constify error_no_arg
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The number of elements allocated in all_type_units.
239 If there are skeleton-less TUs, we add them to all_type_units lazily. */
240 int n_allocated_type_units;
241
242 /* The .debug_types-related CUs (TUs).
243 This is stored in malloc space because we may realloc it. */
244 struct signatured_type **all_type_units;
245
246 /* Table of struct type_unit_group objects.
247 The hash key is the DW_AT_stmt_list value. */
248 htab_t type_unit_groups;
249
250 /* A table mapping .debug_types signatures to its signatured_type entry.
251 This is NULL if the .debug_types section hasn't been read in yet. */
252 htab_t signatured_types;
253
254 /* Type unit statistics, to see how well the scaling improvements
255 are doing. */
256 struct tu_stats
257 {
258 int nr_uniq_abbrev_tables;
259 int nr_symtabs;
260 int nr_symtab_sharers;
261 int nr_stmt_less_type_units;
262 int nr_all_type_units_reallocs;
263 } tu_stats;
264
265 /* A chain of compilation units that are currently read in, so that
266 they can be freed later. */
267 struct dwarf2_per_cu_data *read_in_chain;
268
269 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
270 This is NULL if the table hasn't been allocated yet. */
271 htab_t dwo_files;
272
273 /* Non-zero if we've check for whether there is a DWP file. */
274 int dwp_checked;
275
276 /* The DWP file if there is one, or NULL. */
277 struct dwp_file *dwp_file;
278
279 /* The shared '.dwz' file, if one exists. This is used when the
280 original data was compressed using 'dwz -m'. */
281 struct dwz_file *dwz_file;
282
283 /* A flag indicating wether this objfile has a section loaded at a
284 VMA of 0. */
285 int has_section_at_zero;
286
287 /* True if we are using the mapped index,
288 or we are faking it for OBJF_READNOW's sake. */
289 unsigned char using_index;
290
291 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
292 struct mapped_index *index_table;
293
294 /* When using index_table, this keeps track of all quick_file_names entries.
295 TUs typically share line table entries with a CU, so we maintain a
296 separate table of all line table entries to support the sharing.
297 Note that while there can be way more TUs than CUs, we've already
298 sorted all the TUs into "type unit groups", grouped by their
299 DW_AT_stmt_list value. Therefore the only sharing done here is with a
300 CU and its associated TU group if there is one. */
301 htab_t quick_file_names_table;
302
303 /* Set during partial symbol reading, to prevent queueing of full
304 symbols. */
305 int reading_partial_symbols;
306
307 /* Table mapping type DIEs to their struct type *.
308 This is NULL if not allocated yet.
309 The mapping is done via (CU/TU + DIE offset) -> type. */
310 htab_t die_type_hash;
311
312 /* The CUs we recently read. */
313 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 };
315
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
317
318 /* Default names of the debugging sections. */
319
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
324 {
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
338 23
339 };
340
341 /* List of DWO/DWP sections. */
342
343 static const struct dwop_section_names
344 {
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
356 }
357 dwop_section_names =
358 {
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
370 };
371
372 /* local data types */
373
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
377 {
378 unsigned int length;
379 short version;
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
383
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
386
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
389
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
392 sect_offset offset;
393
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
421
422 /* Internal state when decoding a particular compilation unit. */
423 struct dwarf2_cu
424 {
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
441 const char *producer;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
458
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
481 htab_t die_hash;
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
528
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
537
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
552 };
553
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
557
558 struct dwarf2_per_cu_data
559 {
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
565 sect_offset offset;
566 unsigned int length;
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
571
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
581 unsigned int is_debug_types : 1;
582
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
605 struct dwarf2_section_info *section;
606
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
610
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
615
616 /* When using partial symbol tables, the 'psymtab' field is active.
617 Otherwise the 'quick' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
627
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 };
648
649 /* Entry in the signatured_types hash table. */
650
651 struct signatured_type
652 {
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
659 /* The type's signature. */
660 ULONGEST signature;
661
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
686 };
687
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
690
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694 struct stmt_list_hash
695 {
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701 };
702
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706 struct type_unit_group
707 {
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
715
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
720
721 /* The primary symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the primary symtab. */
724 struct symtab *primary_symtab;
725
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742 };
743
744 /* These sections are what may appear in a (real or virtual) DWO file. */
745
746 struct dwo_sections
747 {
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
758 };
759
760 /* CUs/TUs in DWP/DWO files. */
761
762 struct dwo_unit
763 {
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
774
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781 };
782
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787 enum dwp_v2_section_ids
788 {
789 DW_SECT_MIN = 1
790 };
791
792 /* Data for one DWO file.
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
802
803 struct dwo_file
804 {
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
813
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
817
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
822
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833 };
834
835 /* These sections are what may appear in a DWP file. */
836
837 struct dwp_sections
838 {
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
860 };
861
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
864
865 struct virtual_v1_dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
876 };
877
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883 struct virtual_v2_dwo_sections
884 {
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907 };
908
909 /* Contents of DWP hash tables. */
910
911 struct dwp_hash_table
912 {
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
938 };
939
940 /* Data for one DWP file. */
941
942 struct dwp_file
943 {
944 /* Name of the file. */
945 const char *name;
946
947 /* File format version. */
948 int version;
949
950 /* The bfd. */
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
965
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
970 };
971
972 /* This represents a '.dwz' file. */
973
974 struct dwz_file
975 {
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986 };
987
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
992
993 struct die_reader_specs
994 {
995 /* The bfd of die_section. */
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1003
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1016 };
1017
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028 struct line_header
1029 {
1030 unsigned int total_length;
1031 unsigned short version;
1032 unsigned int header_length;
1033 unsigned char minimum_instruction_length;
1034 unsigned char maximum_ops_per_instruction;
1035 unsigned char default_is_stmt;
1036 int line_base;
1037 unsigned char line_range;
1038 unsigned char opcode_base;
1039
1040 /* standard_opcode_lengths[i] is the number of operands for the
1041 standard opcode whose value is i. This means that
1042 standard_opcode_lengths[0] is unused, and the last meaningful
1043 element is standard_opcode_lengths[opcode_base - 1]. */
1044 unsigned char *standard_opcode_lengths;
1045
1046 /* The include_directories table. NOTE! These strings are not
1047 allocated with xmalloc; instead, they are pointers into
1048 debug_line_buffer. If you try to free them, `free' will get
1049 indigestion. */
1050 unsigned int num_include_dirs, include_dirs_size;
1051 const char **include_dirs;
1052
1053 /* The file_names table. NOTE! These strings are not allocated
1054 with xmalloc; instead, they are pointers into debug_line_buffer.
1055 Don't try to free them directly. */
1056 unsigned int num_file_names, file_names_size;
1057 struct file_entry
1058 {
1059 const char *name;
1060 unsigned int dir_index;
1061 unsigned int mod_time;
1062 unsigned int length;
1063 int included_p; /* Non-zero if referenced by the Line Number Program. */
1064 struct symtab *symtab; /* The associated symbol table, if any. */
1065 } *file_names;
1066
1067 /* The start and end of the statement program following this
1068 header. These point into dwarf2_per_objfile->line_buffer. */
1069 const gdb_byte *statement_program_start, *statement_program_end;
1070 };
1071
1072 /* When we construct a partial symbol table entry we only
1073 need this much information. */
1074 struct partial_die_info
1075 {
1076 /* Offset of this DIE. */
1077 sect_offset offset;
1078
1079 /* DWARF-2 tag for this DIE. */
1080 ENUM_BITFIELD(dwarf_tag) tag : 16;
1081
1082 /* Assorted flags describing the data found in this DIE. */
1083 unsigned int has_children : 1;
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* Flag set if the SCOPE field of this structure has been
1092 computed. */
1093 unsigned int scope_set : 1;
1094
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1097
1098 /* Flag set if any of the DIE's children are template arguments. */
1099 unsigned int has_template_arguments : 1;
1100
1101 /* Flag set if fixup_partial_die has been called on this die. */
1102 unsigned int fixup_called : 1;
1103
1104 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1105 unsigned int is_dwz : 1;
1106
1107 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1108 unsigned int spec_is_dwz : 1;
1109
1110 /* The name of this DIE. Normally the value of DW_AT_name, but
1111 sometimes a default name for unnamed DIEs. */
1112 const char *name;
1113
1114 /* The linkage name, if present. */
1115 const char *linkage_name;
1116
1117 /* The scope to prepend to our children. This is generally
1118 allocated on the comp_unit_obstack, so will disappear
1119 when this compilation unit leaves the cache. */
1120 const char *scope;
1121
1122 /* Some data associated with the partial DIE. The tag determines
1123 which field is live. */
1124 union
1125 {
1126 /* The location description associated with this DIE, if any. */
1127 struct dwarf_block *locdesc;
1128 /* The offset of an import, for DW_TAG_imported_unit. */
1129 sect_offset offset;
1130 } d;
1131
1132 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1133 CORE_ADDR lowpc;
1134 CORE_ADDR highpc;
1135
1136 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1137 DW_AT_sibling, if any. */
1138 /* NOTE: This member isn't strictly necessary, read_partial_die could
1139 return DW_AT_sibling values to its caller load_partial_dies. */
1140 const gdb_byte *sibling;
1141
1142 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1143 DW_AT_specification (or DW_AT_abstract_origin or
1144 DW_AT_extension). */
1145 sect_offset spec_offset;
1146
1147 /* Pointers to this DIE's parent, first child, and next sibling,
1148 if any. */
1149 struct partial_die_info *die_parent, *die_child, *die_sibling;
1150 };
1151
1152 /* This data structure holds the information of an abbrev. */
1153 struct abbrev_info
1154 {
1155 unsigned int number; /* number identifying abbrev */
1156 enum dwarf_tag tag; /* dwarf tag */
1157 unsigned short has_children; /* boolean */
1158 unsigned short num_attrs; /* number of attributes */
1159 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1160 struct abbrev_info *next; /* next in chain */
1161 };
1162
1163 struct attr_abbrev
1164 {
1165 ENUM_BITFIELD(dwarf_attribute) name : 16;
1166 ENUM_BITFIELD(dwarf_form) form : 16;
1167 };
1168
1169 /* Size of abbrev_table.abbrev_hash_table. */
1170 #define ABBREV_HASH_SIZE 121
1171
1172 /* Top level data structure to contain an abbreviation table. */
1173
1174 struct abbrev_table
1175 {
1176 /* Where the abbrev table came from.
1177 This is used as a sanity check when the table is used. */
1178 sect_offset offset;
1179
1180 /* Storage for the abbrev table. */
1181 struct obstack abbrev_obstack;
1182
1183 /* Hash table of abbrevs.
1184 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1185 It could be statically allocated, but the previous code didn't so we
1186 don't either. */
1187 struct abbrev_info **abbrevs;
1188 };
1189
1190 /* Attributes have a name and a value. */
1191 struct attribute
1192 {
1193 ENUM_BITFIELD(dwarf_attribute) name : 16;
1194 ENUM_BITFIELD(dwarf_form) form : 15;
1195
1196 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1197 field should be in u.str (existing only for DW_STRING) but it is kept
1198 here for better struct attribute alignment. */
1199 unsigned int string_is_canonical : 1;
1200
1201 union
1202 {
1203 const char *str;
1204 struct dwarf_block *blk;
1205 ULONGEST unsnd;
1206 LONGEST snd;
1207 CORE_ADDR addr;
1208 ULONGEST signature;
1209 }
1210 u;
1211 };
1212
1213 /* This data structure holds a complete die structure. */
1214 struct die_info
1215 {
1216 /* DWARF-2 tag for this DIE. */
1217 ENUM_BITFIELD(dwarf_tag) tag : 16;
1218
1219 /* Number of attributes */
1220 unsigned char num_attrs;
1221
1222 /* True if we're presently building the full type name for the
1223 type derived from this DIE. */
1224 unsigned char building_fullname : 1;
1225
1226 /* True if this die is in process. PR 16581. */
1227 unsigned char in_process : 1;
1228
1229 /* Abbrev number */
1230 unsigned int abbrev;
1231
1232 /* Offset in .debug_info or .debug_types section. */
1233 sect_offset offset;
1234
1235 /* The dies in a compilation unit form an n-ary tree. PARENT
1236 points to this die's parent; CHILD points to the first child of
1237 this node; and all the children of a given node are chained
1238 together via their SIBLING fields. */
1239 struct die_info *child; /* Its first child, if any. */
1240 struct die_info *sibling; /* Its next sibling, if any. */
1241 struct die_info *parent; /* Its parent, if any. */
1242
1243 /* An array of attributes, with NUM_ATTRS elements. There may be
1244 zero, but it's not common and zero-sized arrays are not
1245 sufficiently portable C. */
1246 struct attribute attrs[1];
1247 };
1248
1249 /* Get at parts of an attribute structure. */
1250
1251 #define DW_STRING(attr) ((attr)->u.str)
1252 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1253 #define DW_UNSND(attr) ((attr)->u.unsnd)
1254 #define DW_BLOCK(attr) ((attr)->u.blk)
1255 #define DW_SND(attr) ((attr)->u.snd)
1256 #define DW_ADDR(attr) ((attr)->u.addr)
1257 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1258
1259 /* Blocks are a bunch of untyped bytes. */
1260 struct dwarf_block
1261 {
1262 size_t size;
1263
1264 /* Valid only if SIZE is not zero. */
1265 const gdb_byte *data;
1266 };
1267
1268 #ifndef ATTR_ALLOC_CHUNK
1269 #define ATTR_ALLOC_CHUNK 4
1270 #endif
1271
1272 /* Allocate fields for structs, unions and enums in this size. */
1273 #ifndef DW_FIELD_ALLOC_CHUNK
1274 #define DW_FIELD_ALLOC_CHUNK 4
1275 #endif
1276
1277 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1278 but this would require a corresponding change in unpack_field_as_long
1279 and friends. */
1280 static int bits_per_byte = 8;
1281
1282 /* The routines that read and process dies for a C struct or C++ class
1283 pass lists of data member fields and lists of member function fields
1284 in an instance of a field_info structure, as defined below. */
1285 struct field_info
1286 {
1287 /* List of data member and baseclasses fields. */
1288 struct nextfield
1289 {
1290 struct nextfield *next;
1291 int accessibility;
1292 int virtuality;
1293 struct field field;
1294 }
1295 *fields, *baseclasses;
1296
1297 /* Number of fields (including baseclasses). */
1298 int nfields;
1299
1300 /* Number of baseclasses. */
1301 int nbaseclasses;
1302
1303 /* Set if the accesibility of one of the fields is not public. */
1304 int non_public_fields;
1305
1306 /* Member function fields array, entries are allocated in the order they
1307 are encountered in the object file. */
1308 struct nextfnfield
1309 {
1310 struct nextfnfield *next;
1311 struct fn_field fnfield;
1312 }
1313 *fnfields;
1314
1315 /* Member function fieldlist array, contains name of possibly overloaded
1316 member function, number of overloaded member functions and a pointer
1317 to the head of the member function field chain. */
1318 struct fnfieldlist
1319 {
1320 const char *name;
1321 int length;
1322 struct nextfnfield *head;
1323 }
1324 *fnfieldlists;
1325
1326 /* Number of entries in the fnfieldlists array. */
1327 int nfnfields;
1328
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 struct typedef_field_list
1332 {
1333 struct typedef_field field;
1334 struct typedef_field_list *next;
1335 }
1336 *typedef_field_list;
1337 unsigned typedef_field_list_count;
1338 };
1339
1340 /* One item on the queue of compilation units to read in full symbols
1341 for. */
1342 struct dwarf2_queue_item
1343 {
1344 struct dwarf2_per_cu_data *per_cu;
1345 enum language pretend_language;
1346 struct dwarf2_queue_item *next;
1347 };
1348
1349 /* The current queue. */
1350 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1351
1352 /* Loaded secondary compilation units are kept in memory until they
1353 have not been referenced for the processing of this many
1354 compilation units. Set this to zero to disable caching. Cache
1355 sizes of up to at least twenty will improve startup time for
1356 typical inter-CU-reference binaries, at an obvious memory cost. */
1357 static int dwarf2_max_cache_age = 5;
1358 static void
1359 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361 {
1362 fprintf_filtered (file, _("The upper bound on the age of cached "
1363 "dwarf2 compilation units is %s.\n"),
1364 value);
1365 }
1366 \f
1367 /* local function prototypes */
1368
1369 static const char *get_section_name (const struct dwarf2_section_info *);
1370
1371 static const char *get_section_file_name (const struct dwarf2_section_info *);
1372
1373 static void dwarf2_locate_sections (bfd *, asection *, void *);
1374
1375 static void dwarf2_find_base_address (struct die_info *die,
1376 struct dwarf2_cu *cu);
1377
1378 static struct partial_symtab *create_partial_symtab
1379 (struct dwarf2_per_cu_data *per_cu, const char *name);
1380
1381 static void dwarf2_build_psymtabs_hard (struct objfile *);
1382
1383 static void scan_partial_symbols (struct partial_die_info *,
1384 CORE_ADDR *, CORE_ADDR *,
1385 int, struct dwarf2_cu *);
1386
1387 static void add_partial_symbol (struct partial_die_info *,
1388 struct dwarf2_cu *);
1389
1390 static void add_partial_namespace (struct partial_die_info *pdi,
1391 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1392 int need_pc, struct dwarf2_cu *cu);
1393
1394 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1395 CORE_ADDR *highpc, int need_pc,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1399 struct dwarf2_cu *cu);
1400
1401 static void add_partial_subprogram (struct partial_die_info *pdi,
1402 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1403 int need_pc, struct dwarf2_cu *cu);
1404
1405 static void dwarf2_read_symtab (struct partial_symtab *,
1406 struct objfile *);
1407
1408 static void psymtab_to_symtab_1 (struct partial_symtab *);
1409
1410 static struct abbrev_info *abbrev_table_lookup_abbrev
1411 (const struct abbrev_table *, unsigned int);
1412
1413 static struct abbrev_table *abbrev_table_read_table
1414 (struct dwarf2_section_info *, sect_offset);
1415
1416 static void abbrev_table_free (struct abbrev_table *);
1417
1418 static void abbrev_table_free_cleanup (void *);
1419
1420 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1421 struct dwarf2_section_info *);
1422
1423 static void dwarf2_free_abbrev_table (void *);
1424
1425 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1426
1427 static struct partial_die_info *load_partial_dies
1428 (const struct die_reader_specs *, const gdb_byte *, int);
1429
1430 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1431 struct partial_die_info *,
1432 struct abbrev_info *,
1433 unsigned int,
1434 const gdb_byte *);
1435
1436 static struct partial_die_info *find_partial_die (sect_offset, int,
1437 struct dwarf2_cu *);
1438
1439 static void fixup_partial_die (struct partial_die_info *,
1440 struct dwarf2_cu *);
1441
1442 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1443 struct attribute *, struct attr_abbrev *,
1444 const gdb_byte *);
1445
1446 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1447
1448 static int read_1_signed_byte (bfd *, const gdb_byte *);
1449
1450 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1453
1454 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1455
1456 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1457 unsigned int *);
1458
1459 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1460
1461 static LONGEST read_checked_initial_length_and_offset
1462 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1463 unsigned int *, unsigned int *);
1464
1465 static LONGEST read_offset (bfd *, const gdb_byte *,
1466 const struct comp_unit_head *,
1467 unsigned int *);
1468
1469 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1470
1471 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1472 sect_offset);
1473
1474 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1475
1476 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1477
1478 static const char *read_indirect_string (bfd *, const gdb_byte *,
1479 const struct comp_unit_head *,
1480 unsigned int *);
1481
1482 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1483
1484 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1485
1486 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1489 const gdb_byte *,
1490 unsigned int *);
1491
1492 static const char *read_str_index (const struct die_reader_specs *reader,
1493 ULONGEST str_index);
1494
1495 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1498 struct dwarf2_cu *);
1499
1500 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1501 unsigned int);
1502
1503 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1504 struct dwarf2_cu *cu);
1505
1506 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1507
1508 static struct die_info *die_specification (struct die_info *die,
1509 struct dwarf2_cu **);
1510
1511 static void free_line_header (struct line_header *lh);
1512
1513 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1514 struct dwarf2_cu *cu);
1515
1516 static void dwarf_decode_lines (struct line_header *, const char *,
1517 struct dwarf2_cu *, struct partial_symtab *,
1518 int);
1519
1520 static void dwarf2_start_subfile (const char *, const char *, const char *);
1521
1522 static void dwarf2_start_symtab (struct dwarf2_cu *,
1523 const char *, const char *, CORE_ADDR);
1524
1525 static struct symbol *new_symbol (struct die_info *, struct type *,
1526 struct dwarf2_cu *);
1527
1528 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1529 struct dwarf2_cu *, struct symbol *);
1530
1531 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1532 struct dwarf2_cu *);
1533
1534 static void dwarf2_const_value_attr (const struct attribute *attr,
1535 struct type *type,
1536 const char *name,
1537 struct obstack *obstack,
1538 struct dwarf2_cu *cu, LONGEST *value,
1539 const gdb_byte **bytes,
1540 struct dwarf2_locexpr_baton **baton);
1541
1542 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1543
1544 static int need_gnat_info (struct dwarf2_cu *);
1545
1546 static struct type *die_descriptive_type (struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static void set_descriptive_type (struct type *, struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *die_containing_type (struct die_info *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1556 struct dwarf2_cu *);
1557
1558 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1559
1560 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1561
1562 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1563
1564 static char *typename_concat (struct obstack *obs, const char *prefix,
1565 const char *suffix, int physname,
1566 struct dwarf2_cu *cu);
1567
1568 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1577
1578 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1579 struct dwarf2_cu *, struct partial_symtab *);
1580
1581 static int dwarf2_get_pc_bounds (struct die_info *,
1582 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1583 struct partial_symtab *);
1584
1585 static void get_scope_pc_bounds (struct die_info *,
1586 CORE_ADDR *, CORE_ADDR *,
1587 struct dwarf2_cu *);
1588
1589 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1590 CORE_ADDR, struct dwarf2_cu *);
1591
1592 static void dwarf2_add_field (struct field_info *, struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static void dwarf2_attach_fields_to_type (struct field_info *,
1596 struct type *, struct dwarf2_cu *);
1597
1598 static void dwarf2_add_member_fn (struct field_info *,
1599 struct die_info *, struct type *,
1600 struct dwarf2_cu *);
1601
1602 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1603 struct type *,
1604 struct dwarf2_cu *);
1605
1606 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1611
1612 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1613
1614 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1615
1616 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static struct type *read_module_type (struct die_info *die,
1619 struct dwarf2_cu *cu);
1620
1621 static const char *namespace_name (struct die_info *die,
1622 int *is_anonymous, struct dwarf2_cu *);
1623
1624 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1625
1626 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1627
1628 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1629 struct dwarf2_cu *);
1630
1631 static struct die_info *read_die_and_siblings_1
1632 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1633 struct die_info *);
1634
1635 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1636 const gdb_byte *info_ptr,
1637 const gdb_byte **new_info_ptr,
1638 struct die_info *parent);
1639
1640 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1641 struct die_info **, const gdb_byte *,
1642 int *, int);
1643
1644 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1645 struct die_info **, const gdb_byte *,
1646 int *);
1647
1648 static void process_die (struct die_info *, struct dwarf2_cu *);
1649
1650 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1651 struct obstack *);
1652
1653 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1654
1655 static const char *dwarf2_full_name (const char *name,
1656 struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static const char *dwarf2_physname (const char *name, struct die_info *die,
1660 struct dwarf2_cu *cu);
1661
1662 static struct die_info *dwarf2_extension (struct die_info *die,
1663 struct dwarf2_cu **);
1664
1665 static const char *dwarf_tag_name (unsigned int);
1666
1667 static const char *dwarf_attr_name (unsigned int);
1668
1669 static const char *dwarf_form_name (unsigned int);
1670
1671 static char *dwarf_bool_name (unsigned int);
1672
1673 static const char *dwarf_type_encoding_name (unsigned int);
1674
1675 static struct die_info *sibling_die (struct die_info *);
1676
1677 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1678
1679 static void dump_die_for_error (struct die_info *);
1680
1681 static void dump_die_1 (struct ui_file *, int level, int max_level,
1682 struct die_info *);
1683
1684 /*static*/ void dump_die (struct die_info *, int max_level);
1685
1686 static void store_in_ref_table (struct die_info *,
1687 struct dwarf2_cu *);
1688
1689 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1690
1691 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1692
1693 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1694 const struct attribute *,
1695 struct dwarf2_cu **);
1696
1697 static struct die_info *follow_die_ref (struct die_info *,
1698 const struct attribute *,
1699 struct dwarf2_cu **);
1700
1701 static struct die_info *follow_die_sig (struct die_info *,
1702 const struct attribute *,
1703 struct dwarf2_cu **);
1704
1705 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1706 struct dwarf2_cu *);
1707
1708 static struct type *get_DW_AT_signature_type (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu *);
1711
1712 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1713
1714 static void read_signatured_type (struct signatured_type *);
1715
1716 /* memory allocation interface */
1717
1718 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1719
1720 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1721
1722 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1723 const char *, int);
1724
1725 static int attr_form_is_block (const struct attribute *);
1726
1727 static int attr_form_is_section_offset (const struct attribute *);
1728
1729 static int attr_form_is_constant (const struct attribute *);
1730
1731 static int attr_form_is_ref (const struct attribute *);
1732
1733 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1734 struct dwarf2_loclist_baton *baton,
1735 const struct attribute *attr);
1736
1737 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1738 struct symbol *sym,
1739 struct dwarf2_cu *cu,
1740 int is_block);
1741
1742 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1743 const gdb_byte *info_ptr,
1744 struct abbrev_info *abbrev);
1745
1746 static void free_stack_comp_unit (void *);
1747
1748 static hashval_t partial_die_hash (const void *item);
1749
1750 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1751
1752 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1753 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1754
1755 static void init_one_comp_unit (struct dwarf2_cu *cu,
1756 struct dwarf2_per_cu_data *per_cu);
1757
1758 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1759 struct die_info *comp_unit_die,
1760 enum language pretend_language);
1761
1762 static void free_heap_comp_unit (void *);
1763
1764 static void free_cached_comp_units (void *);
1765
1766 static void age_cached_comp_units (void);
1767
1768 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1769
1770 static struct type *set_die_type (struct die_info *, struct type *,
1771 struct dwarf2_cu *);
1772
1773 static void create_all_comp_units (struct objfile *);
1774
1775 static int create_all_type_units (struct objfile *);
1776
1777 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
1786 static void dwarf2_add_dependence (struct dwarf2_cu *,
1787 struct dwarf2_per_cu_data *);
1788
1789 static void dwarf2_mark (struct dwarf2_cu *);
1790
1791 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type_at_offset (sect_offset,
1794 struct dwarf2_per_cu_data *);
1795
1796 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1797
1798 static void dwarf2_release_queue (void *dummy);
1799
1800 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1801 enum language pretend_language);
1802
1803 static void process_queue (void);
1804
1805 static void find_file_and_directory (struct die_info *die,
1806 struct dwarf2_cu *cu,
1807 const char **name, const char **comp_dir);
1808
1809 static char *file_full_name (int file, struct line_header *lh,
1810 const char *comp_dir);
1811
1812 static const gdb_byte *read_and_check_comp_unit_head
1813 (struct comp_unit_head *header,
1814 struct dwarf2_section_info *section,
1815 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1816 int is_debug_types_section);
1817
1818 static void init_cutu_and_read_dies
1819 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1820 int use_existing_cu, int keep,
1821 die_reader_func_ftype *die_reader_func, void *data);
1822
1823 static void init_cutu_and_read_dies_simple
1824 (struct dwarf2_per_cu_data *this_cu,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1828
1829 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1830
1831 static struct dwo_unit *lookup_dwo_unit_in_dwp
1832 (struct dwp_file *dwp_file, const char *comp_dir,
1833 ULONGEST signature, int is_debug_types);
1834
1835 static struct dwp_file *get_dwp_file (void);
1836
1837 static struct dwo_unit *lookup_dwo_comp_unit
1838 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1839
1840 static struct dwo_unit *lookup_dwo_type_unit
1841 (struct signatured_type *, const char *, const char *);
1842
1843 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1844
1845 static void free_dwo_file_cleanup (void *);
1846
1847 static void process_cu_includes (void);
1848
1849 static void check_producer (struct dwarf2_cu *cu);
1850 \f
1851 /* Various complaints about symbol reading that don't abort the process. */
1852
1853 static void
1854 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1855 {
1856 complaint (&symfile_complaints,
1857 _("statement list doesn't fit in .debug_line section"));
1858 }
1859
1860 static void
1861 dwarf2_debug_line_missing_file_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _(".debug_line section has line data without a file"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_end_sequence_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line "
1872 "program sequence without an end"));
1873 }
1874
1875 static void
1876 dwarf2_complex_location_expr_complaint (void)
1877 {
1878 complaint (&symfile_complaints, _("location expression too complex"));
1879 }
1880
1881 static void
1882 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1883 int arg3)
1884 {
1885 complaint (&symfile_complaints,
1886 _("const value length mismatch for '%s', got %d, expected %d"),
1887 arg1, arg2, arg3);
1888 }
1889
1890 static void
1891 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1892 {
1893 complaint (&symfile_complaints,
1894 _("debug info runs off end of %s section"
1895 " [in module %s]"),
1896 get_section_name (section),
1897 get_section_file_name (section));
1898 }
1899
1900 static void
1901 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1902 {
1903 complaint (&symfile_complaints,
1904 _("macro debug info contains a "
1905 "malformed macro definition:\n`%s'"),
1906 arg1);
1907 }
1908
1909 static void
1910 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1911 {
1912 complaint (&symfile_complaints,
1913 _("invalid attribute class or form for '%s' in '%s'"),
1914 arg1, arg2);
1915 }
1916 \f
1917 #if WORDS_BIGENDIAN
1918
1919 /* Convert VALUE between big- and little-endian. */
1920 static offset_type
1921 byte_swap (offset_type value)
1922 {
1923 offset_type result;
1924
1925 result = (value & 0xff) << 24;
1926 result |= (value & 0xff00) << 8;
1927 result |= (value & 0xff0000) >> 8;
1928 result |= (value & 0xff000000) >> 24;
1929 return result;
1930 }
1931
1932 #define MAYBE_SWAP(V) byte_swap (V)
1933
1934 #else
1935 #define MAYBE_SWAP(V) (V)
1936 #endif /* WORDS_BIGENDIAN */
1937
1938 /* Read the given attribute value as an address, taking the attribute's
1939 form into account. */
1940
1941 static CORE_ADDR
1942 attr_value_as_address (struct attribute *attr)
1943 {
1944 CORE_ADDR addr;
1945
1946 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1947 {
1948 /* Aside from a few clearly defined exceptions, attributes that
1949 contain an address must always be in DW_FORM_addr form.
1950 Unfortunately, some compilers happen to be violating this
1951 requirement by encoding addresses using other forms, such
1952 as DW_FORM_data4 for example. For those broken compilers,
1953 we try to do our best, without any guarantee of success,
1954 to interpret the address correctly. It would also be nice
1955 to generate a complaint, but that would require us to maintain
1956 a list of legitimate cases where a non-address form is allowed,
1957 as well as update callers to pass in at least the CU's DWARF
1958 version. This is more overhead than what we're willing to
1959 expand for a pretty rare case. */
1960 addr = DW_UNSND (attr);
1961 }
1962 else
1963 addr = DW_ADDR (attr);
1964
1965 return addr;
1966 }
1967
1968 /* The suffix for an index file. */
1969 #define INDEX_SUFFIX ".gdb-index"
1970
1971 /* Try to locate the sections we need for DWARF 2 debugging
1972 information and return true if we have enough to do something.
1973 NAMES points to the dwarf2 section names, or is NULL if the standard
1974 ELF names are used. */
1975
1976 int
1977 dwarf2_has_info (struct objfile *objfile,
1978 const struct dwarf2_debug_sections *names)
1979 {
1980 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1981 if (!dwarf2_per_objfile)
1982 {
1983 /* Initialize per-objfile state. */
1984 struct dwarf2_per_objfile *data
1985 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1986
1987 memset (data, 0, sizeof (*data));
1988 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1989 dwarf2_per_objfile = data;
1990
1991 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1992 (void *) names);
1993 dwarf2_per_objfile->objfile = objfile;
1994 }
1995 return (!dwarf2_per_objfile->info.is_virtual
1996 && dwarf2_per_objfile->info.s.asection != NULL
1997 && !dwarf2_per_objfile->abbrev.is_virtual
1998 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1999 }
2000
2001 /* Return the containing section of virtual section SECTION. */
2002
2003 static struct dwarf2_section_info *
2004 get_containing_section (const struct dwarf2_section_info *section)
2005 {
2006 gdb_assert (section->is_virtual);
2007 return section->s.containing_section;
2008 }
2009
2010 /* Return the bfd owner of SECTION. */
2011
2012 static struct bfd *
2013 get_section_bfd_owner (const struct dwarf2_section_info *section)
2014 {
2015 if (section->is_virtual)
2016 {
2017 section = get_containing_section (section);
2018 gdb_assert (!section->is_virtual);
2019 }
2020 return section->s.asection->owner;
2021 }
2022
2023 /* Return the bfd section of SECTION.
2024 Returns NULL if the section is not present. */
2025
2026 static asection *
2027 get_section_bfd_section (const struct dwarf2_section_info *section)
2028 {
2029 if (section->is_virtual)
2030 {
2031 section = get_containing_section (section);
2032 gdb_assert (!section->is_virtual);
2033 }
2034 return section->s.asection;
2035 }
2036
2037 /* Return the name of SECTION. */
2038
2039 static const char *
2040 get_section_name (const struct dwarf2_section_info *section)
2041 {
2042 asection *sectp = get_section_bfd_section (section);
2043
2044 gdb_assert (sectp != NULL);
2045 return bfd_section_name (get_section_bfd_owner (section), sectp);
2046 }
2047
2048 /* Return the name of the file SECTION is in. */
2049
2050 static const char *
2051 get_section_file_name (const struct dwarf2_section_info *section)
2052 {
2053 bfd *abfd = get_section_bfd_owner (section);
2054
2055 return bfd_get_filename (abfd);
2056 }
2057
2058 /* Return the id of SECTION.
2059 Returns 0 if SECTION doesn't exist. */
2060
2061 static int
2062 get_section_id (const struct dwarf2_section_info *section)
2063 {
2064 asection *sectp = get_section_bfd_section (section);
2065
2066 if (sectp == NULL)
2067 return 0;
2068 return sectp->id;
2069 }
2070
2071 /* Return the flags of SECTION.
2072 SECTION (or containing section if this is a virtual section) must exist. */
2073
2074 static int
2075 get_section_flags (const struct dwarf2_section_info *section)
2076 {
2077 asection *sectp = get_section_bfd_section (section);
2078
2079 gdb_assert (sectp != NULL);
2080 return bfd_get_section_flags (sectp->owner, sectp);
2081 }
2082
2083 /* When loading sections, we look either for uncompressed section or for
2084 compressed section names. */
2085
2086 static int
2087 section_is_p (const char *section_name,
2088 const struct dwarf2_section_names *names)
2089 {
2090 if (names->normal != NULL
2091 && strcmp (section_name, names->normal) == 0)
2092 return 1;
2093 if (names->compressed != NULL
2094 && strcmp (section_name, names->compressed) == 0)
2095 return 1;
2096 return 0;
2097 }
2098
2099 /* This function is mapped across the sections and remembers the
2100 offset and size of each of the debugging sections we are interested
2101 in. */
2102
2103 static void
2104 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2105 {
2106 const struct dwarf2_debug_sections *names;
2107 flagword aflag = bfd_get_section_flags (abfd, sectp);
2108
2109 if (vnames == NULL)
2110 names = &dwarf2_elf_names;
2111 else
2112 names = (const struct dwarf2_debug_sections *) vnames;
2113
2114 if ((aflag & SEC_HAS_CONTENTS) == 0)
2115 {
2116 }
2117 else if (section_is_p (sectp->name, &names->info))
2118 {
2119 dwarf2_per_objfile->info.s.asection = sectp;
2120 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2121 }
2122 else if (section_is_p (sectp->name, &names->abbrev))
2123 {
2124 dwarf2_per_objfile->abbrev.s.asection = sectp;
2125 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2126 }
2127 else if (section_is_p (sectp->name, &names->line))
2128 {
2129 dwarf2_per_objfile->line.s.asection = sectp;
2130 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2131 }
2132 else if (section_is_p (sectp->name, &names->loc))
2133 {
2134 dwarf2_per_objfile->loc.s.asection = sectp;
2135 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2136 }
2137 else if (section_is_p (sectp->name, &names->macinfo))
2138 {
2139 dwarf2_per_objfile->macinfo.s.asection = sectp;
2140 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2141 }
2142 else if (section_is_p (sectp->name, &names->macro))
2143 {
2144 dwarf2_per_objfile->macro.s.asection = sectp;
2145 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2146 }
2147 else if (section_is_p (sectp->name, &names->str))
2148 {
2149 dwarf2_per_objfile->str.s.asection = sectp;
2150 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2151 }
2152 else if (section_is_p (sectp->name, &names->addr))
2153 {
2154 dwarf2_per_objfile->addr.s.asection = sectp;
2155 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2156 }
2157 else if (section_is_p (sectp->name, &names->frame))
2158 {
2159 dwarf2_per_objfile->frame.s.asection = sectp;
2160 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2161 }
2162 else if (section_is_p (sectp->name, &names->eh_frame))
2163 {
2164 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2165 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2166 }
2167 else if (section_is_p (sectp->name, &names->ranges))
2168 {
2169 dwarf2_per_objfile->ranges.s.asection = sectp;
2170 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2171 }
2172 else if (section_is_p (sectp->name, &names->types))
2173 {
2174 struct dwarf2_section_info type_section;
2175
2176 memset (&type_section, 0, sizeof (type_section));
2177 type_section.s.asection = sectp;
2178 type_section.size = bfd_get_section_size (sectp);
2179
2180 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2181 &type_section);
2182 }
2183 else if (section_is_p (sectp->name, &names->gdb_index))
2184 {
2185 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2186 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2187 }
2188
2189 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2190 && bfd_section_vma (abfd, sectp) == 0)
2191 dwarf2_per_objfile->has_section_at_zero = 1;
2192 }
2193
2194 /* A helper function that decides whether a section is empty,
2195 or not present. */
2196
2197 static int
2198 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2199 {
2200 if (section->is_virtual)
2201 return section->size == 0;
2202 return section->s.asection == NULL || section->size == 0;
2203 }
2204
2205 /* Read the contents of the section INFO.
2206 OBJFILE is the main object file, but not necessarily the file where
2207 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2208 of the DWO file.
2209 If the section is compressed, uncompress it before returning. */
2210
2211 static void
2212 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2213 {
2214 asection *sectp;
2215 bfd *abfd;
2216 gdb_byte *buf, *retbuf;
2217
2218 if (info->readin)
2219 return;
2220 info->buffer = NULL;
2221 info->readin = 1;
2222
2223 if (dwarf2_section_empty_p (info))
2224 return;
2225
2226 sectp = get_section_bfd_section (info);
2227
2228 /* If this is a virtual section we need to read in the real one first. */
2229 if (info->is_virtual)
2230 {
2231 struct dwarf2_section_info *containing_section =
2232 get_containing_section (info);
2233
2234 gdb_assert (sectp != NULL);
2235 if ((sectp->flags & SEC_RELOC) != 0)
2236 {
2237 error (_("Dwarf Error: DWP format V2 with relocations is not"
2238 " supported in section %s [in module %s]"),
2239 get_section_name (info), get_section_file_name (info));
2240 }
2241 dwarf2_read_section (objfile, containing_section);
2242 /* Other code should have already caught virtual sections that don't
2243 fit. */
2244 gdb_assert (info->virtual_offset + info->size
2245 <= containing_section->size);
2246 /* If the real section is empty or there was a problem reading the
2247 section we shouldn't get here. */
2248 gdb_assert (containing_section->buffer != NULL);
2249 info->buffer = containing_section->buffer + info->virtual_offset;
2250 return;
2251 }
2252
2253 /* If the section has relocations, we must read it ourselves.
2254 Otherwise we attach it to the BFD. */
2255 if ((sectp->flags & SEC_RELOC) == 0)
2256 {
2257 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2258 return;
2259 }
2260
2261 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2262 info->buffer = buf;
2263
2264 /* When debugging .o files, we may need to apply relocations; see
2265 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2266 We never compress sections in .o files, so we only need to
2267 try this when the section is not compressed. */
2268 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2269 if (retbuf != NULL)
2270 {
2271 info->buffer = retbuf;
2272 return;
2273 }
2274
2275 abfd = get_section_bfd_owner (info);
2276 gdb_assert (abfd != NULL);
2277
2278 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2279 || bfd_bread (buf, info->size, abfd) != info->size)
2280 {
2281 error (_("Dwarf Error: Can't read DWARF data"
2282 " in section %s [in module %s]"),
2283 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2284 }
2285 }
2286
2287 /* A helper function that returns the size of a section in a safe way.
2288 If you are positive that the section has been read before using the
2289 size, then it is safe to refer to the dwarf2_section_info object's
2290 "size" field directly. In other cases, you must call this
2291 function, because for compressed sections the size field is not set
2292 correctly until the section has been read. */
2293
2294 static bfd_size_type
2295 dwarf2_section_size (struct objfile *objfile,
2296 struct dwarf2_section_info *info)
2297 {
2298 if (!info->readin)
2299 dwarf2_read_section (objfile, info);
2300 return info->size;
2301 }
2302
2303 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2304 SECTION_NAME. */
2305
2306 void
2307 dwarf2_get_section_info (struct objfile *objfile,
2308 enum dwarf2_section_enum sect,
2309 asection **sectp, const gdb_byte **bufp,
2310 bfd_size_type *sizep)
2311 {
2312 struct dwarf2_per_objfile *data
2313 = objfile_data (objfile, dwarf2_objfile_data_key);
2314 struct dwarf2_section_info *info;
2315
2316 /* We may see an objfile without any DWARF, in which case we just
2317 return nothing. */
2318 if (data == NULL)
2319 {
2320 *sectp = NULL;
2321 *bufp = NULL;
2322 *sizep = 0;
2323 return;
2324 }
2325 switch (sect)
2326 {
2327 case DWARF2_DEBUG_FRAME:
2328 info = &data->frame;
2329 break;
2330 case DWARF2_EH_FRAME:
2331 info = &data->eh_frame;
2332 break;
2333 default:
2334 gdb_assert_not_reached ("unexpected section");
2335 }
2336
2337 dwarf2_read_section (objfile, info);
2338
2339 *sectp = get_section_bfd_section (info);
2340 *bufp = info->buffer;
2341 *sizep = info->size;
2342 }
2343
2344 /* A helper function to find the sections for a .dwz file. */
2345
2346 static void
2347 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2348 {
2349 struct dwz_file *dwz_file = arg;
2350
2351 /* Note that we only support the standard ELF names, because .dwz
2352 is ELF-only (at the time of writing). */
2353 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2354 {
2355 dwz_file->abbrev.s.asection = sectp;
2356 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2359 {
2360 dwz_file->info.s.asection = sectp;
2361 dwz_file->info.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2364 {
2365 dwz_file->str.s.asection = sectp;
2366 dwz_file->str.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2369 {
2370 dwz_file->line.s.asection = sectp;
2371 dwz_file->line.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2374 {
2375 dwz_file->macro.s.asection = sectp;
2376 dwz_file->macro.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2379 {
2380 dwz_file->gdb_index.s.asection = sectp;
2381 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2382 }
2383 }
2384
2385 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2386 there is no .gnu_debugaltlink section in the file. Error if there
2387 is such a section but the file cannot be found. */
2388
2389 static struct dwz_file *
2390 dwarf2_get_dwz_file (void)
2391 {
2392 bfd *dwz_bfd;
2393 char *data;
2394 struct cleanup *cleanup;
2395 const char *filename;
2396 struct dwz_file *result;
2397 bfd_size_type buildid_len_arg;
2398 size_t buildid_len;
2399 bfd_byte *buildid;
2400
2401 if (dwarf2_per_objfile->dwz_file != NULL)
2402 return dwarf2_per_objfile->dwz_file;
2403
2404 bfd_set_error (bfd_error_no_error);
2405 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2406 &buildid_len_arg, &buildid);
2407 if (data == NULL)
2408 {
2409 if (bfd_get_error () == bfd_error_no_error)
2410 return NULL;
2411 error (_("could not read '.gnu_debugaltlink' section: %s"),
2412 bfd_errmsg (bfd_get_error ()));
2413 }
2414 cleanup = make_cleanup (xfree, data);
2415 make_cleanup (xfree, buildid);
2416
2417 buildid_len = (size_t) buildid_len_arg;
2418
2419 filename = (const char *) data;
2420 if (!IS_ABSOLUTE_PATH (filename))
2421 {
2422 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2423 char *rel;
2424
2425 make_cleanup (xfree, abs);
2426 abs = ldirname (abs);
2427 make_cleanup (xfree, abs);
2428
2429 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2430 make_cleanup (xfree, rel);
2431 filename = rel;
2432 }
2433
2434 /* First try the file name given in the section. If that doesn't
2435 work, try to use the build-id instead. */
2436 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2437 if (dwz_bfd != NULL)
2438 {
2439 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2440 {
2441 gdb_bfd_unref (dwz_bfd);
2442 dwz_bfd = NULL;
2443 }
2444 }
2445
2446 if (dwz_bfd == NULL)
2447 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2448
2449 if (dwz_bfd == NULL)
2450 error (_("could not find '.gnu_debugaltlink' file for %s"),
2451 objfile_name (dwarf2_per_objfile->objfile));
2452
2453 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2454 struct dwz_file);
2455 result->dwz_bfd = dwz_bfd;
2456
2457 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2458
2459 do_cleanups (cleanup);
2460
2461 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2462 dwarf2_per_objfile->dwz_file = result;
2463 return result;
2464 }
2465 \f
2466 /* DWARF quick_symbols_functions support. */
2467
2468 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2469 unique line tables, so we maintain a separate table of all .debug_line
2470 derived entries to support the sharing.
2471 All the quick functions need is the list of file names. We discard the
2472 line_header when we're done and don't need to record it here. */
2473 struct quick_file_names
2474 {
2475 /* The data used to construct the hash key. */
2476 struct stmt_list_hash hash;
2477
2478 /* The number of entries in file_names, real_names. */
2479 unsigned int num_file_names;
2480
2481 /* The file names from the line table, after being run through
2482 file_full_name. */
2483 const char **file_names;
2484
2485 /* The file names from the line table after being run through
2486 gdb_realpath. These are computed lazily. */
2487 const char **real_names;
2488 };
2489
2490 /* When using the index (and thus not using psymtabs), each CU has an
2491 object of this type. This is used to hold information needed by
2492 the various "quick" methods. */
2493 struct dwarf2_per_cu_quick_data
2494 {
2495 /* The file table. This can be NULL if there was no file table
2496 or it's currently not read in.
2497 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2498 struct quick_file_names *file_names;
2499
2500 /* The corresponding symbol table. This is NULL if symbols for this
2501 CU have not yet been read. */
2502 struct symtab *symtab;
2503
2504 /* A temporary mark bit used when iterating over all CUs in
2505 expand_symtabs_matching. */
2506 unsigned int mark : 1;
2507
2508 /* True if we've tried to read the file table and found there isn't one.
2509 There will be no point in trying to read it again next time. */
2510 unsigned int no_file_data : 1;
2511 };
2512
2513 /* Utility hash function for a stmt_list_hash. */
2514
2515 static hashval_t
2516 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2517 {
2518 hashval_t v = 0;
2519
2520 if (stmt_list_hash->dwo_unit != NULL)
2521 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2522 v += stmt_list_hash->line_offset.sect_off;
2523 return v;
2524 }
2525
2526 /* Utility equality function for a stmt_list_hash. */
2527
2528 static int
2529 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2530 const struct stmt_list_hash *rhs)
2531 {
2532 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2533 return 0;
2534 if (lhs->dwo_unit != NULL
2535 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2536 return 0;
2537
2538 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2539 }
2540
2541 /* Hash function for a quick_file_names. */
2542
2543 static hashval_t
2544 hash_file_name_entry (const void *e)
2545 {
2546 const struct quick_file_names *file_data = e;
2547
2548 return hash_stmt_list_entry (&file_data->hash);
2549 }
2550
2551 /* Equality function for a quick_file_names. */
2552
2553 static int
2554 eq_file_name_entry (const void *a, const void *b)
2555 {
2556 const struct quick_file_names *ea = a;
2557 const struct quick_file_names *eb = b;
2558
2559 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2560 }
2561
2562 /* Delete function for a quick_file_names. */
2563
2564 static void
2565 delete_file_name_entry (void *e)
2566 {
2567 struct quick_file_names *file_data = e;
2568 int i;
2569
2570 for (i = 0; i < file_data->num_file_names; ++i)
2571 {
2572 xfree ((void*) file_data->file_names[i]);
2573 if (file_data->real_names)
2574 xfree ((void*) file_data->real_names[i]);
2575 }
2576
2577 /* The space for the struct itself lives on objfile_obstack,
2578 so we don't free it here. */
2579 }
2580
2581 /* Create a quick_file_names hash table. */
2582
2583 static htab_t
2584 create_quick_file_names_table (unsigned int nr_initial_entries)
2585 {
2586 return htab_create_alloc (nr_initial_entries,
2587 hash_file_name_entry, eq_file_name_entry,
2588 delete_file_name_entry, xcalloc, xfree);
2589 }
2590
2591 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2592 have to be created afterwards. You should call age_cached_comp_units after
2593 processing PER_CU->CU. dw2_setup must have been already called. */
2594
2595 static void
2596 load_cu (struct dwarf2_per_cu_data *per_cu)
2597 {
2598 if (per_cu->is_debug_types)
2599 load_full_type_unit (per_cu);
2600 else
2601 load_full_comp_unit (per_cu, language_minimal);
2602
2603 gdb_assert (per_cu->cu != NULL);
2604
2605 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2606 }
2607
2608 /* Read in the symbols for PER_CU. */
2609
2610 static void
2611 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2612 {
2613 struct cleanup *back_to;
2614
2615 /* Skip type_unit_groups, reading the type units they contain
2616 is handled elsewhere. */
2617 if (IS_TYPE_UNIT_GROUP (per_cu))
2618 return;
2619
2620 back_to = make_cleanup (dwarf2_release_queue, NULL);
2621
2622 if (dwarf2_per_objfile->using_index
2623 ? per_cu->v.quick->symtab == NULL
2624 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2625 {
2626 queue_comp_unit (per_cu, language_minimal);
2627 load_cu (per_cu);
2628
2629 /* If we just loaded a CU from a DWO, and we're working with an index
2630 that may badly handle TUs, load all the TUs in that DWO as well.
2631 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2632 if (!per_cu->is_debug_types
2633 && per_cu->cu->dwo_unit != NULL
2634 && dwarf2_per_objfile->index_table != NULL
2635 && dwarf2_per_objfile->index_table->version <= 7
2636 /* DWP files aren't supported yet. */
2637 && get_dwp_file () == NULL)
2638 queue_and_load_all_dwo_tus (per_cu);
2639 }
2640
2641 process_queue ();
2642
2643 /* Age the cache, releasing compilation units that have not
2644 been used recently. */
2645 age_cached_comp_units ();
2646
2647 do_cleanups (back_to);
2648 }
2649
2650 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2651 the objfile from which this CU came. Returns the resulting symbol
2652 table. */
2653
2654 static struct symtab *
2655 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2656 {
2657 gdb_assert (dwarf2_per_objfile->using_index);
2658 if (!per_cu->v.quick->symtab)
2659 {
2660 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2661 increment_reading_symtab ();
2662 dw2_do_instantiate_symtab (per_cu);
2663 process_cu_includes ();
2664 do_cleanups (back_to);
2665 }
2666 return per_cu->v.quick->symtab;
2667 }
2668
2669 /* Return the CU/TU given its index.
2670
2671 This is intended for loops like:
2672
2673 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2674 + dwarf2_per_objfile->n_type_units); ++i)
2675 {
2676 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2677
2678 ...;
2679 }
2680 */
2681
2682 static struct dwarf2_per_cu_data *
2683 dw2_get_cutu (int index)
2684 {
2685 if (index >= dwarf2_per_objfile->n_comp_units)
2686 {
2687 index -= dwarf2_per_objfile->n_comp_units;
2688 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2689 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2690 }
2691
2692 return dwarf2_per_objfile->all_comp_units[index];
2693 }
2694
2695 /* Return the CU given its index.
2696 This differs from dw2_get_cutu in that it's for when you know INDEX
2697 refers to a CU. */
2698
2699 static struct dwarf2_per_cu_data *
2700 dw2_get_cu (int index)
2701 {
2702 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2703
2704 return dwarf2_per_objfile->all_comp_units[index];
2705 }
2706
2707 /* A helper for create_cus_from_index that handles a given list of
2708 CUs. */
2709
2710 static void
2711 create_cus_from_index_list (struct objfile *objfile,
2712 const gdb_byte *cu_list, offset_type n_elements,
2713 struct dwarf2_section_info *section,
2714 int is_dwz,
2715 int base_offset)
2716 {
2717 offset_type i;
2718
2719 for (i = 0; i < n_elements; i += 2)
2720 {
2721 struct dwarf2_per_cu_data *the_cu;
2722 ULONGEST offset, length;
2723
2724 gdb_static_assert (sizeof (ULONGEST) >= 8);
2725 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2726 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2727 cu_list += 2 * 8;
2728
2729 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2730 struct dwarf2_per_cu_data);
2731 the_cu->offset.sect_off = offset;
2732 the_cu->length = length;
2733 the_cu->objfile = objfile;
2734 the_cu->section = section;
2735 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2737 the_cu->is_dwz = is_dwz;
2738 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2739 }
2740 }
2741
2742 /* Read the CU list from the mapped index, and use it to create all
2743 the CU objects for this objfile. */
2744
2745 static void
2746 create_cus_from_index (struct objfile *objfile,
2747 const gdb_byte *cu_list, offset_type cu_list_elements,
2748 const gdb_byte *dwz_list, offset_type dwz_elements)
2749 {
2750 struct dwz_file *dwz;
2751
2752 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2753 dwarf2_per_objfile->all_comp_units
2754 = obstack_alloc (&objfile->objfile_obstack,
2755 dwarf2_per_objfile->n_comp_units
2756 * sizeof (struct dwarf2_per_cu_data *));
2757
2758 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2759 &dwarf2_per_objfile->info, 0, 0);
2760
2761 if (dwz_elements == 0)
2762 return;
2763
2764 dwz = dwarf2_get_dwz_file ();
2765 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2766 cu_list_elements / 2);
2767 }
2768
2769 /* Create the signatured type hash table from the index. */
2770
2771 static void
2772 create_signatured_type_table_from_index (struct objfile *objfile,
2773 struct dwarf2_section_info *section,
2774 const gdb_byte *bytes,
2775 offset_type elements)
2776 {
2777 offset_type i;
2778 htab_t sig_types_hash;
2779
2780 dwarf2_per_objfile->n_type_units
2781 = dwarf2_per_objfile->n_allocated_type_units
2782 = elements / 3;
2783 dwarf2_per_objfile->all_type_units
2784 = xmalloc (dwarf2_per_objfile->n_type_units
2785 * sizeof (struct signatured_type *));
2786
2787 sig_types_hash = allocate_signatured_type_table (objfile);
2788
2789 for (i = 0; i < elements; i += 3)
2790 {
2791 struct signatured_type *sig_type;
2792 ULONGEST offset, type_offset_in_tu, signature;
2793 void **slot;
2794
2795 gdb_static_assert (sizeof (ULONGEST) >= 8);
2796 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2797 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2798 BFD_ENDIAN_LITTLE);
2799 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2800 bytes += 3 * 8;
2801
2802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2803 struct signatured_type);
2804 sig_type->signature = signature;
2805 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2806 sig_type->per_cu.is_debug_types = 1;
2807 sig_type->per_cu.section = section;
2808 sig_type->per_cu.offset.sect_off = offset;
2809 sig_type->per_cu.objfile = objfile;
2810 sig_type->per_cu.v.quick
2811 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct dwarf2_per_cu_quick_data);
2813
2814 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2815 *slot = sig_type;
2816
2817 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2818 }
2819
2820 dwarf2_per_objfile->signatured_types = sig_types_hash;
2821 }
2822
2823 /* Read the address map data from the mapped index, and use it to
2824 populate the objfile's psymtabs_addrmap. */
2825
2826 static void
2827 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2828 {
2829 const gdb_byte *iter, *end;
2830 struct obstack temp_obstack;
2831 struct addrmap *mutable_map;
2832 struct cleanup *cleanup;
2833 CORE_ADDR baseaddr;
2834
2835 obstack_init (&temp_obstack);
2836 cleanup = make_cleanup_obstack_free (&temp_obstack);
2837 mutable_map = addrmap_create_mutable (&temp_obstack);
2838
2839 iter = index->address_table;
2840 end = iter + index->address_table_size;
2841
2842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2843
2844 while (iter < end)
2845 {
2846 ULONGEST hi, lo, cu_index;
2847 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2850 iter += 8;
2851 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2852 iter += 4;
2853
2854 if (lo > hi)
2855 {
2856 complaint (&symfile_complaints,
2857 _(".gdb_index address table has invalid range (%s - %s)"),
2858 hex_string (lo), hex_string (hi));
2859 continue;
2860 }
2861
2862 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2863 {
2864 complaint (&symfile_complaints,
2865 _(".gdb_index address table has invalid CU number %u"),
2866 (unsigned) cu_index);
2867 continue;
2868 }
2869
2870 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2871 dw2_get_cutu (cu_index));
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877 }
2878
2879 /* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2886
2887 static hashval_t
2888 mapped_index_string_hash (int index_version, const void *p)
2889 {
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
2900
2901 return r;
2902 }
2903
2904 /* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2907
2908 static int
2909 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911 {
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
2914 offset_type slot, step;
2915 int (*cmp) (const char *, const char *);
2916
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
2923 const char *paren = strchr (name, '(');
2924
2925 if (paren)
2926 {
2927 char *dup;
2928
2929 dup = xmalloc (paren - name + 1);
2930 memcpy (dup, name, paren - name);
2931 dup[paren - name] = 0;
2932
2933 make_cleanup (xfree, dup);
2934 name = dup;
2935 }
2936 }
2937
2938 /* Index version 4 did not support case insensitive searches. But the
2939 indices for case insensitive languages are built in lowercase, therefore
2940 simulate our NAME being searched is also lowercased. */
2941 hash = mapped_index_string_hash ((index->version == 4
2942 && case_sensitivity == case_sensitive_off
2943 ? 5 : index->version),
2944 name);
2945
2946 slot = hash & (index->symbol_table_slots - 1);
2947 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2948 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2949
2950 for (;;)
2951 {
2952 /* Convert a slot number to an offset into the table. */
2953 offset_type i = 2 * slot;
2954 const char *str;
2955 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2956 {
2957 do_cleanups (back_to);
2958 return 0;
2959 }
2960
2961 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2962 if (!cmp (name, str))
2963 {
2964 *vec_out = (offset_type *) (index->constant_pool
2965 + MAYBE_SWAP (index->symbol_table[i + 1]));
2966 do_cleanups (back_to);
2967 return 1;
2968 }
2969
2970 slot = (slot + step) & (index->symbol_table_slots - 1);
2971 }
2972 }
2973
2974 /* A helper function that reads the .gdb_index from SECTION and fills
2975 in MAP. FILENAME is the name of the file containing the section;
2976 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2977 ok to use deprecated sections.
2978
2979 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2980 out parameters that are filled in with information about the CU and
2981 TU lists in the section.
2982
2983 Returns 1 if all went well, 0 otherwise. */
2984
2985 static int
2986 read_index_from_section (struct objfile *objfile,
2987 const char *filename,
2988 int deprecated_ok,
2989 struct dwarf2_section_info *section,
2990 struct mapped_index *map,
2991 const gdb_byte **cu_list,
2992 offset_type *cu_list_elements,
2993 const gdb_byte **types_list,
2994 offset_type *types_list_elements)
2995 {
2996 const gdb_byte *addr;
2997 offset_type version;
2998 offset_type *metadata;
2999 int i;
3000
3001 if (dwarf2_section_empty_p (section))
3002 return 0;
3003
3004 /* Older elfutils strip versions could keep the section in the main
3005 executable while splitting it for the separate debug info file. */
3006 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3007 return 0;
3008
3009 dwarf2_read_section (objfile, section);
3010
3011 addr = section->buffer;
3012 /* Version check. */
3013 version = MAYBE_SWAP (*(offset_type *) addr);
3014 /* Versions earlier than 3 emitted every copy of a psymbol. This
3015 causes the index to behave very poorly for certain requests. Version 3
3016 contained incomplete addrmap. So, it seems better to just ignore such
3017 indices. */
3018 if (version < 4)
3019 {
3020 static int warning_printed = 0;
3021 if (!warning_printed)
3022 {
3023 warning (_("Skipping obsolete .gdb_index section in %s."),
3024 filename);
3025 warning_printed = 1;
3026 }
3027 return 0;
3028 }
3029 /* Index version 4 uses a different hash function than index version
3030 5 and later.
3031
3032 Versions earlier than 6 did not emit psymbols for inlined
3033 functions. Using these files will cause GDB not to be able to
3034 set breakpoints on inlined functions by name, so we ignore these
3035 indices unless the user has done
3036 "set use-deprecated-index-sections on". */
3037 if (version < 6 && !deprecated_ok)
3038 {
3039 static int warning_printed = 0;
3040 if (!warning_printed)
3041 {
3042 warning (_("\
3043 Skipping deprecated .gdb_index section in %s.\n\
3044 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3045 to use the section anyway."),
3046 filename);
3047 warning_printed = 1;
3048 }
3049 return 0;
3050 }
3051 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3052 of the TU (for symbols coming from TUs),
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3054 Plus gold-generated indices can have duplicate entries for global symbols,
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3056 These are just performance bugs, and we can't distinguish gdb-generated
3057 indices from gold-generated ones, so issue no warning here. */
3058
3059 /* Indexes with higher version than the one supported by GDB may be no
3060 longer backward compatible. */
3061 if (version > 8)
3062 return 0;
3063
3064 map->version = version;
3065 map->total_size = section->size;
3066
3067 metadata = (offset_type *) (addr + sizeof (offset_type));
3068
3069 i = 0;
3070 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3071 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3072 / 8);
3073 ++i;
3074
3075 *types_list = addr + MAYBE_SWAP (metadata[i]);
3076 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3077 - MAYBE_SWAP (metadata[i]))
3078 / 8);
3079 ++i;
3080
3081 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3082 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3083 - MAYBE_SWAP (metadata[i]));
3084 ++i;
3085
3086 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3087 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3088 - MAYBE_SWAP (metadata[i]))
3089 / (2 * sizeof (offset_type)));
3090 ++i;
3091
3092 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3093
3094 return 1;
3095 }
3096
3097
3098 /* Read the index file. If everything went ok, initialize the "quick"
3099 elements of all the CUs and return 1. Otherwise, return 0. */
3100
3101 static int
3102 dwarf2_read_index (struct objfile *objfile)
3103 {
3104 struct mapped_index local_map, *map;
3105 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3106 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3107 struct dwz_file *dwz;
3108
3109 if (!read_index_from_section (objfile, objfile_name (objfile),
3110 use_deprecated_index_sections,
3111 &dwarf2_per_objfile->gdb_index, &local_map,
3112 &cu_list, &cu_list_elements,
3113 &types_list, &types_list_elements))
3114 return 0;
3115
3116 /* Don't use the index if it's empty. */
3117 if (local_map.symbol_table_slots == 0)
3118 return 0;
3119
3120 /* If there is a .dwz file, read it so we can get its CU list as
3121 well. */
3122 dwz = dwarf2_get_dwz_file ();
3123 if (dwz != NULL)
3124 {
3125 struct mapped_index dwz_map;
3126 const gdb_byte *dwz_types_ignore;
3127 offset_type dwz_types_elements_ignore;
3128
3129 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3130 1,
3131 &dwz->gdb_index, &dwz_map,
3132 &dwz_list, &dwz_list_elements,
3133 &dwz_types_ignore,
3134 &dwz_types_elements_ignore))
3135 {
3136 warning (_("could not read '.gdb_index' section from %s; skipping"),
3137 bfd_get_filename (dwz->dwz_bfd));
3138 return 0;
3139 }
3140 }
3141
3142 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3143 dwz_list_elements);
3144
3145 if (types_list_elements)
3146 {
3147 struct dwarf2_section_info *section;
3148
3149 /* We can only handle a single .debug_types when we have an
3150 index. */
3151 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3152 return 0;
3153
3154 section = VEC_index (dwarf2_section_info_def,
3155 dwarf2_per_objfile->types, 0);
3156
3157 create_signatured_type_table_from_index (objfile, section, types_list,
3158 types_list_elements);
3159 }
3160
3161 create_addrmap_from_index (objfile, &local_map);
3162
3163 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3164 *map = local_map;
3165
3166 dwarf2_per_objfile->index_table = map;
3167 dwarf2_per_objfile->using_index = 1;
3168 dwarf2_per_objfile->quick_file_names_table =
3169 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3170
3171 return 1;
3172 }
3173
3174 /* A helper for the "quick" functions which sets the global
3175 dwarf2_per_objfile according to OBJFILE. */
3176
3177 static void
3178 dw2_setup (struct objfile *objfile)
3179 {
3180 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3181 gdb_assert (dwarf2_per_objfile);
3182 }
3183
3184 /* die_reader_func for dw2_get_file_names. */
3185
3186 static void
3187 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3188 const gdb_byte *info_ptr,
3189 struct die_info *comp_unit_die,
3190 int has_children,
3191 void *data)
3192 {
3193 struct dwarf2_cu *cu = reader->cu;
3194 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3195 struct objfile *objfile = dwarf2_per_objfile->objfile;
3196 struct dwarf2_per_cu_data *lh_cu;
3197 struct line_header *lh;
3198 struct attribute *attr;
3199 int i;
3200 const char *name, *comp_dir;
3201 void **slot;
3202 struct quick_file_names *qfn;
3203 unsigned int line_offset;
3204
3205 gdb_assert (! this_cu->is_debug_types);
3206
3207 /* Our callers never want to match partial units -- instead they
3208 will match the enclosing full CU. */
3209 if (comp_unit_die->tag == DW_TAG_partial_unit)
3210 {
3211 this_cu->v.quick->no_file_data = 1;
3212 return;
3213 }
3214
3215 lh_cu = this_cu;
3216 lh = NULL;
3217 slot = NULL;
3218 line_offset = 0;
3219
3220 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3221 if (attr)
3222 {
3223 struct quick_file_names find_entry;
3224
3225 line_offset = DW_UNSND (attr);
3226
3227 /* We may have already read in this line header (TU line header sharing).
3228 If we have we're done. */
3229 find_entry.hash.dwo_unit = cu->dwo_unit;
3230 find_entry.hash.line_offset.sect_off = line_offset;
3231 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3232 &find_entry, INSERT);
3233 if (*slot != NULL)
3234 {
3235 lh_cu->v.quick->file_names = *slot;
3236 return;
3237 }
3238
3239 lh = dwarf_decode_line_header (line_offset, cu);
3240 }
3241 if (lh == NULL)
3242 {
3243 lh_cu->v.quick->no_file_data = 1;
3244 return;
3245 }
3246
3247 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3248 qfn->hash.dwo_unit = cu->dwo_unit;
3249 qfn->hash.line_offset.sect_off = line_offset;
3250 gdb_assert (slot != NULL);
3251 *slot = qfn;
3252
3253 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3254
3255 qfn->num_file_names = lh->num_file_names;
3256 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3257 lh->num_file_names * sizeof (char *));
3258 for (i = 0; i < lh->num_file_names; ++i)
3259 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3260 qfn->real_names = NULL;
3261
3262 free_line_header (lh);
3263
3264 lh_cu->v.quick->file_names = qfn;
3265 }
3266
3267 /* A helper for the "quick" functions which attempts to read the line
3268 table for THIS_CU. */
3269
3270 static struct quick_file_names *
3271 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3272 {
3273 /* This should never be called for TUs. */
3274 gdb_assert (! this_cu->is_debug_types);
3275 /* Nor type unit groups. */
3276 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3277
3278 if (this_cu->v.quick->file_names != NULL)
3279 return this_cu->v.quick->file_names;
3280 /* If we know there is no line data, no point in looking again. */
3281 if (this_cu->v.quick->no_file_data)
3282 return NULL;
3283
3284 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3285
3286 if (this_cu->v.quick->no_file_data)
3287 return NULL;
3288 return this_cu->v.quick->file_names;
3289 }
3290
3291 /* A helper for the "quick" functions which computes and caches the
3292 real path for a given file name from the line table. */
3293
3294 static const char *
3295 dw2_get_real_path (struct objfile *objfile,
3296 struct quick_file_names *qfn, int index)
3297 {
3298 if (qfn->real_names == NULL)
3299 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3300 qfn->num_file_names, const char *);
3301
3302 if (qfn->real_names[index] == NULL)
3303 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3304
3305 return qfn->real_names[index];
3306 }
3307
3308 static struct symtab *
3309 dw2_find_last_source_symtab (struct objfile *objfile)
3310 {
3311 int index;
3312
3313 dw2_setup (objfile);
3314 index = dwarf2_per_objfile->n_comp_units - 1;
3315 return dw2_instantiate_symtab (dw2_get_cutu (index));
3316 }
3317
3318 /* Traversal function for dw2_forget_cached_source_info. */
3319
3320 static int
3321 dw2_free_cached_file_names (void **slot, void *info)
3322 {
3323 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3324
3325 if (file_data->real_names)
3326 {
3327 int i;
3328
3329 for (i = 0; i < file_data->num_file_names; ++i)
3330 {
3331 xfree ((void*) file_data->real_names[i]);
3332 file_data->real_names[i] = NULL;
3333 }
3334 }
3335
3336 return 1;
3337 }
3338
3339 static void
3340 dw2_forget_cached_source_info (struct objfile *objfile)
3341 {
3342 dw2_setup (objfile);
3343
3344 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3345 dw2_free_cached_file_names, NULL);
3346 }
3347
3348 /* Helper function for dw2_map_symtabs_matching_filename that expands
3349 the symtabs and calls the iterator. */
3350
3351 static int
3352 dw2_map_expand_apply (struct objfile *objfile,
3353 struct dwarf2_per_cu_data *per_cu,
3354 const char *name, const char *real_path,
3355 int (*callback) (struct symtab *, void *),
3356 void *data)
3357 {
3358 struct symtab *last_made = objfile->symtabs;
3359
3360 /* Don't visit already-expanded CUs. */
3361 if (per_cu->v.quick->symtab)
3362 return 0;
3363
3364 /* This may expand more than one symtab, and we want to iterate over
3365 all of them. */
3366 dw2_instantiate_symtab (per_cu);
3367
3368 return iterate_over_some_symtabs (name, real_path, callback, data,
3369 objfile->symtabs, last_made);
3370 }
3371
3372 /* Implementation of the map_symtabs_matching_filename method. */
3373
3374 static int
3375 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3376 const char *real_path,
3377 int (*callback) (struct symtab *, void *),
3378 void *data)
3379 {
3380 int i;
3381 const char *name_basename = lbasename (name);
3382
3383 dw2_setup (objfile);
3384
3385 /* The rule is CUs specify all the files, including those used by
3386 any TU, so there's no need to scan TUs here. */
3387
3388 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3389 {
3390 int j;
3391 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3392 struct quick_file_names *file_data;
3393
3394 /* We only need to look at symtabs not already expanded. */
3395 if (per_cu->v.quick->symtab)
3396 continue;
3397
3398 file_data = dw2_get_file_names (per_cu);
3399 if (file_data == NULL)
3400 continue;
3401
3402 for (j = 0; j < file_data->num_file_names; ++j)
3403 {
3404 const char *this_name = file_data->file_names[j];
3405 const char *this_real_name;
3406
3407 if (compare_filenames_for_search (this_name, name))
3408 {
3409 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3410 callback, data))
3411 return 1;
3412 continue;
3413 }
3414
3415 /* Before we invoke realpath, which can get expensive when many
3416 files are involved, do a quick comparison of the basenames. */
3417 if (! basenames_may_differ
3418 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3419 continue;
3420
3421 this_real_name = dw2_get_real_path (objfile, file_data, j);
3422 if (compare_filenames_for_search (this_real_name, name))
3423 {
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3425 callback, data))
3426 return 1;
3427 continue;
3428 }
3429
3430 if (real_path != NULL)
3431 {
3432 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3433 gdb_assert (IS_ABSOLUTE_PATH (name));
3434 if (this_real_name != NULL
3435 && FILENAME_CMP (real_path, this_real_name) == 0)
3436 {
3437 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3438 callback, data))
3439 return 1;
3440 continue;
3441 }
3442 }
3443 }
3444 }
3445
3446 return 0;
3447 }
3448
3449 /* Struct used to manage iterating over all CUs looking for a symbol. */
3450
3451 struct dw2_symtab_iterator
3452 {
3453 /* The internalized form of .gdb_index. */
3454 struct mapped_index *index;
3455 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3456 int want_specific_block;
3457 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3458 Unused if !WANT_SPECIFIC_BLOCK. */
3459 int block_index;
3460 /* The kind of symbol we're looking for. */
3461 domain_enum domain;
3462 /* The list of CUs from the index entry of the symbol,
3463 or NULL if not found. */
3464 offset_type *vec;
3465 /* The next element in VEC to look at. */
3466 int next;
3467 /* The number of elements in VEC, or zero if there is no match. */
3468 int length;
3469 /* Have we seen a global version of the symbol?
3470 If so we can ignore all further global instances.
3471 This is to work around gold/15646, inefficient gold-generated
3472 indices. */
3473 int global_seen;
3474 };
3475
3476 /* Initialize the index symtab iterator ITER.
3477 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3478 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3479
3480 static void
3481 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3482 struct mapped_index *index,
3483 int want_specific_block,
3484 int block_index,
3485 domain_enum domain,
3486 const char *name)
3487 {
3488 iter->index = index;
3489 iter->want_specific_block = want_specific_block;
3490 iter->block_index = block_index;
3491 iter->domain = domain;
3492 iter->next = 0;
3493 iter->global_seen = 0;
3494
3495 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3496 iter->length = MAYBE_SWAP (*iter->vec);
3497 else
3498 {
3499 iter->vec = NULL;
3500 iter->length = 0;
3501 }
3502 }
3503
3504 /* Return the next matching CU or NULL if there are no more. */
3505
3506 static struct dwarf2_per_cu_data *
3507 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3508 {
3509 for ( ; iter->next < iter->length; ++iter->next)
3510 {
3511 offset_type cu_index_and_attrs =
3512 MAYBE_SWAP (iter->vec[iter->next + 1]);
3513 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3514 struct dwarf2_per_cu_data *per_cu;
3515 int want_static = iter->block_index != GLOBAL_BLOCK;
3516 /* This value is only valid for index versions >= 7. */
3517 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3518 gdb_index_symbol_kind symbol_kind =
3519 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3520 /* Only check the symbol attributes if they're present.
3521 Indices prior to version 7 don't record them,
3522 and indices >= 7 may elide them for certain symbols
3523 (gold does this). */
3524 int attrs_valid =
3525 (iter->index->version >= 7
3526 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3527
3528 /* Don't crash on bad data. */
3529 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3530 + dwarf2_per_objfile->n_type_units))
3531 {
3532 complaint (&symfile_complaints,
3533 _(".gdb_index entry has bad CU index"
3534 " [in module %s]"),
3535 objfile_name (dwarf2_per_objfile->objfile));
3536 continue;
3537 }
3538
3539 per_cu = dw2_get_cutu (cu_index);
3540
3541 /* Skip if already read in. */
3542 if (per_cu->v.quick->symtab)
3543 continue;
3544
3545 /* Check static vs global. */
3546 if (attrs_valid)
3547 {
3548 if (iter->want_specific_block
3549 && want_static != is_static)
3550 continue;
3551 /* Work around gold/15646. */
3552 if (!is_static && iter->global_seen)
3553 continue;
3554 if (!is_static)
3555 iter->global_seen = 1;
3556 }
3557
3558 /* Only check the symbol's kind if it has one. */
3559 if (attrs_valid)
3560 {
3561 switch (iter->domain)
3562 {
3563 case VAR_DOMAIN:
3564 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3566 /* Some types are also in VAR_DOMAIN. */
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3568 continue;
3569 break;
3570 case STRUCT_DOMAIN:
3571 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3572 continue;
3573 break;
3574 case LABEL_DOMAIN:
3575 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3576 continue;
3577 break;
3578 default:
3579 break;
3580 }
3581 }
3582
3583 ++iter->next;
3584 return per_cu;
3585 }
3586
3587 return NULL;
3588 }
3589
3590 static struct symtab *
3591 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3592 const char *name, domain_enum domain)
3593 {
3594 struct symtab *stab_best = NULL;
3595 struct mapped_index *index;
3596
3597 dw2_setup (objfile);
3598
3599 index = dwarf2_per_objfile->index_table;
3600
3601 /* index is NULL if OBJF_READNOW. */
3602 if (index)
3603 {
3604 struct dw2_symtab_iterator iter;
3605 struct dwarf2_per_cu_data *per_cu;
3606
3607 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3608
3609 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3610 {
3611 struct symbol *sym = NULL;
3612 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3613
3614 /* Some caution must be observed with overloaded functions
3615 and methods, since the index will not contain any overload
3616 information (but NAME might contain it). */
3617 if (stab->primary)
3618 {
3619 const struct blockvector *bv = BLOCKVECTOR (stab);
3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3621
3622 sym = lookup_block_symbol (block, name, domain);
3623 }
3624
3625 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3626 {
3627 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3628 return stab;
3629
3630 stab_best = stab;
3631 }
3632
3633 /* Keep looking through other CUs. */
3634 }
3635 }
3636
3637 return stab_best;
3638 }
3639
3640 static void
3641 dw2_print_stats (struct objfile *objfile)
3642 {
3643 int i, total, count;
3644
3645 dw2_setup (objfile);
3646 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3647 count = 0;
3648 for (i = 0; i < total; ++i)
3649 {
3650 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3651
3652 if (!per_cu->v.quick->symtab)
3653 ++count;
3654 }
3655 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3656 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3657 }
3658
3659 /* This dumps minimal information about the index.
3660 It is called via "mt print objfiles".
3661 One use is to verify .gdb_index has been loaded by the
3662 gdb.dwarf2/gdb-index.exp testcase. */
3663
3664 static void
3665 dw2_dump (struct objfile *objfile)
3666 {
3667 dw2_setup (objfile);
3668 gdb_assert (dwarf2_per_objfile->using_index);
3669 printf_filtered (".gdb_index:");
3670 if (dwarf2_per_objfile->index_table != NULL)
3671 {
3672 printf_filtered (" version %d\n",
3673 dwarf2_per_objfile->index_table->version);
3674 }
3675 else
3676 printf_filtered (" faked for \"readnow\"\n");
3677 printf_filtered ("\n");
3678 }
3679
3680 static void
3681 dw2_relocate (struct objfile *objfile,
3682 const struct section_offsets *new_offsets,
3683 const struct section_offsets *delta)
3684 {
3685 /* There's nothing to relocate here. */
3686 }
3687
3688 static void
3689 dw2_expand_symtabs_for_function (struct objfile *objfile,
3690 const char *func_name)
3691 {
3692 struct mapped_index *index;
3693
3694 dw2_setup (objfile);
3695
3696 index = dwarf2_per_objfile->index_table;
3697
3698 /* index is NULL if OBJF_READNOW. */
3699 if (index)
3700 {
3701 struct dw2_symtab_iterator iter;
3702 struct dwarf2_per_cu_data *per_cu;
3703
3704 /* Note: It doesn't matter what we pass for block_index here. */
3705 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3706 func_name);
3707
3708 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3709 dw2_instantiate_symtab (per_cu);
3710 }
3711 }
3712
3713 static void
3714 dw2_expand_all_symtabs (struct objfile *objfile)
3715 {
3716 int i;
3717
3718 dw2_setup (objfile);
3719
3720 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3721 + dwarf2_per_objfile->n_type_units); ++i)
3722 {
3723 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3724
3725 dw2_instantiate_symtab (per_cu);
3726 }
3727 }
3728
3729 static void
3730 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3731 const char *fullname)
3732 {
3733 int i;
3734
3735 dw2_setup (objfile);
3736
3737 /* We don't need to consider type units here.
