fb888da7b8e3fee1c725a64d905538dd70304ab7
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop, struct type *type);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1894 static struct type *dwarf2_per_cu_addr_sized_int_type
1895 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1896
1897 /* Class, the destructor of which frees all allocated queue entries. This
1898 will only have work to do if an error was thrown while processing the
1899 dwarf. If no error was thrown then the queue entries should have all
1900 been processed, and freed, as we went along. */
1901
1902 class dwarf2_queue_guard
1903 {
1904 public:
1905 dwarf2_queue_guard () = default;
1906
1907 /* Free any entries remaining on the queue. There should only be
1908 entries left if we hit an error while processing the dwarf. */
1909 ~dwarf2_queue_guard ()
1910 {
1911 struct dwarf2_queue_item *item, *last;
1912
1913 item = dwarf2_queue;
1914 while (item)
1915 {
1916 /* Anything still marked queued is likely to be in an
1917 inconsistent state, so discard it. */
1918 if (item->per_cu->queued)
1919 {
1920 if (item->per_cu->cu != NULL)
1921 free_one_cached_comp_unit (item->per_cu);
1922 item->per_cu->queued = 0;
1923 }
1924
1925 last = item;
1926 item = item->next;
1927 xfree (last);
1928 }
1929
1930 dwarf2_queue = dwarf2_queue_tail = NULL;
1931 }
1932 };
1933
1934 /* The return type of find_file_and_directory. Note, the enclosed
1935 string pointers are only valid while this object is valid. */
1936
1937 struct file_and_directory
1938 {
1939 /* The filename. This is never NULL. */
1940 const char *name;
1941
1942 /* The compilation directory. NULL if not known. If we needed to
1943 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1944 points directly to the DW_AT_comp_dir string attribute owned by
1945 the obstack that owns the DIE. */
1946 const char *comp_dir;
1947
1948 /* If we needed to build a new string for comp_dir, this is what
1949 owns the storage. */
1950 std::string comp_dir_storage;
1951 };
1952
1953 static file_and_directory find_file_and_directory (struct die_info *die,
1954 struct dwarf2_cu *cu);
1955
1956 static char *file_full_name (int file, struct line_header *lh,
1957 const char *comp_dir);
1958
1959 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1960 enum class rcuh_kind { COMPILE, TYPE };
1961
1962 static const gdb_byte *read_and_check_comp_unit_head
1963 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1964 struct comp_unit_head *header,
1965 struct dwarf2_section_info *section,
1966 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1967 rcuh_kind section_kind);
1968
1969 static void init_cutu_and_read_dies
1970 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1971 int use_existing_cu, int keep, bool skip_partial,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static void init_cutu_and_read_dies_simple
1975 (struct dwarf2_per_cu_data *this_cu,
1976 die_reader_func_ftype *die_reader_func, void *data);
1977
1978 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1979
1980 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1981
1982 static struct dwo_unit *lookup_dwo_unit_in_dwp
1983 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1984 struct dwp_file *dwp_file, const char *comp_dir,
1985 ULONGEST signature, int is_debug_types);
1986
1987 static struct dwp_file *get_dwp_file
1988 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1989
1990 static struct dwo_unit *lookup_dwo_comp_unit
1991 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1992
1993 static struct dwo_unit *lookup_dwo_type_unit
1994 (struct signatured_type *, const char *, const char *);
1995
1996 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1997
1998 /* A unique pointer to a dwo_file. */
1999
2000 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2001
2002 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003
2004 static void check_producer (struct dwarf2_cu *cu);
2005
2006 static void free_line_header_voidp (void *arg);
2007 \f
2008 /* Various complaints about symbol reading that don't abort the process. */
2009
2010 static void
2011 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2012 {
2013 complaint (_("statement list doesn't fit in .debug_line section"));
2014 }
2015
2016 static void
2017 dwarf2_debug_line_missing_file_complaint (void)
2018 {
2019 complaint (_(".debug_line section has line data without a file"));
2020 }
2021
2022 static void
2023 dwarf2_debug_line_missing_end_sequence_complaint (void)
2024 {
2025 complaint (_(".debug_line section has line "
2026 "program sequence without an end"));
2027 }
2028
2029 static void
2030 dwarf2_complex_location_expr_complaint (void)
2031 {
2032 complaint (_("location expression too complex"));
2033 }
2034
2035 static void
2036 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2037 int arg3)
2038 {
2039 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 arg1, arg2, arg3);
2041 }
2042
2043 static void
2044 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2045 {
2046 complaint (_("debug info runs off end of %s section"
2047 " [in module %s]"),
2048 get_section_name (section),
2049 get_section_file_name (section));
2050 }
2051
2052 static void
2053 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2054 {
2055 complaint (_("macro debug info contains a "
2056 "malformed macro definition:\n`%s'"),
2057 arg1);
2058 }
2059
2060 static void
2061 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2062 {
2063 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 arg1, arg2);
2065 }
2066
2067 /* Hash function for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash (const struct line_header *ofs)
2071 {
2072 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2073 }
2074
2075 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash_voidp (const void *item)
2079 {
2080 const struct line_header *ofs = (const struct line_header *) item;
2081
2082 return line_header_hash (ofs);
2083 }
2084
2085 /* Equality function for line_header_hash. */
2086
2087 static int
2088 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2089 {
2090 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2091 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2092
2093 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2094 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 }
2096
2097 \f
2098
2099 /* Read the given attribute value as an address, taking the attribute's
2100 form into account. */
2101
2102 static CORE_ADDR
2103 attr_value_as_address (struct attribute *attr)
2104 {
2105 CORE_ADDR addr;
2106
2107 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2108 && attr->form != DW_FORM_GNU_addr_index)
2109 {
2110 /* Aside from a few clearly defined exceptions, attributes that
2111 contain an address must always be in DW_FORM_addr form.
2112 Unfortunately, some compilers happen to be violating this
2113 requirement by encoding addresses using other forms, such
2114 as DW_FORM_data4 for example. For those broken compilers,
2115 we try to do our best, without any guarantee of success,
2116 to interpret the address correctly. It would also be nice
2117 to generate a complaint, but that would require us to maintain
2118 a list of legitimate cases where a non-address form is allowed,
2119 as well as update callers to pass in at least the CU's DWARF
2120 version. This is more overhead than what we're willing to
2121 expand for a pretty rare case. */
2122 addr = DW_UNSND (attr);
2123 }
2124 else
2125 addr = DW_ADDR (attr);
2126
2127 return addr;
2128 }
2129
2130 /* See declaration. */
2131
2132 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2133 const dwarf2_debug_sections *names)
2134 : objfile (objfile_)
2135 {
2136 if (names == NULL)
2137 names = &dwarf2_elf_names;
2138
2139 bfd *obfd = objfile->obfd;
2140
2141 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2142 locate_sections (obfd, sec, *names);
2143 }
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 /* Everything else should be on the objfile obstack. */
2163 }
2164
2165 /* See declaration. */
2166
2167 void
2168 dwarf2_per_objfile::free_cached_comp_units ()
2169 {
2170 dwarf2_per_cu_data *per_cu = read_in_chain;
2171 dwarf2_per_cu_data **last_chain = &read_in_chain;
2172 while (per_cu != NULL)
2173 {
2174 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2175
2176 delete per_cu->cu;
2177 *last_chain = next_cu;
2178 per_cu = next_cu;
2179 }
2180 }
2181
2182 /* A helper class that calls free_cached_comp_units on
2183 destruction. */
2184
2185 class free_cached_comp_units
2186 {
2187 public:
2188
2189 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2190 : m_per_objfile (per_objfile)
2191 {
2192 }
2193
2194 ~free_cached_comp_units ()
2195 {
2196 m_per_objfile->free_cached_comp_units ();
2197 }
2198
2199 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2200
2201 private:
2202
2203 dwarf2_per_objfile *m_per_objfile;
2204 };
2205
2206 /* Try to locate the sections we need for DWARF 2 debugging
2207 information and return true if we have enough to do something.
2208 NAMES points to the dwarf2 section names, or is NULL if the standard
2209 ELF names are used. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names)
2214 {
2215 if (objfile->flags & OBJF_READNEVER)
2216 return 0;
2217
2218 struct dwarf2_per_objfile *dwarf2_per_objfile
2219 = get_dwarf2_per_objfile (objfile);
2220
2221 if (dwarf2_per_objfile == NULL)
2222 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2223 names);
2224
2225 return (!dwarf2_per_objfile->info.is_virtual
2226 && dwarf2_per_objfile->info.s.section != NULL
2227 && !dwarf2_per_objfile->abbrev.is_virtual
2228 && dwarf2_per_objfile->abbrev.s.section != NULL);
2229 }
2230
2231 /* Return the containing section of virtual section SECTION. */
2232
2233 static struct dwarf2_section_info *
2234 get_containing_section (const struct dwarf2_section_info *section)
2235 {
2236 gdb_assert (section->is_virtual);
2237 return section->s.containing_section;
2238 }
2239
2240 /* Return the bfd owner of SECTION. */
2241
2242 static struct bfd *
2243 get_section_bfd_owner (const struct dwarf2_section_info *section)
2244 {
2245 if (section->is_virtual)
2246 {
2247 section = get_containing_section (section);
2248 gdb_assert (!section->is_virtual);
2249 }
2250 return section->s.section->owner;
2251 }
2252
2253 /* Return the bfd section of SECTION.
2254 Returns NULL if the section is not present. */
2255
2256 static asection *
2257 get_section_bfd_section (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
2264 return section->s.section;
2265 }
2266
2267 /* Return the name of SECTION. */
2268
2269 static const char *
2270 get_section_name (const struct dwarf2_section_info *section)
2271 {
2272 asection *sectp = get_section_bfd_section (section);
2273
2274 gdb_assert (sectp != NULL);
2275 return bfd_section_name (get_section_bfd_owner (section), sectp);
2276 }
2277
2278 /* Return the name of the file SECTION is in. */
2279
2280 static const char *
2281 get_section_file_name (const struct dwarf2_section_info *section)
2282 {
2283 bfd *abfd = get_section_bfd_owner (section);
2284
2285 return bfd_get_filename (abfd);
2286 }
2287
2288 /* Return the id of SECTION.
2289 Returns 0 if SECTION doesn't exist. */
2290
2291 static int
2292 get_section_id (const struct dwarf2_section_info *section)
2293 {
2294 asection *sectp = get_section_bfd_section (section);
2295
2296 if (sectp == NULL)
2297 return 0;
2298 return sectp->id;
2299 }
2300
2301 /* Return the flags of SECTION.
2302 SECTION (or containing section if this is a virtual section) must exist. */
2303
2304 static int
2305 get_section_flags (const struct dwarf2_section_info *section)
2306 {
2307 asection *sectp = get_section_bfd_section (section);
2308
2309 gdb_assert (sectp != NULL);
2310 return bfd_get_section_flags (sectp->owner, sectp);
2311 }
2312
2313 /* When loading sections, we look either for uncompressed section or for
2314 compressed section names. */
2315
2316 static int
2317 section_is_p (const char *section_name,
2318 const struct dwarf2_section_names *names)
2319 {
2320 if (names->normal != NULL
2321 && strcmp (section_name, names->normal) == 0)
2322 return 1;
2323 if (names->compressed != NULL
2324 && strcmp (section_name, names->compressed) == 0)
2325 return 1;
2326 return 0;
2327 }
2328
2329 /* See declaration. */
2330
2331 void
2332 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2333 const dwarf2_debug_sections &names)
2334 {
2335 flagword aflag = bfd_get_section_flags (abfd, sectp);
2336
2337 if ((aflag & SEC_HAS_CONTENTS) == 0)
2338 {
2339 }
2340 else if (section_is_p (sectp->name, &names.info))
2341 {
2342 this->info.s.section = sectp;
2343 this->info.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.abbrev))
2346 {
2347 this->abbrev.s.section = sectp;
2348 this->abbrev.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.line))
2351 {
2352 this->line.s.section = sectp;
2353 this->line.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loc))
2356 {
2357 this->loc.s.section = sectp;
2358 this->loc.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.loclists))
2361 {
2362 this->loclists.s.section = sectp;
2363 this->loclists.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macinfo))
2366 {
2367 this->macinfo.s.section = sectp;
2368 this->macinfo.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.macro))
2371 {
2372 this->macro.s.section = sectp;
2373 this->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.str))
2376 {
2377 this->str.s.section = sectp;
2378 this->str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.line_str))
2381 {
2382 this->line_str.s.section = sectp;
2383 this->line_str.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.addr))
2386 {
2387 this->addr.s.section = sectp;
2388 this->addr.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.frame))
2391 {
2392 this->frame.s.section = sectp;
2393 this->frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.eh_frame))
2396 {
2397 this->eh_frame.s.section = sectp;
2398 this->eh_frame.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.ranges))
2401 {
2402 this->ranges.s.section = sectp;
2403 this->ranges.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.rnglists))
2406 {
2407 this->rnglists.s.section = sectp;
2408 this->rnglists.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.types))
2411 {
2412 struct dwarf2_section_info type_section;
2413
2414 memset (&type_section, 0, sizeof (type_section));
2415 type_section.s.section = sectp;
2416 type_section.size = bfd_get_section_size (sectp);
2417
2418 this->types.push_back (type_section);
2419 }
2420 else if (section_is_p (sectp->name, &names.gdb_index))
2421 {
2422 this->gdb_index.s.section = sectp;
2423 this->gdb_index.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.debug_names))
2426 {
2427 this->debug_names.s.section = sectp;
2428 this->debug_names.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.debug_aranges))
2431 {
2432 this->debug_aranges.s.section = sectp;
2433 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 }
2435
2436 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2437 && bfd_section_vma (abfd, sectp) == 0)
2438 this->has_section_at_zero = true;
2439 }
2440
2441 /* A helper function that decides whether a section is empty,
2442 or not present. */
2443
2444 static int
2445 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2446 {
2447 if (section->is_virtual)
2448 return section->size == 0;
2449 return section->s.section == NULL || section->size == 0;
2450 }
2451
2452 /* See dwarf2read.h. */
2453
2454 void
2455 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2456 {
2457 asection *sectp;
2458 bfd *abfd;
2459 gdb_byte *buf, *retbuf;
2460
2461 if (info->readin)
2462 return;
2463 info->buffer = NULL;
2464 info->readin = true;
2465
2466 if (dwarf2_section_empty_p (info))
2467 return;
2468
2469 sectp = get_section_bfd_section (info);
2470
2471 /* If this is a virtual section we need to read in the real one first. */
2472 if (info->is_virtual)
2473 {
2474 struct dwarf2_section_info *containing_section =
2475 get_containing_section (info);
2476
2477 gdb_assert (sectp != NULL);
2478 if ((sectp->flags & SEC_RELOC) != 0)
2479 {
2480 error (_("Dwarf Error: DWP format V2 with relocations is not"
2481 " supported in section %s [in module %s]"),
2482 get_section_name (info), get_section_file_name (info));
2483 }
2484 dwarf2_read_section (objfile, containing_section);
2485 /* Other code should have already caught virtual sections that don't
2486 fit. */
2487 gdb_assert (info->virtual_offset + info->size
2488 <= containing_section->size);
2489 /* If the real section is empty or there was a problem reading the
2490 section we shouldn't get here. */
2491 gdb_assert (containing_section->buffer != NULL);
2492 info->buffer = containing_section->buffer + info->virtual_offset;
2493 return;
2494 }
2495
2496 /* If the section has relocations, we must read it ourselves.
2497 Otherwise we attach it to the BFD. */
2498 if ((sectp->flags & SEC_RELOC) == 0)
2499 {
2500 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2501 return;
2502 }
2503
2504 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 info->buffer = buf;
2506
2507 /* When debugging .o files, we may need to apply relocations; see
2508 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2509 We never compress sections in .o files, so we only need to
2510 try this when the section is not compressed. */
2511 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 if (retbuf != NULL)
2513 {
2514 info->buffer = retbuf;
2515 return;
2516 }
2517
2518 abfd = get_section_bfd_owner (info);
2519 gdb_assert (abfd != NULL);
2520
2521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2522 || bfd_bread (buf, info->size, abfd) != info->size)
2523 {
2524 error (_("Dwarf Error: Can't read DWARF data"
2525 " in section %s [in module %s]"),
2526 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2527 }
2528 }
2529
2530 /* A helper function that returns the size of a section in a safe way.
2531 If you are positive that the section has been read before using the
2532 size, then it is safe to refer to the dwarf2_section_info object's
2533 "size" field directly. In other cases, you must call this
2534 function, because for compressed sections the size field is not set
2535 correctly until the section has been read. */
2536
2537 static bfd_size_type
2538 dwarf2_section_size (struct objfile *objfile,
2539 struct dwarf2_section_info *info)
2540 {
2541 if (!info->readin)
2542 dwarf2_read_section (objfile, info);
2543 return info->size;
2544 }
2545
2546 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2547 SECTION_NAME. */
2548
2549 void
2550 dwarf2_get_section_info (struct objfile *objfile,
2551 enum dwarf2_section_enum sect,
2552 asection **sectp, const gdb_byte **bufp,
2553 bfd_size_type *sizep)
2554 {
2555 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* See dwarf2read.h. */
2633
2634 struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 bfd_size_type buildid_len_arg;
2639 size_t buildid_len;
2640 bfd_byte *buildid;
2641
2642 if (dwarf2_per_objfile->dwz_file != NULL)
2643 return dwarf2_per_objfile->dwz_file.get ();
2644
2645 bfd_set_error (bfd_error_no_error);
2646 gdb::unique_xmalloc_ptr<char> data
2647 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2648 &buildid_len_arg, &buildid));
2649 if (data == NULL)
2650 {
2651 if (bfd_get_error () == bfd_error_no_error)
2652 return NULL;
2653 error (_("could not read '.gnu_debugaltlink' section: %s"),
2654 bfd_errmsg (bfd_get_error ()));
2655 }
2656
2657 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2658
2659 buildid_len = (size_t) buildid_len_arg;
2660
2661 filename = data.get ();
2662
2663 std::string abs_storage;
2664 if (!IS_ABSOLUTE_PATH (filename))
2665 {
2666 gdb::unique_xmalloc_ptr<char> abs
2667 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2668
2669 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2670 filename = abs_storage.c_str ();
2671 }
2672
2673 /* First try the file name given in the section. If that doesn't
2674 work, try to use the build-id instead. */
2675 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2676 if (dwz_bfd != NULL)
2677 {
2678 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2679 dwz_bfd.reset (nullptr);
2680 }
2681
2682 if (dwz_bfd == NULL)
2683 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2684
2685 if (dwz_bfd == NULL)
2686 error (_("could not find '.gnu_debugaltlink' file for %s"),
2687 objfile_name (dwarf2_per_objfile->objfile));
2688
2689 std::unique_ptr<struct dwz_file> result
2690 (new struct dwz_file (std::move (dwz_bfd)));
2691
2692 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2693 result.get ());
2694
2695 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2696 result->dwz_bfd.get ());
2697 dwarf2_per_objfile->dwz_file = std::move (result);
2698 return dwarf2_per_objfile->dwz_file.get ();
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu, skip_partial);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu, skip_partial);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* See declaration. */
2911
2912 dwarf2_per_cu_data *
2913 dwarf2_per_objfile::get_cutu (int index)
2914 {
2915 if (index >= this->all_comp_units.size ())
2916 {
2917 index -= this->all_comp_units.size ();
2918 gdb_assert (index < this->all_type_units.size ());
2919 return &this->all_type_units[index]->per_cu;
2920 }
2921
2922 return this->all_comp_units[index];
2923 }
2924
2925 /* See declaration. */
2926
2927 dwarf2_per_cu_data *
2928 dwarf2_per_objfile::get_cu (int index)
2929 {
2930 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2931
2932 return this->all_comp_units[index];
2933 }
2934
2935 /* See declaration. */
2936
2937 signatured_type *
2938 dwarf2_per_objfile::get_tu (int index)
2939 {
2940 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2941
2942 return this->all_type_units[index];
2943 }
2944
2945 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2946 objfile_obstack, and constructed with the specified field
2947 values. */
2948
2949 static dwarf2_per_cu_data *
2950 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2951 struct dwarf2_section_info *section,
2952 int is_dwz,
2953 sect_offset sect_off, ULONGEST length)
2954 {
2955 struct objfile *objfile = dwarf2_per_objfile->objfile;
2956 dwarf2_per_cu_data *the_cu
2957 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2958 struct dwarf2_per_cu_data);
2959 the_cu->sect_off = sect_off;
2960 the_cu->length = length;
2961 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2962 the_cu->section = section;
2963 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_quick_data);
2965 the_cu->is_dwz = is_dwz;
2966 return the_cu;
2967 }
2968
2969 /* A helper for create_cus_from_index that handles a given list of
2970 CUs. */
2971
2972 static void
2973 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2974 const gdb_byte *cu_list, offset_type n_elements,
2975 struct dwarf2_section_info *section,
2976 int is_dwz)
2977 {
2978 for (offset_type i = 0; i < n_elements; i += 2)
2979 {
2980 gdb_static_assert (sizeof (ULONGEST) >= 8);
2981
2982 sect_offset sect_off
2983 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2984 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2985 cu_list += 2 * 8;
2986
2987 dwarf2_per_cu_data *per_cu
2988 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2989 sect_off, length);
2990 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2991 }
2992 }
2993
2994 /* Read the CU list from the mapped index, and use it to create all
2995 the CU objects for this objfile. */
2996
2997 static void
2998 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2999 const gdb_byte *cu_list, offset_type cu_list_elements,
3000 const gdb_byte *dwz_list, offset_type dwz_elements)
3001 {
3002 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3003 dwarf2_per_objfile->all_comp_units.reserve
3004 ((cu_list_elements + dwz_elements) / 2);
3005
3006 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3007 &dwarf2_per_objfile->info, 0);
3008
3009 if (dwz_elements == 0)
3010 return;
3011
3012 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3013 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3014 &dwz->info, 1);
3015 }
3016
3017 /* Create the signatured type hash table from the index. */
3018
3019 static void
3020 create_signatured_type_table_from_index
3021 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3022 struct dwarf2_section_info *section,
3023 const gdb_byte *bytes,
3024 offset_type elements)
3025 {
3026 struct objfile *objfile = dwarf2_per_objfile->objfile;
3027
3028 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3029 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3030
3031 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3032
3033 for (offset_type i = 0; i < elements; i += 3)
3034 {
3035 struct signatured_type *sig_type;
3036 ULONGEST signature;
3037 void **slot;
3038 cu_offset type_offset_in_tu;
3039
3040 gdb_static_assert (sizeof (ULONGEST) >= 8);
3041 sect_offset sect_off
3042 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3043 type_offset_in_tu
3044 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3045 BFD_ENDIAN_LITTLE);
3046 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3047 bytes += 3 * 8;
3048
3049 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3050 struct signatured_type);
3051 sig_type->signature = signature;
3052 sig_type->type_offset_in_tu = type_offset_in_tu;
3053 sig_type->per_cu.is_debug_types = 1;
3054 sig_type->per_cu.section = section;
3055 sig_type->per_cu.sect_off = sect_off;
3056 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3057 sig_type->per_cu.v.quick
3058 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3059 struct dwarf2_per_cu_quick_data);
3060
3061 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3062 *slot = sig_type;
3063
3064 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3065 }
3066
3067 dwarf2_per_objfile->signatured_types = sig_types_hash;
3068 }
3069
3070 /* Create the signatured type hash table from .debug_names. */
3071
3072 static void
3073 create_signatured_type_table_from_debug_names
3074 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3075 const mapped_debug_names &map,
3076 struct dwarf2_section_info *section,
3077 struct dwarf2_section_info *abbrev_section)
3078 {
3079 struct objfile *objfile = dwarf2_per_objfile->objfile;
3080
3081 dwarf2_read_section (objfile, section);
3082 dwarf2_read_section (objfile, abbrev_section);
3083
3084 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3085 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3086
3087 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3088
3089 for (uint32_t i = 0; i < map.tu_count; ++i)
3090 {
3091 struct signatured_type *sig_type;
3092 void **slot;
3093
3094 sect_offset sect_off
3095 = (sect_offset) (extract_unsigned_integer
3096 (map.tu_table_reordered + i * map.offset_size,
3097 map.offset_size,
3098 map.dwarf5_byte_order));
3099
3100 comp_unit_head cu_header;
3101 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3102 abbrev_section,
3103 section->buffer + to_underlying (sect_off),
3104 rcuh_kind::TYPE);
3105
3106 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct signatured_type);
3108 sig_type->signature = cu_header.signature;
3109 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3110 sig_type->per_cu.is_debug_types = 1;
3111 sig_type->per_cu.section = section;
3112 sig_type->per_cu.sect_off = sect_off;
3113 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3114 sig_type->per_cu.v.quick
3115 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3116 struct dwarf2_per_cu_quick_data);
3117
3118 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3119 *slot = sig_type;
3120
3121 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3122 }
3123
3124 dwarf2_per_objfile->signatured_types = sig_types_hash;
3125 }
3126
3127 /* Read the address map data from the mapped index, and use it to
3128 populate the objfile's psymtabs_addrmap. */
3129
3130 static void
3131 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3132 struct mapped_index *index)
3133 {
3134 struct objfile *objfile = dwarf2_per_objfile->objfile;
3135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3136 const gdb_byte *iter, *end;
3137 struct addrmap *mutable_map;
3138 CORE_ADDR baseaddr;
3139
3140 auto_obstack temp_obstack;
3141
3142 mutable_map = addrmap_create_mutable (&temp_obstack);
3143
3144 iter = index->address_table.data ();
3145 end = iter + index->address_table.size ();
3146
3147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3148
3149 while (iter < end)
3150 {
3151 ULONGEST hi, lo, cu_index;
3152 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3153 iter += 8;
3154 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 iter += 4;
3158
3159 if (lo > hi)
3160 {
3161 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3162 hex_string (lo), hex_string (hi));
3163 continue;
3164 }
3165
3166 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3167 {
3168 complaint (_(".gdb_index address table has invalid CU number %u"),
3169 (unsigned) cu_index);
3170 continue;
3171 }
3172
3173 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3174 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3175 addrmap_set_empty (mutable_map, lo, hi - 1,
3176 dwarf2_per_objfile->get_cu (cu_index));
3177 }
3178
3179 objfile->partial_symtabs->psymtabs_addrmap
3180 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3181 }
3182
3183 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3184 populate the objfile's psymtabs_addrmap. */
3185
3186 static void
3187 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3188 struct dwarf2_section_info *section)
3189 {
3190 struct objfile *objfile = dwarf2_per_objfile->objfile;
3191 bfd *abfd = objfile->obfd;
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3194 SECT_OFF_TEXT (objfile));
3195
3196 auto_obstack temp_obstack;
3197 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3198
3199 std::unordered_map<sect_offset,
3200 dwarf2_per_cu_data *,
3201 gdb::hash_enum<sect_offset>>
3202 debug_info_offset_to_per_cu;
3203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3204 {
3205 const auto insertpair
3206 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3207 if (!insertpair.second)
3208 {
3209 warning (_("Section .debug_aranges in %s has duplicate "
3210 "debug_info_offset %s, ignoring .debug_aranges."),
3211 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 return;
3213 }
3214 }
3215
3216 dwarf2_read_section (objfile, section);
3217
3218 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3219
3220 const gdb_byte *addr = section->buffer;
3221
3222 while (addr < section->buffer + section->size)
3223 {
3224 const gdb_byte *const entry_addr = addr;
3225 unsigned int bytes_read;
3226
3227 const LONGEST entry_length = read_initial_length (abfd, addr,
3228 &bytes_read);
3229 addr += bytes_read;
3230
3231 const gdb_byte *const entry_end = addr + entry_length;
3232 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3233 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3234 if (addr + entry_length > section->buffer + section->size)
3235 {
3236 warning (_("Section .debug_aranges in %s entry at offset %s "
3237 "length %s exceeds section length %s, "
3238 "ignoring .debug_aranges."),
3239 objfile_name (objfile),
3240 plongest (entry_addr - section->buffer),
3241 plongest (bytes_read + entry_length),
3242 pulongest (section->size));
3243 return;
3244 }
3245
3246 /* The version number. */
3247 const uint16_t version = read_2_bytes (abfd, addr);
3248 addr += 2;
3249 if (version != 2)
3250 {
3251 warning (_("Section .debug_aranges in %s entry at offset %s "
3252 "has unsupported version %d, ignoring .debug_aranges."),
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer), version);
3255 return;
3256 }
3257
3258 const uint64_t debug_info_offset
3259 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3260 addr += offset_size;
3261 const auto per_cu_it
3262 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3263 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3264 {
3265 warning (_("Section .debug_aranges in %s entry at offset %s "
3266 "debug_info_offset %s does not exists, "
3267 "ignoring .debug_aranges."),
3268 objfile_name (objfile),
3269 plongest (entry_addr - section->buffer),
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %s "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile),
3281 plongest (entry_addr - section->buffer), address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %s "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile),
3292 plongest (entry_addr - section->buffer),
3293 segment_selector_size);
3294 return;
3295 }
3296
3297 /* Must pad to an alignment boundary that is twice the address
3298 size. It is undocumented by the DWARF standard but GCC does
3299 use it. */
3300 for (size_t padding = ((-(addr - section->buffer))
3301 & (2 * address_size - 1));
3302 padding > 0; padding--)
3303 if (*addr++ != 0)
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %s "
3306 "padding is not zero, ignoring .debug_aranges."),
3307 objfile_name (objfile),
3308 plongest (entry_addr - section->buffer));
3309 return;
3310 }
3311
3312 for (;;)
3313 {
3314 if (addr + 2 * address_size > entry_end)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %s "
3317 "address list is not properly terminated, "
3318 "ignoring .debug_aranges."),
3319 objfile_name (objfile),
3320 plongest (entry_addr - section->buffer));
3321 return;
3322 }
3323 ULONGEST start = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 ULONGEST length = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 if (start == 0 && length == 0)
3330 break;
3331 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3332 {
3333 /* Symbol was eliminated due to a COMDAT group. */
3334 continue;
3335 }
3336 ULONGEST end = start + length;
3337 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3338 - baseaddr);
3339 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3340 - baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->partial_symtabs->psymtabs_addrmap
3346 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from BUFFER and fills
3412 in MAP. FILENAME is the name of the file containing the data;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns true if all went well, false otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_buffer (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 gdb::array_view<const gdb_byte> buffer,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr = &buffer[0];
3434
3435 /* Version check. */
3436 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3437 /* Versions earlier than 3 emitted every copy of a psymbol. This
3438 causes the index to behave very poorly for certain requests. Version 3
3439 contained incomplete addrmap. So, it seems better to just ignore such
3440 indices. */
3441 if (version < 4)
3442 {
3443 static int warning_printed = 0;
3444 if (!warning_printed)
3445 {
3446 warning (_("Skipping obsolete .gdb_index section in %s."),
3447 filename);
3448 warning_printed = 1;
3449 }
3450 return 0;
3451 }
3452 /* Index version 4 uses a different hash function than index version
3453 5 and later.
3454
3455 Versions earlier than 6 did not emit psymbols for inlined
3456 functions. Using these files will cause GDB not to be able to
3457 set breakpoints on inlined functions by name, so we ignore these
3458 indices unless the user has done
3459 "set use-deprecated-index-sections on". */
3460 if (version < 6 && !deprecated_ok)
3461 {
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3464 {
3465 warning (_("\
3466 Skipping deprecated .gdb_index section in %s.\n\
3467 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3468 to use the section anyway."),
3469 filename);
3470 warning_printed = 1;
3471 }
3472 return 0;
3473 }
3474 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3475 of the TU (for symbols coming from TUs),
3476 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3477 Plus gold-generated indices can have duplicate entries for global symbols,
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3479 These are just performance bugs, and we can't distinguish gdb-generated
3480 indices from gold-generated ones, so issue no warning here. */
3481
3482 /* Indexes with higher version than the one supported by GDB may be no
3483 longer backward compatible. */
3484 if (version > 8)
3485 return 0;
3486
3487 map->version = version;
3488
3489 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3490
3491 int i = 0;
3492 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3493 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3494 / 8);
3495 ++i;
3496
3497 *types_list = addr + MAYBE_SWAP (metadata[i]);
3498 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3499 - MAYBE_SWAP (metadata[i]))
3500 / 8);
3501 ++i;
3502
3503 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3504 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3505 map->address_table
3506 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3507 ++i;
3508
3509 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3510 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3511 map->symbol_table
3512 = gdb::array_view<mapped_index::symbol_table_slot>
3513 ((mapped_index::symbol_table_slot *) symbol_table,
3514 (mapped_index::symbol_table_slot *) symbol_table_end);
3515
3516 ++i;
3517 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518
3519 return 1;
3520 }
3521
3522 /* Callback types for dwarf2_read_gdb_index. */
3523
3524 typedef gdb::function_view
3525 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3526 get_gdb_index_contents_ftype;
3527 typedef gdb::function_view
3528 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3529 get_gdb_index_contents_dwz_ftype;
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index
3536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3537 get_gdb_index_contents_ftype get_gdb_index_contents,
3538 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3539 {
3540 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3541 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3542 struct dwz_file *dwz;
3543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3544
3545 gdb::array_view<const gdb_byte> main_index_contents
3546 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3547
3548 if (main_index_contents.empty ())
3549 return 0;
3550
3551 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3552 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3553 use_deprecated_index_sections,
3554 main_index_contents, map.get (), &cu_list,
3555 &cu_list_elements, &types_list,
3556 &types_list_elements))
3557 return 0;
3558
3559 /* Don't use the index if it's empty. */
3560 if (map->symbol_table.empty ())
3561 return 0;
3562
3563 /* If there is a .dwz file, read it so we can get its CU list as
3564 well. */
3565 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3566 if (dwz != NULL)
3567 {
3568 struct mapped_index dwz_map;
3569 const gdb_byte *dwz_types_ignore;
3570 offset_type dwz_types_elements_ignore;
3571
3572 gdb::array_view<const gdb_byte> dwz_index_content
3573 = get_gdb_index_contents_dwz (objfile, dwz);
3574
3575 if (dwz_index_content.empty ())
3576 return 0;
3577
3578 if (!read_gdb_index_from_buffer (objfile,
3579 bfd_get_filename (dwz->dwz_bfd), 1,
3580 dwz_index_content, &dwz_map,
3581 &dwz_list, &dwz_list_elements,
3582 &dwz_types_ignore,
3583 &dwz_types_elements_ignore))
3584 {
3585 warning (_("could not read '.gdb_index' section from %s; skipping"),
3586 bfd_get_filename (dwz->dwz_bfd));
3587 return 0;
3588 }
3589 }
3590
3591 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3592 dwz_list, dwz_list_elements);
3593
3594 if (types_list_elements)
3595 {
3596 /* We can only handle a single .debug_types when we have an
3597 index. */
3598 if (dwarf2_per_objfile->types.size () != 1)
3599 return 0;
3600
3601 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3602
3603 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3604 types_list, types_list_elements);
3605 }
3606
3607 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3608
3609 dwarf2_per_objfile->index_table = std::move (map);
3610 dwarf2_per_objfile->using_index = 1;
3611 dwarf2_per_objfile->quick_file_names_table =
3612 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613
3614 return 1;
3615 }
3616
3617 /* die_reader_func for dw2_get_file_names. */
3618
3619 static void
3620 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3621 const gdb_byte *info_ptr,
3622 struct die_info *comp_unit_die,
3623 int has_children,
3624 void *data)
3625 {
3626 struct dwarf2_cu *cu = reader->cu;
3627 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = cu->per_cu->dwarf2_per_objfile;
3630 struct objfile *objfile = dwarf2_per_objfile->objfile;
3631 struct dwarf2_per_cu_data *lh_cu;
3632 struct attribute *attr;
3633 int i;
3634 void **slot;
3635 struct quick_file_names *qfn;
3636
3637 gdb_assert (! this_cu->is_debug_types);
3638
3639 /* Our callers never want to match partial units -- instead they
3640 will match the enclosing full CU. */
3641 if (comp_unit_die->tag == DW_TAG_partial_unit)
3642 {
3643 this_cu->v.quick->no_file_data = 1;
3644 return;
3645 }
3646
3647 lh_cu = this_cu;
3648 slot = NULL;
3649
3650 line_header_up lh;
3651 sect_offset line_offset {};
3652
3653 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3654 if (attr)
3655 {
3656 struct quick_file_names find_entry;
3657
3658 line_offset = (sect_offset) DW_UNSND (attr);
3659
3660 /* We may have already read in this line header (TU line header sharing).
3661 If we have we're done. */
3662 find_entry.hash.dwo_unit = cu->dwo_unit;
3663 find_entry.hash.line_sect_off = line_offset;
3664 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3665 &find_entry, INSERT);
3666 if (*slot != NULL)
3667 {
3668 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3669 return;
3670 }
3671
3672 lh = dwarf_decode_line_header (line_offset, cu);
3673 }
3674 if (lh == NULL)
3675 {
3676 lh_cu->v.quick->no_file_data = 1;
3677 return;
3678 }
3679
3680 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3681 qfn->hash.dwo_unit = cu->dwo_unit;
3682 qfn->hash.line_sect_off = line_offset;
3683 gdb_assert (slot != NULL);
3684 *slot = qfn;
3685
3686 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3687
3688 qfn->num_file_names = lh->file_names.size ();
3689 qfn->file_names =
3690 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3691 for (i = 0; i < lh->file_names.size (); ++i)
3692 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3693 qfn->real_names = NULL;
3694
3695 lh_cu->v.quick->file_names = qfn;
3696 }
3697
3698 /* A helper for the "quick" functions which attempts to read the line
3699 table for THIS_CU. */
3700
3701 static struct quick_file_names *
3702 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3703 {
3704 /* This should never be called for TUs. */
3705 gdb_assert (! this_cu->is_debug_types);
3706 /* Nor type unit groups. */
3707 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3708
3709 if (this_cu->v.quick->file_names != NULL)
3710 return this_cu->v.quick->file_names;
3711 /* If we know there is no line data, no point in looking again. */
3712 if (this_cu->v.quick->no_file_data)
3713 return NULL;
3714
3715 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3716
3717 if (this_cu->v.quick->no_file_data)
3718 return NULL;
3719 return this_cu->v.quick->file_names;
3720 }
3721
3722 /* A helper for the "quick" functions which computes and caches the
3723 real path for a given file name from the line table. */
3724
3725 static const char *
3726 dw2_get_real_path (struct objfile *objfile,
3727 struct quick_file_names *qfn, int index)
3728 {
3729 if (qfn->real_names == NULL)
3730 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3731 qfn->num_file_names, const char *);
3732
3733 if (qfn->real_names[index] == NULL)
3734 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3735
3736 return qfn->real_names[index];
3737 }
3738
3739 static struct symtab *
3740 dw2_find_last_source_symtab (struct objfile *objfile)
3741 {
3742 struct dwarf2_per_objfile *dwarf2_per_objfile
3743 = get_dwarf2_per_objfile (objfile);
3744 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3745 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746
3747 if (cust == NULL)
3748 return NULL;
3749
3750 return compunit_primary_filetab (cust);
3751 }
3752
3753 /* Traversal function for dw2_forget_cached_source_info. */
3754
3755 static int
3756 dw2_free_cached_file_names (void **slot, void *info)
3757 {
3758 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3759
3760 if (file_data->real_names)
3761 {
3762 int i;
3763
3764 for (i = 0; i < file_data->num_file_names; ++i)
3765 {
3766 xfree ((void*) file_data->real_names[i]);
3767 file_data->real_names[i] = NULL;
3768 }
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 dw2_forget_cached_source_info (struct objfile *objfile)
3776 {
3777 struct dwarf2_per_objfile *dwarf2_per_objfile
3778 = get_dwarf2_per_objfile (objfile);
3779
3780 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3781 dw2_free_cached_file_names, NULL);
3782 }
3783
3784 /* Helper function for dw2_map_symtabs_matching_filename that expands
3785 the symtabs and calls the iterator. */
3786
3787 static int
3788 dw2_map_expand_apply (struct objfile *objfile,
3789 struct dwarf2_per_cu_data *per_cu,
3790 const char *name, const char *real_path,
3791 gdb::function_view<bool (symtab *)> callback)
3792 {
3793 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3794
3795 /* Don't visit already-expanded CUs. */
3796 if (per_cu->v.quick->compunit_symtab)
3797 return 0;
3798
3799 /* This may expand more than one symtab, and we want to iterate over
3800 all of them. */
3801 dw2_instantiate_symtab (per_cu, false);
3802
3803 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3804 last_made, callback);
3805 }
3806
3807 /* Implementation of the map_symtabs_matching_filename method. */
3808
3809 static bool
3810 dw2_map_symtabs_matching_filename
3811 (struct objfile *objfile, const char *name, const char *real_path,
3812 gdb::function_view<bool (symtab *)> callback)
3813 {
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3822 {
3823 /* We only need to look at symtabs not already expanded. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 quick_file_names *file_data = dw2_get_file_names (per_cu);
3828 if (file_data == NULL)
3829 continue;
3830
3831 for (int j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_name = file_data->file_names[j];
3834 const char *this_real_name;
3835
3836 if (compare_filenames_for_search (this_name, name))
3837 {
3838 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3839 callback))
3840 return true;
3841 continue;
3842 }
3843
3844 /* Before we invoke realpath, which can get expensive when many
3845 files are involved, do a quick comparison of the basenames. */
3846 if (! basenames_may_differ
3847 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3848 continue;
3849
3850 this_real_name = dw2_get_real_path (objfile, file_data, j);
3851 if (compare_filenames_for_search (this_real_name, name))
3852 {
3853 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 callback))
3855 return true;
3856 continue;
3857 }
3858
3859 if (real_path != NULL)
3860 {
3861 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3862 gdb_assert (IS_ABSOLUTE_PATH (name));
3863 if (this_real_name != NULL
3864 && FILENAME_CMP (real_path, this_real_name) == 0)
3865 {
3866 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3867 callback))
3868 return true;
3869 continue;
3870 }
3871 }
3872 }
3873 }
3874
3875 return false;
3876 }
3877
3878 /* Struct used to manage iterating over all CUs looking for a symbol. */
3879
3880 struct dw2_symtab_iterator
3881 {
3882 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3883 struct dwarf2_per_objfile *dwarf2_per_objfile;
3884 /* If set, only look for symbols that match that block. Valid values are
3885 GLOBAL_BLOCK and STATIC_BLOCK. */
3886 gdb::optional<int> block_index;
3887 /* The kind of symbol we're looking for. */
3888 domain_enum domain;
3889 /* The list of CUs from the index entry of the symbol,
3890 or NULL if not found. */
3891 offset_type *vec;
3892 /* The next element in VEC to look at. */
3893 int next;
3894 /* The number of elements in VEC, or zero if there is no match. */
3895 int length;
3896 /* Have we seen a global version of the symbol?
3897 If so we can ignore all further global instances.
3898 This is to work around gold/15646, inefficient gold-generated
3899 indices. */
3900 int global_seen;
3901 };
3902
3903 /* Initialize the index symtab iterator ITER. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 gdb::optional<int> block_index,
3909 domain_enum domain,
3910 const char *name)
3911 {
3912 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3913 iter->block_index = block_index;
3914 iter->domain = domain;
3915 iter->next = 0;
3916 iter->global_seen = 0;
3917
3918 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3919
3920 /* index is NULL if OBJF_READNOW. */
3921 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3922 iter->length = MAYBE_SWAP (*iter->vec);
3923 else
3924 {
3925 iter->vec = NULL;
3926 iter->length = 0;
3927 }
3928 }
3929
3930 /* Return the next matching CU or NULL if there are no more. */
3931
3932 static struct dwarf2_per_cu_data *
3933 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3934 {
3935 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3936
3937 for ( ; iter->next < iter->length; ++iter->next)
3938 {
3939 offset_type cu_index_and_attrs =
3940 MAYBE_SWAP (iter->vec[iter->next + 1]);
3941 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3942 gdb_index_symbol_kind symbol_kind =
3943 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3944 /* Only check the symbol attributes if they're present.
3945 Indices prior to version 7 don't record them,
3946 and indices >= 7 may elide them for certain symbols
3947 (gold does this). */
3948 int attrs_valid =
3949 (dwarf2_per_objfile->index_table->version >= 7
3950 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3951
3952 /* Don't crash on bad data. */
3953 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3954 + dwarf2_per_objfile->all_type_units.size ()))
3955 {
3956 complaint (_(".gdb_index entry has bad CU index"
3957 " [in module %s]"),
3958 objfile_name (dwarf2_per_objfile->objfile));
3959 continue;
3960 }
3961
3962 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3963
3964 /* Skip if already read in. */
3965 if (per_cu->v.quick->compunit_symtab)
3966 continue;
3967
3968 /* Check static vs global. */
3969 if (attrs_valid)
3970 {
3971 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3972
3973 if (iter->block_index.has_value ())
3974 {
3975 bool want_static = *iter->block_index == STATIC_BLOCK;
3976
3977 if (is_static != want_static)
3978 continue;
3979 }
3980
3981 /* Work around gold/15646. */
3982 if (!is_static && iter->global_seen)
3983 continue;
3984 if (!is_static)
3985 iter->global_seen = 1;
3986 }
3987
3988 /* Only check the symbol's kind if it has one. */
3989 if (attrs_valid)
3990 {
3991 switch (iter->domain)
3992 {
3993 case VAR_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3996 /* Some types are also in VAR_DOMAIN. */
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 case STRUCT_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4002 continue;
4003 break;
4004 case LABEL_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4006 continue;
4007 break;
4008 default:
4009 break;
4010 }
4011 }
4012
4013 ++iter->next;
4014 return per_cu;
4015 }
4016
4017 return NULL;
4018 }
4019
4020 static struct compunit_symtab *
4021 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4022 const char *name, domain_enum domain)
4023 {
4024 struct compunit_symtab *stab_best = NULL;
4025 struct dwarf2_per_objfile *dwarf2_per_objfile
4026 = get_dwarf2_per_objfile (objfile);
4027
4028 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4029
4030 struct dw2_symtab_iterator iter;
4031 struct dwarf2_per_cu_data *per_cu;
4032
4033 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4034
4035 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4036 {
4037 struct symbol *sym, *with_opaque = NULL;
4038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4041
4042 sym = block_find_symbol (block, name, domain,
4043 block_find_non_opaque_type_preferred,
4044 &with_opaque);
4045
4046 /* Some caution must be observed with overloaded functions
4047 and methods, since the index will not contain any overload
4048 information (but NAME might contain it). */
4049
4050 if (sym != NULL
4051 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4052 return stab;
4053 if (with_opaque != NULL
4054 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4055 stab_best = stab;
4056
4057 /* Keep looking through other CUs. */
4058 }
4059
4060 return stab_best;
4061 }
4062
4063 static void
4064 dw2_print_stats (struct objfile *objfile)
4065 {
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068 int total = (dwarf2_per_objfile->all_comp_units.size ()
4069 + dwarf2_per_objfile->all_type_units.size ());
4070 int count = 0;
4071
4072 for (int i = 0; i < total; ++i)
4073 {
4074 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4075
4076 if (!per_cu->v.quick->compunit_symtab)
4077 ++count;
4078 }
4079 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4080 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4081 }
4082
4083 /* This dumps minimal information about the index.
4084 It is called via "mt print objfiles".
4085 One use is to verify .gdb_index has been loaded by the
4086 gdb.dwarf2/gdb-index.exp testcase. */
4087
4088 static void
4089 dw2_dump (struct objfile *objfile)
4090 {
4091 struct dwarf2_per_objfile *dwarf2_per_objfile
4092 = get_dwarf2_per_objfile (objfile);
4093
4094 gdb_assert (dwarf2_per_objfile->using_index);
4095 printf_filtered (".gdb_index:");
4096 if (dwarf2_per_objfile->index_table != NULL)
4097 {
4098 printf_filtered (" version %d\n",
4099 dwarf2_per_objfile->index_table->version);
4100 }
4101 else
4102 printf_filtered (" faked for \"readnow\"\n");
4103 printf_filtered ("\n");
4104 }
4105
4106 static void
4107 dw2_expand_symtabs_for_function (struct objfile *objfile,
4108 const char *func_name)
4109 {
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
4112
4113 struct dw2_symtab_iterator iter;
4114 struct dwarf2_per_cu_data *per_cu;
4115
4116 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 dw2_debug_names_iterator (const mapped_debug_names &map,
5661 gdb::optional<block_enum> block_index,
5662 domain_enum domain,
5663 const char *name)
5664 : m_map (map), m_block_index (block_index), m_domain (domain),
5665 m_addr (find_vec_in_debug_names (map, name))
5666 {}
5667
5668 dw2_debug_names_iterator (const mapped_debug_names &map,
5669 search_domain search, uint32_t namei)
5670 : m_map (map),
5671 m_search (search),
5672 m_addr (find_vec_in_debug_names (map, namei))
5673 {}
5674
5675 /* Return the next matching CU or NULL if there are no more. */
5676 dwarf2_per_cu_data *next ();
5677
5678 private:
5679 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5680 const char *name);
5681 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5682 uint32_t namei);
5683
5684 /* The internalized form of .debug_names. */
5685 const mapped_debug_names &m_map;
5686
5687 /* If set, only look for symbols that match that block. Valid values are
5688 GLOBAL_BLOCK and STATIC_BLOCK. */
5689 const gdb::optional<block_enum> m_block_index;
5690
5691 /* The kind of symbol we're looking for. */
5692 const domain_enum m_domain = UNDEF_DOMAIN;
5693 const search_domain m_search = ALL_DOMAIN;
5694
5695 /* The list of CUs from the index entry of the symbol, or NULL if
5696 not found. */
5697 const gdb_byte *m_addr;
5698 };
5699
5700 const char *
5701 mapped_debug_names::namei_to_name (uint32_t namei) const
5702 {
5703 const ULONGEST namei_string_offs
5704 = extract_unsigned_integer ((name_table_string_offs_reordered
5705 + namei * offset_size),
5706 offset_size,
5707 dwarf5_byte_order);
5708 return read_indirect_string_at_offset
5709 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5710 }
5711
5712 /* Find a slot in .debug_names for the object named NAME. If NAME is
5713 found, return pointer to its pool data. If NAME cannot be found,
5714 return NULL. */
5715
5716 const gdb_byte *
5717 dw2_debug_names_iterator::find_vec_in_debug_names
5718 (const mapped_debug_names &map, const char *name)
5719 {
5720 int (*cmp) (const char *, const char *);
5721
5722 gdb::unique_xmalloc_ptr<char> without_params;
5723 if (current_language->la_language == language_cplus
5724 || current_language->la_language == language_fortran
5725 || current_language->la_language == language_d)
5726 {
5727 /* NAME is already canonical. Drop any qualifiers as
5728 .debug_names does not contain any. */
5729
5730 if (strchr (name, '(') != NULL)
5731 {
5732 without_params = cp_remove_params (name);
5733 if (without_params != NULL)
5734 name = without_params.get ();
5735 }
5736 }
5737
5738 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5739
5740 const uint32_t full_hash = dwarf5_djb_hash (name);
5741 uint32_t namei
5742 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5743 (map.bucket_table_reordered
5744 + (full_hash % map.bucket_count)), 4,
5745 map.dwarf5_byte_order);
5746 if (namei == 0)
5747 return NULL;
5748 --namei;
5749 if (namei >= map.name_count)
5750 {
5751 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5752 "[in module %s]"),
5753 namei, map.name_count,
5754 objfile_name (map.dwarf2_per_objfile->objfile));
5755 return NULL;
5756 }
5757
5758 for (;;)
5759 {
5760 const uint32_t namei_full_hash
5761 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5762 (map.hash_table_reordered + namei), 4,
5763 map.dwarf5_byte_order);
5764 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5765 return NULL;
5766
5767 if (full_hash == namei_full_hash)
5768 {
5769 const char *const namei_string = map.namei_to_name (namei);
5770
5771 #if 0 /* An expensive sanity check. */
5772 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5773 {
5774 complaint (_("Wrong .debug_names hash for string at index %u "
5775 "[in module %s]"),
5776 namei, objfile_name (dwarf2_per_objfile->objfile));
5777 return NULL;
5778 }
5779 #endif
5780
5781 if (cmp (namei_string, name) == 0)
5782 {
5783 const ULONGEST namei_entry_offs
5784 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5785 + namei * map.offset_size),
5786 map.offset_size, map.dwarf5_byte_order);
5787 return map.entry_pool + namei_entry_offs;
5788 }
5789 }
5790
5791 ++namei;
5792 if (namei >= map.name_count)
5793 return NULL;
5794 }
5795 }
5796
5797 const gdb_byte *
5798 dw2_debug_names_iterator::find_vec_in_debug_names
5799 (const mapped_debug_names &map, uint32_t namei)
5800 {
5801 if (namei >= map.name_count)
5802 {
5803 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5804 "[in module %s]"),
5805 namei, map.name_count,
5806 objfile_name (map.dwarf2_per_objfile->objfile));
5807 return NULL;
5808 }
5809
5810 const ULONGEST namei_entry_offs
5811 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5812 + namei * map.offset_size),
5813 map.offset_size, map.dwarf5_byte_order);
5814 return map.entry_pool + namei_entry_offs;
5815 }
5816
5817 /* See dw2_debug_names_iterator. */
5818
5819 dwarf2_per_cu_data *
5820 dw2_debug_names_iterator::next ()
5821 {
5822 if (m_addr == NULL)
5823 return NULL;
5824
5825 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5826 struct objfile *objfile = dwarf2_per_objfile->objfile;
5827 bfd *const abfd = objfile->obfd;
5828
5829 again:
5830
5831 unsigned int bytes_read;
5832 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5833 m_addr += bytes_read;
5834 if (abbrev == 0)
5835 return NULL;
5836
5837 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5838 if (indexval_it == m_map.abbrev_map.cend ())
5839 {
5840 complaint (_("Wrong .debug_names undefined abbrev code %s "
5841 "[in module %s]"),
5842 pulongest (abbrev), objfile_name (objfile));
5843 return NULL;
5844 }
5845 const mapped_debug_names::index_val &indexval = indexval_it->second;
5846 enum class symbol_linkage {
5847 unknown,
5848 static_,
5849 extern_,
5850 } symbol_linkage_ = symbol_linkage::unknown;
5851 dwarf2_per_cu_data *per_cu = NULL;
5852 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5853 {
5854 ULONGEST ull;
5855 switch (attr.form)
5856 {
5857 case DW_FORM_implicit_const:
5858 ull = attr.implicit_const;
5859 break;
5860 case DW_FORM_flag_present:
5861 ull = 1;
5862 break;
5863 case DW_FORM_udata:
5864 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5865 m_addr += bytes_read;
5866 break;
5867 default:
5868 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5869 dwarf_form_name (attr.form),
5870 objfile_name (objfile));
5871 return NULL;
5872 }
5873 switch (attr.dw_idx)
5874 {
5875 case DW_IDX_compile_unit:
5876 /* Don't crash on bad data. */
5877 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5878 {
5879 complaint (_(".debug_names entry has bad CU index %s"
5880 " [in module %s]"),
5881 pulongest (ull),
5882 objfile_name (dwarf2_per_objfile->objfile));
5883 continue;
5884 }
5885 per_cu = dwarf2_per_objfile->get_cutu (ull);
5886 break;
5887 case DW_IDX_type_unit:
5888 /* Don't crash on bad data. */
5889 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5890 {
5891 complaint (_(".debug_names entry has bad TU index %s"
5892 " [in module %s]"),
5893 pulongest (ull),
5894 objfile_name (dwarf2_per_objfile->objfile));
5895 continue;
5896 }
5897 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5898 break;
5899 case DW_IDX_GNU_internal:
5900 if (!m_map.augmentation_is_gdb)
5901 break;
5902 symbol_linkage_ = symbol_linkage::static_;
5903 break;
5904 case DW_IDX_GNU_external:
5905 if (!m_map.augmentation_is_gdb)
5906 break;
5907 symbol_linkage_ = symbol_linkage::extern_;
5908 break;
5909 }
5910 }
5911
5912 /* Skip if already read in. */
5913 if (per_cu->v.quick->compunit_symtab)
5914 goto again;
5915
5916 /* Check static vs global. */
5917 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5918 {
5919 const bool want_static = *m_block_index == STATIC_BLOCK;
5920 const bool symbol_is_static =
5921 symbol_linkage_ == symbol_linkage::static_;
5922 if (want_static != symbol_is_static)
5923 goto again;
5924 }
5925
5926 /* Match dw2_symtab_iter_next, symbol_kind
5927 and debug_names::psymbol_tag. */
5928 switch (m_domain)
5929 {
5930 case VAR_DOMAIN:
5931 switch (indexval.dwarf_tag)
5932 {
5933 case DW_TAG_variable:
5934 case DW_TAG_subprogram:
5935 /* Some types are also in VAR_DOMAIN. */
5936 case DW_TAG_typedef:
5937 case DW_TAG_structure_type:
5938 break;
5939 default:
5940 goto again;
5941 }
5942 break;
5943 case STRUCT_DOMAIN:
5944 switch (indexval.dwarf_tag)
5945 {
5946 case DW_TAG_typedef:
5947 case DW_TAG_structure_type:
5948 break;
5949 default:
5950 goto again;
5951 }
5952 break;
5953 case LABEL_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case 0:
5957 case DW_TAG_variable:
5958 break;
5959 default:
5960 goto again;
5961 }
5962 break;
5963 default:
5964 break;
5965 }
5966
5967 /* Match dw2_expand_symtabs_matching, symbol_kind and
5968 debug_names::psymbol_tag. */
5969 switch (m_search)
5970 {
5971 case VARIABLES_DOMAIN:
5972 switch (indexval.dwarf_tag)
5973 {
5974 case DW_TAG_variable:
5975 break;
5976 default:
5977 goto again;
5978 }
5979 break;
5980 case FUNCTIONS_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_subprogram:
5984 break;
5985 default:
5986 goto again;
5987 }
5988 break;
5989 case TYPES_DOMAIN:
5990 switch (indexval.dwarf_tag)
5991 {
5992 case DW_TAG_typedef:
5993 case DW_TAG_structure_type:
5994 break;
5995 default:
5996 goto again;
5997 }
5998 break;
5999 default:
6000 break;
6001 }
6002
6003 return per_cu;
6004 }
6005
6006 static struct compunit_symtab *
6007 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6008 const char *name, domain_enum domain)
6009 {
6010 const block_enum block_index = static_cast<block_enum> (block_index_int);
6011 struct dwarf2_per_objfile *dwarf2_per_objfile
6012 = get_dwarf2_per_objfile (objfile);
6013
6014 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6015 if (!mapp)
6016 {
6017 /* index is NULL if OBJF_READNOW. */
6018 return NULL;
6019 }
6020 const auto &map = *mapp;
6021
6022 dw2_debug_names_iterator iter (map, block_index, domain, name);
6023
6024 struct compunit_symtab *stab_best = NULL;
6025 struct dwarf2_per_cu_data *per_cu;
6026 while ((per_cu = iter.next ()) != NULL)
6027 {
6028 struct symbol *sym, *with_opaque = NULL;
6029 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6030 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6031 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6032
6033 sym = block_find_symbol (block, name, domain,
6034 block_find_non_opaque_type_preferred,
6035 &with_opaque);
6036
6037 /* Some caution must be observed with overloaded functions and
6038 methods, since the index will not contain any overload
6039 information (but NAME might contain it). */
6040
6041 if (sym != NULL
6042 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6043 return stab;
6044 if (with_opaque != NULL
6045 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6046 stab_best = stab;
6047
6048 /* Keep looking through other CUs. */
6049 }
6050
6051 return stab_best;
6052 }
6053
6054 /* This dumps minimal information about .debug_names. It is called
6055 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6056 uses this to verify that .debug_names has been loaded. */
6057
6058 static void
6059 dw2_debug_names_dump (struct objfile *objfile)
6060 {
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 gdb_assert (dwarf2_per_objfile->using_index);
6065 printf_filtered (".debug_names:");
6066 if (dwarf2_per_objfile->debug_names_table)
6067 printf_filtered (" exists\n");
6068 else
6069 printf_filtered (" faked for \"readnow\"\n");
6070 printf_filtered ("\n");
6071 }
6072
6073 static void
6074 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6075 const char *func_name)
6076 {
6077 struct dwarf2_per_objfile *dwarf2_per_objfile
6078 = get_dwarf2_per_objfile (objfile);
6079
6080 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6081 if (dwarf2_per_objfile->debug_names_table)
6082 {
6083 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6084
6085 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6086
6087 struct dwarf2_per_cu_data *per_cu;
6088 while ((per_cu = iter.next ()) != NULL)
6089 dw2_instantiate_symtab (per_cu, false);
6090 }
6091 }
6092
6093 static void
6094 dw2_debug_names_expand_symtabs_matching
6095 (struct objfile *objfile,
6096 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6097 const lookup_name_info &lookup_name,
6098 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6099 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6100 enum search_domain kind)
6101 {
6102 struct dwarf2_per_objfile *dwarf2_per_objfile
6103 = get_dwarf2_per_objfile (objfile);
6104
6105 /* debug_names_table is NULL if OBJF_READNOW. */
6106 if (!dwarf2_per_objfile->debug_names_table)
6107 return;
6108
6109 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6110
6111 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6112
6113 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6114 symbol_matcher,
6115 kind, [&] (offset_type namei)
6116 {
6117 /* The name was matched, now expand corresponding CUs that were
6118 marked. */
6119 dw2_debug_names_iterator iter (map, kind, namei);
6120
6121 struct dwarf2_per_cu_data *per_cu;
6122 while ((per_cu = iter.next ()) != NULL)
6123 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6124 expansion_notify);
6125 });
6126 }
6127
6128 const struct quick_symbol_functions dwarf2_debug_names_functions =
6129 {
6130 dw2_has_symbols,
6131 dw2_find_last_source_symtab,
6132 dw2_forget_cached_source_info,
6133 dw2_map_symtabs_matching_filename,
6134 dw2_debug_names_lookup_symbol,
6135 dw2_print_stats,
6136 dw2_debug_names_dump,
6137 dw2_debug_names_expand_symtabs_for_function,
6138 dw2_expand_all_symtabs,
6139 dw2_expand_symtabs_with_fullname,
6140 dw2_map_matching_symbols,
6141 dw2_debug_names_expand_symtabs_matching,
6142 dw2_find_pc_sect_compunit_symtab,
6143 NULL,
6144 dw2_map_symbol_filenames
6145 };
6146
6147 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6148 to either a dwarf2_per_objfile or dwz_file object. */
6149
6150 template <typename T>
6151 static gdb::array_view<const gdb_byte>
6152 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6153 {
6154 dwarf2_section_info *section = &section_owner->gdb_index;
6155
6156 if (dwarf2_section_empty_p (section))
6157 return {};
6158
6159 /* Older elfutils strip versions could keep the section in the main
6160 executable while splitting it for the separate debug info file. */
6161 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6162 return {};
6163
6164 dwarf2_read_section (obj, section);
6165
6166 /* dwarf2_section_info::size is a bfd_size_type, while
6167 gdb::array_view works with size_t. On 32-bit hosts, with
6168 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6169 is 32-bit. So we need an explicit narrowing conversion here.
6170 This is fine, because it's impossible to allocate or mmap an
6171 array/buffer larger than what size_t can represent. */
6172 return gdb::make_array_view (section->buffer, section->size);
6173 }
6174
6175 /* Lookup the index cache for the contents of the index associated to
6176 DWARF2_OBJ. */
6177
6178 static gdb::array_view<const gdb_byte>
6179 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6180 {
6181 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6182 if (build_id == nullptr)
6183 return {};
6184
6185 return global_index_cache.lookup_gdb_index (build_id,
6186 &dwarf2_obj->index_cache_res);
6187 }
6188
6189 /* Same as the above, but for DWZ. */
6190
6191 static gdb::array_view<const gdb_byte>
6192 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6193 {
6194 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6195 if (build_id == nullptr)
6196 return {};
6197
6198 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6199 }
6200
6201 /* See symfile.h. */
6202
6203 bool
6204 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6205 {
6206 struct dwarf2_per_objfile *dwarf2_per_objfile
6207 = get_dwarf2_per_objfile (objfile);
6208
6209 /* If we're about to read full symbols, don't bother with the
6210 indices. In this case we also don't care if some other debug
6211 format is making psymtabs, because they are all about to be
6212 expanded anyway. */
6213 if ((objfile->flags & OBJF_READNOW))
6214 {
6215 dwarf2_per_objfile->using_index = 1;
6216 create_all_comp_units (dwarf2_per_objfile);
6217 create_all_type_units (dwarf2_per_objfile);
6218 dwarf2_per_objfile->quick_file_names_table
6219 = create_quick_file_names_table
6220 (dwarf2_per_objfile->all_comp_units.size ());
6221
6222 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6223 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6224 {
6225 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6226
6227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6228 struct dwarf2_per_cu_quick_data);
6229 }
6230
6231 /* Return 1 so that gdb sees the "quick" functions. However,
6232 these functions will be no-ops because we will have expanded
6233 all symtabs. */
6234 *index_kind = dw_index_kind::GDB_INDEX;
6235 return true;
6236 }
6237
6238 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6239 {
6240 *index_kind = dw_index_kind::DEBUG_NAMES;
6241 return true;
6242 }
6243
6244 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6245 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6246 get_gdb_index_contents_from_section<dwz_file>))
6247 {
6248 *index_kind = dw_index_kind::GDB_INDEX;
6249 return true;
6250 }
6251
6252 /* ... otherwise, try to find the index in the index cache. */
6253 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6254 get_gdb_index_contents_from_cache,
6255 get_gdb_index_contents_from_cache_dwz))
6256 {
6257 global_index_cache.hit ();
6258 *index_kind = dw_index_kind::GDB_INDEX;
6259 return true;
6260 }
6261
6262 global_index_cache.miss ();
6263 return false;
6264 }
6265
6266 \f
6267
6268 /* Build a partial symbol table. */
6269
6270 void
6271 dwarf2_build_psymtabs (struct objfile *objfile)
6272 {
6273 struct dwarf2_per_objfile *dwarf2_per_objfile
6274 = get_dwarf2_per_objfile (objfile);
6275
6276 init_psymbol_list (objfile, 1024);
6277
6278 try
6279 {
6280 /* This isn't really ideal: all the data we allocate on the
6281 objfile's obstack is still uselessly kept around. However,
6282 freeing it seems unsafe. */
6283 psymtab_discarder psymtabs (objfile);
6284 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6285 psymtabs.keep ();
6286
6287 /* (maybe) store an index in the cache. */
6288 global_index_cache.store (dwarf2_per_objfile);
6289 }
6290 catch (const gdb_exception_error &except)
6291 {
6292 exception_print (gdb_stderr, except);
6293 }
6294 }
6295
6296 /* Return the total length of the CU described by HEADER. */
6297
6298 static unsigned int
6299 get_cu_length (const struct comp_unit_head *header)
6300 {
6301 return header->initial_length_size + header->length;
6302 }
6303
6304 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6305
6306 static inline bool
6307 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6308 {
6309 sect_offset bottom = cu_header->sect_off;
6310 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6311
6312 return sect_off >= bottom && sect_off < top;
6313 }
6314
6315 /* Find the base address of the compilation unit for range lists and
6316 location lists. It will normally be specified by DW_AT_low_pc.
6317 In DWARF-3 draft 4, the base address could be overridden by
6318 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6319 compilation units with discontinuous ranges. */
6320
6321 static void
6322 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6323 {
6324 struct attribute *attr;
6325
6326 cu->base_known = 0;
6327 cu->base_address = 0;
6328
6329 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6330 if (attr)
6331 {
6332 cu->base_address = attr_value_as_address (attr);
6333 cu->base_known = 1;
6334 }
6335 else
6336 {
6337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6338 if (attr)
6339 {
6340 cu->base_address = attr_value_as_address (attr);
6341 cu->base_known = 1;
6342 }
6343 }
6344 }
6345
6346 /* Read in the comp unit header information from the debug_info at info_ptr.
6347 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6348 NOTE: This leaves members offset, first_die_offset to be filled in
6349 by the caller. */
6350
6351 static const gdb_byte *
6352 read_comp_unit_head (struct comp_unit_head *cu_header,
6353 const gdb_byte *info_ptr,
6354 struct dwarf2_section_info *section,
6355 rcuh_kind section_kind)
6356 {
6357 int signed_addr;
6358 unsigned int bytes_read;
6359 const char *filename = get_section_file_name (section);
6360 bfd *abfd = get_section_bfd_owner (section);
6361
6362 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6363 cu_header->initial_length_size = bytes_read;
6364 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6365 info_ptr += bytes_read;
6366 cu_header->version = read_2_bytes (abfd, info_ptr);
6367 if (cu_header->version < 2 || cu_header->version > 5)
6368 error (_("Dwarf Error: wrong version in compilation unit header "
6369 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6370 cu_header->version, filename);
6371 info_ptr += 2;
6372 if (cu_header->version < 5)
6373 switch (section_kind)
6374 {
6375 case rcuh_kind::COMPILE:
6376 cu_header->unit_type = DW_UT_compile;
6377 break;
6378 case rcuh_kind::TYPE:
6379 cu_header->unit_type = DW_UT_type;
6380 break;
6381 default:
6382 internal_error (__FILE__, __LINE__,
6383 _("read_comp_unit_head: invalid section_kind"));
6384 }
6385 else
6386 {
6387 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6388 (read_1_byte (abfd, info_ptr));
6389 info_ptr += 1;
6390 switch (cu_header->unit_type)
6391 {
6392 case DW_UT_compile:
6393 if (section_kind != rcuh_kind::COMPILE)
6394 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6395 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6396 filename);
6397 break;
6398 case DW_UT_type:
6399 section_kind = rcuh_kind::TYPE;
6400 break;
6401 default:
6402 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6403 "(is %d, should be %d or %d) [in module %s]"),
6404 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6405 }
6406
6407 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6408 info_ptr += 1;
6409 }
6410 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6411 cu_header,
6412 &bytes_read);
6413 info_ptr += bytes_read;
6414 if (cu_header->version < 5)
6415 {
6416 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6417 info_ptr += 1;
6418 }
6419 signed_addr = bfd_get_sign_extend_vma (abfd);
6420 if (signed_addr < 0)
6421 internal_error (__FILE__, __LINE__,
6422 _("read_comp_unit_head: dwarf from non elf file"));
6423 cu_header->signed_addr_p = signed_addr;
6424
6425 if (section_kind == rcuh_kind::TYPE)
6426 {
6427 LONGEST type_offset;
6428
6429 cu_header->signature = read_8_bytes (abfd, info_ptr);
6430 info_ptr += 8;
6431
6432 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6433 info_ptr += bytes_read;
6434 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6435 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6436 error (_("Dwarf Error: Too big type_offset in compilation unit "
6437 "header (is %s) [in module %s]"), plongest (type_offset),
6438 filename);
6439 }
6440
6441 return info_ptr;
6442 }
6443
6444 /* Helper function that returns the proper abbrev section for
6445 THIS_CU. */
6446
6447 static struct dwarf2_section_info *
6448 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6449 {
6450 struct dwarf2_section_info *abbrev;
6451 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6452
6453 if (this_cu->is_dwz)
6454 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6455 else
6456 abbrev = &dwarf2_per_objfile->abbrev;
6457
6458 return abbrev;
6459 }
6460
6461 /* Subroutine of read_and_check_comp_unit_head and
6462 read_and_check_type_unit_head to simplify them.
6463 Perform various error checking on the header. */
6464
6465 static void
6466 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6467 struct comp_unit_head *header,
6468 struct dwarf2_section_info *section,
6469 struct dwarf2_section_info *abbrev_section)
6470 {
6471 const char *filename = get_section_file_name (section);
6472
6473 if (to_underlying (header->abbrev_sect_off)
6474 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6475 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6476 "(offset %s + 6) [in module %s]"),
6477 sect_offset_str (header->abbrev_sect_off),
6478 sect_offset_str (header->sect_off),
6479 filename);
6480
6481 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6482 avoid potential 32-bit overflow. */
6483 if (((ULONGEST) header->sect_off + get_cu_length (header))
6484 > section->size)
6485 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6486 "(offset %s + 0) [in module %s]"),
6487 header->length, sect_offset_str (header->sect_off),
6488 filename);
6489 }
6490
6491 /* Read in a CU/TU header and perform some basic error checking.
6492 The contents of the header are stored in HEADER.
6493 The result is a pointer to the start of the first DIE. */
6494
6495 static const gdb_byte *
6496 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6497 struct comp_unit_head *header,
6498 struct dwarf2_section_info *section,
6499 struct dwarf2_section_info *abbrev_section,
6500 const gdb_byte *info_ptr,
6501 rcuh_kind section_kind)
6502 {
6503 const gdb_byte *beg_of_comp_unit = info_ptr;
6504
6505 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6506
6507 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6508
6509 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6510
6511 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6512 abbrev_section);
6513
6514 return info_ptr;
6515 }
6516
6517 /* Fetch the abbreviation table offset from a comp or type unit header. */
6518
6519 static sect_offset
6520 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6521 struct dwarf2_section_info *section,
6522 sect_offset sect_off)
6523 {
6524 bfd *abfd = get_section_bfd_owner (section);
6525 const gdb_byte *info_ptr;
6526 unsigned int initial_length_size, offset_size;
6527 uint16_t version;
6528
6529 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6530 info_ptr = section->buffer + to_underlying (sect_off);
6531 read_initial_length (abfd, info_ptr, &initial_length_size);
6532 offset_size = initial_length_size == 4 ? 4 : 8;
6533 info_ptr += initial_length_size;
6534
6535 version = read_2_bytes (abfd, info_ptr);
6536 info_ptr += 2;
6537 if (version >= 5)
6538 {
6539 /* Skip unit type and address size. */
6540 info_ptr += 2;
6541 }
6542
6543 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6544 }
6545
6546 /* Allocate a new partial symtab for file named NAME and mark this new
6547 partial symtab as being an include of PST. */
6548
6549 static void
6550 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6551 struct objfile *objfile)
6552 {
6553 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6554
6555 if (!IS_ABSOLUTE_PATH (subpst->filename))
6556 {
6557 /* It shares objfile->objfile_obstack. */
6558 subpst->dirname = pst->dirname;
6559 }
6560
6561 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6562 subpst->dependencies[0] = pst;
6563 subpst->number_of_dependencies = 1;
6564
6565 subpst->read_symtab = pst->read_symtab;
6566
6567 /* No private part is necessary for include psymtabs. This property
6568 can be used to differentiate between such include psymtabs and
6569 the regular ones. */
6570 subpst->read_symtab_private = NULL;
6571 }
6572
6573 /* Read the Line Number Program data and extract the list of files
6574 included by the source file represented by PST. Build an include
6575 partial symtab for each of these included files. */
6576
6577 static void
6578 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6579 struct die_info *die,
6580 struct partial_symtab *pst)
6581 {
6582 line_header_up lh;
6583 struct attribute *attr;
6584
6585 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6586 if (attr)
6587 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6588 if (lh == NULL)
6589 return; /* No linetable, so no includes. */
6590
6591 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6592 that we pass in the raw text_low here; that is ok because we're
6593 only decoding the line table to make include partial symtabs, and
6594 so the addresses aren't really used. */
6595 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6596 pst->raw_text_low (), 1);
6597 }
6598
6599 static hashval_t
6600 hash_signatured_type (const void *item)
6601 {
6602 const struct signatured_type *sig_type
6603 = (const struct signatured_type *) item;
6604
6605 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6606 return sig_type->signature;
6607 }
6608
6609 static int
6610 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6611 {
6612 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6613 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6614
6615 return lhs->signature == rhs->signature;
6616 }
6617
6618 /* Allocate a hash table for signatured types. */
6619
6620 static htab_t
6621 allocate_signatured_type_table (struct objfile *objfile)
6622 {
6623 return htab_create_alloc_ex (41,
6624 hash_signatured_type,
6625 eq_signatured_type,
6626 NULL,
6627 &objfile->objfile_obstack,
6628 hashtab_obstack_allocate,
6629 dummy_obstack_deallocate);
6630 }
6631
6632 /* A helper function to add a signatured type CU to a table. */
6633
6634 static int
6635 add_signatured_type_cu_to_table (void **slot, void *datum)
6636 {
6637 struct signatured_type *sigt = (struct signatured_type *) *slot;
6638 std::vector<signatured_type *> *all_type_units
6639 = (std::vector<signatured_type *> *) datum;
6640
6641 all_type_units->push_back (sigt);
6642
6643 return 1;
6644 }
6645
6646 /* A helper for create_debug_types_hash_table. Read types from SECTION
6647 and fill them into TYPES_HTAB. It will process only type units,
6648 therefore DW_UT_type. */
6649
6650 static void
6651 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6652 struct dwo_file *dwo_file,
6653 dwarf2_section_info *section, htab_t &types_htab,
6654 rcuh_kind section_kind)
6655 {
6656 struct objfile *objfile = dwarf2_per_objfile->objfile;
6657 struct dwarf2_section_info *abbrev_section;
6658 bfd *abfd;
6659 const gdb_byte *info_ptr, *end_ptr;
6660
6661 abbrev_section = (dwo_file != NULL
6662 ? &dwo_file->sections.abbrev
6663 : &dwarf2_per_objfile->abbrev);
6664
6665 if (dwarf_read_debug)
6666 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6667 get_section_name (section),
6668 get_section_file_name (abbrev_section));
6669
6670 dwarf2_read_section (objfile, section);
6671 info_ptr = section->buffer;
6672
6673 if (info_ptr == NULL)
6674 return;
6675
6676 /* We can't set abfd until now because the section may be empty or
6677 not present, in which case the bfd is unknown. */
6678 abfd = get_section_bfd_owner (section);
6679
6680 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6681 because we don't need to read any dies: the signature is in the
6682 header. */
6683
6684 end_ptr = info_ptr + section->size;
6685 while (info_ptr < end_ptr)
6686 {
6687 struct signatured_type *sig_type;
6688 struct dwo_unit *dwo_tu;
6689 void **slot;
6690 const gdb_byte *ptr = info_ptr;
6691 struct comp_unit_head header;
6692 unsigned int length;
6693
6694 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6695
6696 /* Initialize it due to a false compiler warning. */
6697 header.signature = -1;
6698 header.type_cu_offset_in_tu = (cu_offset) -1;
6699
6700 /* We need to read the type's signature in order to build the hash
6701 table, but we don't need anything else just yet. */
6702
6703 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6704 abbrev_section, ptr, section_kind);
6705
6706 length = get_cu_length (&header);
6707
6708 /* Skip dummy type units. */
6709 if (ptr >= info_ptr + length
6710 || peek_abbrev_code (abfd, ptr) == 0
6711 || header.unit_type != DW_UT_type)
6712 {
6713 info_ptr += length;
6714 continue;
6715 }
6716
6717 if (types_htab == NULL)
6718 {
6719 if (dwo_file)
6720 types_htab = allocate_dwo_unit_table (objfile);
6721 else
6722 types_htab = allocate_signatured_type_table (objfile);
6723 }
6724
6725 if (dwo_file)
6726 {
6727 sig_type = NULL;
6728 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6729 struct dwo_unit);
6730 dwo_tu->dwo_file = dwo_file;
6731 dwo_tu->signature = header.signature;
6732 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6733 dwo_tu->section = section;
6734 dwo_tu->sect_off = sect_off;
6735 dwo_tu->length = length;
6736 }
6737 else
6738 {
6739 /* N.B.: type_offset is not usable if this type uses a DWO file.
6740 The real type_offset is in the DWO file. */
6741 dwo_tu = NULL;
6742 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6743 struct signatured_type);
6744 sig_type->signature = header.signature;
6745 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6746 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6747 sig_type->per_cu.is_debug_types = 1;
6748 sig_type->per_cu.section = section;
6749 sig_type->per_cu.sect_off = sect_off;
6750 sig_type->per_cu.length = length;
6751 }
6752
6753 slot = htab_find_slot (types_htab,
6754 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6755 INSERT);
6756 gdb_assert (slot != NULL);
6757 if (*slot != NULL)
6758 {
6759 sect_offset dup_sect_off;
6760
6761 if (dwo_file)
6762 {
6763 const struct dwo_unit *dup_tu
6764 = (const struct dwo_unit *) *slot;
6765
6766 dup_sect_off = dup_tu->sect_off;
6767 }
6768 else
6769 {
6770 const struct signatured_type *dup_tu
6771 = (const struct signatured_type *) *slot;
6772
6773 dup_sect_off = dup_tu->per_cu.sect_off;
6774 }
6775
6776 complaint (_("debug type entry at offset %s is duplicate to"
6777 " the entry at offset %s, signature %s"),
6778 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6779 hex_string (header.signature));
6780 }
6781 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6782
6783 if (dwarf_read_debug > 1)
6784 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6785 sect_offset_str (sect_off),
6786 hex_string (header.signature));
6787
6788 info_ptr += length;
6789 }
6790 }
6791
6792 /* Create the hash table of all entries in the .debug_types
6793 (or .debug_types.dwo) section(s).
6794 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6795 otherwise it is NULL.
6796
6797 The result is a pointer to the hash table or NULL if there are no types.
6798
6799 Note: This function processes DWO files only, not DWP files. */
6800
6801 static void
6802 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6803 struct dwo_file *dwo_file,
6804 gdb::array_view<dwarf2_section_info> type_sections,
6805 htab_t &types_htab)
6806 {
6807 for (dwarf2_section_info &section : type_sections)
6808 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6809 types_htab, rcuh_kind::TYPE);
6810 }
6811
6812 /* Create the hash table of all entries in the .debug_types section,
6813 and initialize all_type_units.
