
4637 }
4638
4639 static void
4640 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4641 {
4642 struct objfile *objfile = cu->objfile;
4643 struct attribute *attr;
4644 char *name = NULL;
4645
4646 if (!die->type)
4647 {
4648 attr = dwarf2_attr (die, DW_AT_name, cu);
4649 if (attr && DW_STRING (attr))
4650 {
4651 name = DW_STRING (attr);
4652 }
4653 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4654 TYPE_FLAG_TARGET_STUB, name, objfile),
4655 cu);
4656 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4657 }
4658 }
4659
4660 /* Find a representation of a given base type and install
4661 it in the TYPE field of the die. */
4662
4663 static void
4664 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4665 {
4666 struct objfile *objfile = cu->objfile;
4667 struct type *type;
4668 struct attribute *attr;
4669 int encoding = 0, size = 0;
4670
4671 /* If we've already decoded this die, this is a no-op. */
4672 if (die->type)
4673 {
4674 return;
4675 }
4676
4677 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4678 if (attr)
4679 {
4680 encoding = DW_UNSND (attr);
4681 }
4682 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4683 if (attr)
4684 {
4685 size = DW_UNSND (attr);
4686 }
4687 attr = dwarf2_attr (die, DW_AT_name, cu);
4688 if (attr && DW_STRING (attr))
4689 {
4690 enum type_code code = TYPE_CODE_INT;
4691 int type_flags = 0;
4692
4693 switch (encoding)
4694 {
4695 case DW_ATE_address:
4696 /* Turn DW_ATE_address into a void * pointer. */
4697 code = TYPE_CODE_PTR;
4698 type_flags |= TYPE_FLAG_UNSIGNED;
4699 break;
4700 case DW_ATE_boolean:
4701 code = TYPE_CODE_BOOL;
4702 type_flags |= TYPE_FLAG_UNSIGNED;
4703 break;
4704 case DW_ATE_complex_float:
4705 code = TYPE_CODE_COMPLEX;
4706 break;
4707 case DW_ATE_float:
4708 code = TYPE_CODE_FLT;
4709 break;
4710 case DW_ATE_signed:
4711 case DW_ATE_signed_char:
4712 break;
4713 case DW_ATE_unsigned:
4714 case DW_ATE_unsigned_char:
4715 type_flags |= TYPE_FLAG_UNSIGNED;
4716 break;
4717 default:
4718 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4719 dwarf_type_encoding_name (encoding));
4720 break;
4721 }
4722 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4723 if (encoding == DW_ATE_address)
4724 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4725 cu);
4726 else if (encoding == DW_ATE_complex_float)
4727 {
4728 if (size == 32)
4729 TYPE_TARGET_TYPE (type)
4730 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4731 else if (size == 16)
4732 TYPE_TARGET_TYPE (type)
4733 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4734 else if (size == 8)
4735 TYPE_TARGET_TYPE (type)
4736 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4737 }
4738 }
4739 else
4740 {
4741 type = dwarf_base_type (encoding, size, cu);
4742 }
4743 set_die_type (die, type, cu);
4744 }
4745
4746 /* Read the given DW_AT_subrange DIE. */
4747
4748 static void
4749 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4750 {
4751 struct type *base_type;
4752 struct type *range_type;
4753 struct attribute *attr;
4754 int low = 0;
4755 int high = -1;
4756
4757 /* If we have already decoded this die, then nothing more to do. */
4758 if (die->type)
4759 return;
4760
4761 base_type = die_type (die, cu);
4762 if (base_type == NULL)
4763 {
4764 complaint (&symfile_complaints,
4765 _("DW_AT_type missing from DW_TAG_subrange_type"));
4766 return;
4767 }
4768
4769 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4770 base_type = alloc_type (NULL);
4771
4772 if (cu->language == language_fortran)
4773 {
4774 /* FORTRAN implies a lower bound of 1, if not given. */
4775 low = 1;
4776 }
4777
4778 /* FIXME: For variable sized arrays either of these could be
4779 a variable rather than a constant value. We'll allow it,
4780 but we don't know how to handle it. */
4781 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4782 if (attr)
4783 low = dwarf2_get_attr_constant_value (attr, 0);
4784
4785 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4786 if (attr)
4787 {
4788 if (attr->form == DW_FORM_block1)
4789 {
4790 /* GCC encodes arrays with unspecified or dynamic length
4791 with a DW_FORM_block1 attribute.
4792 FIXME: GDB does not yet know how to handle dynamic
4793 arrays properly, treat them as arrays with unspecified
4794 length for now.
4795
4796 FIXME: jimb/2003-09-22: GDB does not really know
4797 how to handle arrays of unspecified length
4798 either; we just represent them as zero-length
4799 arrays. Choose an appropriate upper bound given
4800 the lower bound we've computed above. */
4801 high = low - 1;
4802 }
4803 else
4804 high = dwarf2_get_attr_constant_value (attr, 1);
4805 }
4806
4807 range_type = create_range_type (NULL, base_type, low, high);
4808
4809 attr = dwarf2_attr (die, DW_AT_name, cu);
4810 if (attr && DW_STRING (attr))
4811 TYPE_NAME (range_type) = DW_STRING (attr);
4812
4813 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4814 if (attr)
4815 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4816
4817 set_die_type (die, range_type, cu);
4818 }
4819
4820
4821 /* Read a whole compilation unit into a linked list of dies. */
4822
4823 static struct die_info *
4824 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4825 {
4826 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4827 }
4828
4829 /* Read a single die and all its descendents. Set the die's sibling
4830 field to NULL; set other fields in the die correctly, and set all
4831 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4832 location of the info_ptr after reading all of those dies. PARENT
4833 is the parent of the die in question. */
4834
4835 static struct die_info *
4836 read_die_and_children (char *info_ptr, bfd *abfd,
4837 struct dwarf2_cu *cu,
4838 char **new_info_ptr,
4839 struct die_info *parent)
4840 {
4841 struct die_info *die;
4842 char *cur_ptr;
4843 int has_children;
4844
4845 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4846 store_in_ref_table (die->offset, die, cu);
4847
4848 if (has_children)
4849 {
4850 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4851 new_info_ptr, die);
4852 }
4853 else
4854 {
4855 die->child = NULL;
4856 *new_info_ptr = cur_ptr;
4857 }
4858
4859 die->sibling = NULL;
4860 die->parent = parent;
4861 return die;
4862 }
4863
4864 /* Read a die, all of its descendents, and all of its siblings; set
4865 all of the fields of all of the dies correctly. Arguments are as
4866 in read_die_and_children. */
4867
4868 static struct die_info *
4869 read_die_and_siblings (char *info_ptr, bfd *abfd,
4870 struct dwarf2_cu *cu,
4871 char **new_info_ptr,
4872 struct die_info *parent)
4873 {
4874 struct die_info *first_die, *last_sibling;
4875 char *cur_ptr;
4876
4877 cur_ptr = info_ptr;
4878 first_die = last_sibling = NULL;
4879
4880 while (1)
4881 {
4882 struct die_info *die
4883 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4884
4885 if (!first_die)
4886 {
4887 first_die = die;
4888 }
4889 else
4890 {
4891 last_sibling->sibling = die;
4892 }
4893
4894 if (die->tag == 0)
4895 {
4896 *new_info_ptr = cur_ptr;
4897 return first_die;
4898 }
4899 else
4900 {
4901 last_sibling = die;
4902 }
4903 }
4904 }
4905
4906 /* Free a linked list of dies. */
4907
4908 static void
4909 free_die_list (struct die_info *dies)
4910 {
4911 struct die_info *die, *next;
4912
4913 die = dies;
4914 while (die)
4915 {
4916 if (die->child != NULL)
4917 free_die_list (die->child);
4918 next = die->sibling;
4919 xfree (die->attrs);
4920 xfree (die);
4921 die = next;
4922 }
4923 }
4924
4925 /* Read the contents of the section at OFFSET and of size SIZE from the
4926 object file specified by OBJFILE into the objfile_obstack and return it. */
4927
4928 char *
4929 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4930 {
4931 bfd *abfd = objfile->obfd;
4932 char *buf, *retbuf;
4933 bfd_size_type size = bfd_get_section_size (sectp);
4934
4935 if (size == 0)
4936 return NULL;
4937
4938 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4939 retbuf
4940 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4941 if (retbuf != NULL)
4942 return retbuf;
4943
4944 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4945 || bfd_bread (buf, size, abfd) != size)
4946 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
4947 bfd_get_filename (abfd));
4948
4949 return buf;
4950 }
4951
4952 /* In DWARF version 2, the description of the debugging information is
4953 stored in a separate .debug_abbrev section. Before we read any
4954 dies from a section we read in all abbreviations and install them
4955 in a hash table. This function also sets flags in CU describing
4956 the data found in the abbrev table. */
4957
4958 static void
4959 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4960 {
4961 struct comp_unit_head *cu_header = &cu->header;
4962 char *abbrev_ptr;
4963 struct abbrev_info *cur_abbrev;
4964 unsigned int abbrev_number, bytes_read, abbrev_name;
4965 unsigned int abbrev_form, hash_number;
4966 struct attr_abbrev *cur_attrs;
4967 unsigned int allocated_attrs;
4968
4969 /* Initialize dwarf2 abbrevs */
4970 obstack_init (&cu->abbrev_obstack);
4971 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4972 (ABBREV_HASH_SIZE
4973 * sizeof (struct abbrev_info *)));
4974 memset (cu->dwarf2_abbrevs, 0,
4975 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4976
4977 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4978 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4979 abbrev_ptr += bytes_read;
4980
4981 allocated_attrs = ATTR_ALLOC_CHUNK;
4982 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4983
4984 /* loop until we reach an abbrev number of 0 */
4985 while (abbrev_number)
4986 {
4987 cur_abbrev = dwarf_alloc_abbrev (cu);
4988
4989 /* read in abbrev header */
4990 cur_abbrev->number = abbrev_number;
4991 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4992 abbrev_ptr += bytes_read;
4993 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4994 abbrev_ptr += 1;
4995
4996 if (cur_abbrev->tag == DW_TAG_namespace)
4997 cu->has_namespace_info = 1;
4998
4999 /* now read in declarations */
5000 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5001 abbrev_ptr += bytes_read;
5002 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5003 abbrev_ptr += bytes_read;
5004 while (abbrev_name)
5005 {
5006 if (cur_abbrev->num_attrs == allocated_attrs)
5007 {
5008 allocated_attrs += ATTR_ALLOC_CHUNK;
5009 cur_attrs
5010 = xrealloc (cur_attrs, (allocated_attrs
5011 * sizeof (struct attr_abbrev)));
5012 }
5013
5014 /* Record whether this compilation unit might have
5015 inter-compilation-unit references. If we don't know what form
5016 this attribute will have, then it might potentially be a
5017 DW_FORM_ref_addr, so we conservatively expect inter-CU
5018 references. */
5019
5020 if (abbrev_form == DW_FORM_ref_addr
5021 || abbrev_form == DW_FORM_indirect)
5022 cu->has_form_ref_addr = 1;
5023
5024 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5025 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5026 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5027 abbrev_ptr += bytes_read;
5028 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5029 abbrev_ptr += bytes_read;
5030 }
5031
5032 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5033 (cur_abbrev->num_attrs
5034 * sizeof (struct attr_abbrev)));
5035 memcpy (cur_abbrev->attrs, cur_attrs,
5036 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5037
5038 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5039 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5040 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5041
5042 /* Get next abbreviation.
5043 Under Irix6 the abbreviations for a compilation unit are not
5044 always properly terminated with an abbrev number of 0.
5045 Exit loop if we encounter an abbreviation which we have
5046 already read (which means we are about to read the abbreviations
5047 for the next compile unit) or if the end of the abbreviation
5048 table is reached. */
5049 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5050 >= dwarf2_per_objfile->abbrev_size)
5051 break;
5052 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5053 abbrev_ptr += bytes_read;
5054 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5055 break;
5056 }
5057
5058 xfree (cur_attrs);
5059 }
5060
5061 /* Release the memory used by the abbrev table for a compilation unit. */
5062
5063 static void
5064 dwarf2_free_abbrev_table (void *ptr_to_cu)
5065 {
5066 struct dwarf2_cu *cu = ptr_to_cu;
5067
5068 obstack_free (&cu->abbrev_obstack, NULL);
5069 cu->dwarf2_abbrevs = NULL;
5070 }
5071
5072 /* Lookup an abbrev_info structure in the abbrev hash table. */
5073
5074 static struct abbrev_info *
5075 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5076 {
5077 unsigned int hash_number;
5078 struct abbrev_info *abbrev;
5079
5080 hash_number = number % ABBREV_HASH_SIZE;
5081 abbrev = cu->dwarf2_abbrevs[hash_number];
5082
5083 while (abbrev)
5084 {
5085 if (abbrev->number == number)
5086 return abbrev;
5087 else
5088 abbrev = abbrev->next;
5089 }
5090 return NULL;
5091 }
5092
5093 /* Returns nonzero if TAG represents a type that we might generate a partial
5094 symbol for. */
5095
5096 static int
5097 is_type_tag_for_partial (int tag)
5098 {
5099 switch (tag)
5100 {
5101 #if 0
5102 /* Some types that would be reasonable to generate partial symbols for,
5103 that we don't at present. */
5104 case DW_TAG_array_type:
5105 case DW_TAG_file_type:
5106 case DW_TAG_ptr_to_member_type:
5107 case DW_TAG_set_type:
5108 case DW_TAG_string_type:
5109 case DW_TAG_subroutine_type:
5110 #endif
5111 case DW_TAG_base_type:
5112 case DW_TAG_class_type:
5113 case DW_TAG_enumeration_type:
5114 case DW_TAG_structure_type:
5115 case DW_TAG_subrange_type:
5116 case DW_TAG_typedef:
5117 case DW_TAG_union_type:
5118 return 1;
5119 default:
5120 return 0;
5121 }
5122 }
5123
5124 /* Load all DIEs that are interesting for partial symbols into memory. */
5125
5126 static struct partial_die_info *
5127 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5128 struct dwarf2_cu *cu)
5129 {
5130 struct partial_die_info *part_die;
5131 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5132 struct abbrev_info *abbrev;
5133 unsigned int bytes_read;
5134
5135 int nesting_level = 1;
5136
5137 parent_die = NULL;
5138 last_die = NULL;
5139
5140 cu->partial_dies
5141 = htab_create_alloc_ex (cu->header.length / 12,
5142 partial_die_hash,
5143 partial_die_eq,
5144 NULL,
5145 &cu->comp_unit_obstack,
5146 hashtab_obstack_allocate,
5147 dummy_obstack_deallocate);
5148
5149 part_die = obstack_alloc (&cu->comp_unit_obstack,
5150 sizeof (struct partial_die_info));
5151
5152 while (1)
5153 {
5154 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5155
5156 /* A NULL abbrev means the end of a series of children. */
5157 if (abbrev == NULL)
5158 {
5159 if (--nesting_level == 0)
5160 {
5161 /* PART_DIE was probably the last thing allocated on the
5162 comp_unit_obstack, so we could call obstack_free
5163 here. We don't do that because the waste is small,
5164 and will be cleaned up when we're done with this
5165 compilation unit. This way, we're also more robust
5166 against other users of the comp_unit_obstack. */
5167 return first_die;
5168 }
5169 info_ptr += bytes_read;
5170 last_die = parent_die;
5171 parent_die = parent_die->die_parent;
5172 continue;
5173 }
5174
5175 /* Check whether this DIE is interesting enough to save. */
5176 if (!is_type_tag_for_partial (abbrev->tag)
5177 && abbrev->tag != DW_TAG_enumerator
5178 && abbrev->tag != DW_TAG_subprogram
5179 && abbrev->tag != DW_TAG_variable
5180 && abbrev->tag != DW_TAG_namespace)
5181 {
5182 /* Otherwise we skip to the next sibling, if any. */
5183 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5184 continue;
5185 }
5186
5187 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5188 abfd, info_ptr, cu);
5189
5190 /* This two-pass algorithm for processing partial symbols has a
5191 high cost in cache pressure. Thus, handle some simple cases
5192 here which cover the majority of C partial symbols. DIEs
5193 which neither have specification tags in them, nor could have
5194 specification tags elsewhere pointing at them, can simply be
5195 processed and discarded.
5196
5197 This segment is also optional; scan_partial_symbols and
5198 add_partial_symbol will handle these DIEs if we chain
5199 them in normally. When compilers which do not emit large
5200 quantities of duplicate debug information are more common,
5201 this code can probably be removed. */
5202
5203 /* Any complete simple types at the top level (pretty much all
5204 of them, for a language without namespaces), can be processed
5205 directly. */
5206 if (parent_die == NULL
5207 && part_die->has_specification == 0
5208 && part_die->is_declaration == 0
5209 && (part_die->tag == DW_TAG_typedef
5210 || part_die->tag == DW_TAG_base_type
5211 || part_die->tag == DW_TAG_subrange_type))
5212 {
5213 if (building_psymtab && part_die->name != NULL)
5214 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5215 VAR_DOMAIN, LOC_TYPEDEF,
5216 &cu->objfile->static_psymbols,
5217 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5218 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5219 continue;
5220 }
5221
5222 /* If we're at the second level, and we're an enumerator, and
5223 our parent has no specification (meaning possibly lives in a
5224 namespace elsewhere), then we can add the partial symbol now
5225 instead of queueing it. */
5226 if (part_die->tag == DW_TAG_enumerator
5227 && parent_die != NULL
5228 && parent_die->die_parent == NULL
5229 && parent_die->tag == DW_TAG_enumeration_type
5230 && parent_die->has_specification == 0)
5231 {
5232 if (part_die->name == NULL)
5233 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5234 else if (building_psymtab)
5235 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5236 VAR_DOMAIN, LOC_CONST,
5237 (cu->language == language_cplus
5238 || cu->language == language_java)
5239 ? &cu->objfile->global_psymbols
5240 : &cu->objfile->static_psymbols,
5241 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5242
5243 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5244 continue;
5245 }
5246
5247 /* We'll save this DIE so link it in. */
5248 part_die->die_parent = parent_die;
5249 part_die->die_sibling = NULL;
5250 part_die->die_child = NULL;
5251
5252 if (last_die && last_die == parent_die)
5253 last_die->die_child = part_die;
5254 else if (last_die)
5255 last_die->die_sibling = part_die;
5256
5257 last_die = part_die;
5258
5259 if (first_die == NULL)
5260 first_die = part_die;
5261
5262 /* Maybe add the DIE to the hash table. Not all DIEs that we
5263 find interesting need to be in the hash table, because we
5264 also have the parent/sibling/child chains; only those that we
5265 might refer to by offset later during partial symbol reading.
5266
5267 For now this means things that might have be the target of a
5268 DW_AT_specification, DW_AT_abstract_origin, or
5269 DW_AT_extension. DW_AT_extension will refer only to
5270 namespaces; DW_AT_abstract_origin refers to functions (and
5271 many things under the function DIE, but we do not recurse
5272 into function DIEs during partial symbol reading) and
5273 possibly variables as well; DW_AT_specification refers to
5274 declarations. Declarations ought to have the DW_AT_declaration
5275 flag. It happens that GCC forgets to put it in sometimes, but
5276 only for functions, not for types.