3738 This is only called for examining code, e.g. expand_line_sal.
3739 There can be an order of magnitude (or more) more type units
3740 than comp units, and we avoid them if we can. */
3741
3742 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3743 {
3744 int j;
3745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3746 struct quick_file_names *file_data;
3747
3748 /* We only need to look at symtabs not already expanded. */
3749 if (per_cu->v.quick->symtab)
3750 continue;
3751
3752 file_data = dw2_get_file_names (per_cu);
3753 if (file_data == NULL)
3754 continue;
3755
3756 for (j = 0; j < file_data->num_file_names; ++j)
3757 {
3758 const char *this_fullname = file_data->file_names[j];
3759
3760 if (filename_cmp (this_fullname, fullname) == 0)
3761 {
3762 dw2_instantiate_symtab (per_cu);
3763 break;
3764 }
3765 }
3766 }
3767 }
3768
3769 static void
3770 dw2_map_matching_symbols (struct objfile *objfile,
3771 const char * name, domain_enum namespace,
3772 int global,
3773 int (*callback) (struct block *,
3774 struct symbol *, void *),
3775 void *data, symbol_compare_ftype *match,
3776 symbol_compare_ftype *ordered_compare)
3777 {
3778 /* Currently unimplemented; used for Ada. The function can be called if the
3779 current language is Ada for a non-Ada objfile using GNU index. As Ada
3780 does not look for non-Ada symbols this function should just return. */
3781 }
3782
3783 static void
3784 dw2_expand_symtabs_matching
3785 (struct objfile *objfile,
3786 expand_symtabs_file_matcher_ftype *file_matcher,
3787 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3788 enum search_domain kind,
3789 void *data)
3790 {
3791 int i;
3792 offset_type iter;
3793 struct mapped_index *index;
3794
3795 dw2_setup (objfile);
3796
3797 /* index_table is NULL if OBJF_READNOW. */
3798 if (!dwarf2_per_objfile->index_table)
3799 return;
3800 index = dwarf2_per_objfile->index_table;
3801
3802 if (file_matcher != NULL)
3803 {
3804 struct cleanup *cleanup;
3805 htab_t visited_found, visited_not_found;
3806
3807 visited_found = htab_create_alloc (10,
3808 htab_hash_pointer, htab_eq_pointer,
3809 NULL, xcalloc, xfree);
3810 cleanup = make_cleanup_htab_delete (visited_found);
3811 visited_not_found = htab_create_alloc (10,
3812 htab_hash_pointer, htab_eq_pointer,
3813 NULL, xcalloc, xfree);
3814 make_cleanup_htab_delete (visited_not_found);
3815
3816 /* The rule is CUs specify all the files, including those used by
3817 any TU, so there's no need to scan TUs here. */
3818
3819 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3820 {
3821 int j;
3822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3823 struct quick_file_names *file_data;
3824 void **slot;
3825
3826 per_cu->v.quick->mark = 0;
3827
3828 /* We only need to look at symtabs not already expanded. */
3829 if (per_cu->v.quick->symtab)
3830 continue;
3831
3832 file_data = dw2_get_file_names (per_cu);
3833 if (file_data == NULL)
3834 continue;
3835
3836 if (htab_find (visited_not_found, file_data) != NULL)
3837 continue;
3838 else if (htab_find (visited_found, file_data) != NULL)
3839 {
3840 per_cu->v.quick->mark = 1;
3841 continue;
3842 }
3843
3844 for (j = 0; j < file_data->num_file_names; ++j)
3845 {
3846 const char *this_real_name;
3847
3848 if (file_matcher (file_data->file_names[j], data, 0))
3849 {
3850 per_cu->v.quick->mark = 1;
3851 break;
3852 }
3853
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (!basenames_may_differ
3857 && !file_matcher (lbasename (file_data->file_names[j]),
3858 data, 1))
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (file_matcher (this_real_name, data, 0))
3863 {
3864 per_cu->v.quick->mark = 1;
3865 break;
3866 }
3867 }
3868
3869 slot = htab_find_slot (per_cu->v.quick->mark
3870 ? visited_found
3871 : visited_not_found,
3872 file_data, INSERT);
3873 *slot = file_data;
3874 }
3875
3876 do_cleanups (cleanup);
3877 }
3878
3879 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3880 {
3881 offset_type idx = 2 * iter;
3882 const char *name;
3883 offset_type *vec, vec_len, vec_idx;
3884 int global_seen = 0;
3885
3886 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3887 continue;
3888
3889 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3890
3891 if (! (*symbol_matcher) (name, data))
3892 continue;
3893
3894 /* The name was matched, now expand corresponding CUs that were
3895 marked. */
3896 vec = (offset_type *) (index->constant_pool
3897 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3898 vec_len = MAYBE_SWAP (vec[0]);
3899 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3900 {
3901 struct dwarf2_per_cu_data *per_cu;
3902 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3903 /* This value is only valid for index versions >= 7. */
3904 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3905 gdb_index_symbol_kind symbol_kind =
3906 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3907 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3908 /* Only check the symbol attributes if they're present.
3909 Indices prior to version 7 don't record them,
3910 and indices >= 7 may elide them for certain symbols
3911 (gold does this). */
3912 int attrs_valid =
3913 (index->version >= 7
3914 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3915
3916 /* Work around gold/15646. */
3917 if (attrs_valid)
3918 {
3919 if (!is_static && global_seen)
3920 continue;
3921 if (!is_static)
3922 global_seen = 1;
3923 }
3924
3925 /* Only check the symbol's kind if it has one. */
3926 if (attrs_valid)
3927 {
3928 switch (kind)
3929 {
3930 case VARIABLES_DOMAIN:
3931 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3932 continue;
3933 break;
3934 case FUNCTIONS_DOMAIN:
3935 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3936 continue;
3937 break;
3938 case TYPES_DOMAIN:
3939 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3940 continue;
3941 break;
3942 default:
3943 break;
3944 }
3945 }
3946
3947 /* Don't crash on bad data. */
3948 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3949 + dwarf2_per_objfile->n_type_units))
3950 {
3951 complaint (&symfile_complaints,
3952 _(".gdb_index entry has bad CU index"
3953 " [in module %s]"), objfile_name (objfile));
3954 continue;
3955 }
3956
3957 per_cu = dw2_get_cutu (cu_index);
3958 if (file_matcher == NULL || per_cu->v.quick->mark)
3959 dw2_instantiate_symtab (per_cu);
3960 }
3961 }
3962 }
3963
3964 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3965 symtab. */
3966
3967 static struct symtab *
3968 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3969 {
3970 int i;
3971
3972 if (BLOCKVECTOR (symtab) != NULL
3973 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3974 return symtab;
3975
3976 if (symtab->includes == NULL)
3977 return NULL;
3978
3979 for (i = 0; symtab->includes[i]; ++i)
3980 {
3981 struct symtab *s = symtab->includes[i];
3982
3983 s = recursively_find_pc_sect_symtab (s, pc);
3984 if (s != NULL)
3985 return s;
3986 }
3987
3988 return NULL;
3989 }
3990
3991 static struct symtab *
3992 dw2_find_pc_sect_symtab (struct objfile *objfile,
3993 struct bound_minimal_symbol msymbol,
3994 CORE_ADDR pc,
3995 struct obj_section *section,
3996 int warn_if_readin)
3997 {
3998 struct dwarf2_per_cu_data *data;
3999 struct symtab *result;
4000
4001 dw2_setup (objfile);
4002
4003 if (!objfile->psymtabs_addrmap)
4004 return NULL;
4005
4006 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4007 if (!data)
4008 return NULL;
4009
4010 if (warn_if_readin && data->v.quick->symtab)
4011 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4012 paddress (get_objfile_arch (objfile), pc));
4013
4014 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4015 gdb_assert (result != NULL);
4016 return result;
4017 }
4018
4019 static void
4020 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4021 void *data, int need_fullname)
4022 {
4023 int i;
4024 struct cleanup *cleanup;
4025 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4026 NULL, xcalloc, xfree);
4027
4028 cleanup = make_cleanup_htab_delete (visited);
4029 dw2_setup (objfile);
4030
4031 /* The rule is CUs specify all the files, including those used by
4032 any TU, so there's no need to scan TUs here.
4033 We can ignore file names coming from already-expanded CUs. */
4034
4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4036 {
4037 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4038
4039 if (per_cu->v.quick->symtab)
4040 {
4041 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4042 INSERT);
4043
4044 *slot = per_cu->v.quick->file_names;
4045 }
4046 }
4047
4048 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4049 {
4050 int j;
4051 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4052 struct quick_file_names *file_data;
4053 void **slot;
4054
4055 /* We only need to look at symtabs not already expanded. */
4056 if (per_cu->v.quick->symtab)
4057 continue;
4058
4059 file_data = dw2_get_file_names (per_cu);
4060 if (file_data == NULL)
4061 continue;
4062
4063 slot = htab_find_slot (visited, file_data, INSERT);
4064 if (*slot)
4065 {
4066 /* Already visited. */
4067 continue;
4068 }
4069 *slot = file_data;
4070
4071 for (j = 0; j < file_data->num_file_names; ++j)
4072 {
4073 const char *this_real_name;
4074
4075 if (need_fullname)
4076 this_real_name = dw2_get_real_path (objfile, file_data, j);
4077 else
4078 this_real_name = NULL;
4079 (*fun) (file_data->file_names[j], this_real_name, data);
4080 }
4081 }
4082
4083 do_cleanups (cleanup);
4084 }
4085
4086 static int
4087 dw2_has_symbols (struct objfile *objfile)
4088 {
4089 return 1;
4090 }
4091
4092 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4093 {
4094 dw2_has_symbols,
4095 dw2_find_last_source_symtab,
4096 dw2_forget_cached_source_info,
4097 dw2_map_symtabs_matching_filename,
4098 dw2_lookup_symbol,
4099 dw2_print_stats,
4100 dw2_dump,
4101 dw2_relocate,
4102 dw2_expand_symtabs_for_function,
4103 dw2_expand_all_symtabs,
4104 dw2_expand_symtabs_with_fullname,
4105 dw2_map_matching_symbols,
4106 dw2_expand_symtabs_matching,
4107 dw2_find_pc_sect_symtab,
4108 dw2_map_symbol_filenames
4109 };
4110
4111 /* Initialize for reading DWARF for this objfile. Return 0 if this
4112 file will use psymtabs, or 1 if using the GNU index. */
4113
4114 int
4115 dwarf2_initialize_objfile (struct objfile *objfile)
4116 {
4117 /* If we're about to read full symbols, don't bother with the
4118 indices. In this case we also don't care if some other debug
4119 format is making psymtabs, because they are all about to be
4120 expanded anyway. */
4121 if ((objfile->flags & OBJF_READNOW))
4122 {
4123 int i;
4124
4125 dwarf2_per_objfile->using_index = 1;
4126 create_all_comp_units (objfile);
4127 create_all_type_units (objfile);
4128 dwarf2_per_objfile->quick_file_names_table =
4129 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4130
4131 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4132 + dwarf2_per_objfile->n_type_units); ++i)
4133 {
4134 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4135
4136 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4137 struct dwarf2_per_cu_quick_data);
4138 }
4139
4140 /* Return 1 so that gdb sees the "quick" functions. However,
4141 these functions will be no-ops because we will have expanded
4142 all symtabs. */
4143 return 1;
4144 }
4145
4146 if (dwarf2_read_index (objfile))
4147 return 1;
4148
4149 return 0;
4150 }
4151
4152 \f
4153
4154 /* Build a partial symbol table. */
4155
4156 void
4157 dwarf2_build_psymtabs (struct objfile *objfile)
4158 {
4159 volatile struct gdb_exception except;
4160
4161 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4162 {
4163 init_psymbol_list (objfile, 1024);
4164 }
4165
4166 TRY_CATCH (except, RETURN_MASK_ERROR)
4167 {
4168 /* This isn't really ideal: all the data we allocate on the
4169 objfile's obstack is still uselessly kept around. However,
4170 freeing it seems unsafe. */
4171 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4172
4173 dwarf2_build_psymtabs_hard (objfile);
4174 discard_cleanups (cleanups);
4175 }
4176 if (except.reason < 0)
4177 exception_print (gdb_stderr, except);
4178 }
4179
4180 /* Return the total length of the CU described by HEADER. */
4181
4182 static unsigned int
4183 get_cu_length (const struct comp_unit_head *header)
4184 {
4185 return header->initial_length_size + header->length;
4186 }
4187
4188 /* Return TRUE if OFFSET is within CU_HEADER. */
4189
4190 static inline int
4191 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4192 {
4193 sect_offset bottom = { cu_header->offset.sect_off };
4194 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4195
4196 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4197 }
4198
4199 /* Find the base address of the compilation unit for range lists and
4200 location lists. It will normally be specified by DW_AT_low_pc.
4201 In DWARF-3 draft 4, the base address could be overridden by
4202 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4203 compilation units with discontinuous ranges. */
4204
4205 static void
4206 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4207 {
4208 struct attribute *attr;
4209
4210 cu->base_known = 0;
4211 cu->base_address = 0;
4212
4213 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4214 if (attr)
4215 {
4216 cu->base_address = attr_value_as_address (attr);
4217 cu->base_known = 1;
4218 }
4219 else
4220 {
4221 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4222 if (attr)
4223 {
4224 cu->base_address = attr_value_as_address (attr);
4225 cu->base_known = 1;
4226 }
4227 }
4228 }
4229
4230 /* Read in the comp unit header information from the debug_info at info_ptr.
4231 NOTE: This leaves members offset, first_die_offset to be filled in
4232 by the caller. */
4233
4234 static const gdb_byte *
4235 read_comp_unit_head (struct comp_unit_head *cu_header,
4236 const gdb_byte *info_ptr, bfd *abfd)
4237 {
4238 int signed_addr;
4239 unsigned int bytes_read;
4240
4241 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4242 cu_header->initial_length_size = bytes_read;
4243 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4244 info_ptr += bytes_read;
4245 cu_header->version = read_2_bytes (abfd, info_ptr);
4246 info_ptr += 2;
4247 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4248 &bytes_read);
4249 info_ptr += bytes_read;
4250 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4251 info_ptr += 1;
4252 signed_addr = bfd_get_sign_extend_vma (abfd);
4253 if (signed_addr < 0)
4254 internal_error (__FILE__, __LINE__,
4255 _("read_comp_unit_head: dwarf from non elf file"));
4256 cu_header->signed_addr_p = signed_addr;
4257
4258 return info_ptr;
4259 }
4260
4261 /* Helper function that returns the proper abbrev section for
4262 THIS_CU. */
4263
4264 static struct dwarf2_section_info *
4265 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4266 {
4267 struct dwarf2_section_info *abbrev;
4268
4269 if (this_cu->is_dwz)
4270 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4271 else
4272 abbrev = &dwarf2_per_objfile->abbrev;
4273
4274 return abbrev;
4275 }
4276
4277 /* Subroutine of read_and_check_comp_unit_head and
4278 read_and_check_type_unit_head to simplify them.
4279 Perform various error checking on the header. */
4280
4281 static void
4282 error_check_comp_unit_head (struct comp_unit_head *header,
4283 struct dwarf2_section_info *section,
4284 struct dwarf2_section_info *abbrev_section)
4285 {
4286 bfd *abfd = get_section_bfd_owner (section);
4287 const char *filename = get_section_file_name (section);
4288
4289 if (header->version != 2 && header->version != 3 && header->version != 4)
4290 error (_("Dwarf Error: wrong version in compilation unit header "
4291 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4292 filename);
4293
4294 if (header->abbrev_offset.sect_off
4295 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4296 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 6) [in module %s]"),
4298 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4299 filename);
4300
4301 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4302 avoid potential 32-bit overflow. */
4303 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4304 > section->size)
4305 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4306 "(offset 0x%lx + 0) [in module %s]"),
4307 (long) header->length, (long) header->offset.sect_off,
4308 filename);
4309 }
4310
4311 /* Read in a CU/TU header and perform some basic error checking.
4312 The contents of the header are stored in HEADER.
4313 The result is a pointer to the start of the first DIE. */
4314
4315 static const gdb_byte *
4316 read_and_check_comp_unit_head (struct comp_unit_head *header,
4317 struct dwarf2_section_info *section,
4318 struct dwarf2_section_info *abbrev_section,
4319 const gdb_byte *info_ptr,
4320 int is_debug_types_section)
4321 {
4322 const gdb_byte *beg_of_comp_unit = info_ptr;
4323 bfd *abfd = get_section_bfd_owner (section);
4324
4325 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4326
4327 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4328
4329 /* If we're reading a type unit, skip over the signature and
4330 type_offset fields. */
4331 if (is_debug_types_section)
4332 info_ptr += 8 /*signature*/ + header->offset_size;
4333
4334 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4335
4336 error_check_comp_unit_head (header, section, abbrev_section);
4337
4338 return info_ptr;
4339 }
4340
4341 /* Read in the types comp unit header information from .debug_types entry at
4342 types_ptr. The result is a pointer to one past the end of the header. */
4343
4344 static const gdb_byte *
4345 read_and_check_type_unit_head (struct comp_unit_head *header,
4346 struct dwarf2_section_info *section,
4347 struct dwarf2_section_info *abbrev_section,
4348 const gdb_byte *info_ptr,
4349 ULONGEST *signature,
4350 cu_offset *type_offset_in_tu)
4351 {
4352 const gdb_byte *beg_of_comp_unit = info_ptr;
4353 bfd *abfd = get_section_bfd_owner (section);
4354
4355 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4356
4357 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4358
4359 /* If we're reading a type unit, skip over the signature and
4360 type_offset fields. */
4361 if (signature != NULL)
4362 *signature = read_8_bytes (abfd, info_ptr);
4363 info_ptr += 8;
4364 if (type_offset_in_tu != NULL)
4365 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4366 header->offset_size);
4367 info_ptr += header->offset_size;
4368
4369 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4370
4371 error_check_comp_unit_head (header, section, abbrev_section);
4372
4373 return info_ptr;
4374 }
4375
4376 /* Fetch the abbreviation table offset from a comp or type unit header. */
4377
4378 static sect_offset
4379 read_abbrev_offset (struct dwarf2_section_info *section,
4380 sect_offset offset)
4381 {
4382 bfd *abfd = get_section_bfd_owner (section);
4383 const gdb_byte *info_ptr;
4384 unsigned int length, initial_length_size, offset_size;
4385 sect_offset abbrev_offset;
4386
4387 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4388 info_ptr = section->buffer + offset.sect_off;
4389 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4390 offset_size = initial_length_size == 4 ? 4 : 8;
4391 info_ptr += initial_length_size + 2 /*version*/;
4392 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4393 return abbrev_offset;
4394 }
4395
4396 /* Allocate a new partial symtab for file named NAME and mark this new
4397 partial symtab as being an include of PST. */
4398
4399 static void
4400 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4401 struct objfile *objfile)
4402 {
4403 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4404
4405 if (!IS_ABSOLUTE_PATH (subpst->filename))
4406 {
4407 /* It shares objfile->objfile_obstack. */
4408 subpst->dirname = pst->dirname;
4409 }
4410
4411 subpst->section_offsets = pst->section_offsets;
4412 subpst->textlow = 0;
4413 subpst->texthigh = 0;
4414
4415 subpst->dependencies = (struct partial_symtab **)
4416 obstack_alloc (&objfile->objfile_obstack,
4417 sizeof (struct partial_symtab *));
4418 subpst->dependencies[0] = pst;
4419 subpst->number_of_dependencies = 1;
4420
4421 subpst->globals_offset = 0;
4422 subpst->n_global_syms = 0;
4423 subpst->statics_offset = 0;
4424 subpst->n_static_syms = 0;
4425 subpst->symtab = NULL;
4426 subpst->read_symtab = pst->read_symtab;
4427 subpst->readin = 0;
4428
4429 /* No private part is necessary for include psymtabs. This property
4430 can be used to differentiate between such include psymtabs and
4431 the regular ones. */
4432 subpst->read_symtab_private = NULL;
4433 }
4434
4435 /* Read the Line Number Program data and extract the list of files
4436 included by the source file represented by PST. Build an include
4437 partial symtab for each of these included files. */
4438
4439 static void
4440 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4441 struct die_info *die,
4442 struct partial_symtab *pst)
4443 {
4444 struct line_header *lh = NULL;
4445 struct attribute *attr;
4446
4447 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4448 if (attr)
4449 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4450 if (lh == NULL)
4451 return; /* No linetable, so no includes. */
4452
4453 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4454 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4455
4456 free_line_header (lh);
4457 }
4458
4459 static hashval_t
4460 hash_signatured_type (const void *item)
4461 {
4462 const struct signatured_type *sig_type = item;
4463
4464 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4465 return sig_type->signature;
4466 }
4467
4468 static int
4469 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4470 {
4471 const struct signatured_type *lhs = item_lhs;
4472 const struct signatured_type *rhs = item_rhs;
4473
4474 return lhs->signature == rhs->signature;
4475 }
4476
4477 /* Allocate a hash table for signatured types. */
4478
4479 static htab_t
4480 allocate_signatured_type_table (struct objfile *objfile)
4481 {
4482 return htab_create_alloc_ex (41,
4483 hash_signatured_type,
4484 eq_signatured_type,
4485 NULL,
4486 &objfile->objfile_obstack,
4487 hashtab_obstack_allocate,
4488 dummy_obstack_deallocate);
4489 }
4490
4491 /* A helper function to add a signatured type CU to a table. */
4492
4493 static int
4494 add_signatured_type_cu_to_table (void **slot, void *datum)
4495 {
4496 struct signatured_type *sigt = *slot;
4497 struct signatured_type ***datap = datum;
4498
4499 **datap = sigt;
4500 ++*datap;
4501
4502 return 1;
4503 }
4504
4505 /* Create the hash table of all entries in the .debug_types
4506 (or .debug_types.dwo) section(s).
4507 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4508 otherwise it is NULL.
4509
4510 The result is a pointer to the hash table or NULL if there are no types.
4511
4512 Note: This function processes DWO files only, not DWP files. */
4513
4514 static htab_t
4515 create_debug_types_hash_table (struct dwo_file *dwo_file,
4516 VEC (dwarf2_section_info_def) *types)
4517 {
4518 struct objfile *objfile = dwarf2_per_objfile->objfile;
4519 htab_t types_htab = NULL;
4520 int ix;
4521 struct dwarf2_section_info *section;
4522 struct dwarf2_section_info *abbrev_section;
4523
4524 if (VEC_empty (dwarf2_section_info_def, types))
4525 return NULL;
4526
4527 abbrev_section = (dwo_file != NULL
4528 ? &dwo_file->sections.abbrev
4529 : &dwarf2_per_objfile->abbrev);
4530
4531 if (dwarf2_read_debug)
4532 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4533 dwo_file ? ".dwo" : "",
4534 get_section_file_name (abbrev_section));
4535
4536 for (ix = 0;
4537 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4538 ++ix)
4539 {
4540 bfd *abfd;
4541 const gdb_byte *info_ptr, *end_ptr;
4542
4543 dwarf2_read_section (objfile, section);
4544 info_ptr = section->buffer;
4545
4546 if (info_ptr == NULL)
4547 continue;
4548
4549 /* We can't set abfd until now because the section may be empty or
4550 not present, in which case the bfd is unknown. */
4551 abfd = get_section_bfd_owner (section);
4552
4553 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4554 because we don't need to read any dies: the signature is in the
4555 header. */
4556
4557 end_ptr = info_ptr + section->size;
4558 while (info_ptr < end_ptr)
4559 {
4560 sect_offset offset;
4561 cu_offset type_offset_in_tu;
4562 ULONGEST signature;
4563 struct signatured_type *sig_type;
4564 struct dwo_unit *dwo_tu;
4565 void **slot;
4566 const gdb_byte *ptr = info_ptr;
4567 struct comp_unit_head header;
4568 unsigned int length;
4569
4570 offset.sect_off = ptr - section->buffer;
4571
4572 /* We need to read the type's signature in order to build the hash
4573 table, but we don't need anything else just yet. */
4574
4575 ptr = read_and_check_type_unit_head (&header, section,
4576 abbrev_section, ptr,
4577 &signature, &type_offset_in_tu);
4578
4579 length = get_cu_length (&header);
4580
4581 /* Skip dummy type units. */
4582 if (ptr >= info_ptr + length
4583 || peek_abbrev_code (abfd, ptr) == 0)
4584 {
4585 info_ptr += length;
4586 continue;
4587 }
4588
4589 if (types_htab == NULL)
4590 {
4591 if (dwo_file)
4592 types_htab = allocate_dwo_unit_table (objfile);
4593 else
4594 types_htab = allocate_signatured_type_table (objfile);
4595 }
4596
4597 if (dwo_file)
4598 {
4599 sig_type = NULL;
4600 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4601 struct dwo_unit);
4602 dwo_tu->dwo_file = dwo_file;
4603 dwo_tu->signature = signature;
4604 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4605 dwo_tu->section = section;
4606 dwo_tu->offset = offset;
4607 dwo_tu->length = length;
4608 }
4609 else
4610 {
4611 /* N.B.: type_offset is not usable if this type uses a DWO file.
4612 The real type_offset is in the DWO file. */
4613 dwo_tu = NULL;
4614 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4615 struct signatured_type);
4616 sig_type->signature = signature;
4617 sig_type->type_offset_in_tu = type_offset_in_tu;
4618 sig_type->per_cu.objfile = objfile;
4619 sig_type->per_cu.is_debug_types = 1;
4620 sig_type->per_cu.section = section;
4621 sig_type->per_cu.offset = offset;
4622 sig_type->per_cu.length = length;
4623 }
4624
4625 slot = htab_find_slot (types_htab,
4626 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4627 INSERT);
4628 gdb_assert (slot != NULL);
4629 if (*slot != NULL)
4630 {
4631 sect_offset dup_offset;
4632
4633 if (dwo_file)
4634 {
4635 const struct dwo_unit *dup_tu = *slot;
4636
4637 dup_offset = dup_tu->offset;
4638 }
4639 else
4640 {
4641 const struct signatured_type *dup_tu = *slot;
4642
4643 dup_offset = dup_tu->per_cu.offset;
4644 }
4645
4646 complaint (&symfile_complaints,
4647 _("debug type entry at offset 0x%x is duplicate to"
4648 " the entry at offset 0x%x, signature %s"),
4649 offset.sect_off, dup_offset.sect_off,
4650 hex_string (signature));
4651 }
4652 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4653
4654 if (dwarf2_read_debug > 1)
4655 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4656 offset.sect_off,
4657 hex_string (signature));
4658
4659 info_ptr += length;
4660 }
4661 }
4662
4663 return types_htab;
4664 }
4665
4666 /* Create the hash table of all entries in the .debug_types section,
4667 and initialize all_type_units.
4668 The result is zero if there is an error (e.g. missing .debug_types section),
4669 otherwise non-zero. */
4670
4671 static int
4672 create_all_type_units (struct objfile *objfile)
4673 {
4674 htab_t types_htab;
4675 struct signatured_type **iter;
4676
4677 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4678 if (types_htab == NULL)
4679 {
4680 dwarf2_per_objfile->signatured_types = NULL;
4681 return 0;
4682 }
4683
4684 dwarf2_per_objfile->signatured_types = types_htab;
4685
4686 dwarf2_per_objfile->n_type_units
4687 = dwarf2_per_objfile->n_allocated_type_units
4688 = htab_elements (types_htab);
4689 dwarf2_per_objfile->all_type_units
4690 = xmalloc (dwarf2_per_objfile->n_type_units
4691 * sizeof (struct signatured_type *));
4692 iter = &dwarf2_per_objfile->all_type_units[0];
4693 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4694 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4695 == dwarf2_per_objfile->n_type_units);
4696
4697 return 1;
4698 }
4699
4700 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4701 If SLOT is non-NULL, it is the entry to use in the hash table.
4702 Otherwise we find one. */
4703
4704 static struct signatured_type *
4705 add_type_unit (ULONGEST sig, void **slot)
4706 {
4707 struct objfile *objfile = dwarf2_per_objfile->objfile;
4708 int n_type_units = dwarf2_per_objfile->n_type_units;
4709 struct signatured_type *sig_type;
4710
4711 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4712 ++n_type_units;
4713 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4714 {
4715 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4716 dwarf2_per_objfile->n_allocated_type_units = 1;
4717 dwarf2_per_objfile->n_allocated_type_units *= 2;
4718 dwarf2_per_objfile->all_type_units
4719 = xrealloc (dwarf2_per_objfile->all_type_units,
4720 dwarf2_per_objfile->n_allocated_type_units
4721 * sizeof (struct signatured_type *));
4722 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4723 }
4724 dwarf2_per_objfile->n_type_units = n_type_units;
4725
4726 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4727 struct signatured_type);
4728 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4729 sig_type->signature = sig;
4730 sig_type->per_cu.is_debug_types = 1;
4731 if (dwarf2_per_objfile->using_index)
4732 {
4733 sig_type->per_cu.v.quick =
4734 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4735 struct dwarf2_per_cu_quick_data);
4736 }
4737
4738 if (slot == NULL)
4739 {
4740 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4741 sig_type, INSERT);
4742 }
4743 gdb_assert (*slot == NULL);
4744 *slot = sig_type;
4745 /* The rest of sig_type must be filled in by the caller. */
4746 return sig_type;
4747 }
4748
4749 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4750 Fill in SIG_ENTRY with DWO_ENTRY. */
4751
4752 static void
4753 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4754 struct signatured_type *sig_entry,
4755 struct dwo_unit *dwo_entry)
4756 {
4757 /* Make sure we're not clobbering something we don't expect to. */
4758 gdb_assert (! sig_entry->per_cu.queued);
4759 gdb_assert (sig_entry->per_cu.cu == NULL);
4760 if (dwarf2_per_objfile->using_index)
4761 {
4762 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4763 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4764 }
4765 else
4766 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4767 gdb_assert (sig_entry->signature == dwo_entry->signature);
4768 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4769 gdb_assert (sig_entry->type_unit_group == NULL);
4770 gdb_assert (sig_entry->dwo_unit == NULL);
4771
4772 sig_entry->per_cu.section = dwo_entry->section;
4773 sig_entry->per_cu.offset = dwo_entry->offset;
4774 sig_entry->per_cu.length = dwo_entry->length;
4775 sig_entry->per_cu.reading_dwo_directly = 1;
4776 sig_entry->per_cu.objfile = objfile;
4777 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4778 sig_entry->dwo_unit = dwo_entry;
4779 }
4780
4781 /* Subroutine of lookup_signatured_type.
4782 If we haven't read the TU yet, create the signatured_type data structure
4783 for a TU to be read in directly from a DWO file, bypassing the stub.
4784 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4785 using .gdb_index, then when reading a CU we want to stay in the DWO file
4786 containing that CU. Otherwise we could end up reading several other DWO
4787 files (due to comdat folding) to process the transitive closure of all the
4788 mentioned TUs, and that can be slow. The current DWO file will have every
4789 type signature that it needs.
4790 We only do this for .gdb_index because in the psymtab case we already have
4791 to read all the DWOs to build the type unit groups. */
4792
4793 static struct signatured_type *
4794 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4795 {
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwo_file *dwo_file;
4798 struct dwo_unit find_dwo_entry, *dwo_entry;
4799 struct signatured_type find_sig_entry, *sig_entry;
4800 void **slot;
4801
4802 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4803
4804 /* If TU skeletons have been removed then we may not have read in any
4805 TUs yet. */
4806 if (dwarf2_per_objfile->signatured_types == NULL)
4807 {
4808 dwarf2_per_objfile->signatured_types
4809 = allocate_signatured_type_table (objfile);
4810 }
4811
4812 /* We only ever need to read in one copy of a signatured type.
4813 Use the global signatured_types array to do our own comdat-folding
4814 of types. If this is the first time we're reading this TU, and
4815 the TU has an entry in .gdb_index, replace the recorded data from
4816 .gdb_index with this TU. */
4817
4818 find_sig_entry.signature = sig;
4819 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4820 &find_sig_entry, INSERT);
4821 sig_entry = *slot;
4822
4823 /* We can get here with the TU already read, *or* in the process of being
4824 read. Don't reassign the global entry to point to this DWO if that's
4825 the case. Also note that if the TU is already being read, it may not
4826 have come from a DWO, the program may be a mix of Fission-compiled
4827 code and non-Fission-compiled code. */
4828
4829 /* Have we already tried to read this TU?
4830 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4831 needn't exist in the global table yet). */
4832 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4833 return sig_entry;
4834
4835 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4836 dwo_unit of the TU itself. */
4837 dwo_file = cu->dwo_unit->dwo_file;
4838
4839 /* Ok, this is the first time we're reading this TU. */
4840 if (dwo_file->tus == NULL)
4841 return NULL;
4842 find_dwo_entry.signature = sig;
4843 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4844 if (dwo_entry == NULL)
4845 return NULL;
4846
4847 /* If the global table doesn't have an entry for this TU, add one. */
4848 if (sig_entry == NULL)
4849 sig_entry = add_type_unit (sig, slot);
4850
4851 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4852 sig_entry->per_cu.tu_read = 1;
4853 return sig_entry;
4854 }
4855
4856 /* Subroutine of lookup_signatured_type.
4857 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4858 then try the DWP file. If the TU stub (skeleton) has been removed then
4859 it won't be in .gdb_index. */
4860
4861 static struct signatured_type *
4862 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4863 {
4864 struct objfile *objfile = dwarf2_per_objfile->objfile;
4865 struct dwp_file *dwp_file = get_dwp_file ();
4866 struct dwo_unit *dwo_entry;
4867 struct signatured_type find_sig_entry, *sig_entry;
4868 void **slot;
4869
4870 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4871 gdb_assert (dwp_file != NULL);
4872
4873 /* If TU skeletons have been removed then we may not have read in any
4874 TUs yet. */
4875 if (dwarf2_per_objfile->signatured_types == NULL)
4876 {
4877 dwarf2_per_objfile->signatured_types
4878 = allocate_signatured_type_table (objfile);
4879 }
4880
4881 find_sig_entry.signature = sig;
4882 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4883 &find_sig_entry, INSERT);
4884 sig_entry = *slot;
4885
4886 /* Have we already tried to read this TU?
4887 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4888 needn't exist in the global table yet). */
4889 if (sig_entry != NULL)
4890 return sig_entry;
4891
4892 if (dwp_file->tus == NULL)
4893 return NULL;
4894 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4895 sig, 1 /* is_debug_types */);
4896 if (dwo_entry == NULL)
4897 return NULL;
4898
4899 sig_entry = add_type_unit (sig, slot);
4900 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4901
4902 return sig_entry;
4903 }
4904
4905 /* Lookup a signature based type for DW_FORM_ref_sig8.
4906 Returns NULL if signature SIG is not present in the table.
4907 It is up to the caller to complain about this. */
4908
4909 static struct signatured_type *
4910 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911 {
4912 if (cu->dwo_unit
4913 && dwarf2_per_objfile->using_index)
4914 {
4915 /* We're in a DWO/DWP file, and we're using .gdb_index.
4916 These cases require special processing. */
4917 if (get_dwp_file () == NULL)
4918 return lookup_dwo_signatured_type (cu, sig);
4919 else
4920 return lookup_dwp_signatured_type (cu, sig);
4921 }
4922 else
4923 {
4924 struct signatured_type find_entry, *entry;
4925
4926 if (dwarf2_per_objfile->signatured_types == NULL)
4927 return NULL;
4928 find_entry.signature = sig;
4929 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4930 return entry;
4931 }
4932 }
4933 \f
4934 /* Low level DIE reading support. */
4935
4936 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4937
4938 static void
4939 init_cu_die_reader (struct die_reader_specs *reader,
4940 struct dwarf2_cu *cu,
4941 struct dwarf2_section_info *section,
4942 struct dwo_file *dwo_file)
4943 {
4944 gdb_assert (section->readin && section->buffer != NULL);
4945 reader->abfd = get_section_bfd_owner (section);
4946 reader->cu = cu;
4947 reader->dwo_file = dwo_file;
4948 reader->die_section = section;
4949 reader->buffer = section->buffer;
4950 reader->buffer_end = section->buffer + section->size;
4951 reader->comp_dir = NULL;
4952 }
4953
4954 /* Subroutine of init_cutu_and_read_dies to simplify it.
4955 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4956 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4957 already.
4958
4959 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4960 from it to the DIE in the DWO. If NULL we are skipping the stub.
4961 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4962 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4963 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4964 STUB_COMP_DIR may be non-NULL.
4965 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4966 are filled in with the info of the DIE from the DWO file.
4967 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4968 provided an abbrev table to use.
4969 The result is non-zero if a valid (non-dummy) DIE was found. */
4970
4971 static int
4972 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4973 struct dwo_unit *dwo_unit,
4974 int abbrev_table_provided,
4975 struct die_info *stub_comp_unit_die,
4976 const char *stub_comp_dir,
4977 struct die_reader_specs *result_reader,
4978 const gdb_byte **result_info_ptr,
4979 struct die_info **result_comp_unit_die,
4980 int *result_has_children)
4981 {
4982 struct objfile *objfile = dwarf2_per_objfile->objfile;
4983 struct dwarf2_cu *cu = this_cu->cu;
4984 struct dwarf2_section_info *section;
4985 bfd *abfd;
4986 const gdb_byte *begin_info_ptr, *info_ptr;
4987 ULONGEST signature; /* Or dwo_id. */
4988 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4989 int i,num_extra_attrs;
4990 struct dwarf2_section_info *dwo_abbrev_section;
4991 struct attribute *attr;
4992 struct die_info *comp_unit_die;
4993
4994 /* At most one of these may be provided. */
4995 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4996
4997 /* These attributes aren't processed until later:
4998 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4999 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5000 referenced later. However, these attributes are found in the stub
5001 which we won't have later. In order to not impose this complication
5002 on the rest of the code, we read them here and copy them to the
5003 DWO CU/TU die. */
5004
5005 stmt_list = NULL;
5006 low_pc = NULL;
5007 high_pc = NULL;
5008 ranges = NULL;
5009 comp_dir = NULL;
5010
5011 if (stub_comp_unit_die != NULL)
5012 {
5013 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5014 DWO file. */
5015 if (! this_cu->is_debug_types)
5016 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5017 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5018 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5019 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5020 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5021
5022 /* There should be a DW_AT_addr_base attribute here (if needed).
5023 We need the value before we can process DW_FORM_GNU_addr_index. */
5024 cu->addr_base = 0;
5025 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5026 if (attr)
5027 cu->addr_base = DW_UNSND (attr);
5028
5029 /* There should be a DW_AT_ranges_base attribute here (if needed).
5030 We need the value before we can process DW_AT_ranges. */
5031 cu->ranges_base = 0;
5032 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5033 if (attr)
5034 cu->ranges_base = DW_UNSND (attr);
5035 }
5036 else if (stub_comp_dir != NULL)
5037 {
5038 /* Reconstruct the comp_dir attribute to simplify the code below. */
5039 comp_dir = (struct attribute *)
5040 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5041 comp_dir->name = DW_AT_comp_dir;
5042 comp_dir->form = DW_FORM_string;
5043 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5044 DW_STRING (comp_dir) = stub_comp_dir;
5045 }
5046
5047 /* Set up for reading the DWO CU/TU. */
5048 cu->dwo_unit = dwo_unit;
5049 section = dwo_unit->section;
5050 dwarf2_read_section (objfile, section);
5051 abfd = get_section_bfd_owner (section);
5052 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5053 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5054 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5055
5056 if (this_cu->is_debug_types)
5057 {
5058 ULONGEST header_signature;
5059 cu_offset type_offset_in_tu;
5060 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5061
5062 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5063 dwo_abbrev_section,
5064 info_ptr,
5065 &header_signature,
5066 &type_offset_in_tu);
5067 /* This is not an assert because it can be caused by bad debug info. */
5068 if (sig_type->signature != header_signature)
5069 {
5070 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5071 " TU at offset 0x%x [in module %s]"),
5072 hex_string (sig_type->signature),
5073 hex_string (header_signature),
5074 dwo_unit->offset.sect_off,
5075 bfd_get_filename (abfd));
5076 }
5077 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5078 /* For DWOs coming from DWP files, we don't know the CU length
5079 nor the type's offset in the TU until now. */
5080 dwo_unit->length = get_cu_length (&cu->header);
5081 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5082
5083 /* Establish the type offset that can be used to lookup the type.
5084 For DWO files, we don't know it until now. */
5085 sig_type->type_offset_in_section.sect_off =
5086 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5087 }
5088 else
5089 {
5090 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5091 dwo_abbrev_section,
5092 info_ptr, 0);
5093 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5094 /* For DWOs coming from DWP files, we don't know the CU length
5095 until now. */
5096 dwo_unit->length = get_cu_length (&cu->header);
5097 }
5098
5099 /* Replace the CU's original abbrev table with the DWO's.
5100 Reminder: We can't read the abbrev table until we've read the header. */
5101 if (abbrev_table_provided)
5102 {
5103 /* Don't free the provided abbrev table, the caller of
5104 init_cutu_and_read_dies owns it. */
5105 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5106 /* Ensure the DWO abbrev table gets freed. */
5107 make_cleanup (dwarf2_free_abbrev_table, cu);
5108 }
5109 else
5110 {
5111 dwarf2_free_abbrev_table (cu);
5112 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5113 /* Leave any existing abbrev table cleanup as is. */
5114 }
5115
5116 /* Read in the die, but leave space to copy over the attributes
5117 from the stub. This has the benefit of simplifying the rest of
5118 the code - all the work to maintain the illusion of a single
5119 DW_TAG_{compile,type}_unit DIE is done here. */
5120 num_extra_attrs = ((stmt_list != NULL)
5121 + (low_pc != NULL)
5122 + (high_pc != NULL)
5123 + (ranges != NULL)
5124 + (comp_dir != NULL));
5125 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5126 result_has_children, num_extra_attrs);
5127
5128 /* Copy over the attributes from the stub to the DIE we just read in. */
5129 comp_unit_die = *result_comp_unit_die;
5130 i = comp_unit_die->num_attrs;
5131 if (stmt_list != NULL)
5132 comp_unit_die->attrs[i++] = *stmt_list;
5133 if (low_pc != NULL)
5134 comp_unit_die->attrs[i++] = *low_pc;
5135 if (high_pc != NULL)
5136 comp_unit_die->attrs[i++] = *high_pc;
5137 if (ranges != NULL)
5138 comp_unit_die->attrs[i++] = *ranges;
5139 if (comp_dir != NULL)
5140 comp_unit_die->attrs[i++] = *comp_dir;
5141 comp_unit_die->num_attrs += num_extra_attrs;
5142
5143 if (dwarf2_die_debug)
5144 {
5145 fprintf_unfiltered (gdb_stdlog,
5146 "Read die from %s@0x%x of %s:\n",
5147 get_section_name (section),
5148 (unsigned) (begin_info_ptr - section->buffer),
5149 bfd_get_filename (abfd));
5150 dump_die (comp_unit_die, dwarf2_die_debug);
5151 }
5152
5153 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5154 TUs by skipping the stub and going directly to the entry in the DWO file.
5155 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5156 to get it via circuitous means. Blech. */
5157 if (comp_dir != NULL)
5158 result_reader->comp_dir = DW_STRING (comp_dir);
5159
5160 /* Skip dummy compilation units. */
5161 if (info_ptr >= begin_info_ptr + dwo_unit->length
5162 || peek_abbrev_code (abfd, info_ptr) == 0)
5163 return 0;
5164
5165 *result_info_ptr = info_ptr;
5166 return 1;
5167 }
5168
5169 /* Subroutine of init_cutu_and_read_dies to simplify it.
5170 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5171 Returns NULL if the specified DWO unit cannot be found. */
5172
5173 static struct dwo_unit *
5174 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5175 struct die_info *comp_unit_die)
5176 {
5177 struct dwarf2_cu *cu = this_cu->cu;
5178 struct attribute *attr;
5179 ULONGEST signature;
5180 struct dwo_unit *dwo_unit;
5181 const char *comp_dir, *dwo_name;
5182
5183 gdb_assert (cu != NULL);
5184
5185 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5186 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5187 gdb_assert (attr != NULL);
5188 dwo_name = DW_STRING (attr);
5189 comp_dir = NULL;
5190 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5191 if (attr)
5192 comp_dir = DW_STRING (attr);
5193
5194 if (this_cu->is_debug_types)
5195 {
5196 struct signatured_type *sig_type;
5197
5198 /* Since this_cu is the first member of struct signatured_type,
5199 we can go from a pointer to one to a pointer to the other. */
5200 sig_type = (struct signatured_type *) this_cu;
5201 signature = sig_type->signature;
5202 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5203 }
5204 else
5205 {
5206 struct attribute *attr;
5207
5208 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5209 if (! attr)
5210 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5211 " [in module %s]"),
5212 dwo_name, objfile_name (this_cu->objfile));
5213 signature = DW_UNSND (attr);
5214 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5215 signature);
5216 }
5217
5218 return dwo_unit;
5219 }
5220
5221 /* Subroutine of init_cutu_and_read_dies to simplify it.
5222 See it for a description of the parameters.
5223 Read a TU directly from a DWO file, bypassing the stub.
5224
5225 Note: This function could be a little bit simpler if we shared cleanups
5226 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5227 to do, so we keep this function self-contained. Or we could move this
5228 into our caller, but it's complex enough already. */
5229
5230 static void
5231 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5232 int use_existing_cu, int keep,
5233 die_reader_func_ftype *die_reader_func,
5234 void *data)
5235 {
5236 struct dwarf2_cu *cu;
5237 struct signatured_type *sig_type;
5238 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5239 struct die_reader_specs reader;
5240 const gdb_byte *info_ptr;
5241 struct die_info *comp_unit_die;
5242 int has_children;
5243
5244 /* Verify we can do the following downcast, and that we have the
5245 data we need. */
5246 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5247 sig_type = (struct signatured_type *) this_cu;
5248 gdb_assert (sig_type->dwo_unit != NULL);
5249
5250 cleanups = make_cleanup (null_cleanup, NULL);
5251
5252 if (use_existing_cu && this_cu->cu != NULL)
5253 {
5254 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5255 cu = this_cu->cu;
5256 /* There's no need to do the rereading_dwo_cu handling that
5257 init_cutu_and_read_dies does since we don't read the stub. */
5258 }
5259 else
5260 {
5261 /* If !use_existing_cu, this_cu->cu must be NULL. */
5262 gdb_assert (this_cu->cu == NULL);
5263 cu = xmalloc (sizeof (*cu));
5264 init_one_comp_unit (cu, this_cu);
5265 /* If an error occurs while loading, release our storage. */
5266 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5267 }
5268
5269 /* A future optimization, if needed, would be to use an existing
5270 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5271 could share abbrev tables. */
5272
5273 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5274 0 /* abbrev_table_provided */,
5275 NULL /* stub_comp_unit_die */,
5276 sig_type->dwo_unit->dwo_file->comp_dir,
5277 &reader, &info_ptr,
5278 &comp_unit_die, &has_children) == 0)
5279 {
5280 /* Dummy die. */
5281 do_cleanups (cleanups);
5282 return;
5283 }
5284
5285 /* All the "real" work is done here. */
5286 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5287
5288 /* This duplicates the code in init_cutu_and_read_dies,
5289 but the alternative is making the latter more complex.
5290 This function is only for the special case of using DWO files directly:
5291 no point in overly complicating the general case just to handle this. */
5292 if (free_cu_cleanup != NULL)
5293 {
5294 if (keep)
5295 {
5296 /* We've successfully allocated this compilation unit. Let our
5297 caller clean it up when finished with it. */
5298 discard_cleanups (free_cu_cleanup);
5299
5300 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5301 So we have to manually free the abbrev table. */
5302 dwarf2_free_abbrev_table (cu);
5303
5304 /* Link this CU into read_in_chain. */
5305 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5306 dwarf2_per_objfile->read_in_chain = this_cu;
5307 }
5308 else
5309 do_cleanups (free_cu_cleanup);
5310 }
5311
5312 do_cleanups (cleanups);
5313 }
5314
5315 /* Initialize a CU (or TU) and read its DIEs.
5316 If the CU defers to a DWO file, read the DWO file as well.
5317
5318 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5319 Otherwise the table specified in the comp unit header is read in and used.
5320 This is an optimization for when we already have the abbrev table.
5321
5322 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5323 Otherwise, a new CU is allocated with xmalloc.
5324
5325 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5326 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5327
5328 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5329 linker) then DIE_READER_FUNC will not get called. */
5330
5331 static void
5332 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5333 struct abbrev_table *abbrev_table,
5334 int use_existing_cu, int keep,
5335 die_reader_func_ftype *die_reader_func,
5336 void *data)
5337 {
5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
5339 struct dwarf2_section_info *section = this_cu->section;
5340 bfd *abfd = get_section_bfd_owner (section);
5341 struct dwarf2_cu *cu;
5342 const gdb_byte *begin_info_ptr, *info_ptr;
5343 struct die_reader_specs reader;
5344 struct die_info *comp_unit_die;
5345 int has_children;
5346 struct attribute *attr;
5347 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5348 struct signatured_type *sig_type = NULL;
5349 struct dwarf2_section_info *abbrev_section;
5350 /* Non-zero if CU currently points to a DWO file and we need to
5351 reread it. When this happens we need to reread the skeleton die
5352 before we can reread the DWO file (this only applies to CUs, not TUs). */
5353 int rereading_dwo_cu = 0;
5354
5355 if (dwarf2_die_debug)
5356 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5357 this_cu->is_debug_types ? "type" : "comp",
5358 this_cu->offset.sect_off);
5359
5360 if (use_existing_cu)
5361 gdb_assert (keep);
5362
5363 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5364 file (instead of going through the stub), short-circuit all of this. */
5365 if (this_cu->reading_dwo_directly)
5366 {
5367 /* Narrow down the scope of possibilities to have to understand. */
5368 gdb_assert (this_cu->is_debug_types);
5369 gdb_assert (abbrev_table == NULL);
5370 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5371 die_reader_func, data);
5372 return;
5373 }
5374
5375 cleanups = make_cleanup (null_cleanup, NULL);
5376
5377 /* This is cheap if the section is already read in. */
5378 dwarf2_read_section (objfile, section);
5379
5380 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5381
5382 abbrev_section = get_abbrev_section_for_cu (this_cu);
5383
5384 if (use_existing_cu && this_cu->cu != NULL)
5385 {
5386 cu = this_cu->cu;
5387 /* If this CU is from a DWO file we need to start over, we need to
5388 refetch the attributes from the skeleton CU.
5389 This could be optimized by retrieving those attributes from when we
5390 were here the first time: the previous comp_unit_die was stored in
5391 comp_unit_obstack. But there's no data yet that we need this
5392 optimization. */
5393 if (cu->dwo_unit != NULL)
5394 rereading_dwo_cu = 1;
5395 }
5396 else
5397 {
5398 /* If !use_existing_cu, this_cu->cu must be NULL. */
5399 gdb_assert (this_cu->cu == NULL);
5400 cu = xmalloc (sizeof (*cu));
5401 init_one_comp_unit (cu, this_cu);
5402 /* If an error occurs while loading, release our storage. */
5403 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5404 }
5405
5406 /* Get the header. */
5407 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5408 {
5409 /* We already have the header, there's no need to read it in again. */
5410 info_ptr += cu->header.first_die_offset.cu_off;
5411 }
5412 else
5413 {
5414 if (this_cu->is_debug_types)
5415 {
5416 ULONGEST signature;
5417 cu_offset type_offset_in_tu;
5418
5419 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5420 abbrev_section, info_ptr,
5421 &signature,
5422 &type_offset_in_tu);
5423
5424 /* Since per_cu is the first member of struct signatured_type,
5425 we can go from a pointer to one to a pointer to the other. */
5426 sig_type = (struct signatured_type *) this_cu;
5427 gdb_assert (sig_type->signature == signature);
5428 gdb_assert (sig_type->type_offset_in_tu.cu_off
5429 == type_offset_in_tu.cu_off);
5430 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5431
5432 /* LENGTH has not been set yet for type units if we're
5433 using .gdb_index. */
5434 this_cu->length = get_cu_length (&cu->header);
5435
5436 /* Establish the type offset that can be used to lookup the type. */
5437 sig_type->type_offset_in_section.sect_off =
5438 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5439 }
5440 else
5441 {
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 abbrev_section,
5444 info_ptr, 0);
5445
5446 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5447 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5448 }
5449 }
5450
5451 /* Skip dummy compilation units. */
5452 if (info_ptr >= begin_info_ptr + this_cu->length
5453 || peek_abbrev_code (abfd, info_ptr) == 0)
5454 {
5455 do_cleanups (cleanups);
5456 return;
5457 }
5458
5459 /* If we don't have them yet, read the abbrevs for this compilation unit.
5460 And if we need to read them now, make sure they're freed when we're
5461 done. Note that it's important that if the CU had an abbrev table
5462 on entry we don't free it when we're done: Somewhere up the call stack
5463 it may be in use. */
5464 if (abbrev_table != NULL)
5465 {
5466 gdb_assert (cu->abbrev_table == NULL);
5467 gdb_assert (cu->header.abbrev_offset.sect_off
5468 == abbrev_table->offset.sect_off);
5469 cu->abbrev_table = abbrev_table;
5470 }
5471 else if (cu->abbrev_table == NULL)
5472 {
5473 dwarf2_read_abbrevs (cu, abbrev_section);
5474 make_cleanup (dwarf2_free_abbrev_table, cu);
5475 }
5476 else if (rereading_dwo_cu)
5477 {
5478 dwarf2_free_abbrev_table (cu);
5479 dwarf2_read_abbrevs (cu, abbrev_section);
5480 }
5481
5482 /* Read the top level CU/TU die. */
5483 init_cu_die_reader (&reader, cu, section, NULL);
5484 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5485
5486 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5487 from the DWO file.
5488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5489 DWO CU, that this test will fail (the attribute will not be present). */
5490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5491 if (attr)
5492 {
5493 struct dwo_unit *dwo_unit;
5494 struct die_info *dwo_comp_unit_die;
5495
5496 if (has_children)
5497 {
5498 complaint (&symfile_complaints,
5499 _("compilation unit with DW_AT_GNU_dwo_name"
5500 " has children (offset 0x%x) [in module %s]"),
5501 this_cu->offset.sect_off, bfd_get_filename (abfd));
5502 }
5503 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5504 if (dwo_unit != NULL)
5505 {
5506 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5507 abbrev_table != NULL,
5508 comp_unit_die, NULL,
5509 &reader, &info_ptr,
5510 &dwo_comp_unit_die, &has_children) == 0)
5511 {
5512 /* Dummy die. */
5513 do_cleanups (cleanups);
5514 return;
5515 }
5516 comp_unit_die = dwo_comp_unit_die;
5517 }
5518 else
5519 {
5520 /* Yikes, we couldn't find the rest of the DIE, we only have
5521 the stub. A complaint has already been logged. There's
5522 not much more we can do except pass on the stub DIE to
5523 die_reader_func. We don't want to throw an error on bad
5524 debug info. */
5525 }
5526 }
5527
5528 /* All of the above is setup for this call. Yikes. */
5529 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5530
5531 /* Done, clean up. */
5532 if (free_cu_cleanup != NULL)
5533 {
5534 if (keep)
5535 {
5536 /* We've successfully allocated this compilation unit. Let our
5537 caller clean it up when finished with it. */
5538 discard_cleanups (free_cu_cleanup);
5539
5540 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5541 So we have to manually free the abbrev table. */
5542 dwarf2_free_abbrev_table (cu);
5543
5544 /* Link this CU into read_in_chain. */
5545 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5546 dwarf2_per_objfile->read_in_chain = this_cu;
5547 }
5548 else
5549 do_cleanups (free_cu_cleanup);
5550 }
5551
5552 do_cleanups (cleanups);
5553 }
5554
5555 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5556 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5557 to have already done the lookup to find the DWO file).
5558
5559 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5560 THIS_CU->is_debug_types, but nothing else.
5561
5562 We fill in THIS_CU->length.
5563
5564 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5565 linker) then DIE_READER_FUNC will not get called.
5566
5567 THIS_CU->cu is always freed when done.
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU. */
5570
5571 static void
5572 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5573 struct dwo_file *dwo_file,
5574 die_reader_func_ftype *die_reader_func,
5575 void *data)
5576 {
5577 struct objfile *objfile = dwarf2_per_objfile->objfile;
5578 struct dwarf2_section_info *section = this_cu->section;
5579 bfd *abfd = get_section_bfd_owner (section);
5580 struct dwarf2_section_info *abbrev_section;
5581 struct dwarf2_cu cu;
5582 const gdb_byte *begin_info_ptr, *info_ptr;
5583 struct die_reader_specs reader;
5584 struct cleanup *cleanups;
5585 struct die_info *comp_unit_die;
5586 int has_children;
5587
5588 if (dwarf2_die_debug)
5589 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5590 this_cu->is_debug_types ? "type" : "comp",
5591 this_cu->offset.sect_off);
5592
5593 gdb_assert (this_cu->cu == NULL);
5594
5595 abbrev_section = (dwo_file != NULL
5596 ? &dwo_file->sections.abbrev
5597 : get_abbrev_section_for_cu (this_cu));
5598
5599 /* This is cheap if the section is already read in. */
5600 dwarf2_read_section (objfile, section);
5601
5602 init_one_comp_unit (&cu, this_cu);
5603
5604 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5605
5606 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5607 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5608 abbrev_section, info_ptr,
5609 this_cu->is_debug_types);
5610
5611 this_cu->length = get_cu_length (&cu.header);
5612
5613 /* Skip dummy compilation units. */
5614 if (info_ptr >= begin_info_ptr + this_cu->length
5615 || peek_abbrev_code (abfd, info_ptr) == 0)
5616 {
5617 do_cleanups (cleanups);
5618 return;
5619 }
5620
5621 dwarf2_read_abbrevs (&cu, abbrev_section);
5622 make_cleanup (dwarf2_free_abbrev_table, &cu);
5623
5624 init_cu_die_reader (&reader, &cu, section, dwo_file);
5625 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5626
5627 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5628
5629 do_cleanups (cleanups);
5630 }
5631
5632 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5633 does not lookup the specified DWO file.
5634 This cannot be used to read DWO files.
5635
5636 THIS_CU->cu is always freed when done.
5637 This is done in order to not leave THIS_CU->cu in a state where we have
5638 to care whether it refers to the "main" CU or the DWO CU.
5639 We can revisit this if the data shows there's a performance issue. */
5640
5641 static void
5642 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5643 die_reader_func_ftype *die_reader_func,
5644 void *data)
5645 {
5646 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5647 }
5648 \f
5649 /* Type Unit Groups.
5650
5651 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5652 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5653 so that all types coming from the same compilation (.o file) are grouped
5654 together. A future step could be to put the types in the same symtab as
5655 the CU the types ultimately came from. */
5656
5657 static hashval_t
5658 hash_type_unit_group (const void *item)
5659 {
5660 const struct type_unit_group *tu_group = item;
5661
5662 return hash_stmt_list_entry (&tu_group->hash);
5663 }
5664
5665 static int
5666 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5667 {
5668 const struct type_unit_group *lhs = item_lhs;
5669 const struct type_unit_group *rhs = item_rhs;
5670
5671 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5672 }
5673
5674 /* Allocate a hash table for type unit groups. */
5675
5676 static htab_t
5677 allocate_type_unit_groups_table (void)
5678 {
5679 return htab_create_alloc_ex (3,
5680 hash_type_unit_group,
5681 eq_type_unit_group,
5682 NULL,
5683 &dwarf2_per_objfile->objfile->objfile_obstack,
5684 hashtab_obstack_allocate,
5685 dummy_obstack_deallocate);
5686 }
5687
5688 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5689 partial symtabs. We combine several TUs per psymtab to not let the size
5690 of any one psymtab grow too big. */
5691 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5693
5694 /* Helper routine for get_type_unit_group.
5695 Create the type_unit_group object used to hold one or more TUs. */
5696
5697 static struct type_unit_group *
5698 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5699 {
5700 struct objfile *objfile = dwarf2_per_objfile->objfile;
5701 struct dwarf2_per_cu_data *per_cu;
5702 struct type_unit_group *tu_group;
5703
5704 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5705 struct type_unit_group);
5706 per_cu = &tu_group->per_cu;
5707 per_cu->objfile = objfile;
5708
5709 if (dwarf2_per_objfile->using_index)
5710 {
5711 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5712 struct dwarf2_per_cu_quick_data);
5713 }
5714 else
5715 {
5716 unsigned int line_offset = line_offset_struct.sect_off;
5717 struct partial_symtab *pst;
5718 char *name;
5719
5720 /* Give the symtab a useful name for debug purposes. */
5721 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5722 name = xstrprintf ("<type_units_%d>",
5723 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5724 else
5725 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5726
5727 pst = create_partial_symtab (per_cu, name);
5728 pst->anonymous = 1;
5729
5730 xfree (name);
5731 }
5732
5733 tu_group->hash.dwo_unit = cu->dwo_unit;
5734 tu_group->hash.line_offset = line_offset_struct;
5735
5736 return tu_group;
5737 }
5738
5739 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5740 STMT_LIST is a DW_AT_stmt_list attribute. */
5741
5742 static struct type_unit_group *
5743 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5744 {
5745 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5746 struct type_unit_group *tu_group;
5747 void **slot;
5748 unsigned int line_offset;
5749 struct type_unit_group type_unit_group_for_lookup;
5750
5751 if (dwarf2_per_objfile->type_unit_groups == NULL)
5752 {
5753 dwarf2_per_objfile->type_unit_groups =
5754 allocate_type_unit_groups_table ();
5755 }
5756
5757 /* Do we need to create a new group, or can we use an existing one? */
5758
5759 if (stmt_list)
5760 {
5761 line_offset = DW_UNSND (stmt_list);
5762 ++tu_stats->nr_symtab_sharers;
5763 }
5764 else
5765 {
5766 /* Ugh, no stmt_list. Rare, but we have to handle it.
5767 We can do various things here like create one group per TU or
5768 spread them over multiple groups to split up the expansion work.
5769 To avoid worst case scenarios (too many groups or too large groups)
5770 we, umm, group them in bunches. */
5771 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5772 | (tu_stats->nr_stmt_less_type_units
5773 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5774 ++tu_stats->nr_stmt_less_type_units;
5775 }
5776
5777 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5778 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5779 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5780 &type_unit_group_for_lookup, INSERT);
5781 if (*slot != NULL)
5782 {
5783 tu_group = *slot;
5784 gdb_assert (tu_group != NULL);
5785 }
5786 else
5787 {
5788 sect_offset line_offset_struct;
5789
5790 line_offset_struct.sect_off = line_offset;
5791 tu_group = create_type_unit_group (cu, line_offset_struct);
5792 *slot = tu_group;
5793 ++tu_stats->nr_symtabs;
5794 }
5795
5796 return tu_group;
5797 }
5798 \f
5799 /* Partial symbol tables. */
5800
5801 /* Create a psymtab named NAME and assign it to PER_CU.
5802
5803 The caller must fill in the following details:
5804 dirname, textlow, texthigh. */
5805
5806 static struct partial_symtab *
5807 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5808 {
5809 struct objfile *objfile = per_cu->objfile;
5810 struct partial_symtab *pst;
5811
5812 pst = start_psymtab_common (objfile, objfile->section_offsets,
5813 name, 0,
5814 objfile->global_psymbols.next,
5815 objfile->static_psymbols.next);
5816
5817 pst->psymtabs_addrmap_supported = 1;
5818
5819 /* This is the glue that links PST into GDB's symbol API. */
5820 pst->read_symtab_private = per_cu;
5821 pst->read_symtab = dwarf2_read_symtab;
5822 per_cu->v.psymtab = pst;
5823
5824 return pst;
5825 }
5826
5827 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5828 type. */
5829
5830 struct process_psymtab_comp_unit_data
5831 {
5832 /* True if we are reading a DW_TAG_partial_unit. */
5833
5834 int want_partial_unit;
5835
5836 /* The "pretend" language that is used if the CU doesn't declare a
5837 language. */
5838
5839 enum language pretend_language;
5840 };
5841
5842 /* die_reader_func for process_psymtab_comp_unit. */
5843
5844 static void
5845 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5846 const gdb_byte *info_ptr,
5847 struct die_info *comp_unit_die,
5848 int has_children,
5849 void *data)
5850 {
5851 struct dwarf2_cu *cu = reader->cu;
5852 struct objfile *objfile = cu->objfile;
5853 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5854 struct attribute *attr;
5855 CORE_ADDR baseaddr;
5856 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5857 struct partial_symtab *pst;
5858 int has_pc_info;
5859 const char *filename;
5860 struct process_psymtab_comp_unit_data *info = data;
5861
5862 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5863 return;
5864
5865 gdb_assert (! per_cu->is_debug_types);
5866
5867 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5868
5869 cu->list_in_scope = &file_symbols;
5870
5871 /* Allocate a new partial symbol table structure. */
5872 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5873 if (attr == NULL || !DW_STRING (attr))
5874 filename = "";
5875 else
5876 filename = DW_STRING (attr);
5877
5878 pst = create_partial_symtab (per_cu, filename);
5879
5880 /* This must be done before calling dwarf2_build_include_psymtabs. */
5881 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5882 if (attr != NULL)
5883 pst->dirname = DW_STRING (attr);
5884
5885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5886
5887 dwarf2_find_base_address (comp_unit_die, cu);
5888
5889 /* Possibly set the default values of LOWPC and HIGHPC from
5890 `DW_AT_ranges'. */
5891 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5892 &best_highpc, cu, pst);
5893 if (has_pc_info == 1 && best_lowpc < best_highpc)
5894 /* Store the contiguous range if it is not empty; it can be empty for
5895 CUs with no code. */
5896 addrmap_set_empty (objfile->psymtabs_addrmap,
5897 best_lowpc + baseaddr,
5898 best_highpc + baseaddr - 1, pst);
5899
5900 /* Check if comp unit has_children.
5901 If so, read the rest of the partial symbols from this comp unit.
5902 If not, there's no more debug_info for this comp unit. */
5903 if (has_children)
5904 {
5905 struct partial_die_info *first_die;
5906 CORE_ADDR lowpc, highpc;
5907
5908 lowpc = ((CORE_ADDR) -1);
5909 highpc = ((CORE_ADDR) 0);
5910
5911 first_die = load_partial_dies (reader, info_ptr, 1);
5912
5913 scan_partial_symbols (first_die, &lowpc, &highpc,
5914 ! has_pc_info, cu);
5915
5916 /* If we didn't find a lowpc, set it to highpc to avoid
5917 complaints from `maint check'. */
5918 if (lowpc == ((CORE_ADDR) -1))
5919 lowpc = highpc;
5920
5921 /* If the compilation unit didn't have an explicit address range,
5922 then use the information extracted from its child dies. */
5923 if (! has_pc_info)
5924 {
5925 best_lowpc = lowpc;
5926 best_highpc = highpc;
5927 }
5928 }
5929 pst->textlow = best_lowpc + baseaddr;
5930 pst->texthigh = best_highpc + baseaddr;
5931
5932 pst->n_global_syms = objfile->global_psymbols.next -
5933 (objfile->global_psymbols.list + pst->globals_offset);
5934 pst->n_static_syms = objfile->static_psymbols.next -
5935 (objfile->static_psymbols.list + pst->statics_offset);
5936 sort_pst_symbols (objfile, pst);
5937
5938 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5939 {
5940 int i;
5941 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5942 struct dwarf2_per_cu_data *iter;
5943
5944 /* Fill in 'dependencies' here; we fill in 'users' in a
5945 post-pass. */
5946 pst->number_of_dependencies = len;
5947 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5948 len * sizeof (struct symtab *));
5949 for (i = 0;
5950 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5951 i, iter);
5952 ++i)
5953 pst->dependencies[i] = iter->v.psymtab;
5954
5955 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5956 }
5957
5958 /* Get the list of files included in the current compilation unit,
5959 and build a psymtab for each of them. */
5960 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5961
5962 if (dwarf2_read_debug)
5963 {
5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5965
5966 fprintf_unfiltered (gdb_stdlog,
5967 "Psymtab for %s unit @0x%x: %s - %s"
5968 ", %d global, %d static syms\n",
5969 per_cu->is_debug_types ? "type" : "comp",
5970 per_cu->offset.sect_off,
5971 paddress (gdbarch, pst->textlow),
5972 paddress (gdbarch, pst->texthigh),
5973 pst->n_global_syms, pst->n_static_syms);
5974 }
5975 }
5976
5977 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5978 Process compilation unit THIS_CU for a psymtab. */
5979
5980 static void
5981 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5982 int want_partial_unit,
5983 enum language pretend_language)
5984 {
5985 struct process_psymtab_comp_unit_data info;
5986
5987 /* If this compilation unit was already read in, free the
5988 cached copy in order to read it in again. This is
5989 necessary because we skipped some symbols when we first
5990 read in the compilation unit (see load_partial_dies).
5991 This problem could be avoided, but the benefit is unclear. */
5992 if (this_cu->cu != NULL)
5993 free_one_cached_comp_unit (this_cu);
5994
5995 gdb_assert (! this_cu->is_debug_types);
5996 info.want_partial_unit = want_partial_unit;
5997 info.pretend_language = pretend_language;
5998 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5999 process_psymtab_comp_unit_reader,
6000 &info);
6001
6002 /* Age out any secondary CUs. */
6003 age_cached_comp_units ();
6004 }
6005
6006 /* Reader function for build_type_psymtabs. */
6007
6008 static void
6009 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6010 const gdb_byte *info_ptr,
6011 struct die_info *type_unit_die,
6012 int has_children,
6013 void *data)
6014 {
6015 struct objfile *objfile = dwarf2_per_objfile->objfile;
6016 struct dwarf2_cu *cu = reader->cu;
6017 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6018 struct signatured_type *sig_type;
6019 struct type_unit_group *tu_group;
6020 struct attribute *attr;
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023 struct partial_symtab *pst;
6024
6025 gdb_assert (data == NULL);
6026 gdb_assert (per_cu->is_debug_types);
6027 sig_type = (struct signatured_type *) per_cu;
6028
6029 if (! has_children)
6030 return;
6031
6032 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6033 tu_group = get_type_unit_group (cu, attr);
6034
6035 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6036
6037 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6038 cu->list_in_scope = &file_symbols;
6039 pst = create_partial_symtab (per_cu, "");
6040 pst->anonymous = 1;
6041
6042 first_die = load_partial_dies (reader, info_ptr, 1);
6043
6044 lowpc = (CORE_ADDR) -1;
6045 highpc = (CORE_ADDR) 0;
6046 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6047
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
6052 sort_pst_symbols (objfile, pst);
6053 }
6054
6055 /* Struct used to sort TUs by their abbreviation table offset. */
6056
6057 struct tu_abbrev_offset
6058 {
6059 struct signatured_type *sig_type;
6060 sect_offset abbrev_offset;
6061 };
6062
6063 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6064
6065 static int
6066 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6067 {
6068 const struct tu_abbrev_offset * const *a = ap;
6069 const struct tu_abbrev_offset * const *b = bp;
6070 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6071 unsigned int boff = (*b)->abbrev_offset.sect_off;
6072
6073 return (aoff > boff) - (aoff < boff);
6074 }
6075
6076 /* Efficiently read all the type units.
6077 This does the bulk of the work for build_type_psymtabs.
6078
6079 The efficiency is because we sort TUs by the abbrev table they use and
6080 only read each abbrev table once. In one program there are 200K TUs
6081 sharing 8K abbrev tables.
6082
6083 The main purpose of this function is to support building the
6084 dwarf2_per_objfile->type_unit_groups table.
6085 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6086 can collapse the search space by grouping them by stmt_list.
6087 The savings can be significant, in the same program from above the 200K TUs
6088 share 8K stmt_list tables.
6089
6090 FUNC is expected to call get_type_unit_group, which will create the
6091 struct type_unit_group if necessary and add it to
6092 dwarf2_per_objfile->type_unit_groups. */
6093
6094 static void
6095 build_type_psymtabs_1 (void)
6096 {
6097 struct objfile *objfile = dwarf2_per_objfile->objfile;
6098 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6099 struct cleanup *cleanups;
6100 struct abbrev_table *abbrev_table;
6101 sect_offset abbrev_offset;
6102 struct tu_abbrev_offset *sorted_by_abbrev;
6103 struct type_unit_group **iter;
6104 int i;
6105
6106 /* It's up to the caller to not call us multiple times. */
6107 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6108
6109 if (dwarf2_per_objfile->n_type_units == 0)
6110 return;
6111
6112 /* TUs typically share abbrev tables, and there can be way more TUs than
6113 abbrev tables. Sort by abbrev table to reduce the number of times we
6114 read each abbrev table in.
6115 Alternatives are to punt or to maintain a cache of abbrev tables.
6116 This is simpler and efficient enough for now.
6117
6118 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6119 symtab to use). Typically TUs with the same abbrev offset have the same
6120 stmt_list value too so in practice this should work well.
6121
6122 The basic algorithm here is:
6123
6124 sort TUs by abbrev table
6125 for each TU with same abbrev table:
6126 read abbrev table if first user
6127 read TU top level DIE
6128 [IWBN if DWO skeletons had DW_AT_stmt_list]
6129 call FUNC */
6130
6131 if (dwarf2_read_debug)
6132 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6133
6134 /* Sort in a separate table to maintain the order of all_type_units
6135 for .gdb_index: TU indices directly index all_type_units. */
6136 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6137 dwarf2_per_objfile->n_type_units);
6138 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6139 {
6140 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6141
6142 sorted_by_abbrev[i].sig_type = sig_type;
6143 sorted_by_abbrev[i].abbrev_offset =
6144 read_abbrev_offset (sig_type->per_cu.section,
6145 sig_type->per_cu.offset);
6146 }
6147 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6148 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6149 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6150
6151 abbrev_offset.sect_off = ~(unsigned) 0;
6152 abbrev_table = NULL;
6153 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6154
6155 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6156 {
6157 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6158
6159 /* Switch to the next abbrev table if necessary. */
6160 if (abbrev_table == NULL
6161 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6162 {
6163 if (abbrev_table != NULL)
6164 {
6165 abbrev_table_free (abbrev_table);
6166 /* Reset to NULL in case abbrev_table_read_table throws
6167 an error: abbrev_table_free_cleanup will get called. */
6168 abbrev_table = NULL;
6169 }
6170 abbrev_offset = tu->abbrev_offset;
6171 abbrev_table =
6172 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6173 abbrev_offset);
6174 ++tu_stats->nr_uniq_abbrev_tables;
6175 }
6176
6177 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6178 build_type_psymtabs_reader, NULL);
6179 }
6180
6181 do_cleanups (cleanups);
6182 }
6183
6184 /* Print collected type unit statistics. */
6185
6186 static void
6187 print_tu_stats (void)
6188 {
6189 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6190
6191 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6192 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6193 dwarf2_per_objfile->n_type_units);
6194 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6195 tu_stats->nr_uniq_abbrev_tables);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6197 tu_stats->nr_symtabs);
6198 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6199 tu_stats->nr_symtab_sharers);
6200 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6201 tu_stats->nr_stmt_less_type_units);
6202 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6203 tu_stats->nr_all_type_units_reallocs);
6204 }
6205
6206 /* Traversal function for build_type_psymtabs. */
6207
6208 static int
6209 build_type_psymtab_dependencies (void **slot, void *info)
6210 {
6211 struct objfile *objfile = dwarf2_per_objfile->objfile;
6212 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6213 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6214 struct partial_symtab *pst = per_cu->v.psymtab;
6215 int len = VEC_length (sig_type_ptr, tu_group->tus);
6216 struct signatured_type *iter;
6217 int i;
6218
6219 gdb_assert (len > 0);
6220 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6221
6222 pst->number_of_dependencies = len;
6223 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6224 len * sizeof (struct psymtab *));
6225 for (i = 0;
6226 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6227 ++i)
6228 {
6229 gdb_assert (iter->per_cu.is_debug_types);
6230 pst->dependencies[i] = iter->per_cu.v.psymtab;
6231 iter->type_unit_group = tu_group;
6232 }
6233
6234 VEC_free (sig_type_ptr, tu_group->tus);
6235
6236 return 1;
6237 }
6238
6239 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6240 Build partial symbol tables for the .debug_types comp-units. */
6241
6242 static void
6243 build_type_psymtabs (struct objfile *objfile)
6244 {
6245 if (! create_all_type_units (objfile))
6246 return;
6247
6248 build_type_psymtabs_1 ();
6249 }
6250
6251 /* Traversal function for process_skeletonless_type_unit.
6252 Read a TU in a DWO file and build partial symbols for it. */
6253
6254 static int
6255 process_skeletonless_type_unit (void **slot, void *info)
6256 {
6257 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6258 struct objfile *objfile = info;
6259 struct signatured_type find_entry, *entry;
6260
6261 /* If this TU doesn't exist in the global table, add it and read it in. */
6262
6263 if (dwarf2_per_objfile->signatured_types == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types
6266 = allocate_signatured_type_table (objfile);
6267 }
6268
6269 find_entry.signature = dwo_unit->signature;
6270 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6271 INSERT);
6272 /* If we've already seen this type there's nothing to do. What's happening
6273 is we're doing our own version of comdat-folding here. */
6274 if (*slot != NULL)
6275 return 1;
6276
6277 /* This does the job that create_all_type_units would have done for
6278 this TU. */
6279 entry = add_type_unit (dwo_unit->signature, slot);
6280 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6281 *slot = entry;
6282
6283 /* This does the job that build_type_psymtabs_1 would have done. */
6284 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6285 build_type_psymtabs_reader, NULL);
6286
6287 return 1;
6288 }
6289
6290 /* Traversal function for process_skeletonless_type_units. */
6291
6292 static int
6293 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6294 {
6295 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6296
6297 if (dwo_file->tus != NULL)
6298 {
6299 htab_traverse_noresize (dwo_file->tus,
6300 process_skeletonless_type_unit, info);
6301 }
6302
6303 return 1;
6304 }
6305
6306 /* Scan all TUs of DWO files, verifying we've processed them.
6307 This is needed in case a TU was emitted without its skeleton.
6308 Note: This can't be done until we know what all the DWO files are. */
6309
6310 static void
6311 process_skeletonless_type_units (struct objfile *objfile)
6312 {
6313 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6314 if (get_dwp_file () == NULL
6315 && dwarf2_per_objfile->dwo_files != NULL)
6316 {
6317 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6318 process_dwo_file_for_skeletonless_type_units,
6319 objfile);
6320 }
6321 }
6322
6323 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6324
6325 static void
6326 psymtabs_addrmap_cleanup (void *o)
6327 {
6328 struct objfile *objfile = o;
6329
6330 objfile->psymtabs_addrmap = NULL;
6331 }
6332
6333 /* Compute the 'user' field for each psymtab in OBJFILE. */
6334
6335 static void
6336 set_partial_user (struct objfile *objfile)
6337 {
6338 int i;
6339
6340 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6341 {
6342 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6343 struct partial_symtab *pst = per_cu->v.psymtab;
6344 int j;
6345
6346 if (pst == NULL)
6347 continue;
6348
6349 for (j = 0; j < pst->number_of_dependencies; ++j)
6350 {
6351 /* Set the 'user' field only if it is not already set. */
6352 if (pst->dependencies[j]->user == NULL)
6353 pst->dependencies[j]->user = pst;
6354 }
6355 }
6356 }
6357
6358 /* Build the partial symbol table by doing a quick pass through the
6359 .debug_info and .debug_abbrev sections. */
6360
6361 static void
6362 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6363 {
6364 struct cleanup *back_to, *addrmap_cleanup;
6365 struct obstack temp_obstack;
6366 int i;
6367
6368 if (dwarf2_read_debug)
6369 {
6370 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6371 objfile_name (objfile));
6372 }
6373
6374 dwarf2_per_objfile->reading_partial_symbols = 1;
6375
6376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6377
6378 /* Any cached compilation units will be linked by the per-objfile
6379 read_in_chain. Make sure to free them when we're done. */
6380 back_to = make_cleanup (free_cached_comp_units, NULL);
6381
6382 build_type_psymtabs (objfile);
6383
6384 create_all_comp_units (objfile);
6385
6386 /* Create a temporary address map on a temporary obstack. We later
6387 copy this to the final obstack. */
6388 obstack_init (&temp_obstack);
6389 make_cleanup_obstack_free (&temp_obstack);
6390 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6391 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6392
6393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6394 {
6395 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6396
6397 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6398 }
6399
6400 /* This has to wait until we read the CUs, we need the list of DWOs. */
6401 process_skeletonless_type_units (objfile);
6402
6403 /* Now that all TUs have been processed we can fill in the dependencies. */
6404 if (dwarf2_per_objfile->type_unit_groups != NULL)
6405 {
6406 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6407 build_type_psymtab_dependencies, NULL);
6408 }
6409
6410 if (dwarf2_read_debug)
6411 print_tu_stats ();
6412
6413 set_partial_user (objfile);
6414
6415 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6416 &objfile->objfile_obstack);
6417 discard_cleanups (addrmap_cleanup);
6418
6419 do_cleanups (back_to);
6420
6421 if (dwarf2_read_debug)
6422 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6423 objfile_name (objfile));
6424 }
6425
6426 /* die_reader_func for load_partial_comp_unit. */
6427
6428 static void
6429 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6430 const gdb_byte *info_ptr,
6431 struct die_info *comp_unit_die,
6432 int has_children,
6433 void *data)
6434 {
6435 struct dwarf2_cu *cu = reader->cu;
6436
6437 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6438
6439 /* Check if comp unit has_children.
6440 If so, read the rest of the partial symbols from this comp unit.
6441 If not, there's no more debug_info for this comp unit. */
6442 if (has_children)
6443 load_partial_dies (reader, info_ptr, 0);
6444 }
6445
6446 /* Load the partial DIEs for a secondary CU into memory.
6447 This is also used when rereading a primary CU with load_all_dies. */
6448
6449 static void
6450 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6451 {
6452 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6453 load_partial_comp_unit_reader, NULL);
6454 }
6455
6456 static void
6457 read_comp_units_from_section (struct objfile *objfile,
6458 struct dwarf2_section_info *section,
6459 unsigned int is_dwz,
6460 int *n_allocated,
6461 int *n_comp_units,
6462 struct dwarf2_per_cu_data ***all_comp_units)
6463 {
6464 const gdb_byte *info_ptr;
6465 bfd *abfd = get_section_bfd_owner (section);
6466
6467 if (dwarf2_read_debug)
6468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6469 get_section_name (section),
6470 get_section_file_name (section));
6471
6472 dwarf2_read_section (objfile, section);
6473
6474 info_ptr = section->buffer;
6475
6476 while (info_ptr < section->buffer + section->size)
6477 {
6478 unsigned int length, initial_length_size;
6479 struct dwarf2_per_cu_data *this_cu;
6480 sect_offset offset;
6481
6482 offset.sect_off = info_ptr - section->buffer;
6483
6484 /* Read just enough information to find out where the next
6485 compilation unit is. */
6486 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6487
6488 /* Save the compilation unit for later lookup. */
6489 this_cu = obstack_alloc (&objfile->objfile_obstack,
6490 sizeof (struct dwarf2_per_cu_data));
6491 memset (this_cu, 0, sizeof (*this_cu));
6492 this_cu->offset = offset;
6493 this_cu->length = length + initial_length_size;
6494 this_cu->is_dwz = is_dwz;
6495 this_cu->objfile = objfile;
6496 this_cu->section = section;
6497
6498 if (*n_comp_units == *n_allocated)
6499 {
6500 *n_allocated *= 2;
6501 *all_comp_units = xrealloc (*all_comp_units,
6502 *n_allocated
6503 * sizeof (struct dwarf2_per_cu_data *));
6504 }
6505 (*all_comp_units)[*n_comp_units] = this_cu;
6506 ++*n_comp_units;
6507
6508 info_ptr = info_ptr + this_cu->length;
6509 }
6510 }
6511
6512 /* Create a list of all compilation units in OBJFILE.
