gdb/gdbserver/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 gdb_byte *info_buffer;
166 gdb_byte *abbrev_buffer;
167 gdb_byte *line_buffer;
168 gdb_byte *str_buffer;
169 gdb_byte *macinfo_buffer;
170 gdb_byte *ranges_buffer;
171 gdb_byte *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183
184 /* A flag indicating wether this objfile has a section loaded at a
185 VMA of 0. */
186 int has_section_at_zero;
187 };
188
189 static struct dwarf2_per_objfile *dwarf2_per_objfile;
190
191 static asection *dwarf_info_section;
192 static asection *dwarf_abbrev_section;
193 static asection *dwarf_line_section;
194 static asection *dwarf_pubnames_section;
195 static asection *dwarf_aranges_section;
196 static asection *dwarf_loc_section;
197 static asection *dwarf_macinfo_section;
198 static asection *dwarf_str_section;
199 static asection *dwarf_ranges_section;
200 asection *dwarf_frame_section;
201 asection *dwarf_eh_frame_section;
202
203 /* names of the debugging sections */
204
205 #define INFO_SECTION ".debug_info"
206 #define ABBREV_SECTION ".debug_abbrev"
207 #define LINE_SECTION ".debug_line"
208 #define PUBNAMES_SECTION ".debug_pubnames"
209 #define ARANGES_SECTION ".debug_aranges"
210 #define LOC_SECTION ".debug_loc"
211 #define MACINFO_SECTION ".debug_macinfo"
212 #define STR_SECTION ".debug_str"
213 #define RANGES_SECTION ".debug_ranges"
214 #define FRAME_SECTION ".debug_frame"
215 #define EH_FRAME_SECTION ".eh_frame"
216
217 /* local data types */
218
219 /* We hold several abbreviation tables in memory at the same time. */
220 #ifndef ABBREV_HASH_SIZE
221 #define ABBREV_HASH_SIZE 121
222 #endif
223
224 /* The data in a compilation unit header, after target2host
225 translation, looks like this. */
226 struct comp_unit_head
227 {
228 unsigned long length;
229 short version;
230 unsigned int abbrev_offset;
231 unsigned char addr_size;
232 unsigned char signed_addr_p;
233
234 /* Size of file offsets; either 4 or 8. */
235 unsigned int offset_size;
236
237 /* Size of the length field; either 4 or 12. */
238 unsigned int initial_length_size;
239
240 /* Offset to the first byte of this compilation unit header in the
241 .debug_info section, for resolving relative reference dies. */
242 unsigned int offset;
243
244 /* Pointer to this compilation unit header in the .debug_info
245 section. */
246 gdb_byte *cu_head_ptr;
247
248 /* Pointer to the first die of this compilation unit. This will be
249 the first byte following the compilation unit header. */
250 gdb_byte *first_die_ptr;
251
252 /* Pointer to the next compilation unit header in the program. */
253 struct comp_unit_head *next;
254
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
257
258 /* Non-zero if base_address has been set. */
259 int base_known;
260 };
261
262 /* Fixed size for the DIE hash table. */
263 #ifndef REF_HASH_SIZE
264 #define REF_HASH_SIZE 1021
265 #endif
266
267 /* Internal state when decoding a particular compilation unit. */
268 struct dwarf2_cu
269 {
270 /* The objfile containing this compilation unit. */
271 struct objfile *objfile;
272
273 /* The header of the compilation unit.
274
275 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
276 should logically be moved to the dwarf2_cu structure. */
277 struct comp_unit_head header;
278
279 struct function_range *first_fn, *last_fn, *cached_fn;
280
281 /* The language we are debugging. */
282 enum language language;
283 const struct language_defn *language_defn;
284
285 const char *producer;
286
287 /* The generic symbol table building routines have separate lists for
288 file scope symbols and all all other scopes (local scopes). So
289 we need to select the right one to pass to add_symbol_to_list().