5277
5278 Adding more things than necessary to the hash table is harmless
5279 except for the performance cost. Adding too few will result in
5280 internal errors in find_partial_die. */
5281
5282 if (abbrev->tag == DW_TAG_subprogram
5283 || abbrev->tag == DW_TAG_variable
5284 || abbrev->tag == DW_TAG_namespace
5285 || part_die->is_declaration)
5286 {
5287 void **slot;
5288
5289 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5290 part_die->offset, INSERT);
5291 *slot = part_die;
5292 }
5293
5294 part_die = obstack_alloc (&cu->comp_unit_obstack,
5295 sizeof (struct partial_die_info));
5296
5297 /* For some DIEs we want to follow their children (if any). For C
5298 we have no reason to follow the children of structures; for other
5299 languages we have to, both so that we can get at method physnames
5300 to infer fully qualified class names, and for DW_AT_specification. */
5301 if (last_die->has_children
5302 && (last_die->tag == DW_TAG_namespace
5303 || last_die->tag == DW_TAG_enumeration_type
5304 || (cu->language != language_c
5305 && (last_die->tag == DW_TAG_class_type
5306 || last_die->tag == DW_TAG_structure_type
5307 || last_die->tag == DW_TAG_union_type))))
5308 {
5309 nesting_level++;
5310 parent_die = last_die;
5311 continue;
5312 }
5313
5314 /* Otherwise we skip to the next sibling, if any. */
5315 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5316
5317 /* Back to the top, do it again. */
5318 }
5319 }
5320
5321 /* Read a minimal amount of information into the minimal die structure. */
5322
5323 static char *
5324 read_partial_die (struct partial_die_info *part_die,
5325 struct abbrev_info *abbrev,
5326 unsigned int abbrev_len, bfd *abfd,
5327 char *info_ptr, struct dwarf2_cu *cu)
5328 {
5329 unsigned int bytes_read, i;
5330 struct attribute attr;
5331 int has_low_pc_attr = 0;
5332 int has_high_pc_attr = 0;
5333
5334 memset (part_die, 0, sizeof (struct partial_die_info));
5335
5336 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5337
5338 info_ptr += abbrev_len;
5339
5340 if (abbrev == NULL)
5341 return info_ptr;
5342
5343 part_die->tag = abbrev->tag;
5344 part_die->has_children = abbrev->has_children;
5345
5346 for (i = 0; i < abbrev->num_attrs; ++i)
5347 {
5348 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5349
5350 /* Store the data if it is of an attribute we want to keep in a
5351 partial symbol table. */
5352 switch (attr.name)
5353 {
5354 case DW_AT_name:
5355
5356 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5357 if (part_die->name == NULL)
5358 part_die->name = DW_STRING (&attr);
5359 break;
5360 case DW_AT_comp_dir:
5361 if (part_die->dirname == NULL)
5362 part_die->dirname = DW_STRING (&attr);
5363 break;
5364 case DW_AT_MIPS_linkage_name:
5365 part_die->name = DW_STRING (&attr);
5366 break;
5367 case DW_AT_low_pc:
5368 has_low_pc_attr = 1;
5369 part_die->lowpc = DW_ADDR (&attr);
5370 break;
5371 case DW_AT_high_pc:
5372 has_high_pc_attr = 1;
5373 part_die->highpc = DW_ADDR (&attr);
5374 break;
5375 case DW_AT_location:
5376 /* Support the .debug_loc offsets */
5377 if (attr_form_is_block (&attr))
5378 {
5379 part_die->locdesc = DW_BLOCK (&attr);
5380 }
5381 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5382 {
5383 dwarf2_complex_location_expr_complaint ();
5384 }
5385 else
5386 {
5387 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5388 "partial symbol information");
5389 }
5390 break;
5391 case DW_AT_language:
5392 part_die->language = DW_UNSND (&attr);
5393 break;
5394 case DW_AT_external:
5395 part_die->is_external = DW_UNSND (&attr);
5396 break;
5397 case DW_AT_declaration:
5398 part_die->is_declaration = DW_UNSND (&attr);
5399 break;
5400 case DW_AT_type:
5401 part_die->has_type = 1;
5402 break;
5403 case DW_AT_abstract_origin:
5404 case DW_AT_specification:
5405 case DW_AT_extension:
5406 part_die->has_specification = 1;
5407 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5408 break;
5409 case DW_AT_sibling:
5410 /* Ignore absolute siblings, they might point outside of
5411 the current compile unit. */
5412 if (attr.form == DW_FORM_ref_addr)
5413 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5414 else
5415 part_die->sibling = dwarf2_per_objfile->info_buffer
5416 + dwarf2_get_ref_die_offset (&attr, cu);
5417 break;
5418 case DW_AT_stmt_list:
5419 part_die->has_stmt_list = 1;
5420 part_die->line_offset = DW_UNSND (&attr);
5421 break;
5422 default:
5423 break;
5424 }
5425 }
5426
5427 /* When using the GNU linker, .gnu.linkonce. sections are used to
5428 eliminate duplicate copies of functions and vtables and such.
5429 The linker will arbitrarily choose one and discard the others.
5430 The AT_*_pc values for such functions refer to local labels in
5431 these sections. If the section from that file was discarded, the
5432 labels are not in the output, so the relocs get a value of 0.
5433 If this is a discarded function, mark the pc bounds as invalid,
5434 so that GDB will ignore it. */
5435 if (has_low_pc_attr && has_high_pc_attr
5436 && part_die->lowpc < part_die->highpc
5437 && (part_die->lowpc != 0
5438 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5439 part_die->has_pc_info = 1;
5440 return info_ptr;
5441 }
5442
5443 /* Find a cached partial DIE at OFFSET in CU. */
5444
5445 static struct partial_die_info *
5446 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5447 {
5448 struct partial_die_info *lookup_die = NULL;
5449 struct partial_die_info part_die;
5450
5451 part_die.offset = offset;
5452 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5453
5454 if (lookup_die == NULL)
5455 internal_error (__FILE__, __LINE__,
5456 _("could not find partial DIE in cache\n"));
5457
5458 return lookup_die;
5459 }
5460
5461 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5462
5463 static struct partial_die_info *
5464 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5465 {
5466 struct dwarf2_per_cu_data *per_cu;
5467
5468 if (offset >= cu->header.offset
5469 && offset < cu->header.offset + cu->header.length)
5470 return find_partial_die_in_comp_unit (offset, cu);
5471
5472 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5473
5474 if (per_cu->cu == NULL)
5475 {
5476 load_comp_unit (per_cu, cu->objfile);
5477 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5478 dwarf2_per_objfile->read_in_chain = per_cu;
5479 }
5480
5481 per_cu->cu->last_used = 0;
5482 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5483 }
5484
5485 /* Adjust PART_DIE before generating a symbol for it. This function
5486 may set the is_external flag or change the DIE's name. */
5487
5488 static void
5489 fixup_partial_die (struct partial_die_info *part_die,
5490 struct dwarf2_cu *cu)
5491 {
5492 /* If we found a reference attribute and the DIE has no name, try
5493 to find a name in the referred to DIE. */
5494
5495 if (part_die->name == NULL && part_die->has_specification)
5496 {
5497 struct partial_die_info *spec_die;
5498
5499 spec_die = find_partial_die (part_die->spec_offset, cu);
5500
5501 fixup_partial_die (spec_die, cu);
5502
5503 if (spec_die->name)
5504 {
5505 part_die->name = spec_die->name;
5506
5507 /* Copy DW_AT_external attribute if it is set. */
5508 if (spec_die->is_external)
5509 part_die->is_external = spec_die->is_external;
5510 }
5511 }
5512
5513 /* Set default names for some unnamed DIEs. */
5514 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5515 || part_die->tag == DW_TAG_class_type))
5516 part_die->name = "(anonymous class)";
5517
5518 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5519 part_die->name = "(anonymous namespace)";
5520
5521 if (part_die->tag == DW_TAG_structure_type
5522 || part_die->tag == DW_TAG_class_type
5523 || part_die->tag == DW_TAG_union_type)
5524 guess_structure_name (part_die, cu);
5525 }
5526
5527 /* Read the die from the .debug_info section buffer. Set DIEP to
5528 point to a newly allocated die with its information, except for its
5529 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5530 whether the die has children or not. */
5531
5532 static char *
5533 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5534 struct dwarf2_cu *cu, int *has_children)
5535 {
5536 unsigned int abbrev_number, bytes_read, i, offset;
5537 struct abbrev_info *abbrev;
5538 struct die_info *die;
5539
5540 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5541 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5542 info_ptr += bytes_read;
5543 if (!abbrev_number)
5544 {
5545 die = dwarf_alloc_die ();
5546 die->tag = 0;
5547 die->abbrev = abbrev_number;
5548 die->type = NULL;
5549 *diep = die;
5550 *has_children = 0;
5551 return info_ptr;
5552 }
5553
5554 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5555 if (!abbrev)
5556 {
5557 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5558 abbrev_number,
5559 bfd_get_filename (abfd));
5560 }
5561 die = dwarf_alloc_die ();
5562 die->offset = offset;
5563 die->tag = abbrev->tag;
5564 die->abbrev = abbrev_number;
5565 die->type = NULL;
5566
5567 die->num_attrs = abbrev->num_attrs;
5568 die->attrs = (struct attribute *)
5569 xmalloc (die->num_attrs * sizeof (struct attribute));
5570
5571 for (i = 0; i < abbrev->num_attrs; ++i)
5572 {
5573 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5574 abfd, info_ptr, cu);
5575
5576 /* If this attribute is an absolute reference to a different
5577 compilation unit, make sure that compilation unit is loaded
5578 also. */
5579 if (die->attrs[i].form == DW_FORM_ref_addr
5580 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5581 || (DW_ADDR (&die->attrs[i])
5582 >= cu->header.offset + cu->header.length)))
5583 {
5584 struct dwarf2_per_cu_data *per_cu;
5585 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5586 cu->objfile);
5587
5588 /* Mark the dependence relation so that we don't flush PER_CU
5589 too early. */
5590 dwarf2_add_dependence (cu, per_cu);
5591
5592 /* If it's already on the queue, we have nothing to do. */
5593 if (per_cu->queued)
5594 continue;
5595
5596 /* If the compilation unit is already loaded, just mark it as
5597 used. */
5598 if (per_cu->cu != NULL)
5599 {
5600 per_cu->cu->last_used = 0;
5601 continue;
5602 }
5603
5604 /* Add it to the queue. */
5605 queue_comp_unit (per_cu);
5606 }
5607 }
5608
5609 *diep = die;
5610 *has_children = abbrev->has_children;
5611 return info_ptr;
5612 }
5613
5614 /* Read an attribute value described by an attribute form. */
5615
5616 static char *
5617 read_attribute_value (struct attribute *attr, unsigned form,
5618 bfd *abfd, char *info_ptr,
5619 struct dwarf2_cu *cu)
5620 {
5621 struct comp_unit_head *cu_header = &cu->header;
5622 unsigned int bytes_read;
5623 struct dwarf_block *blk;
5624
5625 attr->form = form;
5626 switch (form)
5627 {
5628 case DW_FORM_addr:
5629 case DW_FORM_ref_addr:
5630 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5631 info_ptr += bytes_read;
5632 break;
5633 case DW_FORM_block2:
5634 blk = dwarf_alloc_block (cu);
5635 blk->size = read_2_bytes (abfd, info_ptr);
5636 info_ptr += 2;
5637 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5638 info_ptr += blk->size;
5639 DW_BLOCK (attr) = blk;
5640 break;
5641 case DW_FORM_block4:
5642 blk = dwarf_alloc_block (cu);
5643 blk->size = read_4_bytes (abfd, info_ptr);
5644 info_ptr += 4;
5645 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5646 info_ptr += blk->size;
5647 DW_BLOCK (attr) = blk;
5648 break;
5649 case DW_FORM_data2:
5650 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5651 info_ptr += 2;
5652 break;
5653 case DW_FORM_data4:
5654 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5655 info_ptr += 4;
5656 break;
5657 case DW_FORM_data8:
5658 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5659 info_ptr += 8;
5660 break;
5661 case DW_FORM_string:
5662 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5663 info_ptr += bytes_read;
5664 break;
5665 case DW_FORM_strp:
5666 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5667 &bytes_read);
5668 info_ptr += bytes_read;
5669 break;
5670 case DW_FORM_block:
5671 blk = dwarf_alloc_block (cu);
5672 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5673 info_ptr += bytes_read;
5674 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5675 info_ptr += blk->size;
5676 DW_BLOCK (attr) = blk;
5677 break;
5678 case DW_FORM_block1:
5679 blk = dwarf_alloc_block (cu);
5680 blk->size = read_1_byte (abfd, info_ptr);
5681 info_ptr += 1;
5682 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5683 info_ptr += blk->size;
5684 DW_BLOCK (attr) = blk;
5685 break;
5686 case DW_FORM_data1:
5687 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5688 info_ptr += 1;
5689 break;
5690 case DW_FORM_flag:
5691 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5692 info_ptr += 1;
5693 break;
5694 case DW_FORM_sdata:
5695 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5696 info_ptr += bytes_read;
5697 break;
5698 case DW_FORM_udata:
5699 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5700 info_ptr += bytes_read;
5701 break;
5702 case DW_FORM_ref1:
5703 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5704 info_ptr += 1;
5705 break;
5706 case DW_FORM_ref2:
5707 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5708 info_ptr += 2;
5709 break;
5710 case DW_FORM_ref4:
5711 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5712 info_ptr += 4;
5713 break;
5714 case DW_FORM_ref8:
5715 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5716 info_ptr += 8;
5717 break;
5718 case DW_FORM_ref_udata:
5719 DW_ADDR (attr) = (cu->header.offset
5720 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5721 info_ptr += bytes_read;
5722 break;
5723 case DW_FORM_indirect:
5724 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5725 info_ptr += bytes_read;
5726 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5727 break;
5728 default:
5729 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5730 dwarf_form_name (form),
5731 bfd_get_filename (abfd));
5732 }
5733 return info_ptr;
5734 }
5735
5736 /* Read an attribute described by an abbreviated attribute. */
5737
5738 static char *
5739 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5740 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5741 {
5742 attr->name = abbrev->name;
5743 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5744 }
5745
5746 /* read dwarf information from a buffer */
5747
5748 static unsigned int
5749 read_1_byte (bfd *abfd, char *buf)
5750 {
5751 return bfd_get_8 (abfd, (bfd_byte *) buf);
5752 }
5753
5754 static int
5755 read_1_signed_byte (bfd *abfd, char *buf)
5756 {
5757 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5758 }
5759
5760 static unsigned int
5761 read_2_bytes (bfd *abfd, char *buf)
5762 {
5763 return bfd_get_16 (abfd, (bfd_byte *) buf);
5764 }
5765
5766 static int
5767 read_2_signed_bytes (bfd *abfd, char *buf)
5768 {
5769 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5770 }
5771
5772 static unsigned int
5773 read_4_bytes (bfd *abfd, char *buf)
5774 {
5775 return bfd_get_32 (abfd, (bfd_byte *) buf);
5776 }
5777
5778 static int
5779 read_4_signed_bytes (bfd *abfd, char *buf)
5780 {
5781 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5782 }
5783
5784 static unsigned long
5785 read_8_bytes (bfd *abfd, char *buf)
5786 {
5787 return bfd_get_64 (abfd, (bfd_byte *) buf);
5788 }
5789
5790 static CORE_ADDR
5791 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5792 {
5793 struct comp_unit_head *cu_header = &cu->header;
5794 CORE_ADDR retval = 0;
5795
5796 if (cu_header->signed_addr_p)
5797 {
5798 switch (cu_header->addr_size)
5799 {
5800 case 2:
5801 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5802 break;
5803 case 4:
5804 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5805 break;
5806 case 8:
5807 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5808 break;
5809 default:
5810 internal_error (__FILE__, __LINE__,
5811 _("read_address: bad switch, signed [in module %s]"),
5812 bfd_get_filename (abfd));
5813 }
5814 }
5815 else
5816 {
5817 switch (cu_header->addr_size)
5818 {
5819 case 2:
5820 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5821 break;
5822 case 4:
5823 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5824 break;
5825 case 8:
5826 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5827 break;
5828 default:
5829 internal_error (__FILE__, __LINE__,
5830 _("read_address: bad switch, unsigned [in module %s]"),
5831 bfd_get_filename (abfd));
5832 }
5833 }
5834
5835 *bytes_read = cu_header->addr_size;
5836 return retval;
5837 }
5838
5839 /* Read the initial length from a section. The (draft) DWARF 3
5840 specification allows the initial length to take up either 4 bytes
5841 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5842 bytes describe the length and all offsets will be 8 bytes in length
5843 instead of 4.
5844
5845 An older, non-standard 64-bit format is also handled by this
5846 function. The older format in question stores the initial length
5847 as an 8-byte quantity without an escape value. Lengths greater
5848 than 2^32 aren't very common which means that the initial 4 bytes
5849 is almost always zero. Since a length value of zero doesn't make
5850 sense for the 32-bit format, this initial zero can be considered to
5851 be an escape value which indicates the presence of the older 64-bit
5852 format. As written, the code can't detect (old format) lengths
5853 greater than 4GB. If it becomes necessary to handle lengths
5854 somewhat larger than 4GB, we could allow other small values (such
5855 as the non-sensical values of 1, 2, and 3) to also be used as
5856 escape values indicating the presence of the old format.
5857
5858 The value returned via bytes_read should be used to increment the
5859 relevant pointer after calling read_initial_length().
5860
5861 As a side effect, this function sets the fields initial_length_size
5862 and offset_size in cu_header to the values appropriate for the
5863 length field. (The format of the initial length field determines
5864 the width of file offsets to be fetched later with read_offset().)
5865
5866 [ Note: read_initial_length() and read_offset() are based on the
5867 document entitled "DWARF Debugging Information Format", revision
5868 3, draft 8, dated November 19, 2001. This document was obtained
5869 from:
5870
5871 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5872
5873 This document is only a draft and is subject to change. (So beware.)
5874
5875 Details regarding the older, non-standard 64-bit format were
5876 determined empirically by examining 64-bit ELF files produced by
5877 the SGI toolchain on an IRIX 6.5 machine.