6513 This is only done for -readnow and building partial symtabs. */
6514
6515 static void
6516 create_all_comp_units (struct objfile *objfile)
6517 {
6518 int n_allocated;
6519 int n_comp_units;
6520 struct dwarf2_per_cu_data **all_comp_units;
6521 struct dwz_file *dwz;
6522
6523 n_comp_units = 0;
6524 n_allocated = 10;
6525 all_comp_units = xmalloc (n_allocated
6526 * sizeof (struct dwarf2_per_cu_data *));
6527
6528 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6529 &n_allocated, &n_comp_units, &all_comp_units);
6530
6531 dwz = dwarf2_get_dwz_file ();
6532 if (dwz != NULL)
6533 read_comp_units_from_section (objfile, &dwz->info, 1,
6534 &n_allocated, &n_comp_units,
6535 &all_comp_units);
6536
6537 dwarf2_per_objfile->all_comp_units
6538 = obstack_alloc (&objfile->objfile_obstack,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6541 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6542 xfree (all_comp_units);
6543 dwarf2_per_objfile->n_comp_units = n_comp_units;
6544 }
6545
6546 /* Process all loaded DIEs for compilation unit CU, starting at
6547 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6548 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6549 DW_AT_ranges). If NEED_PC is set, then this function will set
6550 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6551 and record the covered ranges in the addrmap. */
6552
6553 static void
6554 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6555 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6556 {
6557 struct partial_die_info *pdi;
6558
6559 /* Now, march along the PDI's, descending into ones which have
6560 interesting children but skipping the children of the other ones,
6561 until we reach the end of the compilation unit. */
6562
6563 pdi = first_die;
6564
6565 while (pdi != NULL)
6566 {
6567 fixup_partial_die (pdi, cu);
6568
6569 /* Anonymous namespaces or modules have no name but have interesting
6570 children, so we need to look at them. Ditto for anonymous
6571 enums. */
6572
6573 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6574 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6575 || pdi->tag == DW_TAG_imported_unit)
6576 {
6577 switch (pdi->tag)
6578 {
6579 case DW_TAG_subprogram:
6580 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6581 break;
6582 case DW_TAG_constant:
6583 case DW_TAG_variable:
6584 case DW_TAG_typedef:
6585 case DW_TAG_union_type:
6586 if (!pdi->is_declaration)
6587 {
6588 add_partial_symbol (pdi, cu);
6589 }
6590 break;
6591 case DW_TAG_class_type:
6592 case DW_TAG_interface_type:
6593 case DW_TAG_structure_type:
6594 if (!pdi->is_declaration)
6595 {
6596 add_partial_symbol (pdi, cu);
6597 }
6598 break;
6599 case DW_TAG_enumeration_type:
6600 if (!pdi->is_declaration)
6601 add_partial_enumeration (pdi, cu);
6602 break;
6603 case DW_TAG_base_type:
6604 case DW_TAG_subrange_type:
6605 /* File scope base type definitions are added to the partial
6606 symbol table. */
6607 add_partial_symbol (pdi, cu);
6608 break;
6609 case DW_TAG_namespace:
6610 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6611 break;
6612 case DW_TAG_module:
6613 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6614 break;
6615 case DW_TAG_imported_unit:
6616 {
6617 struct dwarf2_per_cu_data *per_cu;
6618
6619 /* For now we don't handle imported units in type units. */
6620 if (cu->per_cu->is_debug_types)
6621 {
6622 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6623 " supported in type units [in module %s]"),
6624 objfile_name (cu->objfile));
6625 }
6626
6627 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6628 pdi->is_dwz,
6629 cu->objfile);
6630
6631 /* Go read the partial unit, if needed. */
6632 if (per_cu->v.psymtab == NULL)
6633 process_psymtab_comp_unit (per_cu, 1, cu->language);
6634
6635 VEC_safe_push (dwarf2_per_cu_ptr,
6636 cu->per_cu->imported_symtabs, per_cu);
6637 }
6638 break;
6639 case DW_TAG_imported_declaration:
6640 add_partial_symbol (pdi, cu);
6641 break;
6642 default:
6643 break;
6644 }
6645 }
6646
6647 /* If the die has a sibling, skip to the sibling. */
6648
6649 pdi = pdi->die_sibling;
6650 }
6651 }
6652
6653 /* Functions used to compute the fully scoped name of a partial DIE.
6654
6655 Normally, this is simple. For C++, the parent DIE's fully scoped
6656 name is concatenated with "::" and the partial DIE's name. For
6657 Java, the same thing occurs except that "." is used instead of "::".
6658 Enumerators are an exception; they use the scope of their parent
6659 enumeration type, i.e. the name of the enumeration type is not
6660 prepended to the enumerator.
6661
6662 There are two complexities. One is DW_AT_specification; in this
6663 case "parent" means the parent of the target of the specification,
6664 instead of the direct parent of the DIE. The other is compilers
6665 which do not emit DW_TAG_namespace; in this case we try to guess
6666 the fully qualified name of structure types from their members'
6667 linkage names. This must be done using the DIE's children rather
6668 than the children of any DW_AT_specification target. We only need
6669 to do this for structures at the top level, i.e. if the target of
6670 any DW_AT_specification (if any; otherwise the DIE itself) does not
6671 have a parent. */
6672
6673 /* Compute the scope prefix associated with PDI's parent, in
6674 compilation unit CU. The result will be allocated on CU's
6675 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6676 field. NULL is returned if no prefix is necessary. */
6677 static const char *
6678 partial_die_parent_scope (struct partial_die_info *pdi,
6679 struct dwarf2_cu *cu)
6680 {
6681 const char *grandparent_scope;
6682 struct partial_die_info *parent, *real_pdi;
6683
6684 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6685 then this means the parent of the specification DIE. */
6686
6687 real_pdi = pdi;
6688 while (real_pdi->has_specification)
6689 real_pdi = find_partial_die (real_pdi->spec_offset,
6690 real_pdi->spec_is_dwz, cu);
6691
6692 parent = real_pdi->die_parent;
6693 if (parent == NULL)
6694 return NULL;
6695
6696 if (parent->scope_set)
6697 return parent->scope;
6698
6699 fixup_partial_die (parent, cu);
6700
6701 grandparent_scope = partial_die_parent_scope (parent, cu);
6702
6703 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6704 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6705 Work around this problem here. */
6706 if (cu->language == language_cplus
6707 && parent->tag == DW_TAG_namespace
6708 && strcmp (parent->name, "::") == 0
6709 && grandparent_scope == NULL)
6710 {
6711 parent->scope = NULL;
6712 parent->scope_set = 1;
6713 return NULL;
6714 }
6715
6716 if (pdi->tag == DW_TAG_enumerator)
6717 /* Enumerators should not get the name of the enumeration as a prefix. */
6718 parent->scope = grandparent_scope;
6719 else if (parent->tag == DW_TAG_namespace
6720 || parent->tag == DW_TAG_module
6721 || parent->tag == DW_TAG_structure_type
6722 || parent->tag == DW_TAG_class_type
6723 || parent->tag == DW_TAG_interface_type
6724 || parent->tag == DW_TAG_union_type
6725 || parent->tag == DW_TAG_enumeration_type)
6726 {
6727 if (grandparent_scope == NULL)
6728 parent->scope = parent->name;
6729 else
6730 parent->scope = typename_concat (&cu->comp_unit_obstack,
6731 grandparent_scope,
6732 parent->name, 0, cu);
6733 }
6734 else
6735 {
6736 /* FIXME drow/2004-04-01: What should we be doing with
6737 function-local names? For partial symbols, we should probably be
6738 ignoring them. */
6739 complaint (&symfile_complaints,
6740 _("unhandled containing DIE tag %d for DIE at %d"),
6741 parent->tag, pdi->offset.sect_off);
6742 parent->scope = grandparent_scope;
6743 }
6744
6745 parent->scope_set = 1;
6746 return parent->scope;
6747 }
6748
6749 /* Return the fully scoped name associated with PDI, from compilation unit
6750 CU. The result will be allocated with malloc. */
6751
6752 static char *
6753 partial_die_full_name (struct partial_die_info *pdi,
6754 struct dwarf2_cu *cu)
6755 {
6756 const char *parent_scope;
6757
6758 /* If this is a template instantiation, we can not work out the
6759 template arguments from partial DIEs. So, unfortunately, we have
6760 to go through the full DIEs. At least any work we do building
6761 types here will be reused if full symbols are loaded later. */
6762 if (pdi->has_template_arguments)
6763 {
6764 fixup_partial_die (pdi, cu);
6765
6766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6767 {
6768 struct die_info *die;
6769 struct attribute attr;
6770 struct dwarf2_cu *ref_cu = cu;
6771
6772 /* DW_FORM_ref_addr is using section offset. */
6773 attr.name = 0;
6774 attr.form = DW_FORM_ref_addr;
6775 attr.u.unsnd = pdi->offset.sect_off;
6776 die = follow_die_ref (NULL, &attr, &ref_cu);
6777
6778 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6779 }
6780 }
6781
6782 parent_scope = partial_die_parent_scope (pdi, cu);
6783 if (parent_scope == NULL)
6784 return NULL;
6785 else
6786 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6787 }
6788
6789 static void
6790 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6791 {
6792 struct objfile *objfile = cu->objfile;
6793 CORE_ADDR addr = 0;
6794 const char *actual_name = NULL;
6795 CORE_ADDR baseaddr;
6796 char *built_actual_name;
6797
6798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6799
6800 built_actual_name = partial_die_full_name (pdi, cu);
6801 if (built_actual_name != NULL)
6802 actual_name = built_actual_name;
6803
6804 if (actual_name == NULL)
6805 actual_name = pdi->name;
6806
6807 switch (pdi->tag)
6808 {
6809 case DW_TAG_subprogram:
6810 if (pdi->is_external || cu->language == language_ada)
6811 {
6812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6813 of the global scope. But in Ada, we want to be able to access
6814 nested procedures globally. So all Ada subprograms are stored
6815 in the global scope. */
6816 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6817 mst_text, objfile); */
6818 add_psymbol_to_list (actual_name, strlen (actual_name),
6819 built_actual_name != NULL,
6820 VAR_DOMAIN, LOC_BLOCK,
6821 &objfile->global_psymbols,
6822 0, pdi->lowpc + baseaddr,
6823 cu->language, objfile);
6824 }
6825 else
6826 {
6827 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6828 mst_file_text, objfile); */
6829 add_psymbol_to_list (actual_name, strlen (actual_name),
6830 built_actual_name != NULL,
6831 VAR_DOMAIN, LOC_BLOCK,
6832 &objfile->static_psymbols,
6833 0, pdi->lowpc + baseaddr,
6834 cu->language, objfile);
6835 }
6836 break;
6837 case DW_TAG_constant:
6838 {
6839 struct psymbol_allocation_list *list;
6840
6841 if (pdi->is_external)
6842 list = &objfile->global_psymbols;
6843 else
6844 list = &objfile->static_psymbols;
6845 add_psymbol_to_list (actual_name, strlen (actual_name),
6846 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6847 list, 0, 0, cu->language, objfile);
6848 }
6849 break;
6850 case DW_TAG_variable:
6851 if (pdi->d.locdesc)
6852 addr = decode_locdesc (pdi->d.locdesc, cu);
6853
6854 if (pdi->d.locdesc
6855 && addr == 0
6856 && !dwarf2_per_objfile->has_section_at_zero)
6857 {
6858 /* A global or static variable may also have been stripped
6859 out by the linker if unused, in which case its address
6860 will be nullified; do not add such variables into partial
6861 symbol table then. */
6862 }
6863 else if (pdi->is_external)
6864 {
6865 /* Global Variable.
6866 Don't enter into the minimal symbol tables as there is
6867 a minimal symbol table entry from the ELF symbols already.
6868 Enter into partial symbol table if it has a location
6869 descriptor or a type.
6870 If the location descriptor is missing, new_symbol will create
6871 a LOC_UNRESOLVED symbol, the address of the variable will then
6872 be determined from the minimal symbol table whenever the variable
6873 is referenced.
6874 The address for the partial symbol table entry is not
6875 used by GDB, but it comes in handy for debugging partial symbol
6876 table building. */
6877
6878 if (pdi->d.locdesc || pdi->has_type)
6879 add_psymbol_to_list (actual_name, strlen (actual_name),
6880 built_actual_name != NULL,
6881 VAR_DOMAIN, LOC_STATIC,
6882 &objfile->global_psymbols,
6883 0, addr + baseaddr,
6884 cu->language, objfile);
6885 }
6886 else
6887 {
6888 /* Static Variable. Skip symbols without location descriptors. */
6889 if (pdi->d.locdesc == NULL)
6890 {
6891 xfree (built_actual_name);
6892 return;
6893 }
6894 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6895 mst_file_data, objfile); */
6896 add_psymbol_to_list (actual_name, strlen (actual_name),
6897 built_actual_name != NULL,
6898 VAR_DOMAIN, LOC_STATIC,
6899 &objfile->static_psymbols,
6900 0, addr + baseaddr,
6901 cu->language, objfile);
6902 }
6903 break;
6904 case DW_TAG_typedef:
6905 case DW_TAG_base_type:
6906 case DW_TAG_subrange_type:
6907 add_psymbol_to_list (actual_name, strlen (actual_name),
6908 built_actual_name != NULL,
6909 VAR_DOMAIN, LOC_TYPEDEF,
6910 &objfile->static_psymbols,
6911 0, (CORE_ADDR) 0, cu->language, objfile);
6912 break;
6913 case DW_TAG_imported_declaration:
6914 case DW_TAG_namespace:
6915 add_psymbol_to_list (actual_name, strlen (actual_name),
6916 built_actual_name != NULL,
6917 VAR_DOMAIN, LOC_TYPEDEF,
6918 &objfile->global_psymbols,
6919 0, (CORE_ADDR) 0, cu->language, objfile);
6920 break;
6921 case DW_TAG_module:
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 MODULE_DOMAIN, LOC_TYPEDEF,
6925 &objfile->global_psymbols,
6926 0, (CORE_ADDR) 0, cu->language, objfile);
6927 break;
6928 case DW_TAG_class_type:
6929 case DW_TAG_interface_type:
6930 case DW_TAG_structure_type:
6931 case DW_TAG_union_type:
6932 case DW_TAG_enumeration_type:
6933 /* Skip external references. The DWARF standard says in the section
6934 about "Structure, Union, and Class Type Entries": "An incomplete
6935 structure, union or class type is represented by a structure,
6936 union or class entry that does not have a byte size attribute
6937 and that has a DW_AT_declaration attribute." */
6938 if (!pdi->has_byte_size && pdi->is_declaration)
6939 {
6940 xfree (built_actual_name);
6941 return;
6942 }
6943
6944 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6945 static vs. global. */
6946 add_psymbol_to_list (actual_name, strlen (actual_name),
6947 built_actual_name != NULL,
6948 STRUCT_DOMAIN, LOC_TYPEDEF,
6949 (cu->language == language_cplus
6950 || cu->language == language_java)
6951 ? &objfile->global_psymbols
6952 : &objfile->static_psymbols,
6953 0, (CORE_ADDR) 0, cu->language, objfile);
6954
6955 break;
6956 case DW_TAG_enumerator:
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_CONST,
6960 (cu->language == language_cplus
6961 || cu->language == language_java)
6962 ? &objfile->global_psymbols
6963 : &objfile->static_psymbols,
6964 0, (CORE_ADDR) 0, cu->language, objfile);
6965 break;
6966 default:
6967 break;
6968 }
6969
6970 xfree (built_actual_name);
6971 }
6972
6973 /* Read a partial die corresponding to a namespace; also, add a symbol
6974 corresponding to that namespace to the symbol table. NAMESPACE is
6975 the name of the enclosing namespace. */
6976
6977 static void
6978 add_partial_namespace (struct partial_die_info *pdi,
6979 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6980 int need_pc, struct dwarf2_cu *cu)
6981 {
6982 /* Add a symbol for the namespace. */
6983
6984 add_partial_symbol (pdi, cu);
6985
6986 /* Now scan partial symbols in that namespace. */
6987
6988 if (pdi->has_children)
6989 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6990 }
6991
6992 /* Read a partial die corresponding to a Fortran module. */
6993
6994 static void
6995 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6996 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6997 {
6998 /* Add a symbol for the namespace. */
6999
7000 add_partial_symbol (pdi, cu);
7001
7002 /* Now scan partial symbols in that module. */
7003
7004 if (pdi->has_children)
7005 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7006 }
7007
7008 /* Read a partial die corresponding to a subprogram and create a partial
7009 symbol for that subprogram. When the CU language allows it, this
7010 routine also defines a partial symbol for each nested subprogram
7011 that this subprogram contains.
7012
7013 DIE my also be a lexical block, in which case we simply search
7014 recursively for suprograms defined inside that lexical block.
7015 Again, this is only performed when the CU language allows this
7016 type of definitions. */
7017
7018 static void
7019 add_partial_subprogram (struct partial_die_info *pdi,
7020 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7021 int need_pc, struct dwarf2_cu *cu)
7022 {
7023 if (pdi->tag == DW_TAG_subprogram)
7024 {
7025 if (pdi->has_pc_info)
7026 {
7027 if (pdi->lowpc < *lowpc)
7028 *lowpc = pdi->lowpc;
7029 if (pdi->highpc > *highpc)
7030 *highpc = pdi->highpc;
7031 if (need_pc)
7032 {
7033 CORE_ADDR baseaddr;
7034 struct objfile *objfile = cu->objfile;
7035
7036 baseaddr = ANOFFSET (objfile->section_offsets,
7037 SECT_OFF_TEXT (objfile));
7038 addrmap_set_empty (objfile->psymtabs_addrmap,
7039 pdi->lowpc + baseaddr,
7040 pdi->highpc - 1 + baseaddr,
7041 cu->per_cu->v.psymtab);
7042 }
7043 }
7044
7045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7046 {
7047 if (!pdi->is_declaration)
7048 /* Ignore subprogram DIEs that do not have a name, they are
7049 illegal. Do not emit a complaint at this point, we will
7050 do so when we convert this psymtab into a symtab. */
7051 if (pdi->name)
7052 add_partial_symbol (pdi, cu);
7053 }
7054 }
7055
7056 if (! pdi->has_children)
7057 return;
7058
7059 if (cu->language == language_ada)
7060 {
7061 pdi = pdi->die_child;
7062 while (pdi != NULL)
7063 {
7064 fixup_partial_die (pdi, cu);
7065 if (pdi->tag == DW_TAG_subprogram
7066 || pdi->tag == DW_TAG_lexical_block)
7067 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
7068 pdi = pdi->die_sibling;
7069 }
7070 }
7071 }
7072
7073 /* Read a partial die corresponding to an enumeration type. */
7074
7075 static void
7076 add_partial_enumeration (struct partial_die_info *enum_pdi,
7077 struct dwarf2_cu *cu)
7078 {
7079 struct partial_die_info *pdi;
7080
7081 if (enum_pdi->name != NULL)
7082 add_partial_symbol (enum_pdi, cu);
7083
7084 pdi = enum_pdi->die_child;
7085 while (pdi)
7086 {
7087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7088 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7089 else
7090 add_partial_symbol (pdi, cu);
7091 pdi = pdi->die_sibling;
7092 }
7093 }
7094
7095 /* Return the initial uleb128 in the die at INFO_PTR. */
7096
7097 static unsigned int
7098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7099 {
7100 unsigned int bytes_read;
7101
7102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103 }
7104
7105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7106 Return the corresponding abbrev, or NULL if the number is zero (indicating
7107 an empty DIE). In either case *BYTES_READ will be set to the length of
7108 the initial number. */
7109
7110 static struct abbrev_info *
7111 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7112 struct dwarf2_cu *cu)
7113 {
7114 bfd *abfd = cu->objfile->obfd;
7115 unsigned int abbrev_number;
7116 struct abbrev_info *abbrev;
7117
7118 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7119
7120 if (abbrev_number == 0)
7121 return NULL;
7122
7123 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7124 if (!abbrev)
7125 {
7126 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7127 abbrev_number, bfd_get_filename (abfd));
7128 }
7129
7130 return abbrev;
7131 }
7132
7133 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7134 Returns a pointer to the end of a series of DIEs, terminated by an empty
7135 DIE. Any children of the skipped DIEs will also be skipped. */
7136
7137 static const gdb_byte *
7138 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7139 {
7140 struct dwarf2_cu *cu = reader->cu;
7141 struct abbrev_info *abbrev;
7142 unsigned int bytes_read;
7143
7144 while (1)
7145 {
7146 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7147 if (abbrev == NULL)
7148 return info_ptr + bytes_read;
7149 else
7150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7151 }
7152 }
7153
7154 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7156 abbrev corresponding to that skipped uleb128 should be passed in
7157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7158 children. */
7159
7160 static const gdb_byte *
7161 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7162 struct abbrev_info *abbrev)
7163 {
7164 unsigned int bytes_read;
7165 struct attribute attr;
7166 bfd *abfd = reader->abfd;
7167 struct dwarf2_cu *cu = reader->cu;
7168 const gdb_byte *buffer = reader->buffer;
7169 const gdb_byte *buffer_end = reader->buffer_end;
7170 const gdb_byte *start_info_ptr = info_ptr;
7171 unsigned int form, i;
7172
7173 for (i = 0; i < abbrev->num_attrs; i++)
7174 {
7175 /* The only abbrev we care about is DW_AT_sibling. */
7176 if (abbrev->attrs[i].name == DW_AT_sibling)
7177 {
7178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7179 if (attr.form == DW_FORM_ref_addr)
7180 complaint (&symfile_complaints,
7181 _("ignoring absolute DW_AT_sibling"));
7182 else
7183 {
7184 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7185 const gdb_byte *sibling_ptr = buffer + off;
7186
7187 if (sibling_ptr < info_ptr)
7188 complaint (&symfile_complaints,
7189 _("DW_AT_sibling points backwards"));
7190 else if (sibling_ptr > reader->buffer_end)
7191 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7192 else
7193 return sibling_ptr;
7194 }
7195 }
7196
7197 /* If it isn't DW_AT_sibling, skip this attribute. */
7198 form = abbrev->attrs[i].form;
7199 skip_attribute:
7200 switch (form)
7201 {
7202 case DW_FORM_ref_addr:
7203 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7204 and later it is offset sized. */
7205 if (cu->header.version == 2)
7206 info_ptr += cu->header.addr_size;
7207 else
7208 info_ptr += cu->header.offset_size;
7209 break;
7210 case DW_FORM_GNU_ref_alt:
7211 info_ptr += cu->header.offset_size;
7212 break;
7213 case DW_FORM_addr:
7214 info_ptr += cu->header.addr_size;
7215 break;
7216 case DW_FORM_data1:
7217 case DW_FORM_ref1:
7218 case DW_FORM_flag:
7219 info_ptr += 1;
7220 break;
7221 case DW_FORM_flag_present:
7222 break;
7223 case DW_FORM_data2:
7224 case DW_FORM_ref2:
7225 info_ptr += 2;
7226 break;
7227 case DW_FORM_data4:
7228 case DW_FORM_ref4:
7229 info_ptr += 4;
7230 break;
7231 case DW_FORM_data8:
7232 case DW_FORM_ref8:
7233 case DW_FORM_ref_sig8:
7234 info_ptr += 8;
7235 break;
7236 case DW_FORM_string:
7237 read_direct_string (abfd, info_ptr, &bytes_read);
7238 info_ptr += bytes_read;
7239 break;
7240 case DW_FORM_sec_offset:
7241 case DW_FORM_strp:
7242 case DW_FORM_GNU_strp_alt:
7243 info_ptr += cu->header.offset_size;
7244 break;
7245 case DW_FORM_exprloc:
7246 case DW_FORM_block:
7247 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7248 info_ptr += bytes_read;
7249 break;
7250 case DW_FORM_block1:
7251 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7252 break;
7253 case DW_FORM_block2:
7254 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block4:
7257 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_sdata:
7260 case DW_FORM_udata:
7261 case DW_FORM_ref_udata:
7262 case DW_FORM_GNU_addr_index:
7263 case DW_FORM_GNU_str_index:
7264 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7265 break;
7266 case DW_FORM_indirect:
7267 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7268 info_ptr += bytes_read;
7269 /* We need to continue parsing from here, so just go back to
7270 the top. */
7271 goto skip_attribute;
7272
7273 default:
7274 error (_("Dwarf Error: Cannot handle %s "
7275 "in DWARF reader [in module %s]"),
7276 dwarf_form_name (form),
7277 bfd_get_filename (abfd));
7278 }
7279 }
7280
7281 if (abbrev->has_children)
7282 return skip_children (reader, info_ptr);
7283 else
7284 return info_ptr;
7285 }
7286
7287 /* Locate ORIG_PDI's sibling.
7288 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7289
7290 static const gdb_byte *
7291 locate_pdi_sibling (const struct die_reader_specs *reader,
7292 struct partial_die_info *orig_pdi,
7293 const gdb_byte *info_ptr)
7294 {
7295 /* Do we know the sibling already? */
7296
7297 if (orig_pdi->sibling)
7298 return orig_pdi->sibling;
7299
7300 /* Are there any children to deal with? */
7301
7302 if (!orig_pdi->has_children)
7303 return info_ptr;
7304
7305 /* Skip the children the long way. */
7306
7307 return skip_children (reader, info_ptr);
7308 }
7309
7310 /* Expand this partial symbol table into a full symbol table. SELF is
7311 not NULL. */
7312
7313 static void
7314 dwarf2_read_symtab (struct partial_symtab *self,
7315 struct objfile *objfile)
7316 {
7317 if (self->readin)
7318 {
7319 warning (_("bug: psymtab for %s is already read in."),
7320 self->filename);
7321 }
7322 else
7323 {
7324 if (info_verbose)
7325 {
7326 printf_filtered (_("Reading in symbols for %s..."),
7327 self->filename);
7328 gdb_flush (gdb_stdout);
7329 }
7330
7331 /* Restore our global data. */
7332 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7333
7334 /* If this psymtab is constructed from a debug-only objfile, the
7335 has_section_at_zero flag will not necessarily be correct. We
7336 can get the correct value for this flag by looking at the data
7337 associated with the (presumably stripped) associated objfile. */
7338 if (objfile->separate_debug_objfile_backlink)
7339 {
7340 struct dwarf2_per_objfile *dpo_backlink
7341 = objfile_data (objfile->separate_debug_objfile_backlink,
7342 dwarf2_objfile_data_key);
7343
7344 dwarf2_per_objfile->has_section_at_zero
7345 = dpo_backlink->has_section_at_zero;
7346 }
7347
7348 dwarf2_per_objfile->reading_partial_symbols = 0;
7349
7350 psymtab_to_symtab_1 (self);
7351
7352 /* Finish up the debug error message. */
7353 if (info_verbose)
7354 printf_filtered (_("done.\n"));
7355 }
7356
7357 process_cu_includes ();
7358 }
7359 \f
7360 /* Reading in full CUs. */
7361
7362 /* Add PER_CU to the queue. */
7363
7364 static void
7365 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7366 enum language pretend_language)
7367 {
7368 struct dwarf2_queue_item *item;
7369
7370 per_cu->queued = 1;
7371 item = xmalloc (sizeof (*item));
7372 item->per_cu = per_cu;
7373 item->pretend_language = pretend_language;
7374 item->next = NULL;
7375
7376 if (dwarf2_queue == NULL)
7377 dwarf2_queue = item;
7378 else
7379 dwarf2_queue_tail->next = item;
7380
7381 dwarf2_queue_tail = item;
7382 }
7383
7384 /* If PER_CU is not yet queued, add it to the queue.
7385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7386 dependency.
7387 The result is non-zero if PER_CU was queued, otherwise the result is zero
7388 meaning either PER_CU is already queued or it is already loaded.
7389
7390 N.B. There is an invariant here that if a CU is queued then it is loaded.
7391 The caller is required to load PER_CU if we return non-zero. */
7392
7393 static int
7394 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7395 struct dwarf2_per_cu_data *per_cu,
7396 enum language pretend_language)
7397 {
7398 /* We may arrive here during partial symbol reading, if we need full
7399 DIEs to process an unusual case (e.g. template arguments). Do
7400 not queue PER_CU, just tell our caller to load its DIEs. */
7401 if (dwarf2_per_objfile->reading_partial_symbols)
7402 {
7403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7404 return 1;
7405 return 0;
7406 }
7407
7408 /* Mark the dependence relation so that we don't flush PER_CU
7409 too early. */
7410 if (dependent_cu != NULL)
7411 dwarf2_add_dependence (dependent_cu, per_cu);
7412
7413 /* If it's already on the queue, we have nothing to do. */
7414 if (per_cu->queued)
7415 return 0;
7416
7417 /* If the compilation unit is already loaded, just mark it as
7418 used. */
7419 if (per_cu->cu != NULL)
7420 {
7421 per_cu->cu->last_used = 0;
7422 return 0;
7423 }
7424
7425 /* Add it to the queue. */
7426 queue_comp_unit (per_cu, pretend_language);
7427
7428 return 1;
7429 }
7430
7431 /* Process the queue. */
7432
7433 static void
7434 process_queue (void)
7435 {
7436 struct dwarf2_queue_item *item, *next_item;
7437
7438 if (dwarf2_read_debug)
7439 {
7440 fprintf_unfiltered (gdb_stdlog,
7441 "Expanding one or more symtabs of objfile %s ...\n",
7442 objfile_name (dwarf2_per_objfile->objfile));
7443 }
7444
7445 /* The queue starts out with one item, but following a DIE reference
7446 may load a new CU, adding it to the end of the queue. */
7447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7448 {
7449 if (dwarf2_per_objfile->using_index
7450 ? !item->per_cu->v.quick->symtab
7451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7452 {
7453 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7454 unsigned int debug_print_threshold;
7455 char buf[100];
7456
7457 if (per_cu->is_debug_types)
7458 {
7459 struct signatured_type *sig_type =
7460 (struct signatured_type *) per_cu;
7461
7462 sprintf (buf, "TU %s at offset 0x%x",
7463 hex_string (sig_type->signature),
7464 per_cu->offset.sect_off);
7465 /* There can be 100s of TUs.
7466 Only print them in verbose mode. */
7467 debug_print_threshold = 2;
7468 }
7469 else
7470 {
7471 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7472 debug_print_threshold = 1;
7473 }
7474
7475 if (dwarf2_read_debug >= debug_print_threshold)
7476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7477
7478 if (per_cu->is_debug_types)
7479 process_full_type_unit (per_cu, item->pretend_language);
7480 else
7481 process_full_comp_unit (per_cu, item->pretend_language);
7482
7483 if (dwarf2_read_debug >= debug_print_threshold)
7484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7485 }
7486
7487 item->per_cu->queued = 0;
7488 next_item = item->next;
7489 xfree (item);
7490 }
7491
7492 dwarf2_queue_tail = NULL;
7493
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7497 objfile_name (dwarf2_per_objfile->objfile));
7498 }
7499 }
7500
7501 /* Free all allocated queue entries. This function only releases anything if
7502 an error was thrown; if the queue was processed then it would have been
7503 freed as we went along. */
7504
7505 static void
7506 dwarf2_release_queue (void *dummy)
7507 {
7508 struct dwarf2_queue_item *item, *last;
7509
7510 item = dwarf2_queue;
7511 while (item)
7512 {
7513 /* Anything still marked queued is likely to be in an
7514 inconsistent state, so discard it. */
7515 if (item->per_cu->queued)
7516 {
7517 if (item->per_cu->cu != NULL)
7518 free_one_cached_comp_unit (item->per_cu);
7519 item->per_cu->queued = 0;
7520 }
7521
7522 last = item;
7523 item = item->next;
7524 xfree (last);
7525 }
7526
7527 dwarf2_queue = dwarf2_queue_tail = NULL;
7528 }
7529
7530 /* Read in full symbols for PST, and anything it depends on. */
7531
7532 static void
7533 psymtab_to_symtab_1 (struct partial_symtab *pst)
7534 {
7535 struct dwarf2_per_cu_data *per_cu;
7536 int i;
7537
7538 if (pst->readin)
7539 return;
7540
7541 for (i = 0; i < pst->number_of_dependencies; i++)
7542 if (!pst->dependencies[i]->readin
7543 && pst->dependencies[i]->user == NULL)
7544 {
7545 /* Inform about additional files that need to be read in. */
7546 if (info_verbose)
7547 {
7548 /* FIXME: i18n: Need to make this a single string. */
7549 fputs_filtered (" ", gdb_stdout);
7550 wrap_here ("");
7551 fputs_filtered ("and ", gdb_stdout);
7552 wrap_here ("");
7553 printf_filtered ("%s...", pst->dependencies[i]->filename);
7554 wrap_here (""); /* Flush output. */
7555 gdb_flush (gdb_stdout);
7556 }
7557 psymtab_to_symtab_1 (pst->dependencies[i]);
7558 }
7559
7560 per_cu = pst->read_symtab_private;
7561
7562 if (per_cu == NULL)
7563 {
7564 /* It's an include file, no symbols to read for it.
7565 Everything is in the parent symtab. */
7566 pst->readin = 1;
7567 return;
7568 }
7569
7570 dw2_do_instantiate_symtab (per_cu);
7571 }
7572
7573 /* Trivial hash function for die_info: the hash value of a DIE
7574 is its offset in .debug_info for this objfile. */
7575
7576 static hashval_t
7577 die_hash (const void *item)
7578 {
7579 const struct die_info *die = item;
7580
7581 return die->offset.sect_off;
7582 }
7583
7584 /* Trivial comparison function for die_info structures: two DIEs
7585 are equal if they have the same offset. */
7586
7587 static int
7588 die_eq (const void *item_lhs, const void *item_rhs)
7589 {
7590 const struct die_info *die_lhs = item_lhs;
7591 const struct die_info *die_rhs = item_rhs;
7592
7593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7594 }
7595
7596 /* die_reader_func for load_full_comp_unit.
7597 This is identical to read_signatured_type_reader,
7598 but is kept separate for now. */
7599
7600 static void
7601 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7602 const gdb_byte *info_ptr,
7603 struct die_info *comp_unit_die,
7604 int has_children,
7605 void *data)
7606 {
7607 struct dwarf2_cu *cu = reader->cu;
7608 enum language *language_ptr = data;
7609
7610 gdb_assert (cu->die_hash == NULL);
7611 cu->die_hash =
7612 htab_create_alloc_ex (cu->header.length / 12,
7613 die_hash,
7614 die_eq,
7615 NULL,
7616 &cu->comp_unit_obstack,
7617 hashtab_obstack_allocate,
7618 dummy_obstack_deallocate);
7619
7620 if (has_children)
7621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7622 &info_ptr, comp_unit_die);
7623 cu->dies = comp_unit_die;
7624 /* comp_unit_die is not stored in die_hash, no need. */
7625
7626 /* We try not to read any attributes in this function, because not
7627 all CUs needed for references have been loaded yet, and symbol
7628 table processing isn't initialized. But we have to set the CU language,
7629 or we won't be able to build types correctly.
7630 Similarly, if we do not read the producer, we can not apply
7631 producer-specific interpretation. */
7632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7633 }
7634
7635 /* Load the DIEs associated with PER_CU into memory. */
7636
7637 static void
7638 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7639 enum language pretend_language)
7640 {
7641 gdb_assert (! this_cu->is_debug_types);
7642
7643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7644 load_full_comp_unit_reader, &pretend_language);
7645 }
7646
7647 /* Add a DIE to the delayed physname list. */
7648
7649 static void
7650 add_to_method_list (struct type *type, int fnfield_index, int index,
7651 const char *name, struct die_info *die,
7652 struct dwarf2_cu *cu)
7653 {
7654 struct delayed_method_info mi;
7655 mi.type = type;
7656 mi.fnfield_index = fnfield_index;
7657 mi.index = index;
7658 mi.name = name;
7659 mi.die = die;
7660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7661 }
7662
7663 /* A cleanup for freeing the delayed method list. */
7664
7665 static void
7666 free_delayed_list (void *ptr)
7667 {
7668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7669 if (cu->method_list != NULL)
7670 {
7671 VEC_free (delayed_method_info, cu->method_list);
7672 cu->method_list = NULL;
7673 }
7674 }
7675
7676 /* Compute the physnames of any methods on the CU's method list.
7677
7678 The computation of method physnames is delayed in order to avoid the
7679 (bad) condition that one of the method's formal parameters is of an as yet
7680 incomplete type. */
7681
7682 static void
7683 compute_delayed_physnames (struct dwarf2_cu *cu)
7684 {
7685 int i;
7686 struct delayed_method_info *mi;
7687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7688 {
7689 const char *physname;
7690 struct fn_fieldlist *fn_flp
7691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7692 physname = dwarf2_physname (mi->name, mi->die, cu);
7693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7694 }
7695 }
7696
7697 /* Go objects should be embedded in a DW_TAG_module DIE,
7698 and it's not clear if/how imported objects will appear.
7699 To keep Go support simple until that's worked out,
7700 go back through what we've read and create something usable.
7701 We could do this while processing each DIE, and feels kinda cleaner,
7702 but that way is more invasive.
7703 This is to, for example, allow the user to type "p var" or "b main"
7704 without having to specify the package name, and allow lookups
7705 of module.object to work in contexts that use the expression
7706 parser. */
7707
7708 static void
7709 fixup_go_packaging (struct dwarf2_cu *cu)
7710 {
7711 char *package_name = NULL;
7712 struct pending *list;
7713 int i;
7714
7715 for (list = global_symbols; list != NULL; list = list->next)
7716 {
7717 for (i = 0; i < list->nsyms; ++i)
7718 {
7719 struct symbol *sym = list->symbol[i];
7720
7721 if (SYMBOL_LANGUAGE (sym) == language_go
7722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7723 {
7724 char *this_package_name = go_symbol_package_name (sym);
7725
7726 if (this_package_name == NULL)
7727 continue;
7728 if (package_name == NULL)
7729 package_name = this_package_name;
7730 else
7731 {
7732 if (strcmp (package_name, this_package_name) != 0)
7733 complaint (&symfile_complaints,
7734 _("Symtab %s has objects from two different Go packages: %s and %s"),
7735 (SYMBOL_SYMTAB (sym)
7736 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7737 : objfile_name (cu->objfile)),
7738 this_package_name, package_name);
7739 xfree (this_package_name);
7740 }
7741 }
7742 }
7743 }
7744
7745 if (package_name != NULL)
7746 {
7747 struct objfile *objfile = cu->objfile;
7748 const char *saved_package_name
7749 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7750 package_name,
7751 strlen (package_name));
7752 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7753 saved_package_name, objfile);
7754 struct symbol *sym;
7755
7756 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7757
7758 sym = allocate_symbol (objfile);
7759 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7760 SYMBOL_SET_NAMES (sym, saved_package_name,
7761 strlen (saved_package_name), 0, objfile);
7762 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7763 e.g., "main" finds the "main" module and not C's main(). */
7764 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7765 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7766 SYMBOL_TYPE (sym) = type;
7767
7768 add_symbol_to_list (sym, &global_symbols);
7769
7770 xfree (package_name);
7771 }
7772 }
7773
7774 /* Return the symtab for PER_CU. This works properly regardless of
7775 whether we're using the index or psymtabs. */
7776
7777 static struct symtab *
7778 get_symtab (struct dwarf2_per_cu_data *per_cu)
7779 {
7780 return (dwarf2_per_objfile->using_index
7781 ? per_cu->v.quick->symtab
7782 : per_cu->v.psymtab->symtab);
7783 }
7784
7785 /* A helper function for computing the list of all symbol tables
7786 included by PER_CU. */
7787
7788 static void
7789 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7790 htab_t all_children, htab_t all_type_symtabs,
7791 struct dwarf2_per_cu_data *per_cu,
7792 struct symtab *immediate_parent)
7793 {
7794 void **slot;
7795 int ix;
7796 struct symtab *symtab;
7797 struct dwarf2_per_cu_data *iter;
7798
7799 slot = htab_find_slot (all_children, per_cu, INSERT);
7800 if (*slot != NULL)
7801 {
7802 /* This inclusion and its children have been processed. */
7803 return;
7804 }
7805
7806 *slot = per_cu;
7807 /* Only add a CU if it has a symbol table. */
7808 symtab = get_symtab (per_cu);
7809 if (symtab != NULL)
7810 {
7811 /* If this is a type unit only add its symbol table if we haven't
7812 seen it yet (type unit per_cu's can share symtabs). */
7813 if (per_cu->is_debug_types)
7814 {
7815 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7816 if (*slot == NULL)
7817 {
7818 *slot = symtab;
7819 VEC_safe_push (symtab_ptr, *result, symtab);
7820 if (symtab->user == NULL)
7821 symtab->user = immediate_parent;
7822 }
7823 }
7824 else
7825 {
7826 VEC_safe_push (symtab_ptr, *result, symtab);
7827 if (symtab->user == NULL)
7828 symtab->user = immediate_parent;
7829 }
7830 }
7831
7832 for (ix = 0;
7833 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7834 ++ix)
7835 {
7836 recursively_compute_inclusions (result, all_children,
7837 all_type_symtabs, iter, symtab);
7838 }
7839 }
7840
7841 /* Compute the symtab 'includes' fields for the symtab related to
7842 PER_CU. */
7843
7844 static void
7845 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7846 {
7847 gdb_assert (! per_cu->is_debug_types);
7848
7849 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7850 {
7851 int ix, len;
7852 struct dwarf2_per_cu_data *per_cu_iter;
7853 struct symtab *symtab_iter;
7854 VEC (symtab_ptr) *result_symtabs = NULL;
7855 htab_t all_children, all_type_symtabs;
7856 struct symtab *symtab = get_symtab (per_cu);
7857
7858 /* If we don't have a symtab, we can just skip this case. */
7859 if (symtab == NULL)
7860 return;
7861
7862 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7863 NULL, xcalloc, xfree);
7864 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7865 NULL, xcalloc, xfree);
7866
7867 for (ix = 0;
7868 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7869 ix, per_cu_iter);
7870 ++ix)
7871 {
7872 recursively_compute_inclusions (&result_symtabs, all_children,
7873 all_type_symtabs, per_cu_iter,
7874 symtab);
7875 }
7876
7877 /* Now we have a transitive closure of all the included symtabs. */
7878 len = VEC_length (symtab_ptr, result_symtabs);
7879 symtab->includes
7880 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7881 (len + 1) * sizeof (struct symtab *));
7882 for (ix = 0;
7883 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7884 ++ix)
7885 symtab->includes[ix] = symtab_iter;
7886 symtab->includes[len] = NULL;
7887
7888 VEC_free (symtab_ptr, result_symtabs);
7889 htab_delete (all_children);
7890 htab_delete (all_type_symtabs);
7891 }
7892 }
7893
7894 /* Compute the 'includes' field for the symtabs of all the CUs we just
7895 read. */
7896
7897 static void
7898 process_cu_includes (void)
7899 {
7900 int ix;
7901 struct dwarf2_per_cu_data *iter;
7902
7903 for (ix = 0;
7904 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7905 ix, iter);
7906 ++ix)
7907 {
7908 if (! iter->is_debug_types)
7909 compute_symtab_includes (iter);
7910 }
7911
7912 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7913 }
7914
7915 /* Generate full symbol information for PER_CU, whose DIEs have
7916 already been loaded into memory. */
7917
7918 static void
7919 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7920 enum language pretend_language)
7921 {
7922 struct dwarf2_cu *cu = per_cu->cu;
7923 struct objfile *objfile = per_cu->objfile;
7924 CORE_ADDR lowpc, highpc;
7925 struct symtab *symtab;
7926 struct cleanup *back_to, *delayed_list_cleanup;
7927 CORE_ADDR baseaddr;
7928 struct block *static_block;
7929
7930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7931
7932 buildsym_init ();
7933 back_to = make_cleanup (really_free_pendings, NULL);
7934 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7935
7936 cu->list_in_scope = &file_symbols;
7937
7938 cu->language = pretend_language;
7939 cu->language_defn = language_def (cu->language);
7940
7941 /* Do line number decoding in read_file_scope () */
7942 process_die (cu->dies, cu);
7943
7944 /* For now fudge the Go package. */
7945 if (cu->language == language_go)
7946 fixup_go_packaging (cu);
7947
7948 /* Now that we have processed all the DIEs in the CU, all the types
7949 should be complete, and it should now be safe to compute all of the
7950 physnames. */
7951 compute_delayed_physnames (cu);
7952 do_cleanups (delayed_list_cleanup);
7953
7954 /* Some compilers don't define a DW_AT_high_pc attribute for the
7955 compilation unit. If the DW_AT_high_pc is missing, synthesize
7956 it, by scanning the DIE's below the compilation unit. */
7957 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7958
7959 static_block
7960 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7961
7962 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7963 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7964 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7965 addrmap to help ensure it has an accurate map of pc values belonging to
7966 this comp unit. */
7967 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7968
7969 symtab = end_symtab_from_static_block (static_block, objfile,
7970 SECT_OFF_TEXT (objfile), 0);
7971
7972 if (symtab != NULL)
7973 {
7974 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7975
7976 /* Set symtab language to language from DW_AT_language. If the
7977 compilation is from a C file generated by language preprocessors, do
7978 not set the language if it was already deduced by start_subfile. */
7979 if (!(cu->language == language_c && symtab->language != language_c))
7980 symtab->language = cu->language;
7981
7982 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7983 produce DW_AT_location with location lists but it can be possibly
7984 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7985 there were bugs in prologue debug info, fixed later in GCC-4.5
7986 by "unwind info for epilogues" patch (which is not directly related).
7987
7988 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7989 needed, it would be wrong due to missing DW_AT_producer there.
7990
7991 Still one can confuse GDB by using non-standard GCC compilation
7992 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7993 */
7994 if (cu->has_loclist && gcc_4_minor >= 5)
7995 symtab->locations_valid = 1;
7996
7997 if (gcc_4_minor >= 5)
7998 symtab->epilogue_unwind_valid = 1;
7999
8000 symtab->call_site_htab = cu->call_site_htab;
8001 }
8002
8003 if (dwarf2_per_objfile->using_index)
8004 per_cu->v.quick->symtab = symtab;
8005 else
8006 {
8007 struct partial_symtab *pst = per_cu->v.psymtab;
8008 pst->symtab = symtab;
8009 pst->readin = 1;
8010 }
8011
8012 /* Push it for inclusion processing later. */
8013 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8014
8015 do_cleanups (back_to);
8016 }
8017
8018 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8019 already been loaded into memory. */
8020
8021 static void
8022 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8023 enum language pretend_language)
8024 {
8025 struct dwarf2_cu *cu = per_cu->cu;
8026 struct objfile *objfile = per_cu->objfile;
8027 struct symtab *symtab;
8028 struct cleanup *back_to, *delayed_list_cleanup;
8029 struct signatured_type *sig_type;
8030
8031 gdb_assert (per_cu->is_debug_types);
8032 sig_type = (struct signatured_type *) per_cu;
8033
8034 buildsym_init ();
8035 back_to = make_cleanup (really_free_pendings, NULL);
8036 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037
8038 cu->list_in_scope = &file_symbols;
8039
8040 cu->language = pretend_language;
8041 cu->language_defn = language_def (cu->language);
8042
8043 /* The symbol tables are set up in read_type_unit_scope. */
8044 process_die (cu->dies, cu);
8045
8046 /* For now fudge the Go package. */
8047 if (cu->language == language_go)
8048 fixup_go_packaging (cu);
8049
8050 /* Now that we have processed all the DIEs in the CU, all the types
8051 should be complete, and it should now be safe to compute all of the
8052 physnames. */
8053 compute_delayed_physnames (cu);
8054 do_cleanups (delayed_list_cleanup);
8055
8056 /* TUs share symbol tables.
8057 If this is the first TU to use this symtab, complete the construction
8058 of it with end_expandable_symtab. Otherwise, complete the addition of
8059 this TU's symbols to the existing symtab. */
8060 if (sig_type->type_unit_group->primary_symtab == NULL)
8061 {
8062 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8063 sig_type->type_unit_group->primary_symtab = symtab;
8064
8065 if (symtab != NULL)
8066 {
8067 /* Set symtab language to language from DW_AT_language. If the
8068 compilation is from a C file generated by language preprocessors,
8069 do not set the language if it was already deduced by
8070 start_subfile. */
8071 if (!(cu->language == language_c && symtab->language != language_c))
8072 symtab->language = cu->language;
8073 }
8074 }
8075 else
8076 {
8077 augment_type_symtab (objfile,
8078 sig_type->type_unit_group->primary_symtab);
8079 symtab = sig_type->type_unit_group->primary_symtab;
8080 }
8081
8082 if (dwarf2_per_objfile->using_index)
8083 per_cu->v.quick->symtab = symtab;
8084 else
8085 {
8086 struct partial_symtab *pst = per_cu->v.psymtab;
8087 pst->symtab = symtab;
8088 pst->readin = 1;
8089 }
8090
8091 do_cleanups (back_to);
8092 }
8093
8094 /* Process an imported unit DIE. */
8095
8096 static void
8097 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8098 {
8099 struct attribute *attr;
8100
8101 /* For now we don't handle imported units in type units. */
8102 if (cu->per_cu->is_debug_types)
8103 {
8104 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8105 " supported in type units [in module %s]"),
8106 objfile_name (cu->objfile));
8107 }
8108
8109 attr = dwarf2_attr (die, DW_AT_import, cu);
8110 if (attr != NULL)
8111 {
8112 struct dwarf2_per_cu_data *per_cu;
8113 struct symtab *imported_symtab;
8114 sect_offset offset;
8115 int is_dwz;
8116
8117 offset = dwarf2_get_ref_die_offset (attr);
8118 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8119 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8120
8121 /* If necessary, add it to the queue and load its DIEs. */
8122 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8123 load_full_comp_unit (per_cu, cu->language);
8124
8125 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8126 per_cu);
8127 }
8128 }
8129
8130 /* Reset the in_process bit of a die. */
8131
8132 static void
8133 reset_die_in_process (void *arg)
8134 {
8135 struct die_info *die = arg;
8136
8137 die->in_process = 0;
8138 }
8139
8140 /* Process a die and its children. */
8141
8142 static void
8143 process_die (struct die_info *die, struct dwarf2_cu *cu)
8144 {
8145 struct cleanup *in_process;
8146
8147 /* We should only be processing those not already in process. */
8148 gdb_assert (!die->in_process);
8149
8150 die->in_process = 1;
8151 in_process = make_cleanup (reset_die_in_process,die);
8152
8153 switch (die->tag)
8154 {
8155 case DW_TAG_padding:
8156 break;
8157 case DW_TAG_compile_unit:
8158 case DW_TAG_partial_unit:
8159 read_file_scope (die, cu);
8160 break;
8161 case DW_TAG_type_unit:
8162 read_type_unit_scope (die, cu);
8163 break;
8164 case DW_TAG_subprogram:
8165 case DW_TAG_inlined_subroutine:
8166 read_func_scope (die, cu);
8167 break;
8168 case DW_TAG_lexical_block:
8169 case DW_TAG_try_block:
8170 case DW_TAG_catch_block:
8171 read_lexical_block_scope (die, cu);
8172 break;
8173 case DW_TAG_GNU_call_site:
8174 read_call_site_scope (die, cu);
8175 break;
8176 case DW_TAG_class_type:
8177 case DW_TAG_interface_type:
8178 case DW_TAG_structure_type:
8179 case DW_TAG_union_type:
8180 process_structure_scope (die, cu);
8181 break;
8182 case DW_TAG_enumeration_type:
8183 process_enumeration_scope (die, cu);
8184 break;
8185
8186 /* These dies have a type, but processing them does not create
8187 a symbol or recurse to process the children. Therefore we can
8188 read them on-demand through read_type_die. */
8189 case DW_TAG_subroutine_type:
8190 case DW_TAG_set_type:
8191 case DW_TAG_array_type:
8192 case DW_TAG_pointer_type:
8193 case DW_TAG_ptr_to_member_type:
8194 case DW_TAG_reference_type:
8195 case DW_TAG_string_type:
8196 break;
8197
8198 case DW_TAG_base_type:
8199 case DW_TAG_subrange_type:
8200 case DW_TAG_typedef:
8201 /* Add a typedef symbol for the type definition, if it has a
8202 DW_AT_name. */
8203 new_symbol (die, read_type_die (die, cu), cu);
8204 break;
8205 case DW_TAG_common_block:
8206 read_common_block (die, cu);
8207 break;
8208 case DW_TAG_common_inclusion:
8209 break;
8210 case DW_TAG_namespace:
8211 cu->processing_has_namespace_info = 1;
8212 read_namespace (die, cu);
8213 break;
8214 case DW_TAG_module:
8215 cu->processing_has_namespace_info = 1;
8216 read_module (die, cu);
8217 break;
8218 case DW_TAG_imported_declaration:
8219 cu->processing_has_namespace_info = 1;
8220 if (read_namespace_alias (die, cu))
8221 break;
8222 /* The declaration is not a global namespace alias: fall through. */
8223 case DW_TAG_imported_module:
8224 cu->processing_has_namespace_info = 1;
8225 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8226 || cu->language != language_fortran))
8227 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8228 dwarf_tag_name (die->tag));
8229 read_import_statement (die, cu);
8230 break;
8231
8232 case DW_TAG_imported_unit:
8233 process_imported_unit_die (die, cu);
8234 break;
8235
8236 default:
8237 new_symbol (die, NULL, cu);
8238 break;
8239 }
8240
8241 do_cleanups (in_process);
8242 }
8243 \f
8244 /* DWARF name computation. */
8245
8246 /* A helper function for dwarf2_compute_name which determines whether DIE
8247 needs to have the name of the scope prepended to the name listed in the
8248 die. */
8249
8250 static int
8251 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8252 {
8253 struct attribute *attr;
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_namespace:
8258 case DW_TAG_typedef:
8259 case DW_TAG_class_type:
8260 case DW_TAG_interface_type:
8261 case DW_TAG_structure_type:
8262 case DW_TAG_union_type:
8263 case DW_TAG_enumeration_type:
8264 case DW_TAG_enumerator:
8265 case DW_TAG_subprogram:
8266 case DW_TAG_member:
8267 case DW_TAG_imported_declaration:
8268 return 1;
8269
8270 case DW_TAG_variable:
8271 case DW_TAG_constant:
8272 /* We only need to prefix "globally" visible variables. These include
8273 any variable marked with DW_AT_external or any variable that
8274 lives in a namespace. [Variables in anonymous namespaces
8275 require prefixing, but they are not DW_AT_external.] */
8276
8277 if (dwarf2_attr (die, DW_AT_specification, cu))
8278 {
8279 struct dwarf2_cu *spec_cu = cu;
8280
8281 return die_needs_namespace (die_specification (die, &spec_cu),
8282 spec_cu);
8283 }
8284
8285 attr = dwarf2_attr (die, DW_AT_external, cu);
8286 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8287 && die->parent->tag != DW_TAG_module)
8288 return 0;
8289 /* A variable in a lexical block of some kind does not need a
8290 namespace, even though in C++ such variables may be external
8291 and have a mangled name. */
8292 if (die->parent->tag == DW_TAG_lexical_block
8293 || die->parent->tag == DW_TAG_try_block
8294 || die->parent->tag == DW_TAG_catch_block
8295 || die->parent->tag == DW_TAG_subprogram)
8296 return 0;
8297 return 1;
8298
8299 default:
8300 return 0;
8301 }
8302 }
8303
8304 /* Retrieve the last character from a mem_file. */
8305
8306 static void
8307 do_ui_file_peek_last (void *object, const char *buffer, long length)
8308 {
8309 char *last_char_p = (char *) object;
8310
8311 if (length > 0)
8312 *last_char_p = buffer[length - 1];
8313 }
8314
8315 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8316 compute the physname for the object, which include a method's:
8317 - formal parameters (C++/Java),
8318 - receiver type (Go),
8319 - return type (Java).
8320
8321 The term "physname" is a bit confusing.
8322 For C++, for example, it is the demangled name.
8323 For Go, for example, it's the mangled name.
8324
8325 For Ada, return the DIE's linkage name rather than the fully qualified
8326 name. PHYSNAME is ignored..
8327
8328 The result is allocated on the objfile_obstack and canonicalized. */
8329
8330 static const char *
8331 dwarf2_compute_name (const char *name,
8332 struct die_info *die, struct dwarf2_cu *cu,
8333 int physname)
8334 {
8335 struct objfile *objfile = cu->objfile;
8336
8337 if (name == NULL)
8338 name = dwarf2_name (die, cu);
8339
8340 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8341 compute it by typename_concat inside GDB. */
8342 if (cu->language == language_ada
8343 || (cu->language == language_fortran && physname))
8344 {
8345 /* For Ada unit, we prefer the linkage name over the name, as
8346 the former contains the exported name, which the user expects
8347 to be able to reference. Ideally, we want the user to be able
8348 to reference this entity using either natural or linkage name,
8349 but we haven't started looking at this enhancement yet. */
8350 struct attribute *attr;
8351
8352 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8353 if (attr == NULL)
8354 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8355 if (attr && DW_STRING (attr))
8356 return DW_STRING (attr);
8357 }
8358
8359 /* These are the only languages we know how to qualify names in. */
8360 if (name != NULL
8361 && (cu->language == language_cplus || cu->language == language_java
8362 || cu->language == language_fortran))
8363 {
8364 if (die_needs_namespace (die, cu))
8365 {
8366 long length;
8367 const char *prefix;
8368 struct ui_file *buf;
8369 char *intermediate_name;
8370 const char *canonical_name = NULL;
8371
8372 prefix = determine_prefix (die, cu);
8373 buf = mem_fileopen ();
8374 if (*prefix != '\0')
8375 {
8376 char *prefixed_name = typename_concat (NULL, prefix, name,
8377 physname, cu);
8378
8379 fputs_unfiltered (prefixed_name, buf);
8380 xfree (prefixed_name);
8381 }
8382 else
8383 fputs_unfiltered (name, buf);
8384
8385 /* Template parameters may be specified in the DIE's DW_AT_name, or
8386 as children with DW_TAG_template_type_param or
8387 DW_TAG_value_type_param. If the latter, add them to the name
8388 here. If the name already has template parameters, then
8389 skip this step; some versions of GCC emit both, and
8390 it is more efficient to use the pre-computed name.
8391
8392 Something to keep in mind about this process: it is very
8393 unlikely, or in some cases downright impossible, to produce
8394 something that will match the mangled name of a function.
8395 If the definition of the function has the same debug info,
8396 we should be able to match up with it anyway. But fallbacks
8397 using the minimal symbol, for instance to find a method
8398 implemented in a stripped copy of libstdc++, will not work.
8399 If we do not have debug info for the definition, we will have to
8400 match them up some other way.
8401
8402 When we do name matching there is a related problem with function
8403 templates; two instantiated function templates are allowed to
8404 differ only by their return types, which we do not add here. */
8405
8406 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8407 {
8408 struct attribute *attr;
8409 struct die_info *child;
8410 int first = 1;
8411
8412 die->building_fullname = 1;
8413
8414 for (child = die->child; child != NULL; child = child->sibling)
8415 {
8416 struct type *type;
8417 LONGEST value;
8418 const gdb_byte *bytes;
8419 struct dwarf2_locexpr_baton *baton;
8420 struct value *v;
8421
8422 if (child->tag != DW_TAG_template_type_param
8423 && child->tag != DW_TAG_template_value_param)
8424 continue;
8425
8426 if (first)
8427 {
8428 fputs_unfiltered ("<", buf);
8429 first = 0;
8430 }
8431 else
8432 fputs_unfiltered (", ", buf);
8433
8434 attr = dwarf2_attr (child, DW_AT_type, cu);
8435 if (attr == NULL)
8436 {
8437 complaint (&symfile_complaints,
8438 _("template parameter missing DW_AT_type"));
8439 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8440 continue;
8441 }
8442 type = die_type (child, cu);
8443
8444 if (child->tag == DW_TAG_template_type_param)
8445 {
8446 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8447 continue;
8448 }
8449
8450 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8451 if (attr == NULL)
8452 {
8453 complaint (&symfile_complaints,
8454 _("template parameter missing "
8455 "DW_AT_const_value"));
8456 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8457 continue;
8458 }
8459
8460 dwarf2_const_value_attr (attr, type, name,
8461 &cu->comp_unit_obstack, cu,
8462 &value, &bytes, &baton);
8463
8464 if (TYPE_NOSIGN (type))
8465 /* GDB prints characters as NUMBER 'CHAR'. If that's
8466 changed, this can use value_print instead. */
8467 c_printchar (value, type, buf);
8468 else
8469 {
8470 struct value_print_options opts;
8471
8472 if (baton != NULL)
8473 v = dwarf2_evaluate_loc_desc (type, NULL,
8474 baton->data,
8475 baton->size,
8476 baton->per_cu);
8477 else if (bytes != NULL)
8478 {
8479 v = allocate_value (type);
8480 memcpy (value_contents_writeable (v), bytes,
8481 TYPE_LENGTH (type));
8482 }
8483 else
8484 v = value_from_longest (type, value);
8485
8486 /* Specify decimal so that we do not depend on
8487 the radix. */
8488 get_formatted_print_options (&opts, 'd');
8489 opts.raw = 1;
8490 value_print (v, buf, &opts);
8491 release_value (v);
8492 value_free (v);
8493 }
8494 }
8495
8496 die->building_fullname = 0;
8497
8498 if (!first)
8499 {
8500 /* Close the argument list, with a space if necessary
8501 (nested templates). */
8502 char last_char = '\0';
8503 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8504 if (last_char == '>')
8505 fputs_unfiltered (" >", buf);
8506 else
8507 fputs_unfiltered (">", buf);
8508 }
8509 }
8510
8511 /* For Java and C++ methods, append formal parameter type
8512 information, if PHYSNAME. */
8513
8514 if (physname && die->tag == DW_TAG_subprogram
8515 && (cu->language == language_cplus
8516 || cu->language == language_java))
8517 {
8518 struct type *type = read_type_die (die, cu);
8519
8520 c_type_print_args (type, buf, 1, cu->language,
8521 &type_print_raw_options);
8522
8523 if (cu->language == language_java)
8524 {
8525 /* For java, we must append the return type to method
8526 names. */
8527 if (die->tag == DW_TAG_subprogram)
8528 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8529 0, 0, &type_print_raw_options);
8530 }
8531 else if (cu->language == language_cplus)
8532 {
8533 /* Assume that an artificial first parameter is
8534 "this", but do not crash if it is not. RealView
8535 marks unnamed (and thus unused) parameters as
8536 artificial; there is no way to differentiate
8537 the two cases. */
8538 if (TYPE_NFIELDS (type) > 0
8539 && TYPE_FIELD_ARTIFICIAL (type, 0)
8540 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8541 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8542 0))))
8543 fputs_unfiltered (" const", buf);
8544 }
8545 }
8546
8547 intermediate_name = ui_file_xstrdup (buf, &length);
8548 ui_file_delete (buf);
8549
8550 if (cu->language == language_cplus)
8551 canonical_name
8552 = dwarf2_canonicalize_name (intermediate_name, cu,
8553 &objfile->per_bfd->storage_obstack);
8554
8555 /* If we only computed INTERMEDIATE_NAME, or if
8556 INTERMEDIATE_NAME is already canonical, then we need to
8557 copy it to the appropriate obstack. */
8558 if (canonical_name == NULL || canonical_name == intermediate_name)
8559 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8560 intermediate_name,
8561 strlen (intermediate_name));
8562 else
8563 name = canonical_name;
8564
8565 xfree (intermediate_name);
8566 }
8567 }
8568
8569 return name;
8570 }
8571
8572 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8573 If scope qualifiers are appropriate they will be added. The result
8574 will be allocated on the storage_obstack, or NULL if the DIE does
8575 not have a name. NAME may either be from a previous call to
8576 dwarf2_name or NULL.
8577
8578 The output string will be canonicalized (if C++/Java). */
8579
8580 static const char *
8581 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8582 {
8583 return dwarf2_compute_name (name, die, cu, 0);
8584 }
8585
8586 /* Construct a physname for the given DIE in CU. NAME may either be
8587 from a previous call to dwarf2_name or NULL. The result will be
8588 allocated on the objfile_objstack or NULL if the DIE does not have a
8589 name.
8590
8591 The output string will be canonicalized (if C++/Java). */
8592
8593 static const char *
8594 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8595 {
8596 struct objfile *objfile = cu->objfile;
8597 struct attribute *attr;
8598 const char *retval, *mangled = NULL, *canon = NULL;
8599 struct cleanup *back_to;
8600 int need_copy = 1;
8601
8602 /* In this case dwarf2_compute_name is just a shortcut not building anything
8603 on its own. */
8604 if (!die_needs_namespace (die, cu))
8605 return dwarf2_compute_name (name, die, cu, 1);
8606
8607 back_to = make_cleanup (null_cleanup, NULL);
8608
8609 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8610 if (!attr)
8611 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8612
8613 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8614 has computed. */
8615 if (attr && DW_STRING (attr))
8616 {
8617 char *demangled;
8618
8619 mangled = DW_STRING (attr);
8620
8621 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8622 type. It is easier for GDB users to search for such functions as
8623 `name(params)' than `long name(params)'. In such case the minimal
8624 symbol names do not match the full symbol names but for template
8625 functions there is never a need to look up their definition from their
8626 declaration so the only disadvantage remains the minimal symbol
8627 variant `long name(params)' does not have the proper inferior type.
8628 */
8629
8630 if (cu->language == language_go)
8631 {
8632 /* This is a lie, but we already lie to the caller new_symbol_full.
8633 new_symbol_full assumes we return the mangled name.
8634 This just undoes that lie until things are cleaned up. */
8635 demangled = NULL;
8636 }
8637 else
8638 {
8639 demangled = gdb_demangle (mangled,
8640 (DMGL_PARAMS | DMGL_ANSI
8641 | (cu->language == language_java
8642 ? DMGL_JAVA | DMGL_RET_POSTFIX
8643 : DMGL_RET_DROP)));
8644 }
8645 if (demangled)
8646 {
8647 make_cleanup (xfree, demangled);
8648 canon = demangled;
8649 }
8650 else
8651 {
8652 canon = mangled;
8653 need_copy = 0;
8654 }
8655 }
8656
8657 if (canon == NULL || check_physname)
8658 {
8659 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8660
8661 if (canon != NULL && strcmp (physname, canon) != 0)
8662 {
8663 /* It may not mean a bug in GDB. The compiler could also
8664 compute DW_AT_linkage_name incorrectly. But in such case
8665 GDB would need to be bug-to-bug compatible. */
8666
8667 complaint (&symfile_complaints,
8668 _("Computed physname <%s> does not match demangled <%s> "
8669 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8670 physname, canon, mangled, die->offset.sect_off,
8671 objfile_name (objfile));
8672
8673 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8674 is available here - over computed PHYSNAME. It is safer
8675 against both buggy GDB and buggy compilers. */
8676
8677 retval = canon;
8678 }
8679 else
8680 {
8681 retval = physname;
8682 need_copy = 0;
8683 }
8684 }
8685 else
8686 retval = canon;
8687
8688 if (need_copy)
8689 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8690 retval, strlen (retval));
8691
8692 do_cleanups (back_to);
8693 return retval;
8694 }
8695
8696 /* Inspect DIE in CU for a namespace alias. If one exists, record
8697 a new symbol for it.
8698
8699 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8700
8701 static int
8702 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8703 {
8704 struct attribute *attr;
8705
8706 /* If the die does not have a name, this is not a namespace
8707 alias. */
8708 attr = dwarf2_attr (die, DW_AT_name, cu);
8709 if (attr != NULL)
8710 {
8711 int num;
8712 struct die_info *d = die;
8713 struct dwarf2_cu *imported_cu = cu;
8714
8715 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8716 keep inspecting DIEs until we hit the underlying import. */
8717 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8718 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8719 {
8720 attr = dwarf2_attr (d, DW_AT_import, cu);
8721 if (attr == NULL)
8722 break;
8723
8724 d = follow_die_ref (d, attr, &imported_cu);
8725 if (d->tag != DW_TAG_imported_declaration)
8726 break;
8727 }
8728
8729 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8730 {
8731 complaint (&symfile_complaints,
8732 _("DIE at 0x%x has too many recursively imported "
8733 "declarations"), d->offset.sect_off);
8734 return 0;
8735 }
8736
8737 if (attr != NULL)
8738 {
8739 struct type *type;
8740 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8741
8742 type = get_die_type_at_offset (offset, cu->per_cu);
8743 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8744 {
8745 /* This declaration is a global namespace alias. Add
8746 a symbol for it whose type is the aliased namespace. */
8747 new_symbol (die, type, cu);
8748 return 1;
8749 }
8750 }
8751 }
8752
8753 return 0;
8754 }
8755
8756 /* Read the import statement specified by the given die and record it. */
8757
8758 static void
8759 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8760 {
8761 struct objfile *objfile = cu->objfile;
8762 struct attribute *import_attr;
8763 struct die_info *imported_die, *child_die;
8764 struct dwarf2_cu *imported_cu;
8765 const char *imported_name;
8766 const char *imported_name_prefix;
8767 const char *canonical_name;
8768 const char *import_alias;
8769 const char *imported_declaration = NULL;
8770 const char *import_prefix;
8771 VEC (const_char_ptr) *excludes = NULL;
8772 struct cleanup *cleanups;
8773
8774 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8775 if (import_attr == NULL)
8776 {
8777 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8778 dwarf_tag_name (die->tag));
8779 return;
8780 }
8781
8782 imported_cu = cu;
8783 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8784 imported_name = dwarf2_name (imported_die, imported_cu);
8785 if (imported_name == NULL)
8786 {
8787 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8788
8789 The import in the following code:
8790 namespace A
8791 {
8792 typedef int B;
8793 }
8794
8795 int main ()
8796 {
8797 using A::B;
8798 B b;
8799 return b;
8800 }
8801
8802 ...
8803 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8804 <52> DW_AT_decl_file : 1
8805 <53> DW_AT_decl_line : 6
8806 <54> DW_AT_import : <0x75>
8807 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8808 <59> DW_AT_name : B
8809 <5b> DW_AT_decl_file : 1
8810 <5c> DW_AT_decl_line : 2
8811 <5d> DW_AT_type : <0x6e>
8812 ...
8813 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8814 <76> DW_AT_byte_size : 4
8815 <77> DW_AT_encoding : 5 (signed)
8816
8817 imports the wrong die ( 0x75 instead of 0x58 ).
8818 This case will be ignored until the gcc bug is fixed. */
8819 return;
8820 }
8821
8822 /* Figure out the local name after import. */
8823 import_alias = dwarf2_name (die, cu);
8824
8825 /* Figure out where the statement is being imported to. */
8826 import_prefix = determine_prefix (die, cu);
8827
8828 /* Figure out what the scope of the imported die is and prepend it
8829 to the name of the imported die. */
8830 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8831
8832 if (imported_die->tag != DW_TAG_namespace
8833 && imported_die->tag != DW_TAG_module)
8834 {
8835 imported_declaration = imported_name;
8836 canonical_name = imported_name_prefix;
8837 }
8838 else if (strlen (imported_name_prefix) > 0)
8839 canonical_name = obconcat (&objfile->objfile_obstack,
8840 imported_name_prefix, "::", imported_name,
8841 (char *) NULL);
8842 else
8843 canonical_name = imported_name;
8844
8845 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8846
8847 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8848 for (child_die = die->child; child_die && child_die->tag;
8849 child_die = sibling_die (child_die))
8850 {
8851 /* DWARF-4: A Fortran use statement with a “rename list” may be
8852 represented by an imported module entry with an import attribute
8853 referring to the module and owned entries corresponding to those
8854 entities that are renamed as part of being imported. */
8855
8856 if (child_die->tag != DW_TAG_imported_declaration)
8857 {
8858 complaint (&symfile_complaints,
8859 _("child DW_TAG_imported_declaration expected "
8860 "- DIE at 0x%x [in module %s]"),
8861 child_die->offset.sect_off, objfile_name (objfile));
8862 continue;
8863 }
8864
8865 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8866 if (import_attr == NULL)
8867 {
8868 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8869 dwarf_tag_name (child_die->tag));
8870 continue;
8871 }
8872
8873 imported_cu = cu;
8874 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8875 &imported_cu);
8876 imported_name = dwarf2_name (imported_die, imported_cu);
8877 if (imported_name == NULL)
8878 {
8879 complaint (&symfile_complaints,
8880 _("child DW_TAG_imported_declaration has unknown "
8881 "imported name - DIE at 0x%x [in module %s]"),
8882 child_die->offset.sect_off, objfile_name (objfile));
8883 continue;
8884 }
8885
8886 VEC_safe_push (const_char_ptr, excludes, imported_name);
8887
8888 process_die (child_die, cu);
8889 }
8890
8891 cp_add_using_directive (import_prefix,
8892 canonical_name,
8893 import_alias,
8894 imported_declaration,
8895 excludes,
8896 0,
8897 &objfile->objfile_obstack);
8898
8899 do_cleanups (cleanups);
8900 }
8901
8902 /* Cleanup function for handle_DW_AT_stmt_list. */
8903
8904 static void
8905 free_cu_line_header (void *arg)
8906 {
8907 struct dwarf2_cu *cu = arg;
8908
8909 free_line_header (cu->line_header);
8910 cu->line_header = NULL;
8911 }
8912
8913 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8914 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8915 this, it was first present in GCC release 4.3.0. */
8916
8917 static int
8918 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8919 {
8920 if (!cu->checked_producer)
8921 check_producer (cu);
8922
8923 return cu->producer_is_gcc_lt_4_3;
8924 }
8925
8926 static void
8927 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8928 const char **name, const char **comp_dir)
8929 {
8930 struct attribute *attr;
8931
8932 *name = NULL;
8933 *comp_dir = NULL;
8934
8935 /* Find the filename. Do not use dwarf2_name here, since the filename
8936 is not a source language identifier. */
8937 attr = dwarf2_attr (die, DW_AT_name, cu);
8938 if (attr)
8939 {
8940 *name = DW_STRING (attr);
8941 }
8942
8943 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8944 if (attr)
8945 *comp_dir = DW_STRING (attr);
8946 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8947 && IS_ABSOLUTE_PATH (*name))
8948 {
8949 char *d = ldirname (*name);
8950
8951 *comp_dir = d;
8952 if (d != NULL)
8953 make_cleanup (xfree, d);
8954 }
8955 if (*comp_dir != NULL)
8956 {
8957 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8958 directory, get rid of it. */
8959 char *cp = strchr (*comp_dir, ':');
8960
8961 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8962 *comp_dir = cp + 1;
8963 }
8964
8965 if (*name == NULL)
8966 *name = "<unknown>";
8967 }
8968
8969 /* Handle DW_AT_stmt_list for a compilation unit.
8970 DIE is the DW_TAG_compile_unit die for CU.
8971 COMP_DIR is the compilation directory.
8972 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8973
8974 static void
8975 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8976 const char *comp_dir) /* ARI: editCase function */
8977 {
8978 struct attribute *attr;
8979
8980 gdb_assert (! cu->per_cu->is_debug_types);
8981
8982 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8983 if (attr)
8984 {
8985 unsigned int line_offset = DW_UNSND (attr);
8986 struct line_header *line_header
8987 = dwarf_decode_line_header (line_offset, cu);
8988
8989 if (line_header)
8990 {
8991 cu->line_header = line_header;
8992 make_cleanup (free_cu_line_header, cu);
8993 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8994 }
8995 }
8996 }
8997
8998 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8999
9000 static void
9001 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9002 {
9003 struct objfile *objfile = dwarf2_per_objfile->objfile;
9004 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9005 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9006 CORE_ADDR highpc = ((CORE_ADDR) 0);
9007 struct attribute *attr;
9008 const char *name = NULL;
9009 const char *comp_dir = NULL;
9010 struct die_info *child_die;
9011 bfd *abfd = objfile->obfd;
9012 CORE_ADDR baseaddr;
9013
9014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9015
9016 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9017
9018 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9019 from finish_block. */
9020 if (lowpc == ((CORE_ADDR) -1))
9021 lowpc = highpc;
9022 lowpc += baseaddr;
9023 highpc += baseaddr;
9024
9025 find_file_and_directory (die, cu, &name, &comp_dir);
9026
9027 prepare_one_comp_unit (cu, die, cu->language);
9028
9029 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9030 standardised yet. As a workaround for the language detection we fall
9031 back to the DW_AT_producer string. */
9032 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9033 cu->language = language_opencl;
9034
9035 /* Similar hack for Go. */
9036 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9037 set_cu_language (DW_LANG_Go, cu);
9038
9039 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9040
9041 /* Decode line number information if present. We do this before
9042 processing child DIEs, so that the line header table is available
9043 for DW_AT_decl_file. */
9044 handle_DW_AT_stmt_list (die, cu, comp_dir);
9045
9046 /* Process all dies in compilation unit. */
9047 if (die->child != NULL)
9048 {
9049 child_die = die->child;
9050 while (child_die && child_die->tag)
9051 {
9052 process_die (child_die, cu);
9053 child_die = sibling_die (child_die);
9054 }
9055 }
9056
9057 /* Decode macro information, if present. Dwarf 2 macro information
9058 refers to information in the line number info statement program
9059 header, so we can only read it if we've read the header
9060 successfully. */
9061 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9062 if (attr && cu->line_header)
9063 {
9064 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9065 complaint (&symfile_complaints,
9066 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9067
9068 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9069 }
9070 else
9071 {
9072 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9073 if (attr && cu->line_header)
9074 {
9075 unsigned int macro_offset = DW_UNSND (attr);
9076
9077 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9078 }
9079 }
9080
9081 do_cleanups (back_to);
9082 }
9083
9084 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9085 Create the set of symtabs used by this TU, or if this TU is sharing
9086 symtabs with another TU and the symtabs have already been created
9087 then restore those symtabs in the line header.
9088 We don't need the pc/line-number mapping for type units. */
9089
9090 static void
9091 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9092 {
9093 struct objfile *objfile = dwarf2_per_objfile->objfile;
9094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9095 struct type_unit_group *tu_group;
9096 int first_time;
9097 struct line_header *lh;
9098 struct attribute *attr;
9099 unsigned int i, line_offset;
9100 struct signatured_type *sig_type;
9101
9102 gdb_assert (per_cu->is_debug_types);
9103 sig_type = (struct signatured_type *) per_cu;
9104
9105 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9106
9107 /* If we're using .gdb_index (includes -readnow) then
9108 per_cu->type_unit_group may not have been set up yet. */
9109 if (sig_type->type_unit_group == NULL)
9110 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9111 tu_group = sig_type->type_unit_group;
9112
9113 /* If we've already processed this stmt_list there's no real need to
9114 do it again, we could fake it and just recreate the part we need
9115 (file name,index -> symtab mapping). If data shows this optimization
9116 is useful we can do it then. */
9117 first_time = tu_group->primary_symtab == NULL;
9118
9119 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9120 debug info. */
9121 lh = NULL;
9122 if (attr != NULL)
9123 {
9124 line_offset = DW_UNSND (attr);
9125 lh = dwarf_decode_line_header (line_offset, cu);
9126 }
9127 if (lh == NULL)
9128 {
9129 if (first_time)
9130 dwarf2_start_symtab (cu, "", NULL, 0);
9131 else
9132 {
9133 gdb_assert (tu_group->symtabs == NULL);
9134 restart_symtab (0);
9135 }
9136 /* Note: The primary symtab will get allocated at the end. */
9137 return;
9138 }
9139
9140 cu->line_header = lh;
9141 make_cleanup (free_cu_line_header, cu);
9142
9143 if (first_time)
9144 {
9145 dwarf2_start_symtab (cu, "", NULL, 0);
9146
9147 tu_group->num_symtabs = lh->num_file_names;
9148 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9149
9150 for (i = 0; i < lh->num_file_names; ++i)
9151 {
9152 const char *dir = NULL;
9153 struct file_entry *fe = &lh->file_names[i];
9154
9155 if (fe->dir_index)
9156 dir = lh->include_dirs[fe->dir_index - 1];
9157 dwarf2_start_subfile (fe->name, dir, NULL);
9158
9159 /* Note: We don't have to watch for the main subfile here, type units
9160 don't have DW_AT_name. */
9161
9162 if (current_subfile->symtab == NULL)
9163 {
9164 /* NOTE: start_subfile will recognize when it's been passed
9165 a file it has already seen. So we can't assume there's a
9166 simple mapping from lh->file_names to subfiles,
9167 lh->file_names may contain dups. */
9168 current_subfile->symtab = allocate_symtab (current_subfile->name,
9169 objfile);
9170 }
9171
9172 fe->symtab = current_subfile->symtab;
9173 tu_group->symtabs[i] = fe->symtab;
9174 }
9175 }
9176 else
9177 {
9178 restart_symtab (0);
9179
9180 for (i = 0; i < lh->num_file_names; ++i)
9181 {
9182 struct file_entry *fe = &lh->file_names[i];
9183
9184 fe->symtab = tu_group->symtabs[i];
9185 }
9186 }
9187
9188 /* The main symtab is allocated last. Type units don't have DW_AT_name
9189 so they don't have a "real" (so to speak) symtab anyway.
9190 There is later code that will assign the main symtab to all symbols
9191 that don't have one. We need to handle the case of a symbol with a
9192 missing symtab (DW_AT_decl_file) anyway. */
9193 }
9194
9195 /* Process DW_TAG_type_unit.
9196 For TUs we want to skip the first top level sibling if it's not the
9197 actual type being defined by this TU. In this case the first top
9198 level sibling is there to provide context only. */
9199
9200 static void
9201 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9202 {
9203 struct die_info *child_die;
9204
9205 prepare_one_comp_unit (cu, die, language_minimal);
9206
9207 /* Initialize (or reinitialize) the machinery for building symtabs.
9208 We do this before processing child DIEs, so that the line header table
9209 is available for DW_AT_decl_file. */
9210 setup_type_unit_groups (die, cu);
9211
9212 if (die->child != NULL)
9213 {
9214 child_die = die->child;
9215 while (child_die && child_die->tag)
9216 {
9217 process_die (child_die, cu);
9218 child_die = sibling_die (child_die);
9219 }
9220 }
9221 }
9222 \f
9223 /* DWO/DWP files.
9224
9225 http://gcc.gnu.org/wiki/DebugFission
9226 http://gcc.gnu.org/wiki/DebugFissionDWP
9227
9228 To simplify handling of both DWO files ("object" files with the DWARF info)
9229 and DWP files (a file with the DWOs packaged up into one file), we treat
9230 DWP files as having a collection of virtual DWO files. */
9231
9232 static hashval_t
9233 hash_dwo_file (const void *item)
9234 {
9235 const struct dwo_file *dwo_file = item;
9236 hashval_t hash;
9237
9238 hash = htab_hash_string (dwo_file->dwo_name);
9239 if (dwo_file->comp_dir != NULL)
9240 hash += htab_hash_string (dwo_file->comp_dir);
9241 return hash;
9242 }
9243
9244 static int
9245 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9246 {
9247 const struct dwo_file *lhs = item_lhs;
9248 const struct dwo_file *rhs = item_rhs;
9249
9250 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9251 return 0;
9252 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9253 return lhs->comp_dir == rhs->comp_dir;
9254 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9255 }
9256
9257 /* Allocate a hash table for DWO files. */
9258
9259 static htab_t
9260 allocate_dwo_file_hash_table (void)
9261 {
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9263
9264 return htab_create_alloc_ex (41,
9265 hash_dwo_file,
9266 eq_dwo_file,
9267 NULL,
9268 &objfile->objfile_obstack,
9269 hashtab_obstack_allocate,
9270 dummy_obstack_deallocate);
9271 }
9272
9273 /* Lookup DWO file DWO_NAME. */
9274
9275 static void **
9276 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9277 {
9278 struct dwo_file find_entry;
9279 void **slot;
9280
9281 if (dwarf2_per_objfile->dwo_files == NULL)
9282 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9283
9284 memset (&find_entry, 0, sizeof (find_entry));
9285 find_entry.dwo_name = dwo_name;
9286 find_entry.comp_dir = comp_dir;
9287 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9288
9289 return slot;
9290 }
9291
9292 static hashval_t
9293 hash_dwo_unit (const void *item)
9294 {
9295 const struct dwo_unit *dwo_unit = item;
9296
9297 /* This drops the top 32 bits of the id, but is ok for a hash. */
9298 return dwo_unit->signature;
9299 }
9300
9301 static int
9302 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9303 {
9304 const struct dwo_unit *lhs = item_lhs;
9305 const struct dwo_unit *rhs = item_rhs;
9306
9307 /* The signature is assumed to be unique within the DWO file.
