gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71
72 #include <fcntl.h>
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 struct dwarf2_section_info
96 {
97 asection *asection;
98 gdb_byte *buffer;
99 bfd_size_type size;
100 /* True if we have tried to read this section. */
101 int readin;
102 };
103
104 typedef struct dwarf2_section_info dwarf2_section_info_def;
105 DEF_VEC_O (dwarf2_section_info_def);
106
107 /* All offsets in the index are of this type. It must be
108 architecture-independent. */
109 typedef uint32_t offset_type;
110
111 DEF_VEC_I (offset_type);
112
113 /* Ensure only legit values are used. */
114 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
115 do { \
116 gdb_assert ((unsigned int) (value) <= 1); \
117 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
118 } while (0)
119
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
122 do { \
123 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
124 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
125 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
129 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
132 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
133 } while (0)
134
135 /* A description of the mapped index. The file format is described in
136 a comment by the code that writes the index. */
137 struct mapped_index
138 {
139 /* Index data format version. */
140 int version;
141
142 /* The total length of the buffer. */
143 off_t total_size;
144
145 /* A pointer to the address table data. */
146 const gdb_byte *address_table;
147
148 /* Size of the address table data in bytes. */
149 offset_type address_table_size;
150
151 /* The symbol table, implemented as a hash table. */
152 const offset_type *symbol_table;
153
154 /* Size in slots, each slot is 2 offset_types. */
155 offset_type symbol_table_slots;
156
157 /* A pointer to the constant pool. */
158 const char *constant_pool;
159 };
160
161 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
162 DEF_VEC_P (dwarf2_per_cu_ptr);
163
164 /* Collection of data recorded per objfile.
165 This hangs off of dwarf2_objfile_data_key. */
166
167 struct dwarf2_per_objfile
168 {
169 struct dwarf2_section_info info;
170 struct dwarf2_section_info abbrev;
171 struct dwarf2_section_info line;
172 struct dwarf2_section_info loc;
173 struct dwarf2_section_info macinfo;
174 struct dwarf2_section_info macro;
175 struct dwarf2_section_info str;
176 struct dwarf2_section_info ranges;
177 struct dwarf2_section_info addr;
178 struct dwarf2_section_info frame;
179 struct dwarf2_section_info eh_frame;
180 struct dwarf2_section_info gdb_index;
181
182 VEC (dwarf2_section_info_def) *types;
183
184 /* Back link. */
185 struct objfile *objfile;
186
187 /* Table of all the compilation units. This is used to locate
188 the target compilation unit of a particular reference. */
189 struct dwarf2_per_cu_data **all_comp_units;
190
191 /* The number of compilation units in ALL_COMP_UNITS. */
192 int n_comp_units;
193
194 /* The number of .debug_types-related CUs. */
195 int n_type_units;
196
197 /* The .debug_types-related CUs (TUs). */
198 struct signatured_type **all_type_units;
199
200 /* The number of entries in all_type_unit_groups. */
201 int n_type_unit_groups;
202
203 /* Table of type unit groups.
204 This exists to make it easy to iterate over all CUs and TU groups. */
205 struct type_unit_group **all_type_unit_groups;
206
207 /* Table of struct type_unit_group objects.
208 The hash key is the DW_AT_stmt_list value. */
209 htab_t type_unit_groups;
210
211 /* A table mapping .debug_types signatures to its signatured_type entry.
212 This is NULL if the .debug_types section hasn't been read in yet. */
213 htab_t signatured_types;
214
215 /* Type unit statistics, to see how well the scaling improvements
216 are doing. */
217 struct tu_stats
218 {
219 int nr_uniq_abbrev_tables;
220 int nr_symtabs;
221 int nr_symtab_sharers;
222 int nr_stmt_less_type_units;
223 } tu_stats;
224
225 /* A chain of compilation units that are currently read in, so that
226 they can be freed later. */
227 struct dwarf2_per_cu_data *read_in_chain;
228
229 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
230 This is NULL if the table hasn't been allocated yet. */
231 htab_t dwo_files;
232
233 /* Non-zero if we've check for whether there is a DWP file. */
234 int dwp_checked;
235
236 /* The DWP file if there is one, or NULL. */
237 struct dwp_file *dwp_file;
238
239 /* The shared '.dwz' file, if one exists. This is used when the
240 original data was compressed using 'dwz -m'. */
241 struct dwz_file *dwz_file;
242
243 /* A flag indicating wether this objfile has a section loaded at a
244 VMA of 0. */
245 int has_section_at_zero;
246
247 /* True if we are using the mapped index,
248 or we are faking it for OBJF_READNOW's sake. */
249 unsigned char using_index;
250
251 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
252 struct mapped_index *index_table;
253
254 /* When using index_table, this keeps track of all quick_file_names entries.
255 TUs typically share line table entries with a CU, so we maintain a
256 separate table of all line table entries to support the sharing.
257 Note that while there can be way more TUs than CUs, we've already
258 sorted all the TUs into "type unit groups", grouped by their
259 DW_AT_stmt_list value. Therefore the only sharing done here is with a
260 CU and its associated TU group if there is one. */
261 htab_t quick_file_names_table;
262
263 /* Set during partial symbol reading, to prevent queueing of full
264 symbols. */
265 int reading_partial_symbols;
266
267 /* Table mapping type DIEs to their struct type *.
268 This is NULL if not allocated yet.
269 The mapping is done via (CU/TU signature + DIE offset) -> type. */
270 htab_t die_type_hash;
271
272 /* The CUs we recently read. */
273 VEC (dwarf2_per_cu_ptr) *just_read_cus;
274 };
275
276 static struct dwarf2_per_objfile *dwarf2_per_objfile;
277
278 /* Default names of the debugging sections. */
279
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
282
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
284 {
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_macinfo", ".zdebug_macinfo" },
290 { ".debug_macro", ".zdebug_macro" },
291 { ".debug_str", ".zdebug_str" },
292 { ".debug_ranges", ".zdebug_ranges" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
298 23
299 };
300
301 /* List of DWO/DWP sections. */
302
303 static const struct dwop_section_names
304 {
305 struct dwarf2_section_names abbrev_dwo;
306 struct dwarf2_section_names info_dwo;
307 struct dwarf2_section_names line_dwo;
308 struct dwarf2_section_names loc_dwo;
309 struct dwarf2_section_names macinfo_dwo;
310 struct dwarf2_section_names macro_dwo;
311 struct dwarf2_section_names str_dwo;
312 struct dwarf2_section_names str_offsets_dwo;
313 struct dwarf2_section_names types_dwo;
314 struct dwarf2_section_names cu_index;
315 struct dwarf2_section_names tu_index;
316 }
317 dwop_section_names =
318 {
319 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
320 { ".debug_info.dwo", ".zdebug_info.dwo" },
321 { ".debug_line.dwo", ".zdebug_line.dwo" },
322 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
323 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
324 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
325 { ".debug_str.dwo", ".zdebug_str.dwo" },
326 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
327 { ".debug_types.dwo", ".zdebug_types.dwo" },
328 { ".debug_cu_index", ".zdebug_cu_index" },
329 { ".debug_tu_index", ".zdebug_tu_index" },
330 };
331
332 /* local data types */
333
334 /* The data in a compilation unit header, after target2host
335 translation, looks like this. */
336 struct comp_unit_head
337 {
338 unsigned int length;
339 short version;
340 unsigned char addr_size;
341 unsigned char signed_addr_p;
342 sect_offset abbrev_offset;
343
344 /* Size of file offsets; either 4 or 8. */
345 unsigned int offset_size;
346
347 /* Size of the length field; either 4 or 12. */
348 unsigned int initial_length_size;
349
350 /* Offset to the first byte of this compilation unit header in the
351 .debug_info section, for resolving relative reference dies. */
352 sect_offset offset;
353
354 /* Offset to first die in this cu from the start of the cu.
355 This will be the first byte following the compilation unit header. */
356 cu_offset first_die_offset;
357 };
358
359 /* Type used for delaying computation of method physnames.
360 See comments for compute_delayed_physnames. */
361 struct delayed_method_info
362 {
363 /* The type to which the method is attached, i.e., its parent class. */
364 struct type *type;
365
366 /* The index of the method in the type's function fieldlists. */
367 int fnfield_index;
368
369 /* The index of the method in the fieldlist. */
370 int index;
371
372 /* The name of the DIE. */
373 const char *name;
374
375 /* The DIE associated with this method. */
376 struct die_info *die;
377 };
378
379 typedef struct delayed_method_info delayed_method_info;
380 DEF_VEC_O (delayed_method_info);
381
382 /* Internal state when decoding a particular compilation unit. */
383 struct dwarf2_cu
384 {
385 /* The objfile containing this compilation unit. */
386 struct objfile *objfile;
387
388 /* The header of the compilation unit. */
389 struct comp_unit_head header;
390
391 /* Base address of this compilation unit. */
392 CORE_ADDR base_address;
393
394 /* Non-zero if base_address has been set. */
395 int base_known;
396
397 /* The language we are debugging. */
398 enum language language;
399 const struct language_defn *language_defn;
400
401 const char *producer;
402
403 /* The generic symbol table building routines have separate lists for
404 file scope symbols and all all other scopes (local scopes). So
405 we need to select the right one to pass to add_symbol_to_list().
406 We do it by keeping a pointer to the correct list in list_in_scope.
407
408 FIXME: The original dwarf code just treated the file scope as the
409 first local scope, and all other local scopes as nested local
410 scopes, and worked fine. Check to see if we really need to
411 distinguish these in buildsym.c. */
412 struct pending **list_in_scope;
413
414 /* The abbrev table for this CU.
415 Normally this points to the abbrev table in the objfile.
416 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
417 struct abbrev_table *abbrev_table;
418
419 /* Hash table holding all the loaded partial DIEs
420 with partial_die->offset.SECT_OFF as hash. */
421 htab_t partial_dies;
422
423 /* Storage for things with the same lifetime as this read-in compilation
424 unit, including partial DIEs. */
425 struct obstack comp_unit_obstack;
426
427 /* When multiple dwarf2_cu structures are living in memory, this field
428 chains them all together, so that they can be released efficiently.
429 We will probably also want a generation counter so that most-recently-used
430 compilation units are cached... */
431 struct dwarf2_per_cu_data *read_in_chain;
432
433 /* Backchain to our per_cu entry if the tree has been built. */
434 struct dwarf2_per_cu_data *per_cu;
435
436 /* How many compilation units ago was this CU last referenced? */
437 int last_used;
438
439 /* A hash table of DIE cu_offset for following references with
440 die_info->offset.sect_off as hash. */
441 htab_t die_hash;
442
443 /* Full DIEs if read in. */
444 struct die_info *dies;
445
446 /* A set of pointers to dwarf2_per_cu_data objects for compilation
447 units referenced by this one. Only set during full symbol processing;
448 partial symbol tables do not have dependencies. */
449 htab_t dependencies;
450
451 /* Header data from the line table, during full symbol processing. */
452 struct line_header *line_header;
453
454 /* A list of methods which need to have physnames computed
455 after all type information has been read. */
456 VEC (delayed_method_info) *method_list;
457
458 /* To be copied to symtab->call_site_htab. */
459 htab_t call_site_htab;
460
461 /* Non-NULL if this CU came from a DWO file.
462 There is an invariant here that is important to remember:
463 Except for attributes copied from the top level DIE in the "main"
464 (or "stub") file in preparation for reading the DWO file
465 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
466 Either there isn't a DWO file (in which case this is NULL and the point
467 is moot), or there is and either we're not going to read it (in which
468 case this is NULL) or there is and we are reading it (in which case this
469 is non-NULL). */
470 struct dwo_unit *dwo_unit;
471
472 /* The DW_AT_addr_base attribute if present, zero otherwise
473 (zero is a valid value though).
474 Note this value comes from the stub CU/TU's DIE. */
475 ULONGEST addr_base;
476
477 /* The DW_AT_ranges_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE.
480 Also note that the value is zero in the non-DWO case so this value can
481 be used without needing to know whether DWO files are in use or not.
482 N.B. This does not apply to DW_AT_ranges appearing in
483 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
484 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
485 DW_AT_ranges_base *would* have to be applied, and we'd have to care
486 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
487 ULONGEST ranges_base;
488
489 /* Mark used when releasing cached dies. */
490 unsigned int mark : 1;
491
492 /* This CU references .debug_loc. See the symtab->locations_valid field.
493 This test is imperfect as there may exist optimized debug code not using
494 any location list and still facing inlining issues if handled as
495 unoptimized code. For a future better test see GCC PR other/32998. */
496 unsigned int has_loclist : 1;
497
498 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
499 if all the producer_is_* fields are valid. This information is cached
500 because profiling CU expansion showed excessive time spent in
501 producer_is_gxx_lt_4_6. */
502 unsigned int checked_producer : 1;
503 unsigned int producer_is_gxx_lt_4_6 : 1;
504 unsigned int producer_is_gcc_lt_4_3 : 1;
505 unsigned int producer_is_icc : 1;
506
507 /* When set, the file that we're processing is known to have
508 debugging info for C++ namespaces. GCC 3.3.x did not produce
509 this information, but later versions do. */
510
511 unsigned int processing_has_namespace_info : 1;
512 };
513
514 /* Persistent data held for a compilation unit, even when not
515 processing it. We put a pointer to this structure in the
516 read_symtab_private field of the psymtab. */
517
518 struct dwarf2_per_cu_data
519 {
520 /* The start offset and length of this compilation unit.
521 NOTE: Unlike comp_unit_head.length, this length includes
522 initial_length_size.
523 If the DIE refers to a DWO file, this is always of the original die,
524 not the DWO file. */
525 sect_offset offset;
526 unsigned int length;
527
528 /* Flag indicating this compilation unit will be read in before
529 any of the current compilation units are processed. */
530 unsigned int queued : 1;
531
532 /* This flag will be set when reading partial DIEs if we need to load
533 absolutely all DIEs for this compilation unit, instead of just the ones
534 we think are interesting. It gets set if we look for a DIE in the
535 hash table and don't find it. */
536 unsigned int load_all_dies : 1;
537
538 /* Non-zero if this CU is from .debug_types. */
539 unsigned int is_debug_types : 1;
540
541 /* Non-zero if this CU is from the .dwz file. */
542 unsigned int is_dwz : 1;
543
544 /* The section this CU/TU lives in.
545 If the DIE refers to a DWO file, this is always the original die,
546 not the DWO file. */
547 struct dwarf2_section_info *info_or_types_section;
548
549 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
550 of the CU cache it gets reset to NULL again. */
551 struct dwarf2_cu *cu;
552
553 /* The corresponding objfile.
554 Normally we can get the objfile from dwarf2_per_objfile.
555 However we can enter this file with just a "per_cu" handle. */
556 struct objfile *objfile;
557
558 /* When using partial symbol tables, the 'psymtab' field is active.
559 Otherwise the 'quick' field is active. */
560 union
561 {
562 /* The partial symbol table associated with this compilation unit,
563 or NULL for unread partial units. */
564 struct partial_symtab *psymtab;
565
566 /* Data needed by the "quick" functions. */
567 struct dwarf2_per_cu_quick_data *quick;
568 } v;
569
570 /* The CUs we import using DW_TAG_imported_unit. This is filled in
571 while reading psymtabs, used to compute the psymtab dependencies,
572 and then cleared. Then it is filled in again while reading full
573 symbols, and only deleted when the objfile is destroyed.
574
575 This is also used to work around a difference between the way gold
576 generates .gdb_index version <=7 and the way gdb does. Arguably this
577 is a gold bug. For symbols coming from TUs, gold records in the index
578 the CU that includes the TU instead of the TU itself. This breaks
579 dw2_lookup_symbol: It assumes that if the index says symbol X lives
580 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
581 will find X. Alas TUs live in their own symtab, so after expanding CU Y
582 we need to look in TU Z to find X. Fortunately, this is akin to
583 DW_TAG_imported_unit, so we just use the same mechanism: For
584 .gdb_index version <=7 this also records the TUs that the CU referred
585 to. Concurrently with this change gdb was modified to emit version 8
586 indices so we only pay a price for gold generated indices. */
587 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
588
589 /* Type units are grouped by their DW_AT_stmt_list entry so that they
590 can share them. If this is a TU, this points to the containing
591 symtab. */
592 struct type_unit_group *type_unit_group;
593 };
594
595 /* Entry in the signatured_types hash table. */
596
597 struct signatured_type
598 {
599 /* The "per_cu" object of this type.
600 N.B.: This is the first member so that it's easy to convert pointers
601 between them. */
602 struct dwarf2_per_cu_data per_cu;
603
604 /* The type's signature. */
605 ULONGEST signature;
606
607 /* Offset in the TU of the type's DIE, as read from the TU header.
608 If the definition lives in a DWO file, this value is unusable. */
609 cu_offset type_offset_in_tu;
610
611 /* Offset in the section of the type's DIE.
612 If the definition lives in a DWO file, this is the offset in the
613 .debug_types.dwo section.
614 The value is zero until the actual value is known.
615 Zero is otherwise not a valid section offset. */
616 sect_offset type_offset_in_section;
617 };
618
619 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
620 This includes type_unit_group and quick_file_names. */
621
622 struct stmt_list_hash
623 {
624 /* The DWO unit this table is from or NULL if there is none. */
625 struct dwo_unit *dwo_unit;
626
627 /* Offset in .debug_line or .debug_line.dwo. */
628 sect_offset line_offset;
629 };
630
631 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
632 an object of this type. */
633
634 struct type_unit_group
635 {
636 /* dwarf2read.c's main "handle" on the symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab.
640 This PER_CU is recognized by having no section. */
641 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
642 struct dwarf2_per_cu_data per_cu;
643
644 union
645 {
646 /* The TUs that share this DW_AT_stmt_list entry.
647 This is added to while parsing type units to build partial symtabs,
648 and is deleted afterwards and not used again. */
649 VEC (dwarf2_per_cu_ptr) *tus;
650
651 /* When reading the line table in "quick" functions, we need a real TU.
652 Any will do, we know they all share the same DW_AT_stmt_list entry.
653 For simplicity's sake, we pick the first one. */
654 struct dwarf2_per_cu_data *first_tu;
655 } t;
656
657 /* The primary symtab.
658 Type units in a group needn't all be defined in the same source file,
659 so we create an essentially anonymous symtab as the primary symtab. */
660 struct symtab *primary_symtab;
661
662 /* The data used to construct the hash key. */
663 struct stmt_list_hash hash;
664
665 /* The number of symtabs from the line header.
666 The value here must match line_header.num_file_names. */
667 unsigned int num_symtabs;
668
669 /* The symbol tables for this TU (obtained from the files listed in
670 DW_AT_stmt_list).
671 WARNING: The order of entries here must match the order of entries
672 in the line header. After the first TU using this type_unit_group, the
673 line header for the subsequent TUs is recreated from this. This is done
674 because we need to use the same symtabs for each TU using the same
675 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
676 there's no guarantee the line header doesn't have duplicate entries. */
677 struct symtab **symtabs;
678 };
679
680 /* These sections are what may appear in a DWO file. */
681
682 struct dwo_sections
683 {
684 struct dwarf2_section_info abbrev;
685 struct dwarf2_section_info line;
686 struct dwarf2_section_info loc;
687 struct dwarf2_section_info macinfo;
688 struct dwarf2_section_info macro;
689 struct dwarf2_section_info str;
690 struct dwarf2_section_info str_offsets;
691 /* In the case of a virtual DWO file, these two are unused. */
692 struct dwarf2_section_info info;
693 VEC (dwarf2_section_info_def) *types;
694 };
695
696 /* Common bits of DWO CUs/TUs. */
697
698 struct dwo_unit
699 {
700 /* Backlink to the containing struct dwo_file. */
701 struct dwo_file *dwo_file;
702
703 /* The "id" that distinguishes this CU/TU.
704 .debug_info calls this "dwo_id", .debug_types calls this "signature".
705 Since signatures came first, we stick with it for consistency. */
706 ULONGEST signature;
707
708 /* The section this CU/TU lives in, in the DWO file. */
709 struct dwarf2_section_info *info_or_types_section;
710
711 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
712 sect_offset offset;
713 unsigned int length;
714
715 /* For types, offset in the type's DIE of the type defined by this TU. */
716 cu_offset type_offset_in_tu;
717 };
718
719 /* Data for one DWO file.
720 This includes virtual DWO files that have been packaged into a
721 DWP file. */
722
723 struct dwo_file
724 {
725 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
726 For virtual DWO files the name is constructed from the section offsets
727 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
728 from related CU+TUs. */
729 const char *name;
730
731 /* The bfd, when the file is open. Otherwise this is NULL.
732 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
733 bfd *dbfd;
734
735 /* Section info for this file. */
736 struct dwo_sections sections;
737
738 /* Table of CUs in the file.
739 Each element is a struct dwo_unit. */
740 htab_t cus;
741
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
744 htab_t tus;
745 };
746
747 /* These sections are what may appear in a DWP file. */
748
749 struct dwp_sections
750 {
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
755 by section number. We don't need to record them here. */
756 };
757
758 /* These sections are what may appear in a virtual DWO file. */
759
760 struct virtual_dwo_sections
761 {
762 struct dwarf2_section_info abbrev;
763 struct dwarf2_section_info line;
764 struct dwarf2_section_info loc;
765 struct dwarf2_section_info macinfo;
766 struct dwarf2_section_info macro;
767 struct dwarf2_section_info str_offsets;
768 /* Each DWP hash table entry records one CU or one TU.
769 That is recorded here, and copied to dwo_unit.info_or_types_section. */
770 struct dwarf2_section_info info_or_types;
771 };
772
773 /* Contents of DWP hash tables. */
774
775 struct dwp_hash_table
776 {
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table, *section_pool;
779 };
780
781 /* Data for one DWP file. */
782
783 struct dwp_file
784 {
785 /* Name of the file. */
786 const char *name;
787
788 /* The bfd, when the file is open. Otherwise this is NULL. */
789 bfd *dbfd;
790
791 /* Section info for this file. */
792 struct dwp_sections sections;
793
794 /* Table of CUs in the file. */
795 const struct dwp_hash_table *cus;
796
797 /* Table of TUs in the file. */
798 const struct dwp_hash_table *tus;
799
800 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
801 htab_t loaded_cutus;
802
803 /* Table to map ELF section numbers to their sections. */
804 unsigned int num_sections;
805 asection **elf_sections;
806 };
807
808 /* This represents a '.dwz' file. */
809
810 struct dwz_file
811 {
812 /* A dwz file can only contain a few sections. */
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info info;
815 struct dwarf2_section_info str;
816 struct dwarf2_section_info line;
817 struct dwarf2_section_info macro;
818 struct dwarf2_section_info gdb_index;
819
820 /* The dwz's BFD. */
821 bfd *dwz_bfd;
822 };
823
824 /* Struct used to pass misc. parameters to read_die_and_children, et
825 al. which are used for both .debug_info and .debug_types dies.
826 All parameters here are unchanging for the life of the call. This
827 struct exists to abstract away the constant parameters of die reading. */
828
829 struct die_reader_specs
830 {
831 /* die_section->asection->owner. */
832 bfd* abfd;
833
834 /* The CU of the DIE we are parsing. */
835 struct dwarf2_cu *cu;
836
837 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
838 struct dwo_file *dwo_file;
839
840 /* The section the die comes from.
841 This is either .debug_info or .debug_types, or the .dwo variants. */
842 struct dwarf2_section_info *die_section;
843
844 /* die_section->buffer. */
845 gdb_byte *buffer;
846
847 /* The end of the buffer. */
848 const gdb_byte *buffer_end;
849 };
850
851 /* Type of function passed to init_cutu_and_read_dies, et.al. */
852 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
853 gdb_byte *info_ptr,
854 struct die_info *comp_unit_die,
855 int has_children,
856 void *data);
857
858 /* The line number information for a compilation unit (found in the
859 .debug_line section) begins with a "statement program header",
860 which contains the following information. */
861 struct line_header
862 {
863 unsigned int total_length;
864 unsigned short version;
865 unsigned int header_length;
866 unsigned char minimum_instruction_length;
867 unsigned char maximum_ops_per_instruction;
868 unsigned char default_is_stmt;
869 int line_base;
870 unsigned char line_range;
871 unsigned char opcode_base;
872
873 /* standard_opcode_lengths[i] is the number of operands for the
874 standard opcode whose value is i. This means that
875 standard_opcode_lengths[0] is unused, and the last meaningful
876 element is standard_opcode_lengths[opcode_base - 1]. */
877 unsigned char *standard_opcode_lengths;
878
879 /* The include_directories table. NOTE! These strings are not
880 allocated with xmalloc; instead, they are pointers into
881 debug_line_buffer. If you try to free them, `free' will get
882 indigestion. */
883 unsigned int num_include_dirs, include_dirs_size;
884 char **include_dirs;
885
886 /* The file_names table. NOTE! These strings are not allocated
887 with xmalloc; instead, they are pointers into debug_line_buffer.
888 Don't try to free them directly. */
889 unsigned int num_file_names, file_names_size;
890 struct file_entry
891 {
892 char *name;
893 unsigned int dir_index;
894 unsigned int mod_time;
895 unsigned int length;
896 int included_p; /* Non-zero if referenced by the Line Number Program. */
897 struct symtab *symtab; /* The associated symbol table, if any. */
898 } *file_names;
899
900 /* The start and end of the statement program following this
901 header. These point into dwarf2_per_objfile->line_buffer. */
902 gdb_byte *statement_program_start, *statement_program_end;
903 };
904
905 /* When we construct a partial symbol table entry we only
906 need this much information. */
907 struct partial_die_info
908 {
909 /* Offset of this DIE. */
910 sect_offset offset;
911
912 /* DWARF-2 tag for this DIE. */
913 ENUM_BITFIELD(dwarf_tag) tag : 16;
914
915 /* Assorted flags describing the data found in this DIE. */
916 unsigned int has_children : 1;
917 unsigned int is_external : 1;
918 unsigned int is_declaration : 1;
919 unsigned int has_type : 1;
920 unsigned int has_specification : 1;
921 unsigned int has_pc_info : 1;
922 unsigned int may_be_inlined : 1;
923
924 /* Flag set if the SCOPE field of this structure has been
925 computed. */
926 unsigned int scope_set : 1;
927
928 /* Flag set if the DIE has a byte_size attribute. */
929 unsigned int has_byte_size : 1;
930
931 /* Flag set if any of the DIE's children are template arguments. */
932 unsigned int has_template_arguments : 1;
933
934 /* Flag set if fixup_partial_die has been called on this die. */
935 unsigned int fixup_called : 1;
936
937 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
938 unsigned int is_dwz : 1;
939
940 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
941 unsigned int spec_is_dwz : 1;
942
943 /* The name of this DIE. Normally the value of DW_AT_name, but
944 sometimes a default name for unnamed DIEs. */
945 const char *name;
946
947 /* The linkage name, if present. */
948 const char *linkage_name;
949
950 /* The scope to prepend to our children. This is generally
951 allocated on the comp_unit_obstack, so will disappear
952 when this compilation unit leaves the cache. */
953 const char *scope;
954
955 /* Some data associated with the partial DIE. The tag determines
956 which field is live. */
957 union
958 {
959 /* The location description associated with this DIE, if any. */
960 struct dwarf_block *locdesc;
961 /* The offset of an import, for DW_TAG_imported_unit. */
962 sect_offset offset;
963 } d;
964
965 /* If HAS_PC_INFO, the PC range associated with this DIE. */
966 CORE_ADDR lowpc;
967 CORE_ADDR highpc;
968
969 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
970 DW_AT_sibling, if any. */
971 /* NOTE: This member isn't strictly necessary, read_partial_die could
972 return DW_AT_sibling values to its caller load_partial_dies. */
973 gdb_byte *sibling;
974
975 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
976 DW_AT_specification (or DW_AT_abstract_origin or
977 DW_AT_extension). */
978 sect_offset spec_offset;
979
980 /* Pointers to this DIE's parent, first child, and next sibling,
981 if any. */
982 struct partial_die_info *die_parent, *die_child, *die_sibling;
983 };
984
985 /* This data structure holds the information of an abbrev. */
986 struct abbrev_info
987 {
988 unsigned int number; /* number identifying abbrev */
989 enum dwarf_tag tag; /* dwarf tag */
990 unsigned short has_children; /* boolean */
991 unsigned short num_attrs; /* number of attributes */
992 struct attr_abbrev *attrs; /* an array of attribute descriptions */
993 struct abbrev_info *next; /* next in chain */
994 };
995
996 struct attr_abbrev
997 {
998 ENUM_BITFIELD(dwarf_attribute) name : 16;
999 ENUM_BITFIELD(dwarf_form) form : 16;
1000 };
1001
1002 /* Size of abbrev_table.abbrev_hash_table. */
1003 #define ABBREV_HASH_SIZE 121
1004
1005 /* Top level data structure to contain an abbreviation table. */
1006
1007 struct abbrev_table
1008 {
1009 /* Where the abbrev table came from.
1010 This is used as a sanity check when the table is used. */
1011 sect_offset offset;
1012
1013 /* Storage for the abbrev table. */
1014 struct obstack abbrev_obstack;
1015
1016 /* Hash table of abbrevs.
1017 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1018 It could be statically allocated, but the previous code didn't so we
1019 don't either. */
1020 struct abbrev_info **abbrevs;
1021 };
1022
1023 /* Attributes have a name and a value. */
1024 struct attribute
1025 {
1026 ENUM_BITFIELD(dwarf_attribute) name : 16;
1027 ENUM_BITFIELD(dwarf_form) form : 15;
1028
1029 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1030 field should be in u.str (existing only for DW_STRING) but it is kept
1031 here for better struct attribute alignment. */
1032 unsigned int string_is_canonical : 1;
1033
1034 union
1035 {
1036 const char *str;
1037 struct dwarf_block *blk;
1038 ULONGEST unsnd;
1039 LONGEST snd;
1040 CORE_ADDR addr;
1041 struct signatured_type *signatured_type;
1042 }
1043 u;
1044 };
1045
1046 /* This data structure holds a complete die structure. */
1047 struct die_info
1048 {
1049 /* DWARF-2 tag for this DIE. */
1050 ENUM_BITFIELD(dwarf_tag) tag : 16;
1051
1052 /* Number of attributes */
1053 unsigned char num_attrs;
1054
1055 /* True if we're presently building the full type name for the
1056 type derived from this DIE. */
1057 unsigned char building_fullname : 1;
1058
1059 /* Abbrev number */
1060 unsigned int abbrev;
1061
1062 /* Offset in .debug_info or .debug_types section. */
1063 sect_offset offset;
1064
1065 /* The dies in a compilation unit form an n-ary tree. PARENT
1066 points to this die's parent; CHILD points to the first child of
1067 this node; and all the children of a given node are chained
1068 together via their SIBLING fields. */
1069 struct die_info *child; /* Its first child, if any. */
1070 struct die_info *sibling; /* Its next sibling, if any. */
1071 struct die_info *parent; /* Its parent, if any. */
1072
1073 /* An array of attributes, with NUM_ATTRS elements. There may be
1074 zero, but it's not common and zero-sized arrays are not
1075 sufficiently portable C. */
1076 struct attribute attrs[1];
1077 };
1078
1079 /* Get at parts of an attribute structure. */
1080
1081 #define DW_STRING(attr) ((attr)->u.str)
1082 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1083 #define DW_UNSND(attr) ((attr)->u.unsnd)
1084 #define DW_BLOCK(attr) ((attr)->u.blk)
1085 #define DW_SND(attr) ((attr)->u.snd)
1086 #define DW_ADDR(attr) ((attr)->u.addr)
1087 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1088
1089 /* Blocks are a bunch of untyped bytes. */
1090 struct dwarf_block
1091 {
1092 size_t size;
1093
1094 /* Valid only if SIZE is not zero. */
1095 gdb_byte *data;
1096 };
1097
1098 #ifndef ATTR_ALLOC_CHUNK
1099 #define ATTR_ALLOC_CHUNK 4
1100 #endif
1101
1102 /* Allocate fields for structs, unions and enums in this size. */
1103 #ifndef DW_FIELD_ALLOC_CHUNK
1104 #define DW_FIELD_ALLOC_CHUNK 4
1105 #endif
1106
1107 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1108 but this would require a corresponding change in unpack_field_as_long
1109 and friends. */
1110 static int bits_per_byte = 8;
1111
1112 /* The routines that read and process dies for a C struct or C++ class
1113 pass lists of data member fields and lists of member function fields
1114 in an instance of a field_info structure, as defined below. */
1115 struct field_info
1116 {
1117 /* List of data member and baseclasses fields. */
1118 struct nextfield
1119 {
1120 struct nextfield *next;
1121 int accessibility;
1122 int virtuality;
1123 struct field field;
1124 }
1125 *fields, *baseclasses;
1126
1127 /* Number of fields (including baseclasses). */
1128 int nfields;
1129
1130 /* Number of baseclasses. */
1131 int nbaseclasses;
1132
1133 /* Set if the accesibility of one of the fields is not public. */
1134 int non_public_fields;
1135
1136 /* Member function fields array, entries are allocated in the order they
1137 are encountered in the object file. */
1138 struct nextfnfield
1139 {
1140 struct nextfnfield *next;
1141 struct fn_field fnfield;
1142 }
1143 *fnfields;
1144
1145 /* Member function fieldlist array, contains name of possibly overloaded
1146 member function, number of overloaded member functions and a pointer
1147 to the head of the member function field chain. */
1148 struct fnfieldlist
1149 {
1150 const char *name;
1151 int length;
1152 struct nextfnfield *head;
1153 }
1154 *fnfieldlists;
1155
1156 /* Number of entries in the fnfieldlists array. */
1157 int nfnfields;
1158
1159 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1160 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1161 struct typedef_field_list
1162 {
1163 struct typedef_field field;
1164 struct typedef_field_list *next;
1165 }
1166 *typedef_field_list;
1167 unsigned typedef_field_list_count;
1168 };
1169
1170 /* One item on the queue of compilation units to read in full symbols
1171 for. */
1172 struct dwarf2_queue_item
1173 {
1174 struct dwarf2_per_cu_data *per_cu;
1175 enum language pretend_language;
1176 struct dwarf2_queue_item *next;
1177 };
1178
1179 /* The current queue. */
1180 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1181
1182 /* Loaded secondary compilation units are kept in memory until they
1183 have not been referenced for the processing of this many
1184 compilation units. Set this to zero to disable caching. Cache
1185 sizes of up to at least twenty will improve startup time for
1186 typical inter-CU-reference binaries, at an obvious memory cost. */
1187 static int dwarf2_max_cache_age = 5;
1188 static void
1189 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1190 struct cmd_list_element *c, const char *value)
1191 {
1192 fprintf_filtered (file, _("The upper bound on the age of cached "
1193 "dwarf2 compilation units is %s.\n"),
1194 value);
1195 }
1196
1197
1198 /* Various complaints about symbol reading that don't abort the process. */
1199
1200 static void
1201 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1202 {
1203 complaint (&symfile_complaints,
1204 _("statement list doesn't fit in .debug_line section"));
1205 }
1206
1207 static void
1208 dwarf2_debug_line_missing_file_complaint (void)
1209 {
1210 complaint (&symfile_complaints,
1211 _(".debug_line section has line data without a file"));
1212 }
1213
1214 static void
1215 dwarf2_debug_line_missing_end_sequence_complaint (void)
1216 {
1217 complaint (&symfile_complaints,
1218 _(".debug_line section has line "
1219 "program sequence without an end"));
1220 }
1221
1222 static void
1223 dwarf2_complex_location_expr_complaint (void)
1224 {
1225 complaint (&symfile_complaints, _("location expression too complex"));
1226 }
1227
1228 static void
1229 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1230 int arg3)
1231 {
1232 complaint (&symfile_complaints,
1233 _("const value length mismatch for '%s', got %d, expected %d"),
1234 arg1, arg2, arg3);
1235 }
1236
1237 static void
1238 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1239 {
1240 complaint (&symfile_complaints,
1241 _("debug info runs off end of %s section"
1242 " [in module %s]"),
1243 section->asection->name,
1244 bfd_get_filename (section->asection->owner));
1245 }
1246
1247 static void
1248 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1249 {
1250 complaint (&symfile_complaints,
1251 _("macro debug info contains a "
1252 "malformed macro definition:\n`%s'"),
1253 arg1);
1254 }
1255
1256 static void
1257 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1258 {
1259 complaint (&symfile_complaints,
1260 _("invalid attribute class or form for '%s' in '%s'"),
1261 arg1, arg2);
1262 }
1263
1264 /* local function prototypes */
1265
1266 static void dwarf2_locate_sections (bfd *, asection *, void *);
1267
1268 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1269 struct objfile *);
1270
1271 static void dwarf2_find_base_address (struct die_info *die,
1272 struct dwarf2_cu *cu);
1273
1274 static void dwarf2_build_psymtabs_hard (struct objfile *);
1275
1276 static void scan_partial_symbols (struct partial_die_info *,
1277 CORE_ADDR *, CORE_ADDR *,
1278 int, struct dwarf2_cu *);
1279
1280 static void add_partial_symbol (struct partial_die_info *,
1281 struct dwarf2_cu *);
1282
1283 static void add_partial_namespace (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1288 CORE_ADDR *highpc, int need_pc,
1289 struct dwarf2_cu *cu);
1290
1291 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1292 struct dwarf2_cu *cu);
1293
1294 static void add_partial_subprogram (struct partial_die_info *pdi,
1295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1296 int need_pc, struct dwarf2_cu *cu);
1297
1298 static void dwarf2_read_symtab (struct partial_symtab *,
1299 struct objfile *);
1300
1301 static void psymtab_to_symtab_1 (struct partial_symtab *);
1302
1303 static struct abbrev_info *abbrev_table_lookup_abbrev
1304 (const struct abbrev_table *, unsigned int);
1305
1306 static struct abbrev_table *abbrev_table_read_table
1307 (struct dwarf2_section_info *, sect_offset);
1308
1309 static void abbrev_table_free (struct abbrev_table *);
1310
1311 static void abbrev_table_free_cleanup (void *);
1312
1313 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1314 struct dwarf2_section_info *);
1315
1316 static void dwarf2_free_abbrev_table (void *);
1317
1318 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1319
1320 static struct partial_die_info *load_partial_dies
1321 (const struct die_reader_specs *, gdb_byte *, int);
1322
1323 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1324 struct partial_die_info *,
1325 struct abbrev_info *,
1326 unsigned int,
1327 gdb_byte *);
1328
1329 static struct partial_die_info *find_partial_die (sect_offset, int,
1330 struct dwarf2_cu *);
1331
1332 static void fixup_partial_die (struct partial_die_info *,
1333 struct dwarf2_cu *);
1334
1335 static gdb_byte *read_attribute (const struct die_reader_specs *,
1336 struct attribute *, struct attr_abbrev *,
1337 gdb_byte *);
1338
1339 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1340
1341 static int read_1_signed_byte (bfd *, const gdb_byte *);
1342
1343 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1344
1345 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1346
1347 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1348
1349 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1350 unsigned int *);
1351
1352 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1353
1354 static LONGEST read_checked_initial_length_and_offset
1355 (bfd *, gdb_byte *, const struct comp_unit_head *,
1356 unsigned int *, unsigned int *);
1357
1358 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1359 unsigned int *);
1360
1361 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1362
1363 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1364 sect_offset);
1365
1366 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1367
1368 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1369
1370 static char *read_indirect_string (bfd *, gdb_byte *,
1371 const struct comp_unit_head *,
1372 unsigned int *);
1373
1374 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1375
1376 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1377
1378 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1379
1380 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1381 unsigned int *);
1382
1383 static char *read_str_index (const struct die_reader_specs *reader,
1384 struct dwarf2_cu *cu, ULONGEST str_index);
1385
1386 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1387
1388 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1389 struct dwarf2_cu *);
1390
1391 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1392 unsigned int);
1393
1394 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1395 struct dwarf2_cu *cu);
1396
1397 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1398
1399 static struct die_info *die_specification (struct die_info *die,
1400 struct dwarf2_cu **);
1401
1402 static void free_line_header (struct line_header *lh);
1403
1404 static void add_file_name (struct line_header *, char *, unsigned int,
1405 unsigned int, unsigned int);
1406
1407 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1408 struct dwarf2_cu *cu);
1409
1410 static void dwarf_decode_lines (struct line_header *, const char *,
1411 struct dwarf2_cu *, struct partial_symtab *,
1412 int);
1413
1414 static void dwarf2_start_subfile (char *, const char *, const char *);
1415
1416 static void dwarf2_start_symtab (struct dwarf2_cu *,
1417 const char *, const char *, CORE_ADDR);
1418
1419 static struct symbol *new_symbol (struct die_info *, struct type *,
1420 struct dwarf2_cu *);
1421
1422 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1423 struct dwarf2_cu *, struct symbol *);
1424
1425 static void dwarf2_const_value (struct attribute *, struct symbol *,
1426 struct dwarf2_cu *);
1427
1428 static void dwarf2_const_value_attr (struct attribute *attr,
1429 struct type *type,
1430 const char *name,
1431 struct obstack *obstack,
1432 struct dwarf2_cu *cu, LONGEST *value,
1433 gdb_byte **bytes,
1434 struct dwarf2_locexpr_baton **baton);
1435
1436 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1437
1438 static int need_gnat_info (struct dwarf2_cu *);
1439
1440 static struct type *die_descriptive_type (struct die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void set_descriptive_type (struct type *, struct die_info *,
1444 struct dwarf2_cu *);
1445
1446 static struct type *die_containing_type (struct die_info *,
1447 struct dwarf2_cu *);
1448
1449 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1450 struct dwarf2_cu *);
1451
1452 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1453
1454 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1455
1456 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1457
1458 static char *typename_concat (struct obstack *obs, const char *prefix,
1459 const char *suffix, int physname,
1460 struct dwarf2_cu *cu);
1461
1462 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1463
1464 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1465
1466 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1467
1468 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1469
1470 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1471
1472 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1473 struct dwarf2_cu *, struct partial_symtab *);
1474
1475 static int dwarf2_get_pc_bounds (struct die_info *,
1476 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1477 struct partial_symtab *);
1478
1479 static void get_scope_pc_bounds (struct die_info *,
1480 CORE_ADDR *, CORE_ADDR *,
1481 struct dwarf2_cu *);
1482
1483 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1484 CORE_ADDR, struct dwarf2_cu *);
1485
1486 static void dwarf2_add_field (struct field_info *, struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static void dwarf2_attach_fields_to_type (struct field_info *,
1490 struct type *, struct dwarf2_cu *);
1491
1492 static void dwarf2_add_member_fn (struct field_info *,
1493 struct die_info *, struct type *,
1494 struct dwarf2_cu *);
1495
1496 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1497 struct type *,
1498 struct dwarf2_cu *);
1499
1500 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1501
1502 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1503
1504 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1505
1506 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1507
1508 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1509
1510 static struct type *read_module_type (struct die_info *die,
1511 struct dwarf2_cu *cu);
1512
1513 static const char *namespace_name (struct die_info *die,
1514 int *is_anonymous, struct dwarf2_cu *);
1515
1516 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1517
1518 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1519
1520 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1521 struct dwarf2_cu *);
1522
1523 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1524 gdb_byte *info_ptr,
1525 gdb_byte **new_info_ptr,
1526 struct die_info *parent);
1527
1528 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1529 gdb_byte *info_ptr,
1530 gdb_byte **new_info_ptr,
1531 struct die_info *parent);
1532
1533 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1534 struct die_info **, gdb_byte *, int *, int);
1535
1536 static gdb_byte *read_full_die (const struct die_reader_specs *,
1537 struct die_info **, gdb_byte *, int *);
1538
1539 static void process_die (struct die_info *, struct dwarf2_cu *);
1540
1541 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1542 struct obstack *);
1543
1544 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1545
1546 static const char *dwarf2_full_name (const char *name,
1547 struct die_info *die,
1548 struct dwarf2_cu *cu);
1549
1550 static struct die_info *dwarf2_extension (struct die_info *die,
1551 struct dwarf2_cu **);
1552
1553 static const char *dwarf_tag_name (unsigned int);
1554
1555 static const char *dwarf_attr_name (unsigned int);
1556
1557 static const char *dwarf_form_name (unsigned int);
1558
1559 static char *dwarf_bool_name (unsigned int);
1560
1561 static const char *dwarf_type_encoding_name (unsigned int);
1562
1563 static struct die_info *sibling_die (struct die_info *);
1564
1565 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1566
1567 static void dump_die_for_error (struct die_info *);
1568
1569 static void dump_die_1 (struct ui_file *, int level, int max_level,
1570 struct die_info *);
1571
1572 /*static*/ void dump_die (struct die_info *, int max_level);
1573
1574 static void store_in_ref_table (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static int is_ref_attr (struct attribute *);
1578
1579 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1580
1581 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1582
1583 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1584 struct attribute *,
1585 struct dwarf2_cu **);
1586
1587 static struct die_info *follow_die_ref (struct die_info *,
1588 struct attribute *,
1589 struct dwarf2_cu **);
1590
1591 static struct die_info *follow_die_sig (struct die_info *,
1592 struct attribute *,
1593 struct dwarf2_cu **);
1594
1595 static struct signatured_type *lookup_signatured_type_at_offset
1596 (struct objfile *objfile,
1597 struct dwarf2_section_info *section, sect_offset offset);
1598
1599 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1600
1601 static void read_signatured_type (struct signatured_type *);
1602
1603 static struct type_unit_group *get_type_unit_group
1604 (struct dwarf2_cu *, struct attribute *);
1605
1606 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1607
1608 /* memory allocation interface */
1609
1610 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1611
1612 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1613
1614 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1615 const char *, int);
1616
1617 static int attr_form_is_block (struct attribute *);
1618
1619 static int attr_form_is_section_offset (struct attribute *);
1620
1621 static int attr_form_is_constant (struct attribute *);
1622
1623 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1624 struct dwarf2_loclist_baton *baton,
1625 struct attribute *attr);
1626
1627 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1628 struct symbol *sym,
1629 struct dwarf2_cu *cu);
1630
1631 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1632 gdb_byte *info_ptr,
1633 struct abbrev_info *abbrev);
1634
1635 static void free_stack_comp_unit (void *);
1636
1637 static hashval_t partial_die_hash (const void *item);
1638
1639 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1640
1641 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1642 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1643
1644 static void init_one_comp_unit (struct dwarf2_cu *cu,
1645 struct dwarf2_per_cu_data *per_cu);
1646
1647 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1648 struct die_info *comp_unit_die,
1649 enum language pretend_language);
1650
1651 static void free_heap_comp_unit (void *);
1652
1653 static void free_cached_comp_units (void *);
1654
1655 static void age_cached_comp_units (void);
1656
1657 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1658
1659 static struct type *set_die_type (struct die_info *, struct type *,
1660 struct dwarf2_cu *);
1661
1662 static void create_all_comp_units (struct objfile *);
1663
1664 static int create_all_type_units (struct objfile *);
1665
1666 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1667 enum language);
1668
1669 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1670 enum language);
1671
1672 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1673 enum language);
1674
1675 static void dwarf2_add_dependence (struct dwarf2_cu *,
1676 struct dwarf2_per_cu_data *);
1677
1678 static void dwarf2_mark (struct dwarf2_cu *);
1679
1680 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1681
1682 static struct type *get_die_type_at_offset (sect_offset,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1686
1687 static void dwarf2_release_queue (void *dummy);
1688
1689 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1690 enum language pretend_language);
1691
1692 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1693 struct dwarf2_per_cu_data *per_cu,
1694 enum language pretend_language);
1695
1696 static void process_queue (void);
1697
1698 static void find_file_and_directory (struct die_info *die,
1699 struct dwarf2_cu *cu,
1700 const char **name, const char **comp_dir);
1701
1702 static char *file_full_name (int file, struct line_header *lh,
1703 const char *comp_dir);
1704
1705 static gdb_byte *read_and_check_comp_unit_head
1706 (struct comp_unit_head *header,
1707 struct dwarf2_section_info *section,
1708 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1709 int is_debug_types_section);
1710
1711 static void init_cutu_and_read_dies
1712 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1713 int use_existing_cu, int keep,
1714 die_reader_func_ftype *die_reader_func, void *data);
1715
1716 static void init_cutu_and_read_dies_simple
1717 (struct dwarf2_per_cu_data *this_cu,
1718 die_reader_func_ftype *die_reader_func, void *data);
1719
1720 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1721
1722 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1723
1724 static struct dwo_unit *lookup_dwo_comp_unit
1725 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1726
1727 static struct dwo_unit *lookup_dwo_type_unit
1728 (struct signatured_type *, const char *, const char *);
1729
1730 static void free_dwo_file_cleanup (void *);
1731
1732 static void process_cu_includes (void);
1733
1734 static void check_producer (struct dwarf2_cu *cu);
1735
1736 #if WORDS_BIGENDIAN
1737
1738 /* Convert VALUE between big- and little-endian. */
1739 static offset_type
1740 byte_swap (offset_type value)
1741 {
1742 offset_type result;
1743
1744 result = (value & 0xff) << 24;
1745 result |= (value & 0xff00) << 8;
1746 result |= (value & 0xff0000) >> 8;
1747 result |= (value & 0xff000000) >> 24;
1748 return result;
1749 }
1750
1751 #define MAYBE_SWAP(V) byte_swap (V)
1752
1753 #else
1754 #define MAYBE_SWAP(V) (V)
1755 #endif /* WORDS_BIGENDIAN */
1756
1757 /* The suffix for an index file. */
1758 #define INDEX_SUFFIX ".gdb-index"
1759
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1762
1763 /* Try to locate the sections we need for DWARF 2 debugging
1764 information and return true if we have enough to do something.
1765 NAMES points to the dwarf2 section names, or is NULL if the standard
1766 ELF names are used. */
1767
1768 int
1769 dwarf2_has_info (struct objfile *objfile,
1770 const struct dwarf2_debug_sections *names)
1771 {
1772 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1773 if (!dwarf2_per_objfile)
1774 {
1775 /* Initialize per-objfile state. */
1776 struct dwarf2_per_objfile *data
1777 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1778
1779 memset (data, 0, sizeof (*data));
1780 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1781 dwarf2_per_objfile = data;
1782
1783 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1784 (void *) names);
1785 dwarf2_per_objfile->objfile = objfile;
1786 }
1787 return (dwarf2_per_objfile->info.asection != NULL
1788 && dwarf2_per_objfile->abbrev.asection != NULL);
1789 }
1790
1791 /* When loading sections, we look either for uncompressed section or for
1792 compressed section names. */
1793
1794 static int
1795 section_is_p (const char *section_name,
1796 const struct dwarf2_section_names *names)
1797 {
1798 if (names->normal != NULL
1799 && strcmp (section_name, names->normal) == 0)
1800 return 1;
1801 if (names->compressed != NULL
1802 && strcmp (section_name, names->compressed) == 0)
1803 return 1;
1804 return 0;
1805 }
1806
1807 /* This function is mapped across the sections and remembers the
1808 offset and size of each of the debugging sections we are interested
1809 in. */
1810
1811 static void
1812 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1813 {
1814 const struct dwarf2_debug_sections *names;
1815 flagword aflag = bfd_get_section_flags (abfd, sectp);
1816
1817 if (vnames == NULL)
1818 names = &dwarf2_elf_names;
1819 else
1820 names = (const struct dwarf2_debug_sections *) vnames;
1821
1822 if ((aflag & SEC_HAS_CONTENTS) == 0)
1823 {
1824 }
1825 else if (section_is_p (sectp->name, &names->info))
1826 {
1827 dwarf2_per_objfile->info.asection = sectp;
1828 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1829 }
1830 else if (section_is_p (sectp->name, &names->abbrev))
1831 {
1832 dwarf2_per_objfile->abbrev.asection = sectp;
1833 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1834 }
1835 else if (section_is_p (sectp->name, &names->line))
1836 {
1837 dwarf2_per_objfile->line.asection = sectp;
1838 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1839 }
1840 else if (section_is_p (sectp->name, &names->loc))
1841 {
1842 dwarf2_per_objfile->loc.asection = sectp;
1843 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1844 }
1845 else if (section_is_p (sectp->name, &names->macinfo))
1846 {
1847 dwarf2_per_objfile->macinfo.asection = sectp;
1848 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1849 }
1850 else if (section_is_p (sectp->name, &names->macro))
1851 {
1852 dwarf2_per_objfile->macro.asection = sectp;
1853 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1854 }
1855 else if (section_is_p (sectp->name, &names->str))
1856 {
1857 dwarf2_per_objfile->str.asection = sectp;
1858 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1859 }
1860 else if (section_is_p (sectp->name, &names->addr))
1861 {
1862 dwarf2_per_objfile->addr.asection = sectp;
1863 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1864 }
1865 else if (section_is_p (sectp->name, &names->frame))
1866 {
1867 dwarf2_per_objfile->frame.asection = sectp;
1868 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1869 }
1870 else if (section_is_p (sectp->name, &names->eh_frame))
1871 {
1872 dwarf2_per_objfile->eh_frame.asection = sectp;
1873 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1874 }
1875 else if (section_is_p (sectp->name, &names->ranges))
1876 {
1877 dwarf2_per_objfile->ranges.asection = sectp;
1878 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1879 }
1880 else if (section_is_p (sectp->name, &names->types))
1881 {
1882 struct dwarf2_section_info type_section;
1883
1884 memset (&type_section, 0, sizeof (type_section));
1885 type_section.asection = sectp;
1886 type_section.size = bfd_get_section_size (sectp);
1887
1888 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1889 &type_section);
1890 }
1891 else if (section_is_p (sectp->name, &names->gdb_index))
1892 {
1893 dwarf2_per_objfile->gdb_index.asection = sectp;
1894 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1895 }
1896
1897 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1898 && bfd_section_vma (abfd, sectp) == 0)
1899 dwarf2_per_objfile->has_section_at_zero = 1;
1900 }
1901
1902 /* A helper function that decides whether a section is empty,
1903 or not present. */
1904
1905 static int
1906 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1907 {
1908 return info->asection == NULL || info->size == 0;
1909 }
1910
1911 /* Read the contents of the section INFO.
1912 OBJFILE is the main object file, but not necessarily the file where
1913 the section comes from. E.g., for DWO files INFO->asection->owner
1914 is the bfd of the DWO file.
1915 If the section is compressed, uncompress it before returning. */
1916
1917 static void
1918 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1919 {
1920 asection *sectp = info->asection;
1921 bfd *abfd;
1922 gdb_byte *buf, *retbuf;
1923 unsigned char header[4];
1924
1925 if (info->readin)
1926 return;
1927 info->buffer = NULL;
1928 info->readin = 1;
1929
1930 if (dwarf2_section_empty_p (info))
1931 return;
1932
1933 abfd = sectp->owner;
1934
1935 /* If the section has relocations, we must read it ourselves.
1936 Otherwise we attach it to the BFD. */
1937 if ((sectp->flags & SEC_RELOC) == 0)
1938 {
1939 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1940
1941 /* We have to cast away const here for historical reasons.
1942 Fixing dwarf2read to be const-correct would be quite nice. */
1943 info->buffer = (gdb_byte *) bytes;
1944 return;
1945 }
1946
1947 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1948 info->buffer = buf;
1949
1950 /* When debugging .o files, we may need to apply relocations; see
1951 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1952 We never compress sections in .o files, so we only need to
1953 try this when the section is not compressed. */
1954 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1955 if (retbuf != NULL)
1956 {
1957 info->buffer = retbuf;
1958 return;
1959 }
1960
1961 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1962 || bfd_bread (buf, info->size, abfd) != info->size)
1963 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1964 bfd_get_filename (abfd));
1965 }
1966
1967 /* A helper function that returns the size of a section in a safe way.
1968 If you are positive that the section has been read before using the
1969 size, then it is safe to refer to the dwarf2_section_info object's
1970 "size" field directly. In other cases, you must call this
1971 function, because for compressed sections the size field is not set
1972 correctly until the section has been read. */
1973
1974 static bfd_size_type
1975 dwarf2_section_size (struct objfile *objfile,
1976 struct dwarf2_section_info *info)
1977 {
1978 if (!info->readin)
1979 dwarf2_read_section (objfile, info);
1980 return info->size;
1981 }
1982
1983 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1984 SECTION_NAME. */
1985
1986 void
1987 dwarf2_get_section_info (struct objfile *objfile,
1988 enum dwarf2_section_enum sect,
1989 asection **sectp, gdb_byte **bufp,
1990 bfd_size_type *sizep)
1991 {
1992 struct dwarf2_per_objfile *data
1993 = objfile_data (objfile, dwarf2_objfile_data_key);
1994 struct dwarf2_section_info *info;
1995
1996 /* We may see an objfile without any DWARF, in which case we just
1997 return nothing. */
1998 if (data == NULL)
1999 {
2000 *sectp = NULL;
2001 *bufp = NULL;
2002 *sizep = 0;
2003 return;
2004 }
2005 switch (sect)
2006 {
2007 case DWARF2_DEBUG_FRAME:
2008 info = &data->frame;
2009 break;
2010 case DWARF2_EH_FRAME:
2011 info = &data->eh_frame;
2012 break;
2013 default:
2014 gdb_assert_not_reached ("unexpected section");
2015 }
2016
2017 dwarf2_read_section (objfile, info);
2018
2019 *sectp = info->asection;
2020 *bufp = info->buffer;
2021 *sizep = info->size;
2022 }
2023
2024 /* A helper function to find the sections for a .dwz file. */
2025
2026 static void
2027 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2028 {
2029 struct dwz_file *dwz_file = arg;
2030
2031 /* Note that we only support the standard ELF names, because .dwz
2032 is ELF-only (at the time of writing). */
2033 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2034 {
2035 dwz_file->abbrev.asection = sectp;
2036 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2037 }
2038 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2039 {
2040 dwz_file->info.asection = sectp;
2041 dwz_file->info.size = bfd_get_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2044 {
2045 dwz_file->str.asection = sectp;
2046 dwz_file->str.size = bfd_get_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2049 {
2050 dwz_file->line.asection = sectp;
2051 dwz_file->line.size = bfd_get_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2054 {
2055 dwz_file->macro.asection = sectp;
2056 dwz_file->macro.size = bfd_get_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2059 {
2060 dwz_file->gdb_index.asection = sectp;
2061 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2062 }
2063 }
2064
2065 /* Open the separate '.dwz' debug file, if needed. Error if the file
2066 cannot be found. */
2067
2068 static struct dwz_file *
2069 dwarf2_get_dwz_file (void)
2070 {
2071 bfd *abfd, *dwz_bfd;
2072 asection *section;
2073 gdb_byte *data;
2074 struct cleanup *cleanup;
2075 const char *filename;
2076 struct dwz_file *result;
2077
2078 if (dwarf2_per_objfile->dwz_file != NULL)
2079 return dwarf2_per_objfile->dwz_file;
2080
2081 abfd = dwarf2_per_objfile->objfile->obfd;
2082 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2083 if (section == NULL)
2084 error (_("could not find '.gnu_debugaltlink' section"));
2085 if (!bfd_malloc_and_get_section (abfd, section, &data))
2086 error (_("could not read '.gnu_debugaltlink' section: %s"),
2087 bfd_errmsg (bfd_get_error ()));
2088 cleanup = make_cleanup (xfree, data);
2089
2090 filename = data;
2091 if (!IS_ABSOLUTE_PATH (filename))
2092 {
2093 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2094 char *rel;
2095
2096 make_cleanup (xfree, abs);
2097 abs = ldirname (abs);
2098 make_cleanup (xfree, abs);
2099
2100 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2101 make_cleanup (xfree, rel);
2102 filename = rel;
2103 }
2104
2105 /* The format is just a NUL-terminated file name, followed by the
2106 build-id. For now, though, we ignore the build-id. */
2107 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2108 if (dwz_bfd == NULL)
2109 error (_("could not read '%s': %s"), filename,
2110 bfd_errmsg (bfd_get_error ()));
2111
2112 if (!bfd_check_format (dwz_bfd, bfd_object))
2113 {
2114 gdb_bfd_unref (dwz_bfd);
2115 error (_("file '%s' was not usable: %s"), filename,
2116 bfd_errmsg (bfd_get_error ()));
2117 }
2118
2119 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2120 struct dwz_file);
2121 result->dwz_bfd = dwz_bfd;
2122
2123 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2124
2125 do_cleanups (cleanup);
2126
2127 dwarf2_per_objfile->dwz_file = result;
2128 return result;
2129 }
2130 \f
2131 /* DWARF quick_symbols_functions support. */
2132
2133 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2134 unique line tables, so we maintain a separate table of all .debug_line
2135 derived entries to support the sharing.
2136 All the quick functions need is the list of file names. We discard the
2137 line_header when we're done and don't need to record it here. */
2138 struct quick_file_names
2139 {
2140 /* The data used to construct the hash key. */
2141 struct stmt_list_hash hash;
2142
2143 /* The number of entries in file_names, real_names. */
2144 unsigned int num_file_names;
2145
2146 /* The file names from the line table, after being run through
2147 file_full_name. */
2148 const char **file_names;
2149
2150 /* The file names from the line table after being run through
2151 gdb_realpath. These are computed lazily. */
2152 const char **real_names;
2153 };
2154
2155 /* When using the index (and thus not using psymtabs), each CU has an
2156 object of this type. This is used to hold information needed by
2157 the various "quick" methods. */
2158 struct dwarf2_per_cu_quick_data
2159 {
2160 /* The file table. This can be NULL if there was no file table
2161 or it's currently not read in.
2162 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2163 struct quick_file_names *file_names;
2164
2165 /* The corresponding symbol table. This is NULL if symbols for this
2166 CU have not yet been read. */
2167 struct symtab *symtab;
2168
2169 /* A temporary mark bit used when iterating over all CUs in
2170 expand_symtabs_matching. */
2171 unsigned int mark : 1;
2172
2173 /* True if we've tried to read the file table and found there isn't one.
2174 There will be no point in trying to read it again next time. */
2175 unsigned int no_file_data : 1;
2176 };
2177
2178 /* Utility hash function for a stmt_list_hash. */
2179
2180 static hashval_t
2181 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2182 {
2183 hashval_t v = 0;
2184
2185 if (stmt_list_hash->dwo_unit != NULL)
2186 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2187 v += stmt_list_hash->line_offset.sect_off;
2188 return v;
2189 }
2190
2191 /* Utility equality function for a stmt_list_hash. */
2192
2193 static int
2194 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2195 const struct stmt_list_hash *rhs)
2196 {
2197 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2198 return 0;
2199 if (lhs->dwo_unit != NULL
2200 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2201 return 0;
2202
2203 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2204 }
2205
2206 /* Hash function for a quick_file_names. */
2207
2208 static hashval_t
2209 hash_file_name_entry (const void *e)
2210 {
2211 const struct quick_file_names *file_data = e;
2212
2213 return hash_stmt_list_entry (&file_data->hash);
2214 }
2215
2216 /* Equality function for a quick_file_names. */
2217
2218 static int
2219 eq_file_name_entry (const void *a, const void *b)
2220 {
2221 const struct quick_file_names *ea = a;
2222 const struct quick_file_names *eb = b;
2223
2224 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2225 }
2226
2227 /* Delete function for a quick_file_names. */
2228
2229 static void
2230 delete_file_name_entry (void *e)
2231 {
2232 struct quick_file_names *file_data = e;
2233 int i;
2234
2235 for (i = 0; i < file_data->num_file_names; ++i)
2236 {
2237 xfree ((void*) file_data->file_names[i]);
2238 if (file_data->real_names)
2239 xfree ((void*) file_data->real_names[i]);
2240 }
2241
2242 /* The space for the struct itself lives on objfile_obstack,
2243 so we don't free it here. */
2244 }
2245
2246 /* Create a quick_file_names hash table. */
2247
2248 static htab_t
2249 create_quick_file_names_table (unsigned int nr_initial_entries)
2250 {
2251 return htab_create_alloc (nr_initial_entries,
2252 hash_file_name_entry, eq_file_name_entry,
2253 delete_file_name_entry, xcalloc, xfree);
2254 }
2255
2256 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2257 have to be created afterwards. You should call age_cached_comp_units after
2258 processing PER_CU->CU. dw2_setup must have been already called. */
2259
2260 static void
2261 load_cu (struct dwarf2_per_cu_data *per_cu)
2262 {
2263 if (per_cu->is_debug_types)
2264 load_full_type_unit (per_cu);
2265 else
2266 load_full_comp_unit (per_cu, language_minimal);
2267
2268 gdb_assert (per_cu->cu != NULL);
2269
2270 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2271 }
2272
2273 /* Read in the symbols for PER_CU. */
2274
2275 static void
2276 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2277 {
2278 struct cleanup *back_to;
2279
2280 /* Skip type_unit_groups, reading the type units they contain
2281 is handled elsewhere. */
2282 if (IS_TYPE_UNIT_GROUP (per_cu))
2283 return;
2284
2285 back_to = make_cleanup (dwarf2_release_queue, NULL);
2286
2287 if (dwarf2_per_objfile->using_index
2288 ? per_cu->v.quick->symtab == NULL
2289 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2290 {
2291 queue_comp_unit (per_cu, language_minimal);
2292 load_cu (per_cu);
2293 }
2294
2295 process_queue ();
2296
2297 /* Age the cache, releasing compilation units that have not
2298 been used recently. */
2299 age_cached_comp_units ();
2300
2301 do_cleanups (back_to);
2302 }
2303
2304 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2305 the objfile from which this CU came. Returns the resulting symbol
2306 table. */
2307
2308 static struct symtab *
2309 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2310 {
2311 gdb_assert (dwarf2_per_objfile->using_index);
2312 if (!per_cu->v.quick->symtab)
2313 {
2314 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2315 increment_reading_symtab ();
2316 dw2_do_instantiate_symtab (per_cu);
2317 process_cu_includes ();
2318 do_cleanups (back_to);
2319 }
2320 return per_cu->v.quick->symtab;
2321 }
2322
2323 /* Return the CU given its index.
2324
2325 This is intended for loops like:
2326
2327 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2328 + dwarf2_per_objfile->n_type_units); ++i)
2329 {
2330 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2331
2332 ...;
2333 }
2334 */
2335
2336 static struct dwarf2_per_cu_data *
2337 dw2_get_cu (int index)
2338 {
2339 if (index >= dwarf2_per_objfile->n_comp_units)
2340 {
2341 index -= dwarf2_per_objfile->n_comp_units;
2342 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2343 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2344 }
2345
2346 return dwarf2_per_objfile->all_comp_units[index];
2347 }
2348
2349 /* Return the primary CU given its index.
2350 The difference between this function and dw2_get_cu is in the handling
2351 of type units (TUs). Here we return the type_unit_group object.
2352
2353 This is intended for loops like:
2354
2355 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2356 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2357 {
2358 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2359
2360 ...;
2361 }
2362 */
2363
2364 static struct dwarf2_per_cu_data *
2365 dw2_get_primary_cu (int index)
2366 {
2367 if (index >= dwarf2_per_objfile->n_comp_units)
2368 {
2369 index -= dwarf2_per_objfile->n_comp_units;
2370 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2371 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2372 }
2373
2374 return dwarf2_per_objfile->all_comp_units[index];
2375 }
2376
2377 /* A helper for create_cus_from_index that handles a given list of
2378 CUs. */
2379
2380 static void
2381 create_cus_from_index_list (struct objfile *objfile,
2382 const gdb_byte *cu_list, offset_type n_elements,
2383 struct dwarf2_section_info *section,
2384 int is_dwz,
2385 int base_offset)
2386 {
2387 offset_type i;
2388
2389 for (i = 0; i < n_elements; i += 2)
2390 {
2391 struct dwarf2_per_cu_data *the_cu;
2392 ULONGEST offset, length;
2393
2394 gdb_static_assert (sizeof (ULONGEST) >= 8);
2395 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2396 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2397 cu_list += 2 * 8;
2398
2399 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2400 struct dwarf2_per_cu_data);
2401 the_cu->offset.sect_off = offset;
2402 the_cu->length = length;
2403 the_cu->objfile = objfile;
2404 the_cu->info_or_types_section = section;
2405 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2406 struct dwarf2_per_cu_quick_data);
2407 the_cu->is_dwz = is_dwz;
2408 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2409 }
2410 }
2411
2412 /* Read the CU list from the mapped index, and use it to create all
2413 the CU objects for this objfile. */
2414
2415 static void
2416 create_cus_from_index (struct objfile *objfile,
2417 const gdb_byte *cu_list, offset_type cu_list_elements,
2418 const gdb_byte *dwz_list, offset_type dwz_elements)
2419 {
2420 struct dwz_file *dwz;
2421
2422 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2423 dwarf2_per_objfile->all_comp_units
2424 = obstack_alloc (&objfile->objfile_obstack,
2425 dwarf2_per_objfile->n_comp_units
2426 * sizeof (struct dwarf2_per_cu_data *));
2427
2428 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2429 &dwarf2_per_objfile->info, 0, 0);
2430
2431 if (dwz_elements == 0)
2432 return;
2433
2434 dwz = dwarf2_get_dwz_file ();
2435 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2436 cu_list_elements / 2);
2437 }
2438
2439 /* Create the signatured type hash table from the index. */
2440
2441 static void
2442 create_signatured_type_table_from_index (struct objfile *objfile,
2443 struct dwarf2_section_info *section,
2444 const gdb_byte *bytes,
2445 offset_type elements)
2446 {
2447 offset_type i;
2448 htab_t sig_types_hash;
2449
2450 dwarf2_per_objfile->n_type_units = elements / 3;
2451 dwarf2_per_objfile->all_type_units
2452 = obstack_alloc (&objfile->objfile_obstack,
2453 dwarf2_per_objfile->n_type_units
2454 * sizeof (struct signatured_type *));
2455
2456 sig_types_hash = allocate_signatured_type_table (objfile);
2457
2458 for (i = 0; i < elements; i += 3)
2459 {
2460 struct signatured_type *sig_type;
2461 ULONGEST offset, type_offset_in_tu, signature;
2462 void **slot;
2463
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2466 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2467 BFD_ENDIAN_LITTLE);
2468 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2469 bytes += 3 * 8;
2470
2471 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2472 struct signatured_type);
2473 sig_type->signature = signature;
2474 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2475 sig_type->per_cu.is_debug_types = 1;
2476 sig_type->per_cu.info_or_types_section = section;
2477 sig_type->per_cu.offset.sect_off = offset;
2478 sig_type->per_cu.objfile = objfile;
2479 sig_type->per_cu.v.quick
2480 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2481 struct dwarf2_per_cu_quick_data);
2482
2483 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2484 *slot = sig_type;
2485
2486 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2487 }
2488
2489 dwarf2_per_objfile->signatured_types = sig_types_hash;
2490 }
2491
2492 /* Read the address map data from the mapped index, and use it to
2493 populate the objfile's psymtabs_addrmap. */
2494
2495 static void
2496 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2497 {
2498 const gdb_byte *iter, *end;
2499 struct obstack temp_obstack;
2500 struct addrmap *mutable_map;
2501 struct cleanup *cleanup;
2502 CORE_ADDR baseaddr;
2503
2504 obstack_init (&temp_obstack);
2505 cleanup = make_cleanup_obstack_free (&temp_obstack);
2506 mutable_map = addrmap_create_mutable (&temp_obstack);
2507
2508 iter = index->address_table;
2509 end = iter + index->address_table_size;
2510
2511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2512
2513 while (iter < end)
2514 {
2515 ULONGEST hi, lo, cu_index;
2516 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2517 iter += 8;
2518 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2519 iter += 8;
2520 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2521 iter += 4;
2522
2523 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2524 dw2_get_cu (cu_index));
2525 }
2526
2527 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2528 &objfile->objfile_obstack);
2529 do_cleanups (cleanup);
2530 }
2531
2532 /* The hash function for strings in the mapped index. This is the same as
2533 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2534 implementation. This is necessary because the hash function is tied to the
2535 format of the mapped index file. The hash values do not have to match with
2536 SYMBOL_HASH_NEXT.
2537
2538 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2539
2540 static hashval_t
2541 mapped_index_string_hash (int index_version, const void *p)
2542 {
2543 const unsigned char *str = (const unsigned char *) p;
2544 hashval_t r = 0;
2545 unsigned char c;
2546
2547 while ((c = *str++) != 0)
2548 {
2549 if (index_version >= 5)
2550 c = tolower (c);
2551 r = r * 67 + c - 113;
2552 }
2553
2554 return r;
2555 }
2556
2557 /* Find a slot in the mapped index INDEX for the object named NAME.
2558 If NAME is found, set *VEC_OUT to point to the CU vector in the
2559 constant pool and return 1. If NAME cannot be found, return 0. */
2560
2561 static int
2562 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2563 offset_type **vec_out)
2564 {
2565 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2566 offset_type hash;
2567 offset_type slot, step;
2568 int (*cmp) (const char *, const char *);
2569
2570 if (current_language->la_language == language_cplus
2571 || current_language->la_language == language_java
2572 || current_language->la_language == language_fortran)
2573 {
2574 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2575 not contain any. */
2576 const char *paren = strchr (name, '(');
2577
2578 if (paren)
2579 {
2580 char *dup;
2581
2582 dup = xmalloc (paren - name + 1);
2583 memcpy (dup, name, paren - name);
2584 dup[paren - name] = 0;
2585
2586 make_cleanup (xfree, dup);
2587 name = dup;
2588 }
2589 }
2590
2591 /* Index version 4 did not support case insensitive searches. But the
2592 indices for case insensitive languages are built in lowercase, therefore
2593 simulate our NAME being searched is also lowercased. */
2594 hash = mapped_index_string_hash ((index->version == 4
2595 && case_sensitivity == case_sensitive_off
2596 ? 5 : index->version),
2597 name);
2598
2599 slot = hash & (index->symbol_table_slots - 1);
2600 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2601 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2602
2603 for (;;)
2604 {
2605 /* Convert a slot number to an offset into the table. */
2606 offset_type i = 2 * slot;
2607 const char *str;
2608 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2609 {
2610 do_cleanups (back_to);
2611 return 0;
2612 }
2613
2614 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2615 if (!cmp (name, str))
2616 {
2617 *vec_out = (offset_type *) (index->constant_pool
2618 + MAYBE_SWAP (index->symbol_table[i + 1]));
2619 do_cleanups (back_to);
2620 return 1;
2621 }
2622
2623 slot = (slot + step) & (index->symbol_table_slots - 1);
2624 }
2625 }
2626
2627 /* A helper function that reads the .gdb_index from SECTION and fills
2628 in MAP. FILENAME is the name of the file containing the section;
2629 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2630 ok to use deprecated sections.
2631
2632 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2633 out parameters that are filled in with information about the CU and
2634 TU lists in the section.
2635
2636 Returns 1 if all went well, 0 otherwise. */
2637
2638 static int
2639 read_index_from_section (struct objfile *objfile,
2640 const char *filename,
2641 int deprecated_ok,
2642 struct dwarf2_section_info *section,
2643 struct mapped_index *map,
2644 const gdb_byte **cu_list,
2645 offset_type *cu_list_elements,
2646 const gdb_byte **types_list,
2647 offset_type *types_list_elements)
2648 {
2649 char *addr;
2650 offset_type version;
2651 offset_type *metadata;
2652 int i;
2653
2654 if (dwarf2_section_empty_p (section))
2655 return 0;
2656
2657 /* Older elfutils strip versions could keep the section in the main
2658 executable while splitting it for the separate debug info file. */
2659 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2660 return 0;
2661
2662 dwarf2_read_section (objfile, section);
2663
2664 addr = section->buffer;
2665 /* Version check. */
2666 version = MAYBE_SWAP (*(offset_type *) addr);
2667 /* Versions earlier than 3 emitted every copy of a psymbol. This
2668 causes the index to behave very poorly for certain requests. Version 3
2669 contained incomplete addrmap. So, it seems better to just ignore such
2670 indices. */
2671 if (version < 4)
2672 {
2673 static int warning_printed = 0;
2674 if (!warning_printed)
2675 {
2676 warning (_("Skipping obsolete .gdb_index section in %s."),
2677 filename);
2678 warning_printed = 1;
2679 }
2680 return 0;
2681 }
2682 /* Index version 4 uses a different hash function than index version
2683 5 and later.