5878
5879 - Kevin, July 16, 2002
5880 ] */
5881
5882 static LONGEST
5883 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5884 int *bytes_read)
5885 {
5886 LONGEST length = bfd_get_32 (abfd, (bfd_byte *) buf);
5887
5888 if (length == 0xffffffff)
5889 {
5890 length = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5891 *bytes_read = 12;
5892 }
5893 else if (length == 0)
5894 {
5895 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
5896 length = bfd_get_64 (abfd, (bfd_byte *) buf);
5897 *bytes_read = 8;
5898 }
5899 else
5900 {
5901 *bytes_read = 4;
5902 }
5903
5904 if (cu_header)
5905 {
5906 gdb_assert (cu_header->initial_length_size == 0
5907 || cu_header->initial_length_size == 4
5908 || cu_header->initial_length_size == 8
5909 || cu_header->initial_length_size == 12);
5910
5911 if (cu_header->initial_length_size != 0
5912 && cu_header->initial_length_size != *bytes_read)
5913 complaint (&symfile_complaints,
5914 _("intermixed 32-bit and 64-bit DWARF sections"));
5915
5916 cu_header->initial_length_size = *bytes_read;
5917 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
5918 }
5919
5920 return length;
5921 }
5922
5923 /* Read an offset from the data stream. The size of the offset is
5924 given by cu_header->offset_size. */
5925
5926 static LONGEST
5927 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5928 int *bytes_read)
5929 {
5930 LONGEST retval = 0;
5931
5932 switch (cu_header->offset_size)
5933 {
5934 case 4:
5935 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5936 *bytes_read = 4;
5937 break;
5938 case 8:
5939 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5940 *bytes_read = 8;
5941 break;
5942 default:
5943 internal_error (__FILE__, __LINE__,
5944 _("read_offset: bad switch [in module %s]"),
5945 bfd_get_filename (abfd));
5946 }
5947
5948 return retval;
5949 }
5950
5951 static char *
5952 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5953 {
5954 /* If the size of a host char is 8 bits, we can return a pointer
5955 to the buffer, otherwise we have to copy the data to a buffer
5956 allocated on the temporary obstack. */
5957 gdb_assert (HOST_CHAR_BIT == 8);
5958 return buf;
5959 }
5960
5961 static char *
5962 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5963 {
5964 /* If the size of a host char is 8 bits, we can return a pointer
5965 to the string, otherwise we have to copy the string to a buffer
5966 allocated on the temporary obstack. */
5967 gdb_assert (HOST_CHAR_BIT == 8);
5968 if (*buf == '\0')
5969 {
5970 *bytes_read_ptr = 1;
5971 return NULL;
5972 }
5973 *bytes_read_ptr = strlen (buf) + 1;
5974 return buf;
5975 }
5976
5977 static char *
5978 read_indirect_string (bfd *abfd, char *buf,
5979 const struct comp_unit_head *cu_header,
5980 unsigned int *bytes_read_ptr)
5981 {
5982 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5983 (int *) bytes_read_ptr);
5984
5985 if (dwarf2_per_objfile->str_buffer == NULL)
5986 {
5987 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
5988 bfd_get_filename (abfd));
5989 return NULL;
5990 }
5991 if (str_offset >= dwarf2_per_objfile->str_size)
5992 {
5993 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
5994 bfd_get_filename (abfd));
5995 return NULL;
5996 }
5997 gdb_assert (HOST_CHAR_BIT == 8);
5998 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5999 return NULL;
6000 return dwarf2_per_objfile->str_buffer + str_offset;
6001 }
6002
6003 static unsigned long
6004 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6005 {
6006 unsigned long result;
6007 unsigned int num_read;
6008 int i, shift;
6009 unsigned char byte;
6010
6011 result = 0;
6012 shift = 0;
6013 num_read = 0;
6014 i = 0;
6015 while (1)
6016 {
6017 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6018 buf++;
6019 num_read++;
6020 result |= ((unsigned long)(byte & 127) << shift);
6021 if ((byte & 128) == 0)
6022 {
6023 break;
6024 }
6025 shift += 7;
6026 }
6027 *bytes_read_ptr = num_read;
6028 return result;
6029 }
6030
6031 static long
6032 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6033 {
6034 long result;
6035 int i, shift, size, num_read;
6036 unsigned char byte;
6037
6038 result = 0;
6039 shift = 0;
6040 size = 32;
6041 num_read = 0;
6042 i = 0;
6043 while (1)
6044 {
6045 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6046 buf++;
6047 num_read++;
6048 result |= ((long)(byte & 127) << shift);
6049 shift += 7;
6050 if ((byte & 128) == 0)
6051 {
6052 break;
6053 }
6054 }
6055 if ((shift < size) && (byte & 0x40))
6056 {
6057 result |= -(1 << shift);
6058 }
6059 *bytes_read_ptr = num_read;
6060 return result;
6061 }
6062
6063 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6064
6065 static char *
6066 skip_leb128 (bfd *abfd, char *buf)
6067 {
6068 int byte;
6069
6070 while (1)
6071 {
6072 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6073 buf++;
6074 if ((byte & 128) == 0)
6075 return buf;
6076 }
6077 }
6078
6079 static void
6080 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6081 {
6082 switch (lang)
6083 {
6084 case DW_LANG_C89:
6085 case DW_LANG_C:
6086 cu->language = language_c;
6087 break;
6088 case DW_LANG_C_plus_plus:
6089 cu->language = language_cplus;
6090 break;
6091 case DW_LANG_Fortran77:
6092 case DW_LANG_Fortran90:
6093 case DW_LANG_Fortran95:
6094 cu->language = language_fortran;
6095 break;
6096 case DW_LANG_Mips_Assembler:
6097 cu->language = language_asm;
6098 break;
6099 case DW_LANG_Java:
6100 cu->language = language_java;
6101 break;
6102 case DW_LANG_Ada83:
6103 case DW_LANG_Ada95:
6104 cu->language = language_ada;
6105 break;
6106 case DW_LANG_Cobol74:
6107 case DW_LANG_Cobol85:
6108 case DW_LANG_Pascal83:
6109 case DW_LANG_Modula2:
6110 default:
6111 cu->language = language_minimal;
6112 break;
6113 }
6114 cu->language_defn = language_def (cu->language);
6115 }
6116
6117 /* Return the named attribute or NULL if not there. */
6118
6119 static struct attribute *
6120 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6121 {
6122 unsigned int i;
6123 struct attribute *spec = NULL;
6124
6125 for (i = 0; i < die->num_attrs; ++i)
6126 {
6127 if (die->attrs[i].name == name)
6128 return &die->attrs[i];
6129 if (die->attrs[i].name == DW_AT_specification
6130 || die->attrs[i].name == DW_AT_abstract_origin)
6131 spec = &die->attrs[i];
6132 }
6133
6134 if (spec)
6135 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6136
6137 return NULL;
6138 }
6139
6140 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6141 and holds a non-zero value. This function should only be used for
6142 DW_FORM_flag attributes. */
6143
6144 static int
6145 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6146 {
6147 struct attribute *attr = dwarf2_attr (die, name, cu);
6148
6149 return (attr && DW_UNSND (attr));
6150 }
6151
6152 static int
6153 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6154 {
6155 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6156 which value is non-zero. However, we have to be careful with
6157 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6158 (via dwarf2_flag_true_p) follows this attribute. So we may
6159 end up accidently finding a declaration attribute that belongs
6160 to a different DIE referenced by the specification attribute,
6161 even though the given DIE does not have a declaration attribute. */
6162 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6163 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6164 }
6165
6166 /* Return the die giving the specification for DIE, if there is
6167 one. */
6168
6169 static struct die_info *
6170 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6171 {
6172 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6173
6174 if (spec_attr == NULL)
6175 return NULL;
6176 else
6177 return follow_die_ref (die, spec_attr, cu);
6178 }
6179
6180 /* Free the line_header structure *LH, and any arrays and strings it
6181 refers to. */
6182 static void
6183 free_line_header (struct line_header *lh)
6184 {
6185 if (lh->standard_opcode_lengths)
6186 xfree (lh->standard_opcode_lengths);
6187
6188 /* Remember that all the lh->file_names[i].name pointers are
6189 pointers into debug_line_buffer, and don't need to be freed. */
6190 if (lh->file_names)
6191 xfree (lh->file_names);
6192
6193 /* Similarly for the include directory names. */
6194 if (lh->include_dirs)
6195 xfree (lh->include_dirs);
6196
6197 xfree (lh);
6198 }
6199
6200
6201 /* Add an entry to LH's include directory table. */
6202 static void
6203 add_include_dir (struct line_header *lh, char *include_dir)
6204 {
6205 /* Grow the array if necessary. */
6206 if (lh->include_dirs_size == 0)
6207 {
6208 lh->include_dirs_size = 1; /* for testing */
6209 lh->include_dirs = xmalloc (lh->include_dirs_size
6210 * sizeof (*lh->include_dirs));
6211 }
6212 else if (lh->num_include_dirs >= lh->include_dirs_size)
6213 {
6214 lh->include_dirs_size *= 2;
6215 lh->include_dirs = xrealloc (lh->include_dirs,
6216 (lh->include_dirs_size
6217 * sizeof (*lh->include_dirs)));
6218 }
6219
6220 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6221 }
6222
6223
6224 /* Add an entry to LH's file name table. */
6225 static void
6226 add_file_name (struct line_header *lh,
6227 char *name,
6228 unsigned int dir_index,
6229 unsigned int mod_time,
6230 unsigned int length)
6231 {
6232 struct file_entry *fe;
6233
6234 /* Grow the array if necessary. */
6235 if (lh->file_names_size == 0)
6236 {
6237 lh->file_names_size = 1; /* for testing */
6238 lh->file_names = xmalloc (lh->file_names_size
6239 * sizeof (*lh->file_names));
6240 }
6241 else if (lh->num_file_names >= lh->file_names_size)
6242 {
6243 lh->file_names_size *= 2;
6244 lh->file_names = xrealloc (lh->file_names,
6245 (lh->file_names_size
6246 * sizeof (*lh->file_names)));
6247 }
6248
6249 fe = &lh->file_names[lh->num_file_names++];
6250 fe->name = name;
6251 fe->dir_index = dir_index;
6252 fe->mod_time = mod_time;
6253 fe->length = length;
6254 fe->included_p = 0;
6255 }
6256
6257
6258 /* Read the statement program header starting at OFFSET in
6259 .debug_line, according to the endianness of ABFD. Return a pointer
6260 to a struct line_header, allocated using xmalloc.
6261
6262 NOTE: the strings in the include directory and file name tables of
6263 the returned object point into debug_line_buffer, and must not be
6264 freed. */
6265 static struct line_header *
6266 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6267 struct dwarf2_cu *cu)
6268 {
6269 struct cleanup *back_to;
6270 struct line_header *lh;
6271 char *line_ptr;
6272 int bytes_read;
6273 int i;
6274 char *cur_dir, *cur_file;
6275
6276 if (dwarf2_per_objfile->line_buffer == NULL)
6277 {
6278 complaint (&symfile_complaints, _("missing .debug_line section"));
6279 return 0;
6280 }
6281
6282 /* Make sure that at least there's room for the total_length field.
6283 That could be 12 bytes long, but we're just going to fudge that. */
6284 if (offset + 4 >= dwarf2_per_objfile->line_size)
6285 {
6286 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6287 return 0;
6288 }
6289
6290 lh = xmalloc (sizeof (*lh));
6291 memset (lh, 0, sizeof (*lh));
6292 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6293 (void *) lh);
6294
6295 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6296
6297 /* Read in the header. */
6298 lh->total_length =
6299 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6300 line_ptr += bytes_read;
6301 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6302 + dwarf2_per_objfile->line_size))
6303 {
6304 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6305 return 0;
6306 }
6307 lh->statement_program_end = line_ptr + lh->total_length;
6308 lh->version = read_2_bytes (abfd, line_ptr);
6309 line_ptr += 2;
6310 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6311 line_ptr += bytes_read;
6312 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6313 line_ptr += 1;
6314 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6315 line_ptr += 1;
6316 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6317 line_ptr += 1;
6318 lh->line_range = read_1_byte (abfd, line_ptr);
6319 line_ptr += 1;
6320 lh->opcode_base = read_1_byte (abfd, line_ptr);
6321 line_ptr += 1;
6322 lh->standard_opcode_lengths
6323 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6324
6325 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6326 for (i = 1; i < lh->opcode_base; ++i)
6327 {
6328 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6329 line_ptr += 1;
6330 }
6331
6332 /* Read directory table. */
6333 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6334 {
6335 line_ptr += bytes_read;
6336 add_include_dir (lh, cur_dir);
6337 }
6338 line_ptr += bytes_read;
6339
6340 /* Read file name table. */
6341 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6342 {
6343 unsigned int dir_index, mod_time, length;
6344
6345 line_ptr += bytes_read;
6346 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6347 line_ptr += bytes_read;
6348 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6349 line_ptr += bytes_read;
6350 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6351 line_ptr += bytes_read;
6352
6353 add_file_name (lh, cur_file, dir_index, mod_time, length);
6354 }
6355 line_ptr += bytes_read;
6356 lh->statement_program_start = line_ptr;
6357
6358 if (line_ptr > (dwarf2_per_objfile->line_buffer
6359 + dwarf2_per_objfile->line_size))
6360 complaint (&symfile_complaints,
6361 _("line number info header doesn't fit in `.debug_line' section"));
6362
6363 discard_cleanups (back_to);
6364 return lh;
6365 }
6366
6367 /* This function exists to work around a bug in certain compilers
6368 (particularly GCC 2.95), in which the first line number marker of a
6369 function does not show up until after the prologue, right before
6370 the second line number marker. This function shifts ADDRESS down
6371 to the beginning of the function if necessary, and is called on
6372 addresses passed to record_line. */
6373
6374 static CORE_ADDR
6375 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6376 {
6377 struct function_range *fn;
6378
6379 /* Find the function_range containing address. */
6380 if (!cu->first_fn)
6381 return address;
6382
6383 if (!cu->cached_fn)
6384 cu->cached_fn = cu->first_fn;
6385
6386 fn = cu->cached_fn;
6387 while (fn)
6388 if (fn->lowpc <= address && fn->highpc > address)
6389 goto found;
6390 else
6391 fn = fn->next;
6392
6393 fn = cu->first_fn;
6394 while (fn && fn != cu->cached_fn)
6395 if (fn->lowpc <= address && fn->highpc > address)
6396 goto found;
6397 else
6398 fn = fn->next;
6399
6400 return address;
6401
6402 found:
6403 if (fn->seen_line)
6404 return address;
6405 if (address != fn->lowpc)
6406 complaint (&symfile_complaints,
6407 _("misplaced first line number at 0x%lx for '%s'"),
6408 (unsigned long) address, fn->name);
6409 fn->seen_line = 1;
6410 return fn->lowpc;
6411 }
6412
6413 /* Decode the Line Number Program (LNP) for the given line_header
6414 structure and CU. The actual information extracted and the type
6415 of structures created from the LNP depends on the value of PST.
6416
6417 1. If PST is NULL, then this procedure uses the data from the program
6418 to create all necessary symbol tables, and their linetables.
6419 The compilation directory of the file is passed in COMP_DIR,
6420 and must not be NULL.
6421
6422 2. If PST is not NULL, this procedure reads the program to determine
6423 the list of files included by the unit represented by PST, and
6424 builds all the associated partial symbol tables. In this case,
6425 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6426 is not used to compute the full name of the symtab, and therefore
6427 omitting it when building the partial symtab does not introduce
6428 the potential for inconsistency - a partial symtab and its associated
6429 symbtab having a different fullname -). */
6430
6431 static void
6432 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6433 struct dwarf2_cu *cu, struct partial_symtab *pst)
6434 {
6435 char *line_ptr;
6436 char *line_end;
6437 unsigned int bytes_read;
6438 unsigned char op_code, extended_op, adj_opcode;
6439 CORE_ADDR baseaddr;
6440 struct objfile *objfile = cu->objfile;
6441 const int decode_for_pst_p = (pst != NULL);
6442
6443 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6444
6445 line_ptr = lh->statement_program_start;
6446 line_end = lh->statement_program_end;
6447
6448 /* Read the statement sequences until there's nothing left. */
6449 while (line_ptr < line_end)
6450 {
6451 /* state machine registers */
6452 CORE_ADDR address = 0;
6453 unsigned int file = 1;
6454 unsigned int line = 1;
6455 unsigned int column = 0;
6456 int is_stmt = lh->default_is_stmt;
6457 int basic_block = 0;
6458 int end_sequence = 0;
6459
6460 if (!decode_for_pst_p && lh->num_file_names >= file)
6461 {
6462 /* Start a subfile for the current file of the state machine. */
6463 /* lh->include_dirs and lh->file_names are 0-based, but the
6464 directory and file name numbers in the statement program
6465 are 1-based. */
6466 struct file_entry *fe = &lh->file_names[file - 1];
6467 char *dir;
6468
6469 if (fe->dir_index)
6470 dir = lh->include_dirs[fe->dir_index - 1];
6471 else
6472 dir = comp_dir;
6473 dwarf2_start_subfile (fe->name, dir);
6474 }
6475
6476 /* Decode the table. */
6477 while (!end_sequence)
6478 {
6479 op_code = read_1_byte (abfd, line_ptr);
6480 line_ptr += 1;
6481
6482 if (op_code >= lh->opcode_base)
6483 {
6484 /* Special operand. */
6485 adj_opcode = op_code - lh->opcode_base;
6486 address += (adj_opcode / lh->line_range)
6487 * lh->minimum_instruction_length;
6488 line += lh->line_base + (adj_opcode % lh->line_range);
6489 lh->file_names[file - 1].included_p = 1;
6490 if (!decode_for_pst_p)
6491 {
6492 /* Append row to matrix using current values. */
6493 record_line (current_subfile, line,
6494 check_cu_functions (address, cu));
6495 }
6496 basic_block = 1;
6497 }
6498 else switch (op_code)
6499 {
6500 case DW_LNS_extended_op:
6501 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6502 line_ptr += bytes_read;
6503 extended_op = read_1_byte (abfd, line_ptr);
6504 line_ptr += 1;
6505 switch (extended_op)
6506 {
6507 case DW_LNE_end_sequence:
6508 end_sequence = 1;
6509 lh->file_names[file - 1].included_p = 1;
6510 if (!decode_for_pst_p)
6511 record_line (current_subfile, 0, address);
6512 break;
6513 case DW_LNE_set_address:
6514 address = read_address (abfd, line_ptr, cu, &bytes_read);
6515 line_ptr += bytes_read;
6516 address += baseaddr;
6517 break;
6518 case DW_LNE_define_file:
6519 {
6520 char *cur_file;
6521 unsigned int dir_index, mod_time, length;
6522
6523 cur_file = read_string (abfd, line_ptr, &bytes_read);
6524 line_ptr += bytes_read;
6525 dir_index =
6526 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6527 line_ptr += bytes_read;
6528 mod_time =
6529 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6530 line_ptr += bytes_read;
6531 length =
6532 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6533 line_ptr += bytes_read;
6534 add_file_name (lh, cur_file, dir_index, mod_time, length);
6535 }
6536 break;
6537 default:
6538 complaint (&symfile_complaints,
6539 _("mangled .debug_line section"));
6540 return;
6541 }
6542 break;
6543 case DW_LNS_copy:
6544 lh->file_names[file - 1].included_p = 1;
6545 if (!decode_for_pst_p)
6546 record_line (current_subfile, line,
6547 check_cu_functions (address, cu));
6548 basic_block = 0;
6549 break;
6550 case DW_LNS_advance_pc:
6551 address += lh->minimum_instruction_length
6552 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6553 line_ptr += bytes_read;
6554 break;
6555 case DW_LNS_advance_line:
6556 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6557 line_ptr += bytes_read;
6558 break;
6559 case DW_LNS_set_file:
6560 {
6561 /* The arrays lh->include_dirs and lh->file_names are
6562 0-based, but the directory and file name numbers in
6563 the statement program are 1-based. */
6564 struct file_entry *fe;
6565 char *dir;
6566
6567 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6568 line_ptr += bytes_read;
6569 fe = &lh->file_names[file - 1];
6570 if (fe->dir_index)
6571 dir = lh->include_dirs[fe->dir_index - 1];
6572 else
6573 dir = comp_dir;
6574 if (!decode_for_pst_p)
6575 dwarf2_start_subfile (fe->name, dir);
6576 }
6577 break;
6578 case DW_LNS_set_column:
6579 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6580 line_ptr += bytes_read;
6581 break;
6582 case DW_LNS_negate_stmt:
6583 is_stmt = (!is_stmt);
6584 break;
6585 case DW_LNS_set_basic_block:
6586 basic_block = 1;
6587 break;
6588 /* Add to the address register of the state machine the
6589 address increment value corresponding to special opcode
6590 255. I.e., this value is scaled by the minimum
6591 instruction length since special opcode 255 would have
6592 scaled the the increment. */
6593 case DW_LNS_const_add_pc:
6594 address += (lh->minimum_instruction_length
6595 * ((255 - lh->opcode_base) / lh->line_range));
6596 break;
6597 case DW_LNS_fixed_advance_pc:
6598 address += read_2_bytes (abfd, line_ptr);
6599 line_ptr += 2;
6600 break;
6601 default:
6602 {
6603 /* Unknown standard opcode, ignore it. */
6604 int i;
6605
6606 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6607 {
6608 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6609 line_ptr += bytes_read;
6610 }
6611 }
6612 }
6613 }
6614 }
6615
6616 if (decode_for_pst_p)
6617 {
6618 int file_index;
6619
6620 /* Now that we're done scanning the Line Header Program, we can
6621 create the psymtab of each included file. */
6622 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6623 if (lh->file_names[file_index].included_p == 1)
6624 {
6625 char *include_name = lh->file_names [file_index].name;
6626
6627 if (strcmp (include_name, pst->filename) != 0)
6628 dwarf2_create_include_psymtab (include_name, pst, objfile);
6629 }
6630 }
6631 }
6632
6633 /* Start a subfile for DWARF. FILENAME is the name of the file and
6634 DIRNAME the name of the source directory which contains FILENAME
6635 or NULL if not known.