9308 So while object file CU dwo_id's always have the value zero,
9309 that's OK, assuming each object file DWO file has only one CU,
9310 and that's the rule for now. */
9311 return lhs->signature == rhs->signature;
9312 }
9313
9314 /* Allocate a hash table for DWO CUs,TUs.
9315 There is one of these tables for each of CUs,TUs for each DWO file. */
9316
9317 static htab_t
9318 allocate_dwo_unit_table (struct objfile *objfile)
9319 {
9320 /* Start out with a pretty small number.
9321 Generally DWO files contain only one CU and maybe some TUs. */
9322 return htab_create_alloc_ex (3,
9323 hash_dwo_unit,
9324 eq_dwo_unit,
9325 NULL,
9326 &objfile->objfile_obstack,
9327 hashtab_obstack_allocate,
9328 dummy_obstack_deallocate);
9329 }
9330
9331 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9332
9333 struct create_dwo_cu_data
9334 {
9335 struct dwo_file *dwo_file;
9336 struct dwo_unit dwo_unit;
9337 };
9338
9339 /* die_reader_func for create_dwo_cu. */
9340
9341 static void
9342 create_dwo_cu_reader (const struct die_reader_specs *reader,
9343 const gdb_byte *info_ptr,
9344 struct die_info *comp_unit_die,
9345 int has_children,
9346 void *datap)
9347 {
9348 struct dwarf2_cu *cu = reader->cu;
9349 struct objfile *objfile = dwarf2_per_objfile->objfile;
9350 sect_offset offset = cu->per_cu->offset;
9351 struct dwarf2_section_info *section = cu->per_cu->section;
9352 struct create_dwo_cu_data *data = datap;
9353 struct dwo_file *dwo_file = data->dwo_file;
9354 struct dwo_unit *dwo_unit = &data->dwo_unit;
9355 struct attribute *attr;
9356
9357 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9358 if (attr == NULL)
9359 {
9360 complaint (&symfile_complaints,
9361 _("Dwarf Error: debug entry at offset 0x%x is missing"
9362 " its dwo_id [in module %s]"),
9363 offset.sect_off, dwo_file->dwo_name);
9364 return;
9365 }
9366
9367 dwo_unit->dwo_file = dwo_file;
9368 dwo_unit->signature = DW_UNSND (attr);
9369 dwo_unit->section = section;
9370 dwo_unit->offset = offset;
9371 dwo_unit->length = cu->per_cu->length;
9372
9373 if (dwarf2_read_debug)
9374 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9375 offset.sect_off, hex_string (dwo_unit->signature));
9376 }
9377
9378 /* Create the dwo_unit for the lone CU in DWO_FILE.
9379 Note: This function processes DWO files only, not DWP files. */
9380
9381 static struct dwo_unit *
9382 create_dwo_cu (struct dwo_file *dwo_file)
9383 {
9384 struct objfile *objfile = dwarf2_per_objfile->objfile;
9385 struct dwarf2_section_info *section = &dwo_file->sections.info;
9386 bfd *abfd;
9387 htab_t cu_htab;
9388 const gdb_byte *info_ptr, *end_ptr;
9389 struct create_dwo_cu_data create_dwo_cu_data;
9390 struct dwo_unit *dwo_unit;
9391
9392 dwarf2_read_section (objfile, section);
9393 info_ptr = section->buffer;
9394
9395 if (info_ptr == NULL)
9396 return NULL;
9397
9398 /* We can't set abfd until now because the section may be empty or
9399 not present, in which case section->asection will be NULL. */
9400 abfd = get_section_bfd_owner (section);
9401
9402 if (dwarf2_read_debug)
9403 {
9404 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9405 get_section_name (section),
9406 get_section_file_name (section));
9407 }
9408
9409 create_dwo_cu_data.dwo_file = dwo_file;
9410 dwo_unit = NULL;
9411
9412 end_ptr = info_ptr + section->size;
9413 while (info_ptr < end_ptr)
9414 {
9415 struct dwarf2_per_cu_data per_cu;
9416
9417 memset (&create_dwo_cu_data.dwo_unit, 0,
9418 sizeof (create_dwo_cu_data.dwo_unit));
9419 memset (&per_cu, 0, sizeof (per_cu));
9420 per_cu.objfile = objfile;
9421 per_cu.is_debug_types = 0;
9422 per_cu.offset.sect_off = info_ptr - section->buffer;
9423 per_cu.section = section;
9424
9425 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9426 create_dwo_cu_reader,
9427 &create_dwo_cu_data);
9428
9429 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9430 {
9431 /* If we've already found one, complain. We only support one
9432 because having more than one requires hacking the dwo_name of
9433 each to match, which is highly unlikely to happen. */
9434 if (dwo_unit != NULL)
9435 {
9436 complaint (&symfile_complaints,
9437 _("Multiple CUs in DWO file %s [in module %s]"),
9438 dwo_file->dwo_name, objfile_name (objfile));
9439 break;
9440 }
9441
9442 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9443 *dwo_unit = create_dwo_cu_data.dwo_unit;
9444 }
9445
9446 info_ptr += per_cu.length;
9447 }
9448
9449 return dwo_unit;
9450 }
9451
9452 /* DWP file .debug_{cu,tu}_index section format:
9453 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9454
9455 DWP Version 1:
9456
9457 Both index sections have the same format, and serve to map a 64-bit
9458 signature to a set of section numbers. Each section begins with a header,
9459 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9460 indexes, and a pool of 32-bit section numbers. The index sections will be
9461 aligned at 8-byte boundaries in the file.
9462
9463 The index section header consists of:
9464
9465 V, 32 bit version number
9466 -, 32 bits unused
9467 N, 32 bit number of compilation units or type units in the index
9468 M, 32 bit number of slots in the hash table
9469
9470 Numbers are recorded using the byte order of the application binary.
9471
9472 The hash table begins at offset 16 in the section, and consists of an array
9473 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9474 order of the application binary). Unused slots in the hash table are 0.
9475 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9476
9477 The parallel table begins immediately after the hash table
9478 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9479 array of 32-bit indexes (using the byte order of the application binary),
9480 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9481 table contains a 32-bit index into the pool of section numbers. For unused
9482 hash table slots, the corresponding entry in the parallel table will be 0.
9483
9484 The pool of section numbers begins immediately following the hash table
9485 (at offset 16 + 12 * M from the beginning of the section). The pool of
9486 section numbers consists of an array of 32-bit words (using the byte order
9487 of the application binary). Each item in the array is indexed starting
9488 from 0. The hash table entry provides the index of the first section
9489 number in the set. Additional section numbers in the set follow, and the
9490 set is terminated by a 0 entry (section number 0 is not used in ELF).
9491
9492 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9493 section must be the first entry in the set, and the .debug_abbrev.dwo must
9494 be the second entry. Other members of the set may follow in any order.
9495
9496 ---
9497
9498 DWP Version 2:
9499
9500 DWP Version 2 combines all the .debug_info, etc. sections into one,
9501 and the entries in the index tables are now offsets into these sections.
9502 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9503 section.
9504
9505 Index Section Contents:
9506 Header
9507 Hash Table of Signatures dwp_hash_table.hash_table
9508 Parallel Table of Indices dwp_hash_table.unit_table
9509 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9510 Table of Section Sizes dwp_hash_table.v2.sizes
9511
9512 The index section header consists of:
9513
9514 V, 32 bit version number
9515 L, 32 bit number of columns in the table of section offsets
9516 N, 32 bit number of compilation units or type units in the index
9517 M, 32 bit number of slots in the hash table
9518
9519 Numbers are recorded using the byte order of the application binary.
9520
9521 The hash table has the same format as version 1.
9522 The parallel table of indices has the same format as version 1,
9523 except that the entries are origin-1 indices into the table of sections
9524 offsets and the table of section sizes.
9525
9526 The table of offsets begins immediately following the parallel table
9527 (at offset 16 + 12 * M from the beginning of the section). The table is
9528 a two-dimensional array of 32-bit words (using the byte order of the
9529 application binary), with L columns and N+1 rows, in row-major order.
9530 Each row in the array is indexed starting from 0. The first row provides
9531 a key to the remaining rows: each column in this row provides an identifier
9532 for a debug section, and the offsets in the same column of subsequent rows
9533 refer to that section. The section identifiers are:
9534
9535 DW_SECT_INFO 1 .debug_info.dwo
9536 DW_SECT_TYPES 2 .debug_types.dwo
9537 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9538 DW_SECT_LINE 4 .debug_line.dwo
9539 DW_SECT_LOC 5 .debug_loc.dwo
9540 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9541 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9542 DW_SECT_MACRO 8 .debug_macro.dwo
9543
9544 The offsets provided by the CU and TU index sections are the base offsets
9545 for the contributions made by each CU or TU to the corresponding section
9546 in the package file. Each CU and TU header contains an abbrev_offset
9547 field, used to find the abbreviations table for that CU or TU within the
9548 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9549 be interpreted as relative to the base offset given in the index section.
9550 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9551 should be interpreted as relative to the base offset for .debug_line.dwo,
9552 and offsets into other debug sections obtained from DWARF attributes should
9553 also be interpreted as relative to the corresponding base offset.
9554
9555 The table of sizes begins immediately following the table of offsets.
9556 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9557 with L columns and N rows, in row-major order. Each row in the array is
9558 indexed starting from 1 (row 0 is shared by the two tables).
9559
9560 ---
9561
9562 Hash table lookup is handled the same in version 1 and 2:
9563
9564 We assume that N and M will not exceed 2^32 - 1.
9565 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9566
9567 Given a 64-bit compilation unit signature or a type signature S, an entry
9568 in the hash table is located as follows:
9569
9570 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9571 the low-order k bits all set to 1.
9572
9573 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9574
9575 3) If the hash table entry at index H matches the signature, use that
9576 entry. If the hash table entry at index H is unused (all zeroes),
9577 terminate the search: the signature is not present in the table.
9578
9579 4) Let H = (H + H') modulo M. Repeat at Step 3.
9580
9581 Because M > N and H' and M are relatively prime, the search is guaranteed
9582 to stop at an unused slot or find the match. */
9583
9584 /* Create a hash table to map DWO IDs to their CU/TU entry in
9585 .debug_{info,types}.dwo in DWP_FILE.
9586 Returns NULL if there isn't one.
9587 Note: This function processes DWP files only, not DWO files. */
9588
9589 static struct dwp_hash_table *
9590 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9591 {
9592 struct objfile *objfile = dwarf2_per_objfile->objfile;
9593 bfd *dbfd = dwp_file->dbfd;
9594 const gdb_byte *index_ptr, *index_end;
9595 struct dwarf2_section_info *index;
9596 uint32_t version, nr_columns, nr_units, nr_slots;
9597 struct dwp_hash_table *htab;
9598
9599 if (is_debug_types)
9600 index = &dwp_file->sections.tu_index;
9601 else
9602 index = &dwp_file->sections.cu_index;
9603
9604 if (dwarf2_section_empty_p (index))
9605 return NULL;
9606 dwarf2_read_section (objfile, index);
9607
9608 index_ptr = index->buffer;
9609 index_end = index_ptr + index->size;
9610
9611 version = read_4_bytes (dbfd, index_ptr);
9612 index_ptr += 4;
9613 if (version == 2)
9614 nr_columns = read_4_bytes (dbfd, index_ptr);
9615 else
9616 nr_columns = 0;
9617 index_ptr += 4;
9618 nr_units = read_4_bytes (dbfd, index_ptr);
9619 index_ptr += 4;
9620 nr_slots = read_4_bytes (dbfd, index_ptr);
9621 index_ptr += 4;
9622
9623 if (version != 1 && version != 2)
9624 {
9625 error (_("Dwarf Error: unsupported DWP file version (%s)"
9626 " [in module %s]"),
9627 pulongest (version), dwp_file->name);
9628 }
9629 if (nr_slots != (nr_slots & -nr_slots))
9630 {
9631 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9632 " is not power of 2 [in module %s]"),
9633 pulongest (nr_slots), dwp_file->name);
9634 }
9635
9636 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9637 htab->version = version;
9638 htab->nr_columns = nr_columns;
9639 htab->nr_units = nr_units;
9640 htab->nr_slots = nr_slots;
9641 htab->hash_table = index_ptr;
9642 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9643
9644 /* Exit early if the table is empty. */
9645 if (nr_slots == 0 || nr_units == 0
9646 || (version == 2 && nr_columns == 0))
9647 {
9648 /* All must be zero. */
9649 if (nr_slots != 0 || nr_units != 0
9650 || (version == 2 && nr_columns != 0))
9651 {
9652 complaint (&symfile_complaints,
9653 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9654 " all zero [in modules %s]"),
9655 dwp_file->name);
9656 }
9657 return htab;
9658 }
9659
9660 if (version == 1)
9661 {
9662 htab->section_pool.v1.indices =
9663 htab->unit_table + sizeof (uint32_t) * nr_slots;
9664 /* It's harder to decide whether the section is too small in v1.
9665 V1 is deprecated anyway so we punt. */
9666 }
9667 else
9668 {
9669 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9670 int *ids = htab->section_pool.v2.section_ids;
9671 /* Reverse map for error checking. */
9672 int ids_seen[DW_SECT_MAX + 1];
9673 int i;
9674
9675 if (nr_columns < 2)
9676 {
9677 error (_("Dwarf Error: bad DWP hash table, too few columns"
9678 " in section table [in module %s]"),
9679 dwp_file->name);
9680 }
9681 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9682 {
9683 error (_("Dwarf Error: bad DWP hash table, too many columns"
9684 " in section table [in module %s]"),
9685 dwp_file->name);
9686 }
9687 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9688 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9689 for (i = 0; i < nr_columns; ++i)
9690 {
9691 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9692
9693 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9694 {
9695 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9696 " in section table [in module %s]"),
9697 id, dwp_file->name);
9698 }
9699 if (ids_seen[id] != -1)
9700 {
9701 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9702 " id %d in section table [in module %s]"),
9703 id, dwp_file->name);
9704 }
9705 ids_seen[id] = i;
9706 ids[i] = id;
9707 }
9708 /* Must have exactly one info or types section. */
9709 if (((ids_seen[DW_SECT_INFO] != -1)
9710 + (ids_seen[DW_SECT_TYPES] != -1))
9711 != 1)
9712 {
9713 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9714 " DWO info/types section [in module %s]"),
9715 dwp_file->name);
9716 }
9717 /* Must have an abbrev section. */
9718 if (ids_seen[DW_SECT_ABBREV] == -1)
9719 {
9720 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9721 " section [in module %s]"),
9722 dwp_file->name);
9723 }
9724 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9725 htab->section_pool.v2.sizes =
9726 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9727 * nr_units * nr_columns);
9728 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9729 * nr_units * nr_columns))
9730 > index_end)
9731 {
9732 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9733 " [in module %s]"),
9734 dwp_file->name);
9735 }
9736 }
9737
9738 return htab;
9739 }
9740
9741 /* Update SECTIONS with the data from SECTP.
9742
9743 This function is like the other "locate" section routines that are
9744 passed to bfd_map_over_sections, but in this context the sections to
9745 read comes from the DWP V1 hash table, not the full ELF section table.
9746
9747 The result is non-zero for success, or zero if an error was found. */
9748
9749 static int
9750 locate_v1_virtual_dwo_sections (asection *sectp,
9751 struct virtual_v1_dwo_sections *sections)
9752 {
9753 const struct dwop_section_names *names = &dwop_section_names;
9754
9755 if (section_is_p (sectp->name, &names->abbrev_dwo))
9756 {
9757 /* There can be only one. */
9758 if (sections->abbrev.s.asection != NULL)
9759 return 0;
9760 sections->abbrev.s.asection = sectp;
9761 sections->abbrev.size = bfd_get_section_size (sectp);
9762 }
9763 else if (section_is_p (sectp->name, &names->info_dwo)
9764 || section_is_p (sectp->name, &names->types_dwo))
9765 {
9766 /* There can be only one. */
9767 if (sections->info_or_types.s.asection != NULL)
9768 return 0;
9769 sections->info_or_types.s.asection = sectp;
9770 sections->info_or_types.size = bfd_get_section_size (sectp);
9771 }
9772 else if (section_is_p (sectp->name, &names->line_dwo))
9773 {
9774 /* There can be only one. */
9775 if (sections->line.s.asection != NULL)
9776 return 0;
9777 sections->line.s.asection = sectp;
9778 sections->line.size = bfd_get_section_size (sectp);
9779 }
9780 else if (section_is_p (sectp->name, &names->loc_dwo))
9781 {
9782 /* There can be only one. */
9783 if (sections->loc.s.asection != NULL)
9784 return 0;
9785 sections->loc.s.asection = sectp;
9786 sections->loc.size = bfd_get_section_size (sectp);
9787 }
9788 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9789 {
9790 /* There can be only one. */
9791 if (sections->macinfo.s.asection != NULL)
9792 return 0;
9793 sections->macinfo.s.asection = sectp;
9794 sections->macinfo.size = bfd_get_section_size (sectp);
9795 }
9796 else if (section_is_p (sectp->name, &names->macro_dwo))
9797 {
9798 /* There can be only one. */
9799 if (sections->macro.s.asection != NULL)
9800 return 0;
9801 sections->macro.s.asection = sectp;
9802 sections->macro.size = bfd_get_section_size (sectp);
9803 }
9804 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9805 {
9806 /* There can be only one. */
9807 if (sections->str_offsets.s.asection != NULL)
9808 return 0;
9809 sections->str_offsets.s.asection = sectp;
9810 sections->str_offsets.size = bfd_get_section_size (sectp);
9811 }
9812 else
9813 {
9814 /* No other kind of section is valid. */
9815 return 0;
9816 }
9817
9818 return 1;
9819 }
9820
9821 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9822 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9823 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9824 This is for DWP version 1 files. */
9825
9826 static struct dwo_unit *
9827 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9828 uint32_t unit_index,
9829 const char *comp_dir,
9830 ULONGEST signature, int is_debug_types)
9831 {
9832 struct objfile *objfile = dwarf2_per_objfile->objfile;
9833 const struct dwp_hash_table *dwp_htab =
9834 is_debug_types ? dwp_file->tus : dwp_file->cus;
9835 bfd *dbfd = dwp_file->dbfd;
9836 const char *kind = is_debug_types ? "TU" : "CU";
9837 struct dwo_file *dwo_file;
9838 struct dwo_unit *dwo_unit;
9839 struct virtual_v1_dwo_sections sections;
9840 void **dwo_file_slot;
9841 char *virtual_dwo_name;
9842 struct dwarf2_section_info *cutu;
9843 struct cleanup *cleanups;
9844 int i;
9845
9846 gdb_assert (dwp_file->version == 1);
9847
9848 if (dwarf2_read_debug)
9849 {
9850 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9851 kind,
9852 pulongest (unit_index), hex_string (signature),
9853 dwp_file->name);
9854 }
9855
9856 /* Fetch the sections of this DWO unit.
9857 Put a limit on the number of sections we look for so that bad data
9858 doesn't cause us to loop forever. */
9859
9860 #define MAX_NR_V1_DWO_SECTIONS \
9861 (1 /* .debug_info or .debug_types */ \
9862 + 1 /* .debug_abbrev */ \
9863 + 1 /* .debug_line */ \
9864 + 1 /* .debug_loc */ \
9865 + 1 /* .debug_str_offsets */ \
9866 + 1 /* .debug_macro or .debug_macinfo */ \
9867 + 1 /* trailing zero */)
9868
9869 memset (&sections, 0, sizeof (sections));
9870 cleanups = make_cleanup (null_cleanup, 0);
9871
9872 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9873 {
9874 asection *sectp;
9875 uint32_t section_nr =
9876 read_4_bytes (dbfd,
9877 dwp_htab->section_pool.v1.indices
9878 + (unit_index + i) * sizeof (uint32_t));
9879
9880 if (section_nr == 0)
9881 break;
9882 if (section_nr >= dwp_file->num_sections)
9883 {
9884 error (_("Dwarf Error: bad DWP hash table, section number too large"
9885 " [in module %s]"),
9886 dwp_file->name);
9887 }
9888
9889 sectp = dwp_file->elf_sections[section_nr];
9890 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9891 {
9892 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9893 " [in module %s]"),
9894 dwp_file->name);
9895 }
9896 }
9897
9898 if (i < 2
9899 || dwarf2_section_empty_p (&sections.info_or_types)
9900 || dwarf2_section_empty_p (&sections.abbrev))
9901 {
9902 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9903 " [in module %s]"),
9904 dwp_file->name);
9905 }
9906 if (i == MAX_NR_V1_DWO_SECTIONS)
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912
9913 /* It's easier for the rest of the code if we fake a struct dwo_file and
9914 have dwo_unit "live" in that. At least for now.
9915
9916 The DWP file can be made up of a random collection of CUs and TUs.
9917 However, for each CU + set of TUs that came from the same original DWO
9918 file, we can combine them back into a virtual DWO file to save space
9919 (fewer struct dwo_file objects to allocate). Remember that for really
9920 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9921
9922 virtual_dwo_name =
9923 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9924 get_section_id (&sections.abbrev),
9925 get_section_id (&sections.line),
9926 get_section_id (&sections.loc),
9927 get_section_id (&sections.str_offsets));
9928 make_cleanup (xfree, virtual_dwo_name);
9929 /* Can we use an existing virtual DWO file? */
9930 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9931 /* Create one if necessary. */
9932 if (*dwo_file_slot == NULL)
9933 {
9934 if (dwarf2_read_debug)
9935 {
9936 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9937 virtual_dwo_name);
9938 }
9939 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9940 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9941 virtual_dwo_name,
9942 strlen (virtual_dwo_name));
9943 dwo_file->comp_dir = comp_dir;
9944 dwo_file->sections.abbrev = sections.abbrev;
9945 dwo_file->sections.line = sections.line;
9946 dwo_file->sections.loc = sections.loc;
9947 dwo_file->sections.macinfo = sections.macinfo;
9948 dwo_file->sections.macro = sections.macro;
9949 dwo_file->sections.str_offsets = sections.str_offsets;
9950 /* The "str" section is global to the entire DWP file. */
9951 dwo_file->sections.str = dwp_file->sections.str;
9952 /* The info or types section is assigned below to dwo_unit,
9953 there's no need to record it in dwo_file.
9954 Also, we can't simply record type sections in dwo_file because
9955 we record a pointer into the vector in dwo_unit. As we collect more
9956 types we'll grow the vector and eventually have to reallocate space
9957 for it, invalidating all copies of pointers into the previous
9958 contents. */
9959 *dwo_file_slot = dwo_file;
9960 }
9961 else
9962 {
9963 if (dwarf2_read_debug)
9964 {
9965 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9966 virtual_dwo_name);
9967 }
9968 dwo_file = *dwo_file_slot;
9969 }
9970 do_cleanups (cleanups);
9971
9972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9973 dwo_unit->dwo_file = dwo_file;
9974 dwo_unit->signature = signature;
9975 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9976 sizeof (struct dwarf2_section_info));
9977 *dwo_unit->section = sections.info_or_types;
9978 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9979
9980 return dwo_unit;
9981 }
9982
9983 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9984 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9985 piece within that section used by a TU/CU, return a virtual section
9986 of just that piece. */
9987
9988 static struct dwarf2_section_info
9989 create_dwp_v2_section (struct dwarf2_section_info *section,
9990 bfd_size_type offset, bfd_size_type size)
9991 {
9992 struct dwarf2_section_info result;
9993 asection *sectp;
9994
9995 gdb_assert (section != NULL);
9996 gdb_assert (!section->is_virtual);
9997
9998 memset (&result, 0, sizeof (result));
9999 result.s.containing_section = section;
10000 result.is_virtual = 1;
10001
10002 if (size == 0)
10003 return result;
10004
10005 sectp = get_section_bfd_section (section);
10006
10007 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10008 bounds of the real section. This is a pretty-rare event, so just
10009 flag an error (easier) instead of a warning and trying to cope. */
10010 if (sectp == NULL
10011 || offset + size > bfd_get_section_size (sectp))
10012 {
10013 bfd *abfd = sectp->owner;
10014
10015 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10016 " in section %s [in module %s]"),
10017 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10018 objfile_name (dwarf2_per_objfile->objfile));
10019 }
10020
10021 result.virtual_offset = offset;
10022 result.size = size;
10023 return result;
10024 }
10025
10026 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10027 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10028 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10029 This is for DWP version 2 files. */
10030
10031 static struct dwo_unit *
10032 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10033 uint32_t unit_index,
10034 const char *comp_dir,
10035 ULONGEST signature, int is_debug_types)
10036 {
10037 struct objfile *objfile = dwarf2_per_objfile->objfile;
10038 const struct dwp_hash_table *dwp_htab =
10039 is_debug_types ? dwp_file->tus : dwp_file->cus;
10040 bfd *dbfd = dwp_file->dbfd;
10041 const char *kind = is_debug_types ? "TU" : "CU";
10042 struct dwo_file *dwo_file;
10043 struct dwo_unit *dwo_unit;
10044 struct virtual_v2_dwo_sections sections;
10045 void **dwo_file_slot;
10046 char *virtual_dwo_name;
10047 struct dwarf2_section_info *cutu;
10048 struct cleanup *cleanups;
10049 int i;
10050
10051 gdb_assert (dwp_file->version == 2);
10052
10053 if (dwarf2_read_debug)
10054 {
10055 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10056 kind,
10057 pulongest (unit_index), hex_string (signature),
10058 dwp_file->name);
10059 }
10060
10061 /* Fetch the section offsets of this DWO unit. */
10062
10063 memset (&sections, 0, sizeof (sections));
10064 cleanups = make_cleanup (null_cleanup, 0);
10065
10066 for (i = 0; i < dwp_htab->nr_columns; ++i)
10067 {
10068 uint32_t offset = read_4_bytes (dbfd,
10069 dwp_htab->section_pool.v2.offsets
10070 + (((unit_index - 1) * dwp_htab->nr_columns
10071 + i)
10072 * sizeof (uint32_t)));
10073 uint32_t size = read_4_bytes (dbfd,
10074 dwp_htab->section_pool.v2.sizes
10075 + (((unit_index - 1) * dwp_htab->nr_columns
10076 + i)
10077 * sizeof (uint32_t)));
10078
10079 switch (dwp_htab->section_pool.v2.section_ids[i])
10080 {
10081 case DW_SECT_INFO:
10082 case DW_SECT_TYPES:
10083 sections.info_or_types_offset = offset;
10084 sections.info_or_types_size = size;
10085 break;
10086 case DW_SECT_ABBREV:
10087 sections.abbrev_offset = offset;
10088 sections.abbrev_size = size;
10089 break;
10090 case DW_SECT_LINE:
10091 sections.line_offset = offset;
10092 sections.line_size = size;
10093 break;
10094 case DW_SECT_LOC:
10095 sections.loc_offset = offset;
10096 sections.loc_size = size;
10097 break;
10098 case DW_SECT_STR_OFFSETS:
10099 sections.str_offsets_offset = offset;
10100 sections.str_offsets_size = size;
10101 break;
10102 case DW_SECT_MACINFO:
10103 sections.macinfo_offset = offset;
10104 sections.macinfo_size = size;
10105 break;
10106 case DW_SECT_MACRO:
10107 sections.macro_offset = offset;
10108 sections.macro_size = size;
10109 break;
10110 }
10111 }
10112
10113 /* It's easier for the rest of the code if we fake a struct dwo_file and
10114 have dwo_unit "live" in that. At least for now.
10115
10116 The DWP file can be made up of a random collection of CUs and TUs.
10117 However, for each CU + set of TUs that came from the same original DWO
10118 file, we can combine them back into a virtual DWO file to save space
10119 (fewer struct dwo_file objects to allocate). Remember that for really
10120 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121
10122 virtual_dwo_name =
10123 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10124 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10125 (long) (sections.line_size ? sections.line_offset : 0),
10126 (long) (sections.loc_size ? sections.loc_offset : 0),
10127 (long) (sections.str_offsets_size
10128 ? sections.str_offsets_offset : 0));
10129 make_cleanup (xfree, virtual_dwo_name);
10130 /* Can we use an existing virtual DWO file? */
10131 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10132 /* Create one if necessary. */
10133 if (*dwo_file_slot == NULL)
10134 {
10135 if (dwarf2_read_debug)
10136 {
10137 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10138 virtual_dwo_name);
10139 }
10140 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10141 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10142 virtual_dwo_name,
10143 strlen (virtual_dwo_name));
10144 dwo_file->comp_dir = comp_dir;
10145 dwo_file->sections.abbrev =
10146 create_dwp_v2_section (&dwp_file->sections.abbrev,
10147 sections.abbrev_offset, sections.abbrev_size);
10148 dwo_file->sections.line =
10149 create_dwp_v2_section (&dwp_file->sections.line,
10150 sections.line_offset, sections.line_size);
10151 dwo_file->sections.loc =
10152 create_dwp_v2_section (&dwp_file->sections.loc,
10153 sections.loc_offset, sections.loc_size);
10154 dwo_file->sections.macinfo =
10155 create_dwp_v2_section (&dwp_file->sections.macinfo,
10156 sections.macinfo_offset, sections.macinfo_size);
10157 dwo_file->sections.macro =
10158 create_dwp_v2_section (&dwp_file->sections.macro,
10159 sections.macro_offset, sections.macro_size);
10160 dwo_file->sections.str_offsets =
10161 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10162 sections.str_offsets_offset,
10163 sections.str_offsets_size);
10164 /* The "str" section is global to the entire DWP file. */
10165 dwo_file->sections.str = dwp_file->sections.str;
10166 /* The info or types section is assigned below to dwo_unit,
10167 there's no need to record it in dwo_file.
10168 Also, we can't simply record type sections in dwo_file because
10169 we record a pointer into the vector in dwo_unit. As we collect more
10170 types we'll grow the vector and eventually have to reallocate space
10171 for it, invalidating all copies of pointers into the previous
10172 contents. */
10173 *dwo_file_slot = dwo_file;
10174 }
10175 else
10176 {
10177 if (dwarf2_read_debug)
10178 {
10179 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10180 virtual_dwo_name);
10181 }
10182 dwo_file = *dwo_file_slot;
10183 }
10184 do_cleanups (cleanups);
10185
10186 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10187 dwo_unit->dwo_file = dwo_file;
10188 dwo_unit->signature = signature;
10189 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10190 sizeof (struct dwarf2_section_info));
10191 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10192 ? &dwp_file->sections.types
10193 : &dwp_file->sections.info,
10194 sections.info_or_types_offset,
10195 sections.info_or_types_size);
10196 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10197
10198 return dwo_unit;
10199 }
10200
10201 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10202 Returns NULL if the signature isn't found. */
10203
10204 static struct dwo_unit *
10205 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10206 ULONGEST signature, int is_debug_types)
10207 {
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 uint32_t mask = dwp_htab->nr_slots - 1;
10212 uint32_t hash = signature & mask;
10213 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10214 unsigned int i;
10215 void **slot;
10216 struct dwo_unit find_dwo_cu, *dwo_cu;
10217
10218 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10219 find_dwo_cu.signature = signature;
10220 slot = htab_find_slot (is_debug_types
10221 ? dwp_file->loaded_tus
10222 : dwp_file->loaded_cus,
10223 &find_dwo_cu, INSERT);
10224
10225 if (*slot != NULL)
10226 return *slot;
10227
10228 /* Use a for loop so that we don't loop forever on bad debug info. */
10229 for (i = 0; i < dwp_htab->nr_slots; ++i)
10230 {
10231 ULONGEST signature_in_table;
10232
10233 signature_in_table =
10234 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10235 if (signature_in_table == signature)
10236 {
10237 uint32_t unit_index =
10238 read_4_bytes (dbfd,
10239 dwp_htab->unit_table + hash * sizeof (uint32_t));
10240
10241 if (dwp_file->version == 1)
10242 {
10243 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10244 comp_dir, signature,
10245 is_debug_types);
10246 }
10247 else
10248 {
10249 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10250 comp_dir, signature,
10251 is_debug_types);
10252 }
10253 return *slot;
10254 }
10255 if (signature_in_table == 0)
10256 return NULL;
10257 hash = (hash + hash2) & mask;
10258 }
10259
10260 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10261 " [in module %s]"),
10262 dwp_file->name);
10263 }
10264
10265 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10266 Open the file specified by FILE_NAME and hand it off to BFD for
10267 preliminary analysis. Return a newly initialized bfd *, which
10268 includes a canonicalized copy of FILE_NAME.
10269 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10270 SEARCH_CWD is true if the current directory is to be searched.
10271 It will be searched before debug-file-directory.
10272 If successful, the file is added to the bfd include table of the
10273 objfile's bfd (see gdb_bfd_record_inclusion).
10274 If unable to find/open the file, return NULL.
10275 NOTE: This function is derived from symfile_bfd_open. */
10276
10277 static bfd *
10278 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10279 {
10280 bfd *sym_bfd;
10281 int desc, flags;
10282 char *absolute_name;
10283 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10284 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10285 to debug_file_directory. */
10286 char *search_path;
10287 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10288
10289 if (search_cwd)
10290 {
10291 if (*debug_file_directory != '\0')
10292 search_path = concat (".", dirname_separator_string,
10293 debug_file_directory, NULL);
10294 else
10295 search_path = xstrdup (".");
10296 }
10297 else
10298 search_path = xstrdup (debug_file_directory);
10299
10300 flags = OPF_RETURN_REALPATH;
10301 if (is_dwp)
10302 flags |= OPF_SEARCH_IN_PATH;
10303 desc = openp (search_path, flags, file_name,
10304 O_RDONLY | O_BINARY, &absolute_name);
10305 xfree (search_path);
10306 if (desc < 0)
10307 return NULL;
10308
10309 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10310 xfree (absolute_name);
10311 if (sym_bfd == NULL)
10312 return NULL;
10313 bfd_set_cacheable (sym_bfd, 1);
10314
10315 if (!bfd_check_format (sym_bfd, bfd_object))
10316 {
10317 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10318 return NULL;
10319 }
10320
10321 /* Success. Record the bfd as having been included by the objfile's bfd.
10322 This is important because things like demangled_names_hash lives in the
10323 objfile's per_bfd space and may have references to things like symbol
10324 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10325 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10326
10327 return sym_bfd;
10328 }
10329
10330 /* Try to open DWO file FILE_NAME.
10331 COMP_DIR is the DW_AT_comp_dir attribute.
10332 The result is the bfd handle of the file.
10333 If there is a problem finding or opening the file, return NULL.
10334 Upon success, the canonicalized path of the file is stored in the bfd,
10335 same as symfile_bfd_open. */
10336
10337 static bfd *
10338 open_dwo_file (const char *file_name, const char *comp_dir)
10339 {
10340 bfd *abfd;
10341
10342 if (IS_ABSOLUTE_PATH (file_name))
10343 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10344
10345 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10346
10347 if (comp_dir != NULL)
10348 {
10349 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10350
10351 /* NOTE: If comp_dir is a relative path, this will also try the
10352 search path, which seems useful. */
10353 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10354 xfree (path_to_try);
10355 if (abfd != NULL)
10356 return abfd;
10357 }
10358
10359 /* That didn't work, try debug-file-directory, which, despite its name,
10360 is a list of paths. */
10361
10362 if (*debug_file_directory == '\0')
10363 return NULL;
10364
10365 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10366 }
10367
10368 /* This function is mapped across the sections and remembers the offset and
10369 size of each of the DWO debugging sections we are interested in. */
10370
10371 static void
10372 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10373 {
10374 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10375 const struct dwop_section_names *names = &dwop_section_names;
10376
10377 if (section_is_p (sectp->name, &names->abbrev_dwo))
10378 {
10379 dwo_sections->abbrev.s.asection = sectp;
10380 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10381 }
10382 else if (section_is_p (sectp->name, &names->info_dwo))
10383 {
10384 dwo_sections->info.s.asection = sectp;
10385 dwo_sections->info.size = bfd_get_section_size (sectp);
10386 }
10387 else if (section_is_p (sectp->name, &names->line_dwo))
10388 {
10389 dwo_sections->line.s.asection = sectp;
10390 dwo_sections->line.size = bfd_get_section_size (sectp);
10391 }
10392 else if (section_is_p (sectp->name, &names->loc_dwo))
10393 {
10394 dwo_sections->loc.s.asection = sectp;
10395 dwo_sections->loc.size = bfd_get_section_size (sectp);
10396 }
10397 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10398 {
10399 dwo_sections->macinfo.s.asection = sectp;
10400 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10401 }
10402 else if (section_is_p (sectp->name, &names->macro_dwo))
10403 {
10404 dwo_sections->macro.s.asection = sectp;
10405 dwo_sections->macro.size = bfd_get_section_size (sectp);
10406 }
10407 else if (section_is_p (sectp->name, &names->str_dwo))
10408 {
10409 dwo_sections->str.s.asection = sectp;
10410 dwo_sections->str.size = bfd_get_section_size (sectp);
10411 }
10412 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10413 {
10414 dwo_sections->str_offsets.s.asection = sectp;
10415 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10416 }
10417 else if (section_is_p (sectp->name, &names->types_dwo))
10418 {
10419 struct dwarf2_section_info type_section;
10420
10421 memset (&type_section, 0, sizeof (type_section));
10422 type_section.s.asection = sectp;
10423 type_section.size = bfd_get_section_size (sectp);
10424 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10425 &type_section);
10426 }
10427 }
10428
10429 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10430 by PER_CU. This is for the non-DWP case.
10431 The result is NULL if DWO_NAME can't be found. */
10432
10433 static struct dwo_file *
10434 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10435 const char *dwo_name, const char *comp_dir)
10436 {
10437 struct objfile *objfile = dwarf2_per_objfile->objfile;
10438 struct dwo_file *dwo_file;
10439 bfd *dbfd;
10440 struct cleanup *cleanups;
10441
10442 dbfd = open_dwo_file (dwo_name, comp_dir);
10443 if (dbfd == NULL)
10444 {
10445 if (dwarf2_read_debug)
10446 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10447 return NULL;
10448 }
10449 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10450 dwo_file->dwo_name = dwo_name;
10451 dwo_file->comp_dir = comp_dir;
10452 dwo_file->dbfd = dbfd;
10453
10454 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10455
10456 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10457
10458 dwo_file->cu = create_dwo_cu (dwo_file);
10459
10460 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10461 dwo_file->sections.types);
10462
10463 discard_cleanups (cleanups);
10464
10465 if (dwarf2_read_debug)
10466 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10467
10468 return dwo_file;
10469 }
10470
10471 /* This function is mapped across the sections and remembers the offset and
10472 size of each of the DWP debugging sections common to version 1 and 2 that
10473 we are interested in. */
10474
10475 static void
10476 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10477 void *dwp_file_ptr)
10478 {
10479 struct dwp_file *dwp_file = dwp_file_ptr;
10480 const struct dwop_section_names *names = &dwop_section_names;
10481 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10482
10483 /* Record the ELF section number for later lookup: this is what the
10484 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10485 gdb_assert (elf_section_nr < dwp_file->num_sections);
10486 dwp_file->elf_sections[elf_section_nr] = sectp;
10487
10488 /* Look for specific sections that we need. */
10489 if (section_is_p (sectp->name, &names->str_dwo))
10490 {
10491 dwp_file->sections.str.s.asection = sectp;
10492 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10493 }
10494 else if (section_is_p (sectp->name, &names->cu_index))
10495 {
10496 dwp_file->sections.cu_index.s.asection = sectp;
10497 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10498 }
10499 else if (section_is_p (sectp->name, &names->tu_index))
10500 {
10501 dwp_file->sections.tu_index.s.asection = sectp;
10502 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10503 }
10504 }
10505
10506 /* This function is mapped across the sections and remembers the offset and
10507 size of each of the DWP version 2 debugging sections that we are interested
10508 in. This is split into a separate function because we don't know if we
10509 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10510
10511 static void
10512 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10513 {
10514 struct dwp_file *dwp_file = dwp_file_ptr;
10515 const struct dwop_section_names *names = &dwop_section_names;
10516 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10517
10518 /* Record the ELF section number for later lookup: this is what the
10519 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10520 gdb_assert (elf_section_nr < dwp_file->num_sections);
10521 dwp_file->elf_sections[elf_section_nr] = sectp;
10522
10523 /* Look for specific sections that we need. */
10524 if (section_is_p (sectp->name, &names->abbrev_dwo))
10525 {
10526 dwp_file->sections.abbrev.s.asection = sectp;
10527 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10528 }
10529 else if (section_is_p (sectp->name, &names->info_dwo))
10530 {
10531 dwp_file->sections.info.s.asection = sectp;
10532 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10533 }
10534 else if (section_is_p (sectp->name, &names->line_dwo))
10535 {
10536 dwp_file->sections.line.s.asection = sectp;
10537 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10538 }
10539 else if (section_is_p (sectp->name, &names->loc_dwo))
10540 {
10541 dwp_file->sections.loc.s.asection = sectp;
10542 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10543 }
10544 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10545 {
10546 dwp_file->sections.macinfo.s.asection = sectp;
10547 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->macro_dwo))
10550 {
10551 dwp_file->sections.macro.s.asection = sectp;
10552 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10555 {
10556 dwp_file->sections.str_offsets.s.asection = sectp;
10557 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->types_dwo))
10560 {
10561 dwp_file->sections.types.s.asection = sectp;
10562 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10563 }
10564 }
10565
10566 /* Hash function for dwp_file loaded CUs/TUs. */
10567
10568 static hashval_t
10569 hash_dwp_loaded_cutus (const void *item)
10570 {
10571 const struct dwo_unit *dwo_unit = item;
10572
10573 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10574 return dwo_unit->signature;
10575 }
10576
10577 /* Equality function for dwp_file loaded CUs/TUs. */
10578
10579 static int
10580 eq_dwp_loaded_cutus (const void *a, const void *b)
10581 {
10582 const struct dwo_unit *dua = a;
10583 const struct dwo_unit *dub = b;
10584
10585 return dua->signature == dub->signature;
10586 }
10587
10588 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10589
10590 static htab_t
10591 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10592 {
10593 return htab_create_alloc_ex (3,
10594 hash_dwp_loaded_cutus,
10595 eq_dwp_loaded_cutus,
10596 NULL,
10597 &objfile->objfile_obstack,
10598 hashtab_obstack_allocate,
10599 dummy_obstack_deallocate);
10600 }
10601
10602 /* Try to open DWP file FILE_NAME.
10603 The result is the bfd handle of the file.
10604 If there is a problem finding or opening the file, return NULL.
10605 Upon success, the canonicalized path of the file is stored in the bfd,
10606 same as symfile_bfd_open. */
10607
10608 static bfd *
10609 open_dwp_file (const char *file_name)
10610 {
10611 bfd *abfd;
10612
10613 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10614 if (abfd != NULL)
10615 return abfd;
10616
10617 /* Work around upstream bug 15652.
10618 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10619 [Whether that's a "bug" is debatable, but it is getting in our way.]
10620 We have no real idea where the dwp file is, because gdb's realpath-ing
10621 of the executable's path may have discarded the needed info.
10622 [IWBN if the dwp file name was recorded in the executable, akin to
10623 .gnu_debuglink, but that doesn't exist yet.]
10624 Strip the directory from FILE_NAME and search again. */
10625 if (*debug_file_directory != '\0')
10626 {
10627 /* Don't implicitly search the current directory here.
10628 If the user wants to search "." to handle this case,
10629 it must be added to debug-file-directory. */
10630 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10631 0 /*search_cwd*/);
10632 }
10633
10634 return NULL;
10635 }
10636
10637 /* Initialize the use of the DWP file for the current objfile.
10638 By convention the name of the DWP file is ${objfile}.dwp.
10639 The result is NULL if it can't be found. */
10640
10641 static struct dwp_file *
10642 open_and_init_dwp_file (void)
10643 {
10644 struct objfile *objfile = dwarf2_per_objfile->objfile;
10645 struct dwp_file *dwp_file;
10646 char *dwp_name;
10647 bfd *dbfd;
10648 struct cleanup *cleanups;
10649
10650 /* Try to find first .dwp for the binary file before any symbolic links
10651 resolving. */
10652 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10653 cleanups = make_cleanup (xfree, dwp_name);
10654
10655 dbfd = open_dwp_file (dwp_name);
10656 if (dbfd == NULL
10657 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10658 {
10659 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10660 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10661 make_cleanup (xfree, dwp_name);
10662 dbfd = open_dwp_file (dwp_name);
10663 }
10664
10665 if (dbfd == NULL)
10666 {
10667 if (dwarf2_read_debug)
10668 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10669 do_cleanups (cleanups);
10670 return NULL;
10671 }
10672 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10673 dwp_file->name = bfd_get_filename (dbfd);
10674 dwp_file->dbfd = dbfd;
10675 do_cleanups (cleanups);
10676
10677 /* +1: section 0 is unused */
10678 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10679 dwp_file->elf_sections =
10680 OBSTACK_CALLOC (&objfile->objfile_obstack,
10681 dwp_file->num_sections, asection *);
10682
10683 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10684
10685 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10686
10687 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10688
10689 /* The DWP file version is stored in the hash table. Oh well. */
10690 if (dwp_file->cus->version != dwp_file->tus->version)
10691 {
10692 /* Technically speaking, we should try to limp along, but this is
10693 pretty bizarre. We use pulongest here because that's the established
10694 portability solution (e.g, we cannot use %u for uint32_t). */
10695 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10696 " TU version %s [in DWP file %s]"),
10697 pulongest (dwp_file->cus->version),
10698 pulongest (dwp_file->tus->version), dwp_name);
10699 }
10700 dwp_file->version = dwp_file->cus->version;
10701
10702 if (dwp_file->version == 2)
10703 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10704
10705 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10706 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10707
10708 if (dwarf2_read_debug)
10709 {
10710 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10711 fprintf_unfiltered (gdb_stdlog,
10712 " %s CUs, %s TUs\n",
10713 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10714 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10715 }
10716
10717 return dwp_file;
10718 }
10719
10720 /* Wrapper around open_and_init_dwp_file, only open it once. */
10721
10722 static struct dwp_file *
10723 get_dwp_file (void)
10724 {
10725 if (! dwarf2_per_objfile->dwp_checked)
10726 {
10727 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10728 dwarf2_per_objfile->dwp_checked = 1;
10729 }
10730 return dwarf2_per_objfile->dwp_file;
10731 }
10732
10733 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10734 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10735 or in the DWP file for the objfile, referenced by THIS_UNIT.
10736 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10737 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10738
10739 This is called, for example, when wanting to read a variable with a
10740 complex location. Therefore we don't want to do file i/o for every call.
10741 Therefore we don't want to look for a DWO file on every call.
10742 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10743 then we check if we've already seen DWO_NAME, and only THEN do we check
10744 for a DWO file.
10745
10746 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10747 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10748
10749 static struct dwo_unit *
10750 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10751 const char *dwo_name, const char *comp_dir,
10752 ULONGEST signature, int is_debug_types)
10753 {
10754 struct objfile *objfile = dwarf2_per_objfile->objfile;
10755 const char *kind = is_debug_types ? "TU" : "CU";
10756 void **dwo_file_slot;
10757 struct dwo_file *dwo_file;
10758 struct dwp_file *dwp_file;
10759
10760 /* First see if there's a DWP file.
10761 If we have a DWP file but didn't find the DWO inside it, don't
10762 look for the original DWO file. It makes gdb behave differently
10763 depending on whether one is debugging in the build tree. */
10764
10765 dwp_file = get_dwp_file ();
10766 if (dwp_file != NULL)
10767 {
10768 const struct dwp_hash_table *dwp_htab =
10769 is_debug_types ? dwp_file->tus : dwp_file->cus;
10770
10771 if (dwp_htab != NULL)
10772 {
10773 struct dwo_unit *dwo_cutu =
10774 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10775 signature, is_debug_types);
10776
10777 if (dwo_cutu != NULL)
10778 {
10779 if (dwarf2_read_debug)
10780 {
10781 fprintf_unfiltered (gdb_stdlog,
10782 "Virtual DWO %s %s found: @%s\n",
10783 kind, hex_string (signature),
10784 host_address_to_string (dwo_cutu));
10785 }
10786 return dwo_cutu;
10787 }
10788 }
10789 }
10790 else
10791 {
10792 /* No DWP file, look for the DWO file. */
10793
10794 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10795 if (*dwo_file_slot == NULL)
10796 {
10797 /* Read in the file and build a table of the CUs/TUs it contains. */
10798 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10799 }
10800 /* NOTE: This will be NULL if unable to open the file. */
10801 dwo_file = *dwo_file_slot;
10802
10803 if (dwo_file != NULL)
10804 {
10805 struct dwo_unit *dwo_cutu = NULL;
10806
10807 if (is_debug_types && dwo_file->tus)
10808 {
10809 struct dwo_unit find_dwo_cutu;
10810
10811 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10812 find_dwo_cutu.signature = signature;
10813 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10814 }
10815 else if (!is_debug_types && dwo_file->cu)
10816 {
10817 if (signature == dwo_file->cu->signature)
10818 dwo_cutu = dwo_file->cu;
10819 }
10820
10821 if (dwo_cutu != NULL)
10822 {
10823 if (dwarf2_read_debug)
10824 {
10825 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10826 kind, dwo_name, hex_string (signature),
10827 host_address_to_string (dwo_cutu));
10828 }
10829 return dwo_cutu;
10830 }
10831 }
10832 }
10833
10834 /* We didn't find it. This could mean a dwo_id mismatch, or
10835 someone deleted the DWO/DWP file, or the search path isn't set up
10836 correctly to find the file. */
10837
10838 if (dwarf2_read_debug)
10839 {
10840 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10841 kind, dwo_name, hex_string (signature));
10842 }
10843
10844 /* This is a warning and not a complaint because it can be caused by
10845 pilot error (e.g., user accidentally deleting the DWO). */
10846 {
10847 /* Print the name of the DWP file if we looked there, helps the user
10848 better diagnose the problem. */
10849 char *dwp_text = NULL;
10850 struct cleanup *cleanups;
10851
10852 if (dwp_file != NULL)
10853 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10854 cleanups = make_cleanup (xfree, dwp_text);
10855
10856 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10857 " [in module %s]"),
10858 kind, dwo_name, hex_string (signature),
10859 dwp_text != NULL ? dwp_text : "",
10860 this_unit->is_debug_types ? "TU" : "CU",
10861 this_unit->offset.sect_off, objfile_name (objfile));
10862
10863 do_cleanups (cleanups);
10864 }
10865 return NULL;
10866 }
10867
10868 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10869 See lookup_dwo_cutu_unit for details. */
10870
10871 static struct dwo_unit *
10872 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10873 const char *dwo_name, const char *comp_dir,
10874 ULONGEST signature)
10875 {
10876 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10877 }
10878
10879 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10880 See lookup_dwo_cutu_unit for details. */
10881
10882 static struct dwo_unit *
10883 lookup_dwo_type_unit (struct signatured_type *this_tu,
10884 const char *dwo_name, const char *comp_dir)
10885 {
10886 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10887 }
10888
10889 /* Traversal function for queue_and_load_all_dwo_tus. */
10890
10891 static int
10892 queue_and_load_dwo_tu (void **slot, void *info)
10893 {
10894 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10895 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10896 ULONGEST signature = dwo_unit->signature;
10897 struct signatured_type *sig_type =
10898 lookup_dwo_signatured_type (per_cu->cu, signature);
10899
10900 if (sig_type != NULL)
10901 {
10902 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10903
10904 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10905 a real dependency of PER_CU on SIG_TYPE. That is detected later
10906 while processing PER_CU. */
10907 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10908 load_full_type_unit (sig_cu);
10909 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10910 }
10911
10912 return 1;
10913 }
10914
10915 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10916 The DWO may have the only definition of the type, though it may not be
10917 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10918 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10919
10920 static void
10921 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10922 {
10923 struct dwo_unit *dwo_unit;
10924 struct dwo_file *dwo_file;
10925
10926 gdb_assert (!per_cu->is_debug_types);
10927 gdb_assert (get_dwp_file () == NULL);
10928 gdb_assert (per_cu->cu != NULL);
10929
10930 dwo_unit = per_cu->cu->dwo_unit;
10931 gdb_assert (dwo_unit != NULL);
10932
10933 dwo_file = dwo_unit->dwo_file;
10934 if (dwo_file->tus != NULL)
10935 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10936 }
10937
10938 /* Free all resources associated with DWO_FILE.
10939 Close the DWO file and munmap the sections.
10940 All memory should be on the objfile obstack. */
10941
10942 static void
10943 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10944 {
10945 int ix;
10946 struct dwarf2_section_info *section;
10947
10948 /* Note: dbfd is NULL for virtual DWO files. */
10949 gdb_bfd_unref (dwo_file->dbfd);
10950
10951 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10952 }
10953
10954 /* Wrapper for free_dwo_file for use in cleanups. */
10955
10956 static void
10957 free_dwo_file_cleanup (void *arg)
10958 {
10959 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10960 struct objfile *objfile = dwarf2_per_objfile->objfile;
10961
10962 free_dwo_file (dwo_file, objfile);
10963 }
10964
10965 /* Traversal function for free_dwo_files. */
10966
10967 static int
10968 free_dwo_file_from_slot (void **slot, void *info)
10969 {
10970 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10971 struct objfile *objfile = (struct objfile *) info;
10972
10973 free_dwo_file (dwo_file, objfile);
10974
10975 return 1;
10976 }
10977
10978 /* Free all resources associated with DWO_FILES. */
10979
10980 static void
10981 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10982 {
10983 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10984 }
10985 \f
10986 /* Read in various DIEs. */
10987
10988 /* qsort helper for inherit_abstract_dies. */
10989
10990 static int
10991 unsigned_int_compar (const void *ap, const void *bp)
10992 {
10993 unsigned int a = *(unsigned int *) ap;
10994 unsigned int b = *(unsigned int *) bp;
10995
10996 return (a > b) - (b > a);
10997 }
10998
10999 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11000 Inherit only the children of the DW_AT_abstract_origin DIE not being
11001 already referenced by DW_AT_abstract_origin from the children of the
11002 current DIE. */
11003
11004 static void
11005 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11006 {
11007 struct die_info *child_die;
11008 unsigned die_children_count;
11009 /* CU offsets which were referenced by children of the current DIE. */
11010 sect_offset *offsets;
11011 sect_offset *offsets_end, *offsetp;
11012 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11013 struct die_info *origin_die;
11014 /* Iterator of the ORIGIN_DIE children. */
11015 struct die_info *origin_child_die;
11016 struct cleanup *cleanups;
11017 struct attribute *attr;
11018 struct dwarf2_cu *origin_cu;
11019 struct pending **origin_previous_list_in_scope;
11020
11021 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11022 if (!attr)
11023 return;
11024
11025 /* Note that following die references may follow to a die in a
11026 different cu. */
11027
11028 origin_cu = cu;
11029 origin_die = follow_die_ref (die, attr, &origin_cu);
11030
11031 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11032 symbols in. */
11033 origin_previous_list_in_scope = origin_cu->list_in_scope;
11034 origin_cu->list_in_scope = cu->list_in_scope;
11035
11036 if (die->tag != origin_die->tag
11037 && !(die->tag == DW_TAG_inlined_subroutine
11038 && origin_die->tag == DW_TAG_subprogram))
11039 complaint (&symfile_complaints,
11040 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11041 die->offset.sect_off, origin_die->offset.sect_off);
11042
11043 child_die = die->child;
11044 die_children_count = 0;
11045 while (child_die && child_die->tag)
11046 {
11047 child_die = sibling_die (child_die);
11048 die_children_count++;
11049 }
11050 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11051 cleanups = make_cleanup (xfree, offsets);
11052
11053 offsets_end = offsets;
11054 child_die = die->child;
11055 while (child_die && child_die->tag)
11056 {
11057 /* For each CHILD_DIE, find the corresponding child of
11058 ORIGIN_DIE. If there is more than one layer of
11059 DW_AT_abstract_origin, follow them all; there shouldn't be,
11060 but GCC versions at least through 4.4 generate this (GCC PR
11061 40573). */
11062 struct die_info *child_origin_die = child_die;
11063 struct dwarf2_cu *child_origin_cu = cu;
11064
11065 while (1)
11066 {
11067 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11068 child_origin_cu);
11069 if (attr == NULL)
11070 break;
11071 child_origin_die = follow_die_ref (child_origin_die, attr,
11072 &child_origin_cu);
11073 }
11074
11075 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11076 counterpart may exist. */
11077 if (child_origin_die != child_die)
11078 {
11079 if (child_die->tag != child_origin_die->tag
11080 && !(child_die->tag == DW_TAG_inlined_subroutine
11081 && child_origin_die->tag == DW_TAG_subprogram))
11082 complaint (&symfile_complaints,
11083 _("Child DIE 0x%x and its abstract origin 0x%x have "
11084 "different tags"), child_die->offset.sect_off,
11085 child_origin_die->offset.sect_off);
11086 if (child_origin_die->parent != origin_die)
11087 complaint (&symfile_complaints,
11088 _("Child DIE 0x%x and its abstract origin 0x%x have "
11089 "different parents"), child_die->offset.sect_off,
11090 child_origin_die->offset.sect_off);
11091 else
11092 *offsets_end++ = child_origin_die->offset;
11093 }
11094 child_die = sibling_die (child_die);
11095 }
11096 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11097 unsigned_int_compar);
11098 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11099 if (offsetp[-1].sect_off == offsetp->sect_off)
11100 complaint (&symfile_complaints,
11101 _("Multiple children of DIE 0x%x refer "
11102 "to DIE 0x%x as their abstract origin"),
11103 die->offset.sect_off, offsetp->sect_off);
11104
11105 offsetp = offsets;
11106 origin_child_die = origin_die->child;
11107 while (origin_child_die && origin_child_die->tag)
11108 {
11109 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11110 while (offsetp < offsets_end
11111 && offsetp->sect_off < origin_child_die->offset.sect_off)
11112 offsetp++;
11113 if (offsetp >= offsets_end
11114 || offsetp->sect_off > origin_child_die->offset.sect_off)
11115 {
11116 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11117 Check whether we're already processing ORIGIN_CHILD_DIE.
11118 This can happen with mutually referenced abstract_origins.
11119 PR 16581. */
11120 if (!origin_child_die->in_process)
11121 process_die (origin_child_die, origin_cu);
11122 }
11123 origin_child_die = sibling_die (origin_child_die);
11124 }
11125 origin_cu->list_in_scope = origin_previous_list_in_scope;
11126
11127 do_cleanups (cleanups);
11128 }
11129
11130 static void
11131 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11132 {
11133 struct objfile *objfile = cu->objfile;
11134 struct context_stack *new;
11135 CORE_ADDR lowpc;
11136 CORE_ADDR highpc;
11137 struct die_info *child_die;
11138 struct attribute *attr, *call_line, *call_file;
11139 const char *name;
11140 CORE_ADDR baseaddr;
11141 struct block *block;
11142 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11143 VEC (symbolp) *template_args = NULL;
11144 struct template_symbol *templ_func = NULL;
11145
11146 if (inlined_func)
11147 {
11148 /* If we do not have call site information, we can't show the
11149 caller of this inlined function. That's too confusing, so
11150 only use the scope for local variables. */
11151 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11152 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11153 if (call_line == NULL || call_file == NULL)
11154 {
11155 read_lexical_block_scope (die, cu);
11156 return;
11157 }
11158 }
11159
11160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11161
11162 name = dwarf2_name (die, cu);
11163
11164 /* Ignore functions with missing or empty names. These are actually
11165 illegal according to the DWARF standard. */
11166 if (name == NULL)
11167 {
11168 complaint (&symfile_complaints,
11169 _("missing name for subprogram DIE at %d"),
11170 die->offset.sect_off);
11171 return;
11172 }
11173
11174 /* Ignore functions with missing or invalid low and high pc attributes. */
11175 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11176 {
11177 attr = dwarf2_attr (die, DW_AT_external, cu);
11178 if (!attr || !DW_UNSND (attr))
11179 complaint (&symfile_complaints,
11180 _("cannot get low and high bounds "
11181 "for subprogram DIE at %d"),
11182 die->offset.sect_off);
11183 return;
11184 }
11185
11186 lowpc += baseaddr;
11187 highpc += baseaddr;
11188
11189 /* If we have any template arguments, then we must allocate a
11190 different sort of symbol. */
11191 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11192 {
11193 if (child_die->tag == DW_TAG_template_type_param
11194 || child_die->tag == DW_TAG_template_value_param)
11195 {
11196 templ_func = allocate_template_symbol (objfile);
11197 templ_func->base.is_cplus_template_function = 1;
11198 break;
11199 }
11200 }
11201
11202 new = push_context (0, lowpc);
11203 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11204 (struct symbol *) templ_func);
11205
11206 /* If there is a location expression for DW_AT_frame_base, record
11207 it. */
11208 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11209 if (attr)
11210 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11211
11212 cu->list_in_scope = &local_symbols;
11213
11214 if (die->child != NULL)
11215 {
11216 child_die = die->child;
11217 while (child_die && child_die->tag)
11218 {
11219 if (child_die->tag == DW_TAG_template_type_param
11220 || child_die->tag == DW_TAG_template_value_param)
11221 {
11222 struct symbol *arg = new_symbol (child_die, NULL, cu);
11223
11224 if (arg != NULL)
11225 VEC_safe_push (symbolp, template_args, arg);
11226 }
11227 else
11228 process_die (child_die, cu);
11229 child_die = sibling_die (child_die);
11230 }
11231 }
11232
11233 inherit_abstract_dies (die, cu);
11234
11235 /* If we have a DW_AT_specification, we might need to import using
11236 directives from the context of the specification DIE. See the
11237 comment in determine_prefix. */
11238 if (cu->language == language_cplus
11239 && dwarf2_attr (die, DW_AT_specification, cu))
11240 {
11241 struct dwarf2_cu *spec_cu = cu;
11242 struct die_info *spec_die = die_specification (die, &spec_cu);
11243
11244 while (spec_die)
11245 {
11246 child_die = spec_die->child;
11247 while (child_die && child_die->tag)
11248 {
11249 if (child_die->tag == DW_TAG_imported_module)
11250 process_die (child_die, spec_cu);
11251 child_die = sibling_die (child_die);
11252 }
11253
11254 /* In some cases, GCC generates specification DIEs that
11255 themselves contain DW_AT_specification attributes. */
11256 spec_die = die_specification (spec_die, &spec_cu);
11257 }
11258 }
11259
11260 new = pop_context ();
11261 /* Make a block for the local symbols within. */
11262 block = finish_block (new->name, &local_symbols, new->old_blocks,
11263 lowpc, highpc, objfile);
11264
11265 /* For C++, set the block's scope. */
11266 if ((cu->language == language_cplus || cu->language == language_fortran)
11267 && cu->processing_has_namespace_info)
11268 block_set_scope (block, determine_prefix (die, cu),
11269 &objfile->objfile_obstack);
11270
11271 /* If we have address ranges, record them. */
11272 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11273
11274 /* Attach template arguments to function. */
11275 if (! VEC_empty (symbolp, template_args))
11276 {
11277 gdb_assert (templ_func != NULL);
11278
11279 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11280 templ_func->template_arguments
11281 = obstack_alloc (&objfile->objfile_obstack,
11282 (templ_func->n_template_arguments
11283 * sizeof (struct symbol *)));
11284 memcpy (templ_func->template_arguments,
11285 VEC_address (symbolp, template_args),
11286 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11287 VEC_free (symbolp, template_args);
11288 }
11289
11290 /* In C++, we can have functions nested inside functions (e.g., when
11291 a function declares a class that has methods). This means that
11292 when we finish processing a function scope, we may need to go
11293 back to building a containing block's symbol lists. */
11294 local_symbols = new->locals;
11295 using_directives = new->using_directives;
11296
11297 /* If we've finished processing a top-level function, subsequent
11298 symbols go in the file symbol list. */
11299 if (outermost_context_p ())
11300 cu->list_in_scope = &file_symbols;
11301 }
11302
11303 /* Process all the DIES contained within a lexical block scope. Start
11304 a new scope, process the dies, and then close the scope. */
11305
11306 static void
11307 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11308 {
11309 struct objfile *objfile = cu->objfile;
11310 struct context_stack *new;
11311 CORE_ADDR lowpc, highpc;
11312 struct die_info *child_die;
11313 CORE_ADDR baseaddr;
11314
11315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11316
11317 /* Ignore blocks with missing or invalid low and high pc attributes. */
11318 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11319 as multiple lexical blocks? Handling children in a sane way would
11320 be nasty. Might be easier to properly extend generic blocks to
11321 describe ranges. */
11322 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11323 return;
11324 lowpc += baseaddr;
11325 highpc += baseaddr;
11326
11327 push_context (0, lowpc);
11328 if (die->child != NULL)
11329 {
11330 child_die = die->child;
11331 while (child_die && child_die->tag)
11332 {
11333 process_die (child_die, cu);
11334 child_die = sibling_die (child_die);
11335 }
11336 }
11337 new = pop_context ();
11338
11339 if (local_symbols != NULL || using_directives != NULL)
11340 {
11341 struct block *block
11342 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11343 highpc, objfile);
11344
11345 /* Note that recording ranges after traversing children, as we
11346 do here, means that recording a parent's ranges entails
11347 walking across all its children's ranges as they appear in
11348 the address map, which is quadratic behavior.
11349
11350 It would be nicer to record the parent's ranges before
11351 traversing its children, simply overriding whatever you find
11352 there. But since we don't even decide whether to create a
11353 block until after we've traversed its children, that's hard
11354 to do. */
11355 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11356 }
11357 local_symbols = new->locals;
11358 using_directives = new->using_directives;
11359 }
11360
11361 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11362
11363 static void
11364 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11365 {
11366 struct objfile *objfile = cu->objfile;
11367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11368 CORE_ADDR pc, baseaddr;
11369 struct attribute *attr;
11370 struct call_site *call_site, call_site_local;
11371 void **slot;
11372 int nparams;
11373 struct die_info *child_die;
11374
11375 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11376
11377 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11378 if (!attr)
11379 {
11380 complaint (&symfile_complaints,
11381 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11382 "DIE 0x%x [in module %s]"),
11383 die->offset.sect_off, objfile_name (objfile));
11384 return;
11385 }
11386 pc = attr_value_as_address (attr) + baseaddr;
11387
11388 if (cu->call_site_htab == NULL)
11389 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11390 NULL, &objfile->objfile_obstack,
11391 hashtab_obstack_allocate, NULL);
11392 call_site_local.pc = pc;
11393 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11394 if (*slot != NULL)
11395 {
11396 complaint (&symfile_complaints,
11397 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11398 "DIE 0x%x [in module %s]"),
11399 paddress (gdbarch, pc), die->offset.sect_off,
11400 objfile_name (objfile));
11401 return;
11402 }
11403
11404 /* Count parameters at the caller. */
11405
11406 nparams = 0;
11407 for (child_die = die->child; child_die && child_die->tag;
11408 child_die = sibling_die (child_die))
11409 {
11410 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11411 {
11412 complaint (&symfile_complaints,
11413 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11414 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11415 child_die->tag, child_die->offset.sect_off,
11416 objfile_name (objfile));
11417 continue;
11418 }
11419
11420 nparams++;
11421 }
11422
11423 call_site = obstack_alloc (&objfile->objfile_obstack,
11424 (sizeof (*call_site)
11425 + (sizeof (*call_site->parameter)
11426 * (nparams - 1))));
11427 *slot = call_site;
11428 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11429 call_site->pc = pc;
11430
11431 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11432 {
11433 struct die_info *func_die;
11434
11435 /* Skip also over DW_TAG_inlined_subroutine. */
11436 for (func_die = die->parent;
11437 func_die && func_die->tag != DW_TAG_subprogram
11438 && func_die->tag != DW_TAG_subroutine_type;
11439 func_die = func_die->parent);
11440
11441 /* DW_AT_GNU_all_call_sites is a superset
11442 of DW_AT_GNU_all_tail_call_sites. */
11443 if (func_die
11444 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11445 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11446 {
11447 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11448 not complete. But keep CALL_SITE for look ups via call_site_htab,
11449 both the initial caller containing the real return address PC and
11450 the final callee containing the current PC of a chain of tail
11451 calls do not need to have the tail call list complete. But any
11452 function candidate for a virtual tail call frame searched via
11453 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11454 determined unambiguously. */
11455 }
11456 else
11457 {
11458 struct type *func_type = NULL;
11459
11460 if (func_die)
11461 func_type = get_die_type (func_die, cu);
11462 if (func_type != NULL)
11463 {
11464 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11465
11466 /* Enlist this call site to the function. */
11467 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11468 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11469 }
11470 else
11471 complaint (&symfile_complaints,
11472 _("Cannot find function owning DW_TAG_GNU_call_site "
11473 "DIE 0x%x [in module %s]"),
11474 die->offset.sect_off, objfile_name (objfile));
11475 }
11476 }
11477
11478 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11479 if (attr == NULL)
11480 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11481 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11482 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11483 /* Keep NULL DWARF_BLOCK. */;
11484 else if (attr_form_is_block (attr))
11485 {
11486 struct dwarf2_locexpr_baton *dlbaton;
11487
11488 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11489 dlbaton->data = DW_BLOCK (attr)->data;
11490 dlbaton->size = DW_BLOCK (attr)->size;
11491 dlbaton->per_cu = cu->per_cu;
11492
11493 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11494 }
11495 else if (attr_form_is_ref (attr))
11496 {
11497 struct dwarf2_cu *target_cu = cu;
11498 struct die_info *target_die;
11499
11500 target_die = follow_die_ref (die, attr, &target_cu);
11501 gdb_assert (target_cu->objfile == objfile);
11502 if (die_is_declaration (target_die, target_cu))
11503 {
11504 const char *target_physname = NULL;
11505 struct attribute *target_attr;
11506
11507 /* Prefer the mangled name; otherwise compute the demangled one. */
11508 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11509 if (target_attr == NULL)
11510 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11511 target_cu);
11512 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11513 target_physname = DW_STRING (target_attr);
11514 else
11515 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11516 if (target_physname == NULL)
11517 complaint (&symfile_complaints,
11518 _("DW_AT_GNU_call_site_target target DIE has invalid "
11519 "physname, for referencing DIE 0x%x [in module %s]"),
11520 die->offset.sect_off, objfile_name (objfile));
11521 else
11522 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11523 }
11524 else
11525 {
11526 CORE_ADDR lowpc;
11527
11528 /* DW_AT_entry_pc should be preferred. */
11529 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11530 complaint (&symfile_complaints,
11531 _("DW_AT_GNU_call_site_target target DIE has invalid "
11532 "low pc, for referencing DIE 0x%x [in module %s]"),
11533 die->offset.sect_off, objfile_name (objfile));
11534 else
11535 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11536 }
11537 }
11538 else
11539 complaint (&symfile_complaints,
11540 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11541 "block nor reference, for DIE 0x%x [in module %s]"),
11542 die->offset.sect_off, objfile_name (objfile));
11543
11544 call_site->per_cu = cu->per_cu;
11545
11546 for (child_die = die->child;
11547 child_die && child_die->tag;
11548 child_die = sibling_die (child_die))
11549 {
11550 struct call_site_parameter *parameter;
11551 struct attribute *loc, *origin;
11552
11553 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11554 {
11555 /* Already printed the complaint above. */
11556 continue;
11557 }
11558
11559 gdb_assert (call_site->parameter_count < nparams);
11560 parameter = &call_site->parameter[call_site->parameter_count];
11561
11562 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11563 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11564 register is contained in DW_AT_GNU_call_site_value. */
11565
11566 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11567 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11568 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11569 {
11570 sect_offset offset;
11571
11572 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11573 offset = dwarf2_get_ref_die_offset (origin);
11574 if (!offset_in_cu_p (&cu->header, offset))
11575 {
11576 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11577 binding can be done only inside one CU. Such referenced DIE
11578 therefore cannot be even moved to DW_TAG_partial_unit. */
11579 complaint (&symfile_complaints,
11580 _("DW_AT_abstract_origin offset is not in CU for "
11581 "DW_TAG_GNU_call_site child DIE 0x%x "
11582 "[in module %s]"),
11583 child_die->offset.sect_off, objfile_name (objfile));
11584 continue;
11585 }
11586 parameter->u.param_offset.cu_off = (offset.sect_off
11587 - cu->header.offset.sect_off);
11588 }
11589 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11590 {
11591 complaint (&symfile_complaints,
11592 _("No DW_FORM_block* DW_AT_location for "
11593 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11594 child_die->offset.sect_off, objfile_name (objfile));
11595 continue;
11596 }
11597 else
11598 {
11599 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11600 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11601 if (parameter->u.dwarf_reg != -1)
11602 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11603 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11604 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11605 &parameter->u.fb_offset))
11606 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11607 else
11608 {
11609 complaint (&symfile_complaints,
11610 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11611 "for DW_FORM_block* DW_AT_location is supported for "
11612 "DW_TAG_GNU_call_site child DIE 0x%x "
11613 "[in module %s]"),
11614 child_die->offset.sect_off, objfile_name (objfile));
11615 continue;
11616 }
11617 }
11618
11619 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11620 if (!attr_form_is_block (attr))
11621 {
11622 complaint (&symfile_complaints,
11623 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11624 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11625 child_die->offset.sect_off, objfile_name (objfile));
11626 continue;
11627 }
11628 parameter->value = DW_BLOCK (attr)->data;
11629 parameter->value_size = DW_BLOCK (attr)->size;
11630
11631 /* Parameters are not pre-cleared by memset above. */
11632 parameter->data_value = NULL;
11633 parameter->data_value_size = 0;
11634 call_site->parameter_count++;
11635
11636 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11637 if (attr)
11638 {
11639 if (!attr_form_is_block (attr))
11640 complaint (&symfile_complaints,
11641 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11642 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11643 child_die->offset.sect_off, objfile_name (objfile));
11644 else
11645 {
11646 parameter->data_value = DW_BLOCK (attr)->data;
11647 parameter->data_value_size = DW_BLOCK (attr)->size;
11648 }
11649 }
11650 }
11651 }
11652
11653 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11654 Return 1 if the attributes are present and valid, otherwise, return 0.
11655 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11656
11657 static int
11658 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11659 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11660 struct partial_symtab *ranges_pst)
11661 {
11662 struct objfile *objfile = cu->objfile;
11663 struct comp_unit_head *cu_header = &cu->header;
11664 bfd *obfd = objfile->obfd;
11665 unsigned int addr_size = cu_header->addr_size;
11666 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11667 /* Base address selection entry. */
11668 CORE_ADDR base;
11669 int found_base;
11670 unsigned int dummy;
11671 const gdb_byte *buffer;
11672 CORE_ADDR marker;
11673 int low_set;
11674 CORE_ADDR low = 0;
11675 CORE_ADDR high = 0;
11676 CORE_ADDR baseaddr;
11677
11678 found_base = cu->base_known;
11679 base = cu->base_address;
11680
11681 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11682 if (offset >= dwarf2_per_objfile->ranges.size)
11683 {
11684 complaint (&symfile_complaints,
11685 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11686 offset);
11687 return 0;
11688 }
11689 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11690
11691 /* Read in the largest possible address. */
11692 marker = read_address (obfd, buffer, cu, &dummy);
11693 if ((marker & mask) == mask)
11694 {
11695 /* If we found the largest possible address, then
11696 read the base address. */
11697 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11698 buffer += 2 * addr_size;
11699 offset += 2 * addr_size;
11700 found_base = 1;
11701 }
11702
11703 low_set = 0;
11704
11705 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11706
11707 while (1)
11708 {
11709 CORE_ADDR range_beginning, range_end;
11710
11711 range_beginning = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 range_end = read_address (obfd, buffer, cu, &dummy);
11714 buffer += addr_size;
11715 offset += 2 * addr_size;
11716
11717 /* An end of list marker is a pair of zero addresses. */
11718 if (range_beginning == 0 && range_end == 0)
11719 /* Found the end of list entry. */
11720 break;
11721
11722 /* Each base address selection entry is a pair of 2 values.
11723 The first is the largest possible address, the second is
11724 the base address. Check for a base address here. */
11725 if ((range_beginning & mask) == mask)
11726 {
11727 /* If we found the largest possible address, then
11728 read the base address. */
11729 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11730 found_base = 1;
11731 continue;
11732 }
11733
11734 if (!found_base)
11735 {
11736 /* We have no valid base address for the ranges
11737 data. */
11738 complaint (&symfile_complaints,
11739 _("Invalid .debug_ranges data (no base address)"));
11740 return 0;
11741 }
11742
11743 if (range_beginning > range_end)
11744 {
11745 /* Inverted range entries are invalid. */
11746 complaint (&symfile_complaints,
11747 _("Invalid .debug_ranges data (inverted range)"));
11748 return 0;
11749 }
11750
11751 /* Empty range entries have no effect. */
11752 if (range_beginning == range_end)
11753 continue;
11754
11755 range_beginning += base;
11756 range_end += base;
11757
11758 /* A not-uncommon case of bad debug info.
11759 Don't pollute the addrmap with bad data. */
11760 if (range_beginning + baseaddr == 0
11761 && !dwarf2_per_objfile->has_section_at_zero)
11762 {
11763 complaint (&symfile_complaints,
11764 _(".debug_ranges entry has start address of zero"
11765 " [in module %s]"), objfile_name (objfile));
11766 continue;
11767 }
11768
11769 if (ranges_pst != NULL)
11770 addrmap_set_empty (objfile->psymtabs_addrmap,
11771 range_beginning + baseaddr,
11772 range_end - 1 + baseaddr,
11773 ranges_pst);
11774
11775 /* FIXME: This is recording everything as a low-high
11776 segment of consecutive addresses. We should have a
11777 data structure for discontiguous block ranges
11778 instead. */
11779 if (! low_set)
11780 {
11781 low = range_beginning;
11782 high = range_end;
11783 low_set = 1;
11784 }
11785 else
11786 {
11787 if (range_beginning < low)
11788 low = range_beginning;
11789 if (range_end > high)
11790 high = range_end;
11791 }
11792 }
11793
11794 if (! low_set)
11795 /* If the first entry is an end-of-list marker, the range
11796 describes an empty scope, i.e. no instructions. */
11797 return 0;
11798
11799 if (low_return)
11800 *low_return = low;
11801 if (high_return)
11802 *high_return = high;
11803 return 1;
11804 }
11805
11806 /* Get low and high pc attributes from a die. Return 1 if the attributes
11807 are present and valid, otherwise, return 0. Return -1 if the range is
11808 discontinuous, i.e. derived from DW_AT_ranges information. */
11809
11810 static int
11811 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11812 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11813 struct partial_symtab *pst)
11814 {
11815 struct attribute *attr;
11816 struct attribute *attr_high;
11817 CORE_ADDR low = 0;
11818 CORE_ADDR high = 0;
11819 int ret = 0;
11820
11821 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11822 if (attr_high)
11823 {
11824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11825 if (attr)
11826 {
11827 low = attr_value_as_address (attr);
11828 high = attr_value_as_address (attr_high);
11829 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11830 high += low;
11831 }
11832 else
11833 /* Found high w/o low attribute. */
11834 return 0;
11835
11836 /* Found consecutive range of addresses. */
11837 ret = 1;
11838 }
11839 else
11840 {
11841 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11842 if (attr != NULL)
11843 {
11844 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11845 We take advantage of the fact that DW_AT_ranges does not appear
11846 in DW_TAG_compile_unit of DWO files. */
11847 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11848 unsigned int ranges_offset = (DW_UNSND (attr)
11849 + (need_ranges_base
11850 ? cu->ranges_base
11851 : 0));
11852
11853 /* Value of the DW_AT_ranges attribute is the offset in the
11854 .debug_ranges section. */
11855 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11856 return 0;
11857 /* Found discontinuous range of addresses. */
11858 ret = -1;
11859 }
11860 }
11861
11862 /* read_partial_die has also the strict LOW < HIGH requirement. */
11863 if (high <= low)
11864 return 0;
11865
11866 /* When using the GNU linker, .gnu.linkonce. sections are used to
11867 eliminate duplicate copies of functions and vtables and such.
11868 The linker will arbitrarily choose one and discard the others.
11869 The AT_*_pc values for such functions refer to local labels in
11870 these sections. If the section from that file was discarded, the
11871 labels are not in the output, so the relocs get a value of 0.
