* dwarf1.c (struct dwarf1_debug): Add syms member.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "objfiles.h"
33 #include "elf/dwarf2.h"
34 #include "buildsym.h"
35 #include "demangle.h"
36 #include "expression.h"
37 #include "filenames.h" /* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #if 0
69 /* .debug_info header for a compilation unit
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72 typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81 _COMP_UNIT_HEADER;
82 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
83 #endif
84
85 /* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88 typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98 _PUBNAMES_HEADER;
99 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101 /* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104 typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114 _ARANGES_HEADER;
115 #define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117 /* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120 typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138 _STATEMENT_PROLOGUE;
139
140 static const struct objfile_data *dwarf2_objfile_data_key;
141
142 struct dwarf2_per_objfile
143 {
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
165
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
180 };
181
182 static struct dwarf2_per_objfile *dwarf2_per_objfile;
183
184 static asection *dwarf_info_section;
185 static asection *dwarf_abbrev_section;
186 static asection *dwarf_line_section;
187 static asection *dwarf_pubnames_section;
188 static asection *dwarf_aranges_section;
189 static asection *dwarf_loc_section;
190 static asection *dwarf_macinfo_section;
191 static asection *dwarf_str_section;
192 static asection *dwarf_ranges_section;
193 asection *dwarf_frame_section;
194 asection *dwarf_eh_frame_section;
195
196 /* names of the debugging sections */
197
198 #define INFO_SECTION ".debug_info"
199 #define ABBREV_SECTION ".debug_abbrev"
200 #define LINE_SECTION ".debug_line"
201 #define PUBNAMES_SECTION ".debug_pubnames"
202 #define ARANGES_SECTION ".debug_aranges"
203 #define LOC_SECTION ".debug_loc"
204 #define MACINFO_SECTION ".debug_macinfo"
205 #define STR_SECTION ".debug_str"
206 #define RANGES_SECTION ".debug_ranges"
207 #define FRAME_SECTION ".debug_frame"
208 #define EH_FRAME_SECTION ".eh_frame"
209
210 /* local data types */
211
212 /* We hold several abbreviation tables in memory at the same time. */
213 #ifndef ABBREV_HASH_SIZE
214 #define ABBREV_HASH_SIZE 121
215 #endif
216
217 /* The data in a compilation unit header, after target2host
218 translation, looks like this. */
219 struct comp_unit_head
220 {
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
229
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
232
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
239 gdb_byte *cu_head_ptr;
240
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
243 gdb_byte *first_die_ptr;
244
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
247
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
250
251 /* Non-zero if base_address has been set. */
252 int base_known;
253 };
254
255 /* Fixed size for the DIE hash table. */
256 #ifndef REF_HASH_SIZE
257 #define REF_HASH_SIZE 1021
258 #endif
259
260 /* Internal state when decoding a particular compilation unit. */
261 struct dwarf2_cu
262 {
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
269 should logically be moved to the dwarf2_cu structure. */
270 struct comp_unit_head header;
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
278 const char *producer;
279
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* DWARF abbreviation table associated with this compilation unit. */
292 struct abbrev_info **dwarf2_abbrevs;
293
294 /* Storage for the abbrev table. */
295 struct obstack abbrev_obstack;
296
297 /* Hash table holding all the loaded partial DIEs. */
298 htab_t partial_dies;
299
300 /* Storage for things with the same lifetime as this read-in compilation
301 unit, including partial DIEs. */
302 struct obstack comp_unit_obstack;
303
304 /* When multiple dwarf2_cu structures are living in memory, this field
305 chains them all together, so that they can be released efficiently.
306 We will probably also want a generation counter so that most-recently-used
307 compilation units are cached... */
308 struct dwarf2_per_cu_data *read_in_chain;
309
310 /* Backchain to our per_cu entry if the tree has been built. */
311 struct dwarf2_per_cu_data *per_cu;
312
313 /* How many compilation units ago was this CU last referenced? */
314 int last_used;
315
316 /* A hash table of die offsets for following references. */
317 struct die_info *die_ref_table[REF_HASH_SIZE];
318
319 /* Full DIEs if read in. */
320 struct die_info *dies;
321
322 /* A set of pointers to dwarf2_per_cu_data objects for compilation
323 units referenced by this one. Only set during full symbol processing;
324 partial symbol tables do not have dependencies. */
325 htab_t dependencies;
326
327 /* Header data from the line table, during full symbol processing. */
328 struct line_header *line_header;
329
330 /* Mark used when releasing cached dies. */
331 unsigned int mark : 1;
332
333 /* This flag will be set if this compilation unit might include
334 inter-compilation-unit references. */
335 unsigned int has_form_ref_addr : 1;
336
337 /* This flag will be set if this compilation unit includes any
338 DW_TAG_namespace DIEs. If we know that there are explicit
339 DIEs for namespaces, we don't need to try to infer them
340 from mangled names. */
341 unsigned int has_namespace_info : 1;
342 };
343
344 /* Persistent data held for a compilation unit, even when not
345 processing it. We put a pointer to this structure in the
346 read_symtab_private field of the psymtab. If we encounter
347 inter-compilation-unit references, we also maintain a sorted
348 list of all compilation units. */
349
350 struct dwarf2_per_cu_data
351 {
352 /* The start offset and length of this compilation unit. 2**30-1
353 bytes should suffice to store the length of any compilation unit
354 - if it doesn't, GDB will fall over anyway. */
355 unsigned long offset;
356 unsigned long length : 30;
357
358 /* Flag indicating this compilation unit will be read in before
359 any of the current compilation units are processed. */
360 unsigned long queued : 1;
361
362 /* This flag will be set if we need to load absolutely all DIEs
363 for this compilation unit, instead of just the ones we think
364 are interesting. It gets set if we look for a DIE in the
365 hash table and don't find it. */
366 unsigned int load_all_dies : 1;
367
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
375 htab_t type_hash;
376
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
380 struct partial_symtab *psymtab;
381 };
382
383 /* The line number information for a compilation unit (found in the
384 .debug_line section) begins with a "statement program header",
385 which contains the following information. */
386 struct line_header
387 {
388 unsigned int total_length;
389 unsigned short version;
390 unsigned int header_length;
391 unsigned char minimum_instruction_length;
392 unsigned char default_is_stmt;
393 int line_base;
394 unsigned char line_range;
395 unsigned char opcode_base;
396
397 /* standard_opcode_lengths[i] is the number of operands for the
398 standard opcode whose value is i. This means that
399 standard_opcode_lengths[0] is unused, and the last meaningful
400 element is standard_opcode_lengths[opcode_base - 1]. */
401 unsigned char *standard_opcode_lengths;
402
403 /* The include_directories table. NOTE! These strings are not
404 allocated with xmalloc; instead, they are pointers into
405 debug_line_buffer. If you try to free them, `free' will get
406 indigestion. */
407 unsigned int num_include_dirs, include_dirs_size;
408 char **include_dirs;
409
410 /* The file_names table. NOTE! These strings are not allocated
411 with xmalloc; instead, they are pointers into debug_line_buffer.
412 Don't try to free them directly. */
413 unsigned int num_file_names, file_names_size;
414 struct file_entry
415 {
416 char *name;
417 unsigned int dir_index;
418 unsigned int mod_time;
419 unsigned int length;
420 int included_p; /* Non-zero if referenced by the Line Number Program. */
421 struct symtab *symtab; /* The associated symbol table, if any. */
422 } *file_names;
423
424 /* The start and end of the statement program following this
425 header. These point into dwarf2_per_objfile->line_buffer. */
426 gdb_byte *statement_program_start, *statement_program_end;
427 };
428
429 /* When we construct a partial symbol table entry we only
430 need this much information. */
431 struct partial_die_info
432 {
433 /* Offset of this DIE. */
434 unsigned int offset;
435
436 /* DWARF-2 tag for this DIE. */
437 ENUM_BITFIELD(dwarf_tag) tag : 16;
438
439 /* Language code associated with this DIE. This is only used
440 for the compilation unit DIE. */
441 unsigned int language : 8;
442
443 /* Assorted flags describing the data found in this DIE. */
444 unsigned int has_children : 1;
445 unsigned int is_external : 1;
446 unsigned int is_declaration : 1;
447 unsigned int has_type : 1;
448 unsigned int has_specification : 1;
449 unsigned int has_stmt_list : 1;
450 unsigned int has_pc_info : 1;
451
452 /* Flag set if the SCOPE field of this structure has been
453 computed. */
454 unsigned int scope_set : 1;
455
456 /* Flag set if the DIE has a byte_size attribute. */
457 unsigned int has_byte_size : 1;
458
459 /* The name of this DIE. Normally the value of DW_AT_name, but
460 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
461 other fashion. */
462 char *name;
463 char *dirname;
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
476
477 /* Pointer into the info_buffer pointing at the target of
478 DW_AT_sibling, if any. */
479 gdb_byte *sibling;
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
486 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
487 unsigned int line_offset;
488
489 /* Pointers to this DIE's parent, first child, and next sibling,
490 if any. */
491 struct partial_die_info *die_parent, *die_child, *die_sibling;
492 };
493
494 /* This data structure holds the information of an abbrev. */
495 struct abbrev_info
496 {
497 unsigned int number; /* number identifying abbrev */
498 enum dwarf_tag tag; /* dwarf tag */
499 unsigned short has_children; /* boolean */
500 unsigned short num_attrs; /* number of attributes */
501 struct attr_abbrev *attrs; /* an array of attribute descriptions */
502 struct abbrev_info *next; /* next in chain */
503 };
504
505 struct attr_abbrev
506 {
507 enum dwarf_attribute name;
508 enum dwarf_form form;
509 };
510
511 /* This data structure holds a complete die structure. */
512 struct die_info
513 {
514 enum dwarf_tag tag; /* Tag indicating type of die */
515 unsigned int abbrev; /* Abbrev number */
516 unsigned int offset; /* Offset in .debug_info section */
517 unsigned int num_attrs; /* Number of attributes */
518 struct attribute *attrs; /* An array of attributes */
519 struct die_info *next_ref; /* Next die in ref hash table */
520
521 /* The dies in a compilation unit form an n-ary tree. PARENT
522 points to this die's parent; CHILD points to the first child of
523 this node; and all the children of a given node are chained
524 together via their SIBLING fields, terminated by a die whose
525 tag is zero. */
526 struct die_info *child; /* Its first child, if any. */
527 struct die_info *sibling; /* Its next sibling, if any. */
528 struct die_info *parent; /* Its parent, if any. */
529
530 struct type *type; /* Cached type information */
531 };
532
533 /* Attributes have a name and a value */
534 struct attribute
535 {
536 enum dwarf_attribute name;
537 enum dwarf_form form;
538 union
539 {
540 char *str;
541 struct dwarf_block *blk;
542 unsigned long unsnd;
543 long int snd;
544 CORE_ADDR addr;
545 }
546 u;
547 };
548
549 struct function_range
550 {
551 const char *name;
552 CORE_ADDR lowpc, highpc;
553 int seen_line;
554 struct function_range *next;
555 };
556
557 /* Get at parts of an attribute structure */
558
559 #define DW_STRING(attr) ((attr)->u.str)
560 #define DW_UNSND(attr) ((attr)->u.unsnd)
561 #define DW_BLOCK(attr) ((attr)->u.blk)
562 #define DW_SND(attr) ((attr)->u.snd)
563 #define DW_ADDR(attr) ((attr)->u.addr)
564
565 /* Blocks are a bunch of untyped bytes. */
566 struct dwarf_block
567 {
568 unsigned int size;
569 gdb_byte *data;
570 };
571
572 #ifndef ATTR_ALLOC_CHUNK
573 #define ATTR_ALLOC_CHUNK 4
574 #endif
575
576 /* Allocate fields for structs, unions and enums in this size. */
577 #ifndef DW_FIELD_ALLOC_CHUNK
578 #define DW_FIELD_ALLOC_CHUNK 4
579 #endif
580
581 /* A zeroed version of a partial die for initialization purposes. */
582 static struct partial_die_info zeroed_partial_die;
583
584 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
585 but this would require a corresponding change in unpack_field_as_long
586 and friends. */
587 static int bits_per_byte = 8;
588
589 /* The routines that read and process dies for a C struct or C++ class
590 pass lists of data member fields and lists of member function fields
591 in an instance of a field_info structure, as defined below. */
592 struct field_info
593 {
594 /* List of data member and baseclasses fields. */
595 struct nextfield
596 {
597 struct nextfield *next;
598 int accessibility;
599 int virtuality;
600 struct field field;
601 }
602 *fields;
603
604 /* Number of fields. */
605 int nfields;
606
607 /* Number of baseclasses. */
608 int nbaseclasses;
609
610 /* Set if the accesibility of one of the fields is not public. */
611 int non_public_fields;
612
613 /* Member function fields array, entries are allocated in the order they
614 are encountered in the object file. */
615 struct nextfnfield
616 {
617 struct nextfnfield *next;
618 struct fn_field fnfield;
619 }
620 *fnfields;
621
622 /* Member function fieldlist array, contains name of possibly overloaded
623 member function, number of overloaded member functions and a pointer
624 to the head of the member function field chain. */
625 struct fnfieldlist
626 {
627 char *name;
628 int length;
629 struct nextfnfield *head;
630 }
631 *fnfieldlists;
632
633 /* Number of entries in the fnfieldlists array. */
634 int nfnfields;
635 };
636
637 /* One item on the queue of compilation units to read in full symbols
638 for. */
639 struct dwarf2_queue_item
640 {
641 struct dwarf2_per_cu_data *per_cu;
642 struct dwarf2_queue_item *next;
643 };
644
645 /* The current queue. */
646 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
647
648 /* Loaded secondary compilation units are kept in memory until they
649 have not been referenced for the processing of this many
650 compilation units. Set this to zero to disable caching. Cache
651 sizes of up to at least twenty will improve startup time for
652 typical inter-CU-reference binaries, at an obvious memory cost. */
653 static int dwarf2_max_cache_age = 5;
654 static void
655 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
656 struct cmd_list_element *c, const char *value)
657 {
658 fprintf_filtered (file, _("\
659 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
660 value);
661 }
662
663
664 /* Various complaints about symbol reading that don't abort the process */
665
666 static void
667 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
668 {
669 complaint (&symfile_complaints,
670 _("statement list doesn't fit in .debug_line section"));
671 }
672
673 static void
674 dwarf2_debug_line_missing_file_complaint (void)
675 {
676 complaint (&symfile_complaints,
677 _(".debug_line section has line data without a file"));
678 }
679
680 static void
681 dwarf2_complex_location_expr_complaint (void)
682 {
683 complaint (&symfile_complaints, _("location expression too complex"));
684 }
685
686 static void
687 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
688 int arg3)
689 {
690 complaint (&symfile_complaints,
691 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
692 arg2, arg3);
693 }
694
695 static void
696 dwarf2_macros_too_long_complaint (void)
697 {
698 complaint (&symfile_complaints,
699 _("macro info runs off end of `.debug_macinfo' section"));
700 }
701
702 static void
703 dwarf2_macro_malformed_definition_complaint (const char *arg1)
704 {
705 complaint (&symfile_complaints,
706 _("macro debug info contains a malformed macro definition:\n`%s'"),
707 arg1);
708 }
709
710 static void
711 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
712 {
713 complaint (&symfile_complaints,
714 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
715 }
716
717 /* local function prototypes */
718
719 static void dwarf2_locate_sections (bfd *, asection *, void *);
720
721 #if 0
722 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
723 #endif
724
725 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
726 struct objfile *);
727
728 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
729 struct partial_die_info *,
730 struct partial_symtab *);
731
732 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
733
734 static void scan_partial_symbols (struct partial_die_info *,
735 CORE_ADDR *, CORE_ADDR *,
736 struct dwarf2_cu *);
737
738 static void add_partial_symbol (struct partial_die_info *,
739 struct dwarf2_cu *);
740
741 static int pdi_needs_namespace (enum dwarf_tag tag);
742
743 static void add_partial_namespace (struct partial_die_info *pdi,
744 CORE_ADDR *lowpc, CORE_ADDR *highpc,
745 struct dwarf2_cu *cu);
746
747 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
748 struct dwarf2_cu *cu);
749
750 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
751 gdb_byte *info_ptr,
752 bfd *abfd,
753 struct dwarf2_cu *cu);
754
755 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
756
757 static void psymtab_to_symtab_1 (struct partial_symtab *);
758
759 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
760
761 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
762
763 static void dwarf2_free_abbrev_table (void *);
764
765 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
766 struct dwarf2_cu *);
767
768 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
769 struct dwarf2_cu *);
770
771 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
772 struct dwarf2_cu *);
773
774 static gdb_byte *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, gdb_byte *, struct dwarf2_cu *);
777
778 static struct partial_die_info *find_partial_die (unsigned long,
779 struct dwarf2_cu *);
780
781 static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
784 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
785 struct dwarf2_cu *, int *);
786
787 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, gdb_byte *, struct dwarf2_cu *);
789
790 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
791 bfd *, gdb_byte *, struct dwarf2_cu *);
792
793 static unsigned int read_1_byte (bfd *, gdb_byte *);
794
795 static int read_1_signed_byte (bfd *, gdb_byte *);
796
797 static unsigned int read_2_bytes (bfd *, gdb_byte *);
798
799 static unsigned int read_4_bytes (bfd *, gdb_byte *);
800
801 static unsigned long read_8_bytes (bfd *, gdb_byte *);
802
803 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
804 unsigned int *);
805
806 static LONGEST read_initial_length (bfd *, gdb_byte *,
807 struct comp_unit_head *, unsigned int *);
808
809 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
810 unsigned int *);
811
812 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
813
814 static char *read_string (bfd *, gdb_byte *, unsigned int *);
815
816 static char *read_indirect_string (bfd *, gdb_byte *,
817 const struct comp_unit_head *,
818 unsigned int *);
819
820 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
821
822 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
823
824 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
825
826 static void set_cu_language (unsigned int, struct dwarf2_cu *);
827
828 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
829 struct dwarf2_cu *);
830
831 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
832 struct dwarf2_cu *cu);
833
834 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
835
836 static struct die_info *die_specification (struct die_info *die,
837 struct dwarf2_cu *);
838
839 static void free_line_header (struct line_header *lh);
840
841 static void add_file_name (struct line_header *, char *, unsigned int,
842 unsigned int, unsigned int);
843
844 static struct line_header *(dwarf_decode_line_header
845 (unsigned int offset,
846 bfd *abfd, struct dwarf2_cu *cu));
847
848 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
849 struct dwarf2_cu *, struct partial_symtab *);
850
851 static void dwarf2_start_subfile (char *, char *, char *);
852
853 static struct symbol *new_symbol (struct die_info *, struct type *,
854 struct dwarf2_cu *);
855
856 static void dwarf2_const_value (struct attribute *, struct symbol *,
857 struct dwarf2_cu *);
858
859 static void dwarf2_const_value_data (struct attribute *attr,
860 struct symbol *sym,
861 int bits);
862
863 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
864
865 static struct type *die_containing_type (struct die_info *,
866 struct dwarf2_cu *);
867
868 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
869
870 static void read_type_die (struct die_info *, struct dwarf2_cu *);
871
872 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
873
874 static char *typename_concat (struct obstack *,
875 const char *prefix,
876 const char *suffix,
877 struct dwarf2_cu *);
878
879 static void read_typedef (struct die_info *, struct dwarf2_cu *);
880
881 static void read_base_type (struct die_info *, struct dwarf2_cu *);
882
883 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
884
885 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
886
887 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
888
889 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
890
891 static int dwarf2_get_pc_bounds (struct die_info *,
892 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
893
894 static void get_scope_pc_bounds (struct die_info *,
895 CORE_ADDR *, CORE_ADDR *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
899 CORE_ADDR, struct dwarf2_cu *);
900
901 static void dwarf2_add_field (struct field_info *, struct die_info *,
902 struct dwarf2_cu *);
903
904 static void dwarf2_attach_fields_to_type (struct field_info *,
905 struct type *, struct dwarf2_cu *);
906
907 static void dwarf2_add_member_fn (struct field_info *,
908 struct die_info *, struct type *,
909 struct dwarf2_cu *);
910
911 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
912 struct type *, struct dwarf2_cu *);
913
914 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
915
916 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
917
918 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
919
920 static void read_common_block (struct die_info *, struct dwarf2_cu *);
921
922 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
923
924 static const char *namespace_name (struct die_info *die,
925 int *is_anonymous, struct dwarf2_cu *);
926
927 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
928
929 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
930
931 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
932
933 static void read_array_type (struct die_info *, struct dwarf2_cu *);
934
935 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
936 struct dwarf2_cu *);
937
938 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
939
940 static void read_tag_ptr_to_member_type (struct die_info *,
941 struct dwarf2_cu *);
942
943 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
944
945 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
946
947 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
948
949 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
950
951 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
952
953 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
954
955 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
956 struct dwarf2_cu *,
957 gdb_byte **new_info_ptr,
958 struct die_info *parent);
959
960 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
961 struct dwarf2_cu *,
962 gdb_byte **new_info_ptr,
963 struct die_info *parent);
964
965 static void free_die_list (struct die_info *);
966
967 static void process_die (struct die_info *, struct dwarf2_cu *);
968
969 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
970
971 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
972
973 static struct die_info *dwarf2_extension (struct die_info *die,
974 struct dwarf2_cu *);
975
976 static char *dwarf_tag_name (unsigned int);
977
978 static char *dwarf_attr_name (unsigned int);
979
980 static char *dwarf_form_name (unsigned int);
981
982 static char *dwarf_stack_op_name (unsigned int);
983
984 static char *dwarf_bool_name (unsigned int);
985
986 static char *dwarf_type_encoding_name (unsigned int);
987
988 #if 0
989 static char *dwarf_cfi_name (unsigned int);
990
991 struct die_info *copy_die (struct die_info *);
992 #endif
993
994 static struct die_info *sibling_die (struct die_info *);
995
996 static void dump_die (struct die_info *);
997
998 static void dump_die_list (struct die_info *);
999
1000 static void store_in_ref_table (unsigned int, struct die_info *,
1001 struct dwarf2_cu *);
1002
1003 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1004 struct dwarf2_cu *);
1005
1006 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1007
1008 static struct die_info *follow_die_ref (struct die_info *,
1009 struct attribute *,
1010 struct dwarf2_cu *);
1011
1012 /* memory allocation interface */
1013
1014 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1015
1016 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1017
1018 static struct die_info *dwarf_alloc_die (void);
1019
1020 static void initialize_cu_func_list (struct dwarf2_cu *);
1021
1022 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
1024
1025 static void dwarf_decode_macros (struct line_header *, unsigned int,
1026 char *, bfd *, struct dwarf2_cu *);
1027
1028 static int attr_form_is_block (struct attribute *);
1029
1030 static int attr_form_is_section_offset (struct attribute *);
1031
1032 static int attr_form_is_constant (struct attribute *);
1033
1034 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1035 struct symbol *sym,
1036 struct dwarf2_cu *cu);
1037
1038 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
1040
1041 static void free_stack_comp_unit (void *);
1042
1043 static hashval_t partial_die_hash (const void *item);
1044
1045 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
1047 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053 static void free_one_comp_unit (void *);
1054
1055 static void free_cached_comp_units (void *);
1056
1057 static void age_cached_comp_units (void);
1058
1059 static void free_one_cached_comp_unit (void *);
1060
1061 static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1064 static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void create_all_comp_units (struct objfile *);
1068
1069 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1070 struct objfile *);
1071
1072 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1073
1074 static void dwarf2_add_dependence (struct dwarf2_cu *,
1075 struct dwarf2_per_cu_data *);
1076
1077 static void dwarf2_mark (struct dwarf2_cu *);
1078
1079 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1080
1081 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1082
1083
1084 /* Try to locate the sections we need for DWARF 2 debugging
1085 information and return true if we have enough to do something. */
1086
1087 int
1088 dwarf2_has_info (struct objfile *objfile)
1089 {
1090 struct dwarf2_per_objfile *data;
1091
1092 /* Initialize per-objfile state. */
1093 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1094 memset (data, 0, sizeof (*data));
1095 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1096 dwarf2_per_objfile = data;
1097
1098 dwarf_info_section = 0;
1099 dwarf_abbrev_section = 0;
1100 dwarf_line_section = 0;
1101 dwarf_str_section = 0;
1102 dwarf_macinfo_section = 0;
1103 dwarf_frame_section = 0;
1104 dwarf_eh_frame_section = 0;
1105 dwarf_ranges_section = 0;
1106 dwarf_loc_section = 0;
1107
1108 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1109 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1110 }
1111
1112 /* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116 static void
1117 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1118 {
1119 if (strcmp (sectp->name, INFO_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1122 dwarf_info_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1127 dwarf_abbrev_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1132 dwarf_line_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1137 dwarf_pubnames_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1142 dwarf_aranges_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1147 dwarf_loc_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1152 dwarf_macinfo_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, STR_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1157 dwarf_str_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1162 dwarf_frame_section = sectp;
1163 }
1164 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1165 {
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1170 dwarf_eh_frame_section = sectp;
1171 }
1172 }
1173 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1174 {
1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1176 dwarf_ranges_section = sectp;
1177 }
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
1182 }
1183
1184 /* Build a partial symbol table. */
1185
1186 void
1187 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1188 {
1189 /* We definitely need the .debug_info and .debug_abbrev sections */
1190
1191 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1192 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1193
1194 if (dwarf_line_section)
1195 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1196 else
1197 dwarf2_per_objfile->line_buffer = NULL;
1198
1199 if (dwarf_str_section)
1200 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1201 else
1202 dwarf2_per_objfile->str_buffer = NULL;
1203
1204 if (dwarf_macinfo_section)
1205 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1206 dwarf_macinfo_section);
1207 else
1208 dwarf2_per_objfile->macinfo_buffer = NULL;
1209
1210 if (dwarf_ranges_section)
1211 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1212 else
1213 dwarf2_per_objfile->ranges_buffer = NULL;
1214
1215 if (dwarf_loc_section)
1216 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1217 else
1218 dwarf2_per_objfile->loc_buffer = NULL;
1219
1220 if (mainline
1221 || (objfile->global_psymbols.size == 0
1222 && objfile->static_psymbols.size == 0))
1223 {
1224 init_psymbol_list (objfile, 1024);
1225 }
1226
1227 #if 0
1228 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1229 {
1230 /* Things are significantly easier if we have .debug_aranges and
1231 .debug_pubnames sections */
1232
1233 dwarf2_build_psymtabs_easy (objfile, mainline);
1234 }
1235 else
1236 #endif
1237 /* only test this case for now */
1238 {
1239 /* In this case we have to work a bit harder */
1240 dwarf2_build_psymtabs_hard (objfile, mainline);
1241 }
1242 }
1243
1244 #if 0
1245 /* Build the partial symbol table from the information in the
1246 .debug_pubnames and .debug_aranges sections. */
1247
1248 static void
1249 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1250 {
1251 bfd *abfd = objfile->obfd;
1252 char *aranges_buffer, *pubnames_buffer;
1253 char *aranges_ptr, *pubnames_ptr;
1254 unsigned int entry_length, version, info_offset, info_size;
1255
1256 pubnames_buffer = dwarf2_read_section (objfile,
1257 dwarf_pubnames_section);
1258 pubnames_ptr = pubnames_buffer;
1259 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1260 {
1261 struct comp_unit_head cu_header;
1262 unsigned int bytes_read;
1263
1264 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1265 &bytes_read);
1266 pubnames_ptr += bytes_read;
1267 version = read_1_byte (abfd, pubnames_ptr);
1268 pubnames_ptr += 1;
1269 info_offset = read_4_bytes (abfd, pubnames_ptr);
1270 pubnames_ptr += 4;
1271 info_size = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 }
1274
1275 aranges_buffer = dwarf2_read_section (objfile,
1276 dwarf_aranges_section);
1277
1278 }
1279 #endif
1280
1281 /* Read in the comp unit header information from the debug_info at
1282 info_ptr. */
1283
1284 static gdb_byte *
1285 read_comp_unit_head (struct comp_unit_head *cu_header,
1286 gdb_byte *info_ptr, bfd *abfd)
1287 {
1288 int signed_addr;
1289 unsigned int bytes_read;
1290 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1291 &bytes_read);
1292 info_ptr += bytes_read;
1293 cu_header->version = read_2_bytes (abfd, info_ptr);
1294 info_ptr += 2;
1295 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1296 &bytes_read);
1297 info_ptr += bytes_read;
1298 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1299 info_ptr += 1;
1300 signed_addr = bfd_get_sign_extend_vma (abfd);
1301 if (signed_addr < 0)
1302 internal_error (__FILE__, __LINE__,
1303 _("read_comp_unit_head: dwarf from non elf file"));
1304 cu_header->signed_addr_p = signed_addr;
1305 return info_ptr;
1306 }
1307
1308 static gdb_byte *
1309 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1310 bfd *abfd)
1311 {
1312 gdb_byte *beg_of_comp_unit = info_ptr;
1313
1314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1315
1316 if (header->version != 2 && header->version != 3)
1317 error (_("Dwarf Error: wrong version in compilation unit header "
1318 "(is %d, should be %d) [in module %s]"), header->version,
1319 2, bfd_get_filename (abfd));
1320
1321 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1322 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1323 "(offset 0x%lx + 6) [in module %s]"),
1324 (long) header->abbrev_offset,
1325 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1326 bfd_get_filename (abfd));
1327
1328 if (beg_of_comp_unit + header->length + header->initial_length_size
1329 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1330 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1331 "(offset 0x%lx + 0) [in module %s]"),
1332 (long) header->length,
1333 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1334 bfd_get_filename (abfd));
1335
1336 return info_ptr;
1337 }
1338
1339 /* Allocate a new partial symtab for file named NAME and mark this new
1340 partial symtab as being an include of PST. */
1341
1342 static void
1343 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1344 struct objfile *objfile)
1345 {
1346 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1347
1348 subpst->section_offsets = pst->section_offsets;
1349 subpst->textlow = 0;
1350 subpst->texthigh = 0;
1351
1352 subpst->dependencies = (struct partial_symtab **)
1353 obstack_alloc (&objfile->objfile_obstack,
1354 sizeof (struct partial_symtab *));
1355 subpst->dependencies[0] = pst;
1356 subpst->number_of_dependencies = 1;
1357
1358 subpst->globals_offset = 0;
1359 subpst->n_global_syms = 0;
1360 subpst->statics_offset = 0;
1361 subpst->n_static_syms = 0;
1362 subpst->symtab = NULL;
1363 subpst->read_symtab = pst->read_symtab;
1364 subpst->readin = 0;
1365
1366 /* No private part is necessary for include psymtabs. This property
1367 can be used to differentiate between such include psymtabs and
1368 the regular ones. */
1369 subpst->read_symtab_private = NULL;
1370 }
1371
1372 /* Read the Line Number Program data and extract the list of files
1373 included by the source file represented by PST. Build an include
1374 partial symtab for each of these included files.
1375
1376 This procedure assumes that there *is* a Line Number Program in
1377 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1378 before calling this procedure. */
1379
1380 static void
1381 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1382 struct partial_die_info *pdi,
1383 struct partial_symtab *pst)
1384 {
1385 struct objfile *objfile = cu->objfile;
1386 bfd *abfd = objfile->obfd;
1387 struct line_header *lh;
1388
1389 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1390 if (lh == NULL)
1391 return; /* No linetable, so no includes. */
1392
1393 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1394
1395 free_line_header (lh);
1396 }
1397
1398
1399 /* Build the partial symbol table by doing a quick pass through the
1400 .debug_info and .debug_abbrev sections. */
1401
1402 static void
1403 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1404 {
1405 /* Instead of reading this into a big buffer, we should probably use
1406 mmap() on architectures that support it. (FIXME) */
1407 bfd *abfd = objfile->obfd;
1408 gdb_byte *info_ptr;
1409 gdb_byte *beg_of_comp_unit;
1410 struct partial_die_info comp_unit_die;
1411 struct partial_symtab *pst;
1412 struct cleanup *back_to;
1413 CORE_ADDR lowpc, highpc, baseaddr;
1414
1415 info_ptr = dwarf2_per_objfile->info_buffer;
1416
1417 /* Any cached compilation units will be linked by the per-objfile
1418 read_in_chain. Make sure to free them when we're done. */
1419 back_to = make_cleanup (free_cached_comp_units, NULL);
1420
1421 create_all_comp_units (objfile);
1422
1423 /* Since the objects we're extracting from .debug_info vary in
1424 length, only the individual functions to extract them (like
1425 read_comp_unit_head and load_partial_die) can really know whether
1426 the buffer is large enough to hold another complete object.
1427
1428 At the moment, they don't actually check that. If .debug_info
1429 holds just one extra byte after the last compilation unit's dies,
1430 then read_comp_unit_head will happily read off the end of the
1431 buffer. read_partial_die is similarly casual. Those functions
1432 should be fixed.
1433
1434 For this loop condition, simply checking whether there's any data
1435 left at all should be sufficient. */
1436 while (info_ptr < (dwarf2_per_objfile->info_buffer
1437 + dwarf2_per_objfile->info_size))
1438 {
1439 struct cleanup *back_to_inner;
1440 struct dwarf2_cu cu;
1441 struct abbrev_info *abbrev;
1442 unsigned int bytes_read;
1443 struct dwarf2_per_cu_data *this_cu;
1444
1445 beg_of_comp_unit = info_ptr;
1446
1447 memset (&cu, 0, sizeof (cu));
1448
1449 obstack_init (&cu.comp_unit_obstack);
1450
1451 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1452
1453 cu.objfile = objfile;
1454 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1455
1456 /* Complete the cu_header */
1457 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1458 cu.header.first_die_ptr = info_ptr;
1459 cu.header.cu_head_ptr = beg_of_comp_unit;
1460
1461 cu.list_in_scope = &file_symbols;
1462
1463 /* Read the abbrevs for this compilation unit into a table */
1464 dwarf2_read_abbrevs (abfd, &cu);
1465 make_cleanup (dwarf2_free_abbrev_table, &cu);
1466
1467 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1468
1469 /* Read the compilation unit die */
1470 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1471 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1472 abfd, info_ptr, &cu);
1473
1474 if (comp_unit_die.tag == DW_TAG_partial_unit)
1475 {
1476 info_ptr = (beg_of_comp_unit + cu.header.length
1477 + cu.header.initial_length_size);
1478 do_cleanups (back_to_inner);
1479 continue;
1480 }
1481
1482 /* Set the language we're debugging */
1483 set_cu_language (comp_unit_die.language, &cu);
1484
1485 /* Allocate a new partial symbol table structure */
1486 pst = start_psymtab_common (objfile, objfile->section_offsets,
1487 comp_unit_die.name ? comp_unit_die.name : "",
1488 comp_unit_die.lowpc,
1489 objfile->global_psymbols.next,
1490 objfile->static_psymbols.next);
1491
1492 if (comp_unit_die.dirname)
1493 pst->dirname = xstrdup (comp_unit_die.dirname);
1494
1495 pst->read_symtab_private = (char *) this_cu;
1496
1497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1498
1499 /* Store the function that reads in the rest of the symbol table */
1500 pst->read_symtab = dwarf2_psymtab_to_symtab;
1501
1502 /* If this compilation unit was already read in, free the
1503 cached copy in order to read it in again. This is
1504 necessary because we skipped some symbols when we first
1505 read in the compilation unit (see load_partial_dies).
1506 This problem could be avoided, but the benefit is
1507 unclear. */
1508 if (this_cu->cu != NULL)
1509 free_one_cached_comp_unit (this_cu->cu);
1510
1511 cu.per_cu = this_cu;
1512
1513 /* Note that this is a pointer to our stack frame, being
1514 added to a global data structure. It will be cleaned up
1515 in free_stack_comp_unit when we finish with this
1516 compilation unit. */
1517 this_cu->cu = &cu;
1518
1519 this_cu->psymtab = pst;
1520
1521 /* Check if comp unit has_children.
1522 If so, read the rest of the partial symbols from this comp unit.
1523 If not, there's no more debug_info for this comp unit. */
1524 if (comp_unit_die.has_children)
1525 {
1526 struct partial_die_info *first_die;
1527
1528 lowpc = ((CORE_ADDR) -1);
1529 highpc = ((CORE_ADDR) 0);
1530
1531 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1532
1533 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1534
1535 /* If we didn't find a lowpc, set it to highpc to avoid
1536 complaints from `maint check'. */
1537 if (lowpc == ((CORE_ADDR) -1))
1538 lowpc = highpc;
1539
1540 /* If the compilation unit didn't have an explicit address range,
1541 then use the information extracted from its child dies. */
1542 if (! comp_unit_die.has_pc_info)
1543 {
1544 comp_unit_die.lowpc = lowpc;
1545 comp_unit_die.highpc = highpc;
1546 }
1547 }
1548 pst->textlow = comp_unit_die.lowpc + baseaddr;
1549 pst->texthigh = comp_unit_die.highpc + baseaddr;
1550
1551 pst->n_global_syms = objfile->global_psymbols.next -
1552 (objfile->global_psymbols.list + pst->globals_offset);
1553 pst->n_static_syms = objfile->static_psymbols.next -
1554 (objfile->static_psymbols.list + pst->statics_offset);
1555 sort_pst_symbols (pst);
1556
1557 /* If there is already a psymtab or symtab for a file of this
1558 name, remove it. (If there is a symtab, more drastic things
1559 also happen.) This happens in VxWorks. */
1560 free_named_symtabs (pst->filename);
1561
1562 info_ptr = beg_of_comp_unit + cu.header.length
1563 + cu.header.initial_length_size;
1564
1565 if (comp_unit_die.has_stmt_list)
1566 {
1567 /* Get the list of files included in the current compilation unit,
1568 and build a psymtab for each of them. */
1569 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1570 }
1571
1572 do_cleanups (back_to_inner);
1573 }
1574 do_cleanups (back_to);
1575 }
1576
1577 /* Load the DIEs for a secondary CU into memory. */
1578
1579 static void
1580 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1581 {
1582 bfd *abfd = objfile->obfd;
1583 gdb_byte *info_ptr, *beg_of_comp_unit;
1584 struct partial_die_info comp_unit_die;
1585 struct dwarf2_cu *cu;
1586 struct abbrev_info *abbrev;
1587 unsigned int bytes_read;
1588 struct cleanup *back_to;
1589
1590 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1591 beg_of_comp_unit = info_ptr;
1592
1593 cu = xmalloc (sizeof (struct dwarf2_cu));
1594 memset (cu, 0, sizeof (struct dwarf2_cu));
1595
1596 obstack_init (&cu->comp_unit_obstack);
1597
1598 cu->objfile = objfile;
1599 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1600
1601 /* Complete the cu_header. */
1602 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1603 cu->header.first_die_ptr = info_ptr;
1604 cu->header.cu_head_ptr = beg_of_comp_unit;
1605
1606 /* Read the abbrevs for this compilation unit into a table. */
1607 dwarf2_read_abbrevs (abfd, cu);
1608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1609
1610 /* Read the compilation unit die. */
1611 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1612 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1613 abfd, info_ptr, cu);
1614
1615 /* Set the language we're debugging. */
1616 set_cu_language (comp_unit_die.language, cu);
1617
1618 /* Link this compilation unit into the compilation unit tree. */
1619 this_cu->cu = cu;
1620 cu->per_cu = this_cu;
1621
1622 /* Check if comp unit has_children.