6814 The result is zero if there is an error (e.g. missing .debug_types section),
6815 otherwise non-zero. */
6816
6817 static int
6818 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6819 {
6820 htab_t types_htab = NULL;
6821
6822 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6823 &dwarf2_per_objfile->info, types_htab,
6824 rcuh_kind::COMPILE);
6825 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6826 dwarf2_per_objfile->types, types_htab);
6827 if (types_htab == NULL)
6828 {
6829 dwarf2_per_objfile->signatured_types = NULL;
6830 return 0;
6831 }
6832
6833 dwarf2_per_objfile->signatured_types = types_htab;
6834
6835 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6836 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6837
6838 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6839 &dwarf2_per_objfile->all_type_units);
6840
6841 return 1;
6842 }
6843
6844 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6845 If SLOT is non-NULL, it is the entry to use in the hash table.
6846 Otherwise we find one. */
6847
6848 static struct signatured_type *
6849 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6850 void **slot)
6851 {
6852 struct objfile *objfile = dwarf2_per_objfile->objfile;
6853
6854 if (dwarf2_per_objfile->all_type_units.size ()
6855 == dwarf2_per_objfile->all_type_units.capacity ())
6856 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6857
6858 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6859 struct signatured_type);
6860
6861 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6862 sig_type->signature = sig;
6863 sig_type->per_cu.is_debug_types = 1;
6864 if (dwarf2_per_objfile->using_index)
6865 {
6866 sig_type->per_cu.v.quick =
6867 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6868 struct dwarf2_per_cu_quick_data);
6869 }
6870
6871 if (slot == NULL)
6872 {
6873 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6874 sig_type, INSERT);
6875 }
6876 gdb_assert (*slot == NULL);
6877 *slot = sig_type;
6878 /* The rest of sig_type must be filled in by the caller. */
6879 return sig_type;
6880 }
6881
6882 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6883 Fill in SIG_ENTRY with DWO_ENTRY. */
6884
6885 static void
6886 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6887 struct signatured_type *sig_entry,
6888 struct dwo_unit *dwo_entry)
6889 {
6890 /* Make sure we're not clobbering something we don't expect to. */
6891 gdb_assert (! sig_entry->per_cu.queued);
6892 gdb_assert (sig_entry->per_cu.cu == NULL);
6893 if (dwarf2_per_objfile->using_index)
6894 {
6895 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6896 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6897 }
6898 else
6899 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6900 gdb_assert (sig_entry->signature == dwo_entry->signature);
6901 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6902 gdb_assert (sig_entry->type_unit_group == NULL);
6903 gdb_assert (sig_entry->dwo_unit == NULL);
6904
6905 sig_entry->per_cu.section = dwo_entry->section;
6906 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6907 sig_entry->per_cu.length = dwo_entry->length;
6908 sig_entry->per_cu.reading_dwo_directly = 1;
6909 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6910 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6911 sig_entry->dwo_unit = dwo_entry;
6912 }
6913
6914 /* Subroutine of lookup_signatured_type.
6915 If we haven't read the TU yet, create the signatured_type data structure
6916 for a TU to be read in directly from a DWO file, bypassing the stub.
6917 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6918 using .gdb_index, then when reading a CU we want to stay in the DWO file
6919 containing that CU. Otherwise we could end up reading several other DWO
6920 files (due to comdat folding) to process the transitive closure of all the
6921 mentioned TUs, and that can be slow. The current DWO file will have every
6922 type signature that it needs.
6923 We only do this for .gdb_index because in the psymtab case we already have
6924 to read all the DWOs to build the type unit groups. */
6925
6926 static struct signatured_type *
6927 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6928 {
6929 struct dwarf2_per_objfile *dwarf2_per_objfile
6930 = cu->per_cu->dwarf2_per_objfile;
6931 struct objfile *objfile = dwarf2_per_objfile->objfile;
6932 struct dwo_file *dwo_file;
6933 struct dwo_unit find_dwo_entry, *dwo_entry;
6934 struct signatured_type find_sig_entry, *sig_entry;
6935 void **slot;
6936
6937 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6938
6939 /* If TU skeletons have been removed then we may not have read in any
6940 TUs yet. */
6941 if (dwarf2_per_objfile->signatured_types == NULL)
6942 {
6943 dwarf2_per_objfile->signatured_types
6944 = allocate_signatured_type_table (objfile);
6945 }
6946
6947 /* We only ever need to read in one copy of a signatured type.
6948 Use the global signatured_types array to do our own comdat-folding
6949 of types. If this is the first time we're reading this TU, and
6950 the TU has an entry in .gdb_index, replace the recorded data from
6951 .gdb_index with this TU. */
6952
6953 find_sig_entry.signature = sig;
6954 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6955 &find_sig_entry, INSERT);
6956 sig_entry = (struct signatured_type *) *slot;
6957
6958 /* We can get here with the TU already read, *or* in the process of being
6959 read. Don't reassign the global entry to point to this DWO if that's
6960 the case. Also note that if the TU is already being read, it may not
6961 have come from a DWO, the program may be a mix of Fission-compiled
6962 code and non-Fission-compiled code. */
6963
6964 /* Have we already tried to read this TU?
6965 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6966 needn't exist in the global table yet). */
6967 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6968 return sig_entry;
6969
6970 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6971 dwo_unit of the TU itself. */
6972 dwo_file = cu->dwo_unit->dwo_file;
6973
6974 /* Ok, this is the first time we're reading this TU. */
6975 if (dwo_file->tus == NULL)
6976 return NULL;
6977 find_dwo_entry.signature = sig;
6978 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6979 if (dwo_entry == NULL)
6980 return NULL;
6981
6982 /* If the global table doesn't have an entry for this TU, add one. */
6983 if (sig_entry == NULL)
6984 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6985
6986 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6987 sig_entry->per_cu.tu_read = 1;
6988 return sig_entry;
6989 }
6990
6991 /* Subroutine of lookup_signatured_type.
6992 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6993 then try the DWP file. If the TU stub (skeleton) has been removed then
6994 it won't be in .gdb_index. */
6995
6996 static struct signatured_type *
6997 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6998 {
6999 struct dwarf2_per_objfile *dwarf2_per_objfile
7000 = cu->per_cu->dwarf2_per_objfile;
7001 struct objfile *objfile = dwarf2_per_objfile->objfile;
7002 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7003 struct dwo_unit *dwo_entry;
7004 struct signatured_type find_sig_entry, *sig_entry;
7005 void **slot;
7006
7007 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7008 gdb_assert (dwp_file != NULL);
7009
7010 /* If TU skeletons have been removed then we may not have read in any
7011 TUs yet. */
7012 if (dwarf2_per_objfile->signatured_types == NULL)
7013 {
7014 dwarf2_per_objfile->signatured_types
7015 = allocate_signatured_type_table (objfile);
7016 }
7017
7018 find_sig_entry.signature = sig;
7019 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7020 &find_sig_entry, INSERT);
7021 sig_entry = (struct signatured_type *) *slot;
7022
7023 /* Have we already tried to read this TU?
7024 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7025 needn't exist in the global table yet). */
7026 if (sig_entry != NULL)
7027 return sig_entry;
7028
7029 if (dwp_file->tus == NULL)
7030 return NULL;
7031 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7032 sig, 1 /* is_debug_types */);
7033 if (dwo_entry == NULL)
7034 return NULL;
7035
7036 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7037 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7038
7039 return sig_entry;
7040 }
7041
7042 /* Lookup a signature based type for DW_FORM_ref_sig8.
7043 Returns NULL if signature SIG is not present in the table.
7044 It is up to the caller to complain about this. */
7045
7046 static struct signatured_type *
7047 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7048 {
7049 struct dwarf2_per_objfile *dwarf2_per_objfile
7050 = cu->per_cu->dwarf2_per_objfile;
7051
7052 if (cu->dwo_unit
7053 && dwarf2_per_objfile->using_index)
7054 {
7055 /* We're in a DWO/DWP file, and we're using .gdb_index.
7056 These cases require special processing. */
7057 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7058 return lookup_dwo_signatured_type (cu, sig);
7059 else
7060 return lookup_dwp_signatured_type (cu, sig);
7061 }
7062 else
7063 {
7064 struct signatured_type find_entry, *entry;
7065
7066 if (dwarf2_per_objfile->signatured_types == NULL)
7067 return NULL;
7068 find_entry.signature = sig;
7069 entry = ((struct signatured_type *)
7070 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7071 return entry;
7072 }
7073 }
7074 \f
7075 /* Low level DIE reading support. */
7076
7077 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7078
7079 static void
7080 init_cu_die_reader (struct die_reader_specs *reader,
7081 struct dwarf2_cu *cu,
7082 struct dwarf2_section_info *section,
7083 struct dwo_file *dwo_file,
7084 struct abbrev_table *abbrev_table)
7085 {
7086 gdb_assert (section->readin && section->buffer != NULL);
7087 reader->abfd = get_section_bfd_owner (section);
7088 reader->cu = cu;
7089 reader->dwo_file = dwo_file;
7090 reader->die_section = section;
7091 reader->buffer = section->buffer;
7092 reader->buffer_end = section->buffer + section->size;
7093 reader->comp_dir = NULL;
7094 reader->abbrev_table = abbrev_table;
7095 }
7096
7097 /* Subroutine of init_cutu_and_read_dies to simplify it.
7098 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7099 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7100 already.
7101
7102 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7103 from it to the DIE in the DWO. If NULL we are skipping the stub.
7104 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7105 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7106 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7107 STUB_COMP_DIR may be non-NULL.
7108 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7109 are filled in with the info of the DIE from the DWO file.
7110 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7111 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7112 kept around for at least as long as *RESULT_READER.
7113
7114 The result is non-zero if a valid (non-dummy) DIE was found. */
7115
7116 static int
7117 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7118 struct dwo_unit *dwo_unit,
7119 struct die_info *stub_comp_unit_die,
7120 const char *stub_comp_dir,
7121 struct die_reader_specs *result_reader,
7122 const gdb_byte **result_info_ptr,
7123 struct die_info **result_comp_unit_die,
7124 int *result_has_children,
7125 abbrev_table_up *result_dwo_abbrev_table)
7126 {
7127 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7128 struct objfile *objfile = dwarf2_per_objfile->objfile;
7129 struct dwarf2_cu *cu = this_cu->cu;
7130 bfd *abfd;
7131 const gdb_byte *begin_info_ptr, *info_ptr;
7132 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7133 int i,num_extra_attrs;
7134 struct dwarf2_section_info *dwo_abbrev_section;
7135 struct attribute *attr;
7136 struct die_info *comp_unit_die;
7137
7138 /* At most one of these may be provided. */
7139 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7140
7141 /* These attributes aren't processed until later:
7142 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7143 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7144 referenced later. However, these attributes are found in the stub
7145 which we won't have later. In order to not impose this complication
7146 on the rest of the code, we read them here and copy them to the
7147 DWO CU/TU die. */
7148
7149 stmt_list = NULL;
7150 low_pc = NULL;
7151 high_pc = NULL;
7152 ranges = NULL;
7153 comp_dir = NULL;
7154
7155 if (stub_comp_unit_die != NULL)
7156 {
7157 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7158 DWO file. */
7159 if (! this_cu->is_debug_types)
7160 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7161 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7162 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7163 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7164 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7165
7166 /* There should be a DW_AT_addr_base attribute here (if needed).
7167 We need the value before we can process DW_FORM_GNU_addr_index
7168 or DW_FORM_addrx. */
7169 cu->addr_base = 0;
7170 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7171 if (attr)
7172 cu->addr_base = DW_UNSND (attr);
7173
7174 /* There should be a DW_AT_ranges_base attribute here (if needed).
7175 We need the value before we can process DW_AT_ranges. */
7176 cu->ranges_base = 0;
7177 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7178 if (attr)
7179 cu->ranges_base = DW_UNSND (attr);
7180 }
7181 else if (stub_comp_dir != NULL)
7182 {
7183 /* Reconstruct the comp_dir attribute to simplify the code below. */
7184 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7185 comp_dir->name = DW_AT_comp_dir;
7186 comp_dir->form = DW_FORM_string;
7187 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7188 DW_STRING (comp_dir) = stub_comp_dir;
7189 }
7190
7191 /* Set up for reading the DWO CU/TU. */
7192 cu->dwo_unit = dwo_unit;
7193 dwarf2_section_info *section = dwo_unit->section;
7194 dwarf2_read_section (objfile, section);
7195 abfd = get_section_bfd_owner (section);
7196 begin_info_ptr = info_ptr = (section->buffer
7197 + to_underlying (dwo_unit->sect_off));
7198 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7199
7200 if (this_cu->is_debug_types)
7201 {
7202 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7203
7204 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7205 &cu->header, section,
7206 dwo_abbrev_section,
7207 info_ptr, rcuh_kind::TYPE);
7208 /* This is not an assert because it can be caused by bad debug info. */
7209 if (sig_type->signature != cu->header.signature)
7210 {
7211 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7212 " TU at offset %s [in module %s]"),
7213 hex_string (sig_type->signature),
7214 hex_string (cu->header.signature),
7215 sect_offset_str (dwo_unit->sect_off),
7216 bfd_get_filename (abfd));
7217 }
7218 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7219 /* For DWOs coming from DWP files, we don't know the CU length
7220 nor the type's offset in the TU until now. */
7221 dwo_unit->length = get_cu_length (&cu->header);
7222 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7223
7224 /* Establish the type offset that can be used to lookup the type.
7225 For DWO files, we don't know it until now. */
7226 sig_type->type_offset_in_section
7227 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7228 }
7229 else
7230 {
7231 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7232 &cu->header, section,
7233 dwo_abbrev_section,
7234 info_ptr, rcuh_kind::COMPILE);
7235 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7236 /* For DWOs coming from DWP files, we don't know the CU length
7237 until now. */
7238 dwo_unit->length = get_cu_length (&cu->header);
7239 }
7240
7241 *result_dwo_abbrev_table
7242 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7243 cu->header.abbrev_sect_off);
7244 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7245 result_dwo_abbrev_table->get ());
7246
7247 /* Read in the die, but leave space to copy over the attributes
7248 from the stub. This has the benefit of simplifying the rest of
7249 the code - all the work to maintain the illusion of a single
7250 DW_TAG_{compile,type}_unit DIE is done here. */
7251 num_extra_attrs = ((stmt_list != NULL)
7252 + (low_pc != NULL)
7253 + (high_pc != NULL)
7254 + (ranges != NULL)
7255 + (comp_dir != NULL));
7256 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7257 result_has_children, num_extra_attrs);
7258
7259 /* Copy over the attributes from the stub to the DIE we just read in. */
7260 comp_unit_die = *result_comp_unit_die;
7261 i = comp_unit_die->num_attrs;
7262 if (stmt_list != NULL)
7263 comp_unit_die->attrs[i++] = *stmt_list;
7264 if (low_pc != NULL)
7265 comp_unit_die->attrs[i++] = *low_pc;
7266 if (high_pc != NULL)
7267 comp_unit_die->attrs[i++] = *high_pc;
7268 if (ranges != NULL)
7269 comp_unit_die->attrs[i++] = *ranges;
7270 if (comp_dir != NULL)
7271 comp_unit_die->attrs[i++] = *comp_dir;
7272 comp_unit_die->num_attrs += num_extra_attrs;
7273
7274 if (dwarf_die_debug)
7275 {
7276 fprintf_unfiltered (gdb_stdlog,
7277 "Read die from %s@0x%x of %s:\n",
7278 get_section_name (section),
7279 (unsigned) (begin_info_ptr - section->buffer),
7280 bfd_get_filename (abfd));
7281 dump_die (comp_unit_die, dwarf_die_debug);
7282 }
7283
7284 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7285 TUs by skipping the stub and going directly to the entry in the DWO file.
7286 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7287 to get it via circuitous means. Blech. */
7288 if (comp_dir != NULL)
7289 result_reader->comp_dir = DW_STRING (comp_dir);
7290
7291 /* Skip dummy compilation units. */
7292 if (info_ptr >= begin_info_ptr + dwo_unit->length
7293 || peek_abbrev_code (abfd, info_ptr) == 0)
7294 return 0;
7295
7296 *result_info_ptr = info_ptr;
7297 return 1;
7298 }
7299
7300 /* Subroutine of init_cutu_and_read_dies to simplify it.
7301 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7302 Returns NULL if the specified DWO unit cannot be found. */
7303
7304 static struct dwo_unit *
7305 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7306 struct die_info *comp_unit_die)
7307 {
7308 struct dwarf2_cu *cu = this_cu->cu;
7309 ULONGEST signature;
7310 struct dwo_unit *dwo_unit;
7311 const char *comp_dir, *dwo_name;
7312
7313 gdb_assert (cu != NULL);
7314
7315 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7316 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7317 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7318
7319 if (this_cu->is_debug_types)
7320 {
7321 struct signatured_type *sig_type;
7322
7323 /* Since this_cu is the first member of struct signatured_type,
7324 we can go from a pointer to one to a pointer to the other. */
7325 sig_type = (struct signatured_type *) this_cu;
7326 signature = sig_type->signature;
7327 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7328 }
7329 else
7330 {
7331 struct attribute *attr;
7332
7333 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7334 if (! attr)
7335 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7336 " [in module %s]"),
7337 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7338 signature = DW_UNSND (attr);
7339 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7340 signature);
7341 }
7342
7343 return dwo_unit;
7344 }
7345
7346 /* Subroutine of init_cutu_and_read_dies to simplify it.
7347 See it for a description of the parameters.
7348 Read a TU directly from a DWO file, bypassing the stub. */
7349
7350 static void
7351 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7352 int use_existing_cu, int keep,
7353 die_reader_func_ftype *die_reader_func,
7354 void *data)
7355 {
7356 std::unique_ptr<dwarf2_cu> new_cu;
7357 struct signatured_type *sig_type;
7358 struct die_reader_specs reader;
7359 const gdb_byte *info_ptr;
7360 struct die_info *comp_unit_die;
7361 int has_children;
7362 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7363
7364 /* Verify we can do the following downcast, and that we have the
7365 data we need. */
7366 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7367 sig_type = (struct signatured_type *) this_cu;
7368 gdb_assert (sig_type->dwo_unit != NULL);
7369
7370 if (use_existing_cu && this_cu->cu != NULL)
7371 {
7372 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7373 /* There's no need to do the rereading_dwo_cu handling that
7374 init_cutu_and_read_dies does since we don't read the stub. */
7375 }
7376 else
7377 {
7378 /* If !use_existing_cu, this_cu->cu must be NULL. */
7379 gdb_assert (this_cu->cu == NULL);
7380 new_cu.reset (new dwarf2_cu (this_cu));
7381 }
7382
7383 /* A future optimization, if needed, would be to use an existing
7384 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7385 could share abbrev tables. */
7386
7387 /* The abbreviation table used by READER, this must live at least as long as
7388 READER. */
7389 abbrev_table_up dwo_abbrev_table;
7390
7391 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7392 NULL /* stub_comp_unit_die */,
7393 sig_type->dwo_unit->dwo_file->comp_dir,
7394 &reader, &info_ptr,
7395 &comp_unit_die, &has_children,
7396 &dwo_abbrev_table) == 0)
7397 {
7398 /* Dummy die. */
7399 return;
7400 }
7401
7402 /* All the "real" work is done here. */
7403 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7404
7405 /* This duplicates the code in init_cutu_and_read_dies,
7406 but the alternative is making the latter more complex.
7407 This function is only for the special case of using DWO files directly:
7408 no point in overly complicating the general case just to handle this. */
7409 if (new_cu != NULL && keep)
7410 {
7411 /* Link this CU into read_in_chain. */
7412 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7413 dwarf2_per_objfile->read_in_chain = this_cu;
7414 /* The chain owns it now. */
7415 new_cu.release ();
7416 }
7417 }
7418
7419 /* Initialize a CU (or TU) and read its DIEs.
7420 If the CU defers to a DWO file, read the DWO file as well.
7421
7422 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7423 Otherwise the table specified in the comp unit header is read in and used.
7424 This is an optimization for when we already have the abbrev table.
7425
7426 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7427 Otherwise, a new CU is allocated with xmalloc.
7428
7429 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7430 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7431
7432 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7433 linker) then DIE_READER_FUNC will not get called. */
7434
7435 static void
7436 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7437 struct abbrev_table *abbrev_table,
7438 int use_existing_cu, int keep,
7439 bool skip_partial,
7440 die_reader_func_ftype *die_reader_func,
7441 void *data)
7442 {
7443 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7444 struct objfile *objfile = dwarf2_per_objfile->objfile;
7445 struct dwarf2_section_info *section = this_cu->section;
7446 bfd *abfd = get_section_bfd_owner (section);
7447 struct dwarf2_cu *cu;
7448 const gdb_byte *begin_info_ptr, *info_ptr;
7449 struct die_reader_specs reader;
7450 struct die_info *comp_unit_die;
7451 int has_children;
7452 struct attribute *attr;
7453 struct signatured_type *sig_type = NULL;
7454 struct dwarf2_section_info *abbrev_section;
7455 /* Non-zero if CU currently points to a DWO file and we need to
7456 reread it. When this happens we need to reread the skeleton die
7457 before we can reread the DWO file (this only applies to CUs, not TUs). */
7458 int rereading_dwo_cu = 0;
7459
7460 if (dwarf_die_debug)
7461 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7462 this_cu->is_debug_types ? "type" : "comp",
7463 sect_offset_str (this_cu->sect_off));
7464
7465 if (use_existing_cu)
7466 gdb_assert (keep);
7467
7468 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7469 file (instead of going through the stub), short-circuit all of this. */
7470 if (this_cu->reading_dwo_directly)
7471 {
7472 /* Narrow down the scope of possibilities to have to understand. */
7473 gdb_assert (this_cu->is_debug_types);
7474 gdb_assert (abbrev_table == NULL);
7475 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7476 die_reader_func, data);
7477 return;
7478 }
7479
7480 /* This is cheap if the section is already read in. */
7481 dwarf2_read_section (objfile, section);
7482
7483 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7484
7485 abbrev_section = get_abbrev_section_for_cu (this_cu);
7486
7487 std::unique_ptr<dwarf2_cu> new_cu;
7488 if (use_existing_cu && this_cu->cu != NULL)
7489 {
7490 cu = this_cu->cu;
7491 /* If this CU is from a DWO file we need to start over, we need to
7492 refetch the attributes from the skeleton CU.
7493 This could be optimized by retrieving those attributes from when we
7494 were here the first time: the previous comp_unit_die was stored in
7495 comp_unit_obstack. But there's no data yet that we need this
7496 optimization. */
7497 if (cu->dwo_unit != NULL)
7498 rereading_dwo_cu = 1;
7499 }
7500 else
7501 {
7502 /* If !use_existing_cu, this_cu->cu must be NULL. */
7503 gdb_assert (this_cu->cu == NULL);
7504 new_cu.reset (new dwarf2_cu (this_cu));
7505 cu = new_cu.get ();
7506 }
7507
7508 /* Get the header. */
7509 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7510 {
7511 /* We already have the header, there's no need to read it in again. */
7512 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7513 }
7514 else
7515 {
7516 if (this_cu->is_debug_types)
7517 {
7518 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7519 &cu->header, section,
7520 abbrev_section, info_ptr,
7521 rcuh_kind::TYPE);
7522
7523 /* Since per_cu is the first member of struct signatured_type,
7524 we can go from a pointer to one to a pointer to the other. */
7525 sig_type = (struct signatured_type *) this_cu;
7526 gdb_assert (sig_type->signature == cu->header.signature);
7527 gdb_assert (sig_type->type_offset_in_tu
7528 == cu->header.type_cu_offset_in_tu);
7529 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7530
7531 /* LENGTH has not been set yet for type units if we're
7532 using .gdb_index. */
7533 this_cu->length = get_cu_length (&cu->header);
7534
7535 /* Establish the type offset that can be used to lookup the type. */
7536 sig_type->type_offset_in_section =
7537 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7538
7539 this_cu->dwarf_version = cu->header.version;
7540 }
7541 else
7542 {
7543 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7544 &cu->header, section,
7545 abbrev_section,
7546 info_ptr,
7547 rcuh_kind::COMPILE);
7548
7549 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7550 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7551 this_cu->dwarf_version = cu->header.version;
7552 }
7553 }
7554
7555 /* Skip dummy compilation units. */
7556 if (info_ptr >= begin_info_ptr + this_cu->length
7557 || peek_abbrev_code (abfd, info_ptr) == 0)
7558 return;
7559
7560 /* If we don't have them yet, read the abbrevs for this compilation unit.
7561 And if we need to read them now, make sure they're freed when we're
7562 done (own the table through ABBREV_TABLE_HOLDER). */
7563 abbrev_table_up abbrev_table_holder;
7564 if (abbrev_table != NULL)
7565 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7566 else
7567 {
7568 abbrev_table_holder
7569 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7570 cu->header.abbrev_sect_off);
7571 abbrev_table = abbrev_table_holder.get ();
7572 }
7573
7574 /* Read the top level CU/TU die. */
7575 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7576 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7577
7578 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7579 return;
7580
7581 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7582 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7583 table from the DWO file and pass the ownership over to us. It will be
7584 referenced from READER, so we must make sure to free it after we're done
7585 with READER.
7586
7587 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7588 DWO CU, that this test will fail (the attribute will not be present). */
7589 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7590 abbrev_table_up dwo_abbrev_table;
7591 if (attr)
7592 {
7593 struct dwo_unit *dwo_unit;
7594 struct die_info *dwo_comp_unit_die;
7595
7596 if (has_children)
7597 {
7598 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7599 " has children (offset %s) [in module %s]"),
7600 sect_offset_str (this_cu->sect_off),
7601 bfd_get_filename (abfd));
7602 }
7603 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7604 if (dwo_unit != NULL)
7605 {
7606 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7607 comp_unit_die, NULL,
7608 &reader, &info_ptr,
7609 &dwo_comp_unit_die, &has_children,
7610 &dwo_abbrev_table) == 0)
7611 {
7612 /* Dummy die. */
7613 return;
7614 }
7615 comp_unit_die = dwo_comp_unit_die;
7616 }
7617 else
7618 {
7619 /* Yikes, we couldn't find the rest of the DIE, we only have
7620 the stub. A complaint has already been logged. There's
7621 not much more we can do except pass on the stub DIE to
7622 die_reader_func. We don't want to throw an error on bad
7623 debug info. */
7624 }
7625 }
7626
7627 /* All of the above is setup for this call. Yikes. */
7628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7629
7630 /* Done, clean up. */
7631 if (new_cu != NULL && keep)
7632 {
7633 /* Link this CU into read_in_chain. */
7634 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7635 dwarf2_per_objfile->read_in_chain = this_cu;
7636 /* The chain owns it now. */
7637 new_cu.release ();
7638 }
7639 }
7640
7641 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7642 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7643 to have already done the lookup to find the DWO file).
7644
7645 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7646 THIS_CU->is_debug_types, but nothing else.
7647
7648 We fill in THIS_CU->length.
7649
7650 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7651 linker) then DIE_READER_FUNC will not get called.
7652
7653 THIS_CU->cu is always freed when done.
7654 This is done in order to not leave THIS_CU->cu in a state where we have
7655 to care whether it refers to the "main" CU or the DWO CU. */
7656
7657 static void
7658 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7659 struct dwo_file *dwo_file,
7660 die_reader_func_ftype *die_reader_func,
7661 void *data)
7662 {
7663 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7664 struct objfile *objfile = dwarf2_per_objfile->objfile;
7665 struct dwarf2_section_info *section = this_cu->section;
7666 bfd *abfd = get_section_bfd_owner (section);
7667 struct dwarf2_section_info *abbrev_section;
7668 const gdb_byte *begin_info_ptr, *info_ptr;
7669 struct die_reader_specs reader;
7670 struct die_info *comp_unit_die;
7671 int has_children;
7672
7673 if (dwarf_die_debug)
7674 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7675 this_cu->is_debug_types ? "type" : "comp",
7676 sect_offset_str (this_cu->sect_off));
7677
7678 gdb_assert (this_cu->cu == NULL);
7679
7680 abbrev_section = (dwo_file != NULL
7681 ? &dwo_file->sections.abbrev
7682 : get_abbrev_section_for_cu (this_cu));
7683
7684 /* This is cheap if the section is already read in. */
7685 dwarf2_read_section (objfile, section);
7686
7687 struct dwarf2_cu cu (this_cu);
7688
7689 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7690 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7691 &cu.header, section,
7692 abbrev_section, info_ptr,
7693 (this_cu->is_debug_types
7694 ? rcuh_kind::TYPE
7695 : rcuh_kind::COMPILE));
7696
7697 this_cu->length = get_cu_length (&cu.header);
7698
7699 /* Skip dummy compilation units. */
7700 if (info_ptr >= begin_info_ptr + this_cu->length
7701 || peek_abbrev_code (abfd, info_ptr) == 0)
7702 return;
7703
7704 abbrev_table_up abbrev_table
7705 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7706 cu.header.abbrev_sect_off);
7707
7708 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7710
7711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7712 }
7713
7714 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7715 does not lookup the specified DWO file.
7716 This cannot be used to read DWO files.
7717
7718 THIS_CU->cu is always freed when done.
7719 This is done in order to not leave THIS_CU->cu in a state where we have
7720 to care whether it refers to the "main" CU or the DWO CU.
7721 We can revisit this if the data shows there's a performance issue. */
7722
7723 static void
7724 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7725 die_reader_func_ftype *die_reader_func,
7726 void *data)
7727 {
7728 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7729 }
7730 \f
7731 /* Type Unit Groups.
7732
7733 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7734 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7735 so that all types coming from the same compilation (.o file) are grouped
7736 together. A future step could be to put the types in the same symtab as
7737 the CU the types ultimately came from. */
7738
7739 static hashval_t
7740 hash_type_unit_group (const void *item)
7741 {
7742 const struct type_unit_group *tu_group
7743 = (const struct type_unit_group *) item;
7744
7745 return hash_stmt_list_entry (&tu_group->hash);
7746 }
7747
7748 static int
7749 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7750 {
7751 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7752 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7753
7754 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7755 }
7756
7757 /* Allocate a hash table for type unit groups. */
7758
7759 static htab_t
7760 allocate_type_unit_groups_table (struct objfile *objfile)
7761 {
7762 return htab_create_alloc_ex (3,
7763 hash_type_unit_group,
7764 eq_type_unit_group,
7765 NULL,
7766 &objfile->objfile_obstack,
7767 hashtab_obstack_allocate,
7768 dummy_obstack_deallocate);
7769 }
7770
7771 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7772 partial symtabs. We combine several TUs per psymtab to not let the size
7773 of any one psymtab grow too big. */
7774 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7775 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7776
7777 /* Helper routine for get_type_unit_group.
7778 Create the type_unit_group object used to hold one or more TUs. */
7779
7780 static struct type_unit_group *
7781 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7782 {
7783 struct dwarf2_per_objfile *dwarf2_per_objfile
7784 = cu->per_cu->dwarf2_per_objfile;
7785 struct objfile *objfile = dwarf2_per_objfile->objfile;
7786 struct dwarf2_per_cu_data *per_cu;
7787 struct type_unit_group *tu_group;
7788
7789 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7790 struct type_unit_group);
7791 per_cu = &tu_group->per_cu;
7792 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7793
7794 if (dwarf2_per_objfile->using_index)
7795 {
7796 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7797 struct dwarf2_per_cu_quick_data);
7798 }
7799 else
7800 {
7801 unsigned int line_offset = to_underlying (line_offset_struct);
7802 struct partial_symtab *pst;
7803 std::string name;
7804
7805 /* Give the symtab a useful name for debug purposes. */
7806 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7807 name = string_printf ("<type_units_%d>",
7808 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7809 else
7810 name = string_printf ("<type_units_at_0x%x>", line_offset);
7811
7812 pst = create_partial_symtab (per_cu, name.c_str ());
7813 pst->anonymous = 1;
7814 }
7815
7816 tu_group->hash.dwo_unit = cu->dwo_unit;
7817 tu_group->hash.line_sect_off = line_offset_struct;
7818
7819 return tu_group;
7820 }
7821
7822 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7823 STMT_LIST is a DW_AT_stmt_list attribute. */
7824
7825 static struct type_unit_group *
7826 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7827 {
7828 struct dwarf2_per_objfile *dwarf2_per_objfile
7829 = cu->per_cu->dwarf2_per_objfile;
7830 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7831 struct type_unit_group *tu_group;
7832 void **slot;
7833 unsigned int line_offset;
7834 struct type_unit_group type_unit_group_for_lookup;
7835
7836 if (dwarf2_per_objfile->type_unit_groups == NULL)
7837 {
7838 dwarf2_per_objfile->type_unit_groups =
7839 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7840 }
7841
7842 /* Do we need to create a new group, or can we use an existing one? */
7843
7844 if (stmt_list)
7845 {
7846 line_offset = DW_UNSND (stmt_list);
7847 ++tu_stats->nr_symtab_sharers;
7848 }
7849 else
7850 {
7851 /* Ugh, no stmt_list. Rare, but we have to handle it.
7852 We can do various things here like create one group per TU or
7853 spread them over multiple groups to split up the expansion work.
7854 To avoid worst case scenarios (too many groups or too large groups)
7855 we, umm, group them in bunches. */
7856 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7857 | (tu_stats->nr_stmt_less_type_units
7858 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7859 ++tu_stats->nr_stmt_less_type_units;
7860 }
7861
7862 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7863 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7864 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7865 &type_unit_group_for_lookup, INSERT);
7866 if (*slot != NULL)
7867 {
7868 tu_group = (struct type_unit_group *) *slot;
7869 gdb_assert (tu_group != NULL);
7870 }
7871 else
7872 {
7873 sect_offset line_offset_struct = (sect_offset) line_offset;
7874 tu_group = create_type_unit_group (cu, line_offset_struct);
7875 *slot = tu_group;
7876 ++tu_stats->nr_symtabs;
7877 }
7878
7879 return tu_group;
7880 }
7881 \f
7882 /* Partial symbol tables. */
7883
7884 /* Create a psymtab named NAME and assign it to PER_CU.
7885
7886 The caller must fill in the following details:
7887 dirname, textlow, texthigh. */
7888
7889 static struct partial_symtab *
7890 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7891 {
7892 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7893 struct partial_symtab *pst;
7894
7895 pst = start_psymtab_common (objfile, name, 0);
7896
7897 pst->psymtabs_addrmap_supported = 1;
7898
7899 /* This is the glue that links PST into GDB's symbol API. */
7900 pst->read_symtab_private = per_cu;
7901 pst->read_symtab = dwarf2_read_symtab;
7902 per_cu->v.psymtab = pst;
7903
7904 return pst;
7905 }
7906
7907 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7908 type. */
7909
7910 struct process_psymtab_comp_unit_data
7911 {
7912 /* True if we are reading a DW_TAG_partial_unit. */
7913
7914 int want_partial_unit;
7915
7916 /* The "pretend" language that is used if the CU doesn't declare a
7917 language. */
7918
7919 enum language pretend_language;
7920 };
7921
7922 /* die_reader_func for process_psymtab_comp_unit. */
7923
7924 static void
7925 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7926 const gdb_byte *info_ptr,
7927 struct die_info *comp_unit_die,
7928 int has_children,
7929 void *data)
7930 {
7931 struct dwarf2_cu *cu = reader->cu;
7932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7934 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7935 CORE_ADDR baseaddr;
7936 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7937 struct partial_symtab *pst;
7938 enum pc_bounds_kind cu_bounds_kind;
7939 const char *filename;
7940 struct process_psymtab_comp_unit_data *info
7941 = (struct process_psymtab_comp_unit_data *) data;
7942
7943 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7944 return;
7945
7946 gdb_assert (! per_cu->is_debug_types);
7947
7948 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7949
7950 /* Allocate a new partial symbol table structure. */
7951 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7952 if (filename == NULL)
7953 filename = "";
7954
7955 pst = create_partial_symtab (per_cu, filename);
7956
7957 /* This must be done before calling dwarf2_build_include_psymtabs. */
7958 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7959
7960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7961
7962 dwarf2_find_base_address (comp_unit_die, cu);
7963
7964 /* Possibly set the default values of LOWPC and HIGHPC from
7965 `DW_AT_ranges'. */
7966 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7967 &best_highpc, cu, pst);
7968 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7969 {
7970 CORE_ADDR low
7971 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7972 - baseaddr);
7973 CORE_ADDR high
7974 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7975 - baseaddr - 1);
7976 /* Store the contiguous range if it is not empty; it can be
7977 empty for CUs with no code. */
7978 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7979 low, high, pst);
7980 }
7981
7982 /* Check if comp unit has_children.
7983 If so, read the rest of the partial symbols from this comp unit.
7984 If not, there's no more debug_info for this comp unit. */
7985 if (has_children)
7986 {
7987 struct partial_die_info *first_die;
7988 CORE_ADDR lowpc, highpc;
7989
7990 lowpc = ((CORE_ADDR) -1);
7991 highpc = ((CORE_ADDR) 0);
7992
7993 first_die = load_partial_dies (reader, info_ptr, 1);
7994
7995 scan_partial_symbols (first_die, &lowpc, &highpc,
7996 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7997
7998 /* If we didn't find a lowpc, set it to highpc to avoid
7999 complaints from `maint check'. */
8000 if (lowpc == ((CORE_ADDR) -1))
8001 lowpc = highpc;
8002
8003 /* If the compilation unit didn't have an explicit address range,
8004 then use the information extracted from its child dies. */
8005 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8006 {
8007 best_lowpc = lowpc;
8008 best_highpc = highpc;
8009 }
8010 }
8011 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8012 best_lowpc + baseaddr)
8013 - baseaddr);
8014 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8015 best_highpc + baseaddr)
8016 - baseaddr);
8017
8018 end_psymtab_common (objfile, pst);
8019
8020 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8021 {
8022 int i;
8023 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8024 struct dwarf2_per_cu_data *iter;
8025
8026 /* Fill in 'dependencies' here; we fill in 'users' in a
8027 post-pass. */
8028 pst->number_of_dependencies = len;
8029 pst->dependencies
8030 = objfile->partial_symtabs->allocate_dependencies (len);
8031 for (i = 0;
8032 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8033 i, iter);
8034 ++i)
8035 pst->dependencies[i] = iter->v.psymtab;
8036
8037 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8038 }
8039
8040 /* Get the list of files included in the current compilation unit,
8041 and build a psymtab for each of them. */
8042 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8043
8044 if (dwarf_read_debug)
8045 fprintf_unfiltered (gdb_stdlog,
8046 "Psymtab for %s unit @%s: %s - %s"
8047 ", %d global, %d static syms\n",
8048 per_cu->is_debug_types ? "type" : "comp",
8049 sect_offset_str (per_cu->sect_off),
8050 paddress (gdbarch, pst->text_low (objfile)),
8051 paddress (gdbarch, pst->text_high (objfile)),
8052 pst->n_global_syms, pst->n_static_syms);
8053 }
8054
8055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8056 Process compilation unit THIS_CU for a psymtab. */
8057
8058 static void
8059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8060 int want_partial_unit,
8061 enum language pretend_language)
8062 {
8063 /* If this compilation unit was already read in, free the
8064 cached copy in order to read it in again. This is
8065 necessary because we skipped some symbols when we first
8066 read in the compilation unit (see load_partial_dies).
8067 This problem could be avoided, but the benefit is unclear. */
8068 if (this_cu->cu != NULL)
8069 free_one_cached_comp_unit (this_cu);
8070
8071 if (this_cu->is_debug_types)
8072 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8073 build_type_psymtabs_reader, NULL);
8074 else
8075 {
8076 process_psymtab_comp_unit_data info;
8077 info.want_partial_unit = want_partial_unit;
8078 info.pretend_language = pretend_language;
8079 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8080 process_psymtab_comp_unit_reader, &info);
8081 }
8082
8083 /* Age out any secondary CUs. */
8084 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8085 }
8086
8087 /* Reader function for build_type_psymtabs. */
8088
8089 static void
8090 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8091 const gdb_byte *info_ptr,
8092 struct die_info *type_unit_die,
8093 int has_children,
8094 void *data)
8095 {
8096 struct dwarf2_per_objfile *dwarf2_per_objfile
8097 = reader->cu->per_cu->dwarf2_per_objfile;
8098 struct objfile *objfile = dwarf2_per_objfile->objfile;
8099 struct dwarf2_cu *cu = reader->cu;
8100 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8101 struct signatured_type *sig_type;
8102 struct type_unit_group *tu_group;
8103 struct attribute *attr;
8104 struct partial_die_info *first_die;
8105 CORE_ADDR lowpc, highpc;
8106 struct partial_symtab *pst;
8107
8108 gdb_assert (data == NULL);
8109 gdb_assert (per_cu->is_debug_types);
8110 sig_type = (struct signatured_type *) per_cu;
8111
8112 if (! has_children)
8113 return;
8114
8115 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8116 tu_group = get_type_unit_group (cu, attr);
8117
8118 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8119
8120 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8121 pst = create_partial_symtab (per_cu, "");
8122 pst->anonymous = 1;
8123
8124 first_die = load_partial_dies (reader, info_ptr, 1);
8125
8126 lowpc = (CORE_ADDR) -1;
8127 highpc = (CORE_ADDR) 0;
8128 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8129
8130 end_psymtab_common (objfile, pst);
8131 }
8132
8133 /* Struct used to sort TUs by their abbreviation table offset. */
8134
8135 struct tu_abbrev_offset
8136 {
8137 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8138 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8139 {}
8140
8141 signatured_type *sig_type;
8142 sect_offset abbrev_offset;
8143 };
8144
8145 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8146
8147 static bool
8148 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8149 const struct tu_abbrev_offset &b)
8150 {
8151 return a.abbrev_offset < b.abbrev_offset;
8152 }
8153
8154 /* Efficiently read all the type units.
8155 This does the bulk of the work for build_type_psymtabs.
8156
8157 The efficiency is because we sort TUs by the abbrev table they use and
8158 only read each abbrev table once. In one program there are 200K TUs
8159 sharing 8K abbrev tables.
8160
8161 The main purpose of this function is to support building the
8162 dwarf2_per_objfile->type_unit_groups table.
8163 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8164 can collapse the search space by grouping them by stmt_list.
8165 The savings can be significant, in the same program from above the 200K TUs
8166 share 8K stmt_list tables.
8167
8168 FUNC is expected to call get_type_unit_group, which will create the
8169 struct type_unit_group if necessary and add it to
8170 dwarf2_per_objfile->type_unit_groups. */
8171
8172 static void
8173 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8174 {
8175 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8176 abbrev_table_up abbrev_table;
8177 sect_offset abbrev_offset;
8178
8179 /* It's up to the caller to not call us multiple times. */
8180 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8181
8182 if (dwarf2_per_objfile->all_type_units.empty ())
8183 return;
8184
8185 /* TUs typically share abbrev tables, and there can be way more TUs than
8186 abbrev tables. Sort by abbrev table to reduce the number of times we
8187 read each abbrev table in.
8188 Alternatives are to punt or to maintain a cache of abbrev tables.
8189 This is simpler and efficient enough for now.
8190
8191 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8192 symtab to use). Typically TUs with the same abbrev offset have the same
8193 stmt_list value too so in practice this should work well.
8194
8195 The basic algorithm here is:
8196
8197 sort TUs by abbrev table
8198 for each TU with same abbrev table:
8199 read abbrev table if first user
8200 read TU top level DIE
8201 [IWBN if DWO skeletons had DW_AT_stmt_list]
8202 call FUNC */
8203
8204 if (dwarf_read_debug)
8205 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8206
8207 /* Sort in a separate table to maintain the order of all_type_units
8208 for .gdb_index: TU indices directly index all_type_units. */
8209 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8210 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8211
8212 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8213 sorted_by_abbrev.emplace_back
8214 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8215 sig_type->per_cu.section,
8216 sig_type->per_cu.sect_off));
8217
8218 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8219 sort_tu_by_abbrev_offset);
8220
8221 abbrev_offset = (sect_offset) ~(unsigned) 0;
8222
8223 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8224 {
8225 /* Switch to the next abbrev table if necessary. */
8226 if (abbrev_table == NULL
8227 || tu.abbrev_offset != abbrev_offset)
8228 {
8229 abbrev_offset = tu.abbrev_offset;
8230 abbrev_table =
8231 abbrev_table_read_table (dwarf2_per_objfile,
8232 &dwarf2_per_objfile->abbrev,
8233 abbrev_offset);
8234 ++tu_stats->nr_uniq_abbrev_tables;
8235 }
8236
8237 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8238 0, 0, false, build_type_psymtabs_reader, NULL);
8239 }
8240 }
8241
8242 /* Print collected type unit statistics. */
8243
8244 static void
8245 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8246 {
8247 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8248
8249 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8250 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8251 dwarf2_per_objfile->all_type_units.size ());
8252 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8253 tu_stats->nr_uniq_abbrev_tables);
8254 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8255 tu_stats->nr_symtabs);
8256 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8257 tu_stats->nr_symtab_sharers);
8258 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8259 tu_stats->nr_stmt_less_type_units);
8260 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8261 tu_stats->nr_all_type_units_reallocs);
8262 }
8263
8264 /* Traversal function for build_type_psymtabs. */
8265
8266 static int
8267 build_type_psymtab_dependencies (void **slot, void *info)
8268 {
8269 struct dwarf2_per_objfile *dwarf2_per_objfile
8270 = (struct dwarf2_per_objfile *) info;
8271 struct objfile *objfile = dwarf2_per_objfile->objfile;
8272 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8273 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8274 struct partial_symtab *pst = per_cu->v.psymtab;
8275 int len = VEC_length (sig_type_ptr, tu_group->tus);
8276 struct signatured_type *iter;
8277 int i;
8278
8279 gdb_assert (len > 0);
8280 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8281
8282 pst->number_of_dependencies = len;
8283 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8284 for (i = 0;
8285 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8286 ++i)
8287 {
8288 gdb_assert (iter->per_cu.is_debug_types);
8289 pst->dependencies[i] = iter->per_cu.v.psymtab;
8290 iter->type_unit_group = tu_group;
8291 }
8292
8293 VEC_free (sig_type_ptr, tu_group->tus);
8294
8295 return 1;
8296 }
8297
8298 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8299 Build partial symbol tables for the .debug_types comp-units. */
8300
8301 static void
8302 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8303 {
8304 if (! create_all_type_units (dwarf2_per_objfile))
8305 return;
8306
8307 build_type_psymtabs_1 (dwarf2_per_objfile);
8308 }
8309
8310 /* Traversal function for process_skeletonless_type_unit.
8311 Read a TU in a DWO file and build partial symbols for it. */
8312
8313 static int
8314 process_skeletonless_type_unit (void **slot, void *info)
8315 {
8316 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8317 struct dwarf2_per_objfile *dwarf2_per_objfile
8318 = (struct dwarf2_per_objfile *) info;
8319 struct signatured_type find_entry, *entry;
8320
8321 /* If this TU doesn't exist in the global table, add it and read it in. */
8322
8323 if (dwarf2_per_objfile->signatured_types == NULL)
8324 {
8325 dwarf2_per_objfile->signatured_types
8326 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8327 }
8328
8329 find_entry.signature = dwo_unit->signature;
8330 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8331 INSERT);
8332 /* If we've already seen this type there's nothing to do. What's happening
8333 is we're doing our own version of comdat-folding here. */
8334 if (*slot != NULL)
8335 return 1;
8336
8337 /* This does the job that create_all_type_units would have done for
8338 this TU. */
8339 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8340 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8341 *slot = entry;
8342
8343 /* This does the job that build_type_psymtabs_1 would have done. */
8344 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8345 build_type_psymtabs_reader, NULL);
8346
8347 return 1;
8348 }
8349
8350 /* Traversal function for process_skeletonless_type_units. */
8351
8352 static int
8353 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8354 {
8355 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8356
8357 if (dwo_file->tus != NULL)
8358 {
8359 htab_traverse_noresize (dwo_file->tus,
8360 process_skeletonless_type_unit, info);
8361 }
8362
8363 return 1;
8364 }
8365
8366 /* Scan all TUs of DWO files, verifying we've processed them.
8367 This is needed in case a TU was emitted without its skeleton.
8368 Note: This can't be done until we know what all the DWO files are. */
8369
8370 static void
8371 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8372 {
8373 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8374 if (get_dwp_file (dwarf2_per_objfile) == NULL
8375 && dwarf2_per_objfile->dwo_files != NULL)
8376 {
8377 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8378 process_dwo_file_for_skeletonless_type_units,
8379 dwarf2_per_objfile);
8380 }
8381 }
8382
8383 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8384
8385 static void
8386 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8387 {
8388 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8389 {
8390 struct partial_symtab *pst = per_cu->v.psymtab;
8391
8392 if (pst == NULL)
8393 continue;
8394
8395 for (int j = 0; j < pst->number_of_dependencies; ++j)
8396 {
8397 /* Set the 'user' field only if it is not already set. */
8398 if (pst->dependencies[j]->user == NULL)
8399 pst->dependencies[j]->user = pst;
8400 }
8401 }
8402 }
8403
8404 /* Build the partial symbol table by doing a quick pass through the
8405 .debug_info and .debug_abbrev sections. */
8406
8407 static void
8408 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8409 {
8410 struct objfile *objfile = dwarf2_per_objfile->objfile;
8411
8412 if (dwarf_read_debug)
8413 {
8414 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8415 objfile_name (objfile));
8416 }
8417
8418 dwarf2_per_objfile->reading_partial_symbols = 1;
8419
8420 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8421
8422 /* Any cached compilation units will be linked by the per-objfile
8423 read_in_chain. Make sure to free them when we're done. */
8424 free_cached_comp_units freer (dwarf2_per_objfile);
8425
8426 build_type_psymtabs (dwarf2_per_objfile);
8427
8428 create_all_comp_units (dwarf2_per_objfile);
8429
8430 /* Create a temporary address map on a temporary obstack. We later
8431 copy this to the final obstack. */
8432 auto_obstack temp_obstack;
8433
8434 scoped_restore save_psymtabs_addrmap
8435 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8436 addrmap_create_mutable (&temp_obstack));
8437
8438 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8439 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8440
8441 /* This has to wait until we read the CUs, we need the list of DWOs. */
8442 process_skeletonless_type_units (dwarf2_per_objfile);
8443
8444 /* Now that all TUs have been processed we can fill in the dependencies. */
8445 if (dwarf2_per_objfile->type_unit_groups != NULL)
8446 {
8447 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8448 build_type_psymtab_dependencies, dwarf2_per_objfile);
8449 }
8450
8451 if (dwarf_read_debug)
8452 print_tu_stats (dwarf2_per_objfile);
8453
8454 set_partial_user (dwarf2_per_objfile);
8455
8456 objfile->partial_symtabs->psymtabs_addrmap
8457 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8458 objfile->partial_symtabs->obstack ());
8459 /* At this point we want to keep the address map. */
8460 save_psymtabs_addrmap.release ();
8461
8462 if (dwarf_read_debug)
8463 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8464 objfile_name (objfile));
8465 }
8466
8467 /* die_reader_func for load_partial_comp_unit. */
8468
8469 static void
8470 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8471 const gdb_byte *info_ptr,
8472 struct die_info *comp_unit_die,
8473 int has_children,
8474 void *data)
8475 {
8476 struct dwarf2_cu *cu = reader->cu;
8477
8478 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8479
8480 /* Check if comp unit has_children.
8481 If so, read the rest of the partial symbols from this comp unit.
8482 If not, there's no more debug_info for this comp unit. */
8483 if (has_children)
8484 load_partial_dies (reader, info_ptr, 0);
8485 }
8486
8487 /* Load the partial DIEs for a secondary CU into memory.
8488 This is also used when rereading a primary CU with load_all_dies. */
8489
8490 static void
8491 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8492 {
8493 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8494 load_partial_comp_unit_reader, NULL);
8495 }
8496
8497 static void
8498 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8499 struct dwarf2_section_info *section,
8500 struct dwarf2_section_info *abbrev_section,
8501 unsigned int is_dwz)
8502 {
8503 const gdb_byte *info_ptr;
8504 struct objfile *objfile = dwarf2_per_objfile->objfile;
8505
8506 if (dwarf_read_debug)
8507 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8508 get_section_name (section),
8509 get_section_file_name (section));
8510
8511 dwarf2_read_section (objfile, section);
8512
8513 info_ptr = section->buffer;
8514
8515 while (info_ptr < section->buffer + section->size)
8516 {
8517 struct dwarf2_per_cu_data *this_cu;
8518
8519 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8520
8521 comp_unit_head cu_header;
8522 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8523 abbrev_section, info_ptr,
8524 rcuh_kind::COMPILE);
8525
8526 /* Save the compilation unit for later lookup. */
8527 if (cu_header.unit_type != DW_UT_type)
8528 {
8529 this_cu = XOBNEW (&objfile->objfile_obstack,
8530 struct dwarf2_per_cu_data);
8531 memset (this_cu, 0, sizeof (*this_cu));
8532 }
8533 else
8534 {
8535 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8536 struct signatured_type);
8537 memset (sig_type, 0, sizeof (*sig_type));
8538 sig_type->signature = cu_header.signature;
8539 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8540 this_cu = &sig_type->per_cu;
8541 }
8542 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8543 this_cu->sect_off = sect_off;
8544 this_cu->length = cu_header.length + cu_header.initial_length_size;
8545 this_cu->is_dwz = is_dwz;
8546 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8547 this_cu->section = section;
8548
8549 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8550
8551 info_ptr = info_ptr + this_cu->length;
8552 }
8553 }
8554
8555 /* Create a list of all compilation units in OBJFILE.
8556 This is only done for -readnow and building partial symtabs. */
8557
8558 static void
8559 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8560 {
8561 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8562 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8563 &dwarf2_per_objfile->abbrev, 0);
8564
8565 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8566 if (dwz != NULL)
8567 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8568 1);
8569 }
8570
8571 /* Process all loaded DIEs for compilation unit CU, starting at
8572 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8573 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8574 DW_AT_ranges). See the comments of add_partial_subprogram on how
8575 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8576
8577 static void
8578 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8579 CORE_ADDR *highpc, int set_addrmap,
8580 struct dwarf2_cu *cu)
8581 {
8582 struct partial_die_info *pdi;
8583
8584 /* Now, march along the PDI's, descending into ones which have
8585 interesting children but skipping the children of the other ones,
8586 until we reach the end of the compilation unit. */
8587
8588 pdi = first_die;
8589
8590 while (pdi != NULL)
8591 {
8592 pdi->fixup (cu);
8593
8594 /* Anonymous namespaces or modules have no name but have interesting
8595 children, so we need to look at them. Ditto for anonymous
8596 enums. */
8597
8598 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8599 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8600 || pdi->tag == DW_TAG_imported_unit
8601 || pdi->tag == DW_TAG_inlined_subroutine)
8602 {
8603 switch (pdi->tag)
8604 {
8605 case DW_TAG_subprogram:
8606 case DW_TAG_inlined_subroutine:
8607 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8608 break;
8609 case DW_TAG_constant:
8610 case DW_TAG_variable:
8611 case DW_TAG_typedef:
8612 case DW_TAG_union_type:
8613 if (!pdi->is_declaration)
8614 {
8615 add_partial_symbol (pdi, cu);
8616 }
8617 break;
8618 case DW_TAG_class_type:
8619 case DW_TAG_interface_type:
8620 case DW_TAG_structure_type:
8621 if (!pdi->is_declaration)
8622 {
8623 add_partial_symbol (pdi, cu);
8624 }
8625 if ((cu->language == language_rust
8626 || cu->language == language_cplus) && pdi->has_children)
8627 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8628 set_addrmap, cu);
8629 break;
8630 case DW_TAG_enumeration_type:
8631 if (!pdi->is_declaration)
8632 add_partial_enumeration (pdi, cu);
8633 break;
8634 case DW_TAG_base_type:
8635 case DW_TAG_subrange_type:
8636 /* File scope base type definitions are added to the partial
8637 symbol table. */
8638 add_partial_symbol (pdi, cu);
8639 break;
8640 case DW_TAG_namespace:
8641 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8642 break;
8643 case DW_TAG_module:
8644 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8645 break;
8646 case DW_TAG_imported_unit:
8647 {
8648 struct dwarf2_per_cu_data *per_cu;
8649
8650 /* For now we don't handle imported units in type units. */
8651 if (cu->per_cu->is_debug_types)
8652 {
8653 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8654 " supported in type units [in module %s]"),
8655 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8656 }
8657
8658 per_cu = dwarf2_find_containing_comp_unit
8659 (pdi->d.sect_off, pdi->is_dwz,
8660 cu->per_cu->dwarf2_per_objfile);
8661
8662 /* Go read the partial unit, if needed. */
8663 if (per_cu->v.psymtab == NULL)
8664 process_psymtab_comp_unit (per_cu, 1, cu->language);
8665
8666 VEC_safe_push (dwarf2_per_cu_ptr,
8667 cu->per_cu->imported_symtabs, per_cu);
8668 }
8669 break;
8670 case DW_TAG_imported_declaration:
8671 add_partial_symbol (pdi, cu);
8672 break;
8673 default:
8674 break;
8675 }
8676 }
8677
8678 /* If the die has a sibling, skip to the sibling. */
8679
8680 pdi = pdi->die_sibling;
8681 }
8682 }
8683
8684 /* Functions used to compute the fully scoped name of a partial DIE.
8685
8686 Normally, this is simple. For C++, the parent DIE's fully scoped
8687 name is concatenated with "::" and the partial DIE's name.
8688 Enumerators are an exception; they use the scope of their parent
8689 enumeration type, i.e. the name of the enumeration type is not
8690 prepended to the enumerator.
8691
8692 There are two complexities. One is DW_AT_specification; in this
8693 case "parent" means the parent of the target of the specification,
8694 instead of the direct parent of the DIE. The other is compilers
8695 which do not emit DW_TAG_namespace; in this case we try to guess
8696 the fully qualified name of structure types from their members'
8697 linkage names. This must be done using the DIE's children rather
8698 than the children of any DW_AT_specification target. We only need
8699 to do this for structures at the top level, i.e. if the target of
8700 any DW_AT_specification (if any; otherwise the DIE itself) does not
8701 have a parent. */
8702
8703 /* Compute the scope prefix associated with PDI's parent, in
8704 compilation unit CU. The result will be allocated on CU's
8705 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8706 field. NULL is returned if no prefix is necessary. */
8707 static const char *
8708 partial_die_parent_scope (struct partial_die_info *pdi,
8709 struct dwarf2_cu *cu)
8710 {
8711 const char *grandparent_scope;
8712 struct partial_die_info *parent, *real_pdi;
8713
8714 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8715 then this means the parent of the specification DIE. */
8716
8717 real_pdi = pdi;
8718 while (real_pdi->has_specification)
8719 {
8720 auto res = find_partial_die (real_pdi->spec_offset,
8721 real_pdi->spec_is_dwz, cu);
8722 real_pdi = res.pdi;
8723 cu = res.cu;
8724 }
8725
8726 parent = real_pdi->die_parent;
8727 if (parent == NULL)
8728 return NULL;
8729
8730 if (parent->scope_set)
8731 return parent->scope;
8732
8733 parent->fixup (cu);
8734
8735 grandparent_scope = partial_die_parent_scope (parent, cu);
8736
8737 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8738 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8739 Work around this problem here. */
8740 if (cu->language == language_cplus
8741 && parent->tag == DW_TAG_namespace
8742 && strcmp (parent->name, "::") == 0
8743 && grandparent_scope == NULL)
8744 {
8745 parent->scope = NULL;
8746 parent->scope_set = 1;
8747 return NULL;
8748 }
8749
8750 if (pdi->tag == DW_TAG_enumerator)
8751 /* Enumerators should not get the name of the enumeration as a prefix. */
8752 parent->scope = grandparent_scope;
8753 else if (parent->tag == DW_TAG_namespace
8754 || parent->tag == DW_TAG_module
8755 || parent->tag == DW_TAG_structure_type
8756 || parent->tag == DW_TAG_class_type
8757 || parent->tag == DW_TAG_interface_type
8758 || parent->tag == DW_TAG_union_type
8759 || parent->tag == DW_TAG_enumeration_type)
8760 {
8761 if (grandparent_scope == NULL)
8762 parent->scope = parent->name;
8763 else
8764 parent->scope = typename_concat (&cu->comp_unit_obstack,
8765 grandparent_scope,
8766 parent->name, 0, cu);
8767 }
8768 else
8769 {
8770 /* FIXME drow/2004-04-01: What should we be doing with
8771 function-local names? For partial symbols, we should probably be
8772 ignoring them. */
8773 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8774 dwarf_tag_name (parent->tag),
8775 sect_offset_str (pdi->sect_off));
8776 parent->scope = grandparent_scope;
8777 }
8778
8779 parent->scope_set = 1;
8780 return parent->scope;
8781 }
8782
8783 /* Return the fully scoped name associated with PDI, from compilation unit
8784 CU. The result will be allocated with malloc. */
8785
8786 static char *
8787 partial_die_full_name (struct partial_die_info *pdi,
8788 struct dwarf2_cu *cu)
8789 {
8790 const char *parent_scope;
8791
8792 /* If this is a template instantiation, we can not work out the
8793 template arguments from partial DIEs. So, unfortunately, we have
8794 to go through the full DIEs. At least any work we do building
8795 types here will be reused if full symbols are loaded later. */
8796 if (pdi->has_template_arguments)
8797 {
8798 pdi->fixup (cu);
8799
8800 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8801 {
8802 struct die_info *die;
8803 struct attribute attr;
8804 struct dwarf2_cu *ref_cu = cu;
8805
8806 /* DW_FORM_ref_addr is using section offset. */
8807 attr.name = (enum dwarf_attribute) 0;
8808 attr.form = DW_FORM_ref_addr;
8809 attr.u.unsnd = to_underlying (pdi->sect_off);
8810 die = follow_die_ref (NULL, &attr, &ref_cu);
8811
8812 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8813 }
8814 }
8815
8816 parent_scope = partial_die_parent_scope (pdi, cu);
8817 if (parent_scope == NULL)
8818 return NULL;
8819 else
8820 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8821 }
8822
8823 static void
8824 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8825 {
8826 struct dwarf2_per_objfile *dwarf2_per_objfile
8827 = cu->per_cu->dwarf2_per_objfile;
8828 struct objfile *objfile = dwarf2_per_objfile->objfile;
8829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8830 CORE_ADDR addr = 0;
8831 const char *actual_name = NULL;
8832 CORE_ADDR baseaddr;
8833 char *built_actual_name;
8834
8835 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8836
8837 built_actual_name = partial_die_full_name (pdi, cu);
8838 if (built_actual_name != NULL)
8839 actual_name = built_actual_name;
8840
8841 if (actual_name == NULL)
8842 actual_name = pdi->name;
8843
8844 switch (pdi->tag)
8845 {
8846 case DW_TAG_inlined_subroutine:
8847 case DW_TAG_subprogram:
8848 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8849 - baseaddr);
8850 if (pdi->is_external || cu->language == language_ada)
8851 {
8852 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8853 of the global scope. But in Ada, we want to be able to access
8854 nested procedures globally. So all Ada subprograms are stored
8855 in the global scope. */
8856 add_psymbol_to_list (actual_name, strlen (actual_name),
8857 built_actual_name != NULL,
8858 VAR_DOMAIN, LOC_BLOCK,
8859 SECT_OFF_TEXT (objfile),
8860 psymbol_placement::GLOBAL,
8861 addr,
8862 cu->language, objfile);
8863 }
8864 else
8865 {
8866 add_psymbol_to_list (actual_name, strlen (actual_name),
8867 built_actual_name != NULL,
8868 VAR_DOMAIN, LOC_BLOCK,
8869 SECT_OFF_TEXT (objfile),
8870 psymbol_placement::STATIC,
8871 addr, cu->language, objfile);
8872 }
8873
8874 if (pdi->main_subprogram && actual_name != NULL)
8875 set_objfile_main_name (objfile, actual_name, cu->language);
8876 break;
8877 case DW_TAG_constant:
8878 add_psymbol_to_list (actual_name, strlen (actual_name),
8879 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8880 -1, (pdi->is_external
8881 ? psymbol_placement::GLOBAL
8882 : psymbol_placement::STATIC),
8883 0, cu->language, objfile);
8884 break;
8885 case DW_TAG_variable:
8886 if (pdi->d.locdesc)
8887 addr = decode_locdesc (pdi->d.locdesc, cu);
8888
8889 if (pdi->d.locdesc
8890 && addr == 0
8891 && !dwarf2_per_objfile->has_section_at_zero)
8892 {
8893 /* A global or static variable may also have been stripped
8894 out by the linker if unused, in which case its address
8895 will be nullified; do not add such variables into partial
8896 symbol table then. */
8897 }
8898 else if (pdi->is_external)
8899 {
8900 /* Global Variable.
8901 Don't enter into the minimal symbol tables as there is
8902 a minimal symbol table entry from the ELF symbols already.
8903 Enter into partial symbol table if it has a location
8904 descriptor or a type.
8905 If the location descriptor is missing, new_symbol will create
8906 a LOC_UNRESOLVED symbol, the address of the variable will then
8907 be determined from the minimal symbol table whenever the variable
8908 is referenced.
8909 The address for the partial symbol table entry is not
8910 used by GDB, but it comes in handy for debugging partial symbol
8911 table building. */
8912
8913 if (pdi->d.locdesc || pdi->has_type)
8914 add_psymbol_to_list (actual_name, strlen (actual_name),
8915 built_actual_name != NULL,
8916 VAR_DOMAIN, LOC_STATIC,
8917 SECT_OFF_TEXT (objfile),
8918 psymbol_placement::GLOBAL,
8919 addr, cu->language, objfile);
8920 }
8921 else
8922 {
8923 int has_loc = pdi->d.locdesc != NULL;
8924
8925 /* Static Variable. Skip symbols whose value we cannot know (those
8926 without location descriptors or constant values). */
8927 if (!has_loc && !pdi->has_const_value)
8928 {
8929 xfree (built_actual_name);
8930 return;
8931 }
8932
8933 add_psymbol_to_list (actual_name, strlen (actual_name),
8934 built_actual_name != NULL,
8935 VAR_DOMAIN, LOC_STATIC,
8936 SECT_OFF_TEXT (objfile),
8937 psymbol_placement::STATIC,
8938 has_loc ? addr : 0,
8939 cu->language, objfile);
8940 }
8941 break;
8942 case DW_TAG_typedef:
8943 case DW_TAG_base_type:
8944 case DW_TAG_subrange_type:
8945 add_psymbol_to_list (actual_name, strlen (actual_name),
8946 built_actual_name != NULL,
8947 VAR_DOMAIN, LOC_TYPEDEF, -1,
8948 psymbol_placement::STATIC,
8949 0, cu->language, objfile);
8950 break;
8951 case DW_TAG_imported_declaration:
8952 case DW_TAG_namespace:
8953 add_psymbol_to_list (actual_name, strlen (actual_name),
8954 built_actual_name != NULL,
8955 VAR_DOMAIN, LOC_TYPEDEF, -1,
8956 psymbol_placement::GLOBAL,
8957 0, cu->language, objfile);
8958 break;
8959 case DW_TAG_module:
8960 /* With Fortran 77 there might be a "BLOCK DATA" module
8961 available without any name. If so, we skip the module as it
8962 doesn't bring any value. */
8963 if (actual_name != nullptr)
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8967 psymbol_placement::GLOBAL,
8968 0, cu->language, objfile);
8969 break;
8970 case DW_TAG_class_type:
8971 case DW_TAG_interface_type:
8972 case DW_TAG_structure_type:
8973 case DW_TAG_union_type:
8974 case DW_TAG_enumeration_type:
8975 /* Skip external references. The DWARF standard says in the section
8976 about "Structure, Union, and Class Type Entries": "An incomplete
8977 structure, union or class type is represented by a structure,
8978 union or class entry that does not have a byte size attribute
8979 and that has a DW_AT_declaration attribute." */
8980 if (!pdi->has_byte_size && pdi->is_declaration)
8981 {
8982 xfree (built_actual_name);
8983 return;
8984 }
8985
8986 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8987 static vs. global. */
8988 add_psymbol_to_list (actual_name, strlen (actual_name),
8989 built_actual_name != NULL,
8990 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8991 cu->language == language_cplus
8992 ? psymbol_placement::GLOBAL
8993 : psymbol_placement::STATIC,
8994 0, cu->language, objfile);
8995
8996 break;
8997 case DW_TAG_enumerator:
8998 add_psymbol_to_list (actual_name, strlen (actual_name),
8999 built_actual_name != NULL,
9000 VAR_DOMAIN, LOC_CONST, -1,
9001 cu->language == language_cplus
9002 ? psymbol_placement::GLOBAL
9003 : psymbol_placement::STATIC,
9004 0, cu->language, objfile);
9005 break;
9006 default:
9007 break;
9008 }
9009
9010 xfree (built_actual_name);
9011 }
9012
9013 /* Read a partial die corresponding to a namespace; also, add a symbol
9014 corresponding to that namespace to the symbol table. NAMESPACE is
9015 the name of the enclosing namespace. */
9016
9017 static void
9018 add_partial_namespace (struct partial_die_info *pdi,
9019 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9020 int set_addrmap, struct dwarf2_cu *cu)
9021 {
9022 /* Add a symbol for the namespace. */
9023
9024 add_partial_symbol (pdi, cu);
9025
9026 /* Now scan partial symbols in that namespace. */
9027
9028 if (pdi->has_children)
9029 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9030 }
9031
9032 /* Read a partial die corresponding to a Fortran module. */
9033
9034 static void
9035 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9036 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9037 {
9038 /* Add a symbol for the namespace. */
9039
9040 add_partial_symbol (pdi, cu);
9041
9042 /* Now scan partial symbols in that module. */
9043
9044 if (pdi->has_children)
9045 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9046 }
9047
9048 /* Read a partial die corresponding to a subprogram or an inlined
9049 subprogram and create a partial symbol for that subprogram.
9050 When the CU language allows it, this routine also defines a partial
9051 symbol for each nested subprogram that this subprogram contains.
9052 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9053 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9054
9055 PDI may also be a lexical block, in which case we simply search
9056 recursively for subprograms defined inside that lexical block.
9057 Again, this is only performed when the CU language allows this
9058 type of definitions. */
9059
9060 static void
9061 add_partial_subprogram (struct partial_die_info *pdi,
9062 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9063 int set_addrmap, struct dwarf2_cu *cu)
9064 {
9065 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9066 {
9067 if (pdi->has_pc_info)
9068 {
9069 if (pdi->lowpc < *lowpc)
9070 *lowpc = pdi->lowpc;
9071 if (pdi->highpc > *highpc)
9072 *highpc = pdi->highpc;
9073 if (set_addrmap)
9074 {
9075 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9076 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9077 CORE_ADDR baseaddr;
9078 CORE_ADDR this_highpc;
9079 CORE_ADDR this_lowpc;
9080
9081 baseaddr = ANOFFSET (objfile->section_offsets,
9082 SECT_OFF_TEXT (objfile));
9083 this_lowpc
9084 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9085 pdi->lowpc + baseaddr)
9086 - baseaddr);
9087 this_highpc
9088 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9089 pdi->highpc + baseaddr)
9090 - baseaddr);
9091 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9092 this_lowpc, this_highpc - 1,
9093 cu->per_cu->v.psymtab);
9094 }
9095 }
9096
9097 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9098 {
9099 if (!pdi->is_declaration)
9100 /* Ignore subprogram DIEs that do not have a name, they are
9101 illegal. Do not emit a complaint at this point, we will
9102 do so when we convert this psymtab into a symtab. */
9103 if (pdi->name)
9104 add_partial_symbol (pdi, cu);
9105 }
9106 }
9107
9108 if (! pdi->has_children)
9109 return;
9110
9111 if (cu->language == language_ada)
9112 {
9113 pdi = pdi->die_child;
9114 while (pdi != NULL)
9115 {
9116 pdi->fixup (cu);
9117 if (pdi->tag == DW_TAG_subprogram
9118 || pdi->tag == DW_TAG_inlined_subroutine
9119 || pdi->tag == DW_TAG_lexical_block)
9120 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9121 pdi = pdi->die_sibling;
9122 }
9123 }
9124 }
9125
9126 /* Read a partial die corresponding to an enumeration type. */
9127
9128 static void
9129 add_partial_enumeration (struct partial_die_info *enum_pdi,
9130 struct dwarf2_cu *cu)
9131 {
9132 struct partial_die_info *pdi;
9133
9134 if (enum_pdi->name != NULL)
9135 add_partial_symbol (enum_pdi, cu);
9136
9137 pdi = enum_pdi->die_child;
9138 while (pdi)
9139 {
9140 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9141 complaint (_("malformed enumerator DIE ignored"));
9142 else
9143 add_partial_symbol (pdi, cu);
9144 pdi = pdi->die_sibling;
9145 }
9146 }
9147
9148 /* Return the initial uleb128 in the die at INFO_PTR. */
9149
9150 static unsigned int
9151 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9152 {
9153 unsigned int bytes_read;
9154
9155 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9156 }
9157
9158 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9159 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9160
9161 Return the corresponding abbrev, or NULL if the number is zero (indicating
9162 an empty DIE). In either case *BYTES_READ will be set to the length of
9163 the initial number. */
9164
9165 static struct abbrev_info *
9166 peek_die_abbrev (const die_reader_specs &reader,
9167 const gdb_byte *info_ptr, unsigned int *bytes_read)
9168 {
9169 dwarf2_cu *cu = reader.cu;
9170 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9171 unsigned int abbrev_number
9172 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9173
9174 if (abbrev_number == 0)
9175 return NULL;
9176
9177 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9178 if (!abbrev)
9179 {
9180 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9181 " at offset %s [in module %s]"),
9182 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9183 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9184 }
9185
9186 return abbrev;
9187 }
9188
9189 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9190 Returns a pointer to the end of a series of DIEs, terminated by an empty
9191 DIE. Any children of the skipped DIEs will also be skipped. */
9192
9193 static const gdb_byte *
9194 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9195 {
9196 while (1)
9197 {
9198 unsigned int bytes_read;
9199 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9200
9201 if (abbrev == NULL)
9202 return info_ptr + bytes_read;
9203 else
9204 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9205 }
9206 }
9207
9208 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9209 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9210 abbrev corresponding to that skipped uleb128 should be passed in
9211 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9212 children. */
9213
9214 static const gdb_byte *
9215 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9216 struct abbrev_info *abbrev)
9217 {
9218 unsigned int bytes_read;
9219 struct attribute attr;
9220 bfd *abfd = reader->abfd;
9221 struct dwarf2_cu *cu = reader->cu;
9222 const gdb_byte *buffer = reader->buffer;
9223 const gdb_byte *buffer_end = reader->buffer_end;
9224 unsigned int form, i;
9225
9226 for (i = 0; i < abbrev->num_attrs; i++)
9227 {
9228 /* The only abbrev we care about is DW_AT_sibling. */
9229 if (abbrev->attrs[i].name == DW_AT_sibling)
9230 {
9231 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9232 if (attr.form == DW_FORM_ref_addr)
9233 complaint (_("ignoring absolute DW_AT_sibling"));
9234 else
9235 {
9236 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9237 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9238
9239 if (sibling_ptr < info_ptr)
9240 complaint (_("DW_AT_sibling points backwards"));
9241 else if (sibling_ptr > reader->buffer_end)
9242 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9243 else
9244 return sibling_ptr;
9245 }
9246 }
9247
9248 /* If it isn't DW_AT_sibling, skip this attribute. */
9249 form = abbrev->attrs[i].form;
9250 skip_attribute:
9251 switch (form)
9252 {
9253 case DW_FORM_ref_addr:
9254 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9255 and later it is offset sized. */
9256 if (cu->header.version == 2)
9257 info_ptr += cu->header.addr_size;
9258 else
9259 info_ptr += cu->header.offset_size;
9260 break;
9261 case DW_FORM_GNU_ref_alt:
9262 info_ptr += cu->header.offset_size;
9263 break;
9264 case DW_FORM_addr:
9265 info_ptr += cu->header.addr_size;
9266 break;
9267 case DW_FORM_data1:
9268 case DW_FORM_ref1:
9269 case DW_FORM_flag:
9270 info_ptr += 1;
9271 break;
9272 case DW_FORM_flag_present:
9273 case DW_FORM_implicit_const:
9274 break;
9275 case DW_FORM_data2:
9276 case DW_FORM_ref2:
9277 info_ptr += 2;
9278 break;
9279 case DW_FORM_data4:
9280 case DW_FORM_ref4:
9281 info_ptr += 4;
9282 break;
9283 case DW_FORM_data8:
9284 case DW_FORM_ref8:
9285 case DW_FORM_ref_sig8:
9286 info_ptr += 8;
9287 break;
9288 case DW_FORM_data16:
9289 info_ptr += 16;
9290 break;
9291 case DW_FORM_string:
9292 read_direct_string (abfd, info_ptr, &bytes_read);
9293 info_ptr += bytes_read;
9294 break;
9295 case DW_FORM_sec_offset:
9296 case DW_FORM_strp:
9297 case DW_FORM_GNU_strp_alt:
9298 info_ptr += cu->header.offset_size;
9299 break;
9300 case DW_FORM_exprloc:
9301 case DW_FORM_block:
9302 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9303 info_ptr += bytes_read;
9304 break;
9305 case DW_FORM_block1:
9306 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9307 break;
9308 case DW_FORM_block2:
9309 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9310 break;
9311 case DW_FORM_block4:
9312 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9313 break;
9314 case DW_FORM_addrx:
9315 case DW_FORM_strx:
9316 case DW_FORM_sdata:
9317 case DW_FORM_udata:
9318 case DW_FORM_ref_udata:
9319 case DW_FORM_GNU_addr_index:
9320 case DW_FORM_GNU_str_index:
9321 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9322 break;
9323 case DW_FORM_indirect:
9324 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9325 info_ptr += bytes_read;
9326 /* We need to continue parsing from here, so just go back to
9327 the top. */
9328 goto skip_attribute;
9329
9330 default:
9331 error (_("Dwarf Error: Cannot handle %s "
9332 "in DWARF reader [in module %s]"),
9333 dwarf_form_name (form),
9334 bfd_get_filename (abfd));
9335 }
9336 }
9337
9338 if (abbrev->has_children)
9339 return skip_children (reader, info_ptr);
9340 else
9341 return info_ptr;
9342 }
9343
9344 /* Locate ORIG_PDI's sibling.
9345 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9346
9347 static const gdb_byte *
9348 locate_pdi_sibling (const struct die_reader_specs *reader,
9349 struct partial_die_info *orig_pdi,
9350 const gdb_byte *info_ptr)
9351 {
9352 /* Do we know the sibling already? */
9353
9354 if (orig_pdi->sibling)
9355 return orig_pdi->sibling;
9356
9357 /* Are there any children to deal with? */
9358
9359 if (!orig_pdi->has_children)
9360 return info_ptr;
9361
9362 /* Skip the children the long way. */
9363
9364 return skip_children (reader, info_ptr);
9365 }
9366
9367 /* Expand this partial symbol table into a full symbol table. SELF is
9368 not NULL. */
9369
9370 static void
9371 dwarf2_read_symtab (struct partial_symtab *self,
9372 struct objfile *objfile)
9373 {
9374 struct dwarf2_per_objfile *dwarf2_per_objfile
9375 = get_dwarf2_per_objfile (objfile);
9376
9377 if (self->readin)
9378 {
9379 warning (_("bug: psymtab for %s is already read in."),
9380 self->filename);
9381 }
9382 else
9383 {
9384 if (info_verbose)
9385 {
9386 printf_filtered (_("Reading in symbols for %s..."),
9387 self->filename);
9388 gdb_flush (gdb_stdout);
9389 }
9390
9391 /* If this psymtab is constructed from a debug-only objfile, the
9392 has_section_at_zero flag will not necessarily be correct. We
9393 can get the correct value for this flag by looking at the data
9394 associated with the (presumably stripped) associated objfile. */
9395 if (objfile->separate_debug_objfile_backlink)
9396 {
9397 struct dwarf2_per_objfile *dpo_backlink
9398 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9399
9400 dwarf2_per_objfile->has_section_at_zero
9401 = dpo_backlink->has_section_at_zero;
9402 }
9403
9404 dwarf2_per_objfile->reading_partial_symbols = 0;
9405
9406 psymtab_to_symtab_1 (self);
9407
9408 /* Finish up the debug error message. */
9409 if (info_verbose)
9410 printf_filtered (_("done.\n"));
9411 }
9412
9413 process_cu_includes (dwarf2_per_objfile);
9414 }
9415 \f
9416 /* Reading in full CUs. */
9417
9418 /* Add PER_CU to the queue. */
9419
9420 static void
9421 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9422 enum language pretend_language)
9423 {
9424 struct dwarf2_queue_item *item;
9425
9426 per_cu->queued = 1;
9427 item = XNEW (struct dwarf2_queue_item);
9428 item->per_cu = per_cu;
9429 item->pretend_language = pretend_language;
9430 item->next = NULL;
9431
9432 if (dwarf2_queue == NULL)
9433 dwarf2_queue = item;
9434 else
9435 dwarf2_queue_tail->next = item;
9436
9437 dwarf2_queue_tail = item;
9438 }
9439
9440 /* If PER_CU is not yet queued, add it to the queue.
9441 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9442 dependency.
9443 The result is non-zero if PER_CU was queued, otherwise the result is zero
9444 meaning either PER_CU is already queued or it is already loaded.