11872 If this is a discarded function, mark the pc bounds as invalid,
11873 so that GDB will ignore it. */
11874 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11875 return 0;
11876
11877 *lowpc = low;
11878 if (highpc)
11879 *highpc = high;
11880 return ret;
11881 }
11882
11883 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11884 its low and high PC addresses. Do nothing if these addresses could not
11885 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11886 and HIGHPC to the high address if greater than HIGHPC. */
11887
11888 static void
11889 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11890 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11891 struct dwarf2_cu *cu)
11892 {
11893 CORE_ADDR low, high;
11894 struct die_info *child = die->child;
11895
11896 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11897 {
11898 *lowpc = min (*lowpc, low);
11899 *highpc = max (*highpc, high);
11900 }
11901
11902 /* If the language does not allow nested subprograms (either inside
11903 subprograms or lexical blocks), we're done. */
11904 if (cu->language != language_ada)
11905 return;
11906
11907 /* Check all the children of the given DIE. If it contains nested
11908 subprograms, then check their pc bounds. Likewise, we need to
11909 check lexical blocks as well, as they may also contain subprogram
11910 definitions. */
11911 while (child && child->tag)
11912 {
11913 if (child->tag == DW_TAG_subprogram
11914 || child->tag == DW_TAG_lexical_block)
11915 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11916 child = sibling_die (child);
11917 }
11918 }
11919
11920 /* Get the low and high pc's represented by the scope DIE, and store
11921 them in *LOWPC and *HIGHPC. If the correct values can't be
11922 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11923
11924 static void
11925 get_scope_pc_bounds (struct die_info *die,
11926 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11927 struct dwarf2_cu *cu)
11928 {
11929 CORE_ADDR best_low = (CORE_ADDR) -1;
11930 CORE_ADDR best_high = (CORE_ADDR) 0;
11931 CORE_ADDR current_low, current_high;
11932
11933 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11934 {
11935 best_low = current_low;
11936 best_high = current_high;
11937 }
11938 else
11939 {
11940 struct die_info *child = die->child;
11941
11942 while (child && child->tag)
11943 {
11944 switch (child->tag) {
11945 case DW_TAG_subprogram:
11946 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11947 break;
11948 case DW_TAG_namespace:
11949 case DW_TAG_module:
11950 /* FIXME: carlton/2004-01-16: Should we do this for
11951 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11952 that current GCC's always emit the DIEs corresponding
11953 to definitions of methods of classes as children of a
11954 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11955 the DIEs giving the declarations, which could be
11956 anywhere). But I don't see any reason why the
11957 standards says that they have to be there. */
11958 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11959
11960 if (current_low != ((CORE_ADDR) -1))
11961 {
11962 best_low = min (best_low, current_low);
11963 best_high = max (best_high, current_high);
11964 }
11965 break;
11966 default:
11967 /* Ignore. */
11968 break;
11969 }
11970
11971 child = sibling_die (child);
11972 }
11973 }
11974
11975 *lowpc = best_low;
11976 *highpc = best_high;
11977 }
11978
11979 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11980 in DIE. */
11981
11982 static void
11983 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11984 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11985 {
11986 struct objfile *objfile = cu->objfile;
11987 struct attribute *attr;
11988 struct attribute *attr_high;
11989
11990 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11991 if (attr_high)
11992 {
11993 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11994 if (attr)
11995 {
11996 CORE_ADDR low = attr_value_as_address (attr);
11997 CORE_ADDR high = attr_value_as_address (attr_high);
11998
11999 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12000 high += low;
12001
12002 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12003 }
12004 }
12005
12006 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12007 if (attr)
12008 {
12009 bfd *obfd = objfile->obfd;
12010 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12011 We take advantage of the fact that DW_AT_ranges does not appear
12012 in DW_TAG_compile_unit of DWO files. */
12013 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12014
12015 /* The value of the DW_AT_ranges attribute is the offset of the
12016 address range list in the .debug_ranges section. */
12017 unsigned long offset = (DW_UNSND (attr)
12018 + (need_ranges_base ? cu->ranges_base : 0));
12019 const gdb_byte *buffer;
12020
12021 /* For some target architectures, but not others, the
12022 read_address function sign-extends the addresses it returns.
12023 To recognize base address selection entries, we need a
12024 mask. */
12025 unsigned int addr_size = cu->header.addr_size;
12026 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12027
12028 /* The base address, to which the next pair is relative. Note
12029 that this 'base' is a DWARF concept: most entries in a range
12030 list are relative, to reduce the number of relocs against the
12031 debugging information. This is separate from this function's
12032 'baseaddr' argument, which GDB uses to relocate debugging
12033 information from a shared library based on the address at
12034 which the library was loaded. */
12035 CORE_ADDR base = cu->base_address;
12036 int base_known = cu->base_known;
12037
12038 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12039 if (offset >= dwarf2_per_objfile->ranges.size)
12040 {
12041 complaint (&symfile_complaints,
12042 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12043 offset);
12044 return;
12045 }
12046 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12047
12048 for (;;)
12049 {
12050 unsigned int bytes_read;
12051 CORE_ADDR start, end;
12052
12053 start = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055 end = read_address (obfd, buffer, cu, &bytes_read);
12056 buffer += bytes_read;
12057
12058 /* Did we find the end of the range list? */
12059 if (start == 0 && end == 0)
12060 break;
12061
12062 /* Did we find a base address selection entry? */
12063 else if ((start & base_select_mask) == base_select_mask)
12064 {
12065 base = end;
12066 base_known = 1;
12067 }
12068
12069 /* We found an ordinary address range. */
12070 else
12071 {
12072 if (!base_known)
12073 {
12074 complaint (&symfile_complaints,
12075 _("Invalid .debug_ranges data "
12076 "(no base address)"));
12077 return;
12078 }
12079
12080 if (start > end)
12081 {
12082 /* Inverted range entries are invalid. */
12083 complaint (&symfile_complaints,
12084 _("Invalid .debug_ranges data "
12085 "(inverted range)"));
12086 return;
12087 }
12088
12089 /* Empty range entries have no effect. */
12090 if (start == end)
12091 continue;
12092
12093 start += base + baseaddr;
12094 end += base + baseaddr;
12095
12096 /* A not-uncommon case of bad debug info.
12097 Don't pollute the addrmap with bad data. */
12098 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12099 {
12100 complaint (&symfile_complaints,
12101 _(".debug_ranges entry has start address of zero"
12102 " [in module %s]"), objfile_name (objfile));
12103 continue;
12104 }
12105
12106 record_block_range (block, start, end - 1);
12107 }
12108 }
12109 }
12110 }
12111
12112 /* Check whether the producer field indicates either of GCC < 4.6, or the
12113 Intel C/C++ compiler, and cache the result in CU. */
12114
12115 static void
12116 check_producer (struct dwarf2_cu *cu)
12117 {
12118 const char *cs;
12119 int major, minor, release;
12120
12121 if (cu->producer == NULL)
12122 {
12123 /* For unknown compilers expect their behavior is DWARF version
12124 compliant.
12125
12126 GCC started to support .debug_types sections by -gdwarf-4 since
12127 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12128 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12129 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12130 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12131 }
12132 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12133 {
12134 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12135
12136 cs = &cu->producer[strlen ("GNU ")];
12137 while (*cs && !isdigit (*cs))
12138 cs++;
12139 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12140 {
12141 /* Not recognized as GCC. */
12142 }
12143 else
12144 {
12145 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12146 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12147 }
12148 }
12149 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12150 cu->producer_is_icc = 1;
12151 else
12152 {
12153 /* For other non-GCC compilers, expect their behavior is DWARF version
12154 compliant. */
12155 }
12156
12157 cu->checked_producer = 1;
12158 }
12159
12160 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12161 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12162 during 4.6.0 experimental. */
12163
12164 static int
12165 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12166 {
12167 if (!cu->checked_producer)
12168 check_producer (cu);
12169
12170 return cu->producer_is_gxx_lt_4_6;
12171 }
12172
12173 /* Return the default accessibility type if it is not overriden by
12174 DW_AT_accessibility. */
12175
12176 static enum dwarf_access_attribute
12177 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12178 {
12179 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12180 {
12181 /* The default DWARF 2 accessibility for members is public, the default
12182 accessibility for inheritance is private. */
12183
12184 if (die->tag != DW_TAG_inheritance)
12185 return DW_ACCESS_public;
12186 else
12187 return DW_ACCESS_private;
12188 }
12189 else
12190 {
12191 /* DWARF 3+ defines the default accessibility a different way. The same
12192 rules apply now for DW_TAG_inheritance as for the members and it only
12193 depends on the container kind. */
12194
12195 if (die->parent->tag == DW_TAG_class_type)
12196 return DW_ACCESS_private;
12197 else
12198 return DW_ACCESS_public;
12199 }
12200 }
12201
12202 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12203 offset. If the attribute was not found return 0, otherwise return
12204 1. If it was found but could not properly be handled, set *OFFSET
12205 to 0. */
12206
12207 static int
12208 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12209 LONGEST *offset)
12210 {
12211 struct attribute *attr;
12212
12213 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12214 if (attr != NULL)
12215 {
12216 *offset = 0;
12217
12218 /* Note that we do not check for a section offset first here.
12219 This is because DW_AT_data_member_location is new in DWARF 4,
12220 so if we see it, we can assume that a constant form is really
12221 a constant and not a section offset. */
12222 if (attr_form_is_constant (attr))
12223 *offset = dwarf2_get_attr_constant_value (attr, 0);
12224 else if (attr_form_is_section_offset (attr))
12225 dwarf2_complex_location_expr_complaint ();
12226 else if (attr_form_is_block (attr))
12227 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12228 else
12229 dwarf2_complex_location_expr_complaint ();
12230
12231 return 1;
12232 }
12233
12234 return 0;
12235 }
12236
12237 /* Add an aggregate field to the field list. */
12238
12239 static void
12240 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12241 struct dwarf2_cu *cu)
12242 {
12243 struct objfile *objfile = cu->objfile;
12244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12245 struct nextfield *new_field;
12246 struct attribute *attr;
12247 struct field *fp;
12248 const char *fieldname = "";
12249
12250 /* Allocate a new field list entry and link it in. */
12251 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12252 make_cleanup (xfree, new_field);
12253 memset (new_field, 0, sizeof (struct nextfield));
12254
12255 if (die->tag == DW_TAG_inheritance)
12256 {
12257 new_field->next = fip->baseclasses;
12258 fip->baseclasses = new_field;
12259 }
12260 else
12261 {
12262 new_field->next = fip->fields;
12263 fip->fields = new_field;
12264 }
12265 fip->nfields++;
12266
12267 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12268 if (attr)
12269 new_field->accessibility = DW_UNSND (attr);
12270 else
12271 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12272 if (new_field->accessibility != DW_ACCESS_public)
12273 fip->non_public_fields = 1;
12274
12275 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12276 if (attr)
12277 new_field->virtuality = DW_UNSND (attr);
12278 else
12279 new_field->virtuality = DW_VIRTUALITY_none;
12280
12281 fp = &new_field->field;
12282
12283 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12284 {
12285 LONGEST offset;
12286
12287 /* Data member other than a C++ static data member. */
12288
12289 /* Get type of field. */
12290 fp->type = die_type (die, cu);
12291
12292 SET_FIELD_BITPOS (*fp, 0);
12293
12294 /* Get bit size of field (zero if none). */
12295 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12296 if (attr)
12297 {
12298 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12299 }
12300 else
12301 {
12302 FIELD_BITSIZE (*fp) = 0;
12303 }
12304
12305 /* Get bit offset of field. */
12306 if (handle_data_member_location (die, cu, &offset))
12307 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12308 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12309 if (attr)
12310 {
12311 if (gdbarch_bits_big_endian (gdbarch))
12312 {
12313 /* For big endian bits, the DW_AT_bit_offset gives the
12314 additional bit offset from the MSB of the containing
12315 anonymous object to the MSB of the field. We don't
12316 have to do anything special since we don't need to
12317 know the size of the anonymous object. */
12318 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12319 }
12320 else
12321 {
12322 /* For little endian bits, compute the bit offset to the
12323 MSB of the anonymous object, subtract off the number of
12324 bits from the MSB of the field to the MSB of the
12325 object, and then subtract off the number of bits of
12326 the field itself. The result is the bit offset of
12327 the LSB of the field. */
12328 int anonymous_size;
12329 int bit_offset = DW_UNSND (attr);
12330
12331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12332 if (attr)
12333 {
12334 /* The size of the anonymous object containing
12335 the bit field is explicit, so use the
12336 indicated size (in bytes). */
12337 anonymous_size = DW_UNSND (attr);
12338 }
12339 else
12340 {
12341 /* The size of the anonymous object containing
12342 the bit field must be inferred from the type
12343 attribute of the data member containing the
12344 bit field. */
12345 anonymous_size = TYPE_LENGTH (fp->type);
12346 }
12347 SET_FIELD_BITPOS (*fp,
12348 (FIELD_BITPOS (*fp)
12349 + anonymous_size * bits_per_byte
12350 - bit_offset - FIELD_BITSIZE (*fp)));
12351 }
12352 }
12353
12354 /* Get name of field. */
12355 fieldname = dwarf2_name (die, cu);
12356 if (fieldname == NULL)
12357 fieldname = "";
12358
12359 /* The name is already allocated along with this objfile, so we don't
12360 need to duplicate it for the type. */
12361 fp->name = fieldname;
12362
12363 /* Change accessibility for artificial fields (e.g. virtual table
12364 pointer or virtual base class pointer) to private. */
12365 if (dwarf2_attr (die, DW_AT_artificial, cu))
12366 {
12367 FIELD_ARTIFICIAL (*fp) = 1;
12368 new_field->accessibility = DW_ACCESS_private;
12369 fip->non_public_fields = 1;
12370 }
12371 }
12372 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12373 {
12374 /* C++ static member. */
12375
12376 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12377 is a declaration, but all versions of G++ as of this writing
12378 (so through at least 3.2.1) incorrectly generate
12379 DW_TAG_variable tags. */
12380
12381 const char *physname;
12382
12383 /* Get name of field. */
12384 fieldname = dwarf2_name (die, cu);
12385 if (fieldname == NULL)
12386 return;
12387
12388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12389 if (attr
12390 /* Only create a symbol if this is an external value.
12391 new_symbol checks this and puts the value in the global symbol
12392 table, which we want. If it is not external, new_symbol
12393 will try to put the value in cu->list_in_scope which is wrong. */
12394 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12395 {
12396 /* A static const member, not much different than an enum as far as
12397 we're concerned, except that we can support more types. */
12398 new_symbol (die, NULL, cu);
12399 }
12400
12401 /* Get physical name. */
12402 physname = dwarf2_physname (fieldname, die, cu);
12403
12404 /* The name is already allocated along with this objfile, so we don't
12405 need to duplicate it for the type. */
12406 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12407 FIELD_TYPE (*fp) = die_type (die, cu);
12408 FIELD_NAME (*fp) = fieldname;
12409 }
12410 else if (die->tag == DW_TAG_inheritance)
12411 {
12412 LONGEST offset;
12413
12414 /* C++ base class field. */
12415 if (handle_data_member_location (die, cu, &offset))
12416 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12417 FIELD_BITSIZE (*fp) = 0;
12418 FIELD_TYPE (*fp) = die_type (die, cu);
12419 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12420 fip->nbaseclasses++;
12421 }
12422 }
12423
12424 /* Add a typedef defined in the scope of the FIP's class. */
12425
12426 static void
12427 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12428 struct dwarf2_cu *cu)
12429 {
12430 struct objfile *objfile = cu->objfile;
12431 struct typedef_field_list *new_field;
12432 struct attribute *attr;
12433 struct typedef_field *fp;
12434 char *fieldname = "";
12435
12436 /* Allocate a new field list entry and link it in. */
12437 new_field = xzalloc (sizeof (*new_field));
12438 make_cleanup (xfree, new_field);
12439
12440 gdb_assert (die->tag == DW_TAG_typedef);
12441
12442 fp = &new_field->field;
12443
12444 /* Get name of field. */
12445 fp->name = dwarf2_name (die, cu);
12446 if (fp->name == NULL)
12447 return;
12448
12449 fp->type = read_type_die (die, cu);
12450
12451 new_field->next = fip->typedef_field_list;
12452 fip->typedef_field_list = new_field;
12453 fip->typedef_field_list_count++;
12454 }
12455
12456 /* Create the vector of fields, and attach it to the type. */
12457
12458 static void
12459 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12460 struct dwarf2_cu *cu)
12461 {
12462 int nfields = fip->nfields;
12463
12464 /* Record the field count, allocate space for the array of fields,
12465 and create blank accessibility bitfields if necessary. */
12466 TYPE_NFIELDS (type) = nfields;
12467 TYPE_FIELDS (type) = (struct field *)
12468 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12469 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12470
12471 if (fip->non_public_fields && cu->language != language_ada)
12472 {
12473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12474
12475 TYPE_FIELD_PRIVATE_BITS (type) =
12476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12478
12479 TYPE_FIELD_PROTECTED_BITS (type) =
12480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12482
12483 TYPE_FIELD_IGNORE_BITS (type) =
12484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12486 }
12487
12488 /* If the type has baseclasses, allocate and clear a bit vector for
12489 TYPE_FIELD_VIRTUAL_BITS. */
12490 if (fip->nbaseclasses && cu->language != language_ada)
12491 {
12492 int num_bytes = B_BYTES (fip->nbaseclasses);
12493 unsigned char *pointer;
12494
12495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12496 pointer = TYPE_ALLOC (type, num_bytes);
12497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12499 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12500 }
12501
12502 /* Copy the saved-up fields into the field vector. Start from the head of
12503 the list, adding to the tail of the field array, so that they end up in
12504 the same order in the array in which they were added to the list. */
12505 while (nfields-- > 0)
12506 {
12507 struct nextfield *fieldp;
12508
12509 if (fip->fields)
12510 {
12511 fieldp = fip->fields;
12512 fip->fields = fieldp->next;
12513 }
12514 else
12515 {
12516 fieldp = fip->baseclasses;
12517 fip->baseclasses = fieldp->next;
12518 }
12519
12520 TYPE_FIELD (type, nfields) = fieldp->field;
12521 switch (fieldp->accessibility)
12522 {
12523 case DW_ACCESS_private:
12524 if (cu->language != language_ada)
12525 SET_TYPE_FIELD_PRIVATE (type, nfields);
12526 break;
12527
12528 case DW_ACCESS_protected:
12529 if (cu->language != language_ada)
12530 SET_TYPE_FIELD_PROTECTED (type, nfields);
12531 break;
12532
12533 case DW_ACCESS_public:
12534 break;
12535
12536 default:
12537 /* Unknown accessibility. Complain and treat it as public. */
12538 {
12539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12540 fieldp->accessibility);
12541 }
12542 break;
12543 }
12544 if (nfields < fip->nbaseclasses)
12545 {
12546 switch (fieldp->virtuality)
12547 {
12548 case DW_VIRTUALITY_virtual:
12549 case DW_VIRTUALITY_pure_virtual:
12550 if (cu->language == language_ada)
12551 error (_("unexpected virtuality in component of Ada type"));
12552 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12553 break;
12554 }
12555 }
12556 }
12557 }
12558
12559 /* Return true if this member function is a constructor, false
12560 otherwise. */
12561
12562 static int
12563 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12564 {
12565 const char *fieldname;
12566 const char *typename;
12567 int len;
12568
12569 if (die->parent == NULL)
12570 return 0;
12571
12572 if (die->parent->tag != DW_TAG_structure_type
12573 && die->parent->tag != DW_TAG_union_type
12574 && die->parent->tag != DW_TAG_class_type)
12575 return 0;
12576
12577 fieldname = dwarf2_name (die, cu);
12578 typename = dwarf2_name (die->parent, cu);
12579 if (fieldname == NULL || typename == NULL)
12580 return 0;
12581
12582 len = strlen (fieldname);
12583 return (strncmp (fieldname, typename, len) == 0
12584 && (typename[len] == '\0' || typename[len] == '<'));
12585 }
12586
12587 /* Add a member function to the proper fieldlist. */
12588
12589 static void
12590 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12591 struct type *type, struct dwarf2_cu *cu)
12592 {
12593 struct objfile *objfile = cu->objfile;
12594 struct attribute *attr;
12595 struct fnfieldlist *flp;
12596 int i;
12597 struct fn_field *fnp;
12598 const char *fieldname;
12599 struct nextfnfield *new_fnfield;
12600 struct type *this_type;
12601 enum dwarf_access_attribute accessibility;
12602
12603 if (cu->language == language_ada)
12604 error (_("unexpected member function in Ada type"));
12605
12606 /* Get name of member function. */
12607 fieldname = dwarf2_name (die, cu);
12608 if (fieldname == NULL)
12609 return;
12610
12611 /* Look up member function name in fieldlist. */
12612 for (i = 0; i < fip->nfnfields; i++)
12613 {
12614 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12615 break;
12616 }
12617
12618 /* Create new list element if necessary. */
12619 if (i < fip->nfnfields)
12620 flp = &fip->fnfieldlists[i];
12621 else
12622 {
12623 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12624 {
12625 fip->fnfieldlists = (struct fnfieldlist *)
12626 xrealloc (fip->fnfieldlists,
12627 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12628 * sizeof (struct fnfieldlist));
12629 if (fip->nfnfields == 0)
12630 make_cleanup (free_current_contents, &fip->fnfieldlists);
12631 }
12632 flp = &fip->fnfieldlists[fip->nfnfields];
12633 flp->name = fieldname;
12634 flp->length = 0;
12635 flp->head = NULL;
12636 i = fip->nfnfields++;
12637 }
12638
12639 /* Create a new member function field and chain it to the field list
12640 entry. */
12641 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12642 make_cleanup (xfree, new_fnfield);
12643 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12644 new_fnfield->next = flp->head;
12645 flp->head = new_fnfield;
12646 flp->length++;
12647
12648 /* Fill in the member function field info. */
12649 fnp = &new_fnfield->fnfield;
12650
12651 /* Delay processing of the physname until later. */
12652 if (cu->language == language_cplus || cu->language == language_java)
12653 {
12654 add_to_method_list (type, i, flp->length - 1, fieldname,
12655 die, cu);
12656 }
12657 else
12658 {
12659 const char *physname = dwarf2_physname (fieldname, die, cu);
12660 fnp->physname = physname ? physname : "";
12661 }
12662
12663 fnp->type = alloc_type (objfile);
12664 this_type = read_type_die (die, cu);
12665 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12666 {
12667 int nparams = TYPE_NFIELDS (this_type);
12668
12669 /* TYPE is the domain of this method, and THIS_TYPE is the type
12670 of the method itself (TYPE_CODE_METHOD). */
12671 smash_to_method_type (fnp->type, type,
12672 TYPE_TARGET_TYPE (this_type),
12673 TYPE_FIELDS (this_type),
12674 TYPE_NFIELDS (this_type),
12675 TYPE_VARARGS (this_type));
12676
12677 /* Handle static member functions.
12678 Dwarf2 has no clean way to discern C++ static and non-static
12679 member functions. G++ helps GDB by marking the first
12680 parameter for non-static member functions (which is the this
12681 pointer) as artificial. We obtain this information from
12682 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12683 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12684 fnp->voffset = VOFFSET_STATIC;
12685 }
12686 else
12687 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12688 dwarf2_full_name (fieldname, die, cu));
12689
12690 /* Get fcontext from DW_AT_containing_type if present. */
12691 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12692 fnp->fcontext = die_containing_type (die, cu);
12693
12694 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12695 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12696
12697 /* Get accessibility. */
12698 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12699 if (attr)
12700 accessibility = DW_UNSND (attr);
12701 else
12702 accessibility = dwarf2_default_access_attribute (die, cu);
12703 switch (accessibility)
12704 {
12705 case DW_ACCESS_private:
12706 fnp->is_private = 1;
12707 break;
12708 case DW_ACCESS_protected:
12709 fnp->is_protected = 1;
12710 break;
12711 }
12712
12713 /* Check for artificial methods. */
12714 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12715 if (attr && DW_UNSND (attr) != 0)
12716 fnp->is_artificial = 1;
12717
12718 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12719
12720 /* Get index in virtual function table if it is a virtual member
12721 function. For older versions of GCC, this is an offset in the
12722 appropriate virtual table, as specified by DW_AT_containing_type.
12723 For everyone else, it is an expression to be evaluated relative
12724 to the object address. */
12725
12726 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12727 if (attr)
12728 {
12729 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12730 {
12731 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12732 {
12733 /* Old-style GCC. */
12734 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12735 }
12736 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12737 || (DW_BLOCK (attr)->size > 1
12738 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12739 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12740 {
12741 struct dwarf_block blk;
12742 int offset;
12743
12744 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12745 ? 1 : 2);
12746 blk.size = DW_BLOCK (attr)->size - offset;
12747 blk.data = DW_BLOCK (attr)->data + offset;
12748 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12749 if ((fnp->voffset % cu->header.addr_size) != 0)
12750 dwarf2_complex_location_expr_complaint ();
12751 else
12752 fnp->voffset /= cu->header.addr_size;
12753 fnp->voffset += 2;
12754 }
12755 else
12756 dwarf2_complex_location_expr_complaint ();
12757
12758 if (!fnp->fcontext)
12759 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12760 }
12761 else if (attr_form_is_section_offset (attr))
12762 {
12763 dwarf2_complex_location_expr_complaint ();
12764 }
12765 else
12766 {
12767 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12768 fieldname);
12769 }
12770 }
12771 else
12772 {
12773 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12774 if (attr && DW_UNSND (attr))
12775 {
12776 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12777 complaint (&symfile_complaints,
12778 _("Member function \"%s\" (offset %d) is virtual "
12779 "but the vtable offset is not specified"),
12780 fieldname, die->offset.sect_off);
12781 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12782 TYPE_CPLUS_DYNAMIC (type) = 1;
12783 }
12784 }
12785 }
12786
12787 /* Create the vector of member function fields, and attach it to the type. */
12788
12789 static void
12790 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12791 struct dwarf2_cu *cu)
12792 {
12793 struct fnfieldlist *flp;
12794 int i;
12795
12796 if (cu->language == language_ada)
12797 error (_("unexpected member functions in Ada type"));
12798
12799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12800 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12801 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12802
12803 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12804 {
12805 struct nextfnfield *nfp = flp->head;
12806 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12807 int k;
12808
12809 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12810 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12811 fn_flp->fn_fields = (struct fn_field *)
12812 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12813 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12814 fn_flp->fn_fields[k] = nfp->fnfield;
12815 }
12816
12817 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12818 }
12819
12820 /* Returns non-zero if NAME is the name of a vtable member in CU's
12821 language, zero otherwise. */
12822 static int
12823 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12824 {
12825 static const char vptr[] = "_vptr";
12826 static const char vtable[] = "vtable";
12827
12828 /* Look for the C++ and Java forms of the vtable. */
12829 if ((cu->language == language_java
12830 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12831 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12832 && is_cplus_marker (name[sizeof (vptr) - 1])))
12833 return 1;
12834
12835 return 0;
12836 }
12837
12838 /* GCC outputs unnamed structures that are really pointers to member
12839 functions, with the ABI-specified layout. If TYPE describes
12840 such a structure, smash it into a member function type.
12841
12842 GCC shouldn't do this; it should just output pointer to member DIEs.
12843 This is GCC PR debug/28767. */
12844
12845 static void
12846 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12847 {
12848 struct type *pfn_type, *domain_type, *new_type;
12849
12850 /* Check for a structure with no name and two children. */
12851 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12852 return;
12853
12854 /* Check for __pfn and __delta members. */
12855 if (TYPE_FIELD_NAME (type, 0) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12857 || TYPE_FIELD_NAME (type, 1) == NULL
12858 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12859 return;
12860
12861 /* Find the type of the method. */
12862 pfn_type = TYPE_FIELD_TYPE (type, 0);
12863 if (pfn_type == NULL
12864 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12865 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12866 return;
12867
12868 /* Look for the "this" argument. */
12869 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12870 if (TYPE_NFIELDS (pfn_type) == 0
12871 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12872 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12873 return;
12874
12875 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12876 new_type = alloc_type (objfile);
12877 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12878 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12879 TYPE_VARARGS (pfn_type));
12880 smash_to_methodptr_type (type, new_type);
12881 }
12882
12883 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12884 (icc). */
12885
12886 static int
12887 producer_is_icc (struct dwarf2_cu *cu)
12888 {
12889 if (!cu->checked_producer)
12890 check_producer (cu);
12891
12892 return cu->producer_is_icc;
12893 }
12894
12895 /* Called when we find the DIE that starts a structure or union scope
12896 (definition) to create a type for the structure or union. Fill in
12897 the type's name and general properties; the members will not be
12898 processed until process_structure_scope. A symbol table entry for
12899 the type will also not be done until process_structure_scope (assuming
12900 the type has a name).
12901
12902 NOTE: we need to call these functions regardless of whether or not the
12903 DIE has a DW_AT_name attribute, since it might be an anonymous
12904 structure or union. This gets the type entered into our set of
12905 user defined types. */
12906
12907 static struct type *
12908 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12909 {
12910 struct objfile *objfile = cu->objfile;
12911 struct type *type;
12912 struct attribute *attr;
12913 const char *name;
12914
12915 /* If the definition of this type lives in .debug_types, read that type.
12916 Don't follow DW_AT_specification though, that will take us back up
12917 the chain and we want to go down. */
12918 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12919 if (attr)
12920 {
12921 type = get_DW_AT_signature_type (die, attr, cu);
12922
12923 /* The type's CU may not be the same as CU.
12924 Ensure TYPE is recorded with CU in die_type_hash. */
12925 return set_die_type (die, type, cu);
12926 }
12927
12928 type = alloc_type (objfile);
12929 INIT_CPLUS_SPECIFIC (type);
12930
12931 name = dwarf2_name (die, cu);
12932 if (name != NULL)
12933 {
12934 if (cu->language == language_cplus
12935 || cu->language == language_java)
12936 {
12937 const char *full_name = dwarf2_full_name (name, die, cu);
12938
12939 /* dwarf2_full_name might have already finished building the DIE's
12940 type. If so, there is no need to continue. */
12941 if (get_die_type (die, cu) != NULL)
12942 return get_die_type (die, cu);
12943
12944 TYPE_TAG_NAME (type) = full_name;
12945 if (die->tag == DW_TAG_structure_type
12946 || die->tag == DW_TAG_class_type)
12947 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12948 }
12949 else
12950 {
12951 /* The name is already allocated along with this objfile, so
12952 we don't need to duplicate it for the type. */
12953 TYPE_TAG_NAME (type) = name;
12954 if (die->tag == DW_TAG_class_type)
12955 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12956 }
12957 }
12958
12959 if (die->tag == DW_TAG_structure_type)
12960 {
12961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12962 }
12963 else if (die->tag == DW_TAG_union_type)
12964 {
12965 TYPE_CODE (type) = TYPE_CODE_UNION;
12966 }
12967 else
12968 {
12969 TYPE_CODE (type) = TYPE_CODE_CLASS;
12970 }
12971
12972 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12973 TYPE_DECLARED_CLASS (type) = 1;
12974
12975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12976 if (attr)
12977 {
12978 TYPE_LENGTH (type) = DW_UNSND (attr);
12979 }
12980 else
12981 {
12982 TYPE_LENGTH (type) = 0;
12983 }
12984
12985 if (producer_is_icc (cu))
12986 {
12987 /* ICC does not output the required DW_AT_declaration
12988 on incomplete types, but gives them a size of zero. */
12989 }
12990 else
12991 TYPE_STUB_SUPPORTED (type) = 1;
12992
12993 if (die_is_declaration (die, cu))
12994 TYPE_STUB (type) = 1;
12995 else if (attr == NULL && die->child == NULL
12996 && producer_is_realview (cu->producer))
12997 /* RealView does not output the required DW_AT_declaration
12998 on incomplete types. */
12999 TYPE_STUB (type) = 1;
13000
13001 /* We need to add the type field to the die immediately so we don't
13002 infinitely recurse when dealing with pointers to the structure
13003 type within the structure itself. */
13004 set_die_type (die, type, cu);
13005
13006 /* set_die_type should be already done. */
13007 set_descriptive_type (type, die, cu);
13008
13009 return type;
13010 }
13011
13012 /* Finish creating a structure or union type, including filling in
13013 its members and creating a symbol for it. */
13014
13015 static void
13016 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13017 {
13018 struct objfile *objfile = cu->objfile;
13019 struct die_info *child_die = die->child;
13020 struct type *type;
13021
13022 type = get_die_type (die, cu);
13023 if (type == NULL)
13024 type = read_structure_type (die, cu);
13025
13026 if (die->child != NULL && ! die_is_declaration (die, cu))
13027 {
13028 struct field_info fi;
13029 struct die_info *child_die;
13030 VEC (symbolp) *template_args = NULL;
13031 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13032
13033 memset (&fi, 0, sizeof (struct field_info));
13034
13035 child_die = die->child;
13036
13037 while (child_die && child_die->tag)
13038 {
13039 if (child_die->tag == DW_TAG_member
13040 || child_die->tag == DW_TAG_variable)
13041 {
13042 /* NOTE: carlton/2002-11-05: A C++ static data member
13043 should be a DW_TAG_member that is a declaration, but
13044 all versions of G++ as of this writing (so through at
13045 least 3.2.1) incorrectly generate DW_TAG_variable
13046 tags for them instead. */
13047 dwarf2_add_field (&fi, child_die, cu);
13048 }
13049 else if (child_die->tag == DW_TAG_subprogram)
13050 {
13051 /* C++ member function. */
13052 dwarf2_add_member_fn (&fi, child_die, type, cu);
13053 }
13054 else if (child_die->tag == DW_TAG_inheritance)
13055 {
13056 /* C++ base class field. */
13057 dwarf2_add_field (&fi, child_die, cu);
13058 }
13059 else if (child_die->tag == DW_TAG_typedef)
13060 dwarf2_add_typedef (&fi, child_die, cu);
13061 else if (child_die->tag == DW_TAG_template_type_param
13062 || child_die->tag == DW_TAG_template_value_param)
13063 {
13064 struct symbol *arg = new_symbol (child_die, NULL, cu);
13065
13066 if (arg != NULL)
13067 VEC_safe_push (symbolp, template_args, arg);
13068 }
13069
13070 child_die = sibling_die (child_die);
13071 }
13072
13073 /* Attach template arguments to type. */
13074 if (! VEC_empty (symbolp, template_args))
13075 {
13076 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13077 TYPE_N_TEMPLATE_ARGUMENTS (type)
13078 = VEC_length (symbolp, template_args);
13079 TYPE_TEMPLATE_ARGUMENTS (type)
13080 = obstack_alloc (&objfile->objfile_obstack,
13081 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13082 * sizeof (struct symbol *)));
13083 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13084 VEC_address (symbolp, template_args),
13085 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13086 * sizeof (struct symbol *)));
13087 VEC_free (symbolp, template_args);
13088 }
13089
13090 /* Attach fields and member functions to the type. */
13091 if (fi.nfields)
13092 dwarf2_attach_fields_to_type (&fi, type, cu);
13093 if (fi.nfnfields)
13094 {
13095 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13096
13097 /* Get the type which refers to the base class (possibly this
13098 class itself) which contains the vtable pointer for the current
13099 class from the DW_AT_containing_type attribute. This use of
13100 DW_AT_containing_type is a GNU extension. */
13101
13102 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13103 {
13104 struct type *t = die_containing_type (die, cu);
13105
13106 TYPE_VPTR_BASETYPE (type) = t;
13107 if (type == t)
13108 {
13109 int i;
13110
13111 /* Our own class provides vtbl ptr. */
13112 for (i = TYPE_NFIELDS (t) - 1;
13113 i >= TYPE_N_BASECLASSES (t);
13114 --i)
13115 {
13116 const char *fieldname = TYPE_FIELD_NAME (t, i);
13117
13118 if (is_vtable_name (fieldname, cu))
13119 {
13120 TYPE_VPTR_FIELDNO (type) = i;
13121 break;
13122 }
13123 }
13124
13125 /* Complain if virtual function table field not found. */
13126 if (i < TYPE_N_BASECLASSES (t))
13127 complaint (&symfile_complaints,
13128 _("virtual function table pointer "
13129 "not found when defining class '%s'"),
13130 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13131 "");
13132 }
13133 else
13134 {
13135 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13136 }
13137 }
13138 else if (cu->producer
13139 && strncmp (cu->producer,
13140 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13141 {
13142 /* The IBM XLC compiler does not provide direct indication
13143 of the containing type, but the vtable pointer is
13144 always named __vfp. */
13145
13146 int i;
13147
13148 for (i = TYPE_NFIELDS (type) - 1;
13149 i >= TYPE_N_BASECLASSES (type);
13150 --i)
13151 {
13152 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13153 {
13154 TYPE_VPTR_FIELDNO (type) = i;
13155 TYPE_VPTR_BASETYPE (type) = type;
13156 break;
13157 }
13158 }
13159 }
13160 }
13161
13162 /* Copy fi.typedef_field_list linked list elements content into the
13163 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13164 if (fi.typedef_field_list)
13165 {
13166 int i = fi.typedef_field_list_count;
13167
13168 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13169 TYPE_TYPEDEF_FIELD_ARRAY (type)
13170 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13171 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13172
13173 /* Reverse the list order to keep the debug info elements order. */
13174 while (--i >= 0)
13175 {
13176 struct typedef_field *dest, *src;
13177
13178 dest = &TYPE_TYPEDEF_FIELD (type, i);
13179 src = &fi.typedef_field_list->field;
13180 fi.typedef_field_list = fi.typedef_field_list->next;
13181 *dest = *src;
13182 }
13183 }
13184
13185 do_cleanups (back_to);
13186
13187 if (HAVE_CPLUS_STRUCT (type))
13188 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13189 }
13190
13191 quirk_gcc_member_function_pointer (type, objfile);
13192
13193 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13194 snapshots) has been known to create a die giving a declaration
13195 for a class that has, as a child, a die giving a definition for a
13196 nested class. So we have to process our children even if the
13197 current die is a declaration. Normally, of course, a declaration
13198 won't have any children at all. */
13199
13200 while (child_die != NULL && child_die->tag)
13201 {
13202 if (child_die->tag == DW_TAG_member
13203 || child_die->tag == DW_TAG_variable
13204 || child_die->tag == DW_TAG_inheritance
13205 || child_die->tag == DW_TAG_template_value_param
13206 || child_die->tag == DW_TAG_template_type_param)
13207 {
13208 /* Do nothing. */
13209 }
13210 else
13211 process_die (child_die, cu);
13212
13213 child_die = sibling_die (child_die);
13214 }
13215
13216 /* Do not consider external references. According to the DWARF standard,
13217 these DIEs are identified by the fact that they have no byte_size
13218 attribute, and a declaration attribute. */
13219 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13220 || !die_is_declaration (die, cu))
13221 new_symbol (die, type, cu);
13222 }
13223
13224 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13225 update TYPE using some information only available in DIE's children. */
13226
13227 static void
13228 update_enumeration_type_from_children (struct die_info *die,
13229 struct type *type,
13230 struct dwarf2_cu *cu)
13231 {
13232 struct obstack obstack;
13233 struct die_info *child_die = die->child;
13234 int unsigned_enum = 1;
13235 int flag_enum = 1;
13236 ULONGEST mask = 0;
13237 struct cleanup *old_chain;
13238
13239 obstack_init (&obstack);
13240 old_chain = make_cleanup_obstack_free (&obstack);
13241
13242 while (child_die != NULL && child_die->tag)
13243 {
13244 struct attribute *attr;
13245 LONGEST value;
13246 const gdb_byte *bytes;
13247 struct dwarf2_locexpr_baton *baton;
13248 const char *name;
13249 if (child_die->tag != DW_TAG_enumerator)
13250 continue;
13251
13252 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13253 if (attr == NULL)
13254 continue;
13255
13256 name = dwarf2_name (child_die, cu);
13257 if (name == NULL)
13258 name = "<anonymous enumerator>";
13259
13260 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13261 &value, &bytes, &baton);
13262 if (value < 0)
13263 {
13264 unsigned_enum = 0;
13265 flag_enum = 0;
13266 }
13267 else if ((mask & value) != 0)
13268 flag_enum = 0;
13269 else
13270 mask |= value;
13271
13272 /* If we already know that the enum type is neither unsigned, nor
13273 a flag type, no need to look at the rest of the enumerates. */
13274 if (!unsigned_enum && !flag_enum)
13275 break;
13276 child_die = sibling_die (child_die);
13277 }
13278
13279 if (unsigned_enum)
13280 TYPE_UNSIGNED (type) = 1;
13281 if (flag_enum)
13282 TYPE_FLAG_ENUM (type) = 1;
13283
13284 do_cleanups (old_chain);
13285 }
13286
13287 /* Given a DW_AT_enumeration_type die, set its type. We do not
13288 complete the type's fields yet, or create any symbols. */
13289
13290 static struct type *
13291 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13292 {
13293 struct objfile *objfile = cu->objfile;
13294 struct type *type;
13295 struct attribute *attr;
13296 const char *name;
13297
13298 /* If the definition of this type lives in .debug_types, read that type.
13299 Don't follow DW_AT_specification though, that will take us back up
13300 the chain and we want to go down. */
13301 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13302 if (attr)
13303 {
13304 type = get_DW_AT_signature_type (die, attr, cu);
13305
13306 /* The type's CU may not be the same as CU.
13307 Ensure TYPE is recorded with CU in die_type_hash. */
13308 return set_die_type (die, type, cu);
13309 }
13310
13311 type = alloc_type (objfile);
13312
13313 TYPE_CODE (type) = TYPE_CODE_ENUM;
13314 name = dwarf2_full_name (NULL, die, cu);
13315 if (name != NULL)
13316 TYPE_TAG_NAME (type) = name;
13317
13318 attr = dwarf2_attr (die, DW_AT_type, cu);
13319 if (attr != NULL)
13320 {
13321 struct type *underlying_type = die_type (die, cu);
13322
13323 TYPE_TARGET_TYPE (type) = underlying_type;
13324 }
13325
13326 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13327 if (attr)
13328 {
13329 TYPE_LENGTH (type) = DW_UNSND (attr);
13330 }
13331 else
13332 {
13333 TYPE_LENGTH (type) = 0;
13334 }
13335
13336 /* The enumeration DIE can be incomplete. In Ada, any type can be
13337 declared as private in the package spec, and then defined only
13338 inside the package body. Such types are known as Taft Amendment
13339 Types. When another package uses such a type, an incomplete DIE
13340 may be generated by the compiler. */
13341 if (die_is_declaration (die, cu))
13342 TYPE_STUB (type) = 1;
13343
13344 /* Finish the creation of this type by using the enum's children.
13345 We must call this even when the underlying type has been provided
13346 so that we can determine if we're looking at a "flag" enum. */
13347 update_enumeration_type_from_children (die, type, cu);
13348
13349 /* If this type has an underlying type that is not a stub, then we
13350 may use its attributes. We always use the "unsigned" attribute
13351 in this situation, because ordinarily we guess whether the type
13352 is unsigned -- but the guess can be wrong and the underlying type
13353 can tell us the reality. However, we defer to a local size
13354 attribute if one exists, because this lets the compiler override
13355 the underlying type if needed. */
13356 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13357 {
13358 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13359 if (TYPE_LENGTH (type) == 0)
13360 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13361 }
13362
13363 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13364
13365 return set_die_type (die, type, cu);
13366 }
13367
13368 /* Given a pointer to a die which begins an enumeration, process all
13369 the dies that define the members of the enumeration, and create the
13370 symbol for the enumeration type.
13371
13372 NOTE: We reverse the order of the element list. */
13373
13374 static void
13375 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13376 {
13377 struct type *this_type;
13378
13379 this_type = get_die_type (die, cu);
13380 if (this_type == NULL)
13381 this_type = read_enumeration_type (die, cu);
13382
13383 if (die->child != NULL)
13384 {
13385 struct die_info *child_die;
13386 struct symbol *sym;
13387 struct field *fields = NULL;
13388 int num_fields = 0;
13389 const char *name;
13390
13391 child_die = die->child;
13392 while (child_die && child_die->tag)
13393 {
13394 if (child_die->tag != DW_TAG_enumerator)
13395 {
13396 process_die (child_die, cu);
13397 }
13398 else
13399 {
13400 name = dwarf2_name (child_die, cu);
13401 if (name)
13402 {
13403 sym = new_symbol (child_die, this_type, cu);
13404
13405 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13406 {
13407 fields = (struct field *)
13408 xrealloc (fields,
13409 (num_fields + DW_FIELD_ALLOC_CHUNK)
13410 * sizeof (struct field));
13411 }
13412
13413 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13414 FIELD_TYPE (fields[num_fields]) = NULL;
13415 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13416 FIELD_BITSIZE (fields[num_fields]) = 0;
13417
13418 num_fields++;
13419 }
13420 }
13421
13422 child_die = sibling_die (child_die);
13423 }
13424
13425 if (num_fields)
13426 {
13427 TYPE_NFIELDS (this_type) = num_fields;
13428 TYPE_FIELDS (this_type) = (struct field *)
13429 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13430 memcpy (TYPE_FIELDS (this_type), fields,
13431 sizeof (struct field) * num_fields);
13432 xfree (fields);
13433 }
13434 }
13435
13436 /* If we are reading an enum from a .debug_types unit, and the enum
13437 is a declaration, and the enum is not the signatured type in the
13438 unit, then we do not want to add a symbol for it. Adding a
13439 symbol would in some cases obscure the true definition of the
13440 enum, giving users an incomplete type when the definition is
13441 actually available. Note that we do not want to do this for all
13442 enums which are just declarations, because C++0x allows forward
13443 enum declarations. */
13444 if (cu->per_cu->is_debug_types
13445 && die_is_declaration (die, cu))
13446 {
13447 struct signatured_type *sig_type;
13448
13449 sig_type = (struct signatured_type *) cu->per_cu;
13450 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13451 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13452 return;
13453 }
13454
13455 new_symbol (die, this_type, cu);
13456 }
13457
13458 /* Extract all information from a DW_TAG_array_type DIE and put it in
13459 the DIE's type field. For now, this only handles one dimensional
13460 arrays. */
13461
13462 static struct type *
13463 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13464 {
13465 struct objfile *objfile = cu->objfile;
13466 struct die_info *child_die;
13467 struct type *type;
13468 struct type *element_type, *range_type, *index_type;
13469 struct type **range_types = NULL;
13470 struct attribute *attr;
13471 int ndim = 0;
13472 struct cleanup *back_to;
13473 const char *name;
13474 unsigned int bit_stride = 0;
13475
13476 element_type = die_type (die, cu);
13477
13478 /* The die_type call above may have already set the type for this DIE. */
13479 type = get_die_type (die, cu);
13480 if (type)
13481 return type;
13482
13483 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13484 if (attr != NULL)
13485 bit_stride = DW_UNSND (attr) * 8;
13486
13487 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13488 if (attr != NULL)
13489 bit_stride = DW_UNSND (attr);
13490
13491 /* Irix 6.2 native cc creates array types without children for
13492 arrays with unspecified length. */
13493 if (die->child == NULL)
13494 {
13495 index_type = objfile_type (objfile)->builtin_int;
13496 range_type = create_static_range_type (NULL, index_type, 0, -1);
13497 type = create_array_type_with_stride (NULL, element_type, range_type,
13498 bit_stride);
13499 return set_die_type (die, type, cu);
13500 }
13501
13502 back_to = make_cleanup (null_cleanup, NULL);
13503 child_die = die->child;
13504 while (child_die && child_die->tag)
13505 {
13506 if (child_die->tag == DW_TAG_subrange_type)
13507 {
13508 struct type *child_type = read_type_die (child_die, cu);
13509
13510 if (child_type != NULL)
13511 {
13512 /* The range type was succesfully read. Save it for the
13513 array type creation. */
13514 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13515 {
13516 range_types = (struct type **)
13517 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13518 * sizeof (struct type *));
13519 if (ndim == 0)
13520 make_cleanup (free_current_contents, &range_types);
13521 }
13522 range_types[ndim++] = child_type;
13523 }
13524 }
13525 child_die = sibling_die (child_die);
13526 }
13527
13528 /* Dwarf2 dimensions are output from left to right, create the
13529 necessary array types in backwards order. */
13530
13531 type = element_type;
13532
13533 if (read_array_order (die, cu) == DW_ORD_col_major)
13534 {
13535 int i = 0;
13536
13537 while (i < ndim)
13538 type = create_array_type_with_stride (NULL, type, range_types[i++],
13539 bit_stride);
13540 }
13541 else
13542 {
13543 while (ndim-- > 0)
13544 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13545 bit_stride);
13546 }
13547
13548 /* Understand Dwarf2 support for vector types (like they occur on
13549 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13550 array type. This is not part of the Dwarf2/3 standard yet, but a
13551 custom vendor extension. The main difference between a regular
13552 array and the vector variant is that vectors are passed by value
13553 to functions. */
13554 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13555 if (attr)
13556 make_vector_type (type);
13557
13558 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13559 implementation may choose to implement triple vectors using this
13560 attribute. */
13561 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13562 if (attr)
13563 {
13564 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13565 TYPE_LENGTH (type) = DW_UNSND (attr);
13566 else
13567 complaint (&symfile_complaints,
13568 _("DW_AT_byte_size for array type smaller "
13569 "than the total size of elements"));
13570 }
13571
13572 name = dwarf2_name (die, cu);
13573 if (name)
13574 TYPE_NAME (type) = name;
13575
13576 /* Install the type in the die. */
13577 set_die_type (die, type, cu);
13578
13579 /* set_die_type should be already done. */
13580 set_descriptive_type (type, die, cu);
13581
13582 do_cleanups (back_to);
13583
13584 return type;
13585 }
13586
13587 static enum dwarf_array_dim_ordering
13588 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13589 {
13590 struct attribute *attr;
13591
13592 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13593
13594 if (attr) return DW_SND (attr);
13595
13596 /* GNU F77 is a special case, as at 08/2004 array type info is the
13597 opposite order to the dwarf2 specification, but data is still
13598 laid out as per normal fortran.
13599
13600 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13601 version checking. */
13602
13603 if (cu->language == language_fortran
13604 && cu->producer && strstr (cu->producer, "GNU F77"))
13605 {
13606 return DW_ORD_row_major;
13607 }
13608
13609 switch (cu->language_defn->la_array_ordering)
13610 {
13611 case array_column_major:
13612 return DW_ORD_col_major;
13613 case array_row_major:
13614 default:
13615 return DW_ORD_row_major;
13616 };
13617 }
13618
13619 /* Extract all information from a DW_TAG_set_type DIE and put it in
13620 the DIE's type field. */
13621
13622 static struct type *
13623 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13624 {
13625 struct type *domain_type, *set_type;
13626 struct attribute *attr;
13627
13628 domain_type = die_type (die, cu);
13629
13630 /* The die_type call above may have already set the type for this DIE. */
13631 set_type = get_die_type (die, cu);
13632 if (set_type)
13633 return set_type;
13634
13635 set_type = create_set_type (NULL, domain_type);
13636
13637 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13638 if (attr)
13639 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13640
13641 return set_die_type (die, set_type, cu);
13642 }
13643
13644 /* A helper for read_common_block that creates a locexpr baton.
13645 SYM is the symbol which we are marking as computed.
13646 COMMON_DIE is the DIE for the common block.
13647 COMMON_LOC is the location expression attribute for the common
13648 block itself.
13649 MEMBER_LOC is the location expression attribute for the particular
13650 member of the common block that we are processing.
13651 CU is the CU from which the above come. */
13652
13653 static void
13654 mark_common_block_symbol_computed (struct symbol *sym,
13655 struct die_info *common_die,
13656 struct attribute *common_loc,
13657 struct attribute *member_loc,
13658 struct dwarf2_cu *cu)
13659 {
13660 struct objfile *objfile = dwarf2_per_objfile->objfile;
13661 struct dwarf2_locexpr_baton *baton;
13662 gdb_byte *ptr;
13663 unsigned int cu_off;
13664 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13665 LONGEST offset = 0;
13666
13667 gdb_assert (common_loc && member_loc);
13668 gdb_assert (attr_form_is_block (common_loc));
13669 gdb_assert (attr_form_is_block (member_loc)
13670 || attr_form_is_constant (member_loc));
13671
13672 baton = obstack_alloc (&objfile->objfile_obstack,
13673 sizeof (struct dwarf2_locexpr_baton));
13674 baton->per_cu = cu->per_cu;
13675 gdb_assert (baton->per_cu);
13676
13677 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13678
13679 if (attr_form_is_constant (member_loc))
13680 {
13681 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13682 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13683 }
13684 else
13685 baton->size += DW_BLOCK (member_loc)->size;
13686
13687 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13688 baton->data = ptr;
13689
13690 *ptr++ = DW_OP_call4;
13691 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13692 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13693 ptr += 4;
13694
13695 if (attr_form_is_constant (member_loc))
13696 {
13697 *ptr++ = DW_OP_addr;
13698 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13699 ptr += cu->header.addr_size;
13700 }
13701 else
13702 {
13703 /* We have to copy the data here, because DW_OP_call4 will only
13704 use a DW_AT_location attribute. */
13705 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13706 ptr += DW_BLOCK (member_loc)->size;
13707 }
13708
13709 *ptr++ = DW_OP_plus;
13710 gdb_assert (ptr - baton->data == baton->size);
13711
13712 SYMBOL_LOCATION_BATON (sym) = baton;
13713 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13714 }
13715
13716 /* Create appropriate locally-scoped variables for all the
13717 DW_TAG_common_block entries. Also create a struct common_block
13718 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13719 is used to sepate the common blocks name namespace from regular
13720 variable names. */
13721
13722 static void
13723 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13724 {
13725 struct attribute *attr;
13726
13727 attr = dwarf2_attr (die, DW_AT_location, cu);
13728 if (attr)
13729 {
13730 /* Support the .debug_loc offsets. */
13731 if (attr_form_is_block (attr))
13732 {
13733 /* Ok. */
13734 }
13735 else if (attr_form_is_section_offset (attr))
13736 {
13737 dwarf2_complex_location_expr_complaint ();
13738 attr = NULL;
13739 }
13740 else
13741 {
13742 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13743 "common block member");
13744 attr = NULL;
13745 }
13746 }
13747
13748 if (die->child != NULL)
13749 {
13750 struct objfile *objfile = cu->objfile;
13751 struct die_info *child_die;
13752 size_t n_entries = 0, size;
13753 struct common_block *common_block;
13754 struct symbol *sym;
13755
13756 for (child_die = die->child;
13757 child_die && child_die->tag;
13758 child_die = sibling_die (child_die))
13759 ++n_entries;
13760
13761 size = (sizeof (struct common_block)
13762 + (n_entries - 1) * sizeof (struct symbol *));
13763 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13764 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13765 common_block->n_entries = 0;
13766
13767 for (child_die = die->child;
13768 child_die && child_die->tag;
13769 child_die = sibling_die (child_die))
13770 {
13771 /* Create the symbol in the DW_TAG_common_block block in the current
13772 symbol scope. */
13773 sym = new_symbol (child_die, NULL, cu);
13774 if (sym != NULL)
13775 {
13776 struct attribute *member_loc;
13777
13778 common_block->contents[common_block->n_entries++] = sym;
13779
13780 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13781 cu);
13782 if (member_loc)
13783 {
13784 /* GDB has handled this for a long time, but it is
13785 not specified by DWARF. It seems to have been
13786 emitted by gfortran at least as recently as:
13787 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13788 complaint (&symfile_complaints,
13789 _("Variable in common block has "
13790 "DW_AT_data_member_location "
13791 "- DIE at 0x%x [in module %s]"),
13792 child_die->offset.sect_off,
13793 objfile_name (cu->objfile));
13794
13795 if (attr_form_is_section_offset (member_loc))
13796 dwarf2_complex_location_expr_complaint ();
13797 else if (attr_form_is_constant (member_loc)
13798 || attr_form_is_block (member_loc))
13799 {
13800 if (attr)
13801 mark_common_block_symbol_computed (sym, die, attr,
13802 member_loc, cu);
13803 }
13804 else
13805 dwarf2_complex_location_expr_complaint ();
13806 }
13807 }
13808 }
13809
13810 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13811 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13812 }
13813 }
13814
13815 /* Create a type for a C++ namespace. */
13816
13817 static struct type *
13818 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13819 {
13820 struct objfile *objfile = cu->objfile;
13821 const char *previous_prefix, *name;
13822 int is_anonymous;
13823 struct type *type;
13824
13825 /* For extensions, reuse the type of the original namespace. */
13826 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13827 {
13828 struct die_info *ext_die;
13829 struct dwarf2_cu *ext_cu = cu;
13830
13831 ext_die = dwarf2_extension (die, &ext_cu);
13832 type = read_type_die (ext_die, ext_cu);
13833
13834 /* EXT_CU may not be the same as CU.
13835 Ensure TYPE is recorded with CU in die_type_hash. */
13836 return set_die_type (die, type, cu);
13837 }
13838
13839 name = namespace_name (die, &is_anonymous, cu);
13840
13841 /* Now build the name of the current namespace. */
13842
13843 previous_prefix = determine_prefix (die, cu);
13844 if (previous_prefix[0] != '\0')
13845 name = typename_concat (&objfile->objfile_obstack,
13846 previous_prefix, name, 0, cu);
13847
13848 /* Create the type. */
13849 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13850 objfile);
13851 TYPE_NAME (type) = name;
13852 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13853
13854 return set_die_type (die, type, cu);
13855 }
13856
13857 /* Read a C++ namespace. */
13858
13859 static void
13860 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13861 {
13862 struct objfile *objfile = cu->objfile;
13863 int is_anonymous;
13864
13865 /* Add a symbol associated to this if we haven't seen the namespace
13866 before. Also, add a using directive if it's an anonymous
13867 namespace. */
13868
13869 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13870 {
13871 struct type *type;
13872
13873 type = read_type_die (die, cu);
13874 new_symbol (die, type, cu);
13875
13876 namespace_name (die, &is_anonymous, cu);
13877 if (is_anonymous)
13878 {
13879 const char *previous_prefix = determine_prefix (die, cu);
13880
13881 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13882 NULL, NULL, 0, &objfile->objfile_obstack);
13883 }
13884 }
13885
13886 if (die->child != NULL)
13887 {
13888 struct die_info *child_die = die->child;
13889
13890 while (child_die && child_die->tag)
13891 {
13892 process_die (child_die, cu);
13893 child_die = sibling_die (child_die);
13894 }
13895 }
13896 }
13897
13898 /* Read a Fortran module as type. This DIE can be only a declaration used for
13899 imported module. Still we need that type as local Fortran "use ... only"
13900 declaration imports depend on the created type in determine_prefix. */
13901
13902 static struct type *
13903 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13904 {
13905 struct objfile *objfile = cu->objfile;
13906 const char *module_name;
13907 struct type *type;
13908
13909 module_name = dwarf2_name (die, cu);
13910 if (!module_name)
13911 complaint (&symfile_complaints,
13912 _("DW_TAG_module has no name, offset 0x%x"),
13913 die->offset.sect_off);
13914 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13915
13916 /* determine_prefix uses TYPE_TAG_NAME. */
13917 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13918
13919 return set_die_type (die, type, cu);
13920 }
13921
13922 /* Read a Fortran module. */
13923
13924 static void
13925 read_module (struct die_info *die, struct dwarf2_cu *cu)
13926 {
13927 struct die_info *child_die = die->child;
13928 struct type *type;
13929
13930 type = read_type_die (die, cu);
13931 new_symbol (die, type, cu);
13932
13933 while (child_die && child_die->tag)
13934 {
13935 process_die (child_die, cu);
13936 child_die = sibling_die (child_die);
13937 }
13938 }
13939
13940 /* Return the name of the namespace represented by DIE. Set
13941 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13942 namespace. */
13943
13944 static const char *
13945 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13946 {
13947 struct die_info *current_die;
13948 const char *name = NULL;
13949
13950 /* Loop through the extensions until we find a name. */
13951
13952 for (current_die = die;
13953 current_die != NULL;
13954 current_die = dwarf2_extension (die, &cu))
13955 {
13956 name = dwarf2_name (current_die, cu);
13957 if (name != NULL)
13958 break;
13959 }
13960
13961 /* Is it an anonymous namespace? */
13962
13963 *is_anonymous = (name == NULL);
13964 if (*is_anonymous)
13965 name = CP_ANONYMOUS_NAMESPACE_STR;
13966
13967 return name;
13968 }
13969
13970 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13971 the user defined type vector. */
13972
13973 static struct type *
13974 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13975 {
13976 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13977 struct comp_unit_head *cu_header = &cu->header;
13978 struct type *type;
13979 struct attribute *attr_byte_size;
13980 struct attribute *attr_address_class;
13981 int byte_size, addr_class;
13982 struct type *target_type;
13983
13984 target_type = die_type (die, cu);
13985
13986 /* The die_type call above may have already set the type for this DIE. */
13987 type = get_die_type (die, cu);
13988 if (type)
13989 return type;
13990
13991 type = lookup_pointer_type (target_type);
13992
13993 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13994 if (attr_byte_size)
13995 byte_size = DW_UNSND (attr_byte_size);
13996 else
13997 byte_size = cu_header->addr_size;
13998
13999 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14000 if (attr_address_class)
14001 addr_class = DW_UNSND (attr_address_class);
14002 else
14003 addr_class = DW_ADDR_none;
14004
14005 /* If the pointer size or address class is different than the
14006 default, create a type variant marked as such and set the
14007 length accordingly. */
14008 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14009 {
14010 if (gdbarch_address_class_type_flags_p (gdbarch))
14011 {
14012 int type_flags;
14013
14014 type_flags = gdbarch_address_class_type_flags
14015 (gdbarch, byte_size, addr_class);
14016 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14017 == 0);
14018 type = make_type_with_address_space (type, type_flags);
14019 }
14020 else if (TYPE_LENGTH (type) != byte_size)
14021 {
14022 complaint (&symfile_complaints,
14023 _("invalid pointer size %d"), byte_size);
14024 }
14025 else
14026 {
14027 /* Should we also complain about unhandled address classes? */
14028 }
14029 }
14030
14031 TYPE_LENGTH (type) = byte_size;
14032 return set_die_type (die, type, cu);
14033 }
14034
14035 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14036 the user defined type vector. */
14037
14038 static struct type *
14039 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14040 {
14041 struct type *type;
14042 struct type *to_type;
14043 struct type *domain;
14044
14045 to_type = die_type (die, cu);
14046 domain = die_containing_type (die, cu);
14047
14048 /* The calls above may have already set the type for this DIE. */
14049 type = get_die_type (die, cu);
14050 if (type)
14051 return type;
14052
14053 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14054 type = lookup_methodptr_type (to_type);
14055 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14056 {
14057 struct type *new_type = alloc_type (cu->objfile);
14058
14059 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14060 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14061 TYPE_VARARGS (to_type));
14062 type = lookup_methodptr_type (new_type);
14063 }
14064 else
14065 type = lookup_memberptr_type (to_type, domain);
14066
14067 return set_die_type (die, type, cu);
14068 }
14069
14070 /* Extract all information from a DW_TAG_reference_type DIE and add to
14071 the user defined type vector. */
14072
14073 static struct type *
14074 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14075 {
14076 struct comp_unit_head *cu_header = &cu->header;
14077 struct type *type, *target_type;
14078 struct attribute *attr;
14079
14080 target_type = die_type (die, cu);
14081
14082 /* The die_type call above may have already set the type for this DIE. */
14083 type = get_die_type (die, cu);
14084 if (type)
14085 return type;
14086
14087 type = lookup_reference_type (target_type);
14088 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14089 if (attr)
14090 {
14091 TYPE_LENGTH (type) = DW_UNSND (attr);
14092 }
14093 else
14094 {
14095 TYPE_LENGTH (type) = cu_header->addr_size;
14096 }
14097 return set_die_type (die, type, cu);
14098 }
14099
14100 static struct type *
14101 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14102 {
14103 struct type *base_type, *cv_type;
14104
14105 base_type = die_type (die, cu);
14106
14107 /* The die_type call above may have already set the type for this DIE. */
14108 cv_type = get_die_type (die, cu);
14109 if (cv_type)
14110 return cv_type;
14111
14112 /* In case the const qualifier is applied to an array type, the element type
14113 is so qualified, not the array type (section 6.7.3 of C99). */
14114 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14115 {
14116 struct type *el_type, *inner_array;
14117
14118 base_type = copy_type (base_type);
14119 inner_array = base_type;
14120
14121 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14122 {
14123 TYPE_TARGET_TYPE (inner_array) =
14124 copy_type (TYPE_TARGET_TYPE (inner_array));
14125 inner_array = TYPE_TARGET_TYPE (inner_array);
14126 }
14127
14128 el_type = TYPE_TARGET_TYPE (inner_array);
14129 TYPE_TARGET_TYPE (inner_array) =
14130 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14131
14132 return set_die_type (die, base_type, cu);
14133 }
14134
14135 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14136 return set_die_type (die, cv_type, cu);
14137 }
14138
14139 static struct type *
14140 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14141 {
14142 struct type *base_type, *cv_type;
14143
14144 base_type = die_type (die, cu);
14145
14146 /* The die_type call above may have already set the type for this DIE. */
14147 cv_type = get_die_type (die, cu);
14148 if (cv_type)
14149 return cv_type;
14150
14151 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14152 return set_die_type (die, cv_type, cu);
14153 }
14154
14155 /* Handle DW_TAG_restrict_type. */
14156
14157 static struct type *
14158 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14159 {
14160 struct type *base_type, *cv_type;
14161
14162 base_type = die_type (die, cu);
14163
14164 /* The die_type call above may have already set the type for this DIE. */
14165 cv_type = get_die_type (die, cu);
14166 if (cv_type)
14167 return cv_type;
14168
14169 cv_type = make_restrict_type (base_type);
14170 return set_die_type (die, cv_type, cu);
14171 }
14172
14173 /* Extract all information from a DW_TAG_string_type DIE and add to
14174 the user defined type vector. It isn't really a user defined type,
14175 but it behaves like one, with other DIE's using an AT_user_def_type
14176 attribute to reference it. */
14177
14178 static struct type *
14179 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14180 {
14181 struct objfile *objfile = cu->objfile;
14182 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14183 struct type *type, *range_type, *index_type, *char_type;
14184 struct attribute *attr;
14185 unsigned int length;
14186
14187 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14188 if (attr)
14189 {
14190 length = DW_UNSND (attr);
14191 }
14192 else
14193 {
14194 /* Check for the DW_AT_byte_size attribute. */
14195 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14196 if (attr)
14197 {
14198 length = DW_UNSND (attr);
14199 }
14200 else
14201 {
14202 length = 1;
14203 }
14204 }
14205
14206 index_type = objfile_type (objfile)->builtin_int;
14207 range_type = create_static_range_type (NULL, index_type, 1, length);
14208 char_type = language_string_char_type (cu->language_defn, gdbarch);
14209 type = create_string_type (NULL, char_type, range_type);
14210
14211 return set_die_type (die, type, cu);
14212 }
14213
14214 /* Assuming that DIE corresponds to a function, returns nonzero
14215 if the function is prototyped. */
14216
14217 static int
14218 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14219 {
14220 struct attribute *attr;
14221
14222 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14223 if (attr && (DW_UNSND (attr) != 0))
14224 return 1;
14225
14226 /* The DWARF standard implies that the DW_AT_prototyped attribute
14227 is only meaninful for C, but the concept also extends to other
14228 languages that allow unprototyped functions (Eg: Objective C).
14229 For all other languages, assume that functions are always
14230 prototyped. */
14231 if (cu->language != language_c
14232 && cu->language != language_objc
14233 && cu->language != language_opencl)
14234 return 1;
14235
14236 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14237 prototyped and unprototyped functions; default to prototyped,
14238 since that is more common in modern code (and RealView warns
14239 about unprototyped functions). */
14240 if (producer_is_realview (cu->producer))
14241 return 1;
14242
14243 return 0;
14244 }
14245
14246 /* Handle DIES due to C code like:
14247
14248 struct foo
14249 {
14250 int (*funcp)(int a, long l);
14251 int b;
14252 };
14253
14254 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14255
14256 static struct type *
14257 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14258 {
14259 struct objfile *objfile = cu->objfile;
14260 struct type *type; /* Type that this function returns. */
14261 struct type *ftype; /* Function that returns above type. */
14262 struct attribute *attr;
14263
14264 type = die_type (die, cu);
14265
14266 /* The die_type call above may have already set the type for this DIE. */
14267 ftype = get_die_type (die, cu);
14268 if (ftype)
14269 return ftype;
14270
14271 ftype = lookup_function_type (type);
14272
14273 if (prototyped_function_p (die, cu))
14274 TYPE_PROTOTYPED (ftype) = 1;
14275
14276 /* Store the calling convention in the type if it's available in
14277 the subroutine die. Otherwise set the calling convention to
14278 the default value DW_CC_normal. */
14279 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14280 if (attr)
14281 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14282 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14283 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14284 else
14285 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14286
14287 /* We need to add the subroutine type to the die immediately so
14288 we don't infinitely recurse when dealing with parameters
14289 declared as the same subroutine type. */
14290 set_die_type (die, ftype, cu);
14291
14292 if (die->child != NULL)
14293 {
14294 struct type *void_type = objfile_type (objfile)->builtin_void;
14295 struct die_info *child_die;
14296 int nparams, iparams;
14297
14298 /* Count the number of parameters.
14299 FIXME: GDB currently ignores vararg functions, but knows about
14300 vararg member functions. */
14301 nparams = 0;
14302 child_die = die->child;
14303 while (child_die && child_die->tag)
14304 {
14305 if (child_die->tag == DW_TAG_formal_parameter)
14306 nparams++;
14307 else if (child_die->tag == DW_TAG_unspecified_parameters)
14308 TYPE_VARARGS (ftype) = 1;
14309 child_die = sibling_die (child_die);
14310 }
14311
14312 /* Allocate storage for parameters and fill them in. */
14313 TYPE_NFIELDS (ftype) = nparams;
14314 TYPE_FIELDS (ftype) = (struct field *)
14315 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14316
14317 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14318 even if we error out during the parameters reading below. */
14319 for (iparams = 0; iparams < nparams; iparams++)
14320 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14321
14322 iparams = 0;
14323 child_die = die->child;
14324 while (child_die && child_die->tag)
14325 {
14326 if (child_die->tag == DW_TAG_formal_parameter)
14327 {
14328 struct type *arg_type;
14329
14330 /* DWARF version 2 has no clean way to discern C++
14331 static and non-static member functions. G++ helps
14332 GDB by marking the first parameter for non-static
14333 member functions (which is the this pointer) as
14334 artificial. We pass this information to
14335 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14336
14337 DWARF version 3 added DW_AT_object_pointer, which GCC
14338 4.5 does not yet generate. */
14339 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14340 if (attr)
14341 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14342 else
14343 {
14344 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14345
14346 /* GCC/43521: In java, the formal parameter
14347 "this" is sometimes not marked with DW_AT_artificial. */
14348 if (cu->language == language_java)
14349 {
14350 const char *name = dwarf2_name (child_die, cu);
14351
14352 if (name && !strcmp (name, "this"))
14353 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14354 }
14355 }
14356 arg_type = die_type (child_die, cu);
14357
14358 /* RealView does not mark THIS as const, which the testsuite
14359 expects. GCC marks THIS as const in method definitions,
14360 but not in the class specifications (GCC PR 43053). */
14361 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14362 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14363 {
14364 int is_this = 0;
14365 struct dwarf2_cu *arg_cu = cu;
14366 const char *name = dwarf2_name (child_die, cu);
14367
14368 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14369 if (attr)
14370 {
14371 /* If the compiler emits this, use it. */
14372 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14373 is_this = 1;
14374 }
14375 else if (name && strcmp (name, "this") == 0)
14376 /* Function definitions will have the argument names. */
14377 is_this = 1;
14378 else if (name == NULL && iparams == 0)
14379 /* Declarations may not have the names, so like
14380 elsewhere in GDB, assume an artificial first
14381 argument is "this". */
14382 is_this = 1;
14383
14384 if (is_this)
14385 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14386 arg_type, 0);
14387 }
14388
14389 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14390 iparams++;
14391 }
14392 child_die = sibling_die (child_die);
14393 }
14394 }
14395
14396 return ftype;
14397 }
14398
14399 static struct type *
14400 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14401 {
14402 struct objfile *objfile = cu->objfile;
14403 const char *name = NULL;
14404 struct type *this_type, *target_type;
14405
14406 name = dwarf2_full_name (NULL, die, cu);
14407 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14408 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14409 TYPE_NAME (this_type) = name;
14410 set_die_type (die, this_type, cu);
14411 target_type = die_type (die, cu);
14412 if (target_type != this_type)
14413 TYPE_TARGET_TYPE (this_type) = target_type;
14414 else
14415 {
14416 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14417 spec and cause infinite loops in GDB. */
14418 complaint (&symfile_complaints,
14419 _("Self-referential DW_TAG_typedef "
14420 "- DIE at 0x%x [in module %s]"),
14421 die->offset.sect_off, objfile_name (objfile));
14422 TYPE_TARGET_TYPE (this_type) = NULL;
14423 }
14424 return this_type;
14425 }
14426
14427 /* Find a representation of a given base type and install
14428 it in the TYPE field of the die. */
14429
14430 static struct type *
14431 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14432 {
14433 struct objfile *objfile = cu->objfile;
14434 struct type *type;
14435 struct attribute *attr;
14436 int encoding = 0, size = 0;
14437 const char *name;
14438 enum type_code code = TYPE_CODE_INT;
14439 int type_flags = 0;
14440 struct type *target_type = NULL;
14441
14442 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14443 if (attr)
14444 {
14445 encoding = DW_UNSND (attr);
14446 }
14447 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14448 if (attr)
14449 {
14450 size = DW_UNSND (attr);
14451 }
14452 name = dwarf2_name (die, cu);
14453 if (!name)
14454 {
14455 complaint (&symfile_complaints,
14456 _("DW_AT_name missing from DW_TAG_base_type"));
14457 }
14458
14459 switch (encoding)
14460 {
14461 case DW_ATE_address:
14462 /* Turn DW_ATE_address into a void * pointer. */
14463 code = TYPE_CODE_PTR;
14464 type_flags |= TYPE_FLAG_UNSIGNED;
14465 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14466 break;
14467 case DW_ATE_boolean:
14468 code = TYPE_CODE_BOOL;
14469 type_flags |= TYPE_FLAG_UNSIGNED;
14470 break;
14471 case DW_ATE_complex_float:
14472 code = TYPE_CODE_COMPLEX;
14473 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14474 break;
14475 case DW_ATE_decimal_float:
14476 code = TYPE_CODE_DECFLOAT;
14477 break;
14478 case DW_ATE_float:
14479 code = TYPE_CODE_FLT;
14480 break;
14481 case DW_ATE_signed:
14482 break;
14483 case DW_ATE_unsigned:
14484 type_flags |= TYPE_FLAG_UNSIGNED;
14485 if (cu->language == language_fortran
14486 && name
14487 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14488 code = TYPE_CODE_CHAR;
14489 break;
14490 case DW_ATE_signed_char:
14491 if (cu->language == language_ada || cu->language == language_m2
14492 || cu->language == language_pascal
14493 || cu->language == language_fortran)
14494 code = TYPE_CODE_CHAR;
14495 break;
14496 case DW_ATE_unsigned_char:
14497 if (cu->language == language_ada || cu->language == language_m2
14498 || cu->language == language_pascal
14499 || cu->language == language_fortran)
14500 code = TYPE_CODE_CHAR;
14501 type_flags |= TYPE_FLAG_UNSIGNED;
14502 break;
14503 case DW_ATE_UTF:
14504 /* We just treat this as an integer and then recognize the
14505 type by name elsewhere. */
14506 break;
14507
14508 default:
14509 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14510 dwarf_type_encoding_name (encoding));
14511 break;
14512 }
14513
14514 type = init_type (code, size, type_flags, NULL, objfile);
14515 TYPE_NAME (type) = name;
14516 TYPE_TARGET_TYPE (type) = target_type;
14517
14518 if (name && strcmp (name, "char") == 0)
14519 TYPE_NOSIGN (type) = 1;
14520
14521 return set_die_type (die, type, cu);
14522 }
14523
14524 /* Parse dwarf attribute if it's a block, reference or constant and put the
14525 resulting value of the attribute into struct bound_prop.
14526 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14527
14528 static int
14529 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14530 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14531 {
14532 struct dwarf2_property_baton *baton;
14533 struct obstack *obstack = &cu->objfile->objfile_obstack;
14534
14535 if (attr == NULL || prop == NULL)
14536 return 0;
14537
14538 if (attr_form_is_block (attr))
14539 {
14540 baton = obstack_alloc (obstack, sizeof (*baton));
14541 baton->referenced_type = NULL;
14542 baton->locexpr.per_cu = cu->per_cu;
14543 baton->locexpr.size = DW_BLOCK (attr)->size;
14544 baton->locexpr.data = DW_BLOCK (attr)->data;
14545 prop->data.baton = baton;
14546 prop->kind = PROP_LOCEXPR;
14547 gdb_assert (prop->data.baton != NULL);
14548 }
14549 else if (attr_form_is_ref (attr))
14550 {
14551 struct dwarf2_cu *target_cu = cu;
14552 struct die_info *target_die;
14553 struct attribute *target_attr;
14554
14555 target_die = follow_die_ref (die, attr, &target_cu);
14556 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14557 if (target_attr == NULL)
14558 return 0;
14559
14560 if (attr_form_is_section_offset (target_attr))
14561 {
14562 baton = obstack_alloc (obstack, sizeof (*baton));
14563 baton->referenced_type = die_type (target_die, target_cu);
14564 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14565 prop->data.baton = baton;
14566 prop->kind = PROP_LOCLIST;
14567 gdb_assert (prop->data.baton != NULL);
14568 }
14569 else if (attr_form_is_block (target_attr))
14570 {
14571 baton = obstack_alloc (obstack, sizeof (*baton));
14572 baton->referenced_type = die_type (target_die, target_cu);
14573 baton->locexpr.per_cu = cu->per_cu;
14574 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14575 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14576 prop->data.baton = baton;
14577 prop->kind = PROP_LOCEXPR;
14578 gdb_assert (prop->data.baton != NULL);
14579 }
14580 else
14581 {
14582 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14583 "dynamic property");
14584 return 0;
14585 }
14586 }
14587 else if (attr_form_is_constant (attr))
14588 {
14589 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14590 prop->kind = PROP_CONST;
14591 }
14592 else
14593 {
14594 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14595 dwarf2_name (die, cu));
14596 return 0;
14597 }
14598
14599 return 1;
14600 }
14601
14602 /* Read the given DW_AT_subrange DIE. */
14603
14604 static struct type *
14605 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14606 {
14607 struct type *base_type, *orig_base_type;
14608 struct type *range_type;
14609 struct attribute *attr;
14610 struct dynamic_prop low, high;
14611 int low_default_is_valid;
14612 int high_bound_is_count = 0;
14613 const char *name;
14614 LONGEST negative_mask;
14615
14616 orig_base_type = die_type (die, cu);
14617 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14618 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14619 creating the range type, but we use the result of check_typedef
14620 when examining properties of the type. */
14621 base_type = check_typedef (orig_base_type);
14622
14623 /* The die_type call above may have already set the type for this DIE. */
14624 range_type = get_die_type (die, cu);
14625 if (range_type)
14626 return range_type;
14627
14628 low.kind = PROP_CONST;
14629 high.kind = PROP_CONST;
14630 high.data.const_val = 0;
14631
14632 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14633 omitting DW_AT_lower_bound. */
14634 switch (cu->language)
14635 {
14636 case language_c:
14637 case language_cplus:
14638 low.data.const_val = 0;
14639 low_default_is_valid = 1;
14640 break;
14641 case language_fortran:
14642 low.data.const_val = 1;
14643 low_default_is_valid = 1;
14644 break;
14645 case language_d:
14646 case language_java:
14647 case language_objc:
14648 low.data.const_val = 0;
14649 low_default_is_valid = (cu->header.version >= 4);
14650 break;
14651 case language_ada:
14652 case language_m2:
14653 case language_pascal:
14654 low.data.const_val = 1;
14655 low_default_is_valid = (cu->header.version >= 4);
14656 break;
14657 default:
14658 low.data.const_val = 0;
14659 low_default_is_valid = 0;
14660 break;
14661 }
14662
14663 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14664 if (attr)
14665 attr_to_dynamic_prop (attr, die, cu, &low);
14666 else if (!low_default_is_valid)
14667 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14668 "- DIE at 0x%x [in module %s]"),
14669 die->offset.sect_off, objfile_name (cu->objfile));
14670
14671 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14672 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14673 {
14674 attr = dwarf2_attr (die, DW_AT_count, cu);
14675 if (attr_to_dynamic_prop (attr, die, cu, &high))
14676 {
14677 /* If bounds are constant do the final calculation here. */
14678 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14679 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14680 else
14681 high_bound_is_count = 1;
14682 }
14683 }
14684
14685 /* Dwarf-2 specifications explicitly allows to create subrange types
14686 without specifying a base type.
14687 In that case, the base type must be set to the type of
14688 the lower bound, upper bound or count, in that order, if any of these
14689 three attributes references an object that has a type.
14690 If no base type is found, the Dwarf-2 specifications say that
14691 a signed integer type of size equal to the size of an address should
14692 be used.
14693 For the following C code: `extern char gdb_int [];'
14694 GCC produces an empty range DIE.
14695 FIXME: muller/2010-05-28: Possible references to object for low bound,
14696 high bound or count are not yet handled by this code. */
14697 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14698 {
14699 struct objfile *objfile = cu->objfile;
14700 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14701 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14702 struct type *int_type = objfile_type (objfile)->builtin_int;
14703
14704 /* Test "int", "long int", and "long long int" objfile types,
14705 and select the first one having a size above or equal to the
14706 architecture address size. */
14707 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14708 base_type = int_type;
14709 else
14710 {
14711 int_type = objfile_type (objfile)->builtin_long;
14712 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14713 base_type = int_type;
14714 else
14715 {
14716 int_type = objfile_type (objfile)->builtin_long_long;
14717 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14718 base_type = int_type;
14719 }
14720 }
14721 }
14722
14723 /* Normally, the DWARF producers are expected to use a signed
14724 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14725 But this is unfortunately not always the case, as witnessed
14726 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14727 is used instead. To work around that ambiguity, we treat
14728 the bounds as signed, and thus sign-extend their values, when
14729 the base type is signed. */
14730 negative_mask =
14731 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14732 if (low.kind == PROP_CONST
14733 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14734 low.data.const_val |= negative_mask;
14735 if (high.kind == PROP_CONST
14736 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14737 high.data.const_val |= negative_mask;
14738
14739 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14740
14741 if (high_bound_is_count)
14742 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14743
14744 /* Ada expects an empty array on no boundary attributes. */
14745 if (attr == NULL && cu->language != language_ada)
14746 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14747
14748 name = dwarf2_name (die, cu);
14749 if (name)
14750 TYPE_NAME (range_type) = name;
14751
14752 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14753 if (attr)
14754 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14755
14756 set_die_type (die, range_type, cu);
14757
14758 /* set_die_type should be already done. */
14759 set_descriptive_type (range_type, die, cu);
14760
14761 return range_type;
14762 }
14763
14764 static struct type *
14765 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14766 {
14767 struct type *type;
14768
14769 /* For now, we only support the C meaning of an unspecified type: void. */
14770
14771 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14772 TYPE_NAME (type) = dwarf2_name (die, cu);
14773
14774 return set_die_type (die, type, cu);
14775 }
14776
14777 /* Read a single die and all its descendents. Set the die's sibling
14778 field to NULL; set other fields in the die correctly, and set all
14779 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14780 location of the info_ptr after reading all of those dies. PARENT
14781 is the parent of the die in question. */
14782
14783 static struct die_info *
14784 read_die_and_children (const struct die_reader_specs *reader,
14785 const gdb_byte *info_ptr,
14786 const gdb_byte **new_info_ptr,
14787 struct die_info *parent)
14788 {
14789 struct die_info *die;
14790 const gdb_byte *cur_ptr;
14791 int has_children;
14792
14793 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14794 if (die == NULL)
14795 {
14796 *new_info_ptr = cur_ptr;
14797 return NULL;
14798 }
14799 store_in_ref_table (die, reader->cu);
14800
14801 if (has_children)
14802 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14803 else
14804 {
14805 die->child = NULL;
14806 *new_info_ptr = cur_ptr;
14807 }
14808
14809 die->sibling = NULL;
14810 die->parent = parent;
14811 return die;
14812 }
14813
14814 /* Read a die, all of its descendents, and all of its siblings; set
14815 all of the fields of all of the dies correctly. Arguments are as
14816 in read_die_and_children. */
14817
14818 static struct die_info *
14819 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14820 const gdb_byte *info_ptr,
14821 const gdb_byte **new_info_ptr,
14822 struct die_info *parent)
14823 {
14824 struct die_info *first_die, *last_sibling;
14825 const gdb_byte *cur_ptr;
14826
14827 cur_ptr = info_ptr;
14828 first_die = last_sibling = NULL;
14829
14830 while (1)
14831 {
14832 struct die_info *die
14833 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14834
14835 if (die == NULL)
14836 {
14837 *new_info_ptr = cur_ptr;
14838 return first_die;
14839 }
14840
14841 if (!first_die)
14842 first_die = die;
14843 else
14844 last_sibling->sibling = die;
14845
14846 last_sibling = die;
14847 }
14848 }
14849
14850 /* Read a die, all of its descendents, and all of its siblings; set
14851 all of the fields of all of the dies correctly. Arguments are as
14852 in read_die_and_children.