2684
2685 Versions earlier than 6 did not emit psymbols for inlined
2686 functions. Using these files will cause GDB not to be able to
2687 set breakpoints on inlined functions by name, so we ignore these
2688 indices unless the user has done
2689 "set use-deprecated-index-sections on". */
2690 if (version < 6 && !deprecated_ok)
2691 {
2692 static int warning_printed = 0;
2693 if (!warning_printed)
2694 {
2695 warning (_("\
2696 Skipping deprecated .gdb_index section in %s.\n\
2697 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2698 to use the section anyway."),
2699 filename);
2700 warning_printed = 1;
2701 }
2702 return 0;
2703 }
2704 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2705 of the TU (for symbols coming from TUs). It's just a performance bug, and
2706 we can't distinguish gdb-generated indices from gold-generated ones, so
2707 nothing to do here. */
2708
2709 /* Indexes with higher version than the one supported by GDB may be no
2710 longer backward compatible. */
2711 if (version > 8)
2712 return 0;
2713
2714 map->version = version;
2715 map->total_size = section->size;
2716
2717 metadata = (offset_type *) (addr + sizeof (offset_type));
2718
2719 i = 0;
2720 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2721 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2722 / 8);
2723 ++i;
2724
2725 *types_list = addr + MAYBE_SWAP (metadata[i]);
2726 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2727 - MAYBE_SWAP (metadata[i]))
2728 / 8);
2729 ++i;
2730
2731 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2732 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2733 - MAYBE_SWAP (metadata[i]));
2734 ++i;
2735
2736 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2737 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2738 - MAYBE_SWAP (metadata[i]))
2739 / (2 * sizeof (offset_type)));
2740 ++i;
2741
2742 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2743
2744 return 1;
2745 }
2746
2747
2748 /* Read the index file. If everything went ok, initialize the "quick"
2749 elements of all the CUs and return 1. Otherwise, return 0. */
2750
2751 static int
2752 dwarf2_read_index (struct objfile *objfile)
2753 {
2754 struct mapped_index local_map, *map;
2755 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2756 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2757
2758 if (!read_index_from_section (objfile, objfile->name,
2759 use_deprecated_index_sections,
2760 &dwarf2_per_objfile->gdb_index, &local_map,
2761 &cu_list, &cu_list_elements,
2762 &types_list, &types_list_elements))
2763 return 0;
2764
2765 /* Don't use the index if it's empty. */
2766 if (local_map.symbol_table_slots == 0)
2767 return 0;
2768
2769 /* If there is a .dwz file, read it so we can get its CU list as
2770 well. */
2771 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2772 {
2773 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2774 struct mapped_index dwz_map;
2775 const gdb_byte *dwz_types_ignore;
2776 offset_type dwz_types_elements_ignore;
2777
2778 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2779 1,
2780 &dwz->gdb_index, &dwz_map,
2781 &dwz_list, &dwz_list_elements,
2782 &dwz_types_ignore,
2783 &dwz_types_elements_ignore))
2784 {
2785 warning (_("could not read '.gdb_index' section from %s; skipping"),
2786 bfd_get_filename (dwz->dwz_bfd));
2787 return 0;
2788 }
2789 }
2790
2791 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2792 dwz_list_elements);
2793
2794 if (types_list_elements)
2795 {
2796 struct dwarf2_section_info *section;
2797
2798 /* We can only handle a single .debug_types when we have an
2799 index. */
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2801 return 0;
2802
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2805
2806 create_signatured_type_table_from_index (objfile, section, types_list,
2807 types_list_elements);
2808 }
2809
2810 create_addrmap_from_index (objfile, &local_map);
2811
2812 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2813 *map = local_map;
2814
2815 dwarf2_per_objfile->index_table = map;
2816 dwarf2_per_objfile->using_index = 1;
2817 dwarf2_per_objfile->quick_file_names_table =
2818 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2819
2820 return 1;
2821 }
2822
2823 /* A helper for the "quick" functions which sets the global
2824 dwarf2_per_objfile according to OBJFILE. */
2825
2826 static void
2827 dw2_setup (struct objfile *objfile)
2828 {
2829 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2830 gdb_assert (dwarf2_per_objfile);
2831 }
2832
2833 /* die_reader_func for dw2_get_file_names. */
2834
2835 static void
2836 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2837 gdb_byte *info_ptr,
2838 struct die_info *comp_unit_die,
2839 int has_children,
2840 void *data)
2841 {
2842 struct dwarf2_cu *cu = reader->cu;
2843 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2844 struct objfile *objfile = dwarf2_per_objfile->objfile;
2845 struct dwarf2_per_cu_data *lh_cu;
2846 struct line_header *lh;
2847 struct attribute *attr;
2848 int i;
2849 const char *name, *comp_dir;
2850 void **slot;
2851 struct quick_file_names *qfn;
2852 unsigned int line_offset;
2853
2854 /* Our callers never want to match partial units -- instead they
2855 will match the enclosing full CU. */
2856 if (comp_unit_die->tag == DW_TAG_partial_unit)
2857 {
2858 this_cu->v.quick->no_file_data = 1;
2859 return;
2860 }
2861
2862 /* If we're reading the line header for TUs, store it in the "per_cu"
2863 for tu_group. */
2864 if (this_cu->is_debug_types)
2865 {
2866 struct type_unit_group *tu_group = data;
2867
2868 gdb_assert (tu_group != NULL);
2869 lh_cu = &tu_group->per_cu;
2870 }
2871 else
2872 lh_cu = this_cu;
2873
2874 lh = NULL;
2875 slot = NULL;
2876 line_offset = 0;
2877
2878 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2879 if (attr)
2880 {
2881 struct quick_file_names find_entry;
2882
2883 line_offset = DW_UNSND (attr);
2884
2885 /* We may have already read in this line header (TU line header sharing).
2886 If we have we're done. */
2887 find_entry.hash.dwo_unit = cu->dwo_unit;
2888 find_entry.hash.line_offset.sect_off = line_offset;
2889 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2890 &find_entry, INSERT);
2891 if (*slot != NULL)
2892 {
2893 lh_cu->v.quick->file_names = *slot;
2894 return;
2895 }
2896
2897 lh = dwarf_decode_line_header (line_offset, cu);
2898 }
2899 if (lh == NULL)
2900 {
2901 lh_cu->v.quick->no_file_data = 1;
2902 return;
2903 }
2904
2905 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2906 qfn->hash.dwo_unit = cu->dwo_unit;
2907 qfn->hash.line_offset.sect_off = line_offset;
2908 gdb_assert (slot != NULL);
2909 *slot = qfn;
2910
2911 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2912
2913 qfn->num_file_names = lh->num_file_names;
2914 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2915 lh->num_file_names * sizeof (char *));
2916 for (i = 0; i < lh->num_file_names; ++i)
2917 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2918 qfn->real_names = NULL;
2919
2920 free_line_header (lh);
2921
2922 lh_cu->v.quick->file_names = qfn;
2923 }
2924
2925 /* A helper for the "quick" functions which attempts to read the line
2926 table for THIS_CU. */
2927
2928 static struct quick_file_names *
2929 dw2_get_file_names (struct objfile *objfile,
2930 struct dwarf2_per_cu_data *this_cu)
2931 {
2932 /* For TUs this should only be called on the parent group. */
2933 if (this_cu->is_debug_types)
2934 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2935
2936 if (this_cu->v.quick->file_names != NULL)
2937 return this_cu->v.quick->file_names;
2938 /* If we know there is no line data, no point in looking again. */
2939 if (this_cu->v.quick->no_file_data)
2940 return NULL;
2941
2942 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2943 in the stub for CUs, there's is no need to lookup the DWO file.
2944 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2945 DWO file. */
2946 if (this_cu->is_debug_types)
2947 {
2948 struct type_unit_group *tu_group = this_cu->type_unit_group;
2949
2950 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2951 dw2_get_file_names_reader, tu_group);
2952 }
2953 else
2954 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2955
2956 if (this_cu->v.quick->no_file_data)
2957 return NULL;
2958 return this_cu->v.quick->file_names;
2959 }
2960
2961 /* A helper for the "quick" functions which computes and caches the
2962 real path for a given file name from the line table. */
2963
2964 static const char *
2965 dw2_get_real_path (struct objfile *objfile,
2966 struct quick_file_names *qfn, int index)
2967 {
2968 if (qfn->real_names == NULL)
2969 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2970 qfn->num_file_names, sizeof (char *));
2971
2972 if (qfn->real_names[index] == NULL)
2973 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2974
2975 return qfn->real_names[index];
2976 }
2977
2978 static struct symtab *
2979 dw2_find_last_source_symtab (struct objfile *objfile)
2980 {
2981 int index;
2982
2983 dw2_setup (objfile);
2984 index = dwarf2_per_objfile->n_comp_units - 1;
2985 return dw2_instantiate_symtab (dw2_get_cu (index));
2986 }
2987
2988 /* Traversal function for dw2_forget_cached_source_info. */
2989
2990 static int
2991 dw2_free_cached_file_names (void **slot, void *info)
2992 {
2993 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2994
2995 if (file_data->real_names)
2996 {
2997 int i;
2998
2999 for (i = 0; i < file_data->num_file_names; ++i)
3000 {
3001 xfree ((void*) file_data->real_names[i]);
3002 file_data->real_names[i] = NULL;
3003 }
3004 }
3005
3006 return 1;
3007 }
3008
3009 static void
3010 dw2_forget_cached_source_info (struct objfile *objfile)
3011 {
3012 dw2_setup (objfile);
3013
3014 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3015 dw2_free_cached_file_names, NULL);
3016 }
3017
3018 /* Helper function for dw2_map_symtabs_matching_filename that expands
3019 the symtabs and calls the iterator. */
3020
3021 static int
3022 dw2_map_expand_apply (struct objfile *objfile,
3023 struct dwarf2_per_cu_data *per_cu,
3024 const char *name, const char *real_path,
3025 int (*callback) (struct symtab *, void *),
3026 void *data)
3027 {
3028 struct symtab *last_made = objfile->symtabs;
3029
3030 /* Don't visit already-expanded CUs. */
3031 if (per_cu->v.quick->symtab)
3032 return 0;
3033
3034 /* This may expand more than one symtab, and we want to iterate over
3035 all of them. */
3036 dw2_instantiate_symtab (per_cu);
3037
3038 return iterate_over_some_symtabs (name, real_path, callback, data,
3039 objfile->symtabs, last_made);
3040 }
3041
3042 /* Implementation of the map_symtabs_matching_filename method. */
3043
3044 static int
3045 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3046 const char *real_path,
3047 int (*callback) (struct symtab *, void *),
3048 void *data)
3049 {
3050 int i;
3051 const char *name_basename = lbasename (name);
3052
3053 dw2_setup (objfile);
3054
3055 /* The rule is CUs specify all the files, including those used by
3056 any TU, so there's no need to scan TUs here. */
3057
3058 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3059 {
3060 int j;
3061 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3062 struct quick_file_names *file_data;
3063
3064 /* We only need to look at symtabs not already expanded. */
3065 if (per_cu->v.quick->symtab)
3066 continue;
3067
3068 file_data = dw2_get_file_names (objfile, per_cu);
3069 if (file_data == NULL)
3070 continue;
3071
3072 for (j = 0; j < file_data->num_file_names; ++j)
3073 {
3074 const char *this_name = file_data->file_names[j];
3075 const char *this_real_name;
3076
3077 if (compare_filenames_for_search (this_name, name))
3078 {
3079 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3080 callback, data))
3081 return 1;
3082 }
3083
3084 /* Before we invoke realpath, which can get expensive when many
3085 files are involved, do a quick comparison of the basenames. */
3086 if (! basenames_may_differ
3087 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3088 continue;
3089
3090 this_real_name = dw2_get_real_path (objfile, file_data, j);
3091 if (compare_filenames_for_search (this_real_name, name))
3092 {
3093 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3094 callback, data))
3095 return 1;
3096 }
3097
3098 if (real_path != NULL)
3099 {
3100 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3101 gdb_assert (IS_ABSOLUTE_PATH (name));
3102 if (this_real_name != NULL
3103 && FILENAME_CMP (real_path, this_real_name) == 0)
3104 {
3105 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3106 callback, data))
3107 return 1;
3108 }
3109 }
3110 }
3111 }
3112
3113 return 0;
3114 }
3115
3116 /* Struct used to manage iterating over all CUs looking for a symbol. */
3117
3118 struct dw2_symtab_iterator
3119 {
3120 /* The internalized form of .gdb_index. */
3121 struct mapped_index *index;
3122 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3123 int want_specific_block;
3124 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3125 Unused if !WANT_SPECIFIC_BLOCK. */
3126 int block_index;
3127 /* The kind of symbol we're looking for. */
3128 domain_enum domain;
3129 /* The list of CUs from the index entry of the symbol,
3130 or NULL if not found. */
3131 offset_type *vec;
3132 /* The next element in VEC to look at. */
3133 int next;
3134 /* The number of elements in VEC, or zero if there is no match. */
3135 int length;
3136 };
3137
3138 /* Initialize the index symtab iterator ITER.
3139 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3140 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3141
3142 static void
3143 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3144 struct mapped_index *index,
3145 int want_specific_block,
3146 int block_index,
3147 domain_enum domain,
3148 const char *name)
3149 {
3150 iter->index = index;
3151 iter->want_specific_block = want_specific_block;
3152 iter->block_index = block_index;
3153 iter->domain = domain;
3154 iter->next = 0;
3155
3156 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3157 iter->length = MAYBE_SWAP (*iter->vec);
3158 else
3159 {
3160 iter->vec = NULL;
3161 iter->length = 0;
3162 }
3163 }
3164
3165 /* Return the next matching CU or NULL if there are no more. */
3166
3167 static struct dwarf2_per_cu_data *
3168 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3169 {
3170 for ( ; iter->next < iter->length; ++iter->next)
3171 {
3172 offset_type cu_index_and_attrs =
3173 MAYBE_SWAP (iter->vec[iter->next + 1]);
3174 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3175 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3176 int want_static = iter->block_index != GLOBAL_BLOCK;
3177 /* This value is only valid for index versions >= 7. */
3178 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3179 gdb_index_symbol_kind symbol_kind =
3180 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3181 /* Only check the symbol attributes if they're present.
3182 Indices prior to version 7 don't record them,
3183 and indices >= 7 may elide them for certain symbols
3184 (gold does this). */
3185 int attrs_valid =
3186 (iter->index->version >= 7
3187 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3188
3189 /* Skip if already read in. */
3190 if (per_cu->v.quick->symtab)
3191 continue;
3192
3193 if (attrs_valid
3194 && iter->want_specific_block
3195 && want_static != is_static)
3196 continue;
3197
3198 /* Only check the symbol's kind if it has one. */
3199 if (attrs_valid)
3200 {
3201 switch (iter->domain)
3202 {
3203 case VAR_DOMAIN:
3204 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3205 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3206 /* Some types are also in VAR_DOMAIN. */
3207 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3208 continue;
3209 break;
3210 case STRUCT_DOMAIN:
3211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3212 continue;
3213 break;
3214 case LABEL_DOMAIN:
3215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3216 continue;
3217 break;
3218 default:
3219 break;
3220 }
3221 }
3222
3223 ++iter->next;
3224 return per_cu;
3225 }
3226
3227 return NULL;
3228 }
3229
3230 static struct symtab *
3231 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3232 const char *name, domain_enum domain)
3233 {
3234 struct symtab *stab_best = NULL;
3235 struct mapped_index *index;
3236
3237 dw2_setup (objfile);
3238
3239 index = dwarf2_per_objfile->index_table;
3240
3241 /* index is NULL if OBJF_READNOW. */
3242 if (index)
3243 {
3244 struct dw2_symtab_iterator iter;
3245 struct dwarf2_per_cu_data *per_cu;
3246
3247 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3248
3249 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3250 {
3251 struct symbol *sym = NULL;
3252 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3253
3254 /* Some caution must be observed with overloaded functions
3255 and methods, since the index will not contain any overload
3256 information (but NAME might contain it). */
3257 if (stab->primary)
3258 {
3259 struct blockvector *bv = BLOCKVECTOR (stab);
3260 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3261
3262 sym = lookup_block_symbol (block, name, domain);
3263 }
3264
3265 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3266 {
3267 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3268 return stab;
3269
3270 stab_best = stab;
3271 }
3272
3273 /* Keep looking through other CUs. */
3274 }
3275 }
3276
3277 return stab_best;
3278 }
3279
3280 static void
3281 dw2_print_stats (struct objfile *objfile)
3282 {
3283 int i, count;
3284
3285 dw2_setup (objfile);
3286 count = 0;
3287 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3288 + dwarf2_per_objfile->n_type_units); ++i)
3289 {
3290 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3291
3292 if (!per_cu->v.quick->symtab)
3293 ++count;
3294 }
3295 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3296 }
3297
3298 static void
3299 dw2_dump (struct objfile *objfile)
3300 {
3301 /* Nothing worth printing. */
3302 }
3303
3304 static void
3305 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3306 struct section_offsets *delta)
3307 {
3308 /* There's nothing to relocate here. */
3309 }
3310
3311 static void
3312 dw2_expand_symtabs_for_function (struct objfile *objfile,
3313 const char *func_name)
3314 {
3315 struct mapped_index *index;
3316
3317 dw2_setup (objfile);
3318
3319 index = dwarf2_per_objfile->index_table;
3320
3321 /* index is NULL if OBJF_READNOW. */
3322 if (index)
3323 {
3324 struct dw2_symtab_iterator iter;
3325 struct dwarf2_per_cu_data *per_cu;
3326
3327 /* Note: It doesn't matter what we pass for block_index here. */
3328 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3329 func_name);
3330
3331 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3332 dw2_instantiate_symtab (per_cu);
3333 }
3334 }
3335
3336 static void
3337 dw2_expand_all_symtabs (struct objfile *objfile)
3338 {
3339 int i;
3340
3341 dw2_setup (objfile);
3342
3343 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3344 + dwarf2_per_objfile->n_type_units); ++i)
3345 {
3346 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3347
3348 dw2_instantiate_symtab (per_cu);
3349 }
3350 }
3351
3352 static void
3353 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3354 const char *fullname)
3355 {
3356 int i;
3357
3358 dw2_setup (objfile);
3359
3360 /* We don't need to consider type units here.
3361 This is only called for examining code, e.g. expand_line_sal.
3362 There can be an order of magnitude (or more) more type units
3363 than comp units, and we avoid them if we can. */
3364
3365 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3366 {
3367 int j;
3368 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3369 struct quick_file_names *file_data;
3370
3371 /* We only need to look at symtabs not already expanded. */
3372 if (per_cu->v.quick->symtab)
3373 continue;
3374
3375 file_data = dw2_get_file_names (objfile, per_cu);
3376 if (file_data == NULL)
3377 continue;
3378
3379 for (j = 0; j < file_data->num_file_names; ++j)
3380 {
3381 const char *this_fullname = file_data->file_names[j];
3382
3383 if (filename_cmp (this_fullname, fullname) == 0)
3384 {
3385 dw2_instantiate_symtab (per_cu);
3386 break;
3387 }
3388 }
3389 }
3390 }
3391
3392 /* A helper function for dw2_find_symbol_file that finds the primary
3393 file name for a given CU. This is a die_reader_func. */
3394
3395 static void
3396 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3397 gdb_byte *info_ptr,
3398 struct die_info *comp_unit_die,
3399 int has_children,
3400 void *data)
3401 {
3402 const char **result_ptr = data;
3403 struct dwarf2_cu *cu = reader->cu;
3404 struct attribute *attr;
3405
3406 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3407 if (attr == NULL)
3408 *result_ptr = NULL;
3409 else
3410 *result_ptr = DW_STRING (attr);
3411 }
3412
3413 static const char *
3414 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3415 {
3416 struct dwarf2_per_cu_data *per_cu;
3417 offset_type *vec;
3418 const char *filename;
3419
3420 dw2_setup (objfile);
3421
3422 /* index_table is NULL if OBJF_READNOW. */
3423 if (!dwarf2_per_objfile->index_table)
3424 {
3425 struct symtab *s;
3426
3427 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3428 {
3429 struct blockvector *bv = BLOCKVECTOR (s);
3430 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3431 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3432
3433 if (sym)
3434 {
3435 /* Only file extension of returned filename is recognized. */
3436 return SYMBOL_SYMTAB (sym)->filename;
3437 }
3438 }
3439 return NULL;
3440 }
3441
3442 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3443 name, &vec))
3444 return NULL;
3445
3446 /* Note that this just looks at the very first one named NAME -- but
3447 actually we are looking for a function. find_main_filename
3448 should be rewritten so that it doesn't require a custom hook. It
3449 could just use the ordinary symbol tables. */
3450 /* vec[0] is the length, which must always be >0. */
3451 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3452
3453 if (per_cu->v.quick->symtab != NULL)
3454 {
3455 /* Only file extension of returned filename is recognized. */
3456 return per_cu->v.quick->symtab->filename;
3457 }
3458
3459 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3460 dw2_get_primary_filename_reader, &filename);
3461
3462 /* Only file extension of returned filename is recognized. */
3463 return filename;
3464 }
3465
3466 static void
3467 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3468 struct objfile *objfile, int global,
3469 int (*callback) (struct block *,
3470 struct symbol *, void *),
3471 void *data, symbol_compare_ftype *match,
3472 symbol_compare_ftype *ordered_compare)
3473 {
3474 /* Currently unimplemented; used for Ada. The function can be called if the
3475 current language is Ada for a non-Ada objfile using GNU index. As Ada
3476 does not look for non-Ada symbols this function should just return. */
3477 }
3478
3479 static void
3480 dw2_expand_symtabs_matching
3481 (struct objfile *objfile,
3482 int (*file_matcher) (const char *, void *, int basenames),
3483 int (*name_matcher) (const char *, void *),
3484 enum search_domain kind,
3485 void *data)
3486 {
3487 int i;
3488 offset_type iter;
3489 struct mapped_index *index;
3490
3491 dw2_setup (objfile);
3492
3493 /* index_table is NULL if OBJF_READNOW. */
3494 if (!dwarf2_per_objfile->index_table)
3495 return;
3496 index = dwarf2_per_objfile->index_table;
3497
3498 if (file_matcher != NULL)
3499 {
3500 struct cleanup *cleanup;
3501 htab_t visited_found, visited_not_found;
3502
3503 visited_found = htab_create_alloc (10,
3504 htab_hash_pointer, htab_eq_pointer,
3505 NULL, xcalloc, xfree);
3506 cleanup = make_cleanup_htab_delete (visited_found);
3507 visited_not_found = htab_create_alloc (10,
3508 htab_hash_pointer, htab_eq_pointer,
3509 NULL, xcalloc, xfree);
3510 make_cleanup_htab_delete (visited_not_found);
3511
3512 /* The rule is CUs specify all the files, including those used by
3513 any TU, so there's no need to scan TUs here. */
3514
3515 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3516 {
3517 int j;
3518 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3519 struct quick_file_names *file_data;
3520 void **slot;
3521
3522 per_cu->v.quick->mark = 0;
3523
3524 /* We only need to look at symtabs not already expanded. */
3525 if (per_cu->v.quick->symtab)
3526 continue;
3527
3528 file_data = dw2_get_file_names (objfile, per_cu);
3529 if (file_data == NULL)
3530 continue;
3531
3532 if (htab_find (visited_not_found, file_data) != NULL)
3533 continue;
3534 else if (htab_find (visited_found, file_data) != NULL)
3535 {
3536 per_cu->v.quick->mark = 1;
3537 continue;
3538 }
3539
3540 for (j = 0; j < file_data->num_file_names; ++j)
3541 {
3542 const char *this_real_name;
3543
3544 if (file_matcher (file_data->file_names[j], data, 0))
3545 {
3546 per_cu->v.quick->mark = 1;
3547 break;
3548 }
3549
3550 /* Before we invoke realpath, which can get expensive when many
3551 files are involved, do a quick comparison of the basenames. */
3552 if (!basenames_may_differ
3553 && !file_matcher (lbasename (file_data->file_names[j]),
3554 data, 1))
3555 continue;
3556
3557 this_real_name = dw2_get_real_path (objfile, file_data, j);
3558 if (file_matcher (this_real_name, data, 0))
3559 {
3560 per_cu->v.quick->mark = 1;
3561 break;
3562 }
3563 }
3564
3565 slot = htab_find_slot (per_cu->v.quick->mark
3566 ? visited_found
3567 : visited_not_found,
3568 file_data, INSERT);
3569 *slot = file_data;
3570 }
3571
3572 do_cleanups (cleanup);
3573 }
3574
3575 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3576 {
3577 offset_type idx = 2 * iter;
3578 const char *name;
3579 offset_type *vec, vec_len, vec_idx;
3580
3581 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3582 continue;
3583
3584 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3585
3586 if (! (*name_matcher) (name, data))
3587 continue;
3588
3589 /* The name was matched, now expand corresponding CUs that were
3590 marked. */
3591 vec = (offset_type *) (index->constant_pool
3592 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3593 vec_len = MAYBE_SWAP (vec[0]);
3594 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3595 {
3596 struct dwarf2_per_cu_data *per_cu;
3597 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3598 gdb_index_symbol_kind symbol_kind =
3599 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3600 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3601
3602 /* Don't crash on bad data. */
3603 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3604 + dwarf2_per_objfile->n_type_units))
3605 continue;
3606
3607 /* Only check the symbol's kind if it has one.
3608 Indices prior to version 7 don't record it. */
3609 if (index->version >= 7)
3610 {
3611 switch (kind)
3612 {
3613 case VARIABLES_DOMAIN:
3614 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3615 continue;
3616 break;
3617 case FUNCTIONS_DOMAIN:
3618 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3619 continue;
3620 break;
3621 case TYPES_DOMAIN:
3622 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3623 continue;
3624 break;
3625 default:
3626 break;
3627 }
3628 }
3629
3630 per_cu = dw2_get_cu (cu_index);
3631 if (file_matcher == NULL || per_cu->v.quick->mark)
3632 dw2_instantiate_symtab (per_cu);
3633 }
3634 }
3635 }
3636
3637 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3638 symtab. */
3639
3640 static struct symtab *
3641 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3642 {
3643 int i;
3644
3645 if (BLOCKVECTOR (symtab) != NULL
3646 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3647 return symtab;
3648
3649 if (symtab->includes == NULL)
3650 return NULL;
3651
3652 for (i = 0; symtab->includes[i]; ++i)
3653 {
3654 struct symtab *s = symtab->includes[i];
3655
3656 s = recursively_find_pc_sect_symtab (s, pc);
3657 if (s != NULL)
3658 return s;
3659 }
3660
3661 return NULL;
3662 }
3663
3664 static struct symtab *
3665 dw2_find_pc_sect_symtab (struct objfile *objfile,
3666 struct minimal_symbol *msymbol,
3667 CORE_ADDR pc,
3668 struct obj_section *section,
3669 int warn_if_readin)
3670 {
3671 struct dwarf2_per_cu_data *data;
3672 struct symtab *result;
3673
3674 dw2_setup (objfile);
3675
3676 if (!objfile->psymtabs_addrmap)
3677 return NULL;
3678
3679 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3680 if (!data)
3681 return NULL;
3682
3683 if (warn_if_readin && data->v.quick->symtab)
3684 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3685 paddress (get_objfile_arch (objfile), pc));
3686
3687 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3688 gdb_assert (result != NULL);
3689 return result;
3690 }
3691
3692 static void
3693 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3694 void *data, int need_fullname)
3695 {
3696 int i;
3697 struct cleanup *cleanup;
3698 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3699 NULL, xcalloc, xfree);
3700
3701 cleanup = make_cleanup_htab_delete (visited);
3702 dw2_setup (objfile);
3703
3704 /* The rule is CUs specify all the files, including those used by
3705 any TU, so there's no need to scan TUs here.
3706 We can ignore file names coming from already-expanded CUs. */
3707
3708 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3709 {
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711
3712 if (per_cu->v.quick->symtab)
3713 {
3714 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3715 INSERT);
3716
3717 *slot = per_cu->v.quick->file_names;
3718 }
3719 }
3720
3721 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3722 {
3723 int j;
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3725 struct quick_file_names *file_data;
3726 void **slot;
3727
3728 /* We only need to look at symtabs not already expanded. */
3729 if (per_cu->v.quick->symtab)
3730 continue;
3731
3732 file_data = dw2_get_file_names (objfile, per_cu);
3733 if (file_data == NULL)
3734 continue;
3735
3736 slot = htab_find_slot (visited, file_data, INSERT);
3737 if (*slot)
3738 {
3739 /* Already visited. */
3740 continue;
3741 }
3742 *slot = file_data;
3743
3744 for (j = 0; j < file_data->num_file_names; ++j)
3745 {
3746 const char *this_real_name;
3747
3748 if (need_fullname)
3749 this_real_name = dw2_get_real_path (objfile, file_data, j);
3750 else
3751 this_real_name = NULL;
3752 (*fun) (file_data->file_names[j], this_real_name, data);
3753 }
3754 }
3755
3756 do_cleanups (cleanup);
3757 }
3758
3759 static int
3760 dw2_has_symbols (struct objfile *objfile)
3761 {
3762 return 1;
3763 }
3764
3765 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3766 {
3767 dw2_has_symbols,
3768 dw2_find_last_source_symtab,
3769 dw2_forget_cached_source_info,
3770 dw2_map_symtabs_matching_filename,
3771 dw2_lookup_symbol,
3772 dw2_print_stats,
3773 dw2_dump,
3774 dw2_relocate,
3775 dw2_expand_symtabs_for_function,
3776 dw2_expand_all_symtabs,
3777 dw2_expand_symtabs_with_fullname,
3778 dw2_find_symbol_file,
3779 dw2_map_matching_symbols,
3780 dw2_expand_symtabs_matching,
3781 dw2_find_pc_sect_symtab,
3782 dw2_map_symbol_filenames
3783 };
3784
3785 /* Initialize for reading DWARF for this objfile. Return 0 if this
3786 file will use psymtabs, or 1 if using the GNU index. */
3787
3788 int
3789 dwarf2_initialize_objfile (struct objfile *objfile)
3790 {
3791 /* If we're about to read full symbols, don't bother with the
3792 indices. In this case we also don't care if some other debug
3793 format is making psymtabs, because they are all about to be
3794 expanded anyway. */
3795 if ((objfile->flags & OBJF_READNOW))
3796 {
3797 int i;
3798
3799 dwarf2_per_objfile->using_index = 1;
3800 create_all_comp_units (objfile);
3801 create_all_type_units (objfile);
3802 dwarf2_per_objfile->quick_file_names_table =
3803 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3804
3805 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3806 + dwarf2_per_objfile->n_type_units); ++i)
3807 {
3808 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3809
3810 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3811 struct dwarf2_per_cu_quick_data);
3812 }
3813
3814 /* Return 1 so that gdb sees the "quick" functions. However,
3815 these functions will be no-ops because we will have expanded
3816 all symtabs. */
3817 return 1;
3818 }
3819
3820 if (dwarf2_read_index (objfile))
3821 return 1;
3822
3823 return 0;
3824 }
3825
3826 \f
3827
3828 /* Build a partial symbol table. */
3829
3830 void
3831 dwarf2_build_psymtabs (struct objfile *objfile)
3832 {
3833 volatile struct gdb_exception except;
3834
3835 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3836 {
3837 init_psymbol_list (objfile, 1024);
3838 }
3839
3840 TRY_CATCH (except, RETURN_MASK_ERROR)
3841 {
3842 /* This isn't really ideal: all the data we allocate on the
3843 objfile's obstack is still uselessly kept around. However,
3844 freeing it seems unsafe. */
3845 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3846
3847 dwarf2_build_psymtabs_hard (objfile);
3848 discard_cleanups (cleanups);
3849 }
3850 if (except.reason < 0)
3851 exception_print (gdb_stderr, except);
3852 }
3853
3854 /* Return the total length of the CU described by HEADER. */
3855
3856 static unsigned int
3857 get_cu_length (const struct comp_unit_head *header)
3858 {
3859 return header->initial_length_size + header->length;
3860 }
3861
3862 /* Return TRUE if OFFSET is within CU_HEADER. */
3863
3864 static inline int
3865 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3866 {
3867 sect_offset bottom = { cu_header->offset.sect_off };
3868 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3869
3870 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3871 }
3872
3873 /* Find the base address of the compilation unit for range lists and
3874 location lists. It will normally be specified by DW_AT_low_pc.
3875 In DWARF-3 draft 4, the base address could be overridden by
3876 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3877 compilation units with discontinuous ranges. */
3878
3879 static void
3880 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3881 {
3882 struct attribute *attr;
3883
3884 cu->base_known = 0;
3885 cu->base_address = 0;
3886
3887 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3888 if (attr)
3889 {
3890 cu->base_address = DW_ADDR (attr);
3891 cu->base_known = 1;
3892 }
3893 else
3894 {
3895 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3896 if (attr)
3897 {
3898 cu->base_address = DW_ADDR (attr);
3899 cu->base_known = 1;
3900 }
3901 }
3902 }
3903
3904 /* Read in the comp unit header information from the debug_info at info_ptr.
3905 NOTE: This leaves members offset, first_die_offset to be filled in
3906 by the caller. */
3907
3908 static gdb_byte *
3909 read_comp_unit_head (struct comp_unit_head *cu_header,
3910 gdb_byte *info_ptr, bfd *abfd)
3911 {
3912 int signed_addr;
3913 unsigned int bytes_read;
3914
3915 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3916 cu_header->initial_length_size = bytes_read;
3917 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3918 info_ptr += bytes_read;
3919 cu_header->version = read_2_bytes (abfd, info_ptr);
3920 info_ptr += 2;
3921 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3922 &bytes_read);
3923 info_ptr += bytes_read;
3924 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3925 info_ptr += 1;
3926 signed_addr = bfd_get_sign_extend_vma (abfd);
3927 if (signed_addr < 0)
3928 internal_error (__FILE__, __LINE__,
3929 _("read_comp_unit_head: dwarf from non elf file"));
3930 cu_header->signed_addr_p = signed_addr;
3931
3932 return info_ptr;
3933 }
3934
3935 /* Helper function that returns the proper abbrev section for
3936 THIS_CU. */
3937
3938 static struct dwarf2_section_info *
3939 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3940 {
3941 struct dwarf2_section_info *abbrev;
3942
3943 if (this_cu->is_dwz)
3944 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3945 else
3946 abbrev = &dwarf2_per_objfile->abbrev;
3947
3948 return abbrev;
3949 }
3950
3951 /* Subroutine of read_and_check_comp_unit_head and
3952 read_and_check_type_unit_head to simplify them.
3953 Perform various error checking on the header. */
3954
3955 static void
3956 error_check_comp_unit_head (struct comp_unit_head *header,
3957 struct dwarf2_section_info *section,
3958 struct dwarf2_section_info *abbrev_section)
3959 {
3960 bfd *abfd = section->asection->owner;
3961 const char *filename = bfd_get_filename (abfd);
3962
3963 if (header->version != 2 && header->version != 3 && header->version != 4)
3964 error (_("Dwarf Error: wrong version in compilation unit header "
3965 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3966 filename);
3967
3968 if (header->abbrev_offset.sect_off
3969 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3970 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3971 "(offset 0x%lx + 6) [in module %s]"),
3972 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3973 filename);
3974
3975 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3976 avoid potential 32-bit overflow. */
3977 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3978 > section->size)
3979 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3980 "(offset 0x%lx + 0) [in module %s]"),
3981 (long) header->length, (long) header->offset.sect_off,
3982 filename);
3983 }
3984
3985 /* Read in a CU/TU header and perform some basic error checking.
3986 The contents of the header are stored in HEADER.
3987 The result is a pointer to the start of the first DIE. */
3988
3989 static gdb_byte *
3990 read_and_check_comp_unit_head (struct comp_unit_head *header,
3991 struct dwarf2_section_info *section,
3992 struct dwarf2_section_info *abbrev_section,
3993 gdb_byte *info_ptr,
3994 int is_debug_types_section)
3995 {
3996 gdb_byte *beg_of_comp_unit = info_ptr;
3997 bfd *abfd = section->asection->owner;
3998
3999 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4000
4001 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4002
4003 /* If we're reading a type unit, skip over the signature and
4004 type_offset fields. */
4005 if (is_debug_types_section)
4006 info_ptr += 8 /*signature*/ + header->offset_size;
4007
4008 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4009
4010 error_check_comp_unit_head (header, section, abbrev_section);
4011
4012 return info_ptr;
4013 }
4014
4015 /* Read in the types comp unit header information from .debug_types entry at
4016 types_ptr. The result is a pointer to one past the end of the header. */
4017
4018 static gdb_byte *
4019 read_and_check_type_unit_head (struct comp_unit_head *header,
4020 struct dwarf2_section_info *section,
4021 struct dwarf2_section_info *abbrev_section,
4022 gdb_byte *info_ptr,
4023 ULONGEST *signature,
4024 cu_offset *type_offset_in_tu)
4025 {
4026 gdb_byte *beg_of_comp_unit = info_ptr;
4027 bfd *abfd = section->asection->owner;
4028
4029 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4030
4031 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4032
4033 /* If we're reading a type unit, skip over the signature and
4034 type_offset fields. */
4035 if (signature != NULL)
4036 *signature = read_8_bytes (abfd, info_ptr);
4037 info_ptr += 8;
4038 if (type_offset_in_tu != NULL)
4039 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4040 header->offset_size);
4041 info_ptr += header->offset_size;
4042
4043 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4044
4045 error_check_comp_unit_head (header, section, abbrev_section);
4046
4047 return info_ptr;
4048 }
4049
4050 /* Fetch the abbreviation table offset from a comp or type unit header. */
4051
4052 static sect_offset
4053 read_abbrev_offset (struct dwarf2_section_info *section,
4054 sect_offset offset)
4055 {
4056 bfd *abfd = section->asection->owner;
4057 gdb_byte *info_ptr;
4058 unsigned int length, initial_length_size, offset_size;
4059 sect_offset abbrev_offset;
4060
4061 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4062 info_ptr = section->buffer + offset.sect_off;
4063 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4064 offset_size = initial_length_size == 4 ? 4 : 8;
4065 info_ptr += initial_length_size + 2 /*version*/;
4066 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4067 return abbrev_offset;
4068 }
4069
4070 /* Allocate a new partial symtab for file named NAME and mark this new
4071 partial symtab as being an include of PST. */
4072
4073 static void
4074 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4075 struct objfile *objfile)
4076 {
4077 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4078
4079 if (!IS_ABSOLUTE_PATH (subpst->filename))
4080 {
4081 /* It shares objfile->objfile_obstack. */
4082 subpst->dirname = pst->dirname;
4083 }
4084
4085 subpst->section_offsets = pst->section_offsets;
4086 subpst->textlow = 0;
4087 subpst->texthigh = 0;
4088
4089 subpst->dependencies = (struct partial_symtab **)
4090 obstack_alloc (&objfile->objfile_obstack,
4091 sizeof (struct partial_symtab *));
4092 subpst->dependencies[0] = pst;
4093 subpst->number_of_dependencies = 1;
4094
4095 subpst->globals_offset = 0;
4096 subpst->n_global_syms = 0;
4097 subpst->statics_offset = 0;
4098 subpst->n_static_syms = 0;
4099 subpst->symtab = NULL;
4100 subpst->read_symtab = pst->read_symtab;
4101 subpst->readin = 0;
4102
4103 /* No private part is necessary for include psymtabs. This property
4104 can be used to differentiate between such include psymtabs and
4105 the regular ones. */
4106 subpst->read_symtab_private = NULL;
4107 }
4108
4109 /* Read the Line Number Program data and extract the list of files
4110 included by the source file represented by PST. Build an include
4111 partial symtab for each of these included files. */
4112
4113 static void
4114 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4115 struct die_info *die,
4116 struct partial_symtab *pst)
4117 {
4118 struct line_header *lh = NULL;
4119 struct attribute *attr;
4120
4121 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4122 if (attr)
4123 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4124 if (lh == NULL)
4125 return; /* No linetable, so no includes. */
4126
4127 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4128 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4129
4130 free_line_header (lh);
4131 }
4132
4133 static hashval_t
4134 hash_signatured_type (const void *item)
4135 {
4136 const struct signatured_type *sig_type = item;
4137
4138 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4139 return sig_type->signature;
4140 }
4141
4142 static int
4143 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4144 {
4145 const struct signatured_type *lhs = item_lhs;
4146 const struct signatured_type *rhs = item_rhs;
4147
4148 return lhs->signature == rhs->signature;
4149 }
4150
4151 /* Allocate a hash table for signatured types. */
4152
4153 static htab_t
4154 allocate_signatured_type_table (struct objfile *objfile)
4155 {
4156 return htab_create_alloc_ex (41,
4157 hash_signatured_type,
4158 eq_signatured_type,
4159 NULL,
4160 &objfile->objfile_obstack,
4161 hashtab_obstack_allocate,
4162 dummy_obstack_deallocate);
4163 }
4164
4165 /* A helper function to add a signatured type CU to a table. */
4166
4167 static int
4168 add_signatured_type_cu_to_table (void **slot, void *datum)
4169 {
4170 struct signatured_type *sigt = *slot;
4171 struct signatured_type ***datap = datum;
4172
4173 **datap = sigt;
4174 ++*datap;
4175
4176 return 1;
4177 }
4178
4179 /* Create the hash table of all entries in the .debug_types section.
4180 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4181 NULL otherwise.
4182 Note: This function processes DWO files only, not DWP files.
4183 The result is a pointer to the hash table or NULL if there are
4184 no types. */
4185
4186 static htab_t
4187 create_debug_types_hash_table (struct dwo_file *dwo_file,
4188 VEC (dwarf2_section_info_def) *types)
4189 {
4190 struct objfile *objfile = dwarf2_per_objfile->objfile;
4191 htab_t types_htab = NULL;
4192 int ix;
4193 struct dwarf2_section_info *section;
4194 struct dwarf2_section_info *abbrev_section;
4195
4196 if (VEC_empty (dwarf2_section_info_def, types))
4197 return NULL;
4198
4199 abbrev_section = (dwo_file != NULL
4200 ? &dwo_file->sections.abbrev
4201 : &dwarf2_per_objfile->abbrev);
4202
4203 if (dwarf2_read_debug)
4204 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4205 dwo_file ? ".dwo" : "",
4206 bfd_get_filename (abbrev_section->asection->owner));
4207
4208 for (ix = 0;
4209 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4210 ++ix)
4211 {
4212 bfd *abfd;
4213 gdb_byte *info_ptr, *end_ptr;
4214 struct dwarf2_section_info *abbrev_section;
4215
4216 dwarf2_read_section (objfile, section);
4217 info_ptr = section->buffer;
4218
4219 if (info_ptr == NULL)
4220 continue;
4221
4222 /* We can't set abfd until now because the section may be empty or
4223 not present, in which case section->asection will be NULL. */
4224 abfd = section->asection->owner;
4225
4226 if (dwo_file)
4227 abbrev_section = &dwo_file->sections.abbrev;
4228 else
4229 abbrev_section = &dwarf2_per_objfile->abbrev;
4230
4231 if (types_htab == NULL)
4232 {
4233 if (dwo_file)
4234 types_htab = allocate_dwo_unit_table (objfile);
4235 else
4236 types_htab = allocate_signatured_type_table (objfile);
4237 }
4238
4239 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4240 because we don't need to read any dies: the signature is in the
4241 header. */
4242
4243 end_ptr = info_ptr + section->size;
4244 while (info_ptr < end_ptr)
4245 {
4246 sect_offset offset;
4247 cu_offset type_offset_in_tu;
4248 ULONGEST signature;
4249 struct signatured_type *sig_type;
4250 struct dwo_unit *dwo_tu;
4251 void **slot;
4252 gdb_byte *ptr = info_ptr;
4253 struct comp_unit_head header;
4254 unsigned int length;
4255
4256 offset.sect_off = ptr - section->buffer;
4257
4258 /* We need to read the type's signature in order to build the hash
4259 table, but we don't need anything else just yet. */
4260
4261 ptr = read_and_check_type_unit_head (&header, section,
4262 abbrev_section, ptr,
4263 &signature, &type_offset_in_tu);
4264
4265 length = get_cu_length (&header);
4266
4267 /* Skip dummy type units. */
4268 if (ptr >= info_ptr + length
4269 || peek_abbrev_code (abfd, ptr) == 0)
4270 {
4271 info_ptr += length;
4272 continue;
4273 }
4274
4275 if (dwo_file)
4276 {
4277 sig_type = NULL;
4278 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4279 struct dwo_unit);
4280 dwo_tu->dwo_file = dwo_file;
4281 dwo_tu->signature = signature;
4282 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4283 dwo_tu->info_or_types_section = section;
4284 dwo_tu->offset = offset;
4285 dwo_tu->length = length;
4286 }
4287 else
4288 {
4289 /* N.B.: type_offset is not usable if this type uses a DWO file.
4290 The real type_offset is in the DWO file. */
4291 dwo_tu = NULL;
4292 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4293 struct signatured_type);
4294 sig_type->signature = signature;
4295 sig_type->type_offset_in_tu = type_offset_in_tu;
4296 sig_type->per_cu.objfile = objfile;
4297 sig_type->per_cu.is_debug_types = 1;
4298 sig_type->per_cu.info_or_types_section = section;
4299 sig_type->per_cu.offset = offset;
4300 sig_type->per_cu.length = length;
4301 }
4302
4303 slot = htab_find_slot (types_htab,
4304 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4305 INSERT);
4306 gdb_assert (slot != NULL);
4307 if (*slot != NULL)
4308 {
4309 sect_offset dup_offset;
4310
4311 if (dwo_file)
4312 {
4313 const struct dwo_unit *dup_tu = *slot;
4314
4315 dup_offset = dup_tu->offset;
4316 }
4317 else
4318 {
4319 const struct signatured_type *dup_tu = *slot;
4320
4321 dup_offset = dup_tu->per_cu.offset;
4322 }
4323
4324 complaint (&symfile_complaints,
4325 _("debug type entry at offset 0x%x is duplicate to the "
4326 "entry at offset 0x%x, signature 0x%s"),
4327 offset.sect_off, dup_offset.sect_off,
4328 phex (signature, sizeof (signature)));
4329 }
4330 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4331
4332 if (dwarf2_read_debug)
4333 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4334 offset.sect_off,
4335 phex (signature, sizeof (signature)));
4336
4337 info_ptr += length;
4338 }
4339 }
4340
4341 return types_htab;
4342 }
4343
4344 /* Create the hash table of all entries in the .debug_types section,
4345 and initialize all_type_units.
4346 The result is zero if there is an error (e.g. missing .debug_types section),
4347 otherwise non-zero. */
4348
4349 static int
4350 create_all_type_units (struct objfile *objfile)
4351 {
4352 htab_t types_htab;
4353 struct signatured_type **iter;
4354
4355 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4356 if (types_htab == NULL)
4357 {
4358 dwarf2_per_objfile->signatured_types = NULL;
4359 return 0;
4360 }
4361
4362 dwarf2_per_objfile->signatured_types = types_htab;
4363
4364 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4365 dwarf2_per_objfile->all_type_units
4366 = obstack_alloc (&objfile->objfile_obstack,
4367 dwarf2_per_objfile->n_type_units
4368 * sizeof (struct signatured_type *));
4369 iter = &dwarf2_per_objfile->all_type_units[0];
4370 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4371 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4372 == dwarf2_per_objfile->n_type_units);
4373
4374 return 1;
4375 }
4376
4377 /* Lookup a signature based type for DW_FORM_ref_sig8.
4378 Returns NULL if signature SIG is not present in the table. */
4379
4380 static struct signatured_type *
4381 lookup_signatured_type (ULONGEST sig)
4382 {
4383 struct signatured_type find_entry, *entry;
4384
4385 if (dwarf2_per_objfile->signatured_types == NULL)
4386 {
4387 complaint (&symfile_complaints,
4388 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4389 return NULL;
4390 }
4391
4392 find_entry.signature = sig;
4393 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4394 return entry;
4395 }
4396 \f
4397 /* Low level DIE reading support. */
4398
4399 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4400
4401 static void
4402 init_cu_die_reader (struct die_reader_specs *reader,
4403 struct dwarf2_cu *cu,
4404 struct dwarf2_section_info *section,
4405 struct dwo_file *dwo_file)
4406 {
4407 gdb_assert (section->readin && section->buffer != NULL);
4408 reader->abfd = section->asection->owner;
4409 reader->cu = cu;
4410 reader->dwo_file = dwo_file;
4411 reader->die_section = section;
4412 reader->buffer = section->buffer;
4413 reader->buffer_end = section->buffer + section->size;
4414 }
4415
4416 /* Initialize a CU (or TU) and read its DIEs.
4417 If the CU defers to a DWO file, read the DWO file as well.
4418
4419 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4420 Otherwise the table specified in the comp unit header is read in and used.
4421 This is an optimization for when we already have the abbrev table.
4422
4423 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4424 Otherwise, a new CU is allocated with xmalloc.
4425
4426 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4427 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4428
4429 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4430 linker) then DIE_READER_FUNC will not get called. */
4431
4432 static void
4433 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4434 struct abbrev_table *abbrev_table,
4435 int use_existing_cu, int keep,
4436 die_reader_func_ftype *die_reader_func,
4437 void *data)
4438 {
4439 struct objfile *objfile = dwarf2_per_objfile->objfile;
4440 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4441 bfd *abfd = section->asection->owner;
4442 struct dwarf2_cu *cu;
4443 gdb_byte *begin_info_ptr, *info_ptr;
4444 struct die_reader_specs reader;
4445 struct die_info *comp_unit_die;
4446 int has_children;
4447 struct attribute *attr;
4448 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4449 struct signatured_type *sig_type = NULL;
4450 struct dwarf2_section_info *abbrev_section;
4451 /* Non-zero if CU currently points to a DWO file and we need to
4452 reread it. When this happens we need to reread the skeleton die
4453 before we can reread the DWO file. */
4454 int rereading_dwo_cu = 0;
4455
4456 if (dwarf2_die_debug)
4457 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4458 this_cu->is_debug_types ? "type" : "comp",
4459 this_cu->offset.sect_off);
4460
4461 if (use_existing_cu)
4462 gdb_assert (keep);
4463
4464 cleanups = make_cleanup (null_cleanup, NULL);
4465
4466 /* This is cheap if the section is already read in. */
4467 dwarf2_read_section (objfile, section);
4468
4469 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4470
4471 abbrev_section = get_abbrev_section_for_cu (this_cu);
4472
4473 if (use_existing_cu && this_cu->cu != NULL)
4474 {
4475 cu = this_cu->cu;
4476
4477 /* If this CU is from a DWO file we need to start over, we need to
4478 refetch the attributes from the skeleton CU.
4479 This could be optimized by retrieving those attributes from when we
4480 were here the first time: the previous comp_unit_die was stored in
4481 comp_unit_obstack. But there's no data yet that we need this
4482 optimization. */
4483 if (cu->dwo_unit != NULL)
4484 rereading_dwo_cu = 1;
4485 }
4486 else
4487 {
4488 /* If !use_existing_cu, this_cu->cu must be NULL. */
4489 gdb_assert (this_cu->cu == NULL);
4490
4491 cu = xmalloc (sizeof (*cu));
4492 init_one_comp_unit (cu, this_cu);
4493
4494 /* If an error occurs while loading, release our storage. */
4495 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4496 }
4497
4498 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4499 {
4500 /* We already have the header, there's no need to read it in again. */
4501 info_ptr += cu->header.first_die_offset.cu_off;
4502 }
4503 else
4504 {
4505 if (this_cu->is_debug_types)
4506 {
4507 ULONGEST signature;
4508 cu_offset type_offset_in_tu;
4509
4510 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4511 abbrev_section, info_ptr,
4512 &signature,
4513 &type_offset_in_tu);
4514
4515 /* Since per_cu is the first member of struct signatured_type,
4516 we can go from a pointer to one to a pointer to the other. */
4517 sig_type = (struct signatured_type *) this_cu;
4518 gdb_assert (sig_type->signature == signature);
4519 gdb_assert (sig_type->type_offset_in_tu.cu_off
4520 == type_offset_in_tu.cu_off);
4521 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4522
4523 /* LENGTH has not been set yet for type units if we're
4524 using .gdb_index. */
4525 this_cu->length = get_cu_length (&cu->header);
4526
4527 /* Establish the type offset that can be used to lookup the type. */
4528 sig_type->type_offset_in_section.sect_off =
4529 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4530 }
4531 else
4532 {
4533 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4534 abbrev_section,
4535 info_ptr, 0);
4536
4537 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4538 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4539 }
4540 }
4541
4542 /* Skip dummy compilation units. */
4543 if (info_ptr >= begin_info_ptr + this_cu->length
4544 || peek_abbrev_code (abfd, info_ptr) == 0)
4545 {
4546 do_cleanups (cleanups);
4547 return;
4548 }
4549
4550 /* If we don't have them yet, read the abbrevs for this compilation unit.
4551 And if we need to read them now, make sure they're freed when we're
4552 done. Note that it's important that if the CU had an abbrev table
4553 on entry we don't free it when we're done: Somewhere up the call stack
4554 it may be in use. */
4555 if (abbrev_table != NULL)
4556 {
4557 gdb_assert (cu->abbrev_table == NULL);
4558 gdb_assert (cu->header.abbrev_offset.sect_off
4559 == abbrev_table->offset.sect_off);
4560 cu->abbrev_table = abbrev_table;
4561 }
4562 else if (cu->abbrev_table == NULL)
4563 {
4564 dwarf2_read_abbrevs (cu, abbrev_section);
4565 make_cleanup (dwarf2_free_abbrev_table, cu);
4566 }
4567 else if (rereading_dwo_cu)
4568 {
4569 dwarf2_free_abbrev_table (cu);
4570 dwarf2_read_abbrevs (cu, abbrev_section);
4571 }
4572
4573 /* Read the top level CU/TU die. */
4574 init_cu_die_reader (&reader, cu, section, NULL);
4575 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4576
4577 /* If we have a DWO stub, process it and then read in the DWO file.
4578 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4579 a DWO CU, that this test will fail. */
4580 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4581 if (attr)
4582 {
4583 const char *dwo_name = DW_STRING (attr);
4584 const char *comp_dir_string;
4585 struct dwo_unit *dwo_unit;
4586 ULONGEST signature; /* Or dwo_id. */
4587 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4588 int i,num_extra_attrs;
4589 struct dwarf2_section_info *dwo_abbrev_section;
4590
4591 if (has_children)
4592 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4593 " has children (offset 0x%x) [in module %s]"),
4594 this_cu->offset.sect_off, bfd_get_filename (abfd));
4595
4596 /* These attributes aren't processed until later:
4597 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4598 However, the attribute is found in the stub which we won't have later.
4599 In order to not impose this complication on the rest of the code,
4600 we read them here and copy them to the DWO CU/TU die. */
4601
4602 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4603 DWO file. */
4604 stmt_list = NULL;
4605 if (! this_cu->is_debug_types)
4606 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4607 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4608 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4609 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4610 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4611
4612 /* There should be a DW_AT_addr_base attribute here (if needed).
4613 We need the value before we can process DW_FORM_GNU_addr_index. */
4614 cu->addr_base = 0;
4615 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4616 if (attr)
4617 cu->addr_base = DW_UNSND (attr);
4618
4619 /* There should be a DW_AT_ranges_base attribute here (if needed).
4620 We need the value before we can process DW_AT_ranges. */
4621 cu->ranges_base = 0;
4622 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4623 if (attr)
4624 cu->ranges_base = DW_UNSND (attr);
4625
4626 if (this_cu->is_debug_types)
4627 {
4628 gdb_assert (sig_type != NULL);
4629 signature = sig_type->signature;
4630 }
4631 else
4632 {
4633 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4634 if (! attr)
4635 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4636 dwo_name);
4637 signature = DW_UNSND (attr);
4638 }
4639
4640 /* We may need the comp_dir in order to find the DWO file. */
4641 comp_dir_string = NULL;
4642 if (comp_dir)
4643 comp_dir_string = DW_STRING (comp_dir);
4644
4645 if (this_cu->is_debug_types)
4646 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4647 else
4648 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4649 signature);
4650
4651 if (dwo_unit == NULL)
4652 {
4653 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4654 " with ID %s [in module %s]"),
4655 this_cu->offset.sect_off,
4656 phex (signature, sizeof (signature)),
4657 objfile->name);
4658 }
4659
4660 /* Set up for reading the DWO CU/TU. */
4661 cu->dwo_unit = dwo_unit;
4662 section = dwo_unit->info_or_types_section;
4663 dwarf2_read_section (objfile, section);
4664 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4665 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4666 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4667
4668 if (this_cu->is_debug_types)
4669 {
4670 ULONGEST signature;
4671 cu_offset type_offset_in_tu;
4672
4673 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4674 dwo_abbrev_section,
4675 info_ptr,
4676 &signature,
4677 &type_offset_in_tu);
4678 gdb_assert (sig_type->signature == signature);
4679 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4680 /* For DWOs coming from DWP files, we don't know the CU length
4681 nor the type's offset in the TU until now. */
4682 dwo_unit->length = get_cu_length (&cu->header);
4683 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4684
4685 /* Establish the type offset that can be used to lookup the type.
4686 For DWO files, we don't know it until now. */
4687 sig_type->type_offset_in_section.sect_off =
4688 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4689 }
4690 else
4691 {
4692 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4693 dwo_abbrev_section,
4694 info_ptr, 0);
4695 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4696 /* For DWOs coming from DWP files, we don't know the CU length
4697 until now. */
4698 dwo_unit->length = get_cu_length (&cu->header);
4699 }
4700
4701 /* Discard the original CU's abbrev table, and read the DWO's. */
4702 if (abbrev_table == NULL)
4703 {
4704 dwarf2_free_abbrev_table (cu);
4705 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4706 }
4707 else
4708 {
4709 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4710 make_cleanup (dwarf2_free_abbrev_table, cu);
4711 }
4712
4713 /* Read in the die, but leave space to copy over the attributes
4714 from the stub. This has the benefit of simplifying the rest of
4715 the code - all the real work is done here. */
4716 num_extra_attrs = ((stmt_list != NULL)
4717 + (low_pc != NULL)
4718 + (high_pc != NULL)
4719 + (ranges != NULL)
4720 + (comp_dir != NULL));
4721 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4722 &has_children, num_extra_attrs);
4723
4724 /* Copy over the attributes from the stub to the DWO die. */
4725 i = comp_unit_die->num_attrs;
4726 if (stmt_list != NULL)
4727 comp_unit_die->attrs[i++] = *stmt_list;
4728 if (low_pc != NULL)
4729 comp_unit_die->attrs[i++] = *low_pc;
4730 if (high_pc != NULL)
4731 comp_unit_die->attrs[i++] = *high_pc;
4732 if (ranges != NULL)
4733 comp_unit_die->attrs[i++] = *ranges;
4734 if (comp_dir != NULL)
4735 comp_unit_die->attrs[i++] = *comp_dir;
4736 comp_unit_die->num_attrs += num_extra_attrs;
4737
4738 /* Skip dummy compilation units. */
4739 if (info_ptr >= begin_info_ptr + dwo_unit->length
4740 || peek_abbrev_code (abfd, info_ptr) == 0)
4741 {
4742 do_cleanups (cleanups);
4743 return;
4744 }
4745 }
4746
4747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4748
4749 if (free_cu_cleanup != NULL)
4750 {
4751 if (keep)
4752 {
4753 /* We've successfully allocated this compilation unit. Let our
4754 caller clean it up when finished with it. */
4755 discard_cleanups (free_cu_cleanup);
4756
4757 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4758 So we have to manually free the abbrev table. */
4759 dwarf2_free_abbrev_table (cu);
4760
4761 /* Link this CU into read_in_chain. */
4762 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4763 dwarf2_per_objfile->read_in_chain = this_cu;
4764 }
4765 else
4766 do_cleanups (free_cu_cleanup);
4767 }
4768
4769 do_cleanups (cleanups);
4770 }
4771
4772 /* Read CU/TU THIS_CU in section SECTION,
4773 but do not follow DW_AT_GNU_dwo_name if present.
4774 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4775 to have already done the lookup to find the DWO/DWP file).
4776
4777 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4778 THIS_CU->is_debug_types, but nothing else.
4779
4780 We fill in THIS_CU->length.
4781
4782 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4783 linker) then DIE_READER_FUNC will not get called.
4784
4785 THIS_CU->cu is always freed when done.
4786 This is done in order to not leave THIS_CU->cu in a state where we have
4787 to care whether it refers to the "main" CU or the DWO CU. */
4788
4789 static void
4790 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4791 struct dwarf2_section_info *abbrev_section,
4792 struct dwo_file *dwo_file,
4793 die_reader_func_ftype *die_reader_func,
4794 void *data)
4795 {
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4798 bfd *abfd = section->asection->owner;
4799 struct dwarf2_cu cu;
4800 gdb_byte *begin_info_ptr, *info_ptr;
4801 struct die_reader_specs reader;
4802 struct cleanup *cleanups;
4803 struct die_info *comp_unit_die;
4804 int has_children;
4805
4806 if (dwarf2_die_debug)
4807 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4808 this_cu->is_debug_types ? "type" : "comp",
4809 this_cu->offset.sect_off);
4810
4811 gdb_assert (this_cu->cu == NULL);
4812
4813 /* This is cheap if the section is already read in. */
4814 dwarf2_read_section (objfile, section);
4815
4816 init_one_comp_unit (&cu, this_cu);
4817
4818 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4819
4820 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4821 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4822 abbrev_section, info_ptr,
4823 this_cu->is_debug_types);
4824
4825 this_cu->length = get_cu_length (&cu.header);
4826
4827 /* Skip dummy compilation units. */
4828 if (info_ptr >= begin_info_ptr + this_cu->length
4829 || peek_abbrev_code (abfd, info_ptr) == 0)
4830 {
4831 do_cleanups (cleanups);
4832 return;
4833 }
4834
4835 dwarf2_read_abbrevs (&cu, abbrev_section);
4836 make_cleanup (dwarf2_free_abbrev_table, &cu);
4837
4838 init_cu_die_reader (&reader, &cu, section, dwo_file);
4839 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4840
4841 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4842
4843 do_cleanups (cleanups);
4844 }
4845
4846 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4847 does not lookup the specified DWO file.
4848 This cannot be used to read DWO files.
4849
4850 THIS_CU->cu is always freed when done.
4851 This is done in order to not leave THIS_CU->cu in a state where we have
4852 to care whether it refers to the "main" CU or the DWO CU.
4853 We can revisit this if the data shows there's a performance issue. */
4854
4855 static void
4856 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4857 die_reader_func_ftype *die_reader_func,
4858 void *data)
4859 {
4860 init_cutu_and_read_dies_no_follow (this_cu,
4861 get_abbrev_section_for_cu (this_cu),
4862 NULL,
4863 die_reader_func, data);
4864 }
4865
4866 /* Create a psymtab named NAME and assign it to PER_CU.
4867
4868 The caller must fill in the following details:
4869 dirname, textlow, texthigh. */
4870
4871 static struct partial_symtab *
4872 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4873 {
4874 struct objfile *objfile = per_cu->objfile;
4875 struct partial_symtab *pst;
4876
4877 pst = start_psymtab_common (objfile, objfile->section_offsets,
4878 name, 0,
4879 objfile->global_psymbols.next,
4880 objfile->static_psymbols.next);
4881
4882 pst->psymtabs_addrmap_supported = 1;
4883
4884 /* This is the glue that links PST into GDB's symbol API. */
4885 pst->read_symtab_private = per_cu;
4886 pst->read_symtab = dwarf2_read_symtab;
4887 per_cu->v.psymtab = pst;
4888
4889 return pst;
4890 }
4891
4892 /* die_reader_func for process_psymtab_comp_unit. */
4893
4894 static void
4895 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4896 gdb_byte *info_ptr,
4897 struct die_info *comp_unit_die,
4898 int has_children,
4899 void *data)
4900 {
4901 struct dwarf2_cu *cu = reader->cu;
4902 struct objfile *objfile = cu->objfile;
4903 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4904 struct attribute *attr;
4905 CORE_ADDR baseaddr;
4906 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4907 struct partial_symtab *pst;
4908 int has_pc_info;
4909 const char *filename;
4910 int *want_partial_unit_ptr = data;
4911
4912 if (comp_unit_die->tag == DW_TAG_partial_unit
4913 && (want_partial_unit_ptr == NULL
4914 || !*want_partial_unit_ptr))
4915 return;
4916
4917 gdb_assert (! per_cu->is_debug_types);
4918
4919 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4920
4921 cu->list_in_scope = &file_symbols;
4922
4923 /* Allocate a new partial symbol table structure. */
4924 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4925 if (attr == NULL || !DW_STRING (attr))
4926 filename = "";
4927 else
4928 filename = DW_STRING (attr);
4929
4930 pst = create_partial_symtab (per_cu, filename);
4931
4932 /* This must be done before calling dwarf2_build_include_psymtabs. */
4933 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4934 if (attr != NULL)
4935 pst->dirname = DW_STRING (attr);
4936
4937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4938
4939 dwarf2_find_base_address (comp_unit_die, cu);
4940
4941 /* Possibly set the default values of LOWPC and HIGHPC from
4942 `DW_AT_ranges'. */
4943 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4944 &best_highpc, cu, pst);
4945 if (has_pc_info == 1 && best_lowpc < best_highpc)
4946 /* Store the contiguous range if it is not empty; it can be empty for
4947 CUs with no code. */
4948 addrmap_set_empty (objfile->psymtabs_addrmap,
4949 best_lowpc + baseaddr,
4950 best_highpc + baseaddr - 1, pst);
4951
4952 /* Check if comp unit has_children.
4953 If so, read the rest of the partial symbols from this comp unit.
4954 If not, there's no more debug_info for this comp unit. */
4955 if (has_children)
4956 {
4957 struct partial_die_info *first_die;
4958 CORE_ADDR lowpc, highpc;
4959
4960 lowpc = ((CORE_ADDR) -1);
4961 highpc = ((CORE_ADDR) 0);
4962
4963 first_die = load_partial_dies (reader, info_ptr, 1);
4964
4965 scan_partial_symbols (first_die, &lowpc, &highpc,
4966 ! has_pc_info, cu);
4967
4968 /* If we didn't find a lowpc, set it to highpc to avoid
4969 complaints from `maint check'. */
4970 if (lowpc == ((CORE_ADDR) -1))
4971 lowpc = highpc;
4972
4973 /* If the compilation unit didn't have an explicit address range,
4974 then use the information extracted from its child dies. */
4975 if (! has_pc_info)
4976 {
4977 best_lowpc = lowpc;
4978 best_highpc = highpc;
4979 }
4980 }
4981 pst->textlow = best_lowpc + baseaddr;
4982 pst->texthigh = best_highpc + baseaddr;
4983
4984 pst->n_global_syms = objfile->global_psymbols.next -
4985 (objfile->global_psymbols.list + pst->globals_offset);
4986 pst->n_static_syms = objfile->static_psymbols.next -
4987 (objfile->static_psymbols.list + pst->statics_offset);
4988 sort_pst_symbols (objfile, pst);
4989
4990 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4991 {
4992 int i;
4993 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4994 struct dwarf2_per_cu_data *iter;
4995
4996 /* Fill in 'dependencies' here; we fill in 'users' in a
4997 post-pass. */
4998 pst->number_of_dependencies = len;
4999 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5000 len * sizeof (struct symtab *));
5001 for (i = 0;
5002 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5003 i, iter);
5004 ++i)
5005 pst->dependencies[i] = iter->v.psymtab;
5006
5007 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5008 }
5009
5010 /* Get the list of files included in the current compilation unit,
5011 and build a psymtab for each of them. */
5012 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5013
5014 if (dwarf2_read_debug)
5015 {
5016 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5017
5018 fprintf_unfiltered (gdb_stdlog,
5019 "Psymtab for %s unit @0x%x: %s - %s"
5020 ", %d global, %d static syms\n",
5021 per_cu->is_debug_types ? "type" : "comp",
5022 per_cu->offset.sect_off,
5023 paddress (gdbarch, pst->textlow),
5024 paddress (gdbarch, pst->texthigh),
5025 pst->n_global_syms, pst->n_static_syms);
5026 }
5027 }
5028
5029 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5030 Process compilation unit THIS_CU for a psymtab. */
5031
5032 static void
5033 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5034 int want_partial_unit)
5035 {
5036 /* If this compilation unit was already read in, free the
5037 cached copy in order to read it in again. This is
5038 necessary because we skipped some symbols when we first
5039 read in the compilation unit (see load_partial_dies).
5040 This problem could be avoided, but the benefit is unclear. */
5041 if (this_cu->cu != NULL)
5042 free_one_cached_comp_unit (this_cu);
5043
5044 gdb_assert (! this_cu->is_debug_types);
5045 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5046 process_psymtab_comp_unit_reader,
5047 &want_partial_unit);
5048
5049 /* Age out any secondary CUs. */
5050 age_cached_comp_units ();
5051 }
5052
5053 static hashval_t
5054 hash_type_unit_group (const void *item)
5055 {
5056 const struct type_unit_group *tu_group = item;
5057
5058 return hash_stmt_list_entry (&tu_group->hash);
5059 }
5060
5061 static int
5062 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5063 {
5064 const struct type_unit_group *lhs = item_lhs;
5065 const struct type_unit_group *rhs = item_rhs;
5066
5067 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5068 }
5069
5070 /* Allocate a hash table for type unit groups. */
5071
5072 static htab_t
5073 allocate_type_unit_groups_table (void)
5074 {
5075 return htab_create_alloc_ex (3,
5076 hash_type_unit_group,
5077 eq_type_unit_group,
5078 NULL,
5079 &dwarf2_per_objfile->objfile->objfile_obstack,
5080 hashtab_obstack_allocate,
5081 dummy_obstack_deallocate);
5082 }
5083
5084 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5085 partial symtabs. We combine several TUs per psymtab to not let the size
5086 of any one psymtab grow too big. */
5087 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5088 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5089
5090 /* Helper routine for get_type_unit_group.
5091 Create the type_unit_group object used to hold one or more TUs. */
5092
5093 static struct type_unit_group *
5094 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5095 {
5096 struct objfile *objfile = dwarf2_per_objfile->objfile;
5097 struct dwarf2_per_cu_data *per_cu;
5098 struct type_unit_group *tu_group;
5099
5100 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5101 struct type_unit_group);
5102 per_cu = &tu_group->per_cu;
5103 per_cu->objfile = objfile;
5104 per_cu->is_debug_types = 1;
5105 per_cu->type_unit_group = tu_group;
5106
5107 if (dwarf2_per_objfile->using_index)
5108 {
5109 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5110 struct dwarf2_per_cu_quick_data);
5111 tu_group->t.first_tu = cu->per_cu;
5112 }
5113 else
5114 {
5115 unsigned int line_offset = line_offset_struct.sect_off;
5116 struct partial_symtab *pst;
5117 char *name;
5118
5119 /* Give the symtab a useful name for debug purposes. */
5120 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5121 name = xstrprintf ("<type_units_%d>",
5122 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5123 else
5124 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5125
5126 pst = create_partial_symtab (per_cu, name);
5127 pst->anonymous = 1;
5128
5129 xfree (name);
5130 }
5131
5132 tu_group->hash.dwo_unit = cu->dwo_unit;
5133 tu_group->hash.line_offset = line_offset_struct;
5134
5135 return tu_group;
5136 }
5137
5138 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5139 STMT_LIST is a DW_AT_stmt_list attribute. */
5140
5141 static struct type_unit_group *
5142 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5143 {
5144 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5145 struct type_unit_group *tu_group;
5146 void **slot;
5147 unsigned int line_offset;
5148 struct type_unit_group type_unit_group_for_lookup;
5149
5150 if (dwarf2_per_objfile->type_unit_groups == NULL)
5151 {
5152 dwarf2_per_objfile->type_unit_groups =
5153 allocate_type_unit_groups_table ();
5154 }
5155
5156 /* Do we need to create a new group, or can we use an existing one? */
5157
5158 if (stmt_list)
5159 {
5160 line_offset = DW_UNSND (stmt_list);
5161 ++tu_stats->nr_symtab_sharers;
5162 }
5163 else
5164 {
5165 /* Ugh, no stmt_list. Rare, but we have to handle it.
5166 We can do various things here like create one group per TU or
5167 spread them over multiple groups to split up the expansion work.
5168 To avoid worst case scenarios (too many groups or too large groups)
5169 we, umm, group them in bunches. */
5170 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5171 | (tu_stats->nr_stmt_less_type_units
5172 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5173 ++tu_stats->nr_stmt_less_type_units;
5174 }
5175
5176 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5177 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5178 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5179 &type_unit_group_for_lookup, INSERT);
5180 if (*slot != NULL)
5181 {
5182 tu_group = *slot;
5183 gdb_assert (tu_group != NULL);
5184 }
5185 else
5186 {
5187 sect_offset line_offset_struct;
5188
5189 line_offset_struct.sect_off = line_offset;
5190 tu_group = create_type_unit_group (cu, line_offset_struct);
5191 *slot = tu_group;
5192 ++tu_stats->nr_symtabs;
5193 }
5194
5195 return tu_group;
5196 }
5197
5198 /* Struct used to sort TUs by their abbreviation table offset. */
5199
5200 struct tu_abbrev_offset
5201 {
5202 struct signatured_type *sig_type;
5203 sect_offset abbrev_offset;
5204 };
5205
5206 /* Helper routine for build_type_unit_groups, passed to qsort. */
5207
5208 static int
5209 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5210 {
5211 const struct tu_abbrev_offset * const *a = ap;
5212 const struct tu_abbrev_offset * const *b = bp;
5213 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5214 unsigned int boff = (*b)->abbrev_offset.sect_off;
5215
5216 return (aoff > boff) - (aoff < boff);
5217 }
5218
5219 /* A helper function to add a type_unit_group to a table. */
5220
5221 static int
5222 add_type_unit_group_to_table (void **slot, void *datum)
5223 {
5224 struct type_unit_group *tu_group = *slot;
5225 struct type_unit_group ***datap = datum;
5226
5227 **datap = tu_group;
5228 ++*datap;
5229
5230 return 1;
5231 }
5232
5233 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5234 each one passing FUNC,DATA.
5235
5236 The efficiency is because we sort TUs by the abbrev table they use and
5237 only read each abbrev table once. In one program there are 200K TUs
5238 sharing 8K abbrev tables.
5239
5240 The main purpose of this function is to support building the
5241 dwarf2_per_objfile->type_unit_groups table.
5242 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5243 can collapse the search space by grouping them by stmt_list.
5244 The savings can be significant, in the same program from above the 200K TUs
5245 share 8K stmt_list tables.
5246
5247 FUNC is expected to call get_type_unit_group, which will create the
5248 struct type_unit_group if necessary and add it to
5249 dwarf2_per_objfile->type_unit_groups. */
5250
5251 static void
5252 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5253 {
5254 struct objfile *objfile = dwarf2_per_objfile->objfile;
5255 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5256 struct cleanup *cleanups;
5257 struct abbrev_table *abbrev_table;
5258 sect_offset abbrev_offset;
5259 struct tu_abbrev_offset *sorted_by_abbrev;
5260 struct type_unit_group **iter;
5261 int i;
5262
5263 /* It's up to the caller to not call us multiple times. */
5264 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5265
5266 if (dwarf2_per_objfile->n_type_units == 0)
5267 return;
5268
5269 /* TUs typically share abbrev tables, and there can be way more TUs than
5270 abbrev tables. Sort by abbrev table to reduce the number of times we
5271 read each abbrev table in.
5272 Alternatives are to punt or to maintain a cache of abbrev tables.
5273 This is simpler and efficient enough for now.
5274
5275 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5276 symtab to use). Typically TUs with the same abbrev offset have the same
5277 stmt_list value too so in practice this should work well.