9445
9446 N.B. There is an invariant here that if a CU is queued then it is loaded.
9447 The caller is required to load PER_CU if we return non-zero. */
9448
9449 static int
9450 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9451 struct dwarf2_per_cu_data *per_cu,
9452 enum language pretend_language)
9453 {
9454 /* We may arrive here during partial symbol reading, if we need full
9455 DIEs to process an unusual case (e.g. template arguments). Do
9456 not queue PER_CU, just tell our caller to load its DIEs. */
9457 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9458 {
9459 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9460 return 1;
9461 return 0;
9462 }
9463
9464 /* Mark the dependence relation so that we don't flush PER_CU
9465 too early. */
9466 if (dependent_cu != NULL)
9467 dwarf2_add_dependence (dependent_cu, per_cu);
9468
9469 /* If it's already on the queue, we have nothing to do. */
9470 if (per_cu->queued)
9471 return 0;
9472
9473 /* If the compilation unit is already loaded, just mark it as
9474 used. */
9475 if (per_cu->cu != NULL)
9476 {
9477 per_cu->cu->last_used = 0;
9478 return 0;
9479 }
9480
9481 /* Add it to the queue. */
9482 queue_comp_unit (per_cu, pretend_language);
9483
9484 return 1;
9485 }
9486
9487 /* Process the queue. */
9488
9489 static void
9490 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9491 {
9492 struct dwarf2_queue_item *item, *next_item;
9493
9494 if (dwarf_read_debug)
9495 {
9496 fprintf_unfiltered (gdb_stdlog,
9497 "Expanding one or more symtabs of objfile %s ...\n",
9498 objfile_name (dwarf2_per_objfile->objfile));
9499 }
9500
9501 /* The queue starts out with one item, but following a DIE reference
9502 may load a new CU, adding it to the end of the queue. */
9503 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9504 {
9505 if ((dwarf2_per_objfile->using_index
9506 ? !item->per_cu->v.quick->compunit_symtab
9507 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9508 /* Skip dummy CUs. */
9509 && item->per_cu->cu != NULL)
9510 {
9511 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9512 unsigned int debug_print_threshold;
9513 char buf[100];
9514
9515 if (per_cu->is_debug_types)
9516 {
9517 struct signatured_type *sig_type =
9518 (struct signatured_type *) per_cu;
9519
9520 sprintf (buf, "TU %s at offset %s",
9521 hex_string (sig_type->signature),
9522 sect_offset_str (per_cu->sect_off));
9523 /* There can be 100s of TUs.
9524 Only print them in verbose mode. */
9525 debug_print_threshold = 2;
9526 }
9527 else
9528 {
9529 sprintf (buf, "CU at offset %s",
9530 sect_offset_str (per_cu->sect_off));
9531 debug_print_threshold = 1;
9532 }
9533
9534 if (dwarf_read_debug >= debug_print_threshold)
9535 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9536
9537 if (per_cu->is_debug_types)
9538 process_full_type_unit (per_cu, item->pretend_language);
9539 else
9540 process_full_comp_unit (per_cu, item->pretend_language);
9541
9542 if (dwarf_read_debug >= debug_print_threshold)
9543 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9544 }
9545
9546 item->per_cu->queued = 0;
9547 next_item = item->next;
9548 xfree (item);
9549 }
9550
9551 dwarf2_queue_tail = NULL;
9552
9553 if (dwarf_read_debug)
9554 {
9555 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9556 objfile_name (dwarf2_per_objfile->objfile));
9557 }
9558 }
9559
9560 /* Read in full symbols for PST, and anything it depends on. */
9561
9562 static void
9563 psymtab_to_symtab_1 (struct partial_symtab *pst)
9564 {
9565 struct dwarf2_per_cu_data *per_cu;
9566 int i;
9567
9568 if (pst->readin)
9569 return;
9570
9571 for (i = 0; i < pst->number_of_dependencies; i++)
9572 if (!pst->dependencies[i]->readin
9573 && pst->dependencies[i]->user == NULL)
9574 {
9575 /* Inform about additional files that need to be read in. */
9576 if (info_verbose)
9577 {
9578 /* FIXME: i18n: Need to make this a single string. */
9579 fputs_filtered (" ", gdb_stdout);
9580 wrap_here ("");
9581 fputs_filtered ("and ", gdb_stdout);
9582 wrap_here ("");
9583 printf_filtered ("%s...", pst->dependencies[i]->filename);
9584 wrap_here (""); /* Flush output. */
9585 gdb_flush (gdb_stdout);
9586 }
9587 psymtab_to_symtab_1 (pst->dependencies[i]);
9588 }
9589
9590 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9591
9592 if (per_cu == NULL)
9593 {
9594 /* It's an include file, no symbols to read for it.
9595 Everything is in the parent symtab. */
9596 pst->readin = 1;
9597 return;
9598 }
9599
9600 dw2_do_instantiate_symtab (per_cu, false);
9601 }
9602
9603 /* Trivial hash function for die_info: the hash value of a DIE
9604 is its offset in .debug_info for this objfile. */
9605
9606 static hashval_t
9607 die_hash (const void *item)
9608 {
9609 const struct die_info *die = (const struct die_info *) item;
9610
9611 return to_underlying (die->sect_off);
9612 }
9613
9614 /* Trivial comparison function for die_info structures: two DIEs
9615 are equal if they have the same offset. */
9616
9617 static int
9618 die_eq (const void *item_lhs, const void *item_rhs)
9619 {
9620 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9621 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9622
9623 return die_lhs->sect_off == die_rhs->sect_off;
9624 }
9625
9626 /* die_reader_func for load_full_comp_unit.
9627 This is identical to read_signatured_type_reader,
9628 but is kept separate for now. */
9629
9630 static void
9631 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9632 const gdb_byte *info_ptr,
9633 struct die_info *comp_unit_die,
9634 int has_children,
9635 void *data)
9636 {
9637 struct dwarf2_cu *cu = reader->cu;
9638 enum language *language_ptr = (enum language *) data;
9639
9640 gdb_assert (cu->die_hash == NULL);
9641 cu->die_hash =
9642 htab_create_alloc_ex (cu->header.length / 12,
9643 die_hash,
9644 die_eq,
9645 NULL,
9646 &cu->comp_unit_obstack,
9647 hashtab_obstack_allocate,
9648 dummy_obstack_deallocate);
9649
9650 if (has_children)
9651 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9652 &info_ptr, comp_unit_die);
9653 cu->dies = comp_unit_die;
9654 /* comp_unit_die is not stored in die_hash, no need. */
9655
9656 /* We try not to read any attributes in this function, because not
9657 all CUs needed for references have been loaded yet, and symbol
9658 table processing isn't initialized. But we have to set the CU language,
9659 or we won't be able to build types correctly.
9660 Similarly, if we do not read the producer, we can not apply
9661 producer-specific interpretation. */
9662 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9663 }
9664
9665 /* Load the DIEs associated with PER_CU into memory. */
9666
9667 static void
9668 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9669 bool skip_partial,
9670 enum language pretend_language)
9671 {
9672 gdb_assert (! this_cu->is_debug_types);
9673
9674 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9675 load_full_comp_unit_reader, &pretend_language);
9676 }
9677
9678 /* Add a DIE to the delayed physname list. */
9679
9680 static void
9681 add_to_method_list (struct type *type, int fnfield_index, int index,
9682 const char *name, struct die_info *die,
9683 struct dwarf2_cu *cu)
9684 {
9685 struct delayed_method_info mi;
9686 mi.type = type;
9687 mi.fnfield_index = fnfield_index;
9688 mi.index = index;
9689 mi.name = name;
9690 mi.die = die;
9691 cu->method_list.push_back (mi);
9692 }
9693
9694 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9695 "const" / "volatile". If so, decrements LEN by the length of the
9696 modifier and return true. Otherwise return false. */
9697
9698 template<size_t N>
9699 static bool
9700 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9701 {
9702 size_t mod_len = sizeof (mod) - 1;
9703 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9704 {
9705 len -= mod_len;
9706 return true;
9707 }
9708 return false;
9709 }
9710
9711 /* Compute the physnames of any methods on the CU's method list.
9712
9713 The computation of method physnames is delayed in order to avoid the
9714 (bad) condition that one of the method's formal parameters is of an as yet
9715 incomplete type. */
9716
9717 static void
9718 compute_delayed_physnames (struct dwarf2_cu *cu)
9719 {
9720 /* Only C++ delays computing physnames. */
9721 if (cu->method_list.empty ())
9722 return;
9723 gdb_assert (cu->language == language_cplus);
9724
9725 for (const delayed_method_info &mi : cu->method_list)
9726 {
9727 const char *physname;
9728 struct fn_fieldlist *fn_flp
9729 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9730 physname = dwarf2_physname (mi.name, mi.die, cu);
9731 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9732 = physname ? physname : "";
9733
9734 /* Since there's no tag to indicate whether a method is a
9735 const/volatile overload, extract that information out of the
9736 demangled name. */
9737 if (physname != NULL)
9738 {
9739 size_t len = strlen (physname);
9740
9741 while (1)
9742 {
9743 if (physname[len] == ')') /* shortcut */
9744 break;
9745 else if (check_modifier (physname, len, " const"))
9746 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9747 else if (check_modifier (physname, len, " volatile"))
9748 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9749 else
9750 break;
9751 }
9752 }
9753 }
9754
9755 /* The list is no longer needed. */
9756 cu->method_list.clear ();
9757 }
9758
9759 /* Go objects should be embedded in a DW_TAG_module DIE,
9760 and it's not clear if/how imported objects will appear.
9761 To keep Go support simple until that's worked out,
9762 go back through what we've read and create something usable.
9763 We could do this while processing each DIE, and feels kinda cleaner,
9764 but that way is more invasive.
9765 This is to, for example, allow the user to type "p var" or "b main"
9766 without having to specify the package name, and allow lookups
9767 of module.object to work in contexts that use the expression
9768 parser. */
9769
9770 static void
9771 fixup_go_packaging (struct dwarf2_cu *cu)
9772 {
9773 char *package_name = NULL;
9774 struct pending *list;
9775 int i;
9776
9777 for (list = *cu->get_builder ()->get_global_symbols ();
9778 list != NULL;
9779 list = list->next)
9780 {
9781 for (i = 0; i < list->nsyms; ++i)
9782 {
9783 struct symbol *sym = list->symbol[i];
9784
9785 if (SYMBOL_LANGUAGE (sym) == language_go
9786 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9787 {
9788 char *this_package_name = go_symbol_package_name (sym);
9789
9790 if (this_package_name == NULL)
9791 continue;
9792 if (package_name == NULL)
9793 package_name = this_package_name;
9794 else
9795 {
9796 struct objfile *objfile
9797 = cu->per_cu->dwarf2_per_objfile->objfile;
9798 if (strcmp (package_name, this_package_name) != 0)
9799 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9800 (symbol_symtab (sym) != NULL
9801 ? symtab_to_filename_for_display
9802 (symbol_symtab (sym))
9803 : objfile_name (objfile)),
9804 this_package_name, package_name);
9805 xfree (this_package_name);
9806 }
9807 }
9808 }
9809 }
9810
9811 if (package_name != NULL)
9812 {
9813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9814 const char *saved_package_name
9815 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9816 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9817 saved_package_name);
9818 struct symbol *sym;
9819
9820 sym = allocate_symbol (objfile);
9821 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9822 SYMBOL_SET_NAMES (sym, saved_package_name,
9823 strlen (saved_package_name), 0, objfile);
9824 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9825 e.g., "main" finds the "main" module and not C's main(). */
9826 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9827 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9828 SYMBOL_TYPE (sym) = type;
9829
9830 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9831
9832 xfree (package_name);
9833 }
9834 }
9835
9836 /* Allocate a fully-qualified name consisting of the two parts on the
9837 obstack. */
9838
9839 static const char *
9840 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9841 {
9842 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9843 }
9844
9845 /* A helper that allocates a struct discriminant_info to attach to a
9846 union type. */
9847
9848 static struct discriminant_info *
9849 alloc_discriminant_info (struct type *type, int discriminant_index,
9850 int default_index)
9851 {
9852 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9853 gdb_assert (discriminant_index == -1
9854 || (discriminant_index >= 0
9855 && discriminant_index < TYPE_NFIELDS (type)));
9856 gdb_assert (default_index == -1
9857 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9858
9859 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9860
9861 struct discriminant_info *disc
9862 = ((struct discriminant_info *)
9863 TYPE_ZALLOC (type,
9864 offsetof (struct discriminant_info, discriminants)
9865 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9866 disc->default_index = default_index;
9867 disc->discriminant_index = discriminant_index;
9868
9869 struct dynamic_prop prop;
9870 prop.kind = PROP_UNDEFINED;
9871 prop.data.baton = disc;
9872
9873 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9874
9875 return disc;
9876 }
9877
9878 /* Some versions of rustc emitted enums in an unusual way.
9879
9880 Ordinary enums were emitted as unions. The first element of each
9881 structure in the union was named "RUST$ENUM$DISR". This element
9882 held the discriminant.
9883
9884 These versions of Rust also implemented the "non-zero"
9885 optimization. When the enum had two values, and one is empty and
9886 the other holds a pointer that cannot be zero, the pointer is used
9887 as the discriminant, with a zero value meaning the empty variant.
9888 Here, the union's first member is of the form
9889 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9890 where the fieldnos are the indices of the fields that should be
9891 traversed in order to find the field (which may be several fields deep)
9892 and the variantname is the name of the variant of the case when the
9893 field is zero.
9894
9895 This function recognizes whether TYPE is of one of these forms,
9896 and, if so, smashes it to be a variant type. */
9897
9898 static void
9899 quirk_rust_enum (struct type *type, struct objfile *objfile)
9900 {
9901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9902
9903 /* We don't need to deal with empty enums. */
9904 if (TYPE_NFIELDS (type) == 0)
9905 return;
9906
9907 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9908 if (TYPE_NFIELDS (type) == 1
9909 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9910 {
9911 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9912
9913 /* Decode the field name to find the offset of the
9914 discriminant. */
9915 ULONGEST bit_offset = 0;
9916 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9917 while (name[0] >= '0' && name[0] <= '9')
9918 {
9919 char *tail;
9920 unsigned long index = strtoul (name, &tail, 10);
9921 name = tail;
9922 if (*name != '$'
9923 || index >= TYPE_NFIELDS (field_type)
9924 || (TYPE_FIELD_LOC_KIND (field_type, index)
9925 != FIELD_LOC_KIND_BITPOS))
9926 {
9927 complaint (_("Could not parse Rust enum encoding string \"%s\""
9928 "[in module %s]"),
9929 TYPE_FIELD_NAME (type, 0),
9930 objfile_name (objfile));
9931 return;
9932 }
9933 ++name;
9934
9935 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9936 field_type = TYPE_FIELD_TYPE (field_type, index);
9937 }
9938
9939 /* Make a union to hold the variants. */
9940 struct type *union_type = alloc_type (objfile);
9941 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9942 TYPE_NFIELDS (union_type) = 3;
9943 TYPE_FIELDS (union_type)
9944 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9945 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9946 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9947
9948 /* Put the discriminant must at index 0. */
9949 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9950 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9951 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9952 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9953
9954 /* The order of fields doesn't really matter, so put the real
9955 field at index 1 and the data-less field at index 2. */
9956 struct discriminant_info *disc
9957 = alloc_discriminant_info (union_type, 0, 1);
9958 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9959 TYPE_FIELD_NAME (union_type, 1)
9960 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9961 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9962 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9963 TYPE_FIELD_NAME (union_type, 1));
9964
9965 const char *dataless_name
9966 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9967 name);
9968 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9969 dataless_name);
9970 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9971 /* NAME points into the original discriminant name, which
9972 already has the correct lifetime. */
9973 TYPE_FIELD_NAME (union_type, 2) = name;
9974 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9975 disc->discriminants[2] = 0;
9976
9977 /* Smash this type to be a structure type. We have to do this
9978 because the type has already been recorded. */
9979 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9980 TYPE_NFIELDS (type) = 1;
9981 TYPE_FIELDS (type)
9982 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9983
9984 /* Install the variant part. */
9985 TYPE_FIELD_TYPE (type, 0) = union_type;
9986 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9987 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9988 }
9989 else if (TYPE_NFIELDS (type) == 1)
9990 {
9991 /* We assume that a union with a single field is a univariant
9992 enum. */
9993 /* Smash this type to be a structure type. We have to do this
9994 because the type has already been recorded. */
9995 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9996
9997 /* Make a union to hold the variants. */
9998 struct type *union_type = alloc_type (objfile);
9999 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10000 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10001 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10002 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10003 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10004
10005 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10006 const char *variant_name
10007 = rust_last_path_segment (TYPE_NAME (field_type));
10008 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10009 TYPE_NAME (field_type)
10010 = rust_fully_qualify (&objfile->objfile_obstack,
10011 TYPE_NAME (type), variant_name);
10012
10013 /* Install the union in the outer struct type. */
10014 TYPE_NFIELDS (type) = 1;
10015 TYPE_FIELDS (type)
10016 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10017 TYPE_FIELD_TYPE (type, 0) = union_type;
10018 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10019 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10020
10021 alloc_discriminant_info (union_type, -1, 0);
10022 }
10023 else
10024 {
10025 struct type *disr_type = nullptr;
10026 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10027 {
10028 disr_type = TYPE_FIELD_TYPE (type, i);
10029
10030 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10031 {
10032 /* All fields of a true enum will be structs. */
10033 return;
10034 }
10035 else if (TYPE_NFIELDS (disr_type) == 0)
10036 {
10037 /* Could be data-less variant, so keep going. */
10038 disr_type = nullptr;
10039 }
10040 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10041 "RUST$ENUM$DISR") != 0)
10042 {
10043 /* Not a Rust enum. */
10044 return;
10045 }
10046 else
10047 {
10048 /* Found one. */
10049 break;
10050 }
10051 }
10052
10053 /* If we got here without a discriminant, then it's probably
10054 just a union. */
10055 if (disr_type == nullptr)
10056 return;
10057
10058 /* Smash this type to be a structure type. We have to do this
10059 because the type has already been recorded. */
10060 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10061
10062 /* Make a union to hold the variants. */
10063 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10064 struct type *union_type = alloc_type (objfile);
10065 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10066 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10067 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10068 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10069 TYPE_FIELDS (union_type)
10070 = (struct field *) TYPE_ZALLOC (union_type,
10071 (TYPE_NFIELDS (union_type)
10072 * sizeof (struct field)));
10073
10074 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10075 TYPE_NFIELDS (type) * sizeof (struct field));
10076
10077 /* Install the discriminant at index 0 in the union. */
10078 TYPE_FIELD (union_type, 0) = *disr_field;
10079 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10080 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10081
10082 /* Install the union in the outer struct type. */
10083 TYPE_FIELD_TYPE (type, 0) = union_type;
10084 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10085 TYPE_NFIELDS (type) = 1;
10086
10087 /* Set the size and offset of the union type. */
10088 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10089
10090 /* We need a way to find the correct discriminant given a
10091 variant name. For convenience we build a map here. */
10092 struct type *enum_type = FIELD_TYPE (*disr_field);
10093 std::unordered_map<std::string, ULONGEST> discriminant_map;
10094 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10095 {
10096 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10097 {
10098 const char *name
10099 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10100 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10101 }
10102 }
10103
10104 int n_fields = TYPE_NFIELDS (union_type);
10105 struct discriminant_info *disc
10106 = alloc_discriminant_info (union_type, 0, -1);
10107 /* Skip the discriminant here. */
10108 for (int i = 1; i < n_fields; ++i)
10109 {
10110 /* Find the final word in the name of this variant's type.
10111 That name can be used to look up the correct
10112 discriminant. */
10113 const char *variant_name
10114 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10115 i)));
10116
10117 auto iter = discriminant_map.find (variant_name);
10118 if (iter != discriminant_map.end ())
10119 disc->discriminants[i] = iter->second;
10120
10121 /* Remove the discriminant field, if it exists. */
10122 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10123 if (TYPE_NFIELDS (sub_type) > 0)
10124 {
10125 --TYPE_NFIELDS (sub_type);
10126 ++TYPE_FIELDS (sub_type);
10127 }
10128 TYPE_FIELD_NAME (union_type, i) = variant_name;
10129 TYPE_NAME (sub_type)
10130 = rust_fully_qualify (&objfile->objfile_obstack,
10131 TYPE_NAME (type), variant_name);
10132 }
10133 }
10134 }
10135
10136 /* Rewrite some Rust unions to be structures with variants parts. */
10137
10138 static void
10139 rust_union_quirks (struct dwarf2_cu *cu)
10140 {
10141 gdb_assert (cu->language == language_rust);
10142 for (type *type_ : cu->rust_unions)
10143 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10144 /* We don't need this any more. */
10145 cu->rust_unions.clear ();
10146 }
10147
10148 /* Return the symtab for PER_CU. This works properly regardless of
10149 whether we're using the index or psymtabs. */
10150
10151 static struct compunit_symtab *
10152 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10153 {
10154 return (per_cu->dwarf2_per_objfile->using_index
10155 ? per_cu->v.quick->compunit_symtab
10156 : per_cu->v.psymtab->compunit_symtab);
10157 }
10158
10159 /* A helper function for computing the list of all symbol tables
10160 included by PER_CU. */
10161
10162 static void
10163 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10164 htab_t all_children, htab_t all_type_symtabs,
10165 struct dwarf2_per_cu_data *per_cu,
10166 struct compunit_symtab *immediate_parent)
10167 {
10168 void **slot;
10169 int ix;
10170 struct compunit_symtab *cust;
10171 struct dwarf2_per_cu_data *iter;
10172
10173 slot = htab_find_slot (all_children, per_cu, INSERT);
10174 if (*slot != NULL)
10175 {
10176 /* This inclusion and its children have been processed. */
10177 return;
10178 }
10179
10180 *slot = per_cu;
10181 /* Only add a CU if it has a symbol table. */
10182 cust = get_compunit_symtab (per_cu);
10183 if (cust != NULL)
10184 {
10185 /* If this is a type unit only add its symbol table if we haven't
10186 seen it yet (type unit per_cu's can share symtabs). */
10187 if (per_cu->is_debug_types)
10188 {
10189 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10190 if (*slot == NULL)
10191 {
10192 *slot = cust;
10193 result->push_back (cust);
10194 if (cust->user == NULL)
10195 cust->user = immediate_parent;
10196 }
10197 }
10198 else
10199 {
10200 result->push_back (cust);
10201 if (cust->user == NULL)
10202 cust->user = immediate_parent;
10203 }
10204 }
10205
10206 for (ix = 0;
10207 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10208 ++ix)
10209 {
10210 recursively_compute_inclusions (result, all_children,
10211 all_type_symtabs, iter, cust);
10212 }
10213 }
10214
10215 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10216 PER_CU. */
10217
10218 static void
10219 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10220 {
10221 gdb_assert (! per_cu->is_debug_types);
10222
10223 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10224 {
10225 int ix, len;
10226 struct dwarf2_per_cu_data *per_cu_iter;
10227 std::vector<compunit_symtab *> result_symtabs;
10228 htab_t all_children, all_type_symtabs;
10229 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10230
10231 /* If we don't have a symtab, we can just skip this case. */
10232 if (cust == NULL)
10233 return;
10234
10235 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10236 NULL, xcalloc, xfree);
10237 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10238 NULL, xcalloc, xfree);
10239
10240 for (ix = 0;
10241 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10242 ix, per_cu_iter);
10243 ++ix)
10244 {
10245 recursively_compute_inclusions (&result_symtabs, all_children,
10246 all_type_symtabs, per_cu_iter,
10247 cust);
10248 }
10249
10250 /* Now we have a transitive closure of all the included symtabs. */
10251 len = result_symtabs.size ();
10252 cust->includes
10253 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10254 struct compunit_symtab *, len + 1);
10255 memcpy (cust->includes, result_symtabs.data (),
10256 len * sizeof (compunit_symtab *));
10257 cust->includes[len] = NULL;
10258
10259 htab_delete (all_children);
10260 htab_delete (all_type_symtabs);
10261 }
10262 }
10263
10264 /* Compute the 'includes' field for the symtabs of all the CUs we just
10265 read. */
10266
10267 static void
10268 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10269 {
10270 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10271 {
10272 if (! iter->is_debug_types)
10273 compute_compunit_symtab_includes (iter);
10274 }
10275
10276 dwarf2_per_objfile->just_read_cus.clear ();
10277 }
10278
10279 /* Generate full symbol information for PER_CU, whose DIEs have
10280 already been loaded into memory. */
10281
10282 static void
10283 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10284 enum language pretend_language)
10285 {
10286 struct dwarf2_cu *cu = per_cu->cu;
10287 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10288 struct objfile *objfile = dwarf2_per_objfile->objfile;
10289 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10290 CORE_ADDR lowpc, highpc;
10291 struct compunit_symtab *cust;
10292 CORE_ADDR baseaddr;
10293 struct block *static_block;
10294 CORE_ADDR addr;
10295
10296 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10297
10298 /* Clear the list here in case something was left over. */
10299 cu->method_list.clear ();
10300
10301 cu->language = pretend_language;
10302 cu->language_defn = language_def (cu->language);
10303
10304 /* Do line number decoding in read_file_scope () */
10305 process_die (cu->dies, cu);
10306
10307 /* For now fudge the Go package. */
10308 if (cu->language == language_go)
10309 fixup_go_packaging (cu);
10310
10311 /* Now that we have processed all the DIEs in the CU, all the types
10312 should be complete, and it should now be safe to compute all of the
10313 physnames. */
10314 compute_delayed_physnames (cu);
10315
10316 if (cu->language == language_rust)
10317 rust_union_quirks (cu);
10318
10319 /* Some compilers don't define a DW_AT_high_pc attribute for the
10320 compilation unit. If the DW_AT_high_pc is missing, synthesize
10321 it, by scanning the DIE's below the compilation unit. */
10322 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10323
10324 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10325 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10326
10327 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10328 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10329 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10330 addrmap to help ensure it has an accurate map of pc values belonging to
10331 this comp unit. */
10332 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10333
10334 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10335 SECT_OFF_TEXT (objfile),
10336 0);
10337
10338 if (cust != NULL)
10339 {
10340 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10341
10342 /* Set symtab language to language from DW_AT_language. If the
10343 compilation is from a C file generated by language preprocessors, do
10344 not set the language if it was already deduced by start_subfile. */
10345 if (!(cu->language == language_c
10346 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10347 COMPUNIT_FILETABS (cust)->language = cu->language;
10348
10349 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10350 produce DW_AT_location with location lists but it can be possibly
10351 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10352 there were bugs in prologue debug info, fixed later in GCC-4.5
10353 by "unwind info for epilogues" patch (which is not directly related).
10354
10355 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10356 needed, it would be wrong due to missing DW_AT_producer there.
10357
10358 Still one can confuse GDB by using non-standard GCC compilation
10359 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10360 */
10361 if (cu->has_loclist && gcc_4_minor >= 5)
10362 cust->locations_valid = 1;
10363
10364 if (gcc_4_minor >= 5)
10365 cust->epilogue_unwind_valid = 1;
10366
10367 cust->call_site_htab = cu->call_site_htab;
10368 }
10369
10370 if (dwarf2_per_objfile->using_index)
10371 per_cu->v.quick->compunit_symtab = cust;
10372 else
10373 {
10374 struct partial_symtab *pst = per_cu->v.psymtab;
10375 pst->compunit_symtab = cust;
10376 pst->readin = 1;
10377 }
10378
10379 /* Push it for inclusion processing later. */
10380 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10381
10382 /* Not needed any more. */
10383 cu->reset_builder ();
10384 }
10385
10386 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10387 already been loaded into memory. */
10388
10389 static void
10390 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10391 enum language pretend_language)
10392 {
10393 struct dwarf2_cu *cu = per_cu->cu;
10394 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10395 struct objfile *objfile = dwarf2_per_objfile->objfile;
10396 struct compunit_symtab *cust;
10397 struct signatured_type *sig_type;
10398
10399 gdb_assert (per_cu->is_debug_types);
10400 sig_type = (struct signatured_type *) per_cu;
10401
10402 /* Clear the list here in case something was left over. */
10403 cu->method_list.clear ();
10404
10405 cu->language = pretend_language;
10406 cu->language_defn = language_def (cu->language);
10407
10408 /* The symbol tables are set up in read_type_unit_scope. */
10409 process_die (cu->dies, cu);
10410
10411 /* For now fudge the Go package. */
10412 if (cu->language == language_go)
10413 fixup_go_packaging (cu);
10414
10415 /* Now that we have processed all the DIEs in the CU, all the types
10416 should be complete, and it should now be safe to compute all of the
10417 physnames. */
10418 compute_delayed_physnames (cu);
10419
10420 if (cu->language == language_rust)
10421 rust_union_quirks (cu);
10422
10423 /* TUs share symbol tables.
10424 If this is the first TU to use this symtab, complete the construction
10425 of it with end_expandable_symtab. Otherwise, complete the addition of
10426 this TU's symbols to the existing symtab. */
10427 if (sig_type->type_unit_group->compunit_symtab == NULL)
10428 {
10429 buildsym_compunit *builder = cu->get_builder ();
10430 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10431 sig_type->type_unit_group->compunit_symtab = cust;
10432
10433 if (cust != NULL)
10434 {
10435 /* Set symtab language to language from DW_AT_language. If the
10436 compilation is from a C file generated by language preprocessors,
10437 do not set the language if it was already deduced by
10438 start_subfile. */
10439 if (!(cu->language == language_c
10440 && COMPUNIT_FILETABS (cust)->language != language_c))
10441 COMPUNIT_FILETABS (cust)->language = cu->language;
10442 }
10443 }
10444 else
10445 {
10446 cu->get_builder ()->augment_type_symtab ();
10447 cust = sig_type->type_unit_group->compunit_symtab;
10448 }
10449
10450 if (dwarf2_per_objfile->using_index)
10451 per_cu->v.quick->compunit_symtab = cust;
10452 else
10453 {
10454 struct partial_symtab *pst = per_cu->v.psymtab;
10455 pst->compunit_symtab = cust;
10456 pst->readin = 1;
10457 }
10458
10459 /* Not needed any more. */
10460 cu->reset_builder ();
10461 }
10462
10463 /* Process an imported unit DIE. */
10464
10465 static void
10466 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10467 {
10468 struct attribute *attr;
10469
10470 /* For now we don't handle imported units in type units. */
10471 if (cu->per_cu->is_debug_types)
10472 {
10473 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10474 " supported in type units [in module %s]"),
10475 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10476 }
10477
10478 attr = dwarf2_attr (die, DW_AT_import, cu);
10479 if (attr != NULL)
10480 {
10481 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10482 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10483 dwarf2_per_cu_data *per_cu
10484 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10485 cu->per_cu->dwarf2_per_objfile);
10486
10487 /* If necessary, add it to the queue and load its DIEs. */
10488 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10489 load_full_comp_unit (per_cu, false, cu->language);
10490
10491 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10492 per_cu);
10493 }
10494 }
10495
10496 /* RAII object that represents a process_die scope: i.e.,
10497 starts/finishes processing a DIE. */
10498 class process_die_scope
10499 {
10500 public:
10501 process_die_scope (die_info *die, dwarf2_cu *cu)
10502 : m_die (die), m_cu (cu)
10503 {
10504 /* We should only be processing DIEs not already in process. */
10505 gdb_assert (!m_die->in_process);
10506 m_die->in_process = true;
10507 }
10508
10509 ~process_die_scope ()
10510 {
10511 m_die->in_process = false;
10512
10513 /* If we're done processing the DIE for the CU that owns the line
10514 header, we don't need the line header anymore. */
10515 if (m_cu->line_header_die_owner == m_die)
10516 {
10517 delete m_cu->line_header;
10518 m_cu->line_header = NULL;
10519 m_cu->line_header_die_owner = NULL;
10520 }
10521 }
10522
10523 private:
10524 die_info *m_die;
10525 dwarf2_cu *m_cu;
10526 };
10527
10528 /* Process a die and its children. */
10529
10530 static void
10531 process_die (struct die_info *die, struct dwarf2_cu *cu)
10532 {
10533 process_die_scope scope (die, cu);
10534
10535 switch (die->tag)
10536 {
10537 case DW_TAG_padding:
10538 break;
10539 case DW_TAG_compile_unit:
10540 case DW_TAG_partial_unit:
10541 read_file_scope (die, cu);
10542 break;
10543 case DW_TAG_type_unit:
10544 read_type_unit_scope (die, cu);
10545 break;
10546 case DW_TAG_subprogram:
10547 case DW_TAG_inlined_subroutine:
10548 read_func_scope (die, cu);
10549 break;
10550 case DW_TAG_lexical_block:
10551 case DW_TAG_try_block:
10552 case DW_TAG_catch_block:
10553 read_lexical_block_scope (die, cu);
10554 break;
10555 case DW_TAG_call_site:
10556 case DW_TAG_GNU_call_site:
10557 read_call_site_scope (die, cu);
10558 break;
10559 case DW_TAG_class_type:
10560 case DW_TAG_interface_type:
10561 case DW_TAG_structure_type:
10562 case DW_TAG_union_type:
10563 process_structure_scope (die, cu);
10564 break;
10565 case DW_TAG_enumeration_type:
10566 process_enumeration_scope (die, cu);
10567 break;
10568
10569 /* These dies have a type, but processing them does not create
10570 a symbol or recurse to process the children. Therefore we can
10571 read them on-demand through read_type_die. */
10572 case DW_TAG_subroutine_type:
10573 case DW_TAG_set_type:
10574 case DW_TAG_array_type:
10575 case DW_TAG_pointer_type:
10576 case DW_TAG_ptr_to_member_type:
10577 case DW_TAG_reference_type:
10578 case DW_TAG_rvalue_reference_type:
10579 case DW_TAG_string_type:
10580 break;
10581
10582 case DW_TAG_base_type:
10583 case DW_TAG_subrange_type:
10584 case DW_TAG_typedef:
10585 /* Add a typedef symbol for the type definition, if it has a
10586 DW_AT_name. */
10587 new_symbol (die, read_type_die (die, cu), cu);
10588 break;
10589 case DW_TAG_common_block:
10590 read_common_block (die, cu);
10591 break;
10592 case DW_TAG_common_inclusion:
10593 break;
10594 case DW_TAG_namespace:
10595 cu->processing_has_namespace_info = true;
10596 read_namespace (die, cu);
10597 break;
10598 case DW_TAG_module:
10599 cu->processing_has_namespace_info = true;
10600 read_module (die, cu);
10601 break;
10602 case DW_TAG_imported_declaration:
10603 cu->processing_has_namespace_info = true;
10604 if (read_namespace_alias (die, cu))
10605 break;
10606 /* The declaration is not a global namespace alias. */
10607 /* Fall through. */
10608 case DW_TAG_imported_module:
10609 cu->processing_has_namespace_info = true;
10610 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10611 || cu->language != language_fortran))
10612 complaint (_("Tag '%s' has unexpected children"),
10613 dwarf_tag_name (die->tag));
10614 read_import_statement (die, cu);
10615 break;
10616
10617 case DW_TAG_imported_unit:
10618 process_imported_unit_die (die, cu);
10619 break;
10620
10621 case DW_TAG_variable:
10622 read_variable (die, cu);
10623 break;
10624
10625 default:
10626 new_symbol (die, NULL, cu);
10627 break;
10628 }
10629 }
10630 \f
10631 /* DWARF name computation. */
10632
10633 /* A helper function for dwarf2_compute_name which determines whether DIE
10634 needs to have the name of the scope prepended to the name listed in the
10635 die. */
10636
10637 static int
10638 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10639 {
10640 struct attribute *attr;
10641
10642 switch (die->tag)
10643 {
10644 case DW_TAG_namespace:
10645 case DW_TAG_typedef:
10646 case DW_TAG_class_type:
10647 case DW_TAG_interface_type:
10648 case DW_TAG_structure_type:
10649 case DW_TAG_union_type:
10650 case DW_TAG_enumeration_type:
10651 case DW_TAG_enumerator:
10652 case DW_TAG_subprogram:
10653 case DW_TAG_inlined_subroutine:
10654 case DW_TAG_member:
10655 case DW_TAG_imported_declaration:
10656 return 1;
10657
10658 case DW_TAG_variable:
10659 case DW_TAG_constant:
10660 /* We only need to prefix "globally" visible variables. These include
10661 any variable marked with DW_AT_external or any variable that
10662 lives in a namespace. [Variables in anonymous namespaces
10663 require prefixing, but they are not DW_AT_external.] */
10664
10665 if (dwarf2_attr (die, DW_AT_specification, cu))
10666 {
10667 struct dwarf2_cu *spec_cu = cu;
10668
10669 return die_needs_namespace (die_specification (die, &spec_cu),
10670 spec_cu);
10671 }
10672
10673 attr = dwarf2_attr (die, DW_AT_external, cu);
10674 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10675 && die->parent->tag != DW_TAG_module)
10676 return 0;
10677 /* A variable in a lexical block of some kind does not need a
10678 namespace, even though in C++ such variables may be external
10679 and have a mangled name. */
10680 if (die->parent->tag == DW_TAG_lexical_block
10681 || die->parent->tag == DW_TAG_try_block
10682 || die->parent->tag == DW_TAG_catch_block
10683 || die->parent->tag == DW_TAG_subprogram)
10684 return 0;
10685 return 1;
10686
10687 default:
10688 return 0;
10689 }
10690 }
10691
10692 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10693 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10694 defined for the given DIE. */
10695
10696 static struct attribute *
10697 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10698 {
10699 struct attribute *attr;
10700
10701 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10702 if (attr == NULL)
10703 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10704
10705 return attr;
10706 }
10707
10708 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10709 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10710 defined for the given DIE. */
10711
10712 static const char *
10713 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10714 {
10715 const char *linkage_name;
10716
10717 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10718 if (linkage_name == NULL)
10719 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10720
10721 return linkage_name;
10722 }
10723
10724 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10725 compute the physname for the object, which include a method's:
10726 - formal parameters (C++),
10727 - receiver type (Go),
10728
10729 The term "physname" is a bit confusing.
10730 For C++, for example, it is the demangled name.
10731 For Go, for example, it's the mangled name.
10732
10733 For Ada, return the DIE's linkage name rather than the fully qualified
10734 name. PHYSNAME is ignored..
10735
10736 The result is allocated on the objfile_obstack and canonicalized. */
10737
10738 static const char *
10739 dwarf2_compute_name (const char *name,
10740 struct die_info *die, struct dwarf2_cu *cu,
10741 int physname)
10742 {
10743 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10744
10745 if (name == NULL)
10746 name = dwarf2_name (die, cu);
10747
10748 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10749 but otherwise compute it by typename_concat inside GDB.
10750 FIXME: Actually this is not really true, or at least not always true.
10751 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10752 Fortran names because there is no mangling standard. So new_symbol
10753 will set the demangled name to the result of dwarf2_full_name, and it is
10754 the demangled name that GDB uses if it exists. */
10755 if (cu->language == language_ada
10756 || (cu->language == language_fortran && physname))
10757 {
10758 /* For Ada unit, we prefer the linkage name over the name, as
10759 the former contains the exported name, which the user expects
10760 to be able to reference. Ideally, we want the user to be able
10761 to reference this entity using either natural or linkage name,
10762 but we haven't started looking at this enhancement yet. */
10763 const char *linkage_name = dw2_linkage_name (die, cu);
10764
10765 if (linkage_name != NULL)
10766 return linkage_name;
10767 }
10768
10769 /* These are the only languages we know how to qualify names in. */
10770 if (name != NULL
10771 && (cu->language == language_cplus
10772 || cu->language == language_fortran || cu->language == language_d
10773 || cu->language == language_rust))
10774 {
10775 if (die_needs_namespace (die, cu))
10776 {
10777 const char *prefix;
10778 const char *canonical_name = NULL;
10779
10780 string_file buf;
10781
10782 prefix = determine_prefix (die, cu);
10783 if (*prefix != '\0')
10784 {
10785 char *prefixed_name = typename_concat (NULL, prefix, name,
10786 physname, cu);
10787
10788 buf.puts (prefixed_name);
10789 xfree (prefixed_name);
10790 }
10791 else
10792 buf.puts (name);
10793
10794 /* Template parameters may be specified in the DIE's DW_AT_name, or
10795 as children with DW_TAG_template_type_param or
10796 DW_TAG_value_type_param. If the latter, add them to the name
10797 here. If the name already has template parameters, then
10798 skip this step; some versions of GCC emit both, and
10799 it is more efficient to use the pre-computed name.
10800
10801 Something to keep in mind about this process: it is very
10802 unlikely, or in some cases downright impossible, to produce
10803 something that will match the mangled name of a function.
10804 If the definition of the function has the same debug info,
10805 we should be able to match up with it anyway. But fallbacks
10806 using the minimal symbol, for instance to find a method
10807 implemented in a stripped copy of libstdc++, will not work.
10808 If we do not have debug info for the definition, we will have to
10809 match them up some other way.
10810
10811 When we do name matching there is a related problem with function
10812 templates; two instantiated function templates are allowed to
10813 differ only by their return types, which we do not add here. */
10814
10815 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10816 {
10817 struct attribute *attr;
10818 struct die_info *child;
10819 int first = 1;
10820
10821 die->building_fullname = 1;
10822
10823 for (child = die->child; child != NULL; child = child->sibling)
10824 {
10825 struct type *type;
10826 LONGEST value;
10827 const gdb_byte *bytes;
10828 struct dwarf2_locexpr_baton *baton;
10829 struct value *v;
10830
10831 if (child->tag != DW_TAG_template_type_param
10832 && child->tag != DW_TAG_template_value_param)
10833 continue;
10834
10835 if (first)
10836 {
10837 buf.puts ("<");
10838 first = 0;
10839 }
10840 else
10841 buf.puts (", ");
10842
10843 attr = dwarf2_attr (child, DW_AT_type, cu);
10844 if (attr == NULL)
10845 {
10846 complaint (_("template parameter missing DW_AT_type"));
10847 buf.puts ("UNKNOWN_TYPE");
10848 continue;
10849 }
10850 type = die_type (child, cu);
10851
10852 if (child->tag == DW_TAG_template_type_param)
10853 {
10854 c_print_type (type, "", &buf, -1, 0, cu->language,
10855 &type_print_raw_options);
10856 continue;
10857 }
10858
10859 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10860 if (attr == NULL)
10861 {
10862 complaint (_("template parameter missing "
10863 "DW_AT_const_value"));
10864 buf.puts ("UNKNOWN_VALUE");
10865 continue;
10866 }
10867
10868 dwarf2_const_value_attr (attr, type, name,
10869 &cu->comp_unit_obstack, cu,
10870 &value, &bytes, &baton);
10871
10872 if (TYPE_NOSIGN (type))
10873 /* GDB prints characters as NUMBER 'CHAR'. If that's
10874 changed, this can use value_print instead. */
10875 c_printchar (value, type, &buf);
10876 else
10877 {
10878 struct value_print_options opts;
10879
10880 if (baton != NULL)
10881 v = dwarf2_evaluate_loc_desc (type, NULL,
10882 baton->data,
10883 baton->size,
10884 baton->per_cu);
10885 else if (bytes != NULL)
10886 {
10887 v = allocate_value (type);
10888 memcpy (value_contents_writeable (v), bytes,
10889 TYPE_LENGTH (type));
10890 }
10891 else
10892 v = value_from_longest (type, value);
10893
10894 /* Specify decimal so that we do not depend on
10895 the radix. */
10896 get_formatted_print_options (&opts, 'd');
10897 opts.raw = 1;
10898 value_print (v, &buf, &opts);
10899 release_value (v);
10900 }
10901 }
10902
10903 die->building_fullname = 0;
10904
10905 if (!first)
10906 {
10907 /* Close the argument list, with a space if necessary
10908 (nested templates). */
10909 if (!buf.empty () && buf.string ().back () == '>')
10910 buf.puts (" >");
10911 else
10912 buf.puts (">");
10913 }
10914 }
10915
10916 /* For C++ methods, append formal parameter type
10917 information, if PHYSNAME. */
10918
10919 if (physname && die->tag == DW_TAG_subprogram
10920 && cu->language == language_cplus)
10921 {
10922 struct type *type = read_type_die (die, cu);
10923
10924 c_type_print_args (type, &buf, 1, cu->language,
10925 &type_print_raw_options);
10926
10927 if (cu->language == language_cplus)
10928 {
10929 /* Assume that an artificial first parameter is
10930 "this", but do not crash if it is not. RealView
10931 marks unnamed (and thus unused) parameters as
10932 artificial; there is no way to differentiate
10933 the two cases. */
10934 if (TYPE_NFIELDS (type) > 0
10935 && TYPE_FIELD_ARTIFICIAL (type, 0)
10936 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10937 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10938 0))))
10939 buf.puts (" const");
10940 }
10941 }
10942
10943 const std::string &intermediate_name = buf.string ();
10944
10945 if (cu->language == language_cplus)
10946 canonical_name
10947 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10948 &objfile->per_bfd->storage_obstack);
10949
10950 /* If we only computed INTERMEDIATE_NAME, or if
10951 INTERMEDIATE_NAME is already canonical, then we need to
10952 copy it to the appropriate obstack. */
10953 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10954 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10955 intermediate_name);
10956 else
10957 name = canonical_name;
10958 }
10959 }
10960
10961 return name;
10962 }
10963
10964 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10965 If scope qualifiers are appropriate they will be added. The result
10966 will be allocated on the storage_obstack, or NULL if the DIE does
10967 not have a name. NAME may either be from a previous call to
10968 dwarf2_name or NULL.
10969
10970 The output string will be canonicalized (if C++). */
10971
10972 static const char *
10973 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10974 {
10975 return dwarf2_compute_name (name, die, cu, 0);
10976 }
10977
10978 /* Construct a physname for the given DIE in CU. NAME may either be
10979 from a previous call to dwarf2_name or NULL. The result will be
10980 allocated on the objfile_objstack or NULL if the DIE does not have a
10981 name.
10982
10983 The output string will be canonicalized (if C++). */
10984
10985 static const char *
10986 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10987 {
10988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10989 const char *retval, *mangled = NULL, *canon = NULL;
10990 int need_copy = 1;
10991
10992 /* In this case dwarf2_compute_name is just a shortcut not building anything
10993 on its own. */
10994 if (!die_needs_namespace (die, cu))
10995 return dwarf2_compute_name (name, die, cu, 1);
10996
10997 mangled = dw2_linkage_name (die, cu);
10998
10999 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11000 See https://github.com/rust-lang/rust/issues/32925. */
11001 if (cu->language == language_rust && mangled != NULL
11002 && strchr (mangled, '{') != NULL)
11003 mangled = NULL;
11004
11005 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11006 has computed. */
11007 gdb::unique_xmalloc_ptr<char> demangled;
11008 if (mangled != NULL)
11009 {
11010
11011 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11012 {
11013 /* Do nothing (do not demangle the symbol name). */
11014 }
11015 else if (cu->language == language_go)
11016 {
11017 /* This is a lie, but we already lie to the caller new_symbol.
11018 new_symbol assumes we return the mangled name.
11019 This just undoes that lie until things are cleaned up. */
11020 }
11021 else
11022 {
11023 /* Use DMGL_RET_DROP for C++ template functions to suppress
11024 their return type. It is easier for GDB users to search
11025 for such functions as `name(params)' than `long name(params)'.
11026 In such case the minimal symbol names do not match the full
11027 symbol names but for template functions there is never a need
11028 to look up their definition from their declaration so
11029 the only disadvantage remains the minimal symbol variant
11030 `long name(params)' does not have the proper inferior type. */
11031 demangled.reset (gdb_demangle (mangled,
11032 (DMGL_PARAMS | DMGL_ANSI
11033 | DMGL_RET_DROP)));
11034 }
11035 if (demangled)
11036 canon = demangled.get ();
11037 else
11038 {
11039 canon = mangled;
11040 need_copy = 0;
11041 }
11042 }
11043
11044 if (canon == NULL || check_physname)
11045 {
11046 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11047
11048 if (canon != NULL && strcmp (physname, canon) != 0)
11049 {
11050 /* It may not mean a bug in GDB. The compiler could also
11051 compute DW_AT_linkage_name incorrectly. But in such case
11052 GDB would need to be bug-to-bug compatible. */
11053
11054 complaint (_("Computed physname <%s> does not match demangled <%s> "
11055 "(from linkage <%s>) - DIE at %s [in module %s]"),
11056 physname, canon, mangled, sect_offset_str (die->sect_off),
11057 objfile_name (objfile));
11058
11059 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11060 is available here - over computed PHYSNAME. It is safer
11061 against both buggy GDB and buggy compilers. */
11062
11063 retval = canon;
11064 }
11065 else
11066 {
11067 retval = physname;
11068 need_copy = 0;
11069 }
11070 }
11071 else
11072 retval = canon;
11073
11074 if (need_copy)
11075 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11076
11077 return retval;
11078 }
11079
11080 /* Inspect DIE in CU for a namespace alias. If one exists, record
11081 a new symbol for it.
11082
11083 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11084
11085 static int
11086 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11087 {
11088 struct attribute *attr;
11089
11090 /* If the die does not have a name, this is not a namespace
11091 alias. */
11092 attr = dwarf2_attr (die, DW_AT_name, cu);
11093 if (attr != NULL)
11094 {
11095 int num;
11096 struct die_info *d = die;
11097 struct dwarf2_cu *imported_cu = cu;
11098
11099 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11100 keep inspecting DIEs until we hit the underlying import. */
11101 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11102 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11103 {
11104 attr = dwarf2_attr (d, DW_AT_import, cu);
11105 if (attr == NULL)
11106 break;
11107
11108 d = follow_die_ref (d, attr, &imported_cu);
11109 if (d->tag != DW_TAG_imported_declaration)
11110 break;
11111 }
11112
11113 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11114 {
11115 complaint (_("DIE at %s has too many recursively imported "
11116 "declarations"), sect_offset_str (d->sect_off));
11117 return 0;
11118 }
11119
11120 if (attr != NULL)
11121 {
11122 struct type *type;
11123 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11124
11125 type = get_die_type_at_offset (sect_off, cu->per_cu);
11126 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11127 {
11128 /* This declaration is a global namespace alias. Add
11129 a symbol for it whose type is the aliased namespace. */
11130 new_symbol (die, type, cu);
11131 return 1;
11132 }
11133 }
11134 }
11135
11136 return 0;
11137 }
11138
11139 /* Return the using directives repository (global or local?) to use in the
11140 current context for CU.
11141
11142 For Ada, imported declarations can materialize renamings, which *may* be
11143 global. However it is impossible (for now?) in DWARF to distinguish
11144 "external" imported declarations and "static" ones. As all imported
11145 declarations seem to be static in all other languages, make them all CU-wide
11146 global only in Ada. */
11147
11148 static struct using_direct **
11149 using_directives (struct dwarf2_cu *cu)
11150 {
11151 if (cu->language == language_ada
11152 && cu->get_builder ()->outermost_context_p ())
11153 return cu->get_builder ()->get_global_using_directives ();
11154 else
11155 return cu->get_builder ()->get_local_using_directives ();
11156 }
11157
11158 /* Read the import statement specified by the given die and record it. */
11159
11160 static void
11161 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11162 {
11163 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11164 struct attribute *import_attr;
11165 struct die_info *imported_die, *child_die;
11166 struct dwarf2_cu *imported_cu;
11167 const char *imported_name;
11168 const char *imported_name_prefix;
11169 const char *canonical_name;
11170 const char *import_alias;
11171 const char *imported_declaration = NULL;
11172 const char *import_prefix;
11173 std::vector<const char *> excludes;
11174
11175 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11176 if (import_attr == NULL)
11177 {
11178 complaint (_("Tag '%s' has no DW_AT_import"),
11179 dwarf_tag_name (die->tag));
11180 return;
11181 }
11182
11183 imported_cu = cu;
11184 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11185 imported_name = dwarf2_name (imported_die, imported_cu);
11186 if (imported_name == NULL)
11187 {
11188 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11189
11190 The import in the following code:
11191 namespace A
11192 {
11193 typedef int B;
11194 }
11195
11196 int main ()
11197 {
11198 using A::B;
11199 B b;
11200 return b;
11201 }
11202
11203 ...
11204 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11205 <52> DW_AT_decl_file : 1
11206 <53> DW_AT_decl_line : 6
11207 <54> DW_AT_import : <0x75>
11208 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11209 <59> DW_AT_name : B
11210 <5b> DW_AT_decl_file : 1
11211 <5c> DW_AT_decl_line : 2
11212 <5d> DW_AT_type : <0x6e>
11213 ...
11214 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11215 <76> DW_AT_byte_size : 4
11216 <77> DW_AT_encoding : 5 (signed)
11217
11218 imports the wrong die ( 0x75 instead of 0x58 ).
11219 This case will be ignored until the gcc bug is fixed. */
11220 return;
11221 }
11222
11223 /* Figure out the local name after import. */
11224 import_alias = dwarf2_name (die, cu);
11225
11226 /* Figure out where the statement is being imported to. */
11227 import_prefix = determine_prefix (die, cu);
11228
11229 /* Figure out what the scope of the imported die is and prepend it
11230 to the name of the imported die. */
11231 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11232
11233 if (imported_die->tag != DW_TAG_namespace
11234 && imported_die->tag != DW_TAG_module)
11235 {
11236 imported_declaration = imported_name;
11237 canonical_name = imported_name_prefix;
11238 }
11239 else if (strlen (imported_name_prefix) > 0)
11240 canonical_name = obconcat (&objfile->objfile_obstack,
11241 imported_name_prefix,
11242 (cu->language == language_d ? "." : "::"),
11243 imported_name, (char *) NULL);
11244 else
11245 canonical_name = imported_name;
11246
11247 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11248 for (child_die = die->child; child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 /* DWARF-4: A Fortran use statement with a “rename list” may be
11252 represented by an imported module entry with an import attribute
11253 referring to the module and owned entries corresponding to those
11254 entities that are renamed as part of being imported. */
11255
11256 if (child_die->tag != DW_TAG_imported_declaration)
11257 {
11258 complaint (_("child DW_TAG_imported_declaration expected "
11259 "- DIE at %s [in module %s]"),
11260 sect_offset_str (child_die->sect_off),
11261 objfile_name (objfile));
11262 continue;
11263 }
11264
11265 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11266 if (import_attr == NULL)
11267 {
11268 complaint (_("Tag '%s' has no DW_AT_import"),
11269 dwarf_tag_name (child_die->tag));
11270 continue;
11271 }
11272
11273 imported_cu = cu;
11274 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11275 &imported_cu);
11276 imported_name = dwarf2_name (imported_die, imported_cu);
11277 if (imported_name == NULL)
11278 {
11279 complaint (_("child DW_TAG_imported_declaration has unknown "
11280 "imported name - DIE at %s [in module %s]"),
11281 sect_offset_str (child_die->sect_off),
11282 objfile_name (objfile));
11283 continue;
11284 }
11285
11286 excludes.push_back (imported_name);
11287
11288 process_die (child_die, cu);
11289 }
11290
11291 add_using_directive (using_directives (cu),
11292 import_prefix,
11293 canonical_name,
11294 import_alias,
11295 imported_declaration,
11296 excludes,
11297 0,
11298 &objfile->objfile_obstack);
11299 }
11300
11301 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11302 types, but gives them a size of zero. Starting with version 14,
11303 ICC is compatible with GCC. */
11304
11305 static bool
11306 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11307 {
11308 if (!cu->checked_producer)
11309 check_producer (cu);
11310
11311 return cu->producer_is_icc_lt_14;
11312 }
11313
11314 /* ICC generates a DW_AT_type for C void functions. This was observed on
11315 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11316 which says that void functions should not have a DW_AT_type. */
11317
11318 static bool
11319 producer_is_icc (struct dwarf2_cu *cu)
11320 {
11321 if (!cu->checked_producer)
11322 check_producer (cu);
11323
11324 return cu->producer_is_icc;
11325 }
11326
11327 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11328 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11329 this, it was first present in GCC release 4.3.0. */
11330
11331 static bool
11332 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11333 {
11334 if (!cu->checked_producer)
11335 check_producer (cu);
11336
11337 return cu->producer_is_gcc_lt_4_3;
11338 }
11339
11340 static file_and_directory
11341 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11342 {
11343 file_and_directory res;
11344
11345 /* Find the filename. Do not use dwarf2_name here, since the filename
11346 is not a source language identifier. */
11347 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11348 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11349
11350 if (res.comp_dir == NULL
11351 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11352 && IS_ABSOLUTE_PATH (res.name))
11353 {
11354 res.comp_dir_storage = ldirname (res.name);
11355 if (!res.comp_dir_storage.empty ())
11356 res.comp_dir = res.comp_dir_storage.c_str ();
11357 }
11358 if (res.comp_dir != NULL)
11359 {
11360 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11361 directory, get rid of it. */
11362 const char *cp = strchr (res.comp_dir, ':');
11363
11364 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11365 res.comp_dir = cp + 1;
11366 }
11367
11368 if (res.name == NULL)
11369 res.name = "<unknown>";
11370
11371 return res;
11372 }
11373
11374 /* Handle DW_AT_stmt_list for a compilation unit.
11375 DIE is the DW_TAG_compile_unit die for CU.
11376 COMP_DIR is the compilation directory. LOWPC is passed to
11377 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11378
11379 static void
11380 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11381 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11382 {
11383 struct dwarf2_per_objfile *dwarf2_per_objfile
11384 = cu->per_cu->dwarf2_per_objfile;
11385 struct objfile *objfile = dwarf2_per_objfile->objfile;
11386 struct attribute *attr;
11387 struct line_header line_header_local;
11388 hashval_t line_header_local_hash;
11389 void **slot;
11390 int decode_mapping;
11391
11392 gdb_assert (! cu->per_cu->is_debug_types);
11393
11394 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11395 if (attr == NULL)
11396 return;
11397
11398 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11399
11400 /* The line header hash table is only created if needed (it exists to
11401 prevent redundant reading of the line table for partial_units).
11402 If we're given a partial_unit, we'll need it. If we're given a
11403 compile_unit, then use the line header hash table if it's already
11404 created, but don't create one just yet. */
11405
11406 if (dwarf2_per_objfile->line_header_hash == NULL
11407 && die->tag == DW_TAG_partial_unit)
11408 {
11409 dwarf2_per_objfile->line_header_hash
11410 = htab_create_alloc_ex (127, line_header_hash_voidp,
11411 line_header_eq_voidp,
11412 free_line_header_voidp,
11413 &objfile->objfile_obstack,
11414 hashtab_obstack_allocate,
11415 dummy_obstack_deallocate);
11416 }
11417
11418 line_header_local.sect_off = line_offset;
11419 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11420 line_header_local_hash = line_header_hash (&line_header_local);
11421 if (dwarf2_per_objfile->line_header_hash != NULL)
11422 {
11423 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11424 &line_header_local,
11425 line_header_local_hash, NO_INSERT);
11426
11427 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11428 is not present in *SLOT (since if there is something in *SLOT then
11429 it will be for a partial_unit). */
11430 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11431 {
11432 gdb_assert (*slot != NULL);
11433 cu->line_header = (struct line_header *) *slot;
11434 return;
11435 }
11436 }
11437
11438 /* dwarf_decode_line_header does not yet provide sufficient information.
11439 We always have to call also dwarf_decode_lines for it. */
11440 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11441 if (lh == NULL)
11442 return;
11443
11444 cu->line_header = lh.release ();
11445 cu->line_header_die_owner = die;
11446
11447 if (dwarf2_per_objfile->line_header_hash == NULL)
11448 slot = NULL;
11449 else
11450 {
11451 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11452 &line_header_local,
11453 line_header_local_hash, INSERT);
11454 gdb_assert (slot != NULL);
11455 }
11456 if (slot != NULL && *slot == NULL)
11457 {
11458 /* This newly decoded line number information unit will be owned
11459 by line_header_hash hash table. */
11460 *slot = cu->line_header;
11461 cu->line_header_die_owner = NULL;
11462 }
11463 else
11464 {
11465 /* We cannot free any current entry in (*slot) as that struct line_header
11466 may be already used by multiple CUs. Create only temporary decoded
11467 line_header for this CU - it may happen at most once for each line
11468 number information unit. And if we're not using line_header_hash
11469 then this is what we want as well. */
11470 gdb_assert (die->tag != DW_TAG_partial_unit);
11471 }
11472 decode_mapping = (die->tag != DW_TAG_partial_unit);
11473 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11474 decode_mapping);
11475
11476 }
11477
11478 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11479
11480 static void
11481 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11482 {
11483 struct dwarf2_per_objfile *dwarf2_per_objfile
11484 = cu->per_cu->dwarf2_per_objfile;
11485 struct objfile *objfile = dwarf2_per_objfile->objfile;
11486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11487 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11488 CORE_ADDR highpc = ((CORE_ADDR) 0);
11489 struct attribute *attr;
11490 struct die_info *child_die;
11491 CORE_ADDR baseaddr;
11492
11493 prepare_one_comp_unit (cu, die, cu->language);
11494 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11495
11496 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11497
11498 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11499 from finish_block. */
11500 if (lowpc == ((CORE_ADDR) -1))
11501 lowpc = highpc;
11502 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11503
11504 file_and_directory fnd = find_file_and_directory (die, cu);
11505
11506 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11507 standardised yet. As a workaround for the language detection we fall
11508 back to the DW_AT_producer string. */
11509 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11510 cu->language = language_opencl;
11511
11512 /* Similar hack for Go. */
11513 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11514 set_cu_language (DW_LANG_Go, cu);
11515
11516 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11517
11518 /* Decode line number information if present. We do this before
11519 processing child DIEs, so that the line header table is available
11520 for DW_AT_decl_file. */
11521 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11522
11523 /* Process all dies in compilation unit. */
11524 if (die->child != NULL)
11525 {
11526 child_die = die->child;
11527 while (child_die && child_die->tag)
11528 {
11529 process_die (child_die, cu);
11530 child_die = sibling_die (child_die);
11531 }
11532 }
11533
11534 /* Decode macro information, if present. Dwarf 2 macro information
11535 refers to information in the line number info statement program
11536 header, so we can only read it if we've read the header
11537 successfully. */
11538 attr = dwarf2_attr (die, DW_AT_macros, cu);
11539 if (attr == NULL)
11540 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11541 if (attr && cu->line_header)
11542 {
11543 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11544 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11545
11546 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11547 }
11548 else
11549 {
11550 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11551 if (attr && cu->line_header)
11552 {
11553 unsigned int macro_offset = DW_UNSND (attr);
11554
11555 dwarf_decode_macros (cu, macro_offset, 0);
11556 }
11557 }
11558 }
11559
11560 void
11561 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11562 {
11563 struct type_unit_group *tu_group;
11564 int first_time;
11565 struct attribute *attr;
11566 unsigned int i;
11567 struct signatured_type *sig_type;
11568
11569 gdb_assert (per_cu->is_debug_types);
11570 sig_type = (struct signatured_type *) per_cu;
11571
11572 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11573
11574 /* If we're using .gdb_index (includes -readnow) then
11575 per_cu->type_unit_group may not have been set up yet. */
11576 if (sig_type->type_unit_group == NULL)
11577 sig_type->type_unit_group = get_type_unit_group (this, attr);
11578 tu_group = sig_type->type_unit_group;
11579
11580 /* If we've already processed this stmt_list there's no real need to
11581 do it again, we could fake it and just recreate the part we need
11582 (file name,index -> symtab mapping). If data shows this optimization
11583 is useful we can do it then. */
11584 first_time = tu_group->compunit_symtab == NULL;
11585
11586 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11587 debug info. */
11588 line_header_up lh;
11589 if (attr != NULL)
11590 {
11591 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11592 lh = dwarf_decode_line_header (line_offset, this);
11593 }
11594 if (lh == NULL)
11595 {
11596 if (first_time)
11597 start_symtab ("", NULL, 0);
11598 else
11599 {
11600 gdb_assert (tu_group->symtabs == NULL);
11601 gdb_assert (m_builder == nullptr);
11602 struct compunit_symtab *cust = tu_group->compunit_symtab;
11603 m_builder.reset (new struct buildsym_compunit
11604 (COMPUNIT_OBJFILE (cust), "",
11605 COMPUNIT_DIRNAME (cust),
11606 compunit_language (cust),
11607 0, cust));
11608 }
11609 return;
11610 }
11611
11612 line_header = lh.release ();
11613 line_header_die_owner = die;
11614
11615 if (first_time)
11616 {
11617 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11618
11619 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11620 still initializing it, and our caller (a few levels up)
11621 process_full_type_unit still needs to know if this is the first
11622 time. */
11623
11624 tu_group->num_symtabs = line_header->file_names.size ();
11625 tu_group->symtabs = XNEWVEC (struct symtab *,
11626 line_header->file_names.size ());
11627
11628 for (i = 0; i < line_header->file_names.size (); ++i)
11629 {
11630 file_entry &fe = line_header->file_names[i];
11631
11632 dwarf2_start_subfile (this, fe.name,
11633 fe.include_dir (line_header));
11634 buildsym_compunit *b = get_builder ();
11635 if (b->get_current_subfile ()->symtab == NULL)
11636 {
11637 /* NOTE: start_subfile will recognize when it's been
11638 passed a file it has already seen. So we can't
11639 assume there's a simple mapping from
11640 cu->line_header->file_names to subfiles, plus
11641 cu->line_header->file_names may contain dups. */
11642 b->get_current_subfile ()->symtab
11643 = allocate_symtab (cust, b->get_current_subfile ()->name);
11644 }
11645
11646 fe.symtab = b->get_current_subfile ()->symtab;
11647 tu_group->symtabs[i] = fe.symtab;
11648 }
11649 }
11650 else
11651 {
11652 gdb_assert (m_builder == nullptr);
11653 struct compunit_symtab *cust = tu_group->compunit_symtab;
11654 m_builder.reset (new struct buildsym_compunit
11655 (COMPUNIT_OBJFILE (cust), "",
11656 COMPUNIT_DIRNAME (cust),
11657 compunit_language (cust),
11658 0, cust));
11659
11660 for (i = 0; i < line_header->file_names.size (); ++i)
11661 {
11662 file_entry &fe = line_header->file_names[i];
11663
11664 fe.symtab = tu_group->symtabs[i];
11665 }
11666 }
11667
11668 /* The main symtab is allocated last. Type units don't have DW_AT_name
11669 so they don't have a "real" (so to speak) symtab anyway.
11670 There is later code that will assign the main symtab to all symbols
11671 that don't have one. We need to handle the case of a symbol with a
11672 missing symtab (DW_AT_decl_file) anyway. */
11673 }
11674
11675 /* Process DW_TAG_type_unit.
11676 For TUs we want to skip the first top level sibling if it's not the
11677 actual type being defined by this TU. In this case the first top
11678 level sibling is there to provide context only. */
11679
11680 static void
11681 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11682 {
11683 struct die_info *child_die;
11684
11685 prepare_one_comp_unit (cu, die, language_minimal);
11686
11687 /* Initialize (or reinitialize) the machinery for building symtabs.
11688 We do this before processing child DIEs, so that the line header table
11689 is available for DW_AT_decl_file. */
11690 cu->setup_type_unit_groups (die);
11691
11692 if (die->child != NULL)
11693 {
11694 child_die = die->child;
11695 while (child_die && child_die->tag)
11696 {
11697 process_die (child_die, cu);
11698 child_die = sibling_die (child_die);
11699 }
11700 }
11701 }
11702 \f
11703 /* DWO/DWP files.
11704
11705 http://gcc.gnu.org/wiki/DebugFission
11706 http://gcc.gnu.org/wiki/DebugFissionDWP
11707
11708 To simplify handling of both DWO files ("object" files with the DWARF info)
11709 and DWP files (a file with the DWOs packaged up into one file), we treat
11710 DWP files as having a collection of virtual DWO files. */
11711
11712 static hashval_t
11713 hash_dwo_file (const void *item)
11714 {
11715 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11716 hashval_t hash;
11717
11718 hash = htab_hash_string (dwo_file->dwo_name);
11719 if (dwo_file->comp_dir != NULL)
11720 hash += htab_hash_string (dwo_file->comp_dir);
11721 return hash;
11722 }
11723
11724 static int
11725 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11726 {
11727 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11728 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11729
11730 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11731 return 0;
11732 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11733 return lhs->comp_dir == rhs->comp_dir;
11734 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11735 }
11736
11737 /* Allocate a hash table for DWO files. */
11738
11739 static htab_up
11740 allocate_dwo_file_hash_table (struct objfile *objfile)
11741 {
11742 auto delete_dwo_file = [] (void *item)
11743 {
11744 struct dwo_file *dwo_file = (struct dwo_file *) item;
11745
11746 delete dwo_file;
11747 };
11748
11749 return htab_up (htab_create_alloc_ex (41,
11750 hash_dwo_file,
11751 eq_dwo_file,
11752 delete_dwo_file,
11753 &objfile->objfile_obstack,
11754 hashtab_obstack_allocate,
11755 dummy_obstack_deallocate));
11756 }
11757
11758 /* Lookup DWO file DWO_NAME. */
11759
11760 static void **
11761 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11762 const char *dwo_name,
11763 const char *comp_dir)
11764 {
11765 struct dwo_file find_entry;
11766 void **slot;
11767
11768 if (dwarf2_per_objfile->dwo_files == NULL)
11769 dwarf2_per_objfile->dwo_files
11770 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11771
11772 find_entry.dwo_name = dwo_name;
11773 find_entry.comp_dir = comp_dir;
11774 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11775 INSERT);
11776
11777 return slot;
11778 }
11779
11780 static hashval_t
11781 hash_dwo_unit (const void *item)
11782 {
11783 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11784
11785 /* This drops the top 32 bits of the id, but is ok for a hash. */
11786 return dwo_unit->signature;
11787 }
11788
11789 static int
11790 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11791 {
11792 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11793 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11794
11795 /* The signature is assumed to be unique within the DWO file.
11796 So while object file CU dwo_id's always have the value zero,
11797 that's OK, assuming each object file DWO file has only one CU,
11798 and that's the rule for now. */
11799 return lhs->signature == rhs->signature;
11800 }
11801
11802 /* Allocate a hash table for DWO CUs,TUs.
11803 There is one of these tables for each of CUs,TUs for each DWO file. */
11804
11805 static htab_t
11806 allocate_dwo_unit_table (struct objfile *objfile)
11807 {
11808 /* Start out with a pretty small number.
11809 Generally DWO files contain only one CU and maybe some TUs. */
11810 return htab_create_alloc_ex (3,
11811 hash_dwo_unit,
11812 eq_dwo_unit,
11813 NULL,
11814 &objfile->objfile_obstack,
11815 hashtab_obstack_allocate,
11816 dummy_obstack_deallocate);
11817 }
11818
11819 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11820
11821 struct create_dwo_cu_data
11822 {
11823 struct dwo_file *dwo_file;
11824 struct dwo_unit dwo_unit;
11825 };
11826
11827 /* die_reader_func for create_dwo_cu. */
11828
11829 static void
11830 create_dwo_cu_reader (const struct die_reader_specs *reader,
11831 const gdb_byte *info_ptr,
11832 struct die_info *comp_unit_die,
11833 int has_children,
11834 void *datap)
11835 {
11836 struct dwarf2_cu *cu = reader->cu;
11837 sect_offset sect_off = cu->per_cu->sect_off;
11838 struct dwarf2_section_info *section = cu->per_cu->section;
11839 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11840 struct dwo_file *dwo_file = data->dwo_file;
11841 struct dwo_unit *dwo_unit = &data->dwo_unit;
11842 struct attribute *attr;
11843
11844 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11845 if (attr == NULL)
11846 {
11847 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11848 " its dwo_id [in module %s]"),
11849 sect_offset_str (sect_off), dwo_file->dwo_name);
11850 return;
11851 }
11852
11853 dwo_unit->dwo_file = dwo_file;
11854 dwo_unit->signature = DW_UNSND (attr);
11855 dwo_unit->section = section;
11856 dwo_unit->sect_off = sect_off;
11857 dwo_unit->length = cu->per_cu->length;
11858
11859 if (dwarf_read_debug)
11860 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11861 sect_offset_str (sect_off),
11862 hex_string (dwo_unit->signature));
11863 }
11864
11865 /* Create the dwo_units for the CUs in a DWO_FILE.
11866 Note: This function processes DWO files only, not DWP files. */
11867
11868 static void
11869 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11870 struct dwo_file &dwo_file, dwarf2_section_info &section,
11871 htab_t &cus_htab)
11872 {
11873 struct objfile *objfile = dwarf2_per_objfile->objfile;
11874 const gdb_byte *info_ptr, *end_ptr;
11875
11876 dwarf2_read_section (objfile, &section);
11877 info_ptr = section.buffer;
11878
11879 if (info_ptr == NULL)
11880 return;
11881
11882 if (dwarf_read_debug)
11883 {
11884 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11885 get_section_name (&section),
11886 get_section_file_name (&section));
11887 }
11888
11889 end_ptr = info_ptr + section.size;
11890 while (info_ptr < end_ptr)
11891 {
11892 struct dwarf2_per_cu_data per_cu;
11893 struct create_dwo_cu_data create_dwo_cu_data;
11894 struct dwo_unit *dwo_unit;
11895 void **slot;
11896 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11897
11898 memset (&create_dwo_cu_data.dwo_unit, 0,
11899 sizeof (create_dwo_cu_data.dwo_unit));
11900 memset (&per_cu, 0, sizeof (per_cu));
11901 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11902 per_cu.is_debug_types = 0;
11903 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11904 per_cu.section = &section;
11905 create_dwo_cu_data.dwo_file = &dwo_file;
11906
11907 init_cutu_and_read_dies_no_follow (
11908 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11909 info_ptr += per_cu.length;
11910
11911 // If the unit could not be parsed, skip it.
11912 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11913 continue;
11914
11915 if (cus_htab == NULL)
11916 cus_htab = allocate_dwo_unit_table (objfile);
11917
11918 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11919 *dwo_unit = create_dwo_cu_data.dwo_unit;
11920 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11921 gdb_assert (slot != NULL);
11922 if (*slot != NULL)
11923 {
11924 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11925 sect_offset dup_sect_off = dup_cu->sect_off;
11926
11927 complaint (_("debug cu entry at offset %s is duplicate to"
11928 " the entry at offset %s, signature %s"),
11929 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11930 hex_string (dwo_unit->signature));
11931 }
11932 *slot = (void *)dwo_unit;
11933 }
11934 }
11935
11936 /* DWP file .debug_{cu,tu}_index section format:
11937 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11938
11939 DWP Version 1:
11940
11941 Both index sections have the same format, and serve to map a 64-bit
11942 signature to a set of section numbers. Each section begins with a header,
11943 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11944 indexes, and a pool of 32-bit section numbers. The index sections will be
11945 aligned at 8-byte boundaries in the file.
11946
11947 The index section header consists of:
11948
11949 V, 32 bit version number
11950 -, 32 bits unused
11951 N, 32 bit number of compilation units or type units in the index
11952 M, 32 bit number of slots in the hash table
11953
11954 Numbers are recorded using the byte order of the application binary.
11955
11956 The hash table begins at offset 16 in the section, and consists of an array
11957 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11958 order of the application binary). Unused slots in the hash table are 0.
11959 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11960
11961 The parallel table begins immediately after the hash table
11962 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11963 array of 32-bit indexes (using the byte order of the application binary),
11964 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11965 table contains a 32-bit index into the pool of section numbers. For unused
11966 hash table slots, the corresponding entry in the parallel table will be 0.
11967
11968 The pool of section numbers begins immediately following the hash table
11969 (at offset 16 + 12 * M from the beginning of the section). The pool of
11970 section numbers consists of an array of 32-bit words (using the byte order
11971 of the application binary). Each item in the array is indexed starting
11972 from 0. The hash table entry provides the index of the first section
11973 number in the set. Additional section numbers in the set follow, and the
11974 set is terminated by a 0 entry (section number 0 is not used in ELF).
11975
11976 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11977 section must be the first entry in the set, and the .debug_abbrev.dwo must
11978 be the second entry. Other members of the set may follow in any order.
11979
11980 ---
11981
11982 DWP Version 2:
11983
11984 DWP Version 2 combines all the .debug_info, etc. sections into one,
11985 and the entries in the index tables are now offsets into these sections.
11986 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11987 section.
11988
11989 Index Section Contents:
11990 Header
11991 Hash Table of Signatures dwp_hash_table.hash_table
11992 Parallel Table of Indices dwp_hash_table.unit_table
11993 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11994 Table of Section Sizes dwp_hash_table.v2.sizes
11995
11996 The index section header consists of:
11997
11998 V, 32 bit version number
11999 L, 32 bit number of columns in the table of section offsets
12000 N, 32 bit number of compilation units or type units in the index
12001 M, 32 bit number of slots in the hash table
12002
12003 Numbers are recorded using the byte order of the application binary.
12004
12005 The hash table has the same format as version 1.
12006 The parallel table of indices has the same format as version 1,
12007 except that the entries are origin-1 indices into the table of sections
12008 offsets and the table of section sizes.
12009
12010 The table of offsets begins immediately following the parallel table
12011 (at offset 16 + 12 * M from the beginning of the section). The table is
12012 a two-dimensional array of 32-bit words (using the byte order of the
12013 application binary), with L columns and N+1 rows, in row-major order.
12014 Each row in the array is indexed starting from 0. The first row provides
12015 a key to the remaining rows: each column in this row provides an identifier
12016 for a debug section, and the offsets in the same column of subsequent rows
12017 refer to that section. The section identifiers are:
12018
12019 DW_SECT_INFO 1 .debug_info.dwo
12020 DW_SECT_TYPES 2 .debug_types.dwo
12021 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12022 DW_SECT_LINE 4 .debug_line.dwo
12023 DW_SECT_LOC 5 .debug_loc.dwo
12024 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12025 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12026 DW_SECT_MACRO 8 .debug_macro.dwo
12027
12028 The offsets provided by the CU and TU index sections are the base offsets
12029 for the contributions made by each CU or TU to the corresponding section
12030 in the package file. Each CU and TU header contains an abbrev_offset
12031 field, used to find the abbreviations table for that CU or TU within the
12032 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12033 be interpreted as relative to the base offset given in the index section.
12034 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12035 should be interpreted as relative to the base offset for .debug_line.dwo,
12036 and offsets into other debug sections obtained from DWARF attributes should
12037 also be interpreted as relative to the corresponding base offset.
12038
12039 The table of sizes begins immediately following the table of offsets.
12040 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12041 with L columns and N rows, in row-major order. Each row in the array is
12042 indexed starting from 1 (row 0 is shared by the two tables).
12043
12044 ---
12045
12046 Hash table lookup is handled the same in version 1 and 2:
12047
12048 We assume that N and M will not exceed 2^32 - 1.
12049 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12050
12051 Given a 64-bit compilation unit signature or a type signature S, an entry
12052 in the hash table is located as follows:
12053
12054 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12055 the low-order k bits all set to 1.
12056
12057 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12058
12059 3) If the hash table entry at index H matches the signature, use that
12060 entry. If the hash table entry at index H is unused (all zeroes),
12061 terminate the search: the signature is not present in the table.
12062
12063 4) Let H = (H + H') modulo M. Repeat at Step 3.
12064
12065 Because M > N and H' and M are relatively prime, the search is guaranteed
12066 to stop at an unused slot or find the match. */
12067
12068 /* Create a hash table to map DWO IDs to their CU/TU entry in
12069 .debug_{info,types}.dwo in DWP_FILE.
12070 Returns NULL if there isn't one.
12071 Note: This function processes DWP files only, not DWO files. */
12072
12073 static struct dwp_hash_table *
12074 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12075 struct dwp_file *dwp_file, int is_debug_types)
12076 {
12077 struct objfile *objfile = dwarf2_per_objfile->objfile;
12078 bfd *dbfd = dwp_file->dbfd.get ();
12079 const gdb_byte *index_ptr, *index_end;
12080 struct dwarf2_section_info *index;
12081 uint32_t version, nr_columns, nr_units, nr_slots;
12082 struct dwp_hash_table *htab;
12083
12084 if (is_debug_types)
12085 index = &dwp_file->sections.tu_index;
12086 else
12087 index = &dwp_file->sections.cu_index;
12088
12089 if (dwarf2_section_empty_p (index))
12090 return NULL;
12091 dwarf2_read_section (objfile, index);
12092
12093 index_ptr = index->buffer;
12094 index_end = index_ptr + index->size;
12095
12096 version = read_4_bytes (dbfd, index_ptr);
12097 index_ptr += 4;
12098 if (version == 2)
12099 nr_columns = read_4_bytes (dbfd, index_ptr);
12100 else
12101 nr_columns = 0;
12102 index_ptr += 4;
12103 nr_units = read_4_bytes (dbfd, index_ptr);
12104 index_ptr += 4;
12105 nr_slots = read_4_bytes (dbfd, index_ptr);
12106 index_ptr += 4;
12107
12108 if (version != 1 && version != 2)
12109 {
12110 error (_("Dwarf Error: unsupported DWP file version (%s)"
12111 " [in module %s]"),
12112 pulongest (version), dwp_file->name);
12113 }
12114 if (nr_slots != (nr_slots & -nr_slots))
12115 {
12116 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12117 " is not power of 2 [in module %s]"),
12118 pulongest (nr_slots), dwp_file->name);
12119 }
12120
12121 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12122 htab->version = version;
12123 htab->nr_columns = nr_columns;
12124 htab->nr_units = nr_units;
12125 htab->nr_slots = nr_slots;
12126 htab->hash_table = index_ptr;
12127 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12128
12129 /* Exit early if the table is empty. */
12130 if (nr_slots == 0 || nr_units == 0
12131 || (version == 2 && nr_columns == 0))
12132 {
12133 /* All must be zero. */
12134 if (nr_slots != 0 || nr_units != 0
12135 || (version == 2 && nr_columns != 0))
12136 {
12137 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12138 " all zero [in modules %s]"),
12139 dwp_file->name);
12140 }
12141 return htab;
12142 }
12143
12144 if (version == 1)
12145 {
12146 htab->section_pool.v1.indices =
12147 htab->unit_table + sizeof (uint32_t) * nr_slots;
12148 /* It's harder to decide whether the section is too small in v1.