290 We do it by keeping a pointer to the correct list in list_in_scope.
291
292 FIXME: The original dwarf code just treated the file scope as the
293 first local scope, and all other local scopes as nested local
294 scopes, and worked fine. Check to see if we really need to
295 distinguish these in buildsym.c. */
296 struct pending **list_in_scope;
297
298 /* Maintain an array of referenced fundamental types for the current
299 compilation unit being read. For DWARF version 1, we have to construct
300 the fundamental types on the fly, since no information about the
301 fundamental types is supplied. Each such fundamental type is created by
302 calling a language dependent routine to create the type, and then a
303 pointer to that type is then placed in the array at the index specified
304 by it's FT_<TYPENAME> value. The array has a fixed size set by the
305 FT_NUM_MEMBERS compile time constant, which is the number of predefined
306 fundamental types gdb knows how to construct. */
307 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
308
309 /* DWARF abbreviation table associated with this compilation unit. */
310 struct abbrev_info **dwarf2_abbrevs;
311
312 /* Storage for the abbrev table. */
313 struct obstack abbrev_obstack;
314
315 /* Hash table holding all the loaded partial DIEs. */
316 htab_t partial_dies;
317
318 /* Storage for things with the same lifetime as this read-in compilation
319 unit, including partial DIEs. */
320 struct obstack comp_unit_obstack;
321
322 /* When multiple dwarf2_cu structures are living in memory, this field
323 chains them all together, so that they can be released efficiently.
324 We will probably also want a generation counter so that most-recently-used
325 compilation units are cached... */
326 struct dwarf2_per_cu_data *read_in_chain;
327
328 /* Backchain to our per_cu entry if the tree has been built. */
329 struct dwarf2_per_cu_data *per_cu;
330
331 /* How many compilation units ago was this CU last referenced? */
332 int last_used;
333
334 /* A hash table of die offsets for following references. */
335 struct die_info *die_ref_table[REF_HASH_SIZE];
336
337 /* Full DIEs if read in. */
338 struct die_info *dies;
339
340 /* A set of pointers to dwarf2_per_cu_data objects for compilation
341 units referenced by this one. Only set during full symbol processing;
342 partial symbol tables do not have dependencies. */
343 htab_t dependencies;
344
345 /* Mark used when releasing cached dies. */
346 unsigned int mark : 1;
347
348 /* This flag will be set if this compilation unit might include
349 inter-compilation-unit references. */
350 unsigned int has_form_ref_addr : 1;
351
352 /* This flag will be set if this compilation unit includes any
353 DW_TAG_namespace DIEs. If we know that there are explicit
354 DIEs for namespaces, we don't need to try to infer them
355 from mangled names. */
356 unsigned int has_namespace_info : 1;
357 };
358
359 /* Persistent data held for a compilation unit, even when not
360 processing it. We put a pointer to this structure in the
361 read_symtab_private field of the psymtab. If we encounter
362 inter-compilation-unit references, we also maintain a sorted
363 list of all compilation units. */
364
365 struct dwarf2_per_cu_data
366 {
367 /* The start offset and length of this compilation unit. 2**30-1
368 bytes should suffice to store the length of any compilation unit
369 - if it doesn't, GDB will fall over anyway. */
370 unsigned long offset;
371 unsigned long length : 30;
372
373 /* Flag indicating this compilation unit will be read in before
374 any of the current compilation units are processed. */
375 unsigned long queued : 1;
376
377 /* This flag will be set if we need to load absolutely all DIEs
378 for this compilation unit, instead of just the ones we think
379 are interesting. It gets set if we look for a DIE in the
380 hash table and don't find it. */
381 unsigned int load_all_dies : 1;
382
383 /* Set iff currently read in. */
384 struct dwarf2_cu *cu;
385
386 /* If full symbols for this CU have been read in, then this field
387 holds a map of DIE offsets to types. It isn't always possible
388 to reconstruct this information later, so we have to preserve
389 it. */
390 htab_t type_hash;
391
392 /* The partial symbol table associated with this compilation unit. */
393 struct partial_symtab *psymtab;
394 };
395
396 /* The line number information for a compilation unit (found in the
397 .debug_line section) begins with a "statement program header",
398 which contains the following information. */
399 struct line_header
400 {
401 unsigned int total_length;
402 unsigned short version;
403 unsigned int header_length;
404 unsigned char minimum_instruction_length;
405 unsigned char default_is_stmt;
406 int line_base;
407 unsigned char line_range;
408 unsigned char opcode_base;
409
410 /* standard_opcode_lengths[i] is the number of operands for the
411 standard opcode whose value is i. This means that
412 standard_opcode_lengths[0] is unused, and the last meaningful
413 element is standard_opcode_lengths[opcode_base - 1]. */
414 unsigned char *standard_opcode_lengths;
415
416 /* The include_directories table. NOTE! These strings are not
417 allocated with xmalloc; instead, they are pointers into
418 debug_line_buffer. If you try to free them, `free' will get
419 indigestion. */
420 unsigned int num_include_dirs, include_dirs_size;
421 char **include_dirs;
422
423 /* The file_names table. NOTE! These strings are not allocated
424 with xmalloc; instead, they are pointers into debug_line_buffer.