1623 If so, read the rest of the partial symbols from this comp unit.
1624 If not, there's no more debug_info for this comp unit. */
1625 if (comp_unit_die.has_children)
1626 load_partial_dies (abfd, info_ptr, 0, cu);
1627
1628 do_cleanups (back_to);
1629 }
1630
1631 /* Create a list of all compilation units in OBJFILE. We do this only
1632 if an inter-comp-unit reference is found; presumably if there is one,
1633 there will be many, and one will occur early in the .debug_info section.
1634 So there's no point in building this list incrementally. */
1635
1636 static void
1637 create_all_comp_units (struct objfile *objfile)
1638 {
1639 int n_allocated;
1640 int n_comp_units;
1641 struct dwarf2_per_cu_data **all_comp_units;
1642 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1643
1644 n_comp_units = 0;
1645 n_allocated = 10;
1646 all_comp_units = xmalloc (n_allocated
1647 * sizeof (struct dwarf2_per_cu_data *));
1648
1649 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1650 {
1651 struct comp_unit_head cu_header;
1652 gdb_byte *beg_of_comp_unit;
1653 struct dwarf2_per_cu_data *this_cu;
1654 unsigned long offset;
1655 unsigned int bytes_read;
1656
1657 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1658
1659 /* Read just enough information to find out where the next
1660 compilation unit is. */
1661 cu_header.initial_length_size = 0;
1662 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1663 &cu_header, &bytes_read);
1664
1665 /* Save the compilation unit for later lookup. */
1666 this_cu = obstack_alloc (&objfile->objfile_obstack,
1667 sizeof (struct dwarf2_per_cu_data));
1668 memset (this_cu, 0, sizeof (*this_cu));
1669 this_cu->offset = offset;
1670 this_cu->length = cu_header.length + cu_header.initial_length_size;
1671
1672 if (n_comp_units == n_allocated)
1673 {
1674 n_allocated *= 2;
1675 all_comp_units = xrealloc (all_comp_units,
1676 n_allocated
1677 * sizeof (struct dwarf2_per_cu_data *));
1678 }
1679 all_comp_units[n_comp_units++] = this_cu;
1680
1681 info_ptr = info_ptr + this_cu->length;
1682 }
1683
1684 dwarf2_per_objfile->all_comp_units
1685 = obstack_alloc (&objfile->objfile_obstack,
1686 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1687 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 xfree (all_comp_units);
1690 dwarf2_per_objfile->n_comp_units = n_comp_units;
1691 }
1692
1693 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1694 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1695 in CU. */
1696
1697 static void
1698 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1699 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1700 {
1701 struct objfile *objfile = cu->objfile;
1702 bfd *abfd = objfile->obfd;
1703 struct partial_die_info *pdi;
1704
1705 /* Now, march along the PDI's, descending into ones which have
1706 interesting children but skipping the children of the other ones,
1707 until we reach the end of the compilation unit. */
1708
1709 pdi = first_die;
1710
1711 while (pdi != NULL)
1712 {
1713 fixup_partial_die (pdi, cu);
1714
1715 /* Anonymous namespaces have no name but have interesting
1716 children, so we need to look at them. Ditto for anonymous
1717 enums. */
1718
1719 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1720 || pdi->tag == DW_TAG_enumeration_type)
1721 {
1722 switch (pdi->tag)
1723 {
1724 case DW_TAG_subprogram:
1725 if (pdi->has_pc_info)
1726 {
1727 if (pdi->lowpc < *lowpc)
1728 {
1729 *lowpc = pdi->lowpc;
1730 }
1731 if (pdi->highpc > *highpc)
1732 {
1733 *highpc = pdi->highpc;
1734 }
1735 if (!pdi->is_declaration)
1736 {
1737 add_partial_symbol (pdi, cu);
1738 }
1739 }
1740 break;
1741 case DW_TAG_variable:
1742 case DW_TAG_typedef:
1743 case DW_TAG_union_type:
1744 if (!pdi->is_declaration)
1745 {
1746 add_partial_symbol (pdi, cu);
1747 }
1748 break;
1749 case DW_TAG_class_type:
1750 case DW_TAG_interface_type:
1751 case DW_TAG_structure_type:
1752 if (!pdi->is_declaration)
1753 {
1754 add_partial_symbol (pdi, cu);
1755 }
1756 break;
1757 case DW_TAG_enumeration_type:
1758 if (!pdi->is_declaration)
1759 add_partial_enumeration (pdi, cu);
1760 break;
1761 case DW_TAG_base_type:
1762 case DW_TAG_subrange_type:
1763 /* File scope base type definitions are added to the partial
1764 symbol table. */
1765 add_partial_symbol (pdi, cu);
1766 break;
1767 case DW_TAG_namespace:
1768 add_partial_namespace (pdi, lowpc, highpc, cu);
1769 break;
1770 default:
1771 break;
1772 }
1773 }
1774
1775 /* If the die has a sibling, skip to the sibling. */
1776
1777 pdi = pdi->die_sibling;
1778 }
1779 }
1780
1781 /* Functions used to compute the fully scoped name of a partial DIE.
1782
1783 Normally, this is simple. For C++, the parent DIE's fully scoped
1784 name is concatenated with "::" and the partial DIE's name. For
1785 Java, the same thing occurs except that "." is used instead of "::".
1786 Enumerators are an exception; they use the scope of their parent
1787 enumeration type, i.e. the name of the enumeration type is not
1788 prepended to the enumerator.
1789
1790 There are two complexities. One is DW_AT_specification; in this
1791 case "parent" means the parent of the target of the specification,
1792 instead of the direct parent of the DIE. The other is compilers
1793 which do not emit DW_TAG_namespace; in this case we try to guess
1794 the fully qualified name of structure types from their members'
1795 linkage names. This must be done using the DIE's children rather
1796 than the children of any DW_AT_specification target. We only need
1797 to do this for structures at the top level, i.e. if the target of
1798 any DW_AT_specification (if any; otherwise the DIE itself) does not
1799 have a parent. */
1800
1801 /* Compute the scope prefix associated with PDI's parent, in
1802 compilation unit CU. The result will be allocated on CU's
1803 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1804 field. NULL is returned if no prefix is necessary. */
1805 static char *
1806 partial_die_parent_scope (struct partial_die_info *pdi,
1807 struct dwarf2_cu *cu)
1808 {
1809 char *grandparent_scope;
1810 struct partial_die_info *parent, *real_pdi;
1811
1812 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1813 then this means the parent of the specification DIE. */
1814
1815 real_pdi = pdi;
1816 while (real_pdi->has_specification)
1817 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1818
1819 parent = real_pdi->die_parent;
1820 if (parent == NULL)
1821 return NULL;
1822
1823 if (parent->scope_set)
1824 return parent->scope;
1825
1826 fixup_partial_die (parent, cu);
1827
1828 grandparent_scope = partial_die_parent_scope (parent, cu);
1829
1830 if (parent->tag == DW_TAG_namespace
1831 || parent->tag == DW_TAG_structure_type
1832 || parent->tag == DW_TAG_class_type
1833 || parent->tag == DW_TAG_interface_type
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
1851 _("unhandled containing DIE tag %d for DIE at %d"),
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
1854 }
1855
1856 parent->scope_set = 1;
1857 return parent->scope;
1858 }
1859
1860 /* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862 static char *
1863 partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865 {
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
1873 }
1874
1875 static void
1876 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1877 {
1878 struct objfile *objfile = cu->objfile;
1879 CORE_ADDR addr = 0;
1880 char *actual_name = NULL;
1881 const char *my_prefix;
1882 const struct partial_symbol *psym = NULL;
1883 CORE_ADDR baseaddr;
1884 int built_actual_name = 0;
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1887
1888 if (pdi_needs_namespace (pdi->tag))
1889 {
1890 actual_name = partial_die_full_name (pdi, cu);
1891 if (actual_name)
1892 built_actual_name = 1;
1893 }
1894
1895 if (actual_name == NULL)
1896 actual_name = pdi->name;
1897
1898 switch (pdi->tag)
1899 {
1900 case DW_TAG_subprogram:
1901 if (pdi->is_external || cu->language == language_ada)
1902 {
1903 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
1904 of the global scope. But in Ada, we want to be able to access
1905 nested procedures globally. So all Ada subprograms are stored
1906 in the global scope. */
1907 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1908 mst_text, objfile); */
1909 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1910 VAR_DOMAIN, LOC_BLOCK,
1911 &objfile->global_psymbols,
1912 0, pdi->lowpc + baseaddr,
1913 cu->language, objfile);
1914 }
1915 else
1916 {
1917 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1918 mst_file_text, objfile); */
1919 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1920 VAR_DOMAIN, LOC_BLOCK,
1921 &objfile->static_psymbols,
1922 0, pdi->lowpc + baseaddr,
1923 cu->language, objfile);
1924 }
1925 break;
1926 case DW_TAG_variable:
1927 if (pdi->is_external)
1928 {
1929 /* Global Variable.
1930 Don't enter into the minimal symbol tables as there is
1931 a minimal symbol table entry from the ELF symbols already.
1932 Enter into partial symbol table if it has a location
1933 descriptor or a type.
1934 If the location descriptor is missing, new_symbol will create
1935 a LOC_UNRESOLVED symbol, the address of the variable will then
1936 be determined from the minimal symbol table whenever the variable
1937 is referenced.
1938 The address for the partial symbol table entry is not
1939 used by GDB, but it comes in handy for debugging partial symbol
1940 table building. */
1941
1942 if (pdi->locdesc)
1943 addr = decode_locdesc (pdi->locdesc, cu);
1944 if (pdi->locdesc || pdi->has_type)
1945 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1946 VAR_DOMAIN, LOC_STATIC,
1947 &objfile->global_psymbols,
1948 0, addr + baseaddr,
1949 cu->language, objfile);
1950 }
1951 else
1952 {
1953 /* Static Variable. Skip symbols without location descriptors. */
1954 if (pdi->locdesc == NULL)
1955 {
1956 if (built_actual_name)
1957 xfree (actual_name);
1958 return;
1959 }
1960 addr = decode_locdesc (pdi->locdesc, cu);
1961 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1962 mst_file_data, objfile); */
1963 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1964 VAR_DOMAIN, LOC_STATIC,
1965 &objfile->static_psymbols,
1966 0, addr + baseaddr,
1967 cu->language, objfile);
1968 }
1969 break;
1970 case DW_TAG_typedef:
1971 case DW_TAG_base_type:
1972 case DW_TAG_subrange_type:
1973 add_psymbol_to_list (actual_name, strlen (actual_name),
1974 VAR_DOMAIN, LOC_TYPEDEF,
1975 &objfile->static_psymbols,
1976 0, (CORE_ADDR) 0, cu->language, objfile);
1977 break;
1978 case DW_TAG_namespace:
1979 add_psymbol_to_list (actual_name, strlen (actual_name),
1980 VAR_DOMAIN, LOC_TYPEDEF,
1981 &objfile->global_psymbols,
1982 0, (CORE_ADDR) 0, cu->language, objfile);
1983 break;
1984 case DW_TAG_class_type:
1985 case DW_TAG_interface_type:
1986 case DW_TAG_structure_type:
1987 case DW_TAG_union_type:
1988 case DW_TAG_enumeration_type:
1989 /* Skip external references. The DWARF standard says in the section
1990 about "Structure, Union, and Class Type Entries": "An incomplete
1991 structure, union or class type is represented by a structure,
1992 union or class entry that does not have a byte size attribute
1993 and that has a DW_AT_declaration attribute." */
1994 if (!pdi->has_byte_size && pdi->is_declaration)
1995 {
1996 if (built_actual_name)
1997 xfree (actual_name);
1998 return;
1999 }
2000
2001 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2002 static vs. global. */
2003 add_psymbol_to_list (actual_name, strlen (actual_name),
2004 STRUCT_DOMAIN, LOC_TYPEDEF,
2005 (cu->language == language_cplus
2006 || cu->language == language_java)
2007 ? &objfile->global_psymbols
2008 : &objfile->static_psymbols,
2009 0, (CORE_ADDR) 0, cu->language, objfile);
2010
2011 if (cu->language == language_cplus
2012 || cu->language == language_java
2013 || cu->language == language_ada)
2014 {
2015 /* For C++ and Java, these implicitly act as typedefs as well. */
2016 add_psymbol_to_list (actual_name, strlen (actual_name),
2017 VAR_DOMAIN, LOC_TYPEDEF,
2018 &objfile->global_psymbols,
2019 0, (CORE_ADDR) 0, cu->language, objfile);
2020 }
2021 break;
2022 case DW_TAG_enumerator:
2023 add_psymbol_to_list (actual_name, strlen (actual_name),
2024 VAR_DOMAIN, LOC_CONST,
2025 (cu->language == language_cplus
2026 || cu->language == language_java)
2027 ? &objfile->global_psymbols
2028 : &objfile->static_psymbols,
2029 0, (CORE_ADDR) 0, cu->language, objfile);
2030 break;
2031 default:
2032 break;
2033 }
2034
2035 /* Check to see if we should scan the name for possible namespace
2036 info. Only do this if this is C++, if we don't have namespace
2037 debugging info in the file, if the psym is of an appropriate type
2038 (otherwise we'll have psym == NULL), and if we actually had a
2039 mangled name to begin with. */
2040
2041 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2042 cases which do not set PSYM above? */
2043
2044 if (cu->language == language_cplus
2045 && cu->has_namespace_info == 0
2046 && psym != NULL
2047 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2048 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2049 objfile);
2050
2051 if (built_actual_name)
2052 xfree (actual_name);
2053 }
2054
2055 /* Determine whether a die of type TAG living in a C++ class or
2056 namespace needs to have the name of the scope prepended to the
2057 name listed in the die. */
2058
2059 static int
2060 pdi_needs_namespace (enum dwarf_tag tag)
2061 {
2062 switch (tag)
2063 {
2064 case DW_TAG_namespace:
2065 case DW_TAG_typedef:
2066 case DW_TAG_class_type:
2067 case DW_TAG_interface_type:
2068 case DW_TAG_structure_type:
2069 case DW_TAG_union_type:
2070 case DW_TAG_enumeration_type:
2071 case DW_TAG_enumerator:
2072 return 1;
2073 default:
2074 return 0;
2075 }
2076 }
2077
2078 /* Read a partial die corresponding to a namespace; also, add a symbol
2079 corresponding to that namespace to the symbol table. NAMESPACE is
2080 the name of the enclosing namespace. */
2081
2082 static void
2083 add_partial_namespace (struct partial_die_info *pdi,
2084 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2085 struct dwarf2_cu *cu)
2086 {
2087 struct objfile *objfile = cu->objfile;
2088
2089 /* Add a symbol for the namespace. */
2090
2091 add_partial_symbol (pdi, cu);
2092
2093 /* Now scan partial symbols in that namespace. */
2094
2095 if (pdi->has_children)
2096 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2097 }
2098
2099 /* See if we can figure out if the class lives in a namespace. We do
2100 this by looking for a member function; its demangled name will
2101 contain namespace info, if there is any. */
2102
2103 static void
2104 guess_structure_name (struct partial_die_info *struct_pdi,
2105 struct dwarf2_cu *cu)
2106 {
2107 if ((cu->language == language_cplus
2108 || cu->language == language_java)
2109 && cu->has_namespace_info == 0
2110 && struct_pdi->has_children)
2111 {
2112 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2113 what template types look like, because the demangler
2114 frequently doesn't give the same name as the debug info. We
2115 could fix this by only using the demangled name to get the
2116 prefix (but see comment in read_structure_type). */
2117
2118 struct partial_die_info *child_pdi = struct_pdi->die_child;
2119 struct partial_die_info *real_pdi;
2120
2121 /* If this DIE (this DIE's specification, if any) has a parent, then
2122 we should not do this. We'll prepend the parent's fully qualified
2123 name when we create the partial symbol. */
2124
2125 real_pdi = struct_pdi;
2126 while (real_pdi->has_specification)
2127 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2128
2129 if (real_pdi->die_parent != NULL)
2130 return;
2131
2132 while (child_pdi != NULL)
2133 {
2134 if (child_pdi->tag == DW_TAG_subprogram)
2135 {
2136 char *actual_class_name
2137 = language_class_name_from_physname (cu->language_defn,
2138 child_pdi->name);
2139 if (actual_class_name != NULL)
2140 {
2141 struct_pdi->name
2142 = obsavestring (actual_class_name,
2143 strlen (actual_class_name),
2144 &cu->comp_unit_obstack);
2145 xfree (actual_class_name);
2146 }
2147 break;
2148 }
2149
2150 child_pdi = child_pdi->die_sibling;
2151 }
2152 }
2153 }
2154
2155 /* Read a partial die corresponding to an enumeration type. */
2156
2157 static void
2158 add_partial_enumeration (struct partial_die_info *enum_pdi,
2159 struct dwarf2_cu *cu)
2160 {
2161 struct objfile *objfile = cu->objfile;
2162 bfd *abfd = objfile->obfd;
2163 struct partial_die_info *pdi;
2164
2165 if (enum_pdi->name != NULL)
2166 add_partial_symbol (enum_pdi, cu);
2167
2168 pdi = enum_pdi->die_child;
2169 while (pdi)
2170 {
2171 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2172 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2173 else
2174 add_partial_symbol (pdi, cu);
2175 pdi = pdi->die_sibling;
2176 }
2177 }
2178
2179 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2180 Return the corresponding abbrev, or NULL if the number is zero (indicating
2181 an empty DIE). In either case *BYTES_READ will be set to the length of
2182 the initial number. */
2183
2184 static struct abbrev_info *
2185 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2186 struct dwarf2_cu *cu)
2187 {
2188 bfd *abfd = cu->objfile->obfd;
2189 unsigned int abbrev_number;
2190 struct abbrev_info *abbrev;
2191
2192 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2193
2194 if (abbrev_number == 0)
2195 return NULL;
2196
2197 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2198 if (!abbrev)
2199 {
2200 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2201 bfd_get_filename (abfd));
2202 }
2203
2204 return abbrev;
2205 }
2206
2207 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2208 pointer to the end of a series of DIEs, terminated by an empty
2209 DIE. Any children of the skipped DIEs will also be skipped. */
2210
2211 static gdb_byte *
2212 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2213 {
2214 struct abbrev_info *abbrev;
2215 unsigned int bytes_read;
2216
2217 while (1)
2218 {
2219 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2220 if (abbrev == NULL)
2221 return info_ptr + bytes_read;
2222 else
2223 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2224 }
2225 }
2226
2227 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2228 should point just after the initial uleb128 of a DIE, and the
2229 abbrev corresponding to that skipped uleb128 should be passed in
2230 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2231 children. */
2232
2233 static gdb_byte *
2234 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2235 struct dwarf2_cu *cu)
2236 {
2237 unsigned int bytes_read;
2238 struct attribute attr;
2239 bfd *abfd = cu->objfile->obfd;
2240 unsigned int form, i;
2241
2242 for (i = 0; i < abbrev->num_attrs; i++)
2243 {
2244 /* The only abbrev we care about is DW_AT_sibling. */
2245 if (abbrev->attrs[i].name == DW_AT_sibling)
2246 {
2247 read_attribute (&attr, &abbrev->attrs[i],
2248 abfd, info_ptr, cu);
2249 if (attr.form == DW_FORM_ref_addr)
2250 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2251 else
2252 return dwarf2_per_objfile->info_buffer
2253 + dwarf2_get_ref_die_offset (&attr, cu);
2254 }
2255
2256 /* If it isn't DW_AT_sibling, skip this attribute. */
2257 form = abbrev->attrs[i].form;
2258 skip_attribute:
2259 switch (form)
2260 {
2261 case DW_FORM_addr:
2262 case DW_FORM_ref_addr:
2263 info_ptr += cu->header.addr_size;
2264 break;
2265 case DW_FORM_data1:
2266 case DW_FORM_ref1:
2267 case DW_FORM_flag:
2268 info_ptr += 1;
2269 break;
2270 case DW_FORM_data2:
2271 case DW_FORM_ref2:
2272 info_ptr += 2;
2273 break;
2274 case DW_FORM_data4:
2275 case DW_FORM_ref4:
2276 info_ptr += 4;
2277 break;
2278 case DW_FORM_data8:
2279 case DW_FORM_ref8:
2280 info_ptr += 8;
2281 break;
2282 case DW_FORM_string:
2283 read_string (abfd, info_ptr, &bytes_read);
2284 info_ptr += bytes_read;
2285 break;
2286 case DW_FORM_strp:
2287 info_ptr += cu->header.offset_size;
2288 break;
2289 case DW_FORM_block:
2290 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2291 info_ptr += bytes_read;
2292 break;
2293 case DW_FORM_block1:
2294 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2295 break;
2296 case DW_FORM_block2:
2297 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2298 break;
2299 case DW_FORM_block4:
2300 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2301 break;
2302 case DW_FORM_sdata:
2303 case DW_FORM_udata:
2304 case DW_FORM_ref_udata:
2305 info_ptr = skip_leb128 (abfd, info_ptr);
2306 break;
2307 case DW_FORM_indirect:
2308 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2309 info_ptr += bytes_read;
2310 /* We need to continue parsing from here, so just go back to
2311 the top. */
2312 goto skip_attribute;
2313
2314 default:
2315 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2316 dwarf_form_name (form),
2317 bfd_get_filename (abfd));
2318 }
2319 }
2320
2321 if (abbrev->has_children)
2322 return skip_children (info_ptr, cu);
2323 else
2324 return info_ptr;
2325 }
2326
2327 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2328 the next DIE after ORIG_PDI. */
2329
2330 static gdb_byte *
2331 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2332 bfd *abfd, struct dwarf2_cu *cu)
2333 {
2334 /* Do we know the sibling already? */
2335
2336 if (orig_pdi->sibling)
2337 return orig_pdi->sibling;
2338
2339 /* Are there any children to deal with? */
2340
2341 if (!orig_pdi->has_children)
2342 return info_ptr;
2343
2344 /* Skip the children the long way. */
2345
2346 return skip_children (info_ptr, cu);
2347 }
2348
2349 /* Expand this partial symbol table into a full symbol table. */
2350
2351 static void
2352 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2353 {
2354 /* FIXME: This is barely more than a stub. */
2355 if (pst != NULL)
2356 {
2357 if (pst->readin)
2358 {
2359 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2360 }
2361 else
2362 {
2363 if (info_verbose)
2364 {
2365 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2366 gdb_flush (gdb_stdout);
2367 }
2368
2369 /* Restore our global data. */
2370 dwarf2_per_objfile = objfile_data (pst->objfile,
2371 dwarf2_objfile_data_key);
2372
2373 psymtab_to_symtab_1 (pst);
2374
2375 /* Finish up the debug error message. */
2376 if (info_verbose)
2377 printf_filtered (_("done.\n"));
2378 }
2379 }
2380 }
2381
2382 /* Add PER_CU to the queue. */
2383
2384 static void
2385 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2386 {
2387 struct dwarf2_queue_item *item;
2388
2389 per_cu->queued = 1;
2390 item = xmalloc (sizeof (*item));
2391 item->per_cu = per_cu;
2392 item->next = NULL;
2393
2394 if (dwarf2_queue == NULL)
2395 dwarf2_queue = item;
2396 else
2397 dwarf2_queue_tail->next = item;
2398
2399 dwarf2_queue_tail = item;
2400 }
2401
2402 /* Process the queue. */
2403
2404 static void
2405 process_queue (struct objfile *objfile)
2406 {
2407 struct dwarf2_queue_item *item, *next_item;
2408
2409 /* Initially, there is just one item on the queue. Load its DIEs,
2410 and the DIEs of any other compilation units it requires,
2411 transitively. */
2412
2413 for (item = dwarf2_queue; item != NULL; item = item->next)
2414 {
2415 /* Read in this compilation unit. This may add new items to
2416 the end of the queue. */
2417 load_full_comp_unit (item->per_cu, objfile);
2418
2419 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2420 dwarf2_per_objfile->read_in_chain = item->per_cu;
2421
2422 /* If this compilation unit has already had full symbols created,
2423 reset the TYPE fields in each DIE. */
2424 if (item->per_cu->type_hash)
2425 reset_die_and_siblings_types (item->per_cu->cu->dies,
2426 item->per_cu->cu);
2427 }
2428
2429 /* Now everything left on the queue needs to be read in. Process
2430 them, one at a time, removing from the queue as we finish. */
2431 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2432 {
2433 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2434 process_full_comp_unit (item->per_cu);
2435
2436 item->per_cu->queued = 0;
2437 next_item = item->next;
2438 xfree (item);
2439 }
2440
2441 dwarf2_queue_tail = NULL;
2442 }
2443
2444 /* Free all allocated queue entries. This function only releases anything if
2445 an error was thrown; if the queue was processed then it would have been
2446 freed as we went along. */
2447
2448 static void
2449 dwarf2_release_queue (void *dummy)
2450 {
2451 struct dwarf2_queue_item *item, *last;
2452
2453 item = dwarf2_queue;
2454 while (item)
2455 {
2456 /* Anything still marked queued is likely to be in an
2457 inconsistent state, so discard it. */
2458 if (item->per_cu->queued)
2459 {
2460 if (item->per_cu->cu != NULL)
2461 free_one_cached_comp_unit (item->per_cu->cu);
2462 item->per_cu->queued = 0;
2463 }
2464
2465 last = item;
2466 item = item->next;
2467 xfree (last);
2468 }
2469
2470 dwarf2_queue = dwarf2_queue_tail = NULL;
2471 }
2472
2473 /* Read in full symbols for PST, and anything it depends on. */
2474
2475 static void
2476 psymtab_to_symtab_1 (struct partial_symtab *pst)
2477 {
2478 struct dwarf2_per_cu_data *per_cu;
2479 struct cleanup *back_to;
2480 int i;
2481
2482 for (i = 0; i < pst->number_of_dependencies; i++)
2483 if (!pst->dependencies[i]->readin)
2484 {
2485 /* Inform about additional files that need to be read in. */
2486 if (info_verbose)
2487 {
2488 /* FIXME: i18n: Need to make this a single string. */
2489 fputs_filtered (" ", gdb_stdout);
2490 wrap_here ("");
2491 fputs_filtered ("and ", gdb_stdout);
2492 wrap_here ("");
2493 printf_filtered ("%s...", pst->dependencies[i]->filename);
2494 wrap_here (""); /* Flush output */
2495 gdb_flush (gdb_stdout);
2496 }
2497 psymtab_to_symtab_1 (pst->dependencies[i]);
2498 }
2499
2500 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2501
2502 if (per_cu == NULL)
2503 {
2504 /* It's an include file, no symbols to read for it.
2505 Everything is in the parent symtab. */
2506 pst->readin = 1;
2507 return;
2508 }
2509
2510 back_to = make_cleanup (dwarf2_release_queue, NULL);
2511
2512 queue_comp_unit (per_cu);
2513
2514 process_queue (pst->objfile);
2515
2516 /* Age the cache, releasing compilation units that have not
2517 been used recently. */
2518 age_cached_comp_units ();
2519
2520 do_cleanups (back_to);
2521 }
2522
2523 /* Load the DIEs associated with PST and PER_CU into memory. */
2524
2525 static struct dwarf2_cu *
2526 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2527 {
2528 bfd *abfd = objfile->obfd;
2529 struct dwarf2_cu *cu;
2530 unsigned long offset;
2531 gdb_byte *info_ptr;
2532 struct cleanup *back_to, *free_cu_cleanup;
2533 struct attribute *attr;
2534 CORE_ADDR baseaddr;
2535
2536 /* Set local variables from the partial symbol table info. */
2537 offset = per_cu->offset;
2538
2539 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2540
2541 cu = xmalloc (sizeof (struct dwarf2_cu));
2542 memset (cu, 0, sizeof (struct dwarf2_cu));
2543
2544 /* If an error occurs while loading, release our storage. */
2545 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2546
2547 cu->objfile = objfile;
2548
2549 /* read in the comp_unit header */
2550 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2551
2552 /* Read the abbrevs for this compilation unit */
2553 dwarf2_read_abbrevs (abfd, cu);
2554 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2555
2556 cu->header.offset = offset;
2557
2558 cu->per_cu = per_cu;
2559 per_cu->cu = cu;
2560
2561 /* We use this obstack for block values in dwarf_alloc_block. */
2562 obstack_init (&cu->comp_unit_obstack);
2563
2564 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2565
2566 /* We try not to read any attributes in this function, because not
2567 all objfiles needed for references have been loaded yet, and symbol
2568 table processing isn't initialized. But we have to set the CU language,
2569 or we won't be able to build types correctly. */
2570 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2571 if (attr)
2572 set_cu_language (DW_UNSND (attr), cu);
2573 else
2574 set_cu_language (language_minimal, cu);
2575
2576 do_cleanups (back_to);
2577
2578 /* We've successfully allocated this compilation unit. Let our caller
2579 clean it up when finished with it. */
2580 discard_cleanups (free_cu_cleanup);
2581
2582 return cu;
2583 }
2584
2585 /* Generate full symbol information for PST and CU, whose DIEs have
2586 already been loaded into memory. */
2587
2588 static void
2589 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2590 {
2591 struct partial_symtab *pst = per_cu->psymtab;
2592 struct dwarf2_cu *cu = per_cu->cu;
2593 struct objfile *objfile = pst->objfile;
2594 bfd *abfd = objfile->obfd;
2595 CORE_ADDR lowpc, highpc;
2596 struct symtab *symtab;
2597 struct cleanup *back_to;
2598 struct attribute *attr;
2599 CORE_ADDR baseaddr;
2600
2601 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2602
2603 /* We're in the global namespace. */
2604 processing_current_prefix = "";
2605
2606 buildsym_init ();
2607 back_to = make_cleanup (really_free_pendings, NULL);
2608
2609 cu->list_in_scope = &file_symbols;
2610
2611 /* Find the base address of the compilation unit for range lists and
2612 location lists. It will normally be specified by DW_AT_low_pc.
2613 In DWARF-3 draft 4, the base address could be overridden by
2614 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2615 compilation units with discontinuous ranges. */
2616
2617 cu->header.base_known = 0;
2618 cu->header.base_address = 0;
2619
2620 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2621 if (attr)
2622 {
2623 cu->header.base_address = DW_ADDR (attr);
2624 cu->header.base_known = 1;
2625 }
2626 else
2627 {
2628 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2629 if (attr)
2630 {
2631 cu->header.base_address = DW_ADDR (attr);
2632 cu->header.base_known = 1;
2633 }
2634 }
2635
2636 /* Do line number decoding in read_file_scope () */
2637 process_die (cu->dies, cu);
2638
2639 /* Some compilers don't define a DW_AT_high_pc attribute for the
2640 compilation unit. If the DW_AT_high_pc is missing, synthesize
2641 it, by scanning the DIE's below the compilation unit. */
2642 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2643
2644 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2645
2646 /* Set symtab language to language from DW_AT_language.
2647 If the compilation is from a C file generated by language preprocessors,
2648 do not set the language if it was already deduced by start_subfile. */
2649 if (symtab != NULL
2650 && !(cu->language == language_c && symtab->language != language_c))
2651 {
2652 symtab->language = cu->language;
2653 }
2654 pst->symtab = symtab;
2655 pst->readin = 1;
2656
2657 do_cleanups (back_to);
2658 }
2659
2660 /* Process a die and its children. */
2661
2662 static void
2663 process_die (struct die_info *die, struct dwarf2_cu *cu)
2664 {
2665 switch (die->tag)
2666 {
2667 case DW_TAG_padding:
2668 break;
2669 case DW_TAG_compile_unit:
2670 read_file_scope (die, cu);
2671 break;
2672 case DW_TAG_subprogram:
2673 read_subroutine_type (die, cu);
2674 read_func_scope (die, cu);
2675 break;
2676 case DW_TAG_inlined_subroutine:
2677 /* FIXME: These are ignored for now.
2678 They could be used to set breakpoints on all inlined instances
2679 of a function and make GDB `next' properly over inlined functions. */
2680 break;
2681 case DW_TAG_lexical_block:
2682 case DW_TAG_try_block:
2683 case DW_TAG_catch_block:
2684 read_lexical_block_scope (die, cu);
2685 break;
2686 case DW_TAG_class_type:
2687 case DW_TAG_interface_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 /* Find the filename. Do not use dwarf2_name here, since the filename
2805 is not a source language identifier. */
2806 attr = dwarf2_attr (die, DW_AT_name, cu);
2807 if (attr)
2808 {
2809 name = DW_STRING (attr);
2810 }
2811
2812 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2813 if (attr)
2814 comp_dir = DW_STRING (attr);
2815 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2816 {
2817 comp_dir = ldirname (name);
2818 if (comp_dir != NULL)
2819 make_cleanup (xfree, comp_dir);
2820 }
2821 if (comp_dir != NULL)
2822 {
2823 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2824 directory, get rid of it. */
2825 char *cp = strchr (comp_dir, ':');
2826
2827 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2828 comp_dir = cp + 1;
2829 }
2830
2831 if (name == NULL)
2832 name = "<unknown>";
2833
2834 attr = dwarf2_attr (die, DW_AT_language, cu);
2835 if (attr)
2836 {
2837 set_cu_language (DW_UNSND (attr), cu);
2838 }
2839
2840 attr = dwarf2_attr (die, DW_AT_producer, cu);
2841 if (attr)
2842 cu->producer = DW_STRING (attr);
2843
2844 /* We assume that we're processing GCC output. */
2845 processing_gcc_compilation = 2;
2846
2847 start_symtab (name, comp_dir, lowpc);
2848 record_debugformat ("DWARF 2");
2849 record_producer (cu->producer);
2850
2851 initialize_cu_func_list (cu);
2852
2853 /* Decode line number information if present. We do this before
2854 processing child DIEs, so that the line header table is available
2855 for DW_AT_decl_file. */
2856 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2857 if (attr)
2858 {
2859 unsigned int line_offset = DW_UNSND (attr);
2860 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2861 if (line_header)
2862 {
2863 cu->line_header = line_header;
2864 make_cleanup (free_cu_line_header, cu);
2865 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2866 }
2867 }
2868
2869 /* Process all dies in compilation unit. */
2870 if (die->child != NULL)
2871 {
2872 child_die = die->child;
2873 while (child_die && child_die->tag)
2874 {
2875 process_die (child_die, cu);
2876 child_die = sibling_die (child_die);
2877 }
2878 }
2879
2880 /* Decode macro information, if present. Dwarf 2 macro information
2881 refers to information in the line number info statement program
2882 header, so we can only read it if we've read the header
2883 successfully. */
2884 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2885 if (attr && line_header)
2886 {
2887 unsigned int macro_offset = DW_UNSND (attr);
2888 dwarf_decode_macros (line_header, macro_offset,
2889 comp_dir, abfd, cu);
2890 }
2891 do_cleanups (back_to);
2892 }
2893
2894 static void
2895 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2896 struct dwarf2_cu *cu)
2897 {
2898 struct function_range *thisfn;
2899
2900 thisfn = (struct function_range *)
2901 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2902 thisfn->name = name;
2903 thisfn->lowpc = lowpc;
2904 thisfn->highpc = highpc;
2905 thisfn->seen_line = 0;
2906 thisfn->next = NULL;
2907
2908 if (cu->last_fn == NULL)
2909 cu->first_fn = thisfn;
2910 else
2911 cu->last_fn->next = thisfn;
2912
2913 cu->last_fn = thisfn;
2914 }
2915
2916 static void
2917 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2918 {
2919 struct objfile *objfile = cu->objfile;
2920 struct context_stack *new;
2921 CORE_ADDR lowpc;
2922 CORE_ADDR highpc;
2923 struct die_info *child_die;
2924 struct attribute *attr;
2925 char *name;
2926 const char *previous_prefix = processing_current_prefix;
2927 struct cleanup *back_to = NULL;
2928 CORE_ADDR baseaddr;
2929 struct block *block;
2930
2931 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2932
2933 name = dwarf2_linkage_name (die, cu);
2934
2935 /* Ignore functions with missing or empty names and functions with
2936 missing or invalid low and high pc attributes. */
2937 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2938 return;
2939
2940 if (cu->language == language_cplus
2941 || cu->language == language_java)
2942 {
2943 struct die_info *spec_die = die_specification (die, cu);
2944
2945 /* NOTE: carlton/2004-01-23: We have to be careful in the
2946 presence of DW_AT_specification. For example, with GCC 3.4,
2947 given the code
2948
2949 namespace N {
2950 void foo() {
2951 // Definition of N::foo.