5278
5279 The basic algorithm here is:
5280
5281 sort TUs by abbrev table
5282 for each TU with same abbrev table:
5283 read abbrev table if first user
5284 read TU top level DIE
5285 [IWBN if DWO skeletons had DW_AT_stmt_list]
5286 call FUNC */
5287
5288 if (dwarf2_read_debug)
5289 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5290
5291 /* Sort in a separate table to maintain the order of all_type_units
5292 for .gdb_index: TU indices directly index all_type_units. */
5293 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5294 dwarf2_per_objfile->n_type_units);
5295 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5296 {
5297 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5298
5299 sorted_by_abbrev[i].sig_type = sig_type;
5300 sorted_by_abbrev[i].abbrev_offset =
5301 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5302 sig_type->per_cu.offset);
5303 }
5304 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5305 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5306 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5307
5308 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5309 called any number of times, so we don't reset tu_stats here. */
5310
5311 abbrev_offset.sect_off = ~(unsigned) 0;
5312 abbrev_table = NULL;
5313 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5314
5315 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5316 {
5317 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5318
5319 /* Switch to the next abbrev table if necessary. */
5320 if (abbrev_table == NULL
5321 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5322 {
5323 if (abbrev_table != NULL)
5324 {
5325 abbrev_table_free (abbrev_table);
5326 /* Reset to NULL in case abbrev_table_read_table throws
5327 an error: abbrev_table_free_cleanup will get called. */
5328 abbrev_table = NULL;
5329 }
5330 abbrev_offset = tu->abbrev_offset;
5331 abbrev_table =
5332 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5333 abbrev_offset);
5334 ++tu_stats->nr_uniq_abbrev_tables;
5335 }
5336
5337 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5338 func, data);
5339 }
5340
5341 /* Create a vector of pointers to primary type units to make it easy to
5342 iterate over them and CUs. See dw2_get_primary_cu. */
5343 dwarf2_per_objfile->n_type_unit_groups =
5344 htab_elements (dwarf2_per_objfile->type_unit_groups);
5345 dwarf2_per_objfile->all_type_unit_groups =
5346 obstack_alloc (&objfile->objfile_obstack,
5347 dwarf2_per_objfile->n_type_unit_groups
5348 * sizeof (struct type_unit_group *));
5349 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5350 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5351 add_type_unit_group_to_table, &iter);
5352 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5353 == dwarf2_per_objfile->n_type_unit_groups);
5354
5355 do_cleanups (cleanups);
5356
5357 if (dwarf2_read_debug)
5358 {
5359 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5360 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5361 dwarf2_per_objfile->n_type_units);
5362 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5363 tu_stats->nr_uniq_abbrev_tables);
5364 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5365 tu_stats->nr_symtabs);
5366 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5367 tu_stats->nr_symtab_sharers);
5368 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5369 tu_stats->nr_stmt_less_type_units);
5370 }
5371 }
5372
5373 /* Reader function for build_type_psymtabs. */
5374
5375 static void
5376 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5377 gdb_byte *info_ptr,
5378 struct die_info *type_unit_die,
5379 int has_children,
5380 void *data)
5381 {
5382 struct objfile *objfile = dwarf2_per_objfile->objfile;
5383 struct dwarf2_cu *cu = reader->cu;
5384 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5385 struct type_unit_group *tu_group;
5386 struct attribute *attr;
5387 struct partial_die_info *first_die;
5388 CORE_ADDR lowpc, highpc;
5389 struct partial_symtab *pst;
5390
5391 gdb_assert (data == NULL);
5392
5393 if (! has_children)
5394 return;
5395
5396 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5397 tu_group = get_type_unit_group (cu, attr);
5398
5399 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5400
5401 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5402 cu->list_in_scope = &file_symbols;
5403 pst = create_partial_symtab (per_cu, "");
5404 pst->anonymous = 1;
5405
5406 first_die = load_partial_dies (reader, info_ptr, 1);
5407
5408 lowpc = (CORE_ADDR) -1;
5409 highpc = (CORE_ADDR) 0;
5410 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5411
5412 pst->n_global_syms = objfile->global_psymbols.next -
5413 (objfile->global_psymbols.list + pst->globals_offset);
5414 pst->n_static_syms = objfile->static_psymbols.next -
5415 (objfile->static_psymbols.list + pst->statics_offset);
5416 sort_pst_symbols (objfile, pst);
5417 }
5418
5419 /* Traversal function for build_type_psymtabs. */
5420
5421 static int
5422 build_type_psymtab_dependencies (void **slot, void *info)
5423 {
5424 struct objfile *objfile = dwarf2_per_objfile->objfile;
5425 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5426 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5427 struct partial_symtab *pst = per_cu->v.psymtab;
5428 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5429 struct dwarf2_per_cu_data *iter;
5430 int i;
5431
5432 gdb_assert (len > 0);
5433
5434 pst->number_of_dependencies = len;
5435 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5436 len * sizeof (struct psymtab *));
5437 for (i = 0;
5438 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5439 ++i)
5440 {
5441 pst->dependencies[i] = iter->v.psymtab;
5442 iter->type_unit_group = tu_group;
5443 }
5444
5445 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5446
5447 return 1;
5448 }
5449
5450 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5451 Build partial symbol tables for the .debug_types comp-units. */
5452
5453 static void
5454 build_type_psymtabs (struct objfile *objfile)
5455 {
5456 if (! create_all_type_units (objfile))
5457 return;
5458
5459 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5460
5461 /* Now that all TUs have been processed we can fill in the dependencies. */
5462 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5463 build_type_psymtab_dependencies, NULL);
5464 }
5465
5466 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5467
5468 static void
5469 psymtabs_addrmap_cleanup (void *o)
5470 {
5471 struct objfile *objfile = o;
5472
5473 objfile->psymtabs_addrmap = NULL;
5474 }
5475
5476 /* Compute the 'user' field for each psymtab in OBJFILE. */
5477
5478 static void
5479 set_partial_user (struct objfile *objfile)
5480 {
5481 int i;
5482
5483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5484 {
5485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5486 struct partial_symtab *pst = per_cu->v.psymtab;
5487 int j;
5488
5489 if (pst == NULL)
5490 continue;
5491
5492 for (j = 0; j < pst->number_of_dependencies; ++j)
5493 {
5494 /* Set the 'user' field only if it is not already set. */
5495 if (pst->dependencies[j]->user == NULL)
5496 pst->dependencies[j]->user = pst;
5497 }
5498 }
5499 }
5500
5501 /* Build the partial symbol table by doing a quick pass through the
5502 .debug_info and .debug_abbrev sections. */
5503
5504 static void
5505 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5506 {
5507 struct cleanup *back_to, *addrmap_cleanup;
5508 struct obstack temp_obstack;
5509 int i;
5510
5511 if (dwarf2_read_debug)
5512 {
5513 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5514 objfile->name);
5515 }
5516
5517 dwarf2_per_objfile->reading_partial_symbols = 1;
5518
5519 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5520
5521 /* Any cached compilation units will be linked by the per-objfile
5522 read_in_chain. Make sure to free them when we're done. */
5523 back_to = make_cleanup (free_cached_comp_units, NULL);
5524
5525 build_type_psymtabs (objfile);
5526
5527 create_all_comp_units (objfile);
5528
5529 /* Create a temporary address map on a temporary obstack. We later
5530 copy this to the final obstack. */
5531 obstack_init (&temp_obstack);
5532 make_cleanup_obstack_free (&temp_obstack);
5533 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5534 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5535
5536 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5537 {
5538 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5539
5540 process_psymtab_comp_unit (per_cu, 0);
5541 }
5542
5543 set_partial_user (objfile);
5544
5545 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5546 &objfile->objfile_obstack);
5547 discard_cleanups (addrmap_cleanup);
5548
5549 do_cleanups (back_to);
5550
5551 if (dwarf2_read_debug)
5552 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5553 objfile->name);
5554 }
5555
5556 /* die_reader_func for load_partial_comp_unit. */
5557
5558 static void
5559 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5560 gdb_byte *info_ptr,
5561 struct die_info *comp_unit_die,
5562 int has_children,
5563 void *data)
5564 {
5565 struct dwarf2_cu *cu = reader->cu;
5566
5567 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5568
5569 /* Check if comp unit has_children.
5570 If so, read the rest of the partial symbols from this comp unit.
5571 If not, there's no more debug_info for this comp unit. */
5572 if (has_children)
5573 load_partial_dies (reader, info_ptr, 0);
5574 }
5575
5576 /* Load the partial DIEs for a secondary CU into memory.
5577 This is also used when rereading a primary CU with load_all_dies. */
5578
5579 static void
5580 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5581 {
5582 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5583 load_partial_comp_unit_reader, NULL);
5584 }
5585
5586 static void
5587 read_comp_units_from_section (struct objfile *objfile,
5588 struct dwarf2_section_info *section,
5589 unsigned int is_dwz,
5590 int *n_allocated,
5591 int *n_comp_units,
5592 struct dwarf2_per_cu_data ***all_comp_units)
5593 {
5594 gdb_byte *info_ptr;
5595 bfd *abfd = section->asection->owner;
5596
5597 dwarf2_read_section (objfile, section);
5598
5599 info_ptr = section->buffer;
5600
5601 while (info_ptr < section->buffer + section->size)
5602 {
5603 unsigned int length, initial_length_size;
5604 struct dwarf2_per_cu_data *this_cu;
5605 sect_offset offset;
5606
5607 offset.sect_off = info_ptr - section->buffer;
5608
5609 /* Read just enough information to find out where the next
5610 compilation unit is. */
5611 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5612
5613 /* Save the compilation unit for later lookup. */
5614 this_cu = obstack_alloc (&objfile->objfile_obstack,
5615 sizeof (struct dwarf2_per_cu_data));
5616 memset (this_cu, 0, sizeof (*this_cu));
5617 this_cu->offset = offset;
5618 this_cu->length = length + initial_length_size;
5619 this_cu->is_dwz = is_dwz;
5620 this_cu->objfile = objfile;
5621 this_cu->info_or_types_section = section;
5622
5623 if (*n_comp_units == *n_allocated)
5624 {
5625 *n_allocated *= 2;
5626 *all_comp_units = xrealloc (*all_comp_units,
5627 *n_allocated
5628 * sizeof (struct dwarf2_per_cu_data *));
5629 }
5630 (*all_comp_units)[*n_comp_units] = this_cu;
5631 ++*n_comp_units;
5632
5633 info_ptr = info_ptr + this_cu->length;
5634 }
5635 }
5636
5637 /* Create a list of all compilation units in OBJFILE.
5638 This is only done for -readnow and building partial symtabs. */
5639
5640 static void
5641 create_all_comp_units (struct objfile *objfile)
5642 {
5643 int n_allocated;
5644 int n_comp_units;
5645 struct dwarf2_per_cu_data **all_comp_units;
5646
5647 n_comp_units = 0;
5648 n_allocated = 10;
5649 all_comp_units = xmalloc (n_allocated
5650 * sizeof (struct dwarf2_per_cu_data *));
5651
5652 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5653 &n_allocated, &n_comp_units, &all_comp_units);
5654
5655 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5656 {
5657 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5658
5659 read_comp_units_from_section (objfile, &dwz->info, 1,
5660 &n_allocated, &n_comp_units,
5661 &all_comp_units);
5662 }
5663
5664 dwarf2_per_objfile->all_comp_units
5665 = obstack_alloc (&objfile->objfile_obstack,
5666 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5667 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5668 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5669 xfree (all_comp_units);
5670 dwarf2_per_objfile->n_comp_units = n_comp_units;
5671 }
5672
5673 /* Process all loaded DIEs for compilation unit CU, starting at
5674 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5675 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5676 DW_AT_ranges). If NEED_PC is set, then this function will set
5677 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5678 and record the covered ranges in the addrmap. */
5679
5680 static void
5681 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5682 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5683 {
5684 struct partial_die_info *pdi;
5685
5686 /* Now, march along the PDI's, descending into ones which have
5687 interesting children but skipping the children of the other ones,
5688 until we reach the end of the compilation unit. */
5689
5690 pdi = first_die;
5691
5692 while (pdi != NULL)
5693 {
5694 fixup_partial_die (pdi, cu);
5695
5696 /* Anonymous namespaces or modules have no name but have interesting
5697 children, so we need to look at them. Ditto for anonymous
5698 enums. */
5699
5700 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5701 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5702 || pdi->tag == DW_TAG_imported_unit)
5703 {
5704 switch (pdi->tag)
5705 {
5706 case DW_TAG_subprogram:
5707 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5708 break;
5709 case DW_TAG_constant:
5710 case DW_TAG_variable:
5711 case DW_TAG_typedef:
5712 case DW_TAG_union_type:
5713 if (!pdi->is_declaration)
5714 {
5715 add_partial_symbol (pdi, cu);
5716 }
5717 break;
5718 case DW_TAG_class_type:
5719 case DW_TAG_interface_type:
5720 case DW_TAG_structure_type:
5721 if (!pdi->is_declaration)
5722 {
5723 add_partial_symbol (pdi, cu);
5724 }
5725 break;
5726 case DW_TAG_enumeration_type:
5727 if (!pdi->is_declaration)
5728 add_partial_enumeration (pdi, cu);
5729 break;
5730 case DW_TAG_base_type:
5731 case DW_TAG_subrange_type:
5732 /* File scope base type definitions are added to the partial
5733 symbol table. */
5734 add_partial_symbol (pdi, cu);
5735 break;
5736 case DW_TAG_namespace:
5737 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5738 break;
5739 case DW_TAG_module:
5740 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5741 break;
5742 case DW_TAG_imported_unit:
5743 {
5744 struct dwarf2_per_cu_data *per_cu;
5745
5746 /* For now we don't handle imported units in type units. */
5747 if (cu->per_cu->is_debug_types)
5748 {
5749 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5750 " supported in type units [in module %s]"),
5751 cu->objfile->name);
5752 }
5753
5754 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5755 pdi->is_dwz,
5756 cu->objfile);
5757
5758 /* Go read the partial unit, if needed. */
5759 if (per_cu->v.psymtab == NULL)
5760 process_psymtab_comp_unit (per_cu, 1);
5761
5762 VEC_safe_push (dwarf2_per_cu_ptr,
5763 cu->per_cu->imported_symtabs, per_cu);
5764 }
5765 break;
5766 default:
5767 break;
5768 }
5769 }
5770
5771 /* If the die has a sibling, skip to the sibling. */
5772
5773 pdi = pdi->die_sibling;
5774 }
5775 }
5776
5777 /* Functions used to compute the fully scoped name of a partial DIE.
5778
5779 Normally, this is simple. For C++, the parent DIE's fully scoped
5780 name is concatenated with "::" and the partial DIE's name. For
5781 Java, the same thing occurs except that "." is used instead of "::".
5782 Enumerators are an exception; they use the scope of their parent
5783 enumeration type, i.e. the name of the enumeration type is not
5784 prepended to the enumerator.
5785
5786 There are two complexities. One is DW_AT_specification; in this
5787 case "parent" means the parent of the target of the specification,
5788 instead of the direct parent of the DIE. The other is compilers
5789 which do not emit DW_TAG_namespace; in this case we try to guess
5790 the fully qualified name of structure types from their members'
5791 linkage names. This must be done using the DIE's children rather
5792 than the children of any DW_AT_specification target. We only need
5793 to do this for structures at the top level, i.e. if the target of
5794 any DW_AT_specification (if any; otherwise the DIE itself) does not
5795 have a parent. */
5796
5797 /* Compute the scope prefix associated with PDI's parent, in
5798 compilation unit CU. The result will be allocated on CU's
5799 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5800 field. NULL is returned if no prefix is necessary. */
5801 static const char *
5802 partial_die_parent_scope (struct partial_die_info *pdi,
5803 struct dwarf2_cu *cu)
5804 {
5805 const char *grandparent_scope;
5806 struct partial_die_info *parent, *real_pdi;
5807
5808 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5809 then this means the parent of the specification DIE. */
5810
5811 real_pdi = pdi;
5812 while (real_pdi->has_specification)
5813 real_pdi = find_partial_die (real_pdi->spec_offset,
5814 real_pdi->spec_is_dwz, cu);
5815
5816 parent = real_pdi->die_parent;
5817 if (parent == NULL)
5818 return NULL;
5819
5820 if (parent->scope_set)
5821 return parent->scope;
5822
5823 fixup_partial_die (parent, cu);
5824
5825 grandparent_scope = partial_die_parent_scope (parent, cu);
5826
5827 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5828 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5829 Work around this problem here. */
5830 if (cu->language == language_cplus
5831 && parent->tag == DW_TAG_namespace
5832 && strcmp (parent->name, "::") == 0
5833 && grandparent_scope == NULL)
5834 {
5835 parent->scope = NULL;
5836 parent->scope_set = 1;
5837 return NULL;
5838 }
5839
5840 if (pdi->tag == DW_TAG_enumerator)
5841 /* Enumerators should not get the name of the enumeration as a prefix. */
5842 parent->scope = grandparent_scope;
5843 else if (parent->tag == DW_TAG_namespace
5844 || parent->tag == DW_TAG_module
5845 || parent->tag == DW_TAG_structure_type
5846 || parent->tag == DW_TAG_class_type
5847 || parent->tag == DW_TAG_interface_type
5848 || parent->tag == DW_TAG_union_type
5849 || parent->tag == DW_TAG_enumeration_type)
5850 {
5851 if (grandparent_scope == NULL)
5852 parent->scope = parent->name;
5853 else
5854 parent->scope = typename_concat (&cu->comp_unit_obstack,
5855 grandparent_scope,
5856 parent->name, 0, cu);
5857 }
5858 else
5859 {
5860 /* FIXME drow/2004-04-01: What should we be doing with
5861 function-local names? For partial symbols, we should probably be
5862 ignoring them. */
5863 complaint (&symfile_complaints,
5864 _("unhandled containing DIE tag %d for DIE at %d"),
5865 parent->tag, pdi->offset.sect_off);
5866 parent->scope = grandparent_scope;
5867 }
5868
5869 parent->scope_set = 1;
5870 return parent->scope;
5871 }
5872
5873 /* Return the fully scoped name associated with PDI, from compilation unit
5874 CU. The result will be allocated with malloc. */
5875
5876 static char *
5877 partial_die_full_name (struct partial_die_info *pdi,
5878 struct dwarf2_cu *cu)
5879 {
5880 const char *parent_scope;
5881
5882 /* If this is a template instantiation, we can not work out the
5883 template arguments from partial DIEs. So, unfortunately, we have
5884 to go through the full DIEs. At least any work we do building
5885 types here will be reused if full symbols are loaded later. */
5886 if (pdi->has_template_arguments)
5887 {
5888 fixup_partial_die (pdi, cu);
5889
5890 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5891 {
5892 struct die_info *die;
5893 struct attribute attr;
5894 struct dwarf2_cu *ref_cu = cu;
5895
5896 /* DW_FORM_ref_addr is using section offset. */
5897 attr.name = 0;
5898 attr.form = DW_FORM_ref_addr;
5899 attr.u.unsnd = pdi->offset.sect_off;
5900 die = follow_die_ref (NULL, &attr, &ref_cu);
5901
5902 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5903 }
5904 }
5905
5906 parent_scope = partial_die_parent_scope (pdi, cu);
5907 if (parent_scope == NULL)
5908 return NULL;
5909 else
5910 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5911 }
5912
5913 static void
5914 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5915 {
5916 struct objfile *objfile = cu->objfile;
5917 CORE_ADDR addr = 0;
5918 const char *actual_name = NULL;
5919 CORE_ADDR baseaddr;
5920 char *built_actual_name;
5921
5922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5923
5924 built_actual_name = partial_die_full_name (pdi, cu);
5925 if (built_actual_name != NULL)
5926 actual_name = built_actual_name;
5927
5928 if (actual_name == NULL)
5929 actual_name = pdi->name;
5930
5931 switch (pdi->tag)
5932 {
5933 case DW_TAG_subprogram:
5934 if (pdi->is_external || cu->language == language_ada)
5935 {
5936 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5937 of the global scope. But in Ada, we want to be able to access
5938 nested procedures globally. So all Ada subprograms are stored
5939 in the global scope. */
5940 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5941 mst_text, objfile); */
5942 add_psymbol_to_list (actual_name, strlen (actual_name),
5943 built_actual_name != NULL,
5944 VAR_DOMAIN, LOC_BLOCK,
5945 &objfile->global_psymbols,
5946 0, pdi->lowpc + baseaddr,
5947 cu->language, objfile);
5948 }
5949 else
5950 {
5951 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5952 mst_file_text, objfile); */
5953 add_psymbol_to_list (actual_name, strlen (actual_name),
5954 built_actual_name != NULL,
5955 VAR_DOMAIN, LOC_BLOCK,
5956 &objfile->static_psymbols,
5957 0, pdi->lowpc + baseaddr,
5958 cu->language, objfile);
5959 }
5960 break;
5961 case DW_TAG_constant:
5962 {
5963 struct psymbol_allocation_list *list;
5964
5965 if (pdi->is_external)
5966 list = &objfile->global_psymbols;
5967 else
5968 list = &objfile->static_psymbols;
5969 add_psymbol_to_list (actual_name, strlen (actual_name),
5970 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5971 list, 0, 0, cu->language, objfile);
5972 }
5973 break;
5974 case DW_TAG_variable:
5975 if (pdi->d.locdesc)
5976 addr = decode_locdesc (pdi->d.locdesc, cu);
5977
5978 if (pdi->d.locdesc
5979 && addr == 0
5980 && !dwarf2_per_objfile->has_section_at_zero)
5981 {
5982 /* A global or static variable may also have been stripped
5983 out by the linker if unused, in which case its address
5984 will be nullified; do not add such variables into partial
5985 symbol table then. */
5986 }
5987 else if (pdi->is_external)
5988 {
5989 /* Global Variable.
5990 Don't enter into the minimal symbol tables as there is
5991 a minimal symbol table entry from the ELF symbols already.
5992 Enter into partial symbol table if it has a location
5993 descriptor or a type.
5994 If the location descriptor is missing, new_symbol will create
5995 a LOC_UNRESOLVED symbol, the address of the variable will then
5996 be determined from the minimal symbol table whenever the variable
5997 is referenced.
5998 The address for the partial symbol table entry is not
5999 used by GDB, but it comes in handy for debugging partial symbol
6000 table building. */
6001
6002 if (pdi->d.locdesc || pdi->has_type)
6003 add_psymbol_to_list (actual_name, strlen (actual_name),
6004 built_actual_name != NULL,
6005 VAR_DOMAIN, LOC_STATIC,
6006 &objfile->global_psymbols,
6007 0, addr + baseaddr,
6008 cu->language, objfile);
6009 }
6010 else
6011 {
6012 /* Static Variable. Skip symbols without location descriptors. */
6013 if (pdi->d.locdesc == NULL)
6014 {
6015 xfree (built_actual_name);
6016 return;
6017 }
6018 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6019 mst_file_data, objfile); */
6020 add_psymbol_to_list (actual_name, strlen (actual_name),
6021 built_actual_name != NULL,
6022 VAR_DOMAIN, LOC_STATIC,
6023 &objfile->static_psymbols,
6024 0, addr + baseaddr,
6025 cu->language, objfile);
6026 }
6027 break;
6028 case DW_TAG_typedef:
6029 case DW_TAG_base_type:
6030 case DW_TAG_subrange_type:
6031 add_psymbol_to_list (actual_name, strlen (actual_name),
6032 built_actual_name != NULL,
6033 VAR_DOMAIN, LOC_TYPEDEF,
6034 &objfile->static_psymbols,
6035 0, (CORE_ADDR) 0, cu->language, objfile);
6036 break;
6037 case DW_TAG_namespace:
6038 add_psymbol_to_list (actual_name, strlen (actual_name),
6039 built_actual_name != NULL,
6040 VAR_DOMAIN, LOC_TYPEDEF,
6041 &objfile->global_psymbols,
6042 0, (CORE_ADDR) 0, cu->language, objfile);
6043 break;
6044 case DW_TAG_class_type:
6045 case DW_TAG_interface_type:
6046 case DW_TAG_structure_type:
6047 case DW_TAG_union_type:
6048 case DW_TAG_enumeration_type:
6049 /* Skip external references. The DWARF standard says in the section
6050 about "Structure, Union, and Class Type Entries": "An incomplete
6051 structure, union or class type is represented by a structure,
6052 union or class entry that does not have a byte size attribute
6053 and that has a DW_AT_declaration attribute." */
6054 if (!pdi->has_byte_size && pdi->is_declaration)
6055 {
6056 xfree (built_actual_name);
6057 return;
6058 }
6059
6060 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6061 static vs. global. */
6062 add_psymbol_to_list (actual_name, strlen (actual_name),
6063 built_actual_name != NULL,
6064 STRUCT_DOMAIN, LOC_TYPEDEF,
6065 (cu->language == language_cplus
6066 || cu->language == language_java)
6067 ? &objfile->global_psymbols
6068 : &objfile->static_psymbols,
6069 0, (CORE_ADDR) 0, cu->language, objfile);
6070
6071 break;
6072 case DW_TAG_enumerator:
6073 add_psymbol_to_list (actual_name, strlen (actual_name),
6074 built_actual_name != NULL,
6075 VAR_DOMAIN, LOC_CONST,
6076 (cu->language == language_cplus
6077 || cu->language == language_java)
6078 ? &objfile->global_psymbols
6079 : &objfile->static_psymbols,
6080 0, (CORE_ADDR) 0, cu->language, objfile);
6081 break;
6082 default:
6083 break;
6084 }
6085
6086 xfree (built_actual_name);
6087 }
6088
6089 /* Read a partial die corresponding to a namespace; also, add a symbol
6090 corresponding to that namespace to the symbol table. NAMESPACE is
6091 the name of the enclosing namespace. */
6092
6093 static void
6094 add_partial_namespace (struct partial_die_info *pdi,
6095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6096 int need_pc, struct dwarf2_cu *cu)
6097 {
6098 /* Add a symbol for the namespace. */
6099
6100 add_partial_symbol (pdi, cu);
6101
6102 /* Now scan partial symbols in that namespace. */
6103
6104 if (pdi->has_children)
6105 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6106 }
6107
6108 /* Read a partial die corresponding to a Fortran module. */
6109
6110 static void
6111 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6112 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6113 {
6114 /* Now scan partial symbols in that module. */
6115
6116 if (pdi->has_children)
6117 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6118 }
6119
6120 /* Read a partial die corresponding to a subprogram and create a partial
6121 symbol for that subprogram. When the CU language allows it, this
6122 routine also defines a partial symbol for each nested subprogram
6123 that this subprogram contains.
6124
6125 DIE my also be a lexical block, in which case we simply search
6126 recursively for suprograms defined inside that lexical block.
6127 Again, this is only performed when the CU language allows this
6128 type of definitions. */
6129
6130 static void
6131 add_partial_subprogram (struct partial_die_info *pdi,
6132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6133 int need_pc, struct dwarf2_cu *cu)
6134 {
6135 if (pdi->tag == DW_TAG_subprogram)
6136 {
6137 if (pdi->has_pc_info)
6138 {
6139 if (pdi->lowpc < *lowpc)
6140 *lowpc = pdi->lowpc;
6141 if (pdi->highpc > *highpc)
6142 *highpc = pdi->highpc;
6143 if (need_pc)
6144 {
6145 CORE_ADDR baseaddr;
6146 struct objfile *objfile = cu->objfile;
6147
6148 baseaddr = ANOFFSET (objfile->section_offsets,
6149 SECT_OFF_TEXT (objfile));
6150 addrmap_set_empty (objfile->psymtabs_addrmap,
6151 pdi->lowpc + baseaddr,
6152 pdi->highpc - 1 + baseaddr,
6153 cu->per_cu->v.psymtab);
6154 }
6155 }
6156
6157 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6158 {
6159 if (!pdi->is_declaration)
6160 /* Ignore subprogram DIEs that do not have a name, they are
6161 illegal. Do not emit a complaint at this point, we will
6162 do so when we convert this psymtab into a symtab. */
6163 if (pdi->name)
6164 add_partial_symbol (pdi, cu);
6165 }
6166 }
6167
6168 if (! pdi->has_children)
6169 return;
6170
6171 if (cu->language == language_ada)
6172 {
6173 pdi = pdi->die_child;
6174 while (pdi != NULL)
6175 {
6176 fixup_partial_die (pdi, cu);
6177 if (pdi->tag == DW_TAG_subprogram
6178 || pdi->tag == DW_TAG_lexical_block)
6179 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6180 pdi = pdi->die_sibling;
6181 }
6182 }
6183 }
6184
6185 /* Read a partial die corresponding to an enumeration type. */
6186
6187 static void
6188 add_partial_enumeration (struct partial_die_info *enum_pdi,
6189 struct dwarf2_cu *cu)
6190 {
6191 struct partial_die_info *pdi;
6192
6193 if (enum_pdi->name != NULL)
6194 add_partial_symbol (enum_pdi, cu);
6195
6196 pdi = enum_pdi->die_child;
6197 while (pdi)
6198 {
6199 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6200 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6201 else
6202 add_partial_symbol (pdi, cu);
6203 pdi = pdi->die_sibling;
6204 }
6205 }
6206
6207 /* Return the initial uleb128 in the die at INFO_PTR. */
6208
6209 static unsigned int
6210 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6211 {
6212 unsigned int bytes_read;
6213
6214 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6215 }
6216
6217 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6218 Return the corresponding abbrev, or NULL if the number is zero (indicating
6219 an empty DIE). In either case *BYTES_READ will be set to the length of
6220 the initial number. */
6221
6222 static struct abbrev_info *
6223 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6224 struct dwarf2_cu *cu)
6225 {
6226 bfd *abfd = cu->objfile->obfd;
6227 unsigned int abbrev_number;
6228 struct abbrev_info *abbrev;
6229
6230 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6231
6232 if (abbrev_number == 0)
6233 return NULL;
6234
6235 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6236 if (!abbrev)
6237 {
6238 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6239 abbrev_number, bfd_get_filename (abfd));
6240 }
6241
6242 return abbrev;
6243 }
6244
6245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6246 Returns a pointer to the end of a series of DIEs, terminated by an empty
6247 DIE. Any children of the skipped DIEs will also be skipped. */
6248
6249 static gdb_byte *
6250 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6251 {
6252 struct dwarf2_cu *cu = reader->cu;
6253 struct abbrev_info *abbrev;
6254 unsigned int bytes_read;
6255
6256 while (1)
6257 {
6258 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6259 if (abbrev == NULL)
6260 return info_ptr + bytes_read;
6261 else
6262 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6263 }
6264 }
6265
6266 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6267 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6268 abbrev corresponding to that skipped uleb128 should be passed in
6269 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6270 children. */
6271
6272 static gdb_byte *
6273 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6274 struct abbrev_info *abbrev)
6275 {
6276 unsigned int bytes_read;
6277 struct attribute attr;
6278 bfd *abfd = reader->abfd;
6279 struct dwarf2_cu *cu = reader->cu;
6280 gdb_byte *buffer = reader->buffer;
6281 const gdb_byte *buffer_end = reader->buffer_end;
6282 gdb_byte *start_info_ptr = info_ptr;
6283 unsigned int form, i;
6284
6285 for (i = 0; i < abbrev->num_attrs; i++)
6286 {
6287 /* The only abbrev we care about is DW_AT_sibling. */
6288 if (abbrev->attrs[i].name == DW_AT_sibling)
6289 {
6290 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6291 if (attr.form == DW_FORM_ref_addr)
6292 complaint (&symfile_complaints,
6293 _("ignoring absolute DW_AT_sibling"));
6294 else
6295 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6296 }
6297
6298 /* If it isn't DW_AT_sibling, skip this attribute. */
6299 form = abbrev->attrs[i].form;
6300 skip_attribute:
6301 switch (form)
6302 {
6303 case DW_FORM_ref_addr:
6304 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6305 and later it is offset sized. */
6306 if (cu->header.version == 2)
6307 info_ptr += cu->header.addr_size;
6308 else
6309 info_ptr += cu->header.offset_size;
6310 break;
6311 case DW_FORM_GNU_ref_alt:
6312 info_ptr += cu->header.offset_size;
6313 break;
6314 case DW_FORM_addr:
6315 info_ptr += cu->header.addr_size;
6316 break;
6317 case DW_FORM_data1:
6318 case DW_FORM_ref1:
6319 case DW_FORM_flag:
6320 info_ptr += 1;
6321 break;
6322 case DW_FORM_flag_present:
6323 break;
6324 case DW_FORM_data2:
6325 case DW_FORM_ref2:
6326 info_ptr += 2;
6327 break;
6328 case DW_FORM_data4:
6329 case DW_FORM_ref4:
6330 info_ptr += 4;
6331 break;
6332 case DW_FORM_data8:
6333 case DW_FORM_ref8:
6334 case DW_FORM_ref_sig8:
6335 info_ptr += 8;
6336 break;
6337 case DW_FORM_string:
6338 read_direct_string (abfd, info_ptr, &bytes_read);
6339 info_ptr += bytes_read;
6340 break;
6341 case DW_FORM_sec_offset:
6342 case DW_FORM_strp:
6343 case DW_FORM_GNU_strp_alt:
6344 info_ptr += cu->header.offset_size;
6345 break;
6346 case DW_FORM_exprloc:
6347 case DW_FORM_block:
6348 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6349 info_ptr += bytes_read;
6350 break;
6351 case DW_FORM_block1:
6352 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6353 break;
6354 case DW_FORM_block2:
6355 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6356 break;
6357 case DW_FORM_block4:
6358 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6359 break;
6360 case DW_FORM_sdata:
6361 case DW_FORM_udata:
6362 case DW_FORM_ref_udata:
6363 case DW_FORM_GNU_addr_index:
6364 case DW_FORM_GNU_str_index:
6365 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6366 break;
6367 case DW_FORM_indirect:
6368 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6369 info_ptr += bytes_read;
6370 /* We need to continue parsing from here, so just go back to
6371 the top. */
6372 goto skip_attribute;
6373
6374 default:
6375 error (_("Dwarf Error: Cannot handle %s "
6376 "in DWARF reader [in module %s]"),
6377 dwarf_form_name (form),
6378 bfd_get_filename (abfd));
6379 }
6380 }
6381
6382 if (abbrev->has_children)
6383 return skip_children (reader, info_ptr);
6384 else
6385 return info_ptr;
6386 }
6387
6388 /* Locate ORIG_PDI's sibling.
6389 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6390
6391 static gdb_byte *
6392 locate_pdi_sibling (const struct die_reader_specs *reader,
6393 struct partial_die_info *orig_pdi,
6394 gdb_byte *info_ptr)
6395 {
6396 /* Do we know the sibling already? */
6397
6398 if (orig_pdi->sibling)
6399 return orig_pdi->sibling;
6400
6401 /* Are there any children to deal with? */
6402
6403 if (!orig_pdi->has_children)
6404 return info_ptr;
6405
6406 /* Skip the children the long way. */
6407
6408 return skip_children (reader, info_ptr);
6409 }
6410
6411 /* Expand this partial symbol table into a full symbol table. SELF is
6412 not NULL. */
6413
6414 static void
6415 dwarf2_read_symtab (struct partial_symtab *self,
6416 struct objfile *objfile)
6417 {
6418 if (self->readin)
6419 {
6420 warning (_("bug: psymtab for %s is already read in."),
6421 self->filename);
6422 }
6423 else
6424 {
6425 if (info_verbose)
6426 {
6427 printf_filtered (_("Reading in symbols for %s..."),
6428 self->filename);
6429 gdb_flush (gdb_stdout);
6430 }
6431
6432 /* Restore our global data. */
6433 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6434
6435 /* If this psymtab is constructed from a debug-only objfile, the
6436 has_section_at_zero flag will not necessarily be correct. We
6437 can get the correct value for this flag by looking at the data
6438 associated with the (presumably stripped) associated objfile. */
6439 if (objfile->separate_debug_objfile_backlink)
6440 {
6441 struct dwarf2_per_objfile *dpo_backlink
6442 = objfile_data (objfile->separate_debug_objfile_backlink,
6443 dwarf2_objfile_data_key);
6444
6445 dwarf2_per_objfile->has_section_at_zero
6446 = dpo_backlink->has_section_at_zero;
6447 }
6448
6449 dwarf2_per_objfile->reading_partial_symbols = 0;
6450
6451 psymtab_to_symtab_1 (self);
6452
6453 /* Finish up the debug error message. */
6454 if (info_verbose)
6455 printf_filtered (_("done.\n"));
6456 }
6457
6458 process_cu_includes ();
6459 }
6460 \f
6461 /* Reading in full CUs. */
6462
6463 /* Add PER_CU to the queue. */
6464
6465 static void
6466 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6467 enum language pretend_language)
6468 {
6469 struct dwarf2_queue_item *item;
6470
6471 per_cu->queued = 1;
6472 item = xmalloc (sizeof (*item));
6473 item->per_cu = per_cu;
6474 item->pretend_language = pretend_language;
6475 item->next = NULL;
6476
6477 if (dwarf2_queue == NULL)
6478 dwarf2_queue = item;
6479 else
6480 dwarf2_queue_tail->next = item;
6481
6482 dwarf2_queue_tail = item;
6483 }
6484
6485 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6486 unit and add it to our queue.
6487 The result is non-zero if PER_CU was queued, otherwise the result is zero
6488 meaning either PER_CU is already queued or it is already loaded. */
6489
6490 static int
6491 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6492 struct dwarf2_per_cu_data *per_cu,
6493 enum language pretend_language)
6494 {
6495 /* We may arrive here during partial symbol reading, if we need full
6496 DIEs to process an unusual case (e.g. template arguments). Do
6497 not queue PER_CU, just tell our caller to load its DIEs. */
6498 if (dwarf2_per_objfile->reading_partial_symbols)
6499 {
6500 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6501 return 1;
6502 return 0;
6503 }
6504
6505 /* Mark the dependence relation so that we don't flush PER_CU
6506 too early. */
6507 dwarf2_add_dependence (this_cu, per_cu);
6508
6509 /* If it's already on the queue, we have nothing to do. */
6510 if (per_cu->queued)
6511 return 0;
6512
6513 /* If the compilation unit is already loaded, just mark it as
6514 used. */
6515 if (per_cu->cu != NULL)
6516 {
6517 per_cu->cu->last_used = 0;
6518 return 0;
6519 }
6520
6521 /* Add it to the queue. */
6522 queue_comp_unit (per_cu, pretend_language);
6523
6524 return 1;
6525 }
6526
6527 /* Process the queue. */
6528
6529 static void
6530 process_queue (void)
6531 {
6532 struct dwarf2_queue_item *item, *next_item;
6533
6534 if (dwarf2_read_debug)
6535 {
6536 fprintf_unfiltered (gdb_stdlog,
6537 "Expanding one or more symtabs of objfile %s ...\n",
6538 dwarf2_per_objfile->objfile->name);
6539 }
6540
6541 /* The queue starts out with one item, but following a DIE reference
6542 may load a new CU, adding it to the end of the queue. */
6543 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6544 {
6545 if (dwarf2_per_objfile->using_index
6546 ? !item->per_cu->v.quick->symtab
6547 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6548 {
6549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6550
6551 if (dwarf2_read_debug)
6552 {
6553 fprintf_unfiltered (gdb_stdlog,
6554 "Expanding symtab of %s at offset 0x%x\n",
6555 per_cu->is_debug_types ? "TU" : "CU",
6556 per_cu->offset.sect_off);
6557 }
6558
6559 if (per_cu->is_debug_types)
6560 process_full_type_unit (per_cu, item->pretend_language);
6561 else
6562 process_full_comp_unit (per_cu, item->pretend_language);
6563
6564 if (dwarf2_read_debug)
6565 {
6566 fprintf_unfiltered (gdb_stdlog,
6567 "Done expanding %s at offset 0x%x\n",
6568 per_cu->is_debug_types ? "TU" : "CU",
6569 per_cu->offset.sect_off);
6570 }
6571 }
6572
6573 item->per_cu->queued = 0;
6574 next_item = item->next;
6575 xfree (item);
6576 }
6577
6578 dwarf2_queue_tail = NULL;
6579
6580 if (dwarf2_read_debug)
6581 {
6582 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6583 dwarf2_per_objfile->objfile->name);
6584 }
6585 }
6586
6587 /* Free all allocated queue entries. This function only releases anything if
6588 an error was thrown; if the queue was processed then it would have been
6589 freed as we went along. */
6590
6591 static void
6592 dwarf2_release_queue (void *dummy)
6593 {
6594 struct dwarf2_queue_item *item, *last;
6595
6596 item = dwarf2_queue;
6597 while (item)
6598 {
6599 /* Anything still marked queued is likely to be in an
6600 inconsistent state, so discard it. */
6601 if (item->per_cu->queued)
6602 {
6603 if (item->per_cu->cu != NULL)
6604 free_one_cached_comp_unit (item->per_cu);
6605 item->per_cu->queued = 0;
6606 }
6607
6608 last = item;
6609 item = item->next;
6610 xfree (last);
6611 }
6612
6613 dwarf2_queue = dwarf2_queue_tail = NULL;
6614 }
6615
6616 /* Read in full symbols for PST, and anything it depends on. */
6617
6618 static void
6619 psymtab_to_symtab_1 (struct partial_symtab *pst)
6620 {
6621 struct dwarf2_per_cu_data *per_cu;
6622 int i;
6623
6624 if (pst->readin)
6625 return;
6626
6627 for (i = 0; i < pst->number_of_dependencies; i++)
6628 if (!pst->dependencies[i]->readin
6629 && pst->dependencies[i]->user == NULL)
6630 {
6631 /* Inform about additional files that need to be read in. */
6632 if (info_verbose)
6633 {
6634 /* FIXME: i18n: Need to make this a single string. */
6635 fputs_filtered (" ", gdb_stdout);
6636 wrap_here ("");
6637 fputs_filtered ("and ", gdb_stdout);
6638 wrap_here ("");
6639 printf_filtered ("%s...", pst->dependencies[i]->filename);
6640 wrap_here (""); /* Flush output. */
6641 gdb_flush (gdb_stdout);
6642 }
6643 psymtab_to_symtab_1 (pst->dependencies[i]);
6644 }
6645
6646 per_cu = pst->read_symtab_private;
6647
6648 if (per_cu == NULL)
6649 {
6650 /* It's an include file, no symbols to read for it.
6651 Everything is in the parent symtab. */
6652 pst->readin = 1;
6653 return;
6654 }
6655
6656 dw2_do_instantiate_symtab (per_cu);
6657 }
6658
6659 /* Trivial hash function for die_info: the hash value of a DIE
6660 is its offset in .debug_info for this objfile. */
6661
6662 static hashval_t
6663 die_hash (const void *item)
6664 {
6665 const struct die_info *die = item;
6666
6667 return die->offset.sect_off;
6668 }
6669
6670 /* Trivial comparison function for die_info structures: two DIEs
6671 are equal if they have the same offset. */
6672
6673 static int
6674 die_eq (const void *item_lhs, const void *item_rhs)
6675 {
6676 const struct die_info *die_lhs = item_lhs;
6677 const struct die_info *die_rhs = item_rhs;
6678
6679 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6680 }
6681
6682 /* die_reader_func for load_full_comp_unit.
6683 This is identical to read_signatured_type_reader,
6684 but is kept separate for now. */
6685
6686 static void
6687 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6688 gdb_byte *info_ptr,
6689 struct die_info *comp_unit_die,
6690 int has_children,
6691 void *data)
6692 {
6693 struct dwarf2_cu *cu = reader->cu;
6694 enum language *language_ptr = data;
6695
6696 gdb_assert (cu->die_hash == NULL);
6697 cu->die_hash =
6698 htab_create_alloc_ex (cu->header.length / 12,
6699 die_hash,
6700 die_eq,
6701 NULL,
6702 &cu->comp_unit_obstack,
6703 hashtab_obstack_allocate,
6704 dummy_obstack_deallocate);
6705
6706 if (has_children)
6707 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6708 &info_ptr, comp_unit_die);
6709 cu->dies = comp_unit_die;
6710 /* comp_unit_die is not stored in die_hash, no need. */
6711
6712 /* We try not to read any attributes in this function, because not
6713 all CUs needed for references have been loaded yet, and symbol
6714 table processing isn't initialized. But we have to set the CU language,
6715 or we won't be able to build types correctly.
6716 Similarly, if we do not read the producer, we can not apply
6717 producer-specific interpretation. */
6718 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6719 }
6720
6721 /* Load the DIEs associated with PER_CU into memory. */
6722
6723 static void
6724 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6725 enum language pretend_language)
6726 {
6727 gdb_assert (! this_cu->is_debug_types);
6728
6729 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6730 load_full_comp_unit_reader, &pretend_language);
6731 }
6732
6733 /* Add a DIE to the delayed physname list. */
6734
6735 static void
6736 add_to_method_list (struct type *type, int fnfield_index, int index,
6737 const char *name, struct die_info *die,
6738 struct dwarf2_cu *cu)
6739 {
6740 struct delayed_method_info mi;
6741 mi.type = type;
6742 mi.fnfield_index = fnfield_index;
6743 mi.index = index;
6744 mi.name = name;
6745 mi.die = die;
6746 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6747 }
6748
6749 /* A cleanup for freeing the delayed method list. */
6750
6751 static void
6752 free_delayed_list (void *ptr)
6753 {
6754 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6755 if (cu->method_list != NULL)
6756 {
6757 VEC_free (delayed_method_info, cu->method_list);
6758 cu->method_list = NULL;
6759 }
6760 }
6761
6762 /* Compute the physnames of any methods on the CU's method list.
6763
6764 The computation of method physnames is delayed in order to avoid the
6765 (bad) condition that one of the method's formal parameters is of an as yet
6766 incomplete type. */
6767
6768 static void
6769 compute_delayed_physnames (struct dwarf2_cu *cu)
6770 {
6771 int i;
6772 struct delayed_method_info *mi;
6773 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6774 {
6775 const char *physname;
6776 struct fn_fieldlist *fn_flp
6777 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6778 physname = dwarf2_physname (mi->name, mi->die, cu);
6779 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6780 }
6781 }
6782
6783 /* Go objects should be embedded in a DW_TAG_module DIE,
6784 and it's not clear if/how imported objects will appear.
6785 To keep Go support simple until that's worked out,
6786 go back through what we've read and create something usable.
6787 We could do this while processing each DIE, and feels kinda cleaner,
6788 but that way is more invasive.
6789 This is to, for example, allow the user to type "p var" or "b main"
6790 without having to specify the package name, and allow lookups
6791 of module.object to work in contexts that use the expression
6792 parser. */
6793
6794 static void
6795 fixup_go_packaging (struct dwarf2_cu *cu)
6796 {
6797 char *package_name = NULL;
6798 struct pending *list;
6799 int i;
6800
6801 for (list = global_symbols; list != NULL; list = list->next)
6802 {
6803 for (i = 0; i < list->nsyms; ++i)
6804 {
6805 struct symbol *sym = list->symbol[i];
6806
6807 if (SYMBOL_LANGUAGE (sym) == language_go
6808 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6809 {
6810 char *this_package_name = go_symbol_package_name (sym);
6811
6812 if (this_package_name == NULL)
6813 continue;
6814 if (package_name == NULL)
6815 package_name = this_package_name;
6816 else
6817 {
6818 if (strcmp (package_name, this_package_name) != 0)
6819 complaint (&symfile_complaints,
6820 _("Symtab %s has objects from two different Go packages: %s and %s"),
6821 (SYMBOL_SYMTAB (sym)
6822 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6823 : cu->objfile->name),
6824 this_package_name, package_name);
6825 xfree (this_package_name);
6826 }
6827 }
6828 }
6829 }
6830
6831 if (package_name != NULL)
6832 {
6833 struct objfile *objfile = cu->objfile;
6834 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6835 package_name,
6836 strlen (package_name));
6837 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6838 saved_package_name, objfile);
6839 struct symbol *sym;
6840
6841 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6842
6843 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6844 SYMBOL_SET_LANGUAGE (sym, language_go);
6845 SYMBOL_SET_NAMES (sym, saved_package_name,
6846 strlen (saved_package_name), 0, objfile);
6847 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6848 e.g., "main" finds the "main" module and not C's main(). */
6849 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6850 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6851 SYMBOL_TYPE (sym) = type;
6852
6853 add_symbol_to_list (sym, &global_symbols);
6854
6855 xfree (package_name);
6856 }
6857 }
6858
6859 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6860
6861 /* Return the symtab for PER_CU. This works properly regardless of
6862 whether we're using the index or psymtabs. */
6863
6864 static struct symtab *
6865 get_symtab (struct dwarf2_per_cu_data *per_cu)
6866 {
6867 return (dwarf2_per_objfile->using_index
6868 ? per_cu->v.quick->symtab
6869 : per_cu->v.psymtab->symtab);
6870 }
6871
6872 /* A helper function for computing the list of all symbol tables
6873 included by PER_CU. */
6874
6875 static void
6876 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6877 htab_t all_children,
6878 struct dwarf2_per_cu_data *per_cu)
6879 {
6880 void **slot;
6881 int ix;
6882 struct dwarf2_per_cu_data *iter;
6883
6884 slot = htab_find_slot (all_children, per_cu, INSERT);
6885 if (*slot != NULL)
6886 {
6887 /* This inclusion and its children have been processed. */
6888 return;
6889 }
6890
6891 *slot = per_cu;
6892 /* Only add a CU if it has a symbol table. */
6893 if (get_symtab (per_cu) != NULL)
6894 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6895
6896 for (ix = 0;
6897 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6898 ++ix)
6899 recursively_compute_inclusions (result, all_children, iter);
6900 }
6901
6902 /* Compute the symtab 'includes' fields for the symtab related to
6903 PER_CU. */
6904
6905 static void
6906 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6907 {
6908 gdb_assert (! per_cu->is_debug_types);
6909
6910 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6911 {
6912 int ix, len;
6913 struct dwarf2_per_cu_data *iter;
6914 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6915 htab_t all_children;
6916 struct symtab *symtab = get_symtab (per_cu);
6917
6918 /* If we don't have a symtab, we can just skip this case. */
6919 if (symtab == NULL)
6920 return;
6921
6922 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6923 NULL, xcalloc, xfree);
6924
6925 for (ix = 0;
6926 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6927 ix, iter);
6928 ++ix)
6929 recursively_compute_inclusions (&result_children, all_children, iter);
6930
6931 /* Now we have a transitive closure of all the included CUs, and
6932 for .gdb_index version 7 the included TUs, so we can convert it
6933 to a list of symtabs. */
6934 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6935 symtab->includes
6936 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6937 (len + 1) * sizeof (struct symtab *));
6938 for (ix = 0;
6939 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6940 ++ix)
6941 symtab->includes[ix] = get_symtab (iter);
6942 symtab->includes[len] = NULL;
6943
6944 VEC_free (dwarf2_per_cu_ptr, result_children);
6945 htab_delete (all_children);
6946 }
6947 }
6948
6949 /* Compute the 'includes' field for the symtabs of all the CUs we just
6950 read. */
6951
6952 static void
6953 process_cu_includes (void)
6954 {
6955 int ix;
6956 struct dwarf2_per_cu_data *iter;
6957
6958 for (ix = 0;
6959 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6960 ix, iter);
6961 ++ix)
6962 {
6963 if (! iter->is_debug_types)
6964 compute_symtab_includes (iter);
6965 }
6966
6967 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6968 }
6969
6970 /* Generate full symbol information for PER_CU, whose DIEs have
6971 already been loaded into memory. */
6972
6973 static void
6974 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6975 enum language pretend_language)
6976 {
6977 struct dwarf2_cu *cu = per_cu->cu;
6978 struct objfile *objfile = per_cu->objfile;
6979 CORE_ADDR lowpc, highpc;
6980 struct symtab *symtab;
6981 struct cleanup *back_to, *delayed_list_cleanup;
6982 CORE_ADDR baseaddr;
6983 struct block *static_block;
6984
6985 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6986
6987 buildsym_init ();
6988 back_to = make_cleanup (really_free_pendings, NULL);
6989 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6990
6991 cu->list_in_scope = &file_symbols;
6992
6993 cu->language = pretend_language;
6994 cu->language_defn = language_def (cu->language);
6995
6996 /* Do line number decoding in read_file_scope () */
6997 process_die (cu->dies, cu);
6998
6999 /* For now fudge the Go package. */
7000 if (cu->language == language_go)
7001 fixup_go_packaging (cu);
7002
7003 /* Now that we have processed all the DIEs in the CU, all the types
7004 should be complete, and it should now be safe to compute all of the
7005 physnames. */
7006 compute_delayed_physnames (cu);
7007 do_cleanups (delayed_list_cleanup);
7008
7009 /* Some compilers don't define a DW_AT_high_pc attribute for the
7010 compilation unit. If the DW_AT_high_pc is missing, synthesize
7011 it, by scanning the DIE's below the compilation unit. */
7012 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7013
7014 static_block
7015 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7016 per_cu->imported_symtabs != NULL);
7017
7018 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7019 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7020 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7021 addrmap to help ensure it has an accurate map of pc values belonging to
7022 this comp unit. */
7023 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7024
7025 symtab = end_symtab_from_static_block (static_block, objfile,
7026 SECT_OFF_TEXT (objfile), 0);
7027
7028 if (symtab != NULL)
7029 {
7030 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7031
7032 /* Set symtab language to language from DW_AT_language. If the
7033 compilation is from a C file generated by language preprocessors, do
7034 not set the language if it was already deduced by start_subfile. */
7035 if (!(cu->language == language_c && symtab->language != language_c))
7036 symtab->language = cu->language;
7037
7038 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7039 produce DW_AT_location with location lists but it can be possibly
7040 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7041 there were bugs in prologue debug info, fixed later in GCC-4.5
7042 by "unwind info for epilogues" patch (which is not directly related).
7043
7044 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7045 needed, it would be wrong due to missing DW_AT_producer there.
7046
7047 Still one can confuse GDB by using non-standard GCC compilation
7048 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7049 */
7050 if (cu->has_loclist && gcc_4_minor >= 5)
7051 symtab->locations_valid = 1;
7052
7053 if (gcc_4_minor >= 5)
7054 symtab->epilogue_unwind_valid = 1;
7055
7056 symtab->call_site_htab = cu->call_site_htab;
7057 }
7058
7059 if (dwarf2_per_objfile->using_index)
7060 per_cu->v.quick->symtab = symtab;
7061 else
7062 {
7063 struct partial_symtab *pst = per_cu->v.psymtab;
7064 pst->symtab = symtab;
7065 pst->readin = 1;
7066 }
7067
7068 /* Push it for inclusion processing later. */
7069 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7070
7071 do_cleanups (back_to);
7072 }
7073
7074 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7075 already been loaded into memory. */
7076
7077 static void
7078 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7079 enum language pretend_language)
7080 {
7081 struct dwarf2_cu *cu = per_cu->cu;
7082 struct objfile *objfile = per_cu->objfile;
7083 struct symtab *symtab;
7084 struct cleanup *back_to, *delayed_list_cleanup;
7085
7086 buildsym_init ();
7087 back_to = make_cleanup (really_free_pendings, NULL);
7088 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7089
7090 cu->list_in_scope = &file_symbols;
7091
7092 cu->language = pretend_language;
7093 cu->language_defn = language_def (cu->language);
7094
7095 /* The symbol tables are set up in read_type_unit_scope. */
7096 process_die (cu->dies, cu);
7097
7098 /* For now fudge the Go package. */
7099 if (cu->language == language_go)
7100 fixup_go_packaging (cu);
7101
7102 /* Now that we have processed all the DIEs in the CU, all the types
7103 should be complete, and it should now be safe to compute all of the
7104 physnames. */
7105 compute_delayed_physnames (cu);
7106 do_cleanups (delayed_list_cleanup);
7107
7108 /* TUs share symbol tables.
7109 If this is the first TU to use this symtab, complete the construction
7110 of it with end_expandable_symtab. Otherwise, complete the addition of
7111 this TU's symbols to the existing symtab. */
7112 if (per_cu->type_unit_group->primary_symtab == NULL)
7113 {
7114 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7115 per_cu->type_unit_group->primary_symtab = symtab;
7116
7117 if (symtab != NULL)
7118 {
7119 /* Set symtab language to language from DW_AT_language. If the
7120 compilation is from a C file generated by language preprocessors,
7121 do not set the language if it was already deduced by
7122 start_subfile. */
7123 if (!(cu->language == language_c && symtab->language != language_c))
7124 symtab->language = cu->language;
7125 }
7126 }
7127 else
7128 {
7129 augment_type_symtab (objfile,
7130 per_cu->type_unit_group->primary_symtab);
7131 symtab = per_cu->type_unit_group->primary_symtab;
7132 }
7133
7134 if (dwarf2_per_objfile->using_index)
7135 per_cu->v.quick->symtab = symtab;
7136 else
7137 {
7138 struct partial_symtab *pst = per_cu->v.psymtab;
7139 pst->symtab = symtab;
7140 pst->readin = 1;
7141 }
7142
7143 do_cleanups (back_to);
7144 }
7145
7146 /* Process an imported unit DIE. */
7147
7148 static void
7149 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7150 {
7151 struct attribute *attr;
7152
7153 /* For now we don't handle imported units in type units. */
7154 if (cu->per_cu->is_debug_types)
7155 {
7156 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7157 " supported in type units [in module %s]"),
7158 cu->objfile->name);
7159 }
7160
7161 attr = dwarf2_attr (die, DW_AT_import, cu);
7162 if (attr != NULL)
7163 {
7164 struct dwarf2_per_cu_data *per_cu;
7165 struct symtab *imported_symtab;
7166 sect_offset offset;
7167 int is_dwz;
7168
7169 offset = dwarf2_get_ref_die_offset (attr);
7170 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7171 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7172
7173 /* Queue the unit, if needed. */
7174 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7175 load_full_comp_unit (per_cu, cu->language);
7176
7177 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7178 per_cu);
7179 }
7180 }
7181
7182 /* Process a die and its children. */
7183
7184 static void
7185 process_die (struct die_info *die, struct dwarf2_cu *cu)
7186 {
7187 switch (die->tag)
7188 {
7189 case DW_TAG_padding:
7190 break;
7191 case DW_TAG_compile_unit:
7192 case DW_TAG_partial_unit:
7193 read_file_scope (die, cu);
7194 break;
7195 case DW_TAG_type_unit:
7196 read_type_unit_scope (die, cu);
7197 break;
7198 case DW_TAG_subprogram:
7199 case DW_TAG_inlined_subroutine:
7200 read_func_scope (die, cu);
7201 break;
7202 case DW_TAG_lexical_block:
7203 case DW_TAG_try_block:
7204 case DW_TAG_catch_block:
7205 read_lexical_block_scope (die, cu);
7206 break;
7207 case DW_TAG_GNU_call_site:
7208 read_call_site_scope (die, cu);
7209 break;
7210 case DW_TAG_class_type:
7211 case DW_TAG_interface_type:
7212 case DW_TAG_structure_type:
7213 case DW_TAG_union_type:
7214 process_structure_scope (die, cu);
7215 break;
7216 case DW_TAG_enumeration_type:
7217 process_enumeration_scope (die, cu);
7218 break;
7219
7220 /* These dies have a type, but processing them does not create
7221 a symbol or recurse to process the children. Therefore we can
7222 read them on-demand through read_type_die. */
7223 case DW_TAG_subroutine_type:
7224 case DW_TAG_set_type:
7225 case DW_TAG_array_type:
7226 case DW_TAG_pointer_type:
7227 case DW_TAG_ptr_to_member_type:
7228 case DW_TAG_reference_type:
7229 case DW_TAG_string_type:
7230 break;
7231
7232 case DW_TAG_base_type:
7233 case DW_TAG_subrange_type:
7234 case DW_TAG_typedef:
7235 /* Add a typedef symbol for the type definition, if it has a
7236 DW_AT_name. */
7237 new_symbol (die, read_type_die (die, cu), cu);
7238 break;
7239 case DW_TAG_common_block:
7240 read_common_block (die, cu);
7241 break;
7242 case DW_TAG_common_inclusion:
7243 break;
7244 case DW_TAG_namespace:
7245 cu->processing_has_namespace_info = 1;
7246 read_namespace (die, cu);
7247 break;
7248 case DW_TAG_module:
7249 cu->processing_has_namespace_info = 1;
7250 read_module (die, cu);
7251 break;
7252 case DW_TAG_imported_declaration:
7253 case DW_TAG_imported_module:
7254 cu->processing_has_namespace_info = 1;
7255 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7256 || cu->language != language_fortran))
7257 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7258 dwarf_tag_name (die->tag));
7259 read_import_statement (die, cu);
7260 break;
7261
7262 case DW_TAG_imported_unit:
7263 process_imported_unit_die (die, cu);
7264 break;
7265
7266 default:
7267 new_symbol (die, NULL, cu);
7268 break;
7269 }
7270 }
7271
7272 /* A helper function for dwarf2_compute_name which determines whether DIE
7273 needs to have the name of the scope prepended to the name listed in the
7274 die. */
7275
7276 static int
7277 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7278 {
7279 struct attribute *attr;
7280
7281 switch (die->tag)
7282 {
7283 case DW_TAG_namespace:
7284 case DW_TAG_typedef:
7285 case DW_TAG_class_type:
7286 case DW_TAG_interface_type:
7287 case DW_TAG_structure_type:
7288 case DW_TAG_union_type:
7289 case DW_TAG_enumeration_type:
7290 case DW_TAG_enumerator:
7291 case DW_TAG_subprogram:
7292 case DW_TAG_member:
7293 return 1;
7294
7295 case DW_TAG_variable:
7296 case DW_TAG_constant:
7297 /* We only need to prefix "globally" visible variables. These include
7298 any variable marked with DW_AT_external or any variable that
7299 lives in a namespace. [Variables in anonymous namespaces
7300 require prefixing, but they are not DW_AT_external.] */
7301
7302 if (dwarf2_attr (die, DW_AT_specification, cu))
7303 {
7304 struct dwarf2_cu *spec_cu = cu;
7305
7306 return die_needs_namespace (die_specification (die, &spec_cu),
7307 spec_cu);
7308 }
7309
7310 attr = dwarf2_attr (die, DW_AT_external, cu);
7311 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7312 && die->parent->tag != DW_TAG_module)
7313 return 0;
7314 /* A variable in a lexical block of some kind does not need a
7315 namespace, even though in C++ such variables may be external
7316 and have a mangled name. */
7317 if (die->parent->tag == DW_TAG_lexical_block
7318 || die->parent->tag == DW_TAG_try_block
7319 || die->parent->tag == DW_TAG_catch_block
7320 || die->parent->tag == DW_TAG_subprogram)
7321 return 0;
7322 return 1;
7323
7324 default:
7325 return 0;
7326 }
7327 }
7328
7329 /* Retrieve the last character from a mem_file. */
7330
7331 static void
7332 do_ui_file_peek_last (void *object, const char *buffer, long length)
7333 {
7334 char *last_char_p = (char *) object;
7335
7336 if (length > 0)
7337 *last_char_p = buffer[length - 1];
7338 }
7339
7340 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7341 compute the physname for the object, which include a method's:
7342 - formal parameters (C++/Java),
7343 - receiver type (Go),
7344 - return type (Java).
7345
7346 The term "physname" is a bit confusing.
7347 For C++, for example, it is the demangled name.
7348 For Go, for example, it's the mangled name.
7349
7350 For Ada, return the DIE's linkage name rather than the fully qualified
7351 name. PHYSNAME is ignored..
7352
7353 The result is allocated on the objfile_obstack and canonicalized. */
7354
7355 static const char *
7356 dwarf2_compute_name (const char *name,
7357 struct die_info *die, struct dwarf2_cu *cu,
7358 int physname)
7359 {
7360 struct objfile *objfile = cu->objfile;
7361
7362 if (name == NULL)
7363 name = dwarf2_name (die, cu);
7364
7365 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7366 compute it by typename_concat inside GDB. */
7367 if (cu->language == language_ada
7368 || (cu->language == language_fortran && physname))
7369 {
7370 /* For Ada unit, we prefer the linkage name over the name, as
7371 the former contains the exported name, which the user expects
7372 to be able to reference. Ideally, we want the user to be able
7373 to reference this entity using either natural or linkage name,
7374 but we haven't started looking at this enhancement yet. */
7375 struct attribute *attr;
7376
7377 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7378 if (attr == NULL)
7379 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7380 if (attr && DW_STRING (attr))
7381 return DW_STRING (attr);
7382 }
7383
7384 /* These are the only languages we know how to qualify names in. */
7385 if (name != NULL
7386 && (cu->language == language_cplus || cu->language == language_java
7387 || cu->language == language_fortran))
7388 {
7389 if (die_needs_namespace (die, cu))
7390 {
7391 long length;
7392 const char *prefix;
7393 struct ui_file *buf;
7394
7395 prefix = determine_prefix (die, cu);
7396 buf = mem_fileopen ();
7397 if (*prefix != '\0')
7398 {
7399 char *prefixed_name = typename_concat (NULL, prefix, name,
7400 physname, cu);
7401
7402 fputs_unfiltered (prefixed_name, buf);
7403 xfree (prefixed_name);
7404 }
7405 else
7406 fputs_unfiltered (name, buf);
7407
7408 /* Template parameters may be specified in the DIE's DW_AT_name, or
7409 as children with DW_TAG_template_type_param or
7410 DW_TAG_value_type_param. If the latter, add them to the name
7411 here. If the name already has template parameters, then
7412 skip this step; some versions of GCC emit both, and
7413 it is more efficient to use the pre-computed name.
7414
7415 Something to keep in mind about this process: it is very
7416 unlikely, or in some cases downright impossible, to produce
7417 something that will match the mangled name of a function.
7418 If the definition of the function has the same debug info,
7419 we should be able to match up with it anyway. But fallbacks
7420 using the minimal symbol, for instance to find a method
7421 implemented in a stripped copy of libstdc++, will not work.
7422 If we do not have debug info for the definition, we will have to
7423 match them up some other way.
7424
7425 When we do name matching there is a related problem with function
7426 templates; two instantiated function templates are allowed to
7427 differ only by their return types, which we do not add here. */
7428
7429 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7430 {
7431 struct attribute *attr;
7432 struct die_info *child;
7433 int first = 1;
7434
7435 die->building_fullname = 1;
7436
7437 for (child = die->child; child != NULL; child = child->sibling)
7438 {
7439 struct type *type;
7440 LONGEST value;
7441 gdb_byte *bytes;
7442 struct dwarf2_locexpr_baton *baton;
7443 struct value *v;
7444
7445 if (child->tag != DW_TAG_template_type_param
7446 && child->tag != DW_TAG_template_value_param)
7447 continue;
7448
7449 if (first)
7450 {
7451 fputs_unfiltered ("<", buf);
7452 first = 0;
7453 }
7454 else
7455 fputs_unfiltered (", ", buf);
7456
7457 attr = dwarf2_attr (child, DW_AT_type, cu);
7458 if (attr == NULL)
7459 {
7460 complaint (&symfile_complaints,
7461 _("template parameter missing DW_AT_type"));
7462 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7463 continue;
7464 }
7465 type = die_type (child, cu);
7466
7467 if (child->tag == DW_TAG_template_type_param)
7468 {
7469 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7470 continue;
7471 }
7472
7473 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7474 if (attr == NULL)
7475 {
7476 complaint (&symfile_complaints,
7477 _("template parameter missing "
7478 "DW_AT_const_value"));
7479 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7480 continue;
7481 }
7482
7483 dwarf2_const_value_attr (attr, type, name,
7484 &cu->comp_unit_obstack, cu,
7485 &value, &bytes, &baton);
7486
7487 if (TYPE_NOSIGN (type))
7488 /* GDB prints characters as NUMBER 'CHAR'. If that's
7489 changed, this can use value_print instead. */
7490 c_printchar (value, type, buf);
7491 else
7492 {
7493 struct value_print_options opts;
7494
7495 if (baton != NULL)
7496 v = dwarf2_evaluate_loc_desc (type, NULL,
7497 baton->data,
7498 baton->size,
7499 baton->per_cu);
7500 else if (bytes != NULL)
7501 {
7502 v = allocate_value (type);
7503 memcpy (value_contents_writeable (v), bytes,
7504 TYPE_LENGTH (type));
7505 }
7506 else
7507 v = value_from_longest (type, value);
7508
7509 /* Specify decimal so that we do not depend on
7510 the radix. */
7511 get_formatted_print_options (&opts, 'd');
7512 opts.raw = 1;
7513 value_print (v, buf, &opts);
7514 release_value (v);
7515 value_free (v);
7516 }
7517 }
7518
7519 die->building_fullname = 0;
7520
7521 if (!first)
7522 {
7523 /* Close the argument list, with a space if necessary
7524 (nested templates). */
7525 char last_char = '\0';
7526 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7527 if (last_char == '>')
7528 fputs_unfiltered (" >", buf);
7529 else
7530 fputs_unfiltered (">", buf);
7531 }
7532 }
7533
7534 /* For Java and C++ methods, append formal parameter type
7535 information, if PHYSNAME. */
7536
7537 if (physname && die->tag == DW_TAG_subprogram
7538 && (cu->language == language_cplus
7539 || cu->language == language_java))
7540 {
7541 struct type *type = read_type_die (die, cu);
7542
7543 c_type_print_args (type, buf, 1, cu->language,
7544 &type_print_raw_options);
7545
7546 if (cu->language == language_java)
7547 {
7548 /* For java, we must append the return type to method
7549 names. */
7550 if (die->tag == DW_TAG_subprogram)
7551 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7552 0, 0, &type_print_raw_options);
7553 }
7554 else if (cu->language == language_cplus)
7555 {
7556 /* Assume that an artificial first parameter is
7557 "this", but do not crash if it is not. RealView
7558 marks unnamed (and thus unused) parameters as
7559 artificial; there is no way to differentiate
7560 the two cases. */
7561 if (TYPE_NFIELDS (type) > 0
7562 && TYPE_FIELD_ARTIFICIAL (type, 0)
7563 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7564 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7565 0))))
7566 fputs_unfiltered (" const", buf);
7567 }
7568 }
7569
7570 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7571 &length);
7572 ui_file_delete (buf);
7573
7574 if (cu->language == language_cplus)
7575 {
7576 const char *cname
7577 = dwarf2_canonicalize_name (name, cu,
7578 &objfile->objfile_obstack);
7579
7580 if (cname != NULL)
7581 name = cname;
7582 }
7583 }
7584 }
7585
7586 return name;
7587 }
7588
7589 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7590 If scope qualifiers are appropriate they will be added. The result
7591 will be allocated on the objfile_obstack, or NULL if the DIE does
7592 not have a name. NAME may either be from a previous call to
7593 dwarf2_name or NULL.
7594
7595 The output string will be canonicalized (if C++/Java). */
7596
7597 static const char *
7598 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7599 {
7600 return dwarf2_compute_name (name, die, cu, 0);
7601 }
7602
7603 /* Construct a physname for the given DIE in CU. NAME may either be
7604 from a previous call to dwarf2_name or NULL. The result will be
7605 allocated on the objfile_objstack or NULL if the DIE does not have a
7606 name.
7607
7608 The output string will be canonicalized (if C++/Java). */
7609
7610 static const char *
7611 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7612 {
7613 struct objfile *objfile = cu->objfile;
7614 struct attribute *attr;
7615 const char *retval, *mangled = NULL, *canon = NULL;
7616 struct cleanup *back_to;
7617 int need_copy = 1;
7618
7619 /* In this case dwarf2_compute_name is just a shortcut not building anything
7620 on its own. */
7621 if (!die_needs_namespace (die, cu))
7622 return dwarf2_compute_name (name, die, cu, 1);
7623
7624 back_to = make_cleanup (null_cleanup, NULL);
7625
7626 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7627 if (!attr)
7628 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7629
7630 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7631 has computed. */
7632 if (attr && DW_STRING (attr))
7633 {
7634 char *demangled;
7635
7636 mangled = DW_STRING (attr);
7637
7638 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7639 type. It is easier for GDB users to search for such functions as
7640 `name(params)' than `long name(params)'. In such case the minimal
7641 symbol names do not match the full symbol names but for template
7642 functions there is never a need to look up their definition from their
7643 declaration so the only disadvantage remains the minimal symbol
7644 variant `long name(params)' does not have the proper inferior type.
7645 */
7646
7647 if (cu->language == language_go)
7648 {
7649 /* This is a lie, but we already lie to the caller new_symbol_full.
7650 new_symbol_full assumes we return the mangled name.
7651 This just undoes that lie until things are cleaned up. */
7652 demangled = NULL;
7653 }
7654 else
7655 {
7656 demangled = cplus_demangle (mangled,
7657 (DMGL_PARAMS | DMGL_ANSI
7658 | (cu->language == language_java
7659 ? DMGL_JAVA | DMGL_RET_POSTFIX
7660 : DMGL_RET_DROP)));
7661 }
7662 if (demangled)
7663 {
7664 make_cleanup (xfree, demangled);
7665 canon = demangled;
7666 }
7667 else
7668 {
7669 canon = mangled;
7670 need_copy = 0;
7671 }
7672 }
7673
7674 if (canon == NULL || check_physname)
7675 {
7676 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7677
7678 if (canon != NULL && strcmp (physname, canon) != 0)
7679 {
7680 /* It may not mean a bug in GDB. The compiler could also
7681 compute DW_AT_linkage_name incorrectly. But in such case
7682 GDB would need to be bug-to-bug compatible. */
7683
7684 complaint (&symfile_complaints,
7685 _("Computed physname <%s> does not match demangled <%s> "
7686 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7687 physname, canon, mangled, die->offset.sect_off, objfile->name);
7688
7689 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7690 is available here - over computed PHYSNAME. It is safer
7691 against both buggy GDB and buggy compilers. */
7692
7693 retval = canon;
7694 }
7695 else
7696 {
7697 retval = physname;
7698 need_copy = 0;
7699 }
7700 }
7701 else
7702 retval = canon;
7703
7704 if (need_copy)
7705 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7706
7707 do_cleanups (back_to);
7708 return retval;
7709 }
7710
7711 /* Read the import statement specified by the given die and record it. */
7712
7713 static void
7714 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7715 {
7716 struct objfile *objfile = cu->objfile;
7717 struct attribute *import_attr;
7718 struct die_info *imported_die, *child_die;
7719 struct dwarf2_cu *imported_cu;
7720 const char *imported_name;
7721 const char *imported_name_prefix;
7722 const char *canonical_name;
7723 const char *import_alias;
7724 const char *imported_declaration = NULL;
7725 const char *import_prefix;
7726 VEC (const_char_ptr) *excludes = NULL;
7727 struct cleanup *cleanups;
7728
7729 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7730 if (import_attr == NULL)
7731 {
7732 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7733 dwarf_tag_name (die->tag));
7734 return;
7735 }
7736
7737 imported_cu = cu;
7738 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7739 imported_name = dwarf2_name (imported_die, imported_cu);
7740 if (imported_name == NULL)
7741 {
7742 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7743
7744 The import in the following code:
7745 namespace A
7746 {
7747 typedef int B;
7748 }
7749
7750 int main ()
7751 {
7752 using A::B;
7753 B b;
7754 return b;
7755 }
7756
7757 ...
7758 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7759 <52> DW_AT_decl_file : 1
7760 <53> DW_AT_decl_line : 6
7761 <54> DW_AT_import : <0x75>
7762 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7763 <59> DW_AT_name : B
7764 <5b> DW_AT_decl_file : 1
7765 <5c> DW_AT_decl_line : 2
7766 <5d> DW_AT_type : <0x6e>
7767 ...
7768 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7769 <76> DW_AT_byte_size : 4
7770 <77> DW_AT_encoding : 5 (signed)
7771
7772 imports the wrong die ( 0x75 instead of 0x58 ).
7773 This case will be ignored until the gcc bug is fixed. */
7774 return;
7775 }
7776
7777 /* Figure out the local name after import. */
7778 import_alias = dwarf2_name (die, cu);
7779
7780 /* Figure out where the statement is being imported to. */
7781 import_prefix = determine_prefix (die, cu);
7782
7783 /* Figure out what the scope of the imported die is and prepend it
7784 to the name of the imported die. */
7785 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7786
7787 if (imported_die->tag != DW_TAG_namespace
7788 && imported_die->tag != DW_TAG_module)
7789 {
7790 imported_declaration = imported_name;
7791 canonical_name = imported_name_prefix;
7792 }
7793 else if (strlen (imported_name_prefix) > 0)
7794 canonical_name = obconcat (&objfile->objfile_obstack,
7795 imported_name_prefix, "::", imported_name,
7796 (char *) NULL);
7797 else
7798 canonical_name = imported_name;
7799
7800 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7801
7802 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7803 for (child_die = die->child; child_die && child_die->tag;
7804 child_die = sibling_die (child_die))
7805 {
7806 /* DWARF-4: A Fortran use statement with a “rename list” may be
7807 represented by an imported module entry with an import attribute
7808 referring to the module and owned entries corresponding to those
7809 entities that are renamed as part of being imported. */
7810
7811 if (child_die->tag != DW_TAG_imported_declaration)
7812 {
7813 complaint (&symfile_complaints,
7814 _("child DW_TAG_imported_declaration expected "
7815 "- DIE at 0x%x [in module %s]"),
7816 child_die->offset.sect_off, objfile->name);
7817 continue;
7818 }
7819
7820 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7821 if (import_attr == NULL)
7822 {
7823 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7824 dwarf_tag_name (child_die->tag));
7825 continue;
7826 }
7827
7828 imported_cu = cu;
7829 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7830 &imported_cu);
7831 imported_name = dwarf2_name (imported_die, imported_cu);
7832 if (imported_name == NULL)
7833 {
7834 complaint (&symfile_complaints,
7835 _("child DW_TAG_imported_declaration has unknown "
7836 "imported name - DIE at 0x%x [in module %s]"),
7837 child_die->offset.sect_off, objfile->name);
7838 continue;
7839 }
7840
7841 VEC_safe_push (const_char_ptr, excludes, imported_name);
7842
7843 process_die (child_die, cu);
7844 }
7845
7846 cp_add_using_directive (import_prefix,
7847 canonical_name,
7848 import_alias,
7849 imported_declaration,
7850 excludes,
7851 0,
7852 &objfile->objfile_obstack);
7853
7854 do_cleanups (cleanups);
7855 }
7856
7857 /* Cleanup function for handle_DW_AT_stmt_list. */
7858
7859 static void
7860 free_cu_line_header (void *arg)
7861 {
7862 struct dwarf2_cu *cu = arg;
7863
7864 free_line_header (cu->line_header);
7865 cu->line_header = NULL;
7866 }
7867
7868 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7869 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7870 this, it was first present in GCC release 4.3.0. */
7871
7872 static int
7873 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7874 {
7875 if (!cu->checked_producer)
7876 check_producer (cu);
7877
7878 return cu->producer_is_gcc_lt_4_3;
7879 }
7880
7881 static void
7882 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7883 const char **name, const char **comp_dir)
7884 {
7885 struct attribute *attr;
7886
7887 *name = NULL;
7888 *comp_dir = NULL;
7889
7890 /* Find the filename. Do not use dwarf2_name here, since the filename
7891 is not a source language identifier. */
7892 attr = dwarf2_attr (die, DW_AT_name, cu);
7893 if (attr)
7894 {
7895 *name = DW_STRING (attr);
7896 }
7897
7898 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7899 if (attr)
7900 *comp_dir = DW_STRING (attr);
7901 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7902 && IS_ABSOLUTE_PATH (*name))
7903 {
7904 char *d = ldirname (*name);
7905
7906 *comp_dir = d;
7907 if (d != NULL)
7908 make_cleanup (xfree, d);
7909 }
7910 if (*comp_dir != NULL)
7911 {
7912 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7913 directory, get rid of it. */
7914 char *cp = strchr (*comp_dir, ':');
7915
7916 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7917 *comp_dir = cp + 1;
7918 }
7919
7920 if (*name == NULL)
7921 *name = "<unknown>";
7922 }
7923
7924 /* Handle DW_AT_stmt_list for a compilation unit.