6636 This routine tries to keep line numbers from identical absolute and
6637 relative file names in a common subfile.
6638
6639 Using the `list' example from the GDB testsuite, which resides in
6640 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6641 of /srcdir/list0.c yields the following debugging information for list0.c:
6642
6643 DW_AT_name: /srcdir/list0.c
6644 DW_AT_comp_dir: /compdir
6645 files.files[0].name: list0.h
6646 files.files[0].dir: /srcdir
6647 files.files[1].name: list0.c
6648 files.files[1].dir: /srcdir
6649
6650 The line number information for list0.c has to end up in a single
6651 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6652
6653 static void
6654 dwarf2_start_subfile (char *filename, char *dirname)
6655 {
6656 /* If the filename isn't absolute, try to match an existing subfile
6657 with the full pathname. */
6658
6659 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6660 {
6661 struct subfile *subfile;
6662 char *fullname = concat (dirname, "/", filename, NULL);
6663
6664 for (subfile = subfiles; subfile; subfile = subfile->next)
6665 {
6666 if (FILENAME_CMP (subfile->name, fullname) == 0)
6667 {
6668 current_subfile = subfile;
6669 xfree (fullname);
6670 return;
6671 }
6672 }
6673 xfree (fullname);
6674 }
6675 start_subfile (filename, dirname);
6676 }
6677
6678 static void
6679 var_decode_location (struct attribute *attr, struct symbol *sym,
6680 struct dwarf2_cu *cu)
6681 {
6682 struct objfile *objfile = cu->objfile;
6683 struct comp_unit_head *cu_header = &cu->header;
6684
6685 /* NOTE drow/2003-01-30: There used to be a comment and some special
6686 code here to turn a symbol with DW_AT_external and a
6687 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6688 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6689 with some versions of binutils) where shared libraries could have
6690 relocations against symbols in their debug information - the
6691 minimal symbol would have the right address, but the debug info
6692 would not. It's no longer necessary, because we will explicitly
6693 apply relocations when we read in the debug information now. */
6694
6695 /* A DW_AT_location attribute with no contents indicates that a
6696 variable has been optimized away. */
6697 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6698 {
6699 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6700 return;
6701 }
6702
6703 /* Handle one degenerate form of location expression specially, to
6704 preserve GDB's previous behavior when section offsets are
6705 specified. If this is just a DW_OP_addr then mark this symbol
6706 as LOC_STATIC. */
6707
6708 if (attr_form_is_block (attr)
6709 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6710 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6711 {
6712 int dummy;
6713
6714 SYMBOL_VALUE_ADDRESS (sym) =
6715 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6716 fixup_symbol_section (sym, objfile);
6717 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6718 SYMBOL_SECTION (sym));
6719 SYMBOL_CLASS (sym) = LOC_STATIC;
6720 return;
6721 }
6722
6723 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6724 expression evaluator, and use LOC_COMPUTED only when necessary
6725 (i.e. when the value of a register or memory location is
6726 referenced, or a thread-local block, etc.). Then again, it might
6727 not be worthwhile. I'm assuming that it isn't unless performance
6728 or memory numbers show me otherwise. */
6729
6730 dwarf2_symbol_mark_computed (attr, sym, cu);
6731 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6732 }
6733
6734 /* Given a pointer to a DWARF information entry, figure out if we need
6735 to make a symbol table entry for it, and if so, create a new entry
6736 and return a pointer to it.
6737 If TYPE is NULL, determine symbol type from the die, otherwise
6738 used the passed type. */
6739
6740 static struct symbol *
6741 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6742 {
6743 struct objfile *objfile = cu->objfile;
6744 struct symbol *sym = NULL;
6745 char *name;
6746 struct attribute *attr = NULL;
6747 struct attribute *attr2 = NULL;
6748 CORE_ADDR baseaddr;
6749
6750 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6751
6752 if (die->tag != DW_TAG_namespace)
6753 name = dwarf2_linkage_name (die, cu);
6754 else
6755 name = TYPE_NAME (type);
6756
6757 if (name)
6758 {
6759 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6760 sizeof (struct symbol));
6761 OBJSTAT (objfile, n_syms++);
6762 memset (sym, 0, sizeof (struct symbol));
6763
6764 /* Cache this symbol's name and the name's demangled form (if any). */
6765 SYMBOL_LANGUAGE (sym) = cu->language;
6766 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6767
6768 /* Default assumptions.
6769 Use the passed type or decode it from the die. */
6770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6771 SYMBOL_CLASS (sym) = LOC_STATIC;
6772 if (type != NULL)
6773 SYMBOL_TYPE (sym) = type;
6774 else
6775 SYMBOL_TYPE (sym) = die_type (die, cu);
6776 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6777 if (attr)
6778 {
6779 SYMBOL_LINE (sym) = DW_UNSND (attr);
6780 }
6781 switch (die->tag)
6782 {
6783 case DW_TAG_label:
6784 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6785 if (attr)
6786 {
6787 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6788 }
6789 SYMBOL_CLASS (sym) = LOC_LABEL;
6790 break;
6791 case DW_TAG_subprogram:
6792 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6793 finish_block. */
6794 SYMBOL_CLASS (sym) = LOC_BLOCK;
6795 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6796 if (attr2 && (DW_UNSND (attr2) != 0))
6797 {
6798 add_symbol_to_list (sym, &global_symbols);
6799 }
6800 else
6801 {
6802 add_symbol_to_list (sym, cu->list_in_scope);
6803 }
6804 break;
6805 case DW_TAG_variable:
6806 /* Compilation with minimal debug info may result in variables
6807 with missing type entries. Change the misleading `void' type
6808 to something sensible. */
6809 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6810 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6811 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6812 "<variable, no debug info>",
6813 objfile);
6814 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6815 if (attr)
6816 {
6817 dwarf2_const_value (attr, sym, cu);
6818 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6819 if (attr2 && (DW_UNSND (attr2) != 0))
6820 add_symbol_to_list (sym, &global_symbols);
6821 else
6822 add_symbol_to_list (sym, cu->list_in_scope);
6823 break;
6824 }
6825 attr = dwarf2_attr (die, DW_AT_location, cu);
6826 if (attr)
6827 {
6828 var_decode_location (attr, sym, cu);
6829 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6830 if (attr2 && (DW_UNSND (attr2) != 0))
6831 add_symbol_to_list (sym, &global_symbols);
6832 else
6833 add_symbol_to_list (sym, cu->list_in_scope);
6834 }
6835 else
6836 {
6837 /* We do not know the address of this symbol.
6838 If it is an external symbol and we have type information
6839 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6840 The address of the variable will then be determined from
6841 the minimal symbol table whenever the variable is
6842 referenced. */
6843 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6844 if (attr2 && (DW_UNSND (attr2) != 0)
6845 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6846 {
6847 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6848 add_symbol_to_list (sym, &global_symbols);
6849 }
6850 }
6851 break;
6852 case DW_TAG_formal_parameter:
6853 attr = dwarf2_attr (die, DW_AT_location, cu);
6854 if (attr)
6855 {
6856 var_decode_location (attr, sym, cu);
6857 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6858 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6859 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6860 }
6861 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6862 if (attr)
6863 {
6864 dwarf2_const_value (attr, sym, cu);
6865 }
6866 add_symbol_to_list (sym, cu->list_in_scope);
6867 break;
6868 case DW_TAG_unspecified_parameters:
6869 /* From varargs functions; gdb doesn't seem to have any
6870 interest in this information, so just ignore it for now.
6871 (FIXME?) */
6872 break;
6873 case DW_TAG_class_type:
6874 case DW_TAG_structure_type:
6875 case DW_TAG_union_type:
6876 case DW_TAG_enumeration_type:
6877 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6878 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6879
6880 /* Make sure that the symbol includes appropriate enclosing
6881 classes/namespaces in its name. These are calculated in
6882 read_structure_type, and the correct name is saved in
6883 the type. */
6884
6885 if (cu->language == language_cplus
6886 || cu->language == language_java)
6887 {
6888 struct type *type = SYMBOL_TYPE (sym);
6889
6890 if (TYPE_TAG_NAME (type) != NULL)
6891 {
6892 /* FIXME: carlton/2003-11-10: Should this use
6893 SYMBOL_SET_NAMES instead? (The same problem also
6894 arises further down in this function.) */
6895 /* The type's name is already allocated along with
6896 this objfile, so we don't need to duplicate it
6897 for the symbol. */
6898 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6899 }
6900 }
6901
6902 {
6903 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6904 really ever be static objects: otherwise, if you try
6905 to, say, break of a class's method and you're in a file
6906 which doesn't mention that class, it won't work unless
6907 the check for all static symbols in lookup_symbol_aux
6908 saves you. See the OtherFileClass tests in
6909 gdb.c++/namespace.exp. */
6910
6911 struct pending **list_to_add;
6912
6913 list_to_add = (cu->list_in_scope == &file_symbols
6914 && (cu->language == language_cplus
6915 || cu->language == language_java)
6916 ? &global_symbols : cu->list_in_scope);
6917
6918 add_symbol_to_list (sym, list_to_add);
6919
6920 /* The semantics of C++ state that "struct foo { ... }" also
6921 defines a typedef for "foo". A Java class declaration also
6922 defines a typedef for the class. Synthesize a typedef symbol
6923 so that "ptype foo" works as expected. */
6924 if (cu->language == language_cplus
6925 || cu->language == language_java)
6926 {
6927 struct symbol *typedef_sym = (struct symbol *)
6928 obstack_alloc (&objfile->objfile_obstack,
6929 sizeof (struct symbol));
6930 *typedef_sym = *sym;
6931 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6932 /* The symbol's name is already allocated along with
6933 this objfile, so we don't need to duplicate it for
6934 the type. */
6935 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6936 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
6937 add_symbol_to_list (typedef_sym, list_to_add);
6938 }
6939 }
6940 break;
6941 case DW_TAG_typedef:
6942 if (processing_has_namespace_info
6943 && processing_current_prefix[0] != '\0')
6944 {
6945 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6946 processing_current_prefix,
6947 name, cu);
6948 }
6949 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6950 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6951 add_symbol_to_list (sym, cu->list_in_scope);
6952 break;
6953 case DW_TAG_base_type:
6954 case DW_TAG_subrange_type:
6955 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6956 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6957 add_symbol_to_list (sym, cu->list_in_scope);
6958 break;
6959 case DW_TAG_enumerator:
6960 if (processing_has_namespace_info
6961 && processing_current_prefix[0] != '\0')
6962 {
6963 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6964 processing_current_prefix,
6965 name, cu);
6966 }
6967 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6968 if (attr)
6969 {
6970 dwarf2_const_value (attr, sym, cu);
6971 }
6972 {
6973 /* NOTE: carlton/2003-11-10: See comment above in the
6974 DW_TAG_class_type, etc. block. */
6975
6976 struct pending **list_to_add;
6977
6978 list_to_add = (cu->list_in_scope == &file_symbols
6979 && (cu->language == language_cplus
6980 || cu->language == language_java)
6981 ? &global_symbols : cu->list_in_scope);
6982
6983 add_symbol_to_list (sym, list_to_add);
6984 }
6985 break;
6986 case DW_TAG_namespace:
6987 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6988 add_symbol_to_list (sym, &global_symbols);
6989 break;
6990 default:
6991 /* Not a tag we recognize. Hopefully we aren't processing
6992 trash data, but since we must specifically ignore things
6993 we don't recognize, there is nothing else we should do at
6994 this point. */
6995 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
6996 dwarf_tag_name (die->tag));
6997 break;
6998 }
6999 }
7000 return (sym);
7001 }
7002
7003 /* Copy constant value from an attribute to a symbol. */
7004
7005 static void
7006 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7007 struct dwarf2_cu *cu)
7008 {
7009 struct objfile *objfile = cu->objfile;
7010 struct comp_unit_head *cu_header = &cu->header;
7011 struct dwarf_block *blk;
7012
7013 switch (attr->form)
7014 {
7015 case DW_FORM_addr:
7016 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7017 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7018 cu_header->addr_size,
7019 TYPE_LENGTH (SYMBOL_TYPE
7020 (sym)));
7021 SYMBOL_VALUE_BYTES (sym) = (char *)
7022 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7023 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7024 it's body - store_unsigned_integer. */
7025 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7026 DW_ADDR (attr));
7027 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7028 break;
7029 case DW_FORM_block1:
7030 case DW_FORM_block2:
7031 case DW_FORM_block4:
7032 case DW_FORM_block:
7033 blk = DW_BLOCK (attr);
7034 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7035 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7036 blk->size,
7037 TYPE_LENGTH (SYMBOL_TYPE
7038 (sym)));
7039 SYMBOL_VALUE_BYTES (sym) = (char *)
7040 obstack_alloc (&objfile->objfile_obstack, blk->size);
7041 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7042 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7043 break;
7044
7045 /* The DW_AT_const_value attributes are supposed to carry the
7046 symbol's value "represented as it would be on the target
7047 architecture." By the time we get here, it's already been
7048 converted to host endianness, so we just need to sign- or
7049 zero-extend it as appropriate. */
7050 case DW_FORM_data1:
7051 dwarf2_const_value_data (attr, sym, 8);
7052 break;
7053 case DW_FORM_data2:
7054 dwarf2_const_value_data (attr, sym, 16);
7055 break;
7056 case DW_FORM_data4:
7057 dwarf2_const_value_data (attr, sym, 32);
7058 break;
7059 case DW_FORM_data8:
7060 dwarf2_const_value_data (attr, sym, 64);
7061 break;
7062
7063 case DW_FORM_sdata:
7064 SYMBOL_VALUE (sym) = DW_SND (attr);
7065 SYMBOL_CLASS (sym) = LOC_CONST;
7066 break;
7067
7068 case DW_FORM_udata:
7069 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7070 SYMBOL_CLASS (sym) = LOC_CONST;
7071 break;
7072
7073 default:
7074 complaint (&symfile_complaints,
7075 _("unsupported const value attribute form: '%s'"),
7076 dwarf_form_name (attr->form));
7077 SYMBOL_VALUE (sym) = 0;
7078 SYMBOL_CLASS (sym) = LOC_CONST;
7079 break;
7080 }
7081 }
7082
7083
7084 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7085 or zero-extend it as appropriate for the symbol's type. */
7086 static void
7087 dwarf2_const_value_data (struct attribute *attr,
7088 struct symbol *sym,
7089 int bits)
7090 {
7091 LONGEST l = DW_UNSND (attr);
7092
7093 if (bits < sizeof (l) * 8)
7094 {
7095 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7096 l &= ((LONGEST) 1 << bits) - 1;
7097 else
7098 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7099 }
7100
7101 SYMBOL_VALUE (sym) = l;
7102 SYMBOL_CLASS (sym) = LOC_CONST;
7103 }
7104
7105
7106 /* Return the type of the die in question using its DW_AT_type attribute. */
7107
7108 static struct type *
7109 die_type (struct die_info *die, struct dwarf2_cu *cu)
7110 {
7111 struct type *type;
7112 struct attribute *type_attr;
7113 struct die_info *type_die;
7114
7115 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7116 if (!type_attr)
7117 {
7118 /* A missing DW_AT_type represents a void type. */
7119 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7120 }
7121 else
7122 type_die = follow_die_ref (die, type_attr, cu);
7123
7124 type = tag_type_to_type (type_die, cu);
7125 if (!type)
7126 {
7127 dump_die (type_die);
7128 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7129 cu->objfile->name);
7130 }
7131 return type;
7132 }
7133
7134 /* Return the containing type of the die in question using its
7135 DW_AT_containing_type attribute. */
7136
7137 static struct type *
7138 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7139 {
7140 struct type *type = NULL;
7141 struct attribute *type_attr;
7142 struct die_info *type_die = NULL;
7143
7144 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7145 if (type_attr)
7146 {
7147 type_die = follow_die_ref (die, type_attr, cu);
7148 type = tag_type_to_type (type_die, cu);
7149 }
7150 if (!type)
7151 {
7152 if (type_die)
7153 dump_die (type_die);
7154 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7155 cu->objfile->name);
7156 }
7157 return type;
7158 }
7159
7160 static struct type *
7161 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7162 {
7163 if (die->type)
7164 {
7165 return die->type;
7166 }
7167 else
7168 {
7169 read_type_die (die, cu);
7170 if (!die->type)
7171 {
7172 dump_die (die);
7173 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7174 cu->objfile->name);
7175 }
7176 return die->type;
7177 }
7178 }
7179
7180 static void
7181 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7182 {
7183 char *prefix = determine_prefix (die, cu);
7184 const char *old_prefix = processing_current_prefix;
7185 struct cleanup *back_to = make_cleanup (xfree, prefix);
7186 processing_current_prefix = prefix;
7187
7188 switch (die->tag)
7189 {
7190 case DW_TAG_class_type:
7191 case DW_TAG_structure_type:
7192 case DW_TAG_union_type:
7193 read_structure_type (die, cu);
7194 break;
7195 case DW_TAG_enumeration_type:
7196 read_enumeration_type (die, cu);
7197 break;
7198 case DW_TAG_subprogram:
7199 case DW_TAG_subroutine_type:
7200 read_subroutine_type (die, cu);
7201 break;
7202 case DW_TAG_array_type:
7203 read_array_type (die, cu);
7204 break;
7205 case DW_TAG_pointer_type:
7206 read_tag_pointer_type (die, cu);
7207 break;
7208 case DW_TAG_ptr_to_member_type:
7209 read_tag_ptr_to_member_type (die, cu);
7210 break;
7211 case DW_TAG_reference_type:
7212 read_tag_reference_type (die, cu);
7213 break;
7214 case DW_TAG_const_type:
7215 read_tag_const_type (die, cu);
7216 break;
7217 case DW_TAG_volatile_type:
7218 read_tag_volatile_type (die, cu);
7219 break;
7220 case DW_TAG_string_type:
7221 read_tag_string_type (die, cu);
7222 break;
7223 case DW_TAG_typedef:
7224 read_typedef (die, cu);
7225 break;
7226 case DW_TAG_subrange_type:
7227 read_subrange_type (die, cu);
7228 break;
7229 case DW_TAG_base_type:
7230 read_base_type (die, cu);
7231 break;
7232 default:
7233 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
7234 dwarf_tag_name (die->tag));
7235 break;
7236 }
7237
7238 processing_current_prefix = old_prefix;
7239 do_cleanups (back_to);
7240 }
7241
7242 /* Return the name of the namespace/class that DIE is defined within,
7243 or "" if we can't tell. The caller should xfree the result. */
7244
7245 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7246 therein) for an example of how to use this function to deal with
7247 DW_AT_specification. */
7248
7249 static char *
7250 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7251 {
7252 struct die_info *parent;
7253
7254 if (cu->language != language_cplus
7255 && cu->language != language_java)
7256 return NULL;
7257
7258 parent = die->parent;
7259
7260 if (parent == NULL)
7261 {
7262 return xstrdup ("");
7263 }
7264 else
7265 {
7266 switch (parent->tag) {
7267 case DW_TAG_namespace:
7268 {
7269 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7270 before doing this check? */
7271 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7272 {
7273 return xstrdup (TYPE_TAG_NAME (parent->type));
7274 }
7275 else
7276 {
7277 int dummy;
7278 char *parent_prefix = determine_prefix (parent, cu);
7279 char *retval = typename_concat (NULL, parent_prefix,
7280 namespace_name (parent, &dummy,
7281 cu),
7282 cu);
7283 xfree (parent_prefix);
7284 return retval;
7285 }
7286 }
7287 break;
7288 case DW_TAG_class_type:
7289 case DW_TAG_structure_type:
7290 {
7291 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7292 {
7293 return xstrdup (TYPE_TAG_NAME (parent->type));
7294 }
7295 else
7296 {
7297 const char *old_prefix = processing_current_prefix;
7298 char *new_prefix = determine_prefix (parent, cu);
7299 char *retval;
7300
7301 processing_current_prefix = new_prefix;
7302 retval = determine_class_name (parent, cu);
7303 processing_current_prefix = old_prefix;
7304
7305 xfree (new_prefix);
7306 return retval;
7307 }
7308 }
7309 default:
7310 return determine_prefix (parent, cu);
7311 }
7312 }
7313 }
7314
7315 /* Return a newly-allocated string formed by concatenating PREFIX and
7316 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7317 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7318 perform an obconcat, otherwise allocate storage for the result. The CU argument
7319 is used to determine the language and hence, the appropriate separator. */
7320
7321 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7322
7323 static char *
7324 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7325 struct dwarf2_cu *cu)
7326 {
7327 char *sep;
7328
7329 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7330 sep = "";
7331 else if (cu->language == language_java)
7332 sep = ".";
7333 else
7334 sep = "::";
7335
7336 if (obs == NULL)
7337 {
7338 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7339 retval[0] = '\0';
7340
7341 if (prefix)
7342 {
7343 strcpy (retval, prefix);
7344 strcat (retval, sep);
7345 }
7346 if (suffix)
7347 strcat (retval, suffix);
7348
7349 return retval;
7350 }
7351 else
7352 {
7353 /* We have an obstack. */
7354 return obconcat (obs, prefix, sep, suffix);
7355 }
7356 }
7357
7358 static struct type *
7359 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7360 {
7361 struct objfile *objfile = cu->objfile;
7362
7363 /* FIXME - this should not produce a new (struct type *)
7364 every time. It should cache base types. */
7365 struct type *type;
7366 switch (encoding)
7367 {
7368 case DW_ATE_address:
7369 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7370 return type;
7371 case DW_ATE_boolean:
7372 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7373 return type;
7374 case DW_ATE_complex_float:
7375 if (size == 16)
7376 {
7377 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7378 }
7379 else
7380 {
7381 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7382 }
7383 return type;
7384 case DW_ATE_float:
7385 if (size == 8)
7386 {
7387 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7388 }
7389 else
7390 {
7391 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7392 }
7393 return type;
7394 case DW_ATE_signed:
7395 switch (size)
7396 {
7397 case 1:
7398 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7399 break;
7400 case 2:
7401 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7402 break;
7403 default:
7404 case 4:
7405 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7406 break;
7407 }
7408 return type;
7409 case DW_ATE_signed_char:
7410 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7411 return type;
7412 case DW_ATE_unsigned:
7413 switch (size)
7414 {
7415 case 1:
7416 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7417 break;
7418 case 2:
7419 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7420 break;
7421 default:
7422 case 4:
7423 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7424 break;
7425 }
7426 return type;
7427 case DW_ATE_unsigned_char:
7428 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7429 return type;
7430 default:
7431 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7432 return type;
7433 }
7434 }
7435
7436 #if 0
7437 struct die_info *
7438 copy_die (struct die_info *old_die)
7439 {
7440 struct die_info *new_die;
7441 int i, num_attrs;
7442
7443 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7444 memset (new_die, 0, sizeof (struct die_info));
7445
7446 new_die->tag = old_die->tag;
7447 new_die->has_children = old_die->has_children;
7448 new_die->abbrev = old_die->abbrev;
7449 new_die->offset = old_die->offset;
7450 new_die->type = NULL;
7451
7452 num_attrs = old_die->num_attrs;
7453 new_die->num_attrs = num_attrs;
7454 new_die->attrs = (struct attribute *)
7455 xmalloc (num_attrs * sizeof (struct attribute));
7456
7457 for (i = 0; i < old_die->num_attrs; ++i)
7458 {
7459 new_die->attrs[i].name = old_die->attrs[i].name;
7460 new_die->attrs[i].form = old_die->attrs[i].form;
7461 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7462 }
7463
7464 new_die->next = NULL;
7465 return new_die;
7466 }
7467 #endif
7468
7469 /* Return sibling of die, NULL if no sibling. */
7470
7471 static struct die_info *
7472 sibling_die (struct die_info *die)
7473 {
7474 return die->sibling;
7475 }
7476
7477 /* Get linkage name of a die, return NULL if not found. */
7478
7479 static char *
7480 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7481 {
7482 struct attribute *attr;
7483
7484 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7485 if (attr && DW_STRING (attr))
7486 return DW_STRING (attr);
7487 attr = dwarf2_attr (die, DW_AT_name, cu);
7488 if (attr && DW_STRING (attr))
7489 return DW_STRING (attr);
7490 return NULL;
7491 }
7492
7493 /* Get name of a die, return NULL if not found. */
7494
7495 static char *
7496 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7497 {
7498 struct attribute *attr;
7499
7500 attr = dwarf2_attr (die, DW_AT_name, cu);
7501 if (attr && DW_STRING (attr))
7502 return DW_STRING (attr);
7503 return NULL;
7504 }
7505
7506 /* Return the die that this die in an extension of, or NULL if there
7507 is none. */
7508
7509 static struct die_info *
7510 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7511 {
7512 struct attribute *attr;
7513
7514 attr = dwarf2_attr (die, DW_AT_extension, cu);
7515 if (attr == NULL)
7516 return NULL;
7517
7518 return follow_die_ref (die, attr, cu);
7519 }
7520
7521 /* Convert a DIE tag into its string name. */
7522
7523 static char *
7524 dwarf_tag_name (unsigned tag)
7525 {
7526 switch (tag)
7527 {
7528 case DW_TAG_padding:
7529 return "DW_TAG_padding";
7530 case DW_TAG_array_type:
7531 return "DW_TAG_array_type";
7532 case DW_TAG_class_type:
7533 return "DW_TAG_class_type";
7534 case DW_TAG_entry_point:
7535 return "DW_TAG_entry_point";
7536 case DW_TAG_enumeration_type:
7537 return "DW_TAG_enumeration_type";
7538 case DW_TAG_formal_parameter:
7539 return "DW_TAG_formal_parameter";
7540 case DW_TAG_imported_declaration:
7541 return "DW_TAG_imported_declaration";
7542 case DW_TAG_label:
7543 return "DW_TAG_label";
7544 case DW_TAG_lexical_block:
7545 return "DW_TAG_lexical_block";
7546 case DW_TAG_member:
7547 return "DW_TAG_member";
7548 case DW_TAG_pointer_type:
7549 return "DW_TAG_pointer_type";
7550 case DW_TAG_reference_type:
7551 return "DW_TAG_reference_type";
7552 case DW_TAG_compile_unit:
7553 return "DW_TAG_compile_unit";
7554 case DW_TAG_string_type:
7555 return "DW_TAG_string_type";
7556 case DW_TAG_structure_type:
7557 return "DW_TAG_structure_type";
7558 case DW_TAG_subroutine_type:
7559 return "DW_TAG_subroutine_type";
7560 case DW_TAG_typedef:
7561 return "DW_TAG_typedef";
7562 case DW_TAG_union_type:
7563 return "DW_TAG_union_type";
7564 case DW_TAG_unspecified_parameters:
7565 return "DW_TAG_unspecified_parameters";
7566 case DW_TAG_variant:
7567 return "DW_TAG_variant";
7568 case DW_TAG_common_block:
7569 return "DW_TAG_common_block";
7570 case DW_TAG_common_inclusion:
7571 return "DW_TAG_common_inclusion";
7572 case DW_TAG_inheritance:
7573 return "DW_TAG_inheritance";
7574 case DW_TAG_inlined_subroutine:
7575 return "DW_TAG_inlined_subroutine";
7576 case DW_TAG_module:
7577 return "DW_TAG_module";
7578 case DW_TAG_ptr_to_member_type:
7579 return "DW_TAG_ptr_to_member_type";
7580 case DW_TAG_set_type:
7581 return "DW_TAG_set_type";
7582 case DW_TAG_subrange_type:
7583 return "DW_TAG_subrange_type";
7584 case DW_TAG_with_stmt:
7585 return "DW_TAG_with_stmt";
7586 case DW_TAG_access_declaration:
7587 return "DW_TAG_access_declaration";
7588 case DW_TAG_base_type:
7589 return "DW_TAG_base_type";
7590 case DW_TAG_catch_block:
7591 return "DW_TAG_catch_block";
7592 case DW_TAG_const_type:
7593 return "DW_TAG_const_type";
7594 case DW_TAG_constant:
7595 return "DW_TAG_constant";
7596 case DW_TAG_enumerator:
7597 return "DW_TAG_enumerator";
7598 case DW_TAG_file_type:
7599 return "DW_TAG_file_type";
7600 case DW_TAG_friend:
7601 return "DW_TAG_friend";
7602 case DW_TAG_namelist:
7603 return "DW_TAG_namelist";
7604 case DW_TAG_namelist_item:
7605 return "DW_TAG_namelist_item";
7606 case DW_TAG_packed_type:
7607 return "DW_TAG_packed_type";
7608 case DW_TAG_subprogram:
7609 return "DW_TAG_subprogram";
7610 case DW_TAG_template_type_param:
7611 return "DW_TAG_template_type_param";
7612 case DW_TAG_template_value_param:
7613 return "DW_TAG_template_value_param";
7614 case DW_TAG_thrown_type:
7615 return "DW_TAG_thrown_type";
7616 case DW_TAG_try_block:
7617 return "DW_TAG_try_block";
7618 case DW_TAG_variant_part:
7619 return "DW_TAG_variant_part";
7620 case DW_TAG_variable:
7621 return "DW_TAG_variable";
7622 case DW_TAG_volatile_type:
7623 return "DW_TAG_volatile_type";
7624 case DW_TAG_dwarf_procedure:
7625 return "DW_TAG_dwarf_procedure";
7626 case DW_TAG_restrict_type:
7627 return "DW_TAG_restrict_type";
7628 case DW_TAG_interface_type:
7629 return "DW_TAG_interface_type";
7630 case DW_TAG_namespace:
7631 return "DW_TAG_namespace";
7632 case DW_TAG_imported_module:
7633 return "DW_TAG_imported_module";
7634 case DW_TAG_unspecified_type:
7635 return "DW_TAG_unspecified_type";
7636 case DW_TAG_partial_unit:
7637 return "DW_TAG_partial_unit";
7638 case DW_TAG_imported_unit:
7639 return "DW_TAG_imported_unit";
7640 case DW_TAG_MIPS_loop:
7641 return "DW_TAG_MIPS_loop";
7642 case DW_TAG_format_label:
7643 return "DW_TAG_format_label";
7644 case DW_TAG_function_template:
7645 return "DW_TAG_function_template";
7646 case DW_TAG_class_template:
7647 return "DW_TAG_class_template";
7648 default:
7649 return "DW_TAG_<unknown>";
7650 }
7651 }
7652
7653 /* Convert a DWARF attribute code into its string name. */
7654
7655 static char *
7656 dwarf_attr_name (unsigned attr)
7657 {
7658 switch (attr)
7659 {
7660 case DW_AT_sibling:
7661 return "DW_AT_sibling";
7662 case DW_AT_location:
7663 return "DW_AT_location";
7664 case DW_AT_name:
7665 return "DW_AT_name";
7666 case DW_AT_ordering:
7667 return "DW_AT_ordering";
7668 case DW_AT_subscr_data:
7669 return "DW_AT_subscr_data";
7670 case DW_AT_byte_size:
7671 return "DW_AT_byte_size";
7672 case DW_AT_bit_offset:
7673 return "DW_AT_bit_offset";
7674 case DW_AT_bit_size:
7675 return "DW_AT_bit_size";
7676 case DW_AT_element_list:
7677 return "DW_AT_element_list";
7678 case DW_AT_stmt_list:
7679 return "DW_AT_stmt_list";
7680 case DW_AT_low_pc:
7681 return "DW_AT_low_pc";
7682 case DW_AT_high_pc:
7683 return "DW_AT_high_pc";
7684 case DW_AT_language:
7685 return "DW_AT_language";
7686 case DW_AT_member:
7687 return "DW_AT_member";
7688 case DW_AT_discr:
7689 return "DW_AT_discr";
7690 case DW_AT_discr_value:
7691 return "DW_AT_discr_value";
7692 case DW_AT_visibility:
7693 return "DW_AT_visibility";
7694 case DW_AT_import:
7695 return "DW_AT_import";
7696 case DW_AT_string_length:
7697 return "DW_AT_string_length";
7698 case DW_AT_common_reference:
7699 return "DW_AT_common_reference";
7700 case DW_AT_comp_dir:
7701 return "DW_AT_comp_dir";
7702 case DW_AT_const_value:
7703 return "DW_AT_const_value";
7704 case DW_AT_containing_type:
7705 return "DW_AT_containing_type";
7706 case DW_AT_default_value:
7707 return "DW_AT_default_value";
7708 case DW_AT_inline:
7709 return "DW_AT_inline";
7710 case DW_AT_is_optional:
7711 return "DW_AT_is_optional";
7712 case DW_AT_lower_bound:
7713 return "DW_AT_lower_bound";
7714 case DW_AT_producer:
7715 return "DW_AT_producer";
7716 case DW_AT_prototyped:
7717 return "DW_AT_prototyped";
7718 case DW_AT_return_addr:
7719 return "DW_AT_return_addr";
7720 case DW_AT_start_scope:
7721 return "DW_AT_start_scope";
7722 case DW_AT_stride_size:
7723 return "DW_AT_stride_size";
7724 case DW_AT_upper_bound:
7725 return "DW_AT_upper_bound";
7726 case DW_AT_abstract_origin:
7727 return "DW_AT_abstract_origin";
7728 case DW_AT_accessibility:
7729 return "DW_AT_accessibility";
7730 case DW_AT_address_class:
7731 return "DW_AT_address_class";
7732 case DW_AT_artificial:
7733 return "DW_AT_artificial";
7734 case DW_AT_base_types:
7735 return "DW_AT_base_types";
7736 case DW_AT_calling_convention:
7737 return "DW_AT_calling_convention";
7738 case DW_AT_count:
7739 return "DW_AT_count";
7740 case DW_AT_data_member_location:
7741 return "DW_AT_data_member_location";
7742 case DW_AT_decl_column:
7743 return "DW_AT_decl_column";
7744 case DW_AT_decl_file:
7745 return "DW_AT_decl_file";
7746 case DW_AT_decl_line:
7747 return "DW_AT_decl_line";
7748 case DW_AT_declaration:
7749 return "DW_AT_declaration";
7750 case DW_AT_discr_list:
7751 return "DW_AT_discr_list";
7752 case DW_AT_encoding:
7753 return "DW_AT_encoding";
7754 case DW_AT_external:
7755 return "DW_AT_external";
7756 case DW_AT_frame_base:
7757 return "DW_AT_frame_base";
7758 case DW_AT_friend:
7759 return "DW_AT_friend";
7760 case DW_AT_identifier_case:
7761 return "DW_AT_identifier_case";
7762 case DW_AT_macro_info:
7763 return "DW_AT_macro_info";
7764 case DW_AT_namelist_items:
7765 return "DW_AT_namelist_items";
7766 case DW_AT_priority:
7767 return "DW_AT_priority";
7768 case DW_AT_segment:
7769 return "DW_AT_segment";
7770 case DW_AT_specification:
7771 return "DW_AT_specification";
7772 case DW_AT_static_link:
7773 return "DW_AT_static_link";
7774 case DW_AT_type:
7775 return "DW_AT_type";
7776 case DW_AT_use_location:
7777 return "DW_AT_use_location";
7778 case DW_AT_variable_parameter:
7779 return "DW_AT_variable_parameter";
7780 case DW_AT_virtuality:
7781 return "DW_AT_virtuality";
7782 case DW_AT_vtable_elem_location:
7783 return "DW_AT_vtable_elem_location";
7784 case DW_AT_allocated:
7785 return "DW_AT_allocated";
7786 case DW_AT_associated:
7787 return "DW_AT_associated";
7788 case DW_AT_data_location:
7789 return "DW_AT_data_location";
7790 case DW_AT_stride:
7791 return "DW_AT_stride";
7792 case DW_AT_entry_pc:
7793 return "DW_AT_entry_pc";
7794 case DW_AT_use_UTF8:
7795 return "DW_AT_use_UTF8";
7796 case DW_AT_extension:
7797 return "DW_AT_extension";
7798 case DW_AT_ranges:
7799 return "DW_AT_ranges";
7800 case DW_AT_trampoline:
7801 return "DW_AT_trampoline";
7802 case DW_AT_call_column:
7803 return "DW_AT_call_column";
7804 case DW_AT_call_file:
7805 return "DW_AT_call_file";
7806 case DW_AT_call_line:
7807 return "DW_AT_call_line";
7808 #ifdef MIPS
7809 case DW_AT_MIPS_fde:
7810 return "DW_AT_MIPS_fde";
7811 case DW_AT_MIPS_loop_begin:
7812 return "DW_AT_MIPS_loop_begin";
7813 case DW_AT_MIPS_tail_loop_begin:
7814 return "DW_AT_MIPS_tail_loop_begin";
7815 case DW_AT_MIPS_epilog_begin:
7816 return "DW_AT_MIPS_epilog_begin";
7817 case DW_AT_MIPS_loop_unroll_factor:
7818 return "DW_AT_MIPS_loop_unroll_factor";
7819 case DW_AT_MIPS_software_pipeline_depth:
7820 return "DW_AT_MIPS_software_pipeline_depth";
7821 #endif
7822 case DW_AT_MIPS_linkage_name:
7823 return "DW_AT_MIPS_linkage_name";
7824
7825 case DW_AT_sf_names:
7826 return "DW_AT_sf_names";
7827 case DW_AT_src_info:
7828 return "DW_AT_src_info";
7829 case DW_AT_mac_info:
7830 return "DW_AT_mac_info";
7831 case DW_AT_src_coords:
7832 return "DW_AT_src_coords";