2952 }
2953 }
2954
2955 then we'll have a tree of DIEs like this:
2956
2957 1: DW_TAG_compile_unit
2958 2: DW_TAG_namespace // N
2959 3: DW_TAG_subprogram // declaration of N::foo
2960 4: DW_TAG_subprogram // definition of N::foo
2961 DW_AT_specification // refers to die #3
2962
2963 Thus, when processing die #4, we have to pretend that we're
2964 in the context of its DW_AT_specification, namely the contex
2965 of die #3. */
2966
2967 if (spec_die != NULL)
2968 {
2969 char *specification_prefix = determine_prefix (spec_die, cu);
2970 processing_current_prefix = specification_prefix;
2971 back_to = make_cleanup (xfree, specification_prefix);
2972 }
2973 }
2974
2975 lowpc += baseaddr;
2976 highpc += baseaddr;
2977
2978 /* Record the function range for dwarf_decode_lines. */
2979 add_to_cu_func_list (name, lowpc, highpc, cu);
2980
2981 new = push_context (0, lowpc);
2982 new->name = new_symbol (die, die->type, cu);
2983
2984 /* If there is a location expression for DW_AT_frame_base, record
2985 it. */
2986 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2987 if (attr)
2988 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2989 expression is being recorded directly in the function's symbol
2990 and not in a separate frame-base object. I guess this hack is
2991 to avoid adding some sort of frame-base adjunct/annex to the
2992 function's symbol :-(. The problem with doing this is that it
2993 results in a function symbol with a location expression that
2994 has nothing to do with the location of the function, ouch! The
2995 relationship should be: a function's symbol has-a frame base; a
2996 frame-base has-a location expression. */
2997 dwarf2_symbol_mark_computed (attr, new->name, cu);
2998
2999 cu->list_in_scope = &local_symbols;
3000
3001 if (die->child != NULL)
3002 {
3003 child_die = die->child;
3004 while (child_die && child_die->tag)
3005 {
3006 process_die (child_die, cu);
3007 child_die = sibling_die (child_die);
3008 }
3009 }
3010
3011 new = pop_context ();
3012 /* Make a block for the local symbols within. */
3013 block = finish_block (new->name, &local_symbols, new->old_blocks,
3014 lowpc, highpc, objfile);
3015
3016 /* If we have address ranges, record them. */
3017 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3018
3019 /* In C++, we can have functions nested inside functions (e.g., when
3020 a function declares a class that has methods). This means that
3021 when we finish processing a function scope, we may need to go
3022 back to building a containing block's symbol lists. */
3023 local_symbols = new->locals;
3024 param_symbols = new->params;
3025
3026 /* If we've finished processing a top-level function, subsequent
3027 symbols go in the file symbol list. */
3028 if (outermost_context_p ())
3029 cu->list_in_scope = &file_symbols;
3030
3031 processing_current_prefix = previous_prefix;
3032 if (back_to != NULL)
3033 do_cleanups (back_to);
3034 }
3035
3036 /* Process all the DIES contained within a lexical block scope. Start
3037 a new scope, process the dies, and then close the scope. */
3038
3039 static void
3040 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3041 {
3042 struct objfile *objfile = cu->objfile;
3043 struct context_stack *new;
3044 CORE_ADDR lowpc, highpc;
3045 struct die_info *child_die;
3046 CORE_ADDR baseaddr;
3047
3048 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3049
3050 /* Ignore blocks with missing or invalid low and high pc attributes. */
3051 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3052 as multiple lexical blocks? Handling children in a sane way would
3053 be nasty. Might be easier to properly extend generic blocks to
3054 describe ranges. */
3055 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3056 return;
3057 lowpc += baseaddr;
3058 highpc += baseaddr;
3059
3060 push_context (0, lowpc);
3061 if (die->child != NULL)
3062 {
3063 child_die = die->child;
3064 while (child_die && child_die->tag)
3065 {
3066 process_die (child_die, cu);
3067 child_die = sibling_die (child_die);
3068 }
3069 }
3070 new = pop_context ();
3071
3072 if (local_symbols != NULL)
3073 {
3074 struct block *block
3075 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3076 highpc, objfile);
3077
3078 /* Note that recording ranges after traversing children, as we
3079 do here, means that recording a parent's ranges entails
3080 walking across all its children's ranges as they appear in
3081 the address map, which is quadratic behavior.
3082
3083 It would be nicer to record the parent's ranges before
3084 traversing its children, simply overriding whatever you find
3085 there. But since we don't even decide whether to create a
3086 block until after we've traversed its children, that's hard
3087 to do. */
3088 dwarf2_record_block_ranges (die, block, baseaddr, cu);
3089 }
3090 local_symbols = new->locals;
3091 }
3092
3093 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3094 Return 1 if the attributes are present and valid, otherwise, return 0. */
3095
3096 static int
3097 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3098 CORE_ADDR *high_return, struct dwarf2_cu *cu)
3099 {
3100 struct objfile *objfile = cu->objfile;
3101 struct comp_unit_head *cu_header = &cu->header;
3102 bfd *obfd = objfile->obfd;
3103 unsigned int addr_size = cu_header->addr_size;
3104 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3105 /* Base address selection entry. */
3106 CORE_ADDR base;
3107 int found_base;
3108 unsigned int dummy;
3109 gdb_byte *buffer;
3110 CORE_ADDR marker;
3111 int low_set;
3112 CORE_ADDR low = 0;
3113 CORE_ADDR high = 0;
3114
3115 found_base = cu_header->base_known;
3116 base = cu_header->base_address;
3117
3118 if (offset >= dwarf2_per_objfile->ranges_size)
3119 {
3120 complaint (&symfile_complaints,
3121 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3122 offset);
3123 return 0;
3124 }
3125 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3126
3127 /* Read in the largest possible address. */
3128 marker = read_address (obfd, buffer, cu, &dummy);
3129 if ((marker & mask) == mask)
3130 {
3131 /* If we found the largest possible address, then
3132 read the base address. */
3133 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3134 buffer += 2 * addr_size;
3135 offset += 2 * addr_size;
3136 found_base = 1;
3137 }
3138
3139 low_set = 0;
3140
3141 while (1)
3142 {
3143 CORE_ADDR range_beginning, range_end;
3144
3145 range_beginning = read_address (obfd, buffer, cu, &dummy);
3146 buffer += addr_size;
3147 range_end = read_address (obfd, buffer, cu, &dummy);
3148 buffer += addr_size;
3149 offset += 2 * addr_size;
3150
3151 /* An end of list marker is a pair of zero addresses. */
3152 if (range_beginning == 0 && range_end == 0)
3153 /* Found the end of list entry. */
3154 break;
3155
3156 /* Each base address selection entry is a pair of 2 values.
3157 The first is the largest possible address, the second is
3158 the base address. Check for a base address here. */
3159 if ((range_beginning & mask) == mask)
3160 {
3161 /* If we found the largest possible address, then
3162 read the base address. */
3163 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3164 found_base = 1;
3165 continue;
3166 }
3167
3168 if (!found_base)
3169 {
3170 /* We have no valid base address for the ranges
3171 data. */
3172 complaint (&symfile_complaints,
3173 _("Invalid .debug_ranges data (no base address)"));
3174 return 0;
3175 }
3176
3177 range_beginning += base;
3178 range_end += base;
3179
3180 /* FIXME: This is recording everything as a low-high
3181 segment of consecutive addresses. We should have a
3182 data structure for discontiguous block ranges
3183 instead. */
3184 if (! low_set)
3185 {
3186 low = range_beginning;
3187 high = range_end;
3188 low_set = 1;
3189 }
3190 else
3191 {
3192 if (range_beginning < low)
3193 low = range_beginning;
3194 if (range_end > high)
3195 high = range_end;
3196 }
3197 }
3198
3199 if (! low_set)
3200 /* If the first entry is an end-of-list marker, the range
3201 describes an empty scope, i.e. no instructions. */
3202 return 0;
3203
3204 if (low_return)
3205 *low_return = low;
3206 if (high_return)
3207 *high_return = high;
3208 return 1;
3209 }
3210
3211 /* Get low and high pc attributes from a die. Return 1 if the attributes
3212 are present and valid, otherwise, return 0. Return -1 if the range is
3213 discontinuous, i.e. derived from DW_AT_ranges information. */
3214 static int
3215 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3216 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3217 {
3218 struct attribute *attr;
3219 CORE_ADDR low = 0;
3220 CORE_ADDR high = 0;
3221 int ret = 0;
3222
3223 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3224 if (attr)
3225 {
3226 high = DW_ADDR (attr);
3227 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3228 if (attr)
3229 low = DW_ADDR (attr);
3230 else
3231 /* Found high w/o low attribute. */
3232 return 0;
3233
3234 /* Found consecutive range of addresses. */
3235 ret = 1;
3236 }
3237 else
3238 {
3239 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3240 if (attr != NULL)
3241 {
3242 /* Value of the DW_AT_ranges attribute is the offset in the
3243 .debug_ranges section. */
3244 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu))
3245 return 0;
3246 /* Found discontinuous range of addresses. */
3247 ret = -1;
3248 }
3249 }
3250
3251 if (high < low)
3252 return 0;
3253
3254 /* When using the GNU linker, .gnu.linkonce. sections are used to
3255 eliminate duplicate copies of functions and vtables and such.
3256 The linker will arbitrarily choose one and discard the others.
3257 The AT_*_pc values for such functions refer to local labels in
3258 these sections. If the section from that file was discarded, the
3259 labels are not in the output, so the relocs get a value of 0.
3260 If this is a discarded function, mark the pc bounds as invalid,
3261 so that GDB will ignore it. */
3262 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3263 return 0;
3264
3265 *lowpc = low;
3266 *highpc = high;
3267 return ret;
3268 }
3269
3270 /* Get the low and high pc's represented by the scope DIE, and store
3271 them in *LOWPC and *HIGHPC. If the correct values can't be
3272 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3273
3274 static void
3275 get_scope_pc_bounds (struct die_info *die,
3276 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3277 struct dwarf2_cu *cu)
3278 {
3279 CORE_ADDR best_low = (CORE_ADDR) -1;
3280 CORE_ADDR best_high = (CORE_ADDR) 0;
3281 CORE_ADDR current_low, current_high;
3282
3283 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3284 {
3285 best_low = current_low;
3286 best_high = current_high;
3287 }
3288 else
3289 {
3290 struct die_info *child = die->child;
3291
3292 while (child && child->tag)
3293 {
3294 switch (child->tag) {
3295 case DW_TAG_subprogram:
3296 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3297 {
3298 best_low = min (best_low, current_low);
3299 best_high = max (best_high, current_high);
3300 }
3301 break;
3302 case DW_TAG_namespace:
3303 /* FIXME: carlton/2004-01-16: Should we do this for
3304 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3305 that current GCC's always emit the DIEs corresponding
3306 to definitions of methods of classes as children of a
3307 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3308 the DIEs giving the declarations, which could be
3309 anywhere). But I don't see any reason why the
3310 standards says that they have to be there. */
3311 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3312
3313 if (current_low != ((CORE_ADDR) -1))
3314 {
3315 best_low = min (best_low, current_low);
3316 best_high = max (best_high, current_high);
3317 }
3318 break;
3319 default:
3320 /* Ignore. */
3321 break;
3322 }
3323
3324 child = sibling_die (child);
3325 }
3326 }
3327
3328 *lowpc = best_low;
3329 *highpc = best_high;
3330 }
3331
3332 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
3333 in DIE. */
3334 static void
3335 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3336 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3337 {
3338 struct attribute *attr;
3339
3340 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3341 if (attr)
3342 {
3343 CORE_ADDR high = DW_ADDR (attr);
3344 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3345 if (attr)
3346 {
3347 CORE_ADDR low = DW_ADDR (attr);
3348 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3349 }
3350 }
3351
3352 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3353 if (attr)
3354 {
3355 bfd *obfd = cu->objfile->obfd;
3356
3357 /* The value of the DW_AT_ranges attribute is the offset of the
3358 address range list in the .debug_ranges section. */
3359 unsigned long offset = DW_UNSND (attr);
3360 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3361
3362 /* For some target architectures, but not others, the
3363 read_address function sign-extends the addresses it returns.
3364 To recognize base address selection entries, we need a
3365 mask. */
3366 unsigned int addr_size = cu->header.addr_size;
3367 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3368
3369 /* The base address, to which the next pair is relative. Note
3370 that this 'base' is a DWARF concept: most entries in a range
3371 list are relative, to reduce the number of relocs against the
3372 debugging information. This is separate from this function's
3373 'baseaddr' argument, which GDB uses to relocate debugging
3374 information from a shared library based on the address at
3375 which the library was loaded. */
3376 CORE_ADDR base = cu->header.base_address;
3377 int base_known = cu->header.base_known;
3378
3379 if (offset >= dwarf2_per_objfile->ranges_size)
3380 {
3381 complaint (&symfile_complaints,
3382 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3383 offset);
3384 return;
3385 }
3386
3387 for (;;)
3388 {
3389 unsigned int bytes_read;
3390 CORE_ADDR start, end;
3391
3392 start = read_address (obfd, buffer, cu, &bytes_read);
3393 buffer += bytes_read;
3394 end = read_address (obfd, buffer, cu, &bytes_read);
3395 buffer += bytes_read;
3396
3397 /* Did we find the end of the range list? */
3398 if (start == 0 && end == 0)
3399 break;
3400
3401 /* Did we find a base address selection entry? */
3402 else if ((start & base_select_mask) == base_select_mask)
3403 {
3404 base = end;
3405 base_known = 1;
3406 }
3407
3408 /* We found an ordinary address range. */
3409 else
3410 {
3411 if (!base_known)
3412 {
3413 complaint (&symfile_complaints,
3414 _("Invalid .debug_ranges data (no base address)"));
3415 return;
3416 }
3417
3418 record_block_range (block,
3419 baseaddr + base + start,
3420 baseaddr + base + end - 1);
3421 }
3422 }
3423 }
3424 }
3425
3426 /* Add an aggregate field to the field list. */
3427
3428 static void
3429 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3430 struct dwarf2_cu *cu)
3431 {
3432 struct objfile *objfile = cu->objfile;
3433 struct nextfield *new_field;
3434 struct attribute *attr;
3435 struct field *fp;
3436 char *fieldname = "";
3437
3438 /* Allocate a new field list entry and link it in. */
3439 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3440 make_cleanup (xfree, new_field);
3441 memset (new_field, 0, sizeof (struct nextfield));
3442 new_field->next = fip->fields;
3443 fip->fields = new_field;
3444 fip->nfields++;
3445
3446 /* Handle accessibility and virtuality of field.
3447 The default accessibility for members is public, the default
3448 accessibility for inheritance is private. */
3449 if (die->tag != DW_TAG_inheritance)
3450 new_field->accessibility = DW_ACCESS_public;
3451 else
3452 new_field->accessibility = DW_ACCESS_private;
3453 new_field->virtuality = DW_VIRTUALITY_none;
3454
3455 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3456 if (attr)
3457 new_field->accessibility = DW_UNSND (attr);
3458 if (new_field->accessibility != DW_ACCESS_public)
3459 fip->non_public_fields = 1;
3460 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3461 if (attr)
3462 new_field->virtuality = DW_UNSND (attr);
3463
3464 fp = &new_field->field;
3465
3466 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3467 {
3468 /* Data member other than a C++ static data member. */
3469
3470 /* Get type of field. */
3471 fp->type = die_type (die, cu);
3472
3473 FIELD_STATIC_KIND (*fp) = 0;
3474
3475 /* Get bit size of field (zero if none). */
3476 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3477 if (attr)
3478 {
3479 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3480 }
3481 else
3482 {
3483 FIELD_BITSIZE (*fp) = 0;
3484 }
3485
3486 /* Get bit offset of field. */
3487 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3488 if (attr)
3489 {
3490 int byte_offset;
3491
3492 if (attr_form_is_section_offset (attr))
3493 {
3494 dwarf2_complex_location_expr_complaint ();
3495 byte_offset = 0;
3496 }
3497 else if (attr_form_is_constant (attr))
3498 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3499 else
3500 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3501
3502 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
3503 }
3504 else
3505 FIELD_BITPOS (*fp) = 0;
3506 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3507 if (attr)
3508 {
3509 if (gdbarch_bits_big_endian (current_gdbarch))
3510 {
3511 /* For big endian bits, the DW_AT_bit_offset gives the
3512 additional bit offset from the MSB of the containing
3513 anonymous object to the MSB of the field. We don't
3514 have to do anything special since we don't need to
3515 know the size of the anonymous object. */
3516 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3517 }
3518 else
3519 {
3520 /* For little endian bits, compute the bit offset to the
3521 MSB of the anonymous object, subtract off the number of
3522 bits from the MSB of the field to the MSB of the
3523 object, and then subtract off the number of bits of
3524 the field itself. The result is the bit offset of
3525 the LSB of the field. */
3526 int anonymous_size;
3527 int bit_offset = DW_UNSND (attr);
3528
3529 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3530 if (attr)
3531 {
3532 /* The size of the anonymous object containing
3533 the bit field is explicit, so use the
3534 indicated size (in bytes). */
3535 anonymous_size = DW_UNSND (attr);
3536 }
3537 else
3538 {
3539 /* The size of the anonymous object containing
3540 the bit field must be inferred from the type
3541 attribute of the data member containing the
3542 bit field. */
3543 anonymous_size = TYPE_LENGTH (fp->type);
3544 }
3545 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3546 - bit_offset - FIELD_BITSIZE (*fp);
3547 }
3548 }
3549
3550 /* Get name of field. */
3551 fieldname = dwarf2_name (die, cu);
3552 if (fieldname == NULL)
3553 fieldname = "";
3554
3555 /* The name is already allocated along with this objfile, so we don't
3556 need to duplicate it for the type. */
3557 fp->name = fieldname;
3558
3559 /* Change accessibility for artificial fields (e.g. virtual table
3560 pointer or virtual base class pointer) to private. */
3561 if (dwarf2_attr (die, DW_AT_artificial, cu))
3562 {
3563 new_field->accessibility = DW_ACCESS_private;
3564 fip->non_public_fields = 1;
3565 }
3566 }
3567 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3568 {
3569 /* C++ static member. */
3570
3571 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3572 is a declaration, but all versions of G++ as of this writing
3573 (so through at least 3.2.1) incorrectly generate
3574 DW_TAG_variable tags. */
3575
3576 char *physname;
3577
3578 /* Get name of field. */
3579 fieldname = dwarf2_name (die, cu);
3580 if (fieldname == NULL)
3581 return;
3582
3583 /* Get physical name. */
3584 physname = dwarf2_linkage_name (die, cu);
3585
3586 /* The name is already allocated along with this objfile, so we don't
3587 need to duplicate it for the type. */
3588 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3589 FIELD_TYPE (*fp) = die_type (die, cu);
3590 FIELD_NAME (*fp) = fieldname;
3591 }
3592 else if (die->tag == DW_TAG_inheritance)
3593 {
3594 /* C++ base class field. */
3595 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3596 if (attr)
3597 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3598 * bits_per_byte);
3599 FIELD_BITSIZE (*fp) = 0;
3600 FIELD_STATIC_KIND (*fp) = 0;
3601 FIELD_TYPE (*fp) = die_type (die, cu);
3602 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3603 fip->nbaseclasses++;
3604 }
3605 }
3606
3607 /* Create the vector of fields, and attach it to the type. */
3608
3609 static void
3610 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3611 struct dwarf2_cu *cu)
3612 {
3613 int nfields = fip->nfields;
3614
3615 /* Record the field count, allocate space for the array of fields,
3616 and create blank accessibility bitfields if necessary. */
3617 TYPE_NFIELDS (type) = nfields;
3618 TYPE_FIELDS (type) = (struct field *)
3619 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3620 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3621
3622 if (fip->non_public_fields)
3623 {
3624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3625
3626 TYPE_FIELD_PRIVATE_BITS (type) =
3627 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3628 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3629
3630 TYPE_FIELD_PROTECTED_BITS (type) =
3631 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3632 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3633
3634 TYPE_FIELD_IGNORE_BITS (type) =
3635 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3636 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3637 }
3638
3639 /* If the type has baseclasses, allocate and clear a bit vector for
3640 TYPE_FIELD_VIRTUAL_BITS. */
3641 if (fip->nbaseclasses)
3642 {
3643 int num_bytes = B_BYTES (fip->nbaseclasses);
3644 unsigned char *pointer;
3645
3646 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3647 pointer = TYPE_ALLOC (type, num_bytes);
3648 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3649 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3650 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3651 }
3652
3653 /* Copy the saved-up fields into the field vector. Start from the head
3654 of the list, adding to the tail of the field array, so that they end
3655 up in the same order in the array in which they were added to the list. */
3656 while (nfields-- > 0)
3657 {
3658 TYPE_FIELD (type, nfields) = fip->fields->field;
3659 switch (fip->fields->accessibility)
3660 {
3661 case DW_ACCESS_private:
3662 SET_TYPE_FIELD_PRIVATE (type, nfields);
3663 break;
3664
3665 case DW_ACCESS_protected:
3666 SET_TYPE_FIELD_PROTECTED (type, nfields);
3667 break;
3668
3669 case DW_ACCESS_public:
3670 break;
3671
3672 default:
3673 /* Unknown accessibility. Complain and treat it as public. */
3674 {
3675 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3676 fip->fields->accessibility);
3677 }
3678 break;
3679 }
3680 if (nfields < fip->nbaseclasses)
3681 {
3682 switch (fip->fields->virtuality)
3683 {
3684 case DW_VIRTUALITY_virtual:
3685 case DW_VIRTUALITY_pure_virtual:
3686 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3687 break;
3688 }
3689 }
3690 fip->fields = fip->fields->next;
3691 }
3692 }
3693
3694 /* Add a member function to the proper fieldlist. */
3695
3696 static void
3697 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3698 struct type *type, struct dwarf2_cu *cu)
3699 {
3700 struct objfile *objfile = cu->objfile;
3701 struct attribute *attr;
3702 struct fnfieldlist *flp;
3703 int i;
3704 struct fn_field *fnp;
3705 char *fieldname;
3706 char *physname;
3707 struct nextfnfield *new_fnfield;
3708
3709 /* Get name of member function. */
3710 fieldname = dwarf2_name (die, cu);
3711 if (fieldname == NULL)
3712 return;
3713
3714 /* Get the mangled name. */
3715 physname = dwarf2_linkage_name (die, cu);
3716
3717 /* Look up member function name in fieldlist. */
3718 for (i = 0; i < fip->nfnfields; i++)
3719 {
3720 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3721 break;
3722 }
3723
3724 /* Create new list element if necessary. */
3725 if (i < fip->nfnfields)
3726 flp = &fip->fnfieldlists[i];
3727 else
3728 {
3729 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3730 {
3731 fip->fnfieldlists = (struct fnfieldlist *)
3732 xrealloc (fip->fnfieldlists,
3733 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3734 * sizeof (struct fnfieldlist));
3735 if (fip->nfnfields == 0)
3736 make_cleanup (free_current_contents, &fip->fnfieldlists);
3737 }
3738 flp = &fip->fnfieldlists[fip->nfnfields];
3739 flp->name = fieldname;
3740 flp->length = 0;
3741 flp->head = NULL;
3742 fip->nfnfields++;
3743 }
3744
3745 /* Create a new member function field and chain it to the field list
3746 entry. */
3747 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3748 make_cleanup (xfree, new_fnfield);
3749 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3750 new_fnfield->next = flp->head;
3751 flp->head = new_fnfield;
3752 flp->length++;
3753
3754 /* Fill in the member function field info. */
3755 fnp = &new_fnfield->fnfield;
3756 /* The name is already allocated along with this objfile, so we don't
3757 need to duplicate it for the type. */
3758 fnp->physname = physname ? physname : "";
3759 fnp->type = alloc_type (objfile);
3760 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3761 {
3762 int nparams = TYPE_NFIELDS (die->type);
3763
3764 /* TYPE is the domain of this method, and DIE->TYPE is the type
3765 of the method itself (TYPE_CODE_METHOD). */
3766 smash_to_method_type (fnp->type, type,
3767 TYPE_TARGET_TYPE (die->type),
3768 TYPE_FIELDS (die->type),
3769 TYPE_NFIELDS (die->type),
3770 TYPE_VARARGS (die->type));
3771
3772 /* Handle static member functions.
3773 Dwarf2 has no clean way to discern C++ static and non-static
3774 member functions. G++ helps GDB by marking the first
3775 parameter for non-static member functions (which is the
3776 this pointer) as artificial. We obtain this information
3777 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3778 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3779 fnp->voffset = VOFFSET_STATIC;
3780 }
3781 else
3782 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3783 physname);
3784
3785 /* Get fcontext from DW_AT_containing_type if present. */
3786 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3787 fnp->fcontext = die_containing_type (die, cu);
3788
3789 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3790 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3791
3792 /* Get accessibility. */
3793 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3794 if (attr)
3795 {
3796 switch (DW_UNSND (attr))
3797 {
3798 case DW_ACCESS_private:
3799 fnp->is_private = 1;
3800 break;
3801 case DW_ACCESS_protected:
3802 fnp->is_protected = 1;
3803 break;
3804 }
3805 }
3806
3807 /* Check for artificial methods. */
3808 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3809 if (attr && DW_UNSND (attr) != 0)
3810 fnp->is_artificial = 1;
3811
3812 /* Get index in virtual function table if it is a virtual member function. */
3813 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3814 if (attr)
3815 {
3816 /* Support the .debug_loc offsets */
3817 if (attr_form_is_block (attr))
3818 {
3819 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3820 }
3821 else if (attr_form_is_section_offset (attr))
3822 {
3823 dwarf2_complex_location_expr_complaint ();
3824 }
3825 else
3826 {
3827 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3828 fieldname);
3829 }
3830 }
3831 }
3832
3833 /* Create the vector of member function fields, and attach it to the type. */
3834
3835 static void
3836 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3837 struct dwarf2_cu *cu)
3838 {
3839 struct fnfieldlist *flp;
3840 int total_length = 0;
3841 int i;
3842
3843 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3844 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3845 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3846
3847 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3848 {
3849 struct nextfnfield *nfp = flp->head;
3850 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3851 int k;
3852
3853 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3854 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3855 fn_flp->fn_fields = (struct fn_field *)
3856 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3857 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3858 fn_flp->fn_fields[k] = nfp->fnfield;
3859
3860 total_length += flp->length;
3861 }
3862
3863 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3864 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3865 }
3866
3867 /* Returns non-zero if NAME is the name of a vtable member in CU's
3868 language, zero otherwise. */
3869 static int
3870 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3871 {
3872 static const char vptr[] = "_vptr";
3873 static const char vtable[] = "vtable";
3874
3875 /* Look for the C++ and Java forms of the vtable. */
3876 if ((cu->language == language_java
3877 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3878 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3879 && is_cplus_marker (name[sizeof (vptr) - 1])))
3880 return 1;
3881
3882 return 0;
3883 }
3884
3885 /* GCC outputs unnamed structures that are really pointers to member
3886 functions, with the ABI-specified layout. If DIE (from CU) describes
3887 such a structure, set its type, and return nonzero. Otherwise return
3888 zero.
3889
3890 GCC shouldn't do this; it should just output pointer to member DIEs.
3891 This is GCC PR debug/28767. */
3892
3893 static int
3894 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3895 {
3896 struct objfile *objfile = cu->objfile;
3897 struct type *type;
3898 struct die_info *pfn_die, *delta_die;
3899 struct attribute *pfn_name, *delta_name;
3900 struct type *pfn_type, *domain_type;
3901
3902 /* Check for a structure with no name and two children. */
3903 if (die->tag != DW_TAG_structure_type
3904 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3905 || die->child == NULL
3906 || die->child->sibling == NULL
3907 || (die->child->sibling->sibling != NULL
3908 && die->child->sibling->sibling->tag != DW_TAG_padding))
3909 return 0;
3910
3911 /* Check for __pfn and __delta members. */
3912 pfn_die = die->child;
3913 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3914 if (pfn_die->tag != DW_TAG_member
3915 || pfn_name == NULL
3916 || DW_STRING (pfn_name) == NULL
3917 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3918 return 0;
3919
3920 delta_die = pfn_die->sibling;
3921 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3922 if (delta_die->tag != DW_TAG_member
3923 || delta_name == NULL
3924 || DW_STRING (delta_name) == NULL
3925 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3926 return 0;
3927
3928 /* Find the type of the method. */
3929 pfn_type = die_type (pfn_die, cu);
3930 if (pfn_type == NULL
3931 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3932 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3933 return 0;
3934
3935 /* Look for the "this" argument. */
3936 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3937 if (TYPE_NFIELDS (pfn_type) == 0
3938 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3939 return 0;
3940
3941 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3942 type = alloc_type (objfile);
3943 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3944 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3945 TYPE_VARARGS (pfn_type));
3946 type = lookup_methodptr_type (type);
3947 set_die_type (die, type, cu);
3948
3949 return 1;
3950 }
3951
3952 /* Called when we find the DIE that starts a structure or union scope
3953 (definition) to process all dies that define the members of the
3954 structure or union.
3955
3956 NOTE: we need to call struct_type regardless of whether or not the
3957 DIE has an at_name attribute, since it might be an anonymous
3958 structure or union. This gets the type entered into our set of
3959 user defined types.
3960
3961 However, if the structure is incomplete (an opaque struct/union)
3962 then suppress creating a symbol table entry for it since gdb only
3963 wants to find the one with the complete definition. Note that if
3964 it is complete, we just call new_symbol, which does it's own
3965 checking about whether the struct/union is anonymous or not (and
3966 suppresses creating a symbol table entry itself). */
3967
3968 static void
3969 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3970 {
3971 struct objfile *objfile = cu->objfile;
3972 struct type *type;
3973 struct attribute *attr;
3974 const char *previous_prefix = processing_current_prefix;
3975 struct cleanup *back_to = NULL;
3976 char *name;
3977
3978 if (die->type)
3979 return;
3980
3981 if (quirk_gcc_member_function_pointer (die, cu))
3982 return;
3983
3984 type = alloc_type (objfile);
3985 INIT_CPLUS_SPECIFIC (type);
3986 name = dwarf2_name (die, cu);
3987 if (name != NULL)
3988 {
3989 if (cu->language == language_cplus
3990 || cu->language == language_java)
3991 {
3992 char *new_prefix = determine_class_name (die, cu);
3993 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3994 strlen (new_prefix),
3995 &objfile->objfile_obstack);
3996 back_to = make_cleanup (xfree, new_prefix);
3997 processing_current_prefix = new_prefix;
3998 }
3999 else
4000 {
4001 /* The name is already allocated along with this objfile, so
4002 we don't need to duplicate it for the type. */
4003 TYPE_TAG_NAME (type) = name;
4004 }
4005 }
4006
4007 if (die->tag == DW_TAG_structure_type)
4008 {
4009 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4010 }
4011 else if (die->tag == DW_TAG_union_type)
4012 {
4013 TYPE_CODE (type) = TYPE_CODE_UNION;
4014 }
4015 else
4016 {
4017 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
4018 in gdbtypes.h. */
4019 TYPE_CODE (type) = TYPE_CODE_CLASS;
4020 }
4021
4022 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4023 if (attr)
4024 {
4025 TYPE_LENGTH (type) = DW_UNSND (attr);
4026 }
4027 else
4028 {
4029 TYPE_LENGTH (type) = 0;
4030 }
4031
4032 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
4033 if (die_is_declaration (die, cu))
4034 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4035
4036 /* We need to add the type field to the die immediately so we don't
4037 infinitely recurse when dealing with pointers to the structure
4038 type within the structure itself. */
4039 set_die_type (die, type, cu);
4040
4041 if (die->child != NULL && ! die_is_declaration (die, cu))
4042 {
4043 struct field_info fi;
4044 struct die_info *child_die;
4045 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4046
4047 memset (&fi, 0, sizeof (struct field_info));
4048
4049 child_die = die->child;
4050
4051 while (child_die && child_die->tag)
4052 {
4053 if (child_die->tag == DW_TAG_member
4054 || child_die->tag == DW_TAG_variable)
4055 {
4056 /* NOTE: carlton/2002-11-05: A C++ static data member
4057 should be a DW_TAG_member that is a declaration, but
4058 all versions of G++ as of this writing (so through at
4059 least 3.2.1) incorrectly generate DW_TAG_variable
4060 tags for them instead. */
4061 dwarf2_add_field (&fi, child_die, cu);
4062 }
4063 else if (child_die->tag == DW_TAG_subprogram)
4064 {
4065 /* C++ member function. */
4066 read_type_die (child_die, cu);
4067 dwarf2_add_member_fn (&fi, child_die, type, cu);
4068 }
4069 else if (child_die->tag == DW_TAG_inheritance)
4070 {
4071 /* C++ base class field. */
4072 dwarf2_add_field (&fi, child_die, cu);
4073 }
4074 child_die = sibling_die (child_die);
4075 }
4076
4077 /* Attach fields and member functions to the type. */
4078 if (fi.nfields)
4079 dwarf2_attach_fields_to_type (&fi, type, cu);
4080 if (fi.nfnfields)
4081 {
4082 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
4083
4084 /* Get the type which refers to the base class (possibly this
4085 class itself) which contains the vtable pointer for the current
4086 class from the DW_AT_containing_type attribute. */
4087
4088 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4089 {
4090 struct type *t = die_containing_type (die, cu);
4091
4092 TYPE_VPTR_BASETYPE (type) = t;
4093 if (type == t)
4094 {
4095 int i;
4096
4097 /* Our own class provides vtbl ptr. */
4098 for (i = TYPE_NFIELDS (t) - 1;
4099 i >= TYPE_N_BASECLASSES (t);
4100 --i)
4101 {
4102 char *fieldname = TYPE_FIELD_NAME (t, i);
4103
4104 if (is_vtable_name (fieldname, cu))
4105 {
4106 TYPE_VPTR_FIELDNO (type) = i;
4107 break;
4108 }
4109 }
4110
4111 /* Complain if virtual function table field not found. */
4112 if (i < TYPE_N_BASECLASSES (t))
4113 complaint (&symfile_complaints,
4114 _("virtual function table pointer not found when defining class '%s'"),
4115 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4116 "");
4117 }
4118 else
4119 {
4120 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4121 }
4122 }
4123 else if (cu->producer
4124 && strncmp (cu->producer,
4125 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4126 {
4127 /* The IBM XLC compiler does not provide direct indication
4128 of the containing type, but the vtable pointer is
4129 always named __vfp. */
4130
4131 int i;
4132
4133 for (i = TYPE_NFIELDS (type) - 1;
4134 i >= TYPE_N_BASECLASSES (type);
4135 --i)
4136 {
4137 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4138 {
4139 TYPE_VPTR_FIELDNO (type) = i;
4140 TYPE_VPTR_BASETYPE (type) = type;
4141 break;
4142 }
4143 }
4144 }
4145 }
4146
4147 do_cleanups (back_to);
4148 }
4149
4150 processing_current_prefix = previous_prefix;
4151 if (back_to != NULL)
4152 do_cleanups (back_to);
4153 }
4154
4155 static void
4156 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4157 {
4158 struct objfile *objfile = cu->objfile;
4159 const char *previous_prefix = processing_current_prefix;
4160 struct die_info *child_die = die->child;
4161
4162 if (TYPE_TAG_NAME (die->type) != NULL)
4163 processing_current_prefix = TYPE_TAG_NAME (die->type);
4164
4165 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4166 snapshots) has been known to create a die giving a declaration
4167 for a class that has, as a child, a die giving a definition for a
4168 nested class. So we have to process our children even if the
4169 current die is a declaration. Normally, of course, a declaration
4170 won't have any children at all. */
4171
4172 while (child_die != NULL && child_die->tag)
4173 {
4174 if (child_die->tag == DW_TAG_member
4175 || child_die->tag == DW_TAG_variable
4176 || child_die->tag == DW_TAG_inheritance)
4177 {
4178 /* Do nothing. */
4179 }
4180 else
4181 process_die (child_die, cu);
4182
4183 child_die = sibling_die (child_die);
4184 }
4185
4186 /* Do not consider external references. According to the DWARF standard,
4187 these DIEs are identified by the fact that they have no byte_size
4188 attribute, and a declaration attribute. */
4189 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4190 || !die_is_declaration (die, cu))
4191 new_symbol (die, die->type, cu);
4192
4193 processing_current_prefix = previous_prefix;
4194 }
4195
4196 /* Given a DW_AT_enumeration_type die, set its type. We do not
4197 complete the type's fields yet, or create any symbols. */
4198
4199 static void
4200 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4201 {
4202 struct objfile *objfile = cu->objfile;
4203 struct type *type;
4204 struct attribute *attr;
4205 char *name;
4206
4207 if (die->type)
4208 return;
4209
4210 type = alloc_type (objfile);
4211
4212 TYPE_CODE (type) = TYPE_CODE_ENUM;
4213 name = dwarf2_name (die, cu);
4214 if (name != NULL)
4215 {
4216 if (processing_has_namespace_info)
4217 {
4218 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4219 processing_current_prefix,
4220 name, cu);
4221 }
4222 else
4223 {
4224 /* The name is already allocated along with this objfile, so
4225 we don't need to duplicate it for the type. */
4226 TYPE_TAG_NAME (type) = name;
4227 }
4228 }
4229
4230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4231 if (attr)
4232 {
4233 TYPE_LENGTH (type) = DW_UNSND (attr);
4234 }
4235 else
4236 {
4237 TYPE_LENGTH (type) = 0;
4238 }
4239
4240 /* The enumeration DIE can be incomplete. In Ada, any type can be
4241 declared as private in the package spec, and then defined only
4242 inside the package body. Such types are known as Taft Amendment
4243 Types. When another package uses such a type, an incomplete DIE
4244 may be generated by the compiler. */
4245 if (die_is_declaration (die, cu))
4246 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4247
4248 set_die_type (die, type, cu);
4249 }
4250
4251 /* Determine the name of the type represented by DIE, which should be
4252 a named C++ or Java compound type. Return the name in question; the caller
4253 is responsible for xfree()'ing it. */
4254
4255 static char *
4256 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4257 {
4258 struct cleanup *back_to = NULL;
4259 struct die_info *spec_die = die_specification (die, cu);
4260 char *new_prefix = NULL;
4261
4262 /* If this is the definition of a class that is declared by another
4263 die, then processing_current_prefix may not be accurate; see
4264 read_func_scope for a similar example. */
4265 if (spec_die != NULL)
4266 {
4267 char *specification_prefix = determine_prefix (spec_die, cu);
4268 processing_current_prefix = specification_prefix;
4269 back_to = make_cleanup (xfree, specification_prefix);
4270 }
4271
4272 /* If we don't have namespace debug info, guess the name by trying
4273 to demangle the names of members, just like we did in
4274 guess_structure_name. */
4275 if (!processing_has_namespace_info)
4276 {
4277 struct die_info *child;
4278
4279 for (child = die->child;
4280 child != NULL && child->tag != 0;
4281 child = sibling_die (child))
4282 {
4283 if (child->tag == DW_TAG_subprogram)
4284 {
4285 new_prefix
4286 = language_class_name_from_physname (cu->language_defn,
4287 dwarf2_linkage_name
4288 (child, cu));
4289
4290 if (new_prefix != NULL)
4291 break;
4292 }
4293 }
4294 }
4295
4296 if (new_prefix == NULL)
4297 {
4298 const char *name = dwarf2_name (die, cu);
4299 new_prefix = typename_concat (NULL, processing_current_prefix,
4300 name ? name : "<<anonymous>>",
4301 cu);
4302 }
4303
4304 if (back_to != NULL)
4305 do_cleanups (back_to);
4306
4307 return new_prefix;
4308 }
4309
4310 /* Given a pointer to a die which begins an enumeration, process all
4311 the dies that define the members of the enumeration, and create the
4312 symbol for the enumeration type.