7925 DIE is the DW_TAG_compile_unit die for CU.
7926 COMP_DIR is the compilation directory.
7927 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7928
7929 static void
7930 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7931 const char *comp_dir)
7932 {
7933 struct attribute *attr;
7934
7935 gdb_assert (! cu->per_cu->is_debug_types);
7936
7937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7938 if (attr)
7939 {
7940 unsigned int line_offset = DW_UNSND (attr);
7941 struct line_header *line_header
7942 = dwarf_decode_line_header (line_offset, cu);
7943
7944 if (line_header)
7945 {
7946 cu->line_header = line_header;
7947 make_cleanup (free_cu_line_header, cu);
7948 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7949 }
7950 }
7951 }
7952
7953 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7954
7955 static void
7956 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7957 {
7958 struct objfile *objfile = dwarf2_per_objfile->objfile;
7959 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7960 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7961 CORE_ADDR highpc = ((CORE_ADDR) 0);
7962 struct attribute *attr;
7963 const char *name = NULL;
7964 const char *comp_dir = NULL;
7965 struct die_info *child_die;
7966 bfd *abfd = objfile->obfd;
7967 CORE_ADDR baseaddr;
7968
7969 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7970
7971 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7972
7973 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7974 from finish_block. */
7975 if (lowpc == ((CORE_ADDR) -1))
7976 lowpc = highpc;
7977 lowpc += baseaddr;
7978 highpc += baseaddr;
7979
7980 find_file_and_directory (die, cu, &name, &comp_dir);
7981
7982 prepare_one_comp_unit (cu, die, cu->language);
7983
7984 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7985 standardised yet. As a workaround for the language detection we fall
7986 back to the DW_AT_producer string. */
7987 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7988 cu->language = language_opencl;
7989
7990 /* Similar hack for Go. */
7991 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7992 set_cu_language (DW_LANG_Go, cu);
7993
7994 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7995
7996 /* Decode line number information if present. We do this before
7997 processing child DIEs, so that the line header table is available
7998 for DW_AT_decl_file. */
7999 handle_DW_AT_stmt_list (die, cu, comp_dir);
8000
8001 /* Process all dies in compilation unit. */
8002 if (die->child != NULL)
8003 {
8004 child_die = die->child;
8005 while (child_die && child_die->tag)
8006 {
8007 process_die (child_die, cu);
8008 child_die = sibling_die (child_die);
8009 }
8010 }
8011
8012 /* Decode macro information, if present. Dwarf 2 macro information
8013 refers to information in the line number info statement program
8014 header, so we can only read it if we've read the header
8015 successfully. */
8016 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8017 if (attr && cu->line_header)
8018 {
8019 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8020 complaint (&symfile_complaints,
8021 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8022
8023 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8024 }
8025 else
8026 {
8027 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8028 if (attr && cu->line_header)
8029 {
8030 unsigned int macro_offset = DW_UNSND (attr);
8031
8032 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8033 }
8034 }
8035
8036 do_cleanups (back_to);
8037 }
8038
8039 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8040 Create the set of symtabs used by this TU, or if this TU is sharing
8041 symtabs with another TU and the symtabs have already been created
8042 then restore those symtabs in the line header.
8043 We don't need the pc/line-number mapping for type units. */
8044
8045 static void
8046 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8047 {
8048 struct objfile *objfile = dwarf2_per_objfile->objfile;
8049 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8050 struct type_unit_group *tu_group;
8051 int first_time;
8052 struct line_header *lh;
8053 struct attribute *attr;
8054 unsigned int i, line_offset;
8055
8056 gdb_assert (per_cu->is_debug_types);
8057
8058 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8059
8060 /* If we're using .gdb_index (includes -readnow) then
8061 per_cu->s.type_unit_group may not have been set up yet. */
8062 if (per_cu->type_unit_group == NULL)
8063 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8064 tu_group = per_cu->type_unit_group;
8065
8066 /* If we've already processed this stmt_list there's no real need to
8067 do it again, we could fake it and just recreate the part we need
8068 (file name,index -> symtab mapping). If data shows this optimization
8069 is useful we can do it then. */
8070 first_time = tu_group->primary_symtab == NULL;
8071
8072 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8073 debug info. */
8074 lh = NULL;
8075 if (attr != NULL)
8076 {
8077 line_offset = DW_UNSND (attr);
8078 lh = dwarf_decode_line_header (line_offset, cu);
8079 }
8080 if (lh == NULL)
8081 {
8082 if (first_time)
8083 dwarf2_start_symtab (cu, "", NULL, 0);
8084 else
8085 {
8086 gdb_assert (tu_group->symtabs == NULL);
8087 restart_symtab (0);
8088 }
8089 /* Note: The primary symtab will get allocated at the end. */
8090 return;
8091 }
8092
8093 cu->line_header = lh;
8094 make_cleanup (free_cu_line_header, cu);
8095
8096 if (first_time)
8097 {
8098 dwarf2_start_symtab (cu, "", NULL, 0);
8099
8100 tu_group->num_symtabs = lh->num_file_names;
8101 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8102
8103 for (i = 0; i < lh->num_file_names; ++i)
8104 {
8105 char *dir = NULL;
8106 struct file_entry *fe = &lh->file_names[i];
8107
8108 if (fe->dir_index)
8109 dir = lh->include_dirs[fe->dir_index - 1];
8110 dwarf2_start_subfile (fe->name, dir, NULL);
8111
8112 /* Note: We don't have to watch for the main subfile here, type units
8113 don't have DW_AT_name. */
8114
8115 if (current_subfile->symtab == NULL)
8116 {
8117 /* NOTE: start_subfile will recognize when it's been passed
8118 a file it has already seen. So we can't assume there's a
8119 simple mapping from lh->file_names to subfiles,
8120 lh->file_names may contain dups. */
8121 current_subfile->symtab = allocate_symtab (current_subfile->name,
8122 objfile);
8123 }
8124
8125 fe->symtab = current_subfile->symtab;
8126 tu_group->symtabs[i] = fe->symtab;
8127 }
8128 }
8129 else
8130 {
8131 restart_symtab (0);
8132
8133 for (i = 0; i < lh->num_file_names; ++i)
8134 {
8135 struct file_entry *fe = &lh->file_names[i];
8136
8137 fe->symtab = tu_group->symtabs[i];
8138 }
8139 }
8140
8141 /* The main symtab is allocated last. Type units don't have DW_AT_name
8142 so they don't have a "real" (so to speak) symtab anyway.
8143 There is later code that will assign the main symtab to all symbols
8144 that don't have one. We need to handle the case of a symbol with a
8145 missing symtab (DW_AT_decl_file) anyway. */
8146 }
8147
8148 /* Process DW_TAG_type_unit.
8149 For TUs we want to skip the first top level sibling if it's not the
8150 actual type being defined by this TU. In this case the first top
8151 level sibling is there to provide context only. */
8152
8153 static void
8154 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8155 {
8156 struct die_info *child_die;
8157
8158 prepare_one_comp_unit (cu, die, language_minimal);
8159
8160 /* Initialize (or reinitialize) the machinery for building symtabs.
8161 We do this before processing child DIEs, so that the line header table
8162 is available for DW_AT_decl_file. */
8163 setup_type_unit_groups (die, cu);
8164
8165 if (die->child != NULL)
8166 {
8167 child_die = die->child;
8168 while (child_die && child_die->tag)
8169 {
8170 process_die (child_die, cu);
8171 child_die = sibling_die (child_die);
8172 }
8173 }
8174 }
8175 \f
8176 /* DWO/DWP files.
8177
8178 http://gcc.gnu.org/wiki/DebugFission
8179 http://gcc.gnu.org/wiki/DebugFissionDWP
8180
8181 To simplify handling of both DWO files ("object" files with the DWARF info)
8182 and DWP files (a file with the DWOs packaged up into one file), we treat
8183 DWP files as having a collection of virtual DWO files. */
8184
8185 static hashval_t
8186 hash_dwo_file (const void *item)
8187 {
8188 const struct dwo_file *dwo_file = item;
8189
8190 return htab_hash_string (dwo_file->name);
8191 }
8192
8193 static int
8194 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8195 {
8196 const struct dwo_file *lhs = item_lhs;
8197 const struct dwo_file *rhs = item_rhs;
8198
8199 return strcmp (lhs->name, rhs->name) == 0;
8200 }
8201
8202 /* Allocate a hash table for DWO files. */
8203
8204 static htab_t
8205 allocate_dwo_file_hash_table (void)
8206 {
8207 struct objfile *objfile = dwarf2_per_objfile->objfile;
8208
8209 return htab_create_alloc_ex (41,
8210 hash_dwo_file,
8211 eq_dwo_file,
8212 NULL,
8213 &objfile->objfile_obstack,
8214 hashtab_obstack_allocate,
8215 dummy_obstack_deallocate);
8216 }
8217
8218 /* Lookup DWO file DWO_NAME. */
8219
8220 static void **
8221 lookup_dwo_file_slot (const char *dwo_name)
8222 {
8223 struct dwo_file find_entry;
8224 void **slot;
8225
8226 if (dwarf2_per_objfile->dwo_files == NULL)
8227 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8228
8229 memset (&find_entry, 0, sizeof (find_entry));
8230 find_entry.name = dwo_name;
8231 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8232
8233 return slot;
8234 }
8235
8236 static hashval_t
8237 hash_dwo_unit (const void *item)
8238 {
8239 const struct dwo_unit *dwo_unit = item;
8240
8241 /* This drops the top 32 bits of the id, but is ok for a hash. */
8242 return dwo_unit->signature;
8243 }
8244
8245 static int
8246 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8247 {
8248 const struct dwo_unit *lhs = item_lhs;
8249 const struct dwo_unit *rhs = item_rhs;
8250
8251 /* The signature is assumed to be unique within the DWO file.
8252 So while object file CU dwo_id's always have the value zero,
8253 that's OK, assuming each object file DWO file has only one CU,
8254 and that's the rule for now. */
8255 return lhs->signature == rhs->signature;
8256 }
8257
8258 /* Allocate a hash table for DWO CUs,TUs.
8259 There is one of these tables for each of CUs,TUs for each DWO file. */
8260
8261 static htab_t
8262 allocate_dwo_unit_table (struct objfile *objfile)
8263 {
8264 /* Start out with a pretty small number.
8265 Generally DWO files contain only one CU and maybe some TUs. */
8266 return htab_create_alloc_ex (3,
8267 hash_dwo_unit,
8268 eq_dwo_unit,
8269 NULL,
8270 &objfile->objfile_obstack,
8271 hashtab_obstack_allocate,
8272 dummy_obstack_deallocate);
8273 }
8274
8275 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8276
8277 struct create_dwo_info_table_data
8278 {
8279 struct dwo_file *dwo_file;
8280 htab_t cu_htab;
8281 };
8282
8283 /* die_reader_func for create_dwo_debug_info_hash_table. */
8284
8285 static void
8286 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8287 gdb_byte *info_ptr,
8288 struct die_info *comp_unit_die,
8289 int has_children,
8290 void *datap)
8291 {
8292 struct dwarf2_cu *cu = reader->cu;
8293 struct objfile *objfile = dwarf2_per_objfile->objfile;
8294 sect_offset offset = cu->per_cu->offset;
8295 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8296 struct create_dwo_info_table_data *data = datap;
8297 struct dwo_file *dwo_file = data->dwo_file;
8298 htab_t cu_htab = data->cu_htab;
8299 void **slot;
8300 struct attribute *attr;
8301 struct dwo_unit *dwo_unit;
8302
8303 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8304 if (attr == NULL)
8305 {
8306 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8307 " its dwo_id [in module %s]"),
8308 offset.sect_off, dwo_file->name);
8309 return;
8310 }
8311
8312 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8313 dwo_unit->dwo_file = dwo_file;
8314 dwo_unit->signature = DW_UNSND (attr);
8315 dwo_unit->info_or_types_section = section;
8316 dwo_unit->offset = offset;
8317 dwo_unit->length = cu->per_cu->length;
8318
8319 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8320 gdb_assert (slot != NULL);
8321 if (*slot != NULL)
8322 {
8323 const struct dwo_unit *dup_dwo_unit = *slot;
8324
8325 complaint (&symfile_complaints,
8326 _("debug entry at offset 0x%x is duplicate to the entry at"
8327 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8328 offset.sect_off, dup_dwo_unit->offset.sect_off,
8329 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8330 dwo_file->name);
8331 }
8332 else
8333 *slot = dwo_unit;
8334
8335 if (dwarf2_read_debug)
8336 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8337 offset.sect_off,
8338 phex (dwo_unit->signature,
8339 sizeof (dwo_unit->signature)));
8340 }
8341
8342 /* Create a hash table to map DWO IDs to their CU entry in
8343 .debug_info.dwo in DWO_FILE.
8344 Note: This function processes DWO files only, not DWP files. */
8345
8346 static htab_t
8347 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8348 {
8349 struct objfile *objfile = dwarf2_per_objfile->objfile;
8350 struct dwarf2_section_info *section = &dwo_file->sections.info;
8351 bfd *abfd;
8352 htab_t cu_htab;
8353 gdb_byte *info_ptr, *end_ptr;
8354 struct create_dwo_info_table_data create_dwo_info_table_data;
8355
8356 dwarf2_read_section (objfile, section);
8357 info_ptr = section->buffer;
8358
8359 if (info_ptr == NULL)
8360 return NULL;
8361
8362 /* We can't set abfd until now because the section may be empty or
8363 not present, in which case section->asection will be NULL. */
8364 abfd = section->asection->owner;
8365
8366 if (dwarf2_read_debug)
8367 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8368 bfd_get_filename (abfd));
8369
8370 cu_htab = allocate_dwo_unit_table (objfile);
8371
8372 create_dwo_info_table_data.dwo_file = dwo_file;
8373 create_dwo_info_table_data.cu_htab = cu_htab;
8374
8375 end_ptr = info_ptr + section->size;
8376 while (info_ptr < end_ptr)
8377 {
8378 struct dwarf2_per_cu_data per_cu;
8379
8380 memset (&per_cu, 0, sizeof (per_cu));
8381 per_cu.objfile = objfile;
8382 per_cu.is_debug_types = 0;
8383 per_cu.offset.sect_off = info_ptr - section->buffer;
8384 per_cu.info_or_types_section = section;
8385
8386 init_cutu_and_read_dies_no_follow (&per_cu,
8387 &dwo_file->sections.abbrev,
8388 dwo_file,
8389 create_dwo_debug_info_hash_table_reader,
8390 &create_dwo_info_table_data);
8391
8392 info_ptr += per_cu.length;
8393 }
8394
8395 return cu_htab;
8396 }
8397
8398 /* DWP file .debug_{cu,tu}_index section format:
8399 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8400
8401 Both index sections have the same format, and serve to map a 64-bit
8402 signature to a set of section numbers. Each section begins with a header,
8403 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8404 indexes, and a pool of 32-bit section numbers. The index sections will be
8405 aligned at 8-byte boundaries in the file.
8406
8407 The index section header contains two unsigned 32-bit values (using the
8408 byte order of the application binary):
8409
8410 N, the number of compilation units or type units in the index
8411 M, the number of slots in the hash table
8412
8413 (We assume that N and M will not exceed 2^32 - 1.)
8414
8415 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8416
8417 The hash table begins at offset 8 in the section, and consists of an array
8418 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8419 order of the application binary). Unused slots in the hash table are 0.
8420 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8421
8422 The parallel table begins immediately after the hash table
8423 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8424 array of 32-bit indexes (using the byte order of the application binary),
8425 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8426 table contains a 32-bit index into the pool of section numbers. For unused
8427 hash table slots, the corresponding entry in the parallel table will be 0.
8428
8429 Given a 64-bit compilation unit signature or a type signature S, an entry
8430 in the hash table is located as follows:
8431
8432 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8433 the low-order k bits all set to 1.
8434
8435 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8436
8437 3) If the hash table entry at index H matches the signature, use that
8438 entry. If the hash table entry at index H is unused (all zeroes),
8439 terminate the search: the signature is not present in the table.
8440
8441 4) Let H = (H + H') modulo M. Repeat at Step 3.
8442
8443 Because M > N and H' and M are relatively prime, the search is guaranteed
8444 to stop at an unused slot or find the match.
8445
8446 The pool of section numbers begins immediately following the hash table
8447 (at offset 8 + 12 * M from the beginning of the section). The pool of
8448 section numbers consists of an array of 32-bit words (using the byte order
8449 of the application binary). Each item in the array is indexed starting
8450 from 0. The hash table entry provides the index of the first section
8451 number in the set. Additional section numbers in the set follow, and the
8452 set is terminated by a 0 entry (section number 0 is not used in ELF).
8453
8454 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8455 section must be the first entry in the set, and the .debug_abbrev.dwo must
8456 be the second entry. Other members of the set may follow in any order. */
8457
8458 /* Create a hash table to map DWO IDs to their CU/TU entry in
8459 .debug_{info,types}.dwo in DWP_FILE.
8460 Returns NULL if there isn't one.
8461 Note: This function processes DWP files only, not DWO files. */
8462
8463 static struct dwp_hash_table *
8464 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8465 {
8466 struct objfile *objfile = dwarf2_per_objfile->objfile;
8467 bfd *dbfd = dwp_file->dbfd;
8468 char *index_ptr, *index_end;
8469 struct dwarf2_section_info *index;
8470 uint32_t version, nr_units, nr_slots;
8471 struct dwp_hash_table *htab;
8472
8473 if (is_debug_types)
8474 index = &dwp_file->sections.tu_index;
8475 else
8476 index = &dwp_file->sections.cu_index;
8477
8478 if (dwarf2_section_empty_p (index))
8479 return NULL;
8480 dwarf2_read_section (objfile, index);
8481
8482 index_ptr = index->buffer;
8483 index_end = index_ptr + index->size;
8484
8485 version = read_4_bytes (dbfd, index_ptr);
8486 index_ptr += 8; /* Skip the unused word. */
8487 nr_units = read_4_bytes (dbfd, index_ptr);
8488 index_ptr += 4;
8489 nr_slots = read_4_bytes (dbfd, index_ptr);
8490 index_ptr += 4;
8491
8492 if (version != 1)
8493 {
8494 error (_("Dwarf Error: unsupported DWP file version (%u)"
8495 " [in module %s]"),
8496 version, dwp_file->name);
8497 }
8498 if (nr_slots != (nr_slots & -nr_slots))
8499 {
8500 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8501 " is not power of 2 [in module %s]"),
8502 nr_slots, dwp_file->name);
8503 }
8504
8505 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8506 htab->nr_units = nr_units;
8507 htab->nr_slots = nr_slots;
8508 htab->hash_table = index_ptr;
8509 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8510 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8511
8512 return htab;
8513 }
8514
8515 /* Update SECTIONS with the data from SECTP.
8516
8517 This function is like the other "locate" section routines that are
8518 passed to bfd_map_over_sections, but in this context the sections to
8519 read comes from the DWP hash table, not the full ELF section table.
8520
8521 The result is non-zero for success, or zero if an error was found. */
8522
8523 static int
8524 locate_virtual_dwo_sections (asection *sectp,
8525 struct virtual_dwo_sections *sections)
8526 {
8527 const struct dwop_section_names *names = &dwop_section_names;
8528
8529 if (section_is_p (sectp->name, &names->abbrev_dwo))
8530 {
8531 /* There can be only one. */
8532 if (sections->abbrev.asection != NULL)
8533 return 0;
8534 sections->abbrev.asection = sectp;
8535 sections->abbrev.size = bfd_get_section_size (sectp);
8536 }
8537 else if (section_is_p (sectp->name, &names->info_dwo)
8538 || section_is_p (sectp->name, &names->types_dwo))
8539 {
8540 /* There can be only one. */
8541 if (sections->info_or_types.asection != NULL)
8542 return 0;
8543 sections->info_or_types.asection = sectp;
8544 sections->info_or_types.size = bfd_get_section_size (sectp);
8545 }
8546 else if (section_is_p (sectp->name, &names->line_dwo))
8547 {
8548 /* There can be only one. */
8549 if (sections->line.asection != NULL)
8550 return 0;
8551 sections->line.asection = sectp;
8552 sections->line.size = bfd_get_section_size (sectp);
8553 }
8554 else if (section_is_p (sectp->name, &names->loc_dwo))
8555 {
8556 /* There can be only one. */
8557 if (sections->loc.asection != NULL)
8558 return 0;
8559 sections->loc.asection = sectp;
8560 sections->loc.size = bfd_get_section_size (sectp);
8561 }
8562 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8563 {
8564 /* There can be only one. */
8565 if (sections->macinfo.asection != NULL)
8566 return 0;
8567 sections->macinfo.asection = sectp;
8568 sections->macinfo.size = bfd_get_section_size (sectp);
8569 }
8570 else if (section_is_p (sectp->name, &names->macro_dwo))
8571 {
8572 /* There can be only one. */
8573 if (sections->macro.asection != NULL)
8574 return 0;
8575 sections->macro.asection = sectp;
8576 sections->macro.size = bfd_get_section_size (sectp);
8577 }
8578 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8579 {
8580 /* There can be only one. */
8581 if (sections->str_offsets.asection != NULL)
8582 return 0;
8583 sections->str_offsets.asection = sectp;
8584 sections->str_offsets.size = bfd_get_section_size (sectp);
8585 }
8586 else
8587 {
8588 /* No other kind of section is valid. */
8589 return 0;
8590 }
8591
8592 return 1;
8593 }
8594
8595 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8596 HTAB is the hash table from the DWP file.
8597 SECTION_INDEX is the index of the DWO in HTAB. */
8598
8599 static struct dwo_unit *
8600 create_dwo_in_dwp (struct dwp_file *dwp_file,
8601 const struct dwp_hash_table *htab,
8602 uint32_t section_index,
8603 ULONGEST signature, int is_debug_types)
8604 {
8605 struct objfile *objfile = dwarf2_per_objfile->objfile;
8606 bfd *dbfd = dwp_file->dbfd;
8607 const char *kind = is_debug_types ? "TU" : "CU";
8608 struct dwo_file *dwo_file;
8609 struct dwo_unit *dwo_unit;
8610 struct virtual_dwo_sections sections;
8611 void **dwo_file_slot;
8612 char *virtual_dwo_name;
8613 struct dwarf2_section_info *cutu;
8614 struct cleanup *cleanups;
8615 int i;
8616
8617 if (dwarf2_read_debug)
8618 {
8619 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8620 kind,
8621 section_index, phex (signature, sizeof (signature)),
8622 dwp_file->name);
8623 }
8624
8625 /* Fetch the sections of this DWO.
8626 Put a limit on the number of sections we look for so that bad data
8627 doesn't cause us to loop forever. */
8628
8629 #define MAX_NR_DWO_SECTIONS \
8630 (1 /* .debug_info or .debug_types */ \
8631 + 1 /* .debug_abbrev */ \
8632 + 1 /* .debug_line */ \
8633 + 1 /* .debug_loc */ \
8634 + 1 /* .debug_str_offsets */ \
8635 + 1 /* .debug_macro */ \
8636 + 1 /* .debug_macinfo */ \
8637 + 1 /* trailing zero */)
8638
8639 memset (&sections, 0, sizeof (sections));
8640 cleanups = make_cleanup (null_cleanup, 0);
8641
8642 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8643 {
8644 asection *sectp;
8645 uint32_t section_nr =
8646 read_4_bytes (dbfd,
8647 htab->section_pool
8648 + (section_index + i) * sizeof (uint32_t));
8649
8650 if (section_nr == 0)
8651 break;
8652 if (section_nr >= dwp_file->num_sections)
8653 {
8654 error (_("Dwarf Error: bad DWP hash table, section number too large"
8655 " [in module %s]"),
8656 dwp_file->name);
8657 }
8658
8659 sectp = dwp_file->elf_sections[section_nr];
8660 if (! locate_virtual_dwo_sections (sectp, &sections))
8661 {
8662 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8663 " [in module %s]"),
8664 dwp_file->name);
8665 }
8666 }
8667
8668 if (i < 2
8669 || sections.info_or_types.asection == NULL
8670 || sections.abbrev.asection == NULL)
8671 {
8672 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8673 " [in module %s]"),
8674 dwp_file->name);
8675 }
8676 if (i == MAX_NR_DWO_SECTIONS)
8677 {
8678 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8679 " [in module %s]"),
8680 dwp_file->name);
8681 }
8682
8683 /* It's easier for the rest of the code if we fake a struct dwo_file and
8684 have dwo_unit "live" in that. At least for now.
8685
8686 The DWP file can be made up of a random collection of CUs and TUs.
8687 However, for each CU + set of TUs that came from the same original DWO
8688 file, we want to combine them back into a virtual DWO file to save space
8689 (fewer struct dwo_file objects to allocated). Remember that for really
8690 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8691
8692 virtual_dwo_name =
8693 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8694 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8695 sections.line.asection ? sections.line.asection->id : 0,
8696 sections.loc.asection ? sections.loc.asection->id : 0,
8697 (sections.str_offsets.asection
8698 ? sections.str_offsets.asection->id
8699 : 0));
8700 make_cleanup (xfree, virtual_dwo_name);
8701 /* Can we use an existing virtual DWO file? */
8702 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8703 /* Create one if necessary. */
8704 if (*dwo_file_slot == NULL)
8705 {
8706 if (dwarf2_read_debug)
8707 {
8708 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8709 virtual_dwo_name);
8710 }
8711 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8712 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8713 virtual_dwo_name,
8714 strlen (virtual_dwo_name));
8715 dwo_file->sections.abbrev = sections.abbrev;
8716 dwo_file->sections.line = sections.line;
8717 dwo_file->sections.loc = sections.loc;
8718 dwo_file->sections.macinfo = sections.macinfo;
8719 dwo_file->sections.macro = sections.macro;
8720 dwo_file->sections.str_offsets = sections.str_offsets;
8721 /* The "str" section is global to the entire DWP file. */
8722 dwo_file->sections.str = dwp_file->sections.str;
8723 /* The info or types section is assigned later to dwo_unit,
8724 there's no need to record it in dwo_file.
8725 Also, we can't simply record type sections in dwo_file because
8726 we record a pointer into the vector in dwo_unit. As we collect more
8727 types we'll grow the vector and eventually have to reallocate space
8728 for it, invalidating all the pointers into the current copy. */
8729 *dwo_file_slot = dwo_file;
8730 }
8731 else
8732 {
8733 if (dwarf2_read_debug)
8734 {
8735 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8736 virtual_dwo_name);
8737 }
8738 dwo_file = *dwo_file_slot;
8739 }
8740 do_cleanups (cleanups);
8741
8742 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8743 dwo_unit->dwo_file = dwo_file;
8744 dwo_unit->signature = signature;
8745 dwo_unit->info_or_types_section =
8746 obstack_alloc (&objfile->objfile_obstack,
8747 sizeof (struct dwarf2_section_info));
8748 *dwo_unit->info_or_types_section = sections.info_or_types;
8749 /* offset, length, type_offset_in_tu are set later. */
8750
8751 return dwo_unit;
8752 }
8753
8754 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8755
8756 static struct dwo_unit *
8757 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8758 const struct dwp_hash_table *htab,
8759 ULONGEST signature, int is_debug_types)
8760 {
8761 bfd *dbfd = dwp_file->dbfd;
8762 uint32_t mask = htab->nr_slots - 1;
8763 uint32_t hash = signature & mask;
8764 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8765 unsigned int i;
8766 void **slot;
8767 struct dwo_unit find_dwo_cu, *dwo_cu;
8768
8769 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8770 find_dwo_cu.signature = signature;
8771 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8772
8773 if (*slot != NULL)
8774 return *slot;
8775
8776 /* Use a for loop so that we don't loop forever on bad debug info. */
8777 for (i = 0; i < htab->nr_slots; ++i)
8778 {
8779 ULONGEST signature_in_table;
8780
8781 signature_in_table =
8782 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8783 if (signature_in_table == signature)
8784 {
8785 uint32_t section_index =
8786 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8787
8788 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8789 signature, is_debug_types);
8790 return *slot;
8791 }
8792 if (signature_in_table == 0)
8793 return NULL;
8794 hash = (hash + hash2) & mask;
8795 }
8796
8797 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8798 " [in module %s]"),
8799 dwp_file->name);
8800 }
8801
8802 /* Subroutine of open_dwop_file to simplify it.
8803 Open the file specified by FILE_NAME and hand it off to BFD for
8804 preliminary analysis. Return a newly initialized bfd *, which
8805 includes a canonicalized copy of FILE_NAME.
8806 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8807 In case of trouble, return NULL.
8808 NOTE: This function is derived from symfile_bfd_open. */
8809
8810 static bfd *
8811 try_open_dwop_file (const char *file_name, int is_dwp)
8812 {
8813 bfd *sym_bfd;
8814 int desc, flags;
8815 char *absolute_name;
8816
8817 flags = OPF_TRY_CWD_FIRST;
8818 if (is_dwp)
8819 flags |= OPF_SEARCH_IN_PATH;
8820 desc = openp (debug_file_directory, flags, file_name,
8821 O_RDONLY | O_BINARY, &absolute_name);
8822 if (desc < 0)
8823 return NULL;
8824
8825 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8826 if (!sym_bfd)
8827 {
8828 xfree (absolute_name);
8829 return NULL;
8830 }
8831 xfree (absolute_name);
8832 bfd_set_cacheable (sym_bfd, 1);
8833
8834 if (!bfd_check_format (sym_bfd, bfd_object))
8835 {
8836 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8837 return NULL;
8838 }
8839
8840 return sym_bfd;
8841 }
8842
8843 /* Try to open DWO/DWP file FILE_NAME.
8844 COMP_DIR is the DW_AT_comp_dir attribute.
8845 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8846 The result is the bfd handle of the file.
8847 If there is a problem finding or opening the file, return NULL.
8848 Upon success, the canonicalized path of the file is stored in the bfd,
8849 same as symfile_bfd_open. */
8850
8851 static bfd *
8852 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8853 {
8854 bfd *abfd;
8855
8856 if (IS_ABSOLUTE_PATH (file_name))
8857 return try_open_dwop_file (file_name, is_dwp);
8858
8859 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8860
8861 if (comp_dir != NULL)
8862 {
8863 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8864
8865 /* NOTE: If comp_dir is a relative path, this will also try the
8866 search path, which seems useful. */
8867 abfd = try_open_dwop_file (path_to_try, is_dwp);
8868 xfree (path_to_try);
8869 if (abfd != NULL)
8870 return abfd;
8871 }
8872
8873 /* That didn't work, try debug-file-directory, which, despite its name,
8874 is a list of paths. */
8875
8876 if (*debug_file_directory == '\0')
8877 return NULL;
8878
8879 return try_open_dwop_file (file_name, is_dwp);
8880 }
8881
8882 /* This function is mapped across the sections and remembers the offset and
8883 size of each of the DWO debugging sections we are interested in. */
8884
8885 static void
8886 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8887 {
8888 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8889 const struct dwop_section_names *names = &dwop_section_names;
8890
8891 if (section_is_p (sectp->name, &names->abbrev_dwo))
8892 {
8893 dwo_sections->abbrev.asection = sectp;
8894 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8895 }
8896 else if (section_is_p (sectp->name, &names->info_dwo))
8897 {
8898 dwo_sections->info.asection = sectp;
8899 dwo_sections->info.size = bfd_get_section_size (sectp);
8900 }
8901 else if (section_is_p (sectp->name, &names->line_dwo))
8902 {
8903 dwo_sections->line.asection = sectp;
8904 dwo_sections->line.size = bfd_get_section_size (sectp);
8905 }
8906 else if (section_is_p (sectp->name, &names->loc_dwo))
8907 {
8908 dwo_sections->loc.asection = sectp;
8909 dwo_sections->loc.size = bfd_get_section_size (sectp);
8910 }
8911 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8912 {
8913 dwo_sections->macinfo.asection = sectp;
8914 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8915 }
8916 else if (section_is_p (sectp->name, &names->macro_dwo))
8917 {
8918 dwo_sections->macro.asection = sectp;
8919 dwo_sections->macro.size = bfd_get_section_size (sectp);
8920 }
8921 else if (section_is_p (sectp->name, &names->str_dwo))
8922 {
8923 dwo_sections->str.asection = sectp;
8924 dwo_sections->str.size = bfd_get_section_size (sectp);
8925 }
8926 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8927 {
8928 dwo_sections->str_offsets.asection = sectp;
8929 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8930 }
8931 else if (section_is_p (sectp->name, &names->types_dwo))
8932 {
8933 struct dwarf2_section_info type_section;
8934
8935 memset (&type_section, 0, sizeof (type_section));
8936 type_section.asection = sectp;
8937 type_section.size = bfd_get_section_size (sectp);
8938 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8939 &type_section);
8940 }
8941 }
8942
8943 /* Initialize the use of the DWO file specified by DWO_NAME.
8944 The result is NULL if DWO_NAME can't be found. */
8945
8946 static struct dwo_file *
8947 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8948 {
8949 struct objfile *objfile = dwarf2_per_objfile->objfile;
8950 struct dwo_file *dwo_file;
8951 bfd *dbfd;
8952 struct cleanup *cleanups;
8953
8954 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8955 if (dbfd == NULL)
8956 {
8957 if (dwarf2_read_debug)
8958 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8959 return NULL;
8960 }
8961 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8962 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8963 dwo_name, strlen (dwo_name));
8964 dwo_file->dbfd = dbfd;
8965
8966 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8967
8968 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8969
8970 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8971
8972 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8973 dwo_file->sections.types);
8974
8975 discard_cleanups (cleanups);
8976
8977 if (dwarf2_read_debug)
8978 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8979
8980 return dwo_file;
8981 }
8982
8983 /* This function is mapped across the sections and remembers the offset and
8984 size of each of the DWP debugging sections we are interested in. */
8985
8986 static void
8987 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8988 {
8989 struct dwp_file *dwp_file = dwp_file_ptr;
8990 const struct dwop_section_names *names = &dwop_section_names;
8991 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8992
8993 /* Record the ELF section number for later lookup: this is what the
8994 .debug_cu_index,.debug_tu_index tables use. */
8995 gdb_assert (elf_section_nr < dwp_file->num_sections);
8996 dwp_file->elf_sections[elf_section_nr] = sectp;
8997
8998 /* Look for specific sections that we need. */
8999 if (section_is_p (sectp->name, &names->str_dwo))
9000 {
9001 dwp_file->sections.str.asection = sectp;
9002 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9003 }
9004 else if (section_is_p (sectp->name, &names->cu_index))
9005 {
9006 dwp_file->sections.cu_index.asection = sectp;
9007 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9008 }
9009 else if (section_is_p (sectp->name, &names->tu_index))
9010 {
9011 dwp_file->sections.tu_index.asection = sectp;
9012 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9013 }
9014 }
9015
9016 /* Hash function for dwp_file loaded CUs/TUs. */
9017
9018 static hashval_t
9019 hash_dwp_loaded_cutus (const void *item)
9020 {
9021 const struct dwo_unit *dwo_unit = item;
9022
9023 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9024 return dwo_unit->signature;
9025 }
9026
9027 /* Equality function for dwp_file loaded CUs/TUs. */
9028
9029 static int
9030 eq_dwp_loaded_cutus (const void *a, const void *b)
9031 {
9032 const struct dwo_unit *dua = a;
9033 const struct dwo_unit *dub = b;
9034
9035 return dua->signature == dub->signature;
9036 }
9037
9038 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9039
9040 static htab_t
9041 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9042 {
9043 return htab_create_alloc_ex (3,
9044 hash_dwp_loaded_cutus,
9045 eq_dwp_loaded_cutus,
9046 NULL,
9047 &objfile->objfile_obstack,
9048 hashtab_obstack_allocate,
9049 dummy_obstack_deallocate);
9050 }
9051
9052 /* Initialize the use of the DWP file for the current objfile.
9053 By convention the name of the DWP file is ${objfile}.dwp.
9054 The result is NULL if it can't be found. */
9055
9056 static struct dwp_file *
9057 open_and_init_dwp_file (const char *comp_dir)
9058 {
9059 struct objfile *objfile = dwarf2_per_objfile->objfile;
9060 struct dwp_file *dwp_file;
9061 char *dwp_name;
9062 bfd *dbfd;
9063 struct cleanup *cleanups;
9064
9065 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9066 cleanups = make_cleanup (xfree, dwp_name);
9067
9068 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9069 if (dbfd == NULL)
9070 {
9071 if (dwarf2_read_debug)
9072 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9073 do_cleanups (cleanups);
9074 return NULL;
9075 }
9076 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9077 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9078 dwp_name, strlen (dwp_name));
9079 dwp_file->dbfd = dbfd;
9080 do_cleanups (cleanups);
9081
9082 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9083
9084 /* +1: section 0 is unused */
9085 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9086 dwp_file->elf_sections =
9087 OBSTACK_CALLOC (&objfile->objfile_obstack,
9088 dwp_file->num_sections, asection *);
9089
9090 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9091
9092 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9093
9094 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9095
9096 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9097
9098 discard_cleanups (cleanups);
9099
9100 if (dwarf2_read_debug)
9101 {
9102 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9103 fprintf_unfiltered (gdb_stdlog,
9104 " %u CUs, %u TUs\n",
9105 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9106 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9107 }
9108
9109 return dwp_file;
9110 }
9111
9112 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9113 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9114 or in the DWP file for the objfile, referenced by THIS_UNIT.
9115 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9116 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9117
9118 This is called, for example, when wanting to read a variable with a
9119 complex location. Therefore we don't want to do file i/o for every call.
9120 Therefore we don't want to look for a DWO file on every call.
9121 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9122 then we check if we've already seen DWO_NAME, and only THEN do we check
9123 for a DWO file.
9124
9125 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9126 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9127
9128 static struct dwo_unit *
9129 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9130 const char *dwo_name, const char *comp_dir,
9131 ULONGEST signature, int is_debug_types)
9132 {
9133 struct objfile *objfile = dwarf2_per_objfile->objfile;
9134 const char *kind = is_debug_types ? "TU" : "CU";
9135 void **dwo_file_slot;
9136 struct dwo_file *dwo_file;
9137 struct dwp_file *dwp_file;
9138
9139 /* Have we already read SIGNATURE from a DWP file? */
9140
9141 if (! dwarf2_per_objfile->dwp_checked)
9142 {
9143 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9144 dwarf2_per_objfile->dwp_checked = 1;
9145 }
9146 dwp_file = dwarf2_per_objfile->dwp_file;
9147
9148 if (dwp_file != NULL)
9149 {
9150 const struct dwp_hash_table *dwp_htab =
9151 is_debug_types ? dwp_file->tus : dwp_file->cus;
9152
9153 if (dwp_htab != NULL)
9154 {
9155 struct dwo_unit *dwo_cutu =
9156 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9157
9158 if (dwo_cutu != NULL)
9159 {
9160 if (dwarf2_read_debug)
9161 {
9162 fprintf_unfiltered (gdb_stdlog,
9163 "Virtual DWO %s %s found: @%s\n",
9164 kind, hex_string (signature),
9165 host_address_to_string (dwo_cutu));
9166 }
9167 return dwo_cutu;
9168 }
9169 }
9170 }
9171
9172 /* Have we already seen DWO_NAME? */
9173
9174 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9175 if (*dwo_file_slot == NULL)
9176 {
9177 /* Read in the file and build a table of the DWOs it contains. */
9178 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9179 }
9180 /* NOTE: This will be NULL if unable to open the file. */
9181 dwo_file = *dwo_file_slot;
9182
9183 if (dwo_file != NULL)
9184 {
9185 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9186
9187 if (htab != NULL)
9188 {
9189 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9190
9191 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9192 find_dwo_cutu.signature = signature;
9193 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9194
9195 if (dwo_cutu != NULL)
9196 {
9197 if (dwarf2_read_debug)
9198 {
9199 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9200 kind, dwo_name, hex_string (signature),
9201 host_address_to_string (dwo_cutu));
9202 }
9203 return dwo_cutu;
9204 }
9205 }
9206 }
9207
9208 /* We didn't find it. This could mean a dwo_id mismatch, or
9209 someone deleted the DWO/DWP file, or the search path isn't set up
9210 correctly to find the file. */
9211
9212 if (dwarf2_read_debug)
9213 {
9214 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9215 kind, dwo_name, hex_string (signature));
9216 }
9217
9218 complaint (&symfile_complaints,
9219 _("Could not find DWO CU referenced by CU at offset 0x%x"
9220 " [in module %s]"),
9221 this_unit->offset.sect_off, objfile->name);
9222 return NULL;
9223 }
9224
9225 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9226 See lookup_dwo_cutu_unit for details. */
9227
9228 static struct dwo_unit *
9229 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9230 const char *dwo_name, const char *comp_dir,
9231 ULONGEST signature)
9232 {
9233 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9234 }
9235
9236 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9237 See lookup_dwo_cutu_unit for details. */
9238
9239 static struct dwo_unit *
9240 lookup_dwo_type_unit (struct signatured_type *this_tu,
9241 const char *dwo_name, const char *comp_dir)
9242 {
9243 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9244 }
9245
9246 /* Free all resources associated with DWO_FILE.
9247 Close the DWO file and munmap the sections.
9248 All memory should be on the objfile obstack. */
9249
9250 static void
9251 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9252 {
9253 int ix;
9254 struct dwarf2_section_info *section;
9255
9256 gdb_bfd_unref (dwo_file->dbfd);
9257
9258 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9259 }
9260
9261 /* Wrapper for free_dwo_file for use in cleanups. */
9262
9263 static void
9264 free_dwo_file_cleanup (void *arg)
9265 {
9266 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9267 struct objfile *objfile = dwarf2_per_objfile->objfile;
9268
9269 free_dwo_file (dwo_file, objfile);
9270 }
9271
9272 /* Traversal function for free_dwo_files. */
9273
9274 static int
9275 free_dwo_file_from_slot (void **slot, void *info)
9276 {
9277 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9278 struct objfile *objfile = (struct objfile *) info;
9279
9280 free_dwo_file (dwo_file, objfile);
9281
9282 return 1;
9283 }
9284
9285 /* Free all resources associated with DWO_FILES. */
9286
9287 static void
9288 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9289 {
9290 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9291 }
9292 \f
9293 /* Read in various DIEs. */
9294
9295 /* qsort helper for inherit_abstract_dies. */
9296
9297 static int
9298 unsigned_int_compar (const void *ap, const void *bp)
9299 {
9300 unsigned int a = *(unsigned int *) ap;
9301 unsigned int b = *(unsigned int *) bp;
9302
9303 return (a > b) - (b > a);
9304 }
9305
9306 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9307 Inherit only the children of the DW_AT_abstract_origin DIE not being
9308 already referenced by DW_AT_abstract_origin from the children of the
9309 current DIE. */
9310
9311 static void
9312 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9313 {
9314 struct die_info *child_die;
9315 unsigned die_children_count;
9316 /* CU offsets which were referenced by children of the current DIE. */
9317 sect_offset *offsets;
9318 sect_offset *offsets_end, *offsetp;
9319 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9320 struct die_info *origin_die;
9321 /* Iterator of the ORIGIN_DIE children. */
9322 struct die_info *origin_child_die;
9323 struct cleanup *cleanups;
9324 struct attribute *attr;
9325 struct dwarf2_cu *origin_cu;
9326 struct pending **origin_previous_list_in_scope;
9327
9328 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9329 if (!attr)
9330 return;
9331
9332 /* Note that following die references may follow to a die in a
9333 different cu. */
9334
9335 origin_cu = cu;
9336 origin_die = follow_die_ref (die, attr, &origin_cu);
9337
9338 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9339 symbols in. */
9340 origin_previous_list_in_scope = origin_cu->list_in_scope;
9341 origin_cu->list_in_scope = cu->list_in_scope;
9342
9343 if (die->tag != origin_die->tag
9344 && !(die->tag == DW_TAG_inlined_subroutine
9345 && origin_die->tag == DW_TAG_subprogram))
9346 complaint (&symfile_complaints,
9347 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9348 die->offset.sect_off, origin_die->offset.sect_off);
9349
9350 child_die = die->child;
9351 die_children_count = 0;
9352 while (child_die && child_die->tag)
9353 {
9354 child_die = sibling_die (child_die);
9355 die_children_count++;
9356 }
9357 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9358 cleanups = make_cleanup (xfree, offsets);
9359
9360 offsets_end = offsets;
9361 child_die = die->child;
9362 while (child_die && child_die->tag)
9363 {
9364 /* For each CHILD_DIE, find the corresponding child of
9365 ORIGIN_DIE. If there is more than one layer of
9366 DW_AT_abstract_origin, follow them all; there shouldn't be,
9367 but GCC versions at least through 4.4 generate this (GCC PR
9368 40573). */
9369 struct die_info *child_origin_die = child_die;
9370 struct dwarf2_cu *child_origin_cu = cu;
9371
9372 while (1)
9373 {
9374 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9375 child_origin_cu);
9376 if (attr == NULL)
9377 break;
9378 child_origin_die = follow_die_ref (child_origin_die, attr,
9379 &child_origin_cu);
9380 }
9381
9382 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9383 counterpart may exist. */
9384 if (child_origin_die != child_die)
9385 {
9386 if (child_die->tag != child_origin_die->tag
9387 && !(child_die->tag == DW_TAG_inlined_subroutine
9388 && child_origin_die->tag == DW_TAG_subprogram))
9389 complaint (&symfile_complaints,
9390 _("Child DIE 0x%x and its abstract origin 0x%x have "
9391 "different tags"), child_die->offset.sect_off,
9392 child_origin_die->offset.sect_off);
9393 if (child_origin_die->parent != origin_die)
9394 complaint (&symfile_complaints,
9395 _("Child DIE 0x%x and its abstract origin 0x%x have "
9396 "different parents"), child_die->offset.sect_off,
9397 child_origin_die->offset.sect_off);
9398 else
9399 *offsets_end++ = child_origin_die->offset;
9400 }
9401 child_die = sibling_die (child_die);
9402 }
9403 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9404 unsigned_int_compar);
9405 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9406 if (offsetp[-1].sect_off == offsetp->sect_off)
9407 complaint (&symfile_complaints,
9408 _("Multiple children of DIE 0x%x refer "
9409 "to DIE 0x%x as their abstract origin"),
9410 die->offset.sect_off, offsetp->sect_off);
9411
9412 offsetp = offsets;
9413 origin_child_die = origin_die->child;
9414 while (origin_child_die && origin_child_die->tag)
9415 {
9416 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9417 while (offsetp < offsets_end
9418 && offsetp->sect_off < origin_child_die->offset.sect_off)
9419 offsetp++;
9420 if (offsetp >= offsets_end
9421 || offsetp->sect_off > origin_child_die->offset.sect_off)
9422 {
9423 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9424 process_die (origin_child_die, origin_cu);
9425 }
9426 origin_child_die = sibling_die (origin_child_die);
9427 }
9428 origin_cu->list_in_scope = origin_previous_list_in_scope;
9429
9430 do_cleanups (cleanups);
9431 }
9432
9433 static void
9434 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9435 {
9436 struct objfile *objfile = cu->objfile;
9437 struct context_stack *new;
9438 CORE_ADDR lowpc;
9439 CORE_ADDR highpc;
9440 struct die_info *child_die;
9441 struct attribute *attr, *call_line, *call_file;
9442 const char *name;
9443 CORE_ADDR baseaddr;
9444 struct block *block;
9445 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9446 VEC (symbolp) *template_args = NULL;
9447 struct template_symbol *templ_func = NULL;
9448
9449 if (inlined_func)
9450 {
9451 /* If we do not have call site information, we can't show the
9452 caller of this inlined function. That's too confusing, so
9453 only use the scope for local variables. */
9454 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9455 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9456 if (call_line == NULL || call_file == NULL)
9457 {
9458 read_lexical_block_scope (die, cu);
9459 return;
9460 }
9461 }
9462
9463 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9464
9465 name = dwarf2_name (die, cu);
9466
9467 /* Ignore functions with missing or empty names. These are actually
9468 illegal according to the DWARF standard. */
9469 if (name == NULL)
9470 {
9471 complaint (&symfile_complaints,
9472 _("missing name for subprogram DIE at %d"),
9473 die->offset.sect_off);
9474 return;
9475 }
9476
9477 /* Ignore functions with missing or invalid low and high pc attributes. */
9478 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9479 {
9480 attr = dwarf2_attr (die, DW_AT_external, cu);
9481 if (!attr || !DW_UNSND (attr))
9482 complaint (&symfile_complaints,
9483 _("cannot get low and high bounds "
9484 "for subprogram DIE at %d"),
9485 die->offset.sect_off);
9486 return;
9487 }
9488
9489 lowpc += baseaddr;
9490 highpc += baseaddr;
9491
9492 /* If we have any template arguments, then we must allocate a
9493 different sort of symbol. */
9494 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9495 {
9496 if (child_die->tag == DW_TAG_template_type_param
9497 || child_die->tag == DW_TAG_template_value_param)
9498 {
9499 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9500 struct template_symbol);
9501 templ_func->base.is_cplus_template_function = 1;
9502 break;
9503 }
9504 }
9505
9506 new = push_context (0, lowpc);
9507 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9508 (struct symbol *) templ_func);
9509
9510 /* If there is a location expression for DW_AT_frame_base, record
9511 it. */
9512 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9513 if (attr)
9514 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9515 expression is being recorded directly in the function's symbol
9516 and not in a separate frame-base object. I guess this hack is
9517 to avoid adding some sort of frame-base adjunct/annex to the
9518 function's symbol :-(. The problem with doing this is that it
9519 results in a function symbol with a location expression that
9520 has nothing to do with the location of the function, ouch! The
9521 relationship should be: a function's symbol has-a frame base; a
9522 frame-base has-a location expression. */
9523 dwarf2_symbol_mark_computed (attr, new->name, cu);
9524
9525 cu->list_in_scope = &local_symbols;
9526
9527 if (die->child != NULL)
9528 {
9529 child_die = die->child;
9530 while (child_die && child_die->tag)
9531 {
9532 if (child_die->tag == DW_TAG_template_type_param
9533 || child_die->tag == DW_TAG_template_value_param)
9534 {
9535 struct symbol *arg = new_symbol (child_die, NULL, cu);
9536
9537 if (arg != NULL)
9538 VEC_safe_push (symbolp, template_args, arg);
9539 }
9540 else
9541 process_die (child_die, cu);
9542 child_die = sibling_die (child_die);
9543 }
9544 }
9545
9546 inherit_abstract_dies (die, cu);
9547
9548 /* If we have a DW_AT_specification, we might need to import using
9549 directives from the context of the specification DIE. See the
9550 comment in determine_prefix. */
9551 if (cu->language == language_cplus
9552 && dwarf2_attr (die, DW_AT_specification, cu))
9553 {
9554 struct dwarf2_cu *spec_cu = cu;
9555 struct die_info *spec_die = die_specification (die, &spec_cu);
9556
9557 while (spec_die)
9558 {
9559 child_die = spec_die->child;
9560 while (child_die && child_die->tag)
9561 {
9562 if (child_die->tag == DW_TAG_imported_module)
9563 process_die (child_die, spec_cu);
9564 child_die = sibling_die (child_die);
9565 }
9566
9567 /* In some cases, GCC generates specification DIEs that
9568 themselves contain DW_AT_specification attributes. */
9569 spec_die = die_specification (spec_die, &spec_cu);
9570 }
9571 }
9572
9573 new = pop_context ();
9574 /* Make a block for the local symbols within. */
9575 block = finish_block (new->name, &local_symbols, new->old_blocks,
9576 lowpc, highpc, objfile);
9577
9578 /* For C++, set the block's scope. */
9579 if ((cu->language == language_cplus || cu->language == language_fortran)
9580 && cu->processing_has_namespace_info)
9581 block_set_scope (block, determine_prefix (die, cu),
9582 &objfile->objfile_obstack);
9583
9584 /* If we have address ranges, record them. */
9585 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9586
9587 /* Attach template arguments to function. */
9588 if (! VEC_empty (symbolp, template_args))
9589 {
9590 gdb_assert (templ_func != NULL);
9591
9592 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9593 templ_func->template_arguments
9594 = obstack_alloc (&objfile->objfile_obstack,
9595 (templ_func->n_template_arguments
9596 * sizeof (struct symbol *)));
9597 memcpy (templ_func->template_arguments,
9598 VEC_address (symbolp, template_args),
9599 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9600 VEC_free (symbolp, template_args);
9601 }
9602
9603 /* In C++, we can have functions nested inside functions (e.g., when
9604 a function declares a class that has methods). This means that
9605 when we finish processing a function scope, we may need to go
9606 back to building a containing block's symbol lists. */
9607 local_symbols = new->locals;
9608 using_directives = new->using_directives;
9609
9610 /* If we've finished processing a top-level function, subsequent
9611 symbols go in the file symbol list. */
9612 if (outermost_context_p ())
9613 cu->list_in_scope = &file_symbols;
9614 }
9615
9616 /* Process all the DIES contained within a lexical block scope. Start
9617 a new scope, process the dies, and then close the scope. */
9618
9619 static void
9620 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9621 {
9622 struct objfile *objfile = cu->objfile;
9623 struct context_stack *new;
9624 CORE_ADDR lowpc, highpc;
9625 struct die_info *child_die;
9626 CORE_ADDR baseaddr;
9627
9628 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9629
9630 /* Ignore blocks with missing or invalid low and high pc attributes. */
9631 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9632 as multiple lexical blocks? Handling children in a sane way would
9633 be nasty. Might be easier to properly extend generic blocks to
9634 describe ranges. */
9635 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9636 return;
9637 lowpc += baseaddr;
9638 highpc += baseaddr;
9639
9640 push_context (0, lowpc);
9641 if (die->child != NULL)
9642 {
9643 child_die = die->child;
9644 while (child_die && child_die->tag)
9645 {
9646 process_die (child_die, cu);
9647 child_die = sibling_die (child_die);
9648 }
9649 }
9650 new = pop_context ();
9651
9652 if (local_symbols != NULL || using_directives != NULL)
9653 {
9654 struct block *block
9655 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9656 highpc, objfile);
9657
9658 /* Note that recording ranges after traversing children, as we
9659 do here, means that recording a parent's ranges entails
9660 walking across all its children's ranges as they appear in
9661 the address map, which is quadratic behavior.
9662
9663 It would be nicer to record the parent's ranges before
9664 traversing its children, simply overriding whatever you find
9665 there. But since we don't even decide whether to create a
9666 block until after we've traversed its children, that's hard
9667 to do. */
9668 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9669 }
9670 local_symbols = new->locals;
9671 using_directives = new->using_directives;
9672 }
9673
9674 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9675
9676 static void
9677 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9678 {
9679 struct objfile *objfile = cu->objfile;
9680 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9681 CORE_ADDR pc, baseaddr;
9682 struct attribute *attr;
9683 struct call_site *call_site, call_site_local;
9684 void **slot;
9685 int nparams;
9686 struct die_info *child_die;
9687
9688 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9689
9690 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9691 if (!attr)
9692 {
9693 complaint (&symfile_complaints,
9694 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9695 "DIE 0x%x [in module %s]"),
9696 die->offset.sect_off, objfile->name);
9697 return;
9698 }
9699 pc = DW_ADDR (attr) + baseaddr;
9700
9701 if (cu->call_site_htab == NULL)
9702 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9703 NULL, &objfile->objfile_obstack,
9704 hashtab_obstack_allocate, NULL);
9705 call_site_local.pc = pc;
9706 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9707 if (*slot != NULL)
9708 {
9709 complaint (&symfile_complaints,
9710 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9711 "DIE 0x%x [in module %s]"),
9712 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9713 return;
9714 }
9715
9716 /* Count parameters at the caller. */
9717
9718 nparams = 0;
9719 for (child_die = die->child; child_die && child_die->tag;
9720 child_die = sibling_die (child_die))
9721 {
9722 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9723 {
9724 complaint (&symfile_complaints,
9725 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9726 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9727 child_die->tag, child_die->offset.sect_off, objfile->name);
9728 continue;
9729 }
9730
9731 nparams++;
9732 }
9733
9734 call_site = obstack_alloc (&objfile->objfile_obstack,
9735 (sizeof (*call_site)
9736 + (sizeof (*call_site->parameter)
9737 * (nparams - 1))));
9738 *slot = call_site;
9739 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9740 call_site->pc = pc;
9741
9742 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9743 {
9744 struct die_info *func_die;
9745
9746 /* Skip also over DW_TAG_inlined_subroutine. */
9747 for (func_die = die->parent;
9748 func_die && func_die->tag != DW_TAG_subprogram
9749 && func_die->tag != DW_TAG_subroutine_type;
9750 func_die = func_die->parent);
9751
9752 /* DW_AT_GNU_all_call_sites is a superset
9753 of DW_AT_GNU_all_tail_call_sites. */
9754 if (func_die
9755 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9756 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9757 {
9758 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9759 not complete. But keep CALL_SITE for look ups via call_site_htab,
9760 both the initial caller containing the real return address PC and
9761 the final callee containing the current PC of a chain of tail
9762 calls do not need to have the tail call list complete. But any
9763 function candidate for a virtual tail call frame searched via
9764 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9765 determined unambiguously. */
9766 }
9767 else
9768 {
9769 struct type *func_type = NULL;
9770
9771 if (func_die)
9772 func_type = get_die_type (func_die, cu);
9773 if (func_type != NULL)
9774 {
9775 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9776
9777 /* Enlist this call site to the function. */
9778 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9779 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9780 }
9781 else
9782 complaint (&symfile_complaints,
9783 _("Cannot find function owning DW_TAG_GNU_call_site "
9784 "DIE 0x%x [in module %s]"),
9785 die->offset.sect_off, objfile->name);
9786 }
9787 }
9788
9789 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9790 if (attr == NULL)
9791 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9792 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9793 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9794 /* Keep NULL DWARF_BLOCK. */;
9795 else if (attr_form_is_block (attr))
9796 {
9797 struct dwarf2_locexpr_baton *dlbaton;
9798
9799 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9800 dlbaton->data = DW_BLOCK (attr)->data;
9801 dlbaton->size = DW_BLOCK (attr)->size;
9802 dlbaton->per_cu = cu->per_cu;
9803
9804 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9805 }
9806 else if (is_ref_attr (attr))
9807 {
9808 struct dwarf2_cu *target_cu = cu;
9809 struct die_info *target_die;
9810
9811 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9812 gdb_assert (target_cu->objfile == objfile);
9813 if (die_is_declaration (target_die, target_cu))
9814 {
9815 const char *target_physname = NULL;
9816 struct attribute *target_attr;
9817
9818 /* Prefer the mangled name; otherwise compute the demangled one. */
9819 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9820 if (target_attr == NULL)
9821 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9822 target_cu);
9823 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9824 target_physname = DW_STRING (target_attr);
9825 else
9826 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9827 if (target_physname == NULL)
9828 complaint (&symfile_complaints,
9829 _("DW_AT_GNU_call_site_target target DIE has invalid "
9830 "physname, for referencing DIE 0x%x [in module %s]"),
9831 die->offset.sect_off, objfile->name);
9832 else
9833 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9834 }
9835 else
9836 {
9837 CORE_ADDR lowpc;
9838
9839 /* DW_AT_entry_pc should be preferred. */
9840 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9841 complaint (&symfile_complaints,
9842 _("DW_AT_GNU_call_site_target target DIE has invalid "
9843 "low pc, for referencing DIE 0x%x [in module %s]"),
9844 die->offset.sect_off, objfile->name);
9845 else
9846 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9847 }
9848 }
9849 else
9850 complaint (&symfile_complaints,
9851 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9852 "block nor reference, for DIE 0x%x [in module %s]"),
9853 die->offset.sect_off, objfile->name);
9854
9855 call_site->per_cu = cu->per_cu;
9856
9857 for (child_die = die->child;
9858 child_die && child_die->tag;
9859 child_die = sibling_die (child_die))
9860 {
9861 struct call_site_parameter *parameter;
9862 struct attribute *loc, *origin;
9863
9864 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9865 {
9866 /* Already printed the complaint above. */
9867 continue;
9868 }
9869
9870 gdb_assert (call_site->parameter_count < nparams);
9871 parameter = &call_site->parameter[call_site->parameter_count];
9872
9873 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9874 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9875 register is contained in DW_AT_GNU_call_site_value. */
9876
9877 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9878 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9879 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9880 {
9881 sect_offset offset;
9882
9883 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9884 offset = dwarf2_get_ref_die_offset (origin);
9885 if (!offset_in_cu_p (&cu->header, offset))
9886 {
9887 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9888 binding can be done only inside one CU. Such referenced DIE
9889 therefore cannot be even moved to DW_TAG_partial_unit. */
9890 complaint (&symfile_complaints,
9891 _("DW_AT_abstract_origin offset is not in CU for "
9892 "DW_TAG_GNU_call_site child DIE 0x%x "
9893 "[in module %s]"),
9894 child_die->offset.sect_off, objfile->name);
9895 continue;
9896 }
9897 parameter->u.param_offset.cu_off = (offset.sect_off
9898 - cu->header.offset.sect_off);
9899 }
9900 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9901 {
9902 complaint (&symfile_complaints,
9903 _("No DW_FORM_block* DW_AT_location for "
9904 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9905 child_die->offset.sect_off, objfile->name);
9906 continue;
9907 }
9908 else
9909 {
9910 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9911 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9912 if (parameter->u.dwarf_reg != -1)
9913 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9914 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9915 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9916 &parameter->u.fb_offset))
9917 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9918 else
9919 {
9920 complaint (&symfile_complaints,
9921 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9922 "for DW_FORM_block* DW_AT_location is supported for "
9923 "DW_TAG_GNU_call_site child DIE 0x%x "
9924 "[in module %s]"),
9925 child_die->offset.sect_off, objfile->name);
9926 continue;
9927 }
9928 }
9929
9930 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9931 if (!attr_form_is_block (attr))
9932 {
9933 complaint (&symfile_complaints,
9934 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9935 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9936 child_die->offset.sect_off, objfile->name);
9937 continue;
9938 }
9939 parameter->value = DW_BLOCK (attr)->data;
9940 parameter->value_size = DW_BLOCK (attr)->size;
9941
9942 /* Parameters are not pre-cleared by memset above. */
9943 parameter->data_value = NULL;
9944 parameter->data_value_size = 0;
9945 call_site->parameter_count++;
9946
9947 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9948 if (attr)
9949 {
9950 if (!attr_form_is_block (attr))
9951 complaint (&symfile_complaints,
9952 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9953 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9954 child_die->offset.sect_off, objfile->name);
9955 else
9956 {
9957 parameter->data_value = DW_BLOCK (attr)->data;
9958 parameter->data_value_size = DW_BLOCK (attr)->size;
9959 }
9960 }
9961 }
9962 }
9963
9964 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9965 Return 1 if the attributes are present and valid, otherwise, return 0.
9966 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9967
9968 static int
9969 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9970 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9971 struct partial_symtab *ranges_pst)
9972 {
9973 struct objfile *objfile = cu->objfile;
9974 struct comp_unit_head *cu_header = &cu->header;
9975 bfd *obfd = objfile->obfd;
9976 unsigned int addr_size = cu_header->addr_size;
9977 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9978 /* Base address selection entry. */
9979 CORE_ADDR base;
9980 int found_base;
9981 unsigned int dummy;
9982 gdb_byte *buffer;
9983 CORE_ADDR marker;
9984 int low_set;
9985 CORE_ADDR low = 0;
9986 CORE_ADDR high = 0;
9987 CORE_ADDR baseaddr;
9988
9989 found_base = cu->base_known;
9990 base = cu->base_address;
9991
9992 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9993 if (offset >= dwarf2_per_objfile->ranges.size)
9994 {
9995 complaint (&symfile_complaints,
9996 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9997 offset);
9998 return 0;
9999 }
10000 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10001
10002 /* Read in the largest possible address. */
10003 marker = read_address (obfd, buffer, cu, &dummy);
10004 if ((marker & mask) == mask)
10005 {
10006 /* If we found the largest possible address, then
10007 read the base address. */
10008 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10009 buffer += 2 * addr_size;
10010 offset += 2 * addr_size;
10011 found_base = 1;
10012 }
10013
10014 low_set = 0;
10015
10016 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10017
10018 while (1)
10019 {
10020 CORE_ADDR range_beginning, range_end;
10021
10022 range_beginning = read_address (obfd, buffer, cu, &dummy);
10023 buffer += addr_size;
10024 range_end = read_address (obfd, buffer, cu, &dummy);
10025 buffer += addr_size;
10026 offset += 2 * addr_size;
10027
10028 /* An end of list marker is a pair of zero addresses. */
10029 if (range_beginning == 0 && range_end == 0)
10030 /* Found the end of list entry. */
10031 break;
10032
10033 /* Each base address selection entry is a pair of 2 values.
10034 The first is the largest possible address, the second is
10035 the base address. Check for a base address here. */
10036 if ((range_beginning & mask) == mask)
10037 {
10038 /* If we found the largest possible address, then
10039 read the base address. */
10040 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10041 found_base = 1;
10042 continue;
10043 }
10044
10045 if (!found_base)
10046 {
10047 /* We have no valid base address for the ranges
10048 data. */
10049 complaint (&symfile_complaints,
10050 _("Invalid .debug_ranges data (no base address)"));
10051 return 0;
10052 }
10053
10054 if (range_beginning > range_end)
10055 {
10056 /* Inverted range entries are invalid. */
10057 complaint (&symfile_complaints,
10058 _("Invalid .debug_ranges data (inverted range)"));
10059 return 0;
10060 }
10061
10062 /* Empty range entries have no effect. */
10063 if (range_beginning == range_end)
10064 continue;
10065
10066 range_beginning += base;
10067 range_end += base;
10068
10069 /* A not-uncommon case of bad debug info.
10070 Don't pollute the addrmap with bad data. */
10071 if (range_beginning + baseaddr == 0
10072 && !dwarf2_per_objfile->has_section_at_zero)
10073 {
10074 complaint (&symfile_complaints,
10075 _(".debug_ranges entry has start address of zero"
10076 " [in module %s]"), objfile->name);
10077 continue;
10078 }
10079
10080 if (ranges_pst != NULL)
10081 addrmap_set_empty (objfile->psymtabs_addrmap,
10082 range_beginning + baseaddr,
10083 range_end - 1 + baseaddr,
10084 ranges_pst);
10085
10086 /* FIXME: This is recording everything as a low-high
10087 segment of consecutive addresses. We should have a
10088 data structure for discontiguous block ranges
10089 instead. */
10090 if (! low_set)
10091 {
10092 low = range_beginning;
10093 high = range_end;
10094 low_set = 1;
10095 }
10096 else
10097 {
10098 if (range_beginning < low)
10099 low = range_beginning;
10100 if (range_end > high)
10101 high = range_end;
10102 }
10103 }
10104
10105 if (! low_set)
10106 /* If the first entry is an end-of-list marker, the range
10107 describes an empty scope, i.e. no instructions. */
10108 return 0;
10109
10110 if (low_return)
10111 *low_return = low;
10112 if (high_return)
10113 *high_return = high;
10114 return 1;
10115 }
10116
10117 /* Get low and high pc attributes from a die. Return 1 if the attributes
10118 are present and valid, otherwise, return 0. Return -1 if the range is
10119 discontinuous, i.e. derived from DW_AT_ranges information. */
10120
10121 static int
10122 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10123 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10124 struct partial_symtab *pst)
10125 {
10126 struct attribute *attr;
10127 struct attribute *attr_high;
10128 CORE_ADDR low = 0;
10129 CORE_ADDR high = 0;
10130 int ret = 0;
10131
10132 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10133 if (attr_high)
10134 {
10135 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10136 if (attr)
10137 {
10138 low = DW_ADDR (attr);
10139 if (attr_high->form == DW_FORM_addr
10140 || attr_high->form == DW_FORM_GNU_addr_index)
10141 high = DW_ADDR (attr_high);
10142 else
10143 high = low + DW_UNSND (attr_high);
10144 }
10145 else
10146 /* Found high w/o low attribute. */
10147 return 0;
10148
10149 /* Found consecutive range of addresses. */
10150 ret = 1;
10151 }
10152 else
10153 {
10154 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10155 if (attr != NULL)
10156 {
10157 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10158 We take advantage of the fact that DW_AT_ranges does not appear
10159 in DW_TAG_compile_unit of DWO files. */
10160 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10161 unsigned int ranges_offset = (DW_UNSND (attr)
10162 + (need_ranges_base
10163 ? cu->ranges_base
10164 : 0));
10165
10166 /* Value of the DW_AT_ranges attribute is the offset in the
10167 .debug_ranges section. */
10168 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10169 return 0;
10170 /* Found discontinuous range of addresses. */
10171 ret = -1;
10172 }
10173 }
10174
10175 /* read_partial_die has also the strict LOW < HIGH requirement. */
10176 if (high <= low)
10177 return 0;
10178
10179 /* When using the GNU linker, .gnu.linkonce. sections are used to
10180 eliminate duplicate copies of functions and vtables and such.
10181 The linker will arbitrarily choose one and discard the others.
10182 The AT_*_pc values for such functions refer to local labels in
10183 these sections. If the section from that file was discarded, the
10184 labels are not in the output, so the relocs get a value of 0.
10185 If this is a discarded function, mark the pc bounds as invalid,
10186 so that GDB will ignore it. */
10187 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10188 return 0;
10189
10190 *lowpc = low;
10191 if (highpc)
10192 *highpc = high;
10193 return ret;
10194 }
10195
10196 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10197 its low and high PC addresses. Do nothing if these addresses could not
10198 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10199 and HIGHPC to the high address if greater than HIGHPC. */
10200
10201 static void
10202 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10203 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10204 struct dwarf2_cu *cu)
10205 {
10206 CORE_ADDR low, high;
10207 struct die_info *child = die->child;
10208
10209 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10210 {
10211 *lowpc = min (*lowpc, low);
10212 *highpc = max (*highpc, high);
10213 }
10214
10215 /* If the language does not allow nested subprograms (either inside
10216 subprograms or lexical blocks), we're done. */
10217 if (cu->language != language_ada)
10218 return;
10219
10220 /* Check all the children of the given DIE. If it contains nested
10221 subprograms, then check their pc bounds. Likewise, we need to
10222 check lexical blocks as well, as they may also contain subprogram
10223 definitions. */
10224 while (child && child->tag)
10225 {
10226 if (child->tag == DW_TAG_subprogram
10227 || child->tag == DW_TAG_lexical_block)
10228 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10229 child = sibling_die (child);
10230 }
10231 }
10232
10233 /* Get the low and high pc's represented by the scope DIE, and store
10234 them in *LOWPC and *HIGHPC. If the correct values can't be
10235 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10236
10237 static void
10238 get_scope_pc_bounds (struct die_info *die,
10239 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10240 struct dwarf2_cu *cu)
10241 {
10242 CORE_ADDR best_low = (CORE_ADDR) -1;
10243 CORE_ADDR best_high = (CORE_ADDR) 0;
10244 CORE_ADDR current_low, current_high;
10245
10246 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10247 {
10248 best_low = current_low;
10249 best_high = current_high;
10250 }
10251 else
10252 {
10253 struct die_info *child = die->child;
10254
10255 while (child && child->tag)
10256 {
10257 switch (child->tag) {
10258 case DW_TAG_subprogram:
10259 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10260 break;
10261 case DW_TAG_namespace:
10262 case DW_TAG_module:
10263 /* FIXME: carlton/2004-01-16: Should we do this for
10264 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10265 that current GCC's always emit the DIEs corresponding
10266 to definitions of methods of classes as children of a
10267 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10268 the DIEs giving the declarations, which could be
10269 anywhere). But I don't see any reason why the
10270 standards says that they have to be there. */
10271 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10272
10273 if (current_low != ((CORE_ADDR) -1))
10274 {
10275 best_low = min (best_low, current_low);
10276 best_high = max (best_high, current_high);
10277 }
10278 break;
10279 default:
10280 /* Ignore. */
10281 break;
10282 }
10283
10284 child = sibling_die (child);
10285 }
10286 }
10287
10288 *lowpc = best_low;
10289 *highpc = best_high;
10290 }
10291
10292 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10293 in DIE. */
10294
10295 static void
10296 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10297 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10298 {
10299 struct objfile *objfile = cu->objfile;
10300 struct attribute *attr;
10301 struct attribute *attr_high;
10302
10303 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10304 if (attr_high)
10305 {
10306 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10307 if (attr)
10308 {
10309 CORE_ADDR low = DW_ADDR (attr);
10310 CORE_ADDR high;
10311 if (attr_high->form == DW_FORM_addr
10312 || attr_high->form == DW_FORM_GNU_addr_index)
10313 high = DW_ADDR (attr_high);
10314 else
10315 high = low + DW_UNSND (attr_high);
10316
10317 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10318 }
10319 }
10320
10321 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10322 if (attr)
10323 {
10324 bfd *obfd = objfile->obfd;
10325 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10326 We take advantage of the fact that DW_AT_ranges does not appear
10327 in DW_TAG_compile_unit of DWO files. */
10328 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10329
10330 /* The value of the DW_AT_ranges attribute is the offset of the
10331 address range list in the .debug_ranges section. */
10332 unsigned long offset = (DW_UNSND (attr)
10333 + (need_ranges_base ? cu->ranges_base : 0));
10334 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10335
10336 /* For some target architectures, but not others, the
10337 read_address function sign-extends the addresses it returns.
10338 To recognize base address selection entries, we need a
10339 mask. */
10340 unsigned int addr_size = cu->header.addr_size;
10341 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10342
10343 /* The base address, to which the next pair is relative. Note
10344 that this 'base' is a DWARF concept: most entries in a range
10345 list are relative, to reduce the number of relocs against the
10346 debugging information. This is separate from this function's
10347 'baseaddr' argument, which GDB uses to relocate debugging
10348 information from a shared library based on the address at
10349 which the library was loaded. */
10350 CORE_ADDR base = cu->base_address;
10351 int base_known = cu->base_known;
10352
10353 gdb_assert (dwarf2_per_objfile->ranges.readin);
10354 if (offset >= dwarf2_per_objfile->ranges.size)
10355 {
10356 complaint (&symfile_complaints,
10357 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10358 offset);
10359 return;
10360 }
10361
10362 for (;;)
10363 {
10364 unsigned int bytes_read;
10365 CORE_ADDR start, end;
10366
10367 start = read_address (obfd, buffer, cu, &bytes_read);
10368 buffer += bytes_read;
10369 end = read_address (obfd, buffer, cu, &bytes_read);
10370 buffer += bytes_read;
10371
10372 /* Did we find the end of the range list? */
10373 if (start == 0 && end == 0)
10374 break;
10375
10376 /* Did we find a base address selection entry? */
10377 else if ((start & base_select_mask) == base_select_mask)
10378 {
10379 base = end;
10380 base_known = 1;
10381 }
10382
10383 /* We found an ordinary address range. */
10384 else
10385 {
10386 if (!base_known)
10387 {
10388 complaint (&symfile_complaints,
10389 _("Invalid .debug_ranges data "
10390 "(no base address)"));
10391 return;
10392 }
10393
10394 if (start > end)
10395 {
10396 /* Inverted range entries are invalid. */
10397 complaint (&symfile_complaints,
10398 _("Invalid .debug_ranges data "
10399 "(inverted range)"));
10400 return;
10401 }
10402
10403 /* Empty range entries have no effect. */
10404 if (start == end)
10405 continue;
10406
10407 start += base + baseaddr;
10408 end += base + baseaddr;
10409
10410 /* A not-uncommon case of bad debug info.
10411 Don't pollute the addrmap with bad data. */
10412 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10413 {
10414 complaint (&symfile_complaints,
10415 _(".debug_ranges entry has start address of zero"
10416 " [in module %s]"), objfile->name);
10417 continue;
10418 }
10419
10420 record_block_range (block, start, end - 1);
10421 }
10422 }
10423 }
10424 }
10425
10426 /* Check whether the producer field indicates either of GCC < 4.6, or the
10427 Intel C/C++ compiler, and cache the result in CU. */
10428
10429 static void
10430 check_producer (struct dwarf2_cu *cu)
10431 {
10432 const char *cs;
10433 int major, minor, release;
10434
10435 if (cu->producer == NULL)
10436 {
10437 /* For unknown compilers expect their behavior is DWARF version
10438 compliant.