14853 This the main entry point for reading a DIE and all its children. */
14854
14855 static struct die_info *
14856 read_die_and_siblings (const struct die_reader_specs *reader,
14857 const gdb_byte *info_ptr,
14858 const gdb_byte **new_info_ptr,
14859 struct die_info *parent)
14860 {
14861 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14862 new_info_ptr, parent);
14863
14864 if (dwarf2_die_debug)
14865 {
14866 fprintf_unfiltered (gdb_stdlog,
14867 "Read die from %s@0x%x of %s:\n",
14868 get_section_name (reader->die_section),
14869 (unsigned) (info_ptr - reader->die_section->buffer),
14870 bfd_get_filename (reader->abfd));
14871 dump_die (die, dwarf2_die_debug);
14872 }
14873
14874 return die;
14875 }
14876
14877 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14878 attributes.
14879 The caller is responsible for filling in the extra attributes
14880 and updating (*DIEP)->num_attrs.
14881 Set DIEP to point to a newly allocated die with its information,
14882 except for its child, sibling, and parent fields.
14883 Set HAS_CHILDREN to tell whether the die has children or not. */
14884
14885 static const gdb_byte *
14886 read_full_die_1 (const struct die_reader_specs *reader,
14887 struct die_info **diep, const gdb_byte *info_ptr,
14888 int *has_children, int num_extra_attrs)
14889 {
14890 unsigned int abbrev_number, bytes_read, i;
14891 sect_offset offset;
14892 struct abbrev_info *abbrev;
14893 struct die_info *die;
14894 struct dwarf2_cu *cu = reader->cu;
14895 bfd *abfd = reader->abfd;
14896
14897 offset.sect_off = info_ptr - reader->buffer;
14898 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14899 info_ptr += bytes_read;
14900 if (!abbrev_number)
14901 {
14902 *diep = NULL;
14903 *has_children = 0;
14904 return info_ptr;
14905 }
14906
14907 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14908 if (!abbrev)
14909 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14910 abbrev_number,
14911 bfd_get_filename (abfd));
14912
14913 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14914 die->offset = offset;
14915 die->tag = abbrev->tag;
14916 die->abbrev = abbrev_number;
14917
14918 /* Make the result usable.
14919 The caller needs to update num_attrs after adding the extra
14920 attributes. */
14921 die->num_attrs = abbrev->num_attrs;
14922
14923 for (i = 0; i < abbrev->num_attrs; ++i)
14924 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14925 info_ptr);
14926
14927 *diep = die;
14928 *has_children = abbrev->has_children;
14929 return info_ptr;
14930 }
14931
14932 /* Read a die and all its attributes.
14933 Set DIEP to point to a newly allocated die with its information,
14934 except for its child, sibling, and parent fields.
14935 Set HAS_CHILDREN to tell whether the die has children or not. */
14936
14937 static const gdb_byte *
14938 read_full_die (const struct die_reader_specs *reader,
14939 struct die_info **diep, const gdb_byte *info_ptr,
14940 int *has_children)
14941 {
14942 const gdb_byte *result;
14943
14944 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14945
14946 if (dwarf2_die_debug)
14947 {
14948 fprintf_unfiltered (gdb_stdlog,
14949 "Read die from %s@0x%x of %s:\n",
14950 get_section_name (reader->die_section),
14951 (unsigned) (info_ptr - reader->die_section->buffer),
14952 bfd_get_filename (reader->abfd));
14953 dump_die (*diep, dwarf2_die_debug);
14954 }
14955
14956 return result;
14957 }
14958 \f
14959 /* Abbreviation tables.
14960
14961 In DWARF version 2, the description of the debugging information is
14962 stored in a separate .debug_abbrev section. Before we read any
14963 dies from a section we read in all abbreviations and install them
14964 in a hash table. */
14965
14966 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14967
14968 static struct abbrev_info *
14969 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14970 {
14971 struct abbrev_info *abbrev;
14972
14973 abbrev = (struct abbrev_info *)
14974 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14975 memset (abbrev, 0, sizeof (struct abbrev_info));
14976 return abbrev;
14977 }
14978
14979 /* Add an abbreviation to the table. */
14980
14981 static void
14982 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14983 unsigned int abbrev_number,
14984 struct abbrev_info *abbrev)
14985 {
14986 unsigned int hash_number;
14987
14988 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14989 abbrev->next = abbrev_table->abbrevs[hash_number];
14990 abbrev_table->abbrevs[hash_number] = abbrev;
14991 }
14992
14993 /* Look up an abbrev in the table.
14994 Returns NULL if the abbrev is not found. */
14995
14996 static struct abbrev_info *
14997 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14998 unsigned int abbrev_number)
14999 {
15000 unsigned int hash_number;
15001 struct abbrev_info *abbrev;
15002
15003 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15004 abbrev = abbrev_table->abbrevs[hash_number];
15005
15006 while (abbrev)
15007 {
15008 if (abbrev->number == abbrev_number)
15009 return abbrev;
15010 abbrev = abbrev->next;
15011 }
15012 return NULL;
15013 }
15014
15015 /* Read in an abbrev table. */
15016
15017 static struct abbrev_table *
15018 abbrev_table_read_table (struct dwarf2_section_info *section,
15019 sect_offset offset)
15020 {
15021 struct objfile *objfile = dwarf2_per_objfile->objfile;
15022 bfd *abfd = get_section_bfd_owner (section);
15023 struct abbrev_table *abbrev_table;
15024 const gdb_byte *abbrev_ptr;
15025 struct abbrev_info *cur_abbrev;
15026 unsigned int abbrev_number, bytes_read, abbrev_name;
15027 unsigned int abbrev_form;
15028 struct attr_abbrev *cur_attrs;
15029 unsigned int allocated_attrs;
15030
15031 abbrev_table = XNEW (struct abbrev_table);
15032 abbrev_table->offset = offset;
15033 obstack_init (&abbrev_table->abbrev_obstack);
15034 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15035 (ABBREV_HASH_SIZE
15036 * sizeof (struct abbrev_info *)));
15037 memset (abbrev_table->abbrevs, 0,
15038 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15039
15040 dwarf2_read_section (objfile, section);
15041 abbrev_ptr = section->buffer + offset.sect_off;
15042 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15043 abbrev_ptr += bytes_read;
15044
15045 allocated_attrs = ATTR_ALLOC_CHUNK;
15046 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15047
15048 /* Loop until we reach an abbrev number of 0. */
15049 while (abbrev_number)
15050 {
15051 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15052
15053 /* read in abbrev header */
15054 cur_abbrev->number = abbrev_number;
15055 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15056 abbrev_ptr += bytes_read;
15057 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15058 abbrev_ptr += 1;
15059
15060 /* now read in declarations */
15061 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15062 abbrev_ptr += bytes_read;
15063 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15064 abbrev_ptr += bytes_read;
15065 while (abbrev_name)
15066 {
15067 if (cur_abbrev->num_attrs == allocated_attrs)
15068 {
15069 allocated_attrs += ATTR_ALLOC_CHUNK;
15070 cur_attrs
15071 = xrealloc (cur_attrs, (allocated_attrs
15072 * sizeof (struct attr_abbrev)));
15073 }
15074
15075 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15076 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15077 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15078 abbrev_ptr += bytes_read;
15079 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15080 abbrev_ptr += bytes_read;
15081 }
15082
15083 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15084 (cur_abbrev->num_attrs
15085 * sizeof (struct attr_abbrev)));
15086 memcpy (cur_abbrev->attrs, cur_attrs,
15087 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15088
15089 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15090
15091 /* Get next abbreviation.
15092 Under Irix6 the abbreviations for a compilation unit are not
15093 always properly terminated with an abbrev number of 0.
15094 Exit loop if we encounter an abbreviation which we have
15095 already read (which means we are about to read the abbreviations
15096 for the next compile unit) or if the end of the abbreviation
15097 table is reached. */
15098 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15099 break;
15100 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15101 abbrev_ptr += bytes_read;
15102 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15103 break;
15104 }
15105
15106 xfree (cur_attrs);
15107 return abbrev_table;
15108 }
15109
15110 /* Free the resources held by ABBREV_TABLE. */
15111
15112 static void
15113 abbrev_table_free (struct abbrev_table *abbrev_table)
15114 {
15115 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15116 xfree (abbrev_table);
15117 }
15118
15119 /* Same as abbrev_table_free but as a cleanup.
15120 We pass in a pointer to the pointer to the table so that we can
15121 set the pointer to NULL when we're done. It also simplifies
15122 build_type_psymtabs_1. */
15123
15124 static void
15125 abbrev_table_free_cleanup (void *table_ptr)
15126 {
15127 struct abbrev_table **abbrev_table_ptr = table_ptr;
15128
15129 if (*abbrev_table_ptr != NULL)
15130 abbrev_table_free (*abbrev_table_ptr);
15131 *abbrev_table_ptr = NULL;
15132 }
15133
15134 /* Read the abbrev table for CU from ABBREV_SECTION. */
15135
15136 static void
15137 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15138 struct dwarf2_section_info *abbrev_section)
15139 {
15140 cu->abbrev_table =
15141 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15142 }
15143
15144 /* Release the memory used by the abbrev table for a compilation unit. */
15145
15146 static void
15147 dwarf2_free_abbrev_table (void *ptr_to_cu)
15148 {
15149 struct dwarf2_cu *cu = ptr_to_cu;
15150
15151 if (cu->abbrev_table != NULL)
15152 abbrev_table_free (cu->abbrev_table);
15153 /* Set this to NULL so that we SEGV if we try to read it later,
15154 and also because free_comp_unit verifies this is NULL. */
15155 cu->abbrev_table = NULL;
15156 }
15157 \f
15158 /* Returns nonzero if TAG represents a type that we might generate a partial
15159 symbol for. */
15160
15161 static int
15162 is_type_tag_for_partial (int tag)
15163 {
15164 switch (tag)
15165 {
15166 #if 0
15167 /* Some types that would be reasonable to generate partial symbols for,
15168 that we don't at present. */
15169 case DW_TAG_array_type:
15170 case DW_TAG_file_type:
15171 case DW_TAG_ptr_to_member_type:
15172 case DW_TAG_set_type:
15173 case DW_TAG_string_type:
15174 case DW_TAG_subroutine_type:
15175 #endif
15176 case DW_TAG_base_type:
15177 case DW_TAG_class_type:
15178 case DW_TAG_interface_type:
15179 case DW_TAG_enumeration_type:
15180 case DW_TAG_structure_type:
15181 case DW_TAG_subrange_type:
15182 case DW_TAG_typedef:
15183 case DW_TAG_union_type:
15184 return 1;
15185 default:
15186 return 0;
15187 }
15188 }
15189
15190 /* Load all DIEs that are interesting for partial symbols into memory. */
15191
15192 static struct partial_die_info *
15193 load_partial_dies (const struct die_reader_specs *reader,
15194 const gdb_byte *info_ptr, int building_psymtab)
15195 {
15196 struct dwarf2_cu *cu = reader->cu;
15197 struct objfile *objfile = cu->objfile;
15198 struct partial_die_info *part_die;
15199 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15200 struct abbrev_info *abbrev;
15201 unsigned int bytes_read;
15202 unsigned int load_all = 0;
15203 int nesting_level = 1;
15204
15205 parent_die = NULL;
15206 last_die = NULL;
15207
15208 gdb_assert (cu->per_cu != NULL);
15209 if (cu->per_cu->load_all_dies)
15210 load_all = 1;
15211
15212 cu->partial_dies
15213 = htab_create_alloc_ex (cu->header.length / 12,
15214 partial_die_hash,
15215 partial_die_eq,
15216 NULL,
15217 &cu->comp_unit_obstack,
15218 hashtab_obstack_allocate,
15219 dummy_obstack_deallocate);
15220
15221 part_die = obstack_alloc (&cu->comp_unit_obstack,
15222 sizeof (struct partial_die_info));
15223
15224 while (1)
15225 {
15226 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15227
15228 /* A NULL abbrev means the end of a series of children. */
15229 if (abbrev == NULL)
15230 {
15231 if (--nesting_level == 0)
15232 {
15233 /* PART_DIE was probably the last thing allocated on the
15234 comp_unit_obstack, so we could call obstack_free
15235 here. We don't do that because the waste is small,
15236 and will be cleaned up when we're done with this
15237 compilation unit. This way, we're also more robust
15238 against other users of the comp_unit_obstack. */
15239 return first_die;
15240 }
15241 info_ptr += bytes_read;
15242 last_die = parent_die;
15243 parent_die = parent_die->die_parent;
15244 continue;
15245 }
15246
15247 /* Check for template arguments. We never save these; if
15248 they're seen, we just mark the parent, and go on our way. */
15249 if (parent_die != NULL
15250 && cu->language == language_cplus
15251 && (abbrev->tag == DW_TAG_template_type_param
15252 || abbrev->tag == DW_TAG_template_value_param))
15253 {
15254 parent_die->has_template_arguments = 1;
15255
15256 if (!load_all)
15257 {
15258 /* We don't need a partial DIE for the template argument. */
15259 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15260 continue;
15261 }
15262 }
15263
15264 /* We only recurse into c++ subprograms looking for template arguments.
15265 Skip their other children. */
15266 if (!load_all
15267 && cu->language == language_cplus
15268 && parent_die != NULL
15269 && parent_die->tag == DW_TAG_subprogram)
15270 {
15271 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15272 continue;
15273 }
15274
15275 /* Check whether this DIE is interesting enough to save. Normally
15276 we would not be interested in members here, but there may be
15277 later variables referencing them via DW_AT_specification (for
15278 static members). */
15279 if (!load_all
15280 && !is_type_tag_for_partial (abbrev->tag)
15281 && abbrev->tag != DW_TAG_constant
15282 && abbrev->tag != DW_TAG_enumerator
15283 && abbrev->tag != DW_TAG_subprogram
15284 && abbrev->tag != DW_TAG_lexical_block
15285 && abbrev->tag != DW_TAG_variable
15286 && abbrev->tag != DW_TAG_namespace
15287 && abbrev->tag != DW_TAG_module
15288 && abbrev->tag != DW_TAG_member
15289 && abbrev->tag != DW_TAG_imported_unit
15290 && abbrev->tag != DW_TAG_imported_declaration)
15291 {
15292 /* Otherwise we skip to the next sibling, if any. */
15293 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15294 continue;
15295 }
15296
15297 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15298 info_ptr);
15299
15300 /* This two-pass algorithm for processing partial symbols has a
15301 high cost in cache pressure. Thus, handle some simple cases
15302 here which cover the majority of C partial symbols. DIEs
15303 which neither have specification tags in them, nor could have
15304 specification tags elsewhere pointing at them, can simply be
15305 processed and discarded.
15306
15307 This segment is also optional; scan_partial_symbols and
15308 add_partial_symbol will handle these DIEs if we chain
15309 them in normally. When compilers which do not emit large
15310 quantities of duplicate debug information are more common,
15311 this code can probably be removed. */
15312
15313 /* Any complete simple types at the top level (pretty much all
15314 of them, for a language without namespaces), can be processed
15315 directly. */
15316 if (parent_die == NULL
15317 && part_die->has_specification == 0
15318 && part_die->is_declaration == 0
15319 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15320 || part_die->tag == DW_TAG_base_type
15321 || part_die->tag == DW_TAG_subrange_type))
15322 {
15323 if (building_psymtab && part_die->name != NULL)
15324 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15325 VAR_DOMAIN, LOC_TYPEDEF,
15326 &objfile->static_psymbols,
15327 0, (CORE_ADDR) 0, cu->language, objfile);
15328 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15329 continue;
15330 }
15331
15332 /* The exception for DW_TAG_typedef with has_children above is
15333 a workaround of GCC PR debug/47510. In the case of this complaint
15334 type_name_no_tag_or_error will error on such types later.
15335
15336 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15337 it could not find the child DIEs referenced later, this is checked
15338 above. In correct DWARF DW_TAG_typedef should have no children. */
15339
15340 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15341 complaint (&symfile_complaints,
15342 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15343 "- DIE at 0x%x [in module %s]"),
15344 part_die->offset.sect_off, objfile_name (objfile));
15345
15346 /* If we're at the second level, and we're an enumerator, and
15347 our parent has no specification (meaning possibly lives in a
15348 namespace elsewhere), then we can add the partial symbol now
15349 instead of queueing it. */
15350 if (part_die->tag == DW_TAG_enumerator
15351 && parent_die != NULL
15352 && parent_die->die_parent == NULL
15353 && parent_die->tag == DW_TAG_enumeration_type
15354 && parent_die->has_specification == 0)
15355 {
15356 if (part_die->name == NULL)
15357 complaint (&symfile_complaints,
15358 _("malformed enumerator DIE ignored"));
15359 else if (building_psymtab)
15360 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15361 VAR_DOMAIN, LOC_CONST,
15362 (cu->language == language_cplus
15363 || cu->language == language_java)
15364 ? &objfile->global_psymbols
15365 : &objfile->static_psymbols,
15366 0, (CORE_ADDR) 0, cu->language, objfile);
15367
15368 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15369 continue;
15370 }
15371
15372 /* We'll save this DIE so link it in. */
15373 part_die->die_parent = parent_die;
15374 part_die->die_sibling = NULL;
15375 part_die->die_child = NULL;
15376
15377 if (last_die && last_die == parent_die)
15378 last_die->die_child = part_die;
15379 else if (last_die)
15380 last_die->die_sibling = part_die;
15381
15382 last_die = part_die;
15383
15384 if (first_die == NULL)
15385 first_die = part_die;
15386
15387 /* Maybe add the DIE to the hash table. Not all DIEs that we
15388 find interesting need to be in the hash table, because we
15389 also have the parent/sibling/child chains; only those that we
15390 might refer to by offset later during partial symbol reading.
15391
15392 For now this means things that might have be the target of a
15393 DW_AT_specification, DW_AT_abstract_origin, or
15394 DW_AT_extension. DW_AT_extension will refer only to
15395 namespaces; DW_AT_abstract_origin refers to functions (and
15396 many things under the function DIE, but we do not recurse
15397 into function DIEs during partial symbol reading) and
15398 possibly variables as well; DW_AT_specification refers to
15399 declarations. Declarations ought to have the DW_AT_declaration
15400 flag. It happens that GCC forgets to put it in sometimes, but
15401 only for functions, not for types.
15402
15403 Adding more things than necessary to the hash table is harmless
15404 except for the performance cost. Adding too few will result in
15405 wasted time in find_partial_die, when we reread the compilation
15406 unit with load_all_dies set. */
15407
15408 if (load_all
15409 || abbrev->tag == DW_TAG_constant
15410 || abbrev->tag == DW_TAG_subprogram
15411 || abbrev->tag == DW_TAG_variable
15412 || abbrev->tag == DW_TAG_namespace
15413 || part_die->is_declaration)
15414 {
15415 void **slot;
15416
15417 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15418 part_die->offset.sect_off, INSERT);
15419 *slot = part_die;
15420 }
15421
15422 part_die = obstack_alloc (&cu->comp_unit_obstack,
15423 sizeof (struct partial_die_info));
15424
15425 /* For some DIEs we want to follow their children (if any). For C
15426 we have no reason to follow the children of structures; for other
15427 languages we have to, so that we can get at method physnames
15428 to infer fully qualified class names, for DW_AT_specification,
15429 and for C++ template arguments. For C++, we also look one level
15430 inside functions to find template arguments (if the name of the
15431 function does not already contain the template arguments).
15432
15433 For Ada, we need to scan the children of subprograms and lexical
15434 blocks as well because Ada allows the definition of nested
15435 entities that could be interesting for the debugger, such as
15436 nested subprograms for instance. */
15437 if (last_die->has_children
15438 && (load_all
15439 || last_die->tag == DW_TAG_namespace
15440 || last_die->tag == DW_TAG_module
15441 || last_die->tag == DW_TAG_enumeration_type
15442 || (cu->language == language_cplus
15443 && last_die->tag == DW_TAG_subprogram
15444 && (last_die->name == NULL
15445 || strchr (last_die->name, '<') == NULL))
15446 || (cu->language != language_c
15447 && (last_die->tag == DW_TAG_class_type
15448 || last_die->tag == DW_TAG_interface_type
15449 || last_die->tag == DW_TAG_structure_type
15450 || last_die->tag == DW_TAG_union_type))
15451 || (cu->language == language_ada
15452 && (last_die->tag == DW_TAG_subprogram
15453 || last_die->tag == DW_TAG_lexical_block))))
15454 {
15455 nesting_level++;
15456 parent_die = last_die;
15457 continue;
15458 }
15459
15460 /* Otherwise we skip to the next sibling, if any. */
15461 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15462
15463 /* Back to the top, do it again. */
15464 }
15465 }
15466
15467 /* Read a minimal amount of information into the minimal die structure. */
15468
15469 static const gdb_byte *
15470 read_partial_die (const struct die_reader_specs *reader,
15471 struct partial_die_info *part_die,
15472 struct abbrev_info *abbrev, unsigned int abbrev_len,
15473 const gdb_byte *info_ptr)
15474 {
15475 struct dwarf2_cu *cu = reader->cu;
15476 struct objfile *objfile = cu->objfile;
15477 const gdb_byte *buffer = reader->buffer;
15478 unsigned int i;
15479 struct attribute attr;
15480 int has_low_pc_attr = 0;
15481 int has_high_pc_attr = 0;
15482 int high_pc_relative = 0;
15483
15484 memset (part_die, 0, sizeof (struct partial_die_info));
15485
15486 part_die->offset.sect_off = info_ptr - buffer;
15487
15488 info_ptr += abbrev_len;
15489
15490 if (abbrev == NULL)
15491 return info_ptr;
15492
15493 part_die->tag = abbrev->tag;
15494 part_die->has_children = abbrev->has_children;
15495
15496 for (i = 0; i < abbrev->num_attrs; ++i)
15497 {
15498 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15499
15500 /* Store the data if it is of an attribute we want to keep in a
15501 partial symbol table. */
15502 switch (attr.name)
15503 {
15504 case DW_AT_name:
15505 switch (part_die->tag)
15506 {
15507 case DW_TAG_compile_unit:
15508 case DW_TAG_partial_unit:
15509 case DW_TAG_type_unit:
15510 /* Compilation units have a DW_AT_name that is a filename, not
15511 a source language identifier. */
15512 case DW_TAG_enumeration_type:
15513 case DW_TAG_enumerator:
15514 /* These tags always have simple identifiers already; no need
15515 to canonicalize them. */
15516 part_die->name = DW_STRING (&attr);
15517 break;
15518 default:
15519 part_die->name
15520 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15521 &objfile->per_bfd->storage_obstack);
15522 break;
15523 }
15524 break;
15525 case DW_AT_linkage_name:
15526 case DW_AT_MIPS_linkage_name:
15527 /* Note that both forms of linkage name might appear. We
15528 assume they will be the same, and we only store the last
15529 one we see. */
15530 if (cu->language == language_ada)
15531 part_die->name = DW_STRING (&attr);
15532 part_die->linkage_name = DW_STRING (&attr);
15533 break;
15534 case DW_AT_low_pc:
15535 has_low_pc_attr = 1;
15536 part_die->lowpc = attr_value_as_address (&attr);
15537 break;
15538 case DW_AT_high_pc:
15539 has_high_pc_attr = 1;
15540 part_die->highpc = attr_value_as_address (&attr);
15541 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15542 high_pc_relative = 1;
15543 break;
15544 case DW_AT_location:
15545 /* Support the .debug_loc offsets. */
15546 if (attr_form_is_block (&attr))
15547 {
15548 part_die->d.locdesc = DW_BLOCK (&attr);
15549 }
15550 else if (attr_form_is_section_offset (&attr))
15551 {
15552 dwarf2_complex_location_expr_complaint ();
15553 }
15554 else
15555 {
15556 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15557 "partial symbol information");
15558 }
15559 break;
15560 case DW_AT_external:
15561 part_die->is_external = DW_UNSND (&attr);
15562 break;
15563 case DW_AT_declaration:
15564 part_die->is_declaration = DW_UNSND (&attr);
15565 break;
15566 case DW_AT_type:
15567 part_die->has_type = 1;
15568 break;
15569 case DW_AT_abstract_origin:
15570 case DW_AT_specification:
15571 case DW_AT_extension:
15572 part_die->has_specification = 1;
15573 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15574 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15575 || cu->per_cu->is_dwz);
15576 break;
15577 case DW_AT_sibling:
15578 /* Ignore absolute siblings, they might point outside of
15579 the current compile unit. */
15580 if (attr.form == DW_FORM_ref_addr)
15581 complaint (&symfile_complaints,
15582 _("ignoring absolute DW_AT_sibling"));
15583 else
15584 {
15585 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15586 const gdb_byte *sibling_ptr = buffer + off;
15587
15588 if (sibling_ptr < info_ptr)
15589 complaint (&symfile_complaints,
15590 _("DW_AT_sibling points backwards"));
15591 else if (sibling_ptr > reader->buffer_end)
15592 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15593 else
15594 part_die->sibling = sibling_ptr;
15595 }
15596 break;
15597 case DW_AT_byte_size:
15598 part_die->has_byte_size = 1;
15599 break;
15600 case DW_AT_calling_convention:
15601 /* DWARF doesn't provide a way to identify a program's source-level
15602 entry point. DW_AT_calling_convention attributes are only meant
15603 to describe functions' calling conventions.
15604
15605 However, because it's a necessary piece of information in
15606 Fortran, and because DW_CC_program is the only piece of debugging
15607 information whose definition refers to a 'main program' at all,
15608 several compilers have begun marking Fortran main programs with
15609 DW_CC_program --- even when those functions use the standard
15610 calling conventions.
15611
15612 So until DWARF specifies a way to provide this information and
15613 compilers pick up the new representation, we'll support this
15614 practice. */
15615 if (DW_UNSND (&attr) == DW_CC_program
15616 && cu->language == language_fortran)
15617 set_objfile_main_name (objfile, part_die->name, language_fortran);
15618 break;
15619 case DW_AT_inline:
15620 if (DW_UNSND (&attr) == DW_INL_inlined
15621 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15622 part_die->may_be_inlined = 1;
15623 break;
15624
15625 case DW_AT_import:
15626 if (part_die->tag == DW_TAG_imported_unit)
15627 {
15628 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15629 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15630 || cu->per_cu->is_dwz);
15631 }
15632 break;
15633
15634 default:
15635 break;
15636 }
15637 }
15638
15639 if (high_pc_relative)
15640 part_die->highpc += part_die->lowpc;
15641
15642 if (has_low_pc_attr && has_high_pc_attr)
15643 {
15644 /* When using the GNU linker, .gnu.linkonce. sections are used to
15645 eliminate duplicate copies of functions and vtables and such.
15646 The linker will arbitrarily choose one and discard the others.
15647 The AT_*_pc values for such functions refer to local labels in
15648 these sections. If the section from that file was discarded, the
15649 labels are not in the output, so the relocs get a value of 0.
15650 If this is a discarded function, mark the pc bounds as invalid,
15651 so that GDB will ignore it. */
15652 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15653 {
15654 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15655
15656 complaint (&symfile_complaints,
15657 _("DW_AT_low_pc %s is zero "
15658 "for DIE at 0x%x [in module %s]"),
15659 paddress (gdbarch, part_die->lowpc),
15660 part_die->offset.sect_off, objfile_name (objfile));
15661 }
15662 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15663 else if (part_die->lowpc >= part_die->highpc)
15664 {
15665 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15666
15667 complaint (&symfile_complaints,
15668 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15669 "for DIE at 0x%x [in module %s]"),
15670 paddress (gdbarch, part_die->lowpc),
15671 paddress (gdbarch, part_die->highpc),
15672 part_die->offset.sect_off, objfile_name (objfile));
15673 }
15674 else
15675 part_die->has_pc_info = 1;
15676 }
15677
15678 return info_ptr;
15679 }
15680
15681 /* Find a cached partial DIE at OFFSET in CU. */
15682
15683 static struct partial_die_info *
15684 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15685 {
15686 struct partial_die_info *lookup_die = NULL;
15687 struct partial_die_info part_die;
15688
15689 part_die.offset = offset;
15690 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15691 offset.sect_off);
15692
15693 return lookup_die;
15694 }
15695
15696 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15697 except in the case of .debug_types DIEs which do not reference
15698 outside their CU (they do however referencing other types via
15699 DW_FORM_ref_sig8). */
15700
15701 static struct partial_die_info *
15702 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15703 {
15704 struct objfile *objfile = cu->objfile;
15705 struct dwarf2_per_cu_data *per_cu = NULL;
15706 struct partial_die_info *pd = NULL;
15707
15708 if (offset_in_dwz == cu->per_cu->is_dwz
15709 && offset_in_cu_p (&cu->header, offset))
15710 {
15711 pd = find_partial_die_in_comp_unit (offset, cu);
15712 if (pd != NULL)
15713 return pd;
15714 /* We missed recording what we needed.
15715 Load all dies and try again. */
15716 per_cu = cu->per_cu;
15717 }
15718 else
15719 {
15720 /* TUs don't reference other CUs/TUs (except via type signatures). */
15721 if (cu->per_cu->is_debug_types)
15722 {
15723 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15724 " external reference to offset 0x%lx [in module %s].\n"),
15725 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15726 bfd_get_filename (objfile->obfd));
15727 }
15728 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15729 objfile);
15730
15731 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15732 load_partial_comp_unit (per_cu);
15733
15734 per_cu->cu->last_used = 0;
15735 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15736 }
15737
15738 /* If we didn't find it, and not all dies have been loaded,
15739 load them all and try again. */
15740
15741 if (pd == NULL && per_cu->load_all_dies == 0)
15742 {
15743 per_cu->load_all_dies = 1;
15744
15745 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15746 THIS_CU->cu may already be in use. So we can't just free it and
15747 replace its DIEs with the ones we read in. Instead, we leave those
15748 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15749 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15750 set. */
15751 load_partial_comp_unit (per_cu);
15752
15753 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15754 }
15755
15756 if (pd == NULL)
15757 internal_error (__FILE__, __LINE__,
15758 _("could not find partial DIE 0x%x "
15759 "in cache [from module %s]\n"),
15760 offset.sect_off, bfd_get_filename (objfile->obfd));
15761 return pd;
15762 }
15763
15764 /* See if we can figure out if the class lives in a namespace. We do
15765 this by looking for a member function; its demangled name will
15766 contain namespace info, if there is any. */
15767
15768 static void
15769 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15770 struct dwarf2_cu *cu)
15771 {
15772 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15773 what template types look like, because the demangler
15774 frequently doesn't give the same name as the debug info. We
15775 could fix this by only using the demangled name to get the
15776 prefix (but see comment in read_structure_type). */
15777
15778 struct partial_die_info *real_pdi;
15779 struct partial_die_info *child_pdi;
15780
15781 /* If this DIE (this DIE's specification, if any) has a parent, then
15782 we should not do this. We'll prepend the parent's fully qualified
15783 name when we create the partial symbol. */
15784
15785 real_pdi = struct_pdi;
15786 while (real_pdi->has_specification)
15787 real_pdi = find_partial_die (real_pdi->spec_offset,
15788 real_pdi->spec_is_dwz, cu);
15789
15790 if (real_pdi->die_parent != NULL)
15791 return;
15792
15793 for (child_pdi = struct_pdi->die_child;
15794 child_pdi != NULL;
15795 child_pdi = child_pdi->die_sibling)
15796 {
15797 if (child_pdi->tag == DW_TAG_subprogram
15798 && child_pdi->linkage_name != NULL)
15799 {
15800 char *actual_class_name
15801 = language_class_name_from_physname (cu->language_defn,
15802 child_pdi->linkage_name);
15803 if (actual_class_name != NULL)
15804 {
15805 struct_pdi->name
15806 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15807 actual_class_name,
15808 strlen (actual_class_name));
15809 xfree (actual_class_name);
15810 }
15811 break;
15812 }
15813 }
15814 }
15815
15816 /* Adjust PART_DIE before generating a symbol for it. This function
15817 may set the is_external flag or change the DIE's name. */
15818
15819 static void
15820 fixup_partial_die (struct partial_die_info *part_die,
15821 struct dwarf2_cu *cu)
15822 {
15823 /* Once we've fixed up a die, there's no point in doing so again.
15824 This also avoids a memory leak if we were to call
15825 guess_partial_die_structure_name multiple times. */
15826 if (part_die->fixup_called)
15827 return;
15828
15829 /* If we found a reference attribute and the DIE has no name, try
15830 to find a name in the referred to DIE. */
15831
15832 if (part_die->name == NULL && part_die->has_specification)
15833 {
15834 struct partial_die_info *spec_die;
15835
15836 spec_die = find_partial_die (part_die->spec_offset,
15837 part_die->spec_is_dwz, cu);
15838
15839 fixup_partial_die (spec_die, cu);
15840
15841 if (spec_die->name)
15842 {
15843 part_die->name = spec_die->name;
15844
15845 /* Copy DW_AT_external attribute if it is set. */
15846 if (spec_die->is_external)
15847 part_die->is_external = spec_die->is_external;
15848 }
15849 }
15850
15851 /* Set default names for some unnamed DIEs. */
15852
15853 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15854 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15855
15856 /* If there is no parent die to provide a namespace, and there are
15857 children, see if we can determine the namespace from their linkage
15858 name. */
15859 if (cu->language == language_cplus
15860 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15861 && part_die->die_parent == NULL
15862 && part_die->has_children
15863 && (part_die->tag == DW_TAG_class_type
15864 || part_die->tag == DW_TAG_structure_type
15865 || part_die->tag == DW_TAG_union_type))
15866 guess_partial_die_structure_name (part_die, cu);
15867
15868 /* GCC might emit a nameless struct or union that has a linkage
15869 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15870 if (part_die->name == NULL
15871 && (part_die->tag == DW_TAG_class_type
15872 || part_die->tag == DW_TAG_interface_type
15873 || part_die->tag == DW_TAG_structure_type
15874 || part_die->tag == DW_TAG_union_type)
15875 && part_die->linkage_name != NULL)
15876 {
15877 char *demangled;
15878
15879 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15880 if (demangled)
15881 {
15882 const char *base;
15883
15884 /* Strip any leading namespaces/classes, keep only the base name.
15885 DW_AT_name for named DIEs does not contain the prefixes. */
15886 base = strrchr (demangled, ':');
15887 if (base && base > demangled && base[-1] == ':')
15888 base++;
15889 else
15890 base = demangled;
15891
15892 part_die->name
15893 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15894 base, strlen (base));
15895 xfree (demangled);
15896 }
15897 }
15898
15899 part_die->fixup_called = 1;
15900 }
15901
15902 /* Read an attribute value described by an attribute form. */
15903
15904 static const gdb_byte *
15905 read_attribute_value (const struct die_reader_specs *reader,
15906 struct attribute *attr, unsigned form,
15907 const gdb_byte *info_ptr)
15908 {
15909 struct dwarf2_cu *cu = reader->cu;
15910 bfd *abfd = reader->abfd;
15911 struct comp_unit_head *cu_header = &cu->header;
15912 unsigned int bytes_read;
15913 struct dwarf_block *blk;
15914
15915 attr->form = form;
15916 switch (form)
15917 {
15918 case DW_FORM_ref_addr:
15919 if (cu->header.version == 2)
15920 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15921 else
15922 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15923 &cu->header, &bytes_read);
15924 info_ptr += bytes_read;
15925 break;
15926 case DW_FORM_GNU_ref_alt:
15927 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15928 info_ptr += bytes_read;
15929 break;
15930 case DW_FORM_addr:
15931 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15932 info_ptr += bytes_read;
15933 break;
15934 case DW_FORM_block2:
15935 blk = dwarf_alloc_block (cu);
15936 blk->size = read_2_bytes (abfd, info_ptr);
15937 info_ptr += 2;
15938 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15939 info_ptr += blk->size;
15940 DW_BLOCK (attr) = blk;
15941 break;
15942 case DW_FORM_block4:
15943 blk = dwarf_alloc_block (cu);
15944 blk->size = read_4_bytes (abfd, info_ptr);
15945 info_ptr += 4;
15946 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15947 info_ptr += blk->size;
15948 DW_BLOCK (attr) = blk;
15949 break;
15950 case DW_FORM_data2:
15951 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15952 info_ptr += 2;
15953 break;
15954 case DW_FORM_data4:
15955 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15956 info_ptr += 4;
15957 break;
15958 case DW_FORM_data8:
15959 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15960 info_ptr += 8;
15961 break;
15962 case DW_FORM_sec_offset:
15963 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15964 info_ptr += bytes_read;
15965 break;
15966 case DW_FORM_string:
15967 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15968 DW_STRING_IS_CANONICAL (attr) = 0;
15969 info_ptr += bytes_read;
15970 break;
15971 case DW_FORM_strp:
15972 if (!cu->per_cu->is_dwz)
15973 {
15974 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15975 &bytes_read);
15976 DW_STRING_IS_CANONICAL (attr) = 0;
15977 info_ptr += bytes_read;
15978 break;
15979 }
15980 /* FALLTHROUGH */
15981 case DW_FORM_GNU_strp_alt:
15982 {
15983 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15984 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15985 &bytes_read);
15986
15987 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15988 DW_STRING_IS_CANONICAL (attr) = 0;
15989 info_ptr += bytes_read;
15990 }
15991 break;
15992 case DW_FORM_exprloc:
15993 case DW_FORM_block:
15994 blk = dwarf_alloc_block (cu);
15995 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15996 info_ptr += bytes_read;
15997 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15998 info_ptr += blk->size;
15999 DW_BLOCK (attr) = blk;
16000 break;
16001 case DW_FORM_block1:
16002 blk = dwarf_alloc_block (cu);
16003 blk->size = read_1_byte (abfd, info_ptr);
16004 info_ptr += 1;
16005 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16006 info_ptr += blk->size;
16007 DW_BLOCK (attr) = blk;
16008 break;
16009 case DW_FORM_data1:
16010 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16011 info_ptr += 1;
16012 break;
16013 case DW_FORM_flag:
16014 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16015 info_ptr += 1;
16016 break;
16017 case DW_FORM_flag_present:
16018 DW_UNSND (attr) = 1;
16019 break;
16020 case DW_FORM_sdata:
16021 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16022 info_ptr += bytes_read;
16023 break;
16024 case DW_FORM_udata:
16025 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16026 info_ptr += bytes_read;
16027 break;
16028 case DW_FORM_ref1:
16029 DW_UNSND (attr) = (cu->header.offset.sect_off
16030 + read_1_byte (abfd, info_ptr));
16031 info_ptr += 1;
16032 break;
16033 case DW_FORM_ref2:
16034 DW_UNSND (attr) = (cu->header.offset.sect_off
16035 + read_2_bytes (abfd, info_ptr));
16036 info_ptr += 2;
16037 break;
16038 case DW_FORM_ref4:
16039 DW_UNSND (attr) = (cu->header.offset.sect_off
16040 + read_4_bytes (abfd, info_ptr));
16041 info_ptr += 4;
16042 break;
16043 case DW_FORM_ref8:
16044 DW_UNSND (attr) = (cu->header.offset.sect_off
16045 + read_8_bytes (abfd, info_ptr));
16046 info_ptr += 8;
16047 break;
16048 case DW_FORM_ref_sig8:
16049 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16050 info_ptr += 8;
16051 break;
16052 case DW_FORM_ref_udata:
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16055 info_ptr += bytes_read;
16056 break;
16057 case DW_FORM_indirect:
16058 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16059 info_ptr += bytes_read;
16060 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16061 break;
16062 case DW_FORM_GNU_addr_index:
16063 if (reader->dwo_file == NULL)
16064 {
16065 /* For now flag a hard error.
16066 Later we can turn this into a complaint. */
16067 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16068 dwarf_form_name (form),
16069 bfd_get_filename (abfd));
16070 }
16071 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16072 info_ptr += bytes_read;
16073 break;
16074 case DW_FORM_GNU_str_index:
16075 if (reader->dwo_file == NULL)
16076 {
16077 /* For now flag a hard error.
16078 Later we can turn this into a complaint if warranted. */
16079 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16080 dwarf_form_name (form),
16081 bfd_get_filename (abfd));
16082 }
16083 {
16084 ULONGEST str_index =
16085 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16086
16087 DW_STRING (attr) = read_str_index (reader, str_index);
16088 DW_STRING_IS_CANONICAL (attr) = 0;
16089 info_ptr += bytes_read;
16090 }
16091 break;
16092 default:
16093 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16094 dwarf_form_name (form),
16095 bfd_get_filename (abfd));
16096 }
16097
16098 /* Super hack. */
16099 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16100 attr->form = DW_FORM_GNU_ref_alt;
16101
16102 /* We have seen instances where the compiler tried to emit a byte
16103 size attribute of -1 which ended up being encoded as an unsigned
16104 0xffffffff. Although 0xffffffff is technically a valid size value,
16105 an object of this size seems pretty unlikely so we can relatively
16106 safely treat these cases as if the size attribute was invalid and
16107 treat them as zero by default. */
16108 if (attr->name == DW_AT_byte_size
16109 && form == DW_FORM_data4
16110 && DW_UNSND (attr) >= 0xffffffff)
16111 {
16112 complaint
16113 (&symfile_complaints,
16114 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16115 hex_string (DW_UNSND (attr)));
16116 DW_UNSND (attr) = 0;
16117 }
16118
16119 return info_ptr;
16120 }
16121
16122 /* Read an attribute described by an abbreviated attribute. */
16123
16124 static const gdb_byte *
16125 read_attribute (const struct die_reader_specs *reader,
16126 struct attribute *attr, struct attr_abbrev *abbrev,
16127 const gdb_byte *info_ptr)
16128 {
16129 attr->name = abbrev->name;
16130 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16131 }
16132
16133 /* Read dwarf information from a buffer. */
16134
16135 static unsigned int
16136 read_1_byte (bfd *abfd, const gdb_byte *buf)
16137 {
16138 return bfd_get_8 (abfd, buf);
16139 }
16140
16141 static int
16142 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16143 {
16144 return bfd_get_signed_8 (abfd, buf);
16145 }
16146
16147 static unsigned int
16148 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16149 {
16150 return bfd_get_16 (abfd, buf);
16151 }
16152
16153 static int
16154 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16155 {
16156 return bfd_get_signed_16 (abfd, buf);
16157 }
16158
16159 static unsigned int
16160 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16161 {
16162 return bfd_get_32 (abfd, buf);
16163 }
16164
16165 static int
16166 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16167 {
16168 return bfd_get_signed_32 (abfd, buf);
16169 }
16170
16171 static ULONGEST
16172 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16173 {
16174 return bfd_get_64 (abfd, buf);
16175 }
16176
16177 static CORE_ADDR
16178 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16179 unsigned int *bytes_read)
16180 {
16181 struct comp_unit_head *cu_header = &cu->header;
16182 CORE_ADDR retval = 0;
16183
16184 if (cu_header->signed_addr_p)
16185 {
16186 switch (cu_header->addr_size)
16187 {
16188 case 2:
16189 retval = bfd_get_signed_16 (abfd, buf);
16190 break;
16191 case 4:
16192 retval = bfd_get_signed_32 (abfd, buf);
16193 break;
16194 case 8:
16195 retval = bfd_get_signed_64 (abfd, buf);
16196 break;
16197 default:
16198 internal_error (__FILE__, __LINE__,
16199 _("read_address: bad switch, signed [in module %s]"),
16200 bfd_get_filename (abfd));
16201 }
16202 }
16203 else
16204 {
16205 switch (cu_header->addr_size)
16206 {
16207 case 2:
16208 retval = bfd_get_16 (abfd, buf);
16209 break;
16210 case 4:
16211 retval = bfd_get_32 (abfd, buf);
16212 break;
16213 case 8:
16214 retval = bfd_get_64 (abfd, buf);
16215 break;
16216 default:
16217 internal_error (__FILE__, __LINE__,
16218 _("read_address: bad switch, "
16219 "unsigned [in module %s]"),
16220 bfd_get_filename (abfd));
16221 }
16222 }
16223
16224 *bytes_read = cu_header->addr_size;
16225 return retval;
16226 }
16227
16228 /* Read the initial length from a section. The (draft) DWARF 3
16229 specification allows the initial length to take up either 4 bytes
16230 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16231 bytes describe the length and all offsets will be 8 bytes in length
16232 instead of 4.
16233
16234 An older, non-standard 64-bit format is also handled by this
16235 function. The older format in question stores the initial length
16236 as an 8-byte quantity without an escape value. Lengths greater
16237 than 2^32 aren't very common which means that the initial 4 bytes
16238 is almost always zero. Since a length value of zero doesn't make
16239 sense for the 32-bit format, this initial zero can be considered to
16240 be an escape value which indicates the presence of the older 64-bit
16241 format. As written, the code can't detect (old format) lengths
16242 greater than 4GB. If it becomes necessary to handle lengths
16243 somewhat larger than 4GB, we could allow other small values (such
16244 as the non-sensical values of 1, 2, and 3) to also be used as
16245 escape values indicating the presence of the old format.
16246
16247 The value returned via bytes_read should be used to increment the
16248 relevant pointer after calling read_initial_length().
16249
16250 [ Note: read_initial_length() and read_offset() are based on the
16251 document entitled "DWARF Debugging Information Format", revision
16252 3, draft 8, dated November 19, 2001. This document was obtained
16253 from:
16254
16255 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16256
16257 This document is only a draft and is subject to change. (So beware.)
16258
16259 Details regarding the older, non-standard 64-bit format were
16260 determined empirically by examining 64-bit ELF files produced by
16261 the SGI toolchain on an IRIX 6.5 machine.
16262
16263 - Kevin, July 16, 2002
16264 ] */
16265
16266 static LONGEST
16267 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16268 {
16269 LONGEST length = bfd_get_32 (abfd, buf);
16270
16271 if (length == 0xffffffff)
16272 {
16273 length = bfd_get_64 (abfd, buf + 4);
16274 *bytes_read = 12;
16275 }
16276 else if (length == 0)
16277 {
16278 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16279 length = bfd_get_64 (abfd, buf);
16280 *bytes_read = 8;
16281 }
16282 else
16283 {
16284 *bytes_read = 4;
16285 }
16286
16287 return length;
16288 }
16289
16290 /* Cover function for read_initial_length.
16291 Returns the length of the object at BUF, and stores the size of the
16292 initial length in *BYTES_READ and stores the size that offsets will be in
16293 *OFFSET_SIZE.
16294 If the initial length size is not equivalent to that specified in
16295 CU_HEADER then issue a complaint.
16296 This is useful when reading non-comp-unit headers. */
16297
16298 static LONGEST
16299 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16300 const struct comp_unit_head *cu_header,
16301 unsigned int *bytes_read,
16302 unsigned int *offset_size)
16303 {
16304 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16305
16306 gdb_assert (cu_header->initial_length_size == 4
16307 || cu_header->initial_length_size == 8
16308 || cu_header->initial_length_size == 12);
16309
16310 if (cu_header->initial_length_size != *bytes_read)
16311 complaint (&symfile_complaints,
16312 _("intermixed 32-bit and 64-bit DWARF sections"));
16313
16314 *offset_size = (*bytes_read == 4) ? 4 : 8;
16315 return length;
16316 }
16317
16318 /* Read an offset from the data stream. The size of the offset is
16319 given by cu_header->offset_size. */
16320
16321 static LONGEST
16322 read_offset (bfd *abfd, const gdb_byte *buf,
16323 const struct comp_unit_head *cu_header,
16324 unsigned int *bytes_read)
16325 {
16326 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16327
16328 *bytes_read = cu_header->offset_size;
16329 return offset;
16330 }
16331
16332 /* Read an offset from the data stream. */
16333
16334 static LONGEST
16335 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16336 {
16337 LONGEST retval = 0;
16338
16339 switch (offset_size)
16340 {
16341 case 4:
16342 retval = bfd_get_32 (abfd, buf);
16343 break;
16344 case 8:
16345 retval = bfd_get_64 (abfd, buf);
16346 break;
16347 default:
16348 internal_error (__FILE__, __LINE__,
16349 _("read_offset_1: bad switch [in module %s]"),
16350 bfd_get_filename (abfd));
16351 }
16352
16353 return retval;
16354 }
16355
16356 static const gdb_byte *
16357 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16358 {
16359 /* If the size of a host char is 8 bits, we can return a pointer
16360 to the buffer, otherwise we have to copy the data to a buffer
16361 allocated on the temporary obstack. */
16362 gdb_assert (HOST_CHAR_BIT == 8);
16363 return buf;
16364 }
16365
16366 static const char *
16367 read_direct_string (bfd *abfd, const gdb_byte *buf,
16368 unsigned int *bytes_read_ptr)
16369 {
16370 /* If the size of a host char is 8 bits, we can return a pointer
16371 to the string, otherwise we have to copy the string to a buffer
16372 allocated on the temporary obstack. */
16373 gdb_assert (HOST_CHAR_BIT == 8);
16374 if (*buf == '\0')
16375 {
16376 *bytes_read_ptr = 1;
16377 return NULL;
16378 }
16379 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16380 return (const char *) buf;
16381 }
16382
16383 static const char *
16384 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16385 {
16386 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16387 if (dwarf2_per_objfile->str.buffer == NULL)
16388 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16389 bfd_get_filename (abfd));
16390 if (str_offset >= dwarf2_per_objfile->str.size)
16391 error (_("DW_FORM_strp pointing outside of "
16392 ".debug_str section [in module %s]"),
16393 bfd_get_filename (abfd));
16394 gdb_assert (HOST_CHAR_BIT == 8);
16395 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16396 return NULL;
16397 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16398 }
16399
16400 /* Read a string at offset STR_OFFSET in the .debug_str section from
16401 the .dwz file DWZ. Throw an error if the offset is too large. If
16402 the string consists of a single NUL byte, return NULL; otherwise
16403 return a pointer to the string. */
16404
16405 static const char *
16406 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16407 {
16408 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16409
16410 if (dwz->str.buffer == NULL)
16411 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16412 "section [in module %s]"),
16413 bfd_get_filename (dwz->dwz_bfd));
16414 if (str_offset >= dwz->str.size)
16415 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16416 ".debug_str section [in module %s]"),
16417 bfd_get_filename (dwz->dwz_bfd));
16418 gdb_assert (HOST_CHAR_BIT == 8);
16419 if (dwz->str.buffer[str_offset] == '\0')
16420 return NULL;
16421 return (const char *) (dwz->str.buffer + str_offset);
16422 }
16423
16424 static const char *
16425 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16426 const struct comp_unit_head *cu_header,
16427 unsigned int *bytes_read_ptr)
16428 {
16429 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16430
16431 return read_indirect_string_at_offset (abfd, str_offset);
16432 }
16433
16434 static ULONGEST
16435 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16436 unsigned int *bytes_read_ptr)
16437 {
16438 ULONGEST result;
16439 unsigned int num_read;
16440 int i, shift;
16441 unsigned char byte;
16442
16443 result = 0;
16444 shift = 0;
16445 num_read = 0;
16446 i = 0;
16447 while (1)
16448 {
16449 byte = bfd_get_8 (abfd, buf);
16450 buf++;
16451 num_read++;
16452 result |= ((ULONGEST) (byte & 127) << shift);
16453 if ((byte & 128) == 0)
16454 {
16455 break;
16456 }
16457 shift += 7;
16458 }
16459 *bytes_read_ptr = num_read;
16460 return result;
16461 }
16462
16463 static LONGEST
16464 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16465 unsigned int *bytes_read_ptr)
16466 {
16467 LONGEST result;
16468 int i, shift, num_read;
16469 unsigned char byte;
16470
16471 result = 0;
16472 shift = 0;
16473 num_read = 0;
16474 i = 0;
16475 while (1)
16476 {
16477 byte = bfd_get_8 (abfd, buf);
16478 buf++;
16479 num_read++;
16480 result |= ((LONGEST) (byte & 127) << shift);
16481 shift += 7;
16482 if ((byte & 128) == 0)
16483 {
16484 break;
16485 }
16486 }
16487 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16488 result |= -(((LONGEST) 1) << shift);
16489 *bytes_read_ptr = num_read;
16490 return result;
16491 }
16492
16493 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16494 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16495 ADDR_SIZE is the size of addresses from the CU header. */
16496
16497 static CORE_ADDR
16498 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16499 {
16500 struct objfile *objfile = dwarf2_per_objfile->objfile;
16501 bfd *abfd = objfile->obfd;
16502 const gdb_byte *info_ptr;
16503
16504 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16505 if (dwarf2_per_objfile->addr.buffer == NULL)
16506 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16507 objfile_name (objfile));
16508 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16509 error (_("DW_FORM_addr_index pointing outside of "
16510 ".debug_addr section [in module %s]"),
16511 objfile_name (objfile));
16512 info_ptr = (dwarf2_per_objfile->addr.buffer
16513 + addr_base + addr_index * addr_size);
16514 if (addr_size == 4)
16515 return bfd_get_32 (abfd, info_ptr);
16516 else
16517 return bfd_get_64 (abfd, info_ptr);
16518 }
16519
16520 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16521
16522 static CORE_ADDR
16523 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16524 {
16525 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16526 }
16527
16528 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16529
16530 static CORE_ADDR
16531 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16532 unsigned int *bytes_read)
16533 {
16534 bfd *abfd = cu->objfile->obfd;
16535 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16536
16537 return read_addr_index (cu, addr_index);
16538 }
16539
16540 /* Data structure to pass results from dwarf2_read_addr_index_reader
16541 back to dwarf2_read_addr_index. */
16542
16543 struct dwarf2_read_addr_index_data
16544 {
16545 ULONGEST addr_base;
16546 int addr_size;
16547 };
16548
16549 /* die_reader_func for dwarf2_read_addr_index. */
16550
16551 static void
16552 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16553 const gdb_byte *info_ptr,
16554 struct die_info *comp_unit_die,
16555 int has_children,
16556 void *data)
16557 {
16558 struct dwarf2_cu *cu = reader->cu;
16559 struct dwarf2_read_addr_index_data *aidata =
16560 (struct dwarf2_read_addr_index_data *) data;
16561
16562 aidata->addr_base = cu->addr_base;
16563 aidata->addr_size = cu->header.addr_size;
16564 }
16565
16566 /* Given an index in .debug_addr, fetch the value.
16567 NOTE: This can be called during dwarf expression evaluation,
16568 long after the debug information has been read, and thus per_cu->cu
16569 may no longer exist. */
16570
16571 CORE_ADDR
16572 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16573 unsigned int addr_index)
16574 {
16575 struct objfile *objfile = per_cu->objfile;
16576 struct dwarf2_cu *cu = per_cu->cu;
16577 ULONGEST addr_base;
16578 int addr_size;
16579
16580 /* This is intended to be called from outside this file. */
16581 dw2_setup (objfile);
16582
16583 /* We need addr_base and addr_size.
16584 If we don't have PER_CU->cu, we have to get it.
16585 Nasty, but the alternative is storing the needed info in PER_CU,
16586 which at this point doesn't seem justified: it's not clear how frequently
16587 it would get used and it would increase the size of every PER_CU.
16588 Entry points like dwarf2_per_cu_addr_size do a similar thing
16589 so we're not in uncharted territory here.
16590 Alas we need to be a bit more complicated as addr_base is contained
16591 in the DIE.
16592
16593 We don't need to read the entire CU(/TU).
16594 We just need the header and top level die.
16595
16596 IWBN to use the aging mechanism to let us lazily later discard the CU.
16597 For now we skip this optimization. */
16598
16599 if (cu != NULL)
16600 {
16601 addr_base = cu->addr_base;
16602 addr_size = cu->header.addr_size;
16603 }
16604 else
16605 {
16606 struct dwarf2_read_addr_index_data aidata;
16607
16608 /* Note: We can't use init_cutu_and_read_dies_simple here,
16609 we need addr_base. */
16610 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16611 dwarf2_read_addr_index_reader, &aidata);
16612 addr_base = aidata.addr_base;
16613 addr_size = aidata.addr_size;
16614 }
16615
16616 return read_addr_index_1 (addr_index, addr_base, addr_size);
16617 }
16618
16619 /* Given a DW_FORM_GNU_str_index, fetch the string.
16620 This is only used by the Fission support. */
16621
16622 static const char *
16623 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16624 {
16625 struct objfile *objfile = dwarf2_per_objfile->objfile;
16626 const char *objf_name = objfile_name (objfile);
16627 bfd *abfd = objfile->obfd;
16628 struct dwarf2_cu *cu = reader->cu;
16629 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16630 struct dwarf2_section_info *str_offsets_section =
16631 &reader->dwo_file->sections.str_offsets;
16632 const gdb_byte *info_ptr;
16633 ULONGEST str_offset;
16634 static const char form_name[] = "DW_FORM_GNU_str_index";
16635
16636 dwarf2_read_section (objfile, str_section);
16637 dwarf2_read_section (objfile, str_offsets_section);
16638 if (str_section->buffer == NULL)
16639 error (_("%s used without .debug_str.dwo section"
16640 " in CU at offset 0x%lx [in module %s]"),
16641 form_name, (long) cu->header.offset.sect_off, objf_name);
16642 if (str_offsets_section->buffer == NULL)
16643 error (_("%s used without .debug_str_offsets.dwo section"
16644 " in CU at offset 0x%lx [in module %s]"),
16645 form_name, (long) cu->header.offset.sect_off, objf_name);
16646 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16647 error (_("%s pointing outside of .debug_str_offsets.dwo"
16648 " section in CU at offset 0x%lx [in module %s]"),
16649 form_name, (long) cu->header.offset.sect_off, objf_name);
16650 info_ptr = (str_offsets_section->buffer
16651 + str_index * cu->header.offset_size);
16652 if (cu->header.offset_size == 4)
16653 str_offset = bfd_get_32 (abfd, info_ptr);
16654 else
16655 str_offset = bfd_get_64 (abfd, info_ptr);
16656 if (str_offset >= str_section->size)
16657 error (_("Offset from %s pointing outside of"
16658 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16659 form_name, (long) cu->header.offset.sect_off, objf_name);
16660 return (const char *) (str_section->buffer + str_offset);
16661 }
16662
16663 /* Return the length of an LEB128 number in BUF. */
16664
16665 static int
16666 leb128_size (const gdb_byte *buf)
16667 {
16668 const gdb_byte *begin = buf;
16669 gdb_byte byte;
16670
16671 while (1)
16672 {
16673 byte = *buf++;
16674 if ((byte & 128) == 0)
16675 return buf - begin;
16676 }
16677 }
16678
16679 static void
16680 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16681 {
16682 switch (lang)
16683 {
16684 case DW_LANG_C89:
16685 case DW_LANG_C99:
16686 case DW_LANG_C:
16687 case DW_LANG_UPC:
16688 cu->language = language_c;
16689 break;
16690 case DW_LANG_C_plus_plus:
16691 cu->language = language_cplus;
16692 break;
16693 case DW_LANG_D:
16694 cu->language = language_d;
16695 break;
16696 case DW_LANG_Fortran77:
16697 case DW_LANG_Fortran90:
16698 case DW_LANG_Fortran95:
16699 cu->language = language_fortran;
16700 break;
16701 case DW_LANG_Go:
16702 cu->language = language_go;
16703 break;
16704 case DW_LANG_Mips_Assembler:
16705 cu->language = language_asm;
16706 break;
16707 case DW_LANG_Java:
16708 cu->language = language_java;
16709 break;
16710 case DW_LANG_Ada83:
16711 case DW_LANG_Ada95:
16712 cu->language = language_ada;
16713 break;
16714 case DW_LANG_Modula2:
16715 cu->language = language_m2;
16716 break;
16717 case DW_LANG_Pascal83:
16718 cu->language = language_pascal;
16719 break;
16720 case DW_LANG_ObjC:
16721 cu->language = language_objc;
16722 break;
16723 case DW_LANG_Cobol74:
16724 case DW_LANG_Cobol85:
16725 default:
16726 cu->language = language_minimal;
16727 break;
16728 }
16729 cu->language_defn = language_def (cu->language);
16730 }
16731
16732 /* Return the named attribute or NULL if not there. */
16733
16734 static struct attribute *
16735 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16736 {
16737 for (;;)
16738 {
16739 unsigned int i;
16740 struct attribute *spec = NULL;
16741
16742 for (i = 0; i < die->num_attrs; ++i)
16743 {
16744 if (die->attrs[i].name == name)
16745 return &die->attrs[i];
16746 if (die->attrs[i].name == DW_AT_specification
16747 || die->attrs[i].name == DW_AT_abstract_origin)
16748 spec = &die->attrs[i];
16749 }
16750
16751 if (!spec)
16752 break;
16753
16754 die = follow_die_ref (die, spec, &cu);
16755 }
16756
16757 return NULL;
16758 }
16759
16760 /* Return the named attribute or NULL if not there,
16761 but do not follow DW_AT_specification, etc.
16762 This is for use in contexts where we're reading .debug_types dies.
16763 Following DW_AT_specification, DW_AT_abstract_origin will take us
16764 back up the chain, and we want to go down. */
16765
16766 static struct attribute *
16767 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16768 {
16769 unsigned int i;
16770
16771 for (i = 0; i < die->num_attrs; ++i)
16772 if (die->attrs[i].name == name)
16773 return &die->attrs[i];
16774
16775 return NULL;
16776 }
16777
16778 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16779 and holds a non-zero value. This function should only be used for
16780 DW_FORM_flag or DW_FORM_flag_present attributes. */
16781
16782 static int
16783 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16784 {
16785 struct attribute *attr = dwarf2_attr (die, name, cu);
16786
16787 return (attr && DW_UNSND (attr));
16788 }
16789
16790 static int
16791 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16792 {
16793 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16794 which value is non-zero. However, we have to be careful with
16795 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16796 (via dwarf2_flag_true_p) follows this attribute. So we may
16797 end up accidently finding a declaration attribute that belongs
16798 to a different DIE referenced by the specification attribute,
16799 even though the given DIE does not have a declaration attribute. */
16800 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16801 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16802 }
16803
16804 /* Return the die giving the specification for DIE, if there is
16805 one. *SPEC_CU is the CU containing DIE on input, and the CU
16806 containing the return value on output. If there is no
16807 specification, but there is an abstract origin, that is
16808 returned. */
16809
16810 static struct die_info *
16811 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16812 {
16813 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16814 *spec_cu);
16815
16816 if (spec_attr == NULL)
16817 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16818
16819 if (spec_attr == NULL)
16820 return NULL;
16821 else
16822 return follow_die_ref (die, spec_attr, spec_cu);
16823 }
16824
16825 /* Free the line_header structure *LH, and any arrays and strings it
16826 refers to.
16827 NOTE: This is also used as a "cleanup" function. */
16828
16829 static void
16830 free_line_header (struct line_header *lh)
16831 {
16832 if (lh->standard_opcode_lengths)
16833 xfree (lh->standard_opcode_lengths);
16834
16835 /* Remember that all the lh->file_names[i].name pointers are
16836 pointers into debug_line_buffer, and don't need to be freed. */
16837 if (lh->file_names)
16838 xfree (lh->file_names);
16839
16840 /* Similarly for the include directory names. */
16841 if (lh->include_dirs)
16842 xfree (lh->include_dirs);
16843
16844 xfree (lh);
16845 }
16846
16847 /* Add an entry to LH's include directory table. */
16848
16849 static void
16850 add_include_dir (struct line_header *lh, const char *include_dir)
16851 {
16852 /* Grow the array if necessary. */
16853 if (lh->include_dirs_size == 0)
16854 {
16855 lh->include_dirs_size = 1; /* for testing */
16856 lh->include_dirs = xmalloc (lh->include_dirs_size
16857 * sizeof (*lh->include_dirs));
16858 }
16859 else if (lh->num_include_dirs >= lh->include_dirs_size)
16860 {
16861 lh->include_dirs_size *= 2;
16862 lh->include_dirs = xrealloc (lh->include_dirs,
16863 (lh->include_dirs_size
16864 * sizeof (*lh->include_dirs)));
16865 }
16866
16867 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16868 }
16869
16870 /* Add an entry to LH's file name table. */
16871
16872 static void
16873 add_file_name (struct line_header *lh,
16874 const char *name,
16875 unsigned int dir_index,
16876 unsigned int mod_time,
16877 unsigned int length)
16878 {
16879 struct file_entry *fe;
16880
16881 /* Grow the array if necessary. */
16882 if (lh->file_names_size == 0)
16883 {
16884 lh->file_names_size = 1; /* for testing */
16885 lh->file_names = xmalloc (lh->file_names_size
16886 * sizeof (*lh->file_names));
16887 }
16888 else if (lh->num_file_names >= lh->file_names_size)
16889 {
16890 lh->file_names_size *= 2;
16891 lh->file_names = xrealloc (lh->file_names,
16892 (lh->file_names_size
16893 * sizeof (*lh->file_names)));
16894 }
16895
16896 fe = &lh->file_names[lh->num_file_names++];
16897 fe->name = name;
16898 fe->dir_index = dir_index;
16899 fe->mod_time = mod_time;
16900 fe->length = length;
16901 fe->included_p = 0;
16902 fe->symtab = NULL;
16903 }
16904
16905 /* A convenience function to find the proper .debug_line section for a
16906 CU. */
16907
16908 static struct dwarf2_section_info *
16909 get_debug_line_section (struct dwarf2_cu *cu)
16910 {
16911 struct dwarf2_section_info *section;
16912
16913 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16914 DWO file. */
16915 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16916 section = &cu->dwo_unit->dwo_file->sections.line;
16917 else if (cu->per_cu->is_dwz)
16918 {
16919 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16920
16921 section = &dwz->line;
16922 }
16923 else
16924 section = &dwarf2_per_objfile->line;
16925
16926 return section;
16927 }
16928
16929 /* Read the statement program header starting at OFFSET in
16930 .debug_line, or .debug_line.dwo. Return a pointer
16931 to a struct line_header, allocated using xmalloc.
16932
16933 NOTE: the strings in the include directory and file name tables of
16934 the returned object point into the dwarf line section buffer,
16935 and must not be freed. */
16936
16937 static struct line_header *
16938 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16939 {
16940 struct cleanup *back_to;
16941 struct line_header *lh;
16942 const gdb_byte *line_ptr;
16943 unsigned int bytes_read, offset_size;
16944 int i;
16945 const char *cur_dir, *cur_file;
16946 struct dwarf2_section_info *section;
16947 bfd *abfd;
16948
16949 section = get_debug_line_section (cu);
16950 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16951 if (section->buffer == NULL)
16952 {
16953 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16954 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16955 else
16956 complaint (&symfile_complaints, _("missing .debug_line section"));
16957 return 0;
16958 }
16959
16960 /* We can't do this until we know the section is non-empty.
16961 Only then do we know we have such a section. */
16962 abfd = get_section_bfd_owner (section);
16963
16964 /* Make sure that at least there's room for the total_length field.
16965 That could be 12 bytes long, but we're just going to fudge that. */
16966 if (offset + 4 >= section->size)
16967 {
16968 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16969 return 0;
16970 }
16971
16972 lh = xmalloc (sizeof (*lh));
16973 memset (lh, 0, sizeof (*lh));
16974 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16975 (void *) lh);
16976
16977 line_ptr = section->buffer + offset;
16978
16979 /* Read in the header. */
16980 lh->total_length =
16981 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16982 &bytes_read, &offset_size);
16983 line_ptr += bytes_read;
16984 if (line_ptr + lh->total_length > (section->buffer + section->size))
16985 {
16986 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16987 do_cleanups (back_to);
16988 return 0;
16989 }
16990 lh->statement_program_end = line_ptr + lh->total_length;
16991 lh->version = read_2_bytes (abfd, line_ptr);
16992 line_ptr += 2;
16993 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16994 line_ptr += offset_size;
16995 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16996 line_ptr += 1;
16997 if (lh->version >= 4)
16998 {
16999 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17000 line_ptr += 1;
17001 }
17002 else
17003 lh->maximum_ops_per_instruction = 1;
17004
17005 if (lh->maximum_ops_per_instruction == 0)
17006 {
17007 lh->maximum_ops_per_instruction = 1;
17008 complaint (&symfile_complaints,
17009 _("invalid maximum_ops_per_instruction "
17010 "in `.debug_line' section"));
17011 }
17012
17013 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17014 line_ptr += 1;
17015 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17016 line_ptr += 1;
17017 lh->line_range = read_1_byte (abfd, line_ptr);
17018 line_ptr += 1;
17019 lh->opcode_base = read_1_byte (abfd, line_ptr);
17020 line_ptr += 1;
17021 lh->standard_opcode_lengths
17022 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17023
17024 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17025 for (i = 1; i < lh->opcode_base; ++i)
17026 {
17027 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17028 line_ptr += 1;
17029 }
17030
17031 /* Read directory table. */
17032 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17033 {
17034 line_ptr += bytes_read;
17035 add_include_dir (lh, cur_dir);
17036 }
17037 line_ptr += bytes_read;
17038
17039 /* Read file name table. */
17040 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17041 {
17042 unsigned int dir_index, mod_time, length;
17043
17044 line_ptr += bytes_read;
17045 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17046 line_ptr += bytes_read;
17047 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17048 line_ptr += bytes_read;
17049 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17050 line_ptr += bytes_read;
17051
17052 add_file_name (lh, cur_file, dir_index, mod_time, length);
17053 }
17054 line_ptr += bytes_read;
17055 lh->statement_program_start = line_ptr;
17056
17057 if (line_ptr > (section->buffer + section->size))
17058 complaint (&symfile_complaints,
17059 _("line number info header doesn't "
17060 "fit in `.debug_line' section"));
17061
17062 discard_cleanups (back_to);
17063 return lh;
17064 }
17065
17066 /* Subroutine of dwarf_decode_lines to simplify it.
17067 Return the file name of the psymtab for included file FILE_INDEX
17068 in line header LH of PST.
17069 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17070 If space for the result is malloc'd, it will be freed by a cleanup.
17071 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17072
17073 The function creates dangling cleanup registration. */
17074
17075 static const char *
17076 psymtab_include_file_name (const struct line_header *lh, int file_index,
17077 const struct partial_symtab *pst,
17078 const char *comp_dir)
17079 {
17080 const struct file_entry fe = lh->file_names [file_index];
17081 const char *include_name = fe.name;
17082 const char *include_name_to_compare = include_name;
17083 const char *dir_name = NULL;
17084 const char *pst_filename;
17085 char *copied_name = NULL;
17086 int file_is_pst;
17087
17088 if (fe.dir_index)
17089 dir_name = lh->include_dirs[fe.dir_index - 1];
17090
17091 if (!IS_ABSOLUTE_PATH (include_name)
17092 && (dir_name != NULL || comp_dir != NULL))
17093 {
17094 /* Avoid creating a duplicate psymtab for PST.
17095 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17096 Before we do the comparison, however, we need to account
17097 for DIR_NAME and COMP_DIR.
17098 First prepend dir_name (if non-NULL). If we still don't
17099 have an absolute path prepend comp_dir (if non-NULL).
17100 However, the directory we record in the include-file's
17101 psymtab does not contain COMP_DIR (to match the
17102 corresponding symtab(s)).
17103
17104 Example:
17105
17106 bash$ cd /tmp
17107 bash$ gcc -g ./hello.c
17108 include_name = "hello.c"
17109 dir_name = "."
17110 DW_AT_comp_dir = comp_dir = "/tmp"
17111 DW_AT_name = "./hello.c" */
17112
17113 if (dir_name != NULL)
17114 {
17115 char *tem = concat (dir_name, SLASH_STRING,
17116 include_name, (char *)NULL);
17117
17118 make_cleanup (xfree, tem);
17119 include_name = tem;
17120 include_name_to_compare = include_name;
17121 }
17122 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17123 {
17124 char *tem = concat (comp_dir, SLASH_STRING,
17125 include_name, (char *)NULL);
17126
17127 make_cleanup (xfree, tem);
17128 include_name_to_compare = tem;
17129 }
17130 }
17131
17132 pst_filename = pst->filename;
17133 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17134 {
17135 copied_name = concat (pst->dirname, SLASH_STRING,
17136 pst_filename, (char *)NULL);
17137 pst_filename = copied_name;
17138 }
17139
17140 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17141
17142 if (copied_name != NULL)
17143 xfree (copied_name);
17144
17145 if (file_is_pst)
17146 return NULL;
17147 return include_name;
17148 }
17149
17150 /* Ignore this record_line request. */
17151
17152 static void
17153 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17154 {
17155 return;
17156 }
17157
17158 /* Subroutine of dwarf_decode_lines to simplify it.
17159 Process the line number information in LH. */
17160
17161 static void
17162 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17163 struct dwarf2_cu *cu, struct partial_symtab *pst)
17164 {
17165 const gdb_byte *line_ptr, *extended_end;
17166 const gdb_byte *line_end;
17167 unsigned int bytes_read, extended_len;
17168 unsigned char op_code, extended_op, adj_opcode;
17169 CORE_ADDR baseaddr;
17170 struct objfile *objfile = cu->objfile;
17171 bfd *abfd = objfile->obfd;
17172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17173 const int decode_for_pst_p = (pst != NULL);
17174 struct subfile *last_subfile = NULL;
17175 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17176 = record_line;
17177
17178 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17179
17180 line_ptr = lh->statement_program_start;
17181 line_end = lh->statement_program_end;
17182
17183 /* Read the statement sequences until there's nothing left. */
17184 while (line_ptr < line_end)
17185 {
17186 /* state machine registers */
17187 CORE_ADDR address = 0;
17188 unsigned int file = 1;
17189 unsigned int line = 1;
17190 unsigned int column = 0;
17191 int is_stmt = lh->default_is_stmt;
17192 int basic_block = 0;
17193 int end_sequence = 0;
17194 CORE_ADDR addr;
17195 unsigned char op_index = 0;
17196
17197 if (!decode_for_pst_p && lh->num_file_names >= file)
17198 {
17199 /* Start a subfile for the current file of the state machine. */
17200 /* lh->include_dirs and lh->file_names are 0-based, but the
17201 directory and file name numbers in the statement program
17202 are 1-based. */
17203 struct file_entry *fe = &lh->file_names[file - 1];
17204 const char *dir = NULL;
17205
17206 if (fe->dir_index)
17207 dir = lh->include_dirs[fe->dir_index - 1];
17208
17209 dwarf2_start_subfile (fe->name, dir, comp_dir);
17210 }
17211
17212 /* Decode the table. */
17213 while (!end_sequence)
17214 {
17215 op_code = read_1_byte (abfd, line_ptr);
17216 line_ptr += 1;
17217 if (line_ptr > line_end)
17218 {
17219 dwarf2_debug_line_missing_end_sequence_complaint ();
17220 break;
17221 }
17222
17223 if (op_code >= lh->opcode_base)
17224 {
17225 /* Special operand. */
17226 adj_opcode = op_code - lh->opcode_base;
17227 address += (((op_index + (adj_opcode / lh->line_range))
17228 / lh->maximum_ops_per_instruction)
17229 * lh->minimum_instruction_length);
17230 op_index = ((op_index + (adj_opcode / lh->line_range))
17231 % lh->maximum_ops_per_instruction);
17232 line += lh->line_base + (adj_opcode % lh->line_range);
17233 if (lh->num_file_names < file || file == 0)
17234 dwarf2_debug_line_missing_file_complaint ();
17235 /* For now we ignore lines not starting on an
17236 instruction boundary. */
17237 else if (op_index == 0)
17238 {
17239 lh->file_names[file - 1].included_p = 1;
17240 if (!decode_for_pst_p && is_stmt)
17241 {
17242 if (last_subfile != current_subfile)
17243 {
17244 addr = gdbarch_addr_bits_remove (gdbarch, address);
17245 if (last_subfile)
17246 (*p_record_line) (last_subfile, 0, addr);
17247 last_subfile = current_subfile;
17248 }
17249 /* Append row to matrix using current values. */
17250 addr = gdbarch_addr_bits_remove (gdbarch, address);
17251 (*p_record_line) (current_subfile, line, addr);
17252 }
17253 }
17254 basic_block = 0;
17255 }
17256 else switch (op_code)
17257 {
17258 case DW_LNS_extended_op:
17259 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17260 &bytes_read);
17261 line_ptr += bytes_read;
17262 extended_end = line_ptr + extended_len;
17263 extended_op = read_1_byte (abfd, line_ptr);
17264 line_ptr += 1;
17265 switch (extended_op)
17266 {
17267 case DW_LNE_end_sequence:
17268 p_record_line = record_line;
17269 end_sequence = 1;
17270 break;
17271 case DW_LNE_set_address:
17272 address = read_address (abfd, line_ptr, cu, &bytes_read);
17273
17274 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17275 {
17276 /* This line table is for a function which has been
17277 GCd by the linker. Ignore it. PR gdb/12528 */
17278
17279 long line_offset
17280 = line_ptr - get_debug_line_section (cu)->buffer;
17281
17282 complaint (&symfile_complaints,
17283 _(".debug_line address at offset 0x%lx is 0 "
17284 "[in module %s]"),
17285 line_offset, objfile_name (objfile));
17286 p_record_line = noop_record_line;
17287 }
17288
17289 op_index = 0;
17290 line_ptr += bytes_read;
17291 address += baseaddr;
17292 break;
17293 case DW_LNE_define_file:
17294 {
17295 const char *cur_file;
17296 unsigned int dir_index, mod_time, length;
17297
17298 cur_file = read_direct_string (abfd, line_ptr,
17299 &bytes_read);
17300 line_ptr += bytes_read;
17301 dir_index =
17302 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17303 line_ptr += bytes_read;
17304 mod_time =
17305 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17306 line_ptr += bytes_read;
17307 length =
17308 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17309 line_ptr += bytes_read;
17310 add_file_name (lh, cur_file, dir_index, mod_time, length);
17311 }
17312 break;
17313 case DW_LNE_set_discriminator:
17314 /* The discriminator is not interesting to the debugger;
17315 just ignore it. */
17316 line_ptr = extended_end;
17317 break;
17318 default:
17319 complaint (&symfile_complaints,
17320 _("mangled .debug_line section"));
17321 return;
17322 }
17323 /* Make sure that we parsed the extended op correctly. If e.g.
17324 we expected a different address size than the producer used,
17325 we may have read the wrong number of bytes. */
17326 if (line_ptr != extended_end)
17327 {
17328 complaint (&symfile_complaints,
17329 _("mangled .debug_line section"));
17330 return;
17331 }
17332 break;
17333 case DW_LNS_copy:
17334 if (lh->num_file_names < file || file == 0)
17335 dwarf2_debug_line_missing_file_complaint ();
17336 else
17337 {
17338 lh->file_names[file - 1].included_p = 1;
17339 if (!decode_for_pst_p && is_stmt)
17340 {
17341 if (last_subfile != current_subfile)
17342 {
17343 addr = gdbarch_addr_bits_remove (gdbarch, address);
17344 if (last_subfile)
17345 (*p_record_line) (last_subfile, 0, addr);
17346 last_subfile = current_subfile;
17347 }
17348 addr = gdbarch_addr_bits_remove (gdbarch, address);
17349 (*p_record_line) (current_subfile, line, addr);
17350 }
17351 }
17352 basic_block = 0;
17353 break;
17354 case DW_LNS_advance_pc:
17355 {
17356 CORE_ADDR adjust
17357 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17358
17359 address += (((op_index + adjust)
17360 / lh->maximum_ops_per_instruction)
17361 * lh->minimum_instruction_length);
17362 op_index = ((op_index + adjust)
17363 % lh->maximum_ops_per_instruction);
17364 line_ptr += bytes_read;
17365 }
17366 break;
17367 case DW_LNS_advance_line:
17368 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17369 line_ptr += bytes_read;
17370 break;
17371 case DW_LNS_set_file:
17372 {
17373 /* The arrays lh->include_dirs and lh->file_names are
17374 0-based, but the directory and file name numbers in
17375 the statement program are 1-based. */
17376 struct file_entry *fe;
17377 const char *dir = NULL;
17378
17379 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17380 line_ptr += bytes_read;
17381 if (lh->num_file_names < file || file == 0)
17382 dwarf2_debug_line_missing_file_complaint ();
17383 else
17384 {
17385 fe = &lh->file_names[file - 1];
17386 if (fe->dir_index)
17387 dir = lh->include_dirs[fe->dir_index - 1];
17388 if (!decode_for_pst_p)
17389 {
17390 last_subfile = current_subfile;
17391 dwarf2_start_subfile (fe->name, dir, comp_dir);
17392 }
17393 }
17394 }
17395 break;
17396 case DW_LNS_set_column:
17397 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17398 line_ptr += bytes_read;
17399 break;
17400 case DW_LNS_negate_stmt:
17401 is_stmt = (!is_stmt);
17402 break;
17403 case DW_LNS_set_basic_block:
17404 basic_block = 1;
17405 break;
17406 /* Add to the address register of the state machine the
17407 address increment value corresponding to special opcode
17408 255. I.e., this value is scaled by the minimum
17409 instruction length since special opcode 255 would have
17410 scaled the increment. */
17411 case DW_LNS_const_add_pc:
17412 {
17413 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17414
17415 address += (((op_index + adjust)
17416 / lh->maximum_ops_per_instruction)
17417 * lh->minimum_instruction_length);
17418 op_index = ((op_index + adjust)
17419 % lh->maximum_ops_per_instruction);
17420 }
17421 break;
17422 case DW_LNS_fixed_advance_pc:
17423 address += read_2_bytes (abfd, line_ptr);
17424 op_index = 0;
17425 line_ptr += 2;
17426 break;
17427 default:
17428 {
17429 /* Unknown standard opcode, ignore it. */
17430 int i;
17431
17432 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17433 {
17434 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17435 line_ptr += bytes_read;
17436 }
17437 }
17438 }
17439 }
17440 if (lh->num_file_names < file || file == 0)
17441 dwarf2_debug_line_missing_file_complaint ();
17442 else
17443 {
17444 lh->file_names[file - 1].included_p = 1;
17445 if (!decode_for_pst_p)
17446 {
17447 addr = gdbarch_addr_bits_remove (gdbarch, address);
17448 (*p_record_line) (current_subfile, 0, addr);
17449 }
17450 }
17451 }
17452 }
17453
17454 /* Decode the Line Number Program (LNP) for the given line_header
17455 structure and CU. The actual information extracted and the type
17456 of structures created from the LNP depends on the value of PST.