4313
4314 NOTE: We reverse the order of the element list. */
4315
4316 static void
4317 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4318 {
4319 struct objfile *objfile = cu->objfile;
4320 struct die_info *child_die;
4321 struct field *fields;
4322 struct symbol *sym;
4323 int num_fields;
4324 int unsigned_enum = 1;
4325 char *name;
4326
4327 num_fields = 0;
4328 fields = NULL;
4329 if (die->child != NULL)
4330 {
4331 child_die = die->child;
4332 while (child_die && child_die->tag)
4333 {
4334 if (child_die->tag != DW_TAG_enumerator)
4335 {
4336 process_die (child_die, cu);
4337 }
4338 else
4339 {
4340 name = dwarf2_name (child_die, cu);
4341 if (name)
4342 {
4343 sym = new_symbol (child_die, die->type, cu);
4344 if (SYMBOL_VALUE (sym) < 0)
4345 unsigned_enum = 0;
4346
4347 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4348 {
4349 fields = (struct field *)
4350 xrealloc (fields,
4351 (num_fields + DW_FIELD_ALLOC_CHUNK)
4352 * sizeof (struct field));
4353 }
4354
4355 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4356 FIELD_TYPE (fields[num_fields]) = NULL;
4357 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4358 FIELD_BITSIZE (fields[num_fields]) = 0;
4359 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4360
4361 num_fields++;
4362 }
4363 }
4364
4365 child_die = sibling_die (child_die);
4366 }
4367
4368 if (num_fields)
4369 {
4370 TYPE_NFIELDS (die->type) = num_fields;
4371 TYPE_FIELDS (die->type) = (struct field *)
4372 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4373 memcpy (TYPE_FIELDS (die->type), fields,
4374 sizeof (struct field) * num_fields);
4375 xfree (fields);
4376 }
4377 if (unsigned_enum)
4378 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4379 }
4380
4381 new_symbol (die, die->type, cu);
4382 }
4383
4384 /* Extract all information from a DW_TAG_array_type DIE and put it in
4385 the DIE's type field. For now, this only handles one dimensional
4386 arrays. */
4387
4388 static void
4389 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4390 {
4391 struct objfile *objfile = cu->objfile;
4392 struct die_info *child_die;
4393 struct type *type = NULL;
4394 struct type *element_type, *range_type, *index_type;
4395 struct type **range_types = NULL;
4396 struct attribute *attr;
4397 int ndim = 0;
4398 struct cleanup *back_to;
4399 char *name;
4400
4401 /* Return if we've already decoded this type. */
4402 if (die->type)
4403 {
4404 return;
4405 }
4406
4407 element_type = die_type (die, cu);
4408
4409 /* Irix 6.2 native cc creates array types without children for
4410 arrays with unspecified length. */
4411 if (die->child == NULL)
4412 {
4413 index_type = builtin_type_int32;
4414 range_type = create_range_type (NULL, index_type, 0, -1);
4415 set_die_type (die, create_array_type (NULL, element_type, range_type),
4416 cu);
4417 return;
4418 }
4419
4420 back_to = make_cleanup (null_cleanup, NULL);
4421 child_die = die->child;
4422 while (child_die && child_die->tag)
4423 {
4424 if (child_die->tag == DW_TAG_subrange_type)
4425 {
4426 read_subrange_type (child_die, cu);
4427
4428 if (child_die->type != NULL)
4429 {
4430 /* The range type was succesfully read. Save it for
4431 the array type creation. */
4432 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4433 {
4434 range_types = (struct type **)
4435 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4436 * sizeof (struct type *));
4437 if (ndim == 0)
4438 make_cleanup (free_current_contents, &range_types);
4439 }
4440 range_types[ndim++] = child_die->type;
4441 }
4442 }
4443 child_die = sibling_die (child_die);
4444 }
4445
4446 /* Dwarf2 dimensions are output from left to right, create the
4447 necessary array types in backwards order. */
4448
4449 type = element_type;
4450
4451 if (read_array_order (die, cu) == DW_ORD_col_major)
4452 {
4453 int i = 0;
4454 while (i < ndim)
4455 type = create_array_type (NULL, type, range_types[i++]);
4456 }
4457 else
4458 {
4459 while (ndim-- > 0)
4460 type = create_array_type (NULL, type, range_types[ndim]);
4461 }
4462
4463 /* Understand Dwarf2 support for vector types (like they occur on
4464 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4465 array type. This is not part of the Dwarf2/3 standard yet, but a
4466 custom vendor extension. The main difference between a regular
4467 array and the vector variant is that vectors are passed by value
4468 to functions. */
4469 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4470 if (attr)
4471 make_vector_type (type);
4472
4473 name = dwarf2_name (die, cu);
4474 if (name)
4475 TYPE_NAME (type) = name;
4476
4477 do_cleanups (back_to);
4478
4479 /* Install the type in the die. */
4480 set_die_type (die, type, cu);
4481 }
4482
4483 static enum dwarf_array_dim_ordering
4484 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4485 {
4486 struct attribute *attr;
4487
4488 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4489
4490 if (attr) return DW_SND (attr);
4491
4492 /*
4493 GNU F77 is a special case, as at 08/2004 array type info is the
4494 opposite order to the dwarf2 specification, but data is still
4495 laid out as per normal fortran.
4496
4497 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4498 version checking.
4499 */
4500
4501 if (cu->language == language_fortran &&
4502 cu->producer && strstr (cu->producer, "GNU F77"))
4503 {
4504 return DW_ORD_row_major;
4505 }
4506
4507 switch (cu->language_defn->la_array_ordering)
4508 {
4509 case array_column_major:
4510 return DW_ORD_col_major;
4511 case array_row_major:
4512 default:
4513 return DW_ORD_row_major;
4514 };
4515 }
4516
4517 /* Extract all information from a DW_TAG_set_type DIE and put it in
4518 the DIE's type field. */
4519
4520 static void
4521 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4522 {
4523 if (die->type == NULL)
4524 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4525 }
4526
4527 /* First cut: install each common block member as a global variable. */
4528
4529 static void
4530 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4531 {
4532 struct die_info *child_die;
4533 struct attribute *attr;
4534 struct symbol *sym;
4535 CORE_ADDR base = (CORE_ADDR) 0;
4536
4537 attr = dwarf2_attr (die, DW_AT_location, cu);
4538 if (attr)
4539 {
4540 /* Support the .debug_loc offsets */
4541 if (attr_form_is_block (attr))
4542 {
4543 base = decode_locdesc (DW_BLOCK (attr), cu);
4544 }
4545 else if (attr_form_is_section_offset (attr))
4546 {
4547 dwarf2_complex_location_expr_complaint ();
4548 }
4549 else
4550 {
4551 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4552 "common block member");
4553 }
4554 }
4555 if (die->child != NULL)
4556 {
4557 child_die = die->child;
4558 while (child_die && child_die->tag)
4559 {
4560 sym = new_symbol (child_die, NULL, cu);
4561 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4562 if (attr)
4563 {
4564 SYMBOL_VALUE_ADDRESS (sym) =
4565 base + decode_locdesc (DW_BLOCK (attr), cu);
4566 add_symbol_to_list (sym, &global_symbols);
4567 }
4568 child_die = sibling_die (child_die);
4569 }
4570 }
4571 }
4572
4573 /* Read a C++ namespace. */
4574
4575 static void
4576 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4577 {
4578 struct objfile *objfile = cu->objfile;
4579 const char *previous_prefix = processing_current_prefix;
4580 const char *name;
4581 int is_anonymous;
4582 struct die_info *current_die;
4583 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4584
4585 name = namespace_name (die, &is_anonymous, cu);
4586
4587 /* Now build the name of the current namespace. */
4588
4589 if (previous_prefix[0] == '\0')
4590 {
4591 processing_current_prefix = name;
4592 }
4593 else
4594 {
4595 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4596 make_cleanup (xfree, temp_name);
4597 processing_current_prefix = temp_name;
4598 }
4599
4600 /* Add a symbol associated to this if we haven't seen the namespace
4601 before. Also, add a using directive if it's an anonymous
4602 namespace. */
4603
4604 if (dwarf2_extension (die, cu) == NULL)
4605 {
4606 struct type *type;
4607
4608 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4609 this cast will hopefully become unnecessary. */
4610 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4611 (char *) processing_current_prefix,
4612 objfile);
4613 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4614
4615 new_symbol (die, type, cu);
4616 set_die_type (die, type, cu);
4617
4618 if (is_anonymous)
4619 cp_add_using_directive (processing_current_prefix,
4620 strlen (previous_prefix),
4621 strlen (processing_current_prefix));
4622 }
4623
4624 if (die->child != NULL)
4625 {
4626 struct die_info *child_die = die->child;
4627
4628 while (child_die && child_die->tag)
4629 {
4630 process_die (child_die, cu);
4631 child_die = sibling_die (child_die);
4632 }
4633 }
4634
4635 processing_current_prefix = previous_prefix;
4636 do_cleanups (back_to);
4637 }
4638
4639 /* Return the name of the namespace represented by DIE. Set
4640 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4641 namespace. */
4642
4643 static const char *
4644 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4645 {
4646 struct die_info *current_die;
4647 const char *name = NULL;
4648
4649 /* Loop through the extensions until we find a name. */
4650
4651 for (current_die = die;
4652 current_die != NULL;
4653 current_die = dwarf2_extension (die, cu))
4654 {
4655 name = dwarf2_name (current_die, cu);
4656 if (name != NULL)
4657 break;
4658 }
4659
4660 /* Is it an anonymous namespace? */
4661
4662 *is_anonymous = (name == NULL);
4663 if (*is_anonymous)
4664 name = "(anonymous namespace)";
4665
4666 return name;
4667 }
4668
4669 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4670 the user defined type vector. */
4671
4672 static void
4673 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4674 {
4675 struct comp_unit_head *cu_header = &cu->header;
4676 struct type *type;
4677 struct attribute *attr_byte_size;
4678 struct attribute *attr_address_class;
4679 int byte_size, addr_class;
4680
4681 if (die->type)
4682 {
4683 return;
4684 }
4685
4686 type = lookup_pointer_type (die_type (die, cu));
4687
4688 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4689 if (attr_byte_size)
4690 byte_size = DW_UNSND (attr_byte_size);
4691 else
4692 byte_size = cu_header->addr_size;
4693
4694 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4695 if (attr_address_class)
4696 addr_class = DW_UNSND (attr_address_class);
4697 else
4698 addr_class = DW_ADDR_none;
4699
4700 /* If the pointer size or address class is different than the
4701 default, create a type variant marked as such and set the
4702 length accordingly. */
4703 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4704 {
4705 if (gdbarch_address_class_type_flags_p (current_gdbarch))
4706 {
4707 int type_flags;
4708
4709 type_flags = gdbarch_address_class_type_flags
4710 (current_gdbarch, byte_size, addr_class);
4711 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4712 type = make_type_with_address_space (type, type_flags);
4713 }
4714 else if (TYPE_LENGTH (type) != byte_size)
4715 {
4716 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4717 }
4718 else {
4719 /* Should we also complain about unhandled address classes? */
4720 }
4721 }
4722
4723 TYPE_LENGTH (type) = byte_size;
4724 set_die_type (die, type, cu);
4725 }
4726
4727 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4728 the user defined type vector. */
4729
4730 static void
4731 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4732 {
4733 struct objfile *objfile = cu->objfile;
4734 struct type *type;
4735 struct type *to_type;
4736 struct type *domain;
4737
4738 if (die->type)
4739 {
4740 return;
4741 }
4742
4743 to_type = die_type (die, cu);
4744 domain = die_containing_type (die, cu);
4745
4746 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4747 type = lookup_methodptr_type (to_type);
4748 else
4749 type = lookup_memberptr_type (to_type, domain);
4750
4751 set_die_type (die, type, cu);
4752 }
4753
4754 /* Extract all information from a DW_TAG_reference_type DIE and add to
4755 the user defined type vector. */
4756
4757 static void
4758 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4759 {
4760 struct comp_unit_head *cu_header = &cu->header;
4761 struct type *type;
4762 struct attribute *attr;
4763
4764 if (die->type)
4765 {
4766 return;
4767 }
4768
4769 type = lookup_reference_type (die_type (die, cu));
4770 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4771 if (attr)
4772 {
4773 TYPE_LENGTH (type) = DW_UNSND (attr);
4774 }
4775 else
4776 {
4777 TYPE_LENGTH (type) = cu_header->addr_size;
4778 }
4779 set_die_type (die, type, cu);
4780 }
4781
4782 static void
4783 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4784 {
4785 struct type *base_type;
4786
4787 if (die->type)
4788 {
4789 return;
4790 }
4791
4792 base_type = die_type (die, cu);
4793 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4794 cu);
4795 }
4796
4797 static void
4798 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4799 {
4800 struct type *base_type;
4801
4802 if (die->type)
4803 {
4804 return;
4805 }
4806
4807 base_type = die_type (die, cu);
4808 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4809 cu);
4810 }
4811
4812 /* Extract all information from a DW_TAG_string_type DIE and add to
4813 the user defined type vector. It isn't really a user defined type,
4814 but it behaves like one, with other DIE's using an AT_user_def_type
4815 attribute to reference it. */
4816
4817 static void
4818 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4819 {
4820 struct objfile *objfile = cu->objfile;
4821 struct type *type, *range_type, *index_type, *char_type;
4822 struct attribute *attr;
4823 unsigned int length;
4824
4825 if (die->type)
4826 {
4827 return;
4828 }
4829
4830 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4831 if (attr)
4832 {
4833 length = DW_UNSND (attr);
4834 }
4835 else
4836 {
4837 /* check for the DW_AT_byte_size attribute */
4838 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4839 if (attr)
4840 {
4841 length = DW_UNSND (attr);
4842 }
4843 else
4844 {
4845 length = 1;
4846 }
4847 }
4848
4849 index_type = builtin_type_int32;
4850 range_type = create_range_type (NULL, index_type, 1, length);
4851 type = create_string_type (NULL, range_type);
4852
4853 set_die_type (die, type, cu);
4854 }
4855
4856 /* Handle DIES due to C code like:
4857
4858 struct foo
4859 {
4860 int (*funcp)(int a, long l);
4861 int b;
4862 };
4863
4864 ('funcp' generates a DW_TAG_subroutine_type DIE)
4865 */
4866
4867 static void
4868 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4869 {
4870 struct type *type; /* Type that this function returns */
4871 struct type *ftype; /* Function that returns above type */
4872 struct attribute *attr;
4873
4874 /* Decode the type that this subroutine returns */
4875 if (die->type)
4876 {
4877 return;
4878 }
4879 type = die_type (die, cu);
4880 ftype = make_function_type (type, (struct type **) 0);
4881
4882 /* All functions in C++, Pascal and Java have prototypes. */
4883 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4884 if ((attr && (DW_UNSND (attr) != 0))
4885 || cu->language == language_cplus
4886 || cu->language == language_java
4887 || cu->language == language_pascal)
4888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4889
4890 if (die->child != NULL)
4891 {
4892 struct die_info *child_die;
4893 int nparams = 0;
4894 int iparams = 0;
4895
4896 /* Count the number of parameters.
4897 FIXME: GDB currently ignores vararg functions, but knows about
4898 vararg member functions. */
4899 child_die = die->child;
4900 while (child_die && child_die->tag)
4901 {
4902 if (child_die->tag == DW_TAG_formal_parameter)
4903 nparams++;
4904 else if (child_die->tag == DW_TAG_unspecified_parameters)
4905 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4906 child_die = sibling_die (child_die);
4907 }
4908
4909 /* Allocate storage for parameters and fill them in. */
4910 TYPE_NFIELDS (ftype) = nparams;
4911 TYPE_FIELDS (ftype) = (struct field *)
4912 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4913
4914 child_die = die->child;
4915 while (child_die && child_die->tag)
4916 {
4917 if (child_die->tag == DW_TAG_formal_parameter)
4918 {
4919 /* Dwarf2 has no clean way to discern C++ static and non-static
4920 member functions. G++ helps GDB by marking the first
4921 parameter for non-static member functions (which is the
4922 this pointer) as artificial. We pass this information
4923 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4924 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4925 if (attr)
4926 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4927 else
4928 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4929 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4930 iparams++;
4931 }
4932 child_die = sibling_die (child_die);
4933 }
4934 }
4935
4936 set_die_type (die, ftype, cu);
4937 }
4938
4939 static void
4940 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4941 {
4942 struct objfile *objfile = cu->objfile;
4943 struct attribute *attr;
4944 char *name = NULL;
4945
4946 if (!die->type)
4947 {
4948 name = dwarf2_name (die, cu);
4949 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4950 TYPE_FLAG_TARGET_STUB, name, objfile),
4951 cu);
4952 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4953 }
4954 }
4955
4956 /* Find a representation of a given base type and install
4957 it in the TYPE field of the die. */
4958
4959 static void
4960 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4961 {
4962 struct objfile *objfile = cu->objfile;
4963 struct type *type;
4964 struct attribute *attr;
4965 int encoding = 0, size = 0;
4966 char *name;
4967 enum type_code code = TYPE_CODE_INT;
4968 int type_flags = 0;
4969 struct type *target_type = NULL;
4970
4971 /* If we've already decoded this die, this is a no-op. */
4972 if (die->type)
4973 {
4974 return;
4975 }
4976
4977 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4978 if (attr)
4979 {
4980 encoding = DW_UNSND (attr);
4981 }
4982 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4983 if (attr)
4984 {
4985 size = DW_UNSND (attr);
4986 }
4987 name = dwarf2_name (die, cu);
4988 if (!name)
4989 {
4990 complaint (&symfile_complaints,
4991 _("DW_AT_name missing from DW_TAG_base_type"));
4992 }
4993
4994 switch (encoding)
4995 {
4996 case DW_ATE_address:
4997 /* Turn DW_ATE_address into a void * pointer. */
4998 code = TYPE_CODE_PTR;
4999 type_flags |= TYPE_FLAG_UNSIGNED;
5000 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
5001 break;
5002 case DW_ATE_boolean:
5003 code = TYPE_CODE_BOOL;
5004 type_flags |= TYPE_FLAG_UNSIGNED;
5005 break;
5006 case DW_ATE_complex_float:
5007 code = TYPE_CODE_COMPLEX;
5008 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5009 break;
5010 case DW_ATE_decimal_float:
5011 code = TYPE_CODE_DECFLOAT;
5012 break;
5013 case DW_ATE_float:
5014 code = TYPE_CODE_FLT;
5015 break;
5016 case DW_ATE_signed:
5017 break;
5018 case DW_ATE_unsigned:
5019 type_flags |= TYPE_FLAG_UNSIGNED;
5020 break;
5021 case DW_ATE_signed_char:
5022 if (cu->language == language_ada || cu->language == language_m2)
5023 code = TYPE_CODE_CHAR;
5024 break;
5025 case DW_ATE_unsigned_char:
5026 if (cu->language == language_ada || cu->language == language_m2)
5027 code = TYPE_CODE_CHAR;
5028 type_flags |= TYPE_FLAG_UNSIGNED;
5029 break;
5030 default:
5031 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5032 dwarf_type_encoding_name (encoding));
5033 break;
5034 }
5035
5036 type = init_type (code, size, type_flags, name, objfile);
5037 TYPE_TARGET_TYPE (type) = target_type;
5038
5039 set_die_type (die, type, cu);
5040 }
5041
5042 /* Read the given DW_AT_subrange DIE. */
5043
5044 static void
5045 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5046 {
5047 struct type *base_type;
5048 struct type *range_type;
5049 struct attribute *attr;
5050 int low = 0;
5051 int high = -1;
5052 char *name;
5053
5054 /* If we have already decoded this die, then nothing more to do. */
5055 if (die->type)
5056 return;
5057
5058 base_type = die_type (die, cu);
5059 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
5060 {
5061 complaint (&symfile_complaints,
5062 _("DW_AT_type missing from DW_TAG_subrange_type"));
5063 base_type
5064 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (current_gdbarch) / 8,
5065 0, NULL, cu->objfile);
5066 }
5067
5068 if (cu->language == language_fortran)
5069 {
5070 /* FORTRAN implies a lower bound of 1, if not given. */
5071 low = 1;
5072 }
5073
5074 /* FIXME: For variable sized arrays either of these could be
5075 a variable rather than a constant value. We'll allow it,
5076 but we don't know how to handle it. */
5077 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
5078 if (attr)
5079 low = dwarf2_get_attr_constant_value (attr, 0);
5080
5081 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
5082 if (attr)
5083 {
5084 if (attr->form == DW_FORM_block1)
5085 {
5086 /* GCC encodes arrays with unspecified or dynamic length
5087 with a DW_FORM_block1 attribute.
5088 FIXME: GDB does not yet know how to handle dynamic
5089 arrays properly, treat them as arrays with unspecified
5090 length for now.
5091
5092 FIXME: jimb/2003-09-22: GDB does not really know
5093 how to handle arrays of unspecified length
5094 either; we just represent them as zero-length
5095 arrays. Choose an appropriate upper bound given
5096 the lower bound we've computed above. */
5097 high = low - 1;
5098 }
5099 else
5100 high = dwarf2_get_attr_constant_value (attr, 1);
5101 }
5102
5103 range_type = create_range_type (NULL, base_type, low, high);
5104
5105 name = dwarf2_name (die, cu);
5106 if (name)
5107 TYPE_NAME (range_type) = name;
5108
5109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5110 if (attr)
5111 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5112
5113 set_die_type (die, range_type, cu);
5114 }
5115
5116 static void
5117 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5118 {
5119 struct type *type;
5120
5121 if (die->type)
5122 return;
5123
5124 /* For now, we only support the C meaning of an unspecified type: void. */
5125
5126 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
5127 cu->objfile);
5128
5129 set_die_type (die, type, cu);
5130 }
5131
5132 /* Read a whole compilation unit into a linked list of dies. */
5133
5134 static struct die_info *
5135 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5136 {
5137 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5138 }
5139
5140 /* Read a single die and all its descendents. Set the die's sibling
5141 field to NULL; set other fields in the die correctly, and set all
5142 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5143 location of the info_ptr after reading all of those dies. PARENT
5144 is the parent of the die in question. */
5145
5146 static struct die_info *
5147 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5148 struct dwarf2_cu *cu,
5149 gdb_byte **new_info_ptr,
5150 struct die_info *parent)
5151 {
5152 struct die_info *die;
5153 gdb_byte *cur_ptr;
5154 int has_children;
5155
5156 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5157 store_in_ref_table (die->offset, die, cu);
5158
5159 if (has_children)
5160 {
5161 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5162 new_info_ptr, die);
5163 }
5164 else
5165 {
5166 die->child = NULL;
5167 *new_info_ptr = cur_ptr;
5168 }
5169
5170 die->sibling = NULL;
5171 die->parent = parent;
5172 return die;
5173 }
5174
5175 /* Read a die, all of its descendents, and all of its siblings; set
5176 all of the fields of all of the dies correctly. Arguments are as
5177 in read_die_and_children. */
5178
5179 static struct die_info *
5180 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5181 struct dwarf2_cu *cu,
5182 gdb_byte **new_info_ptr,
5183 struct die_info *parent)
5184 {
5185 struct die_info *first_die, *last_sibling;
5186 gdb_byte *cur_ptr;
5187
5188 cur_ptr = info_ptr;
5189 first_die = last_sibling = NULL;
5190
5191 while (1)
5192 {
5193 struct die_info *die
5194 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5195
5196 if (!first_die)
5197 {
5198 first_die = die;
5199 }
5200 else
5201 {
5202 last_sibling->sibling = die;
5203 }
5204
5205 if (die->tag == 0)
5206 {
5207 *new_info_ptr = cur_ptr;
5208 return first_die;
5209 }
5210 else
5211 {
5212 last_sibling = die;
5213 }
5214 }
5215 }
5216
5217 /* Free a linked list of dies. */
5218
5219 static void
5220 free_die_list (struct die_info *dies)
5221 {
5222 struct die_info *die, *next;
5223
5224 die = dies;
5225 while (die)
5226 {
5227 if (die->child != NULL)
5228 free_die_list (die->child);
5229 next = die->sibling;
5230 xfree (die->attrs);
5231 xfree (die);
5232 die = next;
5233 }
5234 }
5235
5236 /* Read the contents of the section at OFFSET and of size SIZE from the
5237 object file specified by OBJFILE into the objfile_obstack and return it. */
5238
5239 gdb_byte *
5240 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5241 {
5242 bfd *abfd = objfile->obfd;
5243 gdb_byte *buf, *retbuf;
5244 bfd_size_type size = bfd_get_section_size (sectp);
5245
5246 if (size == 0)
5247 return NULL;
5248
5249 buf = obstack_alloc (&objfile->objfile_obstack, size);
5250 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5251 if (retbuf != NULL)
5252 return retbuf;
5253
5254 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5255 || bfd_bread (buf, size, abfd) != size)
5256 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5257 bfd_get_filename (abfd));
5258
5259 return buf;
5260 }
5261
5262 /* In DWARF version 2, the description of the debugging information is
5263 stored in a separate .debug_abbrev section. Before we read any
5264 dies from a section we read in all abbreviations and install them
5265 in a hash table. This function also sets flags in CU describing
5266 the data found in the abbrev table. */
5267
5268 static void
5269 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5270 {
5271 struct comp_unit_head *cu_header = &cu->header;
5272 gdb_byte *abbrev_ptr;
5273 struct abbrev_info *cur_abbrev;
5274 unsigned int abbrev_number, bytes_read, abbrev_name;
5275 unsigned int abbrev_form, hash_number;
5276 struct attr_abbrev *cur_attrs;
5277 unsigned int allocated_attrs;
5278
5279 /* Initialize dwarf2 abbrevs */
5280 obstack_init (&cu->abbrev_obstack);
5281 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5282 (ABBREV_HASH_SIZE
5283 * sizeof (struct abbrev_info *)));
5284 memset (cu->dwarf2_abbrevs, 0,
5285 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5286
5287 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5288 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5289 abbrev_ptr += bytes_read;
5290
5291 allocated_attrs = ATTR_ALLOC_CHUNK;
5292 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5293
5294 /* loop until we reach an abbrev number of 0 */
5295 while (abbrev_number)
5296 {
5297 cur_abbrev = dwarf_alloc_abbrev (cu);
5298
5299 /* read in abbrev header */
5300 cur_abbrev->number = abbrev_number;
5301 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5302 abbrev_ptr += bytes_read;
5303 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5304 abbrev_ptr += 1;
5305
5306 if (cur_abbrev->tag == DW_TAG_namespace)
5307 cu->has_namespace_info = 1;
5308
5309 /* now read in declarations */
5310 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5311 abbrev_ptr += bytes_read;
5312 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5313 abbrev_ptr += bytes_read;
5314 while (abbrev_name)
5315 {
5316 if (cur_abbrev->num_attrs == allocated_attrs)
5317 {
5318 allocated_attrs += ATTR_ALLOC_CHUNK;
5319 cur_attrs
5320 = xrealloc (cur_attrs, (allocated_attrs
5321 * sizeof (struct attr_abbrev)));
5322 }
5323
5324 /* Record whether this compilation unit might have
5325 inter-compilation-unit references. If we don't know what form
5326 this attribute will have, then it might potentially be a
5327 DW_FORM_ref_addr, so we conservatively expect inter-CU
5328 references. */
5329
5330 if (abbrev_form == DW_FORM_ref_addr
5331 || abbrev_form == DW_FORM_indirect)
5332 cu->has_form_ref_addr = 1;
5333
5334 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5335 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5336 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5337 abbrev_ptr += bytes_read;
5338 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5339 abbrev_ptr += bytes_read;
5340 }
5341
5342 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5343 (cur_abbrev->num_attrs
5344 * sizeof (struct attr_abbrev)));
5345 memcpy (cur_abbrev->attrs, cur_attrs,
5346 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5347
5348 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5349 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5350 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5351
5352 /* Get next abbreviation.
5353 Under Irix6 the abbreviations for a compilation unit are not
5354 always properly terminated with an abbrev number of 0.
5355 Exit loop if we encounter an abbreviation which we have
5356 already read (which means we are about to read the abbreviations
5357 for the next compile unit) or if the end of the abbreviation
5358 table is reached. */
5359 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5360 >= dwarf2_per_objfile->abbrev_size)
5361 break;
5362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5363 abbrev_ptr += bytes_read;
5364 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5365 break;
5366 }
5367
5368 xfree (cur_attrs);
5369 }
5370
5371 /* Release the memory used by the abbrev table for a compilation unit. */
5372
5373 static void
5374 dwarf2_free_abbrev_table (void *ptr_to_cu)
5375 {
5376 struct dwarf2_cu *cu = ptr_to_cu;
5377
5378 obstack_free (&cu->abbrev_obstack, NULL);
5379 cu->dwarf2_abbrevs = NULL;
5380 }
5381
5382 /* Lookup an abbrev_info structure in the abbrev hash table. */
5383
5384 static struct abbrev_info *
5385 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5386 {
5387 unsigned int hash_number;
5388 struct abbrev_info *abbrev;
5389
5390 hash_number = number % ABBREV_HASH_SIZE;
5391 abbrev = cu->dwarf2_abbrevs[hash_number];
5392
5393 while (abbrev)
5394 {
5395 if (abbrev->number == number)
5396 return abbrev;
5397 else
5398 abbrev = abbrev->next;
5399 }
5400 return NULL;
5401 }
5402
5403 /* Returns nonzero if TAG represents a type that we might generate a partial
5404 symbol for. */
5405
5406 static int
5407 is_type_tag_for_partial (int tag)
5408 {
5409 switch (tag)
5410 {
5411 #if 0
5412 /* Some types that would be reasonable to generate partial symbols for,
5413 that we don't at present. */
5414 case DW_TAG_array_type:
5415 case DW_TAG_file_type:
5416 case DW_TAG_ptr_to_member_type:
5417 case DW_TAG_set_type:
5418 case DW_TAG_string_type:
5419 case DW_TAG_subroutine_type:
5420 #endif
5421 case DW_TAG_base_type:
5422 case DW_TAG_class_type:
5423 case DW_TAG_interface_type:
5424 case DW_TAG_enumeration_type:
5425 case DW_TAG_structure_type:
5426 case DW_TAG_subrange_type:
5427 case DW_TAG_typedef:
5428 case DW_TAG_union_type:
5429 return 1;
5430 default:
5431 return 0;
5432 }
5433 }
5434
5435 /* Load all DIEs that are interesting for partial symbols into memory. */
5436
5437 static struct partial_die_info *
5438 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5439 struct dwarf2_cu *cu)
5440 {
5441 struct partial_die_info *part_die;
5442 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5443 struct abbrev_info *abbrev;
5444 unsigned int bytes_read;
5445 unsigned int load_all = 0;
5446
5447 int nesting_level = 1;
5448
5449 parent_die = NULL;
5450 last_die = NULL;
5451
5452 if (cu->per_cu && cu->per_cu->load_all_dies)
5453 load_all = 1;
5454
5455 cu->partial_dies
5456 = htab_create_alloc_ex (cu->header.length / 12,
5457 partial_die_hash,
5458 partial_die_eq,
5459 NULL,
5460 &cu->comp_unit_obstack,
5461 hashtab_obstack_allocate,
5462 dummy_obstack_deallocate);
5463
5464 part_die = obstack_alloc (&cu->comp_unit_obstack,
5465 sizeof (struct partial_die_info));
5466
5467 while (1)
5468 {
5469 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5470
5471 /* A NULL abbrev means the end of a series of children. */
5472 if (abbrev == NULL)
5473 {
5474 if (--nesting_level == 0)
5475 {
5476 /* PART_DIE was probably the last thing allocated on the
5477 comp_unit_obstack, so we could call obstack_free
5478 here. We don't do that because the waste is small,
5479 and will be cleaned up when we're done with this
5480 compilation unit. This way, we're also more robust
5481 against other users of the comp_unit_obstack. */
5482 return first_die;
5483 }
5484 info_ptr += bytes_read;
5485 last_die = parent_die;
5486 parent_die = parent_die->die_parent;
5487 continue;
5488 }
5489
5490 /* Check whether this DIE is interesting enough to save. Normally
5491 we would not be interested in members here, but there may be
5492 later variables referencing them via DW_AT_specification (for
5493 static members). */
5494 if (!load_all
5495 && !is_type_tag_for_partial (abbrev->tag)
5496 && abbrev->tag != DW_TAG_enumerator
5497 && abbrev->tag != DW_TAG_subprogram
5498 && abbrev->tag != DW_TAG_variable
5499 && abbrev->tag != DW_TAG_namespace
5500 && abbrev->tag != DW_TAG_member)
5501 {
5502 /* Otherwise we skip to the next sibling, if any. */
5503 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5504 continue;
5505 }
5506
5507 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5508 abfd, info_ptr, cu);
5509
5510 /* This two-pass algorithm for processing partial symbols has a
5511 high cost in cache pressure. Thus, handle some simple cases
5512 here which cover the majority of C partial symbols. DIEs
5513 which neither have specification tags in them, nor could have
5514 specification tags elsewhere pointing at them, can simply be
5515 processed and discarded.
5516
5517 This segment is also optional; scan_partial_symbols and
5518 add_partial_symbol will handle these DIEs if we chain
5519 them in normally. When compilers which do not emit large
5520 quantities of duplicate debug information are more common,
5521 this code can probably be removed. */
5522
5523 /* Any complete simple types at the top level (pretty much all
5524 of them, for a language without namespaces), can be processed
5525 directly. */
5526 if (parent_die == NULL
5527 && part_die->has_specification == 0
5528 && part_die->is_declaration == 0
5529 && (part_die->tag == DW_TAG_typedef
5530 || part_die->tag == DW_TAG_base_type
5531 || part_die->tag == DW_TAG_subrange_type))
5532 {
5533 if (building_psymtab && part_die->name != NULL)
5534 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5535 VAR_DOMAIN, LOC_TYPEDEF,
5536 &cu->objfile->static_psymbols,
5537 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5538 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5539 continue;
5540 }
5541
5542 /* If we're at the second level, and we're an enumerator, and
5543 our parent has no specification (meaning possibly lives in a
5544 namespace elsewhere), then we can add the partial symbol now
5545 instead of queueing it. */
5546 if (part_die->tag == DW_TAG_enumerator
5547 && parent_die != NULL
5548 && parent_die->die_parent == NULL
5549 && parent_die->tag == DW_TAG_enumeration_type
5550 && parent_die->has_specification == 0)
5551 {
5552 if (part_die->name == NULL)
5553 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5554 else if (building_psymtab)
5555 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5556 VAR_DOMAIN, LOC_CONST,
5557 (cu->language == language_cplus
5558 || cu->language == language_java)
5559 ? &cu->objfile->global_psymbols
5560 : &cu->objfile->static_psymbols,
5561 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5562
5563 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5564 continue;
5565 }
5566
5567 /* We'll save this DIE so link it in. */
5568 part_die->die_parent = parent_die;
5569 part_die->die_sibling = NULL;
5570 part_die->die_child = NULL;
5571
5572 if (last_die && last_die == parent_die)
5573 last_die->die_child = part_die;
5574 else if (last_die)
5575 last_die->die_sibling = part_die;
5576
5577 last_die = part_die;
5578
5579 if (first_die == NULL)
5580 first_die = part_die;
5581
5582 /* Maybe add the DIE to the hash table. Not all DIEs that we
5583 find interesting need to be in the hash table, because we
5584 also have the parent/sibling/child chains; only those that we
5585 might refer to by offset later during partial symbol reading.