12149 V1 is deprecated anyway so we punt. */
12150 }
12151 else
12152 {
12153 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12154 int *ids = htab->section_pool.v2.section_ids;
12155 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12156 /* Reverse map for error checking. */
12157 int ids_seen[DW_SECT_MAX + 1];
12158 int i;
12159
12160 if (nr_columns < 2)
12161 {
12162 error (_("Dwarf Error: bad DWP hash table, too few columns"
12163 " in section table [in module %s]"),
12164 dwp_file->name);
12165 }
12166 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12167 {
12168 error (_("Dwarf Error: bad DWP hash table, too many columns"
12169 " in section table [in module %s]"),
12170 dwp_file->name);
12171 }
12172 memset (ids, 255, sizeof_ids);
12173 memset (ids_seen, 255, sizeof (ids_seen));
12174 for (i = 0; i < nr_columns; ++i)
12175 {
12176 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12177
12178 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12179 {
12180 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12181 " in section table [in module %s]"),
12182 id, dwp_file->name);
12183 }
12184 if (ids_seen[id] != -1)
12185 {
12186 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12187 " id %d in section table [in module %s]"),
12188 id, dwp_file->name);
12189 }
12190 ids_seen[id] = i;
12191 ids[i] = id;
12192 }
12193 /* Must have exactly one info or types section. */
12194 if (((ids_seen[DW_SECT_INFO] != -1)
12195 + (ids_seen[DW_SECT_TYPES] != -1))
12196 != 1)
12197 {
12198 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12199 " DWO info/types section [in module %s]"),
12200 dwp_file->name);
12201 }
12202 /* Must have an abbrev section. */
12203 if (ids_seen[DW_SECT_ABBREV] == -1)
12204 {
12205 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12206 " section [in module %s]"),
12207 dwp_file->name);
12208 }
12209 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12210 htab->section_pool.v2.sizes =
12211 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12212 * nr_units * nr_columns);
12213 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12214 * nr_units * nr_columns))
12215 > index_end)
12216 {
12217 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12218 " [in module %s]"),
12219 dwp_file->name);
12220 }
12221 }
12222
12223 return htab;
12224 }
12225
12226 /* Update SECTIONS with the data from SECTP.
12227
12228 This function is like the other "locate" section routines that are
12229 passed to bfd_map_over_sections, but in this context the sections to
12230 read comes from the DWP V1 hash table, not the full ELF section table.
12231
12232 The result is non-zero for success, or zero if an error was found. */
12233
12234 static int
12235 locate_v1_virtual_dwo_sections (asection *sectp,
12236 struct virtual_v1_dwo_sections *sections)
12237 {
12238 const struct dwop_section_names *names = &dwop_section_names;
12239
12240 if (section_is_p (sectp->name, &names->abbrev_dwo))
12241 {
12242 /* There can be only one. */
12243 if (sections->abbrev.s.section != NULL)
12244 return 0;
12245 sections->abbrev.s.section = sectp;
12246 sections->abbrev.size = bfd_get_section_size (sectp);
12247 }
12248 else if (section_is_p (sectp->name, &names->info_dwo)
12249 || section_is_p (sectp->name, &names->types_dwo))
12250 {
12251 /* There can be only one. */
12252 if (sections->info_or_types.s.section != NULL)
12253 return 0;
12254 sections->info_or_types.s.section = sectp;
12255 sections->info_or_types.size = bfd_get_section_size (sectp);
12256 }
12257 else if (section_is_p (sectp->name, &names->line_dwo))
12258 {
12259 /* There can be only one. */
12260 if (sections->line.s.section != NULL)
12261 return 0;
12262 sections->line.s.section = sectp;
12263 sections->line.size = bfd_get_section_size (sectp);
12264 }
12265 else if (section_is_p (sectp->name, &names->loc_dwo))
12266 {
12267 /* There can be only one. */
12268 if (sections->loc.s.section != NULL)
12269 return 0;
12270 sections->loc.s.section = sectp;
12271 sections->loc.size = bfd_get_section_size (sectp);
12272 }
12273 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12274 {
12275 /* There can be only one. */
12276 if (sections->macinfo.s.section != NULL)
12277 return 0;
12278 sections->macinfo.s.section = sectp;
12279 sections->macinfo.size = bfd_get_section_size (sectp);
12280 }
12281 else if (section_is_p (sectp->name, &names->macro_dwo))
12282 {
12283 /* There can be only one. */
12284 if (sections->macro.s.section != NULL)
12285 return 0;
12286 sections->macro.s.section = sectp;
12287 sections->macro.size = bfd_get_section_size (sectp);
12288 }
12289 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12290 {
12291 /* There can be only one. */
12292 if (sections->str_offsets.s.section != NULL)
12293 return 0;
12294 sections->str_offsets.s.section = sectp;
12295 sections->str_offsets.size = bfd_get_section_size (sectp);
12296 }
12297 else
12298 {
12299 /* No other kind of section is valid. */
12300 return 0;
12301 }
12302
12303 return 1;
12304 }
12305
12306 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12307 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12308 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12309 This is for DWP version 1 files. */
12310
12311 static struct dwo_unit *
12312 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12313 struct dwp_file *dwp_file,
12314 uint32_t unit_index,
12315 const char *comp_dir,
12316 ULONGEST signature, int is_debug_types)
12317 {
12318 struct objfile *objfile = dwarf2_per_objfile->objfile;
12319 const struct dwp_hash_table *dwp_htab =
12320 is_debug_types ? dwp_file->tus : dwp_file->cus;
12321 bfd *dbfd = dwp_file->dbfd.get ();
12322 const char *kind = is_debug_types ? "TU" : "CU";
12323 struct dwo_file *dwo_file;
12324 struct dwo_unit *dwo_unit;
12325 struct virtual_v1_dwo_sections sections;
12326 void **dwo_file_slot;
12327 int i;
12328
12329 gdb_assert (dwp_file->version == 1);
12330
12331 if (dwarf_read_debug)
12332 {
12333 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12334 kind,
12335 pulongest (unit_index), hex_string (signature),
12336 dwp_file->name);
12337 }
12338
12339 /* Fetch the sections of this DWO unit.
12340 Put a limit on the number of sections we look for so that bad data
12341 doesn't cause us to loop forever. */
12342
12343 #define MAX_NR_V1_DWO_SECTIONS \
12344 (1 /* .debug_info or .debug_types */ \
12345 + 1 /* .debug_abbrev */ \
12346 + 1 /* .debug_line */ \
12347 + 1 /* .debug_loc */ \
12348 + 1 /* .debug_str_offsets */ \
12349 + 1 /* .debug_macro or .debug_macinfo */ \
12350 + 1 /* trailing zero */)
12351
12352 memset (&sections, 0, sizeof (sections));
12353
12354 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12355 {
12356 asection *sectp;
12357 uint32_t section_nr =
12358 read_4_bytes (dbfd,
12359 dwp_htab->section_pool.v1.indices
12360 + (unit_index + i) * sizeof (uint32_t));
12361
12362 if (section_nr == 0)
12363 break;
12364 if (section_nr >= dwp_file->num_sections)
12365 {
12366 error (_("Dwarf Error: bad DWP hash table, section number too large"
12367 " [in module %s]"),
12368 dwp_file->name);
12369 }
12370
12371 sectp = dwp_file->elf_sections[section_nr];
12372 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12373 {
12374 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12375 " [in module %s]"),
12376 dwp_file->name);
12377 }
12378 }
12379
12380 if (i < 2
12381 || dwarf2_section_empty_p (&sections.info_or_types)
12382 || dwarf2_section_empty_p (&sections.abbrev))
12383 {
12384 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12385 " [in module %s]"),
12386 dwp_file->name);
12387 }
12388 if (i == MAX_NR_V1_DWO_SECTIONS)
12389 {
12390 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12391 " [in module %s]"),
12392 dwp_file->name);
12393 }
12394
12395 /* It's easier for the rest of the code if we fake a struct dwo_file and
12396 have dwo_unit "live" in that. At least for now.
12397
12398 The DWP file can be made up of a random collection of CUs and TUs.
12399 However, for each CU + set of TUs that came from the same original DWO
12400 file, we can combine them back into a virtual DWO file to save space
12401 (fewer struct dwo_file objects to allocate). Remember that for really
12402 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12403
12404 std::string virtual_dwo_name =
12405 string_printf ("virtual-dwo/%d-%d-%d-%d",
12406 get_section_id (&sections.abbrev),
12407 get_section_id (&sections.line),
12408 get_section_id (&sections.loc),
12409 get_section_id (&sections.str_offsets));
12410 /* Can we use an existing virtual DWO file? */
12411 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12412 virtual_dwo_name.c_str (),
12413 comp_dir);
12414 /* Create one if necessary. */
12415 if (*dwo_file_slot == NULL)
12416 {
12417 if (dwarf_read_debug)
12418 {
12419 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12420 virtual_dwo_name.c_str ());
12421 }
12422 dwo_file = new struct dwo_file;
12423 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12424 virtual_dwo_name);
12425 dwo_file->comp_dir = comp_dir;
12426 dwo_file->sections.abbrev = sections.abbrev;
12427 dwo_file->sections.line = sections.line;
12428 dwo_file->sections.loc = sections.loc;
12429 dwo_file->sections.macinfo = sections.macinfo;
12430 dwo_file->sections.macro = sections.macro;
12431 dwo_file->sections.str_offsets = sections.str_offsets;
12432 /* The "str" section is global to the entire DWP file. */
12433 dwo_file->sections.str = dwp_file->sections.str;
12434 /* The info or types section is assigned below to dwo_unit,
12435 there's no need to record it in dwo_file.
12436 Also, we can't simply record type sections in dwo_file because
12437 we record a pointer into the vector in dwo_unit. As we collect more
12438 types we'll grow the vector and eventually have to reallocate space
12439 for it, invalidating all copies of pointers into the previous
12440 contents. */
12441 *dwo_file_slot = dwo_file;
12442 }
12443 else
12444 {
12445 if (dwarf_read_debug)
12446 {
12447 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12448 virtual_dwo_name.c_str ());
12449 }
12450 dwo_file = (struct dwo_file *) *dwo_file_slot;
12451 }
12452
12453 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12454 dwo_unit->dwo_file = dwo_file;
12455 dwo_unit->signature = signature;
12456 dwo_unit->section =
12457 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12458 *dwo_unit->section = sections.info_or_types;
12459 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12460
12461 return dwo_unit;
12462 }
12463
12464 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12465 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12466 piece within that section used by a TU/CU, return a virtual section
12467 of just that piece. */
12468
12469 static struct dwarf2_section_info
12470 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12471 struct dwarf2_section_info *section,
12472 bfd_size_type offset, bfd_size_type size)
12473 {
12474 struct dwarf2_section_info result;
12475 asection *sectp;
12476
12477 gdb_assert (section != NULL);
12478 gdb_assert (!section->is_virtual);
12479
12480 memset (&result, 0, sizeof (result));
12481 result.s.containing_section = section;
12482 result.is_virtual = true;
12483
12484 if (size == 0)
12485 return result;
12486
12487 sectp = get_section_bfd_section (section);
12488
12489 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12490 bounds of the real section. This is a pretty-rare event, so just
12491 flag an error (easier) instead of a warning and trying to cope. */
12492 if (sectp == NULL
12493 || offset + size > bfd_get_section_size (sectp))
12494 {
12495 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12496 " in section %s [in module %s]"),
12497 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12498 objfile_name (dwarf2_per_objfile->objfile));
12499 }
12500
12501 result.virtual_offset = offset;
12502 result.size = size;
12503 return result;
12504 }
12505
12506 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12507 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12508 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12509 This is for DWP version 2 files. */
12510
12511 static struct dwo_unit *
12512 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12513 struct dwp_file *dwp_file,
12514 uint32_t unit_index,
12515 const char *comp_dir,
12516 ULONGEST signature, int is_debug_types)
12517 {
12518 struct objfile *objfile = dwarf2_per_objfile->objfile;
12519 const struct dwp_hash_table *dwp_htab =
12520 is_debug_types ? dwp_file->tus : dwp_file->cus;
12521 bfd *dbfd = dwp_file->dbfd.get ();
12522 const char *kind = is_debug_types ? "TU" : "CU";
12523 struct dwo_file *dwo_file;
12524 struct dwo_unit *dwo_unit;
12525 struct virtual_v2_dwo_sections sections;
12526 void **dwo_file_slot;
12527 int i;
12528
12529 gdb_assert (dwp_file->version == 2);
12530
12531 if (dwarf_read_debug)
12532 {
12533 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12534 kind,
12535 pulongest (unit_index), hex_string (signature),
12536 dwp_file->name);
12537 }
12538
12539 /* Fetch the section offsets of this DWO unit. */
12540
12541 memset (&sections, 0, sizeof (sections));
12542
12543 for (i = 0; i < dwp_htab->nr_columns; ++i)
12544 {
12545 uint32_t offset = read_4_bytes (dbfd,
12546 dwp_htab->section_pool.v2.offsets
12547 + (((unit_index - 1) * dwp_htab->nr_columns
12548 + i)
12549 * sizeof (uint32_t)));
12550 uint32_t size = read_4_bytes (dbfd,
12551 dwp_htab->section_pool.v2.sizes
12552 + (((unit_index - 1) * dwp_htab->nr_columns
12553 + i)
12554 * sizeof (uint32_t)));
12555
12556 switch (dwp_htab->section_pool.v2.section_ids[i])
12557 {
12558 case DW_SECT_INFO:
12559 case DW_SECT_TYPES:
12560 sections.info_or_types_offset = offset;
12561 sections.info_or_types_size = size;
12562 break;
12563 case DW_SECT_ABBREV:
12564 sections.abbrev_offset = offset;
12565 sections.abbrev_size = size;
12566 break;
12567 case DW_SECT_LINE:
12568 sections.line_offset = offset;
12569 sections.line_size = size;
12570 break;
12571 case DW_SECT_LOC:
12572 sections.loc_offset = offset;
12573 sections.loc_size = size;
12574 break;
12575 case DW_SECT_STR_OFFSETS:
12576 sections.str_offsets_offset = offset;
12577 sections.str_offsets_size = size;
12578 break;
12579 case DW_SECT_MACINFO:
12580 sections.macinfo_offset = offset;
12581 sections.macinfo_size = size;
12582 break;
12583 case DW_SECT_MACRO:
12584 sections.macro_offset = offset;
12585 sections.macro_size = size;
12586 break;
12587 }
12588 }
12589
12590 /* It's easier for the rest of the code if we fake a struct dwo_file and
12591 have dwo_unit "live" in that. At least for now.
12592
12593 The DWP file can be made up of a random collection of CUs and TUs.
12594 However, for each CU + set of TUs that came from the same original DWO
12595 file, we can combine them back into a virtual DWO file to save space
12596 (fewer struct dwo_file objects to allocate). Remember that for really
12597 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12598
12599 std::string virtual_dwo_name =
12600 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12601 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12602 (long) (sections.line_size ? sections.line_offset : 0),
12603 (long) (sections.loc_size ? sections.loc_offset : 0),
12604 (long) (sections.str_offsets_size
12605 ? sections.str_offsets_offset : 0));
12606 /* Can we use an existing virtual DWO file? */
12607 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12608 virtual_dwo_name.c_str (),
12609 comp_dir);
12610 /* Create one if necessary. */
12611 if (*dwo_file_slot == NULL)
12612 {
12613 if (dwarf_read_debug)
12614 {
12615 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12616 virtual_dwo_name.c_str ());
12617 }
12618 dwo_file = new struct dwo_file;
12619 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12620 virtual_dwo_name);
12621 dwo_file->comp_dir = comp_dir;
12622 dwo_file->sections.abbrev =
12623 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12624 sections.abbrev_offset, sections.abbrev_size);
12625 dwo_file->sections.line =
12626 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12627 sections.line_offset, sections.line_size);
12628 dwo_file->sections.loc =
12629 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12630 sections.loc_offset, sections.loc_size);
12631 dwo_file->sections.macinfo =
12632 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12633 sections.macinfo_offset, sections.macinfo_size);
12634 dwo_file->sections.macro =
12635 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12636 sections.macro_offset, sections.macro_size);
12637 dwo_file->sections.str_offsets =
12638 create_dwp_v2_section (dwarf2_per_objfile,
12639 &dwp_file->sections.str_offsets,
12640 sections.str_offsets_offset,
12641 sections.str_offsets_size);
12642 /* The "str" section is global to the entire DWP file. */
12643 dwo_file->sections.str = dwp_file->sections.str;
12644 /* The info or types section is assigned below to dwo_unit,
12645 there's no need to record it in dwo_file.
12646 Also, we can't simply record type sections in dwo_file because
12647 we record a pointer into the vector in dwo_unit. As we collect more
12648 types we'll grow the vector and eventually have to reallocate space
12649 for it, invalidating all copies of pointers into the previous
12650 contents. */
12651 *dwo_file_slot = dwo_file;
12652 }
12653 else
12654 {
12655 if (dwarf_read_debug)
12656 {
12657 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12658 virtual_dwo_name.c_str ());
12659 }
12660 dwo_file = (struct dwo_file *) *dwo_file_slot;
12661 }
12662
12663 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12664 dwo_unit->dwo_file = dwo_file;
12665 dwo_unit->signature = signature;
12666 dwo_unit->section =
12667 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12668 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12669 is_debug_types
12670 ? &dwp_file->sections.types
12671 : &dwp_file->sections.info,
12672 sections.info_or_types_offset,
12673 sections.info_or_types_size);
12674 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12675
12676 return dwo_unit;
12677 }
12678
12679 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12680 Returns NULL if the signature isn't found. */
12681
12682 static struct dwo_unit *
12683 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12684 struct dwp_file *dwp_file, const char *comp_dir,
12685 ULONGEST signature, int is_debug_types)
12686 {
12687 const struct dwp_hash_table *dwp_htab =
12688 is_debug_types ? dwp_file->tus : dwp_file->cus;
12689 bfd *dbfd = dwp_file->dbfd.get ();
12690 uint32_t mask = dwp_htab->nr_slots - 1;
12691 uint32_t hash = signature & mask;
12692 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12693 unsigned int i;
12694 void **slot;
12695 struct dwo_unit find_dwo_cu;
12696
12697 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12698 find_dwo_cu.signature = signature;
12699 slot = htab_find_slot (is_debug_types
12700 ? dwp_file->loaded_tus
12701 : dwp_file->loaded_cus,
12702 &find_dwo_cu, INSERT);
12703
12704 if (*slot != NULL)
12705 return (struct dwo_unit *) *slot;
12706
12707 /* Use a for loop so that we don't loop forever on bad debug info. */
12708 for (i = 0; i < dwp_htab->nr_slots; ++i)
12709 {
12710 ULONGEST signature_in_table;
12711
12712 signature_in_table =
12713 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12714 if (signature_in_table == signature)
12715 {
12716 uint32_t unit_index =
12717 read_4_bytes (dbfd,
12718 dwp_htab->unit_table + hash * sizeof (uint32_t));
12719
12720 if (dwp_file->version == 1)
12721 {
12722 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12723 dwp_file, unit_index,
12724 comp_dir, signature,
12725 is_debug_types);
12726 }
12727 else
12728 {
12729 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12730 dwp_file, unit_index,
12731 comp_dir, signature,
12732 is_debug_types);
12733 }
12734 return (struct dwo_unit *) *slot;
12735 }
12736 if (signature_in_table == 0)
12737 return NULL;
12738 hash = (hash + hash2) & mask;
12739 }
12740
12741 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12742 " [in module %s]"),
12743 dwp_file->name);
12744 }
12745
12746 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12747 Open the file specified by FILE_NAME and hand it off to BFD for
12748 preliminary analysis. Return a newly initialized bfd *, which
12749 includes a canonicalized copy of FILE_NAME.
12750 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12751 SEARCH_CWD is true if the current directory is to be searched.
12752 It will be searched before debug-file-directory.
12753 If successful, the file is added to the bfd include table of the
12754 objfile's bfd (see gdb_bfd_record_inclusion).
12755 If unable to find/open the file, return NULL.
12756 NOTE: This function is derived from symfile_bfd_open. */
12757
12758 static gdb_bfd_ref_ptr
12759 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12760 const char *file_name, int is_dwp, int search_cwd)
12761 {
12762 int desc;
12763 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12764 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12765 to debug_file_directory. */
12766 const char *search_path;
12767 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12768
12769 gdb::unique_xmalloc_ptr<char> search_path_holder;
12770 if (search_cwd)
12771 {
12772 if (*debug_file_directory != '\0')
12773 {
12774 search_path_holder.reset (concat (".", dirname_separator_string,
12775 debug_file_directory,
12776 (char *) NULL));
12777 search_path = search_path_holder.get ();
12778 }
12779 else
12780 search_path = ".";
12781 }
12782 else
12783 search_path = debug_file_directory;
12784
12785 openp_flags flags = OPF_RETURN_REALPATH;
12786 if (is_dwp)
12787 flags |= OPF_SEARCH_IN_PATH;
12788
12789 gdb::unique_xmalloc_ptr<char> absolute_name;
12790 desc = openp (search_path, flags, file_name,
12791 O_RDONLY | O_BINARY, &absolute_name);
12792 if (desc < 0)
12793 return NULL;
12794
12795 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12796 gnutarget, desc));
12797 if (sym_bfd == NULL)
12798 return NULL;
12799 bfd_set_cacheable (sym_bfd.get (), 1);
12800
12801 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12802 return NULL;
12803
12804 /* Success. Record the bfd as having been included by the objfile's bfd.
12805 This is important because things like demangled_names_hash lives in the
12806 objfile's per_bfd space and may have references to things like symbol
12807 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12808 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12809
12810 return sym_bfd;
12811 }
12812
12813 /* Try to open DWO file FILE_NAME.
12814 COMP_DIR is the DW_AT_comp_dir attribute.
12815 The result is the bfd handle of the file.
12816 If there is a problem finding or opening the file, return NULL.
12817 Upon success, the canonicalized path of the file is stored in the bfd,
12818 same as symfile_bfd_open. */
12819
12820 static gdb_bfd_ref_ptr
12821 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12822 const char *file_name, const char *comp_dir)
12823 {
12824 if (IS_ABSOLUTE_PATH (file_name))
12825 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12826 0 /*is_dwp*/, 0 /*search_cwd*/);
12827
12828 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12829
12830 if (comp_dir != NULL)
12831 {
12832 char *path_to_try = concat (comp_dir, SLASH_STRING,
12833 file_name, (char *) NULL);
12834
12835 /* NOTE: If comp_dir is a relative path, this will also try the
12836 search path, which seems useful. */
12837 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12838 path_to_try,
12839 0 /*is_dwp*/,
12840 1 /*search_cwd*/));
12841 xfree (path_to_try);
12842 if (abfd != NULL)
12843 return abfd;
12844 }
12845
12846 /* That didn't work, try debug-file-directory, which, despite its name,
12847 is a list of paths. */
12848
12849 if (*debug_file_directory == '\0')
12850 return NULL;
12851
12852 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12853 0 /*is_dwp*/, 1 /*search_cwd*/);
12854 }
12855
12856 /* This function is mapped across the sections and remembers the offset and
12857 size of each of the DWO debugging sections we are interested in. */
12858
12859 static void
12860 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12861 {
12862 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12863 const struct dwop_section_names *names = &dwop_section_names;
12864
12865 if (section_is_p (sectp->name, &names->abbrev_dwo))
12866 {
12867 dwo_sections->abbrev.s.section = sectp;
12868 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12869 }
12870 else if (section_is_p (sectp->name, &names->info_dwo))
12871 {
12872 dwo_sections->info.s.section = sectp;
12873 dwo_sections->info.size = bfd_get_section_size (sectp);
12874 }
12875 else if (section_is_p (sectp->name, &names->line_dwo))
12876 {
12877 dwo_sections->line.s.section = sectp;
12878 dwo_sections->line.size = bfd_get_section_size (sectp);
12879 }
12880 else if (section_is_p (sectp->name, &names->loc_dwo))
12881 {
12882 dwo_sections->loc.s.section = sectp;
12883 dwo_sections->loc.size = bfd_get_section_size (sectp);
12884 }
12885 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12886 {
12887 dwo_sections->macinfo.s.section = sectp;
12888 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12889 }
12890 else if (section_is_p (sectp->name, &names->macro_dwo))
12891 {
12892 dwo_sections->macro.s.section = sectp;
12893 dwo_sections->macro.size = bfd_get_section_size (sectp);
12894 }
12895 else if (section_is_p (sectp->name, &names->str_dwo))
12896 {
12897 dwo_sections->str.s.section = sectp;
12898 dwo_sections->str.size = bfd_get_section_size (sectp);
12899 }
12900 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12901 {
12902 dwo_sections->str_offsets.s.section = sectp;
12903 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12904 }
12905 else if (section_is_p (sectp->name, &names->types_dwo))
12906 {
12907 struct dwarf2_section_info type_section;
12908
12909 memset (&type_section, 0, sizeof (type_section));
12910 type_section.s.section = sectp;
12911 type_section.size = bfd_get_section_size (sectp);
12912 dwo_sections->types.push_back (type_section);
12913 }
12914 }
12915
12916 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12917 by PER_CU. This is for the non-DWP case.
12918 The result is NULL if DWO_NAME can't be found. */
12919
12920 static struct dwo_file *
12921 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12922 const char *dwo_name, const char *comp_dir)
12923 {
12924 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12925
12926 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12927 if (dbfd == NULL)
12928 {
12929 if (dwarf_read_debug)
12930 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12931 return NULL;
12932 }
12933
12934 dwo_file_up dwo_file (new struct dwo_file);
12935 dwo_file->dwo_name = dwo_name;
12936 dwo_file->comp_dir = comp_dir;
12937 dwo_file->dbfd = std::move (dbfd);
12938
12939 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12940 &dwo_file->sections);
12941
12942 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12943 dwo_file->cus);
12944
12945 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12946 dwo_file->sections.types, dwo_file->tus);
12947
12948 if (dwarf_read_debug)
12949 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12950
12951 return dwo_file.release ();
12952 }
12953
12954 /* This function is mapped across the sections and remembers the offset and
12955 size of each of the DWP debugging sections common to version 1 and 2 that
12956 we are interested in. */
12957
12958 static void
12959 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12960 void *dwp_file_ptr)
12961 {
12962 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12963 const struct dwop_section_names *names = &dwop_section_names;
12964 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12965
12966 /* Record the ELF section number for later lookup: this is what the
12967 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12968 gdb_assert (elf_section_nr < dwp_file->num_sections);
12969 dwp_file->elf_sections[elf_section_nr] = sectp;
12970
12971 /* Look for specific sections that we need. */
12972 if (section_is_p (sectp->name, &names->str_dwo))
12973 {
12974 dwp_file->sections.str.s.section = sectp;
12975 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12976 }
12977 else if (section_is_p (sectp->name, &names->cu_index))
12978 {
12979 dwp_file->sections.cu_index.s.section = sectp;
12980 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12981 }
12982 else if (section_is_p (sectp->name, &names->tu_index))
12983 {
12984 dwp_file->sections.tu_index.s.section = sectp;
12985 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12986 }
12987 }
12988
12989 /* This function is mapped across the sections and remembers the offset and
12990 size of each of the DWP version 2 debugging sections that we are interested
12991 in. This is split into a separate function because we don't know if we
12992 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12993
12994 static void
12995 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12996 {
12997 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12998 const struct dwop_section_names *names = &dwop_section_names;
12999 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13000
13001 /* Record the ELF section number for later lookup: this is what the
13002 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13003 gdb_assert (elf_section_nr < dwp_file->num_sections);
13004 dwp_file->elf_sections[elf_section_nr] = sectp;
13005
13006 /* Look for specific sections that we need. */
13007 if (section_is_p (sectp->name, &names->abbrev_dwo))
13008 {
13009 dwp_file->sections.abbrev.s.section = sectp;
13010 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13011 }
13012 else if (section_is_p (sectp->name, &names->info_dwo))
13013 {
13014 dwp_file->sections.info.s.section = sectp;
13015 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13016 }
13017 else if (section_is_p (sectp->name, &names->line_dwo))
13018 {
13019 dwp_file->sections.line.s.section = sectp;
13020 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13021 }
13022 else if (section_is_p (sectp->name, &names->loc_dwo))
13023 {
13024 dwp_file->sections.loc.s.section = sectp;
13025 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13026 }
13027 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13028 {
13029 dwp_file->sections.macinfo.s.section = sectp;
13030 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13031 }
13032 else if (section_is_p (sectp->name, &names->macro_dwo))
13033 {
13034 dwp_file->sections.macro.s.section = sectp;
13035 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13036 }
13037 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13038 {
13039 dwp_file->sections.str_offsets.s.section = sectp;
13040 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->types_dwo))
13043 {
13044 dwp_file->sections.types.s.section = sectp;
13045 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13046 }
13047 }
13048
13049 /* Hash function for dwp_file loaded CUs/TUs. */
13050
13051 static hashval_t
13052 hash_dwp_loaded_cutus (const void *item)
13053 {
13054 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13055
13056 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13057 return dwo_unit->signature;
13058 }
13059
13060 /* Equality function for dwp_file loaded CUs/TUs. */
13061
13062 static int
13063 eq_dwp_loaded_cutus (const void *a, const void *b)
13064 {
13065 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13066 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13067
13068 return dua->signature == dub->signature;
13069 }
13070
13071 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13072
13073 static htab_t
13074 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13075 {
13076 return htab_create_alloc_ex (3,
13077 hash_dwp_loaded_cutus,
13078 eq_dwp_loaded_cutus,
13079 NULL,
13080 &objfile->objfile_obstack,
13081 hashtab_obstack_allocate,
13082 dummy_obstack_deallocate);
13083 }
13084
13085 /* Try to open DWP file FILE_NAME.
13086 The result is the bfd handle of the file.
13087 If there is a problem finding or opening the file, return NULL.
13088 Upon success, the canonicalized path of the file is stored in the bfd,
13089 same as symfile_bfd_open. */
13090
13091 static gdb_bfd_ref_ptr
13092 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13093 const char *file_name)
13094 {
13095 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13096 1 /*is_dwp*/,
13097 1 /*search_cwd*/));
13098 if (abfd != NULL)
13099 return abfd;
13100
13101 /* Work around upstream bug 15652.
13102 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13103 [Whether that's a "bug" is debatable, but it is getting in our way.]
13104 We have no real idea where the dwp file is, because gdb's realpath-ing
13105 of the executable's path may have discarded the needed info.
13106 [IWBN if the dwp file name was recorded in the executable, akin to
13107 .gnu_debuglink, but that doesn't exist yet.]
13108 Strip the directory from FILE_NAME and search again. */
13109 if (*debug_file_directory != '\0')
13110 {
13111 /* Don't implicitly search the current directory here.
13112 If the user wants to search "." to handle this case,
13113 it must be added to debug-file-directory. */
13114 return try_open_dwop_file (dwarf2_per_objfile,
13115 lbasename (file_name), 1 /*is_dwp*/,
13116 0 /*search_cwd*/);
13117 }
13118
13119 return NULL;
13120 }
13121
13122 /* Initialize the use of the DWP file for the current objfile.
13123 By convention the name of the DWP file is ${objfile}.dwp.
13124 The result is NULL if it can't be found. */
13125
13126 static std::unique_ptr<struct dwp_file>
13127 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13128 {
13129 struct objfile *objfile = dwarf2_per_objfile->objfile;
13130
13131 /* Try to find first .dwp for the binary file before any symbolic links
13132 resolving. */
13133
13134 /* If the objfile is a debug file, find the name of the real binary
13135 file and get the name of dwp file from there. */
13136 std::string dwp_name;
13137 if (objfile->separate_debug_objfile_backlink != NULL)
13138 {
13139 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13140 const char *backlink_basename = lbasename (backlink->original_name);
13141
13142 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13143 }
13144 else
13145 dwp_name = objfile->original_name;
13146
13147 dwp_name += ".dwp";
13148
13149 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13150 if (dbfd == NULL
13151 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13152 {
13153 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13154 dwp_name = objfile_name (objfile);
13155 dwp_name += ".dwp";
13156 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13157 }
13158
13159 if (dbfd == NULL)
13160 {
13161 if (dwarf_read_debug)
13162 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13163 return std::unique_ptr<dwp_file> ();
13164 }
13165
13166 const char *name = bfd_get_filename (dbfd.get ());
13167 std::unique_ptr<struct dwp_file> dwp_file
13168 (new struct dwp_file (name, std::move (dbfd)));
13169
13170 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13171 dwp_file->elf_sections =
13172 OBSTACK_CALLOC (&objfile->objfile_obstack,
13173 dwp_file->num_sections, asection *);
13174
13175 bfd_map_over_sections (dwp_file->dbfd.get (),
13176 dwarf2_locate_common_dwp_sections,
13177 dwp_file.get ());
13178
13179 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13180 0);
13181
13182 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13183 1);
13184
13185 /* The DWP file version is stored in the hash table. Oh well. */
13186 if (dwp_file->cus && dwp_file->tus
13187 && dwp_file->cus->version != dwp_file->tus->version)
13188 {
13189 /* Technically speaking, we should try to limp along, but this is
13190 pretty bizarre. We use pulongest here because that's the established
13191 portability solution (e.g, we cannot use %u for uint32_t). */
13192 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13193 " TU version %s [in DWP file %s]"),
13194 pulongest (dwp_file->cus->version),
13195 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13196 }
13197
13198 if (dwp_file->cus)
13199 dwp_file->version = dwp_file->cus->version;
13200 else if (dwp_file->tus)
13201 dwp_file->version = dwp_file->tus->version;
13202 else
13203 dwp_file->version = 2;
13204
13205 if (dwp_file->version == 2)
13206 bfd_map_over_sections (dwp_file->dbfd.get (),
13207 dwarf2_locate_v2_dwp_sections,
13208 dwp_file.get ());
13209
13210 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13211 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13212
13213 if (dwarf_read_debug)
13214 {
13215 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13216 fprintf_unfiltered (gdb_stdlog,
13217 " %s CUs, %s TUs\n",
13218 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13219 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13220 }
13221
13222 return dwp_file;
13223 }
13224
13225 /* Wrapper around open_and_init_dwp_file, only open it once. */
13226
13227 static struct dwp_file *
13228 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13229 {
13230 if (! dwarf2_per_objfile->dwp_checked)
13231 {
13232 dwarf2_per_objfile->dwp_file
13233 = open_and_init_dwp_file (dwarf2_per_objfile);
13234 dwarf2_per_objfile->dwp_checked = 1;
13235 }
13236 return dwarf2_per_objfile->dwp_file.get ();
13237 }
13238
13239 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13240 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13241 or in the DWP file for the objfile, referenced by THIS_UNIT.
13242 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13243 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13244
13245 This is called, for example, when wanting to read a variable with a
13246 complex location. Therefore we don't want to do file i/o for every call.
13247 Therefore we don't want to look for a DWO file on every call.
13248 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13249 then we check if we've already seen DWO_NAME, and only THEN do we check
13250 for a DWO file.
13251
13252 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13253 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13254
13255 static struct dwo_unit *
13256 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13257 const char *dwo_name, const char *comp_dir,
13258 ULONGEST signature, int is_debug_types)
13259 {
13260 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13261 struct objfile *objfile = dwarf2_per_objfile->objfile;
13262 const char *kind = is_debug_types ? "TU" : "CU";
13263 void **dwo_file_slot;
13264 struct dwo_file *dwo_file;
13265 struct dwp_file *dwp_file;
13266
13267 /* First see if there's a DWP file.
13268 If we have a DWP file but didn't find the DWO inside it, don't
13269 look for the original DWO file. It makes gdb behave differently
13270 depending on whether one is debugging in the build tree. */
13271
13272 dwp_file = get_dwp_file (dwarf2_per_objfile);
13273 if (dwp_file != NULL)
13274 {
13275 const struct dwp_hash_table *dwp_htab =
13276 is_debug_types ? dwp_file->tus : dwp_file->cus;
13277
13278 if (dwp_htab != NULL)
13279 {
13280 struct dwo_unit *dwo_cutu =
13281 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13282 signature, is_debug_types);
13283
13284 if (dwo_cutu != NULL)
13285 {
13286 if (dwarf_read_debug)
13287 {
13288 fprintf_unfiltered (gdb_stdlog,
13289 "Virtual DWO %s %s found: @%s\n",
13290 kind, hex_string (signature),
13291 host_address_to_string (dwo_cutu));
13292 }
13293 return dwo_cutu;
13294 }
13295 }
13296 }
13297 else
13298 {
13299 /* No DWP file, look for the DWO file. */
13300
13301 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13302 dwo_name, comp_dir);
13303 if (*dwo_file_slot == NULL)
13304 {
13305 /* Read in the file and build a table of the CUs/TUs it contains. */
13306 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13307 }
13308 /* NOTE: This will be NULL if unable to open the file. */
13309 dwo_file = (struct dwo_file *) *dwo_file_slot;
13310
13311 if (dwo_file != NULL)
13312 {
13313 struct dwo_unit *dwo_cutu = NULL;
13314
13315 if (is_debug_types && dwo_file->tus)
13316 {
13317 struct dwo_unit find_dwo_cutu;
13318
13319 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13320 find_dwo_cutu.signature = signature;
13321 dwo_cutu
13322 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13323 }
13324 else if (!is_debug_types && dwo_file->cus)
13325 {
13326 struct dwo_unit find_dwo_cutu;
13327
13328 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13329 find_dwo_cutu.signature = signature;
13330 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13331 &find_dwo_cutu);
13332 }
13333
13334 if (dwo_cutu != NULL)
13335 {
13336 if (dwarf_read_debug)
13337 {
13338 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13339 kind, dwo_name, hex_string (signature),
13340 host_address_to_string (dwo_cutu));
13341 }
13342 return dwo_cutu;
13343 }
13344 }
13345 }
13346
13347 /* We didn't find it. This could mean a dwo_id mismatch, or
13348 someone deleted the DWO/DWP file, or the search path isn't set up
13349 correctly to find the file. */
13350
13351 if (dwarf_read_debug)
13352 {
13353 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13354 kind, dwo_name, hex_string (signature));
13355 }
13356
13357 /* This is a warning and not a complaint because it can be caused by
13358 pilot error (e.g., user accidentally deleting the DWO). */
13359 {
13360 /* Print the name of the DWP file if we looked there, helps the user
13361 better diagnose the problem. */
13362 std::string dwp_text;
13363
13364 if (dwp_file != NULL)
13365 dwp_text = string_printf (" [in DWP file %s]",
13366 lbasename (dwp_file->name));
13367
13368 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13369 " [in module %s]"),
13370 kind, dwo_name, hex_string (signature),
13371 dwp_text.c_str (),
13372 this_unit->is_debug_types ? "TU" : "CU",
13373 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13374 }
13375 return NULL;
13376 }
13377
13378 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13379 See lookup_dwo_cutu_unit for details. */
13380
13381 static struct dwo_unit *
13382 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13383 const char *dwo_name, const char *comp_dir,
13384 ULONGEST signature)
13385 {
13386 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13387 }
13388
13389 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13390 See lookup_dwo_cutu_unit for details. */
13391
13392 static struct dwo_unit *
13393 lookup_dwo_type_unit (struct signatured_type *this_tu,
13394 const char *dwo_name, const char *comp_dir)
13395 {
13396 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13397 }
13398
13399 /* Traversal function for queue_and_load_all_dwo_tus. */
13400
13401 static int
13402 queue_and_load_dwo_tu (void **slot, void *info)
13403 {
13404 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13405 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13406 ULONGEST signature = dwo_unit->signature;
13407 struct signatured_type *sig_type =
13408 lookup_dwo_signatured_type (per_cu->cu, signature);
13409
13410 if (sig_type != NULL)
13411 {
13412 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13413
13414 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13415 a real dependency of PER_CU on SIG_TYPE. That is detected later
13416 while processing PER_CU. */
13417 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13418 load_full_type_unit (sig_cu);
13419 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13420 }
13421
13422 return 1;
13423 }
13424
13425 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13426 The DWO may have the only definition of the type, though it may not be
13427 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13428 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13429
13430 static void
13431 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13432 {
13433 struct dwo_unit *dwo_unit;
13434 struct dwo_file *dwo_file;
13435
13436 gdb_assert (!per_cu->is_debug_types);
13437 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13438 gdb_assert (per_cu->cu != NULL);
13439
13440 dwo_unit = per_cu->cu->dwo_unit;
13441 gdb_assert (dwo_unit != NULL);
13442
13443 dwo_file = dwo_unit->dwo_file;
13444 if (dwo_file->tus != NULL)
13445 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13446 }
13447
13448 /* Read in various DIEs. */
13449
13450 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13451 Inherit only the children of the DW_AT_abstract_origin DIE not being
13452 already referenced by DW_AT_abstract_origin from the children of the
13453 current DIE. */
13454
13455 static void
13456 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13457 {
13458 struct die_info *child_die;
13459 sect_offset *offsetp;
13460 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13461 struct die_info *origin_die;
13462 /* Iterator of the ORIGIN_DIE children. */
13463 struct die_info *origin_child_die;
13464 struct attribute *attr;
13465 struct dwarf2_cu *origin_cu;
13466 struct pending **origin_previous_list_in_scope;
13467
13468 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13469 if (!attr)
13470 return;
13471
13472 /* Note that following die references may follow to a die in a
13473 different cu. */
13474
13475 origin_cu = cu;
13476 origin_die = follow_die_ref (die, attr, &origin_cu);
13477
13478 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13479 symbols in. */
13480 origin_previous_list_in_scope = origin_cu->list_in_scope;
13481 origin_cu->list_in_scope = cu->list_in_scope;
13482
13483 if (die->tag != origin_die->tag
13484 && !(die->tag == DW_TAG_inlined_subroutine
13485 && origin_die->tag == DW_TAG_subprogram))
13486 complaint (_("DIE %s and its abstract origin %s have different tags"),
13487 sect_offset_str (die->sect_off),
13488 sect_offset_str (origin_die->sect_off));
13489
13490 std::vector<sect_offset> offsets;
13491
13492 for (child_die = die->child;
13493 child_die && child_die->tag;
13494 child_die = sibling_die (child_die))
13495 {
13496 struct die_info *child_origin_die;
13497 struct dwarf2_cu *child_origin_cu;
13498
13499 /* We are trying to process concrete instance entries:
13500 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13501 it's not relevant to our analysis here. i.e. detecting DIEs that are
13502 present in the abstract instance but not referenced in the concrete
13503 one. */
13504 if (child_die->tag == DW_TAG_call_site
13505 || child_die->tag == DW_TAG_GNU_call_site)
13506 continue;
13507
13508 /* For each CHILD_DIE, find the corresponding child of
13509 ORIGIN_DIE. If there is more than one layer of
13510 DW_AT_abstract_origin, follow them all; there shouldn't be,
13511 but GCC versions at least through 4.4 generate this (GCC PR
13512 40573). */
13513 child_origin_die = child_die;
13514 child_origin_cu = cu;
13515 while (1)
13516 {
13517 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13518 child_origin_cu);
13519 if (attr == NULL)
13520 break;
13521 child_origin_die = follow_die_ref (child_origin_die, attr,
13522 &child_origin_cu);
13523 }
13524
13525 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13526 counterpart may exist. */
13527 if (child_origin_die != child_die)
13528 {
13529 if (child_die->tag != child_origin_die->tag
13530 && !(child_die->tag == DW_TAG_inlined_subroutine
13531 && child_origin_die->tag == DW_TAG_subprogram))
13532 complaint (_("Child DIE %s and its abstract origin %s have "
13533 "different tags"),
13534 sect_offset_str (child_die->sect_off),
13535 sect_offset_str (child_origin_die->sect_off));
13536 if (child_origin_die->parent != origin_die)
13537 complaint (_("Child DIE %s and its abstract origin %s have "
13538 "different parents"),
13539 sect_offset_str (child_die->sect_off),
13540 sect_offset_str (child_origin_die->sect_off));
13541 else
13542 offsets.push_back (child_origin_die->sect_off);
13543 }
13544 }
13545 std::sort (offsets.begin (), offsets.end ());
13546 sect_offset *offsets_end = offsets.data () + offsets.size ();
13547 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13548 if (offsetp[-1] == *offsetp)
13549 complaint (_("Multiple children of DIE %s refer "
13550 "to DIE %s as their abstract origin"),
13551 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13552
13553 offsetp = offsets.data ();
13554 origin_child_die = origin_die->child;
13555 while (origin_child_die && origin_child_die->tag)
13556 {
13557 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13558 while (offsetp < offsets_end
13559 && *offsetp < origin_child_die->sect_off)
13560 offsetp++;
13561 if (offsetp >= offsets_end
13562 || *offsetp > origin_child_die->sect_off)
13563 {
13564 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13565 Check whether we're already processing ORIGIN_CHILD_DIE.
13566 This can happen with mutually referenced abstract_origins.
13567 PR 16581. */
13568 if (!origin_child_die->in_process)
13569 process_die (origin_child_die, origin_cu);
13570 }
13571 origin_child_die = sibling_die (origin_child_die);
13572 }
13573 origin_cu->list_in_scope = origin_previous_list_in_scope;
13574 }
13575
13576 static void
13577 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13578 {
13579 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13580 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13581 struct context_stack *newobj;
13582 CORE_ADDR lowpc;
13583 CORE_ADDR highpc;
13584 struct die_info *child_die;
13585 struct attribute *attr, *call_line, *call_file;
13586 const char *name;
13587 CORE_ADDR baseaddr;
13588 struct block *block;
13589 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13590 std::vector<struct symbol *> template_args;
13591 struct template_symbol *templ_func = NULL;
13592
13593 if (inlined_func)
13594 {
13595 /* If we do not have call site information, we can't show the
13596 caller of this inlined function. That's too confusing, so
13597 only use the scope for local variables. */
13598 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13599 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13600 if (call_line == NULL || call_file == NULL)
13601 {
13602 read_lexical_block_scope (die, cu);
13603 return;
13604 }
13605 }
13606
13607 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13608
13609 name = dwarf2_name (die, cu);
13610
13611 /* Ignore functions with missing or empty names. These are actually
13612 illegal according to the DWARF standard. */
13613 if (name == NULL)
13614 {
13615 complaint (_("missing name for subprogram DIE at %s"),
13616 sect_offset_str (die->sect_off));
13617 return;
13618 }
13619
13620 /* Ignore functions with missing or invalid low and high pc attributes. */
13621 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13622 <= PC_BOUNDS_INVALID)
13623 {
13624 attr = dwarf2_attr (die, DW_AT_external, cu);
13625 if (!attr || !DW_UNSND (attr))
13626 complaint (_("cannot get low and high bounds "
13627 "for subprogram DIE at %s"),
13628 sect_offset_str (die->sect_off));
13629 return;
13630 }
13631
13632 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13633 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13634
13635 /* If we have any template arguments, then we must allocate a
13636 different sort of symbol. */
13637 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13638 {
13639 if (child_die->tag == DW_TAG_template_type_param
13640 || child_die->tag == DW_TAG_template_value_param)
13641 {
13642 templ_func = allocate_template_symbol (objfile);
13643 templ_func->subclass = SYMBOL_TEMPLATE;
13644 break;
13645 }
13646 }
13647
13648 newobj = cu->get_builder ()->push_context (0, lowpc);
13649 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13650 (struct symbol *) templ_func);
13651
13652 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13653 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13654 cu->language);
13655
13656 /* If there is a location expression for DW_AT_frame_base, record
13657 it. */
13658 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13659 if (attr)
13660 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13661
13662 /* If there is a location for the static link, record it. */
13663 newobj->static_link = NULL;
13664 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13665 if (attr)
13666 {
13667 newobj->static_link
13668 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13669 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13670 dwarf2_per_cu_addr_type (cu->per_cu));
13671 }
13672
13673 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13674
13675 if (die->child != NULL)
13676 {
13677 child_die = die->child;
13678 while (child_die && child_die->tag)
13679 {
13680 if (child_die->tag == DW_TAG_template_type_param
13681 || child_die->tag == DW_TAG_template_value_param)
13682 {
13683 struct symbol *arg = new_symbol (child_die, NULL, cu);
13684
13685 if (arg != NULL)
13686 template_args.push_back (arg);
13687 }
13688 else
13689 process_die (child_die, cu);
13690 child_die = sibling_die (child_die);
13691 }
13692 }
13693
13694 inherit_abstract_dies (die, cu);
13695
13696 /* If we have a DW_AT_specification, we might need to import using
13697 directives from the context of the specification DIE. See the
13698 comment in determine_prefix. */
13699 if (cu->language == language_cplus
13700 && dwarf2_attr (die, DW_AT_specification, cu))
13701 {
13702 struct dwarf2_cu *spec_cu = cu;
13703 struct die_info *spec_die = die_specification (die, &spec_cu);
13704
13705 while (spec_die)
13706 {
13707 child_die = spec_die->child;
13708 while (child_die && child_die->tag)
13709 {
13710 if (child_die->tag == DW_TAG_imported_module)
13711 process_die (child_die, spec_cu);
13712 child_die = sibling_die (child_die);
13713 }
13714
13715 /* In some cases, GCC generates specification DIEs that
13716 themselves contain DW_AT_specification attributes. */
13717 spec_die = die_specification (spec_die, &spec_cu);
13718 }
13719 }
13720
13721 struct context_stack cstk = cu->get_builder ()->pop_context ();
13722 /* Make a block for the local symbols within. */
13723 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13724 cstk.static_link, lowpc, highpc);
13725
13726 /* For C++, set the block's scope. */
13727 if ((cu->language == language_cplus
13728 || cu->language == language_fortran
13729 || cu->language == language_d
13730 || cu->language == language_rust)
13731 && cu->processing_has_namespace_info)
13732 block_set_scope (block, determine_prefix (die, cu),
13733 &objfile->objfile_obstack);
13734
13735 /* If we have address ranges, record them. */
13736 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13737
13738 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13739
13740 /* Attach template arguments to function. */
13741 if (!template_args.empty ())
13742 {
13743 gdb_assert (templ_func != NULL);
13744
13745 templ_func->n_template_arguments = template_args.size ();
13746 templ_func->template_arguments
13747 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13748 templ_func->n_template_arguments);
13749 memcpy (templ_func->template_arguments,
13750 template_args.data (),
13751 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13752
13753 /* Make sure that the symtab is set on the new symbols. Even
13754 though they don't appear in this symtab directly, other parts
13755 of gdb assume that symbols do, and this is reasonably
13756 true. */
13757 for (symbol *sym : template_args)
13758 symbol_set_symtab (sym, symbol_symtab (templ_func));
13759 }
13760
13761 /* In C++, we can have functions nested inside functions (e.g., when
13762 a function declares a class that has methods). This means that
13763 when we finish processing a function scope, we may need to go
13764 back to building a containing block's symbol lists. */
13765 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13766 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13767
13768 /* If we've finished processing a top-level function, subsequent
13769 symbols go in the file symbol list. */
13770 if (cu->get_builder ()->outermost_context_p ())
13771 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13772 }
13773
13774 /* Process all the DIES contained within a lexical block scope. Start
13775 a new scope, process the dies, and then close the scope. */
13776
13777 static void
13778 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13779 {
13780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13781 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13782 CORE_ADDR lowpc, highpc;
13783 struct die_info *child_die;
13784 CORE_ADDR baseaddr;
13785
13786 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13787
13788 /* Ignore blocks with missing or invalid low and high pc attributes. */
13789 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13790 as multiple lexical blocks? Handling children in a sane way would
13791 be nasty. Might be easier to properly extend generic blocks to
13792 describe ranges. */
13793 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13794 {
13795 case PC_BOUNDS_NOT_PRESENT:
13796 /* DW_TAG_lexical_block has no attributes, process its children as if
13797 there was no wrapping by that DW_TAG_lexical_block.
13798 GCC does no longer produces such DWARF since GCC r224161. */
13799 for (child_die = die->child;
13800 child_die != NULL && child_die->tag;
13801 child_die = sibling_die (child_die))
13802 process_die (child_die, cu);
13803 return;
13804 case PC_BOUNDS_INVALID:
13805 return;
13806 }
13807 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13808 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13809
13810 cu->get_builder ()->push_context (0, lowpc);
13811 if (die->child != NULL)
13812 {
13813 child_die = die->child;
13814 while (child_die && child_die->tag)
13815 {
13816 process_die (child_die, cu);
13817 child_die = sibling_die (child_die);
13818 }
13819 }
13820 inherit_abstract_dies (die, cu);
13821 struct context_stack cstk = cu->get_builder ()->pop_context ();
13822
13823 if (*cu->get_builder ()->get_local_symbols () != NULL
13824 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13825 {
13826 struct block *block
13827 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13828 cstk.start_addr, highpc);
13829
13830 /* Note that recording ranges after traversing children, as we
13831 do here, means that recording a parent's ranges entails
13832 walking across all its children's ranges as they appear in
13833 the address map, which is quadratic behavior.
13834
13835 It would be nicer to record the parent's ranges before
13836 traversing its children, simply overriding whatever you find
13837 there. But since we don't even decide whether to create a
13838 block until after we've traversed its children, that's hard
13839 to do. */
13840 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13841 }
13842 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13843 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13844 }
13845
13846 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13847
13848 static void
13849 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13850 {
13851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13853 CORE_ADDR pc, baseaddr;
13854 struct attribute *attr;
13855 struct call_site *call_site, call_site_local;
13856 void **slot;
13857 int nparams;
13858 struct die_info *child_die;
13859
13860 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13861
13862 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13863 if (attr == NULL)
13864 {
13865 /* This was a pre-DWARF-5 GNU extension alias
13866 for DW_AT_call_return_pc. */
13867 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13868 }
13869 if (!attr)
13870 {
13871 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13872 "DIE %s [in module %s]"),
13873 sect_offset_str (die->sect_off), objfile_name (objfile));
13874 return;
13875 }
13876 pc = attr_value_as_address (attr) + baseaddr;
13877 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13878
13879 if (cu->call_site_htab == NULL)
13880 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13881 NULL, &objfile->objfile_obstack,
13882 hashtab_obstack_allocate, NULL);
13883 call_site_local.pc = pc;
13884 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13885 if (*slot != NULL)
13886 {
13887 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13888 "DIE %s [in module %s]"),
13889 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13890 objfile_name (objfile));
13891 return;
13892 }
13893
13894 /* Count parameters at the caller. */
13895
13896 nparams = 0;
13897 for (child_die = die->child; child_die && child_die->tag;
13898 child_die = sibling_die (child_die))
13899 {
13900 if (child_die->tag != DW_TAG_call_site_parameter
13901 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13902 {
13903 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13904 "DW_TAG_call_site child DIE %s [in module %s]"),
13905 child_die->tag, sect_offset_str (child_die->sect_off),
13906 objfile_name (objfile));
13907 continue;
13908 }
13909
13910 nparams++;
13911 }
13912
13913 call_site
13914 = ((struct call_site *)
13915 obstack_alloc (&objfile->objfile_obstack,
13916 sizeof (*call_site)
13917 + (sizeof (*call_site->parameter) * (nparams - 1))));
13918 *slot = call_site;
13919 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13920 call_site->pc = pc;
13921
13922 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13923 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13924 {
13925 struct die_info *func_die;
13926
13927 /* Skip also over DW_TAG_inlined_subroutine. */
13928 for (func_die = die->parent;
13929 func_die && func_die->tag != DW_TAG_subprogram
13930 && func_die->tag != DW_TAG_subroutine_type;
13931 func_die = func_die->parent);
13932
13933 /* DW_AT_call_all_calls is a superset
13934 of DW_AT_call_all_tail_calls. */
13935 if (func_die
13936 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13937 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13938 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13939 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13940 {
13941 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13942 not complete. But keep CALL_SITE for look ups via call_site_htab,
13943 both the initial caller containing the real return address PC and
13944 the final callee containing the current PC of a chain of tail
13945 calls do not need to have the tail call list complete. But any
13946 function candidate for a virtual tail call frame searched via
13947 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13948 determined unambiguously. */
13949 }
13950 else
13951 {
13952 struct type *func_type = NULL;
13953
13954 if (func_die)
13955 func_type = get_die_type (func_die, cu);
13956 if (func_type != NULL)
13957 {
13958 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13959
13960 /* Enlist this call site to the function. */
13961 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13962 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13963 }
13964 else
13965 complaint (_("Cannot find function owning DW_TAG_call_site "
13966 "DIE %s [in module %s]"),
13967 sect_offset_str (die->sect_off), objfile_name (objfile));
13968 }
13969 }
13970
13971 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13972 if (attr == NULL)
13973 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13974 if (attr == NULL)
13975 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13976 if (attr == NULL)
13977 {
13978 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13979 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13980 }
13981 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13982 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13983 /* Keep NULL DWARF_BLOCK. */;
13984 else if (attr_form_is_block (attr))
13985 {
13986 struct dwarf2_locexpr_baton *dlbaton;
13987
13988 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13989 dlbaton->data = DW_BLOCK (attr)->data;
13990 dlbaton->size = DW_BLOCK (attr)->size;
13991 dlbaton->per_cu = cu->per_cu;
13992
13993 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13994 }
13995 else if (attr_form_is_ref (attr))
13996 {
13997 struct dwarf2_cu *target_cu = cu;
13998 struct die_info *target_die;
13999
14000 target_die = follow_die_ref (die, attr, &target_cu);
14001 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14002 if (die_is_declaration (target_die, target_cu))
14003 {
14004 const char *target_physname;
14005
14006 /* Prefer the mangled name; otherwise compute the demangled one. */
14007 target_physname = dw2_linkage_name (target_die, target_cu);
14008 if (target_physname == NULL)
14009 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14010 if (target_physname == NULL)
14011 complaint (_("DW_AT_call_target target DIE has invalid "
14012 "physname, for referencing DIE %s [in module %s]"),
14013 sect_offset_str (die->sect_off), objfile_name (objfile));
14014 else
14015 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14016 }
14017 else
14018 {
14019 CORE_ADDR lowpc;
14020
14021 /* DW_AT_entry_pc should be preferred. */
14022 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14023 <= PC_BOUNDS_INVALID)
14024 complaint (_("DW_AT_call_target target DIE has invalid "
14025 "low pc, for referencing DIE %s [in module %s]"),
14026 sect_offset_str (die->sect_off), objfile_name (objfile));
14027 else
14028 {
14029 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14030 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14031 }
14032 }
14033 }
14034 else
14035 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14036 "block nor reference, for DIE %s [in module %s]"),
14037 sect_offset_str (die->sect_off), objfile_name (objfile));
14038
14039 call_site->per_cu = cu->per_cu;
14040
14041 for (child_die = die->child;
14042 child_die && child_die->tag;
14043 child_die = sibling_die (child_die))
14044 {
14045 struct call_site_parameter *parameter;
14046 struct attribute *loc, *origin;
14047
14048 if (child_die->tag != DW_TAG_call_site_parameter
14049 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14050 {
14051 /* Already printed the complaint above. */
14052 continue;
14053 }
14054
14055 gdb_assert (call_site->parameter_count < nparams);
14056 parameter = &call_site->parameter[call_site->parameter_count];
14057
14058 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14059 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14060 register is contained in DW_AT_call_value. */
14061
14062 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14063 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14064 if (origin == NULL)
14065 {
14066 /* This was a pre-DWARF-5 GNU extension alias
14067 for DW_AT_call_parameter. */
14068 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14069 }
14070 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14071 {
14072 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14073
14074 sect_offset sect_off
14075 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14076 if (!offset_in_cu_p (&cu->header, sect_off))
14077 {
14078 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14079 binding can be done only inside one CU. Such referenced DIE
14080 therefore cannot be even moved to DW_TAG_partial_unit. */
14081 complaint (_("DW_AT_call_parameter offset is not in CU for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off),
14084 objfile_name (objfile));
14085 continue;
14086 }
14087 parameter->u.param_cu_off
14088 = (cu_offset) (sect_off - cu->header.sect_off);
14089 }
14090 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14091 {
14092 complaint (_("No DW_FORM_block* DW_AT_location for "
14093 "DW_TAG_call_site child DIE %s [in module %s]"),
14094 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14095 continue;
14096 }
14097 else
14098 {
14099 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14100 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14101 if (parameter->u.dwarf_reg != -1)
14102 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14103 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14104 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14105 &parameter->u.fb_offset))
14106 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14107 else
14108 {
14109 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14110 "for DW_FORM_block* DW_AT_location is supported for "
14111 "DW_TAG_call_site child DIE %s "
14112 "[in module %s]"),
14113 sect_offset_str (child_die->sect_off),
14114 objfile_name (objfile));
14115 continue;
14116 }
14117 }
14118
14119 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14120 if (attr == NULL)
14121 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14122 if (!attr_form_is_block (attr))
14123 {
14124 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14125 "DW_TAG_call_site child DIE %s [in module %s]"),
14126 sect_offset_str (child_die->sect_off),
14127 objfile_name (objfile));
14128 continue;
14129 }
14130 parameter->value = DW_BLOCK (attr)->data;
14131 parameter->value_size = DW_BLOCK (attr)->size;
14132
14133 /* Parameters are not pre-cleared by memset above. */
14134 parameter->data_value = NULL;
14135 parameter->data_value_size = 0;
14136 call_site->parameter_count++;
14137
14138 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14139 if (attr == NULL)
14140 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14141 if (attr)
14142 {
14143 if (!attr_form_is_block (attr))
14144 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14145 "DW_TAG_call_site child DIE %s [in module %s]"),
14146 sect_offset_str (child_die->sect_off),
14147 objfile_name (objfile));
14148 else
14149 {
14150 parameter->data_value = DW_BLOCK (attr)->data;
14151 parameter->data_value_size = DW_BLOCK (attr)->size;
14152 }
14153 }
14154 }
14155 }
14156
14157 /* Helper function for read_variable. If DIE represents a virtual
14158 table, then return the type of the concrete object that is
14159 associated with the virtual table. Otherwise, return NULL. */
14160
14161 static struct type *
14162 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14163 {
14164 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14165 if (attr == NULL)
14166 return NULL;
14167
14168 /* Find the type DIE. */
14169 struct die_info *type_die = NULL;
14170 struct dwarf2_cu *type_cu = cu;
14171
14172 if (attr_form_is_ref (attr))
14173 type_die = follow_die_ref (die, attr, &type_cu);
14174 if (type_die == NULL)
14175 return NULL;
14176
14177 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14178 return NULL;
14179 return die_containing_type (type_die, type_cu);
14180 }
14181
14182 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14183
14184 static void
14185 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14186 {
14187 struct rust_vtable_symbol *storage = NULL;
14188
14189 if (cu->language == language_rust)
14190 {
14191 struct type *containing_type = rust_containing_type (die, cu);
14192
14193 if (containing_type != NULL)
14194 {
14195 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14196
14197 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14198 struct rust_vtable_symbol);
14199 initialize_objfile_symbol (storage);
14200 storage->concrete_type = containing_type;
14201 storage->subclass = SYMBOL_RUST_VTABLE;
14202 }
14203 }
14204
14205 struct symbol *res = new_symbol (die, NULL, cu, storage);
14206 struct attribute *abstract_origin
14207 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14208 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14209 if (res == NULL && loc && abstract_origin)
14210 {
14211 /* We have a variable without a name, but with a location and an abstract
14212 origin. This may be a concrete instance of an abstract variable
14213 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14214 later. */
14215 struct dwarf2_cu *origin_cu = cu;
14216 struct die_info *origin_die
14217 = follow_die_ref (die, abstract_origin, &origin_cu);
14218 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14219 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14220 }
14221 }
14222
14223 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14224 reading .debug_rnglists.
14225 Callback's type should be:
14226 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14227 Return true if the attributes are present and valid, otherwise,
14228 return false. */
14229
14230 template <typename Callback>
14231 static bool
14232 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14233 Callback &&callback)
14234 {
14235 struct dwarf2_per_objfile *dwarf2_per_objfile
14236 = cu->per_cu->dwarf2_per_objfile;
14237 struct objfile *objfile = dwarf2_per_objfile->objfile;
14238 bfd *obfd = objfile->obfd;
14239 /* Base address selection entry. */
14240 CORE_ADDR base;
14241 int found_base;
14242 const gdb_byte *buffer;
14243 CORE_ADDR baseaddr;
14244 bool overflow = false;
14245
14246 found_base = cu->base_known;
14247 base = cu->base_address;
14248
14249 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14250 if (offset >= dwarf2_per_objfile->rnglists.size)
14251 {
14252 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14253 offset);
14254 return false;
14255 }
14256 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14257
14258 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14259
14260 while (1)
14261 {
14262 /* Initialize it due to a false compiler warning. */
14263 CORE_ADDR range_beginning = 0, range_end = 0;
14264 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14265 + dwarf2_per_objfile->rnglists.size);
14266 unsigned int bytes_read;
14267
14268 if (buffer == buf_end)
14269 {
14270 overflow = true;
14271 break;
14272 }
14273 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14274 switch (rlet)
14275 {
14276 case DW_RLE_end_of_list:
14277 break;
14278 case DW_RLE_base_address:
14279 if (buffer + cu->header.addr_size > buf_end)
14280 {
14281 overflow = true;
14282 break;
14283 }
14284 base = read_address (obfd, buffer, cu, &bytes_read);
14285 found_base = 1;
14286 buffer += bytes_read;
14287 break;
14288 case DW_RLE_start_length:
14289 if (buffer + cu->header.addr_size > buf_end)
14290 {
14291 overflow = true;
14292 break;
14293 }
14294 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14295 buffer += bytes_read;
14296 range_end = (range_beginning
14297 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14298 buffer += bytes_read;
14299 if (buffer > buf_end)
14300 {
14301 overflow = true;
14302 break;
14303 }
14304 break;
14305 case DW_RLE_offset_pair:
14306 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14307 buffer += bytes_read;
14308 if (buffer > buf_end)
14309 {
14310 overflow = true;
14311 break;
14312 }
14313 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14314 buffer += bytes_read;
14315 if (buffer > buf_end)
14316 {
14317 overflow = true;
14318 break;
14319 }
14320 break;
14321 case DW_RLE_start_end:
14322 if (buffer + 2 * cu->header.addr_size > buf_end)
14323 {
14324 overflow = true;
14325 break;
14326 }
14327 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14328 buffer += bytes_read;
14329 range_end = read_address (obfd, buffer, cu, &bytes_read);
14330 buffer += bytes_read;
14331 break;
14332 default:
14333 complaint (_("Invalid .debug_rnglists data (no base address)"));
14334 return false;
14335 }
14336 if (rlet == DW_RLE_end_of_list || overflow)
14337 break;
14338 if (rlet == DW_RLE_base_address)
14339 continue;
14340
14341 if (!found_base)
14342 {
14343 /* We have no valid base address for the ranges
14344 data. */
14345 complaint (_("Invalid .debug_rnglists data (no base address)"));
14346 return false;
14347 }
14348
14349 if (range_beginning > range_end)
14350 {
14351 /* Inverted range entries are invalid. */
14352 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14353 return false;
14354 }
14355
14356 /* Empty range entries have no effect. */
14357 if (range_beginning == range_end)
14358 continue;
14359
14360 range_beginning += base;
14361 range_end += base;
14362
14363 /* A not-uncommon case of bad debug info.
14364 Don't pollute the addrmap with bad data. */
14365 if (range_beginning + baseaddr == 0
14366 && !dwarf2_per_objfile->has_section_at_zero)
14367 {
14368 complaint (_(".debug_rnglists entry has start address of zero"
14369 " [in module %s]"), objfile_name (objfile));
14370 continue;
14371 }
14372
14373 callback (range_beginning, range_end);
14374 }
14375
14376 if (overflow)
14377 {
14378 complaint (_("Offset %d is not terminated "
14379 "for DW_AT_ranges attribute"),
14380 offset);
14381 return false;
14382 }
14383
14384 return true;
14385 }
14386
14387 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14388 Callback's type should be:
14389 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14390 Return 1 if the attributes are present and valid, otherwise, return 0. */
14391
14392 template <typename Callback>
14393 static int
14394 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14395 Callback &&callback)
14396 {
14397 struct dwarf2_per_objfile *dwarf2_per_objfile
14398 = cu->per_cu->dwarf2_per_objfile;
14399 struct objfile *objfile = dwarf2_per_objfile->objfile;
14400 struct comp_unit_head *cu_header = &cu->header;
14401 bfd *obfd = objfile->obfd;
14402 unsigned int addr_size = cu_header->addr_size;
14403 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14404 /* Base address selection entry. */
14405 CORE_ADDR base;
14406 int found_base;
14407 unsigned int dummy;
14408 const gdb_byte *buffer;
14409 CORE_ADDR baseaddr;
14410
14411 if (cu_header->version >= 5)
14412 return dwarf2_rnglists_process (offset, cu, callback);
14413
14414 found_base = cu->base_known;
14415 base = cu->base_address;
14416
14417 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14418 if (offset >= dwarf2_per_objfile->ranges.size)
14419 {
14420 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14421 offset);
14422 return 0;
14423 }
14424 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14425
14426 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14427
14428 while (1)
14429 {
14430 CORE_ADDR range_beginning, range_end;
14431
14432 range_beginning = read_address (obfd, buffer, cu, &dummy);
14433 buffer += addr_size;
14434 range_end = read_address (obfd, buffer, cu, &dummy);
14435 buffer += addr_size;
14436 offset += 2 * addr_size;
14437
14438 /* An end of list marker is a pair of zero addresses. */
14439 if (range_beginning == 0 && range_end == 0)
14440 /* Found the end of list entry. */
14441 break;
14442
14443 /* Each base address selection entry is a pair of 2 values.
14444 The first is the largest possible address, the second is
14445 the base address. Check for a base address here. */
14446 if ((range_beginning & mask) == mask)
14447 {
14448 /* If we found the largest possible address, then we already
14449 have the base address in range_end. */
14450 base = range_end;
14451 found_base = 1;
14452 continue;
14453 }
14454
14455 if (!found_base)
14456 {
14457 /* We have no valid base address for the ranges
14458 data. */
14459 complaint (_("Invalid .debug_ranges data (no base address)"));
14460 return 0;
14461 }
14462
14463 if (range_beginning > range_end)
14464 {
14465 /* Inverted range entries are invalid. */
14466 complaint (_("Invalid .debug_ranges data (inverted range)"));
14467 return 0;
14468 }
14469
14470 /* Empty range entries have no effect. */
14471 if (range_beginning == range_end)
14472 continue;
14473
14474 range_beginning += base;
14475 range_end += base;
14476
14477 /* A not-uncommon case of bad debug info.
14478 Don't pollute the addrmap with bad data. */
14479 if (range_beginning + baseaddr == 0
14480 && !dwarf2_per_objfile->has_section_at_zero)
14481 {
14482 complaint (_(".debug_ranges entry has start address of zero"
14483 " [in module %s]"), objfile_name (objfile));
14484 continue;
14485 }
14486
14487 callback (range_beginning, range_end);
14488 }
14489
14490 return 1;
14491 }
14492
14493 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14494 Return 1 if the attributes are present and valid, otherwise, return 0.
14495 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14496
14497 static int
14498 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14499 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14500 struct partial_symtab *ranges_pst)
14501 {
14502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14504 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14505 SECT_OFF_TEXT (objfile));
14506 int low_set = 0;
14507 CORE_ADDR low = 0;
14508 CORE_ADDR high = 0;
14509 int retval;
14510
14511 retval = dwarf2_ranges_process (offset, cu,
14512 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14513 {
14514 if (ranges_pst != NULL)
14515 {
14516 CORE_ADDR lowpc;
14517 CORE_ADDR highpc;
14518
14519 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14520 range_beginning + baseaddr)
14521 - baseaddr);
14522 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14523 range_end + baseaddr)
14524 - baseaddr);
14525 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14526 lowpc, highpc - 1, ranges_pst);
14527 }
14528
14529 /* FIXME: This is recording everything as a low-high
14530 segment of consecutive addresses. We should have a
14531 data structure for discontiguous block ranges
14532 instead. */
14533 if (! low_set)
14534 {
14535 low = range_beginning;
14536 high = range_end;
14537 low_set = 1;
14538 }
14539 else
14540 {
14541 if (range_beginning < low)
14542 low = range_beginning;
14543 if (range_end > high)
14544 high = range_end;
14545 }
14546 });
14547 if (!retval)
14548 return 0;
14549
14550 if (! low_set)
14551 /* If the first entry is an end-of-list marker, the range
14552 describes an empty scope, i.e. no instructions. */
14553 return 0;
14554
14555 if (low_return)
14556 *low_return = low;
14557 if (high_return)
14558 *high_return = high;
14559 return 1;
14560 }
14561
14562 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14563 definition for the return value. *LOWPC and *HIGHPC are set iff
14564 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14565
14566 static enum pc_bounds_kind
14567 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14568 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14569 struct partial_symtab *pst)
14570 {
14571 struct dwarf2_per_objfile *dwarf2_per_objfile
14572 = cu->per_cu->dwarf2_per_objfile;
14573 struct attribute *attr;
14574 struct attribute *attr_high;
14575 CORE_ADDR low = 0;
14576 CORE_ADDR high = 0;
14577 enum pc_bounds_kind ret;
14578
14579 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14580 if (attr_high)
14581 {
14582 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14583 if (attr)
14584 {
14585 low = attr_value_as_address (attr);
14586 high = attr_value_as_address (attr_high);
14587 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14588 high += low;
14589 }
14590 else
14591 /* Found high w/o low attribute. */
14592 return PC_BOUNDS_INVALID;
14593
14594 /* Found consecutive range of addresses. */
14595 ret = PC_BOUNDS_HIGH_LOW;
14596 }
14597 else
14598 {
14599 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14600 if (attr != NULL)
14601 {
14602 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14603 We take advantage of the fact that DW_AT_ranges does not appear
14604 in DW_TAG_compile_unit of DWO files. */
14605 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14606 unsigned int ranges_offset = (DW_UNSND (attr)
14607 + (need_ranges_base
14608 ? cu->ranges_base
14609 : 0));
14610
14611 /* Value of the DW_AT_ranges attribute is the offset in the
14612 .debug_ranges section. */
14613 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14614 return PC_BOUNDS_INVALID;
14615 /* Found discontinuous range of addresses. */
14616 ret = PC_BOUNDS_RANGES;
14617 }
14618 else
14619 return PC_BOUNDS_NOT_PRESENT;
14620 }
14621
14622 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14623 if (high <= low)
14624 return PC_BOUNDS_INVALID;
14625
14626 /* When using the GNU linker, .gnu.linkonce. sections are used to
14627 eliminate duplicate copies of functions and vtables and such.
14628 The linker will arbitrarily choose one and discard the others.
14629 The AT_*_pc values for such functions refer to local labels in
14630 these sections. If the section from that file was discarded, the
14631 labels are not in the output, so the relocs get a value of 0.
14632 If this is a discarded function, mark the pc bounds as invalid,
14633 so that GDB will ignore it. */
14634 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14635 return PC_BOUNDS_INVALID;
14636
14637 *lowpc = low;
14638 if (highpc)
14639 *highpc = high;
14640 return ret;
14641 }
14642
14643 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14644 its low and high PC addresses. Do nothing if these addresses could not
14645 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14646 and HIGHPC to the high address if greater than HIGHPC. */
14647
14648 static void
14649 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14650 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14651 struct dwarf2_cu *cu)
14652 {
14653 CORE_ADDR low, high;
14654 struct die_info *child = die->child;
14655
14656 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14657 {
14658 *lowpc = std::min (*lowpc, low);
14659 *highpc = std::max (*highpc, high);
14660 }
14661
14662 /* If the language does not allow nested subprograms (either inside
14663 subprograms or lexical blocks), we're done. */
14664 if (cu->language != language_ada)
14665 return;
14666
14667 /* Check all the children of the given DIE. If it contains nested
14668 subprograms, then check their pc bounds. Likewise, we need to
14669 check lexical blocks as well, as they may also contain subprogram
14670 definitions. */
14671 while (child && child->tag)
14672 {
14673 if (child->tag == DW_TAG_subprogram
14674 || child->tag == DW_TAG_lexical_block)
14675 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14676 child = sibling_die (child);
14677 }
14678 }
14679
14680 /* Get the low and high pc's represented by the scope DIE, and store
14681 them in *LOWPC and *HIGHPC. If the correct values can't be
14682 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14683
14684 static void
14685 get_scope_pc_bounds (struct die_info *die,
14686 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14687 struct dwarf2_cu *cu)
14688 {
14689 CORE_ADDR best_low = (CORE_ADDR) -1;
14690 CORE_ADDR best_high = (CORE_ADDR) 0;
14691 CORE_ADDR current_low, current_high;
14692
14693 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14694 >= PC_BOUNDS_RANGES)
14695 {
14696 best_low = current_low;
14697 best_high = current_high;
14698 }
14699 else
14700 {
14701 struct die_info *child = die->child;
14702
14703 while (child && child->tag)
14704 {
14705 switch (child->tag) {
14706 case DW_TAG_subprogram:
14707 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14708 break;
14709 case DW_TAG_namespace:
14710 case DW_TAG_module:
14711 /* FIXME: carlton/2004-01-16: Should we do this for
14712 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14713 that current GCC's always emit the DIEs corresponding
14714 to definitions of methods of classes as children of a
14715 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14716 the DIEs giving the declarations, which could be
14717 anywhere). But I don't see any reason why the
14718 standards says that they have to be there. */
14719 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14720
14721 if (current_low != ((CORE_ADDR) -1))
14722 {
14723 best_low = std::min (best_low, current_low);
14724 best_high = std::max (best_high, current_high);
14725 }
14726 break;
14727 default:
14728 /* Ignore. */
14729 break;
14730 }
14731
14732 child = sibling_die (child);
14733 }
14734 }
14735
14736 *lowpc = best_low;
14737 *highpc = best_high;
14738 }
14739
14740 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14741 in DIE. */
14742
14743 static void
14744 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14745 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14746 {
14747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14748 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14749 struct attribute *attr;
14750 struct attribute *attr_high;
14751
14752 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14753 if (attr_high)
14754 {
14755 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14756 if (attr)
14757 {
14758 CORE_ADDR low = attr_value_as_address (attr);
14759 CORE_ADDR high = attr_value_as_address (attr_high);
14760
14761 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14762 high += low;
14763
14764 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14765 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14766 cu->get_builder ()->record_block_range (block, low, high - 1);
14767 }
14768 }
14769
14770 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14771 if (attr)
14772 {
14773 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14774 We take advantage of the fact that DW_AT_ranges does not appear
14775 in DW_TAG_compile_unit of DWO files. */
14776 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14777
14778 /* The value of the DW_AT_ranges attribute is the offset of the
14779 address range list in the .debug_ranges section. */
14780 unsigned long offset = (DW_UNSND (attr)
14781 + (need_ranges_base ? cu->ranges_base : 0));
14782
14783 std::vector<blockrange> blockvec;
14784 dwarf2_ranges_process (offset, cu,
14785 [&] (CORE_ADDR start, CORE_ADDR end)
14786 {
14787 start += baseaddr;
14788 end += baseaddr;
14789 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14790 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14791 cu->get_builder ()->record_block_range (block, start, end - 1);
14792 blockvec.emplace_back (start, end);
14793 });
14794
14795 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14796 }
14797 }
14798
14799 /* Check whether the producer field indicates either of GCC < 4.6, or the
14800 Intel C/C++ compiler, and cache the result in CU. */
14801
14802 static void
14803 check_producer (struct dwarf2_cu *cu)
14804 {
14805 int major, minor;
14806
14807 if (cu->producer == NULL)
14808 {
14809 /* For unknown compilers expect their behavior is DWARF version
14810 compliant.
14811
14812 GCC started to support .debug_types sections by -gdwarf-4 since
14813 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14814 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14815 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14816 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14817 }
14818 else if (producer_is_gcc (cu->producer, &major, &minor))
14819 {
14820 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14821 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14822 }
14823 else if (producer_is_icc (cu->producer, &major, &minor))
14824 {
14825 cu->producer_is_icc = true;
14826 cu->producer_is_icc_lt_14 = major < 14;
14827 }
14828 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14829 cu->producer_is_codewarrior = true;
14830 else
14831 {
14832 /* For other non-GCC compilers, expect their behavior is DWARF version
14833 compliant. */
14834 }
14835
14836 cu->checked_producer = true;
14837 }
14838
14839 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14840 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14841 during 4.6.0 experimental. */
14842
14843 static bool
14844 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14845 {
14846 if (!cu->checked_producer)
14847 check_producer (cu);
14848
14849 return cu->producer_is_gxx_lt_4_6;
14850 }
14851
14852
14853 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14854 with incorrect is_stmt attributes. */
14855
14856 static bool
14857 producer_is_codewarrior (struct dwarf2_cu *cu)
14858 {
14859 if (!cu->checked_producer)
14860 check_producer (cu);
14861
14862 return cu->producer_is_codewarrior;
14863 }
14864
14865 /* Return the default accessibility type if it is not overriden by
14866 DW_AT_accessibility. */
14867
14868 static enum dwarf_access_attribute
14869 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14870 {
14871 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14872 {
14873 /* The default DWARF 2 accessibility for members is public, the default
14874 accessibility for inheritance is private. */
14875
14876 if (die->tag != DW_TAG_inheritance)
14877 return DW_ACCESS_public;
14878 else
14879 return DW_ACCESS_private;
14880 }
14881 else
14882 {
14883 /* DWARF 3+ defines the default accessibility a different way. The same
14884 rules apply now for DW_TAG_inheritance as for the members and it only
14885 depends on the container kind. */
14886
14887 if (die->parent->tag == DW_TAG_class_type)
14888 return DW_ACCESS_private;
14889 else
14890 return DW_ACCESS_public;
14891 }
14892 }
14893
14894 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14895 offset. If the attribute was not found return 0, otherwise return
14896 1. If it was found but could not properly be handled, set *OFFSET
14897 to 0. */
14898
14899 static int
14900 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14901 LONGEST *offset)
14902 {
14903 struct attribute *attr;
14904
14905 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14906 if (attr != NULL)
14907 {
14908 *offset = 0;
14909
14910 /* Note that we do not check for a section offset first here.