10439
10440 GCC started to support .debug_types sections by -gdwarf-4 since
10441 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10442 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10443 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10444 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10445 }
10446 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10447 {
10448 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10449
10450 cs = &cu->producer[strlen ("GNU ")];
10451 while (*cs && !isdigit (*cs))
10452 cs++;
10453 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10454 {
10455 /* Not recognized as GCC. */
10456 }
10457 else
10458 {
10459 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10460 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10461 }
10462 }
10463 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10464 cu->producer_is_icc = 1;
10465 else
10466 {
10467 /* For other non-GCC compilers, expect their behavior is DWARF version
10468 compliant. */
10469 }
10470
10471 cu->checked_producer = 1;
10472 }
10473
10474 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10475 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10476 during 4.6.0 experimental. */
10477
10478 static int
10479 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10480 {
10481 if (!cu->checked_producer)
10482 check_producer (cu);
10483
10484 return cu->producer_is_gxx_lt_4_6;
10485 }
10486
10487 /* Return the default accessibility type if it is not overriden by
10488 DW_AT_accessibility. */
10489
10490 static enum dwarf_access_attribute
10491 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10492 {
10493 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10494 {
10495 /* The default DWARF 2 accessibility for members is public, the default
10496 accessibility for inheritance is private. */
10497
10498 if (die->tag != DW_TAG_inheritance)
10499 return DW_ACCESS_public;
10500 else
10501 return DW_ACCESS_private;
10502 }
10503 else
10504 {
10505 /* DWARF 3+ defines the default accessibility a different way. The same
10506 rules apply now for DW_TAG_inheritance as for the members and it only
10507 depends on the container kind. */
10508
10509 if (die->parent->tag == DW_TAG_class_type)
10510 return DW_ACCESS_private;
10511 else
10512 return DW_ACCESS_public;
10513 }
10514 }
10515
10516 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10517 offset. If the attribute was not found return 0, otherwise return
10518 1. If it was found but could not properly be handled, set *OFFSET
10519 to 0. */
10520
10521 static int
10522 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10523 LONGEST *offset)
10524 {
10525 struct attribute *attr;
10526
10527 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10528 if (attr != NULL)
10529 {
10530 *offset = 0;
10531
10532 /* Note that we do not check for a section offset first here.
10533 This is because DW_AT_data_member_location is new in DWARF 4,
10534 so if we see it, we can assume that a constant form is really
10535 a constant and not a section offset. */
10536 if (attr_form_is_constant (attr))
10537 *offset = dwarf2_get_attr_constant_value (attr, 0);
10538 else if (attr_form_is_section_offset (attr))
10539 dwarf2_complex_location_expr_complaint ();
10540 else if (attr_form_is_block (attr))
10541 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10542 else
10543 dwarf2_complex_location_expr_complaint ();
10544
10545 return 1;
10546 }
10547
10548 return 0;
10549 }
10550
10551 /* Add an aggregate field to the field list. */
10552
10553 static void
10554 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10555 struct dwarf2_cu *cu)
10556 {
10557 struct objfile *objfile = cu->objfile;
10558 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10559 struct nextfield *new_field;
10560 struct attribute *attr;
10561 struct field *fp;
10562 const char *fieldname = "";
10563
10564 /* Allocate a new field list entry and link it in. */
10565 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10566 make_cleanup (xfree, new_field);
10567 memset (new_field, 0, sizeof (struct nextfield));
10568
10569 if (die->tag == DW_TAG_inheritance)
10570 {
10571 new_field->next = fip->baseclasses;
10572 fip->baseclasses = new_field;
10573 }
10574 else
10575 {
10576 new_field->next = fip->fields;
10577 fip->fields = new_field;
10578 }
10579 fip->nfields++;
10580
10581 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10582 if (attr)
10583 new_field->accessibility = DW_UNSND (attr);
10584 else
10585 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10586 if (new_field->accessibility != DW_ACCESS_public)
10587 fip->non_public_fields = 1;
10588
10589 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10590 if (attr)
10591 new_field->virtuality = DW_UNSND (attr);
10592 else
10593 new_field->virtuality = DW_VIRTUALITY_none;
10594
10595 fp = &new_field->field;
10596
10597 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10598 {
10599 LONGEST offset;
10600
10601 /* Data member other than a C++ static data member. */
10602
10603 /* Get type of field. */
10604 fp->type = die_type (die, cu);
10605
10606 SET_FIELD_BITPOS (*fp, 0);
10607
10608 /* Get bit size of field (zero if none). */
10609 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10610 if (attr)
10611 {
10612 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10613 }
10614 else
10615 {
10616 FIELD_BITSIZE (*fp) = 0;
10617 }
10618
10619 /* Get bit offset of field. */
10620 if (handle_data_member_location (die, cu, &offset))
10621 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10622 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10623 if (attr)
10624 {
10625 if (gdbarch_bits_big_endian (gdbarch))
10626 {
10627 /* For big endian bits, the DW_AT_bit_offset gives the
10628 additional bit offset from the MSB of the containing
10629 anonymous object to the MSB of the field. We don't
10630 have to do anything special since we don't need to
10631 know the size of the anonymous object. */
10632 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10633 }
10634 else
10635 {
10636 /* For little endian bits, compute the bit offset to the
10637 MSB of the anonymous object, subtract off the number of
10638 bits from the MSB of the field to the MSB of the
10639 object, and then subtract off the number of bits of
10640 the field itself. The result is the bit offset of
10641 the LSB of the field. */
10642 int anonymous_size;
10643 int bit_offset = DW_UNSND (attr);
10644
10645 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10646 if (attr)
10647 {
10648 /* The size of the anonymous object containing
10649 the bit field is explicit, so use the
10650 indicated size (in bytes). */
10651 anonymous_size = DW_UNSND (attr);
10652 }
10653 else
10654 {
10655 /* The size of the anonymous object containing
10656 the bit field must be inferred from the type
10657 attribute of the data member containing the
10658 bit field. */
10659 anonymous_size = TYPE_LENGTH (fp->type);
10660 }
10661 SET_FIELD_BITPOS (*fp,
10662 (FIELD_BITPOS (*fp)
10663 + anonymous_size * bits_per_byte
10664 - bit_offset - FIELD_BITSIZE (*fp)));
10665 }
10666 }
10667
10668 /* Get name of field. */
10669 fieldname = dwarf2_name (die, cu);
10670 if (fieldname == NULL)
10671 fieldname = "";
10672
10673 /* The name is already allocated along with this objfile, so we don't
10674 need to duplicate it for the type. */
10675 fp->name = fieldname;
10676
10677 /* Change accessibility for artificial fields (e.g. virtual table
10678 pointer or virtual base class pointer) to private. */
10679 if (dwarf2_attr (die, DW_AT_artificial, cu))
10680 {
10681 FIELD_ARTIFICIAL (*fp) = 1;
10682 new_field->accessibility = DW_ACCESS_private;
10683 fip->non_public_fields = 1;
10684 }
10685 }
10686 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10687 {
10688 /* C++ static member. */
10689
10690 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10691 is a declaration, but all versions of G++ as of this writing
10692 (so through at least 3.2.1) incorrectly generate
10693 DW_TAG_variable tags. */
10694
10695 const char *physname;
10696
10697 /* Get name of field. */
10698 fieldname = dwarf2_name (die, cu);
10699 if (fieldname == NULL)
10700 return;
10701
10702 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10703 if (attr
10704 /* Only create a symbol if this is an external value.
10705 new_symbol checks this and puts the value in the global symbol
10706 table, which we want. If it is not external, new_symbol
10707 will try to put the value in cu->list_in_scope which is wrong. */
10708 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10709 {
10710 /* A static const member, not much different than an enum as far as
10711 we're concerned, except that we can support more types. */
10712 new_symbol (die, NULL, cu);
10713 }
10714
10715 /* Get physical name. */
10716 physname = dwarf2_physname (fieldname, die, cu);
10717
10718 /* The name is already allocated along with this objfile, so we don't
10719 need to duplicate it for the type. */
10720 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10721 FIELD_TYPE (*fp) = die_type (die, cu);
10722 FIELD_NAME (*fp) = fieldname;
10723 }
10724 else if (die->tag == DW_TAG_inheritance)
10725 {
10726 LONGEST offset;
10727
10728 /* C++ base class field. */
10729 if (handle_data_member_location (die, cu, &offset))
10730 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10731 FIELD_BITSIZE (*fp) = 0;
10732 FIELD_TYPE (*fp) = die_type (die, cu);
10733 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10734 fip->nbaseclasses++;
10735 }
10736 }
10737
10738 /* Add a typedef defined in the scope of the FIP's class. */
10739
10740 static void
10741 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10742 struct dwarf2_cu *cu)
10743 {
10744 struct objfile *objfile = cu->objfile;
10745 struct typedef_field_list *new_field;
10746 struct attribute *attr;
10747 struct typedef_field *fp;
10748 char *fieldname = "";
10749
10750 /* Allocate a new field list entry and link it in. */
10751 new_field = xzalloc (sizeof (*new_field));
10752 make_cleanup (xfree, new_field);
10753
10754 gdb_assert (die->tag == DW_TAG_typedef);
10755
10756 fp = &new_field->field;
10757
10758 /* Get name of field. */
10759 fp->name = dwarf2_name (die, cu);
10760 if (fp->name == NULL)
10761 return;
10762
10763 fp->type = read_type_die (die, cu);
10764
10765 new_field->next = fip->typedef_field_list;
10766 fip->typedef_field_list = new_field;
10767 fip->typedef_field_list_count++;
10768 }
10769
10770 /* Create the vector of fields, and attach it to the type. */
10771
10772 static void
10773 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10774 struct dwarf2_cu *cu)
10775 {
10776 int nfields = fip->nfields;
10777
10778 /* Record the field count, allocate space for the array of fields,
10779 and create blank accessibility bitfields if necessary. */
10780 TYPE_NFIELDS (type) = nfields;
10781 TYPE_FIELDS (type) = (struct field *)
10782 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10783 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10784
10785 if (fip->non_public_fields && cu->language != language_ada)
10786 {
10787 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10788
10789 TYPE_FIELD_PRIVATE_BITS (type) =
10790 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10791 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10792
10793 TYPE_FIELD_PROTECTED_BITS (type) =
10794 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10795 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10796
10797 TYPE_FIELD_IGNORE_BITS (type) =
10798 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10799 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10800 }
10801
10802 /* If the type has baseclasses, allocate and clear a bit vector for
10803 TYPE_FIELD_VIRTUAL_BITS. */
10804 if (fip->nbaseclasses && cu->language != language_ada)
10805 {
10806 int num_bytes = B_BYTES (fip->nbaseclasses);
10807 unsigned char *pointer;
10808
10809 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10810 pointer = TYPE_ALLOC (type, num_bytes);
10811 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10812 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10813 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10814 }
10815
10816 /* Copy the saved-up fields into the field vector. Start from the head of
10817 the list, adding to the tail of the field array, so that they end up in
10818 the same order in the array in which they were added to the list. */
10819 while (nfields-- > 0)
10820 {
10821 struct nextfield *fieldp;
10822
10823 if (fip->fields)
10824 {
10825 fieldp = fip->fields;
10826 fip->fields = fieldp->next;
10827 }
10828 else
10829 {
10830 fieldp = fip->baseclasses;
10831 fip->baseclasses = fieldp->next;
10832 }
10833
10834 TYPE_FIELD (type, nfields) = fieldp->field;
10835 switch (fieldp->accessibility)
10836 {
10837 case DW_ACCESS_private:
10838 if (cu->language != language_ada)
10839 SET_TYPE_FIELD_PRIVATE (type, nfields);
10840 break;
10841
10842 case DW_ACCESS_protected:
10843 if (cu->language != language_ada)
10844 SET_TYPE_FIELD_PROTECTED (type, nfields);
10845 break;
10846
10847 case DW_ACCESS_public:
10848 break;
10849
10850 default:
10851 /* Unknown accessibility. Complain and treat it as public. */
10852 {
10853 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10854 fieldp->accessibility);
10855 }
10856 break;
10857 }
10858 if (nfields < fip->nbaseclasses)
10859 {
10860 switch (fieldp->virtuality)
10861 {
10862 case DW_VIRTUALITY_virtual:
10863 case DW_VIRTUALITY_pure_virtual:
10864 if (cu->language == language_ada)
10865 error (_("unexpected virtuality in component of Ada type"));
10866 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10867 break;
10868 }
10869 }
10870 }
10871 }
10872
10873 /* Return true if this member function is a constructor, false
10874 otherwise. */
10875
10876 static int
10877 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10878 {
10879 const char *fieldname;
10880 const char *typename;
10881 int len;
10882
10883 if (die->parent == NULL)
10884 return 0;
10885
10886 if (die->parent->tag != DW_TAG_structure_type
10887 && die->parent->tag != DW_TAG_union_type
10888 && die->parent->tag != DW_TAG_class_type)
10889 return 0;
10890
10891 fieldname = dwarf2_name (die, cu);
10892 typename = dwarf2_name (die->parent, cu);
10893 if (fieldname == NULL || typename == NULL)
10894 return 0;
10895
10896 len = strlen (fieldname);
10897 return (strncmp (fieldname, typename, len) == 0
10898 && (typename[len] == '\0' || typename[len] == '<'));
10899 }
10900
10901 /* Add a member function to the proper fieldlist. */
10902
10903 static void
10904 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10905 struct type *type, struct dwarf2_cu *cu)
10906 {
10907 struct objfile *objfile = cu->objfile;
10908 struct attribute *attr;
10909 struct fnfieldlist *flp;
10910 int i;
10911 struct fn_field *fnp;
10912 const char *fieldname;
10913 struct nextfnfield *new_fnfield;
10914 struct type *this_type;
10915 enum dwarf_access_attribute accessibility;
10916
10917 if (cu->language == language_ada)
10918 error (_("unexpected member function in Ada type"));
10919
10920 /* Get name of member function. */
10921 fieldname = dwarf2_name (die, cu);
10922 if (fieldname == NULL)
10923 return;
10924
10925 /* Look up member function name in fieldlist. */
10926 for (i = 0; i < fip->nfnfields; i++)
10927 {
10928 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10929 break;
10930 }
10931
10932 /* Create new list element if necessary. */
10933 if (i < fip->nfnfields)
10934 flp = &fip->fnfieldlists[i];
10935 else
10936 {
10937 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10938 {
10939 fip->fnfieldlists = (struct fnfieldlist *)
10940 xrealloc (fip->fnfieldlists,
10941 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10942 * sizeof (struct fnfieldlist));
10943 if (fip->nfnfields == 0)
10944 make_cleanup (free_current_contents, &fip->fnfieldlists);
10945 }
10946 flp = &fip->fnfieldlists[fip->nfnfields];
10947 flp->name = fieldname;
10948 flp->length = 0;
10949 flp->head = NULL;
10950 i = fip->nfnfields++;
10951 }
10952
10953 /* Create a new member function field and chain it to the field list
10954 entry. */
10955 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10956 make_cleanup (xfree, new_fnfield);
10957 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10958 new_fnfield->next = flp->head;
10959 flp->head = new_fnfield;
10960 flp->length++;
10961
10962 /* Fill in the member function field info. */
10963 fnp = &new_fnfield->fnfield;
10964
10965 /* Delay processing of the physname until later. */
10966 if (cu->language == language_cplus || cu->language == language_java)
10967 {
10968 add_to_method_list (type, i, flp->length - 1, fieldname,
10969 die, cu);
10970 }
10971 else
10972 {
10973 const char *physname = dwarf2_physname (fieldname, die, cu);
10974 fnp->physname = physname ? physname : "";
10975 }
10976
10977 fnp->type = alloc_type (objfile);
10978 this_type = read_type_die (die, cu);
10979 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10980 {
10981 int nparams = TYPE_NFIELDS (this_type);
10982
10983 /* TYPE is the domain of this method, and THIS_TYPE is the type
10984 of the method itself (TYPE_CODE_METHOD). */
10985 smash_to_method_type (fnp->type, type,
10986 TYPE_TARGET_TYPE (this_type),
10987 TYPE_FIELDS (this_type),
10988 TYPE_NFIELDS (this_type),
10989 TYPE_VARARGS (this_type));
10990
10991 /* Handle static member functions.
10992 Dwarf2 has no clean way to discern C++ static and non-static
10993 member functions. G++ helps GDB by marking the first
10994 parameter for non-static member functions (which is the this
10995 pointer) as artificial. We obtain this information from
10996 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10997 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10998 fnp->voffset = VOFFSET_STATIC;
10999 }
11000 else
11001 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11002 dwarf2_full_name (fieldname, die, cu));
11003
11004 /* Get fcontext from DW_AT_containing_type if present. */
11005 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11006 fnp->fcontext = die_containing_type (die, cu);
11007
11008 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11009 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11010
11011 /* Get accessibility. */
11012 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11013 if (attr)
11014 accessibility = DW_UNSND (attr);
11015 else
11016 accessibility = dwarf2_default_access_attribute (die, cu);
11017 switch (accessibility)
11018 {
11019 case DW_ACCESS_private:
11020 fnp->is_private = 1;
11021 break;
11022 case DW_ACCESS_protected:
11023 fnp->is_protected = 1;
11024 break;
11025 }
11026
11027 /* Check for artificial methods. */
11028 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11029 if (attr && DW_UNSND (attr) != 0)
11030 fnp->is_artificial = 1;
11031
11032 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11033
11034 /* Get index in virtual function table if it is a virtual member
11035 function. For older versions of GCC, this is an offset in the
11036 appropriate virtual table, as specified by DW_AT_containing_type.
11037 For everyone else, it is an expression to be evaluated relative
11038 to the object address. */
11039
11040 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11041 if (attr)
11042 {
11043 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11044 {
11045 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11046 {
11047 /* Old-style GCC. */
11048 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11049 }
11050 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11051 || (DW_BLOCK (attr)->size > 1
11052 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11053 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11054 {
11055 struct dwarf_block blk;
11056 int offset;
11057
11058 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11059 ? 1 : 2);
11060 blk.size = DW_BLOCK (attr)->size - offset;
11061 blk.data = DW_BLOCK (attr)->data + offset;
11062 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11063 if ((fnp->voffset % cu->header.addr_size) != 0)
11064 dwarf2_complex_location_expr_complaint ();
11065 else
11066 fnp->voffset /= cu->header.addr_size;
11067 fnp->voffset += 2;
11068 }
11069 else
11070 dwarf2_complex_location_expr_complaint ();
11071
11072 if (!fnp->fcontext)
11073 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11074 }
11075 else if (attr_form_is_section_offset (attr))
11076 {
11077 dwarf2_complex_location_expr_complaint ();
11078 }
11079 else
11080 {
11081 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11082 fieldname);
11083 }
11084 }
11085 else
11086 {
11087 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11088 if (attr && DW_UNSND (attr))
11089 {
11090 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11091 complaint (&symfile_complaints,
11092 _("Member function \"%s\" (offset %d) is virtual "
11093 "but the vtable offset is not specified"),
11094 fieldname, die->offset.sect_off);
11095 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11096 TYPE_CPLUS_DYNAMIC (type) = 1;
11097 }
11098 }
11099 }
11100
11101 /* Create the vector of member function fields, and attach it to the type. */
11102
11103 static void
11104 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11105 struct dwarf2_cu *cu)
11106 {
11107 struct fnfieldlist *flp;
11108 int i;
11109
11110 if (cu->language == language_ada)
11111 error (_("unexpected member functions in Ada type"));
11112
11113 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11114 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11115 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11116
11117 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11118 {
11119 struct nextfnfield *nfp = flp->head;
11120 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11121 int k;
11122
11123 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11124 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11125 fn_flp->fn_fields = (struct fn_field *)
11126 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11127 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11128 fn_flp->fn_fields[k] = nfp->fnfield;
11129 }
11130
11131 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11132 }
11133
11134 /* Returns non-zero if NAME is the name of a vtable member in CU's
11135 language, zero otherwise. */
11136 static int
11137 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11138 {
11139 static const char vptr[] = "_vptr";
11140 static const char vtable[] = "vtable";
11141
11142 /* Look for the C++ and Java forms of the vtable. */
11143 if ((cu->language == language_java
11144 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11145 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11146 && is_cplus_marker (name[sizeof (vptr) - 1])))
11147 return 1;
11148
11149 return 0;
11150 }
11151
11152 /* GCC outputs unnamed structures that are really pointers to member
11153 functions, with the ABI-specified layout. If TYPE describes
11154 such a structure, smash it into a member function type.
11155
11156 GCC shouldn't do this; it should just output pointer to member DIEs.
11157 This is GCC PR debug/28767. */
11158
11159 static void
11160 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11161 {
11162 struct type *pfn_type, *domain_type, *new_type;
11163
11164 /* Check for a structure with no name and two children. */
11165 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11166 return;
11167
11168 /* Check for __pfn and __delta members. */
11169 if (TYPE_FIELD_NAME (type, 0) == NULL
11170 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11171 || TYPE_FIELD_NAME (type, 1) == NULL
11172 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11173 return;
11174
11175 /* Find the type of the method. */
11176 pfn_type = TYPE_FIELD_TYPE (type, 0);
11177 if (pfn_type == NULL
11178 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11179 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11180 return;
11181
11182 /* Look for the "this" argument. */
11183 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11184 if (TYPE_NFIELDS (pfn_type) == 0
11185 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11186 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11187 return;
11188
11189 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11190 new_type = alloc_type (objfile);
11191 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11192 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11193 TYPE_VARARGS (pfn_type));
11194 smash_to_methodptr_type (type, new_type);
11195 }
11196
11197 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11198 (icc). */
11199
11200 static int
11201 producer_is_icc (struct dwarf2_cu *cu)
11202 {
11203 if (!cu->checked_producer)
11204 check_producer (cu);
11205
11206 return cu->producer_is_icc;
11207 }
11208
11209 /* Called when we find the DIE that starts a structure or union scope
11210 (definition) to create a type for the structure or union. Fill in
11211 the type's name and general properties; the members will not be
11212 processed until process_structure_type.
11213
11214 NOTE: we need to call these functions regardless of whether or not the
11215 DIE has a DW_AT_name attribute, since it might be an anonymous
11216 structure or union. This gets the type entered into our set of
11217 user defined types.
11218
11219 However, if the structure is incomplete (an opaque struct/union)
11220 then suppress creating a symbol table entry for it since gdb only
11221 wants to find the one with the complete definition. Note that if
11222 it is complete, we just call new_symbol, which does it's own
11223 checking about whether the struct/union is anonymous or not (and
11224 suppresses creating a symbol table entry itself). */
11225
11226 static struct type *
11227 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11228 {
11229 struct objfile *objfile = cu->objfile;
11230 struct type *type;
11231 struct attribute *attr;
11232 const char *name;
11233
11234 /* If the definition of this type lives in .debug_types, read that type.
11235 Don't follow DW_AT_specification though, that will take us back up
11236 the chain and we want to go down. */
11237 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11238 if (attr)
11239 {
11240 struct dwarf2_cu *type_cu = cu;
11241 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11242
11243 /* We could just recurse on read_structure_type, but we need to call
11244 get_die_type to ensure only one type for this DIE is created.
11245 This is important, for example, because for c++ classes we need
11246 TYPE_NAME set which is only done by new_symbol. Blech. */
11247 type = read_type_die (type_die, type_cu);
11248
11249 /* TYPE_CU may not be the same as CU.
11250 Ensure TYPE is recorded in CU's type_hash table. */
11251 return set_die_type (die, type, cu);
11252 }
11253
11254 type = alloc_type (objfile);
11255 INIT_CPLUS_SPECIFIC (type);
11256
11257 name = dwarf2_name (die, cu);
11258 if (name != NULL)
11259 {
11260 if (cu->language == language_cplus
11261 || cu->language == language_java)
11262 {
11263 const char *full_name = dwarf2_full_name (name, die, cu);
11264
11265 /* dwarf2_full_name might have already finished building the DIE's
11266 type. If so, there is no need to continue. */
11267 if (get_die_type (die, cu) != NULL)
11268 return get_die_type (die, cu);
11269
11270 TYPE_TAG_NAME (type) = full_name;
11271 if (die->tag == DW_TAG_structure_type
11272 || die->tag == DW_TAG_class_type)
11273 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11274 }
11275 else
11276 {
11277 /* The name is already allocated along with this objfile, so
11278 we don't need to duplicate it for the type. */
11279 TYPE_TAG_NAME (type) = name;
11280 if (die->tag == DW_TAG_class_type)
11281 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11282 }
11283 }
11284
11285 if (die->tag == DW_TAG_structure_type)
11286 {
11287 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11288 }
11289 else if (die->tag == DW_TAG_union_type)
11290 {
11291 TYPE_CODE (type) = TYPE_CODE_UNION;
11292 }
11293 else
11294 {
11295 TYPE_CODE (type) = TYPE_CODE_CLASS;
11296 }
11297
11298 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11299 TYPE_DECLARED_CLASS (type) = 1;
11300
11301 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11302 if (attr)
11303 {
11304 TYPE_LENGTH (type) = DW_UNSND (attr);
11305 }
11306 else
11307 {
11308 TYPE_LENGTH (type) = 0;
11309 }
11310
11311 if (producer_is_icc (cu))
11312 {
11313 /* ICC does not output the required DW_AT_declaration
11314 on incomplete types, but gives them a size of zero. */
11315 }
11316 else
11317 TYPE_STUB_SUPPORTED (type) = 1;
11318
11319 if (die_is_declaration (die, cu))
11320 TYPE_STUB (type) = 1;
11321 else if (attr == NULL && die->child == NULL
11322 && producer_is_realview (cu->producer))
11323 /* RealView does not output the required DW_AT_declaration
11324 on incomplete types. */
11325 TYPE_STUB (type) = 1;
11326
11327 /* We need to add the type field to the die immediately so we don't
11328 infinitely recurse when dealing with pointers to the structure
11329 type within the structure itself. */
11330 set_die_type (die, type, cu);
11331
11332 /* set_die_type should be already done. */
11333 set_descriptive_type (type, die, cu);
11334
11335 return type;
11336 }
11337
11338 /* Finish creating a structure or union type, including filling in
11339 its members and creating a symbol for it. */
11340
11341 static void
11342 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11343 {
11344 struct objfile *objfile = cu->objfile;
11345 struct die_info *child_die = die->child;
11346 struct type *type;
11347
11348 type = get_die_type (die, cu);
11349 if (type == NULL)
11350 type = read_structure_type (die, cu);
11351
11352 if (die->child != NULL && ! die_is_declaration (die, cu))
11353 {
11354 struct field_info fi;
11355 struct die_info *child_die;
11356 VEC (symbolp) *template_args = NULL;
11357 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11358
11359 memset (&fi, 0, sizeof (struct field_info));
11360
11361 child_die = die->child;
11362
11363 while (child_die && child_die->tag)
11364 {
11365 if (child_die->tag == DW_TAG_member
11366 || child_die->tag == DW_TAG_variable)
11367 {
11368 /* NOTE: carlton/2002-11-05: A C++ static data member
11369 should be a DW_TAG_member that is a declaration, but
11370 all versions of G++ as of this writing (so through at
11371 least 3.2.1) incorrectly generate DW_TAG_variable
11372 tags for them instead. */
11373 dwarf2_add_field (&fi, child_die, cu);
11374 }
11375 else if (child_die->tag == DW_TAG_subprogram)
11376 {
11377 /* C++ member function. */
11378 dwarf2_add_member_fn (&fi, child_die, type, cu);
11379 }
11380 else if (child_die->tag == DW_TAG_inheritance)
11381 {
11382 /* C++ base class field. */
11383 dwarf2_add_field (&fi, child_die, cu);
11384 }
11385 else if (child_die->tag == DW_TAG_typedef)
11386 dwarf2_add_typedef (&fi, child_die, cu);
11387 else if (child_die->tag == DW_TAG_template_type_param
11388 || child_die->tag == DW_TAG_template_value_param)
11389 {
11390 struct symbol *arg = new_symbol (child_die, NULL, cu);
11391
11392 if (arg != NULL)
11393 VEC_safe_push (symbolp, template_args, arg);
11394 }
11395
11396 child_die = sibling_die (child_die);
11397 }
11398
11399 /* Attach template arguments to type. */
11400 if (! VEC_empty (symbolp, template_args))
11401 {
11402 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11403 TYPE_N_TEMPLATE_ARGUMENTS (type)
11404 = VEC_length (symbolp, template_args);
11405 TYPE_TEMPLATE_ARGUMENTS (type)
11406 = obstack_alloc (&objfile->objfile_obstack,
11407 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11408 * sizeof (struct symbol *)));
11409 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11410 VEC_address (symbolp, template_args),
11411 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11412 * sizeof (struct symbol *)));
11413 VEC_free (symbolp, template_args);
11414 }
11415
11416 /* Attach fields and member functions to the type. */
11417 if (fi.nfields)
11418 dwarf2_attach_fields_to_type (&fi, type, cu);
11419 if (fi.nfnfields)
11420 {
11421 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11422
11423 /* Get the type which refers to the base class (possibly this
11424 class itself) which contains the vtable pointer for the current
11425 class from the DW_AT_containing_type attribute. This use of
11426 DW_AT_containing_type is a GNU extension. */
11427
11428 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11429 {
11430 struct type *t = die_containing_type (die, cu);
11431
11432 TYPE_VPTR_BASETYPE (type) = t;
11433 if (type == t)
11434 {
11435 int i;
11436
11437 /* Our own class provides vtbl ptr. */
11438 for (i = TYPE_NFIELDS (t) - 1;
11439 i >= TYPE_N_BASECLASSES (t);
11440 --i)
11441 {
11442 const char *fieldname = TYPE_FIELD_NAME (t, i);
11443
11444 if (is_vtable_name (fieldname, cu))
11445 {
11446 TYPE_VPTR_FIELDNO (type) = i;
11447 break;
11448 }
11449 }
11450
11451 /* Complain if virtual function table field not found. */
11452 if (i < TYPE_N_BASECLASSES (t))
11453 complaint (&symfile_complaints,
11454 _("virtual function table pointer "
11455 "not found when defining class '%s'"),
11456 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11457 "");
11458 }
11459 else
11460 {
11461 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11462 }
11463 }
11464 else if (cu->producer
11465 && strncmp (cu->producer,
11466 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11467 {
11468 /* The IBM XLC compiler does not provide direct indication
11469 of the containing type, but the vtable pointer is
11470 always named __vfp. */
11471
11472 int i;
11473
11474 for (i = TYPE_NFIELDS (type) - 1;
11475 i >= TYPE_N_BASECLASSES (type);
11476 --i)
11477 {
11478 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11479 {
11480 TYPE_VPTR_FIELDNO (type) = i;
11481 TYPE_VPTR_BASETYPE (type) = type;
11482 break;
11483 }
11484 }
11485 }
11486 }
11487
11488 /* Copy fi.typedef_field_list linked list elements content into the
11489 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11490 if (fi.typedef_field_list)
11491 {
11492 int i = fi.typedef_field_list_count;
11493
11494 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11495 TYPE_TYPEDEF_FIELD_ARRAY (type)
11496 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11497 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11498
11499 /* Reverse the list order to keep the debug info elements order. */
11500 while (--i >= 0)
11501 {
11502 struct typedef_field *dest, *src;
11503
11504 dest = &TYPE_TYPEDEF_FIELD (type, i);
11505 src = &fi.typedef_field_list->field;
11506 fi.typedef_field_list = fi.typedef_field_list->next;
11507 *dest = *src;
11508 }
11509 }
11510
11511 do_cleanups (back_to);
11512
11513 if (HAVE_CPLUS_STRUCT (type))
11514 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11515 }
11516
11517 quirk_gcc_member_function_pointer (type, objfile);
11518
11519 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11520 snapshots) has been known to create a die giving a declaration
11521 for a class that has, as a child, a die giving a definition for a
11522 nested class. So we have to process our children even if the
11523 current die is a declaration. Normally, of course, a declaration
11524 won't have any children at all. */
11525
11526 while (child_die != NULL && child_die->tag)
11527 {
11528 if (child_die->tag == DW_TAG_member
11529 || child_die->tag == DW_TAG_variable
11530 || child_die->tag == DW_TAG_inheritance
11531 || child_die->tag == DW_TAG_template_value_param
11532 || child_die->tag == DW_TAG_template_type_param)
11533 {
11534 /* Do nothing. */
11535 }
11536 else
11537 process_die (child_die, cu);
11538
11539 child_die = sibling_die (child_die);
11540 }
11541
11542 /* Do not consider external references. According to the DWARF standard,
11543 these DIEs are identified by the fact that they have no byte_size
11544 attribute, and a declaration attribute. */
11545 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11546 || !die_is_declaration (die, cu))
11547 new_symbol (die, type, cu);
11548 }
11549
11550 /* Given a DW_AT_enumeration_type die, set its type. We do not
11551 complete the type's fields yet, or create any symbols. */
11552
11553 static struct type *
11554 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11555 {
11556 struct objfile *objfile = cu->objfile;
11557 struct type *type;
11558 struct attribute *attr;
11559 const char *name;
11560
11561 /* If the definition of this type lives in .debug_types, read that type.
11562 Don't follow DW_AT_specification though, that will take us back up
11563 the chain and we want to go down. */
11564 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11565 if (attr)
11566 {
11567 struct dwarf2_cu *type_cu = cu;
11568 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11569
11570 type = read_type_die (type_die, type_cu);
11571
11572 /* TYPE_CU may not be the same as CU.
11573 Ensure TYPE is recorded in CU's type_hash table. */
11574 return set_die_type (die, type, cu);
11575 }
11576
11577 type = alloc_type (objfile);
11578
11579 TYPE_CODE (type) = TYPE_CODE_ENUM;
11580 name = dwarf2_full_name (NULL, die, cu);
11581 if (name != NULL)
11582 TYPE_TAG_NAME (type) = name;
11583
11584 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11585 if (attr)
11586 {
11587 TYPE_LENGTH (type) = DW_UNSND (attr);
11588 }
11589 else
11590 {
11591 TYPE_LENGTH (type) = 0;
11592 }
11593
11594 /* The enumeration DIE can be incomplete. In Ada, any type can be
11595 declared as private in the package spec, and then defined only
11596 inside the package body. Such types are known as Taft Amendment
11597 Types. When another package uses such a type, an incomplete DIE
11598 may be generated by the compiler. */
11599 if (die_is_declaration (die, cu))
11600 TYPE_STUB (type) = 1;
11601
11602 return set_die_type (die, type, cu);
11603 }
11604
11605 /* Given a pointer to a die which begins an enumeration, process all
11606 the dies that define the members of the enumeration, and create the
11607 symbol for the enumeration type.
11608
11609 NOTE: We reverse the order of the element list. */
11610
11611 static void
11612 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11613 {
11614 struct type *this_type;
11615
11616 this_type = get_die_type (die, cu);
11617 if (this_type == NULL)
11618 this_type = read_enumeration_type (die, cu);
11619
11620 if (die->child != NULL)
11621 {
11622 struct die_info *child_die;
11623 struct symbol *sym;
11624 struct field *fields = NULL;
11625 int num_fields = 0;
11626 int unsigned_enum = 1;
11627 const char *name;
11628 int flag_enum = 1;
11629 ULONGEST mask = 0;
11630
11631 child_die = die->child;
11632 while (child_die && child_die->tag)
11633 {
11634 if (child_die->tag != DW_TAG_enumerator)
11635 {
11636 process_die (child_die, cu);
11637 }
11638 else
11639 {
11640 name = dwarf2_name (child_die, cu);
11641 if (name)
11642 {
11643 sym = new_symbol (child_die, this_type, cu);
11644 if (SYMBOL_VALUE (sym) < 0)
11645 {
11646 unsigned_enum = 0;
11647 flag_enum = 0;
11648 }
11649 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11650 flag_enum = 0;
11651 else
11652 mask |= SYMBOL_VALUE (sym);
11653
11654 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11655 {
11656 fields = (struct field *)
11657 xrealloc (fields,
11658 (num_fields + DW_FIELD_ALLOC_CHUNK)
11659 * sizeof (struct field));
11660 }
11661
11662 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11663 FIELD_TYPE (fields[num_fields]) = NULL;
11664 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11665 FIELD_BITSIZE (fields[num_fields]) = 0;
11666
11667 num_fields++;
11668 }
11669 }
11670
11671 child_die = sibling_die (child_die);
11672 }
11673
11674 if (num_fields)
11675 {
11676 TYPE_NFIELDS (this_type) = num_fields;
11677 TYPE_FIELDS (this_type) = (struct field *)
11678 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11679 memcpy (TYPE_FIELDS (this_type), fields,
11680 sizeof (struct field) * num_fields);
11681 xfree (fields);
11682 }
11683 if (unsigned_enum)
11684 TYPE_UNSIGNED (this_type) = 1;
11685 if (flag_enum)
11686 TYPE_FLAG_ENUM (this_type) = 1;
11687 }
11688
11689 /* If we are reading an enum from a .debug_types unit, and the enum
11690 is a declaration, and the enum is not the signatured type in the
11691 unit, then we do not want to add a symbol for it. Adding a
11692 symbol would in some cases obscure the true definition of the
11693 enum, giving users an incomplete type when the definition is
11694 actually available. Note that we do not want to do this for all
11695 enums which are just declarations, because C++0x allows forward
11696 enum declarations. */
11697 if (cu->per_cu->is_debug_types
11698 && die_is_declaration (die, cu))
11699 {
11700 struct signatured_type *sig_type;
11701
11702 sig_type
11703 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11704 cu->per_cu->info_or_types_section,
11705 cu->per_cu->offset);
11706 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11707 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11708 return;
11709 }
11710
11711 new_symbol (die, this_type, cu);
11712 }
11713
11714 /* Extract all information from a DW_TAG_array_type DIE and put it in
11715 the DIE's type field. For now, this only handles one dimensional
11716 arrays. */
11717
11718 static struct type *
11719 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11720 {
11721 struct objfile *objfile = cu->objfile;
11722 struct die_info *child_die;
11723 struct type *type;
11724 struct type *element_type, *range_type, *index_type;
11725 struct type **range_types = NULL;
11726 struct attribute *attr;
11727 int ndim = 0;
11728 struct cleanup *back_to;
11729 const char *name;
11730
11731 element_type = die_type (die, cu);
11732
11733 /* The die_type call above may have already set the type for this DIE. */
11734 type = get_die_type (die, cu);
11735 if (type)
11736 return type;
11737
11738 /* Irix 6.2 native cc creates array types without children for
11739 arrays with unspecified length. */
11740 if (die->child == NULL)
11741 {
11742 index_type = objfile_type (objfile)->builtin_int;
11743 range_type = create_range_type (NULL, index_type, 0, -1);
11744 type = create_array_type (NULL, element_type, range_type);
11745 return set_die_type (die, type, cu);
11746 }
11747
11748 back_to = make_cleanup (null_cleanup, NULL);
11749 child_die = die->child;
11750 while (child_die && child_die->tag)
11751 {
11752 if (child_die->tag == DW_TAG_subrange_type)
11753 {
11754 struct type *child_type = read_type_die (child_die, cu);
11755
11756 if (child_type != NULL)
11757 {
11758 /* The range type was succesfully read. Save it for the
11759 array type creation. */
11760 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11761 {
11762 range_types = (struct type **)
11763 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11764 * sizeof (struct type *));
11765 if (ndim == 0)
11766 make_cleanup (free_current_contents, &range_types);
11767 }
11768 range_types[ndim++] = child_type;
11769 }
11770 }
11771 child_die = sibling_die (child_die);
11772 }
11773
11774 /* Dwarf2 dimensions are output from left to right, create the
11775 necessary array types in backwards order. */
11776
11777 type = element_type;
11778
11779 if (read_array_order (die, cu) == DW_ORD_col_major)
11780 {
11781 int i = 0;
11782
11783 while (i < ndim)
11784 type = create_array_type (NULL, type, range_types[i++]);
11785 }
11786 else
11787 {
11788 while (ndim-- > 0)
11789 type = create_array_type (NULL, type, range_types[ndim]);
11790 }
11791
11792 /* Understand Dwarf2 support for vector types (like they occur on
11793 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11794 array type. This is not part of the Dwarf2/3 standard yet, but a
11795 custom vendor extension. The main difference between a regular
11796 array and the vector variant is that vectors are passed by value
11797 to functions. */
11798 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11799 if (attr)
11800 make_vector_type (type);
11801
11802 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11803 implementation may choose to implement triple vectors using this
11804 attribute. */
11805 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11806 if (attr)
11807 {
11808 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11809 TYPE_LENGTH (type) = DW_UNSND (attr);
11810 else
11811 complaint (&symfile_complaints,
11812 _("DW_AT_byte_size for array type smaller "
11813 "than the total size of elements"));
11814 }
11815
11816 name = dwarf2_name (die, cu);
11817 if (name)
11818 TYPE_NAME (type) = name;
11819
11820 /* Install the type in the die. */
11821 set_die_type (die, type, cu);
11822
11823 /* set_die_type should be already done. */
11824 set_descriptive_type (type, die, cu);
11825
11826 do_cleanups (back_to);
11827
11828 return type;
11829 }
11830
11831 static enum dwarf_array_dim_ordering
11832 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11833 {
11834 struct attribute *attr;
11835
11836 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11837
11838 if (attr) return DW_SND (attr);
11839
11840 /* GNU F77 is a special case, as at 08/2004 array type info is the
11841 opposite order to the dwarf2 specification, but data is still
11842 laid out as per normal fortran.
11843
11844 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11845 version checking. */
11846
11847 if (cu->language == language_fortran
11848 && cu->producer && strstr (cu->producer, "GNU F77"))
11849 {
11850 return DW_ORD_row_major;
11851 }
11852
11853 switch (cu->language_defn->la_array_ordering)
11854 {
11855 case array_column_major:
11856 return DW_ORD_col_major;
11857 case array_row_major:
11858 default:
11859 return DW_ORD_row_major;
11860 };
11861 }
11862
11863 /* Extract all information from a DW_TAG_set_type DIE and put it in
11864 the DIE's type field. */
11865
11866 static struct type *
11867 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11868 {
11869 struct type *domain_type, *set_type;
11870 struct attribute *attr;
11871
11872 domain_type = die_type (die, cu);
11873
11874 /* The die_type call above may have already set the type for this DIE. */
11875 set_type = get_die_type (die, cu);
11876 if (set_type)
11877 return set_type;
11878
11879 set_type = create_set_type (NULL, domain_type);
11880
11881 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11882 if (attr)
11883 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11884
11885 return set_die_type (die, set_type, cu);
11886 }
11887
11888 /* A helper for read_common_block that creates a locexpr baton.
11889 SYM is the symbol which we are marking as computed.
11890 COMMON_DIE is the DIE for the common block.
11891 COMMON_LOC is the location expression attribute for the common
11892 block itself.
11893 MEMBER_LOC is the location expression attribute for the particular
11894 member of the common block that we are processing.
11895 CU is the CU from which the above come. */
11896
11897 static void
11898 mark_common_block_symbol_computed (struct symbol *sym,
11899 struct die_info *common_die,
11900 struct attribute *common_loc,
11901 struct attribute *member_loc,
11902 struct dwarf2_cu *cu)
11903 {
11904 struct objfile *objfile = dwarf2_per_objfile->objfile;
11905 struct dwarf2_locexpr_baton *baton;
11906 gdb_byte *ptr;
11907 unsigned int cu_off;
11908 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11909 LONGEST offset = 0;
11910
11911 gdb_assert (common_loc && member_loc);
11912 gdb_assert (attr_form_is_block (common_loc));
11913 gdb_assert (attr_form_is_block (member_loc)
11914 || attr_form_is_constant (member_loc));
11915
11916 baton = obstack_alloc (&objfile->objfile_obstack,
11917 sizeof (struct dwarf2_locexpr_baton));
11918 baton->per_cu = cu->per_cu;
11919 gdb_assert (baton->per_cu);
11920
11921 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11922
11923 if (attr_form_is_constant (member_loc))
11924 {
11925 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11926 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11927 }
11928 else
11929 baton->size += DW_BLOCK (member_loc)->size;
11930
11931 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11932 baton->data = ptr;
11933
11934 *ptr++ = DW_OP_call4;
11935 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11936 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11937 ptr += 4;
11938
11939 if (attr_form_is_constant (member_loc))
11940 {
11941 *ptr++ = DW_OP_addr;
11942 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11943 ptr += cu->header.addr_size;
11944 }
11945 else
11946 {
11947 /* We have to copy the data here, because DW_OP_call4 will only
11948 use a DW_AT_location attribute. */
11949 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11950 ptr += DW_BLOCK (member_loc)->size;
11951 }
11952
11953 *ptr++ = DW_OP_plus;
11954 gdb_assert (ptr - baton->data == baton->size);
11955
11956 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11957 SYMBOL_LOCATION_BATON (sym) = baton;
11958 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11959 }
11960
11961 /* Create appropriate locally-scoped variables for all the
11962 DW_TAG_common_block entries. Also create a struct common_block
11963 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11964 is used to sepate the common blocks name namespace from regular
11965 variable names. */
11966
11967 static void
11968 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11969 {
11970 struct attribute *attr;
11971
11972 attr = dwarf2_attr (die, DW_AT_location, cu);
11973 if (attr)
11974 {
11975 /* Support the .debug_loc offsets. */
11976 if (attr_form_is_block (attr))
11977 {
11978 /* Ok. */
11979 }
11980 else if (attr_form_is_section_offset (attr))
11981 {
11982 dwarf2_complex_location_expr_complaint ();
11983 attr = NULL;
11984 }
11985 else
11986 {
11987 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11988 "common block member");
11989 attr = NULL;
11990 }
11991 }
11992
11993 if (die->child != NULL)
11994 {
11995 struct objfile *objfile = cu->objfile;
11996 struct die_info *child_die;
11997 size_t n_entries = 0, size;
11998 struct common_block *common_block;
11999 struct symbol *sym;
12000
12001 for (child_die = die->child;
12002 child_die && child_die->tag;
12003 child_die = sibling_die (child_die))
12004 ++n_entries;
12005
12006 size = (sizeof (struct common_block)
12007 + (n_entries - 1) * sizeof (struct symbol *));
12008 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12009 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12010 common_block->n_entries = 0;
12011
12012 for (child_die = die->child;
12013 child_die && child_die->tag;
12014 child_die = sibling_die (child_die))
12015 {
12016 /* Create the symbol in the DW_TAG_common_block block in the current
12017 symbol scope. */
12018 sym = new_symbol (child_die, NULL, cu);
12019 if (sym != NULL)
12020 {
12021 struct attribute *member_loc;
12022
12023 common_block->contents[common_block->n_entries++] = sym;
12024
12025 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12026 cu);
12027 if (member_loc)
12028 {
12029 /* GDB has handled this for a long time, but it is
12030 not specified by DWARF. It seems to have been
12031 emitted by gfortran at least as recently as:
12032 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12033 complaint (&symfile_complaints,
12034 _("Variable in common block has "
12035 "DW_AT_data_member_location "
12036 "- DIE at 0x%x [in module %s]"),
12037 child_die->offset.sect_off, cu->objfile->name);
12038
12039 if (attr_form_is_section_offset (member_loc))
12040 dwarf2_complex_location_expr_complaint ();
12041 else if (attr_form_is_constant (member_loc)
12042 || attr_form_is_block (member_loc))
12043 {
12044 if (attr)
12045 mark_common_block_symbol_computed (sym, die, attr,
12046 member_loc, cu);
12047 }
12048 else
12049 dwarf2_complex_location_expr_complaint ();
12050 }
12051 }
12052 }
12053
12054 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12055 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12056 }
12057 }
12058
12059 /* Create a type for a C++ namespace. */
12060
12061 static struct type *
12062 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12063 {
12064 struct objfile *objfile = cu->objfile;
12065 const char *previous_prefix, *name;
12066 int is_anonymous;
12067 struct type *type;
12068
12069 /* For extensions, reuse the type of the original namespace. */
12070 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12071 {
12072 struct die_info *ext_die;
12073 struct dwarf2_cu *ext_cu = cu;
12074
12075 ext_die = dwarf2_extension (die, &ext_cu);
12076 type = read_type_die (ext_die, ext_cu);
12077
12078 /* EXT_CU may not be the same as CU.
12079 Ensure TYPE is recorded in CU's type_hash table. */
12080 return set_die_type (die, type, cu);
12081 }
12082
12083 name = namespace_name (die, &is_anonymous, cu);
12084
12085 /* Now build the name of the current namespace. */
12086
12087 previous_prefix = determine_prefix (die, cu);
12088 if (previous_prefix[0] != '\0')
12089 name = typename_concat (&objfile->objfile_obstack,
12090 previous_prefix, name, 0, cu);
12091
12092 /* Create the type. */
12093 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12094 objfile);
12095 TYPE_NAME (type) = name;
12096 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12097
12098 return set_die_type (die, type, cu);
12099 }
12100
12101 /* Read a C++ namespace. */
12102
12103 static void
12104 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12105 {
12106 struct objfile *objfile = cu->objfile;
12107 int is_anonymous;
12108
12109 /* Add a symbol associated to this if we haven't seen the namespace
12110 before. Also, add a using directive if it's an anonymous
12111 namespace. */
12112
12113 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12114 {
12115 struct type *type;
12116
12117 type = read_type_die (die, cu);
12118 new_symbol (die, type, cu);
12119
12120 namespace_name (die, &is_anonymous, cu);
12121 if (is_anonymous)
12122 {
12123 const char *previous_prefix = determine_prefix (die, cu);
12124
12125 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12126 NULL, NULL, 0, &objfile->objfile_obstack);
12127 }
12128 }
12129
12130 if (die->child != NULL)
12131 {
12132 struct die_info *child_die = die->child;
12133
12134 while (child_die && child_die->tag)
12135 {
12136 process_die (child_die, cu);
12137 child_die = sibling_die (child_die);
12138 }
12139 }
12140 }
12141
12142 /* Read a Fortran module as type. This DIE can be only a declaration used for
12143 imported module. Still we need that type as local Fortran "use ... only"
12144 declaration imports depend on the created type in determine_prefix. */
12145
12146 static struct type *
12147 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12148 {
12149 struct objfile *objfile = cu->objfile;
12150 const char *module_name;
12151 struct type *type;
12152
12153 module_name = dwarf2_name (die, cu);
12154 if (!module_name)
12155 complaint (&symfile_complaints,
12156 _("DW_TAG_module has no name, offset 0x%x"),
12157 die->offset.sect_off);
12158 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12159
12160 /* determine_prefix uses TYPE_TAG_NAME. */
12161 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12162
12163 return set_die_type (die, type, cu);
12164 }
12165
12166 /* Read a Fortran module. */
12167
12168 static void
12169 read_module (struct die_info *die, struct dwarf2_cu *cu)
12170 {
12171 struct die_info *child_die = die->child;
12172
12173 while (child_die && child_die->tag)
12174 {
12175 process_die (child_die, cu);
12176 child_die = sibling_die (child_die);
12177 }
12178 }
12179
12180 /* Return the name of the namespace represented by DIE. Set
12181 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12182 namespace. */
12183
12184 static const char *
12185 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12186 {
12187 struct die_info *current_die;
12188 const char *name = NULL;
12189
12190 /* Loop through the extensions until we find a name. */
12191
12192 for (current_die = die;
12193 current_die != NULL;
12194 current_die = dwarf2_extension (die, &cu))
12195 {
12196 name = dwarf2_name (current_die, cu);
12197 if (name != NULL)
12198 break;
12199 }
12200
12201 /* Is it an anonymous namespace? */
12202
12203 *is_anonymous = (name == NULL);
12204 if (*is_anonymous)
12205 name = CP_ANONYMOUS_NAMESPACE_STR;
12206
12207 return name;
12208 }
12209
12210 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12211 the user defined type vector. */
12212
12213 static struct type *
12214 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12215 {
12216 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12217 struct comp_unit_head *cu_header = &cu->header;
12218 struct type *type;
12219 struct attribute *attr_byte_size;
12220 struct attribute *attr_address_class;
12221 int byte_size, addr_class;
12222 struct type *target_type;
12223
12224 target_type = die_type (die, cu);
12225
12226 /* The die_type call above may have already set the type for this DIE. */
12227 type = get_die_type (die, cu);
12228 if (type)
12229 return type;
12230
12231 type = lookup_pointer_type (target_type);
12232
12233 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12234 if (attr_byte_size)
12235 byte_size = DW_UNSND (attr_byte_size);
12236 else
12237 byte_size = cu_header->addr_size;
12238
12239 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12240 if (attr_address_class)
12241 addr_class = DW_UNSND (attr_address_class);
12242 else
12243 addr_class = DW_ADDR_none;
12244
12245 /* If the pointer size or address class is different than the
12246 default, create a type variant marked as such and set the
12247 length accordingly. */
12248 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12249 {
12250 if (gdbarch_address_class_type_flags_p (gdbarch))
12251 {
12252 int type_flags;
12253
12254 type_flags = gdbarch_address_class_type_flags
12255 (gdbarch, byte_size, addr_class);
12256 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12257 == 0);
12258 type = make_type_with_address_space (type, type_flags);
12259 }
12260 else if (TYPE_LENGTH (type) != byte_size)
12261 {
12262 complaint (&symfile_complaints,
12263 _("invalid pointer size %d"), byte_size);
12264 }
12265 else
12266 {
12267 /* Should we also complain about unhandled address classes? */
12268 }
12269 }
12270
12271 TYPE_LENGTH (type) = byte_size;
12272 return set_die_type (die, type, cu);
12273 }
12274
12275 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12276 the user defined type vector. */
12277
12278 static struct type *
12279 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12280 {
12281 struct type *type;
12282 struct type *to_type;
12283 struct type *domain;
12284
12285 to_type = die_type (die, cu);
12286 domain = die_containing_type (die, cu);
12287
12288 /* The calls above may have already set the type for this DIE. */
12289 type = get_die_type (die, cu);
12290 if (type)
12291 return type;
12292
12293 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12294 type = lookup_methodptr_type (to_type);
12295 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12296 {
12297 struct type *new_type = alloc_type (cu->objfile);
12298
12299 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12300 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12301 TYPE_VARARGS (to_type));
12302 type = lookup_methodptr_type (new_type);
12303 }
12304 else
12305 type = lookup_memberptr_type (to_type, domain);
12306
12307 return set_die_type (die, type, cu);
12308 }
12309
12310 /* Extract all information from a DW_TAG_reference_type DIE and add to
12311 the user defined type vector. */
12312
12313 static struct type *
12314 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12315 {
12316 struct comp_unit_head *cu_header = &cu->header;
12317 struct type *type, *target_type;
12318 struct attribute *attr;
12319
12320 target_type = die_type (die, cu);
12321
12322 /* The die_type call above may have already set the type for this DIE. */
12323 type = get_die_type (die, cu);
12324 if (type)
12325 return type;
12326
12327 type = lookup_reference_type (target_type);
12328 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12329 if (attr)
12330 {
12331 TYPE_LENGTH (type) = DW_UNSND (attr);
12332 }
12333 else
12334 {
12335 TYPE_LENGTH (type) = cu_header->addr_size;
12336 }
12337 return set_die_type (die, type, cu);
12338 }
12339
12340 static struct type *
12341 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12342 {
12343 struct type *base_type, *cv_type;
12344
12345 base_type = die_type (die, cu);
12346
12347 /* The die_type call above may have already set the type for this DIE. */
12348 cv_type = get_die_type (die, cu);
12349 if (cv_type)
12350 return cv_type;
12351
12352 /* In case the const qualifier is applied to an array type, the element type
12353 is so qualified, not the array type (section 6.7.3 of C99). */
12354 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12355 {
12356 struct type *el_type, *inner_array;
12357
12358 base_type = copy_type (base_type);
12359 inner_array = base_type;
12360
12361 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12362 {
12363 TYPE_TARGET_TYPE (inner_array) =
12364 copy_type (TYPE_TARGET_TYPE (inner_array));
12365 inner_array = TYPE_TARGET_TYPE (inner_array);
12366 }
12367
12368 el_type = TYPE_TARGET_TYPE (inner_array);
12369 TYPE_TARGET_TYPE (inner_array) =
12370 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12371
12372 return set_die_type (die, base_type, cu);
12373 }
12374
12375 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12376 return set_die_type (die, cv_type, cu);
12377 }
12378
12379 static struct type *
12380 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12381 {
12382 struct type *base_type, *cv_type;
12383
12384 base_type = die_type (die, cu);
12385
12386 /* The die_type call above may have already set the type for this DIE. */
12387 cv_type = get_die_type (die, cu);
12388 if (cv_type)
12389 return cv_type;
12390
12391 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12392 return set_die_type (die, cv_type, cu);
12393 }
12394
12395 /* Handle DW_TAG_restrict_type. */
12396
12397 static struct type *
12398 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12399 {
12400 struct type *base_type, *cv_type;
12401
12402 base_type = die_type (die, cu);
12403
12404 /* The die_type call above may have already set the type for this DIE. */
12405 cv_type = get_die_type (die, cu);
12406 if (cv_type)
12407 return cv_type;
12408
12409 cv_type = make_restrict_type (base_type);
12410 return set_die_type (die, cv_type, cu);
12411 }
12412
12413 /* Extract all information from a DW_TAG_string_type DIE and add to
12414 the user defined type vector. It isn't really a user defined type,
12415 but it behaves like one, with other DIE's using an AT_user_def_type
12416 attribute to reference it. */
12417
12418 static struct type *
12419 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12420 {
12421 struct objfile *objfile = cu->objfile;
12422 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12423 struct type *type, *range_type, *index_type, *char_type;
12424 struct attribute *attr;
12425 unsigned int length;
12426
12427 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12428 if (attr)
12429 {
12430 length = DW_UNSND (attr);
12431 }
12432 else
12433 {
12434 /* Check for the DW_AT_byte_size attribute. */
12435 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12436 if (attr)
12437 {
12438 length = DW_UNSND (attr);
12439 }
12440 else
12441 {
12442 length = 1;
12443 }
12444 }
12445
12446 index_type = objfile_type (objfile)->builtin_int;
12447 range_type = create_range_type (NULL, index_type, 1, length);
12448 char_type = language_string_char_type (cu->language_defn, gdbarch);
12449 type = create_string_type (NULL, char_type, range_type);
12450
12451 return set_die_type (die, type, cu);
12452 }
12453
12454 /* Handle DIES due to C code like:
12455
12456 struct foo
12457 {
12458 int (*funcp)(int a, long l);
12459 int b;
12460 };
12461
12462 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12463
12464 static struct type *
12465 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12466 {
12467 struct objfile *objfile = cu->objfile;
12468 struct type *type; /* Type that this function returns. */
12469 struct type *ftype; /* Function that returns above type. */
12470 struct attribute *attr;
12471
12472 type = die_type (die, cu);
12473
12474 /* The die_type call above may have already set the type for this DIE. */
12475 ftype = get_die_type (die, cu);
12476 if (ftype)
12477 return ftype;
12478
12479 ftype = lookup_function_type (type);
12480
12481 /* All functions in C++, Pascal and Java have prototypes. */
12482 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12483 if ((attr && (DW_UNSND (attr) != 0))
12484 || cu->language == language_cplus
12485 || cu->language == language_java
12486 || cu->language == language_pascal)
12487 TYPE_PROTOTYPED (ftype) = 1;
12488 else if (producer_is_realview (cu->producer))
12489 /* RealView does not emit DW_AT_prototyped. We can not
12490 distinguish prototyped and unprototyped functions; default to
12491 prototyped, since that is more common in modern code (and
12492 RealView warns about unprototyped functions). */
12493 TYPE_PROTOTYPED (ftype) = 1;
12494
12495 /* Store the calling convention in the type if it's available in
12496 the subroutine die. Otherwise set the calling convention to
12497 the default value DW_CC_normal. */
12498 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12499 if (attr)
12500 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12501 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12502 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12503 else
12504 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12505
12506 /* We need to add the subroutine type to the die immediately so
12507 we don't infinitely recurse when dealing with parameters
12508 declared as the same subroutine type. */
12509 set_die_type (die, ftype, cu);
12510
12511 if (die->child != NULL)
12512 {
12513 struct type *void_type = objfile_type (objfile)->builtin_void;
12514 struct die_info *child_die;
12515 int nparams, iparams;
12516
12517 /* Count the number of parameters.
12518 FIXME: GDB currently ignores vararg functions, but knows about
12519 vararg member functions. */
12520 nparams = 0;
12521 child_die = die->child;
12522 while (child_die && child_die->tag)
12523 {
12524 if (child_die->tag == DW_TAG_formal_parameter)
12525 nparams++;
12526 else if (child_die->tag == DW_TAG_unspecified_parameters)
12527 TYPE_VARARGS (ftype) = 1;
12528 child_die = sibling_die (child_die);
12529 }
12530
12531 /* Allocate storage for parameters and fill them in. */
12532 TYPE_NFIELDS (ftype) = nparams;
12533 TYPE_FIELDS (ftype) = (struct field *)
12534 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12535
12536 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12537 even if we error out during the parameters reading below. */
12538 for (iparams = 0; iparams < nparams; iparams++)
12539 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12540
12541 iparams = 0;
12542 child_die = die->child;
12543 while (child_die && child_die->tag)
12544 {
12545 if (child_die->tag == DW_TAG_formal_parameter)
12546 {
12547 struct type *arg_type;
12548
12549 /* DWARF version 2 has no clean way to discern C++
12550 static and non-static member functions. G++ helps
12551 GDB by marking the first parameter for non-static
12552 member functions (which is the this pointer) as
12553 artificial. We pass this information to
12554 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12555
12556 DWARF version 3 added DW_AT_object_pointer, which GCC
12557 4.5 does not yet generate. */
12558 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12559 if (attr)
12560 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12561 else
12562 {
12563 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12564
12565 /* GCC/43521: In java, the formal parameter
12566 "this" is sometimes not marked with DW_AT_artificial. */
12567 if (cu->language == language_java)
12568 {
12569 const char *name = dwarf2_name (child_die, cu);
12570
12571 if (name && !strcmp (name, "this"))
12572 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12573 }
12574 }
12575 arg_type = die_type (child_die, cu);
12576
12577 /* RealView does not mark THIS as const, which the testsuite
12578 expects. GCC marks THIS as const in method definitions,
12579 but not in the class specifications (GCC PR 43053). */
12580 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12581 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12582 {
12583 int is_this = 0;
12584 struct dwarf2_cu *arg_cu = cu;
12585 const char *name = dwarf2_name (child_die, cu);
12586
12587 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12588 if (attr)
12589 {
12590 /* If the compiler emits this, use it. */
12591 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12592 is_this = 1;
12593 }
12594 else if (name && strcmp (name, "this") == 0)
12595 /* Function definitions will have the argument names. */
12596 is_this = 1;
12597 else if (name == NULL && iparams == 0)
12598 /* Declarations may not have the names, so like
12599 elsewhere in GDB, assume an artificial first
12600 argument is "this". */
12601 is_this = 1;
12602
12603 if (is_this)
12604 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12605 arg_type, 0);
12606 }
12607
12608 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12609 iparams++;
12610 }
12611 child_die = sibling_die (child_die);
12612 }
12613 }
12614
12615 return ftype;
12616 }
12617
12618 static struct type *
12619 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12620 {
12621 struct objfile *objfile = cu->objfile;
12622 const char *name = NULL;
12623 struct type *this_type, *target_type;
12624
12625 name = dwarf2_full_name (NULL, die, cu);
12626 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12627 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12628 TYPE_NAME (this_type) = name;
12629 set_die_type (die, this_type, cu);
12630 target_type = die_type (die, cu);
12631 if (target_type != this_type)
12632 TYPE_TARGET_TYPE (this_type) = target_type;
12633 else
12634 {
12635 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12636 spec and cause infinite loops in GDB. */
12637 complaint (&symfile_complaints,
12638 _("Self-referential DW_TAG_typedef "
12639 "- DIE at 0x%x [in module %s]"),
12640 die->offset.sect_off, objfile->name);
12641 TYPE_TARGET_TYPE (this_type) = NULL;
12642 }
12643 return this_type;
12644 }
12645
12646 /* Find a representation of a given base type and install
12647 it in the TYPE field of the die. */
12648
12649 static struct type *
12650 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12651 {
12652 struct objfile *objfile = cu->objfile;
12653 struct type *type;
12654 struct attribute *attr;
12655 int encoding = 0, size = 0;
12656 const char *name;
12657 enum type_code code = TYPE_CODE_INT;
12658 int type_flags = 0;
12659 struct type *target_type = NULL;
12660
12661 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12662 if (attr)
12663 {
12664 encoding = DW_UNSND (attr);
12665 }
12666 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12667 if (attr)
12668 {
12669 size = DW_UNSND (attr);
12670 }
12671 name = dwarf2_name (die, cu);
12672 if (!name)
12673 {
12674 complaint (&symfile_complaints,
12675 _("DW_AT_name missing from DW_TAG_base_type"));
12676 }
12677
12678 switch (encoding)
12679 {
12680 case DW_ATE_address:
12681 /* Turn DW_ATE_address into a void * pointer. */
12682 code = TYPE_CODE_PTR;
12683 type_flags |= TYPE_FLAG_UNSIGNED;
12684 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12685 break;
12686 case DW_ATE_boolean:
12687 code = TYPE_CODE_BOOL;
12688 type_flags |= TYPE_FLAG_UNSIGNED;
12689 break;
12690 case DW_ATE_complex_float:
12691 code = TYPE_CODE_COMPLEX;
12692 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12693 break;
12694 case DW_ATE_decimal_float:
12695 code = TYPE_CODE_DECFLOAT;
12696 break;
12697 case DW_ATE_float:
12698 code = TYPE_CODE_FLT;
12699 break;
12700 case DW_ATE_signed:
12701 break;
12702 case DW_ATE_unsigned:
12703 type_flags |= TYPE_FLAG_UNSIGNED;
12704 if (cu->language == language_fortran
12705 && name
12706 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12707 code = TYPE_CODE_CHAR;
12708 break;
12709 case DW_ATE_signed_char:
12710 if (cu->language == language_ada || cu->language == language_m2
12711 || cu->language == language_pascal
12712 || cu->language == language_fortran)
12713 code = TYPE_CODE_CHAR;
12714 break;
12715 case DW_ATE_unsigned_char:
12716 if (cu->language == language_ada || cu->language == language_m2
12717 || cu->language == language_pascal
12718 || cu->language == language_fortran)
12719 code = TYPE_CODE_CHAR;
12720 type_flags |= TYPE_FLAG_UNSIGNED;
12721 break;
12722 case DW_ATE_UTF:
12723 /* We just treat this as an integer and then recognize the
12724 type by name elsewhere. */
12725 break;
12726
12727 default:
12728 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12729 dwarf_type_encoding_name (encoding));
12730 break;
12731 }
12732
12733 type = init_type (code, size, type_flags, NULL, objfile);
12734 TYPE_NAME (type) = name;
12735 TYPE_TARGET_TYPE (type) = target_type;
12736
12737 if (name && strcmp (name, "char") == 0)
12738 TYPE_NOSIGN (type) = 1;
12739
12740 return set_die_type (die, type, cu);
12741 }
12742
12743 /* Read the given DW_AT_subrange DIE. */
12744
12745 static struct type *
12746 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12747 {
12748 struct type *base_type, *orig_base_type;
12749 struct type *range_type;
12750 struct attribute *attr;
12751 LONGEST low, high;
12752 int low_default_is_valid;
12753 const char *name;
12754 LONGEST negative_mask;
12755
12756 orig_base_type = die_type (die, cu);
12757 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12758 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12759 creating the range type, but we use the result of check_typedef
12760 when examining properties of the type. */
12761 base_type = check_typedef (orig_base_type);
12762
12763 /* The die_type call above may have already set the type for this DIE. */
12764 range_type = get_die_type (die, cu);
12765 if (range_type)
12766 return range_type;
12767
12768 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12769 omitting DW_AT_lower_bound. */
12770 switch (cu->language)
12771 {
12772 case language_c:
12773 case language_cplus:
12774 low = 0;
12775 low_default_is_valid = 1;
12776 break;
12777 case language_fortran:
12778 low = 1;
12779 low_default_is_valid = 1;
12780 break;
12781 case language_d:
12782 case language_java:
12783 case language_objc:
12784 low = 0;
12785 low_default_is_valid = (cu->header.version >= 4);
12786 break;
12787 case language_ada:
12788 case language_m2:
12789 case language_pascal:
12790 low = 1;
12791 low_default_is_valid = (cu->header.version >= 4);
12792 break;
12793 default:
12794 low = 0;
12795 low_default_is_valid = 0;
12796 break;
12797 }
12798
12799 /* FIXME: For variable sized arrays either of these could be
12800 a variable rather than a constant value. We'll allow it,
12801 but we don't know how to handle it. */
12802 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12803 if (attr)
12804 low = dwarf2_get_attr_constant_value (attr, low);
12805 else if (!low_default_is_valid)
12806 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12807 "- DIE at 0x%x [in module %s]"),
12808 die->offset.sect_off, cu->objfile->name);
12809
12810 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12811 if (attr)
12812 {
12813 if (attr_form_is_block (attr) || is_ref_attr (attr))
12814 {
12815 /* GCC encodes arrays with unspecified or dynamic length
12816 with a DW_FORM_block1 attribute or a reference attribute.
12817 FIXME: GDB does not yet know how to handle dynamic
12818 arrays properly, treat them as arrays with unspecified
12819 length for now.
12820
12821 FIXME: jimb/2003-09-22: GDB does not really know
12822 how to handle arrays of unspecified length
12823 either; we just represent them as zero-length
12824 arrays. Choose an appropriate upper bound given
12825 the lower bound we've computed above. */
12826 high = low - 1;
12827 }
12828 else
12829 high = dwarf2_get_attr_constant_value (attr, 1);
12830 }
12831 else
12832 {
12833 attr = dwarf2_attr (die, DW_AT_count, cu);
12834 if (attr)
12835 {
12836 int count = dwarf2_get_attr_constant_value (attr, 1);
12837 high = low + count - 1;
12838 }
12839 else
12840 {
12841 /* Unspecified array length. */
12842 high = low - 1;
12843 }
12844 }
12845
12846 /* Dwarf-2 specifications explicitly allows to create subrange types
12847 without specifying a base type.
12848 In that case, the base type must be set to the type of
12849 the lower bound, upper bound or count, in that order, if any of these
12850 three attributes references an object that has a type.
12851 If no base type is found, the Dwarf-2 specifications say that
12852 a signed integer type of size equal to the size of an address should
12853 be used.
12854 For the following C code: `extern char gdb_int [];'
12855 GCC produces an empty range DIE.
12856 FIXME: muller/2010-05-28: Possible references to object for low bound,
12857 high bound or count are not yet handled by this code. */
12858 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12859 {
12860 struct objfile *objfile = cu->objfile;
12861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12862 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12863 struct type *int_type = objfile_type (objfile)->builtin_int;
12864
12865 /* Test "int", "long int", and "long long int" objfile types,
12866 and select the first one having a size above or equal to the
12867 architecture address size. */
12868 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12869 base_type = int_type;
12870 else
12871 {
12872 int_type = objfile_type (objfile)->builtin_long;
12873 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12874 base_type = int_type;
12875 else
12876 {
12877 int_type = objfile_type (objfile)->builtin_long_long;
12878 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12879 base_type = int_type;
12880 }
12881 }
12882 }
12883
12884 negative_mask =
12885 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12886 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12887 low |= negative_mask;
12888 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12889 high |= negative_mask;
12890
12891 range_type = create_range_type (NULL, orig_base_type, low, high);
12892
12893 /* Mark arrays with dynamic length at least as an array of unspecified
12894 length. GDB could check the boundary but before it gets implemented at
12895 least allow accessing the array elements. */
12896 if (attr && attr_form_is_block (attr))
12897 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12898
12899 /* Ada expects an empty array on no boundary attributes. */
12900 if (attr == NULL && cu->language != language_ada)
12901 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12902
12903 name = dwarf2_name (die, cu);
12904 if (name)
12905 TYPE_NAME (range_type) = name;
12906
12907 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12908 if (attr)
12909 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12910
12911 set_die_type (die, range_type, cu);
12912
12913 /* set_die_type should be already done. */
12914 set_descriptive_type (range_type, die, cu);
12915
12916 return range_type;
12917 }
12918
12919 static struct type *
12920 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12921 {
12922 struct type *type;
12923
12924 /* For now, we only support the C meaning of an unspecified type: void. */
12925
12926 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12927 TYPE_NAME (type) = dwarf2_name (die, cu);
12928
12929 return set_die_type (die, type, cu);
12930 }
12931
12932 /* Read a single die and all its descendents. Set the die's sibling
12933 field to NULL; set other fields in the die correctly, and set all
12934 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12935 location of the info_ptr after reading all of those dies. PARENT
12936 is the parent of the die in question. */
12937
12938 static struct die_info *
12939 read_die_and_children (const struct die_reader_specs *reader,
12940 gdb_byte *info_ptr,
12941 gdb_byte **new_info_ptr,
12942 struct die_info *parent)
12943 {
12944 struct die_info *die;
12945 gdb_byte *cur_ptr;
12946 int has_children;
12947
12948 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12949 if (die == NULL)
12950 {
12951 *new_info_ptr = cur_ptr;
12952 return NULL;
12953 }
12954 store_in_ref_table (die, reader->cu);
12955
12956 if (has_children)
12957 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12958 else
12959 {
12960 die->child = NULL;
12961 *new_info_ptr = cur_ptr;
12962 }
12963
12964 die->sibling = NULL;
12965 die->parent = parent;
12966 return die;
12967 }
12968
12969 /* Read a die, all of its descendents, and all of its siblings; set
12970 all of the fields of all of the dies correctly. Arguments are as
12971 in read_die_and_children. */
12972
12973 static struct die_info *
12974 read_die_and_siblings (const struct die_reader_specs *reader,
12975 gdb_byte *info_ptr,
12976 gdb_byte **new_info_ptr,
12977 struct die_info *parent)
12978 {
12979 struct die_info *first_die, *last_sibling;
12980 gdb_byte *cur_ptr;
12981
12982 cur_ptr = info_ptr;
12983 first_die = last_sibling = NULL;
12984
12985 while (1)
12986 {
12987 struct die_info *die
12988 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12989
12990 if (die == NULL)
12991 {
12992 *new_info_ptr = cur_ptr;
12993 return first_die;
12994 }
12995
12996 if (!first_die)
12997 first_die = die;
12998 else
12999 last_sibling->sibling = die;
13000
13001 last_sibling = die;
13002 }
13003 }
13004
13005 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13006 attributes.
13007 The caller is responsible for filling in the extra attributes
13008 and updating (*DIEP)->num_attrs.
13009 Set DIEP to point to a newly allocated die with its information,
13010 except for its child, sibling, and parent fields.
13011 Set HAS_CHILDREN to tell whether the die has children or not. */
13012
13013 static gdb_byte *
13014 read_full_die_1 (const struct die_reader_specs *reader,
13015 struct die_info **diep, gdb_byte *info_ptr,
13016 int *has_children, int num_extra_attrs)
13017 {
13018 unsigned int abbrev_number, bytes_read, i;
13019 sect_offset offset;
13020 struct abbrev_info *abbrev;
13021 struct die_info *die;
13022 struct dwarf2_cu *cu = reader->cu;
13023 bfd *abfd = reader->abfd;
13024
13025 offset.sect_off = info_ptr - reader->buffer;
13026 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13027 info_ptr += bytes_read;
13028 if (!abbrev_number)
13029 {
13030 *diep = NULL;
13031 *has_children = 0;
13032 return info_ptr;
13033 }
13034
13035 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13036 if (!abbrev)
13037 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13038 abbrev_number,
13039 bfd_get_filename (abfd));
13040
13041 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13042 die->offset = offset;
13043 die->tag = abbrev->tag;
13044 die->abbrev = abbrev_number;
13045
13046 /* Make the result usable.
13047 The caller needs to update num_attrs after adding the extra
13048 attributes. */
13049 die->num_attrs = abbrev->num_attrs;
13050
13051 for (i = 0; i < abbrev->num_attrs; ++i)
13052 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13053 info_ptr);
13054
13055 *diep = die;
13056 *has_children = abbrev->has_children;
13057 return info_ptr;
13058 }
13059
13060 /* Read a die and all its attributes.
13061 Set DIEP to point to a newly allocated die with its information,
13062 except for its child, sibling, and parent fields.
13063 Set HAS_CHILDREN to tell whether the die has children or not. */
13064
13065 static gdb_byte *
13066 read_full_die (const struct die_reader_specs *reader,
13067 struct die_info **diep, gdb_byte *info_ptr,
13068 int *has_children)
13069 {
13070 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13071 }
13072 \f
13073 /* Abbreviation tables.
13074
13075 In DWARF version 2, the description of the debugging information is
13076 stored in a separate .debug_abbrev section. Before we read any
13077 dies from a section we read in all abbreviations and install them
13078 in a hash table. */
13079
13080 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13081
13082 static struct abbrev_info *
13083 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13084 {
13085 struct abbrev_info *abbrev;
13086
13087 abbrev = (struct abbrev_info *)
13088 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13089 memset (abbrev, 0, sizeof (struct abbrev_info));
13090 return abbrev;
13091 }
13092
13093 /* Add an abbreviation to the table. */
13094
13095 static void
13096 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13097 unsigned int abbrev_number,
13098 struct abbrev_info *abbrev)
13099 {
13100 unsigned int hash_number;
13101
13102 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13103 abbrev->next = abbrev_table->abbrevs[hash_number];
13104 abbrev_table->abbrevs[hash_number] = abbrev;
13105 }
13106
13107 /* Look up an abbrev in the table.