5586
5587 For now this means things that might have be the target of a
5588 DW_AT_specification, DW_AT_abstract_origin, or
5589 DW_AT_extension. DW_AT_extension will refer only to
5590 namespaces; DW_AT_abstract_origin refers to functions (and
5591 many things under the function DIE, but we do not recurse
5592 into function DIEs during partial symbol reading) and
5593 possibly variables as well; DW_AT_specification refers to
5594 declarations. Declarations ought to have the DW_AT_declaration
5595 flag. It happens that GCC forgets to put it in sometimes, but
5596 only for functions, not for types.
5597
5598 Adding more things than necessary to the hash table is harmless
5599 except for the performance cost. Adding too few will result in
5600 wasted time in find_partial_die, when we reread the compilation
5601 unit with load_all_dies set. */
5602
5603 if (load_all
5604 || abbrev->tag == DW_TAG_subprogram
5605 || abbrev->tag == DW_TAG_variable
5606 || abbrev->tag == DW_TAG_namespace
5607 || part_die->is_declaration)
5608 {
5609 void **slot;
5610
5611 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5612 part_die->offset, INSERT);
5613 *slot = part_die;
5614 }
5615
5616 part_die = obstack_alloc (&cu->comp_unit_obstack,
5617 sizeof (struct partial_die_info));
5618
5619 /* For some DIEs we want to follow their children (if any). For C
5620 we have no reason to follow the children of structures; for other
5621 languages we have to, both so that we can get at method physnames
5622 to infer fully qualified class names, and for DW_AT_specification. */
5623 if (last_die->has_children
5624 && (load_all
5625 || last_die->tag == DW_TAG_namespace
5626 || last_die->tag == DW_TAG_enumeration_type
5627 || (cu->language != language_c
5628 && (last_die->tag == DW_TAG_class_type
5629 || last_die->tag == DW_TAG_interface_type
5630 || last_die->tag == DW_TAG_structure_type
5631 || last_die->tag == DW_TAG_union_type))))
5632 {
5633 nesting_level++;
5634 parent_die = last_die;
5635 continue;
5636 }
5637
5638 /* Otherwise we skip to the next sibling, if any. */
5639 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5640
5641 /* Back to the top, do it again. */
5642 }
5643 }
5644
5645 /* Read a minimal amount of information into the minimal die structure. */
5646
5647 static gdb_byte *
5648 read_partial_die (struct partial_die_info *part_die,
5649 struct abbrev_info *abbrev,
5650 unsigned int abbrev_len, bfd *abfd,
5651 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5652 {
5653 unsigned int bytes_read, i;
5654 struct attribute attr;
5655 int has_low_pc_attr = 0;
5656 int has_high_pc_attr = 0;
5657
5658 memset (part_die, 0, sizeof (struct partial_die_info));
5659
5660 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5661
5662 info_ptr += abbrev_len;
5663
5664 if (abbrev == NULL)
5665 return info_ptr;
5666
5667 part_die->tag = abbrev->tag;
5668 part_die->has_children = abbrev->has_children;
5669
5670 for (i = 0; i < abbrev->num_attrs; ++i)
5671 {
5672 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5673
5674 /* Store the data if it is of an attribute we want to keep in a
5675 partial symbol table. */
5676 switch (attr.name)
5677 {
5678 case DW_AT_name:
5679
5680 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5681 if (part_die->name == NULL)
5682 part_die->name = DW_STRING (&attr);
5683 break;
5684 case DW_AT_comp_dir:
5685 if (part_die->dirname == NULL)
5686 part_die->dirname = DW_STRING (&attr);
5687 break;
5688 case DW_AT_MIPS_linkage_name:
5689 part_die->name = DW_STRING (&attr);
5690 break;
5691 case DW_AT_low_pc:
5692 has_low_pc_attr = 1;
5693 part_die->lowpc = DW_ADDR (&attr);
5694 break;
5695 case DW_AT_high_pc:
5696 has_high_pc_attr = 1;
5697 part_die->highpc = DW_ADDR (&attr);
5698 break;
5699 case DW_AT_ranges:
5700 if (dwarf2_ranges_read (DW_UNSND (&attr), &part_die->lowpc,
5701 &part_die->highpc, cu))
5702 has_low_pc_attr = has_high_pc_attr = 1;
5703 break;
5704 case DW_AT_location:
5705 /* Support the .debug_loc offsets */
5706 if (attr_form_is_block (&attr))
5707 {
5708 part_die->locdesc = DW_BLOCK (&attr);
5709 }
5710 else if (attr_form_is_section_offset (&attr))
5711 {
5712 dwarf2_complex_location_expr_complaint ();
5713 }
5714 else
5715 {
5716 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5717 "partial symbol information");
5718 }
5719 break;
5720 case DW_AT_language:
5721 part_die->language = DW_UNSND (&attr);
5722 break;
5723 case DW_AT_external:
5724 part_die->is_external = DW_UNSND (&attr);
5725 break;
5726 case DW_AT_declaration:
5727 part_die->is_declaration = DW_UNSND (&attr);
5728 break;
5729 case DW_AT_type:
5730 part_die->has_type = 1;
5731 break;
5732 case DW_AT_abstract_origin:
5733 case DW_AT_specification:
5734 case DW_AT_extension:
5735 part_die->has_specification = 1;
5736 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5737 break;
5738 case DW_AT_sibling:
5739 /* Ignore absolute siblings, they might point outside of
5740 the current compile unit. */
5741 if (attr.form == DW_FORM_ref_addr)
5742 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5743 else
5744 part_die->sibling = dwarf2_per_objfile->info_buffer
5745 + dwarf2_get_ref_die_offset (&attr, cu);
5746 break;
5747 case DW_AT_stmt_list:
5748 part_die->has_stmt_list = 1;
5749 part_die->line_offset = DW_UNSND (&attr);
5750 break;
5751 case DW_AT_byte_size:
5752 part_die->has_byte_size = 1;
5753 break;
5754 case DW_AT_calling_convention:
5755 /* DWARF doesn't provide a way to identify a program's source-level
5756 entry point. DW_AT_calling_convention attributes are only meant
5757 to describe functions' calling conventions.
5758
5759 However, because it's a necessary piece of information in
5760 Fortran, and because DW_CC_program is the only piece of debugging
5761 information whose definition refers to a 'main program' at all,
5762 several compilers have begun marking Fortran main programs with
5763 DW_CC_program --- even when those functions use the standard
5764 calling conventions.
5765
5766 So until DWARF specifies a way to provide this information and
5767 compilers pick up the new representation, we'll support this
5768 practice. */
5769 if (DW_UNSND (&attr) == DW_CC_program
5770 && cu->language == language_fortran)
5771 set_main_name (part_die->name);
5772 break;
5773 default:
5774 break;
5775 }
5776 }
5777
5778 /* When using the GNU linker, .gnu.linkonce. sections are used to
5779 eliminate duplicate copies of functions and vtables and such.
5780 The linker will arbitrarily choose one and discard the others.
5781 The AT_*_pc values for such functions refer to local labels in
5782 these sections. If the section from that file was discarded, the
5783 labels are not in the output, so the relocs get a value of 0.
5784 If this is a discarded function, mark the pc bounds as invalid,
5785 so that GDB will ignore it. */
5786 if (has_low_pc_attr && has_high_pc_attr
5787 && part_die->lowpc < part_die->highpc
5788 && (part_die->lowpc != 0
5789 || dwarf2_per_objfile->has_section_at_zero))
5790 part_die->has_pc_info = 1;
5791 return info_ptr;
5792 }
5793
5794 /* Find a cached partial DIE at OFFSET in CU. */
5795
5796 static struct partial_die_info *
5797 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5798 {
5799 struct partial_die_info *lookup_die = NULL;
5800 struct partial_die_info part_die;
5801
5802 part_die.offset = offset;
5803 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5804
5805 return lookup_die;
5806 }
5807
5808 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5809
5810 static struct partial_die_info *
5811 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5812 {
5813 struct dwarf2_per_cu_data *per_cu = NULL;
5814 struct partial_die_info *pd = NULL;
5815
5816 if (offset >= cu->header.offset
5817 && offset < cu->header.offset + cu->header.length)
5818 {
5819 pd = find_partial_die_in_comp_unit (offset, cu);
5820 if (pd != NULL)
5821 return pd;
5822 }
5823
5824 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5825
5826 if (per_cu->cu == NULL)
5827 {
5828 load_comp_unit (per_cu, cu->objfile);
5829 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5830 dwarf2_per_objfile->read_in_chain = per_cu;
5831 }
5832
5833 per_cu->cu->last_used = 0;
5834 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5835
5836 if (pd == NULL && per_cu->load_all_dies == 0)
5837 {
5838 struct cleanup *back_to;
5839 struct partial_die_info comp_unit_die;
5840 struct abbrev_info *abbrev;
5841 unsigned int bytes_read;
5842 char *info_ptr;
5843
5844 per_cu->load_all_dies = 1;
5845
5846 /* Re-read the DIEs. */
5847 back_to = make_cleanup (null_cleanup, 0);
5848 if (per_cu->cu->dwarf2_abbrevs == NULL)
5849 {
5850 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5851 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5852 }
5853 info_ptr = per_cu->cu->header.first_die_ptr;
5854 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5855 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5856 per_cu->cu->objfile->obfd, info_ptr,
5857 per_cu->cu);
5858 if (comp_unit_die.has_children)
5859 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5860 do_cleanups (back_to);
5861
5862 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5863 }
5864
5865 if (pd == NULL)
5866 internal_error (__FILE__, __LINE__,
5867 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5868 offset, bfd_get_filename (cu->objfile->obfd));
5869 return pd;
5870 }
5871
5872 /* Adjust PART_DIE before generating a symbol for it. This function
5873 may set the is_external flag or change the DIE's name. */
5874
5875 static void
5876 fixup_partial_die (struct partial_die_info *part_die,
5877 struct dwarf2_cu *cu)
5878 {
5879 /* If we found a reference attribute and the DIE has no name, try
5880 to find a name in the referred to DIE. */
5881
5882 if (part_die->name == NULL && part_die->has_specification)
5883 {
5884 struct partial_die_info *spec_die;
5885
5886 spec_die = find_partial_die (part_die->spec_offset, cu);
5887
5888 fixup_partial_die (spec_die, cu);
5889
5890 if (spec_die->name)
5891 {
5892 part_die->name = spec_die->name;
5893
5894 /* Copy DW_AT_external attribute if it is set. */
5895 if (spec_die->is_external)
5896 part_die->is_external = spec_die->is_external;
5897 }
5898 }
5899
5900 /* Set default names for some unnamed DIEs. */
5901 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5902 || part_die->tag == DW_TAG_class_type))
5903 part_die->name = "(anonymous class)";
5904
5905 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5906 part_die->name = "(anonymous namespace)";
5907
5908 if (part_die->tag == DW_TAG_structure_type
5909 || part_die->tag == DW_TAG_class_type
5910 || part_die->tag == DW_TAG_union_type)
5911 guess_structure_name (part_die, cu);
5912 }
5913
5914 /* Read the die from the .debug_info section buffer. Set DIEP to
5915 point to a newly allocated die with its information, except for its
5916 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5917 whether the die has children or not. */
5918
5919 static gdb_byte *
5920 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5921 struct dwarf2_cu *cu, int *has_children)
5922 {
5923 unsigned int abbrev_number, bytes_read, i, offset;
5924 struct abbrev_info *abbrev;
5925 struct die_info *die;
5926
5927 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5928 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5929 info_ptr += bytes_read;
5930 if (!abbrev_number)
5931 {
5932 die = dwarf_alloc_die ();
5933 die->tag = 0;
5934 die->abbrev = abbrev_number;
5935 die->type = NULL;
5936 *diep = die;
5937 *has_children = 0;
5938 return info_ptr;
5939 }
5940
5941 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5942 if (!abbrev)
5943 {
5944 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5945 abbrev_number,
5946 bfd_get_filename (abfd));
5947 }
5948 die = dwarf_alloc_die ();
5949 die->offset = offset;
5950 die->tag = abbrev->tag;
5951 die->abbrev = abbrev_number;
5952 die->type = NULL;
5953
5954 die->num_attrs = abbrev->num_attrs;
5955 die->attrs = (struct attribute *)
5956 xmalloc (die->num_attrs * sizeof (struct attribute));
5957
5958 for (i = 0; i < abbrev->num_attrs; ++i)
5959 {
5960 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5961 abfd, info_ptr, cu);
5962
5963 /* If this attribute is an absolute reference to a different
5964 compilation unit, make sure that compilation unit is loaded
5965 also. */
5966 if (die->attrs[i].form == DW_FORM_ref_addr
5967 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5968 || (DW_ADDR (&die->attrs[i])
5969 >= cu->header.offset + cu->header.length)))
5970 {
5971 struct dwarf2_per_cu_data *per_cu;
5972 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5973 cu->objfile);
5974
5975 /* Mark the dependence relation so that we don't flush PER_CU
5976 too early. */
5977 dwarf2_add_dependence (cu, per_cu);
5978
5979 /* If it's already on the queue, we have nothing to do. */
5980 if (per_cu->queued)
5981 continue;
5982
5983 /* If the compilation unit is already loaded, just mark it as
5984 used. */
5985 if (per_cu->cu != NULL)
5986 {
5987 per_cu->cu->last_used = 0;
5988 continue;
5989 }
5990
5991 /* Add it to the queue. */
5992 queue_comp_unit (per_cu);
5993 }
5994 }
5995
5996 *diep = die;
5997 *has_children = abbrev->has_children;
5998 return info_ptr;
5999 }
6000
6001 /* Read an attribute value described by an attribute form. */
6002
6003 static gdb_byte *
6004 read_attribute_value (struct attribute *attr, unsigned form,
6005 bfd *abfd, gdb_byte *info_ptr,
6006 struct dwarf2_cu *cu)
6007 {
6008 struct comp_unit_head *cu_header = &cu->header;
6009 unsigned int bytes_read;
6010 struct dwarf_block *blk;
6011
6012 attr->form = form;
6013 switch (form)
6014 {
6015 case DW_FORM_addr:
6016 case DW_FORM_ref_addr:
6017 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
6018 info_ptr += bytes_read;
6019 break;
6020 case DW_FORM_block2:
6021 blk = dwarf_alloc_block (cu);
6022 blk->size = read_2_bytes (abfd, info_ptr);
6023 info_ptr += 2;
6024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6025 info_ptr += blk->size;
6026 DW_BLOCK (attr) = blk;
6027 break;
6028 case DW_FORM_block4:
6029 blk = dwarf_alloc_block (cu);
6030 blk->size = read_4_bytes (abfd, info_ptr);
6031 info_ptr += 4;
6032 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6033 info_ptr += blk->size;
6034 DW_BLOCK (attr) = blk;
6035 break;
6036 case DW_FORM_data2:
6037 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6038 info_ptr += 2;
6039 break;
6040 case DW_FORM_data4:
6041 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6042 info_ptr += 4;
6043 break;
6044 case DW_FORM_data8:
6045 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6046 info_ptr += 8;
6047 break;
6048 case DW_FORM_string:
6049 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6050 info_ptr += bytes_read;
6051 break;
6052 case DW_FORM_strp:
6053 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6054 &bytes_read);
6055 info_ptr += bytes_read;
6056 break;
6057 case DW_FORM_block:
6058 blk = dwarf_alloc_block (cu);
6059 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6060 info_ptr += bytes_read;
6061 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6062 info_ptr += blk->size;
6063 DW_BLOCK (attr) = blk;
6064 break;
6065 case DW_FORM_block1:
6066 blk = dwarf_alloc_block (cu);
6067 blk->size = read_1_byte (abfd, info_ptr);
6068 info_ptr += 1;
6069 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6070 info_ptr += blk->size;
6071 DW_BLOCK (attr) = blk;
6072 break;
6073 case DW_FORM_data1:
6074 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6075 info_ptr += 1;
6076 break;
6077 case DW_FORM_flag:
6078 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6079 info_ptr += 1;
6080 break;
6081 case DW_FORM_sdata:
6082 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6083 info_ptr += bytes_read;
6084 break;
6085 case DW_FORM_udata:
6086 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6087 info_ptr += bytes_read;
6088 break;
6089 case DW_FORM_ref1:
6090 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
6091 info_ptr += 1;
6092 break;
6093 case DW_FORM_ref2:
6094 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
6095 info_ptr += 2;
6096 break;
6097 case DW_FORM_ref4:
6098 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
6099 info_ptr += 4;
6100 break;
6101 case DW_FORM_ref8:
6102 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
6103 info_ptr += 8;
6104 break;
6105 case DW_FORM_ref_udata:
6106 DW_ADDR (attr) = (cu->header.offset
6107 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
6108 info_ptr += bytes_read;
6109 break;
6110 case DW_FORM_indirect:
6111 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6112 info_ptr += bytes_read;
6113 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
6114 break;
6115 default:
6116 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
6117 dwarf_form_name (form),
6118 bfd_get_filename (abfd));
6119 }
6120 return info_ptr;
6121 }
6122
6123 /* Read an attribute described by an abbreviated attribute. */
6124
6125 static gdb_byte *
6126 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
6127 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
6128 {
6129 attr->name = abbrev->name;
6130 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
6131 }
6132
6133 /* read dwarf information from a buffer */
6134
6135 static unsigned int
6136 read_1_byte (bfd *abfd, gdb_byte *buf)
6137 {
6138 return bfd_get_8 (abfd, buf);
6139 }
6140
6141 static int
6142 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
6143 {
6144 return bfd_get_signed_8 (abfd, buf);
6145 }
6146
6147 static unsigned int
6148 read_2_bytes (bfd *abfd, gdb_byte *buf)
6149 {
6150 return bfd_get_16 (abfd, buf);
6151 }
6152
6153 static int
6154 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6155 {
6156 return bfd_get_signed_16 (abfd, buf);
6157 }
6158
6159 static unsigned int
6160 read_4_bytes (bfd *abfd, gdb_byte *buf)
6161 {
6162 return bfd_get_32 (abfd, buf);
6163 }
6164
6165 static int
6166 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6167 {
6168 return bfd_get_signed_32 (abfd, buf);
6169 }
6170
6171 static unsigned long
6172 read_8_bytes (bfd *abfd, gdb_byte *buf)
6173 {
6174 return bfd_get_64 (abfd, buf);
6175 }
6176
6177 static CORE_ADDR
6178 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6179 unsigned int *bytes_read)
6180 {
6181 struct comp_unit_head *cu_header = &cu->header;
6182 CORE_ADDR retval = 0;
6183
6184 if (cu_header->signed_addr_p)
6185 {
6186 switch (cu_header->addr_size)
6187 {
6188 case 2:
6189 retval = bfd_get_signed_16 (abfd, buf);
6190 break;
6191 case 4:
6192 retval = bfd_get_signed_32 (abfd, buf);
6193 break;
6194 case 8:
6195 retval = bfd_get_signed_64 (abfd, buf);
6196 break;
6197 default:
6198 internal_error (__FILE__, __LINE__,
6199 _("read_address: bad switch, signed [in module %s]"),
6200 bfd_get_filename (abfd));
6201 }
6202 }
6203 else
6204 {
6205 switch (cu_header->addr_size)
6206 {
6207 case 2:
6208 retval = bfd_get_16 (abfd, buf);
6209 break;
6210 case 4:
6211 retval = bfd_get_32 (abfd, buf);
6212 break;
6213 case 8:
6214 retval = bfd_get_64 (abfd, buf);
6215 break;
6216 default:
6217 internal_error (__FILE__, __LINE__,
6218 _("read_address: bad switch, unsigned [in module %s]"),
6219 bfd_get_filename (abfd));
6220 }
6221 }
6222
6223 *bytes_read = cu_header->addr_size;
6224 return retval;
6225 }
6226
6227 /* Read the initial length from a section. The (draft) DWARF 3
6228 specification allows the initial length to take up either 4 bytes
6229 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6230 bytes describe the length and all offsets will be 8 bytes in length
6231 instead of 4.
6232
6233 An older, non-standard 64-bit format is also handled by this
6234 function. The older format in question stores the initial length
6235 as an 8-byte quantity without an escape value. Lengths greater
6236 than 2^32 aren't very common which means that the initial 4 bytes
6237 is almost always zero. Since a length value of zero doesn't make
6238 sense for the 32-bit format, this initial zero can be considered to
6239 be an escape value which indicates the presence of the older 64-bit
6240 format. As written, the code can't detect (old format) lengths
6241 greater than 4GB. If it becomes necessary to handle lengths
6242 somewhat larger than 4GB, we could allow other small values (such
6243 as the non-sensical values of 1, 2, and 3) to also be used as
6244 escape values indicating the presence of the old format.
6245
6246 The value returned via bytes_read should be used to increment the
6247 relevant pointer after calling read_initial_length().
6248
6249 As a side effect, this function sets the fields initial_length_size
6250 and offset_size in cu_header to the values appropriate for the
6251 length field. (The format of the initial length field determines
6252 the width of file offsets to be fetched later with read_offset().)
6253
6254 [ Note: read_initial_length() and read_offset() are based on the
6255 document entitled "DWARF Debugging Information Format", revision
6256 3, draft 8, dated November 19, 2001. This document was obtained
6257 from:
6258
6259 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6260
6261 This document is only a draft and is subject to change. (So beware.)
6262
6263 Details regarding the older, non-standard 64-bit format were
6264 determined empirically by examining 64-bit ELF files produced by
6265 the SGI toolchain on an IRIX 6.5 machine.
6266
6267 - Kevin, July 16, 2002
6268 ] */
6269
6270 static LONGEST
6271 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6272 unsigned int *bytes_read)
6273 {
6274 LONGEST length = bfd_get_32 (abfd, buf);
6275
6276 if (length == 0xffffffff)
6277 {
6278 length = bfd_get_64 (abfd, buf + 4);
6279 *bytes_read = 12;
6280 }
6281 else if (length == 0)
6282 {
6283 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6284 length = bfd_get_64 (abfd, buf);
6285 *bytes_read = 8;
6286 }
6287 else
6288 {
6289 *bytes_read = 4;
6290 }
6291
6292 if (cu_header)
6293 {
6294 gdb_assert (cu_header->initial_length_size == 0
6295 || cu_header->initial_length_size == 4
6296 || cu_header->initial_length_size == 8
6297 || cu_header->initial_length_size == 12);
6298
6299 if (cu_header->initial_length_size != 0
6300 && cu_header->initial_length_size != *bytes_read)
6301 complaint (&symfile_complaints,
6302 _("intermixed 32-bit and 64-bit DWARF sections"));
6303
6304 cu_header->initial_length_size = *bytes_read;
6305 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6306 }
6307
6308 return length;
6309 }
6310
6311 /* Read an offset from the data stream. The size of the offset is
6312 given by cu_header->offset_size. */
6313
6314 static LONGEST
6315 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6316 unsigned int *bytes_read)
6317 {
6318 LONGEST retval = 0;
6319
6320 switch (cu_header->offset_size)
6321 {
6322 case 4:
6323 retval = bfd_get_32 (abfd, buf);
6324 *bytes_read = 4;
6325 break;
6326 case 8:
6327 retval = bfd_get_64 (abfd, buf);
6328 *bytes_read = 8;
6329 break;
6330 default:
6331 internal_error (__FILE__, __LINE__,
6332 _("read_offset: bad switch [in module %s]"),
6333 bfd_get_filename (abfd));
6334 }
6335
6336 return retval;
6337 }
6338
6339 static gdb_byte *
6340 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6341 {
6342 /* If the size of a host char is 8 bits, we can return a pointer
6343 to the buffer, otherwise we have to copy the data to a buffer
6344 allocated on the temporary obstack. */
6345 gdb_assert (HOST_CHAR_BIT == 8);
6346 return buf;
6347 }
6348
6349 static char *
6350 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6351 {
6352 /* If the size of a host char is 8 bits, we can return a pointer
6353 to the string, otherwise we have to copy the string to a buffer
6354 allocated on the temporary obstack. */
6355 gdb_assert (HOST_CHAR_BIT == 8);
6356 if (*buf == '\0')
6357 {
6358 *bytes_read_ptr = 1;
6359 return NULL;
6360 }
6361 *bytes_read_ptr = strlen ((char *) buf) + 1;
6362 return (char *) buf;
6363 }
6364
6365 static char *
6366 read_indirect_string (bfd *abfd, gdb_byte *buf,
6367 const struct comp_unit_head *cu_header,
6368 unsigned int *bytes_read_ptr)
6369 {
6370 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6371 bytes_read_ptr);
6372
6373 if (dwarf2_per_objfile->str_buffer == NULL)
6374 {
6375 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6376 bfd_get_filename (abfd));
6377 return NULL;
6378 }
6379 if (str_offset >= dwarf2_per_objfile->str_size)
6380 {
6381 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6382 bfd_get_filename (abfd));
6383 return NULL;
6384 }
6385 gdb_assert (HOST_CHAR_BIT == 8);
6386 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6387 return NULL;
6388 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6389 }
6390
6391 static unsigned long
6392 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6393 {
6394 unsigned long result;
6395 unsigned int num_read;
6396 int i, shift;
6397 unsigned char byte;
6398
6399 result = 0;
6400 shift = 0;
6401 num_read = 0;
6402 i = 0;
6403 while (1)
6404 {
6405 byte = bfd_get_8 (abfd, buf);
6406 buf++;
6407 num_read++;
6408 result |= ((unsigned long)(byte & 127) << shift);
6409 if ((byte & 128) == 0)
6410 {
6411 break;
6412 }
6413 shift += 7;
6414 }
6415 *bytes_read_ptr = num_read;
6416 return result;
6417 }
6418
6419 static long
6420 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6421 {
6422 long result;
6423 int i, shift, num_read;
6424 unsigned char byte;
6425
6426 result = 0;
6427 shift = 0;
6428 num_read = 0;
6429 i = 0;
6430 while (1)
6431 {
6432 byte = bfd_get_8 (abfd, buf);
6433 buf++;
6434 num_read++;
6435 result |= ((long)(byte & 127) << shift);
6436 shift += 7;
6437 if ((byte & 128) == 0)
6438 {
6439 break;
6440 }
6441 }
6442 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6443 result |= -(((long)1) << shift);
6444 *bytes_read_ptr = num_read;
6445 return result;
6446 }
6447
6448 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6449
6450 static gdb_byte *
6451 skip_leb128 (bfd *abfd, gdb_byte *buf)
6452 {
6453 int byte;
6454
6455 while (1)
6456 {
6457 byte = bfd_get_8 (abfd, buf);
6458 buf++;
6459 if ((byte & 128) == 0)
6460 return buf;
6461 }
6462 }
6463
6464 static void
6465 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6466 {
6467 switch (lang)
6468 {
6469 case DW_LANG_C89:
6470 case DW_LANG_C:
6471 cu->language = language_c;
6472 break;
6473 case DW_LANG_C_plus_plus:
6474 cu->language = language_cplus;
6475 break;
6476 case DW_LANG_Fortran77:
6477 case DW_LANG_Fortran90:
6478 case DW_LANG_Fortran95:
6479 cu->language = language_fortran;
6480 break;
6481 case DW_LANG_Mips_Assembler:
6482 cu->language = language_asm;
6483 break;
6484 case DW_LANG_Java:
6485 cu->language = language_java;
6486 break;
6487 case DW_LANG_Ada83:
6488 case DW_LANG_Ada95:
6489 cu->language = language_ada;
6490 break;
6491 case DW_LANG_Modula2:
6492 cu->language = language_m2;
6493 break;
6494 case DW_LANG_Pascal83:
6495 cu->language = language_pascal;
6496 break;
6497 case DW_LANG_Cobol74:
6498 case DW_LANG_Cobol85:
6499 default:
6500 cu->language = language_minimal;
6501 break;
6502 }
6503 cu->language_defn = language_def (cu->language);
6504 }
6505
6506 /* Return the named attribute or NULL if not there. */
6507
6508 static struct attribute *
6509 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6510 {
6511 unsigned int i;
6512 struct attribute *spec = NULL;
6513
6514 for (i = 0; i < die->num_attrs; ++i)
6515 {
6516 if (die->attrs[i].name == name)
6517 return &die->attrs[i];
6518 if (die->attrs[i].name == DW_AT_specification
6519 || die->attrs[i].name == DW_AT_abstract_origin)
6520 spec = &die->attrs[i];
6521 }
6522
6523 if (spec)
6524 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6525
6526 return NULL;
6527 }
6528
6529 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6530 and holds a non-zero value. This function should only be used for
6531 DW_FORM_flag attributes. */
6532
6533 static int
6534 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6535 {
6536 struct attribute *attr = dwarf2_attr (die, name, cu);
6537
6538 return (attr && DW_UNSND (attr));
6539 }
6540
6541 static int
6542 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6543 {
6544 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6545 which value is non-zero. However, we have to be careful with
6546 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6547 (via dwarf2_flag_true_p) follows this attribute. So we may
6548 end up accidently finding a declaration attribute that belongs
6549 to a different DIE referenced by the specification attribute,
6550 even though the given DIE does not have a declaration attribute. */
6551 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6552 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6553 }
6554
6555 /* Return the die giving the specification for DIE, if there is
6556 one. */
6557
6558 static struct die_info *
6559 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6560 {
6561 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6562
6563 if (spec_attr == NULL)
6564 return NULL;
6565 else
6566 return follow_die_ref (die, spec_attr, cu);
6567 }
6568
6569 /* Free the line_header structure *LH, and any arrays and strings it
6570 refers to. */
6571 static void
6572 free_line_header (struct line_header *lh)
6573 {
6574 if (lh->standard_opcode_lengths)
6575 xfree (lh->standard_opcode_lengths);
6576
6577 /* Remember that all the lh->file_names[i].name pointers are
6578 pointers into debug_line_buffer, and don't need to be freed. */
6579 if (lh->file_names)
6580 xfree (lh->file_names);
6581
6582 /* Similarly for the include directory names. */
6583 if (lh->include_dirs)
6584 xfree (lh->include_dirs);
6585
6586 xfree (lh);
6587 }
6588
6589
6590 /* Add an entry to LH's include directory table. */
6591 static void
6592 add_include_dir (struct line_header *lh, char *include_dir)
6593 {
6594 /* Grow the array if necessary. */
6595 if (lh->include_dirs_size == 0)
6596 {
6597 lh->include_dirs_size = 1; /* for testing */
6598 lh->include_dirs = xmalloc (lh->include_dirs_size
6599 * sizeof (*lh->include_dirs));
6600 }
6601 else if (lh->num_include_dirs >= lh->include_dirs_size)
6602 {
6603 lh->include_dirs_size *= 2;
6604 lh->include_dirs = xrealloc (lh->include_dirs,
6605 (lh->include_dirs_size
6606 * sizeof (*lh->include_dirs)));
6607 }
6608
6609 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6610 }
6611
6612
6613 /* Add an entry to LH's file name table. */
6614 static void
6615 add_file_name (struct line_header *lh,
6616 char *name,
6617 unsigned int dir_index,
6618 unsigned int mod_time,
6619 unsigned int length)
6620 {
6621 struct file_entry *fe;
6622
6623 /* Grow the array if necessary. */
6624 if (lh->file_names_size == 0)
6625 {
6626 lh->file_names_size = 1; /* for testing */
6627 lh->file_names = xmalloc (lh->file_names_size
6628 * sizeof (*lh->file_names));
6629 }
6630 else if (lh->num_file_names >= lh->file_names_size)
6631 {
6632 lh->file_names_size *= 2;
6633 lh->file_names = xrealloc (lh->file_names,
6634 (lh->file_names_size
6635 * sizeof (*lh->file_names)));
6636 }
6637
6638 fe = &lh->file_names[lh->num_file_names++];
6639 fe->name = name;
6640 fe->dir_index = dir_index;
6641 fe->mod_time = mod_time;
6642 fe->length = length;
6643 fe->included_p = 0;
6644 fe->symtab = NULL;
6645 }
6646
6647
6648 /* Read the statement program header starting at OFFSET in
6649 .debug_line, according to the endianness of ABFD. Return a pointer
6650 to a struct line_header, allocated using xmalloc.
6651
6652 NOTE: the strings in the include directory and file name tables of
6653 the returned object point into debug_line_buffer, and must not be
6654 freed. */
6655 static struct line_header *
6656 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6657 struct dwarf2_cu *cu)
6658 {
6659 struct cleanup *back_to;
6660 struct line_header *lh;
6661 gdb_byte *line_ptr;
6662 unsigned int bytes_read;
6663 int i;
6664 char *cur_dir, *cur_file;
6665
6666 if (dwarf2_per_objfile->line_buffer == NULL)
6667 {
6668 complaint (&symfile_complaints, _("missing .debug_line section"));
6669 return 0;
6670 }
6671
6672 /* Make sure that at least there's room for the total_length field.
6673 That could be 12 bytes long, but we're just going to fudge that. */
6674 if (offset + 4 >= dwarf2_per_objfile->line_size)
6675 {
6676 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6677 return 0;
6678 }
6679
6680 lh = xmalloc (sizeof (*lh));
6681 memset (lh, 0, sizeof (*lh));
6682 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6683 (void *) lh);
6684
6685 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6686
6687 /* Read in the header. */
6688 lh->total_length =
6689 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6690 line_ptr += bytes_read;
6691 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6692 + dwarf2_per_objfile->line_size))
6693 {
6694 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6695 return 0;
6696 }
6697 lh->statement_program_end = line_ptr + lh->total_length;
6698 lh->version = read_2_bytes (abfd, line_ptr);
6699 line_ptr += 2;
6700 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6701 line_ptr += bytes_read;
6702 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6703 line_ptr += 1;
6704 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6705 line_ptr += 1;
6706 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6707 line_ptr += 1;
6708 lh->line_range = read_1_byte (abfd, line_ptr);
6709 line_ptr += 1;
6710 lh->opcode_base = read_1_byte (abfd, line_ptr);
6711 line_ptr += 1;
6712 lh->standard_opcode_lengths
6713 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6714
6715 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6716 for (i = 1; i < lh->opcode_base; ++i)
6717 {
6718 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6719 line_ptr += 1;
6720 }
6721
6722 /* Read directory table. */
6723 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6724 {
6725 line_ptr += bytes_read;
6726 add_include_dir (lh, cur_dir);
6727 }
6728 line_ptr += bytes_read;
6729
6730 /* Read file name table. */
6731 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6732 {
6733 unsigned int dir_index, mod_time, length;
6734
6735 line_ptr += bytes_read;
6736 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6737 line_ptr += bytes_read;
6738 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6739 line_ptr += bytes_read;
6740 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6741 line_ptr += bytes_read;
6742
6743 add_file_name (lh, cur_file, dir_index, mod_time, length);
6744 }
6745 line_ptr += bytes_read;
6746 lh->statement_program_start = line_ptr;
6747
6748 if (line_ptr > (dwarf2_per_objfile->line_buffer
6749 + dwarf2_per_objfile->line_size))
6750 complaint (&symfile_complaints,
6751 _("line number info header doesn't fit in `.debug_line' section"));
6752
6753 discard_cleanups (back_to);
6754 return lh;
6755 }
6756
6757 /* This function exists to work around a bug in certain compilers
6758 (particularly GCC 2.95), in which the first line number marker of a
6759 function does not show up until after the prologue, right before
6760 the second line number marker. This function shifts ADDRESS down
6761 to the beginning of the function if necessary, and is called on
6762 addresses passed to record_line. */
6763
6764 static CORE_ADDR
6765 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6766 {
6767 struct function_range *fn;
6768
6769 /* Find the function_range containing address. */
6770 if (!cu->first_fn)
6771 return address;
6772
6773 if (!cu->cached_fn)
6774 cu->cached_fn = cu->first_fn;
6775
6776 fn = cu->cached_fn;
6777 while (fn)
6778 if (fn->lowpc <= address && fn->highpc > address)
6779 goto found;
6780 else
6781 fn = fn->next;
6782
6783 fn = cu->first_fn;
6784 while (fn && fn != cu->cached_fn)
6785 if (fn->lowpc <= address && fn->highpc > address)
6786 goto found;
6787 else
6788 fn = fn->next;
6789
6790 return address;
6791
6792 found:
6793 if (fn->seen_line)
6794 return address;
6795 if (address != fn->lowpc)
6796 complaint (&symfile_complaints,
6797 _("misplaced first line number at 0x%lx for '%s'"),
6798 (unsigned long) address, fn->name);
6799 fn->seen_line = 1;
6800 return fn->lowpc;
6801 }
6802
6803 /* Decode the Line Number Program (LNP) for the given line_header
6804 structure and CU. The actual information extracted and the type
6805 of structures created from the LNP depends on the value of PST.
6806
6807 1. If PST is NULL, then this procedure uses the data from the program
6808 to create all necessary symbol tables, and their linetables.
6809 The compilation directory of the file is passed in COMP_DIR,
6810 and must not be NULL.