14911 This is because DW_AT_data_member_location is new in DWARF 4,
14912 so if we see it, we can assume that a constant form is really
14913 a constant and not a section offset. */
14914 if (attr_form_is_constant (attr))
14915 *offset = dwarf2_get_attr_constant_value (attr, 0);
14916 else if (attr_form_is_section_offset (attr))
14917 dwarf2_complex_location_expr_complaint ();
14918 else if (attr_form_is_block (attr))
14919 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14920 else
14921 dwarf2_complex_location_expr_complaint ();
14922
14923 return 1;
14924 }
14925
14926 return 0;
14927 }
14928
14929 /* Add an aggregate field to the field list. */
14930
14931 static void
14932 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14933 struct dwarf2_cu *cu)
14934 {
14935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14937 struct nextfield *new_field;
14938 struct attribute *attr;
14939 struct field *fp;
14940 const char *fieldname = "";
14941
14942 if (die->tag == DW_TAG_inheritance)
14943 {
14944 fip->baseclasses.emplace_back ();
14945 new_field = &fip->baseclasses.back ();
14946 }
14947 else
14948 {
14949 fip->fields.emplace_back ();
14950 new_field = &fip->fields.back ();
14951 }
14952
14953 fip->nfields++;
14954
14955 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14956 if (attr)
14957 new_field->accessibility = DW_UNSND (attr);
14958 else
14959 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14960 if (new_field->accessibility != DW_ACCESS_public)
14961 fip->non_public_fields = 1;
14962
14963 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14964 if (attr)
14965 new_field->virtuality = DW_UNSND (attr);
14966 else
14967 new_field->virtuality = DW_VIRTUALITY_none;
14968
14969 fp = &new_field->field;
14970
14971 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14972 {
14973 LONGEST offset;
14974
14975 /* Data member other than a C++ static data member. */
14976
14977 /* Get type of field. */
14978 fp->type = die_type (die, cu);
14979
14980 SET_FIELD_BITPOS (*fp, 0);
14981
14982 /* Get bit size of field (zero if none). */
14983 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14984 if (attr)
14985 {
14986 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14987 }
14988 else
14989 {
14990 FIELD_BITSIZE (*fp) = 0;
14991 }
14992
14993 /* Get bit offset of field. */
14994 if (handle_data_member_location (die, cu, &offset))
14995 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14996 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14997 if (attr)
14998 {
14999 if (gdbarch_bits_big_endian (gdbarch))
15000 {
15001 /* For big endian bits, the DW_AT_bit_offset gives the
15002 additional bit offset from the MSB of the containing
15003 anonymous object to the MSB of the field. We don't
15004 have to do anything special since we don't need to
15005 know the size of the anonymous object. */
15006 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15007 }
15008 else
15009 {
15010 /* For little endian bits, compute the bit offset to the
15011 MSB of the anonymous object, subtract off the number of
15012 bits from the MSB of the field to the MSB of the
15013 object, and then subtract off the number of bits of
15014 the field itself. The result is the bit offset of
15015 the LSB of the field. */
15016 int anonymous_size;
15017 int bit_offset = DW_UNSND (attr);
15018
15019 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15020 if (attr)
15021 {
15022 /* The size of the anonymous object containing
15023 the bit field is explicit, so use the
15024 indicated size (in bytes). */
15025 anonymous_size = DW_UNSND (attr);
15026 }
15027 else
15028 {
15029 /* The size of the anonymous object containing
15030 the bit field must be inferred from the type
15031 attribute of the data member containing the
15032 bit field. */
15033 anonymous_size = TYPE_LENGTH (fp->type);
15034 }
15035 SET_FIELD_BITPOS (*fp,
15036 (FIELD_BITPOS (*fp)
15037 + anonymous_size * bits_per_byte
15038 - bit_offset - FIELD_BITSIZE (*fp)));
15039 }
15040 }
15041 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15042 if (attr != NULL)
15043 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15044 + dwarf2_get_attr_constant_value (attr, 0)));
15045
15046 /* Get name of field. */
15047 fieldname = dwarf2_name (die, cu);
15048 if (fieldname == NULL)
15049 fieldname = "";
15050
15051 /* The name is already allocated along with this objfile, so we don't
15052 need to duplicate it for the type. */
15053 fp->name = fieldname;
15054
15055 /* Change accessibility for artificial fields (e.g. virtual table
15056 pointer or virtual base class pointer) to private. */
15057 if (dwarf2_attr (die, DW_AT_artificial, cu))
15058 {
15059 FIELD_ARTIFICIAL (*fp) = 1;
15060 new_field->accessibility = DW_ACCESS_private;
15061 fip->non_public_fields = 1;
15062 }
15063 }
15064 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15065 {
15066 /* C++ static member. */
15067
15068 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15069 is a declaration, but all versions of G++ as of this writing
15070 (so through at least 3.2.1) incorrectly generate
15071 DW_TAG_variable tags. */
15072
15073 const char *physname;
15074
15075 /* Get name of field. */
15076 fieldname = dwarf2_name (die, cu);
15077 if (fieldname == NULL)
15078 return;
15079
15080 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15081 if (attr
15082 /* Only create a symbol if this is an external value.
15083 new_symbol checks this and puts the value in the global symbol
15084 table, which we want. If it is not external, new_symbol
15085 will try to put the value in cu->list_in_scope which is wrong. */
15086 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15087 {
15088 /* A static const member, not much different than an enum as far as
15089 we're concerned, except that we can support more types. */
15090 new_symbol (die, NULL, cu);
15091 }
15092
15093 /* Get physical name. */
15094 physname = dwarf2_physname (fieldname, die, cu);
15095
15096 /* The name is already allocated along with this objfile, so we don't
15097 need to duplicate it for the type. */
15098 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15099 FIELD_TYPE (*fp) = die_type (die, cu);
15100 FIELD_NAME (*fp) = fieldname;
15101 }
15102 else if (die->tag == DW_TAG_inheritance)
15103 {
15104 LONGEST offset;
15105
15106 /* C++ base class field. */
15107 if (handle_data_member_location (die, cu, &offset))
15108 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15109 FIELD_BITSIZE (*fp) = 0;
15110 FIELD_TYPE (*fp) = die_type (die, cu);
15111 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15112 }
15113 else if (die->tag == DW_TAG_variant_part)
15114 {
15115 /* process_structure_scope will treat this DIE as a union. */
15116 process_structure_scope (die, cu);
15117
15118 /* The variant part is relative to the start of the enclosing
15119 structure. */
15120 SET_FIELD_BITPOS (*fp, 0);
15121 fp->type = get_die_type (die, cu);
15122 fp->artificial = 1;
15123 fp->name = "<<variant>>";
15124
15125 /* Normally a DW_TAG_variant_part won't have a size, but our
15126 representation requires one, so set it to the maximum of the
15127 child sizes. */
15128 if (TYPE_LENGTH (fp->type) == 0)
15129 {
15130 unsigned max = 0;
15131 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15132 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15133 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15134 TYPE_LENGTH (fp->type) = max;
15135 }
15136 }
15137 else
15138 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15139 }
15140
15141 /* Can the type given by DIE define another type? */
15142
15143 static bool
15144 type_can_define_types (const struct die_info *die)
15145 {
15146 switch (die->tag)
15147 {
15148 case DW_TAG_typedef:
15149 case DW_TAG_class_type:
15150 case DW_TAG_structure_type:
15151 case DW_TAG_union_type:
15152 case DW_TAG_enumeration_type:
15153 return true;
15154
15155 default:
15156 return false;
15157 }
15158 }
15159
15160 /* Add a type definition defined in the scope of the FIP's class. */
15161
15162 static void
15163 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15164 struct dwarf2_cu *cu)
15165 {
15166 struct decl_field fp;
15167 memset (&fp, 0, sizeof (fp));
15168
15169 gdb_assert (type_can_define_types (die));
15170
15171 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15172 fp.name = dwarf2_name (die, cu);
15173 fp.type = read_type_die (die, cu);
15174
15175 /* Save accessibility. */
15176 enum dwarf_access_attribute accessibility;
15177 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15178 if (attr != NULL)
15179 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15180 else
15181 accessibility = dwarf2_default_access_attribute (die, cu);
15182 switch (accessibility)
15183 {
15184 case DW_ACCESS_public:
15185 /* The assumed value if neither private nor protected. */
15186 break;
15187 case DW_ACCESS_private:
15188 fp.is_private = 1;
15189 break;
15190 case DW_ACCESS_protected:
15191 fp.is_protected = 1;
15192 break;
15193 default:
15194 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15195 }
15196
15197 if (die->tag == DW_TAG_typedef)
15198 fip->typedef_field_list.push_back (fp);
15199 else
15200 fip->nested_types_list.push_back (fp);
15201 }
15202
15203 /* Create the vector of fields, and attach it to the type. */
15204
15205 static void
15206 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15207 struct dwarf2_cu *cu)
15208 {
15209 int nfields = fip->nfields;
15210
15211 /* Record the field count, allocate space for the array of fields,
15212 and create blank accessibility bitfields if necessary. */
15213 TYPE_NFIELDS (type) = nfields;
15214 TYPE_FIELDS (type) = (struct field *)
15215 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15216
15217 if (fip->non_public_fields && cu->language != language_ada)
15218 {
15219 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15220
15221 TYPE_FIELD_PRIVATE_BITS (type) =
15222 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15223 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15224
15225 TYPE_FIELD_PROTECTED_BITS (type) =
15226 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15227 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15228
15229 TYPE_FIELD_IGNORE_BITS (type) =
15230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15231 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15232 }
15233
15234 /* If the type has baseclasses, allocate and clear a bit vector for
15235 TYPE_FIELD_VIRTUAL_BITS. */
15236 if (!fip->baseclasses.empty () && cu->language != language_ada)
15237 {
15238 int num_bytes = B_BYTES (fip->baseclasses.size ());
15239 unsigned char *pointer;
15240
15241 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15242 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15243 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15244 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15245 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15246 }
15247
15248 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15249 {
15250 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15251
15252 for (int index = 0; index < nfields; ++index)
15253 {
15254 struct nextfield &field = fip->fields[index];
15255
15256 if (field.variant.is_discriminant)
15257 di->discriminant_index = index;
15258 else if (field.variant.default_branch)
15259 di->default_index = index;
15260 else
15261 di->discriminants[index] = field.variant.discriminant_value;
15262 }
15263 }
15264
15265 /* Copy the saved-up fields into the field vector. */
15266 for (int i = 0; i < nfields; ++i)
15267 {
15268 struct nextfield &field
15269 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15270 : fip->fields[i - fip->baseclasses.size ()]);
15271
15272 TYPE_FIELD (type, i) = field.field;
15273 switch (field.accessibility)
15274 {
15275 case DW_ACCESS_private:
15276 if (cu->language != language_ada)
15277 SET_TYPE_FIELD_PRIVATE (type, i);
15278 break;
15279
15280 case DW_ACCESS_protected:
15281 if (cu->language != language_ada)
15282 SET_TYPE_FIELD_PROTECTED (type, i);
15283 break;
15284
15285 case DW_ACCESS_public:
15286 break;
15287
15288 default:
15289 /* Unknown accessibility. Complain and treat it as public. */
15290 {
15291 complaint (_("unsupported accessibility %d"),
15292 field.accessibility);
15293 }
15294 break;
15295 }
15296 if (i < fip->baseclasses.size ())
15297 {
15298 switch (field.virtuality)
15299 {
15300 case DW_VIRTUALITY_virtual:
15301 case DW_VIRTUALITY_pure_virtual:
15302 if (cu->language == language_ada)
15303 error (_("unexpected virtuality in component of Ada type"));
15304 SET_TYPE_FIELD_VIRTUAL (type, i);
15305 break;
15306 }
15307 }
15308 }
15309 }
15310
15311 /* Return true if this member function is a constructor, false
15312 otherwise. */
15313
15314 static int
15315 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15316 {
15317 const char *fieldname;
15318 const char *type_name;
15319 int len;
15320
15321 if (die->parent == NULL)
15322 return 0;
15323
15324 if (die->parent->tag != DW_TAG_structure_type
15325 && die->parent->tag != DW_TAG_union_type
15326 && die->parent->tag != DW_TAG_class_type)
15327 return 0;
15328
15329 fieldname = dwarf2_name (die, cu);
15330 type_name = dwarf2_name (die->parent, cu);
15331 if (fieldname == NULL || type_name == NULL)
15332 return 0;
15333
15334 len = strlen (fieldname);
15335 return (strncmp (fieldname, type_name, len) == 0
15336 && (type_name[len] == '\0' || type_name[len] == '<'));
15337 }
15338
15339 /* Add a member function to the proper fieldlist. */
15340
15341 static void
15342 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15343 struct type *type, struct dwarf2_cu *cu)
15344 {
15345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15346 struct attribute *attr;
15347 int i;
15348 struct fnfieldlist *flp = nullptr;
15349 struct fn_field *fnp;
15350 const char *fieldname;
15351 struct type *this_type;
15352 enum dwarf_access_attribute accessibility;
15353
15354 if (cu->language == language_ada)
15355 error (_("unexpected member function in Ada type"));
15356
15357 /* Get name of member function. */
15358 fieldname = dwarf2_name (die, cu);
15359 if (fieldname == NULL)
15360 return;
15361
15362 /* Look up member function name in fieldlist. */
15363 for (i = 0; i < fip->fnfieldlists.size (); i++)
15364 {
15365 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15366 {
15367 flp = &fip->fnfieldlists[i];
15368 break;
15369 }
15370 }
15371
15372 /* Create a new fnfieldlist if necessary. */
15373 if (flp == nullptr)
15374 {
15375 fip->fnfieldlists.emplace_back ();
15376 flp = &fip->fnfieldlists.back ();
15377 flp->name = fieldname;
15378 i = fip->fnfieldlists.size () - 1;
15379 }
15380
15381 /* Create a new member function field and add it to the vector of
15382 fnfieldlists. */
15383 flp->fnfields.emplace_back ();
15384 fnp = &flp->fnfields.back ();
15385
15386 /* Delay processing of the physname until later. */
15387 if (cu->language == language_cplus)
15388 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15389 die, cu);
15390 else
15391 {
15392 const char *physname = dwarf2_physname (fieldname, die, cu);
15393 fnp->physname = physname ? physname : "";
15394 }
15395
15396 fnp->type = alloc_type (objfile);
15397 this_type = read_type_die (die, cu);
15398 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15399 {
15400 int nparams = TYPE_NFIELDS (this_type);
15401
15402 /* TYPE is the domain of this method, and THIS_TYPE is the type
15403 of the method itself (TYPE_CODE_METHOD). */
15404 smash_to_method_type (fnp->type, type,
15405 TYPE_TARGET_TYPE (this_type),
15406 TYPE_FIELDS (this_type),
15407 TYPE_NFIELDS (this_type),
15408 TYPE_VARARGS (this_type));
15409
15410 /* Handle static member functions.
15411 Dwarf2 has no clean way to discern C++ static and non-static
15412 member functions. G++ helps GDB by marking the first
15413 parameter for non-static member functions (which is the this
15414 pointer) as artificial. We obtain this information from
15415 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15416 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15417 fnp->voffset = VOFFSET_STATIC;
15418 }
15419 else
15420 complaint (_("member function type missing for '%s'"),
15421 dwarf2_full_name (fieldname, die, cu));
15422
15423 /* Get fcontext from DW_AT_containing_type if present. */
15424 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15425 fnp->fcontext = die_containing_type (die, cu);
15426
15427 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15428 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15429
15430 /* Get accessibility. */
15431 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15432 if (attr)
15433 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15434 else
15435 accessibility = dwarf2_default_access_attribute (die, cu);
15436 switch (accessibility)
15437 {
15438 case DW_ACCESS_private:
15439 fnp->is_private = 1;
15440 break;
15441 case DW_ACCESS_protected:
15442 fnp->is_protected = 1;
15443 break;
15444 }
15445
15446 /* Check for artificial methods. */
15447 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15448 if (attr && DW_UNSND (attr) != 0)
15449 fnp->is_artificial = 1;
15450
15451 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15452
15453 /* Get index in virtual function table if it is a virtual member
15454 function. For older versions of GCC, this is an offset in the
15455 appropriate virtual table, as specified by DW_AT_containing_type.
15456 For everyone else, it is an expression to be evaluated relative
15457 to the object address. */
15458
15459 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15460 if (attr)
15461 {
15462 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15463 {
15464 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15465 {
15466 /* Old-style GCC. */
15467 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15468 }
15469 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15470 || (DW_BLOCK (attr)->size > 1
15471 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15472 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15473 {
15474 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15475 if ((fnp->voffset % cu->header.addr_size) != 0)
15476 dwarf2_complex_location_expr_complaint ();
15477 else
15478 fnp->voffset /= cu->header.addr_size;
15479 fnp->voffset += 2;
15480 }
15481 else
15482 dwarf2_complex_location_expr_complaint ();
15483
15484 if (!fnp->fcontext)
15485 {
15486 /* If there is no `this' field and no DW_AT_containing_type,
15487 we cannot actually find a base class context for the
15488 vtable! */
15489 if (TYPE_NFIELDS (this_type) == 0
15490 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15491 {
15492 complaint (_("cannot determine context for virtual member "
15493 "function \"%s\" (offset %s)"),
15494 fieldname, sect_offset_str (die->sect_off));
15495 }
15496 else
15497 {
15498 fnp->fcontext
15499 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15500 }
15501 }
15502 }
15503 else if (attr_form_is_section_offset (attr))
15504 {
15505 dwarf2_complex_location_expr_complaint ();
15506 }
15507 else
15508 {
15509 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15510 fieldname);
15511 }
15512 }
15513 else
15514 {
15515 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15516 if (attr && DW_UNSND (attr))
15517 {
15518 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15519 complaint (_("Member function \"%s\" (offset %s) is virtual "
15520 "but the vtable offset is not specified"),
15521 fieldname, sect_offset_str (die->sect_off));
15522 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15523 TYPE_CPLUS_DYNAMIC (type) = 1;
15524 }
15525 }
15526 }
15527
15528 /* Create the vector of member function fields, and attach it to the type. */
15529
15530 static void
15531 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15532 struct dwarf2_cu *cu)
15533 {
15534 if (cu->language == language_ada)
15535 error (_("unexpected member functions in Ada type"));
15536
15537 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15538 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15539 TYPE_ALLOC (type,
15540 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15541
15542 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15543 {
15544 struct fnfieldlist &nf = fip->fnfieldlists[i];
15545 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15546
15547 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15548 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15549 fn_flp->fn_fields = (struct fn_field *)
15550 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15551
15552 for (int k = 0; k < nf.fnfields.size (); ++k)
15553 fn_flp->fn_fields[k] = nf.fnfields[k];
15554 }
15555
15556 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15557 }
15558
15559 /* Returns non-zero if NAME is the name of a vtable member in CU's
15560 language, zero otherwise. */
15561 static int
15562 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15563 {
15564 static const char vptr[] = "_vptr";
15565
15566 /* Look for the C++ form of the vtable. */
15567 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15568 return 1;
15569
15570 return 0;
15571 }
15572
15573 /* GCC outputs unnamed structures that are really pointers to member
15574 functions, with the ABI-specified layout. If TYPE describes
15575 such a structure, smash it into a member function type.
15576
15577 GCC shouldn't do this; it should just output pointer to member DIEs.
15578 This is GCC PR debug/28767. */
15579
15580 static void
15581 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15582 {
15583 struct type *pfn_type, *self_type, *new_type;
15584
15585 /* Check for a structure with no name and two children. */
15586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15587 return;
15588
15589 /* Check for __pfn and __delta members. */
15590 if (TYPE_FIELD_NAME (type, 0) == NULL
15591 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15592 || TYPE_FIELD_NAME (type, 1) == NULL
15593 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15594 return;
15595
15596 /* Find the type of the method. */
15597 pfn_type = TYPE_FIELD_TYPE (type, 0);
15598 if (pfn_type == NULL
15599 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15600 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15601 return;
15602
15603 /* Look for the "this" argument. */
15604 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15605 if (TYPE_NFIELDS (pfn_type) == 0
15606 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15607 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15608 return;
15609
15610 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15611 new_type = alloc_type (objfile);
15612 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15613 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15614 TYPE_VARARGS (pfn_type));
15615 smash_to_methodptr_type (type, new_type);
15616 }
15617
15618 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15619 appropriate error checking and issuing complaints if there is a
15620 problem. */
15621
15622 static ULONGEST
15623 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15624 {
15625 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15626
15627 if (attr == nullptr)
15628 return 0;
15629
15630 if (!attr_form_is_constant (attr))
15631 {
15632 complaint (_("DW_AT_alignment must have constant form"
15633 " - DIE at %s [in module %s]"),
15634 sect_offset_str (die->sect_off),
15635 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15636 return 0;
15637 }
15638
15639 ULONGEST align;
15640 if (attr->form == DW_FORM_sdata)
15641 {
15642 LONGEST val = DW_SND (attr);
15643 if (val < 0)
15644 {
15645 complaint (_("DW_AT_alignment value must not be negative"
15646 " - DIE at %s [in module %s]"),
15647 sect_offset_str (die->sect_off),
15648 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15649 return 0;
15650 }
15651 align = val;
15652 }
15653 else
15654 align = DW_UNSND (attr);
15655
15656 if (align == 0)
15657 {
15658 complaint (_("DW_AT_alignment value must not be zero"
15659 " - DIE at %s [in module %s]"),
15660 sect_offset_str (die->sect_off),
15661 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15662 return 0;
15663 }
15664 if ((align & (align - 1)) != 0)
15665 {
15666 complaint (_("DW_AT_alignment value must be a power of 2"
15667 " - DIE at %s [in module %s]"),
15668 sect_offset_str (die->sect_off),
15669 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15670 return 0;
15671 }
15672
15673 return align;
15674 }
15675
15676 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15677 the alignment for TYPE. */
15678
15679 static void
15680 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15681 struct type *type)
15682 {
15683 if (!set_type_align (type, get_alignment (cu, die)))
15684 complaint (_("DW_AT_alignment value too large"
15685 " - DIE at %s [in module %s]"),
15686 sect_offset_str (die->sect_off),
15687 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15688 }
15689
15690 /* Called when we find the DIE that starts a structure or union scope
15691 (definition) to create a type for the structure or union. Fill in
15692 the type's name and general properties; the members will not be
15693 processed until process_structure_scope. A symbol table entry for
15694 the type will also not be done until process_structure_scope (assuming
15695 the type has a name).
15696
15697 NOTE: we need to call these functions regardless of whether or not the
15698 DIE has a DW_AT_name attribute, since it might be an anonymous
15699 structure or union. This gets the type entered into our set of
15700 user defined types. */
15701
15702 static struct type *
15703 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15704 {
15705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15706 struct type *type;
15707 struct attribute *attr;
15708 const char *name;
15709
15710 /* If the definition of this type lives in .debug_types, read that type.
15711 Don't follow DW_AT_specification though, that will take us back up
15712 the chain and we want to go down. */
15713 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15714 if (attr)
15715 {
15716 type = get_DW_AT_signature_type (die, attr, cu);
15717
15718 /* The type's CU may not be the same as CU.
15719 Ensure TYPE is recorded with CU in die_type_hash. */
15720 return set_die_type (die, type, cu);
15721 }
15722
15723 type = alloc_type (objfile);
15724 INIT_CPLUS_SPECIFIC (type);
15725
15726 name = dwarf2_name (die, cu);
15727 if (name != NULL)
15728 {
15729 if (cu->language == language_cplus
15730 || cu->language == language_d
15731 || cu->language == language_rust)
15732 {
15733 const char *full_name = dwarf2_full_name (name, die, cu);
15734
15735 /* dwarf2_full_name might have already finished building the DIE's
15736 type. If so, there is no need to continue. */
15737 if (get_die_type (die, cu) != NULL)
15738 return get_die_type (die, cu);
15739
15740 TYPE_NAME (type) = full_name;
15741 }
15742 else
15743 {
15744 /* The name is already allocated along with this objfile, so
15745 we don't need to duplicate it for the type. */
15746 TYPE_NAME (type) = name;
15747 }
15748 }
15749
15750 if (die->tag == DW_TAG_structure_type)
15751 {
15752 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15753 }
15754 else if (die->tag == DW_TAG_union_type)
15755 {
15756 TYPE_CODE (type) = TYPE_CODE_UNION;
15757 }
15758 else if (die->tag == DW_TAG_variant_part)
15759 {
15760 TYPE_CODE (type) = TYPE_CODE_UNION;
15761 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15762 }
15763 else
15764 {
15765 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15766 }
15767
15768 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15769 TYPE_DECLARED_CLASS (type) = 1;
15770
15771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15772 if (attr)
15773 {
15774 if (attr_form_is_constant (attr))
15775 TYPE_LENGTH (type) = DW_UNSND (attr);
15776 else
15777 {
15778 /* For the moment, dynamic type sizes are not supported
15779 by GDB's struct type. The actual size is determined
15780 on-demand when resolving the type of a given object,
15781 so set the type's length to zero for now. Otherwise,
15782 we record an expression as the length, and that expression
15783 could lead to a very large value, which could eventually
15784 lead to us trying to allocate that much memory when creating
15785 a value of that type. */
15786 TYPE_LENGTH (type) = 0;
15787 }
15788 }
15789 else
15790 {
15791 TYPE_LENGTH (type) = 0;
15792 }
15793
15794 maybe_set_alignment (cu, die, type);
15795
15796 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15797 {
15798 /* ICC<14 does not output the required DW_AT_declaration on
15799 incomplete types, but gives them a size of zero. */
15800 TYPE_STUB (type) = 1;
15801 }
15802 else
15803 TYPE_STUB_SUPPORTED (type) = 1;
15804
15805 if (die_is_declaration (die, cu))
15806 TYPE_STUB (type) = 1;
15807 else if (attr == NULL && die->child == NULL
15808 && producer_is_realview (cu->producer))
15809 /* RealView does not output the required DW_AT_declaration
15810 on incomplete types. */
15811 TYPE_STUB (type) = 1;
15812
15813 /* We need to add the type field to the die immediately so we don't
15814 infinitely recurse when dealing with pointers to the structure
15815 type within the structure itself. */
15816 set_die_type (die, type, cu);
15817
15818 /* set_die_type should be already done. */
15819 set_descriptive_type (type, die, cu);
15820
15821 return type;
15822 }
15823
15824 /* A helper for process_structure_scope that handles a single member
15825 DIE. */
15826
15827 static void
15828 handle_struct_member_die (struct die_info *child_die, struct type *type,
15829 struct field_info *fi,
15830 std::vector<struct symbol *> *template_args,
15831 struct dwarf2_cu *cu)
15832 {
15833 if (child_die->tag == DW_TAG_member
15834 || child_die->tag == DW_TAG_variable
15835 || child_die->tag == DW_TAG_variant_part)
15836 {
15837 /* NOTE: carlton/2002-11-05: A C++ static data member
15838 should be a DW_TAG_member that is a declaration, but
15839 all versions of G++ as of this writing (so through at
15840 least 3.2.1) incorrectly generate DW_TAG_variable
15841 tags for them instead. */
15842 dwarf2_add_field (fi, child_die, cu);
15843 }
15844 else if (child_die->tag == DW_TAG_subprogram)
15845 {
15846 /* Rust doesn't have member functions in the C++ sense.
15847 However, it does emit ordinary functions as children
15848 of a struct DIE. */
15849 if (cu->language == language_rust)
15850 read_func_scope (child_die, cu);
15851 else
15852 {
15853 /* C++ member function. */
15854 dwarf2_add_member_fn (fi, child_die, type, cu);
15855 }
15856 }
15857 else if (child_die->tag == DW_TAG_inheritance)
15858 {
15859 /* C++ base class field. */
15860 dwarf2_add_field (fi, child_die, cu);
15861 }
15862 else if (type_can_define_types (child_die))
15863 dwarf2_add_type_defn (fi, child_die, cu);
15864 else if (child_die->tag == DW_TAG_template_type_param
15865 || child_die->tag == DW_TAG_template_value_param)
15866 {
15867 struct symbol *arg = new_symbol (child_die, NULL, cu);
15868
15869 if (arg != NULL)
15870 template_args->push_back (arg);
15871 }
15872 else if (child_die->tag == DW_TAG_variant)
15873 {
15874 /* In a variant we want to get the discriminant and also add a
15875 field for our sole member child. */
15876 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15877
15878 for (die_info *variant_child = child_die->child;
15879 variant_child != NULL;
15880 variant_child = sibling_die (variant_child))
15881 {
15882 if (variant_child->tag == DW_TAG_member)
15883 {
15884 handle_struct_member_die (variant_child, type, fi,
15885 template_args, cu);
15886 /* Only handle the one. */
15887 break;
15888 }
15889 }
15890
15891 /* We don't handle this but we might as well report it if we see
15892 it. */
15893 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15894 complaint (_("DW_AT_discr_list is not supported yet"
15895 " - DIE at %s [in module %s]"),
15896 sect_offset_str (child_die->sect_off),
15897 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15898
15899 /* The first field was just added, so we can stash the
15900 discriminant there. */
15901 gdb_assert (!fi->fields.empty ());
15902 if (discr == NULL)
15903 fi->fields.back ().variant.default_branch = true;
15904 else
15905 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15906 }
15907 }
15908
15909 /* Finish creating a structure or union type, including filling in
15910 its members and creating a symbol for it. */
15911
15912 static void
15913 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15914 {
15915 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15916 struct die_info *child_die;
15917 struct type *type;
15918
15919 type = get_die_type (die, cu);
15920 if (type == NULL)
15921 type = read_structure_type (die, cu);
15922
15923 /* When reading a DW_TAG_variant_part, we need to notice when we
15924 read the discriminant member, so we can record it later in the
15925 discriminant_info. */
15926 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15927 sect_offset discr_offset;
15928 bool has_template_parameters = false;
15929
15930 if (is_variant_part)
15931 {
15932 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15933 if (discr == NULL)
15934 {
15935 /* Maybe it's a univariant form, an extension we support.
15936 In this case arrange not to check the offset. */
15937 is_variant_part = false;
15938 }
15939 else if (attr_form_is_ref (discr))
15940 {
15941 struct dwarf2_cu *target_cu = cu;
15942 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15943
15944 discr_offset = target_die->sect_off;
15945 }
15946 else
15947 {
15948 complaint (_("DW_AT_discr does not have DIE reference form"
15949 " - DIE at %s [in module %s]"),
15950 sect_offset_str (die->sect_off),
15951 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15952 is_variant_part = false;
15953 }
15954 }
15955
15956 if (die->child != NULL && ! die_is_declaration (die, cu))
15957 {
15958 struct field_info fi;
15959 std::vector<struct symbol *> template_args;
15960
15961 child_die = die->child;
15962
15963 while (child_die && child_die->tag)
15964 {
15965 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15966
15967 if (is_variant_part && discr_offset == child_die->sect_off)
15968 fi.fields.back ().variant.is_discriminant = true;
15969
15970 child_die = sibling_die (child_die);
15971 }
15972
15973 /* Attach template arguments to type. */
15974 if (!template_args.empty ())
15975 {
15976 has_template_parameters = true;
15977 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15978 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15979 TYPE_TEMPLATE_ARGUMENTS (type)
15980 = XOBNEWVEC (&objfile->objfile_obstack,
15981 struct symbol *,
15982 TYPE_N_TEMPLATE_ARGUMENTS (type));
15983 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15984 template_args.data (),
15985 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15986 * sizeof (struct symbol *)));
15987 }
15988
15989 /* Attach fields and member functions to the type. */
15990 if (fi.nfields)
15991 dwarf2_attach_fields_to_type (&fi, type, cu);
15992 if (!fi.fnfieldlists.empty ())
15993 {
15994 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15995
15996 /* Get the type which refers to the base class (possibly this
15997 class itself) which contains the vtable pointer for the current
15998 class from the DW_AT_containing_type attribute. This use of
15999 DW_AT_containing_type is a GNU extension. */
16000
16001 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16002 {
16003 struct type *t = die_containing_type (die, cu);
16004
16005 set_type_vptr_basetype (type, t);
16006 if (type == t)
16007 {
16008 int i;
16009
16010 /* Our own class provides vtbl ptr. */
16011 for (i = TYPE_NFIELDS (t) - 1;
16012 i >= TYPE_N_BASECLASSES (t);
16013 --i)
16014 {
16015 const char *fieldname = TYPE_FIELD_NAME (t, i);
16016
16017 if (is_vtable_name (fieldname, cu))
16018 {
16019 set_type_vptr_fieldno (type, i);
16020 break;
16021 }
16022 }
16023
16024 /* Complain if virtual function table field not found. */
16025 if (i < TYPE_N_BASECLASSES (t))
16026 complaint (_("virtual function table pointer "
16027 "not found when defining class '%s'"),
16028 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16029 }
16030 else
16031 {
16032 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16033 }
16034 }
16035 else if (cu->producer
16036 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16037 {
16038 /* The IBM XLC compiler does not provide direct indication
16039 of the containing type, but the vtable pointer is
16040 always named __vfp. */
16041
16042 int i;
16043
16044 for (i = TYPE_NFIELDS (type) - 1;
16045 i >= TYPE_N_BASECLASSES (type);
16046 --i)
16047 {
16048 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16049 {
16050 set_type_vptr_fieldno (type, i);
16051 set_type_vptr_basetype (type, type);
16052 break;
16053 }
16054 }
16055 }
16056 }
16057
16058 /* Copy fi.typedef_field_list linked list elements content into the
16059 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16060 if (!fi.typedef_field_list.empty ())
16061 {
16062 int count = fi.typedef_field_list.size ();
16063
16064 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16065 TYPE_TYPEDEF_FIELD_ARRAY (type)
16066 = ((struct decl_field *)
16067 TYPE_ALLOC (type,
16068 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16069 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16070
16071 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16072 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16073 }
16074
16075 /* Copy fi.nested_types_list linked list elements content into the
16076 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16077 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16078 {
16079 int count = fi.nested_types_list.size ();
16080
16081 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16082 TYPE_NESTED_TYPES_ARRAY (type)
16083 = ((struct decl_field *)
16084 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16085 TYPE_NESTED_TYPES_COUNT (type) = count;
16086
16087 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16088 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16089 }
16090 }
16091
16092 quirk_gcc_member_function_pointer (type, objfile);
16093 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16094 cu->rust_unions.push_back (type);
16095
16096 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16097 snapshots) has been known to create a die giving a declaration
16098 for a class that has, as a child, a die giving a definition for a
16099 nested class. So we have to process our children even if the
16100 current die is a declaration. Normally, of course, a declaration
16101 won't have any children at all. */
16102
16103 child_die = die->child;
16104
16105 while (child_die != NULL && child_die->tag)
16106 {
16107 if (child_die->tag == DW_TAG_member
16108 || child_die->tag == DW_TAG_variable
16109 || child_die->tag == DW_TAG_inheritance
16110 || child_die->tag == DW_TAG_template_value_param
16111 || child_die->tag == DW_TAG_template_type_param)
16112 {
16113 /* Do nothing. */
16114 }
16115 else
16116 process_die (child_die, cu);
16117
16118 child_die = sibling_die (child_die);
16119 }
16120
16121 /* Do not consider external references. According to the DWARF standard,
16122 these DIEs are identified by the fact that they have no byte_size
16123 attribute, and a declaration attribute. */
16124 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16125 || !die_is_declaration (die, cu))
16126 {
16127 struct symbol *sym = new_symbol (die, type, cu);
16128
16129 if (has_template_parameters)
16130 {
16131 struct symtab *symtab;
16132 if (sym != nullptr)
16133 symtab = symbol_symtab (sym);
16134 else if (cu->line_header != nullptr)
16135 {
16136 /* Any related symtab will do. */
16137 symtab
16138 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16139 }
16140 else
16141 {
16142 symtab = nullptr;
16143 complaint (_("could not find suitable "
16144 "symtab for template parameter"
16145 " - DIE at %s [in module %s]"),
16146 sect_offset_str (die->sect_off),
16147 objfile_name (objfile));
16148 }
16149
16150 if (symtab != nullptr)
16151 {
16152 /* Make sure that the symtab is set on the new symbols.
16153 Even though they don't appear in this symtab directly,
16154 other parts of gdb assume that symbols do, and this is
16155 reasonably true. */
16156 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16157 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16158 }
16159 }
16160 }
16161 }
16162
16163 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16164 update TYPE using some information only available in DIE's children. */
16165
16166 static void
16167 update_enumeration_type_from_children (struct die_info *die,
16168 struct type *type,
16169 struct dwarf2_cu *cu)
16170 {
16171 struct die_info *child_die;
16172 int unsigned_enum = 1;
16173 int flag_enum = 1;
16174 ULONGEST mask = 0;
16175
16176 auto_obstack obstack;
16177
16178 for (child_die = die->child;
16179 child_die != NULL && child_die->tag;
16180 child_die = sibling_die (child_die))
16181 {
16182 struct attribute *attr;
16183 LONGEST value;
16184 const gdb_byte *bytes;
16185 struct dwarf2_locexpr_baton *baton;
16186 const char *name;
16187
16188 if (child_die->tag != DW_TAG_enumerator)
16189 continue;
16190
16191 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16192 if (attr == NULL)
16193 continue;
16194
16195 name = dwarf2_name (child_die, cu);
16196 if (name == NULL)
16197 name = "<anonymous enumerator>";
16198
16199 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16200 &value, &bytes, &baton);
16201 if (value < 0)
16202 {
16203 unsigned_enum = 0;
16204 flag_enum = 0;
16205 }
16206 else if ((mask & value) != 0)
16207 flag_enum = 0;
16208 else
16209 mask |= value;
16210
16211 /* If we already know that the enum type is neither unsigned, nor
16212 a flag type, no need to look at the rest of the enumerates. */
16213 if (!unsigned_enum && !flag_enum)
16214 break;
16215 }
16216
16217 if (unsigned_enum)
16218 TYPE_UNSIGNED (type) = 1;
16219 if (flag_enum)
16220 TYPE_FLAG_ENUM (type) = 1;
16221 }
16222
16223 /* Given a DW_AT_enumeration_type die, set its type. We do not
16224 complete the type's fields yet, or create any symbols. */
16225
16226 static struct type *
16227 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16228 {
16229 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16230 struct type *type;
16231 struct attribute *attr;
16232 const char *name;
16233
16234 /* If the definition of this type lives in .debug_types, read that type.
16235 Don't follow DW_AT_specification though, that will take us back up
16236 the chain and we want to go down. */
16237 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16238 if (attr)
16239 {
16240 type = get_DW_AT_signature_type (die, attr, cu);
16241
16242 /* The type's CU may not be the same as CU.
16243 Ensure TYPE is recorded with CU in die_type_hash. */
16244 return set_die_type (die, type, cu);
16245 }
16246
16247 type = alloc_type (objfile);
16248
16249 TYPE_CODE (type) = TYPE_CODE_ENUM;
16250 name = dwarf2_full_name (NULL, die, cu);
16251 if (name != NULL)
16252 TYPE_NAME (type) = name;
16253
16254 attr = dwarf2_attr (die, DW_AT_type, cu);
16255 if (attr != NULL)
16256 {
16257 struct type *underlying_type = die_type (die, cu);
16258
16259 TYPE_TARGET_TYPE (type) = underlying_type;
16260 }
16261
16262 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16263 if (attr)
16264 {
16265 TYPE_LENGTH (type) = DW_UNSND (attr);
16266 }
16267 else
16268 {
16269 TYPE_LENGTH (type) = 0;
16270 }
16271
16272 maybe_set_alignment (cu, die, type);
16273
16274 /* The enumeration DIE can be incomplete. In Ada, any type can be
16275 declared as private in the package spec, and then defined only
16276 inside the package body. Such types are known as Taft Amendment
16277 Types. When another package uses such a type, an incomplete DIE
16278 may be generated by the compiler. */
16279 if (die_is_declaration (die, cu))
16280 TYPE_STUB (type) = 1;
16281
16282 /* Finish the creation of this type by using the enum's children.
16283 We must call this even when the underlying type has been provided
16284 so that we can determine if we're looking at a "flag" enum. */
16285 update_enumeration_type_from_children (die, type, cu);
16286
16287 /* If this type has an underlying type that is not a stub, then we
16288 may use its attributes. We always use the "unsigned" attribute
16289 in this situation, because ordinarily we guess whether the type
16290 is unsigned -- but the guess can be wrong and the underlying type
16291 can tell us the reality. However, we defer to a local size
16292 attribute if one exists, because this lets the compiler override
16293 the underlying type if needed. */
16294 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16295 {
16296 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16297 if (TYPE_LENGTH (type) == 0)
16298 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16299 if (TYPE_RAW_ALIGN (type) == 0
16300 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16301 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16302 }
16303
16304 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16305
16306 return set_die_type (die, type, cu);
16307 }
16308
16309 /* Given a pointer to a die which begins an enumeration, process all
16310 the dies that define the members of the enumeration, and create the
16311 symbol for the enumeration type.
16312
16313 NOTE: We reverse the order of the element list. */
16314
16315 static void
16316 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16317 {
16318 struct type *this_type;
16319
16320 this_type = get_die_type (die, cu);
16321 if (this_type == NULL)
16322 this_type = read_enumeration_type (die, cu);
16323
16324 if (die->child != NULL)
16325 {
16326 struct die_info *child_die;
16327 struct symbol *sym;
16328 struct field *fields = NULL;
16329 int num_fields = 0;
16330 const char *name;
16331
16332 child_die = die->child;
16333 while (child_die && child_die->tag)
16334 {
16335 if (child_die->tag != DW_TAG_enumerator)
16336 {
16337 process_die (child_die, cu);
16338 }
16339 else
16340 {
16341 name = dwarf2_name (child_die, cu);
16342 if (name)
16343 {
16344 sym = new_symbol (child_die, this_type, cu);
16345
16346 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16347 {
16348 fields = (struct field *)
16349 xrealloc (fields,
16350 (num_fields + DW_FIELD_ALLOC_CHUNK)
16351 * sizeof (struct field));
16352 }
16353
16354 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16355 FIELD_TYPE (fields[num_fields]) = NULL;
16356 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16357 FIELD_BITSIZE (fields[num_fields]) = 0;
16358
16359 num_fields++;
16360 }
16361 }
16362
16363 child_die = sibling_die (child_die);
16364 }
16365
16366 if (num_fields)
16367 {
16368 TYPE_NFIELDS (this_type) = num_fields;
16369 TYPE_FIELDS (this_type) = (struct field *)
16370 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16371 memcpy (TYPE_FIELDS (this_type), fields,
16372 sizeof (struct field) * num_fields);
16373 xfree (fields);
16374 }
16375 }
16376
16377 /* If we are reading an enum from a .debug_types unit, and the enum
16378 is a declaration, and the enum is not the signatured type in the
16379 unit, then we do not want to add a symbol for it. Adding a
16380 symbol would in some cases obscure the true definition of the
16381 enum, giving users an incomplete type when the definition is
16382 actually available. Note that we do not want to do this for all
16383 enums which are just declarations, because C++0x allows forward
16384 enum declarations. */
16385 if (cu->per_cu->is_debug_types
16386 && die_is_declaration (die, cu))
16387 {
16388 struct signatured_type *sig_type;
16389
16390 sig_type = (struct signatured_type *) cu->per_cu;
16391 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16392 if (sig_type->type_offset_in_section != die->sect_off)
16393 return;
16394 }
16395
16396 new_symbol (die, this_type, cu);
16397 }
16398
16399 /* Extract all information from a DW_TAG_array_type DIE and put it in
16400 the DIE's type field. For now, this only handles one dimensional
16401 arrays. */
16402
16403 static struct type *
16404 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16405 {
16406 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16407 struct die_info *child_die;
16408 struct type *type;
16409 struct type *element_type, *range_type, *index_type;
16410 struct attribute *attr;
16411 const char *name;
16412 struct dynamic_prop *byte_stride_prop = NULL;
16413 unsigned int bit_stride = 0;
16414
16415 element_type = die_type (die, cu);
16416
16417 /* The die_type call above may have already set the type for this DIE. */
16418 type = get_die_type (die, cu);
16419 if (type)
16420 return type;
16421
16422 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16423 if (attr != NULL)
16424 {
16425 int stride_ok;
16426 struct type *prop_type
16427 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16428
16429 byte_stride_prop
16430 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16431 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16432 prop_type);
16433 if (!stride_ok)
16434 {
16435 complaint (_("unable to read array DW_AT_byte_stride "
16436 " - DIE at %s [in module %s]"),
16437 sect_offset_str (die->sect_off),
16438 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16439 /* Ignore this attribute. We will likely not be able to print
16440 arrays of this type correctly, but there is little we can do
16441 to help if we cannot read the attribute's value. */
16442 byte_stride_prop = NULL;
16443 }
16444 }
16445
16446 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16447 if (attr != NULL)
16448 bit_stride = DW_UNSND (attr);
16449
16450 /* Irix 6.2 native cc creates array types without children for
16451 arrays with unspecified length. */
16452 if (die->child == NULL)
16453 {
16454 index_type = objfile_type (objfile)->builtin_int;
16455 range_type = create_static_range_type (NULL, index_type, 0, -1);
16456 type = create_array_type_with_stride (NULL, element_type, range_type,
16457 byte_stride_prop, bit_stride);
16458 return set_die_type (die, type, cu);
16459 }
16460
16461 std::vector<struct type *> range_types;
16462 child_die = die->child;
16463 while (child_die && child_die->tag)
16464 {
16465 if (child_die->tag == DW_TAG_subrange_type)
16466 {
16467 struct type *child_type = read_type_die (child_die, cu);
16468
16469 if (child_type != NULL)
16470 {
16471 /* The range type was succesfully read. Save it for the
16472 array type creation. */
16473 range_types.push_back (child_type);
16474 }
16475 }
16476 child_die = sibling_die (child_die);
16477 }
16478
16479 /* Dwarf2 dimensions are output from left to right, create the
16480 necessary array types in backwards order. */
16481
16482 type = element_type;
16483
16484 if (read_array_order (die, cu) == DW_ORD_col_major)
16485 {
16486 int i = 0;
16487
16488 while (i < range_types.size ())
16489 type = create_array_type_with_stride (NULL, type, range_types[i++],
16490 byte_stride_prop, bit_stride);
16491 }
16492 else
16493 {
16494 size_t ndim = range_types.size ();
16495 while (ndim-- > 0)
16496 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16497 byte_stride_prop, bit_stride);
16498 }
16499
16500 /* Understand Dwarf2 support for vector types (like they occur on
16501 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16502 array type. This is not part of the Dwarf2/3 standard yet, but a
16503 custom vendor extension. The main difference between a regular
16504 array and the vector variant is that vectors are passed by value
16505 to functions. */
16506 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16507 if (attr)
16508 make_vector_type (type);
16509
16510 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16511 implementation may choose to implement triple vectors using this
16512 attribute. */
16513 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16514 if (attr)
16515 {
16516 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16517 TYPE_LENGTH (type) = DW_UNSND (attr);
16518 else
16519 complaint (_("DW_AT_byte_size for array type smaller "
16520 "than the total size of elements"));
16521 }
16522
16523 name = dwarf2_name (die, cu);
16524 if (name)
16525 TYPE_NAME (type) = name;
16526
16527 maybe_set_alignment (cu, die, type);
16528
16529 /* Install the type in the die. */
16530 set_die_type (die, type, cu);
16531
16532 /* set_die_type should be already done. */
16533 set_descriptive_type (type, die, cu);
16534
16535 return type;
16536 }
16537
16538 static enum dwarf_array_dim_ordering
16539 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16540 {
16541 struct attribute *attr;
16542
16543 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16544
16545 if (attr)
16546 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16547
16548 /* GNU F77 is a special case, as at 08/2004 array type info is the
16549 opposite order to the dwarf2 specification, but data is still
16550 laid out as per normal fortran.
16551
16552 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16553 version checking. */
16554
16555 if (cu->language == language_fortran
16556 && cu->producer && strstr (cu->producer, "GNU F77"))
16557 {
16558 return DW_ORD_row_major;
16559 }
16560
16561 switch (cu->language_defn->la_array_ordering)
16562 {
16563 case array_column_major:
16564 return DW_ORD_col_major;
16565 case array_row_major:
16566 default:
16567 return DW_ORD_row_major;
16568 };
16569 }
16570
16571 /* Extract all information from a DW_TAG_set_type DIE and put it in
16572 the DIE's type field. */
16573
16574 static struct type *
16575 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16576 {
16577 struct type *domain_type, *set_type;
16578 struct attribute *attr;
16579
16580 domain_type = die_type (die, cu);
16581
16582 /* The die_type call above may have already set the type for this DIE. */
16583 set_type = get_die_type (die, cu);
16584 if (set_type)
16585 return set_type;
16586
16587 set_type = create_set_type (NULL, domain_type);
16588
16589 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16590 if (attr)
16591 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16592
16593 maybe_set_alignment (cu, die, set_type);
16594
16595 return set_die_type (die, set_type, cu);
16596 }
16597
16598 /* A helper for read_common_block that creates a locexpr baton.
16599 SYM is the symbol which we are marking as computed.
16600 COMMON_DIE is the DIE for the common block.
16601 COMMON_LOC is the location expression attribute for the common
16602 block itself.
16603 MEMBER_LOC is the location expression attribute for the particular
16604 member of the common block that we are processing.
16605 CU is the CU from which the above come. */
16606
16607 static void
16608 mark_common_block_symbol_computed (struct symbol *sym,
16609 struct die_info *common_die,
16610 struct attribute *common_loc,
16611 struct attribute *member_loc,
16612 struct dwarf2_cu *cu)
16613 {
16614 struct dwarf2_per_objfile *dwarf2_per_objfile
16615 = cu->per_cu->dwarf2_per_objfile;
16616 struct objfile *objfile = dwarf2_per_objfile->objfile;
16617 struct dwarf2_locexpr_baton *baton;
16618 gdb_byte *ptr;
16619 unsigned int cu_off;
16620 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16621 LONGEST offset = 0;
16622
16623 gdb_assert (common_loc && member_loc);
16624 gdb_assert (attr_form_is_block (common_loc));
16625 gdb_assert (attr_form_is_block (member_loc)
16626 || attr_form_is_constant (member_loc));
16627
16628 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16629 baton->per_cu = cu->per_cu;
16630 gdb_assert (baton->per_cu);
16631
16632 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16633
16634 if (attr_form_is_constant (member_loc))
16635 {
16636 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16637 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16638 }
16639 else
16640 baton->size += DW_BLOCK (member_loc)->size;
16641
16642 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16643 baton->data = ptr;
16644
16645 *ptr++ = DW_OP_call4;
16646 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16647 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16648 ptr += 4;
16649
16650 if (attr_form_is_constant (member_loc))
16651 {
16652 *ptr++ = DW_OP_addr;
16653 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16654 ptr += cu->header.addr_size;
16655 }
16656 else
16657 {
16658 /* We have to copy the data here, because DW_OP_call4 will only
16659 use a DW_AT_location attribute. */
16660 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16661 ptr += DW_BLOCK (member_loc)->size;
16662 }
16663
16664 *ptr++ = DW_OP_plus;
16665 gdb_assert (ptr - baton->data == baton->size);
16666
16667 SYMBOL_LOCATION_BATON (sym) = baton;
16668 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16669 }
16670
16671 /* Create appropriate locally-scoped variables for all the
16672 DW_TAG_common_block entries. Also create a struct common_block
16673 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16674 is used to sepate the common blocks name namespace from regular
16675 variable names. */
16676
16677 static void
16678 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16679 {
16680 struct attribute *attr;
16681
16682 attr = dwarf2_attr (die, DW_AT_location, cu);
16683 if (attr)
16684 {
16685 /* Support the .debug_loc offsets. */
16686 if (attr_form_is_block (attr))
16687 {
16688 /* Ok. */
16689 }
16690 else if (attr_form_is_section_offset (attr))
16691 {
16692 dwarf2_complex_location_expr_complaint ();
16693 attr = NULL;
16694 }
16695 else
16696 {
16697 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16698 "common block member");
16699 attr = NULL;
16700 }
16701 }
16702
16703 if (die->child != NULL)
16704 {
16705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16706 struct die_info *child_die;
16707 size_t n_entries = 0, size;
16708 struct common_block *common_block;
16709 struct symbol *sym;
16710
16711 for (child_die = die->child;
16712 child_die && child_die->tag;
16713 child_die = sibling_die (child_die))
16714 ++n_entries;
16715
16716 size = (sizeof (struct common_block)
16717 + (n_entries - 1) * sizeof (struct symbol *));
16718 common_block
16719 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16720 size);
16721 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16722 common_block->n_entries = 0;
16723
16724 for (child_die = die->child;
16725 child_die && child_die->tag;
16726 child_die = sibling_die (child_die))
16727 {
16728 /* Create the symbol in the DW_TAG_common_block block in the current
16729 symbol scope. */
16730 sym = new_symbol (child_die, NULL, cu);
16731 if (sym != NULL)
16732 {
16733 struct attribute *member_loc;
16734
16735 common_block->contents[common_block->n_entries++] = sym;
16736
16737 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16738 cu);
16739 if (member_loc)
16740 {
16741 /* GDB has handled this for a long time, but it is
16742 not specified by DWARF. It seems to have been
16743 emitted by gfortran at least as recently as:
16744 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16745 complaint (_("Variable in common block has "
16746 "DW_AT_data_member_location "
16747 "- DIE at %s [in module %s]"),
16748 sect_offset_str (child_die->sect_off),
16749 objfile_name (objfile));
16750
16751 if (attr_form_is_section_offset (member_loc))
16752 dwarf2_complex_location_expr_complaint ();
16753 else if (attr_form_is_constant (member_loc)
16754 || attr_form_is_block (member_loc))
16755 {
16756 if (attr)
16757 mark_common_block_symbol_computed (sym, die, attr,
16758 member_loc, cu);
16759 }
16760 else
16761 dwarf2_complex_location_expr_complaint ();
16762 }
16763 }
16764 }
16765
16766 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16767 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16768 }
16769 }
16770
16771 /* Create a type for a C++ namespace. */
16772
16773 static struct type *
16774 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16775 {
16776 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16777 const char *previous_prefix, *name;
16778 int is_anonymous;
16779 struct type *type;
16780
16781 /* For extensions, reuse the type of the original namespace. */
16782 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16783 {
16784 struct die_info *ext_die;
16785 struct dwarf2_cu *ext_cu = cu;
16786
16787 ext_die = dwarf2_extension (die, &ext_cu);
16788 type = read_type_die (ext_die, ext_cu);
16789
16790 /* EXT_CU may not be the same as CU.
16791 Ensure TYPE is recorded with CU in die_type_hash. */
16792 return set_die_type (die, type, cu);
16793 }
16794
16795 name = namespace_name (die, &is_anonymous, cu);
16796
16797 /* Now build the name of the current namespace. */
16798
16799 previous_prefix = determine_prefix (die, cu);
16800 if (previous_prefix[0] != '\0')
16801 name = typename_concat (&objfile->objfile_obstack,
16802 previous_prefix, name, 0, cu);
16803
16804 /* Create the type. */
16805 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16806
16807 return set_die_type (die, type, cu);
16808 }
16809
16810 /* Read a namespace scope. */
16811
16812 static void
16813 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16814 {
16815 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16816 int is_anonymous;
16817
16818 /* Add a symbol associated to this if we haven't seen the namespace
16819 before. Also, add a using directive if it's an anonymous
16820 namespace. */
16821
16822 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16823 {
16824 struct type *type;
16825
16826 type = read_type_die (die, cu);
16827 new_symbol (die, type, cu);
16828
16829 namespace_name (die, &is_anonymous, cu);
16830 if (is_anonymous)
16831 {
16832 const char *previous_prefix = determine_prefix (die, cu);
16833
16834 std::vector<const char *> excludes;
16835 add_using_directive (using_directives (cu),
16836 previous_prefix, TYPE_NAME (type), NULL,
16837 NULL, excludes, 0, &objfile->objfile_obstack);
16838 }
16839 }
16840
16841 if (die->child != NULL)
16842 {
16843 struct die_info *child_die = die->child;
16844
16845 while (child_die && child_die->tag)
16846 {
16847 process_die (child_die, cu);
16848 child_die = sibling_die (child_die);
16849 }
16850 }
16851 }
16852
16853 /* Read a Fortran module as type. This DIE can be only a declaration used for
16854 imported module. Still we need that type as local Fortran "use ... only"
16855 declaration imports depend on the created type in determine_prefix. */
16856
16857 static struct type *
16858 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16859 {
16860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16861 const char *module_name;
16862 struct type *type;
16863
16864 module_name = dwarf2_name (die, cu);
16865 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16866
16867 return set_die_type (die, type, cu);
16868 }
16869
16870 /* Read a Fortran module. */
16871
16872 static void
16873 read_module (struct die_info *die, struct dwarf2_cu *cu)
16874 {
16875 struct die_info *child_die = die->child;
16876 struct type *type;
16877
16878 type = read_type_die (die, cu);
16879 new_symbol (die, type, cu);
16880
16881 while (child_die && child_die->tag)
16882 {
16883 process_die (child_die, cu);
16884 child_die = sibling_die (child_die);
16885 }
16886 }
16887
16888 /* Return the name of the namespace represented by DIE. Set
16889 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16890 namespace. */
16891
16892 static const char *
16893 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16894 {
16895 struct die_info *current_die;
16896 const char *name = NULL;
16897
16898 /* Loop through the extensions until we find a name. */
16899
16900 for (current_die = die;
16901 current_die != NULL;
16902 current_die = dwarf2_extension (die, &cu))
16903 {
16904 /* We don't use dwarf2_name here so that we can detect the absence
16905 of a name -> anonymous namespace. */
16906 name = dwarf2_string_attr (die, DW_AT_name, cu);
16907
16908 if (name != NULL)
16909 break;
16910 }
16911
16912 /* Is it an anonymous namespace? */
16913
16914 *is_anonymous = (name == NULL);
16915 if (*is_anonymous)
16916 name = CP_ANONYMOUS_NAMESPACE_STR;
16917
16918 return name;
16919 }
16920
16921 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16922 the user defined type vector. */
16923
16924 static struct type *
16925 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16926 {
16927 struct gdbarch *gdbarch
16928 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16929 struct comp_unit_head *cu_header = &cu->header;
16930 struct type *type;
16931 struct attribute *attr_byte_size;
16932 struct attribute *attr_address_class;
16933 int byte_size, addr_class;
16934 struct type *target_type;
16935
16936 target_type = die_type (die, cu);
16937
16938 /* The die_type call above may have already set the type for this DIE. */
16939 type = get_die_type (die, cu);
16940 if (type)
16941 return type;
16942
16943 type = lookup_pointer_type (target_type);
16944
16945 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16946 if (attr_byte_size)
16947 byte_size = DW_UNSND (attr_byte_size);
16948 else
16949 byte_size = cu_header->addr_size;
16950
16951 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16952 if (attr_address_class)
16953 addr_class = DW_UNSND (attr_address_class);
16954 else
16955 addr_class = DW_ADDR_none;
16956
16957 ULONGEST alignment = get_alignment (cu, die);
16958
16959 /* If the pointer size, alignment, or address class is different
16960 than the default, create a type variant marked as such and set
16961 the length accordingly. */
16962 if (TYPE_LENGTH (type) != byte_size
16963 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16964 && alignment != TYPE_RAW_ALIGN (type))
16965 || addr_class != DW_ADDR_none)
16966 {
16967 if (gdbarch_address_class_type_flags_p (gdbarch))
16968 {
16969 int type_flags;
16970
16971 type_flags = gdbarch_address_class_type_flags
16972 (gdbarch, byte_size, addr_class);
16973 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16974 == 0);
16975 type = make_type_with_address_space (type, type_flags);
16976 }
16977 else if (TYPE_LENGTH (type) != byte_size)
16978 {
16979 complaint (_("invalid pointer size %d"), byte_size);
16980 }
16981 else if (TYPE_RAW_ALIGN (type) != alignment)
16982 {
16983 complaint (_("Invalid DW_AT_alignment"
16984 " - DIE at %s [in module %s]"),
16985 sect_offset_str (die->sect_off),
16986 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16987 }
16988 else
16989 {
16990 /* Should we also complain about unhandled address classes? */
16991 }
16992 }
16993
16994 TYPE_LENGTH (type) = byte_size;
16995 set_type_align (type, alignment);
16996 return set_die_type (die, type, cu);
16997 }
16998
16999 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17000 the user defined type vector. */
17001
17002 static struct type *
17003 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17004 {
17005 struct type *type;
17006 struct type *to_type;
17007 struct type *domain;
17008
17009 to_type = die_type (die, cu);
17010 domain = die_containing_type (die, cu);
17011
17012 /* The calls above may have already set the type for this DIE. */
17013 type = get_die_type (die, cu);
17014 if (type)
17015 return type;
17016
17017 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17018 type = lookup_methodptr_type (to_type);
17019 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17020 {
17021 struct type *new_type
17022 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17023
17024 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17025 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17026 TYPE_VARARGS (to_type));
17027 type = lookup_methodptr_type (new_type);
17028 }
17029 else
17030 type = lookup_memberptr_type (to_type, domain);
17031
17032 return set_die_type (die, type, cu);
17033 }
17034
17035 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17036 the user defined type vector. */
17037
17038 static struct type *
17039 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17040 enum type_code refcode)
17041 {
17042 struct comp_unit_head *cu_header = &cu->header;
17043 struct type *type, *target_type;
17044 struct attribute *attr;
17045
17046 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17047
17048 target_type = die_type (die, cu);
17049
17050 /* The die_type call above may have already set the type for this DIE. */
17051 type = get_die_type (die, cu);
17052 if (type)
17053 return type;
17054
17055 type = lookup_reference_type (target_type, refcode);
17056 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17057 if (attr)
17058 {
17059 TYPE_LENGTH (type) = DW_UNSND (attr);
17060 }
17061 else
17062 {
17063 TYPE_LENGTH (type) = cu_header->addr_size;
17064 }
17065 maybe_set_alignment (cu, die, type);
17066 return set_die_type (die, type, cu);
17067 }
17068
17069 /* Add the given cv-qualifiers to the element type of the array. GCC
17070 outputs DWARF type qualifiers that apply to an array, not the
17071 element type. But GDB relies on the array element type to carry
17072 the cv-qualifiers. This mimics section 6.7.3 of the C99
17073 specification. */
17074
17075 static struct type *
17076 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17077 struct type *base_type, int cnst, int voltl)
17078 {
17079 struct type *el_type, *inner_array;
17080
17081 base_type = copy_type (base_type);
17082 inner_array = base_type;
17083
17084 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17085 {
17086 TYPE_TARGET_TYPE (inner_array) =
17087 copy_type (TYPE_TARGET_TYPE (inner_array));
17088 inner_array = TYPE_TARGET_TYPE (inner_array);
17089 }
17090
17091 el_type = TYPE_TARGET_TYPE (inner_array);
17092 cnst |= TYPE_CONST (el_type);
17093 voltl |= TYPE_VOLATILE (el_type);
17094 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17095
17096 return set_die_type (die, base_type, cu);
17097 }
17098
17099 static struct type *
17100 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17101 {
17102 struct type *base_type, *cv_type;
17103
17104 base_type = die_type (die, cu);
17105
17106 /* The die_type call above may have already set the type for this DIE. */
17107 cv_type = get_die_type (die, cu);
17108 if (cv_type)
17109 return cv_type;
17110
17111 /* In case the const qualifier is applied to an array type, the element type
17112 is so qualified, not the array type (section 6.7.3 of C99). */
17113 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17114 return add_array_cv_type (die, cu, base_type, 1, 0);
17115
17116 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17117 return set_die_type (die, cv_type, cu);
17118 }
17119
17120 static struct type *
17121 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17122 {
17123 struct type *base_type, *cv_type;
17124
17125 base_type = die_type (die, cu);
17126
17127 /* The die_type call above may have already set the type for this DIE. */
17128 cv_type = get_die_type (die, cu);
17129 if (cv_type)
17130 return cv_type;
17131
17132 /* In case the volatile qualifier is applied to an array type, the
17133 element type is so qualified, not the array type (section 6.7.3
17134 of C99). */
17135 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17136 return add_array_cv_type (die, cu, base_type, 0, 1);
17137
17138 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17139 return set_die_type (die, cv_type, cu);
17140 }
17141
17142 /* Handle DW_TAG_restrict_type. */
17143
17144 static struct type *
17145 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17146 {
17147 struct type *base_type, *cv_type;
17148
17149 base_type = die_type (die, cu);
17150
17151 /* The die_type call above may have already set the type for this DIE. */
17152 cv_type = get_die_type (die, cu);
17153 if (cv_type)
17154 return cv_type;
17155
17156 cv_type = make_restrict_type (base_type);
17157 return set_die_type (die, cv_type, cu);
17158 }
17159
17160 /* Handle DW_TAG_atomic_type. */
17161
17162 static struct type *
17163 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17164 {
17165 struct type *base_type, *cv_type;
17166
17167 base_type = die_type (die, cu);
17168
17169 /* The die_type call above may have already set the type for this DIE. */
17170 cv_type = get_die_type (die, cu);
17171 if (cv_type)
17172 return cv_type;
17173
17174 cv_type = make_atomic_type (base_type);
17175 return set_die_type (die, cv_type, cu);
17176 }
17177
17178 /* Extract all information from a DW_TAG_string_type DIE and add to
17179 the user defined type vector. It isn't really a user defined type,
17180 but it behaves like one, with other DIE's using an AT_user_def_type
17181 attribute to reference it. */
17182
17183 static struct type *
17184 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17185 {
17186 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17188 struct type *type, *range_type, *index_type, *char_type;
17189 struct attribute *attr;
17190 unsigned int length;
17191
17192 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17193 if (attr)
17194 {
17195 length = DW_UNSND (attr);
17196 }
17197 else
17198 {
17199 /* Check for the DW_AT_byte_size attribute. */
17200 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17201 if (attr)
17202 {
17203 length = DW_UNSND (attr);
17204 }
17205 else
17206 {
17207 length = 1;
17208 }
17209 }
17210
17211 index_type = objfile_type (objfile)->builtin_int;
17212 range_type = create_static_range_type (NULL, index_type, 1, length);
17213 char_type = language_string_char_type (cu->language_defn, gdbarch);
17214 type = create_string_type (NULL, char_type, range_type);
17215
17216 return set_die_type (die, type, cu);
17217 }
17218
17219 /* Assuming that DIE corresponds to a function, returns nonzero
17220 if the function is prototyped. */
17221
17222 static int
17223 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17224 {
17225 struct attribute *attr;
17226
17227 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17228 if (attr && (DW_UNSND (attr) != 0))
17229 return 1;
17230
17231 /* The DWARF standard implies that the DW_AT_prototyped attribute
17232 is only meaninful for C, but the concept also extends to other
17233 languages that allow unprototyped functions (Eg: Objective C).
17234 For all other languages, assume that functions are always
17235 prototyped. */
17236 if (cu->language != language_c
17237 && cu->language != language_objc
17238 && cu->language != language_opencl)
17239 return 1;
17240
17241 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17242 prototyped and unprototyped functions; default to prototyped,
17243 since that is more common in modern code (and RealView warns
17244 about unprototyped functions). */
17245 if (producer_is_realview (cu->producer))
17246 return 1;
17247
17248 return 0;
17249 }
17250
17251 /* Handle DIES due to C code like:
17252
17253 struct foo
17254 {
17255 int (*funcp)(int a, long l);
17256 int b;
17257 };
17258
17259 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17260
17261 static struct type *
17262 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17263 {
17264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17265 struct type *type; /* Type that this function returns. */
17266 struct type *ftype; /* Function that returns above type. */
17267 struct attribute *attr;
17268
17269 type = die_type (die, cu);
17270
17271 /* The die_type call above may have already set the type for this DIE. */
17272 ftype = get_die_type (die, cu);
17273 if (ftype)
17274 return ftype;
17275
17276 ftype = lookup_function_type (type);
17277
17278 if (prototyped_function_p (die, cu))
17279 TYPE_PROTOTYPED (ftype) = 1;
17280
17281 /* Store the calling convention in the type if it's available in
17282 the subroutine die. Otherwise set the calling convention to
17283 the default value DW_CC_normal. */
17284 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17285 if (attr)
17286 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17287 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17288 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17289 else
17290 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17291
17292 /* Record whether the function returns normally to its caller or not
17293 if the DWARF producer set that information. */
17294 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17295 if (attr && (DW_UNSND (attr) != 0))
17296 TYPE_NO_RETURN (ftype) = 1;
17297
17298 /* We need to add the subroutine type to the die immediately so
17299 we don't infinitely recurse when dealing with parameters
17300 declared as the same subroutine type. */
17301 set_die_type (die, ftype, cu);
17302
17303 if (die->child != NULL)
17304 {
17305 struct type *void_type = objfile_type (objfile)->builtin_void;
17306 struct die_info *child_die;
17307 int nparams, iparams;
17308
17309 /* Count the number of parameters.
17310 FIXME: GDB currently ignores vararg functions, but knows about
17311 vararg member functions. */
17312 nparams = 0;
17313 child_die = die->child;
17314 while (child_die && child_die->tag)
17315 {
17316 if (child_die->tag == DW_TAG_formal_parameter)
17317 nparams++;
17318 else if (child_die->tag == DW_TAG_unspecified_parameters)
17319 TYPE_VARARGS (ftype) = 1;
17320 child_die = sibling_die (child_die);
17321 }
17322
17323 /* Allocate storage for parameters and fill them in. */
17324 TYPE_NFIELDS (ftype) = nparams;
17325 TYPE_FIELDS (ftype) = (struct field *)
17326 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17327
17328 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17329 even if we error out during the parameters reading below. */
17330 for (iparams = 0; iparams < nparams; iparams++)
17331 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17332
17333 iparams = 0;
17334 child_die = die->child;
17335 while (child_die && child_die->tag)
17336 {
17337 if (child_die->tag == DW_TAG_formal_parameter)
17338 {
17339 struct type *arg_type;
17340
17341 /* DWARF version 2 has no clean way to discern C++
17342 static and non-static member functions. G++ helps
17343 GDB by marking the first parameter for non-static
17344 member functions (which is the this pointer) as
17345 artificial. We pass this information to
17346 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17347
17348 DWARF version 3 added DW_AT_object_pointer, which GCC
17349 4.5 does not yet generate. */
17350 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17351 if (attr)
17352 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17353 else
17354 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17355 arg_type = die_type (child_die, cu);
17356
17357 /* RealView does not mark THIS as const, which the testsuite
17358 expects. GCC marks THIS as const in method definitions,
17359 but not in the class specifications (GCC PR 43053). */
17360 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17361 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17362 {
17363 int is_this = 0;
17364 struct dwarf2_cu *arg_cu = cu;
17365 const char *name = dwarf2_name (child_die, cu);
17366
17367 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17368 if (attr)
17369 {
17370 /* If the compiler emits this, use it. */
17371 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17372 is_this = 1;
17373 }
17374 else if (name && strcmp (name, "this") == 0)
17375 /* Function definitions will have the argument names. */
17376 is_this = 1;
17377 else if (name == NULL && iparams == 0)
17378 /* Declarations may not have the names, so like
17379 elsewhere in GDB, assume an artificial first
17380 argument is "this". */
17381 is_this = 1;
17382
17383 if (is_this)
17384 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17385 arg_type, 0);
17386 }
17387
17388 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17389 iparams++;
17390 }
17391 child_die = sibling_die (child_die);
17392 }
17393 }
17394
17395 return ftype;
17396 }
17397
17398 static struct type *
17399 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17400 {
17401 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17402 const char *name = NULL;
17403 struct type *this_type, *target_type;
17404
17405 name = dwarf2_full_name (NULL, die, cu);
17406 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17407 TYPE_TARGET_STUB (this_type) = 1;
17408 set_die_type (die, this_type, cu);
17409 target_type = die_type (die, cu);
17410 if (target_type != this_type)
17411 TYPE_TARGET_TYPE (this_type) = target_type;
17412 else
17413 {
17414 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17415 spec and cause infinite loops in GDB. */
17416 complaint (_("Self-referential DW_TAG_typedef "
17417 "- DIE at %s [in module %s]"),
17418 sect_offset_str (die->sect_off), objfile_name (objfile));
17419 TYPE_TARGET_TYPE (this_type) = NULL;
17420 }
17421 return this_type;
17422 }
17423
17424 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17425 (which may be different from NAME) to the architecture back-end to allow
17426 it to guess the correct format if necessary. */
17427
17428 static struct type *
17429 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17430 const char *name_hint)
17431 {
17432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17433 const struct floatformat **format;
17434 struct type *type;
17435
17436 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17437 if (format)
17438 type = init_float_type (objfile, bits, name, format);
17439 else
17440 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17441
17442 return type;
17443 }
17444
17445 /* Allocate an integer type of size BITS and name NAME. */
17446
17447 static struct type *
17448 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17449 int bits, int unsigned_p, const char *name)
17450 {
17451 struct type *type;
17452
17453 /* Versions of Intel's C Compiler generate an integer type called "void"
17454 instead of using DW_TAG_unspecified_type. This has been seen on
17455 at least versions 14, 17, and 18. */
17456 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17457 && strcmp (name, "void") == 0)
17458 type = objfile_type (objfile)->builtin_void;
17459 else
17460 type = init_integer_type (objfile, bits, unsigned_p, name);
17461
17462 return type;
17463 }
17464
17465 /* Initialise and return a floating point type of size BITS suitable for
17466 use as a component of a complex number. The NAME_HINT is passed through
17467 when initialising the floating point type and is the name of the complex
17468 type.
17469
17470 As DWARF doesn't currently provide an explicit name for the components
17471 of a complex number, but it can be helpful to have these components
17472 named, we try to select a suitable name based on the size of the
17473 component. */
17474 static struct type *
17475 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17476 struct objfile *objfile,
17477 int bits, const char *name_hint)
17478 {
17479 gdbarch *gdbarch = get_objfile_arch (objfile);
17480 struct type *tt = nullptr;
17481
17482 /* Try to find a suitable floating point builtin type of size BITS.
17483 We're going to use the name of this type as the name for the complex
17484 target type that we are about to create. */
17485 switch (cu->language)
17486 {
17487 case language_fortran:
17488 switch (bits)
17489 {
17490 case 32:
17491 tt = builtin_f_type (gdbarch)->builtin_real;
17492 break;
17493 case 64:
17494 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17495 break;
17496 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17497 case 128:
17498 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17499 break;
17500 }
17501 break;
17502 default:
17503 switch (bits)
17504 {
17505 case 32:
17506 tt = builtin_type (gdbarch)->builtin_float;
17507 break;
17508 case 64:
17509 tt = builtin_type (gdbarch)->builtin_double;
17510 break;
17511 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17512 case 128:
17513 tt = builtin_type (gdbarch)->builtin_long_double;
17514 break;
17515 }
17516 break;
17517 }
17518
17519 /* If the type we found doesn't match the size we were looking for, then
17520 pretend we didn't find a type at all, the complex target type we
17521 create will then be nameless. */
17522 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17523 tt = nullptr;
17524
17525 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17526 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17527 }
17528
17529 /* Find a representation of a given base type and install
17530 it in the TYPE field of the die. */
17531
17532 static struct type *
17533 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17534 {
17535 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17536 struct type *type;
17537 struct attribute *attr;
17538 int encoding = 0, bits = 0;
17539 const char *name;
17540
17541 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17542 if (attr)
17543 {
17544 encoding = DW_UNSND (attr);
17545 }
17546 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17547 if (attr)
17548 {
17549 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17550 }
17551 name = dwarf2_name (die, cu);
17552 if (!name)
17553 {
17554 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17555 }
17556
17557 switch (encoding)
17558 {
17559 case DW_ATE_address:
17560 /* Turn DW_ATE_address into a void * pointer. */
17561 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17562 type = init_pointer_type (objfile, bits, name, type);
17563 break;
17564 case DW_ATE_boolean:
17565 type = init_boolean_type (objfile, bits, 1, name);
17566 break;
17567 case DW_ATE_complex_float:
17568 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17569 type = init_complex_type (objfile, name, type);
17570 break;
17571 case DW_ATE_decimal_float:
17572 type = init_decfloat_type (objfile, bits, name);
17573 break;
17574 case DW_ATE_float:
17575 type = dwarf2_init_float_type (objfile, bits, name, name);
17576 break;
17577 case DW_ATE_signed:
17578 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17579 break;
17580 case DW_ATE_unsigned:
17581 if (cu->language == language_fortran
17582 && name
17583 && startswith (name, "character("))
17584 type = init_character_type (objfile, bits, 1, name);
17585 else
17586 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17587 break;
17588 case DW_ATE_signed_char:
17589 if (cu->language == language_ada || cu->language == language_m2
17590 || cu->language == language_pascal
17591 || cu->language == language_fortran)
17592 type = init_character_type (objfile, bits, 0, name);
17593 else
17594 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17595 break;
17596 case DW_ATE_unsigned_char:
17597 if (cu->language == language_ada || cu->language == language_m2
17598 || cu->language == language_pascal
17599 || cu->language == language_fortran
17600 || cu->language == language_rust)
17601 type = init_character_type (objfile, bits, 1, name);
17602 else
17603 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17604 break;
17605 case DW_ATE_UTF:
17606 {
17607 gdbarch *arch = get_objfile_arch (objfile);
17608
17609 if (bits == 16)
17610 type = builtin_type (arch)->builtin_char16;
17611 else if (bits == 32)
17612 type = builtin_type (arch)->builtin_char32;
17613 else
17614 {
17615 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17616 bits);
17617 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17618 }
17619 return set_die_type (die, type, cu);
17620 }
17621 break;
17622
17623 default:
17624 complaint (_("unsupported DW_AT_encoding: '%s'"),
17625 dwarf_type_encoding_name (encoding));
17626 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17627 break;
17628 }
17629
17630 if (name && strcmp (name, "char") == 0)
17631 TYPE_NOSIGN (type) = 1;
17632
17633 maybe_set_alignment (cu, die, type);
17634
17635 return set_die_type (die, type, cu);
17636 }
17637
17638 /* Parse dwarf attribute if it's a block, reference or constant and put the
17639 resulting value of the attribute into struct bound_prop.
17640 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17641
17642 static int
17643 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17644 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17645 struct type *default_type)
17646 {
17647 struct dwarf2_property_baton *baton;
17648 struct obstack *obstack
17649 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17650
17651 gdb_assert (default_type != NULL);
17652
17653 if (attr == NULL || prop == NULL)
17654 return 0;
17655
17656 if (attr_form_is_block (attr))
17657 {
17658 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17659 baton->property_type = default_type;
17660 baton->locexpr.per_cu = cu->per_cu;
17661 baton->locexpr.size = DW_BLOCK (attr)->size;
17662 baton->locexpr.data = DW_BLOCK (attr)->data;
17663 baton->locexpr.is_reference = false;
17664 prop->data.baton = baton;
17665 prop->kind = PROP_LOCEXPR;
17666 gdb_assert (prop->data.baton != NULL);
17667 }
17668 else if (attr_form_is_ref (attr))
17669 {
17670 struct dwarf2_cu *target_cu = cu;
17671 struct die_info *target_die;
17672 struct attribute *target_attr;
17673
17674 target_die = follow_die_ref (die, attr, &target_cu);
17675 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17676 if (target_attr == NULL)
17677 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17678 target_cu);
17679 if (target_attr == NULL)
17680 return 0;
17681
17682 switch (target_attr->name)
17683 {
17684 case DW_AT_location:
17685 if (attr_form_is_section_offset (target_attr))
17686 {
17687 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17688 baton->property_type = die_type (target_die, target_cu);
17689 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17690 prop->data.baton = baton;
17691 prop->kind = PROP_LOCLIST;
17692 gdb_assert (prop->data.baton != NULL);
17693 }
17694 else if (attr_form_is_block (target_attr))
17695 {
17696 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17697 baton->property_type = die_type (target_die, target_cu);
17698 baton->locexpr.per_cu = cu->per_cu;
17699 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17700 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17701 baton->locexpr.is_reference = true;
17702 prop->data.baton = baton;
17703 prop->kind = PROP_LOCEXPR;
17704 gdb_assert (prop->data.baton != NULL);
17705 }
17706 else
17707 {
17708 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17709 "dynamic property");
17710 return 0;
17711 }
17712 break;
17713 case DW_AT_data_member_location:
17714 {
17715 LONGEST offset;
17716
17717 if (!handle_data_member_location (target_die, target_cu,
17718 &offset))
17719 return 0;
17720
17721 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17722 baton->property_type = read_type_die (target_die->parent,
17723 target_cu);
17724 baton->offset_info.offset = offset;
17725 baton->offset_info.type = die_type (target_die, target_cu);
17726 prop->data.baton = baton;
17727 prop->kind = PROP_ADDR_OFFSET;
17728 break;
17729 }
17730 }
17731 }
17732 else if (attr_form_is_constant (attr))
17733 {
17734 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17735 prop->kind = PROP_CONST;
17736 }
17737 else
17738 {
17739 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17740 dwarf2_name (die, cu));
17741 return 0;
17742 }
17743
17744 return 1;
17745 }
17746
17747 /* Find an integer type the same size as the address size given in the
17748 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17749 is unsigned or not. */
17750
17751 static struct type *
17752 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17753 bool unsigned_p)
17754 {
17755 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17756 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17757 struct type *int_type;
17758
17759 /* Helper macro to examine the various builtin types. */
17760 #define TRY_TYPE(F) \
17761 int_type = (unsigned_p \
17762 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17763 : objfile_type (objfile)->builtin_ ## F); \
17764 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17765 return int_type
17766
17767 TRY_TYPE (char);
17768 TRY_TYPE (short);
17769 TRY_TYPE (int);
17770 TRY_TYPE (long);
17771 TRY_TYPE (long_long);
17772
17773 #undef TRY_TYPE
17774
17775 gdb_assert_not_reached ("unable to find suitable integer type");
17776 }
17777
17778 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17779 present (which is valid) then compute the default type based on the
17780 compilation units address size. */
17781
17782 static struct type *
17783 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17784 {
17785 struct type *index_type = die_type (die, cu);
17786
17787 /* Dwarf-2 specifications explicitly allows to create subrange types
17788 without specifying a base type.