13108 Returns NULL if the abbrev is not found. */
13109
13110 static struct abbrev_info *
13111 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13112 unsigned int abbrev_number)
13113 {
13114 unsigned int hash_number;
13115 struct abbrev_info *abbrev;
13116
13117 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13118 abbrev = abbrev_table->abbrevs[hash_number];
13119
13120 while (abbrev)
13121 {
13122 if (abbrev->number == abbrev_number)
13123 return abbrev;
13124 abbrev = abbrev->next;
13125 }
13126 return NULL;
13127 }
13128
13129 /* Read in an abbrev table. */
13130
13131 static struct abbrev_table *
13132 abbrev_table_read_table (struct dwarf2_section_info *section,
13133 sect_offset offset)
13134 {
13135 struct objfile *objfile = dwarf2_per_objfile->objfile;
13136 bfd *abfd = section->asection->owner;
13137 struct abbrev_table *abbrev_table;
13138 gdb_byte *abbrev_ptr;
13139 struct abbrev_info *cur_abbrev;
13140 unsigned int abbrev_number, bytes_read, abbrev_name;
13141 unsigned int abbrev_form;
13142 struct attr_abbrev *cur_attrs;
13143 unsigned int allocated_attrs;
13144
13145 abbrev_table = XMALLOC (struct abbrev_table);
13146 abbrev_table->offset = offset;
13147 obstack_init (&abbrev_table->abbrev_obstack);
13148 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13149 (ABBREV_HASH_SIZE
13150 * sizeof (struct abbrev_info *)));
13151 memset (abbrev_table->abbrevs, 0,
13152 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13153
13154 dwarf2_read_section (objfile, section);
13155 abbrev_ptr = section->buffer + offset.sect_off;
13156 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13157 abbrev_ptr += bytes_read;
13158
13159 allocated_attrs = ATTR_ALLOC_CHUNK;
13160 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13161
13162 /* Loop until we reach an abbrev number of 0. */
13163 while (abbrev_number)
13164 {
13165 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13166
13167 /* read in abbrev header */
13168 cur_abbrev->number = abbrev_number;
13169 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13170 abbrev_ptr += bytes_read;
13171 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13172 abbrev_ptr += 1;
13173
13174 /* now read in declarations */
13175 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13176 abbrev_ptr += bytes_read;
13177 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13178 abbrev_ptr += bytes_read;
13179 while (abbrev_name)
13180 {
13181 if (cur_abbrev->num_attrs == allocated_attrs)
13182 {
13183 allocated_attrs += ATTR_ALLOC_CHUNK;
13184 cur_attrs
13185 = xrealloc (cur_attrs, (allocated_attrs
13186 * sizeof (struct attr_abbrev)));
13187 }
13188
13189 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13190 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13191 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13192 abbrev_ptr += bytes_read;
13193 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13194 abbrev_ptr += bytes_read;
13195 }
13196
13197 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13198 (cur_abbrev->num_attrs
13199 * sizeof (struct attr_abbrev)));
13200 memcpy (cur_abbrev->attrs, cur_attrs,
13201 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13202
13203 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13204
13205 /* Get next abbreviation.
13206 Under Irix6 the abbreviations for a compilation unit are not
13207 always properly terminated with an abbrev number of 0.
13208 Exit loop if we encounter an abbreviation which we have
13209 already read (which means we are about to read the abbreviations
13210 for the next compile unit) or if the end of the abbreviation
13211 table is reached. */
13212 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13213 break;
13214 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13215 abbrev_ptr += bytes_read;
13216 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13217 break;
13218 }
13219
13220 xfree (cur_attrs);
13221 return abbrev_table;
13222 }
13223
13224 /* Free the resources held by ABBREV_TABLE. */
13225
13226 static void
13227 abbrev_table_free (struct abbrev_table *abbrev_table)
13228 {
13229 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13230 xfree (abbrev_table);
13231 }
13232
13233 /* Same as abbrev_table_free but as a cleanup.
13234 We pass in a pointer to the pointer to the table so that we can
13235 set the pointer to NULL when we're done. It also simplifies
13236 build_type_unit_groups. */
13237
13238 static void
13239 abbrev_table_free_cleanup (void *table_ptr)
13240 {
13241 struct abbrev_table **abbrev_table_ptr = table_ptr;
13242
13243 if (*abbrev_table_ptr != NULL)
13244 abbrev_table_free (*abbrev_table_ptr);
13245 *abbrev_table_ptr = NULL;
13246 }
13247
13248 /* Read the abbrev table for CU from ABBREV_SECTION. */
13249
13250 static void
13251 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13252 struct dwarf2_section_info *abbrev_section)
13253 {
13254 cu->abbrev_table =
13255 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13256 }
13257
13258 /* Release the memory used by the abbrev table for a compilation unit. */
13259
13260 static void
13261 dwarf2_free_abbrev_table (void *ptr_to_cu)
13262 {
13263 struct dwarf2_cu *cu = ptr_to_cu;
13264
13265 abbrev_table_free (cu->abbrev_table);
13266 /* Set this to NULL so that we SEGV if we try to read it later,
13267 and also because free_comp_unit verifies this is NULL. */
13268 cu->abbrev_table = NULL;
13269 }
13270 \f
13271 /* Returns nonzero if TAG represents a type that we might generate a partial
13272 symbol for. */
13273
13274 static int
13275 is_type_tag_for_partial (int tag)
13276 {
13277 switch (tag)
13278 {
13279 #if 0
13280 /* Some types that would be reasonable to generate partial symbols for,
13281 that we don't at present. */
13282 case DW_TAG_array_type:
13283 case DW_TAG_file_type:
13284 case DW_TAG_ptr_to_member_type:
13285 case DW_TAG_set_type:
13286 case DW_TAG_string_type:
13287 case DW_TAG_subroutine_type:
13288 #endif
13289 case DW_TAG_base_type:
13290 case DW_TAG_class_type:
13291 case DW_TAG_interface_type:
13292 case DW_TAG_enumeration_type:
13293 case DW_TAG_structure_type:
13294 case DW_TAG_subrange_type:
13295 case DW_TAG_typedef:
13296 case DW_TAG_union_type:
13297 return 1;
13298 default:
13299 return 0;
13300 }
13301 }
13302
13303 /* Load all DIEs that are interesting for partial symbols into memory. */
13304
13305 static struct partial_die_info *
13306 load_partial_dies (const struct die_reader_specs *reader,
13307 gdb_byte *info_ptr, int building_psymtab)
13308 {
13309 struct dwarf2_cu *cu = reader->cu;
13310 struct objfile *objfile = cu->objfile;
13311 struct partial_die_info *part_die;
13312 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13313 struct abbrev_info *abbrev;
13314 unsigned int bytes_read;
13315 unsigned int load_all = 0;
13316 int nesting_level = 1;
13317
13318 parent_die = NULL;
13319 last_die = NULL;
13320
13321 gdb_assert (cu->per_cu != NULL);
13322 if (cu->per_cu->load_all_dies)
13323 load_all = 1;
13324
13325 cu->partial_dies
13326 = htab_create_alloc_ex (cu->header.length / 12,
13327 partial_die_hash,
13328 partial_die_eq,
13329 NULL,
13330 &cu->comp_unit_obstack,
13331 hashtab_obstack_allocate,
13332 dummy_obstack_deallocate);
13333
13334 part_die = obstack_alloc (&cu->comp_unit_obstack,
13335 sizeof (struct partial_die_info));
13336
13337 while (1)
13338 {
13339 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13340
13341 /* A NULL abbrev means the end of a series of children. */
13342 if (abbrev == NULL)
13343 {
13344 if (--nesting_level == 0)
13345 {
13346 /* PART_DIE was probably the last thing allocated on the
13347 comp_unit_obstack, so we could call obstack_free
13348 here. We don't do that because the waste is small,
13349 and will be cleaned up when we're done with this
13350 compilation unit. This way, we're also more robust
13351 against other users of the comp_unit_obstack. */
13352 return first_die;
13353 }
13354 info_ptr += bytes_read;
13355 last_die = parent_die;
13356 parent_die = parent_die->die_parent;
13357 continue;
13358 }
13359
13360 /* Check for template arguments. We never save these; if
13361 they're seen, we just mark the parent, and go on our way. */
13362 if (parent_die != NULL
13363 && cu->language == language_cplus
13364 && (abbrev->tag == DW_TAG_template_type_param
13365 || abbrev->tag == DW_TAG_template_value_param))
13366 {
13367 parent_die->has_template_arguments = 1;
13368
13369 if (!load_all)
13370 {
13371 /* We don't need a partial DIE for the template argument. */
13372 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13373 continue;
13374 }
13375 }
13376
13377 /* We only recurse into c++ subprograms looking for template arguments.
13378 Skip their other children. */
13379 if (!load_all
13380 && cu->language == language_cplus
13381 && parent_die != NULL
13382 && parent_die->tag == DW_TAG_subprogram)
13383 {
13384 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13385 continue;
13386 }
13387
13388 /* Check whether this DIE is interesting enough to save. Normally
13389 we would not be interested in members here, but there may be
13390 later variables referencing them via DW_AT_specification (for
13391 static members). */
13392 if (!load_all
13393 && !is_type_tag_for_partial (abbrev->tag)
13394 && abbrev->tag != DW_TAG_constant
13395 && abbrev->tag != DW_TAG_enumerator
13396 && abbrev->tag != DW_TAG_subprogram
13397 && abbrev->tag != DW_TAG_lexical_block
13398 && abbrev->tag != DW_TAG_variable
13399 && abbrev->tag != DW_TAG_namespace
13400 && abbrev->tag != DW_TAG_module
13401 && abbrev->tag != DW_TAG_member
13402 && abbrev->tag != DW_TAG_imported_unit)
13403 {
13404 /* Otherwise we skip to the next sibling, if any. */
13405 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13406 continue;
13407 }
13408
13409 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13410 info_ptr);
13411
13412 /* This two-pass algorithm for processing partial symbols has a
13413 high cost in cache pressure. Thus, handle some simple cases
13414 here which cover the majority of C partial symbols. DIEs
13415 which neither have specification tags in them, nor could have
13416 specification tags elsewhere pointing at them, can simply be
13417 processed and discarded.
13418
13419 This segment is also optional; scan_partial_symbols and
13420 add_partial_symbol will handle these DIEs if we chain
13421 them in normally. When compilers which do not emit large
13422 quantities of duplicate debug information are more common,
13423 this code can probably be removed. */
13424
13425 /* Any complete simple types at the top level (pretty much all
13426 of them, for a language without namespaces), can be processed
13427 directly. */
13428 if (parent_die == NULL
13429 && part_die->has_specification == 0
13430 && part_die->is_declaration == 0
13431 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13432 || part_die->tag == DW_TAG_base_type
13433 || part_die->tag == DW_TAG_subrange_type))
13434 {
13435 if (building_psymtab && part_die->name != NULL)
13436 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13437 VAR_DOMAIN, LOC_TYPEDEF,
13438 &objfile->static_psymbols,
13439 0, (CORE_ADDR) 0, cu->language, objfile);
13440 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13441 continue;
13442 }
13443
13444 /* The exception for DW_TAG_typedef with has_children above is
13445 a workaround of GCC PR debug/47510. In the case of this complaint
13446 type_name_no_tag_or_error will error on such types later.
13447
13448 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13449 it could not find the child DIEs referenced later, this is checked
13450 above. In correct DWARF DW_TAG_typedef should have no children. */
13451
13452 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13453 complaint (&symfile_complaints,
13454 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13455 "- DIE at 0x%x [in module %s]"),
13456 part_die->offset.sect_off, objfile->name);
13457
13458 /* If we're at the second level, and we're an enumerator, and
13459 our parent has no specification (meaning possibly lives in a
13460 namespace elsewhere), then we can add the partial symbol now
13461 instead of queueing it. */
13462 if (part_die->tag == DW_TAG_enumerator
13463 && parent_die != NULL
13464 && parent_die->die_parent == NULL
13465 && parent_die->tag == DW_TAG_enumeration_type
13466 && parent_die->has_specification == 0)
13467 {
13468 if (part_die->name == NULL)
13469 complaint (&symfile_complaints,
13470 _("malformed enumerator DIE ignored"));
13471 else if (building_psymtab)
13472 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13473 VAR_DOMAIN, LOC_CONST,
13474 (cu->language == language_cplus
13475 || cu->language == language_java)
13476 ? &objfile->global_psymbols
13477 : &objfile->static_psymbols,
13478 0, (CORE_ADDR) 0, cu->language, objfile);
13479
13480 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13481 continue;
13482 }
13483
13484 /* We'll save this DIE so link it in. */
13485 part_die->die_parent = parent_die;
13486 part_die->die_sibling = NULL;
13487 part_die->die_child = NULL;
13488
13489 if (last_die && last_die == parent_die)
13490 last_die->die_child = part_die;
13491 else if (last_die)
13492 last_die->die_sibling = part_die;
13493
13494 last_die = part_die;
13495
13496 if (first_die == NULL)
13497 first_die = part_die;
13498
13499 /* Maybe add the DIE to the hash table. Not all DIEs that we
13500 find interesting need to be in the hash table, because we
13501 also have the parent/sibling/child chains; only those that we
13502 might refer to by offset later during partial symbol reading.
13503
13504 For now this means things that might have be the target of a
13505 DW_AT_specification, DW_AT_abstract_origin, or
13506 DW_AT_extension. DW_AT_extension will refer only to
13507 namespaces; DW_AT_abstract_origin refers to functions (and
13508 many things under the function DIE, but we do not recurse
13509 into function DIEs during partial symbol reading) and
13510 possibly variables as well; DW_AT_specification refers to
13511 declarations. Declarations ought to have the DW_AT_declaration
13512 flag. It happens that GCC forgets to put it in sometimes, but
13513 only for functions, not for types.
13514
13515 Adding more things than necessary to the hash table is harmless
13516 except for the performance cost. Adding too few will result in
13517 wasted time in find_partial_die, when we reread the compilation
13518 unit with load_all_dies set. */
13519
13520 if (load_all
13521 || abbrev->tag == DW_TAG_constant
13522 || abbrev->tag == DW_TAG_subprogram
13523 || abbrev->tag == DW_TAG_variable
13524 || abbrev->tag == DW_TAG_namespace
13525 || part_die->is_declaration)
13526 {
13527 void **slot;
13528
13529 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13530 part_die->offset.sect_off, INSERT);
13531 *slot = part_die;
13532 }
13533
13534 part_die = obstack_alloc (&cu->comp_unit_obstack,
13535 sizeof (struct partial_die_info));
13536
13537 /* For some DIEs we want to follow their children (if any). For C
13538 we have no reason to follow the children of structures; for other
13539 languages we have to, so that we can get at method physnames
13540 to infer fully qualified class names, for DW_AT_specification,
13541 and for C++ template arguments. For C++, we also look one level
13542 inside functions to find template arguments (if the name of the
13543 function does not already contain the template arguments).
13544
13545 For Ada, we need to scan the children of subprograms and lexical
13546 blocks as well because Ada allows the definition of nested
13547 entities that could be interesting for the debugger, such as
13548 nested subprograms for instance. */
13549 if (last_die->has_children
13550 && (load_all
13551 || last_die->tag == DW_TAG_namespace
13552 || last_die->tag == DW_TAG_module
13553 || last_die->tag == DW_TAG_enumeration_type
13554 || (cu->language == language_cplus
13555 && last_die->tag == DW_TAG_subprogram
13556 && (last_die->name == NULL
13557 || strchr (last_die->name, '<') == NULL))
13558 || (cu->language != language_c
13559 && (last_die->tag == DW_TAG_class_type
13560 || last_die->tag == DW_TAG_interface_type
13561 || last_die->tag == DW_TAG_structure_type
13562 || last_die->tag == DW_TAG_union_type))
13563 || (cu->language == language_ada
13564 && (last_die->tag == DW_TAG_subprogram
13565 || last_die->tag == DW_TAG_lexical_block))))
13566 {
13567 nesting_level++;
13568 parent_die = last_die;
13569 continue;
13570 }
13571
13572 /* Otherwise we skip to the next sibling, if any. */
13573 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13574
13575 /* Back to the top, do it again. */
13576 }
13577 }
13578
13579 /* Read a minimal amount of information into the minimal die structure. */
13580
13581 static gdb_byte *
13582 read_partial_die (const struct die_reader_specs *reader,
13583 struct partial_die_info *part_die,
13584 struct abbrev_info *abbrev, unsigned int abbrev_len,
13585 gdb_byte *info_ptr)
13586 {
13587 struct dwarf2_cu *cu = reader->cu;
13588 struct objfile *objfile = cu->objfile;
13589 gdb_byte *buffer = reader->buffer;
13590 unsigned int i;
13591 struct attribute attr;
13592 int has_low_pc_attr = 0;
13593 int has_high_pc_attr = 0;
13594 int high_pc_relative = 0;
13595
13596 memset (part_die, 0, sizeof (struct partial_die_info));
13597
13598 part_die->offset.sect_off = info_ptr - buffer;
13599
13600 info_ptr += abbrev_len;
13601
13602 if (abbrev == NULL)
13603 return info_ptr;
13604
13605 part_die->tag = abbrev->tag;
13606 part_die->has_children = abbrev->has_children;
13607
13608 for (i = 0; i < abbrev->num_attrs; ++i)
13609 {
13610 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13611
13612 /* Store the data if it is of an attribute we want to keep in a
13613 partial symbol table. */
13614 switch (attr.name)
13615 {
13616 case DW_AT_name:
13617 switch (part_die->tag)
13618 {
13619 case DW_TAG_compile_unit:
13620 case DW_TAG_partial_unit:
13621 case DW_TAG_type_unit:
13622 /* Compilation units have a DW_AT_name that is a filename, not
13623 a source language identifier. */
13624 case DW_TAG_enumeration_type:
13625 case DW_TAG_enumerator:
13626 /* These tags always have simple identifiers already; no need
13627 to canonicalize them. */
13628 part_die->name = DW_STRING (&attr);
13629 break;
13630 default:
13631 part_die->name
13632 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13633 &objfile->objfile_obstack);
13634 break;
13635 }
13636 break;
13637 case DW_AT_linkage_name:
13638 case DW_AT_MIPS_linkage_name:
13639 /* Note that both forms of linkage name might appear. We
13640 assume they will be the same, and we only store the last
13641 one we see. */
13642 if (cu->language == language_ada)
13643 part_die->name = DW_STRING (&attr);
13644 part_die->linkage_name = DW_STRING (&attr);
13645 break;
13646 case DW_AT_low_pc:
13647 has_low_pc_attr = 1;
13648 part_die->lowpc = DW_ADDR (&attr);
13649 break;
13650 case DW_AT_high_pc:
13651 has_high_pc_attr = 1;
13652 if (attr.form == DW_FORM_addr
13653 || attr.form == DW_FORM_GNU_addr_index)
13654 part_die->highpc = DW_ADDR (&attr);
13655 else
13656 {
13657 high_pc_relative = 1;
13658 part_die->highpc = DW_UNSND (&attr);
13659 }
13660 break;
13661 case DW_AT_location:
13662 /* Support the .debug_loc offsets. */
13663 if (attr_form_is_block (&attr))
13664 {
13665 part_die->d.locdesc = DW_BLOCK (&attr);
13666 }
13667 else if (attr_form_is_section_offset (&attr))
13668 {
13669 dwarf2_complex_location_expr_complaint ();
13670 }
13671 else
13672 {
13673 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13674 "partial symbol information");
13675 }
13676 break;
13677 case DW_AT_external:
13678 part_die->is_external = DW_UNSND (&attr);
13679 break;
13680 case DW_AT_declaration:
13681 part_die->is_declaration = DW_UNSND (&attr);
13682 break;
13683 case DW_AT_type:
13684 part_die->has_type = 1;
13685 break;
13686 case DW_AT_abstract_origin:
13687 case DW_AT_specification:
13688 case DW_AT_extension:
13689 part_die->has_specification = 1;
13690 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13691 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13692 || cu->per_cu->is_dwz);
13693 break;
13694 case DW_AT_sibling:
13695 /* Ignore absolute siblings, they might point outside of
13696 the current compile unit. */
13697 if (attr.form == DW_FORM_ref_addr)
13698 complaint (&symfile_complaints,
13699 _("ignoring absolute DW_AT_sibling"));
13700 else
13701 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13702 break;
13703 case DW_AT_byte_size:
13704 part_die->has_byte_size = 1;
13705 break;
13706 case DW_AT_calling_convention:
13707 /* DWARF doesn't provide a way to identify a program's source-level
13708 entry point. DW_AT_calling_convention attributes are only meant
13709 to describe functions' calling conventions.
13710
13711 However, because it's a necessary piece of information in
13712 Fortran, and because DW_CC_program is the only piece of debugging
13713 information whose definition refers to a 'main program' at all,
13714 several compilers have begun marking Fortran main programs with
13715 DW_CC_program --- even when those functions use the standard
13716 calling conventions.
13717
13718 So until DWARF specifies a way to provide this information and
13719 compilers pick up the new representation, we'll support this
13720 practice. */
13721 if (DW_UNSND (&attr) == DW_CC_program
13722 && cu->language == language_fortran)
13723 {
13724 set_main_name (part_die->name);
13725
13726 /* As this DIE has a static linkage the name would be difficult
13727 to look up later. */
13728 language_of_main = language_fortran;
13729 }
13730 break;
13731 case DW_AT_inline:
13732 if (DW_UNSND (&attr) == DW_INL_inlined
13733 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13734 part_die->may_be_inlined = 1;
13735 break;
13736
13737 case DW_AT_import:
13738 if (part_die->tag == DW_TAG_imported_unit)
13739 {
13740 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13741 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13742 || cu->per_cu->is_dwz);
13743 }
13744 break;
13745
13746 default:
13747 break;
13748 }
13749 }
13750
13751 if (high_pc_relative)
13752 part_die->highpc += part_die->lowpc;
13753
13754 if (has_low_pc_attr && has_high_pc_attr)
13755 {
13756 /* When using the GNU linker, .gnu.linkonce. sections are used to
13757 eliminate duplicate copies of functions and vtables and such.
13758 The linker will arbitrarily choose one and discard the others.
13759 The AT_*_pc values for such functions refer to local labels in
13760 these sections. If the section from that file was discarded, the
13761 labels are not in the output, so the relocs get a value of 0.
13762 If this is a discarded function, mark the pc bounds as invalid,
13763 so that GDB will ignore it. */
13764 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13765 {
13766 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13767
13768 complaint (&symfile_complaints,
13769 _("DW_AT_low_pc %s is zero "
13770 "for DIE at 0x%x [in module %s]"),
13771 paddress (gdbarch, part_die->lowpc),
13772 part_die->offset.sect_off, objfile->name);
13773 }
13774 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13775 else if (part_die->lowpc >= part_die->highpc)
13776 {
13777 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13778
13779 complaint (&symfile_complaints,
13780 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13781 "for DIE at 0x%x [in module %s]"),
13782 paddress (gdbarch, part_die->lowpc),
13783 paddress (gdbarch, part_die->highpc),
13784 part_die->offset.sect_off, objfile->name);
13785 }
13786 else
13787 part_die->has_pc_info = 1;
13788 }
13789
13790 return info_ptr;
13791 }
13792
13793 /* Find a cached partial DIE at OFFSET in CU. */
13794
13795 static struct partial_die_info *
13796 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13797 {
13798 struct partial_die_info *lookup_die = NULL;
13799 struct partial_die_info part_die;
13800
13801 part_die.offset = offset;
13802 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13803 offset.sect_off);
13804
13805 return lookup_die;
13806 }
13807
13808 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13809 except in the case of .debug_types DIEs which do not reference
13810 outside their CU (they do however referencing other types via
13811 DW_FORM_ref_sig8). */
13812
13813 static struct partial_die_info *
13814 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13815 {
13816 struct objfile *objfile = cu->objfile;
13817 struct dwarf2_per_cu_data *per_cu = NULL;
13818 struct partial_die_info *pd = NULL;
13819
13820 if (offset_in_dwz == cu->per_cu->is_dwz
13821 && offset_in_cu_p (&cu->header, offset))
13822 {
13823 pd = find_partial_die_in_comp_unit (offset, cu);
13824 if (pd != NULL)
13825 return pd;
13826 /* We missed recording what we needed.
13827 Load all dies and try again. */
13828 per_cu = cu->per_cu;
13829 }
13830 else
13831 {
13832 /* TUs don't reference other CUs/TUs (except via type signatures). */
13833 if (cu->per_cu->is_debug_types)
13834 {
13835 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13836 " external reference to offset 0x%lx [in module %s].\n"),
13837 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13838 bfd_get_filename (objfile->obfd));
13839 }
13840 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13841 objfile);
13842
13843 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13844 load_partial_comp_unit (per_cu);
13845
13846 per_cu->cu->last_used = 0;
13847 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13848 }
13849
13850 /* If we didn't find it, and not all dies have been loaded,
13851 load them all and try again. */
13852
13853 if (pd == NULL && per_cu->load_all_dies == 0)
13854 {
13855 per_cu->load_all_dies = 1;
13856
13857 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13858 THIS_CU->cu may already be in use. So we can't just free it and
13859 replace its DIEs with the ones we read in. Instead, we leave those
13860 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13861 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13862 set. */
13863 load_partial_comp_unit (per_cu);
13864
13865 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13866 }
13867
13868 if (pd == NULL)
13869 internal_error (__FILE__, __LINE__,
13870 _("could not find partial DIE 0x%x "
13871 "in cache [from module %s]\n"),
13872 offset.sect_off, bfd_get_filename (objfile->obfd));
13873 return pd;
13874 }
13875
13876 /* See if we can figure out if the class lives in a namespace. We do
13877 this by looking for a member function; its demangled name will
13878 contain namespace info, if there is any. */
13879
13880 static void
13881 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13882 struct dwarf2_cu *cu)
13883 {
13884 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13885 what template types look like, because the demangler
13886 frequently doesn't give the same name as the debug info. We
13887 could fix this by only using the demangled name to get the
13888 prefix (but see comment in read_structure_type). */
13889
13890 struct partial_die_info *real_pdi;
13891 struct partial_die_info *child_pdi;
13892
13893 /* If this DIE (this DIE's specification, if any) has a parent, then
13894 we should not do this. We'll prepend the parent's fully qualified
13895 name when we create the partial symbol. */
13896
13897 real_pdi = struct_pdi;
13898 while (real_pdi->has_specification)
13899 real_pdi = find_partial_die (real_pdi->spec_offset,
13900 real_pdi->spec_is_dwz, cu);
13901
13902 if (real_pdi->die_parent != NULL)
13903 return;
13904
13905 for (child_pdi = struct_pdi->die_child;
13906 child_pdi != NULL;
13907 child_pdi = child_pdi->die_sibling)
13908 {
13909 if (child_pdi->tag == DW_TAG_subprogram
13910 && child_pdi->linkage_name != NULL)
13911 {
13912 char *actual_class_name
13913 = language_class_name_from_physname (cu->language_defn,
13914 child_pdi->linkage_name);
13915 if (actual_class_name != NULL)
13916 {
13917 struct_pdi->name
13918 = obstack_copy0 (&cu->objfile->objfile_obstack,
13919 actual_class_name,
13920 strlen (actual_class_name));
13921 xfree (actual_class_name);
13922 }
13923 break;
13924 }
13925 }
13926 }
13927
13928 /* Adjust PART_DIE before generating a symbol for it. This function
13929 may set the is_external flag or change the DIE's name. */
13930
13931 static void
13932 fixup_partial_die (struct partial_die_info *part_die,
13933 struct dwarf2_cu *cu)
13934 {
13935 /* Once we've fixed up a die, there's no point in doing so again.
13936 This also avoids a memory leak if we were to call
13937 guess_partial_die_structure_name multiple times. */
13938 if (part_die->fixup_called)
13939 return;
13940
13941 /* If we found a reference attribute and the DIE has no name, try
13942 to find a name in the referred to DIE. */
13943
13944 if (part_die->name == NULL && part_die->has_specification)
13945 {
13946 struct partial_die_info *spec_die;
13947
13948 spec_die = find_partial_die (part_die->spec_offset,
13949 part_die->spec_is_dwz, cu);
13950
13951 fixup_partial_die (spec_die, cu);
13952
13953 if (spec_die->name)
13954 {
13955 part_die->name = spec_die->name;
13956
13957 /* Copy DW_AT_external attribute if it is set. */
13958 if (spec_die->is_external)
13959 part_die->is_external = spec_die->is_external;
13960 }
13961 }
13962
13963 /* Set default names for some unnamed DIEs. */
13964
13965 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13966 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13967
13968 /* If there is no parent die to provide a namespace, and there are
13969 children, see if we can determine the namespace from their linkage
13970 name. */
13971 if (cu->language == language_cplus
13972 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13973 && part_die->die_parent == NULL
13974 && part_die->has_children
13975 && (part_die->tag == DW_TAG_class_type
13976 || part_die->tag == DW_TAG_structure_type
13977 || part_die->tag == DW_TAG_union_type))
13978 guess_partial_die_structure_name (part_die, cu);
13979
13980 /* GCC might emit a nameless struct or union that has a linkage
13981 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13982 if (part_die->name == NULL
13983 && (part_die->tag == DW_TAG_class_type
13984 || part_die->tag == DW_TAG_interface_type
13985 || part_die->tag == DW_TAG_structure_type
13986 || part_die->tag == DW_TAG_union_type)
13987 && part_die->linkage_name != NULL)
13988 {
13989 char *demangled;
13990
13991 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13992 if (demangled)
13993 {
13994 const char *base;
13995
13996 /* Strip any leading namespaces/classes, keep only the base name.
13997 DW_AT_name for named DIEs does not contain the prefixes. */
13998 base = strrchr (demangled, ':');
13999 if (base && base > demangled && base[-1] == ':')
14000 base++;
14001 else
14002 base = demangled;
14003
14004 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14005 base, strlen (base));
14006 xfree (demangled);
14007 }
14008 }
14009
14010 part_die->fixup_called = 1;
14011 }
14012
14013 /* Read an attribute value described by an attribute form. */
14014
14015 static gdb_byte *
14016 read_attribute_value (const struct die_reader_specs *reader,
14017 struct attribute *attr, unsigned form,
14018 gdb_byte *info_ptr)
14019 {
14020 struct dwarf2_cu *cu = reader->cu;
14021 bfd *abfd = reader->abfd;
14022 struct comp_unit_head *cu_header = &cu->header;
14023 unsigned int bytes_read;
14024 struct dwarf_block *blk;
14025
14026 attr->form = form;
14027 switch (form)
14028 {
14029 case DW_FORM_ref_addr:
14030 if (cu->header.version == 2)
14031 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14032 else
14033 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14034 &cu->header, &bytes_read);
14035 info_ptr += bytes_read;
14036 break;
14037 case DW_FORM_GNU_ref_alt:
14038 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14039 info_ptr += bytes_read;
14040 break;
14041 case DW_FORM_addr:
14042 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14043 info_ptr += bytes_read;
14044 break;
14045 case DW_FORM_block2:
14046 blk = dwarf_alloc_block (cu);
14047 blk->size = read_2_bytes (abfd, info_ptr);
14048 info_ptr += 2;
14049 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14050 info_ptr += blk->size;
14051 DW_BLOCK (attr) = blk;
14052 break;
14053 case DW_FORM_block4:
14054 blk = dwarf_alloc_block (cu);
14055 blk->size = read_4_bytes (abfd, info_ptr);
14056 info_ptr += 4;
14057 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14058 info_ptr += blk->size;
14059 DW_BLOCK (attr) = blk;
14060 break;
14061 case DW_FORM_data2:
14062 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14063 info_ptr += 2;
14064 break;
14065 case DW_FORM_data4:
14066 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14067 info_ptr += 4;
14068 break;
14069 case DW_FORM_data8:
14070 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14071 info_ptr += 8;
14072 break;
14073 case DW_FORM_sec_offset:
14074 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14075 info_ptr += bytes_read;
14076 break;
14077 case DW_FORM_string:
14078 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14079 DW_STRING_IS_CANONICAL (attr) = 0;
14080 info_ptr += bytes_read;
14081 break;
14082 case DW_FORM_strp:
14083 if (!cu->per_cu->is_dwz)
14084 {
14085 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14086 &bytes_read);
14087 DW_STRING_IS_CANONICAL (attr) = 0;
14088 info_ptr += bytes_read;
14089 break;
14090 }
14091 /* FALLTHROUGH */
14092 case DW_FORM_GNU_strp_alt:
14093 {
14094 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14095 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14096 &bytes_read);
14097
14098 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14099 DW_STRING_IS_CANONICAL (attr) = 0;
14100 info_ptr += bytes_read;
14101 }
14102 break;
14103 case DW_FORM_exprloc:
14104 case DW_FORM_block:
14105 blk = dwarf_alloc_block (cu);
14106 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14107 info_ptr += bytes_read;
14108 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14109 info_ptr += blk->size;
14110 DW_BLOCK (attr) = blk;
14111 break;
14112 case DW_FORM_block1:
14113 blk = dwarf_alloc_block (cu);
14114 blk->size = read_1_byte (abfd, info_ptr);
14115 info_ptr += 1;
14116 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14117 info_ptr += blk->size;
14118 DW_BLOCK (attr) = blk;
14119 break;
14120 case DW_FORM_data1:
14121 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14122 info_ptr += 1;
14123 break;
14124 case DW_FORM_flag:
14125 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14126 info_ptr += 1;
14127 break;
14128 case DW_FORM_flag_present:
14129 DW_UNSND (attr) = 1;
14130 break;
14131 case DW_FORM_sdata:
14132 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14133 info_ptr += bytes_read;
14134 break;
14135 case DW_FORM_udata:
14136 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14137 info_ptr += bytes_read;
14138 break;
14139 case DW_FORM_ref1:
14140 DW_UNSND (attr) = (cu->header.offset.sect_off
14141 + read_1_byte (abfd, info_ptr));
14142 info_ptr += 1;
14143 break;
14144 case DW_FORM_ref2:
14145 DW_UNSND (attr) = (cu->header.offset.sect_off
14146 + read_2_bytes (abfd, info_ptr));
14147 info_ptr += 2;
14148 break;
14149 case DW_FORM_ref4:
14150 DW_UNSND (attr) = (cu->header.offset.sect_off
14151 + read_4_bytes (abfd, info_ptr));
14152 info_ptr += 4;
14153 break;
14154 case DW_FORM_ref8:
14155 DW_UNSND (attr) = (cu->header.offset.sect_off
14156 + read_8_bytes (abfd, info_ptr));
14157 info_ptr += 8;
14158 break;
14159 case DW_FORM_ref_sig8:
14160 /* Convert the signature to something we can record in DW_UNSND
14161 for later lookup.
14162 NOTE: This is NULL if the type wasn't found. */
14163 DW_SIGNATURED_TYPE (attr) =
14164 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14165 info_ptr += 8;
14166 break;
14167 case DW_FORM_ref_udata:
14168 DW_UNSND (attr) = (cu->header.offset.sect_off
14169 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14170 info_ptr += bytes_read;
14171 break;
14172 case DW_FORM_indirect:
14173 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14174 info_ptr += bytes_read;
14175 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14176 break;
14177 case DW_FORM_GNU_addr_index:
14178 if (reader->dwo_file == NULL)
14179 {
14180 /* For now flag a hard error.
14181 Later we can turn this into a complaint. */
14182 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14183 dwarf_form_name (form),
14184 bfd_get_filename (abfd));
14185 }
14186 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14187 info_ptr += bytes_read;
14188 break;
14189 case DW_FORM_GNU_str_index:
14190 if (reader->dwo_file == NULL)
14191 {
14192 /* For now flag a hard error.
14193 Later we can turn this into a complaint if warranted. */
14194 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14195 dwarf_form_name (form),
14196 bfd_get_filename (abfd));
14197 }
14198 {
14199 ULONGEST str_index =
14200 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14201
14202 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14203 DW_STRING_IS_CANONICAL (attr) = 0;
14204 info_ptr += bytes_read;
14205 }
14206 break;
14207 default:
14208 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14209 dwarf_form_name (form),
14210 bfd_get_filename (abfd));
14211 }
14212
14213 /* Super hack. */
14214 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14215 attr->form = DW_FORM_GNU_ref_alt;
14216
14217 /* We have seen instances where the compiler tried to emit a byte
14218 size attribute of -1 which ended up being encoded as an unsigned
14219 0xffffffff. Although 0xffffffff is technically a valid size value,
14220 an object of this size seems pretty unlikely so we can relatively
14221 safely treat these cases as if the size attribute was invalid and
14222 treat them as zero by default. */
14223 if (attr->name == DW_AT_byte_size
14224 && form == DW_FORM_data4
14225 && DW_UNSND (attr) >= 0xffffffff)
14226 {
14227 complaint
14228 (&symfile_complaints,
14229 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14230 hex_string (DW_UNSND (attr)));
14231 DW_UNSND (attr) = 0;
14232 }
14233
14234 return info_ptr;
14235 }
14236
14237 /* Read an attribute described by an abbreviated attribute. */
14238
14239 static gdb_byte *
14240 read_attribute (const struct die_reader_specs *reader,
14241 struct attribute *attr, struct attr_abbrev *abbrev,
14242 gdb_byte *info_ptr)
14243 {
14244 attr->name = abbrev->name;
14245 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14246 }
14247
14248 /* Read dwarf information from a buffer. */
14249
14250 static unsigned int
14251 read_1_byte (bfd *abfd, const gdb_byte *buf)
14252 {
14253 return bfd_get_8 (abfd, buf);
14254 }
14255
14256 static int
14257 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14258 {
14259 return bfd_get_signed_8 (abfd, buf);
14260 }
14261
14262 static unsigned int
14263 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14264 {
14265 return bfd_get_16 (abfd, buf);
14266 }
14267
14268 static int
14269 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14270 {
14271 return bfd_get_signed_16 (abfd, buf);
14272 }
14273
14274 static unsigned int
14275 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14276 {
14277 return bfd_get_32 (abfd, buf);
14278 }
14279
14280 static int
14281 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14282 {
14283 return bfd_get_signed_32 (abfd, buf);
14284 }
14285
14286 static ULONGEST
14287 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14288 {
14289 return bfd_get_64 (abfd, buf);
14290 }
14291
14292 static CORE_ADDR
14293 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14294 unsigned int *bytes_read)
14295 {
14296 struct comp_unit_head *cu_header = &cu->header;
14297 CORE_ADDR retval = 0;
14298
14299 if (cu_header->signed_addr_p)
14300 {
14301 switch (cu_header->addr_size)
14302 {
14303 case 2:
14304 retval = bfd_get_signed_16 (abfd, buf);
14305 break;
14306 case 4:
14307 retval = bfd_get_signed_32 (abfd, buf);
14308 break;
14309 case 8:
14310 retval = bfd_get_signed_64 (abfd, buf);
14311 break;
14312 default:
14313 internal_error (__FILE__, __LINE__,
14314 _("read_address: bad switch, signed [in module %s]"),
14315 bfd_get_filename (abfd));
14316 }
14317 }
14318 else
14319 {
14320 switch (cu_header->addr_size)
14321 {
14322 case 2:
14323 retval = bfd_get_16 (abfd, buf);
14324 break;
14325 case 4:
14326 retval = bfd_get_32 (abfd, buf);
14327 break;
14328 case 8:
14329 retval = bfd_get_64 (abfd, buf);
14330 break;
14331 default:
14332 internal_error (__FILE__, __LINE__,
14333 _("read_address: bad switch, "
14334 "unsigned [in module %s]"),
14335 bfd_get_filename (abfd));
14336 }
14337 }
14338
14339 *bytes_read = cu_header->addr_size;
14340 return retval;
14341 }
14342
14343 /* Read the initial length from a section. The (draft) DWARF 3
14344 specification allows the initial length to take up either 4 bytes
14345 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14346 bytes describe the length and all offsets will be 8 bytes in length
14347 instead of 4.
14348
14349 An older, non-standard 64-bit format is also handled by this
14350 function. The older format in question stores the initial length
14351 as an 8-byte quantity without an escape value. Lengths greater
14352 than 2^32 aren't very common which means that the initial 4 bytes
14353 is almost always zero. Since a length value of zero doesn't make
14354 sense for the 32-bit format, this initial zero can be considered to
14355 be an escape value which indicates the presence of the older 64-bit
14356 format. As written, the code can't detect (old format) lengths
14357 greater than 4GB. If it becomes necessary to handle lengths
14358 somewhat larger than 4GB, we could allow other small values (such
14359 as the non-sensical values of 1, 2, and 3) to also be used as
14360 escape values indicating the presence of the old format.
14361
14362 The value returned via bytes_read should be used to increment the
14363 relevant pointer after calling read_initial_length().
14364
14365 [ Note: read_initial_length() and read_offset() are based on the
14366 document entitled "DWARF Debugging Information Format", revision
14367 3, draft 8, dated November 19, 2001. This document was obtained
14368 from:
14369
14370 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14371
14372 This document is only a draft and is subject to change. (So beware.)
14373
14374 Details regarding the older, non-standard 64-bit format were
14375 determined empirically by examining 64-bit ELF files produced by
14376 the SGI toolchain on an IRIX 6.5 machine.
14377
14378 - Kevin, July 16, 2002
14379 ] */
14380
14381 static LONGEST
14382 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14383 {
14384 LONGEST length = bfd_get_32 (abfd, buf);
14385
14386 if (length == 0xffffffff)
14387 {
14388 length = bfd_get_64 (abfd, buf + 4);
14389 *bytes_read = 12;
14390 }
14391 else if (length == 0)
14392 {
14393 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14394 length = bfd_get_64 (abfd, buf);
14395 *bytes_read = 8;
14396 }
14397 else
14398 {
14399 *bytes_read = 4;
14400 }
14401
14402 return length;
14403 }
14404
14405 /* Cover function for read_initial_length.
14406 Returns the length of the object at BUF, and stores the size of the
14407 initial length in *BYTES_READ and stores the size that offsets will be in
14408 *OFFSET_SIZE.
14409 If the initial length size is not equivalent to that specified in
14410 CU_HEADER then issue a complaint.
14411 This is useful when reading non-comp-unit headers. */
14412
14413 static LONGEST
14414 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14415 const struct comp_unit_head *cu_header,
14416 unsigned int *bytes_read,
14417 unsigned int *offset_size)
14418 {
14419 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14420
14421 gdb_assert (cu_header->initial_length_size == 4
14422 || cu_header->initial_length_size == 8
14423 || cu_header->initial_length_size == 12);
14424
14425 if (cu_header->initial_length_size != *bytes_read)
14426 complaint (&symfile_complaints,
14427 _("intermixed 32-bit and 64-bit DWARF sections"));
14428
14429 *offset_size = (*bytes_read == 4) ? 4 : 8;
14430 return length;
14431 }
14432
14433 /* Read an offset from the data stream. The size of the offset is
14434 given by cu_header->offset_size. */
14435
14436 static LONGEST
14437 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14438 unsigned int *bytes_read)
14439 {
14440 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14441
14442 *bytes_read = cu_header->offset_size;
14443 return offset;
14444 }
14445
14446 /* Read an offset from the data stream. */
14447
14448 static LONGEST
14449 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14450 {
14451 LONGEST retval = 0;
14452
14453 switch (offset_size)
14454 {
14455 case 4:
14456 retval = bfd_get_32 (abfd, buf);
14457 break;
14458 case 8:
14459 retval = bfd_get_64 (abfd, buf);
14460 break;
14461 default:
14462 internal_error (__FILE__, __LINE__,
14463 _("read_offset_1: bad switch [in module %s]"),
14464 bfd_get_filename (abfd));
14465 }
14466
14467 return retval;
14468 }
14469
14470 static gdb_byte *
14471 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14472 {
14473 /* If the size of a host char is 8 bits, we can return a pointer
14474 to the buffer, otherwise we have to copy the data to a buffer
14475 allocated on the temporary obstack. */
14476 gdb_assert (HOST_CHAR_BIT == 8);
14477 return buf;
14478 }
14479
14480 static char *
14481 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14482 {
14483 /* If the size of a host char is 8 bits, we can return a pointer
14484 to the string, otherwise we have to copy the string to a buffer
14485 allocated on the temporary obstack. */
14486 gdb_assert (HOST_CHAR_BIT == 8);
14487 if (*buf == '\0')
14488 {
14489 *bytes_read_ptr = 1;
14490 return NULL;
14491 }
14492 *bytes_read_ptr = strlen ((char *) buf) + 1;
14493 return (char *) buf;
14494 }
14495
14496 static char *
14497 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14498 {
14499 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14500 if (dwarf2_per_objfile->str.buffer == NULL)
14501 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14502 bfd_get_filename (abfd));
14503 if (str_offset >= dwarf2_per_objfile->str.size)
14504 error (_("DW_FORM_strp pointing outside of "
14505 ".debug_str section [in module %s]"),
14506 bfd_get_filename (abfd));
14507 gdb_assert (HOST_CHAR_BIT == 8);
14508 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14509 return NULL;
14510 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14511 }
14512
14513 /* Read a string at offset STR_OFFSET in the .debug_str section from
14514 the .dwz file DWZ. Throw an error if the offset is too large. If
14515 the string consists of a single NUL byte, return NULL; otherwise
14516 return a pointer to the string. */
14517
14518 static char *
14519 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14520 {
14521 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14522
14523 if (dwz->str.buffer == NULL)
14524 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14525 "section [in module %s]"),
14526 bfd_get_filename (dwz->dwz_bfd));
14527 if (str_offset >= dwz->str.size)
14528 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14529 ".debug_str section [in module %s]"),
14530 bfd_get_filename (dwz->dwz_bfd));
14531 gdb_assert (HOST_CHAR_BIT == 8);
14532 if (dwz->str.buffer[str_offset] == '\0')
14533 return NULL;
14534 return (char *) (dwz->str.buffer + str_offset);
14535 }
14536
14537 static char *
14538 read_indirect_string (bfd *abfd, gdb_byte *buf,
14539 const struct comp_unit_head *cu_header,
14540 unsigned int *bytes_read_ptr)
14541 {
14542 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14543
14544 return read_indirect_string_at_offset (abfd, str_offset);
14545 }
14546
14547 static ULONGEST
14548 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14549 {
14550 ULONGEST result;
14551 unsigned int num_read;
14552 int i, shift;
14553 unsigned char byte;
14554
14555 result = 0;
14556 shift = 0;
14557 num_read = 0;
14558 i = 0;
14559 while (1)
14560 {
14561 byte = bfd_get_8 (abfd, buf);
14562 buf++;
14563 num_read++;
14564 result |= ((ULONGEST) (byte & 127) << shift);
14565 if ((byte & 128) == 0)
14566 {
14567 break;
14568 }
14569 shift += 7;
14570 }
14571 *bytes_read_ptr = num_read;
14572 return result;
14573 }
14574
14575 static LONGEST
14576 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14577 {
14578 LONGEST result;
14579 int i, shift, num_read;
14580 unsigned char byte;
14581
14582 result = 0;
14583 shift = 0;
14584 num_read = 0;
14585 i = 0;
14586 while (1)
14587 {
14588 byte = bfd_get_8 (abfd, buf);
14589 buf++;
14590 num_read++;
14591 result |= ((LONGEST) (byte & 127) << shift);
14592 shift += 7;
14593 if ((byte & 128) == 0)
14594 {
14595 break;
14596 }
14597 }
14598 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14599 result |= -(((LONGEST) 1) << shift);
14600 *bytes_read_ptr = num_read;
14601 return result;
14602 }
14603
14604 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14605 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14606 ADDR_SIZE is the size of addresses from the CU header. */
14607
14608 static CORE_ADDR
14609 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14610 {
14611 struct objfile *objfile = dwarf2_per_objfile->objfile;
14612 bfd *abfd = objfile->obfd;
14613 const gdb_byte *info_ptr;
14614
14615 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14616 if (dwarf2_per_objfile->addr.buffer == NULL)
14617 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14618 objfile->name);
14619 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14620 error (_("DW_FORM_addr_index pointing outside of "
14621 ".debug_addr section [in module %s]"),
14622 objfile->name);
14623 info_ptr = (dwarf2_per_objfile->addr.buffer
14624 + addr_base + addr_index * addr_size);
14625 if (addr_size == 4)
14626 return bfd_get_32 (abfd, info_ptr);
14627 else
14628 return bfd_get_64 (abfd, info_ptr);
14629 }
14630
14631 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14632
14633 static CORE_ADDR
14634 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14635 {
14636 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14637 }
14638
14639 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14640
14641 static CORE_ADDR
14642 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14643 unsigned int *bytes_read)
14644 {
14645 bfd *abfd = cu->objfile->obfd;
14646 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14647
14648 return read_addr_index (cu, addr_index);
14649 }
14650
14651 /* Data structure to pass results from dwarf2_read_addr_index_reader
14652 back to dwarf2_read_addr_index. */
14653
14654 struct dwarf2_read_addr_index_data
14655 {
14656 ULONGEST addr_base;
14657 int addr_size;
14658 };
14659
14660 /* die_reader_func for dwarf2_read_addr_index. */
14661
14662 static void
14663 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14664 gdb_byte *info_ptr,
14665 struct die_info *comp_unit_die,
14666 int has_children,
14667 void *data)
14668 {
14669 struct dwarf2_cu *cu = reader->cu;
14670 struct dwarf2_read_addr_index_data *aidata =
14671 (struct dwarf2_read_addr_index_data *) data;
14672
14673 aidata->addr_base = cu->addr_base;
14674 aidata->addr_size = cu->header.addr_size;
14675 }
14676
14677 /* Given an index in .debug_addr, fetch the value.
14678 NOTE: This can be called during dwarf expression evaluation,
14679 long after the debug information has been read, and thus per_cu->cu
14680 may no longer exist. */
14681
14682 CORE_ADDR
14683 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14684 unsigned int addr_index)
14685 {
14686 struct objfile *objfile = per_cu->objfile;
14687 struct dwarf2_cu *cu = per_cu->cu;
14688 ULONGEST addr_base;
14689 int addr_size;
14690
14691 /* This is intended to be called from outside this file. */
14692 dw2_setup (objfile);
14693
14694 /* We need addr_base and addr_size.
14695 If we don't have PER_CU->cu, we have to get it.
14696 Nasty, but the alternative is storing the needed info in PER_CU,
14697 which at this point doesn't seem justified: it's not clear how frequently
14698 it would get used and it would increase the size of every PER_CU.
14699 Entry points like dwarf2_per_cu_addr_size do a similar thing
14700 so we're not in uncharted territory here.
14701 Alas we need to be a bit more complicated as addr_base is contained
14702 in the DIE.
14703
14704 We don't need to read the entire CU(/TU).
14705 We just need the header and top level die.
14706
14707 IWBN to use the aging mechanism to let us lazily later discard the CU.
14708 For now we skip this optimization. */
14709
14710 if (cu != NULL)
14711 {
14712 addr_base = cu->addr_base;
14713 addr_size = cu->header.addr_size;
14714 }
14715 else
14716 {
14717 struct dwarf2_read_addr_index_data aidata;
14718
14719 /* Note: We can't use init_cutu_and_read_dies_simple here,
14720 we need addr_base. */
14721 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14722 dwarf2_read_addr_index_reader, &aidata);
14723 addr_base = aidata.addr_base;
14724 addr_size = aidata.addr_size;
14725 }
14726
14727 return read_addr_index_1 (addr_index, addr_base, addr_size);
14728 }
14729
14730 /* Given a DW_AT_str_index, fetch the string. */
14731
14732 static char *
14733 read_str_index (const struct die_reader_specs *reader,
14734 struct dwarf2_cu *cu, ULONGEST str_index)
14735 {
14736 struct objfile *objfile = dwarf2_per_objfile->objfile;
14737 const char *dwo_name = objfile->name;
14738 bfd *abfd = objfile->obfd;
14739 struct dwo_sections *sections = &reader->dwo_file->sections;
14740 gdb_byte *info_ptr;
14741 ULONGEST str_offset;
14742
14743 dwarf2_read_section (objfile, &sections->str);
14744 dwarf2_read_section (objfile, &sections->str_offsets);
14745 if (sections->str.buffer == NULL)
14746 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14747 " in CU at offset 0x%lx [in module %s]"),
14748 (long) cu->header.offset.sect_off, dwo_name);
14749 if (sections->str_offsets.buffer == NULL)
14750 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14751 " in CU at offset 0x%lx [in module %s]"),
14752 (long) cu->header.offset.sect_off, dwo_name);
14753 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14754 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14755 " section in CU at offset 0x%lx [in module %s]"),
14756 (long) cu->header.offset.sect_off, dwo_name);
14757 info_ptr = (sections->str_offsets.buffer
14758 + str_index * cu->header.offset_size);
14759 if (cu->header.offset_size == 4)
14760 str_offset = bfd_get_32 (abfd, info_ptr);
14761 else
14762 str_offset = bfd_get_64 (abfd, info_ptr);
14763 if (str_offset >= sections->str.size)
14764 error (_("Offset from DW_FORM_str_index pointing outside of"
14765 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14766 (long) cu->header.offset.sect_off, dwo_name);
14767 return (char *) (sections->str.buffer + str_offset);
14768 }
14769
14770 /* Return the length of an LEB128 number in BUF. */
14771
14772 static int
14773 leb128_size (const gdb_byte *buf)
14774 {
14775 const gdb_byte *begin = buf;
14776 gdb_byte byte;
14777
14778 while (1)
14779 {
14780 byte = *buf++;
14781 if ((byte & 128) == 0)
14782 return buf - begin;
14783 }
14784 }
14785
14786 static void
14787 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14788 {
14789 switch (lang)
14790 {
14791 case DW_LANG_C89:
14792 case DW_LANG_C99:
14793 case DW_LANG_C:
14794 cu->language = language_c;
14795 break;
14796 case DW_LANG_C_plus_plus:
14797 cu->language = language_cplus;
14798 break;
14799 case DW_LANG_D:
14800 cu->language = language_d;
14801 break;
14802 case DW_LANG_Fortran77:
14803 case DW_LANG_Fortran90:
14804 case DW_LANG_Fortran95:
14805 cu->language = language_fortran;
14806 break;
14807 case DW_LANG_Go:
14808 cu->language = language_go;
14809 break;
14810 case DW_LANG_Mips_Assembler:
14811 cu->language = language_asm;
14812 break;
14813 case DW_LANG_Java:
14814 cu->language = language_java;
14815 break;
14816 case DW_LANG_Ada83:
14817 case DW_LANG_Ada95:
14818 cu->language = language_ada;
14819 break;
14820 case DW_LANG_Modula2:
14821 cu->language = language_m2;
14822 break;
14823 case DW_LANG_Pascal83:
14824 cu->language = language_pascal;
14825 break;
14826 case DW_LANG_ObjC:
14827 cu->language = language_objc;
14828 break;
14829 case DW_LANG_Cobol74:
14830 case DW_LANG_Cobol85:
14831 default:
14832 cu->language = language_minimal;
14833 break;
14834 }
14835 cu->language_defn = language_def (cu->language);
14836 }
14837
14838 /* Return the named attribute or NULL if not there. */
14839
14840 static struct attribute *
14841 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14842 {
14843 for (;;)
14844 {
14845 unsigned int i;
14846 struct attribute *spec = NULL;
14847
14848 for (i = 0; i < die->num_attrs; ++i)
14849 {
14850 if (die->attrs[i].name == name)
14851 return &die->attrs[i];
14852 if (die->attrs[i].name == DW_AT_specification
14853 || die->attrs[i].name == DW_AT_abstract_origin)
14854 spec = &die->attrs[i];
14855 }
14856
14857 if (!spec)
14858 break;
14859
14860 die = follow_die_ref (die, spec, &cu);
14861 }
14862
14863 return NULL;
14864 }
14865
14866 /* Return the named attribute or NULL if not there,
14867 but do not follow DW_AT_specification, etc.
14868 This is for use in contexts where we're reading .debug_types dies.
14869 Following DW_AT_specification, DW_AT_abstract_origin will take us
14870 back up the chain, and we want to go down. */
14871
14872 static struct attribute *
14873 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14874 {
14875 unsigned int i;
14876
14877 for (i = 0; i < die->num_attrs; ++i)
14878 if (die->attrs[i].name == name)
14879 return &die->attrs[i];
14880
14881 return NULL;
14882 }
14883
14884 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14885 and holds a non-zero value. This function should only be used for
14886 DW_FORM_flag or DW_FORM_flag_present attributes. */
14887
14888 static int
14889 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14890 {
14891 struct attribute *attr = dwarf2_attr (die, name, cu);
14892
14893 return (attr && DW_UNSND (attr));
14894 }
14895
14896 static int
14897 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14898 {
14899 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14900 which value is non-zero. However, we have to be careful with
14901 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14902 (via dwarf2_flag_true_p) follows this attribute. So we may
14903 end up accidently finding a declaration attribute that belongs
14904 to a different DIE referenced by the specification attribute,
14905 even though the given DIE does not have a declaration attribute. */
14906 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14907 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14908 }
14909
14910 /* Return the die giving the specification for DIE, if there is
14911 one. *SPEC_CU is the CU containing DIE on input, and the CU
14912 containing the return value on output. If there is no
14913 specification, but there is an abstract origin, that is
14914 returned. */
14915
14916 static struct die_info *
14917 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14918 {
14919 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14920 *spec_cu);
14921
14922 if (spec_attr == NULL)
14923 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14924
14925 if (spec_attr == NULL)
14926 return NULL;
14927 else
14928 return follow_die_ref (die, spec_attr, spec_cu);
14929 }
14930
14931 /* Free the line_header structure *LH, and any arrays and strings it
14932 refers to.
14933 NOTE: This is also used as a "cleanup" function. */
14934
14935 static void
14936 free_line_header (struct line_header *lh)
14937 {
14938 if (lh->standard_opcode_lengths)
14939 xfree (lh->standard_opcode_lengths);
14940
14941 /* Remember that all the lh->file_names[i].name pointers are
14942 pointers into debug_line_buffer, and don't need to be freed. */
14943 if (lh->file_names)
14944 xfree (lh->file_names);
14945
14946 /* Similarly for the include directory names. */
14947 if (lh->include_dirs)
14948 xfree (lh->include_dirs);
14949
14950 xfree (lh);
14951 }
14952
14953 /* Add an entry to LH's include directory table. */
14954
14955 static void
14956 add_include_dir (struct line_header *lh, char *include_dir)
14957 {
14958 /* Grow the array if necessary. */
14959 if (lh->include_dirs_size == 0)
14960 {
14961 lh->include_dirs_size = 1; /* for testing */
14962 lh->include_dirs = xmalloc (lh->include_dirs_size
14963 * sizeof (*lh->include_dirs));
14964 }
14965 else if (lh->num_include_dirs >= lh->include_dirs_size)
14966 {
14967 lh->include_dirs_size *= 2;
14968 lh->include_dirs = xrealloc (lh->include_dirs,
14969 (lh->include_dirs_size
14970 * sizeof (*lh->include_dirs)));
14971 }
14972
14973 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14974 }
14975
14976 /* Add an entry to LH's file name table. */
14977
14978 static void
14979 add_file_name (struct line_header *lh,
14980 char *name,
14981 unsigned int dir_index,
14982 unsigned int mod_time,
14983 unsigned int length)
14984 {
14985 struct file_entry *fe;
14986
14987 /* Grow the array if necessary. */
14988 if (lh->file_names_size == 0)
14989 {
14990 lh->file_names_size = 1; /* for testing */
14991 lh->file_names = xmalloc (lh->file_names_size
14992 * sizeof (*lh->file_names));
14993 }
14994 else if (lh->num_file_names >= lh->file_names_size)
14995 {
14996 lh->file_names_size *= 2;
14997 lh->file_names = xrealloc (lh->file_names,
14998 (lh->file_names_size
14999 * sizeof (*lh->file_names)));
15000 }
15001
15002 fe = &lh->file_names[lh->num_file_names++];
15003 fe->name = name;
15004 fe->dir_index = dir_index;
15005 fe->mod_time = mod_time;
15006 fe->length = length;
15007 fe->included_p = 0;
15008 fe->symtab = NULL;
15009 }
15010
15011 /* A convenience function to find the proper .debug_line section for a
15012 CU. */
15013
15014 static struct dwarf2_section_info *
15015 get_debug_line_section (struct dwarf2_cu *cu)
15016 {
15017 struct dwarf2_section_info *section;
15018
15019 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15020 DWO file. */
15021 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15022 section = &cu->dwo_unit->dwo_file->sections.line;
15023 else if (cu->per_cu->is_dwz)
15024 {
15025 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15026
15027 section = &dwz->line;
15028 }
15029 else
15030 section = &dwarf2_per_objfile->line;
15031
15032 return section;
15033 }
15034
15035 /* Read the statement program header starting at OFFSET in
15036 .debug_line, or .debug_line.dwo. Return a pointer
15037 to a struct line_header, allocated using xmalloc.
15038
15039 NOTE: the strings in the include directory and file name tables of
15040 the returned object point into the dwarf line section buffer,
15041 and must not be freed. */
15042
15043 static struct line_header *
15044 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15045 {
15046 struct cleanup *back_to;
15047 struct line_header *lh;
15048 gdb_byte *line_ptr;
15049 unsigned int bytes_read, offset_size;
15050 int i;
15051 char *cur_dir, *cur_file;
15052 struct dwarf2_section_info *section;
15053 bfd *abfd;
15054
15055 section = get_debug_line_section (cu);
15056 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15057 if (section->buffer == NULL)
15058 {
15059 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15060 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15061 else
15062 complaint (&symfile_complaints, _("missing .debug_line section"));
15063 return 0;
15064 }
15065
15066 /* We can't do this until we know the section is non-empty.
15067 Only then do we know we have such a section. */
15068 abfd = section->asection->owner;
15069
15070 /* Make sure that at least there's room for the total_length field.
15071 That could be 12 bytes long, but we're just going to fudge that. */
15072 if (offset + 4 >= section->size)
15073 {
15074 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15075 return 0;
15076 }
15077
15078 lh = xmalloc (sizeof (*lh));
15079 memset (lh, 0, sizeof (*lh));
15080 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15081 (void *) lh);
15082
15083 line_ptr = section->buffer + offset;
15084
15085 /* Read in the header. */
15086 lh->total_length =
15087 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15088 &bytes_read, &offset_size);
15089 line_ptr += bytes_read;
15090 if (line_ptr + lh->total_length > (section->buffer + section->size))
15091 {
15092 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15093 return 0;
15094 }
15095 lh->statement_program_end = line_ptr + lh->total_length;
15096 lh->version = read_2_bytes (abfd, line_ptr);
15097 line_ptr += 2;
15098 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15099 line_ptr += offset_size;
15100 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15101 line_ptr += 1;
15102 if (lh->version >= 4)
15103 {
15104 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15105 line_ptr += 1;
15106 }
15107 else
15108 lh->maximum_ops_per_instruction = 1;
15109
15110 if (lh->maximum_ops_per_instruction == 0)
15111 {
15112 lh->maximum_ops_per_instruction = 1;
15113 complaint (&symfile_complaints,
15114 _("invalid maximum_ops_per_instruction "
15115 "in `.debug_line' section"));
15116 }
15117
15118 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15119 line_ptr += 1;
15120 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15121 line_ptr += 1;
15122 lh->line_range = read_1_byte (abfd, line_ptr);
15123 line_ptr += 1;
15124 lh->opcode_base = read_1_byte (abfd, line_ptr);
15125 line_ptr += 1;
15126 lh->standard_opcode_lengths
15127 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15128
15129 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15130 for (i = 1; i < lh->opcode_base; ++i)
15131 {
15132 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15133 line_ptr += 1;
15134 }
15135
15136 /* Read directory table. */
15137 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15138 {
15139 line_ptr += bytes_read;
15140 add_include_dir (lh, cur_dir);
15141 }
15142 line_ptr += bytes_read;
15143
15144 /* Read file name table. */
15145 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15146 {
15147 unsigned int dir_index, mod_time, length;
15148
15149 line_ptr += bytes_read;
15150 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15151 line_ptr += bytes_read;
15152 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15153 line_ptr += bytes_read;
15154 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15155 line_ptr += bytes_read;
15156
15157 add_file_name (lh, cur_file, dir_index, mod_time, length);
15158 }
15159 line_ptr += bytes_read;
15160 lh->statement_program_start = line_ptr;
15161
15162 if (line_ptr > (section->buffer + section->size))
15163 complaint (&symfile_complaints,
15164 _("line number info header doesn't "
15165 "fit in `.debug_line' section"));
15166
15167 discard_cleanups (back_to);
15168 return lh;
15169 }
15170
15171 /* Subroutine of dwarf_decode_lines to simplify it.
15172 Return the file name of the psymtab for included file FILE_INDEX
15173 in line header LH of PST.
15174 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15175 If space for the result is malloc'd, it will be freed by a cleanup.
15176 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15177
15178 The function creates dangling cleanup registration. */
15179
15180 static char *
15181 psymtab_include_file_name (const struct line_header *lh, int file_index,
15182 const struct partial_symtab *pst,
15183 const char *comp_dir)
15184 {
15185 const struct file_entry fe = lh->file_names [file_index];
15186 char *include_name = fe.name;
15187 char *include_name_to_compare = include_name;
15188 char *dir_name = NULL;
15189 const char *pst_filename;
15190 char *copied_name = NULL;
15191 int file_is_pst;
15192
15193 if (fe.dir_index)
15194 dir_name = lh->include_dirs[fe.dir_index - 1];
15195
15196 if (!IS_ABSOLUTE_PATH (include_name)
15197 && (dir_name != NULL || comp_dir != NULL))
15198 {
15199 /* Avoid creating a duplicate psymtab for PST.
15200 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15201 Before we do the comparison, however, we need to account
15202 for DIR_NAME and COMP_DIR.
15203 First prepend dir_name (if non-NULL). If we still don't
15204 have an absolute path prepend comp_dir (if non-NULL).
15205 However, the directory we record in the include-file's
15206 psymtab does not contain COMP_DIR (to match the
15207 corresponding symtab(s)).
15208
15209 Example:
15210
15211 bash$ cd /tmp
15212 bash$ gcc -g ./hello.c
15213 include_name = "hello.c"
15214 dir_name = "."
15215 DW_AT_comp_dir = comp_dir = "/tmp"
15216 DW_AT_name = "./hello.c" */
15217
15218 if (dir_name != NULL)
15219 {
15220 include_name = concat (dir_name, SLASH_STRING,
15221 include_name, (char *)NULL);
15222 include_name_to_compare = include_name;
15223 make_cleanup (xfree, include_name);
15224 }
15225 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15226 {
15227 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15228 include_name, (char *)NULL);
15229 }
15230 }
15231
15232 pst_filename = pst->filename;
15233 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15234 {
15235 copied_name = concat (pst->dirname, SLASH_STRING,
15236 pst_filename, (char *)NULL);
15237 pst_filename = copied_name;
15238 }
15239
15240 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15241
15242 if (include_name_to_compare != include_name)
15243 xfree (include_name_to_compare);
15244 if (copied_name != NULL)
15245 xfree (copied_name);
15246
15247 if (file_is_pst)
15248 return NULL;
15249 return include_name;
15250 }
15251
15252 /* Ignore this record_line request. */
15253
15254 static void
15255 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15256 {
15257 return;
15258 }
15259
15260 /* Subroutine of dwarf_decode_lines to simplify it.
15261 Process the line number information in LH. */
15262
15263 static void
15264 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15265 struct dwarf2_cu *cu, struct partial_symtab *pst)
15266 {
15267 gdb_byte *line_ptr, *extended_end;
15268 gdb_byte *line_end;
15269 unsigned int bytes_read, extended_len;
15270 unsigned char op_code, extended_op, adj_opcode;
15271 CORE_ADDR baseaddr;
15272 struct objfile *objfile = cu->objfile;
15273 bfd *abfd = objfile->obfd;
15274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15275 const int decode_for_pst_p = (pst != NULL);
15276 struct subfile *last_subfile = NULL;
15277 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15278 = record_line;
15279
15280 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15281
15282 line_ptr = lh->statement_program_start;
15283 line_end = lh->statement_program_end;
15284
15285 /* Read the statement sequences until there's nothing left. */
15286 while (line_ptr < line_end)
15287 {
15288 /* state machine registers */
15289 CORE_ADDR address = 0;
15290 unsigned int file = 1;
15291 unsigned int line = 1;
15292 unsigned int column = 0;
15293 int is_stmt = lh->default_is_stmt;
15294 int basic_block = 0;
15295 int end_sequence = 0;
15296 CORE_ADDR addr;
15297 unsigned char op_index = 0;
15298
15299 if (!decode_for_pst_p && lh->num_file_names >= file)
15300 {
15301 /* Start a subfile for the current file of the state machine. */
15302 /* lh->include_dirs and lh->file_names are 0-based, but the
15303 directory and file name numbers in the statement program
15304 are 1-based. */
15305 struct file_entry *fe = &lh->file_names[file - 1];
15306 char *dir = NULL;
15307
15308 if (fe->dir_index)
15309 dir = lh->include_dirs[fe->dir_index - 1];
15310
15311 dwarf2_start_subfile (fe->name, dir, comp_dir);
15312 }
15313
15314 /* Decode the table. */
15315 while (!end_sequence)
15316 {
15317 op_code = read_1_byte (abfd, line_ptr);
15318 line_ptr += 1;
15319 if (line_ptr > line_end)
15320 {
15321 dwarf2_debug_line_missing_end_sequence_complaint ();
15322 break;
15323 }
15324
15325 if (op_code >= lh->opcode_base)
15326 {
15327 /* Special operand. */
15328 adj_opcode = op_code - lh->opcode_base;
15329 address += (((op_index + (adj_opcode / lh->line_range))
15330 / lh->maximum_ops_per_instruction)
15331 * lh->minimum_instruction_length);
15332 op_index = ((op_index + (adj_opcode / lh->line_range))
15333 % lh->maximum_ops_per_instruction);
15334 line += lh->line_base + (adj_opcode % lh->line_range);
15335 if (lh->num_file_names < file || file == 0)
15336 dwarf2_debug_line_missing_file_complaint ();
15337 /* For now we ignore lines not starting on an
15338 instruction boundary. */
15339 else if (op_index == 0)
15340 {
15341 lh->file_names[file - 1].included_p = 1;
15342 if (!decode_for_pst_p && is_stmt)
15343 {
15344 if (last_subfile != current_subfile)
15345 {
15346 addr = gdbarch_addr_bits_remove (gdbarch, address);
15347 if (last_subfile)
15348 (*p_record_line) (last_subfile, 0, addr);
15349 last_subfile = current_subfile;
15350 }
15351 /* Append row to matrix using current values. */
15352 addr = gdbarch_addr_bits_remove (gdbarch, address);
15353 (*p_record_line) (current_subfile, line, addr);
15354 }
15355 }
15356 basic_block = 0;
15357 }
15358 else switch (op_code)
15359 {
15360 case DW_LNS_extended_op:
15361 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15362 &bytes_read);
15363 line_ptr += bytes_read;
15364 extended_end = line_ptr + extended_len;
15365 extended_op = read_1_byte (abfd, line_ptr);
15366 line_ptr += 1;
15367 switch (extended_op)
15368 {
15369 case DW_LNE_end_sequence:
15370 p_record_line = record_line;
15371 end_sequence = 1;
15372 break;
15373 case DW_LNE_set_address:
15374 address = read_address (abfd, line_ptr, cu, &bytes_read);
15375
15376 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15377 {
15378 /* This line table is for a function which has been
15379 GCd by the linker. Ignore it. PR gdb/12528 */
15380
15381 long line_offset
15382 = line_ptr - get_debug_line_section (cu)->buffer;
15383
15384 complaint (&symfile_complaints,
15385 _(".debug_line address at offset 0x%lx is 0 "
15386 "[in module %s]"),
15387 line_offset, objfile->name);
15388 p_record_line = noop_record_line;
15389 }
15390
15391 op_index = 0;
15392 line_ptr += bytes_read;
15393 address += baseaddr;
15394 break;
15395 case DW_LNE_define_file:
15396 {
15397 char *cur_file;
15398 unsigned int dir_index, mod_time, length;
15399
15400 cur_file = read_direct_string (abfd, line_ptr,
15401 &bytes_read);
15402 line_ptr += bytes_read;
15403 dir_index =
15404 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15405 line_ptr += bytes_read;
15406 mod_time =
15407 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15408 line_ptr += bytes_read;
15409 length =
15410 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15411 line_ptr += bytes_read;
15412 add_file_name (lh, cur_file, dir_index, mod_time, length);
15413 }
15414 break;
15415 case DW_LNE_set_discriminator:
15416 /* The discriminator is not interesting to the debugger;
15417 just ignore it. */
15418 line_ptr = extended_end;
15419 break;
15420 default:
15421 complaint (&symfile_complaints,
15422 _("mangled .debug_line section"));
15423 return;
15424 }
15425 /* Make sure that we parsed the extended op correctly. If e.g.
15426 we expected a different address size than the producer used,
15427 we may have read the wrong number of bytes. */
15428 if (line_ptr != extended_end)
15429 {
15430 complaint (&symfile_complaints,
15431 _("mangled .debug_line section"));
15432 return;
15433 }
15434 break;
15435 case DW_LNS_copy:
15436 if (lh->num_file_names < file || file == 0)
15437 dwarf2_debug_line_missing_file_complaint ();
15438 else
15439 {
15440 lh->file_names[file - 1].included_p = 1;
15441 if (!decode_for_pst_p && is_stmt)
15442 {
15443 if (last_subfile != current_subfile)
15444 {
15445 addr = gdbarch_addr_bits_remove (gdbarch, address);
15446 if (last_subfile)
15447 (*p_record_line) (last_subfile, 0, addr);
15448 last_subfile = current_subfile;
15449 }
15450 addr = gdbarch_addr_bits_remove (gdbarch, address);
15451 (*p_record_line) (current_subfile, line, addr);
15452 }
15453 }
15454 basic_block = 0;
15455 break;
15456 case DW_LNS_advance_pc:
15457 {
15458 CORE_ADDR adjust
15459 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15460
15461 address += (((op_index + adjust)
15462 / lh->maximum_ops_per_instruction)
15463 * lh->minimum_instruction_length);
15464 op_index = ((op_index + adjust)
15465 % lh->maximum_ops_per_instruction);
15466 line_ptr += bytes_read;
15467 }
15468 break;
15469 case DW_LNS_advance_line:
15470 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15471 line_ptr += bytes_read;
15472 break;
15473 case DW_LNS_set_file:
15474 {
15475 /* The arrays lh->include_dirs and lh->file_names are
15476 0-based, but the directory and file name numbers in
15477 the statement program are 1-based. */
15478 struct file_entry *fe;
15479 char *dir = NULL;
15480
15481 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15482 line_ptr += bytes_read;
15483 if (lh->num_file_names < file || file == 0)
15484 dwarf2_debug_line_missing_file_complaint ();
15485 else
15486 {
15487 fe = &lh->file_names[file - 1];
15488 if (fe->dir_index)
15489 dir = lh->include_dirs[fe->dir_index - 1];
15490 if (!decode_for_pst_p)
15491 {
15492 last_subfile = current_subfile;
15493 dwarf2_start_subfile (fe->name, dir, comp_dir);
15494 }
15495 }
15496 }
15497 break;
15498 case DW_LNS_set_column:
15499 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15500 line_ptr += bytes_read;
15501 break;
15502 case DW_LNS_negate_stmt:
15503 is_stmt = (!is_stmt);
15504 break;
15505 case DW_LNS_set_basic_block:
15506 basic_block = 1;
15507 break;
15508 /* Add to the address register of the state machine the
15509 address increment value corresponding to special opcode
15510 255. I.e., this value is scaled by the minimum
15511 instruction length since special opcode 255 would have
15512 scaled the increment. */
15513 case DW_LNS_const_add_pc:
15514 {
15515 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15516
15517 address += (((op_index + adjust)
15518 / lh->maximum_ops_per_instruction)
15519 * lh->minimum_instruction_length);
15520 op_index = ((op_index + adjust)
15521 % lh->maximum_ops_per_instruction);
15522 }
15523 break;
15524 case DW_LNS_fixed_advance_pc:
15525 address += read_2_bytes (abfd, line_ptr);
15526 op_index = 0;
15527 line_ptr += 2;
15528 break;
15529 default:
15530 {
15531 /* Unknown standard opcode, ignore it. */
15532 int i;
15533
15534 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15535 {
15536 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15537 line_ptr += bytes_read;
15538 }
15539 }
15540 }
15541 }
15542 if (lh->num_file_names < file || file == 0)
15543 dwarf2_debug_line_missing_file_complaint ();
15544 else
15545 {
15546 lh->file_names[file - 1].included_p = 1;
15547 if (!decode_for_pst_p)
15548 {
15549 addr = gdbarch_addr_bits_remove (gdbarch, address);
15550 (*p_record_line) (current_subfile, 0, addr);
15551 }
15552 }
15553 }
15554 }
15555
15556 /* Decode the Line Number Program (LNP) for the given line_header
15557 structure and CU. The actual information extracted and the type
15558 of structures created from the LNP depends on the value of PST.
15559
15560 1. If PST is NULL, then this procedure uses the data from the program
15561 to create all necessary symbol tables, and their linetables.
15562
15563 2. If PST is not NULL, this procedure reads the program to determine
15564 the list of files included by the unit represented by PST, and
15565 builds all the associated partial symbol tables.
15566
15567 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15568 It is used for relative paths in the line table.
15569 NOTE: When processing partial symtabs (pst != NULL),
15570 comp_dir == pst->dirname.
15571
15572 NOTE: It is important that psymtabs have the same file name (via strcmp)
15573 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15574 symtab we don't use it in the name of the psymtabs we create.