6811
6812 2. If PST is not NULL, this procedure reads the program to determine
6813 the list of files included by the unit represented by PST, and
6814 builds all the associated partial symbol tables. In this case,
6815 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6816 is not used to compute the full name of the symtab, and therefore
6817 omitting it when building the partial symtab does not introduce
6818 the potential for inconsistency - a partial symtab and its associated
6819 symbtab having a different fullname -). */
6820
6821 static void
6822 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6823 struct dwarf2_cu *cu, struct partial_symtab *pst)
6824 {
6825 gdb_byte *line_ptr, *extended_end;
6826 gdb_byte *line_end;
6827 unsigned int bytes_read, extended_len;
6828 unsigned char op_code, extended_op, adj_opcode;
6829 CORE_ADDR baseaddr;
6830 struct objfile *objfile = cu->objfile;
6831 const int decode_for_pst_p = (pst != NULL);
6832 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6833
6834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6835
6836 line_ptr = lh->statement_program_start;
6837 line_end = lh->statement_program_end;
6838
6839 /* Read the statement sequences until there's nothing left. */
6840 while (line_ptr < line_end)
6841 {
6842 /* state machine registers */
6843 CORE_ADDR address = 0;
6844 unsigned int file = 1;
6845 unsigned int line = 1;
6846 unsigned int column = 0;
6847 int is_stmt = lh->default_is_stmt;
6848 int basic_block = 0;
6849 int end_sequence = 0;
6850
6851 if (!decode_for_pst_p && lh->num_file_names >= file)
6852 {
6853 /* Start a subfile for the current file of the state machine. */
6854 /* lh->include_dirs and lh->file_names are 0-based, but the
6855 directory and file name numbers in the statement program
6856 are 1-based. */
6857 struct file_entry *fe = &lh->file_names[file - 1];
6858 char *dir = NULL;
6859
6860 if (fe->dir_index)
6861 dir = lh->include_dirs[fe->dir_index - 1];
6862
6863 dwarf2_start_subfile (fe->name, dir, comp_dir);
6864 }
6865
6866 /* Decode the table. */
6867 while (!end_sequence)
6868 {
6869 op_code = read_1_byte (abfd, line_ptr);
6870 line_ptr += 1;
6871
6872 if (op_code >= lh->opcode_base)
6873 {
6874 /* Special operand. */
6875 adj_opcode = op_code - lh->opcode_base;
6876 address += (adj_opcode / lh->line_range)
6877 * lh->minimum_instruction_length;
6878 line += lh->line_base + (adj_opcode % lh->line_range);
6879 if (lh->num_file_names < file)
6880 dwarf2_debug_line_missing_file_complaint ();
6881 else
6882 {
6883 lh->file_names[file - 1].included_p = 1;
6884 if (!decode_for_pst_p)
6885 {
6886 if (last_subfile != current_subfile)
6887 {
6888 if (last_subfile)
6889 record_line (last_subfile, 0, address);
6890 last_subfile = current_subfile;
6891 }
6892 /* Append row to matrix using current values. */
6893 record_line (current_subfile, line,
6894 check_cu_functions (address, cu));
6895 }
6896 }
6897 basic_block = 1;
6898 }
6899 else switch (op_code)
6900 {
6901 case DW_LNS_extended_op:
6902 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6903 line_ptr += bytes_read;
6904 extended_end = line_ptr + extended_len;
6905 extended_op = read_1_byte (abfd, line_ptr);
6906 line_ptr += 1;
6907 switch (extended_op)
6908 {
6909 case DW_LNE_end_sequence:
6910 end_sequence = 1;
6911
6912 if (lh->num_file_names < file)
6913 dwarf2_debug_line_missing_file_complaint ();
6914 else
6915 {
6916 lh->file_names[file - 1].included_p = 1;
6917 if (!decode_for_pst_p)
6918 record_line (current_subfile, 0, address);
6919 }
6920 break;
6921 case DW_LNE_set_address:
6922 address = read_address (abfd, line_ptr, cu, &bytes_read);
6923 line_ptr += bytes_read;
6924 address += baseaddr;
6925 break;
6926 case DW_LNE_define_file:
6927 {
6928 char *cur_file;
6929 unsigned int dir_index, mod_time, length;
6930
6931 cur_file = read_string (abfd, line_ptr, &bytes_read);
6932 line_ptr += bytes_read;
6933 dir_index =
6934 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6935 line_ptr += bytes_read;
6936 mod_time =
6937 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6938 line_ptr += bytes_read;
6939 length =
6940 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6941 line_ptr += bytes_read;
6942 add_file_name (lh, cur_file, dir_index, mod_time, length);
6943 }
6944 break;
6945 default:
6946 complaint (&symfile_complaints,
6947 _("mangled .debug_line section"));
6948 return;
6949 }
6950 /* Make sure that we parsed the extended op correctly. If e.g.
6951 we expected a different address size than the producer used,
6952 we may have read the wrong number of bytes. */
6953 if (line_ptr != extended_end)
6954 {
6955 complaint (&symfile_complaints,
6956 _("mangled .debug_line section"));
6957 return;
6958 }
6959 break;
6960 case DW_LNS_copy:
6961 if (lh->num_file_names < file)
6962 dwarf2_debug_line_missing_file_complaint ();
6963 else
6964 {
6965 lh->file_names[file - 1].included_p = 1;
6966 if (!decode_for_pst_p)
6967 {
6968 if (last_subfile != current_subfile)
6969 {
6970 if (last_subfile)
6971 record_line (last_subfile, 0, address);
6972 last_subfile = current_subfile;
6973 }
6974 record_line (current_subfile, line,
6975 check_cu_functions (address, cu));
6976 }
6977 }
6978 basic_block = 0;
6979 break;
6980 case DW_LNS_advance_pc:
6981 address += lh->minimum_instruction_length
6982 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6983 line_ptr += bytes_read;
6984 break;
6985 case DW_LNS_advance_line:
6986 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6987 line_ptr += bytes_read;
6988 break;
6989 case DW_LNS_set_file:
6990 {
6991 /* The arrays lh->include_dirs and lh->file_names are
6992 0-based, but the directory and file name numbers in
6993 the statement program are 1-based. */
6994 struct file_entry *fe;
6995 char *dir = NULL;
6996
6997 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6998 line_ptr += bytes_read;
6999 if (lh->num_file_names < file)
7000 dwarf2_debug_line_missing_file_complaint ();
7001 else
7002 {
7003 fe = &lh->file_names[file - 1];
7004 if (fe->dir_index)
7005 dir = lh->include_dirs[fe->dir_index - 1];
7006 if (!decode_for_pst_p)
7007 {
7008 last_subfile = current_subfile;
7009 dwarf2_start_subfile (fe->name, dir, comp_dir);
7010 }
7011 }
7012 }
7013 break;
7014 case DW_LNS_set_column:
7015 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7016 line_ptr += bytes_read;
7017 break;
7018 case DW_LNS_negate_stmt:
7019 is_stmt = (!is_stmt);
7020 break;
7021 case DW_LNS_set_basic_block:
7022 basic_block = 1;
7023 break;
7024 /* Add to the address register of the state machine the
7025 address increment value corresponding to special opcode
7026 255. I.e., this value is scaled by the minimum
7027 instruction length since special opcode 255 would have
7028 scaled the the increment. */
7029 case DW_LNS_const_add_pc:
7030 address += (lh->minimum_instruction_length
7031 * ((255 - lh->opcode_base) / lh->line_range));
7032 break;
7033 case DW_LNS_fixed_advance_pc:
7034 address += read_2_bytes (abfd, line_ptr);
7035 line_ptr += 2;
7036 break;
7037 default:
7038 {
7039 /* Unknown standard opcode, ignore it. */
7040 int i;
7041
7042 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
7043 {
7044 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7045 line_ptr += bytes_read;
7046 }
7047 }
7048 }
7049 }
7050 }
7051
7052 if (decode_for_pst_p)
7053 {
7054 int file_index;
7055
7056 /* Now that we're done scanning the Line Header Program, we can
7057 create the psymtab of each included file. */
7058 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7059 if (lh->file_names[file_index].included_p == 1)
7060 {
7061 const struct file_entry fe = lh->file_names [file_index];
7062 char *include_name = fe.name;
7063 char *dir_name = NULL;
7064 char *pst_filename = pst->filename;
7065
7066 if (fe.dir_index)
7067 dir_name = lh->include_dirs[fe.dir_index - 1];
7068
7069 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7070 {
7071 include_name = concat (dir_name, SLASH_STRING,
7072 include_name, (char *)NULL);
7073 make_cleanup (xfree, include_name);
7074 }
7075
7076 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7077 {
7078 pst_filename = concat (pst->dirname, SLASH_STRING,
7079 pst_filename, (char *)NULL);
7080 make_cleanup (xfree, pst_filename);
7081 }
7082
7083 if (strcmp (include_name, pst_filename) != 0)
7084 dwarf2_create_include_psymtab (include_name, pst, objfile);
7085 }
7086 }
7087 else
7088 {
7089 /* Make sure a symtab is created for every file, even files
7090 which contain only variables (i.e. no code with associated
7091 line numbers). */
7092
7093 int i;
7094 struct file_entry *fe;
7095
7096 for (i = 0; i < lh->num_file_names; i++)
7097 {
7098 char *dir = NULL;
7099 fe = &lh->file_names[i];
7100 if (fe->dir_index)
7101 dir = lh->include_dirs[fe->dir_index - 1];
7102 dwarf2_start_subfile (fe->name, dir, comp_dir);
7103
7104 /* Skip the main file; we don't need it, and it must be
7105 allocated last, so that it will show up before the
7106 non-primary symtabs in the objfile's symtab list. */
7107 if (current_subfile == first_subfile)
7108 continue;
7109
7110 if (current_subfile->symtab == NULL)
7111 current_subfile->symtab = allocate_symtab (current_subfile->name,
7112 cu->objfile);
7113 fe->symtab = current_subfile->symtab;
7114 }
7115 }
7116 }
7117
7118 /* Start a subfile for DWARF. FILENAME is the name of the file and
7119 DIRNAME the name of the source directory which contains FILENAME
7120 or NULL if not known. COMP_DIR is the compilation directory for the
7121 linetable's compilation unit or NULL if not known.
7122 This routine tries to keep line numbers from identical absolute and
7123 relative file names in a common subfile.
7124
7125 Using the `list' example from the GDB testsuite, which resides in
7126 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7127 of /srcdir/list0.c yields the following debugging information for list0.c:
7128
7129 DW_AT_name: /srcdir/list0.c
7130 DW_AT_comp_dir: /compdir
7131 files.files[0].name: list0.h
7132 files.files[0].dir: /srcdir
7133 files.files[1].name: list0.c
7134 files.files[1].dir: /srcdir
7135
7136 The line number information for list0.c has to end up in a single
7137 subfile, so that `break /srcdir/list0.c:1' works as expected.
7138 start_subfile will ensure that this happens provided that we pass the
7139 concatenation of files.files[1].dir and files.files[1].name as the
7140 subfile's name. */
7141
7142 static void
7143 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
7144 {
7145 char *fullname;
7146
7147 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7148 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7149 second argument to start_subfile. To be consistent, we do the
7150 same here. In order not to lose the line information directory,
7151 we concatenate it to the filename when it makes sense.
7152 Note that the Dwarf3 standard says (speaking of filenames in line
7153 information): ``The directory index is ignored for file names
7154 that represent full path names''. Thus ignoring dirname in the
7155 `else' branch below isn't an issue. */
7156
7157 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7158 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7159 else
7160 fullname = filename;
7161
7162 start_subfile (fullname, comp_dir);
7163
7164 if (fullname != filename)
7165 xfree (fullname);
7166 }
7167
7168 static void
7169 var_decode_location (struct attribute *attr, struct symbol *sym,
7170 struct dwarf2_cu *cu)
7171 {
7172 struct objfile *objfile = cu->objfile;
7173 struct comp_unit_head *cu_header = &cu->header;
7174
7175 /* NOTE drow/2003-01-30: There used to be a comment and some special
7176 code here to turn a symbol with DW_AT_external and a
7177 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7178 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7179 with some versions of binutils) where shared libraries could have
7180 relocations against symbols in their debug information - the
7181 minimal symbol would have the right address, but the debug info
7182 would not. It's no longer necessary, because we will explicitly
7183 apply relocations when we read in the debug information now. */
7184
7185 /* A DW_AT_location attribute with no contents indicates that a
7186 variable has been optimized away. */
7187 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7188 {
7189 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7190 return;
7191 }
7192
7193 /* Handle one degenerate form of location expression specially, to
7194 preserve GDB's previous behavior when section offsets are
7195 specified. If this is just a DW_OP_addr then mark this symbol
7196 as LOC_STATIC. */
7197
7198 if (attr_form_is_block (attr)
7199 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7200 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7201 {
7202 unsigned int dummy;
7203
7204 SYMBOL_VALUE_ADDRESS (sym) =
7205 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7206 fixup_symbol_section (sym, objfile);
7207 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7208 SYMBOL_SECTION (sym));
7209 SYMBOL_CLASS (sym) = LOC_STATIC;
7210 return;
7211 }
7212
7213 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7214 expression evaluator, and use LOC_COMPUTED only when necessary
7215 (i.e. when the value of a register or memory location is
7216 referenced, or a thread-local block, etc.). Then again, it might
7217 not be worthwhile. I'm assuming that it isn't unless performance
7218 or memory numbers show me otherwise. */
7219
7220 dwarf2_symbol_mark_computed (attr, sym, cu);
7221 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7222 }
7223
7224 /* Given a pointer to a DWARF information entry, figure out if we need
7225 to make a symbol table entry for it, and if so, create a new entry
7226 and return a pointer to it.
7227 If TYPE is NULL, determine symbol type from the die, otherwise
7228 used the passed type. */
7229
7230 static struct symbol *
7231 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7232 {
7233 struct objfile *objfile = cu->objfile;
7234 struct symbol *sym = NULL;
7235 char *name;
7236 struct attribute *attr = NULL;
7237 struct attribute *attr2 = NULL;
7238 CORE_ADDR baseaddr;
7239
7240 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7241
7242 if (die->tag != DW_TAG_namespace)
7243 name = dwarf2_linkage_name (die, cu);
7244 else
7245 name = TYPE_NAME (type);
7246
7247 if (name)
7248 {
7249 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7250 sizeof (struct symbol));
7251 OBJSTAT (objfile, n_syms++);
7252 memset (sym, 0, sizeof (struct symbol));
7253
7254 /* Cache this symbol's name and the name's demangled form (if any). */
7255 SYMBOL_LANGUAGE (sym) = cu->language;
7256 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7257
7258 /* Default assumptions.
7259 Use the passed type or decode it from the die. */
7260 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7261 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7262 if (type != NULL)
7263 SYMBOL_TYPE (sym) = type;
7264 else
7265 SYMBOL_TYPE (sym) = die_type (die, cu);
7266 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7267 if (attr)
7268 {
7269 SYMBOL_LINE (sym) = DW_UNSND (attr);
7270 }
7271
7272 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7273 if (attr)
7274 {
7275 int file_index = DW_UNSND (attr);
7276 if (cu->line_header == NULL
7277 || file_index > cu->line_header->num_file_names)
7278 complaint (&symfile_complaints,
7279 _("file index out of range"));
7280 else if (file_index > 0)
7281 {
7282 struct file_entry *fe;
7283 fe = &cu->line_header->file_names[file_index - 1];
7284 SYMBOL_SYMTAB (sym) = fe->symtab;
7285 }
7286 }
7287
7288 switch (die->tag)
7289 {
7290 case DW_TAG_label:
7291 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7292 if (attr)
7293 {
7294 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7295 }
7296 SYMBOL_CLASS (sym) = LOC_LABEL;
7297 break;
7298 case DW_TAG_subprogram:
7299 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7300 finish_block. */
7301 SYMBOL_CLASS (sym) = LOC_BLOCK;
7302 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7303 if ((attr2 && (DW_UNSND (attr2) != 0))
7304 || cu->language == language_ada)
7305 {
7306 /* Subprograms marked external are stored as a global symbol.
7307 Ada subprograms, whether marked external or not, are always
7308 stored as a global symbol, because we want to be able to
7309 access them globally. For instance, we want to be able
7310 to break on a nested subprogram without having to
7311 specify the context. */
7312 add_symbol_to_list (sym, &global_symbols);
7313 }
7314 else
7315 {
7316 add_symbol_to_list (sym, cu->list_in_scope);
7317 }
7318 break;
7319 case DW_TAG_variable:
7320 /* Compilation with minimal debug info may result in variables
7321 with missing type entries. Change the misleading `void' type
7322 to something sensible. */
7323 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7324 SYMBOL_TYPE (sym)
7325 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7326
7327 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7328 if (attr)
7329 {
7330 dwarf2_const_value (attr, sym, cu);
7331 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7332 if (attr2 && (DW_UNSND (attr2) != 0))
7333 add_symbol_to_list (sym, &global_symbols);
7334 else
7335 add_symbol_to_list (sym, cu->list_in_scope);
7336 break;
7337 }
7338 attr = dwarf2_attr (die, DW_AT_location, cu);
7339 if (attr)
7340 {
7341 var_decode_location (attr, sym, cu);
7342 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7343 if (attr2 && (DW_UNSND (attr2) != 0))
7344 add_symbol_to_list (sym, &global_symbols);
7345 else
7346 add_symbol_to_list (sym, cu->list_in_scope);
7347 }
7348 else
7349 {
7350 /* We do not know the address of this symbol.
7351 If it is an external symbol and we have type information
7352 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7353 The address of the variable will then be determined from
7354 the minimal symbol table whenever the variable is
7355 referenced. */
7356 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7357 if (attr2 && (DW_UNSND (attr2) != 0)
7358 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7359 {
7360 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7361 add_symbol_to_list (sym, &global_symbols);
7362 }
7363 }
7364 break;
7365 case DW_TAG_formal_parameter:
7366 attr = dwarf2_attr (die, DW_AT_location, cu);
7367 if (attr)
7368 {
7369 var_decode_location (attr, sym, cu);
7370 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7371 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7372 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7373 }
7374 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7375 if (attr)
7376 {
7377 dwarf2_const_value (attr, sym, cu);
7378 }
7379 add_symbol_to_list (sym, cu->list_in_scope);
7380 break;
7381 case DW_TAG_unspecified_parameters:
7382 /* From varargs functions; gdb doesn't seem to have any
7383 interest in this information, so just ignore it for now.
7384 (FIXME?) */
7385 break;
7386 case DW_TAG_class_type:
7387 case DW_TAG_interface_type:
7388 case DW_TAG_structure_type:
7389 case DW_TAG_union_type:
7390 case DW_TAG_set_type:
7391 case DW_TAG_enumeration_type:
7392 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7393 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7394
7395 /* Make sure that the symbol includes appropriate enclosing
7396 classes/namespaces in its name. These are calculated in
7397 read_structure_type, and the correct name is saved in
7398 the type. */
7399
7400 if (cu->language == language_cplus
7401 || cu->language == language_java)
7402 {
7403 struct type *type = SYMBOL_TYPE (sym);
7404
7405 if (TYPE_TAG_NAME (type) != NULL)
7406 {
7407 /* FIXME: carlton/2003-11-10: Should this use
7408 SYMBOL_SET_NAMES instead? (The same problem also
7409 arises further down in this function.) */
7410 /* The type's name is already allocated along with
7411 this objfile, so we don't need to duplicate it
7412 for the symbol. */
7413 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7414 }
7415 }
7416
7417 {
7418 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7419 really ever be static objects: otherwise, if you try
7420 to, say, break of a class's method and you're in a file
7421 which doesn't mention that class, it won't work unless
7422 the check for all static symbols in lookup_symbol_aux
7423 saves you. See the OtherFileClass tests in
7424 gdb.c++/namespace.exp. */
7425
7426 struct pending **list_to_add;
7427
7428 list_to_add = (cu->list_in_scope == &file_symbols
7429 && (cu->language == language_cplus
7430 || cu->language == language_java)
7431 ? &global_symbols : cu->list_in_scope);
7432
7433 add_symbol_to_list (sym, list_to_add);
7434
7435 /* The semantics of C++ state that "struct foo { ... }" also
7436 defines a typedef for "foo". A Java class declaration also
7437 defines a typedef for the class. Synthesize a typedef symbol
7438 so that "ptype foo" works as expected. */
7439 if (cu->language == language_cplus
7440 || cu->language == language_java
7441 || cu->language == language_ada)
7442 {
7443 struct symbol *typedef_sym = (struct symbol *)
7444 obstack_alloc (&objfile->objfile_obstack,
7445 sizeof (struct symbol));
7446 *typedef_sym = *sym;
7447 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7448 /* The symbol's name is already allocated along with
7449 this objfile, so we don't need to duplicate it for
7450 the type. */
7451 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7452 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7453 add_symbol_to_list (typedef_sym, list_to_add);
7454 }
7455 }
7456 break;
7457 case DW_TAG_typedef:
7458 if (processing_has_namespace_info
7459 && processing_current_prefix[0] != '\0')
7460 {
7461 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7462 processing_current_prefix,
7463 name, cu);
7464 }
7465 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7466 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7467 add_symbol_to_list (sym, cu->list_in_scope);
7468 break;
7469 case DW_TAG_base_type:
7470 case DW_TAG_subrange_type:
7471 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7472 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7473 add_symbol_to_list (sym, cu->list_in_scope);
7474 break;
7475 case DW_TAG_enumerator:
7476 if (processing_has_namespace_info
7477 && processing_current_prefix[0] != '\0')
7478 {
7479 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7480 processing_current_prefix,
7481 name, cu);
7482 }
7483 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7484 if (attr)
7485 {
7486 dwarf2_const_value (attr, sym, cu);
7487 }
7488 {
7489 /* NOTE: carlton/2003-11-10: See comment above in the
7490 DW_TAG_class_type, etc. block. */
7491
7492 struct pending **list_to_add;
7493
7494 list_to_add = (cu->list_in_scope == &file_symbols
7495 && (cu->language == language_cplus
7496 || cu->language == language_java)
7497 ? &global_symbols : cu->list_in_scope);
7498
7499 add_symbol_to_list (sym, list_to_add);
7500 }
7501 break;
7502 case DW_TAG_namespace:
7503 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7504 add_symbol_to_list (sym, &global_symbols);
7505 break;
7506 default:
7507 /* Not a tag we recognize. Hopefully we aren't processing
7508 trash data, but since we must specifically ignore things
7509 we don't recognize, there is nothing else we should do at
7510 this point. */
7511 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7512 dwarf_tag_name (die->tag));
7513 break;
7514 }
7515 }
7516 return (sym);
7517 }
7518
7519 /* Copy constant value from an attribute to a symbol. */
7520
7521 static void
7522 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7523 struct dwarf2_cu *cu)
7524 {
7525 struct objfile *objfile = cu->objfile;
7526 struct comp_unit_head *cu_header = &cu->header;
7527 struct dwarf_block *blk;
7528
7529 switch (attr->form)
7530 {
7531 case DW_FORM_addr:
7532 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7533 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7534 cu_header->addr_size,
7535 TYPE_LENGTH (SYMBOL_TYPE
7536 (sym)));
7537 SYMBOL_VALUE_BYTES (sym) =
7538 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7539 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7540 it's body - store_unsigned_integer. */
7541 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7542 DW_ADDR (attr));
7543 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7544 break;
7545 case DW_FORM_block1:
7546 case DW_FORM_block2:
7547 case DW_FORM_block4:
7548 case DW_FORM_block:
7549 blk = DW_BLOCK (attr);
7550 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7551 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7552 blk->size,
7553 TYPE_LENGTH (SYMBOL_TYPE
7554 (sym)));
7555 SYMBOL_VALUE_BYTES (sym) =
7556 obstack_alloc (&objfile->objfile_obstack, blk->size);
7557 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7558 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7559 break;
7560
7561 /* The DW_AT_const_value attributes are supposed to carry the
7562 symbol's value "represented as it would be on the target
7563 architecture." By the time we get here, it's already been
7564 converted to host endianness, so we just need to sign- or
7565 zero-extend it as appropriate. */
7566 case DW_FORM_data1:
7567 dwarf2_const_value_data (attr, sym, 8);
7568 break;
7569 case DW_FORM_data2:
7570 dwarf2_const_value_data (attr, sym, 16);
7571 break;
7572 case DW_FORM_data4:
7573 dwarf2_const_value_data (attr, sym, 32);
7574 break;
7575 case DW_FORM_data8:
7576 dwarf2_const_value_data (attr, sym, 64);
7577 break;
7578
7579 case DW_FORM_sdata:
7580 SYMBOL_VALUE (sym) = DW_SND (attr);
7581 SYMBOL_CLASS (sym) = LOC_CONST;
7582 break;
7583
7584 case DW_FORM_udata:
7585 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7586 SYMBOL_CLASS (sym) = LOC_CONST;
7587 break;
7588
7589 default:
7590 complaint (&symfile_complaints,
7591 _("unsupported const value attribute form: '%s'"),
7592 dwarf_form_name (attr->form));
7593 SYMBOL_VALUE (sym) = 0;
7594 SYMBOL_CLASS (sym) = LOC_CONST;
7595 break;
7596 }
7597 }
7598
7599
7600 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7601 or zero-extend it as appropriate for the symbol's type. */
7602 static void
7603 dwarf2_const_value_data (struct attribute *attr,
7604 struct symbol *sym,
7605 int bits)
7606 {
7607 LONGEST l = DW_UNSND (attr);
7608
7609 if (bits < sizeof (l) * 8)
7610 {
7611 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7612 l &= ((LONGEST) 1 << bits) - 1;
7613 else
7614 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7615 }
7616
7617 SYMBOL_VALUE (sym) = l;
7618 SYMBOL_CLASS (sym) = LOC_CONST;
7619 }
7620
7621
7622 /* Return the type of the die in question using its DW_AT_type attribute. */
7623
7624 static struct type *
7625 die_type (struct die_info *die, struct dwarf2_cu *cu)
7626 {
7627 struct type *type;
7628 struct attribute *type_attr;
7629 struct die_info *type_die;
7630
7631 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7632 if (!type_attr)
7633 {
7634 /* A missing DW_AT_type represents a void type. */
7635 return builtin_type (current_gdbarch)->builtin_void;
7636 }
7637 else
7638 type_die = follow_die_ref (die, type_attr, cu);
7639
7640 type = tag_type_to_type (type_die, cu);
7641 if (!type)
7642 {
7643 dump_die (type_die);
7644 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7645 cu->objfile->name);
7646 }
7647 return type;
7648 }
7649
7650 /* Return the containing type of the die in question using its
7651 DW_AT_containing_type attribute. */
7652
7653 static struct type *
7654 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7655 {
7656 struct type *type = NULL;
7657 struct attribute *type_attr;
7658 struct die_info *type_die = NULL;
7659
7660 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7661 if (type_attr)
7662 {
7663 type_die = follow_die_ref (die, type_attr, cu);
7664 type = tag_type_to_type (type_die, cu);
7665 }
7666 if (!type)
7667 {
7668 if (type_die)
7669 dump_die (type_die);
7670 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7671 cu->objfile->name);
7672 }
7673 return type;
7674 }
7675
7676 static struct type *
7677 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7678 {
7679 if (die->type)
7680 {
7681 return die->type;
7682 }
7683 else
7684 {
7685 read_type_die (die, cu);
7686 if (!die->type)
7687 {
7688 dump_die (die);
7689 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7690 cu->objfile->name);
7691 }
7692 return die->type;
7693 }
7694 }
7695
7696 static void
7697 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7698 {
7699 char *prefix = determine_prefix (die, cu);
7700 const char *old_prefix = processing_current_prefix;
7701 struct cleanup *back_to = make_cleanup (xfree, prefix);
7702 processing_current_prefix = prefix;
7703
7704 switch (die->tag)
7705 {
7706 case DW_TAG_class_type:
7707 case DW_TAG_interface_type:
7708 case DW_TAG_structure_type:
7709 case DW_TAG_union_type:
7710 read_structure_type (die, cu);
7711 break;
7712 case DW_TAG_enumeration_type:
7713 read_enumeration_type (die, cu);
7714 break;
7715 case DW_TAG_subprogram:
7716 case DW_TAG_subroutine_type:
7717 read_subroutine_type (die, cu);
7718 break;
7719 case DW_TAG_array_type:
7720 read_array_type (die, cu);
7721 break;
7722 case DW_TAG_set_type:
7723 read_set_type (die, cu);
7724 break;
7725 case DW_TAG_pointer_type:
7726 read_tag_pointer_type (die, cu);
7727 break;
7728 case DW_TAG_ptr_to_member_type:
7729 read_tag_ptr_to_member_type (die, cu);
7730 break;
7731 case DW_TAG_reference_type:
7732 read_tag_reference_type (die, cu);
7733 break;
7734 case DW_TAG_const_type:
7735 read_tag_const_type (die, cu);
7736 break;
7737 case DW_TAG_volatile_type:
7738 read_tag_volatile_type (die, cu);
7739 break;
7740 case DW_TAG_string_type:
7741 read_tag_string_type (die, cu);
7742 break;
7743 case DW_TAG_typedef:
7744 read_typedef (die, cu);
7745 break;
7746 case DW_TAG_subrange_type:
7747 read_subrange_type (die, cu);
7748 break;
7749 case DW_TAG_base_type:
7750 read_base_type (die, cu);
7751 break;
7752 case DW_TAG_unspecified_type:
7753 read_unspecified_type (die, cu);
7754 break;
7755 default:
7756 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7757 dwarf_tag_name (die->tag));
7758 break;
7759 }
7760
7761 processing_current_prefix = old_prefix;
7762 do_cleanups (back_to);
7763 }
7764
7765 /* Return the name of the namespace/class that DIE is defined within,
7766 or "" if we can't tell. The caller should xfree the result. */
7767
7768 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7769 therein) for an example of how to use this function to deal with
7770 DW_AT_specification. */
7771
7772 static char *
7773 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7774 {
7775 struct die_info *parent;
7776
7777 if (cu->language != language_cplus
7778 && cu->language != language_java)
7779 return NULL;
7780
7781 parent = die->parent;
7782
7783 if (parent == NULL)
7784 {
7785 return xstrdup ("");
7786 }
7787 else
7788 {
7789 switch (parent->tag) {
7790 case DW_TAG_namespace:
7791 {
7792 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7793 before doing this check? */
7794 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7795 {
7796 return xstrdup (TYPE_TAG_NAME (parent->type));
7797 }
7798 else
7799 {
7800 int dummy;
7801 char *parent_prefix = determine_prefix (parent, cu);
7802 char *retval = typename_concat (NULL, parent_prefix,
7803 namespace_name (parent, &dummy,
7804 cu),
7805 cu);
7806 xfree (parent_prefix);
7807 return retval;
7808 }
7809 }
7810 break;
7811 case DW_TAG_class_type:
7812 case DW_TAG_interface_type:
7813 case DW_TAG_structure_type:
7814 {
7815 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7816 {
7817 return xstrdup (TYPE_TAG_NAME (parent->type));
7818 }
7819 else
7820 {
7821 const char *old_prefix = processing_current_prefix;
7822 char *new_prefix = determine_prefix (parent, cu);
7823 char *retval;
7824
7825 processing_current_prefix = new_prefix;
7826 retval = determine_class_name (parent, cu);
7827 processing_current_prefix = old_prefix;
7828
7829 xfree (new_prefix);
7830 return retval;
7831 }
7832 }
7833 default:
7834 return determine_prefix (parent, cu);
7835 }
7836 }
7837 }
7838
7839 /* Return a newly-allocated string formed by concatenating PREFIX and
7840 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7841 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7842 perform an obconcat, otherwise allocate storage for the result. The CU argument
7843 is used to determine the language and hence, the appropriate separator. */
7844
7845 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7846
7847 static char *
7848 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7849 struct dwarf2_cu *cu)
7850 {
7851 char *sep;
7852
7853 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7854 sep = "";
7855 else if (cu->language == language_java)
7856 sep = ".";
7857 else
7858 sep = "::";
7859
7860 if (obs == NULL)
7861 {
7862 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7863 retval[0] = '\0';
7864
7865 if (prefix)
7866 {
7867 strcpy (retval, prefix);
7868 strcat (retval, sep);
7869 }
7870 if (suffix)
7871 strcat (retval, suffix);
7872
7873 return retval;
7874 }
7875 else
7876 {
7877 /* We have an obstack. */
7878 return obconcat (obs, prefix, sep, suffix);
7879 }
7880 }
7881
7882 #if 0
7883 struct die_info *
7884 copy_die (struct die_info *old_die)
7885 {
7886 struct die_info *new_die;
7887 int i, num_attrs;
7888
7889 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7890 memset (new_die, 0, sizeof (struct die_info));
7891
7892 new_die->tag = old_die->tag;
7893 new_die->has_children = old_die->has_children;
7894 new_die->abbrev = old_die->abbrev;
7895 new_die->offset = old_die->offset;
7896 new_die->type = NULL;
7897
7898 num_attrs = old_die->num_attrs;
7899 new_die->num_attrs = num_attrs;
7900 new_die->attrs = (struct attribute *)