17789 In that case, the base type must be set to the type of
17790 the lower bound, upper bound or count, in that order, if any of these
17791 three attributes references an object that has a type.
17792 If no base type is found, the Dwarf-2 specifications say that
17793 a signed integer type of size equal to the size of an address should
17794 be used.
17795 For the following C code: `extern char gdb_int [];'
17796 GCC produces an empty range DIE.
17797 FIXME: muller/2010-05-28: Possible references to object for low bound,
17798 high bound or count are not yet handled by this code. */
17799 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17800 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17801
17802 return index_type;
17803 }
17804
17805 /* Read the given DW_AT_subrange DIE. */
17806
17807 static struct type *
17808 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17809 {
17810 struct type *base_type, *orig_base_type;
17811 struct type *range_type;
17812 struct attribute *attr;
17813 struct dynamic_prop low, high;
17814 int low_default_is_valid;
17815 int high_bound_is_count = 0;
17816 const char *name;
17817 ULONGEST negative_mask;
17818
17819 orig_base_type = read_subrange_index_type (die, cu);
17820
17821 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17822 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17823 creating the range type, but we use the result of check_typedef
17824 when examining properties of the type. */
17825 base_type = check_typedef (orig_base_type);
17826
17827 /* The die_type call above may have already set the type for this DIE. */
17828 range_type = get_die_type (die, cu);
17829 if (range_type)
17830 return range_type;
17831
17832 low.kind = PROP_CONST;
17833 high.kind = PROP_CONST;
17834 high.data.const_val = 0;
17835
17836 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17837 omitting DW_AT_lower_bound. */
17838 switch (cu->language)
17839 {
17840 case language_c:
17841 case language_cplus:
17842 low.data.const_val = 0;
17843 low_default_is_valid = 1;
17844 break;
17845 case language_fortran:
17846 low.data.const_val = 1;
17847 low_default_is_valid = 1;
17848 break;
17849 case language_d:
17850 case language_objc:
17851 case language_rust:
17852 low.data.const_val = 0;
17853 low_default_is_valid = (cu->header.version >= 4);
17854 break;
17855 case language_ada:
17856 case language_m2:
17857 case language_pascal:
17858 low.data.const_val = 1;
17859 low_default_is_valid = (cu->header.version >= 4);
17860 break;
17861 default:
17862 low.data.const_val = 0;
17863 low_default_is_valid = 0;
17864 break;
17865 }
17866
17867 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17868 if (attr)
17869 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17870 else if (!low_default_is_valid)
17871 complaint (_("Missing DW_AT_lower_bound "
17872 "- DIE at %s [in module %s]"),
17873 sect_offset_str (die->sect_off),
17874 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17875
17876 struct attribute *attr_ub, *attr_count;
17877 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17878 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17879 {
17880 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17881 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17882 {
17883 /* If bounds are constant do the final calculation here. */
17884 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17885 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17886 else
17887 high_bound_is_count = 1;
17888 }
17889 else
17890 {
17891 if (attr_ub != NULL)
17892 complaint (_("Unresolved DW_AT_upper_bound "
17893 "- DIE at %s [in module %s]"),
17894 sect_offset_str (die->sect_off),
17895 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17896 if (attr_count != NULL)
17897 complaint (_("Unresolved DW_AT_count "
17898 "- DIE at %s [in module %s]"),
17899 sect_offset_str (die->sect_off),
17900 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17901 }
17902 }
17903
17904 LONGEST bias = 0;
17905 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17906 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
17907 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17908
17909 /* Normally, the DWARF producers are expected to use a signed
17910 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17911 But this is unfortunately not always the case, as witnessed
17912 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17913 is used instead. To work around that ambiguity, we treat
17914 the bounds as signed, and thus sign-extend their values, when
17915 the base type is signed. */
17916 negative_mask =
17917 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17918 if (low.kind == PROP_CONST
17919 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17920 low.data.const_val |= negative_mask;
17921 if (high.kind == PROP_CONST
17922 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17923 high.data.const_val |= negative_mask;
17924
17925 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17926
17927 if (high_bound_is_count)
17928 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17929
17930 /* Ada expects an empty array on no boundary attributes. */
17931 if (attr == NULL && cu->language != language_ada)
17932 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17933
17934 name = dwarf2_name (die, cu);
17935 if (name)
17936 TYPE_NAME (range_type) = name;
17937
17938 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17939 if (attr)
17940 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17941
17942 maybe_set_alignment (cu, die, range_type);
17943
17944 set_die_type (die, range_type, cu);
17945
17946 /* set_die_type should be already done. */
17947 set_descriptive_type (range_type, die, cu);
17948
17949 return range_type;
17950 }
17951
17952 static struct type *
17953 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17954 {
17955 struct type *type;
17956
17957 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17958 NULL);
17959 TYPE_NAME (type) = dwarf2_name (die, cu);
17960
17961 /* In Ada, an unspecified type is typically used when the description
17962 of the type is defered to a different unit. When encountering
17963 such a type, we treat it as a stub, and try to resolve it later on,
17964 when needed. */
17965 if (cu->language == language_ada)
17966 TYPE_STUB (type) = 1;
17967
17968 return set_die_type (die, type, cu);
17969 }
17970
17971 /* Read a single die and all its descendents. Set the die's sibling
17972 field to NULL; set other fields in the die correctly, and set all
17973 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17974 location of the info_ptr after reading all of those dies. PARENT
17975 is the parent of the die in question. */
17976
17977 static struct die_info *
17978 read_die_and_children (const struct die_reader_specs *reader,
17979 const gdb_byte *info_ptr,
17980 const gdb_byte **new_info_ptr,
17981 struct die_info *parent)
17982 {
17983 struct die_info *die;
17984 const gdb_byte *cur_ptr;
17985 int has_children;
17986
17987 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17988 if (die == NULL)
17989 {
17990 *new_info_ptr = cur_ptr;
17991 return NULL;
17992 }
17993 store_in_ref_table (die, reader->cu);
17994
17995 if (has_children)
17996 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17997 else
17998 {
17999 die->child = NULL;
18000 *new_info_ptr = cur_ptr;
18001 }
18002
18003 die->sibling = NULL;
18004 die->parent = parent;
18005 return die;
18006 }
18007
18008 /* Read a die, all of its descendents, and all of its siblings; set
18009 all of the fields of all of the dies correctly. Arguments are as
18010 in read_die_and_children. */
18011
18012 static struct die_info *
18013 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18014 const gdb_byte *info_ptr,
18015 const gdb_byte **new_info_ptr,
18016 struct die_info *parent)
18017 {
18018 struct die_info *first_die, *last_sibling;
18019 const gdb_byte *cur_ptr;
18020
18021 cur_ptr = info_ptr;
18022 first_die = last_sibling = NULL;
18023
18024 while (1)
18025 {
18026 struct die_info *die
18027 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18028
18029 if (die == NULL)
18030 {
18031 *new_info_ptr = cur_ptr;
18032 return first_die;
18033 }
18034
18035 if (!first_die)
18036 first_die = die;
18037 else
18038 last_sibling->sibling = die;
18039
18040 last_sibling = die;
18041 }
18042 }
18043
18044 /* Read a die, all of its descendents, and all of its siblings; set
18045 all of the fields of all of the dies correctly. Arguments are as
18046 in read_die_and_children.
18047 This the main entry point for reading a DIE and all its children. */
18048
18049 static struct die_info *
18050 read_die_and_siblings (const struct die_reader_specs *reader,
18051 const gdb_byte *info_ptr,
18052 const gdb_byte **new_info_ptr,
18053 struct die_info *parent)
18054 {
18055 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18056 new_info_ptr, parent);
18057
18058 if (dwarf_die_debug)
18059 {
18060 fprintf_unfiltered (gdb_stdlog,
18061 "Read die from %s@0x%x of %s:\n",
18062 get_section_name (reader->die_section),
18063 (unsigned) (info_ptr - reader->die_section->buffer),
18064 bfd_get_filename (reader->abfd));
18065 dump_die (die, dwarf_die_debug);
18066 }
18067
18068 return die;
18069 }
18070
18071 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18072 attributes.
18073 The caller is responsible for filling in the extra attributes
18074 and updating (*DIEP)->num_attrs.
18075 Set DIEP to point to a newly allocated die with its information,
18076 except for its child, sibling, and parent fields.
18077 Set HAS_CHILDREN to tell whether the die has children or not. */
18078
18079 static const gdb_byte *
18080 read_full_die_1 (const struct die_reader_specs *reader,
18081 struct die_info **diep, const gdb_byte *info_ptr,
18082 int *has_children, int num_extra_attrs)
18083 {
18084 unsigned int abbrev_number, bytes_read, i;
18085 struct abbrev_info *abbrev;
18086 struct die_info *die;
18087 struct dwarf2_cu *cu = reader->cu;
18088 bfd *abfd = reader->abfd;
18089
18090 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18091 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18092 info_ptr += bytes_read;
18093 if (!abbrev_number)
18094 {
18095 *diep = NULL;
18096 *has_children = 0;
18097 return info_ptr;
18098 }
18099
18100 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18101 if (!abbrev)
18102 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18103 abbrev_number,
18104 bfd_get_filename (abfd));
18105
18106 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18107 die->sect_off = sect_off;
18108 die->tag = abbrev->tag;
18109 die->abbrev = abbrev_number;
18110
18111 /* Make the result usable.
18112 The caller needs to update num_attrs after adding the extra
18113 attributes. */
18114 die->num_attrs = abbrev->num_attrs;
18115
18116 for (i = 0; i < abbrev->num_attrs; ++i)
18117 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18118 info_ptr);
18119
18120 *diep = die;
18121 *has_children = abbrev->has_children;
18122 return info_ptr;
18123 }
18124
18125 /* Read a die and all its attributes.
18126 Set DIEP to point to a newly allocated die with its information,
18127 except for its child, sibling, and parent fields.
18128 Set HAS_CHILDREN to tell whether the die has children or not. */
18129
18130 static const gdb_byte *
18131 read_full_die (const struct die_reader_specs *reader,
18132 struct die_info **diep, const gdb_byte *info_ptr,
18133 int *has_children)
18134 {
18135 const gdb_byte *result;
18136
18137 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18138
18139 if (dwarf_die_debug)
18140 {
18141 fprintf_unfiltered (gdb_stdlog,
18142 "Read die from %s@0x%x of %s:\n",
18143 get_section_name (reader->die_section),
18144 (unsigned) (info_ptr - reader->die_section->buffer),
18145 bfd_get_filename (reader->abfd));
18146 dump_die (*diep, dwarf_die_debug);
18147 }
18148
18149 return result;
18150 }
18151 \f
18152 /* Abbreviation tables.
18153
18154 In DWARF version 2, the description of the debugging information is
18155 stored in a separate .debug_abbrev section. Before we read any
18156 dies from a section we read in all abbreviations and install them
18157 in a hash table. */
18158
18159 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18160
18161 struct abbrev_info *
18162 abbrev_table::alloc_abbrev ()
18163 {
18164 struct abbrev_info *abbrev;
18165
18166 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18167 memset (abbrev, 0, sizeof (struct abbrev_info));
18168
18169 return abbrev;
18170 }
18171
18172 /* Add an abbreviation to the table. */
18173
18174 void
18175 abbrev_table::add_abbrev (unsigned int abbrev_number,
18176 struct abbrev_info *abbrev)
18177 {
18178 unsigned int hash_number;
18179
18180 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18181 abbrev->next = m_abbrevs[hash_number];
18182 m_abbrevs[hash_number] = abbrev;
18183 }
18184
18185 /* Look up an abbrev in the table.
18186 Returns NULL if the abbrev is not found. */
18187
18188 struct abbrev_info *
18189 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18190 {
18191 unsigned int hash_number;
18192 struct abbrev_info *abbrev;
18193
18194 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18195 abbrev = m_abbrevs[hash_number];
18196
18197 while (abbrev)
18198 {
18199 if (abbrev->number == abbrev_number)
18200 return abbrev;
18201 abbrev = abbrev->next;
18202 }
18203 return NULL;
18204 }
18205
18206 /* Read in an abbrev table. */
18207
18208 static abbrev_table_up
18209 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18210 struct dwarf2_section_info *section,
18211 sect_offset sect_off)
18212 {
18213 struct objfile *objfile = dwarf2_per_objfile->objfile;
18214 bfd *abfd = get_section_bfd_owner (section);
18215 const gdb_byte *abbrev_ptr;
18216 struct abbrev_info *cur_abbrev;
18217 unsigned int abbrev_number, bytes_read, abbrev_name;
18218 unsigned int abbrev_form;
18219 struct attr_abbrev *cur_attrs;
18220 unsigned int allocated_attrs;
18221
18222 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18223
18224 dwarf2_read_section (objfile, section);
18225 abbrev_ptr = section->buffer + to_underlying (sect_off);
18226 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18227 abbrev_ptr += bytes_read;
18228
18229 allocated_attrs = ATTR_ALLOC_CHUNK;
18230 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18231
18232 /* Loop until we reach an abbrev number of 0. */
18233 while (abbrev_number)
18234 {
18235 cur_abbrev = abbrev_table->alloc_abbrev ();
18236
18237 /* read in abbrev header */
18238 cur_abbrev->number = abbrev_number;
18239 cur_abbrev->tag
18240 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18241 abbrev_ptr += bytes_read;
18242 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18243 abbrev_ptr += 1;
18244
18245 /* now read in declarations */
18246 for (;;)
18247 {
18248 LONGEST implicit_const;
18249
18250 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18251 abbrev_ptr += bytes_read;
18252 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18253 abbrev_ptr += bytes_read;
18254 if (abbrev_form == DW_FORM_implicit_const)
18255 {
18256 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18257 &bytes_read);
18258 abbrev_ptr += bytes_read;
18259 }
18260 else
18261 {
18262 /* Initialize it due to a false compiler warning. */
18263 implicit_const = -1;
18264 }
18265
18266 if (abbrev_name == 0)
18267 break;
18268
18269 if (cur_abbrev->num_attrs == allocated_attrs)
18270 {
18271 allocated_attrs += ATTR_ALLOC_CHUNK;
18272 cur_attrs
18273 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18274 }
18275
18276 cur_attrs[cur_abbrev->num_attrs].name
18277 = (enum dwarf_attribute) abbrev_name;
18278 cur_attrs[cur_abbrev->num_attrs].form
18279 = (enum dwarf_form) abbrev_form;
18280 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18281 ++cur_abbrev->num_attrs;
18282 }
18283
18284 cur_abbrev->attrs =
18285 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18286 cur_abbrev->num_attrs);
18287 memcpy (cur_abbrev->attrs, cur_attrs,
18288 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18289
18290 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18291
18292 /* Get next abbreviation.
18293 Under Irix6 the abbreviations for a compilation unit are not
18294 always properly terminated with an abbrev number of 0.
18295 Exit loop if we encounter an abbreviation which we have
18296 already read (which means we are about to read the abbreviations
18297 for the next compile unit) or if the end of the abbreviation
18298 table is reached. */
18299 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18300 break;
18301 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18302 abbrev_ptr += bytes_read;
18303 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18304 break;
18305 }
18306
18307 xfree (cur_attrs);
18308 return abbrev_table;
18309 }
18310
18311 /* Returns nonzero if TAG represents a type that we might generate a partial
18312 symbol for. */
18313
18314 static int
18315 is_type_tag_for_partial (int tag)
18316 {
18317 switch (tag)
18318 {
18319 #if 0
18320 /* Some types that would be reasonable to generate partial symbols for,
18321 that we don't at present. */
18322 case DW_TAG_array_type:
18323 case DW_TAG_file_type:
18324 case DW_TAG_ptr_to_member_type:
18325 case DW_TAG_set_type:
18326 case DW_TAG_string_type:
18327 case DW_TAG_subroutine_type:
18328 #endif
18329 case DW_TAG_base_type:
18330 case DW_TAG_class_type:
18331 case DW_TAG_interface_type:
18332 case DW_TAG_enumeration_type:
18333 case DW_TAG_structure_type:
18334 case DW_TAG_subrange_type:
18335 case DW_TAG_typedef:
18336 case DW_TAG_union_type:
18337 return 1;
18338 default:
18339 return 0;
18340 }
18341 }
18342
18343 /* Load all DIEs that are interesting for partial symbols into memory. */
18344
18345 static struct partial_die_info *
18346 load_partial_dies (const struct die_reader_specs *reader,
18347 const gdb_byte *info_ptr, int building_psymtab)
18348 {
18349 struct dwarf2_cu *cu = reader->cu;
18350 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18351 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18352 unsigned int bytes_read;
18353 unsigned int load_all = 0;
18354 int nesting_level = 1;
18355
18356 parent_die = NULL;
18357 last_die = NULL;
18358
18359 gdb_assert (cu->per_cu != NULL);
18360 if (cu->per_cu->load_all_dies)
18361 load_all = 1;
18362
18363 cu->partial_dies
18364 = htab_create_alloc_ex (cu->header.length / 12,
18365 partial_die_hash,
18366 partial_die_eq,
18367 NULL,
18368 &cu->comp_unit_obstack,
18369 hashtab_obstack_allocate,
18370 dummy_obstack_deallocate);
18371
18372 while (1)
18373 {
18374 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18375
18376 /* A NULL abbrev means the end of a series of children. */
18377 if (abbrev == NULL)
18378 {
18379 if (--nesting_level == 0)
18380 return first_die;
18381
18382 info_ptr += bytes_read;
18383 last_die = parent_die;
18384 parent_die = parent_die->die_parent;
18385 continue;
18386 }
18387
18388 /* Check for template arguments. We never save these; if
18389 they're seen, we just mark the parent, and go on our way. */
18390 if (parent_die != NULL
18391 && cu->language == language_cplus
18392 && (abbrev->tag == DW_TAG_template_type_param
18393 || abbrev->tag == DW_TAG_template_value_param))
18394 {
18395 parent_die->has_template_arguments = 1;
18396
18397 if (!load_all)
18398 {
18399 /* We don't need a partial DIE for the template argument. */
18400 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18401 continue;
18402 }
18403 }
18404
18405 /* We only recurse into c++ subprograms looking for template arguments.
18406 Skip their other children. */
18407 if (!load_all
18408 && cu->language == language_cplus
18409 && parent_die != NULL
18410 && parent_die->tag == DW_TAG_subprogram)
18411 {
18412 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18413 continue;
18414 }
18415
18416 /* Check whether this DIE is interesting enough to save. Normally
18417 we would not be interested in members here, but there may be
18418 later variables referencing them via DW_AT_specification (for
18419 static members). */
18420 if (!load_all
18421 && !is_type_tag_for_partial (abbrev->tag)
18422 && abbrev->tag != DW_TAG_constant
18423 && abbrev->tag != DW_TAG_enumerator
18424 && abbrev->tag != DW_TAG_subprogram
18425 && abbrev->tag != DW_TAG_inlined_subroutine
18426 && abbrev->tag != DW_TAG_lexical_block
18427 && abbrev->tag != DW_TAG_variable
18428 && abbrev->tag != DW_TAG_namespace
18429 && abbrev->tag != DW_TAG_module
18430 && abbrev->tag != DW_TAG_member
18431 && abbrev->tag != DW_TAG_imported_unit
18432 && abbrev->tag != DW_TAG_imported_declaration)
18433 {
18434 /* Otherwise we skip to the next sibling, if any. */
18435 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18436 continue;
18437 }
18438
18439 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18440 abbrev);
18441
18442 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18443
18444 /* This two-pass algorithm for processing partial symbols has a
18445 high cost in cache pressure. Thus, handle some simple cases
18446 here which cover the majority of C partial symbols. DIEs
18447 which neither have specification tags in them, nor could have
18448 specification tags elsewhere pointing at them, can simply be
18449 processed and discarded.
18450
18451 This segment is also optional; scan_partial_symbols and
18452 add_partial_symbol will handle these DIEs if we chain
18453 them in normally. When compilers which do not emit large
18454 quantities of duplicate debug information are more common,
18455 this code can probably be removed. */
18456
18457 /* Any complete simple types at the top level (pretty much all
18458 of them, for a language without namespaces), can be processed
18459 directly. */
18460 if (parent_die == NULL
18461 && pdi.has_specification == 0
18462 && pdi.is_declaration == 0
18463 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18464 || pdi.tag == DW_TAG_base_type
18465 || pdi.tag == DW_TAG_subrange_type))
18466 {
18467 if (building_psymtab && pdi.name != NULL)
18468 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18469 VAR_DOMAIN, LOC_TYPEDEF, -1,
18470 psymbol_placement::STATIC,
18471 0, cu->language, objfile);
18472 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18473 continue;
18474 }
18475
18476 /* The exception for DW_TAG_typedef with has_children above is
18477 a workaround of GCC PR debug/47510. In the case of this complaint
18478 type_name_or_error will error on such types later.
18479
18480 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18481 it could not find the child DIEs referenced later, this is checked
18482 above. In correct DWARF DW_TAG_typedef should have no children. */
18483
18484 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18485 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18486 "- DIE at %s [in module %s]"),
18487 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18488
18489 /* If we're at the second level, and we're an enumerator, and
18490 our parent has no specification (meaning possibly lives in a
18491 namespace elsewhere), then we can add the partial symbol now
18492 instead of queueing it. */
18493 if (pdi.tag == DW_TAG_enumerator
18494 && parent_die != NULL
18495 && parent_die->die_parent == NULL
18496 && parent_die->tag == DW_TAG_enumeration_type
18497 && parent_die->has_specification == 0)
18498 {
18499 if (pdi.name == NULL)
18500 complaint (_("malformed enumerator DIE ignored"));
18501 else if (building_psymtab)
18502 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18503 VAR_DOMAIN, LOC_CONST, -1,
18504 cu->language == language_cplus
18505 ? psymbol_placement::GLOBAL
18506 : psymbol_placement::STATIC,
18507 0, cu->language, objfile);
18508
18509 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18510 continue;
18511 }
18512
18513 struct partial_die_info *part_die
18514 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18515
18516 /* We'll save this DIE so link it in. */
18517 part_die->die_parent = parent_die;
18518 part_die->die_sibling = NULL;
18519 part_die->die_child = NULL;
18520
18521 if (last_die && last_die == parent_die)
18522 last_die->die_child = part_die;
18523 else if (last_die)
18524 last_die->die_sibling = part_die;
18525
18526 last_die = part_die;
18527
18528 if (first_die == NULL)
18529 first_die = part_die;
18530
18531 /* Maybe add the DIE to the hash table. Not all DIEs that we
18532 find interesting need to be in the hash table, because we
18533 also have the parent/sibling/child chains; only those that we
18534 might refer to by offset later during partial symbol reading.
18535
18536 For now this means things that might have be the target of a
18537 DW_AT_specification, DW_AT_abstract_origin, or
18538 DW_AT_extension. DW_AT_extension will refer only to
18539 namespaces; DW_AT_abstract_origin refers to functions (and
18540 many things under the function DIE, but we do not recurse
18541 into function DIEs during partial symbol reading) and
18542 possibly variables as well; DW_AT_specification refers to
18543 declarations. Declarations ought to have the DW_AT_declaration
18544 flag. It happens that GCC forgets to put it in sometimes, but
18545 only for functions, not for types.
18546
18547 Adding more things than necessary to the hash table is harmless
18548 except for the performance cost. Adding too few will result in
18549 wasted time in find_partial_die, when we reread the compilation
18550 unit with load_all_dies set. */
18551
18552 if (load_all
18553 || abbrev->tag == DW_TAG_constant
18554 || abbrev->tag == DW_TAG_subprogram
18555 || abbrev->tag == DW_TAG_variable
18556 || abbrev->tag == DW_TAG_namespace
18557 || part_die->is_declaration)
18558 {
18559 void **slot;
18560
18561 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18562 to_underlying (part_die->sect_off),
18563 INSERT);
18564 *slot = part_die;
18565 }
18566
18567 /* For some DIEs we want to follow their children (if any). For C
18568 we have no reason to follow the children of structures; for other
18569 languages we have to, so that we can get at method physnames
18570 to infer fully qualified class names, for DW_AT_specification,
18571 and for C++ template arguments. For C++, we also look one level
18572 inside functions to find template arguments (if the name of the
18573 function does not already contain the template arguments).
18574
18575 For Ada, we need to scan the children of subprograms and lexical
18576 blocks as well because Ada allows the definition of nested
18577 entities that could be interesting for the debugger, such as
18578 nested subprograms for instance. */
18579 if (last_die->has_children
18580 && (load_all
18581 || last_die->tag == DW_TAG_namespace
18582 || last_die->tag == DW_TAG_module
18583 || last_die->tag == DW_TAG_enumeration_type
18584 || (cu->language == language_cplus
18585 && last_die->tag == DW_TAG_subprogram
18586 && (last_die->name == NULL
18587 || strchr (last_die->name, '<') == NULL))
18588 || (cu->language != language_c
18589 && (last_die->tag == DW_TAG_class_type
18590 || last_die->tag == DW_TAG_interface_type
18591 || last_die->tag == DW_TAG_structure_type
18592 || last_die->tag == DW_TAG_union_type))
18593 || (cu->language == language_ada
18594 && (last_die->tag == DW_TAG_subprogram
18595 || last_die->tag == DW_TAG_lexical_block))))
18596 {
18597 nesting_level++;
18598 parent_die = last_die;
18599 continue;
18600 }
18601
18602 /* Otherwise we skip to the next sibling, if any. */
18603 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18604
18605 /* Back to the top, do it again. */
18606 }
18607 }
18608
18609 partial_die_info::partial_die_info (sect_offset sect_off_,
18610 struct abbrev_info *abbrev)
18611 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18612 {
18613 }
18614
18615 /* Read a minimal amount of information into the minimal die structure.
18616 INFO_PTR should point just after the initial uleb128 of a DIE. */
18617
18618 const gdb_byte *
18619 partial_die_info::read (const struct die_reader_specs *reader,
18620 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18621 {
18622 struct dwarf2_cu *cu = reader->cu;
18623 struct dwarf2_per_objfile *dwarf2_per_objfile
18624 = cu->per_cu->dwarf2_per_objfile;
18625 unsigned int i;
18626 int has_low_pc_attr = 0;
18627 int has_high_pc_attr = 0;
18628 int high_pc_relative = 0;
18629
18630 for (i = 0; i < abbrev.num_attrs; ++i)
18631 {
18632 struct attribute attr;
18633
18634 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18635
18636 /* Store the data if it is of an attribute we want to keep in a
18637 partial symbol table. */
18638 switch (attr.name)
18639 {
18640 case DW_AT_name:
18641 switch (tag)
18642 {
18643 case DW_TAG_compile_unit:
18644 case DW_TAG_partial_unit:
18645 case DW_TAG_type_unit:
18646 /* Compilation units have a DW_AT_name that is a filename, not
18647 a source language identifier. */
18648 case DW_TAG_enumeration_type:
18649 case DW_TAG_enumerator:
18650 /* These tags always have simple identifiers already; no need
18651 to canonicalize them. */
18652 name = DW_STRING (&attr);
18653 break;
18654 default:
18655 {
18656 struct objfile *objfile = dwarf2_per_objfile->objfile;
18657
18658 name
18659 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18660 &objfile->per_bfd->storage_obstack);
18661 }
18662 break;
18663 }
18664 break;
18665 case DW_AT_linkage_name:
18666 case DW_AT_MIPS_linkage_name:
18667 /* Note that both forms of linkage name might appear. We
18668 assume they will be the same, and we only store the last
18669 one we see. */
18670 linkage_name = DW_STRING (&attr);
18671 break;
18672 case DW_AT_low_pc:
18673 has_low_pc_attr = 1;
18674 lowpc = attr_value_as_address (&attr);
18675 break;
18676 case DW_AT_high_pc:
18677 has_high_pc_attr = 1;
18678 highpc = attr_value_as_address (&attr);
18679 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18680 high_pc_relative = 1;
18681 break;
18682 case DW_AT_location:
18683 /* Support the .debug_loc offsets. */
18684 if (attr_form_is_block (&attr))
18685 {
18686 d.locdesc = DW_BLOCK (&attr);
18687 }
18688 else if (attr_form_is_section_offset (&attr))
18689 {
18690 dwarf2_complex_location_expr_complaint ();
18691 }
18692 else
18693 {
18694 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18695 "partial symbol information");
18696 }
18697 break;
18698 case DW_AT_external:
18699 is_external = DW_UNSND (&attr);
18700 break;
18701 case DW_AT_declaration:
18702 is_declaration = DW_UNSND (&attr);
18703 break;
18704 case DW_AT_type:
18705 has_type = 1;
18706 break;
18707 case DW_AT_abstract_origin:
18708 case DW_AT_specification:
18709 case DW_AT_extension:
18710 has_specification = 1;
18711 spec_offset = dwarf2_get_ref_die_offset (&attr);
18712 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18713 || cu->per_cu->is_dwz);
18714 break;
18715 case DW_AT_sibling:
18716 /* Ignore absolute siblings, they might point outside of
18717 the current compile unit. */
18718 if (attr.form == DW_FORM_ref_addr)
18719 complaint (_("ignoring absolute DW_AT_sibling"));
18720 else
18721 {
18722 const gdb_byte *buffer = reader->buffer;
18723 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18724 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18725
18726 if (sibling_ptr < info_ptr)
18727 complaint (_("DW_AT_sibling points backwards"));
18728 else if (sibling_ptr > reader->buffer_end)
18729 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18730 else
18731 sibling = sibling_ptr;
18732 }
18733 break;
18734 case DW_AT_byte_size:
18735 has_byte_size = 1;
18736 break;
18737 case DW_AT_const_value:
18738 has_const_value = 1;
18739 break;
18740 case DW_AT_calling_convention:
18741 /* DWARF doesn't provide a way to identify a program's source-level
18742 entry point. DW_AT_calling_convention attributes are only meant
18743 to describe functions' calling conventions.
18744
18745 However, because it's a necessary piece of information in
18746 Fortran, and before DWARF 4 DW_CC_program was the only
18747 piece of debugging information whose definition refers to
18748 a 'main program' at all, several compilers marked Fortran
18749 main programs with DW_CC_program --- even when those
18750 functions use the standard calling conventions.
18751
18752 Although DWARF now specifies a way to provide this
18753 information, we support this practice for backward
18754 compatibility. */
18755 if (DW_UNSND (&attr) == DW_CC_program
18756 && cu->language == language_fortran)
18757 main_subprogram = 1;
18758 break;
18759 case DW_AT_inline:
18760 if (DW_UNSND (&attr) == DW_INL_inlined
18761 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18762 may_be_inlined = 1;
18763 break;
18764
18765 case DW_AT_import:
18766 if (tag == DW_TAG_imported_unit)
18767 {
18768 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18769 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18770 || cu->per_cu->is_dwz);
18771 }
18772 break;
18773
18774 case DW_AT_main_subprogram:
18775 main_subprogram = DW_UNSND (&attr);
18776 break;
18777
18778 case DW_AT_ranges:
18779 {
18780 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18781 but that requires a full DIE, so instead we just
18782 reimplement it. */
18783 int need_ranges_base = tag != DW_TAG_compile_unit;
18784 unsigned int ranges_offset = (DW_UNSND (&attr)
18785 + (need_ranges_base
18786 ? cu->ranges_base
18787 : 0));
18788
18789 /* Value of the DW_AT_ranges attribute is the offset in the
18790 .debug_ranges section. */
18791 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18792 nullptr))
18793 has_pc_info = 1;
18794 }
18795 break;
18796
18797 default:
18798 break;
18799 }
18800 }
18801
18802 /* For Ada, if both the name and the linkage name appear, we prefer
18803 the latter. This lets "catch exception" work better, regardless
18804 of the order in which the name and linkage name were emitted.
18805 Really, though, this is just a workaround for the fact that gdb
18806 doesn't store both the name and the linkage name. */
18807 if (cu->language == language_ada && linkage_name != nullptr)
18808 name = linkage_name;
18809
18810 if (high_pc_relative)
18811 highpc += lowpc;
18812
18813 if (has_low_pc_attr && has_high_pc_attr)
18814 {
18815 /* When using the GNU linker, .gnu.linkonce. sections are used to
18816 eliminate duplicate copies of functions and vtables and such.
18817 The linker will arbitrarily choose one and discard the others.
18818 The AT_*_pc values for such functions refer to local labels in
18819 these sections. If the section from that file was discarded, the
18820 labels are not in the output, so the relocs get a value of 0.
18821 If this is a discarded function, mark the pc bounds as invalid,
18822 so that GDB will ignore it. */
18823 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18824 {
18825 struct objfile *objfile = dwarf2_per_objfile->objfile;
18826 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18827
18828 complaint (_("DW_AT_low_pc %s is zero "
18829 "for DIE at %s [in module %s]"),
18830 paddress (gdbarch, lowpc),
18831 sect_offset_str (sect_off),
18832 objfile_name (objfile));
18833 }
18834 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18835 else if (lowpc >= highpc)
18836 {
18837 struct objfile *objfile = dwarf2_per_objfile->objfile;
18838 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18839
18840 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18841 "for DIE at %s [in module %s]"),
18842 paddress (gdbarch, lowpc),
18843 paddress (gdbarch, highpc),
18844 sect_offset_str (sect_off),
18845 objfile_name (objfile));
18846 }
18847 else
18848 has_pc_info = 1;
18849 }
18850
18851 return info_ptr;
18852 }
18853
18854 /* Find a cached partial DIE at OFFSET in CU. */
18855
18856 struct partial_die_info *
18857 dwarf2_cu::find_partial_die (sect_offset sect_off)
18858 {
18859 struct partial_die_info *lookup_die = NULL;
18860 struct partial_die_info part_die (sect_off);
18861
18862 lookup_die = ((struct partial_die_info *)
18863 htab_find_with_hash (partial_dies, &part_die,
18864 to_underlying (sect_off)));
18865
18866 return lookup_die;
18867 }
18868
18869 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18870 except in the case of .debug_types DIEs which do not reference
18871 outside their CU (they do however referencing other types via
18872 DW_FORM_ref_sig8). */
18873
18874 static const struct cu_partial_die_info
18875 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18876 {
18877 struct dwarf2_per_objfile *dwarf2_per_objfile
18878 = cu->per_cu->dwarf2_per_objfile;
18879 struct objfile *objfile = dwarf2_per_objfile->objfile;
18880 struct dwarf2_per_cu_data *per_cu = NULL;
18881 struct partial_die_info *pd = NULL;
18882
18883 if (offset_in_dwz == cu->per_cu->is_dwz
18884 && offset_in_cu_p (&cu->header, sect_off))
18885 {
18886 pd = cu->find_partial_die (sect_off);
18887 if (pd != NULL)
18888 return { cu, pd };
18889 /* We missed recording what we needed.
18890 Load all dies and try again. */
18891 per_cu = cu->per_cu;
18892 }
18893 else
18894 {
18895 /* TUs don't reference other CUs/TUs (except via type signatures). */
18896 if (cu->per_cu->is_debug_types)
18897 {
18898 error (_("Dwarf Error: Type Unit at offset %s contains"
18899 " external reference to offset %s [in module %s].\n"),
18900 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18901 bfd_get_filename (objfile->obfd));
18902 }
18903 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18904 dwarf2_per_objfile);
18905
18906 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18907 load_partial_comp_unit (per_cu);
18908
18909 per_cu->cu->last_used = 0;
18910 pd = per_cu->cu->find_partial_die (sect_off);
18911 }
18912
18913 /* If we didn't find it, and not all dies have been loaded,
18914 load them all and try again. */
18915
18916 if (pd == NULL && per_cu->load_all_dies == 0)
18917 {
18918 per_cu->load_all_dies = 1;
18919
18920 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18921 THIS_CU->cu may already be in use. So we can't just free it and
18922 replace its DIEs with the ones we read in. Instead, we leave those
18923 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18924 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18925 set. */
18926 load_partial_comp_unit (per_cu);
18927
18928 pd = per_cu->cu->find_partial_die (sect_off);
18929 }
18930
18931 if (pd == NULL)
18932 internal_error (__FILE__, __LINE__,
18933 _("could not find partial DIE %s "
18934 "in cache [from module %s]\n"),
18935 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18936 return { per_cu->cu, pd };
18937 }
18938
18939 /* See if we can figure out if the class lives in a namespace. We do
18940 this by looking for a member function; its demangled name will
18941 contain namespace info, if there is any. */
18942
18943 static void
18944 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18945 struct dwarf2_cu *cu)
18946 {
18947 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18948 what template types look like, because the demangler
18949 frequently doesn't give the same name as the debug info. We
18950 could fix this by only using the demangled name to get the
18951 prefix (but see comment in read_structure_type). */
18952
18953 struct partial_die_info *real_pdi;
18954 struct partial_die_info *child_pdi;
18955
18956 /* If this DIE (this DIE's specification, if any) has a parent, then
18957 we should not do this. We'll prepend the parent's fully qualified
18958 name when we create the partial symbol. */
18959
18960 real_pdi = struct_pdi;
18961 while (real_pdi->has_specification)
18962 {
18963 auto res = find_partial_die (real_pdi->spec_offset,
18964 real_pdi->spec_is_dwz, cu);
18965 real_pdi = res.pdi;
18966 cu = res.cu;
18967 }
18968
18969 if (real_pdi->die_parent != NULL)
18970 return;
18971
18972 for (child_pdi = struct_pdi->die_child;
18973 child_pdi != NULL;
18974 child_pdi = child_pdi->die_sibling)
18975 {
18976 if (child_pdi->tag == DW_TAG_subprogram
18977 && child_pdi->linkage_name != NULL)
18978 {
18979 char *actual_class_name
18980 = language_class_name_from_physname (cu->language_defn,
18981 child_pdi->linkage_name);
18982 if (actual_class_name != NULL)
18983 {
18984 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18985 struct_pdi->name
18986 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18987 actual_class_name);
18988 xfree (actual_class_name);
18989 }
18990 break;
18991 }
18992 }
18993 }
18994
18995 void
18996 partial_die_info::fixup (struct dwarf2_cu *cu)
18997 {
18998 /* Once we've fixed up a die, there's no point in doing so again.
18999 This also avoids a memory leak if we were to call
19000 guess_partial_die_structure_name multiple times. */
19001 if (fixup_called)
19002 return;
19003
19004 /* If we found a reference attribute and the DIE has no name, try
19005 to find a name in the referred to DIE. */
19006
19007 if (name == NULL && has_specification)
19008 {
19009 struct partial_die_info *spec_die;
19010
19011 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19012 spec_die = res.pdi;
19013 cu = res.cu;
19014
19015 spec_die->fixup (cu);
19016
19017 if (spec_die->name)
19018 {
19019 name = spec_die->name;
19020
19021 /* Copy DW_AT_external attribute if it is set. */
19022 if (spec_die->is_external)
19023 is_external = spec_die->is_external;
19024 }
19025 }
19026
19027 /* Set default names for some unnamed DIEs. */
19028
19029 if (name == NULL && tag == DW_TAG_namespace)
19030 name = CP_ANONYMOUS_NAMESPACE_STR;
19031
19032 /* If there is no parent die to provide a namespace, and there are
19033 children, see if we can determine the namespace from their linkage
19034 name. */
19035 if (cu->language == language_cplus
19036 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19037 && die_parent == NULL
19038 && has_children
19039 && (tag == DW_TAG_class_type
19040 || tag == DW_TAG_structure_type
19041 || tag == DW_TAG_union_type))
19042 guess_partial_die_structure_name (this, cu);
19043
19044 /* GCC might emit a nameless struct or union that has a linkage
19045 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19046 if (name == NULL
19047 && (tag == DW_TAG_class_type
19048 || tag == DW_TAG_interface_type
19049 || tag == DW_TAG_structure_type
19050 || tag == DW_TAG_union_type)
19051 && linkage_name != NULL)
19052 {
19053 char *demangled;
19054
19055 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19056 if (demangled)
19057 {
19058 const char *base;
19059
19060 /* Strip any leading namespaces/classes, keep only the base name.
19061 DW_AT_name for named DIEs does not contain the prefixes. */
19062 base = strrchr (demangled, ':');
19063 if (base && base > demangled && base[-1] == ':')
19064 base++;
19065 else
19066 base = demangled;
19067
19068 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19069 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19070 xfree (demangled);
19071 }
19072 }
19073
19074 fixup_called = 1;
19075 }
19076
19077 /* Read an attribute value described by an attribute form. */
19078
19079 static const gdb_byte *
19080 read_attribute_value (const struct die_reader_specs *reader,
19081 struct attribute *attr, unsigned form,
19082 LONGEST implicit_const, const gdb_byte *info_ptr)
19083 {
19084 struct dwarf2_cu *cu = reader->cu;
19085 struct dwarf2_per_objfile *dwarf2_per_objfile
19086 = cu->per_cu->dwarf2_per_objfile;
19087 struct objfile *objfile = dwarf2_per_objfile->objfile;
19088 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19089 bfd *abfd = reader->abfd;
19090 struct comp_unit_head *cu_header = &cu->header;
19091 unsigned int bytes_read;
19092 struct dwarf_block *blk;
19093
19094 attr->form = (enum dwarf_form) form;
19095 switch (form)
19096 {
19097 case DW_FORM_ref_addr:
19098 if (cu->header.version == 2)
19099 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19100 else
19101 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19102 &cu->header, &bytes_read);
19103 info_ptr += bytes_read;
19104 break;
19105 case DW_FORM_GNU_ref_alt:
19106 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_addr:
19110 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19111 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19112 info_ptr += bytes_read;
19113 break;
19114 case DW_FORM_block2:
19115 blk = dwarf_alloc_block (cu);
19116 blk->size = read_2_bytes (abfd, info_ptr);
19117 info_ptr += 2;
19118 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19119 info_ptr += blk->size;
19120 DW_BLOCK (attr) = blk;
19121 break;
19122 case DW_FORM_block4:
19123 blk = dwarf_alloc_block (cu);
19124 blk->size = read_4_bytes (abfd, info_ptr);
19125 info_ptr += 4;
19126 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19127 info_ptr += blk->size;
19128 DW_BLOCK (attr) = blk;
19129 break;
19130 case DW_FORM_data2:
19131 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19132 info_ptr += 2;
19133 break;
19134 case DW_FORM_data4:
19135 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19136 info_ptr += 4;
19137 break;
19138 case DW_FORM_data8:
19139 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19140 info_ptr += 8;
19141 break;
19142 case DW_FORM_data16:
19143 blk = dwarf_alloc_block (cu);
19144 blk->size = 16;
19145 blk->data = read_n_bytes (abfd, info_ptr, 16);
19146 info_ptr += 16;
19147 DW_BLOCK (attr) = blk;
19148 break;
19149 case DW_FORM_sec_offset:
19150 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19151 info_ptr += bytes_read;
19152 break;
19153 case DW_FORM_string:
19154 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19155 DW_STRING_IS_CANONICAL (attr) = 0;
19156 info_ptr += bytes_read;
19157 break;
19158 case DW_FORM_strp:
19159 if (!cu->per_cu->is_dwz)
19160 {
19161 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19162 abfd, info_ptr, cu_header,
19163 &bytes_read);
19164 DW_STRING_IS_CANONICAL (attr) = 0;
19165 info_ptr += bytes_read;
19166 break;
19167 }
19168 /* FALLTHROUGH */
19169 case DW_FORM_line_strp:
19170 if (!cu->per_cu->is_dwz)
19171 {
19172 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19173 abfd, info_ptr,
19174 cu_header, &bytes_read);
19175 DW_STRING_IS_CANONICAL (attr) = 0;
19176 info_ptr += bytes_read;
19177 break;
19178 }
19179 /* FALLTHROUGH */
19180 case DW_FORM_GNU_strp_alt:
19181 {
19182 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19183 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19184 &bytes_read);
19185
19186 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19187 dwz, str_offset);
19188 DW_STRING_IS_CANONICAL (attr) = 0;
19189 info_ptr += bytes_read;
19190 }
19191 break;
19192 case DW_FORM_exprloc:
19193 case DW_FORM_block:
19194 blk = dwarf_alloc_block (cu);
19195 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19196 info_ptr += bytes_read;
19197 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19198 info_ptr += blk->size;
19199 DW_BLOCK (attr) = blk;
19200 break;
19201 case DW_FORM_block1:
19202 blk = dwarf_alloc_block (cu);
19203 blk->size = read_1_byte (abfd, info_ptr);
19204 info_ptr += 1;
19205 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19206 info_ptr += blk->size;
19207 DW_BLOCK (attr) = blk;
19208 break;
19209 case DW_FORM_data1:
19210 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19211 info_ptr += 1;
19212 break;
19213 case DW_FORM_flag:
19214 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19215 info_ptr += 1;
19216 break;
19217 case DW_FORM_flag_present:
19218 DW_UNSND (attr) = 1;
19219 break;
19220 case DW_FORM_sdata:
19221 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19222 info_ptr += bytes_read;
19223 break;
19224 case DW_FORM_udata:
19225 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19226 info_ptr += bytes_read;
19227 break;
19228 case DW_FORM_ref1:
19229 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19230 + read_1_byte (abfd, info_ptr));
19231 info_ptr += 1;
19232 break;
19233 case DW_FORM_ref2:
19234 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19235 + read_2_bytes (abfd, info_ptr));
19236 info_ptr += 2;
19237 break;
19238 case DW_FORM_ref4:
19239 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19240 + read_4_bytes (abfd, info_ptr));
19241 info_ptr += 4;
19242 break;
19243 case DW_FORM_ref8:
19244 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19245 + read_8_bytes (abfd, info_ptr));
19246 info_ptr += 8;
19247 break;
19248 case DW_FORM_ref_sig8:
19249 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19250 info_ptr += 8;
19251 break;
19252 case DW_FORM_ref_udata:
19253 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19254 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19255 info_ptr += bytes_read;
19256 break;
19257 case DW_FORM_indirect:
19258 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19259 info_ptr += bytes_read;
19260 if (form == DW_FORM_implicit_const)
19261 {
19262 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19263 info_ptr += bytes_read;
19264 }
19265 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19266 info_ptr);
19267 break;
19268 case DW_FORM_implicit_const:
19269 DW_SND (attr) = implicit_const;
19270 break;
19271 case DW_FORM_addrx:
19272 case DW_FORM_GNU_addr_index:
19273 if (reader->dwo_file == NULL)
19274 {
19275 /* For now flag a hard error.
19276 Later we can turn this into a complaint. */
19277 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19278 dwarf_form_name (form),
19279 bfd_get_filename (abfd));
19280 }
19281 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19282 info_ptr += bytes_read;
19283 break;
19284 case DW_FORM_strx:
19285 case DW_FORM_strx1:
19286 case DW_FORM_strx2:
19287 case DW_FORM_strx3:
19288 case DW_FORM_strx4:
19289 case DW_FORM_GNU_str_index:
19290 if (reader->dwo_file == NULL)
19291 {
19292 /* For now flag a hard error.
19293 Later we can turn this into a complaint if warranted. */
19294 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19295 dwarf_form_name (form),
19296 bfd_get_filename (abfd));
19297 }
19298 {
19299 ULONGEST str_index;
19300 if (form == DW_FORM_strx1)
19301 {
19302 str_index = read_1_byte (abfd, info_ptr);
19303 info_ptr += 1;
19304 }
19305 else if (form == DW_FORM_strx2)
19306 {
19307 str_index = read_2_bytes (abfd, info_ptr);
19308 info_ptr += 2;
19309 }
19310 else if (form == DW_FORM_strx3)
19311 {
19312 str_index = read_3_bytes (abfd, info_ptr);
19313 info_ptr += 3;
19314 }
19315 else if (form == DW_FORM_strx4)
19316 {
19317 str_index = read_4_bytes (abfd, info_ptr);
19318 info_ptr += 4;
19319 }
19320 else
19321 {
19322 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19323 info_ptr += bytes_read;
19324 }
19325 DW_STRING (attr) = read_str_index (reader, str_index);
19326 DW_STRING_IS_CANONICAL (attr) = 0;
19327 }
19328 break;
19329 default:
19330 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19331 dwarf_form_name (form),
19332 bfd_get_filename (abfd));
19333 }
19334
19335 /* Super hack. */
19336 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19337 attr->form = DW_FORM_GNU_ref_alt;
19338
19339 /* We have seen instances where the compiler tried to emit a byte
19340 size attribute of -1 which ended up being encoded as an unsigned
19341 0xffffffff. Although 0xffffffff is technically a valid size value,
19342 an object of this size seems pretty unlikely so we can relatively
19343 safely treat these cases as if the size attribute was invalid and
19344 treat them as zero by default. */
19345 if (attr->name == DW_AT_byte_size
19346 && form == DW_FORM_data4
19347 && DW_UNSND (attr) >= 0xffffffff)
19348 {
19349 complaint
19350 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19351 hex_string (DW_UNSND (attr)));
19352 DW_UNSND (attr) = 0;
19353 }
19354
19355 return info_ptr;
19356 }
19357
19358 /* Read an attribute described by an abbreviated attribute. */
19359
19360 static const gdb_byte *
19361 read_attribute (const struct die_reader_specs *reader,
19362 struct attribute *attr, struct attr_abbrev *abbrev,
19363 const gdb_byte *info_ptr)
19364 {
19365 attr->name = abbrev->name;
19366 return read_attribute_value (reader, attr, abbrev->form,
19367 abbrev->implicit_const, info_ptr);
19368 }
19369
19370 /* Read dwarf information from a buffer. */
19371
19372 static unsigned int
19373 read_1_byte (bfd *abfd, const gdb_byte *buf)
19374 {
19375 return bfd_get_8 (abfd, buf);
19376 }
19377
19378 static int
19379 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19380 {
19381 return bfd_get_signed_8 (abfd, buf);
19382 }
19383
19384 static unsigned int
19385 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19386 {
19387 return bfd_get_16 (abfd, buf);
19388 }
19389
19390 static int
19391 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19392 {
19393 return bfd_get_signed_16 (abfd, buf);
19394 }
19395
19396 static unsigned int
19397 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19398 {
19399 unsigned int result = 0;
19400 for (int i = 0; i < 3; ++i)
19401 {
19402 unsigned char byte = bfd_get_8 (abfd, buf);
19403 buf++;
19404 result |= ((unsigned int) byte << (i * 8));
19405 }
19406 return result;
19407 }
19408
19409 static unsigned int
19410 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19411 {
19412 return bfd_get_32 (abfd, buf);
19413 }
19414
19415 static int
19416 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19417 {
19418 return bfd_get_signed_32 (abfd, buf);
19419 }
19420
19421 static ULONGEST
19422 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19423 {
19424 return bfd_get_64 (abfd, buf);
19425 }
19426
19427 static CORE_ADDR
19428 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19429 unsigned int *bytes_read)
19430 {
19431 struct comp_unit_head *cu_header = &cu->header;
19432 CORE_ADDR retval = 0;
19433
19434 if (cu_header->signed_addr_p)
19435 {
19436 switch (cu_header->addr_size)
19437 {
19438 case 2:
19439 retval = bfd_get_signed_16 (abfd, buf);
19440 break;
19441 case 4:
19442 retval = bfd_get_signed_32 (abfd, buf);
19443 break;
19444 case 8:
19445 retval = bfd_get_signed_64 (abfd, buf);
19446 break;
19447 default:
19448 internal_error (__FILE__, __LINE__,
19449 _("read_address: bad switch, signed [in module %s]"),
19450 bfd_get_filename (abfd));
19451 }
19452 }
19453 else
19454 {
19455 switch (cu_header->addr_size)
19456 {
19457 case 2:
19458 retval = bfd_get_16 (abfd, buf);
19459 break;
19460 case 4:
19461 retval = bfd_get_32 (abfd, buf);
19462 break;
19463 case 8:
19464 retval = bfd_get_64 (abfd, buf);
19465 break;
19466 default:
19467 internal_error (__FILE__, __LINE__,
19468 _("read_address: bad switch, "
19469 "unsigned [in module %s]"),
19470 bfd_get_filename (abfd));
19471 }
19472 }
19473
19474 *bytes_read = cu_header->addr_size;
19475 return retval;
19476 }
19477
19478 /* Read the initial length from a section. The (draft) DWARF 3
19479 specification allows the initial length to take up either 4 bytes
19480 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19481 bytes describe the length and all offsets will be 8 bytes in length
19482 instead of 4.
19483
19484 An older, non-standard 64-bit format is also handled by this
19485 function. The older format in question stores the initial length
19486 as an 8-byte quantity without an escape value. Lengths greater
19487 than 2^32 aren't very common which means that the initial 4 bytes
19488 is almost always zero. Since a length value of zero doesn't make
19489 sense for the 32-bit format, this initial zero can be considered to
19490 be an escape value which indicates the presence of the older 64-bit
19491 format. As written, the code can't detect (old format) lengths
19492 greater than 4GB. If it becomes necessary to handle lengths
19493 somewhat larger than 4GB, we could allow other small values (such
19494 as the non-sensical values of 1, 2, and 3) to also be used as
19495 escape values indicating the presence of the old format.
19496
19497 The value returned via bytes_read should be used to increment the
19498 relevant pointer after calling read_initial_length().
19499
19500 [ Note: read_initial_length() and read_offset() are based on the
19501 document entitled "DWARF Debugging Information Format", revision
19502 3, draft 8, dated November 19, 2001. This document was obtained
19503 from:
19504
19505 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19506
19507 This document is only a draft and is subject to change. (So beware.)
19508
19509 Details regarding the older, non-standard 64-bit format were
19510 determined empirically by examining 64-bit ELF files produced by
19511 the SGI toolchain on an IRIX 6.5 machine.
19512
19513 - Kevin, July 16, 2002
19514 ] */
19515
19516 static LONGEST
19517 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19518 {
19519 LONGEST length = bfd_get_32 (abfd, buf);
19520
19521 if (length == 0xffffffff)
19522 {
19523 length = bfd_get_64 (abfd, buf + 4);
19524 *bytes_read = 12;
19525 }
19526 else if (length == 0)
19527 {
19528 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19529 length = bfd_get_64 (abfd, buf);
19530 *bytes_read = 8;
19531 }
19532 else
19533 {
19534 *bytes_read = 4;
19535 }
19536
19537 return length;
19538 }
19539
19540 /* Cover function for read_initial_length.
19541 Returns the length of the object at BUF, and stores the size of the
19542 initial length in *BYTES_READ and stores the size that offsets will be in
19543 *OFFSET_SIZE.
19544 If the initial length size is not equivalent to that specified in
19545 CU_HEADER then issue a complaint.
19546 This is useful when reading non-comp-unit headers. */
19547
19548 static LONGEST
19549 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19550 const struct comp_unit_head *cu_header,
19551 unsigned int *bytes_read,
19552 unsigned int *offset_size)
19553 {
19554 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19555
19556 gdb_assert (cu_header->initial_length_size == 4
19557 || cu_header->initial_length_size == 8
19558 || cu_header->initial_length_size == 12);
19559
19560 if (cu_header->initial_length_size != *bytes_read)
19561 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19562
19563 *offset_size = (*bytes_read == 4) ? 4 : 8;
19564 return length;
19565 }
19566
19567 /* Read an offset from the data stream. The size of the offset is
19568 given by cu_header->offset_size. */
19569
19570 static LONGEST
19571 read_offset (bfd *abfd, const gdb_byte *buf,
19572 const struct comp_unit_head *cu_header,
19573 unsigned int *bytes_read)
19574 {
19575 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19576
19577 *bytes_read = cu_header->offset_size;
19578 return offset;
19579 }
19580
19581 /* Read an offset from the data stream. */
19582
19583 static LONGEST
19584 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19585 {
19586 LONGEST retval = 0;
19587
19588 switch (offset_size)
19589 {
19590 case 4:
19591 retval = bfd_get_32 (abfd, buf);
19592 break;
19593 case 8:
19594 retval = bfd_get_64 (abfd, buf);
19595 break;
19596 default:
19597 internal_error (__FILE__, __LINE__,
19598 _("read_offset_1: bad switch [in module %s]"),
19599 bfd_get_filename (abfd));
19600 }
19601
19602 return retval;
19603 }
19604
19605 static const gdb_byte *
19606 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19607 {
19608 /* If the size of a host char is 8 bits, we can return a pointer
19609 to the buffer, otherwise we have to copy the data to a buffer
19610 allocated on the temporary obstack. */
19611 gdb_assert (HOST_CHAR_BIT == 8);
19612 return buf;
19613 }
19614
19615 static const char *
19616 read_direct_string (bfd *abfd, const gdb_byte *buf,
19617 unsigned int *bytes_read_ptr)
19618 {
19619 /* If the size of a host char is 8 bits, we can return a pointer
19620 to the string, otherwise we have to copy the string to a buffer
19621 allocated on the temporary obstack. */
19622 gdb_assert (HOST_CHAR_BIT == 8);
19623 if (*buf == '\0')
19624 {
19625 *bytes_read_ptr = 1;
19626 return NULL;
19627 }
19628 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19629 return (const char *) buf;
19630 }
19631
19632 /* Return pointer to string at section SECT offset STR_OFFSET with error
19633 reporting strings FORM_NAME and SECT_NAME. */
19634
19635 static const char *
19636 read_indirect_string_at_offset_from (struct objfile *objfile,
19637 bfd *abfd, LONGEST str_offset,
19638 struct dwarf2_section_info *sect,
19639 const char *form_name,
19640 const char *sect_name)
19641 {
19642 dwarf2_read_section (objfile, sect);
19643 if (sect->buffer == NULL)
19644 error (_("%s used without %s section [in module %s]"),
19645 form_name, sect_name, bfd_get_filename (abfd));
19646 if (str_offset >= sect->size)
19647 error (_("%s pointing outside of %s section [in module %s]"),
19648 form_name, sect_name, bfd_get_filename (abfd));
19649 gdb_assert (HOST_CHAR_BIT == 8);
19650 if (sect->buffer[str_offset] == '\0')
19651 return NULL;
19652 return (const char *) (sect->buffer + str_offset);
19653 }
19654
19655 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19656
19657 static const char *
19658 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19659 bfd *abfd, LONGEST str_offset)
19660 {
19661 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19662 abfd, str_offset,
19663 &dwarf2_per_objfile->str,
19664 "DW_FORM_strp", ".debug_str");
19665 }
19666
19667 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19668
19669 static const char *
19670 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19671 bfd *abfd, LONGEST str_offset)
19672 {
19673 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19674 abfd, str_offset,
19675 &dwarf2_per_objfile->line_str,
19676 "DW_FORM_line_strp",
19677 ".debug_line_str");
19678 }
19679
19680 /* Read a string at offset STR_OFFSET in the .debug_str section from
19681 the .dwz file DWZ. Throw an error if the offset is too large. If
19682 the string consists of a single NUL byte, return NULL; otherwise
19683 return a pointer to the string. */
19684
19685 static const char *
19686 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19687 LONGEST str_offset)
19688 {
19689 dwarf2_read_section (objfile, &dwz->str);
19690
19691 if (dwz->str.buffer == NULL)
19692 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19693 "section [in module %s]"),
19694 bfd_get_filename (dwz->dwz_bfd));
19695 if (str_offset >= dwz->str.size)
19696 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19697 ".debug_str section [in module %s]"),
19698 bfd_get_filename (dwz->dwz_bfd));
19699 gdb_assert (HOST_CHAR_BIT == 8);
19700 if (dwz->str.buffer[str_offset] == '\0')
19701 return NULL;
19702 return (const char *) (dwz->str.buffer + str_offset);
19703 }
19704
19705 /* Return pointer to string at .debug_str offset as read from BUF.
19706 BUF is assumed to be in a compilation unit described by CU_HEADER.
19707 Return *BYTES_READ_PTR count of bytes read from BUF. */
19708
19709 static const char *
19710 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19711 const gdb_byte *buf,
19712 const struct comp_unit_head *cu_header,
19713 unsigned int *bytes_read_ptr)
19714 {
19715 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19716
19717 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19718 }
19719
19720 /* Return pointer to string at .debug_line_str offset as read from BUF.
19721 BUF is assumed to be in a compilation unit described by CU_HEADER.
19722 Return *BYTES_READ_PTR count of bytes read from BUF. */
19723
19724 static const char *
19725 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19726 bfd *abfd, const gdb_byte *buf,
19727 const struct comp_unit_head *cu_header,
19728 unsigned int *bytes_read_ptr)
19729 {
19730 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19731
19732 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19733 str_offset);
19734 }
19735
19736 ULONGEST
19737 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19738 unsigned int *bytes_read_ptr)
19739 {
19740 ULONGEST result;
19741 unsigned int num_read;
19742 int shift;
19743 unsigned char byte;
19744
19745 result = 0;
19746 shift = 0;
19747 num_read = 0;
19748 while (1)
19749 {
19750 byte = bfd_get_8 (abfd, buf);
19751 buf++;
19752 num_read++;
19753 result |= ((ULONGEST) (byte & 127) << shift);
19754 if ((byte & 128) == 0)
19755 {
19756 break;
19757 }
19758 shift += 7;
19759 }
19760 *bytes_read_ptr = num_read;
19761 return result;
19762 }
19763
19764 static LONGEST
19765 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19766 unsigned int *bytes_read_ptr)
19767 {
19768 ULONGEST result;
19769 int shift, num_read;
19770 unsigned char byte;
19771
19772 result = 0;
19773 shift = 0;
19774 num_read = 0;
19775 while (1)
19776 {
19777 byte = bfd_get_8 (abfd, buf);
19778 buf++;
19779 num_read++;
19780 result |= ((ULONGEST) (byte & 127) << shift);
19781 shift += 7;
19782 if ((byte & 128) == 0)
19783 {
19784 break;
19785 }
19786 }
19787 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19788 result |= -(((ULONGEST) 1) << shift);
19789 *bytes_read_ptr = num_read;
19790 return result;
19791 }
19792
19793 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19794 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19795 ADDR_SIZE is the size of addresses from the CU header. */
19796
19797 static CORE_ADDR
19798 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19799 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19800 {
19801 struct objfile *objfile = dwarf2_per_objfile->objfile;
19802 bfd *abfd = objfile->obfd;
19803 const gdb_byte *info_ptr;
19804
19805 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19806 if (dwarf2_per_objfile->addr.buffer == NULL)
19807 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19808 objfile_name (objfile));
19809 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19810 error (_("DW_FORM_addr_index pointing outside of "
19811 ".debug_addr section [in module %s]"),
19812 objfile_name (objfile));
19813 info_ptr = (dwarf2_per_objfile->addr.buffer
19814 + addr_base + addr_index * addr_size);
19815 if (addr_size == 4)
19816 return bfd_get_32 (abfd, info_ptr);
19817 else
19818 return bfd_get_64 (abfd, info_ptr);
19819 }
19820
19821 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19822
19823 static CORE_ADDR
19824 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19825 {
19826 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19827 cu->addr_base, cu->header.addr_size);
19828 }
19829
19830 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19831
19832 static CORE_ADDR
19833 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19834 unsigned int *bytes_read)
19835 {
19836 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19837 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19838
19839 return read_addr_index (cu, addr_index);
19840 }
19841
19842 /* Data structure to pass results from dwarf2_read_addr_index_reader
19843 back to dwarf2_read_addr_index. */
19844
19845 struct dwarf2_read_addr_index_data
19846 {
19847 ULONGEST addr_base;
19848 int addr_size;
19849 };
19850
19851 /* die_reader_func for dwarf2_read_addr_index. */
19852
19853 static void
19854 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19855 const gdb_byte *info_ptr,
19856 struct die_info *comp_unit_die,
19857 int has_children,
19858 void *data)
19859 {
19860 struct dwarf2_cu *cu = reader->cu;
19861 struct dwarf2_read_addr_index_data *aidata =
19862 (struct dwarf2_read_addr_index_data *) data;
19863
19864 aidata->addr_base = cu->addr_base;
19865 aidata->addr_size = cu->header.addr_size;
19866 }
19867
19868 /* Given an index in .debug_addr, fetch the value.
19869 NOTE: This can be called during dwarf expression evaluation,
19870 long after the debug information has been read, and thus per_cu->cu
19871 may no longer exist. */
19872
19873 CORE_ADDR
19874 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19875 unsigned int addr_index)
19876 {
19877 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19878 struct dwarf2_cu *cu = per_cu->cu;
19879 ULONGEST addr_base;
19880 int addr_size;
19881
19882 /* We need addr_base and addr_size.
19883 If we don't have PER_CU->cu, we have to get it.
19884 Nasty, but the alternative is storing the needed info in PER_CU,
19885 which at this point doesn't seem justified: it's not clear how frequently
19886 it would get used and it would increase the size of every PER_CU.
19887 Entry points like dwarf2_per_cu_addr_size do a similar thing
19888 so we're not in uncharted territory here.
19889 Alas we need to be a bit more complicated as addr_base is contained
19890 in the DIE.
19891
19892 We don't need to read the entire CU(/TU).
19893 We just need the header and top level die.
19894
19895 IWBN to use the aging mechanism to let us lazily later discard the CU.
19896 For now we skip this optimization. */
19897
19898 if (cu != NULL)
19899 {
19900 addr_base = cu->addr_base;
19901 addr_size = cu->header.addr_size;
19902 }
19903 else
19904 {
19905 struct dwarf2_read_addr_index_data aidata;
19906
19907 /* Note: We can't use init_cutu_and_read_dies_simple here,
19908 we need addr_base. */
19909 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19910 dwarf2_read_addr_index_reader, &aidata);
19911 addr_base = aidata.addr_base;
19912 addr_size = aidata.addr_size;
19913 }
19914
19915 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19916 addr_size);
19917 }
19918
19919 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19920 This is only used by the Fission support. */
19921
19922 static const char *
19923 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19924 {
19925 struct dwarf2_cu *cu = reader->cu;
19926 struct dwarf2_per_objfile *dwarf2_per_objfile
19927 = cu->per_cu->dwarf2_per_objfile;
19928 struct objfile *objfile = dwarf2_per_objfile->objfile;
19929 const char *objf_name = objfile_name (objfile);
19930 bfd *abfd = objfile->obfd;
19931 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19932 struct dwarf2_section_info *str_offsets_section =
19933 &reader->dwo_file->sections.str_offsets;
19934 const gdb_byte *info_ptr;
19935 ULONGEST str_offset;
19936 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19937
19938 dwarf2_read_section (objfile, str_section);
19939 dwarf2_read_section (objfile, str_offsets_section);
19940 if (str_section->buffer == NULL)
19941 error (_("%s used without .debug_str.dwo section"
19942 " in CU at offset %s [in module %s]"),
19943 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19944 if (str_offsets_section->buffer == NULL)
19945 error (_("%s used without .debug_str_offsets.dwo section"
19946 " in CU at offset %s [in module %s]"),
19947 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19948 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19949 error (_("%s pointing outside of .debug_str_offsets.dwo"
19950 " section in CU at offset %s [in module %s]"),
19951 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19952 info_ptr = (str_offsets_section->buffer
19953 + str_index * cu->header.offset_size);
19954 if (cu->header.offset_size == 4)
19955 str_offset = bfd_get_32 (abfd, info_ptr);
19956 else
19957 str_offset = bfd_get_64 (abfd, info_ptr);
19958 if (str_offset >= str_section->size)
19959 error (_("Offset from %s pointing outside of"
19960 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19961 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19962 return (const char *) (str_section->buffer + str_offset);
19963 }
19964
19965 /* Return the length of an LEB128 number in BUF. */
19966
19967 static int
19968 leb128_size (const gdb_byte *buf)
19969 {
19970 const gdb_byte *begin = buf;
19971 gdb_byte byte;
19972
19973 while (1)
19974 {
19975 byte = *buf++;
19976 if ((byte & 128) == 0)
19977 return buf - begin;
19978 }
19979 }
19980
19981 static void
19982 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19983 {
19984 switch (lang)
19985 {
19986 case DW_LANG_C89:
19987 case DW_LANG_C99:
19988 case DW_LANG_C11:
19989 case DW_LANG_C:
19990 case DW_LANG_UPC:
19991 cu->language = language_c;
19992 break;
19993 case DW_LANG_Java:
19994 case DW_LANG_C_plus_plus:
19995 case DW_LANG_C_plus_plus_11:
19996 case DW_LANG_C_plus_plus_14:
19997 cu->language = language_cplus;
19998 break;
19999 case DW_LANG_D:
20000 cu->language = language_d;
20001 break;
20002 case DW_LANG_Fortran77:
20003 case DW_LANG_Fortran90:
20004 case DW_LANG_Fortran95:
20005 case DW_LANG_Fortran03:
20006 case DW_LANG_Fortran08:
20007 cu->language = language_fortran;
20008 break;
20009 case DW_LANG_Go:
20010 cu->language = language_go;
20011 break;
20012 case DW_LANG_Mips_Assembler:
20013 cu->language = language_asm;
20014 break;
20015 case DW_LANG_Ada83:
20016 case DW_LANG_Ada95:
20017 cu->language = language_ada;
20018 break;
20019 case DW_LANG_Modula2:
20020 cu->language = language_m2;
20021 break;
20022 case DW_LANG_Pascal83:
20023 cu->language = language_pascal;
20024 break;
20025 case DW_LANG_ObjC:
20026 cu->language = language_objc;
20027 break;
20028 case DW_LANG_Rust:
20029 case DW_LANG_Rust_old:
20030 cu->language = language_rust;
20031 break;
20032 case DW_LANG_Cobol74:
20033 case DW_LANG_Cobol85:
20034 default:
20035 cu->language = language_minimal;
20036 break;
20037 }
20038 cu->language_defn = language_def (cu->language);
20039 }
20040
20041 /* Return the named attribute or NULL if not there. */
20042
20043 static struct attribute *
20044 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20045 {
20046 for (;;)
20047 {
20048 unsigned int i;
20049 struct attribute *spec = NULL;
20050
20051 for (i = 0; i < die->num_attrs; ++i)
20052 {
20053 if (die->attrs[i].name == name)
20054 return &die->attrs[i];
20055 if (die->attrs[i].name == DW_AT_specification
20056 || die->attrs[i].name == DW_AT_abstract_origin)
20057 spec = &die->attrs[i];
20058 }
20059
20060 if (!spec)
20061 break;
20062
20063 die = follow_die_ref (die, spec, &cu);
20064 }
20065
20066 return NULL;
20067 }
20068
20069 /* Return the named attribute or NULL if not there,
20070 but do not follow DW_AT_specification, etc.
20071 This is for use in contexts where we're reading .debug_types dies.
20072 Following DW_AT_specification, DW_AT_abstract_origin will take us
20073 back up the chain, and we want to go down. */
20074
20075 static struct attribute *
20076 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20077 {
20078 unsigned int i;
20079
20080 for (i = 0; i < die->num_attrs; ++i)
20081 if (die->attrs[i].name == name)
20082 return &die->attrs[i];
20083
20084 return NULL;
20085 }
20086
20087 /* Return the string associated with a string-typed attribute, or NULL if it
20088 is either not found or is of an incorrect type. */
20089
20090 static const char *
20091 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20092 {
20093 struct attribute *attr;
20094 const char *str = NULL;
20095
20096 attr = dwarf2_attr (die, name, cu);
20097
20098 if (attr != NULL)
20099 {
20100 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20101 || attr->form == DW_FORM_string
20102 || attr->form == DW_FORM_strx
20103 || attr->form == DW_FORM_GNU_str_index
20104 || attr->form == DW_FORM_GNU_strp_alt)
20105 str = DW_STRING (attr);
20106 else
20107 complaint (_("string type expected for attribute %s for "
20108 "DIE at %s in module %s"),
20109 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20110 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20111 }
20112
20113 return str;
20114 }
20115
20116 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20117 and holds a non-zero value. This function should only be used for
20118 DW_FORM_flag or DW_FORM_flag_present attributes. */
20119
20120 static int
20121 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20122 {
20123 struct attribute *attr = dwarf2_attr (die, name, cu);
20124
20125 return (attr && DW_UNSND (attr));
20126 }
20127
20128 static int
20129 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20130 {
20131 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20132 which value is non-zero. However, we have to be careful with
20133 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20134 (via dwarf2_flag_true_p) follows this attribute. So we may
20135 end up accidently finding a declaration attribute that belongs
20136 to a different DIE referenced by the specification attribute,
20137 even though the given DIE does not have a declaration attribute. */
20138 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20139 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20140 }
20141
20142 /* Return the die giving the specification for DIE, if there is
20143 one. *SPEC_CU is the CU containing DIE on input, and the CU
20144 containing the return value on output. If there is no
20145 specification, but there is an abstract origin, that is
20146 returned. */
20147
20148 static struct die_info *
20149 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20150 {
20151 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20152 *spec_cu);
20153
20154 if (spec_attr == NULL)
20155 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20156
20157 if (spec_attr == NULL)
20158 return NULL;
20159 else
20160 return follow_die_ref (die, spec_attr, spec_cu);
20161 }
20162
20163 /* Stub for free_line_header to match void * callback types. */
20164
20165 static void
20166 free_line_header_voidp (void *arg)
20167 {
20168 struct line_header *lh = (struct line_header *) arg;
20169
20170 delete lh;
20171 }
20172
20173 void
20174 line_header::add_include_dir (const char *include_dir)
20175 {
20176 if (dwarf_line_debug >= 2)
20177 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20178 include_dirs.size () + 1, include_dir);
20179
20180 include_dirs.push_back (include_dir);
20181 }
20182
20183 void
20184 line_header::add_file_name (const char *name,
20185 dir_index d_index,
20186 unsigned int mod_time,
20187 unsigned int length)
20188 {
20189 if (dwarf_line_debug >= 2)
20190 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20191 (unsigned) file_names.size () + 1, name);
20192
20193 file_names.emplace_back (name, d_index, mod_time, length);
20194 }
20195
20196 /* A convenience function to find the proper .debug_line section for a CU. */
20197
20198 static struct dwarf2_section_info *
20199 get_debug_line_section (struct dwarf2_cu *cu)
20200 {
20201 struct dwarf2_section_info *section;
20202 struct dwarf2_per_objfile *dwarf2_per_objfile
20203 = cu->per_cu->dwarf2_per_objfile;
20204
20205 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20206 DWO file. */
20207 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20208 section = &cu->dwo_unit->dwo_file->sections.line;
20209 else if (cu->per_cu->is_dwz)
20210 {
20211 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20212
20213 section = &dwz->line;
20214 }
20215 else
20216 section = &dwarf2_per_objfile->line;
20217
20218 return section;
20219 }
20220
20221 /* Read directory or file name entry format, starting with byte of
20222 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20223 entries count and the entries themselves in the described entry
20224 format. */
20225
20226 static void
20227 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20228 bfd *abfd, const gdb_byte **bufp,
20229 struct line_header *lh,
20230 const struct comp_unit_head *cu_header,
20231 void (*callback) (struct line_header *lh,
20232 const char *name,
20233 dir_index d_index,
20234 unsigned int mod_time,
20235 unsigned int length))
20236 {
20237 gdb_byte format_count, formati;
20238 ULONGEST data_count, datai;
20239 const gdb_byte *buf = *bufp;
20240 const gdb_byte *format_header_data;
20241 unsigned int bytes_read;
20242
20243 format_count = read_1_byte (abfd, buf);
20244 buf += 1;
20245 format_header_data = buf;
20246 for (formati = 0; formati < format_count; formati++)
20247 {
20248 read_unsigned_leb128 (abfd, buf, &bytes_read);
20249 buf += bytes_read;
20250 read_unsigned_leb128 (abfd, buf, &bytes_read);
20251 buf += bytes_read;
20252 }
20253
20254 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20255 buf += bytes_read;
20256 for (datai = 0; datai < data_count; datai++)
20257 {
20258 const gdb_byte *format = format_header_data;
20259 struct file_entry fe;
20260
20261 for (formati = 0; formati < format_count; formati++)
20262 {
20263 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20264 format += bytes_read;
20265
20266 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20267 format += bytes_read;
20268
20269 gdb::optional<const char *> string;
20270 gdb::optional<unsigned int> uint;
20271
20272 switch (form)
20273 {
20274 case DW_FORM_string:
20275 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20276 buf += bytes_read;
20277 break;
20278
20279 case DW_FORM_line_strp:
20280 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20281 abfd, buf,
20282 cu_header,
20283 &bytes_read));
20284 buf += bytes_read;
20285 break;
20286
20287 case DW_FORM_data1:
20288 uint.emplace (read_1_byte (abfd, buf));
20289 buf += 1;
20290 break;
20291
20292 case DW_FORM_data2:
20293 uint.emplace (read_2_bytes (abfd, buf));
20294 buf += 2;
20295 break;
20296
20297 case DW_FORM_data4:
20298 uint.emplace (read_4_bytes (abfd, buf));
20299 buf += 4;
20300 break;
20301
20302 case DW_FORM_data8:
20303 uint.emplace (read_8_bytes (abfd, buf));
20304 buf += 8;
20305 break;
20306
20307 case DW_FORM_udata:
20308 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20309 buf += bytes_read;
20310 break;
20311
20312 case DW_FORM_block:
20313 /* It is valid only for DW_LNCT_timestamp which is ignored by
20314 current GDB. */
20315 break;
20316 }
20317
20318 switch (content_type)
20319 {
20320 case DW_LNCT_path:
20321 if (string.has_value ())
20322 fe.name = *string;
20323 break;
20324 case DW_LNCT_directory_index:
20325 if (uint.has_value ())
20326 fe.d_index = (dir_index) *uint;
20327 break;
20328 case DW_LNCT_timestamp:
20329 if (uint.has_value ())
20330 fe.mod_time = *uint;
20331 break;
20332 case DW_LNCT_size:
20333 if (uint.has_value ())
20334 fe.length = *uint;
20335 break;
20336 case DW_LNCT_MD5:
20337 break;
20338 default:
20339 complaint (_("Unknown format content type %s"),
20340 pulongest (content_type));
20341 }
20342 }
20343
20344 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20345 }
20346
20347 *bufp = buf;
20348 }
20349
20350 /* Read the statement program header starting at OFFSET in
20351 .debug_line, or .debug_line.dwo. Return a pointer
20352 to a struct line_header, allocated using xmalloc.
20353 Returns NULL if there is a problem reading the header, e.g., if it
20354 has a version we don't understand.
20355
20356 NOTE: the strings in the include directory and file name tables of
20357 the returned object point into the dwarf line section buffer,
20358 and must not be freed. */
20359
20360 static line_header_up
20361 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20362 {
20363 const gdb_byte *line_ptr;
20364 unsigned int bytes_read, offset_size;
20365 int i;
20366 const char *cur_dir, *cur_file;
20367 struct dwarf2_section_info *section;
20368 bfd *abfd;
20369 struct dwarf2_per_objfile *dwarf2_per_objfile
20370 = cu->per_cu->dwarf2_per_objfile;
20371
20372 section = get_debug_line_section (cu);
20373 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20374 if (section->buffer == NULL)
20375 {
20376 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20377 complaint (_("missing .debug_line.dwo section"));
20378 else
20379 complaint (_("missing .debug_line section"));
20380 return 0;
20381 }
20382
20383 /* We can't do this until we know the section is non-empty.
20384 Only then do we know we have such a section. */
20385 abfd = get_section_bfd_owner (section);
20386
20387 /* Make sure that at least there's room for the total_length field.