15575 E.g. expand_line_sal requires this when finding psymtabs to expand.
15576 A good testcase for this is mb-inline.exp. */
15577
15578 static void
15579 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15580 struct dwarf2_cu *cu, struct partial_symtab *pst,
15581 int want_line_info)
15582 {
15583 struct objfile *objfile = cu->objfile;
15584 const int decode_for_pst_p = (pst != NULL);
15585 struct subfile *first_subfile = current_subfile;
15586
15587 if (want_line_info)
15588 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15589
15590 if (decode_for_pst_p)
15591 {
15592 int file_index;
15593
15594 /* Now that we're done scanning the Line Header Program, we can
15595 create the psymtab of each included file. */
15596 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15597 if (lh->file_names[file_index].included_p == 1)
15598 {
15599 char *include_name =
15600 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15601 if (include_name != NULL)
15602 dwarf2_create_include_psymtab (include_name, pst, objfile);
15603 }
15604 }
15605 else
15606 {
15607 /* Make sure a symtab is created for every file, even files
15608 which contain only variables (i.e. no code with associated
15609 line numbers). */
15610 int i;
15611
15612 for (i = 0; i < lh->num_file_names; i++)
15613 {
15614 char *dir = NULL;
15615 struct file_entry *fe;
15616
15617 fe = &lh->file_names[i];
15618 if (fe->dir_index)
15619 dir = lh->include_dirs[fe->dir_index - 1];
15620 dwarf2_start_subfile (fe->name, dir, comp_dir);
15621
15622 /* Skip the main file; we don't need it, and it must be
15623 allocated last, so that it will show up before the
15624 non-primary symtabs in the objfile's symtab list. */
15625 if (current_subfile == first_subfile)
15626 continue;
15627
15628 if (current_subfile->symtab == NULL)
15629 current_subfile->symtab = allocate_symtab (current_subfile->name,
15630 objfile);
15631 fe->symtab = current_subfile->symtab;
15632 }
15633 }
15634 }
15635
15636 /* Start a subfile for DWARF. FILENAME is the name of the file and
15637 DIRNAME the name of the source directory which contains FILENAME
15638 or NULL if not known. COMP_DIR is the compilation directory for the
15639 linetable's compilation unit or NULL if not known.
15640 This routine tries to keep line numbers from identical absolute and
15641 relative file names in a common subfile.
15642
15643 Using the `list' example from the GDB testsuite, which resides in
15644 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15645 of /srcdir/list0.c yields the following debugging information for list0.c:
15646
15647 DW_AT_name: /srcdir/list0.c
15648 DW_AT_comp_dir: /compdir
15649 files.files[0].name: list0.h
15650 files.files[0].dir: /srcdir
15651 files.files[1].name: list0.c
15652 files.files[1].dir: /srcdir
15653
15654 The line number information for list0.c has to end up in a single
15655 subfile, so that `break /srcdir/list0.c:1' works as expected.
15656 start_subfile will ensure that this happens provided that we pass the
15657 concatenation of files.files[1].dir and files.files[1].name as the
15658 subfile's name. */
15659
15660 static void
15661 dwarf2_start_subfile (char *filename, const char *dirname,
15662 const char *comp_dir)
15663 {
15664 char *fullname;
15665
15666 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15667 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15668 second argument to start_subfile. To be consistent, we do the
15669 same here. In order not to lose the line information directory,
15670 we concatenate it to the filename when it makes sense.
15671 Note that the Dwarf3 standard says (speaking of filenames in line
15672 information): ``The directory index is ignored for file names
15673 that represent full path names''. Thus ignoring dirname in the
15674 `else' branch below isn't an issue. */
15675
15676 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15677 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15678 else
15679 fullname = filename;
15680
15681 start_subfile (fullname, comp_dir);
15682
15683 if (fullname != filename)
15684 xfree (fullname);
15685 }
15686
15687 /* Start a symtab for DWARF.
15688 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15689
15690 static void
15691 dwarf2_start_symtab (struct dwarf2_cu *cu,
15692 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15693 {
15694 start_symtab (name, comp_dir, low_pc);
15695 record_debugformat ("DWARF 2");
15696 record_producer (cu->producer);
15697
15698 /* We assume that we're processing GCC output. */
15699 processing_gcc_compilation = 2;
15700
15701 cu->processing_has_namespace_info = 0;
15702 }
15703
15704 static void
15705 var_decode_location (struct attribute *attr, struct symbol *sym,
15706 struct dwarf2_cu *cu)
15707 {
15708 struct objfile *objfile = cu->objfile;
15709 struct comp_unit_head *cu_header = &cu->header;
15710
15711 /* NOTE drow/2003-01-30: There used to be a comment and some special
15712 code here to turn a symbol with DW_AT_external and a
15713 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15714 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15715 with some versions of binutils) where shared libraries could have
15716 relocations against symbols in their debug information - the
15717 minimal symbol would have the right address, but the debug info
15718 would not. It's no longer necessary, because we will explicitly
15719 apply relocations when we read in the debug information now. */
15720
15721 /* A DW_AT_location attribute with no contents indicates that a
15722 variable has been optimized away. */
15723 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15724 {
15725 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15726 return;
15727 }
15728
15729 /* Handle one degenerate form of location expression specially, to
15730 preserve GDB's previous behavior when section offsets are
15731 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15732 then mark this symbol as LOC_STATIC. */
15733
15734 if (attr_form_is_block (attr)
15735 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15736 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15737 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15738 && (DW_BLOCK (attr)->size
15739 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15740 {
15741 unsigned int dummy;
15742
15743 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15744 SYMBOL_VALUE_ADDRESS (sym) =
15745 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15746 else
15747 SYMBOL_VALUE_ADDRESS (sym) =
15748 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15749 SYMBOL_CLASS (sym) = LOC_STATIC;
15750 fixup_symbol_section (sym, objfile);
15751 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15752 SYMBOL_SECTION (sym));
15753 return;
15754 }
15755
15756 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15757 expression evaluator, and use LOC_COMPUTED only when necessary
15758 (i.e. when the value of a register or memory location is
15759 referenced, or a thread-local block, etc.). Then again, it might
15760 not be worthwhile. I'm assuming that it isn't unless performance
15761 or memory numbers show me otherwise. */
15762
15763 dwarf2_symbol_mark_computed (attr, sym, cu);
15764 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15765
15766 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15767 cu->has_loclist = 1;
15768 }
15769
15770 /* Given a pointer to a DWARF information entry, figure out if we need
15771 to make a symbol table entry for it, and if so, create a new entry
15772 and return a pointer to it.
15773 If TYPE is NULL, determine symbol type from the die, otherwise
15774 used the passed type.
15775 If SPACE is not NULL, use it to hold the new symbol. If it is
15776 NULL, allocate a new symbol on the objfile's obstack. */
15777
15778 static struct symbol *
15779 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15780 struct symbol *space)
15781 {
15782 struct objfile *objfile = cu->objfile;
15783 struct symbol *sym = NULL;
15784 const char *name;
15785 struct attribute *attr = NULL;
15786 struct attribute *attr2 = NULL;
15787 CORE_ADDR baseaddr;
15788 struct pending **list_to_add = NULL;
15789
15790 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15791
15792 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15793
15794 name = dwarf2_name (die, cu);
15795 if (name)
15796 {
15797 const char *linkagename;
15798 int suppress_add = 0;
15799
15800 if (space)
15801 sym = space;
15802 else
15803 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15804 OBJSTAT (objfile, n_syms++);
15805
15806 /* Cache this symbol's name and the name's demangled form (if any). */
15807 SYMBOL_SET_LANGUAGE (sym, cu->language);
15808 linkagename = dwarf2_physname (name, die, cu);
15809 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15810
15811 /* Fortran does not have mangling standard and the mangling does differ
15812 between gfortran, iFort etc. */
15813 if (cu->language == language_fortran
15814 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15815 symbol_set_demangled_name (&(sym->ginfo),
15816 dwarf2_full_name (name, die, cu),
15817 NULL);
15818
15819 /* Default assumptions.
15820 Use the passed type or decode it from the die. */
15821 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15822 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15823 if (type != NULL)
15824 SYMBOL_TYPE (sym) = type;
15825 else
15826 SYMBOL_TYPE (sym) = die_type (die, cu);
15827 attr = dwarf2_attr (die,
15828 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15829 cu);
15830 if (attr)
15831 {
15832 SYMBOL_LINE (sym) = DW_UNSND (attr);
15833 }
15834
15835 attr = dwarf2_attr (die,
15836 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15837 cu);
15838 if (attr)
15839 {
15840 int file_index = DW_UNSND (attr);
15841
15842 if (cu->line_header == NULL
15843 || file_index > cu->line_header->num_file_names)
15844 complaint (&symfile_complaints,
15845 _("file index out of range"));
15846 else if (file_index > 0)
15847 {
15848 struct file_entry *fe;
15849
15850 fe = &cu->line_header->file_names[file_index - 1];
15851 SYMBOL_SYMTAB (sym) = fe->symtab;
15852 }
15853 }
15854
15855 switch (die->tag)
15856 {
15857 case DW_TAG_label:
15858 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15859 if (attr)
15860 {
15861 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15862 }
15863 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15864 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15865 SYMBOL_CLASS (sym) = LOC_LABEL;
15866 add_symbol_to_list (sym, cu->list_in_scope);
15867 break;
15868 case DW_TAG_subprogram:
15869 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15870 finish_block. */
15871 SYMBOL_CLASS (sym) = LOC_BLOCK;
15872 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15873 if ((attr2 && (DW_UNSND (attr2) != 0))
15874 || cu->language == language_ada)
15875 {
15876 /* Subprograms marked external are stored as a global symbol.
15877 Ada subprograms, whether marked external or not, are always
15878 stored as a global symbol, because we want to be able to
15879 access them globally. For instance, we want to be able
15880 to break on a nested subprogram without having to
15881 specify the context. */
15882 list_to_add = &global_symbols;
15883 }
15884 else
15885 {
15886 list_to_add = cu->list_in_scope;
15887 }
15888 break;
15889 case DW_TAG_inlined_subroutine:
15890 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15891 finish_block. */
15892 SYMBOL_CLASS (sym) = LOC_BLOCK;
15893 SYMBOL_INLINED (sym) = 1;
15894 list_to_add = cu->list_in_scope;
15895 break;
15896 case DW_TAG_template_value_param:
15897 suppress_add = 1;
15898 /* Fall through. */
15899 case DW_TAG_constant:
15900 case DW_TAG_variable:
15901 case DW_TAG_member:
15902 /* Compilation with minimal debug info may result in
15903 variables with missing type entries. Change the
15904 misleading `void' type to something sensible. */
15905 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15906 SYMBOL_TYPE (sym)
15907 = objfile_type (objfile)->nodebug_data_symbol;
15908
15909 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15910 /* In the case of DW_TAG_member, we should only be called for
15911 static const members. */
15912 if (die->tag == DW_TAG_member)
15913 {
15914 /* dwarf2_add_field uses die_is_declaration,
15915 so we do the same. */
15916 gdb_assert (die_is_declaration (die, cu));
15917 gdb_assert (attr);
15918 }
15919 if (attr)
15920 {
15921 dwarf2_const_value (attr, sym, cu);
15922 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15923 if (!suppress_add)
15924 {
15925 if (attr2 && (DW_UNSND (attr2) != 0))
15926 list_to_add = &global_symbols;
15927 else
15928 list_to_add = cu->list_in_scope;
15929 }
15930 break;
15931 }
15932 attr = dwarf2_attr (die, DW_AT_location, cu);
15933 if (attr)
15934 {
15935 var_decode_location (attr, sym, cu);
15936 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15937
15938 /* Fortran explicitly imports any global symbols to the local
15939 scope by DW_TAG_common_block. */
15940 if (cu->language == language_fortran && die->parent
15941 && die->parent->tag == DW_TAG_common_block)
15942 attr2 = NULL;
15943
15944 if (SYMBOL_CLASS (sym) == LOC_STATIC
15945 && SYMBOL_VALUE_ADDRESS (sym) == 0
15946 && !dwarf2_per_objfile->has_section_at_zero)
15947 {
15948 /* When a static variable is eliminated by the linker,
15949 the corresponding debug information is not stripped
15950 out, but the variable address is set to null;
15951 do not add such variables into symbol table. */
15952 }
15953 else if (attr2 && (DW_UNSND (attr2) != 0))
15954 {
15955 /* Workaround gfortran PR debug/40040 - it uses
15956 DW_AT_location for variables in -fPIC libraries which may
15957 get overriden by other libraries/executable and get
15958 a different address. Resolve it by the minimal symbol
15959 which may come from inferior's executable using copy
15960 relocation. Make this workaround only for gfortran as for
15961 other compilers GDB cannot guess the minimal symbol
15962 Fortran mangling kind. */
15963 if (cu->language == language_fortran && die->parent
15964 && die->parent->tag == DW_TAG_module
15965 && cu->producer
15966 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15967 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15968
15969 /* A variable with DW_AT_external is never static,
15970 but it may be block-scoped. */
15971 list_to_add = (cu->list_in_scope == &file_symbols
15972 ? &global_symbols : cu->list_in_scope);
15973 }
15974 else
15975 list_to_add = cu->list_in_scope;
15976 }
15977 else
15978 {
15979 /* We do not know the address of this symbol.
15980 If it is an external symbol and we have type information
15981 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15982 The address of the variable will then be determined from
15983 the minimal symbol table whenever the variable is
15984 referenced. */
15985 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15986
15987 /* Fortran explicitly imports any global symbols to the local
15988 scope by DW_TAG_common_block. */
15989 if (cu->language == language_fortran && die->parent
15990 && die->parent->tag == DW_TAG_common_block)
15991 {
15992 /* SYMBOL_CLASS doesn't matter here because
15993 read_common_block is going to reset it. */
15994 if (!suppress_add)
15995 list_to_add = cu->list_in_scope;
15996 }
15997 else if (attr2 && (DW_UNSND (attr2) != 0)
15998 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15999 {
16000 /* A variable with DW_AT_external is never static, but it
16001 may be block-scoped. */
16002 list_to_add = (cu->list_in_scope == &file_symbols
16003 ? &global_symbols : cu->list_in_scope);
16004
16005 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
16006 }
16007 else if (!die_is_declaration (die, cu))
16008 {
16009 /* Use the default LOC_OPTIMIZED_OUT class. */
16010 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16011 if (!suppress_add)
16012 list_to_add = cu->list_in_scope;
16013 }
16014 }
16015 break;
16016 case DW_TAG_formal_parameter:
16017 /* If we are inside a function, mark this as an argument. If
16018 not, we might be looking at an argument to an inlined function
16019 when we do not have enough information to show inlined frames;
16020 pretend it's a local variable in that case so that the user can
16021 still see it. */
16022 if (context_stack_depth > 0
16023 && context_stack[context_stack_depth - 1].name != NULL)
16024 SYMBOL_IS_ARGUMENT (sym) = 1;
16025 attr = dwarf2_attr (die, DW_AT_location, cu);
16026 if (attr)
16027 {
16028 var_decode_location (attr, sym, cu);
16029 }
16030 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16031 if (attr)
16032 {
16033 dwarf2_const_value (attr, sym, cu);
16034 }
16035
16036 list_to_add = cu->list_in_scope;
16037 break;
16038 case DW_TAG_unspecified_parameters:
16039 /* From varargs functions; gdb doesn't seem to have any
16040 interest in this information, so just ignore it for now.
16041 (FIXME?) */
16042 break;
16043 case DW_TAG_template_type_param:
16044 suppress_add = 1;
16045 /* Fall through. */
16046 case DW_TAG_class_type:
16047 case DW_TAG_interface_type:
16048 case DW_TAG_structure_type:
16049 case DW_TAG_union_type:
16050 case DW_TAG_set_type:
16051 case DW_TAG_enumeration_type:
16052 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16053 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16054
16055 {
16056 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16057 really ever be static objects: otherwise, if you try
16058 to, say, break of a class's method and you're in a file
16059 which doesn't mention that class, it won't work unless
16060 the check for all static symbols in lookup_symbol_aux
16061 saves you. See the OtherFileClass tests in
16062 gdb.c++/namespace.exp. */
16063
16064 if (!suppress_add)
16065 {
16066 list_to_add = (cu->list_in_scope == &file_symbols
16067 && (cu->language == language_cplus
16068 || cu->language == language_java)
16069 ? &global_symbols : cu->list_in_scope);
16070
16071 /* The semantics of C++ state that "struct foo {
16072 ... }" also defines a typedef for "foo". A Java
16073 class declaration also defines a typedef for the
16074 class. */
16075 if (cu->language == language_cplus
16076 || cu->language == language_java
16077 || cu->language == language_ada)
16078 {
16079 /* The symbol's name is already allocated along
16080 with this objfile, so we don't need to
16081 duplicate it for the type. */
16082 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16083 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16084 }
16085 }
16086 }
16087 break;
16088 case DW_TAG_typedef:
16089 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16090 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16091 list_to_add = cu->list_in_scope;
16092 break;
16093 case DW_TAG_base_type:
16094 case DW_TAG_subrange_type:
16095 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16097 list_to_add = cu->list_in_scope;
16098 break;
16099 case DW_TAG_enumerator:
16100 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16101 if (attr)
16102 {
16103 dwarf2_const_value (attr, sym, cu);
16104 }
16105 {
16106 /* NOTE: carlton/2003-11-10: See comment above in the
16107 DW_TAG_class_type, etc. block. */
16108
16109 list_to_add = (cu->list_in_scope == &file_symbols
16110 && (cu->language == language_cplus
16111 || cu->language == language_java)
16112 ? &global_symbols : cu->list_in_scope);
16113 }
16114 break;
16115 case DW_TAG_namespace:
16116 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16117 list_to_add = &global_symbols;
16118 break;
16119 case DW_TAG_common_block:
16120 SYMBOL_CLASS (sym) = LOC_COMMON_BLOCK;
16121 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16122 add_symbol_to_list (sym, cu->list_in_scope);
16123 break;
16124 default:
16125 /* Not a tag we recognize. Hopefully we aren't processing
16126 trash data, but since we must specifically ignore things
16127 we don't recognize, there is nothing else we should do at
16128 this point. */
16129 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16130 dwarf_tag_name (die->tag));
16131 break;
16132 }
16133
16134 if (suppress_add)
16135 {
16136 sym->hash_next = objfile->template_symbols;
16137 objfile->template_symbols = sym;
16138 list_to_add = NULL;
16139 }
16140
16141 if (list_to_add != NULL)
16142 add_symbol_to_list (sym, list_to_add);
16143
16144 /* For the benefit of old versions of GCC, check for anonymous
16145 namespaces based on the demangled name. */
16146 if (!cu->processing_has_namespace_info
16147 && cu->language == language_cplus)
16148 cp_scan_for_anonymous_namespaces (sym, objfile);
16149 }
16150 return (sym);
16151 }
16152
16153 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16154
16155 static struct symbol *
16156 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16157 {
16158 return new_symbol_full (die, type, cu, NULL);
16159 }
16160
16161 /* Given an attr with a DW_FORM_dataN value in host byte order,
16162 zero-extend it as appropriate for the symbol's type. The DWARF
16163 standard (v4) is not entirely clear about the meaning of using
16164 DW_FORM_dataN for a constant with a signed type, where the type is
16165 wider than the data. The conclusion of a discussion on the DWARF
16166 list was that this is unspecified. We choose to always zero-extend
16167 because that is the interpretation long in use by GCC. */
16168
16169 static gdb_byte *
16170 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16171 const char *name, struct obstack *obstack,
16172 struct dwarf2_cu *cu, LONGEST *value, int bits)
16173 {
16174 struct objfile *objfile = cu->objfile;
16175 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16176 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16177 LONGEST l = DW_UNSND (attr);
16178
16179 if (bits < sizeof (*value) * 8)
16180 {
16181 l &= ((LONGEST) 1 << bits) - 1;
16182 *value = l;
16183 }
16184 else if (bits == sizeof (*value) * 8)
16185 *value = l;
16186 else
16187 {
16188 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16189 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16190 return bytes;
16191 }
16192
16193 return NULL;
16194 }
16195
16196 /* Read a constant value from an attribute. Either set *VALUE, or if
16197 the value does not fit in *VALUE, set *BYTES - either already
16198 allocated on the objfile obstack, or newly allocated on OBSTACK,
16199 or, set *BATON, if we translated the constant to a location
16200 expression. */
16201
16202 static void
16203 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16204 const char *name, struct obstack *obstack,
16205 struct dwarf2_cu *cu,
16206 LONGEST *value, gdb_byte **bytes,
16207 struct dwarf2_locexpr_baton **baton)
16208 {
16209 struct objfile *objfile = cu->objfile;
16210 struct comp_unit_head *cu_header = &cu->header;
16211 struct dwarf_block *blk;
16212 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16213 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16214
16215 *value = 0;
16216 *bytes = NULL;
16217 *baton = NULL;
16218
16219 switch (attr->form)
16220 {
16221 case DW_FORM_addr:
16222 case DW_FORM_GNU_addr_index:
16223 {
16224 gdb_byte *data;
16225
16226 if (TYPE_LENGTH (type) != cu_header->addr_size)
16227 dwarf2_const_value_length_mismatch_complaint (name,
16228 cu_header->addr_size,
16229 TYPE_LENGTH (type));
16230 /* Symbols of this form are reasonably rare, so we just
16231 piggyback on the existing location code rather than writing
16232 a new implementation of symbol_computed_ops. */
16233 *baton = obstack_alloc (&objfile->objfile_obstack,
16234 sizeof (struct dwarf2_locexpr_baton));
16235 (*baton)->per_cu = cu->per_cu;
16236 gdb_assert ((*baton)->per_cu);
16237
16238 (*baton)->size = 2 + cu_header->addr_size;
16239 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16240 (*baton)->data = data;
16241
16242 data[0] = DW_OP_addr;
16243 store_unsigned_integer (&data[1], cu_header->addr_size,
16244 byte_order, DW_ADDR (attr));
16245 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16246 }
16247 break;
16248 case DW_FORM_string:
16249 case DW_FORM_strp:
16250 case DW_FORM_GNU_str_index:
16251 case DW_FORM_GNU_strp_alt:
16252 /* DW_STRING is already allocated on the objfile obstack, point
16253 directly to it. */
16254 *bytes = (gdb_byte *) DW_STRING (attr);
16255 break;
16256 case DW_FORM_block1:
16257 case DW_FORM_block2:
16258 case DW_FORM_block4:
16259 case DW_FORM_block:
16260 case DW_FORM_exprloc:
16261 blk = DW_BLOCK (attr);
16262 if (TYPE_LENGTH (type) != blk->size)
16263 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16264 TYPE_LENGTH (type));
16265 *bytes = blk->data;
16266 break;
16267
16268 /* The DW_AT_const_value attributes are supposed to carry the
16269 symbol's value "represented as it would be on the target
16270 architecture." By the time we get here, it's already been
16271 converted to host endianness, so we just need to sign- or
16272 zero-extend it as appropriate. */
16273 case DW_FORM_data1:
16274 *bytes = dwarf2_const_value_data (attr, type, name,
16275 obstack, cu, value, 8);
16276 break;
16277 case DW_FORM_data2:
16278 *bytes = dwarf2_const_value_data (attr, type, name,
16279 obstack, cu, value, 16);
16280 break;
16281 case DW_FORM_data4:
16282 *bytes = dwarf2_const_value_data (attr, type, name,
16283 obstack, cu, value, 32);
16284 break;
16285 case DW_FORM_data8:
16286 *bytes = dwarf2_const_value_data (attr, type, name,
16287 obstack, cu, value, 64);
16288 break;
16289
16290 case DW_FORM_sdata:
16291 *value = DW_SND (attr);
16292 break;
16293
16294 case DW_FORM_udata:
16295 *value = DW_UNSND (attr);
16296 break;
16297
16298 default:
16299 complaint (&symfile_complaints,
16300 _("unsupported const value attribute form: '%s'"),
16301 dwarf_form_name (attr->form));
16302 *value = 0;
16303 break;
16304 }
16305 }
16306
16307
16308 /* Copy constant value from an attribute to a symbol. */
16309
16310 static void
16311 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16312 struct dwarf2_cu *cu)
16313 {
16314 struct objfile *objfile = cu->objfile;
16315 struct comp_unit_head *cu_header = &cu->header;
16316 LONGEST value;
16317 gdb_byte *bytes;
16318 struct dwarf2_locexpr_baton *baton;
16319
16320 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16321 SYMBOL_PRINT_NAME (sym),
16322 &objfile->objfile_obstack, cu,
16323 &value, &bytes, &baton);
16324
16325 if (baton != NULL)
16326 {
16327 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16328 SYMBOL_LOCATION_BATON (sym) = baton;
16329 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16330 }
16331 else if (bytes != NULL)
16332 {
16333 SYMBOL_VALUE_BYTES (sym) = bytes;
16334 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16335 }
16336 else
16337 {
16338 SYMBOL_VALUE (sym) = value;
16339 SYMBOL_CLASS (sym) = LOC_CONST;
16340 }
16341 }
16342
16343 /* Return the type of the die in question using its DW_AT_type attribute. */
16344
16345 static struct type *
16346 die_type (struct die_info *die, struct dwarf2_cu *cu)
16347 {
16348 struct attribute *type_attr;
16349
16350 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16351 if (!type_attr)
16352 {
16353 /* A missing DW_AT_type represents a void type. */
16354 return objfile_type (cu->objfile)->builtin_void;
16355 }
16356
16357 return lookup_die_type (die, type_attr, cu);
16358 }
16359
16360 /* True iff CU's producer generates GNAT Ada auxiliary information
16361 that allows to find parallel types through that information instead
16362 of having to do expensive parallel lookups by type name. */
16363
16364 static int
16365 need_gnat_info (struct dwarf2_cu *cu)
16366 {
16367 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16368 of GNAT produces this auxiliary information, without any indication
16369 that it is produced. Part of enhancing the FSF version of GNAT
16370 to produce that information will be to put in place an indicator
16371 that we can use in order to determine whether the descriptive type
16372 info is available or not. One suggestion that has been made is
16373 to use a new attribute, attached to the CU die. For now, assume
16374 that the descriptive type info is not available. */
16375 return 0;
16376 }
16377
16378 /* Return the auxiliary type of the die in question using its
16379 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16380 attribute is not present. */
16381
16382 static struct type *
16383 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16384 {
16385 struct attribute *type_attr;
16386
16387 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16388 if (!type_attr)
16389 return NULL;
16390
16391 return lookup_die_type (die, type_attr, cu);
16392 }
16393
16394 /* If DIE has a descriptive_type attribute, then set the TYPE's
16395 descriptive type accordingly. */
16396
16397 static void
16398 set_descriptive_type (struct type *type, struct die_info *die,
16399 struct dwarf2_cu *cu)
16400 {
16401 struct type *descriptive_type = die_descriptive_type (die, cu);
16402
16403 if (descriptive_type)
16404 {
16405 ALLOCATE_GNAT_AUX_TYPE (type);
16406 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16407 }
16408 }
16409
16410 /* Return the containing type of the die in question using its
16411 DW_AT_containing_type attribute. */
16412
16413 static struct type *
16414 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16415 {
16416 struct attribute *type_attr;
16417
16418 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16419 if (!type_attr)
16420 error (_("Dwarf Error: Problem turning containing type into gdb type "
16421 "[in module %s]"), cu->objfile->name);
16422
16423 return lookup_die_type (die, type_attr, cu);
16424 }
16425
16426 /* Look up the type of DIE in CU using its type attribute ATTR.
16427 If there is no type substitute an error marker. */
16428
16429 static struct type *
16430 lookup_die_type (struct die_info *die, struct attribute *attr,
16431 struct dwarf2_cu *cu)
16432 {
16433 struct objfile *objfile = cu->objfile;
16434 struct type *this_type;
16435
16436 /* First see if we have it cached. */
16437
16438 if (attr->form == DW_FORM_GNU_ref_alt)
16439 {
16440 struct dwarf2_per_cu_data *per_cu;
16441 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16442
16443 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16444 this_type = get_die_type_at_offset (offset, per_cu);
16445 }
16446 else if (is_ref_attr (attr))
16447 {
16448 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16449
16450 this_type = get_die_type_at_offset (offset, cu->per_cu);
16451 }
16452 else if (attr->form == DW_FORM_ref_sig8)
16453 {
16454 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16455
16456 /* sig_type will be NULL if the signatured type is missing from
16457 the debug info. */
16458 if (sig_type == NULL)
16459 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16460 "at 0x%x [in module %s]"),
16461 die->offset.sect_off, objfile->name);
16462
16463 gdb_assert (sig_type->per_cu.is_debug_types);
16464 /* If we haven't filled in type_offset_in_section yet, then we
16465 haven't read the type in yet. */
16466 this_type = NULL;
16467 if (sig_type->type_offset_in_section.sect_off != 0)
16468 {
16469 this_type =
16470 get_die_type_at_offset (sig_type->type_offset_in_section,
16471 &sig_type->per_cu);
16472 }
16473 }
16474 else
16475 {
16476 dump_die_for_error (die);
16477 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16478 dwarf_attr_name (attr->name), objfile->name);
16479 }
16480
16481 /* If not cached we need to read it in. */
16482
16483 if (this_type == NULL)
16484 {
16485 struct die_info *type_die;
16486 struct dwarf2_cu *type_cu = cu;
16487
16488 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16489 /* If we found the type now, it's probably because the type came
16490 from an inter-CU reference and the type's CU got expanded before
16491 ours. */
16492 this_type = get_die_type (type_die, type_cu);
16493 if (this_type == NULL)
16494 this_type = read_type_die_1 (type_die, type_cu);
16495 }
16496
16497 /* If we still don't have a type use an error marker. */
16498
16499 if (this_type == NULL)
16500 {
16501 char *message, *saved;
16502
16503 /* read_type_die already issued a complaint. */
16504 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16505 objfile->name,
16506 cu->header.offset.sect_off,
16507 die->offset.sect_off);
16508 saved = obstack_copy0 (&objfile->objfile_obstack,
16509 message, strlen (message));
16510 xfree (message);
16511
16512 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16513 }
16514
16515 return this_type;
16516 }
16517
16518 /* Return the type in DIE, CU.
16519 Returns NULL for invalid types.
16520
16521 This first does a lookup in the appropriate type_hash table,
16522 and only reads the die in if necessary.
16523
16524 NOTE: This can be called when reading in partial or full symbols. */
16525
16526 static struct type *
16527 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16528 {
16529 struct type *this_type;
16530
16531 this_type = get_die_type (die, cu);
16532 if (this_type)
16533 return this_type;
16534
16535 return read_type_die_1 (die, cu);
16536 }
16537
16538 /* Read the type in DIE, CU.
16539 Returns NULL for invalid types. */
16540
16541 static struct type *
16542 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16543 {
16544 struct type *this_type = NULL;
16545
16546 switch (die->tag)
16547 {
16548 case DW_TAG_class_type:
16549 case DW_TAG_interface_type:
16550 case DW_TAG_structure_type:
16551 case DW_TAG_union_type:
16552 this_type = read_structure_type (die, cu);
16553 break;
16554 case DW_TAG_enumeration_type:
16555 this_type = read_enumeration_type (die, cu);
16556 break;
16557 case DW_TAG_subprogram:
16558 case DW_TAG_subroutine_type:
16559 case DW_TAG_inlined_subroutine:
16560 this_type = read_subroutine_type (die, cu);
16561 break;
16562 case DW_TAG_array_type:
16563 this_type = read_array_type (die, cu);
16564 break;
16565 case DW_TAG_set_type:
16566 this_type = read_set_type (die, cu);
16567 break;
16568 case DW_TAG_pointer_type:
16569 this_type = read_tag_pointer_type (die, cu);
16570 break;
16571 case DW_TAG_ptr_to_member_type:
16572 this_type = read_tag_ptr_to_member_type (die, cu);
16573 break;
16574 case DW_TAG_reference_type:
16575 this_type = read_tag_reference_type (die, cu);
16576 break;
16577 case DW_TAG_const_type:
16578 this_type = read_tag_const_type (die, cu);
16579 break;
16580 case DW_TAG_volatile_type:
16581 this_type = read_tag_volatile_type (die, cu);
16582 break;
16583 case DW_TAG_restrict_type:
16584 this_type = read_tag_restrict_type (die, cu);
16585 break;
16586 case DW_TAG_string_type:
16587 this_type = read_tag_string_type (die, cu);
16588 break;
16589 case DW_TAG_typedef:
16590 this_type = read_typedef (die, cu);
16591 break;
16592 case DW_TAG_subrange_type:
16593 this_type = read_subrange_type (die, cu);
16594 break;
16595 case DW_TAG_base_type:
16596 this_type = read_base_type (die, cu);
16597 break;
16598 case DW_TAG_unspecified_type:
16599 this_type = read_unspecified_type (die, cu);
16600 break;
16601 case DW_TAG_namespace:
16602 this_type = read_namespace_type (die, cu);
16603 break;
16604 case DW_TAG_module:
16605 this_type = read_module_type (die, cu);
16606 break;
16607 default:
16608 complaint (&symfile_complaints,
16609 _("unexpected tag in read_type_die: '%s'"),
16610 dwarf_tag_name (die->tag));
16611 break;
16612 }
16613
16614 return this_type;
16615 }
16616
16617 /* See if we can figure out if the class lives in a namespace. We do
16618 this by looking for a member function; its demangled name will
16619 contain namespace info, if there is any.
16620 Return the computed name or NULL.
16621 Space for the result is allocated on the objfile's obstack.
16622 This is the full-die version of guess_partial_die_structure_name.
16623 In this case we know DIE has no useful parent. */
16624
16625 static char *
16626 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16627 {
16628 struct die_info *spec_die;
16629 struct dwarf2_cu *spec_cu;
16630 struct die_info *child;
16631
16632 spec_cu = cu;
16633 spec_die = die_specification (die, &spec_cu);
16634 if (spec_die != NULL)
16635 {
16636 die = spec_die;
16637 cu = spec_cu;
16638 }
16639
16640 for (child = die->child;
16641 child != NULL;
16642 child = child->sibling)
16643 {
16644 if (child->tag == DW_TAG_subprogram)
16645 {
16646 struct attribute *attr;
16647
16648 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16649 if (attr == NULL)
16650 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16651 if (attr != NULL)
16652 {
16653 char *actual_name
16654 = language_class_name_from_physname (cu->language_defn,
16655 DW_STRING (attr));
16656 char *name = NULL;
16657
16658 if (actual_name != NULL)
16659 {
16660 const char *die_name = dwarf2_name (die, cu);
16661
16662 if (die_name != NULL
16663 && strcmp (die_name, actual_name) != 0)
16664 {
16665 /* Strip off the class name from the full name.
16666 We want the prefix. */
16667 int die_name_len = strlen (die_name);
16668 int actual_name_len = strlen (actual_name);
16669
16670 /* Test for '::' as a sanity check. */
16671 if (actual_name_len > die_name_len + 2
16672 && actual_name[actual_name_len
16673 - die_name_len - 1] == ':')
16674 name =
16675 obstack_copy0 (&cu->objfile->objfile_obstack,
16676 actual_name,
16677 actual_name_len - die_name_len - 2);
16678 }
16679 }
16680 xfree (actual_name);
16681 return name;
16682 }
16683 }
16684 }
16685
16686 return NULL;
16687 }
16688
16689 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16690 prefix part in such case. See
16691 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16692
16693 static char *
16694 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16695 {
16696 struct attribute *attr;
16697 char *base;
16698
16699 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16700 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16701 return NULL;
16702
16703 attr = dwarf2_attr (die, DW_AT_name, cu);
16704 if (attr != NULL && DW_STRING (attr) != NULL)
16705 return NULL;
16706
16707 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16708 if (attr == NULL)
16709 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16710 if (attr == NULL || DW_STRING (attr) == NULL)
16711 return NULL;
16712
16713 /* dwarf2_name had to be already called. */
16714 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16715
16716 /* Strip the base name, keep any leading namespaces/classes. */
16717 base = strrchr (DW_STRING (attr), ':');
16718 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16719 return "";
16720
16721 return obstack_copy0 (&cu->objfile->objfile_obstack,
16722 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16723 }
16724
16725 /* Return the name of the namespace/class that DIE is defined within,
16726 or "" if we can't tell. The caller should not xfree the result.
16727
16728 For example, if we're within the method foo() in the following
16729 code:
16730
16731 namespace N {
16732 class C {
16733 void foo () {
16734 }
16735 };
16736 }
16737
16738 then determine_prefix on foo's die will return "N::C". */
16739
16740 static const char *
16741 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16742 {
16743 struct die_info *parent, *spec_die;
16744 struct dwarf2_cu *spec_cu;
16745 struct type *parent_type;
16746 char *retval;
16747
16748 if (cu->language != language_cplus && cu->language != language_java
16749 && cu->language != language_fortran)
16750 return "";
16751
16752 retval = anonymous_struct_prefix (die, cu);
16753 if (retval)
16754 return retval;
16755
16756 /* We have to be careful in the presence of DW_AT_specification.
16757 For example, with GCC 3.4, given the code
16758
16759 namespace N {
16760 void foo() {
16761 // Definition of N::foo.
16762 }
16763 }
16764
16765 then we'll have a tree of DIEs like this:
16766
16767 1: DW_TAG_compile_unit
16768 2: DW_TAG_namespace // N
16769 3: DW_TAG_subprogram // declaration of N::foo
16770 4: DW_TAG_subprogram // definition of N::foo
16771 DW_AT_specification // refers to die #3
16772
16773 Thus, when processing die #4, we have to pretend that we're in
16774 the context of its DW_AT_specification, namely the contex of die
16775 #3. */
16776 spec_cu = cu;
16777 spec_die = die_specification (die, &spec_cu);
16778 if (spec_die == NULL)
16779 parent = die->parent;
16780 else
16781 {
16782 parent = spec_die->parent;
16783 cu = spec_cu;
16784 }
16785
16786 if (parent == NULL)
16787 return "";
16788 else if (parent->building_fullname)
16789 {
16790 const char *name;
16791 const char *parent_name;
16792
16793 /* It has been seen on RealView 2.2 built binaries,
16794 DW_TAG_template_type_param types actually _defined_ as
16795 children of the parent class:
16796
16797 enum E {};
16798 template class <class Enum> Class{};
16799 Class<enum E> class_e;
16800
16801 1: DW_TAG_class_type (Class)
16802 2: DW_TAG_enumeration_type (E)
16803 3: DW_TAG_enumerator (enum1:0)
16804 3: DW_TAG_enumerator (enum2:1)
16805 ...
16806 2: DW_TAG_template_type_param
16807 DW_AT_type DW_FORM_ref_udata (E)
16808
16809 Besides being broken debug info, it can put GDB into an
16810 infinite loop. Consider:
16811
16812 When we're building the full name for Class<E>, we'll start
16813 at Class, and go look over its template type parameters,
16814 finding E. We'll then try to build the full name of E, and
16815 reach here. We're now trying to build the full name of E,
16816 and look over the parent DIE for containing scope. In the
16817 broken case, if we followed the parent DIE of E, we'd again
16818 find Class, and once again go look at its template type
16819 arguments, etc., etc. Simply don't consider such parent die
16820 as source-level parent of this die (it can't be, the language
16821 doesn't allow it), and break the loop here. */
16822 name = dwarf2_name (die, cu);
16823 parent_name = dwarf2_name (parent, cu);
16824 complaint (&symfile_complaints,
16825 _("template param type '%s' defined within parent '%s'"),
16826 name ? name : "<unknown>",
16827 parent_name ? parent_name : "<unknown>");
16828 return "";
16829 }
16830 else
16831 switch (parent->tag)
16832 {
16833 case DW_TAG_namespace:
16834 parent_type = read_type_die (parent, cu);
16835 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16836 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16837 Work around this problem here. */
16838 if (cu->language == language_cplus
16839 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16840 return "";
16841 /* We give a name to even anonymous namespaces. */
16842 return TYPE_TAG_NAME (parent_type);
16843 case DW_TAG_class_type:
16844 case DW_TAG_interface_type:
16845 case DW_TAG_structure_type:
16846 case DW_TAG_union_type:
16847 case DW_TAG_module:
16848 parent_type = read_type_die (parent, cu);
16849 if (TYPE_TAG_NAME (parent_type) != NULL)
16850 return TYPE_TAG_NAME (parent_type);
16851 else
16852 /* An anonymous structure is only allowed non-static data
16853 members; no typedefs, no member functions, et cetera.
16854 So it does not need a prefix. */
16855 return "";
16856 case DW_TAG_compile_unit:
16857 case DW_TAG_partial_unit:
16858 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16859 if (cu->language == language_cplus
16860 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16861 && die->child != NULL
16862 && (die->tag == DW_TAG_class_type
16863 || die->tag == DW_TAG_structure_type
16864 || die->tag == DW_TAG_union_type))
16865 {
16866 char *name = guess_full_die_structure_name (die, cu);
16867 if (name != NULL)
16868 return name;
16869 }
16870 return "";
16871 default:
16872 return determine_prefix (parent, cu);
16873 }
16874 }
16875
16876 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16877 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16878 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16879 an obconcat, otherwise allocate storage for the result. The CU argument is
16880 used to determine the language and hence, the appropriate separator. */
16881
16882 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16883
16884 static char *
16885 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16886 int physname, struct dwarf2_cu *cu)
16887 {
16888 const char *lead = "";
16889 const char *sep;
16890
16891 if (suffix == NULL || suffix[0] == '\0'
16892 || prefix == NULL || prefix[0] == '\0')
16893 sep = "";
16894 else if (cu->language == language_java)
16895 sep = ".";
16896 else if (cu->language == language_fortran && physname)
16897 {
16898 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16899 DW_AT_MIPS_linkage_name is preferred and used instead. */
16900
16901 lead = "__";
16902 sep = "_MOD_";
16903 }
16904 else
16905 sep = "::";
16906
16907 if (prefix == NULL)
16908 prefix = "";
16909 if (suffix == NULL)
16910 suffix = "";
16911
16912 if (obs == NULL)
16913 {
16914 char *retval
16915 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16916
16917 strcpy (retval, lead);
16918 strcat (retval, prefix);
16919 strcat (retval, sep);
16920 strcat (retval, suffix);
16921 return retval;
16922 }
16923 else
16924 {
16925 /* We have an obstack. */
16926 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16927 }
16928 }
16929
16930 /* Return sibling of die, NULL if no sibling. */
16931
16932 static struct die_info *
16933 sibling_die (struct die_info *die)
16934 {
16935 return die->sibling;
16936 }
16937
16938 /* Get name of a die, return NULL if not found. */
16939
16940 static const char *
16941 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16942 struct obstack *obstack)
16943 {
16944 if (name && cu->language == language_cplus)
16945 {
16946 char *canon_name = cp_canonicalize_string (name);
16947
16948 if (canon_name != NULL)
16949 {
16950 if (strcmp (canon_name, name) != 0)
16951 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16952 xfree (canon_name);
16953 }
16954 }
16955
16956 return name;
16957 }
16958
16959 /* Get name of a die, return NULL if not found. */
16960
16961 static const char *
16962 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16963 {
16964 struct attribute *attr;
16965
16966 attr = dwarf2_attr (die, DW_AT_name, cu);
16967 if ((!attr || !DW_STRING (attr))
16968 && die->tag != DW_TAG_class_type
16969 && die->tag != DW_TAG_interface_type
16970 && die->tag != DW_TAG_structure_type
16971 && die->tag != DW_TAG_union_type)
16972 return NULL;
16973
16974 switch (die->tag)
16975 {
16976 case DW_TAG_compile_unit:
16977 case DW_TAG_partial_unit:
16978 /* Compilation units have a DW_AT_name that is a filename, not
16979 a source language identifier. */
16980 case DW_TAG_enumeration_type:
16981 case DW_TAG_enumerator:
16982 /* These tags always have simple identifiers already; no need
16983 to canonicalize them. */
16984 return DW_STRING (attr);
16985
16986 case DW_TAG_subprogram:
16987 /* Java constructors will all be named "<init>", so return
16988 the class name when we see this special case. */
16989 if (cu->language == language_java
16990 && DW_STRING (attr) != NULL
16991 && strcmp (DW_STRING (attr), "<init>") == 0)
16992 {
16993 struct dwarf2_cu *spec_cu = cu;
16994 struct die_info *spec_die;
16995
16996 /* GCJ will output '<init>' for Java constructor names.
16997 For this special case, return the name of the parent class. */
16998
16999 /* GCJ may output suprogram DIEs with AT_specification set.
17000 If so, use the name of the specified DIE. */
17001 spec_die = die_specification (die, &spec_cu);
17002 if (spec_die != NULL)
17003 return dwarf2_name (spec_die, spec_cu);
17004
17005 do
17006 {
17007 die = die->parent;
17008 if (die->tag == DW_TAG_class_type)
17009 return dwarf2_name (die, cu);
17010 }
17011 while (die->tag != DW_TAG_compile_unit
17012 && die->tag != DW_TAG_partial_unit);
17013 }
17014 break;
17015
17016 case DW_TAG_class_type:
17017 case DW_TAG_interface_type:
17018 case DW_TAG_structure_type:
17019 case DW_TAG_union_type:
17020 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17021 structures or unions. These were of the form "._%d" in GCC 4.1,
17022 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17023 and GCC 4.4. We work around this problem by ignoring these. */
17024 if (attr && DW_STRING (attr)
17025 && (strncmp (DW_STRING (attr), "._", 2) == 0
17026 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17027 return NULL;
17028
17029 /* GCC might emit a nameless typedef that has a linkage name. See
17030 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17031 if (!attr || DW_STRING (attr) == NULL)
17032 {
17033 char *demangled = NULL;
17034
17035 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17036 if (attr == NULL)
17037 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17038
17039 if (attr == NULL || DW_STRING (attr) == NULL)
17040 return NULL;
17041
17042 /* Avoid demangling DW_STRING (attr) the second time on a second
17043 call for the same DIE. */
17044 if (!DW_STRING_IS_CANONICAL (attr))
17045 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17046
17047 if (demangled)
17048 {
17049 char *base;
17050
17051 /* FIXME: we already did this for the partial symbol... */
17052 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17053 demangled, strlen (demangled));
17054 DW_STRING_IS_CANONICAL (attr) = 1;
17055 xfree (demangled);
17056
17057 /* Strip any leading namespaces/classes, keep only the base name.
17058 DW_AT_name for named DIEs does not contain the prefixes. */
17059 base = strrchr (DW_STRING (attr), ':');
17060 if (base && base > DW_STRING (attr) && base[-1] == ':')
17061 return &base[1];
17062 else
17063 return DW_STRING (attr);
17064 }
17065 }
17066 break;
17067
17068 default:
17069 break;
17070 }
17071
17072 if (!DW_STRING_IS_CANONICAL (attr))
17073 {
17074 DW_STRING (attr)
17075 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17076 &cu->objfile->objfile_obstack);
17077 DW_STRING_IS_CANONICAL (attr) = 1;
17078 }
17079 return DW_STRING (attr);
17080 }
17081
17082 /* Return the die that this die in an extension of, or NULL if there
17083 is none. *EXT_CU is the CU containing DIE on input, and the CU
17084 containing the return value on output. */
17085
17086 static struct die_info *
17087 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17088 {
17089 struct attribute *attr;
17090
17091 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17092 if (attr == NULL)
17093 return NULL;
17094
17095 return follow_die_ref (die, attr, ext_cu);
17096 }
17097
17098 /* Convert a DIE tag into its string name. */
17099
17100 static const char *
17101 dwarf_tag_name (unsigned tag)
17102 {
17103 const char *name = get_DW_TAG_name (tag);
17104
17105 if (name == NULL)
17106 return "DW_TAG_<unknown>";
17107
17108 return name;
17109 }
17110
17111 /* Convert a DWARF attribute code into its string name. */
17112
17113 static const char *
17114 dwarf_attr_name (unsigned attr)
17115 {
17116 const char *name;
17117
17118 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17119 if (attr == DW_AT_MIPS_fde)
17120 return "DW_AT_MIPS_fde";
17121 #else
17122 if (attr == DW_AT_HP_block_index)
17123 return "DW_AT_HP_block_index";
17124 #endif
17125
17126 name = get_DW_AT_name (attr);
17127
17128 if (name == NULL)
17129 return "DW_AT_<unknown>";
17130
17131 return name;
17132 }
17133
17134 /* Convert a DWARF value form code into its string name. */
17135
17136 static const char *
17137 dwarf_form_name (unsigned form)
17138 {
17139 const char *name = get_DW_FORM_name (form);
17140
17141 if (name == NULL)
17142 return "DW_FORM_<unknown>";
17143
17144 return name;
17145 }
17146
17147 static char *
17148 dwarf_bool_name (unsigned mybool)
17149 {
17150 if (mybool)
17151 return "TRUE";
17152 else
17153 return "FALSE";
17154 }
17155
17156 /* Convert a DWARF type code into its string name. */
17157
17158 static const char *
17159 dwarf_type_encoding_name (unsigned enc)
17160 {
17161 const char *name = get_DW_ATE_name (enc);
17162
17163 if (name == NULL)
17164 return "DW_ATE_<unknown>";
17165
17166 return name;
17167 }
17168
17169 static void
17170 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17171 {
17172 unsigned int i;
17173
17174 print_spaces (indent, f);
17175 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17176 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17177
17178 if (die->parent != NULL)
17179 {
17180 print_spaces (indent, f);
17181 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17182 die->parent->offset.sect_off);
17183 }
17184
17185 print_spaces (indent, f);
17186 fprintf_unfiltered (f, " has children: %s\n",
17187 dwarf_bool_name (die->child != NULL));
17188
17189 print_spaces (indent, f);
17190 fprintf_unfiltered (f, " attributes:\n");
17191
17192 for (i = 0; i < die->num_attrs; ++i)
17193 {
17194 print_spaces (indent, f);
17195 fprintf_unfiltered (f, " %s (%s) ",
17196 dwarf_attr_name (die->attrs[i].name),
17197 dwarf_form_name (die->attrs[i].form));
17198
17199 switch (die->attrs[i].form)
17200 {
17201 case DW_FORM_addr:
17202 case DW_FORM_GNU_addr_index:
17203 fprintf_unfiltered (f, "address: ");
17204 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17205 break;
17206 case DW_FORM_block2:
17207 case DW_FORM_block4:
17208 case DW_FORM_block:
17209 case DW_FORM_block1:
17210 fprintf_unfiltered (f, "block: size %s",
17211 pulongest (DW_BLOCK (&die->attrs[i])->size));
17212 break;
17213 case DW_FORM_exprloc:
17214 fprintf_unfiltered (f, "expression: size %s",
17215 pulongest (DW_BLOCK (&die->attrs[i])->size));
17216 break;
17217 case DW_FORM_ref_addr:
17218 fprintf_unfiltered (f, "ref address: ");
17219 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17220 break;
17221 case DW_FORM_GNU_ref_alt:
17222 fprintf_unfiltered (f, "alt ref address: ");
17223 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17224 break;
17225 case DW_FORM_ref1:
17226 case DW_FORM_ref2:
17227 case DW_FORM_ref4:
17228 case DW_FORM_ref8:
17229 case DW_FORM_ref_udata:
17230 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17231 (long) (DW_UNSND (&die->attrs[i])));
17232 break;
17233 case DW_FORM_data1:
17234 case DW_FORM_data2:
17235 case DW_FORM_data4:
17236 case DW_FORM_data8:
17237 case DW_FORM_udata:
17238 case DW_FORM_sdata:
17239 fprintf_unfiltered (f, "constant: %s",
17240 pulongest (DW_UNSND (&die->attrs[i])));
17241 break;
17242 case DW_FORM_sec_offset:
17243 fprintf_unfiltered (f, "section offset: %s",
17244 pulongest (DW_UNSND (&die->attrs[i])));
17245 break;
17246 case DW_FORM_ref_sig8:
17247 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17248 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17249 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17250 else
17251 fprintf_unfiltered (f, "signatured type, offset: unknown");
17252 break;
17253 case DW_FORM_string:
17254 case DW_FORM_strp:
17255 case DW_FORM_GNU_str_index:
17256 case DW_FORM_GNU_strp_alt:
17257 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17258 DW_STRING (&die->attrs[i])
17259 ? DW_STRING (&die->attrs[i]) : "",
17260 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17261 break;
17262 case DW_FORM_flag:
17263 if (DW_UNSND (&die->attrs[i]))
17264 fprintf_unfiltered (f, "flag: TRUE");
17265 else
17266 fprintf_unfiltered (f, "flag: FALSE");
17267 break;
17268 case DW_FORM_flag_present:
17269 fprintf_unfiltered (f, "flag: TRUE");
17270 break;
17271 case DW_FORM_indirect:
17272 /* The reader will have reduced the indirect form to
17273 the "base form" so this form should not occur. */
17274 fprintf_unfiltered (f,
17275 "unexpected attribute form: DW_FORM_indirect");
17276 break;
17277 default:
17278 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17279 die->attrs[i].form);
17280 break;
17281 }
17282 fprintf_unfiltered (f, "\n");
17283 }
17284 }
17285
17286 static void
17287 dump_die_for_error (struct die_info *die)
17288 {
17289 dump_die_shallow (gdb_stderr, 0, die);
17290 }
17291
17292 static void
17293 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17294 {
17295 int indent = level * 4;
17296
17297 gdb_assert (die != NULL);
17298
17299 if (level >= max_level)
17300 return;
17301
17302 dump_die_shallow (f, indent, die);
17303
17304 if (die->child != NULL)
17305 {
17306 print_spaces (indent, f);
17307 fprintf_unfiltered (f, " Children:");
17308 if (level + 1 < max_level)
17309 {
17310 fprintf_unfiltered (f, "\n");
17311 dump_die_1 (f, level + 1, max_level, die->child);
17312 }
17313 else
17314 {
17315 fprintf_unfiltered (f,
17316 " [not printed, max nesting level reached]\n");
17317 }
17318 }
17319
17320 if (die->sibling != NULL && level > 0)
17321 {
17322 dump_die_1 (f, level, max_level, die->sibling);
17323 }
17324 }
17325
17326 /* This is called from the pdie macro in gdbinit.in.
17327 It's not static so gcc will keep a copy callable from gdb. */
17328
17329 void
17330 dump_die (struct die_info *die, int max_level)
17331 {
17332 dump_die_1 (gdb_stdlog, 0, max_level, die);
17333 }
17334
17335 static void
17336 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17337 {
17338 void **slot;
17339
17340 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17341 INSERT);
17342
17343 *slot = die;
17344 }
17345
17346 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17347 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17348
17349 static int
17350 is_ref_attr (struct attribute *attr)
17351 {
17352 switch (attr->form)
17353 {
17354 case DW_FORM_ref_addr:
17355 case DW_FORM_ref1:
17356 case DW_FORM_ref2:
17357 case DW_FORM_ref4:
17358 case DW_FORM_ref8:
17359 case DW_FORM_ref_udata:
17360 case DW_FORM_GNU_ref_alt:
17361 return 1;
17362 default:
17363 return 0;
17364 }
17365 }
17366
17367 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17368 required kind. */
17369
17370 static sect_offset
17371 dwarf2_get_ref_die_offset (struct attribute *attr)
17372 {
17373 sect_offset retval = { DW_UNSND (attr) };
17374
17375 if (is_ref_attr (attr))
17376 return retval;
17377
17378 retval.sect_off = 0;
17379 complaint (&symfile_complaints,
17380 _("unsupported die ref attribute form: '%s'"),
17381 dwarf_form_name (attr->form));
17382 return retval;
17383 }
17384
17385 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17386 * the value held by the attribute is not constant. */
17387
17388 static LONGEST
17389 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17390 {
17391 if (attr->form == DW_FORM_sdata)
17392 return DW_SND (attr);
17393 else if (attr->form == DW_FORM_udata
17394 || attr->form == DW_FORM_data1
17395 || attr->form == DW_FORM_data2
17396 || attr->form == DW_FORM_data4
17397 || attr->form == DW_FORM_data8)
17398 return DW_UNSND (attr);
17399 else
17400 {
17401 complaint (&symfile_complaints,
17402 _("Attribute value is not a constant (%s)"),
17403 dwarf_form_name (attr->form));
17404 return default_value;
17405 }
17406 }
17407
17408 /* Follow reference or signature attribute ATTR of SRC_DIE.
17409 On entry *REF_CU is the CU of SRC_DIE.
17410 On exit *REF_CU is the CU of the result. */
17411
17412 static struct die_info *
17413 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17414 struct dwarf2_cu **ref_cu)
17415 {
17416 struct die_info *die;
17417
17418 if (is_ref_attr (attr))
17419 die = follow_die_ref (src_die, attr, ref_cu);
17420 else if (attr->form == DW_FORM_ref_sig8)
17421 die = follow_die_sig (src_die, attr, ref_cu);
17422 else
17423 {
17424 dump_die_for_error (src_die);
17425 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17426 (*ref_cu)->objfile->name);
17427 }
17428
17429 return die;
17430 }
17431
17432 /* Follow reference OFFSET.
17433 On entry *REF_CU is the CU of the source die referencing OFFSET.
17434 On exit *REF_CU is the CU of the result.
17435 Returns NULL if OFFSET is invalid. */
17436
17437 static struct die_info *
17438 follow_die_offset (sect_offset offset, int offset_in_dwz,
17439 struct dwarf2_cu **ref_cu)
17440 {
17441 struct die_info temp_die;
17442 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17443
17444 gdb_assert (cu->per_cu != NULL);
17445
17446 target_cu = cu;
17447
17448 if (cu->per_cu->is_debug_types)
17449 {
17450 /* .debug_types CUs cannot reference anything outside their CU.
17451 If they need to, they have to reference a signatured type via
17452 DW_FORM_ref_sig8. */
17453 if (! offset_in_cu_p (&cu->header, offset))
17454 return NULL;
17455 }
17456 else if (offset_in_dwz != cu->per_cu->is_dwz
17457 || ! offset_in_cu_p (&cu->header, offset))
17458 {
17459 struct dwarf2_per_cu_data *per_cu;
17460
17461 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17462 cu->objfile);
17463
17464 /* If necessary, add it to the queue and load its DIEs. */
17465 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17466 load_full_comp_unit (per_cu, cu->language);
17467
17468 target_cu = per_cu->cu;
17469 }
17470 else if (cu->dies == NULL)
17471 {
17472 /* We're loading full DIEs during partial symbol reading. */
17473 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17474 load_full_comp_unit (cu->per_cu, language_minimal);
17475 }
17476
17477 *ref_cu = target_cu;
17478 temp_die.offset = offset;
17479 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17480 }
17481
17482 /* Follow reference attribute ATTR of SRC_DIE.
17483 On entry *REF_CU is the CU of SRC_DIE.
17484 On exit *REF_CU is the CU of the result. */
17485
17486 static struct die_info *
17487 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17488 struct dwarf2_cu **ref_cu)
17489 {
17490 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17491 struct dwarf2_cu *cu = *ref_cu;
17492 struct die_info *die;
17493
17494 die = follow_die_offset (offset,
17495 (attr->form == DW_FORM_GNU_ref_alt
17496 || cu->per_cu->is_dwz),
17497 ref_cu);
17498 if (!die)
17499 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17500 "at 0x%x [in module %s]"),
17501 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17502
17503 return die;
17504 }
17505
17506 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17507 Returned value is intended for DW_OP_call*. Returned
17508 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17509
17510 struct dwarf2_locexpr_baton
17511 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17512 struct dwarf2_per_cu_data *per_cu,
17513 CORE_ADDR (*get_frame_pc) (void *baton),
17514 void *baton)
17515 {
17516 struct dwarf2_cu *cu;
17517 struct die_info *die;
17518 struct attribute *attr;
17519 struct dwarf2_locexpr_baton retval;
17520
17521 dw2_setup (per_cu->objfile);
17522
17523 if (per_cu->cu == NULL)
17524 load_cu (per_cu);
17525 cu = per_cu->cu;
17526
17527 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17528 if (!die)
17529 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17530 offset.sect_off, per_cu->objfile->name);
17531
17532 attr = dwarf2_attr (die, DW_AT_location, cu);
17533 if (!attr)
17534 {
17535 /* DWARF: "If there is no such attribute, then there is no effect.".
17536 DATA is ignored if SIZE is 0. */
17537
17538 retval.data = NULL;
17539 retval.size = 0;
17540 }
17541 else if (attr_form_is_section_offset (attr))
17542 {
17543 struct dwarf2_loclist_baton loclist_baton;
17544 CORE_ADDR pc = (*get_frame_pc) (baton);
17545 size_t size;
17546
17547 fill_in_loclist_baton (cu, &loclist_baton, attr);
17548
17549 retval.data = dwarf2_find_location_expression (&loclist_baton,
17550 &size, pc);
17551 retval.size = size;
17552 }
17553 else
17554 {
17555 if (!attr_form_is_block (attr))
17556 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17557 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17558 offset.sect_off, per_cu->objfile->name);
17559
17560 retval.data = DW_BLOCK (attr)->data;
17561 retval.size = DW_BLOCK (attr)->size;
17562 }
17563 retval.per_cu = cu->per_cu;
17564
17565 age_cached_comp_units ();
17566
17567 return retval;
17568 }
17569
17570 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17571 offset. */
17572
17573 struct dwarf2_locexpr_baton
17574 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17575 struct dwarf2_per_cu_data *per_cu,
17576 CORE_ADDR (*get_frame_pc) (void *baton),
17577 void *baton)
17578 {
17579 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17580
17581 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17582 }
17583
17584 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17585 PER_CU. */
17586
17587 struct type *
17588 dwarf2_get_die_type (cu_offset die_offset,
17589 struct dwarf2_per_cu_data *per_cu)
17590 {
17591 sect_offset die_offset_sect;
17592
17593 dw2_setup (per_cu->objfile);
17594
17595 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17596 return get_die_type_at_offset (die_offset_sect, per_cu);
17597 }
17598
17599 /* Follow the signature attribute ATTR in SRC_DIE.
17600 On entry *REF_CU is the CU of SRC_DIE.
17601 On exit *REF_CU is the CU of the result. */
17602
17603 static struct die_info *
17604 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17605 struct dwarf2_cu **ref_cu)
17606 {
17607 struct objfile *objfile = (*ref_cu)->objfile;
17608 struct die_info temp_die;
17609 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17610 struct dwarf2_cu *sig_cu;
17611 struct die_info *die;
17612
17613 /* sig_type will be NULL if the signatured type is missing from
17614 the debug info. */
17615 if (sig_type == NULL)
17616 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17617 "at 0x%x [in module %s]"),
17618 src_die->offset.sect_off, objfile->name);
17619
17620 /* If necessary, add it to the queue and load its DIEs. */
17621
17622 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17623 read_signatured_type (sig_type);
17624
17625 gdb_assert (sig_type->per_cu.cu != NULL);
17626
17627 sig_cu = sig_type->per_cu.cu;
17628 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17629 temp_die.offset = sig_type->type_offset_in_section;
17630 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17631 temp_die.offset.sect_off);
17632 if (die)
17633 {
17634 /* For .gdb_index version 7 keep track of included TUs.
17635 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17636 if (dwarf2_per_objfile->index_table != NULL
17637 && dwarf2_per_objfile->index_table->version <= 7)
17638 {
17639 VEC_safe_push (dwarf2_per_cu_ptr,
17640 (*ref_cu)->per_cu->imported_symtabs,
17641 sig_cu->per_cu);
17642 }
17643
17644 *ref_cu = sig_cu;
17645 return die;
17646 }
17647
17648 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17649 "from DIE at 0x%x [in module %s]"),
17650 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17651 }
17652
17653 /* Given an offset of a signatured type, return its signatured_type. */
17654
17655 static struct signatured_type *
17656 lookup_signatured_type_at_offset (struct objfile *objfile,
17657 struct dwarf2_section_info *section,
17658 sect_offset offset)
17659 {
17660 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17661 unsigned int length, initial_length_size;
17662 unsigned int sig_offset;
17663 struct signatured_type find_entry, *sig_type;
17664
17665 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17666 sig_offset = (initial_length_size
17667 + 2 /*version*/
17668 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17669 + 1 /*address_size*/);
17670 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17671 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17672
17673 /* This is only used to lookup previously recorded types.
17674 If we didn't find it, it's our bug. */
17675 gdb_assert (sig_type != NULL);
17676 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17677
17678 return sig_type;
17679 }
17680
17681 /* Load the DIEs associated with type unit PER_CU into memory. */
17682
17683 static void
17684 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17685 {
17686 struct signatured_type *sig_type;
17687
17688 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17689 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17690
17691 /* We have the per_cu, but we need the signatured_type.
17692 Fortunately this is an easy translation. */
17693 gdb_assert (per_cu->is_debug_types);
17694 sig_type = (struct signatured_type *) per_cu;
17695
17696 gdb_assert (per_cu->cu == NULL);
17697
17698 read_signatured_type (sig_type);
17699
17700 gdb_assert (per_cu->cu != NULL);
17701 }
17702
17703 /* die_reader_func for read_signatured_type.
17704 This is identical to load_full_comp_unit_reader,
17705 but is kept separate for now. */
17706
17707 static void
17708 read_signatured_type_reader (const struct die_reader_specs *reader,
17709 gdb_byte *info_ptr,
17710 struct die_info *comp_unit_die,
17711 int has_children,
17712 void *data)
17713 {
17714 struct dwarf2_cu *cu = reader->cu;
17715
17716 gdb_assert (cu->die_hash == NULL);
17717 cu->die_hash =
17718 htab_create_alloc_ex (cu->header.length / 12,
17719 die_hash,
17720 die_eq,
17721 NULL,
17722 &cu->comp_unit_obstack,
17723 hashtab_obstack_allocate,
17724 dummy_obstack_deallocate);
17725
17726 if (has_children)
17727 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17728 &info_ptr, comp_unit_die);
17729 cu->dies = comp_unit_die;
17730 /* comp_unit_die is not stored in die_hash, no need. */
17731
17732 /* We try not to read any attributes in this function, because not
17733 all CUs needed for references have been loaded yet, and symbol
17734 table processing isn't initialized. But we have to set the CU language,
17735 or we won't be able to build types correctly.
17736 Similarly, if we do not read the producer, we can not apply
17737 producer-specific interpretation. */
17738 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17739 }
17740
17741 /* Read in a signatured type and build its CU and DIEs.
17742 If the type is a stub for the real type in a DWO file,
17743 read in the real type from the DWO file as well. */
17744
17745 static void
17746 read_signatured_type (struct signatured_type *sig_type)
17747 {
17748 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17749
17750 gdb_assert (per_cu->is_debug_types);
17751 gdb_assert (per_cu->cu == NULL);
17752
17753 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17754 read_signatured_type_reader, NULL);
17755 }
17756
17757 /* Decode simple location descriptions.
17758 Given a pointer to a dwarf block that defines a location, compute
17759 the location and return the value.
17760
17761 NOTE drow/2003-11-18: This function is called in two situations
17762 now: for the address of static or global variables (partial symbols
17763 only) and for offsets into structures which are expected to be
17764 (more or less) constant. The partial symbol case should go away,
17765 and only the constant case should remain. That will let this
17766 function complain more accurately. A few special modes are allowed
17767 without complaint for global variables (for instance, global
17768 register values and thread-local values).
17769
17770 A location description containing no operations indicates that the
17771 object is optimized out. The return value is 0 for that case.
17772 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17773 callers will only want a very basic result and this can become a
17774 complaint.
17775
17776 Note that stack[0] is unused except as a default error return. */
17777
17778 static CORE_ADDR
17779 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17780 {
17781 struct objfile *objfile = cu->objfile;
17782 size_t i;
17783 size_t size = blk->size;
17784 gdb_byte *data = blk->data;
17785 CORE_ADDR stack[64];
17786 int stacki;
17787 unsigned int bytes_read, unsnd;
17788 gdb_byte op;
17789
17790 i = 0;
17791 stacki = 0;
17792 stack[stacki] = 0;
17793 stack[++stacki] = 0;
17794
17795 while (i < size)
17796 {
17797 op = data[i++];
17798 switch (op)
17799 {
17800 case DW_OP_lit0:
17801 case DW_OP_lit1:
17802 case DW_OP_lit2:
17803 case DW_OP_lit3:
17804 case DW_OP_lit4:
17805 case DW_OP_lit5:
17806 case DW_OP_lit6:
17807 case DW_OP_lit7:
17808 case DW_OP_lit8:
17809 case DW_OP_lit9:
17810 case DW_OP_lit10:
17811 case DW_OP_lit11:
17812 case DW_OP_lit12:
17813 case DW_OP_lit13:
17814 case DW_OP_lit14:
17815 case DW_OP_lit15:
17816 case DW_OP_lit16:
17817 case DW_OP_lit17:
17818 case DW_OP_lit18:
17819 case DW_OP_lit19:
17820 case DW_OP_lit20:
17821 case DW_OP_lit21:
17822 case DW_OP_lit22:
17823 case DW_OP_lit23:
17824 case DW_OP_lit24:
17825 case DW_OP_lit25:
17826 case DW_OP_lit26:
17827 case DW_OP_lit27:
17828 case DW_OP_lit28:
17829 case DW_OP_lit29:
17830 case DW_OP_lit30:
17831 case DW_OP_lit31:
17832 stack[++stacki] = op - DW_OP_lit0;
17833 break;
17834
17835 case DW_OP_reg0:
17836 case DW_OP_reg1:
17837 case DW_OP_reg2:
17838 case DW_OP_reg3:
17839 case DW_OP_reg4:
17840 case DW_OP_reg5:
17841 case DW_OP_reg6:
17842 case DW_OP_reg7:
17843 case DW_OP_reg8:
17844 case DW_OP_reg9:
17845 case DW_OP_reg10:
17846 case DW_OP_reg11:
17847 case DW_OP_reg12:
17848 case DW_OP_reg13:
17849 case DW_OP_reg14:
17850 case DW_OP_reg15:
17851 case DW_OP_reg16:
17852 case DW_OP_reg17:
17853 case DW_OP_reg18:
17854 case DW_OP_reg19:
17855 case DW_OP_reg20:
17856 case DW_OP_reg21:
17857 case DW_OP_reg22:
17858 case DW_OP_reg23:
17859 case DW_OP_reg24:
17860 case DW_OP_reg25:
17861 case DW_OP_reg26:
17862 case DW_OP_reg27:
17863 case DW_OP_reg28:
17864 case DW_OP_reg29:
17865 case DW_OP_reg30:
17866 case DW_OP_reg31:
17867 stack[++stacki] = op - DW_OP_reg0;
17868 if (i < size)
17869 dwarf2_complex_location_expr_complaint ();
17870 break;
17871
17872 case DW_OP_regx:
17873 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17874 i += bytes_read;
17875 stack[++stacki] = unsnd;
17876 if (i < size)
17877 dwarf2_complex_location_expr_complaint ();
17878 break;
17879
17880 case DW_OP_addr:
17881 stack[++stacki] = read_address (objfile->obfd, &data[i],
17882 cu, &bytes_read);
17883 i += bytes_read;
17884 break;
17885
17886 case DW_OP_const1u:
17887 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17888 i += 1;
17889 break;
17890
17891 case DW_OP_const1s:
17892 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17893 i += 1;
17894 break;
17895
17896 case DW_OP_const2u:
17897 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17898 i += 2;
17899 break;
17900
17901 case DW_OP_const2s:
17902 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17903 i += 2;
17904 break;
17905
17906 case DW_OP_const4u:
17907 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17908 i += 4;
17909 break;
17910
17911 case DW_OP_const4s:
17912 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17913 i += 4;
17914 break;
17915
17916 case DW_OP_const8u:
17917 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17918 i += 8;
17919 break;
17920
17921 case DW_OP_constu:
17922 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17923 &bytes_read);
17924 i += bytes_read;
17925 break;
17926
17927 case DW_OP_consts:
17928 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17929 i += bytes_read;
17930 break;
17931
17932 case DW_OP_dup:
17933 stack[stacki + 1] = stack[stacki];
17934 stacki++;
17935 break;
17936
17937 case DW_OP_plus:
17938 stack[stacki - 1] += stack[stacki];
17939 stacki--;
17940 break;
17941
17942 case DW_OP_plus_uconst:
17943 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17944 &bytes_read);
17945 i += bytes_read;
17946 break;
17947
17948 case DW_OP_minus:
17949 stack[stacki - 1] -= stack[stacki];
17950 stacki--;
17951 break;
17952
17953 case DW_OP_deref:
17954 /* If we're not the last op, then we definitely can't encode
17955 this using GDB's address_class enum. This is valid for partial
17956 global symbols, although the variable's address will be bogus
17957 in the psymtab. */
17958 if (i < size)
17959 dwarf2_complex_location_expr_complaint ();
17960 break;
17961
17962 case DW_OP_GNU_push_tls_address:
17963 /* The top of the stack has the offset from the beginning
17964 of the thread control block at which the variable is located. */
17965 /* Nothing should follow this operator, so the top of stack would
17966 be returned. */
17967 /* This is valid for partial global symbols, but the variable's
17968 address will be bogus in the psymtab. Make it always at least
17969 non-zero to not look as a variable garbage collected by linker
17970 which have DW_OP_addr 0. */
17971 if (i < size)
17972 dwarf2_complex_location_expr_complaint ();
17973 stack[stacki]++;
17974 break;
17975
17976 case DW_OP_GNU_uninit:
17977 break;
17978
17979 case DW_OP_GNU_addr_index:
17980 case DW_OP_GNU_const_index:
17981 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17982 &bytes_read);
17983 i += bytes_read;
17984 break;
17985
17986 default:
17987 {
17988 const char *name = get_DW_OP_name (op);
17989
17990 if (name)
17991 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17992 name);
17993 else
17994 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17995 op);
17996 }
17997
17998 return (stack[stacki]);
17999 }
18000
18001 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18002 outside of the allocated space. Also enforce minimum>0. */
18003 if (stacki >= ARRAY_SIZE (stack) - 1)
18004 {
18005 complaint (&symfile_complaints,
18006 _("location description stack overflow"));
18007 return 0;
18008 }
18009
18010 if (stacki <= 0)
18011 {
18012 complaint (&symfile_complaints,
18013 _("location description stack underflow"));
18014 return 0;
18015 }
18016 }
18017 return (stack[stacki]);
18018 }
18019
18020 /* memory allocation interface */
18021
18022 static struct dwarf_block *
18023 dwarf_alloc_block (struct dwarf2_cu *cu)
18024 {
18025 struct dwarf_block *blk;
18026
18027 blk = (struct dwarf_block *)
18028 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18029 return (blk);
18030 }
18031
18032 static struct die_info *
18033 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18034 {
18035 struct die_info *die;
18036 size_t size = sizeof (struct die_info);
18037
18038 if (num_attrs > 1)
18039 size += (num_attrs - 1) * sizeof (struct attribute);
18040
18041 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18042 memset (die, 0, sizeof (struct die_info));
18043 return (die);
18044 }
18045
18046 \f
18047 /* Macro support. */
18048
18049 /* Return file name relative to the compilation directory of file number I in
18050 *LH's file name table. The result is allocated using xmalloc; the caller is
18051 responsible for freeing it. */
18052
18053 static char *
18054 file_file_name (int file, struct line_header *lh)
18055 {
18056 /* Is the file number a valid index into the line header's file name
18057 table? Remember that file numbers start with one, not zero. */
18058 if (1 <= file && file <= lh->num_file_names)
18059 {
18060 struct file_entry *fe = &lh->file_names[file - 1];
18061
18062 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18063 return xstrdup (fe->name);
18064 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18065 fe->name, NULL);
18066 }
18067 else
18068 {
18069 /* The compiler produced a bogus file number. We can at least
18070 record the macro definitions made in the file, even if we
18071 won't be able to find the file by name. */
18072 char fake_name[80];
18073
18074 xsnprintf (fake_name, sizeof (fake_name),
18075 "<bad macro file number %d>", file);
18076
18077 complaint (&symfile_complaints,
18078 _("bad file number in macro information (%d)"),
18079 file);
18080
18081 return xstrdup (fake_name);
18082 }
18083 }
18084
18085 /* Return the full name of file number I in *LH's file name table.