7901 xmalloc (num_attrs * sizeof (struct attribute));
7902
7903 for (i = 0; i < old_die->num_attrs; ++i)
7904 {
7905 new_die->attrs[i].name = old_die->attrs[i].name;
7906 new_die->attrs[i].form = old_die->attrs[i].form;
7907 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7908 }
7909
7910 new_die->next = NULL;
7911 return new_die;
7912 }
7913 #endif
7914
7915 /* Return sibling of die, NULL if no sibling. */
7916
7917 static struct die_info *
7918 sibling_die (struct die_info *die)
7919 {
7920 return die->sibling;
7921 }
7922
7923 /* Get linkage name of a die, return NULL if not found. */
7924
7925 static char *
7926 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7927 {
7928 struct attribute *attr;
7929
7930 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7931 if (attr && DW_STRING (attr))
7932 return DW_STRING (attr);
7933 attr = dwarf2_attr (die, DW_AT_name, cu);
7934 if (attr && DW_STRING (attr))
7935 return DW_STRING (attr);
7936 return NULL;
7937 }
7938
7939 /* Get name of a die, return NULL if not found. */
7940
7941 static char *
7942 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7943 {
7944 struct attribute *attr;
7945
7946 attr = dwarf2_attr (die, DW_AT_name, cu);
7947 if (attr && DW_STRING (attr))
7948 return DW_STRING (attr);
7949 return NULL;
7950 }
7951
7952 /* Return the die that this die in an extension of, or NULL if there
7953 is none. */
7954
7955 static struct die_info *
7956 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7957 {
7958 struct attribute *attr;
7959
7960 attr = dwarf2_attr (die, DW_AT_extension, cu);
7961 if (attr == NULL)
7962 return NULL;
7963
7964 return follow_die_ref (die, attr, cu);
7965 }
7966
7967 /* Convert a DIE tag into its string name. */
7968
7969 static char *
7970 dwarf_tag_name (unsigned tag)
7971 {
7972 switch (tag)
7973 {
7974 case DW_TAG_padding:
7975 return "DW_TAG_padding";
7976 case DW_TAG_array_type:
7977 return "DW_TAG_array_type";
7978 case DW_TAG_class_type:
7979 return "DW_TAG_class_type";
7980 case DW_TAG_entry_point:
7981 return "DW_TAG_entry_point";
7982 case DW_TAG_enumeration_type:
7983 return "DW_TAG_enumeration_type";
7984 case DW_TAG_formal_parameter:
7985 return "DW_TAG_formal_parameter";
7986 case DW_TAG_imported_declaration:
7987 return "DW_TAG_imported_declaration";
7988 case DW_TAG_label:
7989 return "DW_TAG_label";
7990 case DW_TAG_lexical_block:
7991 return "DW_TAG_lexical_block";
7992 case DW_TAG_member:
7993 return "DW_TAG_member";
7994 case DW_TAG_pointer_type:
7995 return "DW_TAG_pointer_type";
7996 case DW_TAG_reference_type:
7997 return "DW_TAG_reference_type";
7998 case DW_TAG_compile_unit:
7999 return "DW_TAG_compile_unit";
8000 case DW_TAG_string_type:
8001 return "DW_TAG_string_type";
8002 case DW_TAG_structure_type:
8003 return "DW_TAG_structure_type";
8004 case DW_TAG_subroutine_type:
8005 return "DW_TAG_subroutine_type";
8006 case DW_TAG_typedef:
8007 return "DW_TAG_typedef";
8008 case DW_TAG_union_type:
8009 return "DW_TAG_union_type";
8010 case DW_TAG_unspecified_parameters:
8011 return "DW_TAG_unspecified_parameters";
8012 case DW_TAG_variant:
8013 return "DW_TAG_variant";
8014 case DW_TAG_common_block:
8015 return "DW_TAG_common_block";
8016 case DW_TAG_common_inclusion:
8017 return "DW_TAG_common_inclusion";
8018 case DW_TAG_inheritance:
8019 return "DW_TAG_inheritance";
8020 case DW_TAG_inlined_subroutine:
8021 return "DW_TAG_inlined_subroutine";
8022 case DW_TAG_module:
8023 return "DW_TAG_module";
8024 case DW_TAG_ptr_to_member_type:
8025 return "DW_TAG_ptr_to_member_type";
8026 case DW_TAG_set_type:
8027 return "DW_TAG_set_type";
8028 case DW_TAG_subrange_type:
8029 return "DW_TAG_subrange_type";
8030 case DW_TAG_with_stmt:
8031 return "DW_TAG_with_stmt";
8032 case DW_TAG_access_declaration:
8033 return "DW_TAG_access_declaration";
8034 case DW_TAG_base_type:
8035 return "DW_TAG_base_type";
8036 case DW_TAG_catch_block:
8037 return "DW_TAG_catch_block";
8038 case DW_TAG_const_type:
8039 return "DW_TAG_const_type";
8040 case DW_TAG_constant:
8041 return "DW_TAG_constant";
8042 case DW_TAG_enumerator:
8043 return "DW_TAG_enumerator";
8044 case DW_TAG_file_type:
8045 return "DW_TAG_file_type";
8046 case DW_TAG_friend:
8047 return "DW_TAG_friend";
8048 case DW_TAG_namelist:
8049 return "DW_TAG_namelist";
8050 case DW_TAG_namelist_item:
8051 return "DW_TAG_namelist_item";
8052 case DW_TAG_packed_type:
8053 return "DW_TAG_packed_type";
8054 case DW_TAG_subprogram:
8055 return "DW_TAG_subprogram";
8056 case DW_TAG_template_type_param:
8057 return "DW_TAG_template_type_param";
8058 case DW_TAG_template_value_param:
8059 return "DW_TAG_template_value_param";
8060 case DW_TAG_thrown_type:
8061 return "DW_TAG_thrown_type";
8062 case DW_TAG_try_block:
8063 return "DW_TAG_try_block";
8064 case DW_TAG_variant_part:
8065 return "DW_TAG_variant_part";
8066 case DW_TAG_variable:
8067 return "DW_TAG_variable";
8068 case DW_TAG_volatile_type:
8069 return "DW_TAG_volatile_type";
8070 case DW_TAG_dwarf_procedure:
8071 return "DW_TAG_dwarf_procedure";
8072 case DW_TAG_restrict_type:
8073 return "DW_TAG_restrict_type";
8074 case DW_TAG_interface_type:
8075 return "DW_TAG_interface_type";
8076 case DW_TAG_namespace:
8077 return "DW_TAG_namespace";
8078 case DW_TAG_imported_module:
8079 return "DW_TAG_imported_module";
8080 case DW_TAG_unspecified_type:
8081 return "DW_TAG_unspecified_type";
8082 case DW_TAG_partial_unit:
8083 return "DW_TAG_partial_unit";
8084 case DW_TAG_imported_unit:
8085 return "DW_TAG_imported_unit";
8086 case DW_TAG_condition:
8087 return "DW_TAG_condition";
8088 case DW_TAG_shared_type:
8089 return "DW_TAG_shared_type";
8090 case DW_TAG_MIPS_loop:
8091 return "DW_TAG_MIPS_loop";
8092 case DW_TAG_HP_array_descriptor:
8093 return "DW_TAG_HP_array_descriptor";
8094 case DW_TAG_format_label:
8095 return "DW_TAG_format_label";
8096 case DW_TAG_function_template:
8097 return "DW_TAG_function_template";
8098 case DW_TAG_class_template:
8099 return "DW_TAG_class_template";
8100 case DW_TAG_GNU_BINCL:
8101 return "DW_TAG_GNU_BINCL";
8102 case DW_TAG_GNU_EINCL:
8103 return "DW_TAG_GNU_EINCL";
8104 case DW_TAG_upc_shared_type:
8105 return "DW_TAG_upc_shared_type";
8106 case DW_TAG_upc_strict_type:
8107 return "DW_TAG_upc_strict_type";
8108 case DW_TAG_upc_relaxed_type:
8109 return "DW_TAG_upc_relaxed_type";
8110 case DW_TAG_PGI_kanji_type:
8111 return "DW_TAG_PGI_kanji_type";
8112 case DW_TAG_PGI_interface_block:
8113 return "DW_TAG_PGI_interface_block";
8114 default:
8115 return "DW_TAG_<unknown>";
8116 }
8117 }
8118
8119 /* Convert a DWARF attribute code into its string name. */
8120
8121 static char *
8122 dwarf_attr_name (unsigned attr)
8123 {
8124 switch (attr)
8125 {
8126 case DW_AT_sibling:
8127 return "DW_AT_sibling";
8128 case DW_AT_location:
8129 return "DW_AT_location";
8130 case DW_AT_name:
8131 return "DW_AT_name";
8132 case DW_AT_ordering:
8133 return "DW_AT_ordering";
8134 case DW_AT_subscr_data:
8135 return "DW_AT_subscr_data";
8136 case DW_AT_byte_size:
8137 return "DW_AT_byte_size";
8138 case DW_AT_bit_offset:
8139 return "DW_AT_bit_offset";
8140 case DW_AT_bit_size:
8141 return "DW_AT_bit_size";
8142 case DW_AT_element_list:
8143 return "DW_AT_element_list";
8144 case DW_AT_stmt_list:
8145 return "DW_AT_stmt_list";
8146 case DW_AT_low_pc:
8147 return "DW_AT_low_pc";
8148 case DW_AT_high_pc:
8149 return "DW_AT_high_pc";
8150 case DW_AT_language:
8151 return "DW_AT_language";
8152 case DW_AT_member:
8153 return "DW_AT_member";
8154 case DW_AT_discr:
8155 return "DW_AT_discr";
8156 case DW_AT_discr_value:
8157 return "DW_AT_discr_value";
8158 case DW_AT_visibility:
8159 return "DW_AT_visibility";
8160 case DW_AT_import:
8161 return "DW_AT_import";
8162 case DW_AT_string_length:
8163 return "DW_AT_string_length";
8164 case DW_AT_common_reference:
8165 return "DW_AT_common_reference";
8166 case DW_AT_comp_dir:
8167 return "DW_AT_comp_dir";
8168 case DW_AT_const_value:
8169 return "DW_AT_const_value";
8170 case DW_AT_containing_type:
8171 return "DW_AT_containing_type";
8172 case DW_AT_default_value:
8173 return "DW_AT_default_value";
8174 case DW_AT_inline:
8175 return "DW_AT_inline";
8176 case DW_AT_is_optional:
8177 return "DW_AT_is_optional";
8178 case DW_AT_lower_bound:
8179 return "DW_AT_lower_bound";
8180 case DW_AT_producer:
8181 return "DW_AT_producer";
8182 case DW_AT_prototyped:
8183 return "DW_AT_prototyped";
8184 case DW_AT_return_addr:
8185 return "DW_AT_return_addr";
8186 case DW_AT_start_scope:
8187 return "DW_AT_start_scope";
8188 case DW_AT_bit_stride:
8189 return "DW_AT_bit_stride";
8190 case DW_AT_upper_bound:
8191 return "DW_AT_upper_bound";
8192 case DW_AT_abstract_origin:
8193 return "DW_AT_abstract_origin";
8194 case DW_AT_accessibility:
8195 return "DW_AT_accessibility";
8196 case DW_AT_address_class:
8197 return "DW_AT_address_class";
8198 case DW_AT_artificial:
8199 return "DW_AT_artificial";
8200 case DW_AT_base_types:
8201 return "DW_AT_base_types";
8202 case DW_AT_calling_convention:
8203 return "DW_AT_calling_convention";
8204 case DW_AT_count:
8205 return "DW_AT_count";
8206 case DW_AT_data_member_location:
8207 return "DW_AT_data_member_location";
8208 case DW_AT_decl_column:
8209 return "DW_AT_decl_column";
8210 case DW_AT_decl_file:
8211 return "DW_AT_decl_file";
8212 case DW_AT_decl_line:
8213 return "DW_AT_decl_line";
8214 case DW_AT_declaration:
8215 return "DW_AT_declaration";
8216 case DW_AT_discr_list:
8217 return "DW_AT_discr_list";
8218 case DW_AT_encoding:
8219 return "DW_AT_encoding";
8220 case DW_AT_external:
8221 return "DW_AT_external";
8222 case DW_AT_frame_base:
8223 return "DW_AT_frame_base";
8224 case DW_AT_friend:
8225 return "DW_AT_friend";
8226 case DW_AT_identifier_case:
8227 return "DW_AT_identifier_case";
8228 case DW_AT_macro_info:
8229 return "DW_AT_macro_info";
8230 case DW_AT_namelist_items:
8231 return "DW_AT_namelist_items";
8232 case DW_AT_priority:
8233 return "DW_AT_priority";
8234 case DW_AT_segment:
8235 return "DW_AT_segment";
8236 case DW_AT_specification:
8237 return "DW_AT_specification";
8238 case DW_AT_static_link:
8239 return "DW_AT_static_link";
8240 case DW_AT_type:
8241 return "DW_AT_type";
8242 case DW_AT_use_location:
8243 return "DW_AT_use_location";
8244 case DW_AT_variable_parameter:
8245 return "DW_AT_variable_parameter";
8246 case DW_AT_virtuality:
8247 return "DW_AT_virtuality";
8248 case DW_AT_vtable_elem_location:
8249 return "DW_AT_vtable_elem_location";
8250 /* DWARF 3 values. */
8251 case DW_AT_allocated:
8252 return "DW_AT_allocated";
8253 case DW_AT_associated:
8254 return "DW_AT_associated";
8255 case DW_AT_data_location:
8256 return "DW_AT_data_location";
8257 case DW_AT_byte_stride:
8258 return "DW_AT_byte_stride";
8259 case DW_AT_entry_pc:
8260 return "DW_AT_entry_pc";
8261 case DW_AT_use_UTF8:
8262 return "DW_AT_use_UTF8";
8263 case DW_AT_extension:
8264 return "DW_AT_extension";
8265 case DW_AT_ranges:
8266 return "DW_AT_ranges";
8267 case DW_AT_trampoline:
8268 return "DW_AT_trampoline";
8269 case DW_AT_call_column:
8270 return "DW_AT_call_column";
8271 case DW_AT_call_file:
8272 return "DW_AT_call_file";
8273 case DW_AT_call_line:
8274 return "DW_AT_call_line";
8275 case DW_AT_description:
8276 return "DW_AT_description";
8277 case DW_AT_binary_scale:
8278 return "DW_AT_binary_scale";
8279 case DW_AT_decimal_scale:
8280 return "DW_AT_decimal_scale";
8281 case DW_AT_small:
8282 return "DW_AT_small";
8283 case DW_AT_decimal_sign:
8284 return "DW_AT_decimal_sign";
8285 case DW_AT_digit_count:
8286 return "DW_AT_digit_count";
8287 case DW_AT_picture_string:
8288 return "DW_AT_picture_string";
8289 case DW_AT_mutable:
8290 return "DW_AT_mutable";
8291 case DW_AT_threads_scaled:
8292 return "DW_AT_threads_scaled";
8293 case DW_AT_explicit:
8294 return "DW_AT_explicit";
8295 case DW_AT_object_pointer:
8296 return "DW_AT_object_pointer";
8297 case DW_AT_endianity:
8298 return "DW_AT_endianity";
8299 case DW_AT_elemental:
8300 return "DW_AT_elemental";
8301 case DW_AT_pure:
8302 return "DW_AT_pure";
8303 case DW_AT_recursive:
8304 return "DW_AT_recursive";
8305 #ifdef MIPS
8306 /* SGI/MIPS extensions. */
8307 case DW_AT_MIPS_fde:
8308 return "DW_AT_MIPS_fde";
8309 case DW_AT_MIPS_loop_begin:
8310 return "DW_AT_MIPS_loop_begin";
8311 case DW_AT_MIPS_tail_loop_begin:
8312 return "DW_AT_MIPS_tail_loop_begin";
8313 case DW_AT_MIPS_epilog_begin:
8314 return "DW_AT_MIPS_epilog_begin";
8315 case DW_AT_MIPS_loop_unroll_factor:
8316 return "DW_AT_MIPS_loop_unroll_factor";
8317 case DW_AT_MIPS_software_pipeline_depth:
8318 return "DW_AT_MIPS_software_pipeline_depth";
8319 case DW_AT_MIPS_linkage_name:
8320 return "DW_AT_MIPS_linkage_name";
8321 case DW_AT_MIPS_stride:
8322 return "DW_AT_MIPS_stride";
8323 case DW_AT_MIPS_abstract_name:
8324 return "DW_AT_MIPS_abstract_name";
8325 case DW_AT_MIPS_clone_origin:
8326 return "DW_AT_MIPS_clone_origin";
8327 case DW_AT_MIPS_has_inlines:
8328 return "DW_AT_MIPS_has_inlines";
8329 #endif
8330 /* HP extensions. */
8331 case DW_AT_HP_block_index:
8332 return "DW_AT_HP_block_index";
8333 case DW_AT_HP_unmodifiable:
8334 return "DW_AT_HP_unmodifiable";
8335 case DW_AT_HP_actuals_stmt_list:
8336 return "DW_AT_HP_actuals_stmt_list";
8337 case DW_AT_HP_proc_per_section:
8338 return "DW_AT_HP_proc_per_section";
8339 case DW_AT_HP_raw_data_ptr:
8340 return "DW_AT_HP_raw_data_ptr";
8341 case DW_AT_HP_pass_by_reference:
8342 return "DW_AT_HP_pass_by_reference";
8343 case DW_AT_HP_opt_level:
8344 return "DW_AT_HP_opt_level";
8345 case DW_AT_HP_prof_version_id:
8346 return "DW_AT_HP_prof_version_id";
8347 case DW_AT_HP_opt_flags:
8348 return "DW_AT_HP_opt_flags";
8349 case DW_AT_HP_cold_region_low_pc:
8350 return "DW_AT_HP_cold_region_low_pc";
8351 case DW_AT_HP_cold_region_high_pc:
8352 return "DW_AT_HP_cold_region_high_pc";
8353 case DW_AT_HP_all_variables_modifiable:
8354 return "DW_AT_HP_all_variables_modifiable";
8355 case DW_AT_HP_linkage_name:
8356 return "DW_AT_HP_linkage_name";
8357 case DW_AT_HP_prof_flags:
8358 return "DW_AT_HP_prof_flags";
8359 /* GNU extensions. */
8360 case DW_AT_sf_names:
8361 return "DW_AT_sf_names";
8362 case DW_AT_src_info:
8363 return "DW_AT_src_info";
8364 case DW_AT_mac_info:
8365 return "DW_AT_mac_info";
8366 case DW_AT_src_coords:
8367 return "DW_AT_src_coords";
8368 case DW_AT_body_begin:
8369 return "DW_AT_body_begin";
8370 case DW_AT_body_end:
8371 return "DW_AT_body_end";
8372 case DW_AT_GNU_vector:
8373 return "DW_AT_GNU_vector";
8374 /* VMS extensions. */
8375 case DW_AT_VMS_rtnbeg_pd_address:
8376 return "DW_AT_VMS_rtnbeg_pd_address";
8377 /* UPC extension. */
8378 case DW_AT_upc_threads_scaled:
8379 return "DW_AT_upc_threads_scaled";
8380 /* PGI (STMicroelectronics) extensions. */
8381 case DW_AT_PGI_lbase:
8382 return "DW_AT_PGI_lbase";
8383 case DW_AT_PGI_soffset:
8384 return "DW_AT_PGI_soffset";
8385 case DW_AT_PGI_lstride:
8386 return "DW_AT_PGI_lstride";
8387 default:
8388 return "DW_AT_<unknown>";
8389 }
8390 }
8391
8392 /* Convert a DWARF value form code into its string name. */
8393
8394 static char *
8395 dwarf_form_name (unsigned form)
8396 {
8397 switch (form)
8398 {
8399 case DW_FORM_addr:
8400 return "DW_FORM_addr";
8401 case DW_FORM_block2:
8402 return "DW_FORM_block2";
8403 case DW_FORM_block4:
8404 return "DW_FORM_block4";
8405 case DW_FORM_data2:
8406 return "DW_FORM_data2";
8407 case DW_FORM_data4:
8408 return "DW_FORM_data4";
8409 case DW_FORM_data8:
8410 return "DW_FORM_data8";
8411 case DW_FORM_string:
8412 return "DW_FORM_string";
8413 case DW_FORM_block:
8414 return "DW_FORM_block";
8415 case DW_FORM_block1:
8416 return "DW_FORM_block1";
8417 case DW_FORM_data1:
8418 return "DW_FORM_data1";
8419 case DW_FORM_flag:
8420 return "DW_FORM_flag";
8421 case DW_FORM_sdata:
8422 return "DW_FORM_sdata";
8423 case DW_FORM_strp:
8424 return "DW_FORM_strp";
8425 case DW_FORM_udata:
8426 return "DW_FORM_udata";
8427 case DW_FORM_ref_addr:
8428 return "DW_FORM_ref_addr";
8429 case DW_FORM_ref1:
8430 return "DW_FORM_ref1";
8431 case DW_FORM_ref2:
8432 return "DW_FORM_ref2";
8433 case DW_FORM_ref4:
8434 return "DW_FORM_ref4";
8435 case DW_FORM_ref8:
8436 return "DW_FORM_ref8";
8437 case DW_FORM_ref_udata:
8438 return "DW_FORM_ref_udata";
8439 case DW_FORM_indirect:
8440 return "DW_FORM_indirect";
8441 default:
8442 return "DW_FORM_<unknown>";
8443 }
8444 }
8445
8446 /* Convert a DWARF stack opcode into its string name. */
8447
8448 static char *
8449 dwarf_stack_op_name (unsigned op)
8450 {
8451 switch (op)
8452 {
8453 case DW_OP_addr:
8454 return "DW_OP_addr";
8455 case DW_OP_deref:
8456 return "DW_OP_deref";
8457 case DW_OP_const1u:
8458 return "DW_OP_const1u";
8459 case DW_OP_const1s:
8460 return "DW_OP_const1s";
8461 case DW_OP_const2u:
8462 return "DW_OP_const2u";
8463 case DW_OP_const2s:
8464 return "DW_OP_const2s";
8465 case DW_OP_const4u:
8466 return "DW_OP_const4u";
8467 case DW_OP_const4s:
8468 return "DW_OP_const4s";
8469 case DW_OP_const8u:
8470 return "DW_OP_const8u";
8471 case DW_OP_const8s:
8472 return "DW_OP_const8s";
8473 case DW_OP_constu:
8474 return "DW_OP_constu";
8475 case DW_OP_consts:
8476 return "DW_OP_consts";
8477 case DW_OP_dup:
8478 return "DW_OP_dup";
8479 case DW_OP_drop:
8480 return "DW_OP_drop";
8481 case DW_OP_over:
8482 return "DW_OP_over";
8483 case DW_OP_pick:
8484 return "DW_OP_pick";
8485 case DW_OP_swap:
8486 return "DW_OP_swap";
8487 case DW_OP_rot:
8488 return "DW_OP_rot";
8489 case DW_OP_xderef:
8490 return "DW_OP_xderef";
8491 case DW_OP_abs:
8492 return "DW_OP_abs";
8493 case DW_OP_and:
8494 return "DW_OP_and";
8495 case DW_OP_div:
8496 return "DW_OP_div";
8497 case DW_OP_minus:
8498 return "DW_OP_minus";
8499 case DW_OP_mod:
8500 return "DW_OP_mod";
8501 case DW_OP_mul:
8502 return "DW_OP_mul";
8503 case DW_OP_neg:
8504 return "DW_OP_neg";
8505 case DW_OP_not:
8506 return "DW_OP_not";
8507 case DW_OP_or:
8508 return "DW_OP_or";
8509 case DW_OP_plus:
8510 return "DW_OP_plus";
8511 case DW_OP_plus_uconst:
8512 return "DW_OP_plus_uconst";
8513 case DW_OP_shl:
8514 return "DW_OP_shl";
8515 case DW_OP_shr:
8516 return "DW_OP_shr";
8517 case DW_OP_shra:
8518 return "DW_OP_shra";
8519 case DW_OP_xor:
8520 return "DW_OP_xor";
8521 case DW_OP_bra:
8522 return "DW_OP_bra";
8523 case DW_OP_eq:
8524 return "DW_OP_eq";
8525 case DW_OP_ge:
8526 return "DW_OP_ge";
8527 case DW_OP_gt:
8528 return "DW_OP_gt";
8529 case DW_OP_le:
8530 return "DW_OP_le";
8531 case DW_OP_lt:
8532 return "DW_OP_lt";
8533 case DW_OP_ne:
8534 return "DW_OP_ne";
8535 case DW_OP_skip:
8536 return "DW_OP_skip";
8537 case DW_OP_lit0:
8538 return "DW_OP_lit0";
8539 case DW_OP_lit1:
8540 return "DW_OP_lit1";
8541 case DW_OP_lit2:
8542 return "DW_OP_lit2";
8543 case DW_OP_lit3:
8544 return "DW_OP_lit3";
8545 case DW_OP_lit4:
8546 return "DW_OP_lit4";
8547 case DW_OP_lit5:
8548 return "DW_OP_lit5";
8549 case DW_OP_lit6:
8550 return "DW_OP_lit6";
8551 case DW_OP_lit7:
8552 return "DW_OP_lit7";
8553 case DW_OP_lit8:
8554 return "DW_OP_lit8";
8555 case DW_OP_lit9:
8556 return "DW_OP_lit9";
8557 case DW_OP_lit10:
8558 return "DW_OP_lit10";
8559 case DW_OP_lit11:
8560 return "DW_OP_lit11";
8561 case DW_OP_lit12:
8562 return "DW_OP_lit12";
8563 case DW_OP_lit13:
8564 return "DW_OP_lit13";
8565 case DW_OP_lit14:
8566 return "DW_OP_lit14";
8567 case DW_OP_lit15:
8568 return "DW_OP_lit15";
8569 case DW_OP_lit16:
8570 return "DW_OP_lit16";
8571 case DW_OP_lit17:
8572 return "DW_OP_lit17";
8573 case DW_OP_lit18:
8574 return "DW_OP_lit18";
8575 case DW_OP_lit19:
8576 return "DW_OP_lit19";
8577 case DW_OP_lit20:
8578 return "DW_OP_lit20";
8579 case DW_OP_lit21:
8580 return "DW_OP_lit21";
8581 case DW_OP_lit22:
8582 return "DW_OP_lit22";
8583 case DW_OP_lit23:
8584 return "DW_OP_lit23";
8585 case DW_OP_lit24:
8586 return "DW_OP_lit24";
8587 case DW_OP_lit25:
8588 return "DW_OP_lit25";
8589 case DW_OP_lit26:
8590 return "DW_OP_lit26";
8591 case DW_OP_lit27:
8592 return "DW_OP_lit27";
8593 case DW_OP_lit28:
8594 return "DW_OP_lit28";
8595 case DW_OP_lit29:
8596 return "DW_OP_lit29";
8597 case DW_OP_lit30:
8598 return "DW_OP_lit30";
8599 case DW_OP_lit31:
8600 return "DW_OP_lit31";
8601 case DW_OP_reg0:
8602 return "DW_OP_reg0";
8603 case DW_OP_reg1:
8604 return "DW_OP_reg1";
8605 case DW_OP_reg2:
8606 return "DW_OP_reg2";
8607 case DW_OP_reg3:
8608 return "DW_OP_reg3";
8609 case DW_OP_reg4:
8610 return "DW_OP_reg4";
8611 case DW_OP_reg5:
8612 return "DW_OP_reg5";
8613 case DW_OP_reg6:
8614 return "DW_OP_reg6";
8615 case DW_OP_reg7:
8616 return "DW_OP_reg7";
8617 case DW_OP_reg8:
8618 return "DW_OP_reg8";
8619 case DW_OP_reg9:
8620 return "DW_OP_reg9";
8621 case DW_OP_reg10:
8622 return "DW_OP_reg10";
8623 case DW_OP_reg11:
8624 return "DW_OP_reg11";
8625 case DW_OP_reg12:
8626 return "DW_OP_reg12";
8627 case DW_OP_reg13:
8628 return "DW_OP_reg13";
8629 case DW_OP_reg14:
8630 return "DW_OP_reg14";
8631 case DW_OP_reg15:
8632 return "DW_OP_reg15";
8633 case DW_OP_reg16:
8634 return "DW_OP_reg16";
8635 case DW_OP_reg17:
8636 return "DW_OP_reg17";
8637 case DW_OP_reg18:
8638 return "DW_OP_reg18";
8639 case DW_OP_reg19:
8640 return "DW_OP_reg19";
8641 case DW_OP_reg20:
8642 return "DW_OP_reg20";
8643 case DW_OP_reg21:
8644 return "DW_OP_reg21";
8645 case DW_OP_reg22:
8646 return "DW_OP_reg22";
8647 case DW_OP_reg23:
8648 return "DW_OP_reg23";
8649 case DW_OP_reg24:
8650 return "DW_OP_reg24";
8651 case DW_OP_reg25:
8652 return "DW_OP_reg25";
8653 case DW_OP_reg26:
8654 return "DW_OP_reg26";
8655 case DW_OP_reg27:
8656 return "DW_OP_reg27";
8657 case DW_OP_reg28:
8658 return "DW_OP_reg28";
8659 case DW_OP_reg29:
8660 return "DW_OP_reg29";
8661 case DW_OP_reg30:
8662 return "DW_OP_reg30";
8663 case DW_OP_reg31:
8664 return "DW_OP_reg31";
8665 case DW_OP_breg0:
8666 return "DW_OP_breg0";
8667 case DW_OP_breg1:
8668 return "DW_OP_breg1";
8669 case DW_OP_breg2:
8670 return "DW_OP_breg2";
8671 case DW_OP_breg3:
8672 return "DW_OP_breg3";
8673 case DW_OP_breg4:
8674 return "DW_OP_breg4";
8675 case DW_OP_breg5:
8676 return "DW_OP_breg5";
8677 case DW_OP_breg6:
8678 return "DW_OP_breg6";
8679 case DW_OP_breg7:
8680 return "DW_OP_breg7";
8681 case DW_OP_breg8:
8682 return "DW_OP_breg8";
8683 case DW_OP_breg9:
8684 return "DW_OP_breg9";
8685 case DW_OP_breg10:
8686 return "DW_OP_breg10";
8687 case DW_OP_breg11:
8688 return "DW_OP_breg11";
8689 case DW_OP_breg12:
8690 return "DW_OP_breg12";
8691 case DW_OP_breg13:
8692 return "DW_OP_breg13";
8693 case DW_OP_breg14:
8694 return "DW_OP_breg14";
8695 case DW_OP_breg15:
8696 return "DW_OP_breg15";
8697 case DW_OP_breg16:
8698 return "DW_OP_breg16";
8699 case DW_OP_breg17:
8700 return "DW_OP_breg17";
8701 case DW_OP_breg18:
8702 return "DW_OP_breg18";
8703 case DW_OP_breg19:
8704 return "DW_OP_breg19";
8705 case DW_OP_breg20:
8706 return "DW_OP_breg20";
8707 case DW_OP_breg21:
8708 return "DW_OP_breg21";
8709 case DW_OP_breg22:
8710 return "DW_OP_breg22";
8711 case DW_OP_breg23:
8712 return "DW_OP_breg23";
8713 case DW_OP_breg24:
8714 return "DW_OP_breg24";
8715 case DW_OP_breg25:
8716 return "DW_OP_breg25";
8717 case DW_OP_breg26:
8718 return "DW_OP_breg26";
8719 case DW_OP_breg27:
8720 return "DW_OP_breg27";
8721 case DW_OP_breg28:
8722 return "DW_OP_breg28";
8723 case DW_OP_breg29:
8724 return "DW_OP_breg29";
8725 case DW_OP_breg30:
8726 return "DW_OP_breg30";
8727 case DW_OP_breg31:
8728 return "DW_OP_breg31";
8729 case DW_OP_regx:
8730 return "DW_OP_regx";
8731 case DW_OP_fbreg:
8732 return "DW_OP_fbreg";
8733 case DW_OP_bregx:
8734 return "DW_OP_bregx";
8735 case DW_OP_piece:
8736 return "DW_OP_piece";
8737 case DW_OP_deref_size:
8738 return "DW_OP_deref_size";
8739 case DW_OP_xderef_size:
8740 return "DW_OP_xderef_size";
8741 case DW_OP_nop:
8742 return "DW_OP_nop";
8743 /* DWARF 3 extensions. */
8744 case DW_OP_push_object_address:
8745 return "DW_OP_push_object_address";
8746 case DW_OP_call2:
8747 return "DW_OP_call2";
8748 case DW_OP_call4:
8749 return "DW_OP_call4";
8750 case DW_OP_call_ref:
8751 return "DW_OP_call_ref";
8752 /* GNU extensions. */
8753 case DW_OP_form_tls_address:
8754 return "DW_OP_form_tls_address";
8755 case DW_OP_call_frame_cfa:
8756 return "DW_OP_call_frame_cfa";
8757 case DW_OP_bit_piece:
8758 return "DW_OP_bit_piece";
8759 case DW_OP_GNU_push_tls_address:
8760 return "DW_OP_GNU_push_tls_address";
8761 case DW_OP_GNU_uninit:
8762 return "DW_OP_GNU_uninit";
8763 /* HP extensions. */
8764 case DW_OP_HP_is_value:
8765 return "DW_OP_HP_is_value";
8766 case DW_OP_HP_fltconst4:
8767 return "DW_OP_HP_fltconst4";
8768 case DW_OP_HP_fltconst8:
8769 return "DW_OP_HP_fltconst8";
8770 case DW_OP_HP_mod_range:
8771 return "DW_OP_HP_mod_range";
8772 case DW_OP_HP_unmod_range:
8773 return "DW_OP_HP_unmod_range";
8774 case DW_OP_HP_tls:
8775 return "DW_OP_HP_tls";
8776 default:
8777 return "OP_<unknown>";
8778 }
8779 }
8780
8781 static char *
8782 dwarf_bool_name (unsigned mybool)
8783 {
8784 if (mybool)
8785 return "TRUE";
8786 else
8787 return "FALSE";
8788 }
8789
8790 /* Convert a DWARF type code into its string name. */
8791
8792 static char *
8793 dwarf_type_encoding_name (unsigned enc)
8794 {
8795 switch (enc)
8796 {
8797 case DW_ATE_void:
8798 return "DW_ATE_void";
8799 case DW_ATE_address:
8800 return "DW_ATE_address";
8801 case DW_ATE_boolean:
8802 return "DW_ATE_boolean";
8803 case DW_ATE_complex_float:
8804 return "DW_ATE_complex_float";
8805 case DW_ATE_float:
8806 return "DW_ATE_float";
8807 case DW_ATE_signed:
8808 return "DW_ATE_signed";
8809 case DW_ATE_signed_char:
8810 return "DW_ATE_signed_char";
8811 case DW_ATE_unsigned:
8812 return "DW_ATE_unsigned";
8813 case DW_ATE_unsigned_char:
8814 return "DW_ATE_unsigned_char";
8815 /* DWARF 3. */
8816 case DW_ATE_imaginary_float:
8817 return "DW_ATE_imaginary_float";
8818 case DW_ATE_packed_decimal:
8819 return "DW_ATE_packed_decimal";
8820 case DW_ATE_numeric_string:
8821 return "DW_ATE_numeric_string";
8822 case DW_ATE_edited:
8823 return "DW_ATE_edited";
8824 case DW_ATE_signed_fixed:
8825 return "DW_ATE_signed_fixed";
8826 case DW_ATE_unsigned_fixed:
8827 return "DW_ATE_unsigned_fixed";
8828 case DW_ATE_decimal_float:
8829 return "DW_ATE_decimal_float";
8830 /* HP extensions. */
8831 case DW_ATE_HP_float80:
8832 return "DW_ATE_HP_float80";
8833 case DW_ATE_HP_complex_float80:
8834 return "DW_ATE_HP_complex_float80";
8835 case DW_ATE_HP_float128:
8836 return "DW_ATE_HP_float128";
8837 case DW_ATE_HP_complex_float128:
8838 return "DW_ATE_HP_complex_float128";
8839 case DW_ATE_HP_floathpintel:
8840 return "DW_ATE_HP_floathpintel";
8841 case DW_ATE_HP_imaginary_float80:
8842 return "DW_ATE_HP_imaginary_float80";
8843 case DW_ATE_HP_imaginary_float128:
8844 return "DW_ATE_HP_imaginary_float128";
8845 default:
8846 return "DW_ATE_<unknown>";
8847 }
8848 }
8849
8850 /* Convert a DWARF call frame info operation to its string name. */
8851
8852 #if 0
8853 static char *
8854 dwarf_cfi_name (unsigned cfi_opc)
8855 {
8856 switch (cfi_opc)
8857 {
8858 case DW_CFA_advance_loc:
8859 return "DW_CFA_advance_loc";
8860 case DW_CFA_offset:
8861 return "DW_CFA_offset";
8862 case DW_CFA_restore:
8863 return "DW_CFA_restore";
8864 case DW_CFA_nop:
8865 return "DW_CFA_nop";
8866 case DW_CFA_set_loc:
8867 return "DW_CFA_set_loc";
8868 case DW_CFA_advance_loc1:
8869 return "DW_CFA_advance_loc1";
8870 case DW_CFA_advance_loc2:
8871 return "DW_CFA_advance_loc2";
8872 case DW_CFA_advance_loc4:
8873 return "DW_CFA_advance_loc4";
8874 case DW_CFA_offset_extended:
8875 return "DW_CFA_offset_extended";
8876 case DW_CFA_restore_extended:
8877 return "DW_CFA_restore_extended";
8878 case DW_CFA_undefined:
8879 return "DW_CFA_undefined";
8880 case DW_CFA_same_value:
8881 return "DW_CFA_same_value";
8882 case DW_CFA_register:
8883 return "DW_CFA_register";
8884 case DW_CFA_remember_state:
8885 return "DW_CFA_remember_state";
8886 case DW_CFA_restore_state:
8887 return "DW_CFA_restore_state";
8888 case DW_CFA_def_cfa:
8889 return "DW_CFA_def_cfa";
8890 case DW_CFA_def_cfa_register:
8891 return "DW_CFA_def_cfa_register";
8892 case DW_CFA_def_cfa_offset:
8893 return "DW_CFA_def_cfa_offset";
8894 /* DWARF 3. */
8895 case DW_CFA_def_cfa_expression:
8896 return "DW_CFA_def_cfa_expression";
8897 case DW_CFA_expression:
8898 return "DW_CFA_expression";
8899 case DW_CFA_offset_extended_sf:
8900 return "DW_CFA_offset_extended_sf";
8901 case DW_CFA_def_cfa_sf:
8902 return "DW_CFA_def_cfa_sf";
8903 case DW_CFA_def_cfa_offset_sf:
8904 return "DW_CFA_def_cfa_offset_sf";
8905 case DW_CFA_val_offset:
8906 return "DW_CFA_val_offset";
8907 case DW_CFA_val_offset_sf:
8908 return "DW_CFA_val_offset_sf";
8909 case DW_CFA_val_expression:
8910 return "DW_CFA_val_expression";
8911 /* SGI/MIPS specific. */
8912 case DW_CFA_MIPS_advance_loc8:
8913 return "DW_CFA_MIPS_advance_loc8";
8914 /* GNU extensions. */
8915 case DW_CFA_GNU_window_save:
8916 return "DW_CFA_GNU_window_save";
8917 case DW_CFA_GNU_args_size:
8918 return "DW_CFA_GNU_args_size";
8919 case DW_CFA_GNU_negative_offset_extended:
8920 return "DW_CFA_GNU_negative_offset_extended";
8921 default:
8922 return "DW_CFA_<unknown>";
8923 }
8924 }
8925 #endif
8926
8927 static void
8928 dump_die (struct die_info *die)
8929 {
8930 unsigned int i;
8931
8932 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8933 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8934 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8935 dwarf_bool_name (die->child != NULL));
8936
8937 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8938 for (i = 0; i < die->num_attrs; ++i)
8939 {
8940 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8941 dwarf_attr_name (die->attrs[i].name),
8942 dwarf_form_name (die->attrs[i].form));
8943 switch (die->attrs[i].form)
8944 {
8945 case DW_FORM_ref_addr:
8946 case DW_FORM_addr:
8947 fprintf_unfiltered (gdb_stderr, "address: ");
8948 fputs_filtered (paddress (DW_ADDR (&die->attrs[i])), gdb_stderr);
8949 break;
8950 case DW_FORM_block2:
8951 case DW_FORM_block4:
8952 case DW_FORM_block:
8953 case DW_FORM_block1:
8954 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8955 break;
8956 case DW_FORM_ref1:
8957 case DW_FORM_ref2:
8958 case DW_FORM_ref4:
8959 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8960 (long) (DW_ADDR (&die->attrs[i])));
8961 break;
8962 case DW_FORM_data1:
8963 case DW_FORM_data2:
8964 case DW_FORM_data4:
8965 case DW_FORM_data8:
8966 case DW_FORM_udata:
8967 case DW_FORM_sdata:
8968 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8969 break;
8970 case DW_FORM_string:
8971 case DW_FORM_strp:
8972 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8973 DW_STRING (&die->attrs[i])
8974 ? DW_STRING (&die->attrs[i]) : "");
8975 break;
8976 case DW_FORM_flag:
8977 if (DW_UNSND (&die->attrs[i]))
8978 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8979 else
8980 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8981 break;
8982 case DW_FORM_indirect:
8983 /* the reader will have reduced the indirect form to
8984 the "base form" so this form should not occur */
8985 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8986 break;
8987 default:
8988 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8989 die->attrs[i].form);
8990 }
8991 fprintf_unfiltered (gdb_stderr, "\n");
8992 }
8993 }
8994
8995 static void
8996 dump_die_list (struct die_info *die)
8997 {
8998 while (die)
8999 {
9000 dump_die (die);
9001 if (die->child != NULL)
9002 dump_die_list (die->child);
9003 if (die->sibling != NULL)
9004 dump_die_list (die->sibling);
9005 }
9006 }
9007
9008 static void
9009 store_in_ref_table (unsigned int offset, struct die_info *die,
9010 struct dwarf2_cu *cu)
9011 {
9012 int h;
9013 struct die_info *old;
9014
9015 h = (offset % REF_HASH_SIZE);
9016 old = cu->die_ref_table[h];
9017 die->next_ref = old;
9018 cu->die_ref_table[h] = die;
9019 }
9020
9021 static unsigned int
9022 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
9023 {
9024 unsigned int result = 0;
9025
9026 switch (attr->form)
9027 {
9028 case DW_FORM_ref_addr:
9029 case DW_FORM_ref1:
9030 case DW_FORM_ref2:
9031 case DW_FORM_ref4:
9032 case DW_FORM_ref8:
9033 case DW_FORM_ref_udata:
9034 result = DW_ADDR (attr);
9035 break;
9036 default:
9037 complaint (&symfile_complaints,
9038 _("unsupported die ref attribute form: '%s'"),
9039 dwarf_form_name (attr->form));
9040 }
9041 return result;
9042 }
9043
9044 /* Return the constant value held by the given attribute. Return -1
9045 if the value held by the attribute is not constant. */
9046
9047 static int
9048 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9049 {
9050 if (attr->form == DW_FORM_sdata)
9051 return DW_SND (attr);
9052 else if (attr->form == DW_FORM_udata
9053 || attr->form == DW_FORM_data1
9054 || attr->form == DW_FORM_data2
9055 || attr->form == DW_FORM_data4
9056 || attr->form == DW_FORM_data8)
9057 return DW_UNSND (attr);
9058 else
9059 {
9060 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
9061 dwarf_form_name (attr->form));
9062 return default_value;
9063 }
9064 }
9065
9066 static struct die_info *
9067 follow_die_ref (struct die_info *src_die, struct attribute *attr,
9068 struct dwarf2_cu *cu)
9069 {
9070 struct die_info *die;
9071 unsigned int offset;
9072 int h;
9073 struct die_info temp_die;
9074 struct dwarf2_cu *target_cu;
9075
9076 offset = dwarf2_get_ref_die_offset (attr, cu);
9077
9078 if (DW_ADDR (attr) < cu->header.offset
9079 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9080 {
9081 struct dwarf2_per_cu_data *per_cu;
9082 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9083 cu->objfile);
9084 target_cu = per_cu->cu;
9085 }
9086 else
9087 target_cu = cu;
9088
9089 h = (offset % REF_HASH_SIZE);
9090 die = target_cu->die_ref_table[h];
9091 while (die)
9092 {
9093 if (die->offset == offset)
9094 return die;
9095 die = die->next_ref;
9096 }
9097
9098 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9099 "at 0x%lx [in module %s]"),
9100 (long) src_die->offset, (long) offset, cu->objfile->name);
9101
9102 return NULL;
9103 }
9104
9105 /* Decode simple location descriptions.