7833 case DW_AT_body_begin:
7834 return "DW_AT_body_begin";
7835 case DW_AT_body_end:
7836 return "DW_AT_body_end";
7837 case DW_AT_GNU_vector:
7838 return "DW_AT_GNU_vector";
7839 default:
7840 return "DW_AT_<unknown>";
7841 }
7842 }
7843
7844 /* Convert a DWARF value form code into its string name. */
7845
7846 static char *
7847 dwarf_form_name (unsigned form)
7848 {
7849 switch (form)
7850 {
7851 case DW_FORM_addr:
7852 return "DW_FORM_addr";
7853 case DW_FORM_block2:
7854 return "DW_FORM_block2";
7855 case DW_FORM_block4:
7856 return "DW_FORM_block4";
7857 case DW_FORM_data2:
7858 return "DW_FORM_data2";
7859 case DW_FORM_data4:
7860 return "DW_FORM_data4";
7861 case DW_FORM_data8:
7862 return "DW_FORM_data8";
7863 case DW_FORM_string:
7864 return "DW_FORM_string";
7865 case DW_FORM_block:
7866 return "DW_FORM_block";
7867 case DW_FORM_block1:
7868 return "DW_FORM_block1";
7869 case DW_FORM_data1:
7870 return "DW_FORM_data1";
7871 case DW_FORM_flag:
7872 return "DW_FORM_flag";
7873 case DW_FORM_sdata:
7874 return "DW_FORM_sdata";
7875 case DW_FORM_strp:
7876 return "DW_FORM_strp";
7877 case DW_FORM_udata:
7878 return "DW_FORM_udata";
7879 case DW_FORM_ref_addr:
7880 return "DW_FORM_ref_addr";
7881 case DW_FORM_ref1:
7882 return "DW_FORM_ref1";
7883 case DW_FORM_ref2:
7884 return "DW_FORM_ref2";
7885 case DW_FORM_ref4:
7886 return "DW_FORM_ref4";
7887 case DW_FORM_ref8:
7888 return "DW_FORM_ref8";
7889 case DW_FORM_ref_udata:
7890 return "DW_FORM_ref_udata";
7891 case DW_FORM_indirect:
7892 return "DW_FORM_indirect";
7893 default:
7894 return "DW_FORM_<unknown>";
7895 }
7896 }
7897
7898 /* Convert a DWARF stack opcode into its string name. */
7899
7900 static char *
7901 dwarf_stack_op_name (unsigned op)
7902 {
7903 switch (op)
7904 {
7905 case DW_OP_addr:
7906 return "DW_OP_addr";
7907 case DW_OP_deref:
7908 return "DW_OP_deref";
7909 case DW_OP_const1u:
7910 return "DW_OP_const1u";
7911 case DW_OP_const1s:
7912 return "DW_OP_const1s";
7913 case DW_OP_const2u:
7914 return "DW_OP_const2u";
7915 case DW_OP_const2s:
7916 return "DW_OP_const2s";
7917 case DW_OP_const4u:
7918 return "DW_OP_const4u";
7919 case DW_OP_const4s:
7920 return "DW_OP_const4s";
7921 case DW_OP_const8u:
7922 return "DW_OP_const8u";
7923 case DW_OP_const8s:
7924 return "DW_OP_const8s";
7925 case DW_OP_constu:
7926 return "DW_OP_constu";
7927 case DW_OP_consts:
7928 return "DW_OP_consts";
7929 case DW_OP_dup:
7930 return "DW_OP_dup";
7931 case DW_OP_drop:
7932 return "DW_OP_drop";
7933 case DW_OP_over:
7934 return "DW_OP_over";
7935 case DW_OP_pick:
7936 return "DW_OP_pick";
7937 case DW_OP_swap:
7938 return "DW_OP_swap";
7939 case DW_OP_rot:
7940 return "DW_OP_rot";
7941 case DW_OP_xderef:
7942 return "DW_OP_xderef";
7943 case DW_OP_abs:
7944 return "DW_OP_abs";
7945 case DW_OP_and:
7946 return "DW_OP_and";
7947 case DW_OP_div:
7948 return "DW_OP_div";
7949 case DW_OP_minus:
7950 return "DW_OP_minus";
7951 case DW_OP_mod:
7952 return "DW_OP_mod";
7953 case DW_OP_mul:
7954 return "DW_OP_mul";
7955 case DW_OP_neg:
7956 return "DW_OP_neg";
7957 case DW_OP_not:
7958 return "DW_OP_not";
7959 case DW_OP_or:
7960 return "DW_OP_or";
7961 case DW_OP_plus:
7962 return "DW_OP_plus";
7963 case DW_OP_plus_uconst:
7964 return "DW_OP_plus_uconst";
7965 case DW_OP_shl:
7966 return "DW_OP_shl";
7967 case DW_OP_shr:
7968 return "DW_OP_shr";
7969 case DW_OP_shra:
7970 return "DW_OP_shra";
7971 case DW_OP_xor:
7972 return "DW_OP_xor";
7973 case DW_OP_bra:
7974 return "DW_OP_bra";
7975 case DW_OP_eq:
7976 return "DW_OP_eq";
7977 case DW_OP_ge:
7978 return "DW_OP_ge";
7979 case DW_OP_gt:
7980 return "DW_OP_gt";
7981 case DW_OP_le:
7982 return "DW_OP_le";
7983 case DW_OP_lt:
7984 return "DW_OP_lt";
7985 case DW_OP_ne:
7986 return "DW_OP_ne";
7987 case DW_OP_skip:
7988 return "DW_OP_skip";
7989 case DW_OP_lit0:
7990 return "DW_OP_lit0";
7991 case DW_OP_lit1:
7992 return "DW_OP_lit1";
7993 case DW_OP_lit2:
7994 return "DW_OP_lit2";
7995 case DW_OP_lit3:
7996 return "DW_OP_lit3";
7997 case DW_OP_lit4:
7998 return "DW_OP_lit4";
7999 case DW_OP_lit5:
8000 return "DW_OP_lit5";
8001 case DW_OP_lit6:
8002 return "DW_OP_lit6";
8003 case DW_OP_lit7:
8004 return "DW_OP_lit7";
8005 case DW_OP_lit8:
8006 return "DW_OP_lit8";
8007 case DW_OP_lit9:
8008 return "DW_OP_lit9";
8009 case DW_OP_lit10:
8010 return "DW_OP_lit10";
8011 case DW_OP_lit11:
8012 return "DW_OP_lit11";
8013 case DW_OP_lit12:
8014 return "DW_OP_lit12";
8015 case DW_OP_lit13:
8016 return "DW_OP_lit13";
8017 case DW_OP_lit14:
8018 return "DW_OP_lit14";
8019 case DW_OP_lit15:
8020 return "DW_OP_lit15";
8021 case DW_OP_lit16:
8022 return "DW_OP_lit16";
8023 case DW_OP_lit17:
8024 return "DW_OP_lit17";
8025 case DW_OP_lit18:
8026 return "DW_OP_lit18";
8027 case DW_OP_lit19:
8028 return "DW_OP_lit19";
8029 case DW_OP_lit20:
8030 return "DW_OP_lit20";
8031 case DW_OP_lit21:
8032 return "DW_OP_lit21";
8033 case DW_OP_lit22:
8034 return "DW_OP_lit22";
8035 case DW_OP_lit23:
8036 return "DW_OP_lit23";
8037 case DW_OP_lit24:
8038 return "DW_OP_lit24";
8039 case DW_OP_lit25:
8040 return "DW_OP_lit25";
8041 case DW_OP_lit26:
8042 return "DW_OP_lit26";
8043 case DW_OP_lit27:
8044 return "DW_OP_lit27";
8045 case DW_OP_lit28:
8046 return "DW_OP_lit28";
8047 case DW_OP_lit29:
8048 return "DW_OP_lit29";
8049 case DW_OP_lit30:
8050 return "DW_OP_lit30";
8051 case DW_OP_lit31:
8052 return "DW_OP_lit31";
8053 case DW_OP_reg0:
8054 return "DW_OP_reg0";
8055 case DW_OP_reg1:
8056 return "DW_OP_reg1";
8057 case DW_OP_reg2:
8058 return "DW_OP_reg2";
8059 case DW_OP_reg3:
8060 return "DW_OP_reg3";
8061 case DW_OP_reg4:
8062 return "DW_OP_reg4";
8063 case DW_OP_reg5:
8064 return "DW_OP_reg5";
8065 case DW_OP_reg6:
8066 return "DW_OP_reg6";
8067 case DW_OP_reg7:
8068 return "DW_OP_reg7";
8069 case DW_OP_reg8:
8070 return "DW_OP_reg8";
8071 case DW_OP_reg9:
8072 return "DW_OP_reg9";
8073 case DW_OP_reg10:
8074 return "DW_OP_reg10";
8075 case DW_OP_reg11:
8076 return "DW_OP_reg11";
8077 case DW_OP_reg12:
8078 return "DW_OP_reg12";
8079 case DW_OP_reg13:
8080 return "DW_OP_reg13";
8081 case DW_OP_reg14:
8082 return "DW_OP_reg14";
8083 case DW_OP_reg15:
8084 return "DW_OP_reg15";
8085 case DW_OP_reg16:
8086 return "DW_OP_reg16";
8087 case DW_OP_reg17:
8088 return "DW_OP_reg17";
8089 case DW_OP_reg18:
8090 return "DW_OP_reg18";
8091 case DW_OP_reg19:
8092 return "DW_OP_reg19";
8093 case DW_OP_reg20:
8094 return "DW_OP_reg20";
8095 case DW_OP_reg21:
8096 return "DW_OP_reg21";
8097 case DW_OP_reg22:
8098 return "DW_OP_reg22";
8099 case DW_OP_reg23:
8100 return "DW_OP_reg23";
8101 case DW_OP_reg24:
8102 return "DW_OP_reg24";
8103 case DW_OP_reg25:
8104 return "DW_OP_reg25";
8105 case DW_OP_reg26:
8106 return "DW_OP_reg26";
8107 case DW_OP_reg27:
8108 return "DW_OP_reg27";
8109 case DW_OP_reg28:
8110 return "DW_OP_reg28";
8111 case DW_OP_reg29:
8112 return "DW_OP_reg29";
8113 case DW_OP_reg30:
8114 return "DW_OP_reg30";
8115 case DW_OP_reg31:
8116 return "DW_OP_reg31";
8117 case DW_OP_breg0:
8118 return "DW_OP_breg0";
8119 case DW_OP_breg1:
8120 return "DW_OP_breg1";
8121 case DW_OP_breg2:
8122 return "DW_OP_breg2";
8123 case DW_OP_breg3:
8124 return "DW_OP_breg3";
8125 case DW_OP_breg4:
8126 return "DW_OP_breg4";
8127 case DW_OP_breg5:
8128 return "DW_OP_breg5";
8129 case DW_OP_breg6:
8130 return "DW_OP_breg6";
8131 case DW_OP_breg7:
8132 return "DW_OP_breg7";
8133 case DW_OP_breg8:
8134 return "DW_OP_breg8";
8135 case DW_OP_breg9:
8136 return "DW_OP_breg9";
8137 case DW_OP_breg10:
8138 return "DW_OP_breg10";
8139 case DW_OP_breg11:
8140 return "DW_OP_breg11";
8141 case DW_OP_breg12:
8142 return "DW_OP_breg12";
8143 case DW_OP_breg13:
8144 return "DW_OP_breg13";
8145 case DW_OP_breg14:
8146 return "DW_OP_breg14";
8147 case DW_OP_breg15:
8148 return "DW_OP_breg15";
8149 case DW_OP_breg16:
8150 return "DW_OP_breg16";
8151 case DW_OP_breg17:
8152 return "DW_OP_breg17";
8153 case DW_OP_breg18:
8154 return "DW_OP_breg18";
8155 case DW_OP_breg19:
8156 return "DW_OP_breg19";
8157 case DW_OP_breg20:
8158 return "DW_OP_breg20";
8159 case DW_OP_breg21:
8160 return "DW_OP_breg21";
8161 case DW_OP_breg22:
8162 return "DW_OP_breg22";
8163 case DW_OP_breg23:
8164 return "DW_OP_breg23";
8165 case DW_OP_breg24:
8166 return "DW_OP_breg24";
8167 case DW_OP_breg25:
8168 return "DW_OP_breg25";
8169 case DW_OP_breg26:
8170 return "DW_OP_breg26";
8171 case DW_OP_breg27:
8172 return "DW_OP_breg27";
8173 case DW_OP_breg28:
8174 return "DW_OP_breg28";
8175 case DW_OP_breg29:
8176 return "DW_OP_breg29";
8177 case DW_OP_breg30:
8178 return "DW_OP_breg30";
8179 case DW_OP_breg31:
8180 return "DW_OP_breg31";
8181 case DW_OP_regx:
8182 return "DW_OP_regx";
8183 case DW_OP_fbreg:
8184 return "DW_OP_fbreg";
8185 case DW_OP_bregx:
8186 return "DW_OP_bregx";
8187 case DW_OP_piece:
8188 return "DW_OP_piece";
8189 case DW_OP_deref_size:
8190 return "DW_OP_deref_size";
8191 case DW_OP_xderef_size:
8192 return "DW_OP_xderef_size";
8193 case DW_OP_nop:
8194 return "DW_OP_nop";
8195 /* DWARF 3 extensions. */
8196 case DW_OP_push_object_address:
8197 return "DW_OP_push_object_address";
8198 case DW_OP_call2:
8199 return "DW_OP_call2";
8200 case DW_OP_call4:
8201 return "DW_OP_call4";
8202 case DW_OP_call_ref:
8203 return "DW_OP_call_ref";
8204 /* GNU extensions. */
8205 case DW_OP_GNU_push_tls_address:
8206 return "DW_OP_GNU_push_tls_address";
8207 default:
8208 return "OP_<unknown>";
8209 }
8210 }
8211
8212 static char *
8213 dwarf_bool_name (unsigned mybool)
8214 {
8215 if (mybool)
8216 return "TRUE";
8217 else
8218 return "FALSE";
8219 }
8220
8221 /* Convert a DWARF type code into its string name. */
8222
8223 static char *
8224 dwarf_type_encoding_name (unsigned enc)
8225 {
8226 switch (enc)
8227 {
8228 case DW_ATE_address:
8229 return "DW_ATE_address";
8230 case DW_ATE_boolean:
8231 return "DW_ATE_boolean";
8232 case DW_ATE_complex_float:
8233 return "DW_ATE_complex_float";
8234 case DW_ATE_float:
8235 return "DW_ATE_float";
8236 case DW_ATE_signed:
8237 return "DW_ATE_signed";
8238 case DW_ATE_signed_char:
8239 return "DW_ATE_signed_char";
8240 case DW_ATE_unsigned:
8241 return "DW_ATE_unsigned";
8242 case DW_ATE_unsigned_char:
8243 return "DW_ATE_unsigned_char";
8244 case DW_ATE_imaginary_float:
8245 return "DW_ATE_imaginary_float";
8246 default:
8247 return "DW_ATE_<unknown>";
8248 }
8249 }
8250
8251 /* Convert a DWARF call frame info operation to its string name. */
8252
8253 #if 0
8254 static char *
8255 dwarf_cfi_name (unsigned cfi_opc)
8256 {
8257 switch (cfi_opc)
8258 {
8259 case DW_CFA_advance_loc:
8260 return "DW_CFA_advance_loc";
8261 case DW_CFA_offset:
8262 return "DW_CFA_offset";
8263 case DW_CFA_restore:
8264 return "DW_CFA_restore";
8265 case DW_CFA_nop:
8266 return "DW_CFA_nop";
8267 case DW_CFA_set_loc:
8268 return "DW_CFA_set_loc";
8269 case DW_CFA_advance_loc1:
8270 return "DW_CFA_advance_loc1";
8271 case DW_CFA_advance_loc2:
8272 return "DW_CFA_advance_loc2";
8273 case DW_CFA_advance_loc4:
8274 return "DW_CFA_advance_loc4";
8275 case DW_CFA_offset_extended:
8276 return "DW_CFA_offset_extended";
8277 case DW_CFA_restore_extended:
8278 return "DW_CFA_restore_extended";
8279 case DW_CFA_undefined:
8280 return "DW_CFA_undefined";
8281 case DW_CFA_same_value:
8282 return "DW_CFA_same_value";
8283 case DW_CFA_register:
8284 return "DW_CFA_register";
8285 case DW_CFA_remember_state:
8286 return "DW_CFA_remember_state";
8287 case DW_CFA_restore_state:
8288 return "DW_CFA_restore_state";
8289 case DW_CFA_def_cfa:
8290 return "DW_CFA_def_cfa";
8291 case DW_CFA_def_cfa_register:
8292 return "DW_CFA_def_cfa_register";
8293 case DW_CFA_def_cfa_offset:
8294 return "DW_CFA_def_cfa_offset";
8295
8296 /* DWARF 3 */
8297 case DW_CFA_def_cfa_expression:
8298 return "DW_CFA_def_cfa_expression";
8299 case DW_CFA_expression:
8300 return "DW_CFA_expression";
8301 case DW_CFA_offset_extended_sf:
8302 return "DW_CFA_offset_extended_sf";
8303 case DW_CFA_def_cfa_sf:
8304 return "DW_CFA_def_cfa_sf";
8305 case DW_CFA_def_cfa_offset_sf:
8306 return "DW_CFA_def_cfa_offset_sf";
8307
8308 /* SGI/MIPS specific */
8309 case DW_CFA_MIPS_advance_loc8:
8310 return "DW_CFA_MIPS_advance_loc8";
8311
8312 /* GNU extensions */
8313 case DW_CFA_GNU_window_save:
8314 return "DW_CFA_GNU_window_save";
8315 case DW_CFA_GNU_args_size:
8316 return "DW_CFA_GNU_args_size";
8317 case DW_CFA_GNU_negative_offset_extended:
8318 return "DW_CFA_GNU_negative_offset_extended";
8319
8320 default:
8321 return "DW_CFA_<unknown>";
8322 }
8323 }
8324 #endif
8325
8326 static void
8327 dump_die (struct die_info *die)
8328 {
8329 unsigned int i;
8330
8331 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8332 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8333 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8334 dwarf_bool_name (die->child != NULL));
8335
8336 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8337 for (i = 0; i < die->num_attrs; ++i)
8338 {
8339 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8340 dwarf_attr_name (die->attrs[i].name),
8341 dwarf_form_name (die->attrs[i].form));
8342 switch (die->attrs[i].form)
8343 {
8344 case DW_FORM_ref_addr:
8345 case DW_FORM_addr:
8346 fprintf_unfiltered (gdb_stderr, "address: ");
8347 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8348 break;
8349 case DW_FORM_block2:
8350 case DW_FORM_block4:
8351 case DW_FORM_block:
8352 case DW_FORM_block1:
8353 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8354 break;
8355 case DW_FORM_ref1:
8356 case DW_FORM_ref2:
8357 case DW_FORM_ref4:
8358 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8359 (long) (DW_ADDR (&die->attrs[i])));
8360 break;
8361 case DW_FORM_data1:
8362 case DW_FORM_data2:
8363 case DW_FORM_data4:
8364 case DW_FORM_data8:
8365 case DW_FORM_udata:
8366 case DW_FORM_sdata:
8367 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8368 break;
8369 case DW_FORM_string:
8370 case DW_FORM_strp:
8371 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8372 DW_STRING (&die->attrs[i])
8373 ? DW_STRING (&die->attrs[i]) : "");
8374 break;
8375 case DW_FORM_flag:
8376 if (DW_UNSND (&die->attrs[i]))
8377 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8378 else
8379 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8380 break;
8381 case DW_FORM_indirect:
8382 /* the reader will have reduced the indirect form to
8383 the "base form" so this form should not occur */
8384 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8385 break;
8386 default:
8387 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8388 die->attrs[i].form);
8389 }
8390 fprintf_unfiltered (gdb_stderr, "\n");
8391 }
8392 }
8393
8394 static void
8395 dump_die_list (struct die_info *die)
8396 {
8397 while (die)
8398 {
8399 dump_die (die);
8400 if (die->child != NULL)
8401 dump_die_list (die->child);
8402 if (die->sibling != NULL)
8403 dump_die_list (die->sibling);
8404 }
8405 }
8406
8407 static void
8408 store_in_ref_table (unsigned int offset, struct die_info *die,
8409 struct dwarf2_cu *cu)
8410 {
8411 int h;
8412 struct die_info *old;
8413
8414 h = (offset % REF_HASH_SIZE);
8415 old = cu->die_ref_table[h];
8416 die->next_ref = old;
8417 cu->die_ref_table[h] = die;
8418 }
8419
8420 static unsigned int
8421 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8422 {
8423 unsigned int result = 0;
8424
8425 switch (attr->form)
8426 {
8427 case DW_FORM_ref_addr:
8428 case DW_FORM_ref1:
8429 case DW_FORM_ref2:
8430 case DW_FORM_ref4:
8431 case DW_FORM_ref8:
8432 case DW_FORM_ref_udata:
8433 result = DW_ADDR (attr);
8434 break;
8435 default:
8436 complaint (&symfile_complaints,
8437 _("unsupported die ref attribute form: '%s'"),
8438 dwarf_form_name (attr->form));
8439 }
8440 return result;
8441 }
8442
8443 /* Return the constant value held by the given attribute. Return -1
8444 if the value held by the attribute is not constant. */
8445
8446 static int
8447 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8448 {
8449 if (attr->form == DW_FORM_sdata)
8450 return DW_SND (attr);
8451 else if (attr->form == DW_FORM_udata
8452 || attr->form == DW_FORM_data1
8453 || attr->form == DW_FORM_data2
8454 || attr->form == DW_FORM_data4
8455 || attr->form == DW_FORM_data8)
8456 return DW_UNSND (attr);
8457 else
8458 {
8459 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8460 dwarf_form_name (attr->form));
8461 return default_value;
8462 }
8463 }
8464
8465 static struct die_info *
8466 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8467 struct dwarf2_cu *cu)
8468 {
8469 struct die_info *die;
8470 unsigned int offset;
8471 int h;
8472 struct die_info temp_die;
8473 struct dwarf2_cu *target_cu;
8474
8475 offset = dwarf2_get_ref_die_offset (attr, cu);
8476
8477 if (DW_ADDR (attr) < cu->header.offset
8478 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8479 {
8480 struct dwarf2_per_cu_data *per_cu;
8481 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8482 cu->objfile);
8483 target_cu = per_cu->cu;
8484 }
8485 else
8486 target_cu = cu;
8487
8488 h = (offset % REF_HASH_SIZE);
8489 die = target_cu->die_ref_table[h];
8490 while (die)
8491 {
8492 if (die->offset == offset)
8493 return die;
8494 die = die->next_ref;
8495 }
8496
8497 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8498 "at 0x%lx [in module %s]"),
8499 (long) src_die->offset, (long) offset, cu->objfile->name);
8500
8501 return NULL;
8502 }
8503
8504 static struct type *
8505 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8506 struct dwarf2_cu *cu)
8507 {
8508 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8509 {
8510 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8511 typeid, objfile->name);
8512 }
8513
8514 /* Look for this particular type in the fundamental type vector. If
8515 one is not found, create and install one appropriate for the
8516 current language and the current target machine. */
8517
8518 if (cu->ftypes[typeid] == NULL)
8519 {
8520 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8521 }
8522
8523 return (cu->ftypes[typeid]);
8524 }
8525
8526 /* Decode simple location descriptions.