17457
17458 1. If PST is NULL, then this procedure uses the data from the program
17459 to create all necessary symbol tables, and their linetables.
17460
17461 2. If PST is not NULL, this procedure reads the program to determine
17462 the list of files included by the unit represented by PST, and
17463 builds all the associated partial symbol tables.
17464
17465 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17466 It is used for relative paths in the line table.
17467 NOTE: When processing partial symtabs (pst != NULL),
17468 comp_dir == pst->dirname.
17469
17470 NOTE: It is important that psymtabs have the same file name (via strcmp)
17471 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17472 symtab we don't use it in the name of the psymtabs we create.
17473 E.g. expand_line_sal requires this when finding psymtabs to expand.
17474 A good testcase for this is mb-inline.exp. */
17475
17476 static void
17477 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17478 struct dwarf2_cu *cu, struct partial_symtab *pst,
17479 int want_line_info)
17480 {
17481 struct objfile *objfile = cu->objfile;
17482 const int decode_for_pst_p = (pst != NULL);
17483 struct subfile *first_subfile = current_subfile;
17484
17485 if (want_line_info)
17486 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17487
17488 if (decode_for_pst_p)
17489 {
17490 int file_index;
17491
17492 /* Now that we're done scanning the Line Header Program, we can
17493 create the psymtab of each included file. */
17494 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17495 if (lh->file_names[file_index].included_p == 1)
17496 {
17497 const char *include_name =
17498 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17499 if (include_name != NULL)
17500 dwarf2_create_include_psymtab (include_name, pst, objfile);
17501 }
17502 }
17503 else
17504 {
17505 /* Make sure a symtab is created for every file, even files
17506 which contain only variables (i.e. no code with associated
17507 line numbers). */
17508 int i;
17509
17510 for (i = 0; i < lh->num_file_names; i++)
17511 {
17512 const char *dir = NULL;
17513 struct file_entry *fe;
17514
17515 fe = &lh->file_names[i];
17516 if (fe->dir_index)
17517 dir = lh->include_dirs[fe->dir_index - 1];
17518 dwarf2_start_subfile (fe->name, dir, comp_dir);
17519
17520 /* Skip the main file; we don't need it, and it must be
17521 allocated last, so that it will show up before the
17522 non-primary symtabs in the objfile's symtab list. */
17523 if (current_subfile == first_subfile)
17524 continue;
17525
17526 if (current_subfile->symtab == NULL)
17527 current_subfile->symtab = allocate_symtab (current_subfile->name,
17528 objfile);
17529 fe->symtab = current_subfile->symtab;
17530 }
17531 }
17532 }
17533
17534 /* Start a subfile for DWARF. FILENAME is the name of the file and
17535 DIRNAME the name of the source directory which contains FILENAME
17536 or NULL if not known. COMP_DIR is the compilation directory for the
17537 linetable's compilation unit or NULL if not known.
17538 This routine tries to keep line numbers from identical absolute and
17539 relative file names in a common subfile.
17540
17541 Using the `list' example from the GDB testsuite, which resides in
17542 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17543 of /srcdir/list0.c yields the following debugging information for list0.c:
17544
17545 DW_AT_name: /srcdir/list0.c
17546 DW_AT_comp_dir: /compdir
17547 files.files[0].name: list0.h
17548 files.files[0].dir: /srcdir
17549 files.files[1].name: list0.c
17550 files.files[1].dir: /srcdir
17551
17552 The line number information for list0.c has to end up in a single
17553 subfile, so that `break /srcdir/list0.c:1' works as expected.
17554 start_subfile will ensure that this happens provided that we pass the
17555 concatenation of files.files[1].dir and files.files[1].name as the
17556 subfile's name. */
17557
17558 static void
17559 dwarf2_start_subfile (const char *filename, const char *dirname,
17560 const char *comp_dir)
17561 {
17562 char *copy = NULL;
17563
17564 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17565 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17566 second argument to start_subfile. To be consistent, we do the
17567 same here. In order not to lose the line information directory,
17568 we concatenate it to the filename when it makes sense.
17569 Note that the Dwarf3 standard says (speaking of filenames in line
17570 information): ``The directory index is ignored for file names
17571 that represent full path names''. Thus ignoring dirname in the
17572 `else' branch below isn't an issue. */
17573
17574 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17575 {
17576 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17577 filename = copy;
17578 }
17579
17580 start_subfile (filename, comp_dir);
17581
17582 if (copy != NULL)
17583 xfree (copy);
17584 }
17585
17586 /* Start a symtab for DWARF.
17587 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17588
17589 static void
17590 dwarf2_start_symtab (struct dwarf2_cu *cu,
17591 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17592 {
17593 start_symtab (name, comp_dir, low_pc);
17594 record_debugformat ("DWARF 2");
17595 record_producer (cu->producer);
17596
17597 /* We assume that we're processing GCC output. */
17598 processing_gcc_compilation = 2;
17599
17600 cu->processing_has_namespace_info = 0;
17601 }
17602
17603 static void
17604 var_decode_location (struct attribute *attr, struct symbol *sym,
17605 struct dwarf2_cu *cu)
17606 {
17607 struct objfile *objfile = cu->objfile;
17608 struct comp_unit_head *cu_header = &cu->header;
17609
17610 /* NOTE drow/2003-01-30: There used to be a comment and some special
17611 code here to turn a symbol with DW_AT_external and a
17612 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17613 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17614 with some versions of binutils) where shared libraries could have
17615 relocations against symbols in their debug information - the
17616 minimal symbol would have the right address, but the debug info
17617 would not. It's no longer necessary, because we will explicitly
17618 apply relocations when we read in the debug information now. */
17619
17620 /* A DW_AT_location attribute with no contents indicates that a
17621 variable has been optimized away. */
17622 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17623 {
17624 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17625 return;
17626 }
17627
17628 /* Handle one degenerate form of location expression specially, to
17629 preserve GDB's previous behavior when section offsets are
17630 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17631 then mark this symbol as LOC_STATIC. */
17632
17633 if (attr_form_is_block (attr)
17634 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17635 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17636 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17637 && (DW_BLOCK (attr)->size
17638 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17639 {
17640 unsigned int dummy;
17641
17642 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17643 SYMBOL_VALUE_ADDRESS (sym) =
17644 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17645 else
17646 SYMBOL_VALUE_ADDRESS (sym) =
17647 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17648 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17649 fixup_symbol_section (sym, objfile);
17650 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17651 SYMBOL_SECTION (sym));
17652 return;
17653 }
17654
17655 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17656 expression evaluator, and use LOC_COMPUTED only when necessary
17657 (i.e. when the value of a register or memory location is
17658 referenced, or a thread-local block, etc.). Then again, it might
17659 not be worthwhile. I'm assuming that it isn't unless performance
17660 or memory numbers show me otherwise. */
17661
17662 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17663
17664 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17665 cu->has_loclist = 1;
17666 }
17667
17668 /* Given a pointer to a DWARF information entry, figure out if we need
17669 to make a symbol table entry for it, and if so, create a new entry
17670 and return a pointer to it.
17671 If TYPE is NULL, determine symbol type from the die, otherwise
17672 used the passed type.
17673 If SPACE is not NULL, use it to hold the new symbol. If it is
17674 NULL, allocate a new symbol on the objfile's obstack. */
17675
17676 static struct symbol *
17677 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17678 struct symbol *space)
17679 {
17680 struct objfile *objfile = cu->objfile;
17681 struct symbol *sym = NULL;
17682 const char *name;
17683 struct attribute *attr = NULL;
17684 struct attribute *attr2 = NULL;
17685 CORE_ADDR baseaddr;
17686 struct pending **list_to_add = NULL;
17687
17688 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17689
17690 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17691
17692 name = dwarf2_name (die, cu);
17693 if (name)
17694 {
17695 const char *linkagename;
17696 int suppress_add = 0;
17697
17698 if (space)
17699 sym = space;
17700 else
17701 sym = allocate_symbol (objfile);
17702 OBJSTAT (objfile, n_syms++);
17703
17704 /* Cache this symbol's name and the name's demangled form (if any). */
17705 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17706 linkagename = dwarf2_physname (name, die, cu);
17707 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17708
17709 /* Fortran does not have mangling standard and the mangling does differ
17710 between gfortran, iFort etc. */
17711 if (cu->language == language_fortran
17712 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17713 symbol_set_demangled_name (&(sym->ginfo),
17714 dwarf2_full_name (name, die, cu),
17715 NULL);
17716
17717 /* Default assumptions.
17718 Use the passed type or decode it from the die. */
17719 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17720 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17721 if (type != NULL)
17722 SYMBOL_TYPE (sym) = type;
17723 else
17724 SYMBOL_TYPE (sym) = die_type (die, cu);
17725 attr = dwarf2_attr (die,
17726 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17727 cu);
17728 if (attr)
17729 {
17730 SYMBOL_LINE (sym) = DW_UNSND (attr);
17731 }
17732
17733 attr = dwarf2_attr (die,
17734 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17735 cu);
17736 if (attr)
17737 {
17738 int file_index = DW_UNSND (attr);
17739
17740 if (cu->line_header == NULL
17741 || file_index > cu->line_header->num_file_names)
17742 complaint (&symfile_complaints,
17743 _("file index out of range"));
17744 else if (file_index > 0)
17745 {
17746 struct file_entry *fe;
17747
17748 fe = &cu->line_header->file_names[file_index - 1];
17749 SYMBOL_SYMTAB (sym) = fe->symtab;
17750 }
17751 }
17752
17753 switch (die->tag)
17754 {
17755 case DW_TAG_label:
17756 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17757 if (attr)
17758 SYMBOL_VALUE_ADDRESS (sym)
17759 = attr_value_as_address (attr) + baseaddr;
17760 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17761 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17762 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17763 add_symbol_to_list (sym, cu->list_in_scope);
17764 break;
17765 case DW_TAG_subprogram:
17766 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17767 finish_block. */
17768 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17769 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17770 if ((attr2 && (DW_UNSND (attr2) != 0))
17771 || cu->language == language_ada)
17772 {
17773 /* Subprograms marked external are stored as a global symbol.
17774 Ada subprograms, whether marked external or not, are always
17775 stored as a global symbol, because we want to be able to
17776 access them globally. For instance, we want to be able
17777 to break on a nested subprogram without having to
17778 specify the context. */
17779 list_to_add = &global_symbols;
17780 }
17781 else
17782 {
17783 list_to_add = cu->list_in_scope;
17784 }
17785 break;
17786 case DW_TAG_inlined_subroutine:
17787 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17788 finish_block. */
17789 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17790 SYMBOL_INLINED (sym) = 1;
17791 list_to_add = cu->list_in_scope;
17792 break;
17793 case DW_TAG_template_value_param:
17794 suppress_add = 1;
17795 /* Fall through. */
17796 case DW_TAG_constant:
17797 case DW_TAG_variable:
17798 case DW_TAG_member:
17799 /* Compilation with minimal debug info may result in
17800 variables with missing type entries. Change the
17801 misleading `void' type to something sensible. */
17802 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17803 SYMBOL_TYPE (sym)
17804 = objfile_type (objfile)->nodebug_data_symbol;
17805
17806 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17807 /* In the case of DW_TAG_member, we should only be called for
17808 static const members. */
17809 if (die->tag == DW_TAG_member)
17810 {
17811 /* dwarf2_add_field uses die_is_declaration,
17812 so we do the same. */
17813 gdb_assert (die_is_declaration (die, cu));
17814 gdb_assert (attr);
17815 }
17816 if (attr)
17817 {
17818 dwarf2_const_value (attr, sym, cu);
17819 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17820 if (!suppress_add)
17821 {
17822 if (attr2 && (DW_UNSND (attr2) != 0))
17823 list_to_add = &global_symbols;
17824 else
17825 list_to_add = cu->list_in_scope;
17826 }
17827 break;
17828 }
17829 attr = dwarf2_attr (die, DW_AT_location, cu);
17830 if (attr)
17831 {
17832 var_decode_location (attr, sym, cu);
17833 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17834
17835 /* Fortran explicitly imports any global symbols to the local
17836 scope by DW_TAG_common_block. */
17837 if (cu->language == language_fortran && die->parent
17838 && die->parent->tag == DW_TAG_common_block)
17839 attr2 = NULL;
17840
17841 if (SYMBOL_CLASS (sym) == LOC_STATIC
17842 && SYMBOL_VALUE_ADDRESS (sym) == 0
17843 && !dwarf2_per_objfile->has_section_at_zero)
17844 {
17845 /* When a static variable is eliminated by the linker,
17846 the corresponding debug information is not stripped
17847 out, but the variable address is set to null;
17848 do not add such variables into symbol table. */
17849 }
17850 else if (attr2 && (DW_UNSND (attr2) != 0))
17851 {
17852 /* Workaround gfortran PR debug/40040 - it uses
17853 DW_AT_location for variables in -fPIC libraries which may
17854 get overriden by other libraries/executable and get
17855 a different address. Resolve it by the minimal symbol
17856 which may come from inferior's executable using copy
17857 relocation. Make this workaround only for gfortran as for
17858 other compilers GDB cannot guess the minimal symbol
17859 Fortran mangling kind. */
17860 if (cu->language == language_fortran && die->parent
17861 && die->parent->tag == DW_TAG_module
17862 && cu->producer
17863 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17864 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17865
17866 /* A variable with DW_AT_external is never static,
17867 but it may be block-scoped. */
17868 list_to_add = (cu->list_in_scope == &file_symbols
17869 ? &global_symbols : cu->list_in_scope);
17870 }
17871 else
17872 list_to_add = cu->list_in_scope;
17873 }
17874 else
17875 {
17876 /* We do not know the address of this symbol.
17877 If it is an external symbol and we have type information
17878 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17879 The address of the variable will then be determined from
17880 the minimal symbol table whenever the variable is
17881 referenced. */
17882 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17883
17884 /* Fortran explicitly imports any global symbols to the local
17885 scope by DW_TAG_common_block. */
17886 if (cu->language == language_fortran && die->parent
17887 && die->parent->tag == DW_TAG_common_block)
17888 {
17889 /* SYMBOL_CLASS doesn't matter here because
17890 read_common_block is going to reset it. */
17891 if (!suppress_add)
17892 list_to_add = cu->list_in_scope;
17893 }
17894 else if (attr2 && (DW_UNSND (attr2) != 0)
17895 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17896 {
17897 /* A variable with DW_AT_external is never static, but it
17898 may be block-scoped. */
17899 list_to_add = (cu->list_in_scope == &file_symbols
17900 ? &global_symbols : cu->list_in_scope);
17901
17902 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17903 }
17904 else if (!die_is_declaration (die, cu))
17905 {
17906 /* Use the default LOC_OPTIMIZED_OUT class. */
17907 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17908 if (!suppress_add)
17909 list_to_add = cu->list_in_scope;
17910 }
17911 }
17912 break;
17913 case DW_TAG_formal_parameter:
17914 /* If we are inside a function, mark this as an argument. If
17915 not, we might be looking at an argument to an inlined function
17916 when we do not have enough information to show inlined frames;
17917 pretend it's a local variable in that case so that the user can
17918 still see it. */
17919 if (context_stack_depth > 0
17920 && context_stack[context_stack_depth - 1].name != NULL)
17921 SYMBOL_IS_ARGUMENT (sym) = 1;
17922 attr = dwarf2_attr (die, DW_AT_location, cu);
17923 if (attr)
17924 {
17925 var_decode_location (attr, sym, cu);
17926 }
17927 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17928 if (attr)
17929 {
17930 dwarf2_const_value (attr, sym, cu);
17931 }
17932
17933 list_to_add = cu->list_in_scope;
17934 break;
17935 case DW_TAG_unspecified_parameters:
17936 /* From varargs functions; gdb doesn't seem to have any
17937 interest in this information, so just ignore it for now.
17938 (FIXME?) */
17939 break;
17940 case DW_TAG_template_type_param:
17941 suppress_add = 1;
17942 /* Fall through. */
17943 case DW_TAG_class_type:
17944 case DW_TAG_interface_type:
17945 case DW_TAG_structure_type:
17946 case DW_TAG_union_type:
17947 case DW_TAG_set_type:
17948 case DW_TAG_enumeration_type:
17949 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17950 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17951
17952 {
17953 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17954 really ever be static objects: otherwise, if you try
17955 to, say, break of a class's method and you're in a file
17956 which doesn't mention that class, it won't work unless
17957 the check for all static symbols in lookup_symbol_aux
17958 saves you. See the OtherFileClass tests in
17959 gdb.c++/namespace.exp. */
17960
17961 if (!suppress_add)
17962 {
17963 list_to_add = (cu->list_in_scope == &file_symbols
17964 && (cu->language == language_cplus
17965 || cu->language == language_java)
17966 ? &global_symbols : cu->list_in_scope);
17967
17968 /* The semantics of C++ state that "struct foo {
17969 ... }" also defines a typedef for "foo". A Java
17970 class declaration also defines a typedef for the
17971 class. */
17972 if (cu->language == language_cplus
17973 || cu->language == language_java
17974 || cu->language == language_ada)
17975 {
17976 /* The symbol's name is already allocated along
17977 with this objfile, so we don't need to
17978 duplicate it for the type. */
17979 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17980 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17981 }
17982 }
17983 }
17984 break;
17985 case DW_TAG_typedef:
17986 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17987 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17988 list_to_add = cu->list_in_scope;
17989 break;
17990 case DW_TAG_base_type:
17991 case DW_TAG_subrange_type:
17992 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17993 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17994 list_to_add = cu->list_in_scope;
17995 break;
17996 case DW_TAG_enumerator:
17997 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17998 if (attr)
17999 {
18000 dwarf2_const_value (attr, sym, cu);
18001 }
18002 {
18003 /* NOTE: carlton/2003-11-10: See comment above in the
18004 DW_TAG_class_type, etc. block. */
18005
18006 list_to_add = (cu->list_in_scope == &file_symbols
18007 && (cu->language == language_cplus
18008 || cu->language == language_java)
18009 ? &global_symbols : cu->list_in_scope);
18010 }
18011 break;
18012 case DW_TAG_imported_declaration:
18013 case DW_TAG_namespace:
18014 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18015 list_to_add = &global_symbols;
18016 break;
18017 case DW_TAG_module:
18018 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18019 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18020 list_to_add = &global_symbols;
18021 break;
18022 case DW_TAG_common_block:
18023 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18024 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18025 add_symbol_to_list (sym, cu->list_in_scope);
18026 break;
18027 default:
18028 /* Not a tag we recognize. Hopefully we aren't processing
18029 trash data, but since we must specifically ignore things
18030 we don't recognize, there is nothing else we should do at
18031 this point. */
18032 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18033 dwarf_tag_name (die->tag));
18034 break;
18035 }
18036
18037 if (suppress_add)
18038 {
18039 sym->hash_next = objfile->template_symbols;
18040 objfile->template_symbols = sym;
18041 list_to_add = NULL;
18042 }
18043
18044 if (list_to_add != NULL)
18045 add_symbol_to_list (sym, list_to_add);
18046
18047 /* For the benefit of old versions of GCC, check for anonymous
18048 namespaces based on the demangled name. */
18049 if (!cu->processing_has_namespace_info
18050 && cu->language == language_cplus)
18051 cp_scan_for_anonymous_namespaces (sym, objfile);
18052 }
18053 return (sym);
18054 }
18055
18056 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18057
18058 static struct symbol *
18059 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18060 {
18061 return new_symbol_full (die, type, cu, NULL);
18062 }
18063
18064 /* Given an attr with a DW_FORM_dataN value in host byte order,
18065 zero-extend it as appropriate for the symbol's type. The DWARF
18066 standard (v4) is not entirely clear about the meaning of using
18067 DW_FORM_dataN for a constant with a signed type, where the type is
18068 wider than the data. The conclusion of a discussion on the DWARF
18069 list was that this is unspecified. We choose to always zero-extend
18070 because that is the interpretation long in use by GCC. */
18071
18072 static gdb_byte *
18073 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18074 struct dwarf2_cu *cu, LONGEST *value, int bits)
18075 {
18076 struct objfile *objfile = cu->objfile;
18077 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18078 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18079 LONGEST l = DW_UNSND (attr);
18080
18081 if (bits < sizeof (*value) * 8)
18082 {
18083 l &= ((LONGEST) 1 << bits) - 1;
18084 *value = l;
18085 }
18086 else if (bits == sizeof (*value) * 8)
18087 *value = l;
18088 else
18089 {
18090 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18091 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18092 return bytes;
18093 }
18094
18095 return NULL;
18096 }
18097
18098 /* Read a constant value from an attribute. Either set *VALUE, or if
18099 the value does not fit in *VALUE, set *BYTES - either already
18100 allocated on the objfile obstack, or newly allocated on OBSTACK,
18101 or, set *BATON, if we translated the constant to a location
18102 expression. */
18103
18104 static void
18105 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18106 const char *name, struct obstack *obstack,
18107 struct dwarf2_cu *cu,
18108 LONGEST *value, const gdb_byte **bytes,
18109 struct dwarf2_locexpr_baton **baton)
18110 {
18111 struct objfile *objfile = cu->objfile;
18112 struct comp_unit_head *cu_header = &cu->header;
18113 struct dwarf_block *blk;
18114 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18115 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18116
18117 *value = 0;
18118 *bytes = NULL;
18119 *baton = NULL;
18120
18121 switch (attr->form)
18122 {
18123 case DW_FORM_addr:
18124 case DW_FORM_GNU_addr_index:
18125 {
18126 gdb_byte *data;
18127
18128 if (TYPE_LENGTH (type) != cu_header->addr_size)
18129 dwarf2_const_value_length_mismatch_complaint (name,
18130 cu_header->addr_size,
18131 TYPE_LENGTH (type));
18132 /* Symbols of this form are reasonably rare, so we just
18133 piggyback on the existing location code rather than writing
18134 a new implementation of symbol_computed_ops. */
18135 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18136 (*baton)->per_cu = cu->per_cu;
18137 gdb_assert ((*baton)->per_cu);
18138
18139 (*baton)->size = 2 + cu_header->addr_size;
18140 data = obstack_alloc (obstack, (*baton)->size);
18141 (*baton)->data = data;
18142
18143 data[0] = DW_OP_addr;
18144 store_unsigned_integer (&data[1], cu_header->addr_size,
18145 byte_order, DW_ADDR (attr));
18146 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18147 }
18148 break;
18149 case DW_FORM_string:
18150 case DW_FORM_strp:
18151 case DW_FORM_GNU_str_index:
18152 case DW_FORM_GNU_strp_alt:
18153 /* DW_STRING is already allocated on the objfile obstack, point
18154 directly to it. */
18155 *bytes = (const gdb_byte *) DW_STRING (attr);
18156 break;
18157 case DW_FORM_block1:
18158 case DW_FORM_block2:
18159 case DW_FORM_block4:
18160 case DW_FORM_block:
18161 case DW_FORM_exprloc:
18162 blk = DW_BLOCK (attr);
18163 if (TYPE_LENGTH (type) != blk->size)
18164 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18165 TYPE_LENGTH (type));
18166 *bytes = blk->data;
18167 break;
18168
18169 /* The DW_AT_const_value attributes are supposed to carry the
18170 symbol's value "represented as it would be on the target
18171 architecture." By the time we get here, it's already been
18172 converted to host endianness, so we just need to sign- or
18173 zero-extend it as appropriate. */
18174 case DW_FORM_data1:
18175 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18176 break;
18177 case DW_FORM_data2:
18178 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18179 break;
18180 case DW_FORM_data4:
18181 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18182 break;
18183 case DW_FORM_data8:
18184 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18185 break;
18186
18187 case DW_FORM_sdata:
18188 *value = DW_SND (attr);
18189 break;
18190
18191 case DW_FORM_udata:
18192 *value = DW_UNSND (attr);
18193 break;
18194
18195 default:
18196 complaint (&symfile_complaints,
18197 _("unsupported const value attribute form: '%s'"),
18198 dwarf_form_name (attr->form));
18199 *value = 0;
18200 break;
18201 }
18202 }
18203
18204
18205 /* Copy constant value from an attribute to a symbol. */
18206
18207 static void
18208 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18209 struct dwarf2_cu *cu)
18210 {
18211 struct objfile *objfile = cu->objfile;
18212 struct comp_unit_head *cu_header = &cu->header;
18213 LONGEST value;
18214 const gdb_byte *bytes;
18215 struct dwarf2_locexpr_baton *baton;
18216
18217 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18218 SYMBOL_PRINT_NAME (sym),
18219 &objfile->objfile_obstack, cu,
18220 &value, &bytes, &baton);
18221
18222 if (baton != NULL)
18223 {
18224 SYMBOL_LOCATION_BATON (sym) = baton;
18225 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18226 }
18227 else if (bytes != NULL)
18228 {
18229 SYMBOL_VALUE_BYTES (sym) = bytes;
18230 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18231 }
18232 else
18233 {
18234 SYMBOL_VALUE (sym) = value;
18235 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18236 }
18237 }
18238
18239 /* Return the type of the die in question using its DW_AT_type attribute. */
18240
18241 static struct type *
18242 die_type (struct die_info *die, struct dwarf2_cu *cu)
18243 {
18244 struct attribute *type_attr;
18245
18246 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18247 if (!type_attr)
18248 {
18249 /* A missing DW_AT_type represents a void type. */
18250 return objfile_type (cu->objfile)->builtin_void;
18251 }
18252
18253 return lookup_die_type (die, type_attr, cu);
18254 }
18255
18256 /* True iff CU's producer generates GNAT Ada auxiliary information
18257 that allows to find parallel types through that information instead
18258 of having to do expensive parallel lookups by type name. */
18259
18260 static int
18261 need_gnat_info (struct dwarf2_cu *cu)
18262 {
18263 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18264 of GNAT produces this auxiliary information, without any indication
18265 that it is produced. Part of enhancing the FSF version of GNAT
18266 to produce that information will be to put in place an indicator
18267 that we can use in order to determine whether the descriptive type
18268 info is available or not. One suggestion that has been made is
18269 to use a new attribute, attached to the CU die. For now, assume
18270 that the descriptive type info is not available. */
18271 return 0;
18272 }
18273
18274 /* Return the auxiliary type of the die in question using its
18275 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18276 attribute is not present. */
18277
18278 static struct type *
18279 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18280 {
18281 struct attribute *type_attr;
18282
18283 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18284 if (!type_attr)
18285 return NULL;
18286
18287 return lookup_die_type (die, type_attr, cu);
18288 }
18289
18290 /* If DIE has a descriptive_type attribute, then set the TYPE's
18291 descriptive type accordingly. */
18292
18293 static void
18294 set_descriptive_type (struct type *type, struct die_info *die,
18295 struct dwarf2_cu *cu)
18296 {
18297 struct type *descriptive_type = die_descriptive_type (die, cu);
18298
18299 if (descriptive_type)
18300 {
18301 ALLOCATE_GNAT_AUX_TYPE (type);
18302 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18303 }
18304 }
18305
18306 /* Return the containing type of the die in question using its
18307 DW_AT_containing_type attribute. */
18308
18309 static struct type *
18310 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18311 {
18312 struct attribute *type_attr;
18313
18314 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18315 if (!type_attr)
18316 error (_("Dwarf Error: Problem turning containing type into gdb type "
18317 "[in module %s]"), objfile_name (cu->objfile));
18318
18319 return lookup_die_type (die, type_attr, cu);
18320 }
18321
18322 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18323
18324 static struct type *
18325 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18326 {
18327 struct objfile *objfile = dwarf2_per_objfile->objfile;
18328 char *message, *saved;
18329
18330 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18331 objfile_name (objfile),
18332 cu->header.offset.sect_off,
18333 die->offset.sect_off);
18334 saved = obstack_copy0 (&objfile->objfile_obstack,
18335 message, strlen (message));
18336 xfree (message);
18337
18338 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18339 }
18340
18341 /* Look up the type of DIE in CU using its type attribute ATTR.
18342 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18343 DW_AT_containing_type.
18344 If there is no type substitute an error marker. */
18345
18346 static struct type *
18347 lookup_die_type (struct die_info *die, const struct attribute *attr,
18348 struct dwarf2_cu *cu)
18349 {
18350 struct objfile *objfile = cu->objfile;
18351 struct type *this_type;
18352
18353 gdb_assert (attr->name == DW_AT_type
18354 || attr->name == DW_AT_GNAT_descriptive_type
18355 || attr->name == DW_AT_containing_type);
18356
18357 /* First see if we have it cached. */
18358
18359 if (attr->form == DW_FORM_GNU_ref_alt)
18360 {
18361 struct dwarf2_per_cu_data *per_cu;
18362 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18363
18364 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18365 this_type = get_die_type_at_offset (offset, per_cu);
18366 }
18367 else if (attr_form_is_ref (attr))
18368 {
18369 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18370
18371 this_type = get_die_type_at_offset (offset, cu->per_cu);
18372 }
18373 else if (attr->form == DW_FORM_ref_sig8)
18374 {
18375 ULONGEST signature = DW_SIGNATURE (attr);
18376
18377 return get_signatured_type (die, signature, cu);
18378 }
18379 else
18380 {
18381 complaint (&symfile_complaints,
18382 _("Dwarf Error: Bad type attribute %s in DIE"
18383 " at 0x%x [in module %s]"),
18384 dwarf_attr_name (attr->name), die->offset.sect_off,
18385 objfile_name (objfile));
18386 return build_error_marker_type (cu, die);
18387 }
18388
18389 /* If not cached we need to read it in. */
18390
18391 if (this_type == NULL)
18392 {
18393 struct die_info *type_die = NULL;
18394 struct dwarf2_cu *type_cu = cu;
18395
18396 if (attr_form_is_ref (attr))
18397 type_die = follow_die_ref (die, attr, &type_cu);
18398 if (type_die == NULL)
18399 return build_error_marker_type (cu, die);
18400 /* If we find the type now, it's probably because the type came
18401 from an inter-CU reference and the type's CU got expanded before
18402 ours. */
18403 this_type = read_type_die (type_die, type_cu);
18404 }
18405
18406 /* If we still don't have a type use an error marker. */
18407
18408 if (this_type == NULL)
18409 return build_error_marker_type (cu, die);
18410
18411 return this_type;
18412 }
18413
18414 /* Return the type in DIE, CU.
18415 Returns NULL for invalid types.
18416
18417 This first does a lookup in die_type_hash,
18418 and only reads the die in if necessary.
18419
18420 NOTE: This can be called when reading in partial or full symbols. */
18421
18422 static struct type *
18423 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18424 {
18425 struct type *this_type;
18426
18427 this_type = get_die_type (die, cu);
18428 if (this_type)
18429 return this_type;
18430
18431 return read_type_die_1 (die, cu);
18432 }
18433
18434 /* Read the type in DIE, CU.
18435 Returns NULL for invalid types. */
18436
18437 static struct type *
18438 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18439 {
18440 struct type *this_type = NULL;
18441
18442 switch (die->tag)
18443 {
18444 case DW_TAG_class_type:
18445 case DW_TAG_interface_type:
18446 case DW_TAG_structure_type:
18447 case DW_TAG_union_type:
18448 this_type = read_structure_type (die, cu);
18449 break;
18450 case DW_TAG_enumeration_type:
18451 this_type = read_enumeration_type (die, cu);
18452 break;
18453 case DW_TAG_subprogram:
18454 case DW_TAG_subroutine_type:
18455 case DW_TAG_inlined_subroutine:
18456 this_type = read_subroutine_type (die, cu);
18457 break;
18458 case DW_TAG_array_type:
18459 this_type = read_array_type (die, cu);
18460 break;
18461 case DW_TAG_set_type:
18462 this_type = read_set_type (die, cu);
18463 break;
18464 case DW_TAG_pointer_type:
18465 this_type = read_tag_pointer_type (die, cu);
18466 break;
18467 case DW_TAG_ptr_to_member_type:
18468 this_type = read_tag_ptr_to_member_type (die, cu);
18469 break;
18470 case DW_TAG_reference_type:
18471 this_type = read_tag_reference_type (die, cu);
18472 break;
18473 case DW_TAG_const_type:
18474 this_type = read_tag_const_type (die, cu);
18475 break;
18476 case DW_TAG_volatile_type:
18477 this_type = read_tag_volatile_type (die, cu);
18478 break;
18479 case DW_TAG_restrict_type:
18480 this_type = read_tag_restrict_type (die, cu);
18481 break;
18482 case DW_TAG_string_type:
18483 this_type = read_tag_string_type (die, cu);
18484 break;
18485 case DW_TAG_typedef:
18486 this_type = read_typedef (die, cu);
18487 break;
18488 case DW_TAG_subrange_type:
18489 this_type = read_subrange_type (die, cu);
18490 break;
18491 case DW_TAG_base_type:
18492 this_type = read_base_type (die, cu);
18493 break;
18494 case DW_TAG_unspecified_type:
18495 this_type = read_unspecified_type (die, cu);
18496 break;
18497 case DW_TAG_namespace:
18498 this_type = read_namespace_type (die, cu);
18499 break;
18500 case DW_TAG_module:
18501 this_type = read_module_type (die, cu);
18502 break;
18503 default:
18504 complaint (&symfile_complaints,
18505 _("unexpected tag in read_type_die: '%s'"),
18506 dwarf_tag_name (die->tag));
18507 break;
18508 }
18509
18510 return this_type;
18511 }
18512
18513 /* See if we can figure out if the class lives in a namespace. We do
18514 this by looking for a member function; its demangled name will
18515 contain namespace info, if there is any.
18516 Return the computed name or NULL.
18517 Space for the result is allocated on the objfile's obstack.
18518 This is the full-die version of guess_partial_die_structure_name.
18519 In this case we know DIE has no useful parent. */
18520
18521 static char *
18522 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18523 {
18524 struct die_info *spec_die;
18525 struct dwarf2_cu *spec_cu;
18526 struct die_info *child;
18527
18528 spec_cu = cu;
18529 spec_die = die_specification (die, &spec_cu);
18530 if (spec_die != NULL)
18531 {
18532 die = spec_die;
18533 cu = spec_cu;
18534 }
18535
18536 for (child = die->child;
18537 child != NULL;
18538 child = child->sibling)
18539 {
18540 if (child->tag == DW_TAG_subprogram)
18541 {
18542 struct attribute *attr;
18543
18544 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18545 if (attr == NULL)
18546 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18547 if (attr != NULL)
18548 {
18549 char *actual_name
18550 = language_class_name_from_physname (cu->language_defn,
18551 DW_STRING (attr));
18552 char *name = NULL;
18553
18554 if (actual_name != NULL)
18555 {
18556 const char *die_name = dwarf2_name (die, cu);
18557
18558 if (die_name != NULL
18559 && strcmp (die_name, actual_name) != 0)
18560 {
18561 /* Strip off the class name from the full name.
18562 We want the prefix. */
18563 int die_name_len = strlen (die_name);
18564 int actual_name_len = strlen (actual_name);
18565
18566 /* Test for '::' as a sanity check. */
18567 if (actual_name_len > die_name_len + 2
18568 && actual_name[actual_name_len
18569 - die_name_len - 1] == ':')
18570 name =
18571 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18572 actual_name,
18573 actual_name_len - die_name_len - 2);
18574 }
18575 }
18576 xfree (actual_name);
18577 return name;
18578 }
18579 }
18580 }
18581
18582 return NULL;
18583 }
18584
18585 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18586 prefix part in such case. See
18587 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18588
18589 static char *
18590 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18591 {
18592 struct attribute *attr;
18593 char *base;
18594
18595 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18596 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18597 return NULL;
18598
18599 attr = dwarf2_attr (die, DW_AT_name, cu);
18600 if (attr != NULL && DW_STRING (attr) != NULL)
18601 return NULL;
18602
18603 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18604 if (attr == NULL)
18605 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18606 if (attr == NULL || DW_STRING (attr) == NULL)
18607 return NULL;
18608
18609 /* dwarf2_name had to be already called. */
18610 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18611
18612 /* Strip the base name, keep any leading namespaces/classes. */
18613 base = strrchr (DW_STRING (attr), ':');
18614 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18615 return "";
18616
18617 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18618 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18619 }
18620
18621 /* Return the name of the namespace/class that DIE is defined within,
18622 or "" if we can't tell. The caller should not xfree the result.
18623
18624 For example, if we're within the method foo() in the following
18625 code:
18626
18627 namespace N {
18628 class C {
18629 void foo () {
18630 }
18631 };
18632 }
18633
18634 then determine_prefix on foo's die will return "N::C". */
18635
18636 static const char *
18637 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18638 {
18639 struct die_info *parent, *spec_die;
18640 struct dwarf2_cu *spec_cu;
18641 struct type *parent_type;
18642 char *retval;
18643
18644 if (cu->language != language_cplus && cu->language != language_java
18645 && cu->language != language_fortran)
18646 return "";
18647
18648 retval = anonymous_struct_prefix (die, cu);
18649 if (retval)
18650 return retval;
18651
18652 /* We have to be careful in the presence of DW_AT_specification.
18653 For example, with GCC 3.4, given the code
18654
18655 namespace N {
18656 void foo() {
18657 // Definition of N::foo.
18658 }
18659 }
18660
18661 then we'll have a tree of DIEs like this:
18662
18663 1: DW_TAG_compile_unit
18664 2: DW_TAG_namespace // N
18665 3: DW_TAG_subprogram // declaration of N::foo
18666 4: DW_TAG_subprogram // definition of N::foo
18667 DW_AT_specification // refers to die #3
18668
18669 Thus, when processing die #4, we have to pretend that we're in
18670 the context of its DW_AT_specification, namely the contex of die
18671 #3. */
18672 spec_cu = cu;
18673 spec_die = die_specification (die, &spec_cu);
18674 if (spec_die == NULL)
18675 parent = die->parent;
18676 else
18677 {
18678 parent = spec_die->parent;
18679 cu = spec_cu;
18680 }
18681
18682 if (parent == NULL)
18683 return "";
18684 else if (parent->building_fullname)
18685 {
18686 const char *name;
18687 const char *parent_name;
18688
18689 /* It has been seen on RealView 2.2 built binaries,
18690 DW_TAG_template_type_param types actually _defined_ as
18691 children of the parent class:
18692
18693 enum E {};
18694 template class <class Enum> Class{};
18695 Class<enum E> class_e;
18696
18697 1: DW_TAG_class_type (Class)
18698 2: DW_TAG_enumeration_type (E)
18699 3: DW_TAG_enumerator (enum1:0)
18700 3: DW_TAG_enumerator (enum2:1)
18701 ...
18702 2: DW_TAG_template_type_param
18703 DW_AT_type DW_FORM_ref_udata (E)
18704
18705 Besides being broken debug info, it can put GDB into an
18706 infinite loop. Consider:
18707
18708 When we're building the full name for Class<E>, we'll start
18709 at Class, and go look over its template type parameters,
18710 finding E. We'll then try to build the full name of E, and
18711 reach here. We're now trying to build the full name of E,
18712 and look over the parent DIE for containing scope. In the
18713 broken case, if we followed the parent DIE of E, we'd again
18714 find Class, and once again go look at its template type
18715 arguments, etc., etc. Simply don't consider such parent die
18716 as source-level parent of this die (it can't be, the language
18717 doesn't allow it), and break the loop here. */
18718 name = dwarf2_name (die, cu);
18719 parent_name = dwarf2_name (parent, cu);
18720 complaint (&symfile_complaints,
18721 _("template param type '%s' defined within parent '%s'"),
18722 name ? name : "<unknown>",
18723 parent_name ? parent_name : "<unknown>");
18724 return "";
18725 }
18726 else
18727 switch (parent->tag)
18728 {
18729 case DW_TAG_namespace:
18730 parent_type = read_type_die (parent, cu);
18731 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18732 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18733 Work around this problem here. */
18734 if (cu->language == language_cplus
18735 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18736 return "";
18737 /* We give a name to even anonymous namespaces. */
18738 return TYPE_TAG_NAME (parent_type);
18739 case DW_TAG_class_type:
18740 case DW_TAG_interface_type:
18741 case DW_TAG_structure_type:
18742 case DW_TAG_union_type:
18743 case DW_TAG_module:
18744 parent_type = read_type_die (parent, cu);
18745 if (TYPE_TAG_NAME (parent_type) != NULL)
18746 return TYPE_TAG_NAME (parent_type);
18747 else
18748 /* An anonymous structure is only allowed non-static data
18749 members; no typedefs, no member functions, et cetera.
18750 So it does not need a prefix. */
18751 return "";
18752 case DW_TAG_compile_unit:
18753 case DW_TAG_partial_unit:
18754 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18755 if (cu->language == language_cplus
18756 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18757 && die->child != NULL
18758 && (die->tag == DW_TAG_class_type
18759 || die->tag == DW_TAG_structure_type
18760 || die->tag == DW_TAG_union_type))
18761 {
18762 char *name = guess_full_die_structure_name (die, cu);
18763 if (name != NULL)
18764 return name;
18765 }
18766 return "";
18767 case DW_TAG_enumeration_type:
18768 parent_type = read_type_die (parent, cu);
18769 if (TYPE_DECLARED_CLASS (parent_type))
18770 {
18771 if (TYPE_TAG_NAME (parent_type) != NULL)
18772 return TYPE_TAG_NAME (parent_type);
18773 return "";
18774 }
18775 /* Fall through. */
18776 default:
18777 return determine_prefix (parent, cu);
18778 }
18779 }
18780
18781 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18782 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18783 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18784 an obconcat, otherwise allocate storage for the result. The CU argument is
18785 used to determine the language and hence, the appropriate separator. */
18786
18787 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18788
18789 static char *
18790 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18791 int physname, struct dwarf2_cu *cu)
18792 {
18793 const char *lead = "";
18794 const char *sep;
18795
18796 if (suffix == NULL || suffix[0] == '\0'
18797 || prefix == NULL || prefix[0] == '\0')
18798 sep = "";
18799 else if (cu->language == language_java)
18800 sep = ".";
18801 else if (cu->language == language_fortran && physname)
18802 {
18803 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18804 DW_AT_MIPS_linkage_name is preferred and used instead. */
18805
18806 lead = "__";
18807 sep = "_MOD_";
18808 }
18809 else
18810 sep = "::";
18811
18812 if (prefix == NULL)
18813 prefix = "";
18814 if (suffix == NULL)
18815 suffix = "";
18816
18817 if (obs == NULL)
18818 {
18819 char *retval
18820 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18821
18822 strcpy (retval, lead);
18823 strcat (retval, prefix);
18824 strcat (retval, sep);
18825 strcat (retval, suffix);
18826 return retval;
18827 }
18828 else
18829 {
18830 /* We have an obstack. */
18831 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18832 }
18833 }
18834
18835 /* Return sibling of die, NULL if no sibling. */
18836
18837 static struct die_info *
18838 sibling_die (struct die_info *die)
18839 {
18840 return die->sibling;
18841 }
18842
18843 /* Get name of a die, return NULL if not found. */
18844
18845 static const char *
18846 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18847 struct obstack *obstack)
18848 {
18849 if (name && cu->language == language_cplus)
18850 {
18851 char *canon_name = cp_canonicalize_string (name);
18852
18853 if (canon_name != NULL)
18854 {
18855 if (strcmp (canon_name, name) != 0)
18856 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18857 xfree (canon_name);
18858 }
18859 }
18860
18861 return name;
18862 }
18863
18864 /* Get name of a die, return NULL if not found. */
18865
18866 static const char *
18867 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18868 {
18869 struct attribute *attr;
18870
18871 attr = dwarf2_attr (die, DW_AT_name, cu);
18872 if ((!attr || !DW_STRING (attr))
18873 && die->tag != DW_TAG_class_type
18874 && die->tag != DW_TAG_interface_type
18875 && die->tag != DW_TAG_structure_type
18876 && die->tag != DW_TAG_union_type)
18877 return NULL;
18878
18879 switch (die->tag)
18880 {
18881 case DW_TAG_compile_unit:
18882 case DW_TAG_partial_unit:
18883 /* Compilation units have a DW_AT_name that is a filename, not
18884 a source language identifier. */
18885 case DW_TAG_enumeration_type:
18886 case DW_TAG_enumerator:
18887 /* These tags always have simple identifiers already; no need
18888 to canonicalize them. */
18889 return DW_STRING (attr);
18890
18891 case DW_TAG_subprogram:
18892 /* Java constructors will all be named "<init>", so return
18893 the class name when we see this special case. */
18894 if (cu->language == language_java
18895 && DW_STRING (attr) != NULL
18896 && strcmp (DW_STRING (attr), "<init>") == 0)
18897 {
18898 struct dwarf2_cu *spec_cu = cu;
18899 struct die_info *spec_die;
18900
18901 /* GCJ will output '<init>' for Java constructor names.
18902 For this special case, return the name of the parent class. */
18903
18904 /* GCJ may output suprogram DIEs with AT_specification set.
18905 If so, use the name of the specified DIE. */
18906 spec_die = die_specification (die, &spec_cu);
18907 if (spec_die != NULL)
18908 return dwarf2_name (spec_die, spec_cu);
18909
18910 do
18911 {
18912 die = die->parent;
18913 if (die->tag == DW_TAG_class_type)
18914 return dwarf2_name (die, cu);
18915 }
18916 while (die->tag != DW_TAG_compile_unit
18917 && die->tag != DW_TAG_partial_unit);
18918 }
18919 break;
18920
18921 case DW_TAG_class_type:
18922 case DW_TAG_interface_type:
18923 case DW_TAG_structure_type:
18924 case DW_TAG_union_type:
18925 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18926 structures or unions. These were of the form "._%d" in GCC 4.1,
18927 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18928 and GCC 4.4. We work around this problem by ignoring these. */
18929 if (attr && DW_STRING (attr)
18930 && (strncmp (DW_STRING (attr), "._", 2) == 0
18931 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18932 return NULL;
18933
18934 /* GCC might emit a nameless typedef that has a linkage name. See
18935 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18936 if (!attr || DW_STRING (attr) == NULL)
18937 {
18938 char *demangled = NULL;
18939
18940 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18941 if (attr == NULL)
18942 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18943
18944 if (attr == NULL || DW_STRING (attr) == NULL)
18945 return NULL;
18946
18947 /* Avoid demangling DW_STRING (attr) the second time on a second
18948 call for the same DIE. */
18949 if (!DW_STRING_IS_CANONICAL (attr))
18950 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18951
18952 if (demangled)
18953 {
18954 char *base;
18955
18956 /* FIXME: we already did this for the partial symbol... */
18957 DW_STRING (attr)
18958 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18959 demangled, strlen (demangled));
18960 DW_STRING_IS_CANONICAL (attr) = 1;
18961 xfree (demangled);
18962
18963 /* Strip any leading namespaces/classes, keep only the base name.
18964 DW_AT_name for named DIEs does not contain the prefixes. */
18965 base = strrchr (DW_STRING (attr), ':');
18966 if (base && base > DW_STRING (attr) && base[-1] == ':')
18967 return &base[1];
18968 else
18969 return DW_STRING (attr);
18970 }
18971 }
18972 break;
18973
18974 default:
18975 break;
18976 }
18977
18978 if (!DW_STRING_IS_CANONICAL (attr))
18979 {
18980 DW_STRING (attr)
18981 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18982 &cu->objfile->per_bfd->storage_obstack);
18983 DW_STRING_IS_CANONICAL (attr) = 1;
18984 }
18985 return DW_STRING (attr);
18986 }
18987
18988 /* Return the die that this die in an extension of, or NULL if there
18989 is none. *EXT_CU is the CU containing DIE on input, and the CU
18990 containing the return value on output. */
18991
18992 static struct die_info *
18993 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18994 {
18995 struct attribute *attr;
18996
18997 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18998 if (attr == NULL)
18999 return NULL;
19000
19001 return follow_die_ref (die, attr, ext_cu);
19002 }
19003
19004 /* Convert a DIE tag into its string name. */
19005
19006 static const char *
19007 dwarf_tag_name (unsigned tag)
19008 {
19009 const char *name = get_DW_TAG_name (tag);
19010
19011 if (name == NULL)
19012 return "DW_TAG_<unknown>";
19013
19014 return name;
19015 }
19016
19017 /* Convert a DWARF attribute code into its string name. */
19018
19019 static const char *
19020 dwarf_attr_name (unsigned attr)
19021 {
19022 const char *name;
19023
19024 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19025 if (attr == DW_AT_MIPS_fde)
19026 return "DW_AT_MIPS_fde";
19027 #else
19028 if (attr == DW_AT_HP_block_index)
19029 return "DW_AT_HP_block_index";
19030 #endif
19031
19032 name = get_DW_AT_name (attr);
19033
19034 if (name == NULL)
19035 return "DW_AT_<unknown>";
19036
19037 return name;
19038 }
19039
19040 /* Convert a DWARF value form code into its string name. */
19041
19042 static const char *
19043 dwarf_form_name (unsigned form)
19044 {
19045 const char *name = get_DW_FORM_name (form);
19046
19047 if (name == NULL)
19048 return "DW_FORM_<unknown>";
19049
19050 return name;
19051 }
19052
19053 static char *
19054 dwarf_bool_name (unsigned mybool)
19055 {
19056 if (mybool)
19057 return "TRUE";
19058 else
19059 return "FALSE";
19060 }
19061
19062 /* Convert a DWARF type code into its string name. */
19063
19064 static const char *
19065 dwarf_type_encoding_name (unsigned enc)
19066 {
19067 const char *name = get_DW_ATE_name (enc);
19068
19069 if (name == NULL)
19070 return "DW_ATE_<unknown>";
19071
19072 return name;
19073 }
19074
19075 static void
19076 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19077 {
19078 unsigned int i;
19079
19080 print_spaces (indent, f);
19081 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19082 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19083
19084 if (die->parent != NULL)
19085 {
19086 print_spaces (indent, f);
19087 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19088 die->parent->offset.sect_off);
19089 }
19090
19091 print_spaces (indent, f);
19092 fprintf_unfiltered (f, " has children: %s\n",
19093 dwarf_bool_name (die->child != NULL));
19094
19095 print_spaces (indent, f);
19096 fprintf_unfiltered (f, " attributes:\n");
19097
19098 for (i = 0; i < die->num_attrs; ++i)
19099 {
19100 print_spaces (indent, f);
19101 fprintf_unfiltered (f, " %s (%s) ",
19102 dwarf_attr_name (die->attrs[i].name),
19103 dwarf_form_name (die->attrs[i].form));
19104
19105 switch (die->attrs[i].form)
19106 {
19107 case DW_FORM_addr:
19108 case DW_FORM_GNU_addr_index:
19109 fprintf_unfiltered (f, "address: ");
19110 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19111 break;
19112 case DW_FORM_block2:
19113 case DW_FORM_block4:
19114 case DW_FORM_block:
19115 case DW_FORM_block1:
19116 fprintf_unfiltered (f, "block: size %s",
19117 pulongest (DW_BLOCK (&die->attrs[i])->size));
19118 break;
19119 case DW_FORM_exprloc:
19120 fprintf_unfiltered (f, "expression: size %s",
19121 pulongest (DW_BLOCK (&die->attrs[i])->size));
19122 break;
19123 case DW_FORM_ref_addr:
19124 fprintf_unfiltered (f, "ref address: ");
19125 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19126 break;
19127 case DW_FORM_GNU_ref_alt:
19128 fprintf_unfiltered (f, "alt ref address: ");
19129 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19130 break;
19131 case DW_FORM_ref1:
19132 case DW_FORM_ref2:
19133 case DW_FORM_ref4:
19134 case DW_FORM_ref8:
19135 case DW_FORM_ref_udata:
19136 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19137 (long) (DW_UNSND (&die->attrs[i])));
19138 break;
19139 case DW_FORM_data1:
19140 case DW_FORM_data2:
19141 case DW_FORM_data4:
19142 case DW_FORM_data8:
19143 case DW_FORM_udata:
19144 case DW_FORM_sdata:
19145 fprintf_unfiltered (f, "constant: %s",
19146 pulongest (DW_UNSND (&die->attrs[i])));
19147 break;
19148 case DW_FORM_sec_offset:
19149 fprintf_unfiltered (f, "section offset: %s",
19150 pulongest (DW_UNSND (&die->attrs[i])));
19151 break;
19152 case DW_FORM_ref_sig8:
19153 fprintf_unfiltered (f, "signature: %s",
19154 hex_string (DW_SIGNATURE (&die->attrs[i])));
19155 break;
19156 case DW_FORM_string:
19157 case DW_FORM_strp:
19158 case DW_FORM_GNU_str_index:
19159 case DW_FORM_GNU_strp_alt:
19160 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19161 DW_STRING (&die->attrs[i])
19162 ? DW_STRING (&die->attrs[i]) : "",
19163 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19164 break;
19165 case DW_FORM_flag:
19166 if (DW_UNSND (&die->attrs[i]))
19167 fprintf_unfiltered (f, "flag: TRUE");
19168 else
19169 fprintf_unfiltered (f, "flag: FALSE");
19170 break;
19171 case DW_FORM_flag_present:
19172 fprintf_unfiltered (f, "flag: TRUE");
19173 break;
19174 case DW_FORM_indirect:
19175 /* The reader will have reduced the indirect form to
19176 the "base form" so this form should not occur. */
19177 fprintf_unfiltered (f,
19178 "unexpected attribute form: DW_FORM_indirect");
19179 break;
19180 default:
19181 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19182 die->attrs[i].form);
19183 break;
19184 }
19185 fprintf_unfiltered (f, "\n");
19186 }
19187 }
19188
19189 static void
19190 dump_die_for_error (struct die_info *die)
19191 {
19192 dump_die_shallow (gdb_stderr, 0, die);
19193 }
19194
19195 static void
19196 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19197 {
19198 int indent = level * 4;
19199
19200 gdb_assert (die != NULL);
19201
19202 if (level >= max_level)
19203 return;
19204
19205 dump_die_shallow (f, indent, die);
19206
19207 if (die->child != NULL)
19208 {
19209 print_spaces (indent, f);
19210 fprintf_unfiltered (f, " Children:");
19211 if (level + 1 < max_level)
19212 {
19213 fprintf_unfiltered (f, "\n");
19214 dump_die_1 (f, level + 1, max_level, die->child);
19215 }
19216 else
19217 {
19218 fprintf_unfiltered (f,
19219 " [not printed, max nesting level reached]\n");
19220 }
19221 }
19222
19223 if (die->sibling != NULL && level > 0)
19224 {
19225 dump_die_1 (f, level, max_level, die->sibling);
19226 }
19227 }
19228
19229 /* This is called from the pdie macro in gdbinit.in.
19230 It's not static so gcc will keep a copy callable from gdb. */
19231
19232 void
19233 dump_die (struct die_info *die, int max_level)
19234 {
19235 dump_die_1 (gdb_stdlog, 0, max_level, die);
19236 }
19237
19238 static void
19239 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19240 {
19241 void **slot;
19242
19243 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19244 INSERT);
19245
19246 *slot = die;
19247 }
19248
19249 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19250 required kind. */
19251
19252 static sect_offset
19253 dwarf2_get_ref_die_offset (const struct attribute *attr)
19254 {
19255 sect_offset retval = { DW_UNSND (attr) };
19256
19257 if (attr_form_is_ref (attr))
19258 return retval;
19259
19260 retval.sect_off = 0;
19261 complaint (&symfile_complaints,
19262 _("unsupported die ref attribute form: '%s'"),
19263 dwarf_form_name (attr->form));
19264 return retval;
19265 }
19266
19267 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19268 * the value held by the attribute is not constant. */
19269
19270 static LONGEST
19271 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19272 {
19273 if (attr->form == DW_FORM_sdata)
19274 return DW_SND (attr);
19275 else if (attr->form == DW_FORM_udata
19276 || attr->form == DW_FORM_data1
19277 || attr->form == DW_FORM_data2
19278 || attr->form == DW_FORM_data4
19279 || attr->form == DW_FORM_data8)
19280 return DW_UNSND (attr);
19281 else
19282 {
19283 complaint (&symfile_complaints,
19284 _("Attribute value is not a constant (%s)"),
19285 dwarf_form_name (attr->form));
19286 return default_value;
19287 }
19288 }
19289
19290 /* Follow reference or signature attribute ATTR of SRC_DIE.
19291 On entry *REF_CU is the CU of SRC_DIE.
19292 On exit *REF_CU is the CU of the result. */
19293
19294 static struct die_info *
19295 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19296 struct dwarf2_cu **ref_cu)
19297 {
19298 struct die_info *die;
19299
19300 if (attr_form_is_ref (attr))
19301 die = follow_die_ref (src_die, attr, ref_cu);
19302 else if (attr->form == DW_FORM_ref_sig8)
19303 die = follow_die_sig (src_die, attr, ref_cu);
19304 else
19305 {
19306 dump_die_for_error (src_die);
19307 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19308 objfile_name ((*ref_cu)->objfile));
19309 }
19310
19311 return die;
19312 }
19313
19314 /* Follow reference OFFSET.
19315 On entry *REF_CU is the CU of the source die referencing OFFSET.
19316 On exit *REF_CU is the CU of the result.
19317 Returns NULL if OFFSET is invalid. */
19318
19319 static struct die_info *
19320 follow_die_offset (sect_offset offset, int offset_in_dwz,
19321 struct dwarf2_cu **ref_cu)
19322 {
19323 struct die_info temp_die;
19324 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19325
19326 gdb_assert (cu->per_cu != NULL);
19327
19328 target_cu = cu;
19329
19330 if (cu->per_cu->is_debug_types)
19331 {
19332 /* .debug_types CUs cannot reference anything outside their CU.
19333 If they need to, they have to reference a signatured type via
19334 DW_FORM_ref_sig8. */
19335 if (! offset_in_cu_p (&cu->header, offset))
19336 return NULL;
19337 }
19338 else if (offset_in_dwz != cu->per_cu->is_dwz
19339 || ! offset_in_cu_p (&cu->header, offset))
19340 {
19341 struct dwarf2_per_cu_data *per_cu;
19342
19343 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19344 cu->objfile);
19345
19346 /* If necessary, add it to the queue and load its DIEs. */
19347 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19348 load_full_comp_unit (per_cu, cu->language);
19349
19350 target_cu = per_cu->cu;
19351 }
19352 else if (cu->dies == NULL)
19353 {
19354 /* We're loading full DIEs during partial symbol reading. */
19355 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19356 load_full_comp_unit (cu->per_cu, language_minimal);
19357 }
19358
19359 *ref_cu = target_cu;
19360 temp_die.offset = offset;
19361 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19362 }
19363
19364 /* Follow reference attribute ATTR of SRC_DIE.
19365 On entry *REF_CU is the CU of SRC_DIE.
19366 On exit *REF_CU is the CU of the result. */
19367
19368 static struct die_info *
19369 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19370 struct dwarf2_cu **ref_cu)
19371 {
19372 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19373 struct dwarf2_cu *cu = *ref_cu;
19374 struct die_info *die;
19375
19376 die = follow_die_offset (offset,
19377 (attr->form == DW_FORM_GNU_ref_alt
19378 || cu->per_cu->is_dwz),
19379 ref_cu);
19380 if (!die)
19381 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19382 "at 0x%x [in module %s]"),
19383 offset.sect_off, src_die->offset.sect_off,
19384 objfile_name (cu->objfile));
19385
19386 return die;
19387 }
19388
19389 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19390 Returned value is intended for DW_OP_call*. Returned
19391 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19392
19393 struct dwarf2_locexpr_baton
19394 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19395 struct dwarf2_per_cu_data *per_cu,
19396 CORE_ADDR (*get_frame_pc) (void *baton),
19397 void *baton)
19398 {
19399 struct dwarf2_cu *cu;
19400 struct die_info *die;
19401 struct attribute *attr;
19402 struct dwarf2_locexpr_baton retval;
19403
19404 dw2_setup (per_cu->objfile);
19405
19406 if (per_cu->cu == NULL)
19407 load_cu (per_cu);
19408 cu = per_cu->cu;
19409
19410 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19411 if (!die)
19412 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19413 offset.sect_off, objfile_name (per_cu->objfile));
19414
19415 attr = dwarf2_attr (die, DW_AT_location, cu);
19416 if (!attr)
19417 {
19418 /* DWARF: "If there is no such attribute, then there is no effect.".
19419 DATA is ignored if SIZE is 0. */
19420
19421 retval.data = NULL;
19422 retval.size = 0;
19423 }
19424 else if (attr_form_is_section_offset (attr))
19425 {
19426 struct dwarf2_loclist_baton loclist_baton;
19427 CORE_ADDR pc = (*get_frame_pc) (baton);
19428 size_t size;
19429
19430 fill_in_loclist_baton (cu, &loclist_baton, attr);
19431
19432 retval.data = dwarf2_find_location_expression (&loclist_baton,
19433 &size, pc);
19434 retval.size = size;
19435 }
19436 else
19437 {
19438 if (!attr_form_is_block (attr))
19439 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19440 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19441 offset.sect_off, objfile_name (per_cu->objfile));
19442
19443 retval.data = DW_BLOCK (attr)->data;
19444 retval.size = DW_BLOCK (attr)->size;
19445 }
19446 retval.per_cu = cu->per_cu;
19447
19448 age_cached_comp_units ();
19449
19450 return retval;
19451 }
19452
19453 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19454 offset. */
19455
19456 struct dwarf2_locexpr_baton
19457 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19458 struct dwarf2_per_cu_data *per_cu,
19459 CORE_ADDR (*get_frame_pc) (void *baton),
19460 void *baton)
19461 {
19462 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19463
19464 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19465 }
19466
19467 /* Write a constant of a given type as target-ordered bytes into
19468 OBSTACK. */
19469
19470 static const gdb_byte *
19471 write_constant_as_bytes (struct obstack *obstack,
19472 enum bfd_endian byte_order,
19473 struct type *type,
19474 ULONGEST value,
19475 LONGEST *len)
19476 {
19477 gdb_byte *result;
19478
19479 *len = TYPE_LENGTH (type);
19480 result = obstack_alloc (obstack, *len);
19481 store_unsigned_integer (result, *len, byte_order, value);
19482
19483 return result;
19484 }
19485
19486 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19487 pointer to the constant bytes and set LEN to the length of the
19488 data. If memory is needed, allocate it on OBSTACK. If the DIE
19489 does not have a DW_AT_const_value, return NULL. */
19490
19491 const gdb_byte *
19492 dwarf2_fetch_constant_bytes (sect_offset offset,
19493 struct dwarf2_per_cu_data *per_cu,
19494 struct obstack *obstack,
19495 LONGEST *len)
19496 {
19497 struct dwarf2_cu *cu;
19498 struct die_info *die;
19499 struct attribute *attr;
19500 const gdb_byte *result = NULL;
19501 struct type *type;
19502 LONGEST value;
19503 enum bfd_endian byte_order;
19504
19505 dw2_setup (per_cu->objfile);
19506
19507 if (per_cu->cu == NULL)
19508 load_cu (per_cu);
19509 cu = per_cu->cu;
19510
19511 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19512 if (!die)
19513 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19514 offset.sect_off, objfile_name (per_cu->objfile));
19515
19516
19517 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19518 if (attr == NULL)
19519 return NULL;
19520
19521 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19522 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19523
19524 switch (attr->form)
19525 {
19526 case DW_FORM_addr:
19527 case DW_FORM_GNU_addr_index:
19528 {
19529 gdb_byte *tem;
19530
19531 *len = cu->header.addr_size;
19532 tem = obstack_alloc (obstack, *len);
19533 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19534 result = tem;
19535 }
19536 break;
19537 case DW_FORM_string:
19538 case DW_FORM_strp:
19539 case DW_FORM_GNU_str_index:
19540 case DW_FORM_GNU_strp_alt:
19541 /* DW_STRING is already allocated on the objfile obstack, point
19542 directly to it. */
19543 result = (const gdb_byte *) DW_STRING (attr);
19544 *len = strlen (DW_STRING (attr));
19545 break;
19546 case DW_FORM_block1:
19547 case DW_FORM_block2:
19548 case DW_FORM_block4:
19549 case DW_FORM_block:
19550 case DW_FORM_exprloc:
19551 result = DW_BLOCK (attr)->data;
19552 *len = DW_BLOCK (attr)->size;
19553 break;
19554
19555 /* The DW_AT_const_value attributes are supposed to carry the
19556 symbol's value "represented as it would be on the target
19557 architecture." By the time we get here, it's already been
19558 converted to host endianness, so we just need to sign- or
19559 zero-extend it as appropriate. */
19560 case DW_FORM_data1:
19561 type = die_type (die, cu);
19562 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19563 if (result == NULL)
19564 result = write_constant_as_bytes (obstack, byte_order,
19565 type, value, len);
19566 break;
19567 case DW_FORM_data2:
19568 type = die_type (die, cu);
19569 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19570 if (result == NULL)
19571 result = write_constant_as_bytes (obstack, byte_order,
19572 type, value, len);
19573 break;
19574 case DW_FORM_data4:
19575 type = die_type (die, cu);
19576 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19577 if (result == NULL)
19578 result = write_constant_as_bytes (obstack, byte_order,
19579 type, value, len);
19580 break;
19581 case DW_FORM_data8:
19582 type = die_type (die, cu);
19583 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19584 if (result == NULL)
19585 result = write_constant_as_bytes (obstack, byte_order,
19586 type, value, len);
19587 break;
19588
19589 case DW_FORM_sdata:
19590 type = die_type (die, cu);
19591 result = write_constant_as_bytes (obstack, byte_order,
19592 type, DW_SND (attr), len);
19593 break;
19594
19595 case DW_FORM_udata:
19596 type = die_type (die, cu);
19597 result = write_constant_as_bytes (obstack, byte_order,
19598 type, DW_UNSND (attr), len);
19599 break;
19600
19601 default:
19602 complaint (&symfile_complaints,
19603 _("unsupported const value attribute form: '%s'"),
19604 dwarf_form_name (attr->form));
19605 break;
19606 }
19607
19608 return result;
19609 }
19610
19611 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19612 PER_CU. */
19613
19614 struct type *
19615 dwarf2_get_die_type (cu_offset die_offset,
19616 struct dwarf2_per_cu_data *per_cu)
19617 {
19618 sect_offset die_offset_sect;
19619
19620 dw2_setup (per_cu->objfile);
19621
19622 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19623 return get_die_type_at_offset (die_offset_sect, per_cu);
19624 }
19625
19626 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19627 On entry *REF_CU is the CU of SRC_DIE.
19628 On exit *REF_CU is the CU of the result.
19629 Returns NULL if the referenced DIE isn't found. */
19630
19631 static struct die_info *
19632 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19633 struct dwarf2_cu **ref_cu)
19634 {
19635 struct objfile *objfile = (*ref_cu)->objfile;
19636 struct die_info temp_die;
19637 struct dwarf2_cu *sig_cu;
19638 struct die_info *die;
19639
19640 /* While it might be nice to assert sig_type->type == NULL here,
19641 we can get here for DW_AT_imported_declaration where we need
19642 the DIE not the type. */
19643
19644 /* If necessary, add it to the queue and load its DIEs. */
19645
19646 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19647 read_signatured_type (sig_type);
19648
19649 sig_cu = sig_type->per_cu.cu;
19650 gdb_assert (sig_cu != NULL);
19651 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19652 temp_die.offset = sig_type->type_offset_in_section;
19653 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19654 temp_die.offset.sect_off);
19655 if (die)
19656 {
19657 /* For .gdb_index version 7 keep track of included TUs.
19658 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19659 if (dwarf2_per_objfile->index_table != NULL
19660 && dwarf2_per_objfile->index_table->version <= 7)
19661 {
19662 VEC_safe_push (dwarf2_per_cu_ptr,
19663 (*ref_cu)->per_cu->imported_symtabs,
19664 sig_cu->per_cu);
19665 }
19666
19667 *ref_cu = sig_cu;
19668 return die;
19669 }
19670
19671 return NULL;
19672 }
19673
19674 /* Follow signatured type referenced by ATTR in SRC_DIE.
19675 On entry *REF_CU is the CU of SRC_DIE.
19676 On exit *REF_CU is the CU of the result.
19677 The result is the DIE of the type.
19678 If the referenced type cannot be found an error is thrown. */
19679
19680 static struct die_info *
19681 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19682 struct dwarf2_cu **ref_cu)
19683 {
19684 ULONGEST signature = DW_SIGNATURE (attr);
19685 struct signatured_type *sig_type;
19686 struct die_info *die;
19687
19688 gdb_assert (attr->form == DW_FORM_ref_sig8);
19689
19690 sig_type = lookup_signatured_type (*ref_cu, signature);
19691 /* sig_type will be NULL if the signatured type is missing from
19692 the debug info. */
19693 if (sig_type == NULL)
19694 {
19695 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19696 " from DIE at 0x%x [in module %s]"),
19697 hex_string (signature), src_die->offset.sect_off,
19698 objfile_name ((*ref_cu)->objfile));
19699 }
19700
19701 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19702 if (die == NULL)
19703 {
19704 dump_die_for_error (src_die);
19705 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19706 " from DIE at 0x%x [in module %s]"),
19707 hex_string (signature), src_die->offset.sect_off,
19708 objfile_name ((*ref_cu)->objfile));
19709 }
19710
19711 return die;
19712 }
19713
19714 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19715 reading in and processing the type unit if necessary. */
19716
19717 static struct type *
19718 get_signatured_type (struct die_info *die, ULONGEST signature,
19719 struct dwarf2_cu *cu)
19720 {
19721 struct signatured_type *sig_type;
19722 struct dwarf2_cu *type_cu;
19723 struct die_info *type_die;
19724 struct type *type;
19725
19726 sig_type = lookup_signatured_type (cu, signature);
19727 /* sig_type will be NULL if the signatured type is missing from
19728 the debug info. */
19729 if (sig_type == NULL)
19730 {
19731 complaint (&symfile_complaints,
19732 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19733 " from DIE at 0x%x [in module %s]"),
19734 hex_string (signature), die->offset.sect_off,
19735 objfile_name (dwarf2_per_objfile->objfile));
19736 return build_error_marker_type (cu, die);
19737 }
19738
19739 /* If we already know the type we're done. */
19740 if (sig_type->type != NULL)
19741 return sig_type->type;
19742
19743 type_cu = cu;
19744 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19745 if (type_die != NULL)
19746 {
19747 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19748 is created. This is important, for example, because for c++ classes
19749 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19750 type = read_type_die (type_die, type_cu);
19751 if (type == NULL)
19752 {
19753 complaint (&symfile_complaints,
19754 _("Dwarf Error: Cannot build signatured type %s"
19755 " referenced from DIE at 0x%x [in module %s]"),
19756 hex_string (signature), die->offset.sect_off,
19757 objfile_name (dwarf2_per_objfile->objfile));
19758 type = build_error_marker_type (cu, die);
19759 }
19760 }
19761 else
19762 {
19763 complaint (&symfile_complaints,
19764 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19765 " from DIE at 0x%x [in module %s]"),
19766 hex_string (signature), die->offset.sect_off,
19767 objfile_name (dwarf2_per_objfile->objfile));
19768 type = build_error_marker_type (cu, die);
19769 }
19770 sig_type->type = type;
19771
19772 return type;
19773 }
19774
19775 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19776 reading in and processing the type unit if necessary. */
19777
19778 static struct type *
19779 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19780 struct dwarf2_cu *cu) /* ARI: editCase function */
19781 {
19782 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19783 if (attr_form_is_ref (attr))
19784 {
19785 struct dwarf2_cu *type_cu = cu;
19786 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19787
19788 return read_type_die (type_die, type_cu);
19789 }
19790 else if (attr->form == DW_FORM_ref_sig8)
19791 {
19792 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19793 }
19794 else
19795 {
19796 complaint (&symfile_complaints,
19797 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19798 " at 0x%x [in module %s]"),
19799 dwarf_form_name (attr->form), die->offset.sect_off,
19800 objfile_name (dwarf2_per_objfile->objfile));
19801 return build_error_marker_type (cu, die);
19802 }
19803 }
19804
19805 /* Load the DIEs associated with type unit PER_CU into memory. */
19806
19807 static void
19808 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19809 {
19810 struct signatured_type *sig_type;
19811
19812 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19813 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19814
19815 /* We have the per_cu, but we need the signatured_type.
19816 Fortunately this is an easy translation. */
19817 gdb_assert (per_cu->is_debug_types);
19818 sig_type = (struct signatured_type *) per_cu;
19819
19820 gdb_assert (per_cu->cu == NULL);
19821
19822 read_signatured_type (sig_type);
19823
19824 gdb_assert (per_cu->cu != NULL);
19825 }
19826
19827 /* die_reader_func for read_signatured_type.
19828 This is identical to load_full_comp_unit_reader,
19829 but is kept separate for now. */
19830
19831 static void
19832 read_signatured_type_reader (const struct die_reader_specs *reader,
19833 const gdb_byte *info_ptr,
19834 struct die_info *comp_unit_die,
19835 int has_children,
19836 void *data)
19837 {
19838 struct dwarf2_cu *cu = reader->cu;
19839
19840 gdb_assert (cu->die_hash == NULL);
19841 cu->die_hash =
19842 htab_create_alloc_ex (cu->header.length / 12,
19843 die_hash,
19844 die_eq,
19845 NULL,
19846 &cu->comp_unit_obstack,
19847 hashtab_obstack_allocate,
19848 dummy_obstack_deallocate);
19849
19850 if (has_children)
19851 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19852 &info_ptr, comp_unit_die);
19853 cu->dies = comp_unit_die;
19854 /* comp_unit_die is not stored in die_hash, no need. */
19855
19856 /* We try not to read any attributes in this function, because not
19857 all CUs needed for references have been loaded yet, and symbol
19858 table processing isn't initialized. But we have to set the CU language,
19859 or we won't be able to build types correctly.
19860 Similarly, if we do not read the producer, we can not apply
19861 producer-specific interpretation. */
19862 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19863 }
19864
19865 /* Read in a signatured type and build its CU and DIEs.
19866 If the type is a stub for the real type in a DWO file,
19867 read in the real type from the DWO file as well. */
19868
19869 static void
19870 read_signatured_type (struct signatured_type *sig_type)
19871 {
19872 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19873
19874 gdb_assert (per_cu->is_debug_types);
19875 gdb_assert (per_cu->cu == NULL);
19876
19877 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19878 read_signatured_type_reader, NULL);
19879 sig_type->per_cu.tu_read = 1;
19880 }
19881
19882 /* Decode simple location descriptions.
19883 Given a pointer to a dwarf block that defines a location, compute
19884 the location and return the value.
19885
19886 NOTE drow/2003-11-18: This function is called in two situations
19887 now: for the address of static or global variables (partial symbols
19888 only) and for offsets into structures which are expected to be
19889 (more or less) constant. The partial symbol case should go away,
19890 and only the constant case should remain. That will let this
19891 function complain more accurately. A few special modes are allowed
19892 without complaint for global variables (for instance, global
19893 register values and thread-local values).
19894
19895 A location description containing no operations indicates that the
19896 object is optimized out. The return value is 0 for that case.
19897 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19898 callers will only want a very basic result and this can become a
19899 complaint.
19900
19901 Note that stack[0] is unused except as a default error return. */
19902
19903 static CORE_ADDR
19904 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19905 {
19906 struct objfile *objfile = cu->objfile;
19907 size_t i;
19908 size_t size = blk->size;
19909 const gdb_byte *data = blk->data;
19910 CORE_ADDR stack[64];
19911 int stacki;
19912 unsigned int bytes_read, unsnd;
19913 gdb_byte op;
19914
19915 i = 0;
19916 stacki = 0;
19917 stack[stacki] = 0;
19918 stack[++stacki] = 0;
19919
19920 while (i < size)
19921 {
19922 op = data[i++];
19923 switch (op)
19924 {
19925 case DW_OP_lit0:
19926 case DW_OP_lit1:
19927 case DW_OP_lit2:
19928 case DW_OP_lit3:
19929 case DW_OP_lit4:
19930 case DW_OP_lit5:
19931 case DW_OP_lit6:
19932 case DW_OP_lit7:
19933 case DW_OP_lit8:
19934 case DW_OP_lit9:
19935 case DW_OP_lit10:
19936 case DW_OP_lit11:
19937 case DW_OP_lit12:
19938 case DW_OP_lit13:
19939 case DW_OP_lit14:
19940 case DW_OP_lit15:
19941 case DW_OP_lit16:
19942 case DW_OP_lit17:
19943 case DW_OP_lit18:
19944 case DW_OP_lit19:
19945 case DW_OP_lit20:
19946 case DW_OP_lit21:
19947 case DW_OP_lit22:
19948 case DW_OP_lit23:
19949 case DW_OP_lit24:
19950 case DW_OP_lit25:
19951 case DW_OP_lit26:
19952 case DW_OP_lit27:
19953 case DW_OP_lit28:
19954 case DW_OP_lit29:
19955 case DW_OP_lit30:
19956 case DW_OP_lit31:
19957 stack[++stacki] = op - DW_OP_lit0;
19958 break;
19959
19960 case DW_OP_reg0:
19961 case DW_OP_reg1:
19962 case DW_OP_reg2:
19963 case DW_OP_reg3:
19964 case DW_OP_reg4:
19965 case DW_OP_reg5:
19966 case DW_OP_reg6:
19967 case DW_OP_reg7:
19968 case DW_OP_reg8:
19969 case DW_OP_reg9:
19970 case DW_OP_reg10:
19971 case DW_OP_reg11:
19972 case DW_OP_reg12:
19973 case DW_OP_reg13:
19974 case DW_OP_reg14:
19975 case DW_OP_reg15:
19976 case DW_OP_reg16:
19977 case DW_OP_reg17:
19978 case DW_OP_reg18:
19979 case DW_OP_reg19:
19980 case DW_OP_reg20:
19981 case DW_OP_reg21:
19982 case DW_OP_reg22:
19983 case DW_OP_reg23:
19984 case DW_OP_reg24:
19985 case DW_OP_reg25:
19986 case DW_OP_reg26:
19987 case DW_OP_reg27:
19988 case DW_OP_reg28:
19989 case DW_OP_reg29:
19990 case DW_OP_reg30:
19991 case DW_OP_reg31:
19992 stack[++stacki] = op - DW_OP_reg0;
19993 if (i < size)
19994 dwarf2_complex_location_expr_complaint ();
19995 break;
19996
19997 case DW_OP_regx:
19998 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19999 i += bytes_read;
20000 stack[++stacki] = unsnd;
20001 if (i < size)
20002 dwarf2_complex_location_expr_complaint ();
20003 break;
20004
20005 case DW_OP_addr:
20006 stack[++stacki] = read_address (objfile->obfd, &data[i],
20007 cu, &bytes_read);
20008 i += bytes_read;
20009 break;
20010
20011 case DW_OP_const1u:
20012 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20013 i += 1;
20014 break;
20015
20016 case DW_OP_const1s:
20017 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20018 i += 1;
20019 break;
20020
20021 case DW_OP_const2u:
20022 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20023 i += 2;
20024 break;
20025
20026 case DW_OP_const2s:
20027 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20028 i += 2;
20029 break;
20030
20031 case DW_OP_const4u:
20032 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20033 i += 4;
20034 break;
20035
20036 case DW_OP_const4s:
20037 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20038 i += 4;
20039 break;
20040
20041 case DW_OP_const8u:
20042 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20043 i += 8;
20044 break;
20045
20046 case DW_OP_constu:
20047 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20048 &bytes_read);
20049 i += bytes_read;
20050 break;
20051
20052 case DW_OP_consts:
20053 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20054 i += bytes_read;
20055 break;
20056
20057 case DW_OP_dup:
20058 stack[stacki + 1] = stack[stacki];
20059 stacki++;
20060 break;
20061
20062 case DW_OP_plus:
20063 stack[stacki - 1] += stack[stacki];
20064 stacki--;
20065 break;
20066
20067 case DW_OP_plus_uconst:
20068 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20069 &bytes_read);
20070 i += bytes_read;
20071 break;
20072
20073 case DW_OP_minus:
20074 stack[stacki - 1] -= stack[stacki];
20075 stacki--;
20076 break;
20077
20078 case DW_OP_deref:
20079 /* If we're not the last op, then we definitely can't encode
20080 this using GDB's address_class enum. This is valid for partial
20081 global symbols, although the variable's address will be bogus
20082 in the psymtab. */
20083 if (i < size)
20084 dwarf2_complex_location_expr_complaint ();
20085 break;
20086
20087 case DW_OP_GNU_push_tls_address:
20088 /* The top of the stack has the offset from the beginning
20089 of the thread control block at which the variable is located. */
20090 /* Nothing should follow this operator, so the top of stack would
20091 be returned. */
20092 /* This is valid for partial global symbols, but the variable's
20093 address will be bogus in the psymtab. Make it always at least
20094 non-zero to not look as a variable garbage collected by linker
20095 which have DW_OP_addr 0. */
20096 if (i < size)
20097 dwarf2_complex_location_expr_complaint ();
20098 stack[stacki]++;
20099 break;
20100
20101 case DW_OP_GNU_uninit:
20102 break;
20103
20104 case DW_OP_GNU_addr_index:
20105 case DW_OP_GNU_const_index:
20106 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20107 &bytes_read);
20108 i += bytes_read;
20109 break;
20110
20111 default:
20112 {
20113 const char *name = get_DW_OP_name (op);
20114
20115 if (name)
20116 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20117 name);
20118 else
20119 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20120 op);
20121 }
20122
20123 return (stack[stacki]);
20124 }
20125
20126 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20127 outside of the allocated space. Also enforce minimum>0. */
20128 if (stacki >= ARRAY_SIZE (stack) - 1)
20129 {
20130 complaint (&symfile_complaints,
20131 _("location description stack overflow"));
20132 return 0;
20133 }
20134
20135 if (stacki <= 0)
20136 {
20137 complaint (&symfile_complaints,
20138 _("location description stack underflow"));
20139 return 0;
20140 }
20141 }
20142 return (stack[stacki]);
20143 }
20144
20145 /* memory allocation interface */
20146
20147 static struct dwarf_block *
20148 dwarf_alloc_block (struct dwarf2_cu *cu)
20149 {
20150 struct dwarf_block *blk;
20151
20152 blk = (struct dwarf_block *)
20153 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20154 return (blk);
20155 }
20156
20157 static struct die_info *
20158 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20159 {
20160 struct die_info *die;
20161 size_t size = sizeof (struct die_info);
20162
20163 if (num_attrs > 1)
20164 size += (num_attrs - 1) * sizeof (struct attribute);
20165
20166 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20167 memset (die, 0, sizeof (struct die_info));
20168 return (die);
20169 }
20170
20171 \f
20172 /* Macro support. */
20173
20174 /* Return file name relative to the compilation directory of file number I in
20175 *LH's file name table. The result is allocated using xmalloc; the caller is
20176 responsible for freeing it. */
20177
20178 static char *
20179 file_file_name (int file, struct line_header *lh)
20180 {
20181 /* Is the file number a valid index into the line header's file name
20182 table? Remember that file numbers start with one, not zero. */
20183 if (1 <= file && file <= lh->num_file_names)
20184 {
20185 struct file_entry *fe = &lh->file_names[file - 1];
20186
20187 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20188 return xstrdup (fe->name);
20189 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20190 fe->name, NULL);
20191 }
20192 else
20193 {
20194 /* The compiler produced a bogus file number. We can at least
20195 record the macro definitions made in the file, even if we
20196 won't be able to find the file by name. */
20197 char fake_name[80];
20198
20199 xsnprintf (fake_name, sizeof (fake_name),
20200 "<bad macro file number %d>", file);
20201
20202 complaint (&symfile_complaints,
20203 _("bad file number in macro information (%d)"),
20204 file);
20205
20206 return xstrdup (fake_name);
20207 }
20208 }
20209
20210 /* Return the full name of file number I in *LH's file name table.