18086 Use COMP_DIR as the name of the current directory of the
18087 compilation. The result is allocated using xmalloc; the caller is
18088 responsible for freeing it. */
18089 static char *
18090 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18091 {
18092 /* Is the file number a valid index into the line header's file name
18093 table? Remember that file numbers start with one, not zero. */
18094 if (1 <= file && file <= lh->num_file_names)
18095 {
18096 char *relative = file_file_name (file, lh);
18097
18098 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18099 return relative;
18100 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18101 }
18102 else
18103 return file_file_name (file, lh);
18104 }
18105
18106
18107 static struct macro_source_file *
18108 macro_start_file (int file, int line,
18109 struct macro_source_file *current_file,
18110 const char *comp_dir,
18111 struct line_header *lh, struct objfile *objfile)
18112 {
18113 /* File name relative to the compilation directory of this source file. */
18114 char *file_name = file_file_name (file, lh);
18115
18116 /* We don't create a macro table for this compilation unit
18117 at all until we actually get a filename. */
18118 if (! pending_macros)
18119 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18120 objfile->per_bfd->macro_cache,
18121 comp_dir);
18122
18123 if (! current_file)
18124 {
18125 /* If we have no current file, then this must be the start_file
18126 directive for the compilation unit's main source file. */
18127 current_file = macro_set_main (pending_macros, file_name);
18128 macro_define_special (pending_macros);
18129 }
18130 else
18131 current_file = macro_include (current_file, line, file_name);
18132
18133 xfree (file_name);
18134
18135 return current_file;
18136 }
18137
18138
18139 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18140 followed by a null byte. */
18141 static char *
18142 copy_string (const char *buf, int len)
18143 {
18144 char *s = xmalloc (len + 1);
18145
18146 memcpy (s, buf, len);
18147 s[len] = '\0';
18148 return s;
18149 }
18150
18151
18152 static const char *
18153 consume_improper_spaces (const char *p, const char *body)
18154 {
18155 if (*p == ' ')
18156 {
18157 complaint (&symfile_complaints,
18158 _("macro definition contains spaces "
18159 "in formal argument list:\n`%s'"),
18160 body);
18161
18162 while (*p == ' ')
18163 p++;
18164 }
18165
18166 return p;
18167 }
18168
18169
18170 static void
18171 parse_macro_definition (struct macro_source_file *file, int line,
18172 const char *body)
18173 {
18174 const char *p;
18175
18176 /* The body string takes one of two forms. For object-like macro
18177 definitions, it should be:
18178
18179 <macro name> " " <definition>
18180
18181 For function-like macro definitions, it should be:
18182
18183 <macro name> "() " <definition>
18184 or
18185 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18186
18187 Spaces may appear only where explicitly indicated, and in the
18188 <definition>.
18189
18190 The Dwarf 2 spec says that an object-like macro's name is always
18191 followed by a space, but versions of GCC around March 2002 omit
18192 the space when the macro's definition is the empty string.
18193
18194 The Dwarf 2 spec says that there should be no spaces between the
18195 formal arguments in a function-like macro's formal argument list,
18196 but versions of GCC around March 2002 include spaces after the
18197 commas. */
18198
18199
18200 /* Find the extent of the macro name. The macro name is terminated
18201 by either a space or null character (for an object-like macro) or
18202 an opening paren (for a function-like macro). */
18203 for (p = body; *p; p++)
18204 if (*p == ' ' || *p == '(')
18205 break;
18206
18207 if (*p == ' ' || *p == '\0')
18208 {
18209 /* It's an object-like macro. */
18210 int name_len = p - body;
18211 char *name = copy_string (body, name_len);
18212 const char *replacement;
18213
18214 if (*p == ' ')
18215 replacement = body + name_len + 1;
18216 else
18217 {
18218 dwarf2_macro_malformed_definition_complaint (body);
18219 replacement = body + name_len;
18220 }
18221
18222 macro_define_object (file, line, name, replacement);
18223
18224 xfree (name);
18225 }
18226 else if (*p == '(')
18227 {
18228 /* It's a function-like macro. */
18229 char *name = copy_string (body, p - body);
18230 int argc = 0;
18231 int argv_size = 1;
18232 char **argv = xmalloc (argv_size * sizeof (*argv));
18233
18234 p++;
18235
18236 p = consume_improper_spaces (p, body);
18237
18238 /* Parse the formal argument list. */
18239 while (*p && *p != ')')
18240 {
18241 /* Find the extent of the current argument name. */
18242 const char *arg_start = p;
18243
18244 while (*p && *p != ',' && *p != ')' && *p != ' ')
18245 p++;
18246
18247 if (! *p || p == arg_start)
18248 dwarf2_macro_malformed_definition_complaint (body);
18249 else
18250 {
18251 /* Make sure argv has room for the new argument. */
18252 if (argc >= argv_size)
18253 {
18254 argv_size *= 2;
18255 argv = xrealloc (argv, argv_size * sizeof (*argv));
18256 }
18257
18258 argv[argc++] = copy_string (arg_start, p - arg_start);
18259 }
18260
18261 p = consume_improper_spaces (p, body);
18262
18263 /* Consume the comma, if present. */
18264 if (*p == ',')
18265 {
18266 p++;
18267
18268 p = consume_improper_spaces (p, body);
18269 }
18270 }
18271
18272 if (*p == ')')
18273 {
18274 p++;
18275
18276 if (*p == ' ')
18277 /* Perfectly formed definition, no complaints. */
18278 macro_define_function (file, line, name,
18279 argc, (const char **) argv,
18280 p + 1);
18281 else if (*p == '\0')
18282 {
18283 /* Complain, but do define it. */
18284 dwarf2_macro_malformed_definition_complaint (body);
18285 macro_define_function (file, line, name,
18286 argc, (const char **) argv,
18287 p);
18288 }
18289 else
18290 /* Just complain. */
18291 dwarf2_macro_malformed_definition_complaint (body);
18292 }
18293 else
18294 /* Just complain. */
18295 dwarf2_macro_malformed_definition_complaint (body);
18296
18297 xfree (name);
18298 {
18299 int i;
18300
18301 for (i = 0; i < argc; i++)
18302 xfree (argv[i]);
18303 }
18304 xfree (argv);
18305 }
18306 else
18307 dwarf2_macro_malformed_definition_complaint (body);
18308 }
18309
18310 /* Skip some bytes from BYTES according to the form given in FORM.
18311 Returns the new pointer. */
18312
18313 static gdb_byte *
18314 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18315 enum dwarf_form form,
18316 unsigned int offset_size,
18317 struct dwarf2_section_info *section)
18318 {
18319 unsigned int bytes_read;
18320
18321 switch (form)
18322 {
18323 case DW_FORM_data1:
18324 case DW_FORM_flag:
18325 ++bytes;
18326 break;
18327
18328 case DW_FORM_data2:
18329 bytes += 2;
18330 break;
18331
18332 case DW_FORM_data4:
18333 bytes += 4;
18334 break;
18335
18336 case DW_FORM_data8:
18337 bytes += 8;
18338 break;
18339
18340 case DW_FORM_string:
18341 read_direct_string (abfd, bytes, &bytes_read);
18342 bytes += bytes_read;
18343 break;
18344
18345 case DW_FORM_sec_offset:
18346 case DW_FORM_strp:
18347 case DW_FORM_GNU_strp_alt:
18348 bytes += offset_size;
18349 break;
18350
18351 case DW_FORM_block:
18352 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18353 bytes += bytes_read;
18354 break;
18355
18356 case DW_FORM_block1:
18357 bytes += 1 + read_1_byte (abfd, bytes);
18358 break;
18359 case DW_FORM_block2:
18360 bytes += 2 + read_2_bytes (abfd, bytes);
18361 break;
18362 case DW_FORM_block4:
18363 bytes += 4 + read_4_bytes (abfd, bytes);
18364 break;
18365
18366 case DW_FORM_sdata:
18367 case DW_FORM_udata:
18368 case DW_FORM_GNU_addr_index:
18369 case DW_FORM_GNU_str_index:
18370 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18371 if (bytes == NULL)
18372 {
18373 dwarf2_section_buffer_overflow_complaint (section);
18374 return NULL;
18375 }
18376 break;
18377
18378 default:
18379 {
18380 complain:
18381 complaint (&symfile_complaints,
18382 _("invalid form 0x%x in `%s'"),
18383 form,
18384 section->asection->name);
18385 return NULL;
18386 }
18387 }
18388
18389 return bytes;
18390 }
18391
18392 /* A helper for dwarf_decode_macros that handles skipping an unknown
18393 opcode. Returns an updated pointer to the macro data buffer; or,
18394 on error, issues a complaint and returns NULL. */
18395
18396 static gdb_byte *
18397 skip_unknown_opcode (unsigned int opcode,
18398 gdb_byte **opcode_definitions,
18399 gdb_byte *mac_ptr, gdb_byte *mac_end,
18400 bfd *abfd,
18401 unsigned int offset_size,
18402 struct dwarf2_section_info *section)
18403 {
18404 unsigned int bytes_read, i;
18405 unsigned long arg;
18406 gdb_byte *defn;
18407
18408 if (opcode_definitions[opcode] == NULL)
18409 {
18410 complaint (&symfile_complaints,
18411 _("unrecognized DW_MACFINO opcode 0x%x"),
18412 opcode);
18413 return NULL;
18414 }
18415
18416 defn = opcode_definitions[opcode];
18417 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18418 defn += bytes_read;
18419
18420 for (i = 0; i < arg; ++i)
18421 {
18422 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18423 section);
18424 if (mac_ptr == NULL)
18425 {
18426 /* skip_form_bytes already issued the complaint. */
18427 return NULL;
18428 }
18429 }
18430
18431 return mac_ptr;
18432 }
18433
18434 /* A helper function which parses the header of a macro section.
18435 If the macro section is the extended (for now called "GNU") type,
18436 then this updates *OFFSET_SIZE. Returns a pointer to just after
18437 the header, or issues a complaint and returns NULL on error. */
18438
18439 static gdb_byte *
18440 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18441 bfd *abfd,
18442 gdb_byte *mac_ptr,
18443 unsigned int *offset_size,
18444 int section_is_gnu)
18445 {
18446 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18447
18448 if (section_is_gnu)
18449 {
18450 unsigned int version, flags;
18451
18452 version = read_2_bytes (abfd, mac_ptr);
18453 if (version != 4)
18454 {
18455 complaint (&symfile_complaints,
18456 _("unrecognized version `%d' in .debug_macro section"),
18457 version);
18458 return NULL;
18459 }
18460 mac_ptr += 2;
18461
18462 flags = read_1_byte (abfd, mac_ptr);
18463 ++mac_ptr;
18464 *offset_size = (flags & 1) ? 8 : 4;
18465
18466 if ((flags & 2) != 0)
18467 /* We don't need the line table offset. */
18468 mac_ptr += *offset_size;
18469
18470 /* Vendor opcode descriptions. */
18471 if ((flags & 4) != 0)
18472 {
18473 unsigned int i, count;
18474
18475 count = read_1_byte (abfd, mac_ptr);
18476 ++mac_ptr;
18477 for (i = 0; i < count; ++i)
18478 {
18479 unsigned int opcode, bytes_read;
18480 unsigned long arg;
18481
18482 opcode = read_1_byte (abfd, mac_ptr);
18483 ++mac_ptr;
18484 opcode_definitions[opcode] = mac_ptr;
18485 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18486 mac_ptr += bytes_read;
18487 mac_ptr += arg;
18488 }
18489 }
18490 }
18491
18492 return mac_ptr;
18493 }
18494
18495 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18496 including DW_MACRO_GNU_transparent_include. */
18497
18498 static void
18499 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18500 struct macro_source_file *current_file,
18501 struct line_header *lh, const char *comp_dir,
18502 struct dwarf2_section_info *section,
18503 int section_is_gnu, int section_is_dwz,
18504 unsigned int offset_size,
18505 struct objfile *objfile,
18506 htab_t include_hash)
18507 {
18508 enum dwarf_macro_record_type macinfo_type;
18509 int at_commandline;
18510 gdb_byte *opcode_definitions[256];
18511
18512 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18513 &offset_size, section_is_gnu);
18514 if (mac_ptr == NULL)
18515 {
18516 /* We already issued a complaint. */
18517 return;
18518 }
18519
18520 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18521 GDB is still reading the definitions from command line. First
18522 DW_MACINFO_start_file will need to be ignored as it was already executed
18523 to create CURRENT_FILE for the main source holding also the command line
18524 definitions. On first met DW_MACINFO_start_file this flag is reset to
18525 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18526
18527 at_commandline = 1;
18528
18529 do
18530 {
18531 /* Do we at least have room for a macinfo type byte? */
18532 if (mac_ptr >= mac_end)
18533 {
18534 dwarf2_section_buffer_overflow_complaint (section);
18535 break;
18536 }
18537
18538 macinfo_type = read_1_byte (abfd, mac_ptr);
18539 mac_ptr++;
18540
18541 /* Note that we rely on the fact that the corresponding GNU and
18542 DWARF constants are the same. */
18543 switch (macinfo_type)
18544 {
18545 /* A zero macinfo type indicates the end of the macro
18546 information. */
18547 case 0:
18548 break;
18549
18550 case DW_MACRO_GNU_define:
18551 case DW_MACRO_GNU_undef:
18552 case DW_MACRO_GNU_define_indirect:
18553 case DW_MACRO_GNU_undef_indirect:
18554 case DW_MACRO_GNU_define_indirect_alt:
18555 case DW_MACRO_GNU_undef_indirect_alt:
18556 {
18557 unsigned int bytes_read;
18558 int line;
18559 char *body;
18560 int is_define;
18561
18562 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18563 mac_ptr += bytes_read;
18564
18565 if (macinfo_type == DW_MACRO_GNU_define
18566 || macinfo_type == DW_MACRO_GNU_undef)
18567 {
18568 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18569 mac_ptr += bytes_read;
18570 }
18571 else
18572 {
18573 LONGEST str_offset;
18574
18575 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18576 mac_ptr += offset_size;
18577
18578 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18579 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18580 || section_is_dwz)
18581 {
18582 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18583
18584 body = read_indirect_string_from_dwz (dwz, str_offset);
18585 }
18586 else
18587 body = read_indirect_string_at_offset (abfd, str_offset);
18588 }
18589
18590 is_define = (macinfo_type == DW_MACRO_GNU_define
18591 || macinfo_type == DW_MACRO_GNU_define_indirect
18592 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18593 if (! current_file)
18594 {
18595 /* DWARF violation as no main source is present. */
18596 complaint (&symfile_complaints,
18597 _("debug info with no main source gives macro %s "
18598 "on line %d: %s"),
18599 is_define ? _("definition") : _("undefinition"),
18600 line, body);
18601 break;
18602 }
18603 if ((line == 0 && !at_commandline)
18604 || (line != 0 && at_commandline))
18605 complaint (&symfile_complaints,
18606 _("debug info gives %s macro %s with %s line %d: %s"),
18607 at_commandline ? _("command-line") : _("in-file"),
18608 is_define ? _("definition") : _("undefinition"),
18609 line == 0 ? _("zero") : _("non-zero"), line, body);
18610
18611 if (is_define)
18612 parse_macro_definition (current_file, line, body);
18613 else
18614 {
18615 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18616 || macinfo_type == DW_MACRO_GNU_undef_indirect
18617 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18618 macro_undef (current_file, line, body);
18619 }
18620 }
18621 break;
18622
18623 case DW_MACRO_GNU_start_file:
18624 {
18625 unsigned int bytes_read;
18626 int line, file;
18627
18628 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18629 mac_ptr += bytes_read;
18630 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18631 mac_ptr += bytes_read;
18632
18633 if ((line == 0 && !at_commandline)
18634 || (line != 0 && at_commandline))
18635 complaint (&symfile_complaints,
18636 _("debug info gives source %d included "
18637 "from %s at %s line %d"),
18638 file, at_commandline ? _("command-line") : _("file"),
18639 line == 0 ? _("zero") : _("non-zero"), line);
18640
18641 if (at_commandline)
18642 {
18643 /* This DW_MACRO_GNU_start_file was executed in the
18644 pass one. */
18645 at_commandline = 0;
18646 }
18647 else
18648 current_file = macro_start_file (file, line,
18649 current_file, comp_dir,
18650 lh, objfile);
18651 }
18652 break;
18653
18654 case DW_MACRO_GNU_end_file:
18655 if (! current_file)
18656 complaint (&symfile_complaints,
18657 _("macro debug info has an unmatched "
18658 "`close_file' directive"));
18659 else
18660 {
18661 current_file = current_file->included_by;
18662 if (! current_file)
18663 {
18664 enum dwarf_macro_record_type next_type;
18665
18666 /* GCC circa March 2002 doesn't produce the zero
18667 type byte marking the end of the compilation
18668 unit. Complain if it's not there, but exit no
18669 matter what. */
18670
18671 /* Do we at least have room for a macinfo type byte? */
18672 if (mac_ptr >= mac_end)
18673 {
18674 dwarf2_section_buffer_overflow_complaint (section);
18675 return;
18676 }
18677
18678 /* We don't increment mac_ptr here, so this is just
18679 a look-ahead. */
18680 next_type = read_1_byte (abfd, mac_ptr);
18681 if (next_type != 0)
18682 complaint (&symfile_complaints,
18683 _("no terminating 0-type entry for "
18684 "macros in `.debug_macinfo' section"));
18685
18686 return;
18687 }
18688 }
18689 break;
18690
18691 case DW_MACRO_GNU_transparent_include:
18692 case DW_MACRO_GNU_transparent_include_alt:
18693 {
18694 LONGEST offset;
18695 void **slot;
18696 bfd *include_bfd = abfd;
18697 struct dwarf2_section_info *include_section = section;
18698 struct dwarf2_section_info alt_section;
18699 gdb_byte *include_mac_end = mac_end;
18700 int is_dwz = section_is_dwz;
18701 gdb_byte *new_mac_ptr;
18702
18703 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18704 mac_ptr += offset_size;
18705
18706 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18707 {
18708 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18709
18710 dwarf2_read_section (dwarf2_per_objfile->objfile,
18711 &dwz->macro);
18712
18713 include_bfd = dwz->macro.asection->owner;
18714 include_section = &dwz->macro;
18715 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18716 is_dwz = 1;
18717 }
18718
18719 new_mac_ptr = include_section->buffer + offset;
18720 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18721
18722 if (*slot != NULL)
18723 {
18724 /* This has actually happened; see
18725 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18726 complaint (&symfile_complaints,
18727 _("recursive DW_MACRO_GNU_transparent_include in "
18728 ".debug_macro section"));
18729 }
18730 else
18731 {
18732 *slot = new_mac_ptr;
18733
18734 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18735 include_mac_end, current_file,
18736 lh, comp_dir,
18737 section, section_is_gnu, is_dwz,
18738 offset_size, objfile, include_hash);
18739
18740 htab_remove_elt (include_hash, new_mac_ptr);
18741 }
18742 }
18743 break;
18744
18745 case DW_MACINFO_vendor_ext:
18746 if (!section_is_gnu)
18747 {
18748 unsigned int bytes_read;
18749 int constant;
18750
18751 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18752 mac_ptr += bytes_read;
18753 read_direct_string (abfd, mac_ptr, &bytes_read);
18754 mac_ptr += bytes_read;
18755
18756 /* We don't recognize any vendor extensions. */
18757 break;
18758 }
18759 /* FALLTHROUGH */
18760
18761 default:
18762 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18763 mac_ptr, mac_end, abfd, offset_size,
18764 section);
18765 if (mac_ptr == NULL)
18766 return;
18767 break;
18768 }
18769 } while (macinfo_type != 0);
18770 }
18771
18772 static void
18773 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18774 const char *comp_dir, int section_is_gnu)
18775 {
18776 struct objfile *objfile = dwarf2_per_objfile->objfile;
18777 struct line_header *lh = cu->line_header;
18778 bfd *abfd;
18779 gdb_byte *mac_ptr, *mac_end;
18780 struct macro_source_file *current_file = 0;
18781 enum dwarf_macro_record_type macinfo_type;
18782 unsigned int offset_size = cu->header.offset_size;
18783 gdb_byte *opcode_definitions[256];
18784 struct cleanup *cleanup;
18785 htab_t include_hash;
18786 void **slot;
18787 struct dwarf2_section_info *section;
18788 const char *section_name;
18789
18790 if (cu->dwo_unit != NULL)
18791 {
18792 if (section_is_gnu)
18793 {
18794 section = &cu->dwo_unit->dwo_file->sections.macro;
18795 section_name = ".debug_macro.dwo";
18796 }
18797 else
18798 {
18799 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18800 section_name = ".debug_macinfo.dwo";
18801 }
18802 }
18803 else
18804 {
18805 if (section_is_gnu)
18806 {
18807 section = &dwarf2_per_objfile->macro;
18808 section_name = ".debug_macro";
18809 }
18810 else
18811 {
18812 section = &dwarf2_per_objfile->macinfo;
18813 section_name = ".debug_macinfo";
18814 }
18815 }
18816
18817 dwarf2_read_section (objfile, section);
18818 if (section->buffer == NULL)
18819 {
18820 complaint (&symfile_complaints, _("missing %s section"), section_name);
18821 return;
18822 }
18823 abfd = section->asection->owner;
18824
18825 /* First pass: Find the name of the base filename.
18826 This filename is needed in order to process all macros whose definition
18827 (or undefinition) comes from the command line. These macros are defined
18828 before the first DW_MACINFO_start_file entry, and yet still need to be
18829 associated to the base file.
18830
18831 To determine the base file name, we scan the macro definitions until we
18832 reach the first DW_MACINFO_start_file entry. We then initialize
18833 CURRENT_FILE accordingly so that any macro definition found before the
18834 first DW_MACINFO_start_file can still be associated to the base file. */
18835
18836 mac_ptr = section->buffer + offset;
18837 mac_end = section->buffer + section->size;
18838
18839 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18840 &offset_size, section_is_gnu);
18841 if (mac_ptr == NULL)
18842 {
18843 /* We already issued a complaint. */
18844 return;
18845 }
18846
18847 do
18848 {
18849 /* Do we at least have room for a macinfo type byte? */
18850 if (mac_ptr >= mac_end)
18851 {
18852 /* Complaint is printed during the second pass as GDB will probably
18853 stop the first pass earlier upon finding
18854 DW_MACINFO_start_file. */
18855 break;
18856 }
18857
18858 macinfo_type = read_1_byte (abfd, mac_ptr);
18859 mac_ptr++;
18860
18861 /* Note that we rely on the fact that the corresponding GNU and
18862 DWARF constants are the same. */
18863 switch (macinfo_type)
18864 {
18865 /* A zero macinfo type indicates the end of the macro
18866 information. */
18867 case 0:
18868 break;
18869
18870 case DW_MACRO_GNU_define:
18871 case DW_MACRO_GNU_undef:
18872 /* Only skip the data by MAC_PTR. */
18873 {
18874 unsigned int bytes_read;
18875
18876 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18877 mac_ptr += bytes_read;
18878 read_direct_string (abfd, mac_ptr, &bytes_read);
18879 mac_ptr += bytes_read;
18880 }
18881 break;
18882
18883 case DW_MACRO_GNU_start_file:
18884 {
18885 unsigned int bytes_read;
18886 int line, file;
18887
18888 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18889 mac_ptr += bytes_read;
18890 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18891 mac_ptr += bytes_read;
18892
18893 current_file = macro_start_file (file, line, current_file,
18894 comp_dir, lh, objfile);
18895 }
18896 break;
18897
18898 case DW_MACRO_GNU_end_file:
18899 /* No data to skip by MAC_PTR. */
18900 break;
18901
18902 case DW_MACRO_GNU_define_indirect:
18903 case DW_MACRO_GNU_undef_indirect:
18904 case DW_MACRO_GNU_define_indirect_alt:
18905 case DW_MACRO_GNU_undef_indirect_alt:
18906 {
18907 unsigned int bytes_read;
18908
18909 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18910 mac_ptr += bytes_read;
18911 mac_ptr += offset_size;
18912 }
18913 break;
18914
18915 case DW_MACRO_GNU_transparent_include:
18916 case DW_MACRO_GNU_transparent_include_alt:
18917 /* Note that, according to the spec, a transparent include
18918 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18919 skip this opcode. */
18920 mac_ptr += offset_size;
18921 break;
18922
18923 case DW_MACINFO_vendor_ext:
18924 /* Only skip the data by MAC_PTR. */
18925 if (!section_is_gnu)
18926 {
18927 unsigned int bytes_read;
18928
18929 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18930 mac_ptr += bytes_read;
18931 read_direct_string (abfd, mac_ptr, &bytes_read);
18932 mac_ptr += bytes_read;
18933 }
18934 /* FALLTHROUGH */
18935
18936 default:
18937 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18938 mac_ptr, mac_end, abfd, offset_size,
18939 section);
18940 if (mac_ptr == NULL)
18941 return;
18942 break;
18943 }
18944 } while (macinfo_type != 0 && current_file == NULL);
18945
18946 /* Second pass: Process all entries.
18947
18948 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18949 command-line macro definitions/undefinitions. This flag is unset when we
18950 reach the first DW_MACINFO_start_file entry. */
18951
18952 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18953 NULL, xcalloc, xfree);
18954 cleanup = make_cleanup_htab_delete (include_hash);
18955 mac_ptr = section->buffer + offset;
18956 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18957 *slot = mac_ptr;
18958 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18959 current_file, lh, comp_dir, section,
18960 section_is_gnu, 0,
18961 offset_size, objfile, include_hash);
18962 do_cleanups (cleanup);
18963 }
18964
18965 /* Check if the attribute's form is a DW_FORM_block*
18966 if so return true else false. */
18967
18968 static int
18969 attr_form_is_block (struct attribute *attr)
18970 {
18971 return (attr == NULL ? 0 :
18972 attr->form == DW_FORM_block1
18973 || attr->form == DW_FORM_block2
18974 || attr->form == DW_FORM_block4
18975 || attr->form == DW_FORM_block
18976 || attr->form == DW_FORM_exprloc);
18977 }
18978
18979 /* Return non-zero if ATTR's value is a section offset --- classes
18980 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18981 You may use DW_UNSND (attr) to retrieve such offsets.
18982
18983 Section 7.5.4, "Attribute Encodings", explains that no attribute
18984 may have a value that belongs to more than one of these classes; it
18985 would be ambiguous if we did, because we use the same forms for all
18986 of them. */
18987
18988 static int
18989 attr_form_is_section_offset (struct attribute *attr)
18990 {
18991 return (attr->form == DW_FORM_data4
18992 || attr->form == DW_FORM_data8
18993 || attr->form == DW_FORM_sec_offset);
18994 }
18995
18996 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18997 zero otherwise. When this function returns true, you can apply
18998 dwarf2_get_attr_constant_value to it.
18999
19000 However, note that for some attributes you must check
19001 attr_form_is_section_offset before using this test. DW_FORM_data4
19002 and DW_FORM_data8 are members of both the constant class, and of
19003 the classes that contain offsets into other debug sections
19004 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19005 that, if an attribute's can be either a constant or one of the
19006 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19007 taken as section offsets, not constants. */
19008
19009 static int
19010 attr_form_is_constant (struct attribute *attr)
19011 {
19012 switch (attr->form)
19013 {
19014 case DW_FORM_sdata:
19015 case DW_FORM_udata:
19016 case DW_FORM_data1:
19017 case DW_FORM_data2:
19018 case DW_FORM_data4:
19019 case DW_FORM_data8:
19020 return 1;
19021 default:
19022 return 0;
19023 }
19024 }
19025
19026 /* Return the .debug_loc section to use for CU.
19027 For DWO files use .debug_loc.dwo. */
19028
19029 static struct dwarf2_section_info *
19030 cu_debug_loc_section (struct dwarf2_cu *cu)
19031 {
19032 if (cu->dwo_unit)
19033 return &cu->dwo_unit->dwo_file->sections.loc;
19034 return &dwarf2_per_objfile->loc;
19035 }
19036
19037 /* A helper function that fills in a dwarf2_loclist_baton. */
19038
19039 static void
19040 fill_in_loclist_baton (struct dwarf2_cu *cu,
19041 struct dwarf2_loclist_baton *baton,
19042 struct attribute *attr)
19043 {
19044 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19045
19046 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19047
19048 baton->per_cu = cu->per_cu;
19049 gdb_assert (baton->per_cu);
19050 /* We don't know how long the location list is, but make sure we
19051 don't run off the edge of the section. */
19052 baton->size = section->size - DW_UNSND (attr);
19053 baton->data = section->buffer + DW_UNSND (attr);
19054 baton->base_address = cu->base_address;
19055 baton->from_dwo = cu->dwo_unit != NULL;
19056 }
19057
19058 static void
19059 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19060 struct dwarf2_cu *cu)
19061 {
19062 struct objfile *objfile = dwarf2_per_objfile->objfile;
19063 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19064
19065 if (attr_form_is_section_offset (attr)
19066 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19067 the section. If so, fall through to the complaint in the
19068 other branch. */
19069 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19070 {
19071 struct dwarf2_loclist_baton *baton;
19072
19073 baton = obstack_alloc (&objfile->objfile_obstack,
19074 sizeof (struct dwarf2_loclist_baton));
19075
19076 fill_in_loclist_baton (cu, baton, attr);
19077
19078 if (cu->base_known == 0)
19079 complaint (&symfile_complaints,
19080 _("Location list used without "
19081 "specifying the CU base address."));
19082
19083 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19084 SYMBOL_LOCATION_BATON (sym) = baton;
19085 }
19086 else
19087 {
19088 struct dwarf2_locexpr_baton *baton;
19089
19090 baton = obstack_alloc (&objfile->objfile_obstack,
19091 sizeof (struct dwarf2_locexpr_baton));
19092 baton->per_cu = cu->per_cu;
19093 gdb_assert (baton->per_cu);
19094
19095 if (attr_form_is_block (attr))
19096 {
19097 /* Note that we're just copying the block's data pointer
19098 here, not the actual data. We're still pointing into the
19099 info_buffer for SYM's objfile; right now we never release
19100 that buffer, but when we do clean up properly this may
19101 need to change. */
19102 baton->size = DW_BLOCK (attr)->size;
19103 baton->data = DW_BLOCK (attr)->data;
19104 }
19105 else
19106 {
19107 dwarf2_invalid_attrib_class_complaint ("location description",
19108 SYMBOL_NATURAL_NAME (sym));
19109 baton->size = 0;
19110 }
19111
19112 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19113 SYMBOL_LOCATION_BATON (sym) = baton;
19114 }
19115 }
19116
19117 /* Return the OBJFILE associated with the compilation unit CU. If CU
19118 came from a separate debuginfo file, then the master objfile is
19119 returned. */
19120
19121 struct objfile *
19122 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19123 {
19124 struct objfile *objfile = per_cu->objfile;
19125
19126 /* Return the master objfile, so that we can report and look up the
19127 correct file containing this variable. */
19128 if (objfile->separate_debug_objfile_backlink)
19129 objfile = objfile->separate_debug_objfile_backlink;
19130
19131 return objfile;
19132 }
19133
19134 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19135 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19136 CU_HEADERP first. */
19137
19138 static const struct comp_unit_head *
19139 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19140 struct dwarf2_per_cu_data *per_cu)
19141 {
19142 gdb_byte *info_ptr;
19143
19144 if (per_cu->cu)
19145 return &per_cu->cu->header;
19146
19147 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19148
19149 memset (cu_headerp, 0, sizeof (*cu_headerp));
19150 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19151
19152 return cu_headerp;
19153 }
19154
19155 /* Return the address size given in the compilation unit header for CU. */
19156
19157 int
19158 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19159 {
19160 struct comp_unit_head cu_header_local;
19161 const struct comp_unit_head *cu_headerp;
19162
19163 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19164
19165 return cu_headerp->addr_size;
19166 }
19167
19168 /* Return the offset size given in the compilation unit header for CU. */
19169
19170 int
19171 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19172 {
19173 struct comp_unit_head cu_header_local;
19174 const struct comp_unit_head *cu_headerp;
19175
19176 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19177
19178 return cu_headerp->offset_size;
19179 }
19180
19181 /* See its dwarf2loc.h declaration. */
19182
19183 int
19184 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19185 {
19186 struct comp_unit_head cu_header_local;
19187 const struct comp_unit_head *cu_headerp;
19188
19189 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19190
19191 if (cu_headerp->version == 2)
19192 return cu_headerp->addr_size;
19193 else
19194 return cu_headerp->offset_size;
19195 }
19196
19197 /* Return the text offset of the CU. The returned offset comes from
19198 this CU's objfile. If this objfile came from a separate debuginfo
19199 file, then the offset may be different from the corresponding
19200 offset in the parent objfile. */
19201
19202 CORE_ADDR
19203 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19204 {
19205 struct objfile *objfile = per_cu->objfile;
19206
19207 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19208 }
19209
19210 /* Locate the .debug_info compilation unit from CU's objfile which contains
19211 the DIE at OFFSET. Raises an error on failure. */
19212
19213 static struct dwarf2_per_cu_data *
19214 dwarf2_find_containing_comp_unit (sect_offset offset,
19215 unsigned int offset_in_dwz,
19216 struct objfile *objfile)
19217 {
19218 struct dwarf2_per_cu_data *this_cu;
19219 int low, high;
19220 const sect_offset *cu_off;
19221
19222 low = 0;
19223 high = dwarf2_per_objfile->n_comp_units - 1;
19224 while (high > low)
19225 {
19226 struct dwarf2_per_cu_data *mid_cu;
19227 int mid = low + (high - low) / 2;
19228
19229 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19230 cu_off = &mid_cu->offset;
19231 if (mid_cu->is_dwz > offset_in_dwz
19232 || (mid_cu->is_dwz == offset_in_dwz
19233 && cu_off->sect_off >= offset.sect_off))
19234 high = mid;
19235 else
19236 low = mid + 1;
19237 }
19238 gdb_assert (low == high);
19239 this_cu = dwarf2_per_objfile->all_comp_units[low];
19240 cu_off = &this_cu->offset;
19241 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19242 {
19243 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19244 error (_("Dwarf Error: could not find partial DIE containing "
19245 "offset 0x%lx [in module %s]"),
19246 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19247
19248 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19249 <= offset.sect_off);
19250 return dwarf2_per_objfile->all_comp_units[low-1];
19251 }
19252 else
19253 {
19254 this_cu = dwarf2_per_objfile->all_comp_units[low];
19255 if (low == dwarf2_per_objfile->n_comp_units - 1
19256 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19257 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19258 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19259 return this_cu;
19260 }
19261 }
19262
19263 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19264
19265 static void
19266 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19267 {
19268 memset (cu, 0, sizeof (*cu));
19269 per_cu->cu = cu;
19270 cu->per_cu = per_cu;
19271 cu->objfile = per_cu->objfile;
19272 obstack_init (&cu->comp_unit_obstack);
19273 }
19274
19275 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19276
19277 static void
19278 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19279 enum language pretend_language)
19280 {
19281 struct attribute *attr;
19282
19283 /* Set the language we're debugging. */
19284 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19285 if (attr)
19286 set_cu_language (DW_UNSND (attr), cu);
19287 else
19288 {
19289 cu->language = pretend_language;
19290 cu->language_defn = language_def (cu->language);
19291 }
19292
19293 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19294 if (attr)
19295 cu->producer = DW_STRING (attr);
19296 }
19297
19298 /* Release one cached compilation unit, CU. We unlink it from the tree
19299 of compilation units, but we don't remove it from the read_in_chain;
19300 the caller is responsible for that.
19301 NOTE: DATA is a void * because this function is also used as a
19302 cleanup routine. */
19303
19304 static void
19305 free_heap_comp_unit (void *data)
19306 {
19307 struct dwarf2_cu *cu = data;
19308
19309 gdb_assert (cu->per_cu != NULL);
19310 cu->per_cu->cu = NULL;
19311 cu->per_cu = NULL;
19312
19313 obstack_free (&cu->comp_unit_obstack, NULL);
19314
19315 xfree (cu);
19316 }
19317
19318 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19319 when we're finished with it. We can't free the pointer itself, but be
19320 sure to unlink it from the cache. Also release any associated storage. */
19321
19322 static void
19323 free_stack_comp_unit (void *data)
19324 {
19325 struct dwarf2_cu *cu = data;
19326
19327 gdb_assert (cu->per_cu != NULL);
19328 cu->per_cu->cu = NULL;
19329 cu->per_cu = NULL;
19330
19331 obstack_free (&cu->comp_unit_obstack, NULL);
19332 cu->partial_dies = NULL;
19333 }
19334
19335 /* Free all cached compilation units. */
19336
19337 static void
19338 free_cached_comp_units (void *data)
19339 {
19340 struct dwarf2_per_cu_data *per_cu, **last_chain;
19341
19342 per_cu = dwarf2_per_objfile->read_in_chain;
19343 last_chain = &dwarf2_per_objfile->read_in_chain;
19344 while (per_cu != NULL)
19345 {
19346 struct dwarf2_per_cu_data *next_cu;
19347
19348 next_cu = per_cu->cu->read_in_chain;
19349
19350 free_heap_comp_unit (per_cu->cu);
19351 *last_chain = next_cu;
19352
19353 per_cu = next_cu;
19354 }
19355 }
19356
19357 /* Increase the age counter on each cached compilation unit, and free
19358 any that are too old. */
19359
19360 static void
19361 age_cached_comp_units (void)
19362 {
19363 struct dwarf2_per_cu_data *per_cu, **last_chain;
19364
19365 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19366 per_cu = dwarf2_per_objfile->read_in_chain;
19367 while (per_cu != NULL)
19368 {
19369 per_cu->cu->last_used ++;
19370 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19371 dwarf2_mark (per_cu->cu);
19372 per_cu = per_cu->cu->read_in_chain;
19373 }
19374
19375 per_cu = dwarf2_per_objfile->read_in_chain;
19376 last_chain = &dwarf2_per_objfile->read_in_chain;
19377 while (per_cu != NULL)
19378 {
19379 struct dwarf2_per_cu_data *next_cu;
19380
19381 next_cu = per_cu->cu->read_in_chain;
19382
19383 if (!per_cu->cu->mark)
19384 {
19385 free_heap_comp_unit (per_cu->cu);
19386 *last_chain = next_cu;
19387 }
19388 else
19389 last_chain = &per_cu->cu->read_in_chain;
19390
19391 per_cu = next_cu;
19392 }
19393 }
19394
19395 /* Remove a single compilation unit from the cache. */
19396
19397 static void
19398 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19399 {
19400 struct dwarf2_per_cu_data *per_cu, **last_chain;
19401
19402 per_cu = dwarf2_per_objfile->read_in_chain;
19403 last_chain = &dwarf2_per_objfile->read_in_chain;
19404 while (per_cu != NULL)
19405 {
19406 struct dwarf2_per_cu_data *next_cu;
19407
19408 next_cu = per_cu->cu->read_in_chain;
19409
19410 if (per_cu == target_per_cu)
19411 {
19412 free_heap_comp_unit (per_cu->cu);
19413 per_cu->cu = NULL;
19414 *last_chain = next_cu;
19415 break;
19416 }
19417 else
19418 last_chain = &per_cu->cu->read_in_chain;
19419
19420 per_cu = next_cu;
19421 }
19422 }
19423
19424 /* Release all extra memory associated with OBJFILE. */
19425
19426 void
19427 dwarf2_free_objfile (struct objfile *objfile)
19428 {
19429 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19430
19431 if (dwarf2_per_objfile == NULL)
19432 return;
19433
19434 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19435 free_cached_comp_units (NULL);
19436
19437 if (dwarf2_per_objfile->quick_file_names_table)
19438 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19439
19440 /* Everything else should be on the objfile obstack. */
19441 }
19442
19443 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19444 We store these in a hash table separate from the DIEs, and preserve them
19445 when the DIEs are flushed out of cache.
19446
19447 The CU "per_cu" pointer is needed because offset alone is not enough to
19448 uniquely identify the type. A file may have multiple .debug_types sections,
19449 or the type may come from a DWO file. We have to use something in
19450 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19451 routine, get_die_type_at_offset, from outside this file, and thus won't
19452 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19453 of the objfile. */
19454
19455 struct dwarf2_per_cu_offset_and_type
19456 {
19457 const struct dwarf2_per_cu_data *per_cu;
19458 sect_offset offset;
19459 struct type *type;
19460 };
19461
19462 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19463
19464 static hashval_t
19465 per_cu_offset_and_type_hash (const void *item)
19466 {
19467 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19468
19469 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19470 }
19471
19472 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19473
19474 static int
19475 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19476 {
19477 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19478 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19479
19480 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19481 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19482 }
19483
19484 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19485 table if necessary. For convenience, return TYPE.
19486
19487 The DIEs reading must have careful ordering to:
19488 * Not cause infite loops trying to read in DIEs as a prerequisite for
19489 reading current DIE.
19490 * Not trying to dereference contents of still incompletely read in types
19491 while reading in other DIEs.
19492 * Enable referencing still incompletely read in types just by a pointer to
19493 the type without accessing its fields.
19494
19495 Therefore caller should follow these rules:
19496 * Try to fetch any prerequisite types we may need to build this DIE type
19497 before building the type and calling set_die_type.
19498 * After building type call set_die_type for current DIE as soon as
19499 possible before fetching more types to complete the current type.
19500 * Make the type as complete as possible before fetching more types. */
19501
19502 static struct type *
19503 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19504 {
19505 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19506 struct objfile *objfile = cu->objfile;
19507
19508 /* For Ada types, make sure that the gnat-specific data is always
19509 initialized (if not already set). There are a few types where
19510 we should not be doing so, because the type-specific area is
19511 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19512 where the type-specific area is used to store the floatformat).
19513 But this is not a problem, because the gnat-specific information
19514 is actually not needed for these types. */
19515 if (need_gnat_info (cu)
19516 && TYPE_CODE (type) != TYPE_CODE_FUNC
19517 && TYPE_CODE (type) != TYPE_CODE_FLT
19518 && !HAVE_GNAT_AUX_INFO (type))
19519 INIT_GNAT_SPECIFIC (type);
19520
19521 if (dwarf2_per_objfile->die_type_hash == NULL)
19522 {
19523 dwarf2_per_objfile->die_type_hash =
19524 htab_create_alloc_ex (127,
19525 per_cu_offset_and_type_hash,
19526 per_cu_offset_and_type_eq,
19527 NULL,
19528 &objfile->objfile_obstack,
19529 hashtab_obstack_allocate,
19530 dummy_obstack_deallocate);
19531 }
19532
19533 ofs.per_cu = cu->per_cu;
19534 ofs.offset = die->offset;
19535 ofs.type = type;
19536 slot = (struct dwarf2_per_cu_offset_and_type **)
19537 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19538 if (*slot)
19539 complaint (&symfile_complaints,
19540 _("A problem internal to GDB: DIE 0x%x has type already set"),
19541 die->offset.sect_off);
19542 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19543 **slot = ofs;
19544 return type;
19545 }
19546
19547 /* Look up the type for the die at OFFSET in the appropriate type_hash
19548 table, or return NULL if the die does not have a saved type. */
19549
19550 static struct type *
19551 get_die_type_at_offset (sect_offset offset,
19552 struct dwarf2_per_cu_data *per_cu)
19553 {
19554 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19555
19556 if (dwarf2_per_objfile->die_type_hash == NULL)
19557 return NULL;
19558
19559 ofs.per_cu = per_cu;
19560 ofs.offset = offset;
19561 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19562 if (slot)
19563 return slot->type;
19564 else
19565 return NULL;
19566 }
19567
19568 /* Look up the type for DIE in the appropriate type_hash table,
19569 or return NULL if DIE does not have a saved type. */
19570
19571 static struct type *
19572 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19573 {
19574 return get_die_type_at_offset (die->offset, cu->per_cu);
19575 }
19576
19577 /* Add a dependence relationship from CU to REF_PER_CU. */
19578
19579 static void
19580 dwarf2_add_dependence (struct dwarf2_cu *cu,
19581 struct dwarf2_per_cu_data *ref_per_cu)
19582 {
19583 void **slot;
19584
19585 if (cu->dependencies == NULL)
19586 cu->dependencies
19587 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19588 NULL, &cu->comp_unit_obstack,
19589 hashtab_obstack_allocate,
19590 dummy_obstack_deallocate);
19591
19592 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19593 if (*slot == NULL)
19594 *slot = ref_per_cu;
19595 }
19596
19597 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19598 Set the mark field in every compilation unit in the
19599 cache that we must keep because we are keeping CU. */
19600
19601 static int
19602 dwarf2_mark_helper (void **slot, void *data)
19603 {
19604 struct dwarf2_per_cu_data *per_cu;
19605
19606 per_cu = (struct dwarf2_per_cu_data *) *slot;
19607
19608 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19609 reading of the chain. As such dependencies remain valid it is not much
19610 useful to track and undo them during QUIT cleanups. */
19611 if (per_cu->cu == NULL)
19612 return 1;
19613
19614 if (per_cu->cu->mark)
19615 return 1;
19616 per_cu->cu->mark = 1;
19617
19618 if (per_cu->cu->dependencies != NULL)
19619 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19620
19621 return 1;
19622 }
19623
19624 /* Set the mark field in CU and in every other compilation unit in the
19625 cache that we must keep because we are keeping CU. */
19626
19627 static void
19628 dwarf2_mark (struct dwarf2_cu *cu)
19629 {
19630 if (cu->mark)
19631 return;
19632 cu->mark = 1;
19633 if (cu->dependencies != NULL)
19634 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19635 }
19636
19637 static void
19638 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19639 {
19640 while (per_cu)
19641 {
19642 per_cu->cu->mark = 0;
19643 per_cu = per_cu->cu->read_in_chain;
19644 }
19645 }
19646
19647 /* Trivial hash function for partial_die_info: the hash value of a DIE
19648 is its offset in .debug_info for this objfile. */
19649
19650 static hashval_t
19651 partial_die_hash (const void *item)
19652 {
19653 const struct partial_die_info *part_die = item;
19654
19655 return part_die->offset.sect_off;
19656 }
19657
19658 /* Trivial comparison function for partial_die_info structures: two DIEs
19659 are equal if they have the same offset. */
19660
19661 static int
19662 partial_die_eq (const void *item_lhs, const void *item_rhs)
19663 {
19664 const struct partial_die_info *part_die_lhs = item_lhs;
19665 const struct partial_die_info *part_die_rhs = item_rhs;
19666
19667 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19668 }
19669
19670 static struct cmd_list_element *set_dwarf2_cmdlist;
19671 static struct cmd_list_element *show_dwarf2_cmdlist;
19672
19673 static void
19674 set_dwarf2_cmd (char *args, int from_tty)
19675 {
19676 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19677 }
19678
19679 static void
19680 show_dwarf2_cmd (char *args, int from_tty)
19681 {
19682 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19683 }
19684
19685 /* Free data associated with OBJFILE, if necessary. */
19686
19687 static void
19688 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19689 {
19690 struct dwarf2_per_objfile *data = d;
19691 int ix;
19692
19693 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19694 VEC_free (dwarf2_per_cu_ptr,
19695 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19696
19697 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19698 VEC_free (dwarf2_per_cu_ptr,
19699 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19700
19701 VEC_free (dwarf2_section_info_def, data->types);
19702
19703 if (data->dwo_files)
19704 free_dwo_files (data->dwo_files, objfile);
19705
19706 if (data->dwz_file && data->dwz_file->dwz_bfd)
19707 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19708 }
19709
19710 \f
19711 /* The "save gdb-index" command. */
19712
19713 /* The contents of the hash table we create when building the string
19714 table. */
19715 struct strtab_entry
19716 {
19717 offset_type offset;
19718 const char *str;
19719 };
19720
19721 /* Hash function for a strtab_entry.
19722
19723 Function is used only during write_hash_table so no index format backward
19724 compatibility is needed. */
19725
19726 static hashval_t
19727 hash_strtab_entry (const void *e)
19728 {
19729 const struct strtab_entry *entry = e;
19730 return mapped_index_string_hash (INT_MAX, entry->str);
19731 }
19732
19733 /* Equality function for a strtab_entry. */
19734
19735 static int
19736 eq_strtab_entry (const void *a, const void *b)
19737 {
19738 const struct strtab_entry *ea = a;
19739 const struct strtab_entry *eb = b;
19740 return !strcmp (ea->str, eb->str);
19741 }
19742
19743 /* Create a strtab_entry hash table. */
19744
19745 static htab_t
19746 create_strtab (void)
19747 {
19748 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19749 xfree, xcalloc, xfree);
19750 }
19751
19752 /* Add a string to the constant pool. Return the string's offset in
19753 host order. */
19754
19755 static offset_type
19756 add_string (htab_t table, struct obstack *cpool, const char *str)
19757 {
19758 void **slot;
19759 struct strtab_entry entry;
19760 struct strtab_entry *result;
19761
19762 entry.str = str;
19763 slot = htab_find_slot (table, &entry, INSERT);
19764 if (*slot)
19765 result = *slot;
19766 else
19767 {
19768 result = XNEW (struct strtab_entry);
19769 result->offset = obstack_object_size (cpool);
19770 result->str = str;
19771 obstack_grow_str0 (cpool, str);
19772 *slot = result;
19773 }
19774 return result->offset;
19775 }
19776
19777 /* An entry in the symbol table. */
19778 struct symtab_index_entry
19779 {
19780 /* The name of the symbol. */
19781 const char *name;
19782 /* The offset of the name in the constant pool. */
19783 offset_type index_offset;
19784 /* A sorted vector of the indices of all the CUs that hold an object
19785 of this name. */
19786 VEC (offset_type) *cu_indices;
19787 };
19788
19789 /* The symbol table. This is a power-of-2-sized hash table. */
19790 struct mapped_symtab
19791 {
19792 offset_type n_elements;
19793 offset_type size;
19794 struct symtab_index_entry **data;
19795 };
19796
19797 /* Hash function for a symtab_index_entry. */
19798
19799 static hashval_t
19800 hash_symtab_entry (const void *e)
19801 {
19802 const struct symtab_index_entry *entry = e;
19803 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19804 sizeof (offset_type) * VEC_length (offset_type,
19805 entry->cu_indices),
19806 0);
19807 }
19808
19809 /* Equality function for a symtab_index_entry. */
19810
19811 static int
19812 eq_symtab_entry (const void *a, const void *b)
19813 {
19814 const struct symtab_index_entry *ea = a;
19815 const struct symtab_index_entry *eb = b;
19816 int len = VEC_length (offset_type, ea->cu_indices);
19817 if (len != VEC_length (offset_type, eb->cu_indices))
19818 return 0;
19819 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19820 VEC_address (offset_type, eb->cu_indices),
19821 sizeof (offset_type) * len);
19822 }
19823
19824 /* Destroy a symtab_index_entry. */
19825
19826 static void
19827 delete_symtab_entry (void *p)
19828 {
19829 struct symtab_index_entry *entry = p;
19830 VEC_free (offset_type, entry->cu_indices);
19831 xfree (entry);
19832 }
19833
19834 /* Create a hash table holding symtab_index_entry objects. */
19835
19836 static htab_t
19837 create_symbol_hash_table (void)
19838 {
19839 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19840 delete_symtab_entry, xcalloc, xfree);
19841 }
19842
19843 /* Create a new mapped symtab object. */
19844
19845 static struct mapped_symtab *
19846 create_mapped_symtab (void)
19847 {
19848 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19849 symtab->n_elements = 0;
19850 symtab->size = 1024;
19851 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19852 return symtab;
19853 }
19854
19855 /* Destroy a mapped_symtab. */
19856
19857 static void
19858 cleanup_mapped_symtab (void *p)
19859 {
19860 struct mapped_symtab *symtab = p;
19861 /* The contents of the array are freed when the other hash table is
19862 destroyed. */
19863 xfree (symtab->data);
19864 xfree (symtab);
19865 }
19866
19867 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19868 the slot.
19869
19870 Function is used only during write_hash_table so no index format backward
19871 compatibility is needed. */
19872
19873 static struct symtab_index_entry **
19874 find_slot (struct mapped_symtab *symtab, const char *name)
19875 {
19876 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19877
19878 index = hash & (symtab->size - 1);
19879 step = ((hash * 17) & (symtab->size - 1)) | 1;
19880
19881 for (;;)
19882 {
19883 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19884 return &symtab->data[index];
19885 index = (index + step) & (symtab->size - 1);
19886 }
19887 }
19888
19889 /* Expand SYMTAB's hash table. */
19890
19891 static void
19892 hash_expand (struct mapped_symtab *symtab)
19893 {
19894 offset_type old_size = symtab->size;
19895 offset_type i;
19896 struct symtab_index_entry **old_entries = symtab->data;
19897
19898 symtab->size *= 2;
19899 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19900
19901 for (i = 0; i < old_size; ++i)
19902 {
19903 if (old_entries[i])
19904 {
19905 struct symtab_index_entry **slot = find_slot (symtab,
19906 old_entries[i]->name);
19907 *slot = old_entries[i];
19908 }
19909 }
19910
19911 xfree (old_entries);
19912 }
19913
19914 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19915 CU_INDEX is the index of the CU in which the symbol appears.
19916 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19917
19918 static void
19919 add_index_entry (struct mapped_symtab *symtab, const char *name,
19920 int is_static, gdb_index_symbol_kind kind,
19921 offset_type cu_index)
19922 {
19923 struct symtab_index_entry **slot;
19924 offset_type cu_index_and_attrs;
19925
19926 ++symtab->n_elements;
19927 if (4 * symtab->n_elements / 3 >= symtab->size)
19928 hash_expand (symtab);
19929
19930 slot = find_slot (symtab, name);
19931 if (!*slot)
19932 {
19933 *slot = XNEW (struct symtab_index_entry);
19934 (*slot)->name = name;
19935 /* index_offset is set later. */
19936 (*slot)->cu_indices = NULL;
19937 }
19938
19939 cu_index_and_attrs = 0;
19940 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19941 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19942 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19943
19944 /* We don't want to record an index value twice as we want to avoid the
19945 duplication.
19946 We process all global symbols and then all static symbols
19947 (which would allow us to avoid the duplication by only having to check
19948 the last entry pushed), but a symbol could have multiple kinds in one CU.
19949 To keep things simple we don't worry about the duplication here and
19950 sort and uniqufy the list after we've processed all symbols. */
19951 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19952 }
19953
19954 /* qsort helper routine for uniquify_cu_indices. */
19955
19956 static int
19957 offset_type_compare (const void *ap, const void *bp)
19958 {
19959 offset_type a = *(offset_type *) ap;
19960 offset_type b = *(offset_type *) bp;
19961
19962 return (a > b) - (b > a);
19963 }
19964
19965 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19966
19967 static void
19968 uniquify_cu_indices (struct mapped_symtab *symtab)
19969 {
19970 int i;
19971
19972 for (i = 0; i < symtab->size; ++i)
19973 {
19974 struct symtab_index_entry *entry = symtab->data[i];
19975
19976 if (entry
19977 && entry->cu_indices != NULL)
19978 {
19979 unsigned int next_to_insert, next_to_check;
19980 offset_type last_value;
19981
19982 qsort (VEC_address (offset_type, entry->cu_indices),
19983 VEC_length (offset_type, entry->cu_indices),
19984 sizeof (offset_type), offset_type_compare);
19985
19986 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19987 next_to_insert = 1;
19988 for (next_to_check = 1;
19989 next_to_check < VEC_length (offset_type, entry->cu_indices);
19990 ++next_to_check)
19991 {
19992 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19993 != last_value)
19994 {
19995 last_value = VEC_index (offset_type, entry->cu_indices,
19996 next_to_check);
19997 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19998 last_value);
19999 ++next_to_insert;
20000 }
20001 }
20002 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20003 }
20004 }
20005 }
20006
20007 /* Add a vector of indices to the constant pool. */
20008
20009 static offset_type
20010 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20011 struct symtab_index_entry *entry)
20012 {
20013 void **slot;
20014
20015 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20016 if (!*slot)
20017 {
20018 offset_type len = VEC_length (offset_type, entry->cu_indices);
20019 offset_type val = MAYBE_SWAP (len);
20020 offset_type iter;
20021 int i;
20022
20023 *slot = entry;
20024 entry->index_offset = obstack_object_size (cpool);
20025
20026 obstack_grow (cpool, &val, sizeof (val));
20027 for (i = 0;
20028 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20029 ++i)
20030 {
20031 val = MAYBE_SWAP (iter);
20032 obstack_grow (cpool, &val, sizeof (val));
20033 }
20034 }
20035 else
20036 {
20037 struct symtab_index_entry *old_entry = *slot;
20038 entry->index_offset = old_entry->index_offset;
20039 entry = old_entry;
20040 }
20041 return entry->index_offset;
20042 }
20043
20044 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20045 constant pool entries going into the obstack CPOOL. */
20046
20047 static void
20048 write_hash_table (struct mapped_symtab *symtab,
20049 struct obstack *output, struct obstack *cpool)
20050 {
20051 offset_type i;
20052 htab_t symbol_hash_table;
20053 htab_t str_table;
20054
20055 symbol_hash_table = create_symbol_hash_table ();
20056 str_table = create_strtab ();
20057
20058 /* We add all the index vectors to the constant pool first, to
20059 ensure alignment is ok. */
20060 for (i = 0; i < symtab->size; ++i)
20061 {
20062 if (symtab->data[i])
20063 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20064 }
20065
20066 /* Now write out the hash table. */
20067 for (i = 0; i < symtab->size; ++i)
20068 {
20069 offset_type str_off, vec_off;
20070
20071 if (symtab->data[i])
20072 {
20073 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20074 vec_off = symtab->data[i]->index_offset;
20075 }
20076 else
20077 {
20078 /* While 0 is a valid constant pool index, it is not valid
20079 to have 0 for both offsets. */
20080 str_off = 0;
20081 vec_off = 0;
20082 }
20083
20084 str_off = MAYBE_SWAP (str_off);
20085 vec_off = MAYBE_SWAP (vec_off);
20086
20087 obstack_grow (output, &str_off, sizeof (str_off));
20088 obstack_grow (output, &vec_off, sizeof (vec_off));
20089 }
20090
20091 htab_delete (str_table);
20092 htab_delete (symbol_hash_table);
20093 }
20094
20095 /* Struct to map psymtab to CU index in the index file. */
20096 struct psymtab_cu_index_map
20097 {
20098 struct partial_symtab *psymtab;
20099 unsigned int cu_index;
20100 };
20101
20102 static hashval_t
20103 hash_psymtab_cu_index (const void *item)
20104 {
20105 const struct psymtab_cu_index_map *map = item;
20106
20107 return htab_hash_pointer (map->psymtab);
20108 }
20109
20110 static int
20111 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20112 {
20113 const struct psymtab_cu_index_map *lhs = item_lhs;
20114 const struct psymtab_cu_index_map *rhs = item_rhs;
20115
20116 return lhs->psymtab == rhs->psymtab;
20117 }
20118
20119 /* Helper struct for building the address table. */
20120 struct addrmap_index_data
20121 {
20122 struct objfile *objfile;
20123 struct obstack *addr_obstack;
20124 htab_t cu_index_htab;
20125
20126 /* Non-zero if the previous_* fields are valid.
20127 We can't write an entry until we see the next entry (since it is only then
20128 that we know the end of the entry). */
20129 int previous_valid;
20130 /* Index of the CU in the table of all CUs in the index file. */
20131 unsigned int previous_cu_index;
20132 /* Start address of the CU. */
20133 CORE_ADDR previous_cu_start;
20134 };
20135
20136 /* Write an address entry to OBSTACK. */
20137
20138 static void
20139 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20140 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20141 {
20142 offset_type cu_index_to_write;
20143 char addr[8];
20144 CORE_ADDR baseaddr;
20145
20146 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20147
20148 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20149 obstack_grow (obstack, addr, 8);
20150 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20151 obstack_grow (obstack, addr, 8);
20152 cu_index_to_write = MAYBE_SWAP (cu_index);
20153 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20154 }
20155
20156 /* Worker function for traversing an addrmap to build the address table. */
20157
20158 static int
20159 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20160 {
20161 struct addrmap_index_data *data = datap;
20162 struct partial_symtab *pst = obj;
20163
20164 if (data->previous_valid)
20165 add_address_entry (data->objfile, data->addr_obstack,
20166 data->previous_cu_start, start_addr,
20167 data->previous_cu_index);
20168
20169 data->previous_cu_start = start_addr;
20170 if (pst != NULL)
20171 {
20172 struct psymtab_cu_index_map find_map, *map;
20173 find_map.psymtab = pst;
20174 map = htab_find (data->cu_index_htab, &find_map);
20175 gdb_assert (map != NULL);
20176 data->previous_cu_index = map->cu_index;
20177 data->previous_valid = 1;
20178 }
20179 else
20180 data->previous_valid = 0;
20181
20182 return 0;
20183 }
20184
20185 /* Write OBJFILE's address map to OBSTACK.
20186 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20187 in the index file. */
20188
20189 static void
20190 write_address_map (struct objfile *objfile, struct obstack *obstack,
20191 htab_t cu_index_htab)
20192 {
20193 struct addrmap_index_data addrmap_index_data;
20194
20195 /* When writing the address table, we have to cope with the fact that
20196 the addrmap iterator only provides the start of a region; we have to
20197 wait until the next invocation to get the start of the next region. */
20198
20199 addrmap_index_data.objfile = objfile;
20200 addrmap_index_data.addr_obstack = obstack;
20201 addrmap_index_data.cu_index_htab = cu_index_htab;
20202 addrmap_index_data.previous_valid = 0;
20203
20204 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20205 &addrmap_index_data);
20206
20207 /* It's highly unlikely the last entry (end address = 0xff...ff)
20208 is valid, but we should still handle it.
20209 The end address is recorded as the start of the next region, but that
20210 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20211 anyway. */
20212 if (addrmap_index_data.previous_valid)
20213 add_address_entry (objfile, obstack,
20214 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20215 addrmap_index_data.previous_cu_index);
20216 }
20217
20218 /* Return the symbol kind of PSYM. */
20219
20220 static gdb_index_symbol_kind
20221 symbol_kind (struct partial_symbol *psym)
20222 {
20223 domain_enum domain = PSYMBOL_DOMAIN (psym);
20224 enum address_class aclass = PSYMBOL_CLASS (psym);
20225
20226 switch (domain)
20227 {
20228 case VAR_DOMAIN:
20229 switch (aclass)
20230 {
20231 case LOC_BLOCK:
20232 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20233 case LOC_TYPEDEF:
20234 return GDB_INDEX_SYMBOL_KIND_TYPE;
20235 case LOC_COMPUTED:
20236 case LOC_CONST_BYTES:
20237 case LOC_OPTIMIZED_OUT:
20238 case LOC_STATIC:
20239 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20240 case LOC_CONST:
20241 /* Note: It's currently impossible to recognize psyms as enum values
20242 short of reading the type info. For now punt. */
20243 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20244 default:
20245 /* There are other LOC_FOO values that one might want to classify
20246 as variables, but dwarf2read.c doesn't currently use them. */
20247 return GDB_INDEX_SYMBOL_KIND_OTHER;
20248 }
20249 case STRUCT_DOMAIN:
20250 return GDB_INDEX_SYMBOL_KIND_TYPE;
20251 default:
20252 return GDB_INDEX_SYMBOL_KIND_OTHER;
20253 }
20254 }
20255
20256 /* Add a list of partial symbols to SYMTAB. */
20257
20258 static void
20259 write_psymbols (struct mapped_symtab *symtab,
20260 htab_t psyms_seen,
20261 struct partial_symbol **psymp,
20262 int count,
20263 offset_type cu_index,
20264 int is_static)
20265 {
20266 for (; count-- > 0; ++psymp)
20267 {
20268 struct partial_symbol *psym = *psymp;
20269 void **slot;
20270
20271 if (SYMBOL_LANGUAGE (psym) == language_ada)
20272 error (_("Ada is not currently supported by the index"));
20273
20274 /* Only add a given psymbol once. */
20275 slot = htab_find_slot (psyms_seen, psym, INSERT);
20276 if (!*slot)
20277 {
20278 gdb_index_symbol_kind kind = symbol_kind (psym);
20279
20280 *slot = psym;
20281 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20282 is_static, kind, cu_index);
20283 }
20284 }
20285 }
20286
20287 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20288 exception if there is an error. */
20289
20290 static void
20291 write_obstack (FILE *file, struct obstack *obstack)
20292 {
20293 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20294 file)
20295 != obstack_object_size (obstack))
20296 error (_("couldn't data write to file"));
20297 }
20298
20299 /* Unlink a file if the argument is not NULL. */
20300
20301 static void
20302 unlink_if_set (void *p)
20303 {
20304 char **filename = p;
20305 if (*filename)
20306 unlink (*filename);
20307 }
20308
20309 /* A helper struct used when iterating over debug_types. */
20310 struct signatured_type_index_data
20311 {
20312 struct objfile *objfile;
20313 struct mapped_symtab *symtab;
20314 struct obstack *types_list;
20315 htab_t psyms_seen;
20316 int cu_index;
20317 };
20318
20319 /* A helper function that writes a single signatured_type to an
20320 obstack. */
20321
20322 static int
20323 write_one_signatured_type (void **slot, void *d)
20324 {
20325 struct signatured_type_index_data *info = d;
20326 struct signatured_type *entry = (struct signatured_type *) *slot;
20327 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20328 struct partial_symtab *psymtab = per_cu->v.psymtab;
20329 gdb_byte val[8];
20330
20331 write_psymbols (info->symtab,
20332 info->psyms_seen,
20333 info->objfile->global_psymbols.list
20334 + psymtab->globals_offset,
20335 psymtab->n_global_syms, info->cu_index,
20336 0);
20337 write_psymbols (info->symtab,
20338 info->psyms_seen,
20339 info->objfile->static_psymbols.list
20340 + psymtab->statics_offset,
20341 psymtab->n_static_syms, info->cu_index,
20342 1);
20343
20344 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20345 entry->per_cu.offset.sect_off);
20346 obstack_grow (info->types_list, val, 8);
20347 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20348 entry->type_offset_in_tu.cu_off);
20349 obstack_grow (info->types_list, val, 8);
20350 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20351 obstack_grow (info->types_list, val, 8);
20352
20353 ++info->cu_index;
20354
20355 return 1;
20356 }
20357
20358 /* Recurse into all "included" dependencies and write their symbols as
20359 if they appeared in this psymtab. */
20360
20361 static void
20362 recursively_write_psymbols (struct objfile *objfile,
20363 struct partial_symtab *psymtab,
20364 struct mapped_symtab *symtab,
20365 htab_t psyms_seen,
20366 offset_type cu_index)
20367 {
20368 int i;
20369
20370 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20371 if (psymtab->dependencies[i]->user != NULL)
20372 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20373 symtab, psyms_seen, cu_index);
20374
20375 write_psymbols (symtab,
20376 psyms_seen,
20377 objfile->global_psymbols.list + psymtab->globals_offset,
20378 psymtab->n_global_syms, cu_index,
20379 0);
20380 write_psymbols (symtab,
20381 psyms_seen,
20382 objfile->static_psymbols.list + psymtab->statics_offset,
20383 psymtab->n_static_syms, cu_index,
20384 1);
20385 }
20386
20387 /* Create an index file for OBJFILE in the directory DIR. */
20388
20389 static void
20390 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20391 {
20392 struct cleanup *cleanup;
20393 char *filename, *cleanup_filename;
20394 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20395 struct obstack cu_list, types_cu_list;
20396 int i;
20397 FILE *out_file;
20398 struct mapped_symtab *symtab;
20399 offset_type val, size_of_contents, total_len;
20400 struct stat st;
20401 htab_t psyms_seen;
20402 htab_t cu_index_htab;
20403 struct psymtab_cu_index_map *psymtab_cu_index_map;
20404
20405 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20406 return;
20407
20408 if (dwarf2_per_objfile->using_index)
20409 error (_("Cannot use an index to create the index"));
20410
20411 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20412 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20413
20414 if (stat (objfile->name, &st) < 0)
20415 perror_with_name (objfile->name);
20416
20417 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20418 INDEX_SUFFIX, (char *) NULL);
20419 cleanup = make_cleanup (xfree, filename);
20420
20421 out_file = fopen (filename, "wb");
20422 if (!out_file)
20423 error (_("Can't open `%s' for writing"), filename);
20424
20425 cleanup_filename = filename;
20426 make_cleanup (unlink_if_set, &cleanup_filename);
20427
20428 symtab = create_mapped_symtab ();
20429 make_cleanup (cleanup_mapped_symtab, symtab);
20430
20431 obstack_init (&addr_obstack);
20432 make_cleanup_obstack_free (&addr_obstack);
20433
20434 obstack_init (&cu_list);
20435 make_cleanup_obstack_free (&cu_list);
20436
20437 obstack_init (&types_cu_list);
20438 make_cleanup_obstack_free (&types_cu_list);
20439
20440 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20441 NULL, xcalloc, xfree);
20442 make_cleanup_htab_delete (psyms_seen);
20443
20444 /* While we're scanning CU's create a table that maps a psymtab pointer
20445 (which is what addrmap records) to its index (which is what is recorded
20446 in the index file). This will later be needed to write the address
20447 table. */
20448 cu_index_htab = htab_create_alloc (100,
20449 hash_psymtab_cu_index,
20450 eq_psymtab_cu_index,
20451 NULL, xcalloc, xfree);
20452 make_cleanup_htab_delete (cu_index_htab);
20453 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20454 xmalloc (sizeof (struct psymtab_cu_index_map)
20455 * dwarf2_per_objfile->n_comp_units);
20456 make_cleanup (xfree, psymtab_cu_index_map);
20457
20458 /* The CU list is already sorted, so we don't need to do additional
20459 work here. Also, the debug_types entries do not appear in
20460 all_comp_units, but only in their own hash table. */
20461 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20462 {
20463 struct dwarf2_per_cu_data *per_cu
20464 = dwarf2_per_objfile->all_comp_units[i];
20465 struct partial_symtab *psymtab = per_cu->v.psymtab;
20466 gdb_byte val[8];
20467 struct psymtab_cu_index_map *map;
20468 void **slot;
20469
20470 if (psymtab->user == NULL)
20471 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20472
20473 map = &psymtab_cu_index_map[i];
20474 map->psymtab = psymtab;
20475 map->cu_index = i;
20476 slot = htab_find_slot (cu_index_htab, map, INSERT);
20477 gdb_assert (slot != NULL);
20478 gdb_assert (*slot == NULL);
20479 *slot = map;
20480
20481 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20482 per_cu->offset.sect_off);
20483 obstack_grow (&cu_list, val, 8);
20484 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20485 obstack_grow (&cu_list, val, 8);
20486 }
20487
20488 /* Dump the address map. */
20489 write_address_map (objfile, &addr_obstack, cu_index_htab);
20490
20491 /* Write out the .debug_type entries, if any. */
20492 if (dwarf2_per_objfile->signatured_types)
20493 {
20494 struct signatured_type_index_data sig_data;
20495
20496 sig_data.objfile = objfile;
20497 sig_data.symtab = symtab;
20498 sig_data.types_list = &types_cu_list;
20499 sig_data.psyms_seen = psyms_seen;
20500 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20501 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20502 write_one_signatured_type, &sig_data);
20503 }
20504
20505 /* Now that we've processed all symbols we can shrink their cu_indices
20506 lists. */
20507 uniquify_cu_indices (symtab);
20508
20509 obstack_init (&constant_pool);
20510 make_cleanup_obstack_free (&constant_pool);
20511 obstack_init (&symtab_obstack);
20512 make_cleanup_obstack_free (&symtab_obstack);
20513 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20514
20515 obstack_init (&contents);
20516 make_cleanup_obstack_free (&contents);
20517 size_of_contents = 6 * sizeof (offset_type);
20518 total_len = size_of_contents;
20519
20520 /* The version number. */
20521 val = MAYBE_SWAP (8);
20522 obstack_grow (&contents, &val, sizeof (val));
20523
20524 /* The offset of the CU list from the start of the file. */
20525 val = MAYBE_SWAP (total_len);
20526 obstack_grow (&contents, &val, sizeof (val));
20527 total_len += obstack_object_size (&cu_list);
20528
20529 /* The offset of the types CU list from the start of the file. */
20530 val = MAYBE_SWAP (total_len);
20531 obstack_grow (&contents, &val, sizeof (val));
20532 total_len += obstack_object_size (&types_cu_list);
20533
20534 /* The offset of the address table from the start of the file. */
20535 val = MAYBE_SWAP (total_len);
20536 obstack_grow (&contents, &val, sizeof (val));
20537 total_len += obstack_object_size (&addr_obstack);
20538
20539 /* The offset of the symbol table from the start of the file. */
20540 val = MAYBE_SWAP (total_len);
20541 obstack_grow (&contents, &val, sizeof (val));
20542 total_len += obstack_object_size (&symtab_obstack);
20543
20544 /* The offset of the constant pool from the start of the file. */
20545 val = MAYBE_SWAP (total_len);
20546 obstack_grow (&contents, &val, sizeof (val));
20547 total_len += obstack_object_size (&constant_pool);
20548
20549 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20550
20551 write_obstack (out_file, &contents);
20552 write_obstack (out_file, &cu_list);
20553 write_obstack (out_file, &types_cu_list);
20554 write_obstack (out_file, &addr_obstack);
20555 write_obstack (out_file, &symtab_obstack);
20556 write_obstack (out_file, &constant_pool);
20557
20558 fclose (out_file);
20559
20560 /* We want to keep the file, so we set cleanup_filename to NULL
20561 here. See unlink_if_set. */
20562 cleanup_filename = NULL;
20563
20564 do_cleanups (cleanup);
20565 }
20566
20567 /* Implementation of the `save gdb-index' command.
20568
20569 Note that the file format used by this command is documented in the
20570 GDB manual. Any changes here must be documented there. */
20571
20572 static void
20573 save_gdb_index_command (char *arg, int from_tty)
20574 {
20575 struct objfile *objfile;
20576
20577 if (!arg || !*arg)
20578 error (_("usage: save gdb-index DIRECTORY"));
20579
20580 ALL_OBJFILES (objfile)
20581 {
20582 struct stat st;
20583
20584 /* If the objfile does not correspond to an actual file, skip it. */
20585 if (stat (objfile->name, &st) < 0)
20586 continue;
20587
20588 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20589 if (dwarf2_per_objfile)
20590 {
20591 volatile struct gdb_exception except;
20592
20593 TRY_CATCH (except, RETURN_MASK_ERROR)
20594 {
20595 write_psymtabs_to_index (objfile, arg);
20596 }
20597 if (except.reason < 0)
20598 exception_fprintf (gdb_stderr, except,
20599 _("Error while writing index for `%s': "),
20600 objfile->name);
20601 }
20602 }
20603 }
20604
20605 \f
20606
20607 int dwarf2_always_disassemble;
20608
20609 static void
20610 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20611 struct cmd_list_element *c, const char *value)
20612 {
20613 fprintf_filtered (file,
20614 _("Whether to always disassemble "
20615 "DWARF expressions is %s.\n"),
20616 value);
20617 }
20618
20619 static void
20620 show_check_physname (struct ui_file *file, int from_tty,
20621 struct cmd_list_element *c, const char *value)
20622 {
20623 fprintf_filtered (file,
20624 _("Whether to check \"physname\" is %s.\n"),
20625 value);
20626 }
20627
20628 void _initialize_dwarf2_read (void);
20629
20630 void
20631 _initialize_dwarf2_read (void)
20632 {
20633 struct cmd_list_element *c;
20634
20635 dwarf2_objfile_data_key
20636 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20637
20638 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20639 Set DWARF 2 specific variables.\n\
20640 Configure DWARF 2 variables such as the cache size"),
20641 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20642 0/*allow-unknown*/, &maintenance_set_cmdlist);
20643
20644 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20645 Show DWARF 2 specific variables\n\
20646 Show DWARF 2 variables such as the cache size"),
20647 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20648 0/*allow-unknown*/, &maintenance_show_cmdlist);
20649
20650 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20651 &dwarf2_max_cache_age, _("\
20652 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20653 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20654 A higher limit means that cached compilation units will be stored\n\
20655 in memory longer, and more total memory will be used. Zero disables\n\
20656 caching, which can slow down startup."),
20657 NULL,
20658 show_dwarf2_max_cache_age,
20659 &set_dwarf2_cmdlist,
20660 &show_dwarf2_cmdlist);
20661
20662 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20663 &dwarf2_always_disassemble, _("\
20664 Set whether `info address' always disassembles DWARF expressions."), _("\
20665 Show whether `info address' always disassembles DWARF expressions."), _("\
20666 When enabled, DWARF expressions are always printed in an assembly-like\n\
20667 syntax. When disabled, expressions will be printed in a more\n\
20668 conversational style, when possible."),
20669 NULL,
20670 show_dwarf2_always_disassemble,
20671 &set_dwarf2_cmdlist,
20672 &show_dwarf2_cmdlist);
20673
20674 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20675 Set debugging of the dwarf2 reader."), _("\
20676 Show debugging of the dwarf2 reader."), _("\
20677 When enabled, debugging messages are printed during dwarf2 reading\n\
20678 and symtab expansion."),
20679 NULL,
20680 NULL,
20681 &setdebuglist, &showdebuglist);
20682
20683 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20684 Set debugging of the dwarf2 DIE reader."), _("\
20685 Show debugging of the dwarf2 DIE reader."), _("\
20686 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20687 The value is the maximum depth to print."),
20688 NULL,
20689 NULL,
20690 &setdebuglist, &showdebuglist);
20691
20692 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20693 Set cross-checking of \"physname\" code against demangler."), _("\
20694 Show cross-checking of \"physname\" code against demangler."), _("\
20695 When enabled, GDB's internal \"physname\" code is checked against\n\
20696 the demangler."),
20697 NULL, show_check_physname,
20698 &setdebuglist, &showdebuglist);
20699
20700 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20701 no_class, &use_deprecated_index_sections, _("\
20702 Set whether to use deprecated gdb_index sections."), _("\
20703 Show whether to use deprecated gdb_index sections."), _("\
20704 When enabled, deprecated .gdb_index sections are used anyway.\n\
20705 Normally they are ignored either because of a missing feature or\n\
20706 performance issue.\n\
20707 Warning: This option must be enabled before gdb reads the file."),
20708 NULL,
20709 NULL,
20710 &setlist, &showlist);
20711
20712 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20713 _("\
20714 Save a gdb-index file.\n\
20715 Usage: save gdb-index DIRECTORY"),
20716 &save_cmdlist);
20717 set_cmd_completer (c, filename_completer);
20718 }
This page took 0.486267 seconds and 4 git commands to generate.