8527 Given a pointer to a dwarf block that defines a location, compute
8528 the location and return the value.
8529
8530 NOTE drow/2003-11-18: This function is called in two situations
8531 now: for the address of static or global variables (partial symbols
8532 only) and for offsets into structures which are expected to be
8533 (more or less) constant. The partial symbol case should go away,
8534 and only the constant case should remain. That will let this
8535 function complain more accurately. A few special modes are allowed
8536 without complaint for global variables (for instance, global
8537 register values and thread-local values).
8538
8539 A location description containing no operations indicates that the
8540 object is optimized out. The return value is 0 for that case.
8541 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8542 callers will only want a very basic result and this can become a
8543 complaint.
8544
8545 When the result is a register number, the global isreg flag is set,
8546 otherwise it is cleared.
8547
8548 Note that stack[0] is unused except as a default error return.
8549 Note that stack overflow is not yet handled. */
8550
8551 static CORE_ADDR
8552 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8553 {
8554 struct objfile *objfile = cu->objfile;
8555 struct comp_unit_head *cu_header = &cu->header;
8556 int i;
8557 int size = blk->size;
8558 char *data = blk->data;
8559 CORE_ADDR stack[64];
8560 int stacki;
8561 unsigned int bytes_read, unsnd;
8562 unsigned char op;
8563
8564 i = 0;
8565 stacki = 0;
8566 stack[stacki] = 0;
8567 isreg = 0;
8568
8569 while (i < size)
8570 {
8571 op = data[i++];
8572 switch (op)
8573 {
8574 case DW_OP_lit0:
8575 case DW_OP_lit1:
8576 case DW_OP_lit2:
8577 case DW_OP_lit3:
8578 case DW_OP_lit4:
8579 case DW_OP_lit5:
8580 case DW_OP_lit6:
8581 case DW_OP_lit7:
8582 case DW_OP_lit8:
8583 case DW_OP_lit9:
8584 case DW_OP_lit10:
8585 case DW_OP_lit11:
8586 case DW_OP_lit12:
8587 case DW_OP_lit13:
8588 case DW_OP_lit14:
8589 case DW_OP_lit15:
8590 case DW_OP_lit16:
8591 case DW_OP_lit17:
8592 case DW_OP_lit18:
8593 case DW_OP_lit19:
8594 case DW_OP_lit20:
8595 case DW_OP_lit21:
8596 case DW_OP_lit22:
8597 case DW_OP_lit23:
8598 case DW_OP_lit24:
8599 case DW_OP_lit25:
8600 case DW_OP_lit26:
8601 case DW_OP_lit27:
8602 case DW_OP_lit28:
8603 case DW_OP_lit29:
8604 case DW_OP_lit30:
8605 case DW_OP_lit31:
8606 stack[++stacki] = op - DW_OP_lit0;
8607 break;
8608
8609 case DW_OP_reg0:
8610 case DW_OP_reg1:
8611 case DW_OP_reg2:
8612 case DW_OP_reg3:
8613 case DW_OP_reg4:
8614 case DW_OP_reg5:
8615 case DW_OP_reg6:
8616 case DW_OP_reg7:
8617 case DW_OP_reg8:
8618 case DW_OP_reg9:
8619 case DW_OP_reg10:
8620 case DW_OP_reg11:
8621 case DW_OP_reg12:
8622 case DW_OP_reg13:
8623 case DW_OP_reg14:
8624 case DW_OP_reg15:
8625 case DW_OP_reg16:
8626 case DW_OP_reg17:
8627 case DW_OP_reg18:
8628 case DW_OP_reg19:
8629 case DW_OP_reg20:
8630 case DW_OP_reg21:
8631 case DW_OP_reg22:
8632 case DW_OP_reg23:
8633 case DW_OP_reg24:
8634 case DW_OP_reg25:
8635 case DW_OP_reg26:
8636 case DW_OP_reg27:
8637 case DW_OP_reg28:
8638 case DW_OP_reg29:
8639 case DW_OP_reg30:
8640 case DW_OP_reg31:
8641 isreg = 1;
8642 stack[++stacki] = op - DW_OP_reg0;
8643 if (i < size)
8644 dwarf2_complex_location_expr_complaint ();
8645 break;
8646
8647 case DW_OP_regx:
8648 isreg = 1;
8649 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8650 i += bytes_read;
8651 stack[++stacki] = unsnd;
8652 if (i < size)
8653 dwarf2_complex_location_expr_complaint ();
8654 break;
8655
8656 case DW_OP_addr:
8657 stack[++stacki] = read_address (objfile->obfd, &data[i],
8658 cu, &bytes_read);
8659 i += bytes_read;
8660 break;
8661
8662 case DW_OP_const1u:
8663 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8664 i += 1;
8665 break;
8666
8667 case DW_OP_const1s:
8668 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8669 i += 1;
8670 break;
8671
8672 case DW_OP_const2u:
8673 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8674 i += 2;
8675 break;
8676
8677 case DW_OP_const2s:
8678 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8679 i += 2;
8680 break;
8681
8682 case DW_OP_const4u:
8683 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8684 i += 4;
8685 break;
8686
8687 case DW_OP_const4s:
8688 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8689 i += 4;
8690 break;
8691
8692 case DW_OP_constu:
8693 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8694 &bytes_read);
8695 i += bytes_read;
8696 break;
8697
8698 case DW_OP_consts:
8699 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8700 i += bytes_read;
8701 break;
8702
8703 case DW_OP_dup:
8704 stack[stacki + 1] = stack[stacki];
8705 stacki++;
8706 break;
8707
8708 case DW_OP_plus:
8709 stack[stacki - 1] += stack[stacki];
8710 stacki--;
8711 break;
8712
8713 case DW_OP_plus_uconst:
8714 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8715 i += bytes_read;
8716 break;
8717
8718 case DW_OP_minus:
8719 stack[stacki - 1] -= stack[stacki];
8720 stacki--;
8721 break;
8722
8723 case DW_OP_deref:
8724 /* If we're not the last op, then we definitely can't encode
8725 this using GDB's address_class enum. This is valid for partial
8726 global symbols, although the variable's address will be bogus
8727 in the psymtab. */
8728 if (i < size)
8729 dwarf2_complex_location_expr_complaint ();
8730 break;
8731
8732 case DW_OP_GNU_push_tls_address:
8733 /* The top of the stack has the offset from the beginning
8734 of the thread control block at which the variable is located. */
8735 /* Nothing should follow this operator, so the top of stack would
8736 be returned. */
8737 /* This is valid for partial global symbols, but the variable's
8738 address will be bogus in the psymtab. */
8739 if (i < size)
8740 dwarf2_complex_location_expr_complaint ();
8741 break;
8742
8743 default:
8744 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8745 dwarf_stack_op_name (op));
8746 return (stack[stacki]);
8747 }
8748 }
8749 return (stack[stacki]);
8750 }
8751
8752 /* memory allocation interface */
8753
8754 static struct dwarf_block *
8755 dwarf_alloc_block (struct dwarf2_cu *cu)
8756 {
8757 struct dwarf_block *blk;
8758
8759 blk = (struct dwarf_block *)
8760 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8761 return (blk);
8762 }
8763
8764 static struct abbrev_info *
8765 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8766 {
8767 struct abbrev_info *abbrev;
8768
8769 abbrev = (struct abbrev_info *)
8770 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8771 memset (abbrev, 0, sizeof (struct abbrev_info));
8772 return (abbrev);
8773 }
8774
8775 static struct die_info *
8776 dwarf_alloc_die (void)
8777 {
8778 struct die_info *die;
8779
8780 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8781 memset (die, 0, sizeof (struct die_info));
8782 return (die);
8783 }
8784
8785 \f
8786 /* Macro support. */
8787
8788
8789 /* Return the full name of file number I in *LH's file name table.
8790 Use COMP_DIR as the name of the current directory of the
8791 compilation. The result is allocated using xmalloc; the caller is
8792 responsible for freeing it. */
8793 static char *
8794 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8795 {
8796 struct file_entry *fe = &lh->file_names[file - 1];
8797
8798 if (IS_ABSOLUTE_PATH (fe->name))
8799 return xstrdup (fe->name);
8800 else
8801 {
8802 const char *dir;
8803 int dir_len;
8804 char *full_name;
8805
8806 if (fe->dir_index)
8807 dir = lh->include_dirs[fe->dir_index - 1];
8808 else
8809 dir = comp_dir;
8810
8811 if (dir)
8812 {
8813 dir_len = strlen (dir);
8814 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8815 strcpy (full_name, dir);
8816 full_name[dir_len] = '/';
8817 strcpy (full_name + dir_len + 1, fe->name);
8818 return full_name;
8819 }
8820 else
8821 return xstrdup (fe->name);
8822 }
8823 }
8824
8825
8826 static struct macro_source_file *
8827 macro_start_file (int file, int line,
8828 struct macro_source_file *current_file,
8829 const char *comp_dir,
8830 struct line_header *lh, struct objfile *objfile)
8831 {
8832 /* The full name of this source file. */
8833 char *full_name = file_full_name (file, lh, comp_dir);
8834
8835 /* We don't create a macro table for this compilation unit
8836 at all until we actually get a filename. */
8837 if (! pending_macros)
8838 pending_macros = new_macro_table (&objfile->objfile_obstack,
8839 objfile->macro_cache);
8840
8841 if (! current_file)
8842 /* If we have no current file, then this must be the start_file
8843 directive for the compilation unit's main source file. */
8844 current_file = macro_set_main (pending_macros, full_name);
8845 else
8846 current_file = macro_include (current_file, line, full_name);
8847
8848 xfree (full_name);
8849
8850 return current_file;
8851 }
8852
8853
8854 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8855 followed by a null byte. */
8856 static char *
8857 copy_string (const char *buf, int len)
8858 {
8859 char *s = xmalloc (len + 1);
8860 memcpy (s, buf, len);
8861 s[len] = '\0';
8862
8863 return s;
8864 }
8865
8866
8867 static const char *
8868 consume_improper_spaces (const char *p, const char *body)
8869 {
8870 if (*p == ' ')
8871 {
8872 complaint (&symfile_complaints,
8873 _("macro definition contains spaces in formal argument list:\n`%s'"),
8874 body);
8875
8876 while (*p == ' ')
8877 p++;
8878 }
8879
8880 return p;
8881 }
8882
8883
8884 static void
8885 parse_macro_definition (struct macro_source_file *file, int line,
8886 const char *body)
8887 {
8888 const char *p;
8889
8890 /* The body string takes one of two forms. For object-like macro
8891 definitions, it should be:
8892
8893 <macro name> " " <definition>
8894
8895 For function-like macro definitions, it should be:
8896
8897 <macro name> "() " <definition>
8898 or
8899 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8900
8901 Spaces may appear only where explicitly indicated, and in the
8902 <definition>.
8903
8904 The Dwarf 2 spec says that an object-like macro's name is always
8905 followed by a space, but versions of GCC around March 2002 omit
8906 the space when the macro's definition is the empty string.