9106 Given a pointer to a dwarf block that defines a location, compute
9107 the location and return the value.
9108
9109 NOTE drow/2003-11-18: This function is called in two situations
9110 now: for the address of static or global variables (partial symbols
9111 only) and for offsets into structures which are expected to be
9112 (more or less) constant. The partial symbol case should go away,
9113 and only the constant case should remain. That will let this
9114 function complain more accurately. A few special modes are allowed
9115 without complaint for global variables (for instance, global
9116 register values and thread-local values).
9117
9118 A location description containing no operations indicates that the
9119 object is optimized out. The return value is 0 for that case.
9120 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9121 callers will only want a very basic result and this can become a
9122 complaint.
9123
9124 Note that stack[0] is unused except as a default error return.
9125 Note that stack overflow is not yet handled. */
9126
9127 static CORE_ADDR
9128 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9129 {
9130 struct objfile *objfile = cu->objfile;
9131 struct comp_unit_head *cu_header = &cu->header;
9132 int i;
9133 int size = blk->size;
9134 gdb_byte *data = blk->data;
9135 CORE_ADDR stack[64];
9136 int stacki;
9137 unsigned int bytes_read, unsnd;
9138 gdb_byte op;
9139
9140 i = 0;
9141 stacki = 0;
9142 stack[stacki] = 0;
9143
9144 while (i < size)
9145 {
9146 op = data[i++];
9147 switch (op)
9148 {
9149 case DW_OP_lit0:
9150 case DW_OP_lit1:
9151 case DW_OP_lit2:
9152 case DW_OP_lit3:
9153 case DW_OP_lit4:
9154 case DW_OP_lit5:
9155 case DW_OP_lit6:
9156 case DW_OP_lit7:
9157 case DW_OP_lit8:
9158 case DW_OP_lit9:
9159 case DW_OP_lit10:
9160 case DW_OP_lit11:
9161 case DW_OP_lit12:
9162 case DW_OP_lit13:
9163 case DW_OP_lit14:
9164 case DW_OP_lit15:
9165 case DW_OP_lit16:
9166 case DW_OP_lit17:
9167 case DW_OP_lit18:
9168 case DW_OP_lit19:
9169 case DW_OP_lit20:
9170 case DW_OP_lit21:
9171 case DW_OP_lit22:
9172 case DW_OP_lit23:
9173 case DW_OP_lit24:
9174 case DW_OP_lit25:
9175 case DW_OP_lit26:
9176 case DW_OP_lit27:
9177 case DW_OP_lit28:
9178 case DW_OP_lit29:
9179 case DW_OP_lit30:
9180 case DW_OP_lit31:
9181 stack[++stacki] = op - DW_OP_lit0;
9182 break;
9183
9184 case DW_OP_reg0:
9185 case DW_OP_reg1:
9186 case DW_OP_reg2:
9187 case DW_OP_reg3:
9188 case DW_OP_reg4:
9189 case DW_OP_reg5:
9190 case DW_OP_reg6:
9191 case DW_OP_reg7:
9192 case DW_OP_reg8:
9193 case DW_OP_reg9:
9194 case DW_OP_reg10:
9195 case DW_OP_reg11:
9196 case DW_OP_reg12:
9197 case DW_OP_reg13:
9198 case DW_OP_reg14:
9199 case DW_OP_reg15:
9200 case DW_OP_reg16:
9201 case DW_OP_reg17:
9202 case DW_OP_reg18:
9203 case DW_OP_reg19:
9204 case DW_OP_reg20:
9205 case DW_OP_reg21:
9206 case DW_OP_reg22:
9207 case DW_OP_reg23:
9208 case DW_OP_reg24:
9209 case DW_OP_reg25:
9210 case DW_OP_reg26:
9211 case DW_OP_reg27:
9212 case DW_OP_reg28:
9213 case DW_OP_reg29:
9214 case DW_OP_reg30:
9215 case DW_OP_reg31:
9216 stack[++stacki] = op - DW_OP_reg0;
9217 if (i < size)
9218 dwarf2_complex_location_expr_complaint ();
9219 break;
9220
9221 case DW_OP_regx:
9222 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9223 i += bytes_read;
9224 stack[++stacki] = unsnd;
9225 if (i < size)
9226 dwarf2_complex_location_expr_complaint ();
9227 break;
9228
9229 case DW_OP_addr:
9230 stack[++stacki] = read_address (objfile->obfd, &data[i],
9231 cu, &bytes_read);
9232 i += bytes_read;
9233 break;
9234
9235 case DW_OP_const1u:
9236 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9237 i += 1;
9238 break;
9239
9240 case DW_OP_const1s:
9241 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9242 i += 1;
9243 break;
9244
9245 case DW_OP_const2u:
9246 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9247 i += 2;
9248 break;
9249
9250 case DW_OP_const2s:
9251 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9252 i += 2;
9253 break;
9254
9255 case DW_OP_const4u:
9256 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9257 i += 4;
9258 break;
9259
9260 case DW_OP_const4s:
9261 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9262 i += 4;
9263 break;
9264
9265 case DW_OP_constu:
9266 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9267 &bytes_read);
9268 i += bytes_read;
9269 break;
9270
9271 case DW_OP_consts:
9272 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9273 i += bytes_read;
9274 break;
9275
9276 case DW_OP_dup:
9277 stack[stacki + 1] = stack[stacki];
9278 stacki++;
9279 break;
9280
9281 case DW_OP_plus:
9282 stack[stacki - 1] += stack[stacki];
9283 stacki--;
9284 break;
9285
9286 case DW_OP_plus_uconst:
9287 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9288 i += bytes_read;
9289 break;
9290
9291 case DW_OP_minus:
9292 stack[stacki - 1] -= stack[stacki];
9293 stacki--;
9294 break;
9295
9296 case DW_OP_deref:
9297 /* If we're not the last op, then we definitely can't encode
9298 this using GDB's address_class enum. This is valid for partial
9299 global symbols, although the variable's address will be bogus
9300 in the psymtab. */
9301 if (i < size)
9302 dwarf2_complex_location_expr_complaint ();
9303 break;
9304
9305 case DW_OP_GNU_push_tls_address:
9306 /* The top of the stack has the offset from the beginning
9307 of the thread control block at which the variable is located. */
9308 /* Nothing should follow this operator, so the top of stack would
9309 be returned. */
9310 /* This is valid for partial global symbols, but the variable's
9311 address will be bogus in the psymtab. */
9312 if (i < size)
9313 dwarf2_complex_location_expr_complaint ();
9314 break;
9315
9316 case DW_OP_GNU_uninit:
9317 break;
9318
9319 default:
9320 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9321 dwarf_stack_op_name (op));
9322 return (stack[stacki]);
9323 }
9324 }
9325 return (stack[stacki]);
9326 }
9327
9328 /* memory allocation interface */
9329
9330 static struct dwarf_block *
9331 dwarf_alloc_block (struct dwarf2_cu *cu)
9332 {
9333 struct dwarf_block *blk;
9334
9335 blk = (struct dwarf_block *)
9336 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9337 return (blk);
9338 }
9339
9340 static struct abbrev_info *
9341 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9342 {
9343 struct abbrev_info *abbrev;
9344
9345 abbrev = (struct abbrev_info *)
9346 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9347 memset (abbrev, 0, sizeof (struct abbrev_info));
9348 return (abbrev);
9349 }
9350
9351 static struct die_info *
9352 dwarf_alloc_die (void)
9353 {
9354 struct die_info *die;
9355
9356 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9357 memset (die, 0, sizeof (struct die_info));
9358 return (die);
9359 }
9360
9361 \f
9362 /* Macro support. */
9363
9364
9365 /* Return the full name of file number I in *LH's file name table.
9366 Use COMP_DIR as the name of the current directory of the
9367 compilation. The result is allocated using xmalloc; the caller is
9368 responsible for freeing it. */
9369 static char *
9370 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9371 {
9372 /* Is the file number a valid index into the line header's file name
9373 table? Remember that file numbers start with one, not zero. */
9374 if (1 <= file && file <= lh->num_file_names)
9375 {
9376 struct file_entry *fe = &lh->file_names[file - 1];
9377
9378 if (IS_ABSOLUTE_PATH (fe->name))
9379 return xstrdup (fe->name);
9380 else
9381 {
9382 const char *dir;
9383 int dir_len;
9384 char *full_name;
9385
9386 if (fe->dir_index)
9387 dir = lh->include_dirs[fe->dir_index - 1];
9388 else
9389 dir = comp_dir;
9390
9391 if (dir)
9392 {
9393 dir_len = strlen (dir);
9394 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9395 strcpy (full_name, dir);
9396 full_name[dir_len] = '/';
9397 strcpy (full_name + dir_len + 1, fe->name);
9398 return full_name;
9399 }
9400 else
9401 return xstrdup (fe->name);
9402 }
9403 }
9404 else
9405 {
9406 /* The compiler produced a bogus file number. We can at least
9407 record the macro definitions made in the file, even if we
9408 won't be able to find the file by name. */
9409 char fake_name[80];
9410 sprintf (fake_name, "<bad macro file number %d>", file);
9411
9412 complaint (&symfile_complaints,
9413 _("bad file number in macro information (%d)"),
9414 file);
9415
9416 return xstrdup (fake_name);
9417 }
9418 }
9419
9420
9421 static struct macro_source_file *
9422 macro_start_file (int file, int line,
9423 struct macro_source_file *current_file,
9424 const char *comp_dir,
9425 struct line_header *lh, struct objfile *objfile)
9426 {
9427 /* The full name of this source file. */
9428 char *full_name = file_full_name (file, lh, comp_dir);
9429
9430 /* We don't create a macro table for this compilation unit
9431 at all until we actually get a filename. */
9432 if (! pending_macros)
9433 pending_macros = new_macro_table (&objfile->objfile_obstack,
9434 objfile->macro_cache);
9435
9436 if (! current_file)
9437 /* If we have no current file, then this must be the start_file
9438 directive for the compilation unit's main source file. */
9439 current_file = macro_set_main (pending_macros, full_name);
9440 else
9441 current_file = macro_include (current_file, line, full_name);
9442
9443 xfree (full_name);
9444
9445 return current_file;
9446 }
9447
9448
9449 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9450 followed by a null byte. */
9451 static char *
9452 copy_string (const char *buf, int len)
9453 {
9454 char *s = xmalloc (len + 1);
9455 memcpy (s, buf, len);
9456 s[len] = '\0';
9457
9458 return s;
9459 }
9460
9461
9462 static const char *
9463 consume_improper_spaces (const char *p, const char *body)
9464 {
9465 if (*p == ' ')
9466 {
9467 complaint (&symfile_complaints,
9468 _("macro definition contains spaces in formal argument list:\n`%s'"),
9469 body);
9470
9471 while (*p == ' ')
9472 p++;
9473 }
9474
9475 return p;
9476 }
9477
9478
9479 static void
9480 parse_macro_definition (struct macro_source_file *file, int line,
9481 const char *body)
9482 {
9483 const char *p;
9484
9485 /* The body string takes one of two forms. For object-like macro
9486 definitions, it should be:
9487
9488 <macro name> " " <definition>
9489
9490 For function-like macro definitions, it should be:
9491
9492 <macro name> "() " <definition>
9493 or
9494 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9495
9496 Spaces may appear only where explicitly indicated, and in the
9497 <definition>.
9498
9499 The Dwarf 2 spec says that an object-like macro's name is always
9500 followed by a space, but versions of GCC around March 2002 omit
9501 the space when the macro's definition is the empty string.
9502
9503 The Dwarf 2 spec says that there should be no spaces between the
9504 formal arguments in a function-like macro's formal argument list,
9505 but versions of GCC around March 2002 include spaces after the
9506 commas. */
9507
9508
9509 /* Find the extent of the macro name. The macro name is terminated
9510 by either a space or null character (for an object-like macro) or
9511 an opening paren (for a function-like macro). */
9512 for (p = body; *p; p++)
9513 if (*p == ' ' || *p == '(')
9514 break;
9515
9516 if (*p == ' ' || *p == '\0')
9517 {
9518 /* It's an object-like macro. */
9519 int name_len = p - body;
9520 char *name = copy_string (body, name_len);
9521 const char *replacement;
9522
9523 if (*p == ' ')
9524 replacement = body + name_len + 1;
9525 else
9526 {
9527 dwarf2_macro_malformed_definition_complaint (body);
9528 replacement = body + name_len;
9529 }
9530
9531 macro_define_object (file, line, name, replacement);
9532
9533 xfree (name);
9534 }
9535 else if (*p == '(')
9536 {
9537 /* It's a function-like macro. */
9538 char *name = copy_string (body, p - body);
9539 int argc = 0;
9540 int argv_size = 1;
9541 char **argv = xmalloc (argv_size * sizeof (*argv));
9542
9543 p++;
9544
9545 p = consume_improper_spaces (p, body);
9546
9547 /* Parse the formal argument list. */
9548 while (*p && *p != ')')
9549 {
9550 /* Find the extent of the current argument name. */
9551 const char *arg_start = p;
9552
9553 while (*p && *p != ',' && *p != ')' && *p != ' ')
9554 p++;
9555
9556 if (! *p || p == arg_start)
9557 dwarf2_macro_malformed_definition_complaint (body);
9558 else
9559 {
9560 /* Make sure argv has room for the new argument. */
9561 if (argc >= argv_size)
9562 {
9563 argv_size *= 2;
9564 argv = xrealloc (argv, argv_size * sizeof (*argv));
9565 }
9566
9567 argv[argc++] = copy_string (arg_start, p - arg_start);
9568 }
9569
9570 p = consume_improper_spaces (p, body);
9571
9572 /* Consume the comma, if present. */
9573 if (*p == ',')
9574 {
9575 p++;
9576
9577 p = consume_improper_spaces (p, body);
9578 }
9579 }
9580
9581 if (*p == ')')
9582 {
9583 p++;
9584
9585 if (*p == ' ')
9586 /* Perfectly formed definition, no complaints. */
9587 macro_define_function (file, line, name,
9588 argc, (const char **) argv,
9589 p + 1);
9590 else if (*p == '\0')
9591 {
9592 /* Complain, but do define it. */
9593 dwarf2_macro_malformed_definition_complaint (body);
9594 macro_define_function (file, line, name,
9595 argc, (const char **) argv,
9596 p);
9597 }
9598 else
9599 /* Just complain. */
9600 dwarf2_macro_malformed_definition_complaint (body);
9601 }
9602 else
9603 /* Just complain. */
9604 dwarf2_macro_malformed_definition_complaint (body);
9605
9606 xfree (name);
9607 {
9608 int i;
9609
9610 for (i = 0; i < argc; i++)
9611 xfree (argv[i]);
9612 }
9613 xfree (argv);
9614 }
9615 else
9616 dwarf2_macro_malformed_definition_complaint (body);
9617 }
9618
9619
9620 static void
9621 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9622 char *comp_dir, bfd *abfd,
9623 struct dwarf2_cu *cu)
9624 {
9625 gdb_byte *mac_ptr, *mac_end;
9626 struct macro_source_file *current_file = 0;
9627
9628 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9629 {
9630 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9631 return;
9632 }
9633
9634 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9635 mac_end = dwarf2_per_objfile->macinfo_buffer
9636 + dwarf2_per_objfile->macinfo_size;
9637
9638 for (;;)
9639 {
9640 enum dwarf_macinfo_record_type macinfo_type;
9641
9642 /* Do we at least have room for a macinfo type byte? */
9643 if (mac_ptr >= mac_end)
9644 {
9645 dwarf2_macros_too_long_complaint ();
9646 return;
9647 }
9648
9649 macinfo_type = read_1_byte (abfd, mac_ptr);
9650 mac_ptr++;
9651
9652 switch (macinfo_type)
9653 {
9654 /* A zero macinfo type indicates the end of the macro
9655 information. */
9656 case 0:
9657 return;
9658
9659 case DW_MACINFO_define:
9660 case DW_MACINFO_undef:
9661 {
9662 unsigned int bytes_read;
9663 int line;
9664 char *body;
9665
9666 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9667 mac_ptr += bytes_read;
9668 body = read_string (abfd, mac_ptr, &bytes_read);
9669 mac_ptr += bytes_read;
9670
9671 if (! current_file)
9672 complaint (&symfile_complaints,
9673 _("debug info gives macro %s outside of any file: %s"),
9674 macinfo_type ==
9675 DW_MACINFO_define ? "definition" : macinfo_type ==
9676 DW_MACINFO_undef ? "undefinition" :
9677 "something-or-other", body);
9678 else
9679 {
9680 if (macinfo_type == DW_MACINFO_define)
9681 parse_macro_definition (current_file, line, body);
9682 else if (macinfo_type == DW_MACINFO_undef)
9683 macro_undef (current_file, line, body);
9684 }
9685 }
9686 break;
9687
9688 case DW_MACINFO_start_file:
9689 {
9690 unsigned int bytes_read;
9691 int line, file;
9692
9693 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9694 mac_ptr += bytes_read;
9695 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9696 mac_ptr += bytes_read;
9697
9698 current_file = macro_start_file (file, line,
9699 current_file, comp_dir,
9700 lh, cu->objfile);
9701 }
9702 break;
9703
9704 case DW_MACINFO_end_file:
9705 if (! current_file)
9706 complaint (&symfile_complaints,
9707 _("macro debug info has an unmatched `close_file' directive"));
9708 else
9709 {
9710 current_file = current_file->included_by;
9711 if (! current_file)
9712 {
9713 enum dwarf_macinfo_record_type next_type;
9714
9715 /* GCC circa March 2002 doesn't produce the zero
9716 type byte marking the end of the compilation
9717 unit. Complain if it's not there, but exit no
9718 matter what. */
9719
9720 /* Do we at least have room for a macinfo type byte? */
9721 if (mac_ptr >= mac_end)
9722 {
9723 dwarf2_macros_too_long_complaint ();
9724 return;
9725 }
9726
9727 /* We don't increment mac_ptr here, so this is just
9728 a look-ahead. */
9729 next_type = read_1_byte (abfd, mac_ptr);
9730 if (next_type != 0)
9731 complaint (&symfile_complaints,
9732 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9733
9734 return;
9735 }
9736 }
9737 break;
9738
9739 case DW_MACINFO_vendor_ext:
9740 {
9741 unsigned int bytes_read;
9742 int constant;
9743 char *string;
9744
9745 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9746 mac_ptr += bytes_read;
9747 string = read_string (abfd, mac_ptr, &bytes_read);
9748 mac_ptr += bytes_read;
9749
9750 /* We don't recognize any vendor extensions. */
9751 }
9752 break;
9753 }
9754 }
9755 }
9756
9757 /* Check if the attribute's form is a DW_FORM_block*
9758 if so return true else false. */
9759 static int
9760 attr_form_is_block (struct attribute *attr)
9761 {
9762 return (attr == NULL ? 0 :
9763 attr->form == DW_FORM_block1
9764 || attr->form == DW_FORM_block2
9765 || attr->form == DW_FORM_block4
9766 || attr->form == DW_FORM_block);
9767 }
9768
9769 /* Return non-zero if ATTR's value is a section offset --- classes
9770 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9771 You may use DW_UNSND (attr) to retrieve such offsets.
9772
9773 Section 7.5.4, "Attribute Encodings", explains that no attribute
9774 may have a value that belongs to more than one of these classes; it
9775 would be ambiguous if we did, because we use the same forms for all
9776 of them. */
9777 static int
9778 attr_form_is_section_offset (struct attribute *attr)
9779 {
9780 return (attr->form == DW_FORM_data4
9781 || attr->form == DW_FORM_data8);
9782 }
9783
9784
9785 /* Return non-zero if ATTR's value falls in the 'constant' class, or
9786 zero otherwise. When this function returns true, you can apply
9787 dwarf2_get_attr_constant_value to it.
9788
9789 However, note that for some attributes you must check
9790 attr_form_is_section_offset before using this test. DW_FORM_data4
9791 and DW_FORM_data8 are members of both the constant class, and of
9792 the classes that contain offsets into other debug sections
9793 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9794 that, if an attribute's can be either a constant or one of the
9795 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9796 taken as section offsets, not constants. */
9797 static int
9798 attr_form_is_constant (struct attribute *attr)
9799 {
9800 switch (attr->form)
9801 {
9802 case DW_FORM_sdata:
9803 case DW_FORM_udata:
9804 case DW_FORM_data1:
9805 case DW_FORM_data2:
9806 case DW_FORM_data4:
9807 case DW_FORM_data8:
9808 return 1;
9809 default:
9810 return 0;
9811 }
9812 }
9813
9814 static void
9815 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9816 struct dwarf2_cu *cu)
9817 {
9818 struct objfile *objfile = cu->objfile;
9819
9820 /* Save the master objfile, so that we can report and look up the
9821 correct file containing this variable. */
9822 if (objfile->separate_debug_objfile_backlink)
9823 objfile = objfile->separate_debug_objfile_backlink;
9824
9825 if (attr_form_is_section_offset (attr)
9826 /* ".debug_loc" may not exist at all, or the offset may be outside
9827 the section. If so, fall through to the complaint in the
9828 other branch. */
9829 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9830 {
9831 struct dwarf2_loclist_baton *baton;
9832
9833 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9834 sizeof (struct dwarf2_loclist_baton));
9835 baton->objfile = objfile;
9836
9837 /* We don't know how long the location list is, but make sure we
9838 don't run off the edge of the section. */
9839 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9840 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9841 baton->base_address = cu->header.base_address;
9842 if (cu->header.base_known == 0)
9843 complaint (&symfile_complaints,
9844 _("Location list used without specifying the CU base address."));
9845
9846 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9847 SYMBOL_LOCATION_BATON (sym) = baton;
9848 }
9849 else
9850 {
9851 struct dwarf2_locexpr_baton *baton;
9852
9853 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9854 sizeof (struct dwarf2_locexpr_baton));
9855 baton->objfile = objfile;
9856
9857 if (attr_form_is_block (attr))
9858 {
9859 /* Note that we're just copying the block's data pointer
9860 here, not the actual data. We're still pointing into the
9861 info_buffer for SYM's objfile; right now we never release
9862 that buffer, but when we do clean up properly this may
9863 need to change. */
9864 baton->size = DW_BLOCK (attr)->size;
9865 baton->data = DW_BLOCK (attr)->data;
9866 }
9867 else
9868 {
9869 dwarf2_invalid_attrib_class_complaint ("location description",
9870 SYMBOL_NATURAL_NAME (sym));
9871 baton->size = 0;
9872 baton->data = NULL;
9873 }
9874
9875 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9876 SYMBOL_LOCATION_BATON (sym) = baton;
9877 }
9878 }
9879
9880 /* Locate the compilation unit from CU's objfile which contains the
9881 DIE at OFFSET. Raises an error on failure. */
9882
9883 static struct dwarf2_per_cu_data *
9884 dwarf2_find_containing_comp_unit (unsigned long offset,
9885 struct objfile *objfile)
9886 {
9887 struct dwarf2_per_cu_data *this_cu;
9888 int low, high;
9889
9890 low = 0;
9891 high = dwarf2_per_objfile->n_comp_units - 1;
9892 while (high > low)
9893 {
9894 int mid = low + (high - low) / 2;
9895 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9896 high = mid;
9897 else
9898 low = mid + 1;
9899 }
9900 gdb_assert (low == high);
9901 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9902 {
9903 if (low == 0)
9904 error (_("Dwarf Error: could not find partial DIE containing "
9905 "offset 0x%lx [in module %s]"),
9906 (long) offset, bfd_get_filename (objfile->obfd));
9907
9908 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9909 return dwarf2_per_objfile->all_comp_units[low-1];
9910 }
9911 else
9912 {
9913 this_cu = dwarf2_per_objfile->all_comp_units[low];
9914 if (low == dwarf2_per_objfile->n_comp_units - 1
9915 && offset >= this_cu->offset + this_cu->length)
9916 error (_("invalid dwarf2 offset %ld"), offset);
9917 gdb_assert (offset < this_cu->offset + this_cu->length);
9918 return this_cu;
9919 }
9920 }
9921
9922 /* Locate the compilation unit from OBJFILE which is located at exactly
9923 OFFSET. Raises an error on failure. */
9924
9925 static struct dwarf2_per_cu_data *
9926 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9927 {
9928 struct dwarf2_per_cu_data *this_cu;
9929 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9930 if (this_cu->offset != offset)
9931 error (_("no compilation unit with offset %ld."), offset);
9932 return this_cu;
9933 }
9934
9935 /* Release one cached compilation unit, CU. We unlink it from the tree
9936 of compilation units, but we don't remove it from the read_in_chain;
9937 the caller is responsible for that. */
9938
9939 static void
9940 free_one_comp_unit (void *data)
9941 {
9942 struct dwarf2_cu *cu = data;
9943
9944 if (cu->per_cu != NULL)
9945 cu->per_cu->cu = NULL;
9946 cu->per_cu = NULL;
9947
9948 obstack_free (&cu->comp_unit_obstack, NULL);
9949 if (cu->dies)
9950 free_die_list (cu->dies);
9951
9952 xfree (cu);
9953 }
9954
9955 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9956 when we're finished with it. We can't free the pointer itself, but be
9957 sure to unlink it from the cache. Also release any associated storage
9958 and perform cache maintenance.
9959
9960 Only used during partial symbol parsing. */
9961
9962 static void
9963 free_stack_comp_unit (void *data)
9964 {
9965 struct dwarf2_cu *cu = data;
9966
9967 obstack_free (&cu->comp_unit_obstack, NULL);
9968 cu->partial_dies = NULL;
9969
9970 if (cu->per_cu != NULL)
9971 {
9972 /* This compilation unit is on the stack in our caller, so we
9973 should not xfree it. Just unlink it. */
9974 cu->per_cu->cu = NULL;
9975 cu->per_cu = NULL;
9976
9977 /* If we had a per-cu pointer, then we may have other compilation
9978 units loaded, so age them now. */
9979 age_cached_comp_units ();
9980 }
9981 }
9982
9983 /* Free all cached compilation units. */
9984
9985 static void
9986 free_cached_comp_units (void *data)
9987 {
9988 struct dwarf2_per_cu_data *per_cu, **last_chain;
9989
9990 per_cu = dwarf2_per_objfile->read_in_chain;
9991 last_chain = &dwarf2_per_objfile->read_in_chain;
9992 while (per_cu != NULL)
9993 {
9994 struct dwarf2_per_cu_data *next_cu;
9995
9996 next_cu = per_cu->cu->read_in_chain;
9997
9998 free_one_comp_unit (per_cu->cu);
9999 *last_chain = next_cu;
10000
10001 per_cu = next_cu;
10002 }
10003 }
10004
10005 /* Increase the age counter on each cached compilation unit, and free
10006 any that are too old. */
10007
10008 static void
10009 age_cached_comp_units (void)
10010 {
10011 struct dwarf2_per_cu_data *per_cu, **last_chain;
10012
10013 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
10014 per_cu = dwarf2_per_objfile->read_in_chain;
10015 while (per_cu != NULL)
10016 {
10017 per_cu->cu->last_used ++;
10018 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10019 dwarf2_mark (per_cu->cu);
10020 per_cu = per_cu->cu->read_in_chain;
10021 }
10022
10023 per_cu = dwarf2_per_objfile->read_in_chain;
10024 last_chain = &dwarf2_per_objfile->read_in_chain;
10025 while (per_cu != NULL)
10026 {
10027 struct dwarf2_per_cu_data *next_cu;
10028
10029 next_cu = per_cu->cu->read_in_chain;
10030
10031 if (!per_cu->cu->mark)
10032 {
10033 free_one_comp_unit (per_cu->cu);
10034 *last_chain = next_cu;
10035 }
10036 else
10037 last_chain = &per_cu->cu->read_in_chain;
10038
10039 per_cu = next_cu;
10040 }
10041 }
10042
10043 /* Remove a single compilation unit from the cache. */
10044
10045 static void
10046 free_one_cached_comp_unit (void *target_cu)
10047 {
10048 struct dwarf2_per_cu_data *per_cu, **last_chain;
10049
10050 per_cu = dwarf2_per_objfile->read_in_chain;
10051 last_chain = &dwarf2_per_objfile->read_in_chain;
10052 while (per_cu != NULL)
10053 {
10054 struct dwarf2_per_cu_data *next_cu;
10055
10056 next_cu = per_cu->cu->read_in_chain;
10057
10058 if (per_cu->cu == target_cu)
10059 {
10060 free_one_comp_unit (per_cu->cu);
10061 *last_chain = next_cu;
10062 break;
10063 }
10064 else
10065 last_chain = &per_cu->cu->read_in_chain;
10066
10067 per_cu = next_cu;
10068 }
10069 }
10070
10071 /* Release all extra memory associated with OBJFILE. */
10072
10073 void
10074 dwarf2_free_objfile (struct objfile *objfile)
10075 {
10076 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10077
10078 if (dwarf2_per_objfile == NULL)
10079 return;
10080
10081 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10082 free_cached_comp_units (NULL);
10083
10084 /* Everything else should be on the objfile obstack. */
10085 }
10086
10087 /* A pair of DIE offset and GDB type pointer. We store these
10088 in a hash table separate from the DIEs, and preserve them
10089 when the DIEs are flushed out of cache. */
10090
10091 struct dwarf2_offset_and_type
10092 {
10093 unsigned int offset;
10094 struct type *type;
10095 };
10096
10097 /* Hash function for a dwarf2_offset_and_type. */
10098
10099 static hashval_t
10100 offset_and_type_hash (const void *item)
10101 {
10102 const struct dwarf2_offset_and_type *ofs = item;
10103 return ofs->offset;
10104 }
10105
10106 /* Equality function for a dwarf2_offset_and_type. */
10107
10108 static int
10109 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10110 {
10111 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10112 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10113 return ofs_lhs->offset == ofs_rhs->offset;
10114 }
10115
10116 /* Set the type associated with DIE to TYPE. Save it in CU's hash
10117 table if necessary. */
10118
10119 static void
10120 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10121 {
10122 struct dwarf2_offset_and_type **slot, ofs;
10123
10124 die->type = type;
10125
10126 if (cu->per_cu == NULL)
10127 return;
10128
10129 if (cu->per_cu->type_hash == NULL)
10130 cu->per_cu->type_hash
10131 = htab_create_alloc_ex (cu->header.length / 24,
10132 offset_and_type_hash,
10133 offset_and_type_eq,
10134 NULL,
10135 &cu->objfile->objfile_obstack,
10136 hashtab_obstack_allocate,
10137 dummy_obstack_deallocate);
10138
10139 ofs.offset = die->offset;
10140 ofs.type = type;
10141 slot = (struct dwarf2_offset_and_type **)
10142 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10143 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10144 **slot = ofs;
10145 }
10146
10147 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10148 have a saved type. */
10149
10150 static struct type *
10151 get_die_type (struct die_info *die, htab_t type_hash)
10152 {
10153 struct dwarf2_offset_and_type *slot, ofs;
10154
10155 ofs.offset = die->offset;
10156 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10157 if (slot)
10158 return slot->type;
10159 else
10160 return NULL;
10161 }
10162
10163 /* Restore the types of the DIE tree starting at START_DIE from the hash
10164 table saved in CU. */
10165
10166 static void
10167 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10168 {
10169 struct die_info *die;
10170
10171 if (cu->per_cu->type_hash == NULL)
10172 return;
10173
10174 for (die = start_die; die != NULL; die = die->sibling)
10175 {
10176 die->type = get_die_type (die, cu->per_cu->type_hash);
10177 if (die->child != NULL)
10178 reset_die_and_siblings_types (die->child, cu);
10179 }
10180 }
10181
10182 /* Set the mark field in CU and in every other compilation unit in the
10183 cache that we must keep because we are keeping CU. */
10184
10185 /* Add a dependence relationship from CU to REF_PER_CU. */
10186
10187 static void
10188 dwarf2_add_dependence (struct dwarf2_cu *cu,
10189 struct dwarf2_per_cu_data *ref_per_cu)
10190 {
10191 void **slot;
10192
10193 if (cu->dependencies == NULL)
10194 cu->dependencies
10195 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10196 NULL, &cu->comp_unit_obstack,
10197 hashtab_obstack_allocate,
10198 dummy_obstack_deallocate);
10199
10200 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10201 if (*slot == NULL)
10202 *slot = ref_per_cu;
10203 }
10204
10205 /* Set the mark field in CU and in every other compilation unit in the
10206 cache that we must keep because we are keeping CU. */
10207
10208 static int
10209 dwarf2_mark_helper (void **slot, void *data)
10210 {
10211 struct dwarf2_per_cu_data *per_cu;
10212
10213 per_cu = (struct dwarf2_per_cu_data *) *slot;
10214 if (per_cu->cu->mark)
10215 return 1;
10216 per_cu->cu->mark = 1;
10217
10218 if (per_cu->cu->dependencies != NULL)
10219 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10220
10221 return 1;
10222 }
10223
10224 static void
10225 dwarf2_mark (struct dwarf2_cu *cu)
10226 {
10227 if (cu->mark)
10228 return;
10229 cu->mark = 1;
10230 if (cu->dependencies != NULL)
10231 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10232 }
10233
10234 static void
10235 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10236 {
10237 while (per_cu)
10238 {
10239 per_cu->cu->mark = 0;
10240 per_cu = per_cu->cu->read_in_chain;
10241 }
10242 }
10243
10244 /* Trivial hash function for partial_die_info: the hash value of a DIE
10245 is its offset in .debug_info for this objfile. */
10246
10247 static hashval_t
10248 partial_die_hash (const void *item)
10249 {
10250 const struct partial_die_info *part_die = item;
10251 return part_die->offset;
10252 }
10253
10254 /* Trivial comparison function for partial_die_info structures: two DIEs
10255 are equal if they have the same offset. */
10256
10257 static int
10258 partial_die_eq (const void *item_lhs, const void *item_rhs)
10259 {
10260 const struct partial_die_info *part_die_lhs = item_lhs;
10261 const struct partial_die_info *part_die_rhs = item_rhs;
10262 return part_die_lhs->offset == part_die_rhs->offset;
10263 }
10264
10265 static struct cmd_list_element *set_dwarf2_cmdlist;
10266 static struct cmd_list_element *show_dwarf2_cmdlist;
10267
10268 static void
10269 set_dwarf2_cmd (char *args, int from_tty)
10270 {
10271 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10272 }
10273
10274 static void
10275 show_dwarf2_cmd (char *args, int from_tty)
10276 {
10277 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10278 }
10279
10280 void _initialize_dwarf2_read (void);
10281
10282 void
10283 _initialize_dwarf2_read (void)
10284 {
10285 dwarf2_objfile_data_key = register_objfile_data ();
10286
10287 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10288 Set DWARF 2 specific variables.\n\
10289 Configure DWARF 2 variables such as the cache size"),
10290 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10291 0/*allow-unknown*/, &maintenance_set_cmdlist);
10292
10293 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10294 Show DWARF 2 specific variables\n\
10295 Show DWARF 2 variables such as the cache size"),
10296 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10297 0/*allow-unknown*/, &maintenance_show_cmdlist);
10298
10299 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10300 &dwarf2_max_cache_age, _("\
10301 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10302 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10303 A higher limit means that cached compilation units will be stored\n\
10304 in memory longer, and more total memory will be used. Zero disables\n\
10305 caching, which can slow down startup."),
10306 NULL,
10307 show_dwarf2_max_cache_age,
10308 &set_dwarf2_cmdlist,
10309 &show_dwarf2_cmdlist);
10310 }
This page took 0.251032 seconds and 4 git commands to generate.