20211 Use COMP_DIR as the name of the current directory of the
20212 compilation. The result is allocated using xmalloc; the caller is
20213 responsible for freeing it. */
20214 static char *
20215 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20216 {
20217 /* Is the file number a valid index into the line header's file name
20218 table? Remember that file numbers start with one, not zero. */
20219 if (1 <= file && file <= lh->num_file_names)
20220 {
20221 char *relative = file_file_name (file, lh);
20222
20223 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20224 return relative;
20225 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20226 }
20227 else
20228 return file_file_name (file, lh);
20229 }
20230
20231
20232 static struct macro_source_file *
20233 macro_start_file (int file, int line,
20234 struct macro_source_file *current_file,
20235 const char *comp_dir,
20236 struct line_header *lh, struct objfile *objfile)
20237 {
20238 /* File name relative to the compilation directory of this source file. */
20239 char *file_name = file_file_name (file, lh);
20240
20241 if (! current_file)
20242 {
20243 /* Note: We don't create a macro table for this compilation unit
20244 at all until we actually get a filename. */
20245 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20246
20247 /* If we have no current file, then this must be the start_file
20248 directive for the compilation unit's main source file. */
20249 current_file = macro_set_main (macro_table, file_name);
20250 macro_define_special (macro_table);
20251 }
20252 else
20253 current_file = macro_include (current_file, line, file_name);
20254
20255 xfree (file_name);
20256
20257 return current_file;
20258 }
20259
20260
20261 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20262 followed by a null byte. */
20263 static char *
20264 copy_string (const char *buf, int len)
20265 {
20266 char *s = xmalloc (len + 1);
20267
20268 memcpy (s, buf, len);
20269 s[len] = '\0';
20270 return s;
20271 }
20272
20273
20274 static const char *
20275 consume_improper_spaces (const char *p, const char *body)
20276 {
20277 if (*p == ' ')
20278 {
20279 complaint (&symfile_complaints,
20280 _("macro definition contains spaces "
20281 "in formal argument list:\n`%s'"),
20282 body);
20283
20284 while (*p == ' ')
20285 p++;
20286 }
20287
20288 return p;
20289 }
20290
20291
20292 static void
20293 parse_macro_definition (struct macro_source_file *file, int line,
20294 const char *body)
20295 {
20296 const char *p;
20297
20298 /* The body string takes one of two forms. For object-like macro
20299 definitions, it should be:
20300
20301 <macro name> " " <definition>
20302
20303 For function-like macro definitions, it should be:
20304
20305 <macro name> "() " <definition>
20306 or
20307 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20308
20309 Spaces may appear only where explicitly indicated, and in the
20310 <definition>.
20311
20312 The Dwarf 2 spec says that an object-like macro's name is always
20313 followed by a space, but versions of GCC around March 2002 omit
20314 the space when the macro's definition is the empty string.
20315
20316 The Dwarf 2 spec says that there should be no spaces between the
20317 formal arguments in a function-like macro's formal argument list,
20318 but versions of GCC around March 2002 include spaces after the
20319 commas. */
20320
20321
20322 /* Find the extent of the macro name. The macro name is terminated
20323 by either a space or null character (for an object-like macro) or
20324 an opening paren (for a function-like macro). */
20325 for (p = body; *p; p++)
20326 if (*p == ' ' || *p == '(')
20327 break;
20328
20329 if (*p == ' ' || *p == '\0')
20330 {
20331 /* It's an object-like macro. */
20332 int name_len = p - body;
20333 char *name = copy_string (body, name_len);
20334 const char *replacement;
20335
20336 if (*p == ' ')
20337 replacement = body + name_len + 1;
20338 else
20339 {
20340 dwarf2_macro_malformed_definition_complaint (body);
20341 replacement = body + name_len;
20342 }
20343
20344 macro_define_object (file, line, name, replacement);
20345
20346 xfree (name);
20347 }
20348 else if (*p == '(')
20349 {
20350 /* It's a function-like macro. */
20351 char *name = copy_string (body, p - body);
20352 int argc = 0;
20353 int argv_size = 1;
20354 char **argv = xmalloc (argv_size * sizeof (*argv));
20355
20356 p++;
20357
20358 p = consume_improper_spaces (p, body);
20359
20360 /* Parse the formal argument list. */
20361 while (*p && *p != ')')
20362 {
20363 /* Find the extent of the current argument name. */
20364 const char *arg_start = p;
20365
20366 while (*p && *p != ',' && *p != ')' && *p != ' ')
20367 p++;
20368
20369 if (! *p || p == arg_start)
20370 dwarf2_macro_malformed_definition_complaint (body);
20371 else
20372 {
20373 /* Make sure argv has room for the new argument. */
20374 if (argc >= argv_size)
20375 {
20376 argv_size *= 2;
20377 argv = xrealloc (argv, argv_size * sizeof (*argv));
20378 }
20379
20380 argv[argc++] = copy_string (arg_start, p - arg_start);
20381 }
20382
20383 p = consume_improper_spaces (p, body);
20384
20385 /* Consume the comma, if present. */
20386 if (*p == ',')
20387 {
20388 p++;
20389
20390 p = consume_improper_spaces (p, body);
20391 }
20392 }
20393
20394 if (*p == ')')
20395 {
20396 p++;
20397
20398 if (*p == ' ')
20399 /* Perfectly formed definition, no complaints. */
20400 macro_define_function (file, line, name,
20401 argc, (const char **) argv,
20402 p + 1);
20403 else if (*p == '\0')
20404 {
20405 /* Complain, but do define it. */
20406 dwarf2_macro_malformed_definition_complaint (body);
20407 macro_define_function (file, line, name,
20408 argc, (const char **) argv,
20409 p);
20410 }
20411 else
20412 /* Just complain. */
20413 dwarf2_macro_malformed_definition_complaint (body);
20414 }
20415 else
20416 /* Just complain. */
20417 dwarf2_macro_malformed_definition_complaint (body);
20418
20419 xfree (name);
20420 {
20421 int i;
20422
20423 for (i = 0; i < argc; i++)
20424 xfree (argv[i]);
20425 }
20426 xfree (argv);
20427 }
20428 else
20429 dwarf2_macro_malformed_definition_complaint (body);
20430 }
20431
20432 /* Skip some bytes from BYTES according to the form given in FORM.
20433 Returns the new pointer. */
20434
20435 static const gdb_byte *
20436 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20437 enum dwarf_form form,
20438 unsigned int offset_size,
20439 struct dwarf2_section_info *section)
20440 {
20441 unsigned int bytes_read;
20442
20443 switch (form)
20444 {
20445 case DW_FORM_data1:
20446 case DW_FORM_flag:
20447 ++bytes;
20448 break;
20449
20450 case DW_FORM_data2:
20451 bytes += 2;
20452 break;
20453
20454 case DW_FORM_data4:
20455 bytes += 4;
20456 break;
20457
20458 case DW_FORM_data8:
20459 bytes += 8;
20460 break;
20461
20462 case DW_FORM_string:
20463 read_direct_string (abfd, bytes, &bytes_read);
20464 bytes += bytes_read;
20465 break;
20466
20467 case DW_FORM_sec_offset:
20468 case DW_FORM_strp:
20469 case DW_FORM_GNU_strp_alt:
20470 bytes += offset_size;
20471 break;
20472
20473 case DW_FORM_block:
20474 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20475 bytes += bytes_read;
20476 break;
20477
20478 case DW_FORM_block1:
20479 bytes += 1 + read_1_byte (abfd, bytes);
20480 break;
20481 case DW_FORM_block2:
20482 bytes += 2 + read_2_bytes (abfd, bytes);
20483 break;
20484 case DW_FORM_block4:
20485 bytes += 4 + read_4_bytes (abfd, bytes);
20486 break;
20487
20488 case DW_FORM_sdata:
20489 case DW_FORM_udata:
20490 case DW_FORM_GNU_addr_index:
20491 case DW_FORM_GNU_str_index:
20492 bytes = gdb_skip_leb128 (bytes, buffer_end);
20493 if (bytes == NULL)
20494 {
20495 dwarf2_section_buffer_overflow_complaint (section);
20496 return NULL;
20497 }
20498 break;
20499
20500 default:
20501 {
20502 complain:
20503 complaint (&symfile_complaints,
20504 _("invalid form 0x%x in `%s'"),
20505 form, get_section_name (section));
20506 return NULL;
20507 }
20508 }
20509
20510 return bytes;
20511 }
20512
20513 /* A helper for dwarf_decode_macros that handles skipping an unknown
20514 opcode. Returns an updated pointer to the macro data buffer; or,
20515 on error, issues a complaint and returns NULL. */
20516
20517 static const gdb_byte *
20518 skip_unknown_opcode (unsigned int opcode,
20519 const gdb_byte **opcode_definitions,
20520 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20521 bfd *abfd,
20522 unsigned int offset_size,
20523 struct dwarf2_section_info *section)
20524 {
20525 unsigned int bytes_read, i;
20526 unsigned long arg;
20527 const gdb_byte *defn;
20528
20529 if (opcode_definitions[opcode] == NULL)
20530 {
20531 complaint (&symfile_complaints,
20532 _("unrecognized DW_MACFINO opcode 0x%x"),
20533 opcode);
20534 return NULL;
20535 }
20536
20537 defn = opcode_definitions[opcode];
20538 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20539 defn += bytes_read;
20540
20541 for (i = 0; i < arg; ++i)
20542 {
20543 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20544 section);
20545 if (mac_ptr == NULL)
20546 {
20547 /* skip_form_bytes already issued the complaint. */
20548 return NULL;
20549 }
20550 }
20551
20552 return mac_ptr;
20553 }
20554
20555 /* A helper function which parses the header of a macro section.
20556 If the macro section is the extended (for now called "GNU") type,
20557 then this updates *OFFSET_SIZE. Returns a pointer to just after
20558 the header, or issues a complaint and returns NULL on error. */
20559
20560 static const gdb_byte *
20561 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20562 bfd *abfd,
20563 const gdb_byte *mac_ptr,
20564 unsigned int *offset_size,
20565 int section_is_gnu)
20566 {
20567 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20568
20569 if (section_is_gnu)
20570 {
20571 unsigned int version, flags;
20572
20573 version = read_2_bytes (abfd, mac_ptr);
20574 if (version != 4)
20575 {
20576 complaint (&symfile_complaints,
20577 _("unrecognized version `%d' in .debug_macro section"),
20578 version);
20579 return NULL;
20580 }
20581 mac_ptr += 2;
20582
20583 flags = read_1_byte (abfd, mac_ptr);
20584 ++mac_ptr;
20585 *offset_size = (flags & 1) ? 8 : 4;
20586
20587 if ((flags & 2) != 0)
20588 /* We don't need the line table offset. */
20589 mac_ptr += *offset_size;
20590
20591 /* Vendor opcode descriptions. */
20592 if ((flags & 4) != 0)
20593 {
20594 unsigned int i, count;
20595
20596 count = read_1_byte (abfd, mac_ptr);
20597 ++mac_ptr;
20598 for (i = 0; i < count; ++i)
20599 {
20600 unsigned int opcode, bytes_read;
20601 unsigned long arg;
20602
20603 opcode = read_1_byte (abfd, mac_ptr);
20604 ++mac_ptr;
20605 opcode_definitions[opcode] = mac_ptr;
20606 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20607 mac_ptr += bytes_read;
20608 mac_ptr += arg;
20609 }
20610 }
20611 }
20612
20613 return mac_ptr;
20614 }
20615
20616 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20617 including DW_MACRO_GNU_transparent_include. */
20618
20619 static void
20620 dwarf_decode_macro_bytes (bfd *abfd,
20621 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20622 struct macro_source_file *current_file,
20623 struct line_header *lh, const char *comp_dir,
20624 struct dwarf2_section_info *section,
20625 int section_is_gnu, int section_is_dwz,
20626 unsigned int offset_size,
20627 struct objfile *objfile,
20628 htab_t include_hash)
20629 {
20630 enum dwarf_macro_record_type macinfo_type;
20631 int at_commandline;
20632 const gdb_byte *opcode_definitions[256];
20633
20634 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20635 &offset_size, section_is_gnu);
20636 if (mac_ptr == NULL)
20637 {
20638 /* We already issued a complaint. */
20639 return;
20640 }
20641
20642 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20643 GDB is still reading the definitions from command line. First
20644 DW_MACINFO_start_file will need to be ignored as it was already executed
20645 to create CURRENT_FILE for the main source holding also the command line
20646 definitions. On first met DW_MACINFO_start_file this flag is reset to
20647 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20648
20649 at_commandline = 1;
20650
20651 do
20652 {
20653 /* Do we at least have room for a macinfo type byte? */
20654 if (mac_ptr >= mac_end)
20655 {
20656 dwarf2_section_buffer_overflow_complaint (section);
20657 break;
20658 }
20659
20660 macinfo_type = read_1_byte (abfd, mac_ptr);
20661 mac_ptr++;
20662
20663 /* Note that we rely on the fact that the corresponding GNU and
20664 DWARF constants are the same. */
20665 switch (macinfo_type)
20666 {
20667 /* A zero macinfo type indicates the end of the macro
20668 information. */
20669 case 0:
20670 break;
20671
20672 case DW_MACRO_GNU_define:
20673 case DW_MACRO_GNU_undef:
20674 case DW_MACRO_GNU_define_indirect:
20675 case DW_MACRO_GNU_undef_indirect:
20676 case DW_MACRO_GNU_define_indirect_alt:
20677 case DW_MACRO_GNU_undef_indirect_alt:
20678 {
20679 unsigned int bytes_read;
20680 int line;
20681 const char *body;
20682 int is_define;
20683
20684 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20685 mac_ptr += bytes_read;
20686
20687 if (macinfo_type == DW_MACRO_GNU_define
20688 || macinfo_type == DW_MACRO_GNU_undef)
20689 {
20690 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20691 mac_ptr += bytes_read;
20692 }
20693 else
20694 {
20695 LONGEST str_offset;
20696
20697 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20698 mac_ptr += offset_size;
20699
20700 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20701 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20702 || section_is_dwz)
20703 {
20704 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20705
20706 body = read_indirect_string_from_dwz (dwz, str_offset);
20707 }
20708 else
20709 body = read_indirect_string_at_offset (abfd, str_offset);
20710 }
20711
20712 is_define = (macinfo_type == DW_MACRO_GNU_define
20713 || macinfo_type == DW_MACRO_GNU_define_indirect
20714 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20715 if (! current_file)
20716 {
20717 /* DWARF violation as no main source is present. */
20718 complaint (&symfile_complaints,
20719 _("debug info with no main source gives macro %s "
20720 "on line %d: %s"),
20721 is_define ? _("definition") : _("undefinition"),
20722 line, body);
20723 break;
20724 }
20725 if ((line == 0 && !at_commandline)
20726 || (line != 0 && at_commandline))
20727 complaint (&symfile_complaints,
20728 _("debug info gives %s macro %s with %s line %d: %s"),
20729 at_commandline ? _("command-line") : _("in-file"),
20730 is_define ? _("definition") : _("undefinition"),
20731 line == 0 ? _("zero") : _("non-zero"), line, body);
20732
20733 if (is_define)
20734 parse_macro_definition (current_file, line, body);
20735 else
20736 {
20737 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20738 || macinfo_type == DW_MACRO_GNU_undef_indirect
20739 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20740 macro_undef (current_file, line, body);
20741 }
20742 }
20743 break;
20744
20745 case DW_MACRO_GNU_start_file:
20746 {
20747 unsigned int bytes_read;
20748 int line, file;
20749
20750 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20751 mac_ptr += bytes_read;
20752 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20753 mac_ptr += bytes_read;
20754
20755 if ((line == 0 && !at_commandline)
20756 || (line != 0 && at_commandline))
20757 complaint (&symfile_complaints,
20758 _("debug info gives source %d included "
20759 "from %s at %s line %d"),
20760 file, at_commandline ? _("command-line") : _("file"),
20761 line == 0 ? _("zero") : _("non-zero"), line);
20762
20763 if (at_commandline)
20764 {
20765 /* This DW_MACRO_GNU_start_file was executed in the
20766 pass one. */
20767 at_commandline = 0;
20768 }
20769 else
20770 current_file = macro_start_file (file, line,
20771 current_file, comp_dir,
20772 lh, objfile);
20773 }
20774 break;
20775
20776 case DW_MACRO_GNU_end_file:
20777 if (! current_file)
20778 complaint (&symfile_complaints,
20779 _("macro debug info has an unmatched "
20780 "`close_file' directive"));
20781 else
20782 {
20783 current_file = current_file->included_by;
20784 if (! current_file)
20785 {
20786 enum dwarf_macro_record_type next_type;
20787
20788 /* GCC circa March 2002 doesn't produce the zero
20789 type byte marking the end of the compilation
20790 unit. Complain if it's not there, but exit no
20791 matter what. */
20792
20793 /* Do we at least have room for a macinfo type byte? */
20794 if (mac_ptr >= mac_end)
20795 {
20796 dwarf2_section_buffer_overflow_complaint (section);
20797 return;
20798 }
20799
20800 /* We don't increment mac_ptr here, so this is just
20801 a look-ahead. */
20802 next_type = read_1_byte (abfd, mac_ptr);
20803 if (next_type != 0)
20804 complaint (&symfile_complaints,
20805 _("no terminating 0-type entry for "
20806 "macros in `.debug_macinfo' section"));
20807
20808 return;
20809 }
20810 }
20811 break;
20812
20813 case DW_MACRO_GNU_transparent_include:
20814 case DW_MACRO_GNU_transparent_include_alt:
20815 {
20816 LONGEST offset;
20817 void **slot;
20818 bfd *include_bfd = abfd;
20819 struct dwarf2_section_info *include_section = section;
20820 struct dwarf2_section_info alt_section;
20821 const gdb_byte *include_mac_end = mac_end;
20822 int is_dwz = section_is_dwz;
20823 const gdb_byte *new_mac_ptr;
20824
20825 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20826 mac_ptr += offset_size;
20827
20828 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20829 {
20830 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20831
20832 dwarf2_read_section (dwarf2_per_objfile->objfile,
20833 &dwz->macro);
20834
20835 include_section = &dwz->macro;
20836 include_bfd = get_section_bfd_owner (include_section);
20837 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20838 is_dwz = 1;
20839 }
20840
20841 new_mac_ptr = include_section->buffer + offset;
20842 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20843
20844 if (*slot != NULL)
20845 {
20846 /* This has actually happened; see
20847 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20848 complaint (&symfile_complaints,
20849 _("recursive DW_MACRO_GNU_transparent_include in "
20850 ".debug_macro section"));
20851 }
20852 else
20853 {
20854 *slot = (void *) new_mac_ptr;
20855
20856 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20857 include_mac_end, current_file,
20858 lh, comp_dir,
20859 section, section_is_gnu, is_dwz,
20860 offset_size, objfile, include_hash);
20861
20862 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20863 }
20864 }
20865 break;
20866
20867 case DW_MACINFO_vendor_ext:
20868 if (!section_is_gnu)
20869 {
20870 unsigned int bytes_read;
20871 int constant;
20872
20873 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20874 mac_ptr += bytes_read;
20875 read_direct_string (abfd, mac_ptr, &bytes_read);
20876 mac_ptr += bytes_read;
20877
20878 /* We don't recognize any vendor extensions. */
20879 break;
20880 }
20881 /* FALLTHROUGH */
20882
20883 default:
20884 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20885 mac_ptr, mac_end, abfd, offset_size,
20886 section);
20887 if (mac_ptr == NULL)
20888 return;
20889 break;
20890 }
20891 } while (macinfo_type != 0);
20892 }
20893
20894 static void
20895 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20896 const char *comp_dir, int section_is_gnu)
20897 {
20898 struct objfile *objfile = dwarf2_per_objfile->objfile;
20899 struct line_header *lh = cu->line_header;
20900 bfd *abfd;
20901 const gdb_byte *mac_ptr, *mac_end;
20902 struct macro_source_file *current_file = 0;
20903 enum dwarf_macro_record_type macinfo_type;
20904 unsigned int offset_size = cu->header.offset_size;
20905 const gdb_byte *opcode_definitions[256];
20906 struct cleanup *cleanup;
20907 htab_t include_hash;
20908 void **slot;
20909 struct dwarf2_section_info *section;
20910 const char *section_name;
20911
20912 if (cu->dwo_unit != NULL)
20913 {
20914 if (section_is_gnu)
20915 {
20916 section = &cu->dwo_unit->dwo_file->sections.macro;
20917 section_name = ".debug_macro.dwo";
20918 }
20919 else
20920 {
20921 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20922 section_name = ".debug_macinfo.dwo";
20923 }
20924 }
20925 else
20926 {
20927 if (section_is_gnu)
20928 {
20929 section = &dwarf2_per_objfile->macro;
20930 section_name = ".debug_macro";
20931 }
20932 else
20933 {
20934 section = &dwarf2_per_objfile->macinfo;
20935 section_name = ".debug_macinfo";
20936 }
20937 }
20938
20939 dwarf2_read_section (objfile, section);
20940 if (section->buffer == NULL)
20941 {
20942 complaint (&symfile_complaints, _("missing %s section"), section_name);
20943 return;
20944 }
20945 abfd = get_section_bfd_owner (section);
20946
20947 /* First pass: Find the name of the base filename.
20948 This filename is needed in order to process all macros whose definition
20949 (or undefinition) comes from the command line. These macros are defined
20950 before the first DW_MACINFO_start_file entry, and yet still need to be
20951 associated to the base file.
20952
20953 To determine the base file name, we scan the macro definitions until we
20954 reach the first DW_MACINFO_start_file entry. We then initialize
20955 CURRENT_FILE accordingly so that any macro definition found before the
20956 first DW_MACINFO_start_file can still be associated to the base file. */
20957
20958 mac_ptr = section->buffer + offset;
20959 mac_end = section->buffer + section->size;
20960
20961 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20962 &offset_size, section_is_gnu);
20963 if (mac_ptr == NULL)
20964 {
20965 /* We already issued a complaint. */
20966 return;
20967 }
20968
20969 do
20970 {
20971 /* Do we at least have room for a macinfo type byte? */
20972 if (mac_ptr >= mac_end)
20973 {
20974 /* Complaint is printed during the second pass as GDB will probably
20975 stop the first pass earlier upon finding
20976 DW_MACINFO_start_file. */
20977 break;
20978 }
20979
20980 macinfo_type = read_1_byte (abfd, mac_ptr);
20981 mac_ptr++;
20982
20983 /* Note that we rely on the fact that the corresponding GNU and
20984 DWARF constants are the same. */
20985 switch (macinfo_type)
20986 {
20987 /* A zero macinfo type indicates the end of the macro
20988 information. */
20989 case 0:
20990 break;
20991
20992 case DW_MACRO_GNU_define:
20993 case DW_MACRO_GNU_undef:
20994 /* Only skip the data by MAC_PTR. */
20995 {
20996 unsigned int bytes_read;
20997
20998 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20999 mac_ptr += bytes_read;
21000 read_direct_string (abfd, mac_ptr, &bytes_read);
21001 mac_ptr += bytes_read;
21002 }
21003 break;
21004
21005 case DW_MACRO_GNU_start_file:
21006 {
21007 unsigned int bytes_read;
21008 int line, file;
21009
21010 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21011 mac_ptr += bytes_read;
21012 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21013 mac_ptr += bytes_read;
21014
21015 current_file = macro_start_file (file, line, current_file,
21016 comp_dir, lh, objfile);
21017 }
21018 break;
21019
21020 case DW_MACRO_GNU_end_file:
21021 /* No data to skip by MAC_PTR. */
21022 break;
21023
21024 case DW_MACRO_GNU_define_indirect:
21025 case DW_MACRO_GNU_undef_indirect:
21026 case DW_MACRO_GNU_define_indirect_alt:
21027 case DW_MACRO_GNU_undef_indirect_alt:
21028 {
21029 unsigned int bytes_read;
21030
21031 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21032 mac_ptr += bytes_read;
21033 mac_ptr += offset_size;
21034 }
21035 break;
21036
21037 case DW_MACRO_GNU_transparent_include:
21038 case DW_MACRO_GNU_transparent_include_alt:
21039 /* Note that, according to the spec, a transparent include
21040 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21041 skip this opcode. */
21042 mac_ptr += offset_size;
21043 break;
21044
21045 case DW_MACINFO_vendor_ext:
21046 /* Only skip the data by MAC_PTR. */
21047 if (!section_is_gnu)
21048 {
21049 unsigned int bytes_read;
21050
21051 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21052 mac_ptr += bytes_read;
21053 read_direct_string (abfd, mac_ptr, &bytes_read);
21054 mac_ptr += bytes_read;
21055 }
21056 /* FALLTHROUGH */
21057
21058 default:
21059 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21060 mac_ptr, mac_end, abfd, offset_size,
21061 section);
21062 if (mac_ptr == NULL)
21063 return;
21064 break;
21065 }
21066 } while (macinfo_type != 0 && current_file == NULL);
21067
21068 /* Second pass: Process all entries.
21069
21070 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21071 command-line macro definitions/undefinitions. This flag is unset when we
21072 reach the first DW_MACINFO_start_file entry. */
21073
21074 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21075 NULL, xcalloc, xfree);
21076 cleanup = make_cleanup_htab_delete (include_hash);
21077 mac_ptr = section->buffer + offset;
21078 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21079 *slot = (void *) mac_ptr;
21080 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21081 current_file, lh, comp_dir, section,
21082 section_is_gnu, 0,
21083 offset_size, objfile, include_hash);
21084 do_cleanups (cleanup);
21085 }
21086
21087 /* Check if the attribute's form is a DW_FORM_block*
21088 if so return true else false. */
21089
21090 static int
21091 attr_form_is_block (const struct attribute *attr)
21092 {
21093 return (attr == NULL ? 0 :
21094 attr->form == DW_FORM_block1
21095 || attr->form == DW_FORM_block2
21096 || attr->form == DW_FORM_block4
21097 || attr->form == DW_FORM_block
21098 || attr->form == DW_FORM_exprloc);
21099 }
21100
21101 /* Return non-zero if ATTR's value is a section offset --- classes
21102 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21103 You may use DW_UNSND (attr) to retrieve such offsets.
21104
21105 Section 7.5.4, "Attribute Encodings", explains that no attribute
21106 may have a value that belongs to more than one of these classes; it
21107 would be ambiguous if we did, because we use the same forms for all
21108 of them. */
21109
21110 static int
21111 attr_form_is_section_offset (const struct attribute *attr)
21112 {
21113 return (attr->form == DW_FORM_data4
21114 || attr->form == DW_FORM_data8
21115 || attr->form == DW_FORM_sec_offset);
21116 }
21117
21118 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21119 zero otherwise. When this function returns true, you can apply
21120 dwarf2_get_attr_constant_value to it.
21121
21122 However, note that for some attributes you must check
21123 attr_form_is_section_offset before using this test. DW_FORM_data4
21124 and DW_FORM_data8 are members of both the constant class, and of
21125 the classes that contain offsets into other debug sections
21126 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21127 that, if an attribute's can be either a constant or one of the
21128 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21129 taken as section offsets, not constants. */
21130
21131 static int
21132 attr_form_is_constant (const struct attribute *attr)
21133 {
21134 switch (attr->form)
21135 {
21136 case DW_FORM_sdata:
21137 case DW_FORM_udata:
21138 case DW_FORM_data1:
21139 case DW_FORM_data2:
21140 case DW_FORM_data4:
21141 case DW_FORM_data8:
21142 return 1;
21143 default:
21144 return 0;
21145 }
21146 }
21147
21148
21149 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21150 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21151
21152 static int
21153 attr_form_is_ref (const struct attribute *attr)
21154 {
21155 switch (attr->form)
21156 {
21157 case DW_FORM_ref_addr:
21158 case DW_FORM_ref1:
21159 case DW_FORM_ref2:
21160 case DW_FORM_ref4:
21161 case DW_FORM_ref8:
21162 case DW_FORM_ref_udata:
21163 case DW_FORM_GNU_ref_alt:
21164 return 1;
21165 default:
21166 return 0;
21167 }
21168 }
21169
21170 /* Return the .debug_loc section to use for CU.
21171 For DWO files use .debug_loc.dwo. */
21172
21173 static struct dwarf2_section_info *
21174 cu_debug_loc_section (struct dwarf2_cu *cu)
21175 {
21176 if (cu->dwo_unit)
21177 return &cu->dwo_unit->dwo_file->sections.loc;
21178 return &dwarf2_per_objfile->loc;
21179 }
21180
21181 /* A helper function that fills in a dwarf2_loclist_baton. */
21182
21183 static void
21184 fill_in_loclist_baton (struct dwarf2_cu *cu,
21185 struct dwarf2_loclist_baton *baton,
21186 const struct attribute *attr)
21187 {
21188 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21189
21190 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21191
21192 baton->per_cu = cu->per_cu;
21193 gdb_assert (baton->per_cu);
21194 /* We don't know how long the location list is, but make sure we
21195 don't run off the edge of the section. */
21196 baton->size = section->size - DW_UNSND (attr);
21197 baton->data = section->buffer + DW_UNSND (attr);
21198 baton->base_address = cu->base_address;
21199 baton->from_dwo = cu->dwo_unit != NULL;
21200 }
21201
21202 static void
21203 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21204 struct dwarf2_cu *cu, int is_block)
21205 {
21206 struct objfile *objfile = dwarf2_per_objfile->objfile;
21207 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21208
21209 if (attr_form_is_section_offset (attr)
21210 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21211 the section. If so, fall through to the complaint in the
21212 other branch. */
21213 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21214 {
21215 struct dwarf2_loclist_baton *baton;
21216
21217 baton = obstack_alloc (&objfile->objfile_obstack,
21218 sizeof (struct dwarf2_loclist_baton));
21219
21220 fill_in_loclist_baton (cu, baton, attr);
21221
21222 if (cu->base_known == 0)
21223 complaint (&symfile_complaints,
21224 _("Location list used without "
21225 "specifying the CU base address."));
21226
21227 SYMBOL_ACLASS_INDEX (sym) = (is_block
21228 ? dwarf2_loclist_block_index
21229 : dwarf2_loclist_index);
21230 SYMBOL_LOCATION_BATON (sym) = baton;
21231 }
21232 else
21233 {
21234 struct dwarf2_locexpr_baton *baton;
21235
21236 baton = obstack_alloc (&objfile->objfile_obstack,
21237 sizeof (struct dwarf2_locexpr_baton));
21238 baton->per_cu = cu->per_cu;
21239 gdb_assert (baton->per_cu);
21240
21241 if (attr_form_is_block (attr))
21242 {
21243 /* Note that we're just copying the block's data pointer
21244 here, not the actual data. We're still pointing into the
21245 info_buffer for SYM's objfile; right now we never release
21246 that buffer, but when we do clean up properly this may
21247 need to change. */
21248 baton->size = DW_BLOCK (attr)->size;
21249 baton->data = DW_BLOCK (attr)->data;
21250 }
21251 else
21252 {
21253 dwarf2_invalid_attrib_class_complaint ("location description",
21254 SYMBOL_NATURAL_NAME (sym));
21255 baton->size = 0;
21256 }
21257
21258 SYMBOL_ACLASS_INDEX (sym) = (is_block
21259 ? dwarf2_locexpr_block_index
21260 : dwarf2_locexpr_index);
21261 SYMBOL_LOCATION_BATON (sym) = baton;
21262 }
21263 }
21264
21265 /* Return the OBJFILE associated with the compilation unit CU. If CU
21266 came from a separate debuginfo file, then the master objfile is
21267 returned. */
21268
21269 struct objfile *
21270 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21271 {
21272 struct objfile *objfile = per_cu->objfile;
21273
21274 /* Return the master objfile, so that we can report and look up the
21275 correct file containing this variable. */
21276 if (objfile->separate_debug_objfile_backlink)
21277 objfile = objfile->separate_debug_objfile_backlink;
21278
21279 return objfile;
21280 }
21281
21282 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21283 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21284 CU_HEADERP first. */
21285
21286 static const struct comp_unit_head *
21287 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21288 struct dwarf2_per_cu_data *per_cu)
21289 {
21290 const gdb_byte *info_ptr;
21291
21292 if (per_cu->cu)
21293 return &per_cu->cu->header;
21294
21295 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21296
21297 memset (cu_headerp, 0, sizeof (*cu_headerp));
21298 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21299
21300 return cu_headerp;
21301 }
21302
21303 /* Return the address size given in the compilation unit header for CU. */
21304
21305 int
21306 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21307 {
21308 struct comp_unit_head cu_header_local;
21309 const struct comp_unit_head *cu_headerp;
21310
21311 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21312
21313 return cu_headerp->addr_size;
21314 }
21315
21316 /* Return the offset size given in the compilation unit header for CU. */
21317
21318 int
21319 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21320 {
21321 struct comp_unit_head cu_header_local;
21322 const struct comp_unit_head *cu_headerp;
21323
21324 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21325
21326 return cu_headerp->offset_size;
21327 }
21328
21329 /* See its dwarf2loc.h declaration. */
21330
21331 int
21332 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21333 {
21334 struct comp_unit_head cu_header_local;
21335 const struct comp_unit_head *cu_headerp;
21336
21337 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21338
21339 if (cu_headerp->version == 2)
21340 return cu_headerp->addr_size;
21341 else
21342 return cu_headerp->offset_size;
21343 }
21344
21345 /* Return the text offset of the CU. The returned offset comes from
21346 this CU's objfile. If this objfile came from a separate debuginfo
21347 file, then the offset may be different from the corresponding
21348 offset in the parent objfile. */
21349
21350 CORE_ADDR
21351 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21352 {
21353 struct objfile *objfile = per_cu->objfile;
21354
21355 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21356 }
21357
21358 /* Locate the .debug_info compilation unit from CU's objfile which contains
21359 the DIE at OFFSET. Raises an error on failure. */
21360
21361 static struct dwarf2_per_cu_data *
21362 dwarf2_find_containing_comp_unit (sect_offset offset,
21363 unsigned int offset_in_dwz,
21364 struct objfile *objfile)
21365 {
21366 struct dwarf2_per_cu_data *this_cu;
21367 int low, high;
21368 const sect_offset *cu_off;
21369
21370 low = 0;
21371 high = dwarf2_per_objfile->n_comp_units - 1;
21372 while (high > low)
21373 {
21374 struct dwarf2_per_cu_data *mid_cu;
21375 int mid = low + (high - low) / 2;
21376
21377 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21378 cu_off = &mid_cu->offset;
21379 if (mid_cu->is_dwz > offset_in_dwz
21380 || (mid_cu->is_dwz == offset_in_dwz
21381 && cu_off->sect_off >= offset.sect_off))
21382 high = mid;
21383 else
21384 low = mid + 1;
21385 }
21386 gdb_assert (low == high);
21387 this_cu = dwarf2_per_objfile->all_comp_units[low];
21388 cu_off = &this_cu->offset;
21389 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21390 {
21391 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21392 error (_("Dwarf Error: could not find partial DIE containing "
21393 "offset 0x%lx [in module %s]"),
21394 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21395
21396 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21397 <= offset.sect_off);
21398 return dwarf2_per_objfile->all_comp_units[low-1];
21399 }
21400 else
21401 {
21402 this_cu = dwarf2_per_objfile->all_comp_units[low];
21403 if (low == dwarf2_per_objfile->n_comp_units - 1
21404 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21405 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21406 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21407 return this_cu;
21408 }
21409 }
21410
21411 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21412
21413 static void
21414 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21415 {
21416 memset (cu, 0, sizeof (*cu));
21417 per_cu->cu = cu;
21418 cu->per_cu = per_cu;
21419 cu->objfile = per_cu->objfile;
21420 obstack_init (&cu->comp_unit_obstack);
21421 }
21422
21423 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21424
21425 static void
21426 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21427 enum language pretend_language)
21428 {
21429 struct attribute *attr;
21430
21431 /* Set the language we're debugging. */
21432 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21433 if (attr)
21434 set_cu_language (DW_UNSND (attr), cu);
21435 else
21436 {
21437 cu->language = pretend_language;
21438 cu->language_defn = language_def (cu->language);
21439 }
21440
21441 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21442 if (attr)
21443 cu->producer = DW_STRING (attr);
21444 }
21445
21446 /* Release one cached compilation unit, CU. We unlink it from the tree
21447 of compilation units, but we don't remove it from the read_in_chain;
21448 the caller is responsible for that.
21449 NOTE: DATA is a void * because this function is also used as a
21450 cleanup routine. */
21451
21452 static void
21453 free_heap_comp_unit (void *data)
21454 {
21455 struct dwarf2_cu *cu = data;
21456
21457 gdb_assert (cu->per_cu != NULL);
21458 cu->per_cu->cu = NULL;
21459 cu->per_cu = NULL;
21460
21461 obstack_free (&cu->comp_unit_obstack, NULL);
21462
21463 xfree (cu);
21464 }
21465
21466 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21467 when we're finished with it. We can't free the pointer itself, but be
21468 sure to unlink it from the cache. Also release any associated storage. */
21469
21470 static void
21471 free_stack_comp_unit (void *data)
21472 {
21473 struct dwarf2_cu *cu = data;
21474
21475 gdb_assert (cu->per_cu != NULL);
21476 cu->per_cu->cu = NULL;
21477 cu->per_cu = NULL;
21478
21479 obstack_free (&cu->comp_unit_obstack, NULL);
21480 cu->partial_dies = NULL;
21481 }
21482
21483 /* Free all cached compilation units. */
21484
21485 static void
21486 free_cached_comp_units (void *data)
21487 {
21488 struct dwarf2_per_cu_data *per_cu, **last_chain;
21489
21490 per_cu = dwarf2_per_objfile->read_in_chain;
21491 last_chain = &dwarf2_per_objfile->read_in_chain;
21492 while (per_cu != NULL)
21493 {
21494 struct dwarf2_per_cu_data *next_cu;
21495
21496 next_cu = per_cu->cu->read_in_chain;
21497
21498 free_heap_comp_unit (per_cu->cu);
21499 *last_chain = next_cu;
21500
21501 per_cu = next_cu;
21502 }
21503 }
21504
21505 /* Increase the age counter on each cached compilation unit, and free
21506 any that are too old. */
21507
21508 static void
21509 age_cached_comp_units (void)
21510 {
21511 struct dwarf2_per_cu_data *per_cu, **last_chain;
21512
21513 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21514 per_cu = dwarf2_per_objfile->read_in_chain;
21515 while (per_cu != NULL)
21516 {
21517 per_cu->cu->last_used ++;
21518 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21519 dwarf2_mark (per_cu->cu);
21520 per_cu = per_cu->cu->read_in_chain;
21521 }
21522
21523 per_cu = dwarf2_per_objfile->read_in_chain;
21524 last_chain = &dwarf2_per_objfile->read_in_chain;
21525 while (per_cu != NULL)
21526 {
21527 struct dwarf2_per_cu_data *next_cu;
21528
21529 next_cu = per_cu->cu->read_in_chain;
21530
21531 if (!per_cu->cu->mark)
21532 {
21533 free_heap_comp_unit (per_cu->cu);
21534 *last_chain = next_cu;
21535 }
21536 else
21537 last_chain = &per_cu->cu->read_in_chain;
21538
21539 per_cu = next_cu;
21540 }
21541 }
21542
21543 /* Remove a single compilation unit from the cache. */
21544
21545 static void
21546 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21547 {
21548 struct dwarf2_per_cu_data *per_cu, **last_chain;
21549
21550 per_cu = dwarf2_per_objfile->read_in_chain;
21551 last_chain = &dwarf2_per_objfile->read_in_chain;
21552 while (per_cu != NULL)
21553 {
21554 struct dwarf2_per_cu_data *next_cu;
21555
21556 next_cu = per_cu->cu->read_in_chain;
21557
21558 if (per_cu == target_per_cu)
21559 {
21560 free_heap_comp_unit (per_cu->cu);
21561 per_cu->cu = NULL;
21562 *last_chain = next_cu;
21563 break;
21564 }
21565 else
21566 last_chain = &per_cu->cu->read_in_chain;
21567
21568 per_cu = next_cu;
21569 }
21570 }
21571
21572 /* Release all extra memory associated with OBJFILE. */
21573
21574 void
21575 dwarf2_free_objfile (struct objfile *objfile)
21576 {
21577 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21578
21579 if (dwarf2_per_objfile == NULL)
21580 return;
21581
21582 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21583 free_cached_comp_units (NULL);
21584
21585 if (dwarf2_per_objfile->quick_file_names_table)
21586 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21587
21588 /* Everything else should be on the objfile obstack. */
21589 }
21590
21591 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21592 We store these in a hash table separate from the DIEs, and preserve them
21593 when the DIEs are flushed out of cache.
21594
21595 The CU "per_cu" pointer is needed because offset alone is not enough to
21596 uniquely identify the type. A file may have multiple .debug_types sections,
21597 or the type may come from a DWO file. Furthermore, while it's more logical
21598 to use per_cu->section+offset, with Fission the section with the data is in
21599 the DWO file but we don't know that section at the point we need it.
21600 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21601 because we can enter the lookup routine, get_die_type_at_offset, from
21602 outside this file, and thus won't necessarily have PER_CU->cu.
21603 Fortunately, PER_CU is stable for the life of the objfile. */
21604
21605 struct dwarf2_per_cu_offset_and_type
21606 {
21607 const struct dwarf2_per_cu_data *per_cu;
21608 sect_offset offset;
21609 struct type *type;
21610 };
21611
21612 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21613
21614 static hashval_t
21615 per_cu_offset_and_type_hash (const void *item)
21616 {
21617 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21618
21619 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21620 }
21621
21622 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21623
21624 static int
21625 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21626 {
21627 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21628 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21629
21630 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21631 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21632 }
21633
21634 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21635 table if necessary. For convenience, return TYPE.
21636
21637 The DIEs reading must have careful ordering to:
21638 * Not cause infite loops trying to read in DIEs as a prerequisite for
21639 reading current DIE.
21640 * Not trying to dereference contents of still incompletely read in types
21641 while reading in other DIEs.
21642 * Enable referencing still incompletely read in types just by a pointer to
21643 the type without accessing its fields.
21644
21645 Therefore caller should follow these rules:
21646 * Try to fetch any prerequisite types we may need to build this DIE type
21647 before building the type and calling set_die_type.
21648 * After building type call set_die_type for current DIE as soon as
21649 possible before fetching more types to complete the current type.
21650 * Make the type as complete as possible before fetching more types. */
21651
21652 static struct type *
21653 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21654 {
21655 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21656 struct objfile *objfile = cu->objfile;
21657
21658 /* For Ada types, make sure that the gnat-specific data is always
21659 initialized (if not already set). There are a few types where
21660 we should not be doing so, because the type-specific area is
21661 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21662 where the type-specific area is used to store the floatformat).
21663 But this is not a problem, because the gnat-specific information
21664 is actually not needed for these types. */
21665 if (need_gnat_info (cu)
21666 && TYPE_CODE (type) != TYPE_CODE_FUNC
21667 && TYPE_CODE (type) != TYPE_CODE_FLT
21668 && !HAVE_GNAT_AUX_INFO (type))
21669 INIT_GNAT_SPECIFIC (type);
21670
21671 if (dwarf2_per_objfile->die_type_hash == NULL)
21672 {
21673 dwarf2_per_objfile->die_type_hash =
21674 htab_create_alloc_ex (127,
21675 per_cu_offset_and_type_hash,
21676 per_cu_offset_and_type_eq,
21677 NULL,
21678 &objfile->objfile_obstack,
21679 hashtab_obstack_allocate,
21680 dummy_obstack_deallocate);
21681 }
21682
21683 ofs.per_cu = cu->per_cu;
21684 ofs.offset = die->offset;
21685 ofs.type = type;
21686 slot = (struct dwarf2_per_cu_offset_and_type **)
21687 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21688 if (*slot)
21689 complaint (&symfile_complaints,
21690 _("A problem internal to GDB: DIE 0x%x has type already set"),
21691 die->offset.sect_off);
21692 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21693 **slot = ofs;
21694 return type;
21695 }
21696
21697 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21698 or return NULL if the die does not have a saved type. */
21699
21700 static struct type *
21701 get_die_type_at_offset (sect_offset offset,
21702 struct dwarf2_per_cu_data *per_cu)
21703 {
21704 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21705
21706 if (dwarf2_per_objfile->die_type_hash == NULL)
21707 return NULL;
21708
21709 ofs.per_cu = per_cu;
21710 ofs.offset = offset;
21711 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21712 if (slot)
21713 return slot->type;
21714 else
21715 return NULL;
21716 }
21717
21718 /* Look up the type for DIE in CU in die_type_hash,
21719 or return NULL if DIE does not have a saved type. */
21720
21721 static struct type *
21722 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21723 {
21724 return get_die_type_at_offset (die->offset, cu->per_cu);
21725 }
21726
21727 /* Add a dependence relationship from CU to REF_PER_CU. */
21728
21729 static void
21730 dwarf2_add_dependence (struct dwarf2_cu *cu,
21731 struct dwarf2_per_cu_data *ref_per_cu)
21732 {
21733 void **slot;
21734
21735 if (cu->dependencies == NULL)
21736 cu->dependencies
21737 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21738 NULL, &cu->comp_unit_obstack,
21739 hashtab_obstack_allocate,
21740 dummy_obstack_deallocate);
21741
21742 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21743 if (*slot == NULL)
21744 *slot = ref_per_cu;
21745 }
21746
21747 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21748 Set the mark field in every compilation unit in the
21749 cache that we must keep because we are keeping CU. */
21750
21751 static int
21752 dwarf2_mark_helper (void **slot, void *data)
21753 {
21754 struct dwarf2_per_cu_data *per_cu;
21755
21756 per_cu = (struct dwarf2_per_cu_data *) *slot;
21757
21758 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21759 reading of the chain. As such dependencies remain valid it is not much
21760 useful to track and undo them during QUIT cleanups. */
21761 if (per_cu->cu == NULL)
21762 return 1;
21763
21764 if (per_cu->cu->mark)
21765 return 1;
21766 per_cu->cu->mark = 1;
21767
21768 if (per_cu->cu->dependencies != NULL)
21769 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21770
21771 return 1;
21772 }
21773
21774 /* Set the mark field in CU and in every other compilation unit in the
21775 cache that we must keep because we are keeping CU. */
21776
21777 static void
21778 dwarf2_mark (struct dwarf2_cu *cu)
21779 {
21780 if (cu->mark)
21781 return;
21782 cu->mark = 1;
21783 if (cu->dependencies != NULL)
21784 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21785 }
21786
21787 static void
21788 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21789 {
21790 while (per_cu)
21791 {
21792 per_cu->cu->mark = 0;
21793 per_cu = per_cu->cu->read_in_chain;
21794 }
21795 }
21796
21797 /* Trivial hash function for partial_die_info: the hash value of a DIE
21798 is its offset in .debug_info for this objfile. */
21799
21800 static hashval_t
21801 partial_die_hash (const void *item)
21802 {
21803 const struct partial_die_info *part_die = item;
21804
21805 return part_die->offset.sect_off;
21806 }
21807
21808 /* Trivial comparison function for partial_die_info structures: two DIEs
21809 are equal if they have the same offset. */
21810
21811 static int
21812 partial_die_eq (const void *item_lhs, const void *item_rhs)
21813 {
21814 const struct partial_die_info *part_die_lhs = item_lhs;
21815 const struct partial_die_info *part_die_rhs = item_rhs;
21816
21817 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21818 }
21819
21820 static struct cmd_list_element *set_dwarf2_cmdlist;
21821 static struct cmd_list_element *show_dwarf2_cmdlist;
21822
21823 static void
21824 set_dwarf2_cmd (char *args, int from_tty)
21825 {
21826 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21827 gdb_stdout);
21828 }
21829
21830 static void
21831 show_dwarf2_cmd (char *args, int from_tty)
21832 {
21833 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21834 }
21835
21836 /* Free data associated with OBJFILE, if necessary. */
21837
21838 static void
21839 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21840 {
21841 struct dwarf2_per_objfile *data = d;
21842 int ix;
21843
21844 /* Make sure we don't accidentally use dwarf2_per_objfile while
21845 cleaning up. */
21846 dwarf2_per_objfile = NULL;
21847
21848 for (ix = 0; ix < data->n_comp_units; ++ix)
21849 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21850
21851 for (ix = 0; ix < data->n_type_units; ++ix)
21852 VEC_free (dwarf2_per_cu_ptr,
21853 data->all_type_units[ix]->per_cu.imported_symtabs);
21854 xfree (data->all_type_units);
21855
21856 VEC_free (dwarf2_section_info_def, data->types);
21857
21858 if (data->dwo_files)
21859 free_dwo_files (data->dwo_files, objfile);
21860 if (data->dwp_file)
21861 gdb_bfd_unref (data->dwp_file->dbfd);
21862
21863 if (data->dwz_file && data->dwz_file->dwz_bfd)
21864 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21865 }
21866
21867 \f
21868 /* The "save gdb-index" command. */
21869
21870 /* The contents of the hash table we create when building the string
21871 table. */
21872 struct strtab_entry
21873 {
21874 offset_type offset;
21875 const char *str;
21876 };
21877
21878 /* Hash function for a strtab_entry.
21879
21880 Function is used only during write_hash_table so no index format backward
21881 compatibility is needed. */
21882
21883 static hashval_t
21884 hash_strtab_entry (const void *e)
21885 {
21886 const struct strtab_entry *entry = e;
21887 return mapped_index_string_hash (INT_MAX, entry->str);
21888 }
21889
21890 /* Equality function for a strtab_entry. */
21891
21892 static int
21893 eq_strtab_entry (const void *a, const void *b)
21894 {
21895 const struct strtab_entry *ea = a;
21896 const struct strtab_entry *eb = b;
21897 return !strcmp (ea->str, eb->str);
21898 }
21899
21900 /* Create a strtab_entry hash table. */
21901
21902 static htab_t
21903 create_strtab (void)
21904 {
21905 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21906 xfree, xcalloc, xfree);
21907 }
21908
21909 /* Add a string to the constant pool. Return the string's offset in
21910 host order. */
21911
21912 static offset_type
21913 add_string (htab_t table, struct obstack *cpool, const char *str)
21914 {
21915 void **slot;
21916 struct strtab_entry entry;
21917 struct strtab_entry *result;
21918
21919 entry.str = str;
21920 slot = htab_find_slot (table, &entry, INSERT);
21921 if (*slot)
21922 result = *slot;
21923 else
21924 {
21925 result = XNEW (struct strtab_entry);
21926 result->offset = obstack_object_size (cpool);
21927 result->str = str;
21928 obstack_grow_str0 (cpool, str);
21929 *slot = result;
21930 }
21931 return result->offset;
21932 }
21933
21934 /* An entry in the symbol table. */
21935 struct symtab_index_entry
21936 {
21937 /* The name of the symbol. */
21938 const char *name;
21939 /* The offset of the name in the constant pool. */
21940 offset_type index_offset;
21941 /* A sorted vector of the indices of all the CUs that hold an object
21942 of this name. */
21943 VEC (offset_type) *cu_indices;
21944 };
21945
21946 /* The symbol table. This is a power-of-2-sized hash table. */
21947 struct mapped_symtab
21948 {
21949 offset_type n_elements;
21950 offset_type size;
21951 struct symtab_index_entry **data;
21952 };
21953
21954 /* Hash function for a symtab_index_entry. */
21955
21956 static hashval_t
21957 hash_symtab_entry (const void *e)
21958 {
21959 const struct symtab_index_entry *entry = e;
21960 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21961 sizeof (offset_type) * VEC_length (offset_type,
21962 entry->cu_indices),
21963 0);
21964 }
21965
21966 /* Equality function for a symtab_index_entry. */
21967
21968 static int
21969 eq_symtab_entry (const void *a, const void *b)
21970 {
21971 const struct symtab_index_entry *ea = a;
21972 const struct symtab_index_entry *eb = b;
21973 int len = VEC_length (offset_type, ea->cu_indices);
21974 if (len != VEC_length (offset_type, eb->cu_indices))
21975 return 0;
21976 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21977 VEC_address (offset_type, eb->cu_indices),
21978 sizeof (offset_type) * len);
21979 }
21980
21981 /* Destroy a symtab_index_entry. */
21982
21983 static void
21984 delete_symtab_entry (void *p)
21985 {
21986 struct symtab_index_entry *entry = p;
21987 VEC_free (offset_type, entry->cu_indices);
21988 xfree (entry);
21989 }
21990
21991 /* Create a hash table holding symtab_index_entry objects. */
21992
21993 static htab_t
21994 create_symbol_hash_table (void)
21995 {
21996 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21997 delete_symtab_entry, xcalloc, xfree);
21998 }
21999
22000 /* Create a new mapped symtab object. */
22001
22002 static struct mapped_symtab *
22003 create_mapped_symtab (void)
22004 {
22005 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22006 symtab->n_elements = 0;
22007 symtab->size = 1024;
22008 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22009 return symtab;
22010 }
22011
22012 /* Destroy a mapped_symtab. */
22013
22014 static void
22015 cleanup_mapped_symtab (void *p)
22016 {
22017 struct mapped_symtab *symtab = p;
22018 /* The contents of the array are freed when the other hash table is
22019 destroyed. */
22020 xfree (symtab->data);
22021 xfree (symtab);
22022 }
22023
22024 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22025 the slot.
22026
22027 Function is used only during write_hash_table so no index format backward
22028 compatibility is needed. */
22029
22030 static struct symtab_index_entry **
22031 find_slot (struct mapped_symtab *symtab, const char *name)
22032 {
22033 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22034
22035 index = hash & (symtab->size - 1);
22036 step = ((hash * 17) & (symtab->size - 1)) | 1;
22037
22038 for (;;)
22039 {
22040 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22041 return &symtab->data[index];
22042 index = (index + step) & (symtab->size - 1);
22043 }
22044 }
22045
22046 /* Expand SYMTAB's hash table. */
22047
22048 static void
22049 hash_expand (struct mapped_symtab *symtab)
22050 {
22051 offset_type old_size = symtab->size;
22052 offset_type i;
22053 struct symtab_index_entry **old_entries = symtab->data;
22054
22055 symtab->size *= 2;
22056 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22057
22058 for (i = 0; i < old_size; ++i)
22059 {
22060 if (old_entries[i])
22061 {
22062 struct symtab_index_entry **slot = find_slot (symtab,
22063 old_entries[i]->name);
22064 *slot = old_entries[i];
22065 }
22066 }
22067
22068 xfree (old_entries);
22069 }
22070
22071 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22072 CU_INDEX is the index of the CU in which the symbol appears.
22073 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22074
22075 static void
22076 add_index_entry (struct mapped_symtab *symtab, const char *name,
22077 int is_static, gdb_index_symbol_kind kind,
22078 offset_type cu_index)
22079 {
22080 struct symtab_index_entry **slot;
22081 offset_type cu_index_and_attrs;
22082
22083 ++symtab->n_elements;
22084 if (4 * symtab->n_elements / 3 >= symtab->size)
22085 hash_expand (symtab);
22086
22087 slot = find_slot (symtab, name);
22088 if (!*slot)
22089 {
22090 *slot = XNEW (struct symtab_index_entry);
22091 (*slot)->name = name;
22092 /* index_offset is set later. */
22093 (*slot)->cu_indices = NULL;
22094 }
22095
22096 cu_index_and_attrs = 0;
22097 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22098 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22099 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22100
22101 /* We don't want to record an index value twice as we want to avoid the
22102 duplication.
22103 We process all global symbols and then all static symbols
22104 (which would allow us to avoid the duplication by only having to check
22105 the last entry pushed), but a symbol could have multiple kinds in one CU.
22106 To keep things simple we don't worry about the duplication here and
22107 sort and uniqufy the list after we've processed all symbols. */
22108 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22109 }
22110
22111 /* qsort helper routine for uniquify_cu_indices. */
22112
22113 static int
22114 offset_type_compare (const void *ap, const void *bp)
22115 {
22116 offset_type a = *(offset_type *) ap;
22117 offset_type b = *(offset_type *) bp;
22118
22119 return (a > b) - (b > a);
22120 }
22121
22122 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22123
22124 static void
22125 uniquify_cu_indices (struct mapped_symtab *symtab)
22126 {
22127 int i;
22128
22129 for (i = 0; i < symtab->size; ++i)
22130 {
22131 struct symtab_index_entry *entry = symtab->data[i];
22132
22133 if (entry
22134 && entry->cu_indices != NULL)
22135 {
22136 unsigned int next_to_insert, next_to_check;
22137 offset_type last_value;
22138
22139 qsort (VEC_address (offset_type, entry->cu_indices),
22140 VEC_length (offset_type, entry->cu_indices),
22141 sizeof (offset_type), offset_type_compare);
22142
22143 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22144 next_to_insert = 1;
22145 for (next_to_check = 1;
22146 next_to_check < VEC_length (offset_type, entry->cu_indices);
22147 ++next_to_check)
22148 {
22149 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22150 != last_value)
22151 {
22152 last_value = VEC_index (offset_type, entry->cu_indices,
22153 next_to_check);
22154 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22155 last_value);
22156 ++next_to_insert;
22157 }
22158 }
22159 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22160 }
22161 }
22162 }
22163
22164 /* Add a vector of indices to the constant pool. */
22165
22166 static offset_type
22167 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22168 struct symtab_index_entry *entry)
22169 {
22170 void **slot;
22171
22172 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22173 if (!*slot)
22174 {
22175 offset_type len = VEC_length (offset_type, entry->cu_indices);
22176 offset_type val = MAYBE_SWAP (len);
22177 offset_type iter;
22178 int i;
22179
22180 *slot = entry;
22181 entry->index_offset = obstack_object_size (cpool);
22182
22183 obstack_grow (cpool, &val, sizeof (val));
22184 for (i = 0;
22185 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22186 ++i)
22187 {
22188 val = MAYBE_SWAP (iter);
22189 obstack_grow (cpool, &val, sizeof (val));
22190 }
22191 }
22192 else
22193 {
22194 struct symtab_index_entry *old_entry = *slot;
22195 entry->index_offset = old_entry->index_offset;
22196 entry = old_entry;
22197 }
22198 return entry->index_offset;
22199 }
22200
22201 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22202 constant pool entries going into the obstack CPOOL. */
22203
22204 static void
22205 write_hash_table (struct mapped_symtab *symtab,
22206 struct obstack *output, struct obstack *cpool)
22207 {
22208 offset_type i;
22209 htab_t symbol_hash_table;
22210 htab_t str_table;
22211
22212 symbol_hash_table = create_symbol_hash_table ();
22213 str_table = create_strtab ();
22214
22215 /* We add all the index vectors to the constant pool first, to
22216 ensure alignment is ok. */
22217 for (i = 0; i < symtab->size; ++i)
22218 {
22219 if (symtab->data[i])
22220 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22221 }
22222
22223 /* Now write out the hash table. */
22224 for (i = 0; i < symtab->size; ++i)
22225 {
22226 offset_type str_off, vec_off;
22227
22228 if (symtab->data[i])
22229 {
22230 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22231 vec_off = symtab->data[i]->index_offset;
22232 }
22233 else
22234 {
22235 /* While 0 is a valid constant pool index, it is not valid
22236 to have 0 for both offsets. */
22237 str_off = 0;
22238 vec_off = 0;
22239 }
22240
22241 str_off = MAYBE_SWAP (str_off);
22242 vec_off = MAYBE_SWAP (vec_off);
22243
22244 obstack_grow (output, &str_off, sizeof (str_off));
22245 obstack_grow (output, &vec_off, sizeof (vec_off));
22246 }
22247
22248 htab_delete (str_table);
22249 htab_delete (symbol_hash_table);
22250 }
22251
22252 /* Struct to map psymtab to CU index in the index file. */
22253 struct psymtab_cu_index_map
22254 {
22255 struct partial_symtab *psymtab;
22256 unsigned int cu_index;
22257 };
22258
22259 static hashval_t
22260 hash_psymtab_cu_index (const void *item)
22261 {
22262 const struct psymtab_cu_index_map *map = item;
22263
22264 return htab_hash_pointer (map->psymtab);
22265 }
22266
22267 static int
22268 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22269 {
22270 const struct psymtab_cu_index_map *lhs = item_lhs;
22271 const struct psymtab_cu_index_map *rhs = item_rhs;
22272
22273 return lhs->psymtab == rhs->psymtab;
22274 }
22275
22276 /* Helper struct for building the address table. */
22277 struct addrmap_index_data
22278 {
22279 struct objfile *objfile;
22280 struct obstack *addr_obstack;
22281 htab_t cu_index_htab;
22282
22283 /* Non-zero if the previous_* fields are valid.
22284 We can't write an entry until we see the next entry (since it is only then
22285 that we know the end of the entry). */
22286 int previous_valid;
22287 /* Index of the CU in the table of all CUs in the index file. */
22288 unsigned int previous_cu_index;
22289 /* Start address of the CU. */
22290 CORE_ADDR previous_cu_start;
22291 };
22292
22293 /* Write an address entry to OBSTACK. */
22294
22295 static void
22296 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22297 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22298 {
22299 offset_type cu_index_to_write;
22300 gdb_byte addr[8];
22301 CORE_ADDR baseaddr;
22302
22303 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22304
22305 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22306 obstack_grow (obstack, addr, 8);
22307 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22308 obstack_grow (obstack, addr, 8);
22309 cu_index_to_write = MAYBE_SWAP (cu_index);
22310 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22311 }
22312
22313 /* Worker function for traversing an addrmap to build the address table. */
22314
22315 static int
22316 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22317 {
22318 struct addrmap_index_data *data = datap;
22319 struct partial_symtab *pst = obj;
22320
22321 if (data->previous_valid)
22322 add_address_entry (data->objfile, data->addr_obstack,
22323 data->previous_cu_start, start_addr,
22324 data->previous_cu_index);
22325
22326 data->previous_cu_start = start_addr;
22327 if (pst != NULL)
22328 {
22329 struct psymtab_cu_index_map find_map, *map;
22330 find_map.psymtab = pst;
22331 map = htab_find (data->cu_index_htab, &find_map);
22332 gdb_assert (map != NULL);
22333 data->previous_cu_index = map->cu_index;
22334 data->previous_valid = 1;
22335 }
22336 else
22337 data->previous_valid = 0;
22338
22339 return 0;
22340 }
22341
22342 /* Write OBJFILE's address map to OBSTACK.
22343 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22344 in the index file. */
22345
22346 static void
22347 write_address_map (struct objfile *objfile, struct obstack *obstack,
22348 htab_t cu_index_htab)
22349 {
22350 struct addrmap_index_data addrmap_index_data;
22351
22352 /* When writing the address table, we have to cope with the fact that
22353 the addrmap iterator only provides the start of a region; we have to
22354 wait until the next invocation to get the start of the next region. */
22355
22356 addrmap_index_data.objfile = objfile;
22357 addrmap_index_data.addr_obstack = obstack;
22358 addrmap_index_data.cu_index_htab = cu_index_htab;
22359 addrmap_index_data.previous_valid = 0;
22360
22361 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22362 &addrmap_index_data);
22363
22364 /* It's highly unlikely the last entry (end address = 0xff...ff)
22365 is valid, but we should still handle it.
22366 The end address is recorded as the start of the next region, but that
22367 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22368 anyway. */
22369 if (addrmap_index_data.previous_valid)
22370 add_address_entry (objfile, obstack,
22371 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22372 addrmap_index_data.previous_cu_index);
22373 }
22374
22375 /* Return the symbol kind of PSYM. */
22376
22377 static gdb_index_symbol_kind
22378 symbol_kind (struct partial_symbol *psym)
22379 {
22380 domain_enum domain = PSYMBOL_DOMAIN (psym);
22381 enum address_class aclass = PSYMBOL_CLASS (psym);
22382
22383 switch (domain)
22384 {
22385 case VAR_DOMAIN:
22386 switch (aclass)
22387 {
22388 case LOC_BLOCK:
22389 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22390 case LOC_TYPEDEF:
22391 return GDB_INDEX_SYMBOL_KIND_TYPE;
22392 case LOC_COMPUTED:
22393 case LOC_CONST_BYTES:
22394 case LOC_OPTIMIZED_OUT:
22395 case LOC_STATIC:
22396 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22397 case LOC_CONST:
22398 /* Note: It's currently impossible to recognize psyms as enum values
22399 short of reading the type info. For now punt. */
22400 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22401 default:
22402 /* There are other LOC_FOO values that one might want to classify
22403 as variables, but dwarf2read.c doesn't currently use them. */
22404 return GDB_INDEX_SYMBOL_KIND_OTHER;
22405 }
22406 case STRUCT_DOMAIN:
22407 return GDB_INDEX_SYMBOL_KIND_TYPE;
22408 default:
22409 return GDB_INDEX_SYMBOL_KIND_OTHER;
22410 }
22411 }
22412
22413 /* Add a list of partial symbols to SYMTAB. */
22414
22415 static void
22416 write_psymbols (struct mapped_symtab *symtab,
22417 htab_t psyms_seen,
22418 struct partial_symbol **psymp,
22419 int count,
22420 offset_type cu_index,
22421 int is_static)
22422 {
22423 for (; count-- > 0; ++psymp)
22424 {
22425 struct partial_symbol *psym = *psymp;
22426 void **slot;
22427
22428 if (SYMBOL_LANGUAGE (psym) == language_ada)
22429 error (_("Ada is not currently supported by the index"));
22430
22431 /* Only add a given psymbol once. */
22432 slot = htab_find_slot (psyms_seen, psym, INSERT);
22433 if (!*slot)
22434 {
22435 gdb_index_symbol_kind kind = symbol_kind (psym);
22436
22437 *slot = psym;
22438 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22439 is_static, kind, cu_index);
22440 }
22441 }
22442 }
22443
22444 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22445 exception if there is an error. */
22446
22447 static void
22448 write_obstack (FILE *file, struct obstack *obstack)
22449 {
22450 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22451 file)
22452 != obstack_object_size (obstack))
22453 error (_("couldn't data write to file"));
22454 }
22455
22456 /* Unlink a file if the argument is not NULL. */
22457
22458 static void
22459 unlink_if_set (void *p)
22460 {
22461 char **filename = p;
22462 if (*filename)
22463 unlink (*filename);
22464 }
22465
22466 /* A helper struct used when iterating over debug_types. */
22467 struct signatured_type_index_data
22468 {
22469 struct objfile *objfile;
22470 struct mapped_symtab *symtab;
22471 struct obstack *types_list;
22472 htab_t psyms_seen;
22473 int cu_index;
22474 };
22475
22476 /* A helper function that writes a single signatured_type to an
22477 obstack. */
22478
22479 static int
22480 write_one_signatured_type (void **slot, void *d)
22481 {
22482 struct signatured_type_index_data *info = d;
22483 struct signatured_type *entry = (struct signatured_type *) *slot;
22484 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22485 gdb_byte val[8];
22486
22487 write_psymbols (info->symtab,
22488 info->psyms_seen,
22489 info->objfile->global_psymbols.list
22490 + psymtab->globals_offset,
22491 psymtab->n_global_syms, info->cu_index,
22492 0);
22493 write_psymbols (info->symtab,
22494 info->psyms_seen,
22495 info->objfile->static_psymbols.list
22496 + psymtab->statics_offset,
22497 psymtab->n_static_syms, info->cu_index,
22498 1);
22499
22500 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22501 entry->per_cu.offset.sect_off);
22502 obstack_grow (info->types_list, val, 8);
22503 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22504 entry->type_offset_in_tu.cu_off);
22505 obstack_grow (info->types_list, val, 8);
22506 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22507 obstack_grow (info->types_list, val, 8);
22508
22509 ++info->cu_index;
22510
22511 return 1;
22512 }
22513
22514 /* Recurse into all "included" dependencies and write their symbols as
22515 if they appeared in this psymtab. */
22516
22517 static void
22518 recursively_write_psymbols (struct objfile *objfile,
22519 struct partial_symtab *psymtab,
22520 struct mapped_symtab *symtab,
22521 htab_t psyms_seen,
22522 offset_type cu_index)
22523 {
22524 int i;
22525
22526 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22527 if (psymtab->dependencies[i]->user != NULL)
22528 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22529 symtab, psyms_seen, cu_index);
22530
22531 write_psymbols (symtab,
22532 psyms_seen,
22533 objfile->global_psymbols.list + psymtab->globals_offset,
22534 psymtab->n_global_syms, cu_index,
22535 0);
22536 write_psymbols (symtab,
22537 psyms_seen,
22538 objfile->static_psymbols.list + psymtab->statics_offset,
22539 psymtab->n_static_syms, cu_index,
22540 1);
22541 }
22542
22543 /* Create an index file for OBJFILE in the directory DIR. */
22544
22545 static void
22546 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22547 {
22548 struct cleanup *cleanup;
22549 char *filename, *cleanup_filename;
22550 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22551 struct obstack cu_list, types_cu_list;
22552 int i;
22553 FILE *out_file;
22554 struct mapped_symtab *symtab;
22555 offset_type val, size_of_contents, total_len;
22556 struct stat st;
22557 htab_t psyms_seen;
22558 htab_t cu_index_htab;
22559 struct psymtab_cu_index_map *psymtab_cu_index_map;
22560
22561 if (dwarf2_per_objfile->using_index)
22562 error (_("Cannot use an index to create the index"));
22563
22564 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22565 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22566
22567 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22568 return;
22569
22570 if (stat (objfile_name (objfile), &st) < 0)
22571 perror_with_name (objfile_name (objfile));
22572
22573 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22574 INDEX_SUFFIX, (char *) NULL);
22575 cleanup = make_cleanup (xfree, filename);
22576
22577 out_file = gdb_fopen_cloexec (filename, "wb");
22578 if (!out_file)
22579 error (_("Can't open `%s' for writing"), filename);
22580
22581 cleanup_filename = filename;
22582 make_cleanup (unlink_if_set, &cleanup_filename);
22583
22584 symtab = create_mapped_symtab ();
22585 make_cleanup (cleanup_mapped_symtab, symtab);
22586
22587 obstack_init (&addr_obstack);
22588 make_cleanup_obstack_free (&addr_obstack);
22589
22590 obstack_init (&cu_list);
22591 make_cleanup_obstack_free (&cu_list);
22592
22593 obstack_init (&types_cu_list);
22594 make_cleanup_obstack_free (&types_cu_list);
22595
22596 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22597 NULL, xcalloc, xfree);
22598 make_cleanup_htab_delete (psyms_seen);
22599
22600 /* While we're scanning CU's create a table that maps a psymtab pointer
22601 (which is what addrmap records) to its index (which is what is recorded
22602 in the index file). This will later be needed to write the address
22603 table. */
22604 cu_index_htab = htab_create_alloc (100,
22605 hash_psymtab_cu_index,
22606 eq_psymtab_cu_index,
22607 NULL, xcalloc, xfree);
22608 make_cleanup_htab_delete (cu_index_htab);
22609 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22610 xmalloc (sizeof (struct psymtab_cu_index_map)
22611 * dwarf2_per_objfile->n_comp_units);
22612 make_cleanup (xfree, psymtab_cu_index_map);
22613
22614 /* The CU list is already sorted, so we don't need to do additional
22615 work here. Also, the debug_types entries do not appear in
22616 all_comp_units, but only in their own hash table. */
22617 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22618 {
22619 struct dwarf2_per_cu_data *per_cu
22620 = dwarf2_per_objfile->all_comp_units[i];
22621 struct partial_symtab *psymtab = per_cu->v.psymtab;
22622 gdb_byte val[8];
22623 struct psymtab_cu_index_map *map;
22624 void **slot;
22625
22626 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22627 It may be referenced from a local scope but in such case it does not
22628 need to be present in .gdb_index. */
22629 if (psymtab == NULL)
22630 continue;
22631
22632 if (psymtab->user == NULL)
22633 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22634
22635 map = &psymtab_cu_index_map[i];
22636 map->psymtab = psymtab;
22637 map->cu_index = i;
22638 slot = htab_find_slot (cu_index_htab, map, INSERT);
22639 gdb_assert (slot != NULL);
22640 gdb_assert (*slot == NULL);
22641 *slot = map;
22642
22643 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22644 per_cu->offset.sect_off);
22645 obstack_grow (&cu_list, val, 8);
22646 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22647 obstack_grow (&cu_list, val, 8);
22648 }
22649
22650 /* Dump the address map. */
22651 write_address_map (objfile, &addr_obstack, cu_index_htab);
22652
22653 /* Write out the .debug_type entries, if any. */
22654 if (dwarf2_per_objfile->signatured_types)
22655 {
22656 struct signatured_type_index_data sig_data;
22657
22658 sig_data.objfile = objfile;
22659 sig_data.symtab = symtab;
22660 sig_data.types_list = &types_cu_list;
22661 sig_data.psyms_seen = psyms_seen;
22662 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22663 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22664 write_one_signatured_type, &sig_data);
22665 }
22666
22667 /* Now that we've processed all symbols we can shrink their cu_indices
22668 lists. */
22669 uniquify_cu_indices (symtab);
22670
22671 obstack_init (&constant_pool);
22672 make_cleanup_obstack_free (&constant_pool);
22673 obstack_init (&symtab_obstack);
22674 make_cleanup_obstack_free (&symtab_obstack);
22675 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22676
22677 obstack_init (&contents);
22678 make_cleanup_obstack_free (&contents);
22679 size_of_contents = 6 * sizeof (offset_type);
22680 total_len = size_of_contents;
22681
22682 /* The version number. */
22683 val = MAYBE_SWAP (8);
22684 obstack_grow (&contents, &val, sizeof (val));
22685
22686 /* The offset of the CU list from the start of the file. */
22687 val = MAYBE_SWAP (total_len);
22688 obstack_grow (&contents, &val, sizeof (val));
22689 total_len += obstack_object_size (&cu_list);
22690
22691 /* The offset of the types CU list from the start of the file. */
22692 val = MAYBE_SWAP (total_len);
22693 obstack_grow (&contents, &val, sizeof (val));
22694 total_len += obstack_object_size (&types_cu_list);
22695
22696 /* The offset of the address table from the start of the file. */
22697 val = MAYBE_SWAP (total_len);
22698 obstack_grow (&contents, &val, sizeof (val));
22699 total_len += obstack_object_size (&addr_obstack);
22700
22701 /* The offset of the symbol table from the start of the file. */
22702 val = MAYBE_SWAP (total_len);
22703 obstack_grow (&contents, &val, sizeof (val));
22704 total_len += obstack_object_size (&symtab_obstack);
22705
22706 /* The offset of the constant pool from the start of the file. */
22707 val = MAYBE_SWAP (total_len);
22708 obstack_grow (&contents, &val, sizeof (val));
22709 total_len += obstack_object_size (&constant_pool);
22710
22711 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22712
22713 write_obstack (out_file, &contents);
22714 write_obstack (out_file, &cu_list);
22715 write_obstack (out_file, &types_cu_list);
22716 write_obstack (out_file, &addr_obstack);
22717 write_obstack (out_file, &symtab_obstack);
22718 write_obstack (out_file, &constant_pool);
22719
22720 fclose (out_file);
22721
22722 /* We want to keep the file, so we set cleanup_filename to NULL
22723 here. See unlink_if_set. */
22724 cleanup_filename = NULL;
22725
22726 do_cleanups (cleanup);
22727 }
22728
22729 /* Implementation of the `save gdb-index' command.
22730
22731 Note that the file format used by this command is documented in the
22732 GDB manual. Any changes here must be documented there. */
22733
22734 static void
22735 save_gdb_index_command (char *arg, int from_tty)
22736 {
22737 struct objfile *objfile;
22738
22739 if (!arg || !*arg)
22740 error (_("usage: save gdb-index DIRECTORY"));
22741
22742 ALL_OBJFILES (objfile)
22743 {
22744 struct stat st;
22745
22746 /* If the objfile does not correspond to an actual file, skip it. */
22747 if (stat (objfile_name (objfile), &st) < 0)
22748 continue;
22749
22750 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22751 if (dwarf2_per_objfile)
22752 {
22753 volatile struct gdb_exception except;
22754
22755 TRY_CATCH (except, RETURN_MASK_ERROR)
22756 {
22757 write_psymtabs_to_index (objfile, arg);
22758 }
22759 if (except.reason < 0)
22760 exception_fprintf (gdb_stderr, except,
22761 _("Error while writing index for `%s': "),
22762 objfile_name (objfile));
22763 }
22764 }
22765 }
22766
22767 \f
22768
22769 int dwarf2_always_disassemble;
22770
22771 static void
22772 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22773 struct cmd_list_element *c, const char *value)
22774 {
22775 fprintf_filtered (file,
22776 _("Whether to always disassemble "
22777 "DWARF expressions is %s.\n"),
22778 value);
22779 }
22780
22781 static void
22782 show_check_physname (struct ui_file *file, int from_tty,
22783 struct cmd_list_element *c, const char *value)
22784 {
22785 fprintf_filtered (file,
22786 _("Whether to check \"physname\" is %s.\n"),
22787 value);
22788 }
22789
22790 void _initialize_dwarf2_read (void);
22791
22792 void
22793 _initialize_dwarf2_read (void)
22794 {
22795 struct cmd_list_element *c;
22796
22797 dwarf2_objfile_data_key
22798 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22799
22800 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22801 Set DWARF 2 specific variables.\n\
22802 Configure DWARF 2 variables such as the cache size"),
22803 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22804 0/*allow-unknown*/, &maintenance_set_cmdlist);
22805
22806 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22807 Show DWARF 2 specific variables\n\
22808 Show DWARF 2 variables such as the cache size"),
22809 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22810 0/*allow-unknown*/, &maintenance_show_cmdlist);
22811
22812 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22813 &dwarf2_max_cache_age, _("\
22814 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22815 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22816 A higher limit means that cached compilation units will be stored\n\
22817 in memory longer, and more total memory will be used. Zero disables\n\
22818 caching, which can slow down startup."),
22819 NULL,
22820 show_dwarf2_max_cache_age,
22821 &set_dwarf2_cmdlist,
22822 &show_dwarf2_cmdlist);
22823
22824 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22825 &dwarf2_always_disassemble, _("\
22826 Set whether `info address' always disassembles DWARF expressions."), _("\
22827 Show whether `info address' always disassembles DWARF expressions."), _("\
22828 When enabled, DWARF expressions are always printed in an assembly-like\n\
22829 syntax. When disabled, expressions will be printed in a more\n\
22830 conversational style, when possible."),
22831 NULL,
22832 show_dwarf2_always_disassemble,
22833 &set_dwarf2_cmdlist,
22834 &show_dwarf2_cmdlist);
22835
22836 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22837 Set debugging of the dwarf2 reader."), _("\
22838 Show debugging of the dwarf2 reader."), _("\
22839 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22840 reading and symtab expansion. A value of 1 (one) provides basic\n\
22841 information. A value greater than 1 provides more verbose information."),
22842 NULL,
22843 NULL,
22844 &setdebuglist, &showdebuglist);
22845
22846 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22847 Set debugging of the dwarf2 DIE reader."), _("\
22848 Show debugging of the dwarf2 DIE reader."), _("\
22849 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22850 The value is the maximum depth to print."),
22851 NULL,
22852 NULL,
22853 &setdebuglist, &showdebuglist);
22854
22855 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22856 Set cross-checking of \"physname\" code against demangler."), _("\
22857 Show cross-checking of \"physname\" code against demangler."), _("\
22858 When enabled, GDB's internal \"physname\" code is checked against\n\
22859 the demangler."),
22860 NULL, show_check_physname,
22861 &setdebuglist, &showdebuglist);
22862
22863 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22864 no_class, &use_deprecated_index_sections, _("\
22865 Set whether to use deprecated gdb_index sections."), _("\
22866 Show whether to use deprecated gdb_index sections."), _("\
22867 When enabled, deprecated .gdb_index sections are used anyway.\n\
22868 Normally they are ignored either because of a missing feature or\n\
22869 performance issue.\n\
22870 Warning: This option must be enabled before gdb reads the file."),
22871 NULL,
22872 NULL,
22873 &setlist, &showlist);
22874
22875 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22876 _("\
22877 Save a gdb-index file.\n\
22878 Usage: save gdb-index DIRECTORY"),
22879 &save_cmdlist);
22880 set_cmd_completer (c, filename_completer);
22881
22882 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22883 &dwarf2_locexpr_funcs);
22884 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22885 &dwarf2_loclist_funcs);
22886
22887 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22888 &dwarf2_block_frame_base_locexpr_funcs);
22889 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22890 &dwarf2_block_frame_base_loclist_funcs);
22891 }
This page took 0.560904 seconds and 4 git commands to generate.