8907
8908 The Dwarf 2 spec says that there should be no spaces between the
8909 formal arguments in a function-like macro's formal argument list,
8910 but versions of GCC around March 2002 include spaces after the
8911 commas. */
8912
8913
8914 /* Find the extent of the macro name. The macro name is terminated
8915 by either a space or null character (for an object-like macro) or
8916 an opening paren (for a function-like macro). */
8917 for (p = body; *p; p++)
8918 if (*p == ' ' || *p == '(')
8919 break;
8920
8921 if (*p == ' ' || *p == '\0')
8922 {
8923 /* It's an object-like macro. */
8924 int name_len = p - body;
8925 char *name = copy_string (body, name_len);
8926 const char *replacement;
8927
8928 if (*p == ' ')
8929 replacement = body + name_len + 1;
8930 else
8931 {
8932 dwarf2_macro_malformed_definition_complaint (body);
8933 replacement = body + name_len;
8934 }
8935
8936 macro_define_object (file, line, name, replacement);
8937
8938 xfree (name);
8939 }
8940 else if (*p == '(')
8941 {
8942 /* It's a function-like macro. */
8943 char *name = copy_string (body, p - body);
8944 int argc = 0;
8945 int argv_size = 1;
8946 char **argv = xmalloc (argv_size * sizeof (*argv));
8947
8948 p++;
8949
8950 p = consume_improper_spaces (p, body);
8951
8952 /* Parse the formal argument list. */
8953 while (*p && *p != ')')
8954 {
8955 /* Find the extent of the current argument name. */
8956 const char *arg_start = p;
8957
8958 while (*p && *p != ',' && *p != ')' && *p != ' ')
8959 p++;
8960
8961 if (! *p || p == arg_start)
8962 dwarf2_macro_malformed_definition_complaint (body);
8963 else
8964 {
8965 /* Make sure argv has room for the new argument. */
8966 if (argc >= argv_size)
8967 {
8968 argv_size *= 2;
8969 argv = xrealloc (argv, argv_size * sizeof (*argv));
8970 }
8971
8972 argv[argc++] = copy_string (arg_start, p - arg_start);
8973 }
8974
8975 p = consume_improper_spaces (p, body);
8976
8977 /* Consume the comma, if present. */
8978 if (*p == ',')
8979 {
8980 p++;
8981
8982 p = consume_improper_spaces (p, body);
8983 }
8984 }
8985
8986 if (*p == ')')
8987 {
8988 p++;
8989
8990 if (*p == ' ')
8991 /* Perfectly formed definition, no complaints. */
8992 macro_define_function (file, line, name,
8993 argc, (const char **) argv,
8994 p + 1);
8995 else if (*p == '\0')
8996 {
8997 /* Complain, but do define it. */
8998 dwarf2_macro_malformed_definition_complaint (body);
8999 macro_define_function (file, line, name,
9000 argc, (const char **) argv,
9001 p);
9002 }
9003 else
9004 /* Just complain. */
9005 dwarf2_macro_malformed_definition_complaint (body);
9006 }
9007 else
9008 /* Just complain. */
9009 dwarf2_macro_malformed_definition_complaint (body);
9010
9011 xfree (name);
9012 {
9013 int i;
9014
9015 for (i = 0; i < argc; i++)
9016 xfree (argv[i]);
9017 }
9018 xfree (argv);
9019 }
9020 else
9021 dwarf2_macro_malformed_definition_complaint (body);
9022 }
9023
9024
9025 static void
9026 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9027 char *comp_dir, bfd *abfd,
9028 struct dwarf2_cu *cu)
9029 {
9030 char *mac_ptr, *mac_end;
9031 struct macro_source_file *current_file = 0;
9032
9033 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9034 {
9035 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9036 return;
9037 }
9038
9039 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9040 mac_end = dwarf2_per_objfile->macinfo_buffer
9041 + dwarf2_per_objfile->macinfo_size;
9042
9043 for (;;)
9044 {
9045 enum dwarf_macinfo_record_type macinfo_type;
9046
9047 /* Do we at least have room for a macinfo type byte? */
9048 if (mac_ptr >= mac_end)
9049 {
9050 dwarf2_macros_too_long_complaint ();
9051 return;
9052 }
9053
9054 macinfo_type = read_1_byte (abfd, mac_ptr);
9055 mac_ptr++;
9056
9057 switch (macinfo_type)
9058 {
9059 /* A zero macinfo type indicates the end of the macro
9060 information. */
9061 case 0:
9062 return;
9063
9064 case DW_MACINFO_define:
9065 case DW_MACINFO_undef:
9066 {
9067 int bytes_read;
9068 int line;
9069 char *body;
9070
9071 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9072 mac_ptr += bytes_read;
9073 body = read_string (abfd, mac_ptr, &bytes_read);
9074 mac_ptr += bytes_read;
9075
9076 if (! current_file)
9077 complaint (&symfile_complaints,
9078 _("debug info gives macro %s outside of any file: %s"),
9079 macinfo_type ==
9080 DW_MACINFO_define ? "definition" : macinfo_type ==
9081 DW_MACINFO_undef ? "undefinition" :
9082 "something-or-other", body);
9083 else
9084 {
9085 if (macinfo_type == DW_MACINFO_define)
9086 parse_macro_definition (current_file, line, body);
9087 else if (macinfo_type == DW_MACINFO_undef)
9088 macro_undef (current_file, line, body);
9089 }
9090 }
9091 break;
9092
9093 case DW_MACINFO_start_file:
9094 {
9095 int bytes_read;
9096 int line, file;
9097
9098 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9099 mac_ptr += bytes_read;
9100 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9101 mac_ptr += bytes_read;
9102
9103 current_file = macro_start_file (file, line,
9104 current_file, comp_dir,
9105 lh, cu->objfile);
9106 }
9107 break;
9108
9109 case DW_MACINFO_end_file:
9110 if (! current_file)
9111 complaint (&symfile_complaints,
9112 _("macro debug info has an unmatched `close_file' directive"));
9113 else
9114 {
9115 current_file = current_file->included_by;
9116 if (! current_file)
9117 {
9118 enum dwarf_macinfo_record_type next_type;
9119
9120 /* GCC circa March 2002 doesn't produce the zero
9121 type byte marking the end of the compilation
9122 unit. Complain if it's not there, but exit no
9123 matter what. */
9124
9125 /* Do we at least have room for a macinfo type byte? */
9126 if (mac_ptr >= mac_end)
9127 {
9128 dwarf2_macros_too_long_complaint ();
9129 return;
9130 }
9131
9132 /* We don't increment mac_ptr here, so this is just
9133 a look-ahead. */
9134 next_type = read_1_byte (abfd, mac_ptr);
9135 if (next_type != 0)
9136 complaint (&symfile_complaints,
9137 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9138
9139 return;
9140 }
9141 }
9142 break;
9143
9144 case DW_MACINFO_vendor_ext:
9145 {
9146 int bytes_read;
9147 int constant;
9148 char *string;
9149
9150 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9151 mac_ptr += bytes_read;
9152 string = read_string (abfd, mac_ptr, &bytes_read);
9153 mac_ptr += bytes_read;
9154
9155 /* We don't recognize any vendor extensions. */
9156 }
9157 break;
9158 }
9159 }
9160 }
9161
9162 /* Check if the attribute's form is a DW_FORM_block*
9163 if so return true else false. */
9164 static int
9165 attr_form_is_block (struct attribute *attr)
9166 {
9167 return (attr == NULL ? 0 :
9168 attr->form == DW_FORM_block1
9169 || attr->form == DW_FORM_block2
9170 || attr->form == DW_FORM_block4
9171 || attr->form == DW_FORM_block);
9172 }
9173
9174 static void
9175 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9176 struct dwarf2_cu *cu)
9177 {
9178 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9179 {
9180 struct dwarf2_loclist_baton *baton;
9181
9182 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9183 sizeof (struct dwarf2_loclist_baton));
9184 baton->objfile = cu->objfile;
9185
9186 /* We don't know how long the location list is, but make sure we
9187 don't run off the edge of the section. */
9188 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9189 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9190 baton->base_address = cu->header.base_address;
9191 if (cu->header.base_known == 0)
9192 complaint (&symfile_complaints,
9193 _("Location list used without specifying the CU base address."));
9194
9195 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9196 SYMBOL_LOCATION_BATON (sym) = baton;
9197 }
9198 else
9199 {
9200 struct dwarf2_locexpr_baton *baton;
9201
9202 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9203 sizeof (struct dwarf2_locexpr_baton));
9204 baton->objfile = cu->objfile;
9205
9206 if (attr_form_is_block (attr))
9207 {
9208 /* Note that we're just copying the block's data pointer
9209 here, not the actual data. We're still pointing into the
9210 info_buffer for SYM's objfile; right now we never release
9211 that buffer, but when we do clean up properly this may
9212 need to change. */
9213 baton->size = DW_BLOCK (attr)->size;
9214 baton->data = DW_BLOCK (attr)->data;
9215 }
9216 else
9217 {
9218 dwarf2_invalid_attrib_class_complaint ("location description",
9219 SYMBOL_NATURAL_NAME (sym));
9220 baton->size = 0;
9221 baton->data = NULL;
9222 }
9223
9224 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9225 SYMBOL_LOCATION_BATON (sym) = baton;
9226 }
9227 }
9228
9229 /* Locate the compilation unit from CU's objfile which contains the
9230 DIE at OFFSET. Raises an error on failure. */
9231
9232 static struct dwarf2_per_cu_data *
9233 dwarf2_find_containing_comp_unit (unsigned long offset,
9234 struct objfile *objfile)
9235 {
9236 struct dwarf2_per_cu_data *this_cu;
9237 int low, high;
9238
9239 low = 0;
9240 high = dwarf2_per_objfile->n_comp_units - 1;
9241 while (high > low)
9242 {
9243 int mid = low + (high - low) / 2;
9244 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9245 high = mid;
9246 else
9247 low = mid + 1;
9248 }
9249 gdb_assert (low == high);
9250 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9251 {
9252 if (low == 0)
9253 error (_("Dwarf Error: could not find partial DIE containing "
9254 "offset 0x%lx [in module %s]"),
9255 (long) offset, bfd_get_filename (objfile->obfd));
9256
9257 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9258 return dwarf2_per_objfile->all_comp_units[low-1];
9259 }
9260 else
9261 {
9262 this_cu = dwarf2_per_objfile->all_comp_units[low];
9263 if (low == dwarf2_per_objfile->n_comp_units - 1
9264 && offset >= this_cu->offset + this_cu->length)
9265 error (_("invalid dwarf2 offset %ld"), offset);
9266 gdb_assert (offset < this_cu->offset + this_cu->length);
9267 return this_cu;
9268 }
9269 }
9270
9271 /* Locate the compilation unit from OBJFILE which is located at exactly
9272 OFFSET. Raises an error on failure. */
9273
9274 static struct dwarf2_per_cu_data *
9275 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9276 {
9277 struct dwarf2_per_cu_data *this_cu;
9278 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9279 if (this_cu->offset != offset)
9280 error (_("no compilation unit with offset %ld."), offset);
9281 return this_cu;
9282 }
9283
9284 /* Release one cached compilation unit, CU. We unlink it from the tree
9285 of compilation units, but we don't remove it from the read_in_chain;
9286 the caller is responsible for that. */
9287
9288 static void
9289 free_one_comp_unit (void *data)
9290 {
9291 struct dwarf2_cu *cu = data;
9292
9293 if (cu->per_cu != NULL)
9294 cu->per_cu->cu = NULL;
9295 cu->per_cu = NULL;
9296
9297 obstack_free (&cu->comp_unit_obstack, NULL);
9298 if (cu->dies)
9299 free_die_list (cu->dies);
9300
9301 xfree (cu);
9302 }
9303
9304 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9305 when we're finished with it. We can't free the pointer itself, but be
9306 sure to unlink it from the cache. Also release any associated storage
9307 and perform cache maintenance.
9308
9309 Only used during partial symbol parsing. */
9310
9311 static void
9312 free_stack_comp_unit (void *data)
9313 {
9314 struct dwarf2_cu *cu = data;
9315
9316 obstack_free (&cu->comp_unit_obstack, NULL);
9317 cu->partial_dies = NULL;
9318
9319 if (cu->per_cu != NULL)
9320 {
9321 /* This compilation unit is on the stack in our caller, so we
9322 should not xfree it. Just unlink it. */
9323 cu->per_cu->cu = NULL;
9324 cu->per_cu = NULL;
9325
9326 /* If we had a per-cu pointer, then we may have other compilation
9327 units loaded, so age them now. */
9328 age_cached_comp_units ();
9329 }
9330 }
9331
9332 /* Free all cached compilation units. */
9333
9334 static void
9335 free_cached_comp_units (void *data)
9336 {
9337 struct dwarf2_per_cu_data *per_cu, **last_chain;
9338
9339 per_cu = dwarf2_per_objfile->read_in_chain;
9340 last_chain = &dwarf2_per_objfile->read_in_chain;
9341 while (per_cu != NULL)
9342 {
9343 struct dwarf2_per_cu_data *next_cu;
9344
9345 next_cu = per_cu->cu->read_in_chain;
9346
9347 free_one_comp_unit (per_cu->cu);
9348 *last_chain = next_cu;
9349
9350 per_cu = next_cu;
9351 }
9352 }
9353
9354 /* Increase the age counter on each cached compilation unit, and free
9355 any that are too old. */
9356
9357 static void
9358 age_cached_comp_units (void)
9359 {
9360 struct dwarf2_per_cu_data *per_cu, **last_chain;
9361
9362 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9363 per_cu = dwarf2_per_objfile->read_in_chain;
9364 while (per_cu != NULL)
9365 {
9366 per_cu->cu->last_used ++;
9367 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9368 dwarf2_mark (per_cu->cu);
9369 per_cu = per_cu->cu->read_in_chain;
9370 }
9371
9372 per_cu = dwarf2_per_objfile->read_in_chain;
9373 last_chain = &dwarf2_per_objfile->read_in_chain;
9374 while (per_cu != NULL)
9375 {
9376 struct dwarf2_per_cu_data *next_cu;
9377
9378 next_cu = per_cu->cu->read_in_chain;
9379
9380 if (!per_cu->cu->mark)
9381 {
9382 free_one_comp_unit (per_cu->cu);
9383 *last_chain = next_cu;
9384 }
9385 else
9386 last_chain = &per_cu->cu->read_in_chain;
9387
9388 per_cu = next_cu;
9389 }
9390 }
9391
9392 /* Remove a single compilation unit from the cache. */
9393
9394 static void
9395 free_one_cached_comp_unit (void *target_cu)
9396 {
9397 struct dwarf2_per_cu_data *per_cu, **last_chain;
9398
9399 per_cu = dwarf2_per_objfile->read_in_chain;
9400 last_chain = &dwarf2_per_objfile->read_in_chain;
9401 while (per_cu != NULL)
9402 {
9403 struct dwarf2_per_cu_data *next_cu;
9404
9405 next_cu = per_cu->cu->read_in_chain;
9406
9407 if (per_cu->cu == target_cu)
9408 {
9409 free_one_comp_unit (per_cu->cu);
9410 *last_chain = next_cu;
9411 break;
9412 }
9413 else
9414 last_chain = &per_cu->cu->read_in_chain;
9415
9416 per_cu = next_cu;
9417 }
9418 }
9419
9420 /* A pair of DIE offset and GDB type pointer. We store these
9421 in a hash table separate from the DIEs, and preserve them
9422 when the DIEs are flushed out of cache. */
9423
9424 struct dwarf2_offset_and_type
9425 {
9426 unsigned int offset;
9427 struct type *type;
9428 };
9429
9430 /* Hash function for a dwarf2_offset_and_type. */
9431
9432 static hashval_t
9433 offset_and_type_hash (const void *item)
9434 {
9435 const struct dwarf2_offset_and_type *ofs = item;
9436 return ofs->offset;
9437 }
9438
9439 /* Equality function for a dwarf2_offset_and_type. */
9440
9441 static int
9442 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9443 {
9444 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9445 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9446 return ofs_lhs->offset == ofs_rhs->offset;
9447 }
9448
9449 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9450 table if necessary. */
9451
9452 static void
9453 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9454 {
9455 struct dwarf2_offset_and_type **slot, ofs;
9456
9457 die->type = type;
9458
9459 if (cu->per_cu == NULL)
9460 return;
9461
9462 if (cu->per_cu->type_hash == NULL)
9463 cu->per_cu->type_hash
9464 = htab_create_alloc_ex (cu->header.length / 24,
9465 offset_and_type_hash,
9466 offset_and_type_eq,
9467 NULL,
9468 &cu->objfile->objfile_obstack,
9469 hashtab_obstack_allocate,
9470 dummy_obstack_deallocate);
9471
9472 ofs.offset = die->offset;
9473 ofs.type = type;
9474 slot = (struct dwarf2_offset_and_type **)
9475 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9476 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9477 **slot = ofs;
9478 }
9479
9480 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9481 have a saved type. */
9482
9483 static struct type *
9484 get_die_type (struct die_info *die, htab_t type_hash)
9485 {
9486 struct dwarf2_offset_and_type *slot, ofs;
9487
9488 ofs.offset = die->offset;
9489 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9490 if (slot)
9491 return slot->type;
9492 else
9493 return NULL;
9494 }
9495
9496 /* Restore the types of the DIE tree starting at START_DIE from the hash
9497 table saved in CU. */
9498
9499 static void
9500 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9501 {
9502 struct die_info *die;
9503
9504 if (cu->per_cu->type_hash == NULL)
9505 return;
9506
9507 for (die = start_die; die != NULL; die = die->sibling)
9508 {
9509 die->type = get_die_type (die, cu->per_cu->type_hash);
9510 if (die->child != NULL)
9511 reset_die_and_siblings_types (die->child, cu);
9512 }
9513 }
9514
9515 /* Set the mark field in CU and in every other compilation unit in the
9516 cache that we must keep because we are keeping CU. */
9517
9518 /* Add a dependence relationship from CU to REF_PER_CU. */
9519
9520 static void
9521 dwarf2_add_dependence (struct dwarf2_cu *cu,
9522 struct dwarf2_per_cu_data *ref_per_cu)
9523 {
9524 void **slot;
9525
9526 if (cu->dependencies == NULL)
9527 cu->dependencies
9528 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9529 NULL, &cu->comp_unit_obstack,
9530 hashtab_obstack_allocate,
9531 dummy_obstack_deallocate);
9532
9533 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9534 if (*slot == NULL)
9535 *slot = ref_per_cu;
9536 }
9537
9538 /* Set the mark field in CU and in every other compilation unit in the
9539 cache that we must keep because we are keeping CU. */
9540
9541 static int
9542 dwarf2_mark_helper (void **slot, void *data)
9543 {
9544 struct dwarf2_per_cu_data *per_cu;
9545
9546 per_cu = (struct dwarf2_per_cu_data *) *slot;
9547 if (per_cu->cu->mark)
9548 return 1;
9549 per_cu->cu->mark = 1;
9550
9551 if (per_cu->cu->dependencies != NULL)
9552 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9553
9554 return 1;
9555 }
9556
9557 static void
9558 dwarf2_mark (struct dwarf2_cu *cu)
9559 {
9560 if (cu->mark)
9561 return;
9562 cu->mark = 1;
9563 if (cu->dependencies != NULL)
9564 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9565 }
9566
9567 static void
9568 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9569 {
9570 while (per_cu)
9571 {
9572 per_cu->cu->mark = 0;
9573 per_cu = per_cu->cu->read_in_chain;
9574 }
9575 }
9576
9577 /* Allocation function for the libiberty hash table which uses an
9578 obstack. */
9579
9580 static void *
9581 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9582 {
9583 unsigned int total = size * count;
9584 void *ptr = obstack_alloc ((struct obstack *) data, total);
9585 memset (ptr, 0, total);
9586 return ptr;
9587 }
9588
9589 /* Trivial deallocation function for the libiberty splay tree and hash
9590 table - don't deallocate anything. Rely on later deletion of the
9591 obstack. */
9592
9593 static void
9594 dummy_obstack_deallocate (void *object, void *data)
9595 {
9596 return;
9597 }
9598
9599 /* Trivial hash function for partial_die_info: the hash value of a DIE
9600 is its offset in .debug_info for this objfile. */
9601
9602 static hashval_t
9603 partial_die_hash (const void *item)
9604 {
9605 const struct partial_die_info *part_die = item;
9606 return part_die->offset;
9607 }
9608
9609 /* Trivial comparison function for partial_die_info structures: two DIEs
9610 are equal if they have the same offset. */
9611
9612 static int
9613 partial_die_eq (const void *item_lhs, const void *item_rhs)
9614 {
9615 const struct partial_die_info *part_die_lhs = item_lhs;
9616 const struct partial_die_info *part_die_rhs = item_rhs;
9617 return part_die_lhs->offset == part_die_rhs->offset;
9618 }
9619
9620 static struct cmd_list_element *set_dwarf2_cmdlist;
9621 static struct cmd_list_element *show_dwarf2_cmdlist;
9622
9623 static void
9624 set_dwarf2_cmd (char *args, int from_tty)
9625 {
9626 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9627 }
9628
9629 static void
9630 show_dwarf2_cmd (char *args, int from_tty)
9631 {
9632 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9633 }
9634
9635 void _initialize_dwarf2_read (void);
9636
9637 void
9638 _initialize_dwarf2_read (void)
9639 {
9640 dwarf2_objfile_data_key = register_objfile_data ();
9641
9642 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9643 Set DWARF 2 specific variables.\n\
9644 Configure DWARF 2 variables such as the cache size"),
9645 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9646 0/*allow-unknown*/, &maintenance_set_cmdlist);
9647
9648 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9649 Show DWARF 2 specific variables\n\
9650 Show DWARF 2 variables such as the cache size"),
9651 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9652 0/*allow-unknown*/, &maintenance_show_cmdlist);
9653
9654 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9655 &dwarf2_max_cache_age, _("\
9656 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9657 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9658 A higher limit means that cached compilation units will be stored\n\
9659 in memory longer, and more total memory will be used. Zero disables\n\
9660 caching, which can slow down startup."),
9661 NULL,
9662 show_dwarf2_max_cache_age,
9663 &set_dwarf2_cmdlist,
9664 &show_dwarf2_cmdlist);
9665 }
This page took 0.354864 seconds and 4 git commands to generate.