20388 That could be 12 bytes long, but we're just going to fudge that. */
20389 if (to_underlying (sect_off) + 4 >= section->size)
20390 {
20391 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20392 return 0;
20393 }
20394
20395 line_header_up lh (new line_header ());
20396
20397 lh->sect_off = sect_off;
20398 lh->offset_in_dwz = cu->per_cu->is_dwz;
20399
20400 line_ptr = section->buffer + to_underlying (sect_off);
20401
20402 /* Read in the header. */
20403 lh->total_length =
20404 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20405 &bytes_read, &offset_size);
20406 line_ptr += bytes_read;
20407 if (line_ptr + lh->total_length > (section->buffer + section->size))
20408 {
20409 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20410 return 0;
20411 }
20412 lh->statement_program_end = line_ptr + lh->total_length;
20413 lh->version = read_2_bytes (abfd, line_ptr);
20414 line_ptr += 2;
20415 if (lh->version > 5)
20416 {
20417 /* This is a version we don't understand. The format could have
20418 changed in ways we don't handle properly so just punt. */
20419 complaint (_("unsupported version in .debug_line section"));
20420 return NULL;
20421 }
20422 if (lh->version >= 5)
20423 {
20424 gdb_byte segment_selector_size;
20425
20426 /* Skip address size. */
20427 read_1_byte (abfd, line_ptr);
20428 line_ptr += 1;
20429
20430 segment_selector_size = read_1_byte (abfd, line_ptr);
20431 line_ptr += 1;
20432 if (segment_selector_size != 0)
20433 {
20434 complaint (_("unsupported segment selector size %u "
20435 "in .debug_line section"),
20436 segment_selector_size);
20437 return NULL;
20438 }
20439 }
20440 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20441 line_ptr += offset_size;
20442 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20443 line_ptr += 1;
20444 if (lh->version >= 4)
20445 {
20446 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20447 line_ptr += 1;
20448 }
20449 else
20450 lh->maximum_ops_per_instruction = 1;
20451
20452 if (lh->maximum_ops_per_instruction == 0)
20453 {
20454 lh->maximum_ops_per_instruction = 1;
20455 complaint (_("invalid maximum_ops_per_instruction "
20456 "in `.debug_line' section"));
20457 }
20458
20459 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20460 line_ptr += 1;
20461 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20462 line_ptr += 1;
20463 lh->line_range = read_1_byte (abfd, line_ptr);
20464 line_ptr += 1;
20465 lh->opcode_base = read_1_byte (abfd, line_ptr);
20466 line_ptr += 1;
20467 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20468
20469 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20470 for (i = 1; i < lh->opcode_base; ++i)
20471 {
20472 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20473 line_ptr += 1;
20474 }
20475
20476 if (lh->version >= 5)
20477 {
20478 /* Read directory table. */
20479 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20480 &cu->header,
20481 [] (struct line_header *header, const char *name,
20482 dir_index d_index, unsigned int mod_time,
20483 unsigned int length)
20484 {
20485 header->add_include_dir (name);
20486 });
20487
20488 /* Read file name table. */
20489 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20490 &cu->header,
20491 [] (struct line_header *header, const char *name,
20492 dir_index d_index, unsigned int mod_time,
20493 unsigned int length)
20494 {
20495 header->add_file_name (name, d_index, mod_time, length);
20496 });
20497 }
20498 else
20499 {
20500 /* Read directory table. */
20501 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20502 {
20503 line_ptr += bytes_read;
20504 lh->add_include_dir (cur_dir);
20505 }
20506 line_ptr += bytes_read;
20507
20508 /* Read file name table. */
20509 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20510 {
20511 unsigned int mod_time, length;
20512 dir_index d_index;
20513
20514 line_ptr += bytes_read;
20515 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20516 line_ptr += bytes_read;
20517 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20518 line_ptr += bytes_read;
20519 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20520 line_ptr += bytes_read;
20521
20522 lh->add_file_name (cur_file, d_index, mod_time, length);
20523 }
20524 line_ptr += bytes_read;
20525 }
20526 lh->statement_program_start = line_ptr;
20527
20528 if (line_ptr > (section->buffer + section->size))
20529 complaint (_("line number info header doesn't "
20530 "fit in `.debug_line' section"));
20531
20532 return lh;
20533 }
20534
20535 /* Subroutine of dwarf_decode_lines to simplify it.
20536 Return the file name of the psymtab for included file FILE_INDEX
20537 in line header LH of PST.
20538 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20539 If space for the result is malloc'd, *NAME_HOLDER will be set.
20540 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20541
20542 static const char *
20543 psymtab_include_file_name (const struct line_header *lh, int file_index,
20544 const struct partial_symtab *pst,
20545 const char *comp_dir,
20546 gdb::unique_xmalloc_ptr<char> *name_holder)
20547 {
20548 const file_entry &fe = lh->file_names[file_index];
20549 const char *include_name = fe.name;
20550 const char *include_name_to_compare = include_name;
20551 const char *pst_filename;
20552 int file_is_pst;
20553
20554 const char *dir_name = fe.include_dir (lh);
20555
20556 gdb::unique_xmalloc_ptr<char> hold_compare;
20557 if (!IS_ABSOLUTE_PATH (include_name)
20558 && (dir_name != NULL || comp_dir != NULL))
20559 {
20560 /* Avoid creating a duplicate psymtab for PST.
20561 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20562 Before we do the comparison, however, we need to account
20563 for DIR_NAME and COMP_DIR.
20564 First prepend dir_name (if non-NULL). If we still don't
20565 have an absolute path prepend comp_dir (if non-NULL).
20566 However, the directory we record in the include-file's
20567 psymtab does not contain COMP_DIR (to match the
20568 corresponding symtab(s)).
20569
20570 Example:
20571
20572 bash$ cd /tmp
20573 bash$ gcc -g ./hello.c
20574 include_name = "hello.c"
20575 dir_name = "."
20576 DW_AT_comp_dir = comp_dir = "/tmp"
20577 DW_AT_name = "./hello.c"
20578
20579 */
20580
20581 if (dir_name != NULL)
20582 {
20583 name_holder->reset (concat (dir_name, SLASH_STRING,
20584 include_name, (char *) NULL));
20585 include_name = name_holder->get ();
20586 include_name_to_compare = include_name;
20587 }
20588 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20589 {
20590 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20591 include_name, (char *) NULL));
20592 include_name_to_compare = hold_compare.get ();
20593 }
20594 }
20595
20596 pst_filename = pst->filename;
20597 gdb::unique_xmalloc_ptr<char> copied_name;
20598 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20599 {
20600 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20601 pst_filename, (char *) NULL));
20602 pst_filename = copied_name.get ();
20603 }
20604
20605 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20606
20607 if (file_is_pst)
20608 return NULL;
20609 return include_name;
20610 }
20611
20612 /* State machine to track the state of the line number program. */
20613
20614 class lnp_state_machine
20615 {
20616 public:
20617 /* Initialize a machine state for the start of a line number
20618 program. */
20619 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20620 bool record_lines_p);
20621
20622 file_entry *current_file ()
20623 {
20624 /* lh->file_names is 0-based, but the file name numbers in the
20625 statement program are 1-based. */
20626 return m_line_header->file_name_at (m_file);
20627 }
20628
20629 /* Record the line in the state machine. END_SEQUENCE is true if
20630 we're processing the end of a sequence. */
20631 void record_line (bool end_sequence);
20632
20633 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20634 nop-out rest of the lines in this sequence. */
20635 void check_line_address (struct dwarf2_cu *cu,
20636 const gdb_byte *line_ptr,
20637 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20638
20639 void handle_set_discriminator (unsigned int discriminator)
20640 {
20641 m_discriminator = discriminator;
20642 m_line_has_non_zero_discriminator |= discriminator != 0;
20643 }
20644
20645 /* Handle DW_LNE_set_address. */
20646 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20647 {
20648 m_op_index = 0;
20649 address += baseaddr;
20650 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20651 }
20652
20653 /* Handle DW_LNS_advance_pc. */
20654 void handle_advance_pc (CORE_ADDR adjust);
20655
20656 /* Handle a special opcode. */
20657 void handle_special_opcode (unsigned char op_code);
20658
20659 /* Handle DW_LNS_advance_line. */
20660 void handle_advance_line (int line_delta)
20661 {
20662 advance_line (line_delta);
20663 }
20664
20665 /* Handle DW_LNS_set_file. */
20666 void handle_set_file (file_name_index file);
20667
20668 /* Handle DW_LNS_negate_stmt. */
20669 void handle_negate_stmt ()
20670 {
20671 m_is_stmt = !m_is_stmt;
20672 }
20673
20674 /* Handle DW_LNS_const_add_pc. */
20675 void handle_const_add_pc ();
20676
20677 /* Handle DW_LNS_fixed_advance_pc. */
20678 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20679 {
20680 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20681 m_op_index = 0;
20682 }
20683
20684 /* Handle DW_LNS_copy. */
20685 void handle_copy ()
20686 {
20687 record_line (false);
20688 m_discriminator = 0;
20689 }
20690
20691 /* Handle DW_LNE_end_sequence. */
20692 void handle_end_sequence ()
20693 {
20694 m_currently_recording_lines = true;
20695 }
20696
20697 private:
20698 /* Advance the line by LINE_DELTA. */
20699 void advance_line (int line_delta)
20700 {
20701 m_line += line_delta;
20702
20703 if (line_delta != 0)
20704 m_line_has_non_zero_discriminator = m_discriminator != 0;
20705 }
20706
20707 struct dwarf2_cu *m_cu;
20708
20709 gdbarch *m_gdbarch;
20710
20711 /* True if we're recording lines.
20712 Otherwise we're building partial symtabs and are just interested in
20713 finding include files mentioned by the line number program. */
20714 bool m_record_lines_p;
20715
20716 /* The line number header. */
20717 line_header *m_line_header;
20718
20719 /* These are part of the standard DWARF line number state machine,
20720 and initialized according to the DWARF spec. */
20721
20722 unsigned char m_op_index = 0;
20723 /* The line table index (1-based) of the current file. */
20724 file_name_index m_file = (file_name_index) 1;
20725 unsigned int m_line = 1;
20726
20727 /* These are initialized in the constructor. */
20728
20729 CORE_ADDR m_address;
20730 bool m_is_stmt;
20731 unsigned int m_discriminator;
20732
20733 /* Additional bits of state we need to track. */
20734
20735 /* The last file that we called dwarf2_start_subfile for.
20736 This is only used for TLLs. */
20737 unsigned int m_last_file = 0;
20738 /* The last file a line number was recorded for. */
20739 struct subfile *m_last_subfile = NULL;
20740
20741 /* When true, record the lines we decode. */
20742 bool m_currently_recording_lines = false;
20743
20744 /* The last line number that was recorded, used to coalesce
20745 consecutive entries for the same line. This can happen, for
20746 example, when discriminators are present. PR 17276. */
20747 unsigned int m_last_line = 0;
20748 bool m_line_has_non_zero_discriminator = false;
20749 };
20750
20751 void
20752 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20753 {
20754 CORE_ADDR addr_adj = (((m_op_index + adjust)
20755 / m_line_header->maximum_ops_per_instruction)
20756 * m_line_header->minimum_instruction_length);
20757 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20758 m_op_index = ((m_op_index + adjust)
20759 % m_line_header->maximum_ops_per_instruction);
20760 }
20761
20762 void
20763 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20764 {
20765 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20766 CORE_ADDR addr_adj = (((m_op_index
20767 + (adj_opcode / m_line_header->line_range))
20768 / m_line_header->maximum_ops_per_instruction)
20769 * m_line_header->minimum_instruction_length);
20770 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20771 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20772 % m_line_header->maximum_ops_per_instruction);
20773
20774 int line_delta = (m_line_header->line_base
20775 + (adj_opcode % m_line_header->line_range));
20776 advance_line (line_delta);
20777 record_line (false);
20778 m_discriminator = 0;
20779 }
20780
20781 void
20782 lnp_state_machine::handle_set_file (file_name_index file)
20783 {
20784 m_file = file;
20785
20786 const file_entry *fe = current_file ();
20787 if (fe == NULL)
20788 dwarf2_debug_line_missing_file_complaint ();
20789 else if (m_record_lines_p)
20790 {
20791 const char *dir = fe->include_dir (m_line_header);
20792
20793 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20794 m_line_has_non_zero_discriminator = m_discriminator != 0;
20795 dwarf2_start_subfile (m_cu, fe->name, dir);
20796 }
20797 }
20798
20799 void
20800 lnp_state_machine::handle_const_add_pc ()
20801 {
20802 CORE_ADDR adjust
20803 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20804
20805 CORE_ADDR addr_adj
20806 = (((m_op_index + adjust)
20807 / m_line_header->maximum_ops_per_instruction)
20808 * m_line_header->minimum_instruction_length);
20809
20810 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20811 m_op_index = ((m_op_index + adjust)
20812 % m_line_header->maximum_ops_per_instruction);
20813 }
20814
20815 /* Return non-zero if we should add LINE to the line number table.
20816 LINE is the line to add, LAST_LINE is the last line that was added,
20817 LAST_SUBFILE is the subfile for LAST_LINE.
20818 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20819 had a non-zero discriminator.
20820
20821 We have to be careful in the presence of discriminators.
20822 E.g., for this line:
20823
20824 for (i = 0; i < 100000; i++);
20825
20826 clang can emit four line number entries for that one line,
20827 each with a different discriminator.
20828 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20829
20830 However, we want gdb to coalesce all four entries into one.
20831 Otherwise the user could stepi into the middle of the line and
20832 gdb would get confused about whether the pc really was in the
20833 middle of the line.
20834
20835 Things are further complicated by the fact that two consecutive
20836 line number entries for the same line is a heuristic used by gcc
20837 to denote the end of the prologue. So we can't just discard duplicate
20838 entries, we have to be selective about it. The heuristic we use is
20839 that we only collapse consecutive entries for the same line if at least
20840 one of those entries has a non-zero discriminator. PR 17276.
20841
20842 Note: Addresses in the line number state machine can never go backwards
20843 within one sequence, thus this coalescing is ok. */
20844
20845 static int
20846 dwarf_record_line_p (struct dwarf2_cu *cu,
20847 unsigned int line, unsigned int last_line,
20848 int line_has_non_zero_discriminator,
20849 struct subfile *last_subfile)
20850 {
20851 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20852 return 1;
20853 if (line != last_line)
20854 return 1;
20855 /* Same line for the same file that we've seen already.
20856 As a last check, for pr 17276, only record the line if the line
20857 has never had a non-zero discriminator. */
20858 if (!line_has_non_zero_discriminator)
20859 return 1;
20860 return 0;
20861 }
20862
20863 /* Use the CU's builder to record line number LINE beginning at
20864 address ADDRESS in the line table of subfile SUBFILE. */
20865
20866 static void
20867 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20868 unsigned int line, CORE_ADDR address,
20869 struct dwarf2_cu *cu)
20870 {
20871 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20872
20873 if (dwarf_line_debug)
20874 {
20875 fprintf_unfiltered (gdb_stdlog,
20876 "Recording line %u, file %s, address %s\n",
20877 line, lbasename (subfile->name),
20878 paddress (gdbarch, address));
20879 }
20880
20881 if (cu != nullptr)
20882 cu->get_builder ()->record_line (subfile, line, addr);
20883 }
20884
20885 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20886 Mark the end of a set of line number records.
20887 The arguments are the same as for dwarf_record_line_1.
20888 If SUBFILE is NULL the request is ignored. */
20889
20890 static void
20891 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20892 CORE_ADDR address, struct dwarf2_cu *cu)
20893 {
20894 if (subfile == NULL)
20895 return;
20896
20897 if (dwarf_line_debug)
20898 {
20899 fprintf_unfiltered (gdb_stdlog,
20900 "Finishing current line, file %s, address %s\n",
20901 lbasename (subfile->name),
20902 paddress (gdbarch, address));
20903 }
20904
20905 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20906 }
20907
20908 void
20909 lnp_state_machine::record_line (bool end_sequence)
20910 {
20911 if (dwarf_line_debug)
20912 {
20913 fprintf_unfiltered (gdb_stdlog,
20914 "Processing actual line %u: file %u,"
20915 " address %s, is_stmt %u, discrim %u\n",
20916 m_line, to_underlying (m_file),
20917 paddress (m_gdbarch, m_address),
20918 m_is_stmt, m_discriminator);
20919 }
20920
20921 file_entry *fe = current_file ();
20922
20923 if (fe == NULL)
20924 dwarf2_debug_line_missing_file_complaint ();
20925 /* For now we ignore lines not starting on an instruction boundary.
20926 But not when processing end_sequence for compatibility with the
20927 previous version of the code. */
20928 else if (m_op_index == 0 || end_sequence)
20929 {
20930 fe->included_p = 1;
20931 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20932 {
20933 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20934 || end_sequence)
20935 {
20936 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20937 m_currently_recording_lines ? m_cu : nullptr);
20938 }
20939
20940 if (!end_sequence)
20941 {
20942 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20943 m_line_has_non_zero_discriminator,
20944 m_last_subfile))
20945 {
20946 buildsym_compunit *builder = m_cu->get_builder ();
20947 dwarf_record_line_1 (m_gdbarch,
20948 builder->get_current_subfile (),
20949 m_line, m_address,
20950 m_currently_recording_lines ? m_cu : nullptr);
20951 }
20952 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20953 m_last_line = m_line;
20954 }
20955 }
20956 }
20957 }
20958
20959 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20960 line_header *lh, bool record_lines_p)
20961 {
20962 m_cu = cu;
20963 m_gdbarch = arch;
20964 m_record_lines_p = record_lines_p;
20965 m_line_header = lh;
20966
20967 m_currently_recording_lines = true;
20968
20969 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20970 was a line entry for it so that the backend has a chance to adjust it
20971 and also record it in case it needs it. This is currently used by MIPS
20972 code, cf. `mips_adjust_dwarf2_line'. */
20973 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20974 m_is_stmt = lh->default_is_stmt;
20975 m_discriminator = 0;
20976 }
20977
20978 void
20979 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20980 const gdb_byte *line_ptr,
20981 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20982 {
20983 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20984 the pc range of the CU. However, we restrict the test to only ADDRESS
20985 values of zero to preserve GDB's previous behaviour which is to handle
20986 the specific case of a function being GC'd by the linker. */
20987
20988 if (address == 0 && address < unrelocated_lowpc)
20989 {
20990 /* This line table is for a function which has been
20991 GCd by the linker. Ignore it. PR gdb/12528 */
20992
20993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20994 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20995
20996 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20997 line_offset, objfile_name (objfile));
20998 m_currently_recording_lines = false;
20999 /* Note: m_currently_recording_lines is left as false until we see
21000 DW_LNE_end_sequence. */
21001 }
21002 }
21003
21004 /* Subroutine of dwarf_decode_lines to simplify it.
21005 Process the line number information in LH.
21006 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21007 program in order to set included_p for every referenced header. */
21008
21009 static void
21010 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21011 const int decode_for_pst_p, CORE_ADDR lowpc)
21012 {
21013 const gdb_byte *line_ptr, *extended_end;
21014 const gdb_byte *line_end;
21015 unsigned int bytes_read, extended_len;
21016 unsigned char op_code, extended_op;
21017 CORE_ADDR baseaddr;
21018 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21019 bfd *abfd = objfile->obfd;
21020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21021 /* True if we're recording line info (as opposed to building partial
21022 symtabs and just interested in finding include files mentioned by
21023 the line number program). */
21024 bool record_lines_p = !decode_for_pst_p;
21025
21026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21027
21028 line_ptr = lh->statement_program_start;
21029 line_end = lh->statement_program_end;
21030
21031 /* Read the statement sequences until there's nothing left. */
21032 while (line_ptr < line_end)
21033 {
21034 /* The DWARF line number program state machine. Reset the state
21035 machine at the start of each sequence. */
21036 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21037 bool end_sequence = false;
21038
21039 if (record_lines_p)
21040 {
21041 /* Start a subfile for the current file of the state
21042 machine. */
21043 const file_entry *fe = state_machine.current_file ();
21044
21045 if (fe != NULL)
21046 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21047 }
21048
21049 /* Decode the table. */
21050 while (line_ptr < line_end && !end_sequence)
21051 {
21052 op_code = read_1_byte (abfd, line_ptr);
21053 line_ptr += 1;
21054
21055 if (op_code >= lh->opcode_base)
21056 {
21057 /* Special opcode. */
21058 state_machine.handle_special_opcode (op_code);
21059 }
21060 else switch (op_code)
21061 {
21062 case DW_LNS_extended_op:
21063 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21064 &bytes_read);
21065 line_ptr += bytes_read;
21066 extended_end = line_ptr + extended_len;
21067 extended_op = read_1_byte (abfd, line_ptr);
21068 line_ptr += 1;
21069 switch (extended_op)
21070 {
21071 case DW_LNE_end_sequence:
21072 state_machine.handle_end_sequence ();
21073 end_sequence = true;
21074 break;
21075 case DW_LNE_set_address:
21076 {
21077 CORE_ADDR address
21078 = read_address (abfd, line_ptr, cu, &bytes_read);
21079 line_ptr += bytes_read;
21080
21081 state_machine.check_line_address (cu, line_ptr,
21082 lowpc - baseaddr, address);
21083 state_machine.handle_set_address (baseaddr, address);
21084 }
21085 break;
21086 case DW_LNE_define_file:
21087 {
21088 const char *cur_file;
21089 unsigned int mod_time, length;
21090 dir_index dindex;
21091
21092 cur_file = read_direct_string (abfd, line_ptr,
21093 &bytes_read);
21094 line_ptr += bytes_read;
21095 dindex = (dir_index)
21096 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21097 line_ptr += bytes_read;
21098 mod_time =
21099 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21100 line_ptr += bytes_read;
21101 length =
21102 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21103 line_ptr += bytes_read;
21104 lh->add_file_name (cur_file, dindex, mod_time, length);
21105 }
21106 break;
21107 case DW_LNE_set_discriminator:
21108 {
21109 /* The discriminator is not interesting to the
21110 debugger; just ignore it. We still need to
21111 check its value though:
21112 if there are consecutive entries for the same
21113 (non-prologue) line we want to coalesce them.
21114 PR 17276. */
21115 unsigned int discr
21116 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21117 line_ptr += bytes_read;
21118
21119 state_machine.handle_set_discriminator (discr);
21120 }
21121 break;
21122 default:
21123 complaint (_("mangled .debug_line section"));
21124 return;
21125 }
21126 /* Make sure that we parsed the extended op correctly. If e.g.
21127 we expected a different address size than the producer used,
21128 we may have read the wrong number of bytes. */
21129 if (line_ptr != extended_end)
21130 {
21131 complaint (_("mangled .debug_line section"));
21132 return;
21133 }
21134 break;
21135 case DW_LNS_copy:
21136 state_machine.handle_copy ();
21137 break;
21138 case DW_LNS_advance_pc:
21139 {
21140 CORE_ADDR adjust
21141 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21142 line_ptr += bytes_read;
21143
21144 state_machine.handle_advance_pc (adjust);
21145 }
21146 break;
21147 case DW_LNS_advance_line:
21148 {
21149 int line_delta
21150 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21151 line_ptr += bytes_read;
21152
21153 state_machine.handle_advance_line (line_delta);
21154 }
21155 break;
21156 case DW_LNS_set_file:
21157 {
21158 file_name_index file
21159 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21160 &bytes_read);
21161 line_ptr += bytes_read;
21162
21163 state_machine.handle_set_file (file);
21164 }
21165 break;
21166 case DW_LNS_set_column:
21167 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21168 line_ptr += bytes_read;
21169 break;
21170 case DW_LNS_negate_stmt:
21171 state_machine.handle_negate_stmt ();
21172 break;
21173 case DW_LNS_set_basic_block:
21174 break;
21175 /* Add to the address register of the state machine the
21176 address increment value corresponding to special opcode
21177 255. I.e., this value is scaled by the minimum
21178 instruction length since special opcode 255 would have
21179 scaled the increment. */
21180 case DW_LNS_const_add_pc:
21181 state_machine.handle_const_add_pc ();
21182 break;
21183 case DW_LNS_fixed_advance_pc:
21184 {
21185 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21186 line_ptr += 2;
21187
21188 state_machine.handle_fixed_advance_pc (addr_adj);
21189 }
21190 break;
21191 default:
21192 {
21193 /* Unknown standard opcode, ignore it. */
21194 int i;
21195
21196 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21197 {
21198 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21199 line_ptr += bytes_read;
21200 }
21201 }
21202 }
21203 }
21204
21205 if (!end_sequence)
21206 dwarf2_debug_line_missing_end_sequence_complaint ();
21207
21208 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21209 in which case we still finish recording the last line). */
21210 state_machine.record_line (true);
21211 }
21212 }
21213
21214 /* Decode the Line Number Program (LNP) for the given line_header
21215 structure and CU. The actual information extracted and the type
21216 of structures created from the LNP depends on the value of PST.
21217
21218 1. If PST is NULL, then this procedure uses the data from the program
21219 to create all necessary symbol tables, and their linetables.
21220
21221 2. If PST is not NULL, this procedure reads the program to determine
21222 the list of files included by the unit represented by PST, and
21223 builds all the associated partial symbol tables.
21224
21225 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21226 It is used for relative paths in the line table.
21227 NOTE: When processing partial symtabs (pst != NULL),
21228 comp_dir == pst->dirname.
21229
21230 NOTE: It is important that psymtabs have the same file name (via strcmp)
21231 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21232 symtab we don't use it in the name of the psymtabs we create.
21233 E.g. expand_line_sal requires this when finding psymtabs to expand.
21234 A good testcase for this is mb-inline.exp.
21235
21236 LOWPC is the lowest address in CU (or 0 if not known).
21237
21238 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21239 for its PC<->lines mapping information. Otherwise only the filename
21240 table is read in. */
21241
21242 static void
21243 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21244 struct dwarf2_cu *cu, struct partial_symtab *pst,
21245 CORE_ADDR lowpc, int decode_mapping)
21246 {
21247 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21248 const int decode_for_pst_p = (pst != NULL);
21249
21250 if (decode_mapping)
21251 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21252
21253 if (decode_for_pst_p)
21254 {
21255 int file_index;
21256
21257 /* Now that we're done scanning the Line Header Program, we can
21258 create the psymtab of each included file. */
21259 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21260 if (lh->file_names[file_index].included_p == 1)
21261 {
21262 gdb::unique_xmalloc_ptr<char> name_holder;
21263 const char *include_name =
21264 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21265 &name_holder);
21266 if (include_name != NULL)
21267 dwarf2_create_include_psymtab (include_name, pst, objfile);
21268 }
21269 }
21270 else
21271 {
21272 /* Make sure a symtab is created for every file, even files
21273 which contain only variables (i.e. no code with associated
21274 line numbers). */
21275 buildsym_compunit *builder = cu->get_builder ();
21276 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21277 int i;
21278
21279 for (i = 0; i < lh->file_names.size (); i++)
21280 {
21281 file_entry &fe = lh->file_names[i];
21282
21283 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21284
21285 if (builder->get_current_subfile ()->symtab == NULL)
21286 {
21287 builder->get_current_subfile ()->symtab
21288 = allocate_symtab (cust,
21289 builder->get_current_subfile ()->name);
21290 }
21291 fe.symtab = builder->get_current_subfile ()->symtab;
21292 }
21293 }
21294 }
21295
21296 /* Start a subfile for DWARF. FILENAME is the name of the file and
21297 DIRNAME the name of the source directory which contains FILENAME
21298 or NULL if not known.
21299 This routine tries to keep line numbers from identical absolute and
21300 relative file names in a common subfile.
21301
21302 Using the `list' example from the GDB testsuite, which resides in
21303 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21304 of /srcdir/list0.c yields the following debugging information for list0.c:
21305
21306 DW_AT_name: /srcdir/list0.c
21307 DW_AT_comp_dir: /compdir
21308 files.files[0].name: list0.h
21309 files.files[0].dir: /srcdir
21310 files.files[1].name: list0.c
21311 files.files[1].dir: /srcdir
21312
21313 The line number information for list0.c has to end up in a single
21314 subfile, so that `break /srcdir/list0.c:1' works as expected.
21315 start_subfile will ensure that this happens provided that we pass the
21316 concatenation of files.files[1].dir and files.files[1].name as the
21317 subfile's name. */
21318
21319 static void
21320 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21321 const char *dirname)
21322 {
21323 char *copy = NULL;
21324
21325 /* In order not to lose the line information directory,
21326 we concatenate it to the filename when it makes sense.
21327 Note that the Dwarf3 standard says (speaking of filenames in line
21328 information): ``The directory index is ignored for file names
21329 that represent full path names''. Thus ignoring dirname in the
21330 `else' branch below isn't an issue. */
21331
21332 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21333 {
21334 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21335 filename = copy;
21336 }
21337
21338 cu->get_builder ()->start_subfile (filename);
21339
21340 if (copy != NULL)
21341 xfree (copy);
21342 }
21343
21344 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21345 buildsym_compunit constructor. */
21346
21347 struct compunit_symtab *
21348 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21349 CORE_ADDR low_pc)
21350 {
21351 gdb_assert (m_builder == nullptr);
21352
21353 m_builder.reset (new struct buildsym_compunit
21354 (per_cu->dwarf2_per_objfile->objfile,
21355 name, comp_dir, language, low_pc));
21356
21357 list_in_scope = get_builder ()->get_file_symbols ();
21358
21359 get_builder ()->record_debugformat ("DWARF 2");
21360 get_builder ()->record_producer (producer);
21361
21362 processing_has_namespace_info = false;
21363
21364 return get_builder ()->get_compunit_symtab ();
21365 }
21366
21367 static void
21368 var_decode_location (struct attribute *attr, struct symbol *sym,
21369 struct dwarf2_cu *cu)
21370 {
21371 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21372 struct comp_unit_head *cu_header = &cu->header;
21373
21374 /* NOTE drow/2003-01-30: There used to be a comment and some special
21375 code here to turn a symbol with DW_AT_external and a
21376 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21377 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21378 with some versions of binutils) where shared libraries could have
21379 relocations against symbols in their debug information - the
21380 minimal symbol would have the right address, but the debug info
21381 would not. It's no longer necessary, because we will explicitly
21382 apply relocations when we read in the debug information now. */
21383
21384 /* A DW_AT_location attribute with no contents indicates that a
21385 variable has been optimized away. */
21386 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21387 {
21388 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21389 return;
21390 }
21391
21392 /* Handle one degenerate form of location expression specially, to
21393 preserve GDB's previous behavior when section offsets are
21394 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21395 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21396
21397 if (attr_form_is_block (attr)
21398 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21399 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21400 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21401 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21402 && (DW_BLOCK (attr)->size
21403 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21404 {
21405 unsigned int dummy;
21406
21407 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21408 SYMBOL_VALUE_ADDRESS (sym) =
21409 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21410 else
21411 SYMBOL_VALUE_ADDRESS (sym) =
21412 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21413 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21414 fixup_symbol_section (sym, objfile);
21415 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21416 SYMBOL_SECTION (sym));
21417 return;
21418 }
21419
21420 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21421 expression evaluator, and use LOC_COMPUTED only when necessary
21422 (i.e. when the value of a register or memory location is
21423 referenced, or a thread-local block, etc.). Then again, it might
21424 not be worthwhile. I'm assuming that it isn't unless performance
21425 or memory numbers show me otherwise. */
21426
21427 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21428
21429 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21430 cu->has_loclist = true;
21431 }
21432
21433 /* Given a pointer to a DWARF information entry, figure out if we need
21434 to make a symbol table entry for it, and if so, create a new entry
21435 and return a pointer to it.
21436 If TYPE is NULL, determine symbol type from the die, otherwise
21437 used the passed type.
21438 If SPACE is not NULL, use it to hold the new symbol. If it is
21439 NULL, allocate a new symbol on the objfile's obstack. */
21440
21441 static struct symbol *
21442 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21443 struct symbol *space)
21444 {
21445 struct dwarf2_per_objfile *dwarf2_per_objfile
21446 = cu->per_cu->dwarf2_per_objfile;
21447 struct objfile *objfile = dwarf2_per_objfile->objfile;
21448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21449 struct symbol *sym = NULL;
21450 const char *name;
21451 struct attribute *attr = NULL;
21452 struct attribute *attr2 = NULL;
21453 CORE_ADDR baseaddr;
21454 struct pending **list_to_add = NULL;
21455
21456 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21457
21458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21459
21460 name = dwarf2_name (die, cu);
21461 if (name)
21462 {
21463 const char *linkagename;
21464 int suppress_add = 0;
21465
21466 if (space)
21467 sym = space;
21468 else
21469 sym = allocate_symbol (objfile);
21470 OBJSTAT (objfile, n_syms++);
21471
21472 /* Cache this symbol's name and the name's demangled form (if any). */
21473 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21474 linkagename = dwarf2_physname (name, die, cu);
21475 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21476
21477 /* Fortran does not have mangling standard and the mangling does differ
21478 between gfortran, iFort etc. */
21479 if (cu->language == language_fortran
21480 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21481 symbol_set_demangled_name (&(sym->ginfo),
21482 dwarf2_full_name (name, die, cu),
21483 NULL);
21484
21485 /* Default assumptions.
21486 Use the passed type or decode it from the die. */
21487 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21488 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21489 if (type != NULL)
21490 SYMBOL_TYPE (sym) = type;
21491 else
21492 SYMBOL_TYPE (sym) = die_type (die, cu);
21493 attr = dwarf2_attr (die,
21494 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21495 cu);
21496 if (attr)
21497 {
21498 SYMBOL_LINE (sym) = DW_UNSND (attr);
21499 }
21500
21501 attr = dwarf2_attr (die,
21502 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21503 cu);
21504 if (attr)
21505 {
21506 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21507 struct file_entry *fe;
21508
21509 if (cu->line_header != NULL)
21510 fe = cu->line_header->file_name_at (file_index);
21511 else
21512 fe = NULL;
21513
21514 if (fe == NULL)
21515 complaint (_("file index out of range"));
21516 else
21517 symbol_set_symtab (sym, fe->symtab);
21518 }
21519
21520 switch (die->tag)
21521 {
21522 case DW_TAG_label:
21523 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21524 if (attr)
21525 {
21526 CORE_ADDR addr;
21527
21528 addr = attr_value_as_address (attr);
21529 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21530 SYMBOL_VALUE_ADDRESS (sym) = addr;
21531 }
21532 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21533 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21534 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21535 add_symbol_to_list (sym, cu->list_in_scope);
21536 break;
21537 case DW_TAG_subprogram:
21538 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21539 finish_block. */
21540 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21541 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21542 if ((attr2 && (DW_UNSND (attr2) != 0))
21543 || cu->language == language_ada)
21544 {
21545 /* Subprograms marked external are stored as a global symbol.
21546 Ada subprograms, whether marked external or not, are always
21547 stored as a global symbol, because we want to be able to
21548 access them globally. For instance, we want to be able
21549 to break on a nested subprogram without having to
21550 specify the context. */
21551 list_to_add = cu->get_builder ()->get_global_symbols ();
21552 }
21553 else
21554 {
21555 list_to_add = cu->list_in_scope;
21556 }
21557 break;
21558 case DW_TAG_inlined_subroutine:
21559 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21560 finish_block. */
21561 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21562 SYMBOL_INLINED (sym) = 1;
21563 list_to_add = cu->list_in_scope;
21564 break;
21565 case DW_TAG_template_value_param:
21566 suppress_add = 1;
21567 /* Fall through. */
21568 case DW_TAG_constant:
21569 case DW_TAG_variable:
21570 case DW_TAG_member:
21571 /* Compilation with minimal debug info may result in
21572 variables with missing type entries. Change the
21573 misleading `void' type to something sensible. */
21574 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21575 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21576
21577 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21578 /* In the case of DW_TAG_member, we should only be called for
21579 static const members. */
21580 if (die->tag == DW_TAG_member)
21581 {
21582 /* dwarf2_add_field uses die_is_declaration,
21583 so we do the same. */
21584 gdb_assert (die_is_declaration (die, cu));
21585 gdb_assert (attr);
21586 }
21587 if (attr)
21588 {
21589 dwarf2_const_value (attr, sym, cu);
21590 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21591 if (!suppress_add)
21592 {
21593 if (attr2 && (DW_UNSND (attr2) != 0))
21594 list_to_add = cu->get_builder ()->get_global_symbols ();
21595 else
21596 list_to_add = cu->list_in_scope;
21597 }
21598 break;
21599 }
21600 attr = dwarf2_attr (die, DW_AT_location, cu);
21601 if (attr)
21602 {
21603 var_decode_location (attr, sym, cu);
21604 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21605
21606 /* Fortran explicitly imports any global symbols to the local
21607 scope by DW_TAG_common_block. */
21608 if (cu->language == language_fortran && die->parent
21609 && die->parent->tag == DW_TAG_common_block)
21610 attr2 = NULL;
21611
21612 if (SYMBOL_CLASS (sym) == LOC_STATIC
21613 && SYMBOL_VALUE_ADDRESS (sym) == 0
21614 && !dwarf2_per_objfile->has_section_at_zero)
21615 {
21616 /* When a static variable is eliminated by the linker,
21617 the corresponding debug information is not stripped
21618 out, but the variable address is set to null;
21619 do not add such variables into symbol table. */
21620 }
21621 else if (attr2 && (DW_UNSND (attr2) != 0))
21622 {
21623 /* Workaround gfortran PR debug/40040 - it uses
21624 DW_AT_location for variables in -fPIC libraries which may
21625 get overriden by other libraries/executable and get
21626 a different address. Resolve it by the minimal symbol
21627 which may come from inferior's executable using copy
21628 relocation. Make this workaround only for gfortran as for
21629 other compilers GDB cannot guess the minimal symbol
21630 Fortran mangling kind. */
21631 if (cu->language == language_fortran && die->parent
21632 && die->parent->tag == DW_TAG_module
21633 && cu->producer
21634 && startswith (cu->producer, "GNU Fortran"))
21635 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21636
21637 /* A variable with DW_AT_external is never static,
21638 but it may be block-scoped. */
21639 list_to_add
21640 = ((cu->list_in_scope
21641 == cu->get_builder ()->get_file_symbols ())
21642 ? cu->get_builder ()->get_global_symbols ()
21643 : cu->list_in_scope);
21644 }
21645 else
21646 list_to_add = cu->list_in_scope;
21647 }
21648 else
21649 {
21650 /* We do not know the address of this symbol.
21651 If it is an external symbol and we have type information
21652 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21653 The address of the variable will then be determined from
21654 the minimal symbol table whenever the variable is
21655 referenced. */
21656 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21657
21658 /* Fortran explicitly imports any global symbols to the local
21659 scope by DW_TAG_common_block. */
21660 if (cu->language == language_fortran && die->parent
21661 && die->parent->tag == DW_TAG_common_block)
21662 {
21663 /* SYMBOL_CLASS doesn't matter here because
21664 read_common_block is going to reset it. */
21665 if (!suppress_add)
21666 list_to_add = cu->list_in_scope;
21667 }
21668 else if (attr2 && (DW_UNSND (attr2) != 0)
21669 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21670 {
21671 /* A variable with DW_AT_external is never static, but it
21672 may be block-scoped. */
21673 list_to_add
21674 = ((cu->list_in_scope
21675 == cu->get_builder ()->get_file_symbols ())
21676 ? cu->get_builder ()->get_global_symbols ()
21677 : cu->list_in_scope);
21678
21679 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21680 }
21681 else if (!die_is_declaration (die, cu))
21682 {
21683 /* Use the default LOC_OPTIMIZED_OUT class. */
21684 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21685 if (!suppress_add)
21686 list_to_add = cu->list_in_scope;
21687 }
21688 }
21689 break;
21690 case DW_TAG_formal_parameter:
21691 {
21692 /* If we are inside a function, mark this as an argument. If
21693 not, we might be looking at an argument to an inlined function
21694 when we do not have enough information to show inlined frames;
21695 pretend it's a local variable in that case so that the user can
21696 still see it. */
21697 struct context_stack *curr
21698 = cu->get_builder ()->get_current_context_stack ();
21699 if (curr != nullptr && curr->name != nullptr)
21700 SYMBOL_IS_ARGUMENT (sym) = 1;
21701 attr = dwarf2_attr (die, DW_AT_location, cu);
21702 if (attr)
21703 {
21704 var_decode_location (attr, sym, cu);
21705 }
21706 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21707 if (attr)
21708 {
21709 dwarf2_const_value (attr, sym, cu);
21710 }
21711
21712 list_to_add = cu->list_in_scope;
21713 }
21714 break;
21715 case DW_TAG_unspecified_parameters:
21716 /* From varargs functions; gdb doesn't seem to have any
21717 interest in this information, so just ignore it for now.
21718 (FIXME?) */
21719 break;
21720 case DW_TAG_template_type_param:
21721 suppress_add = 1;
21722 /* Fall through. */
21723 case DW_TAG_class_type:
21724 case DW_TAG_interface_type:
21725 case DW_TAG_structure_type:
21726 case DW_TAG_union_type:
21727 case DW_TAG_set_type:
21728 case DW_TAG_enumeration_type:
21729 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21730 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21731
21732 {
21733 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21734 really ever be static objects: otherwise, if you try
21735 to, say, break of a class's method and you're in a file
21736 which doesn't mention that class, it won't work unless
21737 the check for all static symbols in lookup_symbol_aux
21738 saves you. See the OtherFileClass tests in
21739 gdb.c++/namespace.exp. */
21740
21741 if (!suppress_add)
21742 {
21743 buildsym_compunit *builder = cu->get_builder ();
21744 list_to_add
21745 = (cu->list_in_scope == builder->get_file_symbols ()
21746 && cu->language == language_cplus
21747 ? builder->get_global_symbols ()
21748 : cu->list_in_scope);
21749
21750 /* The semantics of C++ state that "struct foo {
21751 ... }" also defines a typedef for "foo". */
21752 if (cu->language == language_cplus
21753 || cu->language == language_ada
21754 || cu->language == language_d
21755 || cu->language == language_rust)
21756 {
21757 /* The symbol's name is already allocated along
21758 with this objfile, so we don't need to
21759 duplicate it for the type. */
21760 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21761 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21762 }
21763 }
21764 }
21765 break;
21766 case DW_TAG_typedef:
21767 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21768 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21769 list_to_add = cu->list_in_scope;
21770 break;
21771 case DW_TAG_base_type:
21772 case DW_TAG_subrange_type:
21773 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21774 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21775 list_to_add = cu->list_in_scope;
21776 break;
21777 case DW_TAG_enumerator:
21778 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21779 if (attr)
21780 {
21781 dwarf2_const_value (attr, sym, cu);
21782 }
21783 {
21784 /* NOTE: carlton/2003-11-10: See comment above in the
21785 DW_TAG_class_type, etc. block. */
21786
21787 list_to_add
21788 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21789 && cu->language == language_cplus
21790 ? cu->get_builder ()->get_global_symbols ()
21791 : cu->list_in_scope);
21792 }
21793 break;
21794 case DW_TAG_imported_declaration:
21795 case DW_TAG_namespace:
21796 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21797 list_to_add = cu->get_builder ()->get_global_symbols ();
21798 break;
21799 case DW_TAG_module:
21800 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21801 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21802 list_to_add = cu->get_builder ()->get_global_symbols ();
21803 break;
21804 case DW_TAG_common_block:
21805 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21806 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21807 add_symbol_to_list (sym, cu->list_in_scope);
21808 break;
21809 default:
21810 /* Not a tag we recognize. Hopefully we aren't processing
21811 trash data, but since we must specifically ignore things
21812 we don't recognize, there is nothing else we should do at
21813 this point. */
21814 complaint (_("unsupported tag: '%s'"),
21815 dwarf_tag_name (die->tag));
21816 break;
21817 }
21818
21819 if (suppress_add)
21820 {
21821 sym->hash_next = objfile->template_symbols;
21822 objfile->template_symbols = sym;
21823 list_to_add = NULL;
21824 }
21825
21826 if (list_to_add != NULL)
21827 add_symbol_to_list (sym, list_to_add);
21828
21829 /* For the benefit of old versions of GCC, check for anonymous
21830 namespaces based on the demangled name. */
21831 if (!cu->processing_has_namespace_info
21832 && cu->language == language_cplus)
21833 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21834 }
21835 return (sym);
21836 }
21837
21838 /* Given an attr with a DW_FORM_dataN value in host byte order,
21839 zero-extend it as appropriate for the symbol's type. The DWARF
21840 standard (v4) is not entirely clear about the meaning of using
21841 DW_FORM_dataN for a constant with a signed type, where the type is
21842 wider than the data. The conclusion of a discussion on the DWARF
21843 list was that this is unspecified. We choose to always zero-extend
21844 because that is the interpretation long in use by GCC. */
21845
21846 static gdb_byte *
21847 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21848 struct dwarf2_cu *cu, LONGEST *value, int bits)
21849 {
21850 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21851 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21852 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21853 LONGEST l = DW_UNSND (attr);
21854
21855 if (bits < sizeof (*value) * 8)
21856 {
21857 l &= ((LONGEST) 1 << bits) - 1;
21858 *value = l;
21859 }
21860 else if (bits == sizeof (*value) * 8)
21861 *value = l;
21862 else
21863 {
21864 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21865 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21866 return bytes;
21867 }
21868
21869 return NULL;
21870 }
21871
21872 /* Read a constant value from an attribute. Either set *VALUE, or if
21873 the value does not fit in *VALUE, set *BYTES - either already
21874 allocated on the objfile obstack, or newly allocated on OBSTACK,
21875 or, set *BATON, if we translated the constant to a location
21876 expression. */
21877
21878 static void
21879 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21880 const char *name, struct obstack *obstack,
21881 struct dwarf2_cu *cu,
21882 LONGEST *value, const gdb_byte **bytes,
21883 struct dwarf2_locexpr_baton **baton)
21884 {
21885 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21886 struct comp_unit_head *cu_header = &cu->header;
21887 struct dwarf_block *blk;
21888 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21889 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21890
21891 *value = 0;
21892 *bytes = NULL;
21893 *baton = NULL;
21894
21895 switch (attr->form)
21896 {
21897 case DW_FORM_addr:
21898 case DW_FORM_addrx:
21899 case DW_FORM_GNU_addr_index:
21900 {
21901 gdb_byte *data;
21902
21903 if (TYPE_LENGTH (type) != cu_header->addr_size)
21904 dwarf2_const_value_length_mismatch_complaint (name,
21905 cu_header->addr_size,
21906 TYPE_LENGTH (type));
21907 /* Symbols of this form are reasonably rare, so we just
21908 piggyback on the existing location code rather than writing
21909 a new implementation of symbol_computed_ops. */
21910 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21911 (*baton)->per_cu = cu->per_cu;
21912 gdb_assert ((*baton)->per_cu);
21913
21914 (*baton)->size = 2 + cu_header->addr_size;
21915 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21916 (*baton)->data = data;
21917
21918 data[0] = DW_OP_addr;
21919 store_unsigned_integer (&data[1], cu_header->addr_size,
21920 byte_order, DW_ADDR (attr));
21921 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21922 }
21923 break;
21924 case DW_FORM_string:
21925 case DW_FORM_strp:
21926 case DW_FORM_strx:
21927 case DW_FORM_GNU_str_index:
21928 case DW_FORM_GNU_strp_alt:
21929 /* DW_STRING is already allocated on the objfile obstack, point
21930 directly to it. */
21931 *bytes = (const gdb_byte *) DW_STRING (attr);
21932 break;
21933 case DW_FORM_block1:
21934 case DW_FORM_block2:
21935 case DW_FORM_block4:
21936 case DW_FORM_block:
21937 case DW_FORM_exprloc:
21938 case DW_FORM_data16:
21939 blk = DW_BLOCK (attr);
21940 if (TYPE_LENGTH (type) != blk->size)
21941 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21942 TYPE_LENGTH (type));
21943 *bytes = blk->data;
21944 break;
21945
21946 /* The DW_AT_const_value attributes are supposed to carry the
21947 symbol's value "represented as it would be on the target
21948 architecture." By the time we get here, it's already been
21949 converted to host endianness, so we just need to sign- or
21950 zero-extend it as appropriate. */
21951 case DW_FORM_data1:
21952 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21953 break;
21954 case DW_FORM_data2:
21955 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21956 break;
21957 case DW_FORM_data4:
21958 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21959 break;
21960 case DW_FORM_data8:
21961 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21962 break;
21963
21964 case DW_FORM_sdata:
21965 case DW_FORM_implicit_const:
21966 *value = DW_SND (attr);
21967 break;
21968
21969 case DW_FORM_udata:
21970 *value = DW_UNSND (attr);
21971 break;
21972
21973 default:
21974 complaint (_("unsupported const value attribute form: '%s'"),
21975 dwarf_form_name (attr->form));
21976 *value = 0;
21977 break;
21978 }
21979 }
21980
21981
21982 /* Copy constant value from an attribute to a symbol. */
21983
21984 static void
21985 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21986 struct dwarf2_cu *cu)
21987 {
21988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21989 LONGEST value;
21990 const gdb_byte *bytes;
21991 struct dwarf2_locexpr_baton *baton;
21992
21993 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21994 SYMBOL_PRINT_NAME (sym),
21995 &objfile->objfile_obstack, cu,
21996 &value, &bytes, &baton);
21997
21998 if (baton != NULL)
21999 {
22000 SYMBOL_LOCATION_BATON (sym) = baton;
22001 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22002 }
22003 else if (bytes != NULL)
22004 {
22005 SYMBOL_VALUE_BYTES (sym) = bytes;
22006 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22007 }
22008 else
22009 {
22010 SYMBOL_VALUE (sym) = value;
22011 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22012 }
22013 }
22014
22015 /* Return the type of the die in question using its DW_AT_type attribute. */
22016
22017 static struct type *
22018 die_type (struct die_info *die, struct dwarf2_cu *cu)
22019 {
22020 struct attribute *type_attr;
22021
22022 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22023 if (!type_attr)
22024 {
22025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22026 /* A missing DW_AT_type represents a void type. */
22027 return objfile_type (objfile)->builtin_void;
22028 }
22029
22030 return lookup_die_type (die, type_attr, cu);
22031 }
22032
22033 /* True iff CU's producer generates GNAT Ada auxiliary information
22034 that allows to find parallel types through that information instead
22035 of having to do expensive parallel lookups by type name. */
22036
22037 static int
22038 need_gnat_info (struct dwarf2_cu *cu)
22039 {
22040 /* Assume that the Ada compiler was GNAT, which always produces
22041 the auxiliary information. */
22042 return (cu->language == language_ada);
22043 }
22044
22045 /* Return the auxiliary type of the die in question using its
22046 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22047 attribute is not present. */
22048
22049 static struct type *
22050 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22051 {
22052 struct attribute *type_attr;
22053
22054 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22055 if (!type_attr)
22056 return NULL;
22057
22058 return lookup_die_type (die, type_attr, cu);
22059 }
22060
22061 /* If DIE has a descriptive_type attribute, then set the TYPE's
22062 descriptive type accordingly. */
22063
22064 static void
22065 set_descriptive_type (struct type *type, struct die_info *die,
22066 struct dwarf2_cu *cu)
22067 {
22068 struct type *descriptive_type = die_descriptive_type (die, cu);
22069
22070 if (descriptive_type)
22071 {
22072 ALLOCATE_GNAT_AUX_TYPE (type);
22073 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22074 }
22075 }
22076
22077 /* Return the containing type of the die in question using its
22078 DW_AT_containing_type attribute. */
22079
22080 static struct type *
22081 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22082 {
22083 struct attribute *type_attr;
22084 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22085
22086 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22087 if (!type_attr)
22088 error (_("Dwarf Error: Problem turning containing type into gdb type "
22089 "[in module %s]"), objfile_name (objfile));
22090
22091 return lookup_die_type (die, type_attr, cu);
22092 }
22093
22094 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22095
22096 static struct type *
22097 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22098 {
22099 struct dwarf2_per_objfile *dwarf2_per_objfile
22100 = cu->per_cu->dwarf2_per_objfile;
22101 struct objfile *objfile = dwarf2_per_objfile->objfile;
22102 char *saved;
22103
22104 std::string message
22105 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22106 objfile_name (objfile),
22107 sect_offset_str (cu->header.sect_off),
22108 sect_offset_str (die->sect_off));
22109 saved = obstack_strdup (&objfile->objfile_obstack, message);
22110
22111 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22112 }
22113
22114 /* Look up the type of DIE in CU using its type attribute ATTR.
22115 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22116 DW_AT_containing_type.
22117 If there is no type substitute an error marker. */
22118
22119 static struct type *
22120 lookup_die_type (struct die_info *die, const struct attribute *attr,
22121 struct dwarf2_cu *cu)
22122 {
22123 struct dwarf2_per_objfile *dwarf2_per_objfile
22124 = cu->per_cu->dwarf2_per_objfile;
22125 struct objfile *objfile = dwarf2_per_objfile->objfile;
22126 struct type *this_type;
22127
22128 gdb_assert (attr->name == DW_AT_type
22129 || attr->name == DW_AT_GNAT_descriptive_type
22130 || attr->name == DW_AT_containing_type);
22131
22132 /* First see if we have it cached. */
22133
22134 if (attr->form == DW_FORM_GNU_ref_alt)
22135 {
22136 struct dwarf2_per_cu_data *per_cu;
22137 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22138
22139 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22140 dwarf2_per_objfile);
22141 this_type = get_die_type_at_offset (sect_off, per_cu);
22142 }
22143 else if (attr_form_is_ref (attr))
22144 {
22145 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22146
22147 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22148 }
22149 else if (attr->form == DW_FORM_ref_sig8)
22150 {
22151 ULONGEST signature = DW_SIGNATURE (attr);
22152
22153 return get_signatured_type (die, signature, cu);
22154 }
22155 else
22156 {
22157 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22158 " at %s [in module %s]"),
22159 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22160 objfile_name (objfile));
22161 return build_error_marker_type (cu, die);
22162 }
22163
22164 /* If not cached we need to read it in. */
22165
22166 if (this_type == NULL)
22167 {
22168 struct die_info *type_die = NULL;
22169 struct dwarf2_cu *type_cu = cu;
22170
22171 if (attr_form_is_ref (attr))
22172 type_die = follow_die_ref (die, attr, &type_cu);
22173 if (type_die == NULL)
22174 return build_error_marker_type (cu, die);
22175 /* If we find the type now, it's probably because the type came
22176 from an inter-CU reference and the type's CU got expanded before
22177 ours. */
22178 this_type = read_type_die (type_die, type_cu);
22179 }
22180
22181 /* If we still don't have a type use an error marker. */
22182
22183 if (this_type == NULL)
22184 return build_error_marker_type (cu, die);
22185
22186 return this_type;
22187 }
22188
22189 /* Return the type in DIE, CU.
22190 Returns NULL for invalid types.
22191
22192 This first does a lookup in die_type_hash,
22193 and only reads the die in if necessary.
22194
22195 NOTE: This can be called when reading in partial or full symbols. */
22196
22197 static struct type *
22198 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22199 {
22200 struct type *this_type;
22201
22202 this_type = get_die_type (die, cu);
22203 if (this_type)
22204 return this_type;
22205
22206 return read_type_die_1 (die, cu);
22207 }
22208
22209 /* Read the type in DIE, CU.
22210 Returns NULL for invalid types. */
22211
22212 static struct type *
22213 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22214 {
22215 struct type *this_type = NULL;
22216
22217 switch (die->tag)
22218 {
22219 case DW_TAG_class_type:
22220 case DW_TAG_interface_type:
22221 case DW_TAG_structure_type:
22222 case DW_TAG_union_type:
22223 this_type = read_structure_type (die, cu);
22224 break;
22225 case DW_TAG_enumeration_type:
22226 this_type = read_enumeration_type (die, cu);
22227 break;
22228 case DW_TAG_subprogram:
22229 case DW_TAG_subroutine_type:
22230 case DW_TAG_inlined_subroutine:
22231 this_type = read_subroutine_type (die, cu);
22232 break;
22233 case DW_TAG_array_type:
22234 this_type = read_array_type (die, cu);
22235 break;
22236 case DW_TAG_set_type:
22237 this_type = read_set_type (die, cu);
22238 break;
22239 case DW_TAG_pointer_type:
22240 this_type = read_tag_pointer_type (die, cu);
22241 break;
22242 case DW_TAG_ptr_to_member_type:
22243 this_type = read_tag_ptr_to_member_type (die, cu);
22244 break;
22245 case DW_TAG_reference_type:
22246 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22247 break;
22248 case DW_TAG_rvalue_reference_type:
22249 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22250 break;
22251 case DW_TAG_const_type:
22252 this_type = read_tag_const_type (die, cu);
22253 break;
22254 case DW_TAG_volatile_type:
22255 this_type = read_tag_volatile_type (die, cu);
22256 break;
22257 case DW_TAG_restrict_type:
22258 this_type = read_tag_restrict_type (die, cu);
22259 break;
22260 case DW_TAG_string_type:
22261 this_type = read_tag_string_type (die, cu);
22262 break;
22263 case DW_TAG_typedef:
22264 this_type = read_typedef (die, cu);
22265 break;
22266 case DW_TAG_subrange_type:
22267 this_type = read_subrange_type (die, cu);
22268 break;
22269 case DW_TAG_base_type:
22270 this_type = read_base_type (die, cu);
22271 break;
22272 case DW_TAG_unspecified_type:
22273 this_type = read_unspecified_type (die, cu);
22274 break;
22275 case DW_TAG_namespace:
22276 this_type = read_namespace_type (die, cu);
22277 break;
22278 case DW_TAG_module:
22279 this_type = read_module_type (die, cu);
22280 break;
22281 case DW_TAG_atomic_type:
22282 this_type = read_tag_atomic_type (die, cu);
22283 break;
22284 default:
22285 complaint (_("unexpected tag in read_type_die: '%s'"),
22286 dwarf_tag_name (die->tag));
22287 break;
22288 }
22289
22290 return this_type;
22291 }
22292
22293 /* See if we can figure out if the class lives in a namespace. We do
22294 this by looking for a member function; its demangled name will
22295 contain namespace info, if there is any.
22296 Return the computed name or NULL.
22297 Space for the result is allocated on the objfile's obstack.
22298 This is the full-die version of guess_partial_die_structure_name.
22299 In this case we know DIE has no useful parent. */
22300
22301 static char *
22302 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22303 {
22304 struct die_info *spec_die;
22305 struct dwarf2_cu *spec_cu;
22306 struct die_info *child;
22307 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22308
22309 spec_cu = cu;
22310 spec_die = die_specification (die, &spec_cu);
22311 if (spec_die != NULL)
22312 {
22313 die = spec_die;
22314 cu = spec_cu;
22315 }
22316
22317 for (child = die->child;
22318 child != NULL;
22319 child = child->sibling)
22320 {
22321 if (child->tag == DW_TAG_subprogram)
22322 {
22323 const char *linkage_name = dw2_linkage_name (child, cu);
22324
22325 if (linkage_name != NULL)
22326 {
22327 char *actual_name
22328 = language_class_name_from_physname (cu->language_defn,
22329 linkage_name);
22330 char *name = NULL;
22331
22332 if (actual_name != NULL)
22333 {
22334 const char *die_name = dwarf2_name (die, cu);
22335
22336 if (die_name != NULL
22337 && strcmp (die_name, actual_name) != 0)
22338 {
22339 /* Strip off the class name from the full name.
22340 We want the prefix. */
22341 int die_name_len = strlen (die_name);
22342 int actual_name_len = strlen (actual_name);
22343
22344 /* Test for '::' as a sanity check. */
22345 if (actual_name_len > die_name_len + 2
22346 && actual_name[actual_name_len
22347 - die_name_len - 1] == ':')
22348 name = obstack_strndup (
22349 &objfile->per_bfd->storage_obstack,
22350 actual_name, actual_name_len - die_name_len - 2);
22351 }
22352 }
22353 xfree (actual_name);
22354 return name;
22355 }
22356 }
22357 }
22358
22359 return NULL;
22360 }
22361
22362 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22363 prefix part in such case. See
22364 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22365
22366 static const char *
22367 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22368 {
22369 struct attribute *attr;
22370 const char *base;
22371
22372 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22373 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22374 return NULL;
22375
22376 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22377 return NULL;
22378
22379 attr = dw2_linkage_name_attr (die, cu);
22380 if (attr == NULL || DW_STRING (attr) == NULL)
22381 return NULL;
22382
22383 /* dwarf2_name had to be already called. */
22384 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22385
22386 /* Strip the base name, keep any leading namespaces/classes. */
22387 base = strrchr (DW_STRING (attr), ':');
22388 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22389 return "";
22390
22391 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22392 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22393 DW_STRING (attr),
22394 &base[-1] - DW_STRING (attr));
22395 }
22396
22397 /* Return the name of the namespace/class that DIE is defined within,
22398 or "" if we can't tell. The caller should not xfree the result.
22399
22400 For example, if we're within the method foo() in the following
22401 code:
22402
22403 namespace N {
22404 class C {
22405 void foo () {
22406 }
22407 };
22408 }
22409
22410 then determine_prefix on foo's die will return "N::C". */
22411
22412 static const char *
22413 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22414 {
22415 struct dwarf2_per_objfile *dwarf2_per_objfile
22416 = cu->per_cu->dwarf2_per_objfile;
22417 struct die_info *parent, *spec_die;
22418 struct dwarf2_cu *spec_cu;
22419 struct type *parent_type;
22420 const char *retval;
22421
22422 if (cu->language != language_cplus
22423 && cu->language != language_fortran && cu->language != language_d
22424 && cu->language != language_rust)
22425 return "";
22426
22427 retval = anonymous_struct_prefix (die, cu);
22428 if (retval)
22429 return retval;
22430
22431 /* We have to be careful in the presence of DW_AT_specification.
22432 For example, with GCC 3.4, given the code
22433
22434 namespace N {
22435 void foo() {
22436 // Definition of N::foo.
22437 }
22438 }
22439
22440 then we'll have a tree of DIEs like this:
22441
22442 1: DW_TAG_compile_unit
22443 2: DW_TAG_namespace // N
22444 3: DW_TAG_subprogram // declaration of N::foo
22445 4: DW_TAG_subprogram // definition of N::foo
22446 DW_AT_specification // refers to die #3
22447
22448 Thus, when processing die #4, we have to pretend that we're in
22449 the context of its DW_AT_specification, namely the contex of die
22450 #3. */
22451 spec_cu = cu;
22452 spec_die = die_specification (die, &spec_cu);
22453 if (spec_die == NULL)
22454 parent = die->parent;
22455 else
22456 {
22457 parent = spec_die->parent;
22458 cu = spec_cu;
22459 }
22460
22461 if (parent == NULL)
22462 return "";
22463 else if (parent->building_fullname)
22464 {
22465 const char *name;
22466 const char *parent_name;
22467
22468 /* It has been seen on RealView 2.2 built binaries,
22469 DW_TAG_template_type_param types actually _defined_ as
22470 children of the parent class:
22471
22472 enum E {};
22473 template class <class Enum> Class{};
22474 Class<enum E> class_e;
22475
22476 1: DW_TAG_class_type (Class)
22477 2: DW_TAG_enumeration_type (E)
22478 3: DW_TAG_enumerator (enum1:0)
22479 3: DW_TAG_enumerator (enum2:1)
22480 ...
22481 2: DW_TAG_template_type_param
22482 DW_AT_type DW_FORM_ref_udata (E)
22483
22484 Besides being broken debug info, it can put GDB into an
22485 infinite loop. Consider:
22486
22487 When we're building the full name for Class<E>, we'll start
22488 at Class, and go look over its template type parameters,
22489 finding E. We'll then try to build the full name of E, and
22490 reach here. We're now trying to build the full name of E,
22491 and look over the parent DIE for containing scope. In the
22492 broken case, if we followed the parent DIE of E, we'd again
22493 find Class, and once again go look at its template type
22494 arguments, etc., etc. Simply don't consider such parent die
22495 as source-level parent of this die (it can't be, the language
22496 doesn't allow it), and break the loop here. */
22497 name = dwarf2_name (die, cu);
22498 parent_name = dwarf2_name (parent, cu);
22499 complaint (_("template param type '%s' defined within parent '%s'"),
22500 name ? name : "<unknown>",
22501 parent_name ? parent_name : "<unknown>");
22502 return "";
22503 }
22504 else
22505 switch (parent->tag)
22506 {
22507 case DW_TAG_namespace:
22508 parent_type = read_type_die (parent, cu);
22509 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22510 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22511 Work around this problem here. */
22512 if (cu->language == language_cplus
22513 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22514 return "";
22515 /* We give a name to even anonymous namespaces. */
22516 return TYPE_NAME (parent_type);
22517 case DW_TAG_class_type:
22518 case DW_TAG_interface_type:
22519 case DW_TAG_structure_type:
22520 case DW_TAG_union_type:
22521 case DW_TAG_module:
22522 parent_type = read_type_die (parent, cu);
22523 if (TYPE_NAME (parent_type) != NULL)
22524 return TYPE_NAME (parent_type);
22525 else
22526 /* An anonymous structure is only allowed non-static data
22527 members; no typedefs, no member functions, et cetera.
22528 So it does not need a prefix. */
22529 return "";
22530 case DW_TAG_compile_unit:
22531 case DW_TAG_partial_unit:
22532 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22533 if (cu->language == language_cplus
22534 && !dwarf2_per_objfile->types.empty ()
22535 && die->child != NULL
22536 && (die->tag == DW_TAG_class_type
22537 || die->tag == DW_TAG_structure_type
22538 || die->tag == DW_TAG_union_type))
22539 {
22540 char *name = guess_full_die_structure_name (die, cu);
22541 if (name != NULL)
22542 return name;
22543 }
22544 return "";
22545 case DW_TAG_enumeration_type:
22546 parent_type = read_type_die (parent, cu);
22547 if (TYPE_DECLARED_CLASS (parent_type))
22548 {
22549 if (TYPE_NAME (parent_type) != NULL)
22550 return TYPE_NAME (parent_type);
22551 return "";
22552 }
22553 /* Fall through. */
22554 default:
22555 return determine_prefix (parent, cu);
22556 }
22557 }
22558
22559 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22560 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22561 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22562 an obconcat, otherwise allocate storage for the result. The CU argument is
22563 used to determine the language and hence, the appropriate separator. */
22564
22565 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22566
22567 static char *
22568 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22569 int physname, struct dwarf2_cu *cu)
22570 {
22571 const char *lead = "";
22572 const char *sep;
22573
22574 if (suffix == NULL || suffix[0] == '\0'
22575 || prefix == NULL || prefix[0] == '\0')
22576 sep = "";
22577 else if (cu->language == language_d)
22578 {
22579 /* For D, the 'main' function could be defined in any module, but it
22580 should never be prefixed. */
22581 if (strcmp (suffix, "D main") == 0)
22582 {
22583 prefix = "";
22584 sep = "";
22585 }
22586 else
22587 sep = ".";
22588 }
22589 else if (cu->language == language_fortran && physname)
22590 {
22591 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22592 DW_AT_MIPS_linkage_name is preferred and used instead. */
22593
22594 lead = "__";
22595 sep = "_MOD_";
22596 }
22597 else
22598 sep = "::";
22599
22600 if (prefix == NULL)
22601 prefix = "";
22602 if (suffix == NULL)
22603 suffix = "";
22604
22605 if (obs == NULL)
22606 {
22607 char *retval
22608 = ((char *)
22609 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22610
22611 strcpy (retval, lead);
22612 strcat (retval, prefix);
22613 strcat (retval, sep);
22614 strcat (retval, suffix);
22615 return retval;
22616 }
22617 else
22618 {
22619 /* We have an obstack. */
22620 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22621 }
22622 }
22623
22624 /* Return sibling of die, NULL if no sibling. */
22625
22626 static struct die_info *
22627 sibling_die (struct die_info *die)
22628 {
22629 return die->sibling;
22630 }
22631
22632 /* Get name of a die, return NULL if not found. */
22633
22634 static const char *
22635 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22636 struct obstack *obstack)
22637 {
22638 if (name && cu->language == language_cplus)
22639 {
22640 std::string canon_name = cp_canonicalize_string (name);
22641
22642 if (!canon_name.empty ())
22643 {
22644 if (canon_name != name)
22645 name = obstack_strdup (obstack, canon_name);
22646 }
22647 }
22648
22649 return name;
22650 }
22651
22652 /* Get name of a die, return NULL if not found.
22653 Anonymous namespaces are converted to their magic string. */
22654
22655 static const char *
22656 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22657 {
22658 struct attribute *attr;
22659 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22660
22661 attr = dwarf2_attr (die, DW_AT_name, cu);
22662 if ((!attr || !DW_STRING (attr))
22663 && die->tag != DW_TAG_namespace
22664 && die->tag != DW_TAG_class_type
22665 && die->tag != DW_TAG_interface_type
22666 && die->tag != DW_TAG_structure_type
22667 && die->tag != DW_TAG_union_type)
22668 return NULL;
22669
22670 switch (die->tag)
22671 {
22672 case DW_TAG_compile_unit:
22673 case DW_TAG_partial_unit:
22674 /* Compilation units have a DW_AT_name that is a filename, not
22675 a source language identifier. */
22676 case DW_TAG_enumeration_type:
22677 case DW_TAG_enumerator:
22678 /* These tags always have simple identifiers already; no need
22679 to canonicalize them. */
22680 return DW_STRING (attr);
22681
22682 case DW_TAG_namespace:
22683 if (attr != NULL && DW_STRING (attr) != NULL)
22684 return DW_STRING (attr);
22685 return CP_ANONYMOUS_NAMESPACE_STR;
22686
22687 case DW_TAG_class_type:
22688 case DW_TAG_interface_type:
22689 case DW_TAG_structure_type:
22690 case DW_TAG_union_type:
22691 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22692 structures or unions. These were of the form "._%d" in GCC 4.1,
22693 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22694 and GCC 4.4. We work around this problem by ignoring these. */
22695 if (attr && DW_STRING (attr)
22696 && (startswith (DW_STRING (attr), "._")
22697 || startswith (DW_STRING (attr), "<anonymous")))
22698 return NULL;
22699
22700 /* GCC might emit a nameless typedef that has a linkage name. See
22701 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22702 if (!attr || DW_STRING (attr) == NULL)
22703 {
22704 char *demangled = NULL;
22705
22706 attr = dw2_linkage_name_attr (die, cu);
22707 if (attr == NULL || DW_STRING (attr) == NULL)
22708 return NULL;
22709
22710 /* Avoid demangling DW_STRING (attr) the second time on a second
22711 call for the same DIE. */
22712 if (!DW_STRING_IS_CANONICAL (attr))
22713 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22714
22715 if (demangled)
22716 {
22717 const char *base;
22718
22719 /* FIXME: we already did this for the partial symbol... */
22720 DW_STRING (attr)
22721 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22722 demangled);
22723 DW_STRING_IS_CANONICAL (attr) = 1;
22724 xfree (demangled);
22725
22726 /* Strip any leading namespaces/classes, keep only the base name.
22727 DW_AT_name for named DIEs does not contain the prefixes. */
22728 base = strrchr (DW_STRING (attr), ':');
22729 if (base && base > DW_STRING (attr) && base[-1] == ':')
22730 return &base[1];
22731 else
22732 return DW_STRING (attr);
22733 }
22734 }
22735 break;
22736
22737 default:
22738 break;
22739 }
22740
22741 if (!DW_STRING_IS_CANONICAL (attr))
22742 {
22743 DW_STRING (attr)
22744 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22745 &objfile->per_bfd->storage_obstack);
22746 DW_STRING_IS_CANONICAL (attr) = 1;
22747 }
22748 return DW_STRING (attr);
22749 }
22750
22751 /* Return the die that this die in an extension of, or NULL if there
22752 is none. *EXT_CU is the CU containing DIE on input, and the CU
22753 containing the return value on output. */
22754
22755 static struct die_info *
22756 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22757 {
22758 struct attribute *attr;
22759
22760 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22761 if (attr == NULL)
22762 return NULL;
22763
22764 return follow_die_ref (die, attr, ext_cu);
22765 }
22766
22767 /* A convenience function that returns an "unknown" DWARF name,
22768 including the value of V. STR is the name of the entity being
22769 printed, e.g., "TAG". */
22770
22771 static const char *
22772 dwarf_unknown (const char *str, unsigned v)
22773 {
22774 char *cell = get_print_cell ();
22775 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22776 return cell;
22777 }
22778
22779 /* Convert a DIE tag into its string name. */
22780
22781 static const char *
22782 dwarf_tag_name (unsigned tag)
22783 {
22784 const char *name = get_DW_TAG_name (tag);
22785
22786 if (name == NULL)
22787 return dwarf_unknown ("TAG", tag);
22788
22789 return name;
22790 }
22791
22792 /* Convert a DWARF attribute code into its string name. */
22793
22794 static const char *
22795 dwarf_attr_name (unsigned attr)
22796 {
22797 const char *name;
22798
22799 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22800 if (attr == DW_AT_MIPS_fde)
22801 return "DW_AT_MIPS_fde";
22802 #else
22803 if (attr == DW_AT_HP_block_index)
22804 return "DW_AT_HP_block_index";
22805 #endif
22806
22807 name = get_DW_AT_name (attr);
22808
22809 if (name == NULL)
22810 return dwarf_unknown ("AT", attr);
22811
22812 return name;
22813 }
22814
22815 /* Convert a DWARF value form code into its string name. */
22816
22817 static const char *
22818 dwarf_form_name (unsigned form)
22819 {
22820 const char *name = get_DW_FORM_name (form);
22821
22822 if (name == NULL)
22823 return dwarf_unknown ("FORM", form);
22824
22825 return name;
22826 }
22827
22828 static const char *
22829 dwarf_bool_name (unsigned mybool)
22830 {
22831 if (mybool)
22832 return "TRUE";
22833 else
22834 return "FALSE";
22835 }
22836
22837 /* Convert a DWARF type code into its string name. */
22838
22839 static const char *
22840 dwarf_type_encoding_name (unsigned enc)
22841 {
22842 const char *name = get_DW_ATE_name (enc);
22843
22844 if (name == NULL)
22845 return dwarf_unknown ("ATE", enc);
22846
22847 return name;
22848 }
22849
22850 static void
22851 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22852 {
22853 unsigned int i;
22854
22855 print_spaces (indent, f);
22856 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22857 dwarf_tag_name (die->tag), die->abbrev,
22858 sect_offset_str (die->sect_off));
22859
22860 if (die->parent != NULL)
22861 {
22862 print_spaces (indent, f);
22863 fprintf_unfiltered (f, " parent at offset: %s\n",
22864 sect_offset_str (die->parent->sect_off));
22865 }
22866
22867 print_spaces (indent, f);
22868 fprintf_unfiltered (f, " has children: %s\n",
22869 dwarf_bool_name (die->child != NULL));
22870
22871 print_spaces (indent, f);
22872 fprintf_unfiltered (f, " attributes:\n");
22873
22874 for (i = 0; i < die->num_attrs; ++i)
22875 {
22876 print_spaces (indent, f);
22877 fprintf_unfiltered (f, " %s (%s) ",
22878 dwarf_attr_name (die->attrs[i].name),
22879 dwarf_form_name (die->attrs[i].form));
22880
22881 switch (die->attrs[i].form)
22882 {
22883 case DW_FORM_addr:
22884 case DW_FORM_addrx:
22885 case DW_FORM_GNU_addr_index:
22886 fprintf_unfiltered (f, "address: ");
22887 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22888 break;
22889 case DW_FORM_block2:
22890 case DW_FORM_block4:
22891 case DW_FORM_block:
22892 case DW_FORM_block1:
22893 fprintf_unfiltered (f, "block: size %s",
22894 pulongest (DW_BLOCK (&die->attrs[i])->size));
22895 break;
22896 case DW_FORM_exprloc:
22897 fprintf_unfiltered (f, "expression: size %s",
22898 pulongest (DW_BLOCK (&die->attrs[i])->size));
22899 break;
22900 case DW_FORM_data16:
22901 fprintf_unfiltered (f, "constant of 16 bytes");
22902 break;
22903 case DW_FORM_ref_addr:
22904 fprintf_unfiltered (f, "ref address: ");
22905 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22906 break;
22907 case DW_FORM_GNU_ref_alt:
22908 fprintf_unfiltered (f, "alt ref address: ");
22909 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22910 break;
22911 case DW_FORM_ref1:
22912 case DW_FORM_ref2:
22913 case DW_FORM_ref4:
22914 case DW_FORM_ref8:
22915 case DW_FORM_ref_udata:
22916 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22917 (long) (DW_UNSND (&die->attrs[i])));
22918 break;
22919 case DW_FORM_data1:
22920 case DW_FORM_data2:
22921 case DW_FORM_data4:
22922 case DW_FORM_data8:
22923 case DW_FORM_udata:
22924 case DW_FORM_sdata:
22925 fprintf_unfiltered (f, "constant: %s",
22926 pulongest (DW_UNSND (&die->attrs[i])));
22927 break;
22928 case DW_FORM_sec_offset:
22929 fprintf_unfiltered (f, "section offset: %s",
22930 pulongest (DW_UNSND (&die->attrs[i])));
22931 break;
22932 case DW_FORM_ref_sig8:
22933 fprintf_unfiltered (f, "signature: %s",
22934 hex_string (DW_SIGNATURE (&die->attrs[i])));
22935 break;
22936 case DW_FORM_string:
22937 case DW_FORM_strp:
22938 case DW_FORM_line_strp:
22939 case DW_FORM_strx:
22940 case DW_FORM_GNU_str_index:
22941 case DW_FORM_GNU_strp_alt:
22942 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22943 DW_STRING (&die->attrs[i])
22944 ? DW_STRING (&die->attrs[i]) : "",
22945 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22946 break;
22947 case DW_FORM_flag:
22948 if (DW_UNSND (&die->attrs[i]))
22949 fprintf_unfiltered (f, "flag: TRUE");
22950 else
22951 fprintf_unfiltered (f, "flag: FALSE");
22952 break;
22953 case DW_FORM_flag_present:
22954 fprintf_unfiltered (f, "flag: TRUE");
22955 break;
22956 case DW_FORM_indirect:
22957 /* The reader will have reduced the indirect form to
22958 the "base form" so this form should not occur. */
22959 fprintf_unfiltered (f,
22960 "unexpected attribute form: DW_FORM_indirect");
22961 break;
22962 case DW_FORM_implicit_const:
22963 fprintf_unfiltered (f, "constant: %s",
22964 plongest (DW_SND (&die->attrs[i])));
22965 break;
22966 default:
22967 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22968 die->attrs[i].form);
22969 break;
22970 }
22971 fprintf_unfiltered (f, "\n");
22972 }
22973 }
22974
22975 static void
22976 dump_die_for_error (struct die_info *die)
22977 {
22978 dump_die_shallow (gdb_stderr, 0, die);
22979 }
22980
22981 static void
22982 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22983 {
22984 int indent = level * 4;
22985
22986 gdb_assert (die != NULL);
22987
22988 if (level >= max_level)
22989 return;
22990
22991 dump_die_shallow (f, indent, die);
22992
22993 if (die->child != NULL)
22994 {
22995 print_spaces (indent, f);
22996 fprintf_unfiltered (f, " Children:");
22997 if (level + 1 < max_level)
22998 {
22999 fprintf_unfiltered (f, "\n");
23000 dump_die_1 (f, level + 1, max_level, die->child);
23001 }
23002 else
23003 {
23004 fprintf_unfiltered (f,
23005 " [not printed, max nesting level reached]\n");
23006 }
23007 }
23008
23009 if (die->sibling != NULL && level > 0)
23010 {
23011 dump_die_1 (f, level, max_level, die->sibling);
23012 }
23013 }
23014
23015 /* This is called from the pdie macro in gdbinit.in.
23016 It's not static so gcc will keep a copy callable from gdb. */
23017
23018 void
23019 dump_die (struct die_info *die, int max_level)
23020 {
23021 dump_die_1 (gdb_stdlog, 0, max_level, die);
23022 }
23023
23024 static void
23025 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23026 {
23027 void **slot;
23028
23029 slot = htab_find_slot_with_hash (cu->die_hash, die,
23030 to_underlying (die->sect_off),
23031 INSERT);
23032
23033 *slot = die;
23034 }
23035
23036 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23037 required kind. */
23038
23039 static sect_offset
23040 dwarf2_get_ref_die_offset (const struct attribute *attr)
23041 {
23042 if (attr_form_is_ref (attr))
23043 return (sect_offset) DW_UNSND (attr);
23044
23045 complaint (_("unsupported die ref attribute form: '%s'"),
23046 dwarf_form_name (attr->form));
23047 return {};
23048 }
23049
23050 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23051 * the value held by the attribute is not constant. */
23052
23053 static LONGEST
23054 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23055 {
23056 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23057 return DW_SND (attr);
23058 else if (attr->form == DW_FORM_udata
23059 || attr->form == DW_FORM_data1
23060 || attr->form == DW_FORM_data2
23061 || attr->form == DW_FORM_data4
23062 || attr->form == DW_FORM_data8)
23063 return DW_UNSND (attr);
23064 else
23065 {
23066 /* For DW_FORM_data16 see attr_form_is_constant. */
23067 complaint (_("Attribute value is not a constant (%s)"),
23068 dwarf_form_name (attr->form));
23069 return default_value;
23070 }
23071 }
23072
23073 /* Follow reference or signature attribute ATTR of SRC_DIE.
23074 On entry *REF_CU is the CU of SRC_DIE.
23075 On exit *REF_CU is the CU of the result. */
23076
23077 static struct die_info *
23078 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23079 struct dwarf2_cu **ref_cu)
23080 {
23081 struct die_info *die;
23082
23083 if (attr_form_is_ref (attr))
23084 die = follow_die_ref (src_die, attr, ref_cu);
23085 else if (attr->form == DW_FORM_ref_sig8)
23086 die = follow_die_sig (src_die, attr, ref_cu);
23087 else
23088 {
23089 dump_die_for_error (src_die);
23090 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23091 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23092 }
23093
23094 return die;
23095 }
23096
23097 /* Follow reference OFFSET.
23098 On entry *REF_CU is the CU of the source die referencing OFFSET.
23099 On exit *REF_CU is the CU of the result.
23100 Returns NULL if OFFSET is invalid. */
23101
23102 static struct die_info *
23103 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23104 struct dwarf2_cu **ref_cu)
23105 {
23106 struct die_info temp_die;
23107 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23108 struct dwarf2_per_objfile *dwarf2_per_objfile
23109 = cu->per_cu->dwarf2_per_objfile;
23110
23111 gdb_assert (cu->per_cu != NULL);
23112
23113 target_cu = cu;
23114
23115 if (cu->per_cu->is_debug_types)
23116 {
23117 /* .debug_types CUs cannot reference anything outside their CU.
23118 If they need to, they have to reference a signatured type via
23119 DW_FORM_ref_sig8. */
23120 if (!offset_in_cu_p (&cu->header, sect_off))
23121 return NULL;
23122 }
23123 else if (offset_in_dwz != cu->per_cu->is_dwz
23124 || !offset_in_cu_p (&cu->header, sect_off))
23125 {
23126 struct dwarf2_per_cu_data *per_cu;
23127
23128 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23129 dwarf2_per_objfile);
23130
23131 /* If necessary, add it to the queue and load its DIEs. */
23132 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23133 load_full_comp_unit (per_cu, false, cu->language);
23134
23135 target_cu = per_cu->cu;
23136 }
23137 else if (cu->dies == NULL)
23138 {
23139 /* We're loading full DIEs during partial symbol reading. */
23140 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23141 load_full_comp_unit (cu->per_cu, false, language_minimal);
23142 }
23143
23144 *ref_cu = target_cu;
23145 temp_die.sect_off = sect_off;
23146
23147 if (target_cu != cu)
23148 target_cu->ancestor = cu;
23149
23150 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23151 &temp_die,
23152 to_underlying (sect_off));
23153 }
23154
23155 /* Follow reference attribute ATTR of SRC_DIE.
23156 On entry *REF_CU is the CU of SRC_DIE.
23157 On exit *REF_CU is the CU of the result. */
23158
23159 static struct die_info *
23160 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23161 struct dwarf2_cu **ref_cu)
23162 {
23163 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23164 struct dwarf2_cu *cu = *ref_cu;
23165 struct die_info *die;
23166
23167 die = follow_die_offset (sect_off,
23168 (attr->form == DW_FORM_GNU_ref_alt
23169 || cu->per_cu->is_dwz),
23170 ref_cu);
23171 if (!die)
23172 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23173 "at %s [in module %s]"),
23174 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23175 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23176
23177 return die;
23178 }
23179
23180 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23181 Returned value is intended for DW_OP_call*. Returned
23182 dwarf2_locexpr_baton->data has lifetime of
23183 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23184
23185 struct dwarf2_locexpr_baton
23186 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23187 struct dwarf2_per_cu_data *per_cu,
23188 CORE_ADDR (*get_frame_pc) (void *baton),
23189 void *baton, bool resolve_abstract_p)
23190 {
23191 struct dwarf2_cu *cu;
23192 struct die_info *die;
23193 struct attribute *attr;
23194 struct dwarf2_locexpr_baton retval;
23195 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23196 struct objfile *objfile = dwarf2_per_objfile->objfile;
23197
23198 if (per_cu->cu == NULL)
23199 load_cu (per_cu, false);
23200 cu = per_cu->cu;
23201 if (cu == NULL)
23202 {
23203 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23204 Instead just throw an error, not much else we can do. */
23205 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23206 sect_offset_str (sect_off), objfile_name (objfile));
23207 }
23208
23209 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23210 if (!die)
23211 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23212 sect_offset_str (sect_off), objfile_name (objfile));
23213
23214 attr = dwarf2_attr (die, DW_AT_location, cu);
23215 if (!attr && resolve_abstract_p
23216 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23217 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23218 {
23219 CORE_ADDR pc = (*get_frame_pc) (baton);
23220 CORE_ADDR baseaddr
23221 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23222 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23223
23224 for (const auto &cand_off
23225 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23226 {
23227 struct dwarf2_cu *cand_cu = cu;
23228 struct die_info *cand
23229 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23230 if (!cand
23231 || !cand->parent
23232 || cand->parent->tag != DW_TAG_subprogram)
23233 continue;
23234
23235 CORE_ADDR pc_low, pc_high;
23236 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23237 if (pc_low == ((CORE_ADDR) -1))
23238 continue;
23239 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23240 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23241 if (!(pc_low <= pc && pc < pc_high))
23242 continue;
23243
23244 die = cand;
23245 attr = dwarf2_attr (die, DW_AT_location, cu);
23246 break;
23247 }
23248 }
23249
23250 if (!attr)
23251 {
23252 /* DWARF: "If there is no such attribute, then there is no effect.".
23253 DATA is ignored if SIZE is 0. */
23254
23255 retval.data = NULL;
23256 retval.size = 0;
23257 }
23258 else if (attr_form_is_section_offset (attr))
23259 {
23260 struct dwarf2_loclist_baton loclist_baton;
23261 CORE_ADDR pc = (*get_frame_pc) (baton);
23262 size_t size;
23263
23264 fill_in_loclist_baton (cu, &loclist_baton, attr);
23265
23266 retval.data = dwarf2_find_location_expression (&loclist_baton,
23267 &size, pc);
23268 retval.size = size;
23269 }
23270 else
23271 {
23272 if (!attr_form_is_block (attr))
23273 error (_("Dwarf Error: DIE at %s referenced in module %s "
23274 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23275 sect_offset_str (sect_off), objfile_name (objfile));
23276
23277 retval.data = DW_BLOCK (attr)->data;
23278 retval.size = DW_BLOCK (attr)->size;
23279 }
23280 retval.per_cu = cu->per_cu;
23281
23282 age_cached_comp_units (dwarf2_per_objfile);
23283
23284 return retval;
23285 }
23286
23287 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23288 offset. */
23289
23290 struct dwarf2_locexpr_baton
23291 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23292 struct dwarf2_per_cu_data *per_cu,
23293 CORE_ADDR (*get_frame_pc) (void *baton),
23294 void *baton)
23295 {
23296 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23297
23298 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23299 }
23300
23301 /* Write a constant of a given type as target-ordered bytes into
23302 OBSTACK. */
23303
23304 static const gdb_byte *
23305 write_constant_as_bytes (struct obstack *obstack,
23306 enum bfd_endian byte_order,
23307 struct type *type,
23308 ULONGEST value,
23309 LONGEST *len)
23310 {
23311 gdb_byte *result;
23312
23313 *len = TYPE_LENGTH (type);
23314 result = (gdb_byte *) obstack_alloc (obstack, *len);
23315 store_unsigned_integer (result, *len, byte_order, value);
23316
23317 return result;
23318 }
23319
23320 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23321 pointer to the constant bytes and set LEN to the length of the
23322 data. If memory is needed, allocate it on OBSTACK. If the DIE
23323 does not have a DW_AT_const_value, return NULL. */
23324
23325 const gdb_byte *
23326 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23327 struct dwarf2_per_cu_data *per_cu,
23328 struct obstack *obstack,
23329 LONGEST *len)
23330 {
23331 struct dwarf2_cu *cu;
23332 struct die_info *die;
23333 struct attribute *attr;
23334 const gdb_byte *result = NULL;
23335 struct type *type;
23336 LONGEST value;
23337 enum bfd_endian byte_order;
23338 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23339
23340 if (per_cu->cu == NULL)
23341 load_cu (per_cu, false);
23342 cu = per_cu->cu;
23343 if (cu == NULL)
23344 {
23345 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23346 Instead just throw an error, not much else we can do. */
23347 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23348 sect_offset_str (sect_off), objfile_name (objfile));
23349 }
23350
23351 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23352 if (!die)
23353 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23354 sect_offset_str (sect_off), objfile_name (objfile));
23355
23356 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23357 if (attr == NULL)
23358 return NULL;
23359
23360 byte_order = (bfd_big_endian (objfile->obfd)
23361 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23362
23363 switch (attr->form)
23364 {
23365 case DW_FORM_addr:
23366 case DW_FORM_addrx:
23367 case DW_FORM_GNU_addr_index:
23368 {
23369 gdb_byte *tem;
23370
23371 *len = cu->header.addr_size;
23372 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23373 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23374 result = tem;
23375 }
23376 break;
23377 case DW_FORM_string:
23378 case DW_FORM_strp:
23379 case DW_FORM_strx:
23380 case DW_FORM_GNU_str_index:
23381 case DW_FORM_GNU_strp_alt:
23382 /* DW_STRING is already allocated on the objfile obstack, point
23383 directly to it. */
23384 result = (const gdb_byte *) DW_STRING (attr);
23385 *len = strlen (DW_STRING (attr));
23386 break;
23387 case DW_FORM_block1:
23388 case DW_FORM_block2:
23389 case DW_FORM_block4:
23390 case DW_FORM_block:
23391 case DW_FORM_exprloc:
23392 case DW_FORM_data16:
23393 result = DW_BLOCK (attr)->data;
23394 *len = DW_BLOCK (attr)->size;
23395 break;
23396
23397 /* The DW_AT_const_value attributes are supposed to carry the
23398 symbol's value "represented as it would be on the target
23399 architecture." By the time we get here, it's already been
23400 converted to host endianness, so we just need to sign- or
23401 zero-extend it as appropriate. */
23402 case DW_FORM_data1:
23403 type = die_type (die, cu);
23404 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23405 if (result == NULL)
23406 result = write_constant_as_bytes (obstack, byte_order,
23407 type, value, len);
23408 break;
23409 case DW_FORM_data2:
23410 type = die_type (die, cu);
23411 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23412 if (result == NULL)
23413 result = write_constant_as_bytes (obstack, byte_order,
23414 type, value, len);
23415 break;
23416 case DW_FORM_data4:
23417 type = die_type (die, cu);
23418 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23419 if (result == NULL)
23420 result = write_constant_as_bytes (obstack, byte_order,
23421 type, value, len);
23422 break;
23423 case DW_FORM_data8:
23424 type = die_type (die, cu);
23425 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23426 if (result == NULL)
23427 result = write_constant_as_bytes (obstack, byte_order,
23428 type, value, len);
23429 break;
23430
23431 case DW_FORM_sdata:
23432 case DW_FORM_implicit_const:
23433 type = die_type (die, cu);
23434 result = write_constant_as_bytes (obstack, byte_order,
23435 type, DW_SND (attr), len);
23436 break;
23437
23438 case DW_FORM_udata:
23439 type = die_type (die, cu);
23440 result = write_constant_as_bytes (obstack, byte_order,
23441 type, DW_UNSND (attr), len);
23442 break;
23443
23444 default:
23445 complaint (_("unsupported const value attribute form: '%s'"),
23446 dwarf_form_name (attr->form));
23447 break;
23448 }
23449
23450 return result;
23451 }
23452
23453 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23454 valid type for this die is found. */
23455
23456 struct type *
23457 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23458 struct dwarf2_per_cu_data *per_cu)
23459 {
23460 struct dwarf2_cu *cu;
23461 struct die_info *die;
23462
23463 if (per_cu->cu == NULL)
23464 load_cu (per_cu, false);
23465 cu = per_cu->cu;
23466 if (!cu)
23467 return NULL;
23468
23469 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23470 if (!die)
23471 return NULL;
23472
23473 return die_type (die, cu);
23474 }
23475
23476 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23477 PER_CU. */
23478
23479 struct type *
23480 dwarf2_get_die_type (cu_offset die_offset,
23481 struct dwarf2_per_cu_data *per_cu)
23482 {
23483 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23484 return get_die_type_at_offset (die_offset_sect, per_cu);
23485 }
23486
23487 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23488 On entry *REF_CU is the CU of SRC_DIE.
23489 On exit *REF_CU is the CU of the result.
23490 Returns NULL if the referenced DIE isn't found. */
23491
23492 static struct die_info *
23493 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23494 struct dwarf2_cu **ref_cu)
23495 {
23496 struct die_info temp_die;
23497 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23498 struct die_info *die;
23499
23500 /* While it might be nice to assert sig_type->type == NULL here,
23501 we can get here for DW_AT_imported_declaration where we need
23502 the DIE not the type. */
23503
23504 /* If necessary, add it to the queue and load its DIEs. */
23505
23506 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23507 read_signatured_type (sig_type);
23508
23509 sig_cu = sig_type->per_cu.cu;
23510 gdb_assert (sig_cu != NULL);
23511 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23512 temp_die.sect_off = sig_type->type_offset_in_section;
23513 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23514 to_underlying (temp_die.sect_off));
23515 if (die)
23516 {
23517 struct dwarf2_per_objfile *dwarf2_per_objfile
23518 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23519
23520 /* For .gdb_index version 7 keep track of included TUs.
23521 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23522 if (dwarf2_per_objfile->index_table != NULL
23523 && dwarf2_per_objfile->index_table->version <= 7)
23524 {
23525 VEC_safe_push (dwarf2_per_cu_ptr,
23526 (*ref_cu)->per_cu->imported_symtabs,
23527 sig_cu->per_cu);
23528 }
23529
23530 *ref_cu = sig_cu;
23531 if (sig_cu != cu)
23532 sig_cu->ancestor = cu;
23533
23534 return die;
23535 }
23536
23537 return NULL;
23538 }
23539
23540 /* Follow signatured type referenced by ATTR in SRC_DIE.
23541 On entry *REF_CU is the CU of SRC_DIE.
23542 On exit *REF_CU is the CU of the result.
23543 The result is the DIE of the type.
23544 If the referenced type cannot be found an error is thrown. */
23545
23546 static struct die_info *
23547 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23548 struct dwarf2_cu **ref_cu)
23549 {
23550 ULONGEST signature = DW_SIGNATURE (attr);
23551 struct signatured_type *sig_type;
23552 struct die_info *die;
23553
23554 gdb_assert (attr->form == DW_FORM_ref_sig8);
23555
23556 sig_type = lookup_signatured_type (*ref_cu, signature);
23557 /* sig_type will be NULL if the signatured type is missing from
23558 the debug info. */
23559 if (sig_type == NULL)
23560 {
23561 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23562 " from DIE at %s [in module %s]"),
23563 hex_string (signature), sect_offset_str (src_die->sect_off),
23564 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23565 }
23566
23567 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23568 if (die == NULL)
23569 {
23570 dump_die_for_error (src_die);
23571 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23572 " from DIE at %s [in module %s]"),
23573 hex_string (signature), sect_offset_str (src_die->sect_off),
23574 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23575 }
23576
23577 return die;
23578 }
23579
23580 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23581 reading in and processing the type unit if necessary. */
23582
23583 static struct type *
23584 get_signatured_type (struct die_info *die, ULONGEST signature,
23585 struct dwarf2_cu *cu)
23586 {
23587 struct dwarf2_per_objfile *dwarf2_per_objfile
23588 = cu->per_cu->dwarf2_per_objfile;
23589 struct signatured_type *sig_type;
23590 struct dwarf2_cu *type_cu;
23591 struct die_info *type_die;
23592 struct type *type;
23593
23594 sig_type = lookup_signatured_type (cu, signature);
23595 /* sig_type will be NULL if the signatured type is missing from
23596 the debug info. */
23597 if (sig_type == NULL)
23598 {
23599 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23600 " from DIE at %s [in module %s]"),
23601 hex_string (signature), sect_offset_str (die->sect_off),
23602 objfile_name (dwarf2_per_objfile->objfile));
23603 return build_error_marker_type (cu, die);
23604 }
23605
23606 /* If we already know the type we're done. */
23607 if (sig_type->type != NULL)
23608 return sig_type->type;
23609
23610 type_cu = cu;
23611 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23612 if (type_die != NULL)
23613 {
23614 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23615 is created. This is important, for example, because for c++ classes
23616 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23617 type = read_type_die (type_die, type_cu);
23618 if (type == NULL)
23619 {
23620 complaint (_("Dwarf Error: Cannot build signatured type %s"
23621 " referenced from DIE at %s [in module %s]"),
23622 hex_string (signature), sect_offset_str (die->sect_off),
23623 objfile_name (dwarf2_per_objfile->objfile));
23624 type = build_error_marker_type (cu, die);
23625 }
23626 }
23627 else
23628 {
23629 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23630 " from DIE at %s [in module %s]"),
23631 hex_string (signature), sect_offset_str (die->sect_off),
23632 objfile_name (dwarf2_per_objfile->objfile));
23633 type = build_error_marker_type (cu, die);
23634 }
23635 sig_type->type = type;
23636
23637 return type;
23638 }
23639
23640 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23641 reading in and processing the type unit if necessary. */
23642
23643 static struct type *
23644 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23645 struct dwarf2_cu *cu) /* ARI: editCase function */
23646 {
23647 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23648 if (attr_form_is_ref (attr))
23649 {
23650 struct dwarf2_cu *type_cu = cu;
23651 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23652
23653 return read_type_die (type_die, type_cu);
23654 }
23655 else if (attr->form == DW_FORM_ref_sig8)
23656 {
23657 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23658 }
23659 else
23660 {
23661 struct dwarf2_per_objfile *dwarf2_per_objfile
23662 = cu->per_cu->dwarf2_per_objfile;
23663
23664 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23665 " at %s [in module %s]"),
23666 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23667 objfile_name (dwarf2_per_objfile->objfile));
23668 return build_error_marker_type (cu, die);
23669 }
23670 }
23671
23672 /* Load the DIEs associated with type unit PER_CU into memory. */
23673
23674 static void
23675 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23676 {
23677 struct signatured_type *sig_type;
23678
23679 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23680 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23681
23682 /* We have the per_cu, but we need the signatured_type.
23683 Fortunately this is an easy translation. */
23684 gdb_assert (per_cu->is_debug_types);
23685 sig_type = (struct signatured_type *) per_cu;
23686
23687 gdb_assert (per_cu->cu == NULL);
23688
23689 read_signatured_type (sig_type);
23690
23691 gdb_assert (per_cu->cu != NULL);
23692 }
23693
23694 /* die_reader_func for read_signatured_type.
23695 This is identical to load_full_comp_unit_reader,
23696 but is kept separate for now. */
23697
23698 static void
23699 read_signatured_type_reader (const struct die_reader_specs *reader,
23700 const gdb_byte *info_ptr,
23701 struct die_info *comp_unit_die,
23702 int has_children,
23703 void *data)
23704 {
23705 struct dwarf2_cu *cu = reader->cu;
23706
23707 gdb_assert (cu->die_hash == NULL);
23708 cu->die_hash =
23709 htab_create_alloc_ex (cu->header.length / 12,
23710 die_hash,
23711 die_eq,
23712 NULL,
23713 &cu->comp_unit_obstack,
23714 hashtab_obstack_allocate,
23715 dummy_obstack_deallocate);
23716
23717 if (has_children)
23718 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23719 &info_ptr, comp_unit_die);
23720 cu->dies = comp_unit_die;
23721 /* comp_unit_die is not stored in die_hash, no need. */
23722
23723 /* We try not to read any attributes in this function, because not
23724 all CUs needed for references have been loaded yet, and symbol
23725 table processing isn't initialized. But we have to set the CU language,
23726 or we won't be able to build types correctly.
23727 Similarly, if we do not read the producer, we can not apply
23728 producer-specific interpretation. */
23729 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23730 }
23731
23732 /* Read in a signatured type and build its CU and DIEs.
23733 If the type is a stub for the real type in a DWO file,
23734 read in the real type from the DWO file as well. */
23735
23736 static void
23737 read_signatured_type (struct signatured_type *sig_type)
23738 {
23739 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23740
23741 gdb_assert (per_cu->is_debug_types);
23742 gdb_assert (per_cu->cu == NULL);
23743
23744 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23745 read_signatured_type_reader, NULL);
23746 sig_type->per_cu.tu_read = 1;
23747 }
23748
23749 /* Decode simple location descriptions.
23750 Given a pointer to a dwarf block that defines a location, compute
23751 the location and return the value.
23752
23753 NOTE drow/2003-11-18: This function is called in two situations
23754 now: for the address of static or global variables (partial symbols
23755 only) and for offsets into structures which are expected to be
23756 (more or less) constant. The partial symbol case should go away,
23757 and only the constant case should remain. That will let this
23758 function complain more accurately. A few special modes are allowed
23759 without complaint for global variables (for instance, global
23760 register values and thread-local values).
23761
23762 A location description containing no operations indicates that the
23763 object is optimized out. The return value is 0 for that case.
23764 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23765 callers will only want a very basic result and this can become a
23766 complaint.
23767
23768 Note that stack[0] is unused except as a default error return. */
23769
23770 static CORE_ADDR
23771 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23772 {
23773 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23774 size_t i;
23775 size_t size = blk->size;
23776 const gdb_byte *data = blk->data;
23777 CORE_ADDR stack[64];
23778 int stacki;
23779 unsigned int bytes_read, unsnd;
23780 gdb_byte op;
23781
23782 i = 0;
23783 stacki = 0;
23784 stack[stacki] = 0;
23785 stack[++stacki] = 0;
23786
23787 while (i < size)
23788 {
23789 op = data[i++];
23790 switch (op)
23791 {
23792 case DW_OP_lit0:
23793 case DW_OP_lit1:
23794 case DW_OP_lit2:
23795 case DW_OP_lit3:
23796 case DW_OP_lit4:
23797 case DW_OP_lit5:
23798 case DW_OP_lit6:
23799 case DW_OP_lit7:
23800 case DW_OP_lit8:
23801 case DW_OP_lit9:
23802 case DW_OP_lit10:
23803 case DW_OP_lit11:
23804 case DW_OP_lit12:
23805 case DW_OP_lit13:
23806 case DW_OP_lit14:
23807 case DW_OP_lit15:
23808 case DW_OP_lit16:
23809 case DW_OP_lit17:
23810 case DW_OP_lit18:
23811 case DW_OP_lit19:
23812 case DW_OP_lit20:
23813 case DW_OP_lit21:
23814 case DW_OP_lit22:
23815 case DW_OP_lit23:
23816 case DW_OP_lit24:
23817 case DW_OP_lit25:
23818 case DW_OP_lit26:
23819 case DW_OP_lit27:
23820 case DW_OP_lit28:
23821 case DW_OP_lit29:
23822 case DW_OP_lit30:
23823 case DW_OP_lit31:
23824 stack[++stacki] = op - DW_OP_lit0;
23825 break;
23826
23827 case DW_OP_reg0:
23828 case DW_OP_reg1:
23829 case DW_OP_reg2:
23830 case DW_OP_reg3:
23831 case DW_OP_reg4:
23832 case DW_OP_reg5:
23833 case DW_OP_reg6:
23834 case DW_OP_reg7:
23835 case DW_OP_reg8:
23836 case DW_OP_reg9:
23837 case DW_OP_reg10:
23838 case DW_OP_reg11:
23839 case DW_OP_reg12:
23840 case DW_OP_reg13:
23841 case DW_OP_reg14:
23842 case DW_OP_reg15:
23843 case DW_OP_reg16:
23844 case DW_OP_reg17:
23845 case DW_OP_reg18:
23846 case DW_OP_reg19:
23847 case DW_OP_reg20:
23848 case DW_OP_reg21:
23849 case DW_OP_reg22:
23850 case DW_OP_reg23:
23851 case DW_OP_reg24:
23852 case DW_OP_reg25:
23853 case DW_OP_reg26:
23854 case DW_OP_reg27:
23855 case DW_OP_reg28:
23856 case DW_OP_reg29:
23857 case DW_OP_reg30:
23858 case DW_OP_reg31:
23859 stack[++stacki] = op - DW_OP_reg0;
23860 if (i < size)
23861 dwarf2_complex_location_expr_complaint ();
23862 break;
23863
23864 case DW_OP_regx:
23865 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23866 i += bytes_read;
23867 stack[++stacki] = unsnd;
23868 if (i < size)
23869 dwarf2_complex_location_expr_complaint ();
23870 break;
23871
23872 case DW_OP_addr:
23873 stack[++stacki] = read_address (objfile->obfd, &data[i],
23874 cu, &bytes_read);
23875 i += bytes_read;
23876 break;
23877
23878 case DW_OP_const1u:
23879 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23880 i += 1;
23881 break;
23882
23883 case DW_OP_const1s:
23884 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23885 i += 1;
23886 break;
23887
23888 case DW_OP_const2u:
23889 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23890 i += 2;
23891 break;
23892
23893 case DW_OP_const2s:
23894 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23895 i += 2;
23896 break;
23897
23898 case DW_OP_const4u:
23899 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23900 i += 4;
23901 break;
23902
23903 case DW_OP_const4s:
23904 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23905 i += 4;
23906 break;
23907
23908 case DW_OP_const8u:
23909 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23910 i += 8;
23911 break;
23912
23913 case DW_OP_constu:
23914 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23915 &bytes_read);
23916 i += bytes_read;
23917 break;
23918
23919 case DW_OP_consts:
23920 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23921 i += bytes_read;
23922 break;
23923
23924 case DW_OP_dup:
23925 stack[stacki + 1] = stack[stacki];
23926 stacki++;
23927 break;
23928
23929 case DW_OP_plus:
23930 stack[stacki - 1] += stack[stacki];
23931 stacki--;
23932 break;
23933
23934 case DW_OP_plus_uconst:
23935 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23936 &bytes_read);
23937 i += bytes_read;
23938 break;
23939
23940 case DW_OP_minus:
23941 stack[stacki - 1] -= stack[stacki];
23942 stacki--;
23943 break;
23944
23945 case DW_OP_deref:
23946 /* If we're not the last op, then we definitely can't encode
23947 this using GDB's address_class enum. This is valid for partial
23948 global symbols, although the variable's address will be bogus
23949 in the psymtab. */
23950 if (i < size)
23951 dwarf2_complex_location_expr_complaint ();
23952 break;
23953
23954 case DW_OP_GNU_push_tls_address:
23955 case DW_OP_form_tls_address:
23956 /* The top of the stack has the offset from the beginning
23957 of the thread control block at which the variable is located. */
23958 /* Nothing should follow this operator, so the top of stack would
23959 be returned. */
23960 /* This is valid for partial global symbols, but the variable's
23961 address will be bogus in the psymtab. Make it always at least
23962 non-zero to not look as a variable garbage collected by linker
23963 which have DW_OP_addr 0. */
23964 if (i < size)
23965 dwarf2_complex_location_expr_complaint ();
23966 stack[stacki]++;
23967 break;
23968
23969 case DW_OP_GNU_uninit:
23970 break;
23971
23972 case DW_OP_addrx:
23973 case DW_OP_GNU_addr_index:
23974 case DW_OP_GNU_const_index:
23975 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23976 &bytes_read);
23977 i += bytes_read;
23978 break;
23979
23980 default:
23981 {
23982 const char *name = get_DW_OP_name (op);
23983
23984 if (name)
23985 complaint (_("unsupported stack op: '%s'"),
23986 name);
23987 else
23988 complaint (_("unsupported stack op: '%02x'"),
23989 op);
23990 }
23991
23992 return (stack[stacki]);
23993 }
23994
23995 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23996 outside of the allocated space. Also enforce minimum>0. */
23997 if (stacki >= ARRAY_SIZE (stack) - 1)
23998 {
23999 complaint (_("location description stack overflow"));
24000 return 0;
24001 }
24002
24003 if (stacki <= 0)
24004 {
24005 complaint (_("location description stack underflow"));
24006 return 0;
24007 }
24008 }
24009 return (stack[stacki]);
24010 }
24011
24012 /* memory allocation interface */
24013
24014 static struct dwarf_block *
24015 dwarf_alloc_block (struct dwarf2_cu *cu)
24016 {
24017 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24018 }
24019
24020 static struct die_info *
24021 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24022 {
24023 struct die_info *die;
24024 size_t size = sizeof (struct die_info);
24025
24026 if (num_attrs > 1)
24027 size += (num_attrs - 1) * sizeof (struct attribute);
24028
24029 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24030 memset (die, 0, sizeof (struct die_info));
24031 return (die);
24032 }
24033
24034 \f
24035 /* Macro support. */
24036
24037 /* Return file name relative to the compilation directory of file number I in
24038 *LH's file name table. The result is allocated using xmalloc; the caller is
24039 responsible for freeing it. */
24040
24041 static char *
24042 file_file_name (int file, struct line_header *lh)
24043 {
24044 /* Is the file number a valid index into the line header's file name
24045 table? Remember that file numbers start with one, not zero. */
24046 if (1 <= file && file <= lh->file_names.size ())
24047 {
24048 const file_entry &fe = lh->file_names[file - 1];
24049
24050 if (!IS_ABSOLUTE_PATH (fe.name))
24051 {
24052 const char *dir = fe.include_dir (lh);
24053 if (dir != NULL)
24054 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24055 }
24056 return xstrdup (fe.name);
24057 }
24058 else
24059 {
24060 /* The compiler produced a bogus file number. We can at least
24061 record the macro definitions made in the file, even if we
24062 won't be able to find the file by name. */
24063 char fake_name[80];
24064
24065 xsnprintf (fake_name, sizeof (fake_name),
24066 "<bad macro file number %d>", file);
24067
24068 complaint (_("bad file number in macro information (%d)"),
24069 file);
24070
24071 return xstrdup (fake_name);
24072 }
24073 }
24074
24075 /* Return the full name of file number I in *LH's file name table.
24076 Use COMP_DIR as the name of the current directory of the
24077 compilation. The result is allocated using xmalloc; the caller is
24078 responsible for freeing it. */
24079 static char *
24080 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24081 {
24082 /* Is the file number a valid index into the line header's file name
24083 table? Remember that file numbers start with one, not zero. */
24084 if (1 <= file && file <= lh->file_names.size ())
24085 {
24086 char *relative = file_file_name (file, lh);
24087
24088 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24089 return relative;
24090 return reconcat (relative, comp_dir, SLASH_STRING,
24091 relative, (char *) NULL);
24092 }
24093 else
24094 return file_file_name (file, lh);
24095 }
24096
24097
24098 static struct macro_source_file *
24099 macro_start_file (struct dwarf2_cu *cu,
24100 int file, int line,
24101 struct macro_source_file *current_file,
24102 struct line_header *lh)
24103 {
24104 /* File name relative to the compilation directory of this source file. */
24105 char *file_name = file_file_name (file, lh);
24106
24107 if (! current_file)
24108 {
24109 /* Note: We don't create a macro table for this compilation unit
24110 at all until we actually get a filename. */
24111 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24112
24113 /* If we have no current file, then this must be the start_file
24114 directive for the compilation unit's main source file. */
24115 current_file = macro_set_main (macro_table, file_name);
24116 macro_define_special (macro_table);
24117 }
24118 else
24119 current_file = macro_include (current_file, line, file_name);
24120
24121 xfree (file_name);
24122
24123 return current_file;
24124 }
24125
24126 static const char *
24127 consume_improper_spaces (const char *p, const char *body)
24128 {
24129 if (*p == ' ')
24130 {
24131 complaint (_("macro definition contains spaces "
24132 "in formal argument list:\n`%s'"),
24133 body);
24134
24135 while (*p == ' ')
24136 p++;
24137 }
24138
24139 return p;
24140 }
24141
24142
24143 static void
24144 parse_macro_definition (struct macro_source_file *file, int line,
24145 const char *body)
24146 {
24147 const char *p;
24148
24149 /* The body string takes one of two forms. For object-like macro
24150 definitions, it should be:
24151
24152 <macro name> " " <definition>
24153
24154 For function-like macro definitions, it should be:
24155
24156 <macro name> "() " <definition>
24157 or
24158 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24159
24160 Spaces may appear only where explicitly indicated, and in the
24161 <definition>.
24162
24163 The Dwarf 2 spec says that an object-like macro's name is always
24164 followed by a space, but versions of GCC around March 2002 omit
24165 the space when the macro's definition is the empty string.
24166
24167 The Dwarf 2 spec says that there should be no spaces between the
24168 formal arguments in a function-like macro's formal argument list,
24169 but versions of GCC around March 2002 include spaces after the
24170 commas. */
24171
24172
24173 /* Find the extent of the macro name. The macro name is terminated
24174 by either a space or null character (for an object-like macro) or
24175 an opening paren (for a function-like macro). */
24176 for (p = body; *p; p++)
24177 if (*p == ' ' || *p == '(')
24178 break;
24179
24180 if (*p == ' ' || *p == '\0')
24181 {
24182 /* It's an object-like macro. */
24183 int name_len = p - body;
24184 char *name = savestring (body, name_len);
24185 const char *replacement;
24186
24187 if (*p == ' ')
24188 replacement = body + name_len + 1;
24189 else
24190 {
24191 dwarf2_macro_malformed_definition_complaint (body);
24192 replacement = body + name_len;
24193 }
24194
24195 macro_define_object (file, line, name, replacement);
24196
24197 xfree (name);
24198 }
24199 else if (*p == '(')
24200 {
24201 /* It's a function-like macro. */
24202 char *name = savestring (body, p - body);
24203 int argc = 0;
24204 int argv_size = 1;
24205 char **argv = XNEWVEC (char *, argv_size);
24206
24207 p++;
24208
24209 p = consume_improper_spaces (p, body);
24210
24211 /* Parse the formal argument list. */
24212 while (*p && *p != ')')
24213 {
24214 /* Find the extent of the current argument name. */
24215 const char *arg_start = p;
24216
24217 while (*p && *p != ',' && *p != ')' && *p != ' ')
24218 p++;
24219
24220 if (! *p || p == arg_start)
24221 dwarf2_macro_malformed_definition_complaint (body);
24222 else
24223 {
24224 /* Make sure argv has room for the new argument. */
24225 if (argc >= argv_size)
24226 {
24227 argv_size *= 2;
24228 argv = XRESIZEVEC (char *, argv, argv_size);
24229 }
24230
24231 argv[argc++] = savestring (arg_start, p - arg_start);
24232 }
24233
24234 p = consume_improper_spaces (p, body);
24235
24236 /* Consume the comma, if present. */
24237 if (*p == ',')
24238 {
24239 p++;
24240
24241 p = consume_improper_spaces (p, body);
24242 }
24243 }
24244
24245 if (*p == ')')
24246 {
24247 p++;
24248
24249 if (*p == ' ')
24250 /* Perfectly formed definition, no complaints. */
24251 macro_define_function (file, line, name,
24252 argc, (const char **) argv,
24253 p + 1);
24254 else if (*p == '\0')
24255 {
24256 /* Complain, but do define it. */
24257 dwarf2_macro_malformed_definition_complaint (body);
24258 macro_define_function (file, line, name,
24259 argc, (const char **) argv,
24260 p);
24261 }
24262 else
24263 /* Just complain. */
24264 dwarf2_macro_malformed_definition_complaint (body);
24265 }
24266 else
24267 /* Just complain. */
24268 dwarf2_macro_malformed_definition_complaint (body);
24269
24270 xfree (name);
24271 {
24272 int i;
24273
24274 for (i = 0; i < argc; i++)
24275 xfree (argv[i]);
24276 }
24277 xfree (argv);
24278 }
24279 else
24280 dwarf2_macro_malformed_definition_complaint (body);
24281 }
24282
24283 /* Skip some bytes from BYTES according to the form given in FORM.
24284 Returns the new pointer. */
24285
24286 static const gdb_byte *
24287 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24288 enum dwarf_form form,
24289 unsigned int offset_size,
24290 struct dwarf2_section_info *section)
24291 {
24292 unsigned int bytes_read;
24293
24294 switch (form)
24295 {
24296 case DW_FORM_data1:
24297 case DW_FORM_flag:
24298 ++bytes;
24299 break;
24300
24301 case DW_FORM_data2:
24302 bytes += 2;
24303 break;
24304
24305 case DW_FORM_data4:
24306 bytes += 4;
24307 break;
24308
24309 case DW_FORM_data8:
24310 bytes += 8;
24311 break;
24312
24313 case DW_FORM_data16:
24314 bytes += 16;
24315 break;
24316
24317 case DW_FORM_string:
24318 read_direct_string (abfd, bytes, &bytes_read);
24319 bytes += bytes_read;
24320 break;
24321
24322 case DW_FORM_sec_offset:
24323 case DW_FORM_strp:
24324 case DW_FORM_GNU_strp_alt:
24325 bytes += offset_size;
24326 break;
24327
24328 case DW_FORM_block:
24329 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24330 bytes += bytes_read;
24331 break;
24332
24333 case DW_FORM_block1:
24334 bytes += 1 + read_1_byte (abfd, bytes);
24335 break;
24336 case DW_FORM_block2:
24337 bytes += 2 + read_2_bytes (abfd, bytes);
24338 break;
24339 case DW_FORM_block4:
24340 bytes += 4 + read_4_bytes (abfd, bytes);
24341 break;
24342
24343 case DW_FORM_addrx:
24344 case DW_FORM_sdata:
24345 case DW_FORM_strx:
24346 case DW_FORM_udata:
24347 case DW_FORM_GNU_addr_index:
24348 case DW_FORM_GNU_str_index:
24349 bytes = gdb_skip_leb128 (bytes, buffer_end);
24350 if (bytes == NULL)
24351 {
24352 dwarf2_section_buffer_overflow_complaint (section);
24353 return NULL;
24354 }
24355 break;
24356
24357 case DW_FORM_implicit_const:
24358 break;
24359
24360 default:
24361 {
24362 complaint (_("invalid form 0x%x in `%s'"),
24363 form, get_section_name (section));
24364 return NULL;
24365 }
24366 }
24367
24368 return bytes;
24369 }
24370
24371 /* A helper for dwarf_decode_macros that handles skipping an unknown
24372 opcode. Returns an updated pointer to the macro data buffer; or,
24373 on error, issues a complaint and returns NULL. */
24374
24375 static const gdb_byte *
24376 skip_unknown_opcode (unsigned int opcode,
24377 const gdb_byte **opcode_definitions,
24378 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24379 bfd *abfd,
24380 unsigned int offset_size,
24381 struct dwarf2_section_info *section)
24382 {
24383 unsigned int bytes_read, i;
24384 unsigned long arg;
24385 const gdb_byte *defn;
24386
24387 if (opcode_definitions[opcode] == NULL)
24388 {
24389 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24390 opcode);
24391 return NULL;
24392 }
24393
24394 defn = opcode_definitions[opcode];
24395 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24396 defn += bytes_read;
24397
24398 for (i = 0; i < arg; ++i)
24399 {
24400 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24401 (enum dwarf_form) defn[i], offset_size,
24402 section);
24403 if (mac_ptr == NULL)
24404 {
24405 /* skip_form_bytes already issued the complaint. */
24406 return NULL;
24407 }
24408 }
24409
24410 return mac_ptr;
24411 }
24412
24413 /* A helper function which parses the header of a macro section.
24414 If the macro section is the extended (for now called "GNU") type,
24415 then this updates *OFFSET_SIZE. Returns a pointer to just after
24416 the header, or issues a complaint and returns NULL on error. */
24417
24418 static const gdb_byte *
24419 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24420 bfd *abfd,
24421 const gdb_byte *mac_ptr,
24422 unsigned int *offset_size,
24423 int section_is_gnu)
24424 {
24425 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24426
24427 if (section_is_gnu)
24428 {
24429 unsigned int version, flags;
24430
24431 version = read_2_bytes (abfd, mac_ptr);
24432 if (version != 4 && version != 5)
24433 {
24434 complaint (_("unrecognized version `%d' in .debug_macro section"),
24435 version);
24436 return NULL;
24437 }
24438 mac_ptr += 2;
24439
24440 flags = read_1_byte (abfd, mac_ptr);
24441 ++mac_ptr;
24442 *offset_size = (flags & 1) ? 8 : 4;
24443
24444 if ((flags & 2) != 0)
24445 /* We don't need the line table offset. */
24446 mac_ptr += *offset_size;
24447
24448 /* Vendor opcode descriptions. */
24449 if ((flags & 4) != 0)
24450 {
24451 unsigned int i, count;
24452
24453 count = read_1_byte (abfd, mac_ptr);
24454 ++mac_ptr;
24455 for (i = 0; i < count; ++i)
24456 {
24457 unsigned int opcode, bytes_read;
24458 unsigned long arg;
24459
24460 opcode = read_1_byte (abfd, mac_ptr);
24461 ++mac_ptr;
24462 opcode_definitions[opcode] = mac_ptr;
24463 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24464 mac_ptr += bytes_read;
24465 mac_ptr += arg;
24466 }
24467 }
24468 }
24469
24470 return mac_ptr;
24471 }
24472
24473 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24474 including DW_MACRO_import. */
24475
24476 static void
24477 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24478 bfd *abfd,
24479 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24480 struct macro_source_file *current_file,
24481 struct line_header *lh,
24482 struct dwarf2_section_info *section,
24483 int section_is_gnu, int section_is_dwz,
24484 unsigned int offset_size,
24485 htab_t include_hash)
24486 {
24487 struct dwarf2_per_objfile *dwarf2_per_objfile
24488 = cu->per_cu->dwarf2_per_objfile;
24489 struct objfile *objfile = dwarf2_per_objfile->objfile;
24490 enum dwarf_macro_record_type macinfo_type;
24491 int at_commandline;
24492 const gdb_byte *opcode_definitions[256];
24493
24494 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24495 &offset_size, section_is_gnu);
24496 if (mac_ptr == NULL)
24497 {
24498 /* We already issued a complaint. */
24499 return;
24500 }
24501
24502 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24503 GDB is still reading the definitions from command line. First
24504 DW_MACINFO_start_file will need to be ignored as it was already executed
24505 to create CURRENT_FILE for the main source holding also the command line
24506 definitions. On first met DW_MACINFO_start_file this flag is reset to
24507 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24508
24509 at_commandline = 1;
24510
24511 do
24512 {
24513 /* Do we at least have room for a macinfo type byte? */
24514 if (mac_ptr >= mac_end)
24515 {
24516 dwarf2_section_buffer_overflow_complaint (section);
24517 break;
24518 }
24519
24520 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24521 mac_ptr++;
24522
24523 /* Note that we rely on the fact that the corresponding GNU and
24524 DWARF constants are the same. */
24525 DIAGNOSTIC_PUSH
24526 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24527 switch (macinfo_type)
24528 {
24529 /* A zero macinfo type indicates the end of the macro
24530 information. */
24531 case 0:
24532 break;
24533
24534 case DW_MACRO_define:
24535 case DW_MACRO_undef:
24536 case DW_MACRO_define_strp:
24537 case DW_MACRO_undef_strp:
24538 case DW_MACRO_define_sup:
24539 case DW_MACRO_undef_sup:
24540 {
24541 unsigned int bytes_read;
24542 int line;
24543 const char *body;
24544 int is_define;
24545
24546 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24547 mac_ptr += bytes_read;
24548
24549 if (macinfo_type == DW_MACRO_define
24550 || macinfo_type == DW_MACRO_undef)
24551 {
24552 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24553 mac_ptr += bytes_read;
24554 }
24555 else
24556 {
24557 LONGEST str_offset;
24558
24559 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24560 mac_ptr += offset_size;
24561
24562 if (macinfo_type == DW_MACRO_define_sup
24563 || macinfo_type == DW_MACRO_undef_sup
24564 || section_is_dwz)
24565 {
24566 struct dwz_file *dwz
24567 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24568
24569 body = read_indirect_string_from_dwz (objfile,
24570 dwz, str_offset);
24571 }
24572 else
24573 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24574 abfd, str_offset);
24575 }
24576
24577 is_define = (macinfo_type == DW_MACRO_define
24578 || macinfo_type == DW_MACRO_define_strp
24579 || macinfo_type == DW_MACRO_define_sup);
24580 if (! current_file)
24581 {
24582 /* DWARF violation as no main source is present. */
24583 complaint (_("debug info with no main source gives macro %s "
24584 "on line %d: %s"),
24585 is_define ? _("definition") : _("undefinition"),
24586 line, body);
24587 break;
24588 }
24589 if ((line == 0 && !at_commandline)
24590 || (line != 0 && at_commandline))
24591 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24592 at_commandline ? _("command-line") : _("in-file"),
24593 is_define ? _("definition") : _("undefinition"),
24594 line == 0 ? _("zero") : _("non-zero"), line, body);
24595
24596 if (body == NULL)
24597 {
24598 /* Fedora's rpm-build's "debugedit" binary
24599 corrupted .debug_macro sections.
24600
24601 For more info, see
24602 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24603 complaint (_("debug info gives %s invalid macro %s "
24604 "without body (corrupted?) at line %d "
24605 "on file %s"),
24606 at_commandline ? _("command-line") : _("in-file"),
24607 is_define ? _("definition") : _("undefinition"),
24608 line, current_file->filename);
24609 }
24610 else if (is_define)
24611 parse_macro_definition (current_file, line, body);
24612 else
24613 {
24614 gdb_assert (macinfo_type == DW_MACRO_undef
24615 || macinfo_type == DW_MACRO_undef_strp
24616 || macinfo_type == DW_MACRO_undef_sup);
24617 macro_undef (current_file, line, body);
24618 }
24619 }
24620 break;
24621
24622 case DW_MACRO_start_file:
24623 {
24624 unsigned int bytes_read;
24625 int line, file;
24626
24627 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24628 mac_ptr += bytes_read;
24629 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24630 mac_ptr += bytes_read;
24631
24632 if ((line == 0 && !at_commandline)
24633 || (line != 0 && at_commandline))
24634 complaint (_("debug info gives source %d included "
24635 "from %s at %s line %d"),
24636 file, at_commandline ? _("command-line") : _("file"),
24637 line == 0 ? _("zero") : _("non-zero"), line);
24638
24639 if (at_commandline)
24640 {
24641 /* This DW_MACRO_start_file was executed in the
24642 pass one. */
24643 at_commandline = 0;
24644 }
24645 else
24646 current_file = macro_start_file (cu, file, line, current_file,
24647 lh);
24648 }
24649 break;
24650
24651 case DW_MACRO_end_file:
24652 if (! current_file)
24653 complaint (_("macro debug info has an unmatched "
24654 "`close_file' directive"));
24655 else
24656 {
24657 current_file = current_file->included_by;
24658 if (! current_file)
24659 {
24660 enum dwarf_macro_record_type next_type;
24661
24662 /* GCC circa March 2002 doesn't produce the zero
24663 type byte marking the end of the compilation
24664 unit. Complain if it's not there, but exit no
24665 matter what. */
24666
24667 /* Do we at least have room for a macinfo type byte? */
24668 if (mac_ptr >= mac_end)
24669 {
24670 dwarf2_section_buffer_overflow_complaint (section);
24671 return;
24672 }
24673
24674 /* We don't increment mac_ptr here, so this is just
24675 a look-ahead. */
24676 next_type
24677 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24678 mac_ptr);
24679 if (next_type != 0)
24680 complaint (_("no terminating 0-type entry for "
24681 "macros in `.debug_macinfo' section"));
24682
24683 return;
24684 }
24685 }
24686 break;
24687
24688 case DW_MACRO_import:
24689 case DW_MACRO_import_sup:
24690 {
24691 LONGEST offset;
24692 void **slot;
24693 bfd *include_bfd = abfd;
24694 struct dwarf2_section_info *include_section = section;
24695 const gdb_byte *include_mac_end = mac_end;
24696 int is_dwz = section_is_dwz;
24697 const gdb_byte *new_mac_ptr;
24698
24699 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24700 mac_ptr += offset_size;
24701
24702 if (macinfo_type == DW_MACRO_import_sup)
24703 {
24704 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24705
24706 dwarf2_read_section (objfile, &dwz->macro);
24707
24708 include_section = &dwz->macro;
24709 include_bfd = get_section_bfd_owner (include_section);
24710 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24711 is_dwz = 1;
24712 }
24713
24714 new_mac_ptr = include_section->buffer + offset;
24715 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24716
24717 if (*slot != NULL)
24718 {
24719 /* This has actually happened; see
24720 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24721 complaint (_("recursive DW_MACRO_import in "
24722 ".debug_macro section"));
24723 }
24724 else
24725 {
24726 *slot = (void *) new_mac_ptr;
24727
24728 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24729 include_mac_end, current_file, lh,
24730 section, section_is_gnu, is_dwz,
24731 offset_size, include_hash);
24732
24733 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24734 }
24735 }
24736 break;
24737
24738 case DW_MACINFO_vendor_ext:
24739 if (!section_is_gnu)
24740 {
24741 unsigned int bytes_read;
24742
24743 /* This reads the constant, but since we don't recognize
24744 any vendor extensions, we ignore it. */
24745 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24746 mac_ptr += bytes_read;
24747 read_direct_string (abfd, mac_ptr, &bytes_read);
24748 mac_ptr += bytes_read;
24749
24750 /* We don't recognize any vendor extensions. */
24751 break;
24752 }
24753 /* FALLTHROUGH */
24754
24755 default:
24756 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24757 mac_ptr, mac_end, abfd, offset_size,
24758 section);
24759 if (mac_ptr == NULL)
24760 return;
24761 break;
24762 }
24763 DIAGNOSTIC_POP
24764 } while (macinfo_type != 0);
24765 }
24766
24767 static void
24768 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24769 int section_is_gnu)
24770 {
24771 struct dwarf2_per_objfile *dwarf2_per_objfile
24772 = cu->per_cu->dwarf2_per_objfile;
24773 struct objfile *objfile = dwarf2_per_objfile->objfile;
24774 struct line_header *lh = cu->line_header;
24775 bfd *abfd;
24776 const gdb_byte *mac_ptr, *mac_end;
24777 struct macro_source_file *current_file = 0;
24778 enum dwarf_macro_record_type macinfo_type;
24779 unsigned int offset_size = cu->header.offset_size;
24780 const gdb_byte *opcode_definitions[256];
24781 void **slot;
24782 struct dwarf2_section_info *section;
24783 const char *section_name;
24784
24785 if (cu->dwo_unit != NULL)
24786 {
24787 if (section_is_gnu)
24788 {
24789 section = &cu->dwo_unit->dwo_file->sections.macro;
24790 section_name = ".debug_macro.dwo";
24791 }
24792 else
24793 {
24794 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24795 section_name = ".debug_macinfo.dwo";
24796 }
24797 }
24798 else
24799 {
24800 if (section_is_gnu)
24801 {
24802 section = &dwarf2_per_objfile->macro;
24803 section_name = ".debug_macro";
24804 }
24805 else
24806 {
24807 section = &dwarf2_per_objfile->macinfo;
24808 section_name = ".debug_macinfo";
24809 }
24810 }
24811
24812 dwarf2_read_section (objfile, section);
24813 if (section->buffer == NULL)
24814 {
24815 complaint (_("missing %s section"), section_name);
24816 return;
24817 }
24818 abfd = get_section_bfd_owner (section);
24819
24820 /* First pass: Find the name of the base filename.
24821 This filename is needed in order to process all macros whose definition
24822 (or undefinition) comes from the command line. These macros are defined
24823 before the first DW_MACINFO_start_file entry, and yet still need to be
24824 associated to the base file.
24825
24826 To determine the base file name, we scan the macro definitions until we
24827 reach the first DW_MACINFO_start_file entry. We then initialize
24828 CURRENT_FILE accordingly so that any macro definition found before the
24829 first DW_MACINFO_start_file can still be associated to the base file. */
24830
24831 mac_ptr = section->buffer + offset;
24832 mac_end = section->buffer + section->size;
24833
24834 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24835 &offset_size, section_is_gnu);
24836 if (mac_ptr == NULL)
24837 {
24838 /* We already issued a complaint. */
24839 return;
24840 }
24841
24842 do
24843 {
24844 /* Do we at least have room for a macinfo type byte? */
24845 if (mac_ptr >= mac_end)
24846 {
24847 /* Complaint is printed during the second pass as GDB will probably
24848 stop the first pass earlier upon finding
24849 DW_MACINFO_start_file. */
24850 break;
24851 }
24852
24853 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24854 mac_ptr++;
24855
24856 /* Note that we rely on the fact that the corresponding GNU and
24857 DWARF constants are the same. */
24858 DIAGNOSTIC_PUSH
24859 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24860 switch (macinfo_type)
24861 {
24862 /* A zero macinfo type indicates the end of the macro
24863 information. */
24864 case 0:
24865 break;
24866
24867 case DW_MACRO_define:
24868 case DW_MACRO_undef:
24869 /* Only skip the data by MAC_PTR. */
24870 {
24871 unsigned int bytes_read;
24872
24873 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24874 mac_ptr += bytes_read;
24875 read_direct_string (abfd, mac_ptr, &bytes_read);
24876 mac_ptr += bytes_read;
24877 }
24878 break;
24879
24880 case DW_MACRO_start_file:
24881 {
24882 unsigned int bytes_read;
24883 int line, file;
24884
24885 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24886 mac_ptr += bytes_read;
24887 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24888 mac_ptr += bytes_read;
24889
24890 current_file = macro_start_file (cu, file, line, current_file, lh);
24891 }
24892 break;
24893
24894 case DW_MACRO_end_file:
24895 /* No data to skip by MAC_PTR. */
24896 break;
24897
24898 case DW_MACRO_define_strp:
24899 case DW_MACRO_undef_strp:
24900 case DW_MACRO_define_sup:
24901 case DW_MACRO_undef_sup:
24902 {
24903 unsigned int bytes_read;
24904
24905 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24906 mac_ptr += bytes_read;
24907 mac_ptr += offset_size;
24908 }
24909 break;
24910
24911 case DW_MACRO_import:
24912 case DW_MACRO_import_sup:
24913 /* Note that, according to the spec, a transparent include
24914 chain cannot call DW_MACRO_start_file. So, we can just
24915 skip this opcode. */
24916 mac_ptr += offset_size;
24917 break;
24918
24919 case DW_MACINFO_vendor_ext:
24920 /* Only skip the data by MAC_PTR. */
24921 if (!section_is_gnu)
24922 {
24923 unsigned int bytes_read;
24924
24925 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24926 mac_ptr += bytes_read;
24927 read_direct_string (abfd, mac_ptr, &bytes_read);
24928 mac_ptr += bytes_read;
24929 }
24930 /* FALLTHROUGH */
24931
24932 default:
24933 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24934 mac_ptr, mac_end, abfd, offset_size,
24935 section);
24936 if (mac_ptr == NULL)
24937 return;
24938 break;
24939 }
24940 DIAGNOSTIC_POP
24941 } while (macinfo_type != 0 && current_file == NULL);
24942
24943 /* Second pass: Process all entries.
24944
24945 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24946 command-line macro definitions/undefinitions. This flag is unset when we
24947 reach the first DW_MACINFO_start_file entry. */
24948
24949 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24950 htab_eq_pointer,
24951 NULL, xcalloc, xfree));
24952 mac_ptr = section->buffer + offset;
24953 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24954 *slot = (void *) mac_ptr;
24955 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24956 current_file, lh, section,
24957 section_is_gnu, 0, offset_size,
24958 include_hash.get ());
24959 }
24960
24961 /* Check if the attribute's form is a DW_FORM_block*
24962 if so return true else false. */
24963
24964 static int
24965 attr_form_is_block (const struct attribute *attr)
24966 {
24967 return (attr == NULL ? 0 :
24968 attr->form == DW_FORM_block1
24969 || attr->form == DW_FORM_block2
24970 || attr->form == DW_FORM_block4
24971 || attr->form == DW_FORM_block
24972 || attr->form == DW_FORM_exprloc);
24973 }
24974
24975 /* Return non-zero if ATTR's value is a section offset --- classes
24976 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24977 You may use DW_UNSND (attr) to retrieve such offsets.
24978
24979 Section 7.5.4, "Attribute Encodings", explains that no attribute
24980 may have a value that belongs to more than one of these classes; it
24981 would be ambiguous if we did, because we use the same forms for all
24982 of them. */
24983
24984 static int
24985 attr_form_is_section_offset (const struct attribute *attr)
24986 {
24987 return (attr->form == DW_FORM_data4
24988 || attr->form == DW_FORM_data8
24989 || attr->form == DW_FORM_sec_offset);
24990 }
24991
24992 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24993 zero otherwise. When this function returns true, you can apply
24994 dwarf2_get_attr_constant_value to it.
24995
24996 However, note that for some attributes you must check
24997 attr_form_is_section_offset before using this test. DW_FORM_data4
24998 and DW_FORM_data8 are members of both the constant class, and of
24999 the classes that contain offsets into other debug sections
25000 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25001 that, if an attribute's can be either a constant or one of the
25002 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25003 taken as section offsets, not constants.
25004
25005 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25006 cannot handle that. */
25007
25008 static int
25009 attr_form_is_constant (const struct attribute *attr)
25010 {
25011 switch (attr->form)
25012 {
25013 case DW_FORM_sdata:
25014 case DW_FORM_udata:
25015 case DW_FORM_data1:
25016 case DW_FORM_data2:
25017 case DW_FORM_data4:
25018 case DW_FORM_data8:
25019 case DW_FORM_implicit_const:
25020 return 1;
25021 default:
25022 return 0;
25023 }
25024 }
25025
25026
25027 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25028 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25029
25030 static int
25031 attr_form_is_ref (const struct attribute *attr)
25032 {
25033 switch (attr->form)
25034 {
25035 case DW_FORM_ref_addr:
25036 case DW_FORM_ref1:
25037 case DW_FORM_ref2:
25038 case DW_FORM_ref4:
25039 case DW_FORM_ref8:
25040 case DW_FORM_ref_udata:
25041 case DW_FORM_GNU_ref_alt:
25042 return 1;
25043 default:
25044 return 0;
25045 }
25046 }
25047
25048 /* Return the .debug_loc section to use for CU.
25049 For DWO files use .debug_loc.dwo. */
25050
25051 static struct dwarf2_section_info *
25052 cu_debug_loc_section (struct dwarf2_cu *cu)
25053 {
25054 struct dwarf2_per_objfile *dwarf2_per_objfile
25055 = cu->per_cu->dwarf2_per_objfile;
25056
25057 if (cu->dwo_unit)
25058 {
25059 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25060
25061 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25062 }
25063 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25064 : &dwarf2_per_objfile->loc);
25065 }
25066
25067 /* A helper function that fills in a dwarf2_loclist_baton. */
25068
25069 static void
25070 fill_in_loclist_baton (struct dwarf2_cu *cu,
25071 struct dwarf2_loclist_baton *baton,
25072 const struct attribute *attr)
25073 {
25074 struct dwarf2_per_objfile *dwarf2_per_objfile
25075 = cu->per_cu->dwarf2_per_objfile;
25076 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25077
25078 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25079
25080 baton->per_cu = cu->per_cu;
25081 gdb_assert (baton->per_cu);
25082 /* We don't know how long the location list is, but make sure we
25083 don't run off the edge of the section. */
25084 baton->size = section->size - DW_UNSND (attr);
25085 baton->data = section->buffer + DW_UNSND (attr);
25086 baton->base_address = cu->base_address;
25087 baton->from_dwo = cu->dwo_unit != NULL;
25088 }
25089
25090 static void
25091 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25092 struct dwarf2_cu *cu, int is_block)
25093 {
25094 struct dwarf2_per_objfile *dwarf2_per_objfile
25095 = cu->per_cu->dwarf2_per_objfile;
25096 struct objfile *objfile = dwarf2_per_objfile->objfile;
25097 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25098
25099 if (attr_form_is_section_offset (attr)
25100 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25101 the section. If so, fall through to the complaint in the
25102 other branch. */
25103 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25104 {
25105 struct dwarf2_loclist_baton *baton;
25106
25107 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25108
25109 fill_in_loclist_baton (cu, baton, attr);
25110
25111 if (cu->base_known == 0)
25112 complaint (_("Location list used without "
25113 "specifying the CU base address."));
25114
25115 SYMBOL_ACLASS_INDEX (sym) = (is_block
25116 ? dwarf2_loclist_block_index
25117 : dwarf2_loclist_index);
25118 SYMBOL_LOCATION_BATON (sym) = baton;
25119 }
25120 else
25121 {
25122 struct dwarf2_locexpr_baton *baton;
25123
25124 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25125 baton->per_cu = cu->per_cu;
25126 gdb_assert (baton->per_cu);
25127
25128 if (attr_form_is_block (attr))
25129 {
25130 /* Note that we're just copying the block's data pointer
25131 here, not the actual data. We're still pointing into the
25132 info_buffer for SYM's objfile; right now we never release
25133 that buffer, but when we do clean up properly this may
25134 need to change. */
25135 baton->size = DW_BLOCK (attr)->size;
25136 baton->data = DW_BLOCK (attr)->data;
25137 }
25138 else
25139 {
25140 dwarf2_invalid_attrib_class_complaint ("location description",
25141 SYMBOL_NATURAL_NAME (sym));
25142 baton->size = 0;
25143 }
25144
25145 SYMBOL_ACLASS_INDEX (sym) = (is_block
25146 ? dwarf2_locexpr_block_index
25147 : dwarf2_locexpr_index);
25148 SYMBOL_LOCATION_BATON (sym) = baton;
25149 }
25150 }
25151
25152 /* Return the OBJFILE associated with the compilation unit CU. If CU
25153 came from a separate debuginfo file, then the master objfile is
25154 returned. */
25155
25156 struct objfile *
25157 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25158 {
25159 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25160
25161 /* Return the master objfile, so that we can report and look up the
25162 correct file containing this variable. */
25163 if (objfile->separate_debug_objfile_backlink)
25164 objfile = objfile->separate_debug_objfile_backlink;
25165
25166 return objfile;
25167 }
25168
25169 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25170 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25171 CU_HEADERP first. */
25172
25173 static const struct comp_unit_head *
25174 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25175 struct dwarf2_per_cu_data *per_cu)
25176 {
25177 const gdb_byte *info_ptr;
25178
25179 if (per_cu->cu)
25180 return &per_cu->cu->header;
25181
25182 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25183
25184 memset (cu_headerp, 0, sizeof (*cu_headerp));
25185 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25186 rcuh_kind::COMPILE);
25187
25188 return cu_headerp;
25189 }
25190
25191 /* Return the address size given in the compilation unit header for CU. */
25192
25193 int
25194 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25195 {
25196 struct comp_unit_head cu_header_local;
25197 const struct comp_unit_head *cu_headerp;
25198
25199 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25200
25201 return cu_headerp->addr_size;
25202 }
25203
25204 /* Return the offset size given in the compilation unit header for CU. */
25205
25206 int
25207 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25208 {
25209 struct comp_unit_head cu_header_local;
25210 const struct comp_unit_head *cu_headerp;
25211
25212 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25213
25214 return cu_headerp->offset_size;
25215 }
25216
25217 /* See its dwarf2loc.h declaration. */
25218
25219 int
25220 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25221 {
25222 struct comp_unit_head cu_header_local;
25223 const struct comp_unit_head *cu_headerp;
25224
25225 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25226
25227 if (cu_headerp->version == 2)
25228 return cu_headerp->addr_size;
25229 else
25230 return cu_headerp->offset_size;
25231 }
25232
25233 /* Return the text offset of the CU. The returned offset comes from
25234 this CU's objfile. If this objfile came from a separate debuginfo
25235 file, then the offset may be different from the corresponding
25236 offset in the parent objfile. */
25237
25238 CORE_ADDR
25239 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25240 {
25241 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25242
25243 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25244 }
25245
25246 /* Return a type that is a generic pointer type, the size of which matches
25247 the address size given in the compilation unit header for PER_CU. */
25248 static struct type *
25249 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25250 {
25251 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25252 struct type *void_type = objfile_type (objfile)->builtin_void;
25253 struct type *addr_type = lookup_pointer_type (void_type);
25254 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25255
25256 if (TYPE_LENGTH (addr_type) == addr_size)
25257 return addr_type;
25258
25259 addr_type
25260 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25261 return addr_type;
25262 }
25263
25264 /* Return DWARF version number of PER_CU. */
25265
25266 short
25267 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25268 {
25269 return per_cu->dwarf_version;
25270 }
25271
25272 /* Locate the .debug_info compilation unit from CU's objfile which contains
25273 the DIE at OFFSET. Raises an error on failure. */
25274
25275 static struct dwarf2_per_cu_data *
25276 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25277 unsigned int offset_in_dwz,
25278 struct dwarf2_per_objfile *dwarf2_per_objfile)
25279 {
25280 struct dwarf2_per_cu_data *this_cu;
25281 int low, high;
25282
25283 low = 0;
25284 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25285 while (high > low)
25286 {
25287 struct dwarf2_per_cu_data *mid_cu;
25288 int mid = low + (high - low) / 2;
25289
25290 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25291 if (mid_cu->is_dwz > offset_in_dwz
25292 || (mid_cu->is_dwz == offset_in_dwz
25293 && mid_cu->sect_off + mid_cu->length >= sect_off))
25294 high = mid;
25295 else
25296 low = mid + 1;
25297 }
25298 gdb_assert (low == high);
25299 this_cu = dwarf2_per_objfile->all_comp_units[low];
25300 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25301 {
25302 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25303 error (_("Dwarf Error: could not find partial DIE containing "
25304 "offset %s [in module %s]"),
25305 sect_offset_str (sect_off),
25306 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25307
25308 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25309 <= sect_off);
25310 return dwarf2_per_objfile->all_comp_units[low-1];
25311 }
25312 else
25313 {
25314 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25315 && sect_off >= this_cu->sect_off + this_cu->length)
25316 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25317 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25318 return this_cu;
25319 }
25320 }
25321
25322 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25323
25324 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25325 : per_cu (per_cu_),
25326 mark (false),
25327 has_loclist (false),
25328 checked_producer (false),
25329 producer_is_gxx_lt_4_6 (false),
25330 producer_is_gcc_lt_4_3 (false),
25331 producer_is_icc (false),
25332 producer_is_icc_lt_14 (false),
25333 producer_is_codewarrior (false),
25334 processing_has_namespace_info (false)
25335 {
25336 per_cu->cu = this;
25337 }
25338
25339 /* Destroy a dwarf2_cu. */
25340
25341 dwarf2_cu::~dwarf2_cu ()
25342 {
25343 per_cu->cu = NULL;
25344 }
25345
25346 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25347
25348 static void
25349 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25350 enum language pretend_language)
25351 {
25352 struct attribute *attr;
25353
25354 /* Set the language we're debugging. */
25355 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25356 if (attr)
25357 set_cu_language (DW_UNSND (attr), cu);
25358 else
25359 {
25360 cu->language = pretend_language;
25361 cu->language_defn = language_def (cu->language);
25362 }
25363
25364 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25365 }
25366
25367 /* Increase the age counter on each cached compilation unit, and free
25368 any that are too old. */
25369
25370 static void
25371 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25372 {
25373 struct dwarf2_per_cu_data *per_cu, **last_chain;
25374
25375 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25376 per_cu = dwarf2_per_objfile->read_in_chain;
25377 while (per_cu != NULL)
25378 {
25379 per_cu->cu->last_used ++;
25380 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25381 dwarf2_mark (per_cu->cu);
25382 per_cu = per_cu->cu->read_in_chain;
25383 }
25384
25385 per_cu = dwarf2_per_objfile->read_in_chain;
25386 last_chain = &dwarf2_per_objfile->read_in_chain;
25387 while (per_cu != NULL)
25388 {
25389 struct dwarf2_per_cu_data *next_cu;
25390
25391 next_cu = per_cu->cu->read_in_chain;
25392
25393 if (!per_cu->cu->mark)
25394 {
25395 delete per_cu->cu;
25396 *last_chain = next_cu;
25397 }
25398 else
25399 last_chain = &per_cu->cu->read_in_chain;
25400
25401 per_cu = next_cu;
25402 }
25403 }
25404
25405 /* Remove a single compilation unit from the cache. */
25406
25407 static void
25408 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25409 {
25410 struct dwarf2_per_cu_data *per_cu, **last_chain;
25411 struct dwarf2_per_objfile *dwarf2_per_objfile
25412 = target_per_cu->dwarf2_per_objfile;
25413
25414 per_cu = dwarf2_per_objfile->read_in_chain;
25415 last_chain = &dwarf2_per_objfile->read_in_chain;
25416 while (per_cu != NULL)
25417 {
25418 struct dwarf2_per_cu_data *next_cu;
25419
25420 next_cu = per_cu->cu->read_in_chain;
25421
25422 if (per_cu == target_per_cu)
25423 {
25424 delete per_cu->cu;
25425 per_cu->cu = NULL;
25426 *last_chain = next_cu;
25427 break;
25428 }
25429 else
25430 last_chain = &per_cu->cu->read_in_chain;
25431
25432 per_cu = next_cu;
25433 }
25434 }
25435
25436 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25437 We store these in a hash table separate from the DIEs, and preserve them
25438 when the DIEs are flushed out of cache.
25439
25440 The CU "per_cu" pointer is needed because offset alone is not enough to
25441 uniquely identify the type. A file may have multiple .debug_types sections,
25442 or the type may come from a DWO file. Furthermore, while it's more logical
25443 to use per_cu->section+offset, with Fission the section with the data is in
25444 the DWO file but we don't know that section at the point we need it.
25445 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25446 because we can enter the lookup routine, get_die_type_at_offset, from
25447 outside this file, and thus won't necessarily have PER_CU->cu.
25448 Fortunately, PER_CU is stable for the life of the objfile. */
25449
25450 struct dwarf2_per_cu_offset_and_type
25451 {
25452 const struct dwarf2_per_cu_data *per_cu;
25453 sect_offset sect_off;
25454 struct type *type;
25455 };
25456
25457 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25458
25459 static hashval_t
25460 per_cu_offset_and_type_hash (const void *item)
25461 {
25462 const struct dwarf2_per_cu_offset_and_type *ofs
25463 = (const struct dwarf2_per_cu_offset_and_type *) item;
25464
25465 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25466 }
25467
25468 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25469
25470 static int
25471 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25472 {
25473 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25474 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25475 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25476 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25477
25478 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25479 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25480 }
25481
25482 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25483 table if necessary. For convenience, return TYPE.
25484
25485 The DIEs reading must have careful ordering to:
25486 * Not cause infite loops trying to read in DIEs as a prerequisite for
25487 reading current DIE.
25488 * Not trying to dereference contents of still incompletely read in types
25489 while reading in other DIEs.
25490 * Enable referencing still incompletely read in types just by a pointer to
25491 the type without accessing its fields.
25492
25493 Therefore caller should follow these rules:
25494 * Try to fetch any prerequisite types we may need to build this DIE type
25495 before building the type and calling set_die_type.
25496 * After building type call set_die_type for current DIE as soon as
25497 possible before fetching more types to complete the current type.
25498 * Make the type as complete as possible before fetching more types. */
25499
25500 static struct type *
25501 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25502 {
25503 struct dwarf2_per_objfile *dwarf2_per_objfile
25504 = cu->per_cu->dwarf2_per_objfile;
25505 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25506 struct objfile *objfile = dwarf2_per_objfile->objfile;
25507 struct attribute *attr;
25508 struct dynamic_prop prop;
25509
25510 /* For Ada types, make sure that the gnat-specific data is always
25511 initialized (if not already set). There are a few types where
25512 we should not be doing so, because the type-specific area is
25513 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25514 where the type-specific area is used to store the floatformat).
25515 But this is not a problem, because the gnat-specific information
25516 is actually not needed for these types. */
25517 if (need_gnat_info (cu)
25518 && TYPE_CODE (type) != TYPE_CODE_FUNC
25519 && TYPE_CODE (type) != TYPE_CODE_FLT
25520 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25521 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25522 && TYPE_CODE (type) != TYPE_CODE_METHOD
25523 && !HAVE_GNAT_AUX_INFO (type))
25524 INIT_GNAT_SPECIFIC (type);
25525
25526 /* Read DW_AT_allocated and set in type. */
25527 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25528 if (attr_form_is_block (attr))
25529 {
25530 struct type *prop_type
25531 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25532 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25533 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25534 }
25535 else if (attr != NULL)
25536 {
25537 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25538 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25539 sect_offset_str (die->sect_off));
25540 }
25541
25542 /* Read DW_AT_associated and set in type. */
25543 attr = dwarf2_attr (die, DW_AT_associated, cu);
25544 if (attr_form_is_block (attr))
25545 {
25546 struct type *prop_type
25547 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25548 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25549 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25550 }
25551 else if (attr != NULL)
25552 {
25553 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25554 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25555 sect_offset_str (die->sect_off));
25556 }
25557
25558 /* Read DW_AT_data_location and set in type. */
25559 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25560 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25561 dwarf2_per_cu_addr_type (cu->per_cu)))
25562 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25563
25564 if (dwarf2_per_objfile->die_type_hash == NULL)
25565 {
25566 dwarf2_per_objfile->die_type_hash =
25567 htab_create_alloc_ex (127,
25568 per_cu_offset_and_type_hash,
25569 per_cu_offset_and_type_eq,
25570 NULL,
25571 &objfile->objfile_obstack,
25572 hashtab_obstack_allocate,
25573 dummy_obstack_deallocate);
25574 }
25575
25576 ofs.per_cu = cu->per_cu;
25577 ofs.sect_off = die->sect_off;
25578 ofs.type = type;
25579 slot = (struct dwarf2_per_cu_offset_and_type **)
25580 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25581 if (*slot)
25582 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25583 sect_offset_str (die->sect_off));
25584 *slot = XOBNEW (&objfile->objfile_obstack,
25585 struct dwarf2_per_cu_offset_and_type);
25586 **slot = ofs;
25587 return type;
25588 }
25589
25590 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25591 or return NULL if the die does not have a saved type. */
25592
25593 static struct type *
25594 get_die_type_at_offset (sect_offset sect_off,
25595 struct dwarf2_per_cu_data *per_cu)
25596 {
25597 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25598 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25599
25600 if (dwarf2_per_objfile->die_type_hash == NULL)
25601 return NULL;
25602
25603 ofs.per_cu = per_cu;
25604 ofs.sect_off = sect_off;
25605 slot = ((struct dwarf2_per_cu_offset_and_type *)
25606 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25607 if (slot)
25608 return slot->type;
25609 else
25610 return NULL;
25611 }
25612
25613 /* Look up the type for DIE in CU in die_type_hash,
25614 or return NULL if DIE does not have a saved type. */
25615
25616 static struct type *
25617 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25618 {
25619 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25620 }
25621
25622 /* Add a dependence relationship from CU to REF_PER_CU. */
25623
25624 static void
25625 dwarf2_add_dependence (struct dwarf2_cu *cu,
25626 struct dwarf2_per_cu_data *ref_per_cu)
25627 {
25628 void **slot;
25629
25630 if (cu->dependencies == NULL)
25631 cu->dependencies
25632 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25633 NULL, &cu->comp_unit_obstack,
25634 hashtab_obstack_allocate,
25635 dummy_obstack_deallocate);
25636
25637 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25638 if (*slot == NULL)
25639 *slot = ref_per_cu;
25640 }
25641
25642 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25643 Set the mark field in every compilation unit in the
25644 cache that we must keep because we are keeping CU. */
25645
25646 static int
25647 dwarf2_mark_helper (void **slot, void *data)
25648 {
25649 struct dwarf2_per_cu_data *per_cu;
25650
25651 per_cu = (struct dwarf2_per_cu_data *) *slot;
25652
25653 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25654 reading of the chain. As such dependencies remain valid it is not much
25655 useful to track and undo them during QUIT cleanups. */
25656 if (per_cu->cu == NULL)
25657 return 1;
25658
25659 if (per_cu->cu->mark)
25660 return 1;
25661 per_cu->cu->mark = true;
25662
25663 if (per_cu->cu->dependencies != NULL)
25664 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25665
25666 return 1;
25667 }
25668
25669 /* Set the mark field in CU and in every other compilation unit in the
25670 cache that we must keep because we are keeping CU. */
25671
25672 static void
25673 dwarf2_mark (struct dwarf2_cu *cu)
25674 {
25675 if (cu->mark)
25676 return;
25677 cu->mark = true;
25678 if (cu->dependencies != NULL)
25679 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25680 }
25681
25682 static void
25683 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25684 {
25685 while (per_cu)
25686 {
25687 per_cu->cu->mark = false;
25688 per_cu = per_cu->cu->read_in_chain;
25689 }
25690 }
25691
25692 /* Trivial hash function for partial_die_info: the hash value of a DIE
25693 is its offset in .debug_info for this objfile. */
25694
25695 static hashval_t
25696 partial_die_hash (const void *item)
25697 {
25698 const struct partial_die_info *part_die
25699 = (const struct partial_die_info *) item;
25700
25701 return to_underlying (part_die->sect_off);
25702 }
25703
25704 /* Trivial comparison function for partial_die_info structures: two DIEs
25705 are equal if they have the same offset. */
25706
25707 static int
25708 partial_die_eq (const void *item_lhs, const void *item_rhs)
25709 {
25710 const struct partial_die_info *part_die_lhs
25711 = (const struct partial_die_info *) item_lhs;
25712 const struct partial_die_info *part_die_rhs
25713 = (const struct partial_die_info *) item_rhs;
25714
25715 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25716 }
25717
25718 struct cmd_list_element *set_dwarf_cmdlist;
25719 struct cmd_list_element *show_dwarf_cmdlist;
25720
25721 static void
25722 set_dwarf_cmd (const char *args, int from_tty)
25723 {
25724 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25725 gdb_stdout);
25726 }
25727
25728 static void
25729 show_dwarf_cmd (const char *args, int from_tty)
25730 {
25731 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25732 }
25733
25734 int dwarf_always_disassemble;
25735
25736 static void
25737 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25738 struct cmd_list_element *c, const char *value)
25739 {
25740 fprintf_filtered (file,
25741 _("Whether to always disassemble "
25742 "DWARF expressions is %s.\n"),
25743 value);
25744 }
25745
25746 static void
25747 show_check_physname (struct ui_file *file, int from_tty,
25748 struct cmd_list_element *c, const char *value)
25749 {
25750 fprintf_filtered (file,
25751 _("Whether to check \"physname\" is %s.\n"),
25752 value);
25753 }
25754
25755 void
25756 _initialize_dwarf2_read (void)
25757 {
25758 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25759 Set DWARF specific variables.\n\
25760 Configure DWARF variables such as the cache size."),
25761 &set_dwarf_cmdlist, "maintenance set dwarf ",
25762 0/*allow-unknown*/, &maintenance_set_cmdlist);
25763
25764 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25765 Show DWARF specific variables.\n\
25766 Show DWARF variables such as the cache size."),
25767 &show_dwarf_cmdlist, "maintenance show dwarf ",
25768 0/*allow-unknown*/, &maintenance_show_cmdlist);
25769
25770 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25771 &dwarf_max_cache_age, _("\
25772 Set the upper bound on the age of cached DWARF compilation units."), _("\
25773 Show the upper bound on the age of cached DWARF compilation units."), _("\
25774 A higher limit means that cached compilation units will be stored\n\
25775 in memory longer, and more total memory will be used. Zero disables\n\
25776 caching, which can slow down startup."),
25777 NULL,
25778 show_dwarf_max_cache_age,
25779 &set_dwarf_cmdlist,
25780 &show_dwarf_cmdlist);
25781
25782 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25783 &dwarf_always_disassemble, _("\
25784 Set whether `info address' always disassembles DWARF expressions."), _("\
25785 Show whether `info address' always disassembles DWARF expressions."), _("\
25786 When enabled, DWARF expressions are always printed in an assembly-like\n\
25787 syntax. When disabled, expressions will be printed in a more\n\
25788 conversational style, when possible."),
25789 NULL,
25790 show_dwarf_always_disassemble,
25791 &set_dwarf_cmdlist,
25792 &show_dwarf_cmdlist);
25793
25794 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25795 Set debugging of the DWARF reader."), _("\
25796 Show debugging of the DWARF reader."), _("\
25797 When enabled (non-zero), debugging messages are printed during DWARF\n\
25798 reading and symtab expansion. A value of 1 (one) provides basic\n\
25799 information. A value greater than 1 provides more verbose information."),
25800 NULL,
25801 NULL,
25802 &setdebuglist, &showdebuglist);
25803
25804 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25805 Set debugging of the DWARF DIE reader."), _("\
25806 Show debugging of the DWARF DIE reader."), _("\
25807 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25808 The value is the maximum depth to print."),
25809 NULL,
25810 NULL,
25811 &setdebuglist, &showdebuglist);
25812
25813 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25814 Set debugging of the dwarf line reader."), _("\
25815 Show debugging of the dwarf line reader."), _("\
25816 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25817 A value of 1 (one) provides basic information.\n\
25818 A value greater than 1 provides more verbose information."),
25819 NULL,
25820 NULL,
25821 &setdebuglist, &showdebuglist);
25822
25823 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25824 Set cross-checking of \"physname\" code against demangler."), _("\
25825 Show cross-checking of \"physname\" code against demangler."), _("\
25826 When enabled, GDB's internal \"physname\" code is checked against\n\
25827 the demangler."),
25828 NULL, show_check_physname,
25829 &setdebuglist, &showdebuglist);
25830
25831 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25832 no_class, &use_deprecated_index_sections, _("\
25833 Set whether to use deprecated gdb_index sections."), _("\
25834 Show whether to use deprecated gdb_index sections."), _("\
25835 When enabled, deprecated .gdb_index sections are used anyway.\n\
25836 Normally they are ignored either because of a missing feature or\n\
25837 performance issue.\n\
25838 Warning: This option must be enabled before gdb reads the file."),
25839 NULL,
25840 NULL,
25841 &setlist, &showlist);
25842
25843 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25844 &dwarf2_locexpr_funcs);
25845 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25846 &dwarf2_loclist_funcs);
25847
25848 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25849 &dwarf2_block_frame_base_locexpr_funcs);
25850 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25851 &dwarf2_block_frame_base_loclist_funcs);
25852
25853 #if GDB_SELF_TEST
25854 selftests::register_test ("dw2_expand_symtabs_matching",
25855 selftests::dw2_expand_symtabs_matching::run_test);
25856 #endif
25857 }
This page took 0.567422 seconds and 4 git commands to generate.