425 Don't try to free them directly. */
426 unsigned int num_file_names, file_names_size;
427 struct file_entry
428 {
429 char *name;
430 unsigned int dir_index;
431 unsigned int mod_time;
432 unsigned int length;
433 int included_p; /* Non-zero if referenced by the Line Number Program. */
434 } *file_names;
435
436 /* The start and end of the statement program following this
437 header. These point into dwarf2_per_objfile->line_buffer. */
438 gdb_byte *statement_program_start, *statement_program_end;
439 };
440
441 /* When we construct a partial symbol table entry we only
442 need this much information. */
443 struct partial_die_info
444 {
445 /* Offset of this DIE. */
446 unsigned int offset;
447
448 /* DWARF-2 tag for this DIE. */
449 ENUM_BITFIELD(dwarf_tag) tag : 16;
450
451 /* Language code associated with this DIE. This is only used
452 for the compilation unit DIE. */
453 unsigned int language : 8;
454
455 /* Assorted flags describing the data found in this DIE. */
456 unsigned int has_children : 1;
457 unsigned int is_external : 1;
458 unsigned int is_declaration : 1;
459 unsigned int has_type : 1;
460 unsigned int has_specification : 1;
461 unsigned int has_stmt_list : 1;
462 unsigned int has_pc_info : 1;
463
464 /* Flag set if the SCOPE field of this structure has been
465 computed. */
466 unsigned int scope_set : 1;
467
468 /* The name of this DIE. Normally the value of DW_AT_name, but
469 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
470 other fashion. */
471 char *name;
472 char *dirname;
473
474 /* The scope to prepend to our children. This is generally
475 allocated on the comp_unit_obstack, so will disappear
476 when this compilation unit leaves the cache. */
477 char *scope;
478
479 /* The location description associated with this DIE, if any. */
480 struct dwarf_block *locdesc;
481
482 /* If HAS_PC_INFO, the PC range associated with this DIE. */
483 CORE_ADDR lowpc;
484 CORE_ADDR highpc;
485
486 /* Pointer into the info_buffer pointing at the target of
487 DW_AT_sibling, if any. */
488 gdb_byte *sibling;
489
490 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
491 DW_AT_specification (or DW_AT_abstract_origin or
492 DW_AT_extension). */
493 unsigned int spec_offset;
494
495 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
496 unsigned int line_offset;
497
498 /* Pointers to this DIE's parent, first child, and next sibling,
499 if any. */
500 struct partial_die_info *die_parent, *die_child, *die_sibling;
501 };
502
503 /* This data structure holds the information of an abbrev. */
504 struct abbrev_info
505 {
506 unsigned int number; /* number identifying abbrev */
507 enum dwarf_tag tag; /* dwarf tag */
508 unsigned short has_children; /* boolean */
509 unsigned short num_attrs; /* number of attributes */
510 struct attr_abbrev *attrs; /* an array of attribute descriptions */
511 struct abbrev_info *next; /* next in chain */
512 };
513
514 struct attr_abbrev
515 {
516 enum dwarf_attribute name;
517 enum dwarf_form form;
518 };
519
520 /* This data structure holds a complete die structure. */
521 struct die_info
522 {
523 enum dwarf_tag tag; /* Tag indicating type of die */
524 unsigned int abbrev; /* Abbrev number */
525 unsigned int offset; /* Offset in .debug_info section */
526 unsigned int num_attrs; /* Number of attributes */
527 struct attribute *attrs; /* An array of attributes */
528 struct die_info *next_ref; /* Next die in ref hash table */
529
530 /* The dies in a compilation unit form an n-ary tree. PARENT
531 points to this die's parent; CHILD points to the first child of
532 this node; and all the children of a given node are chained
533 together via their SIBLING fields, terminated by a die whose
534 tag is zero. */
535 struct die_info *child; /* Its first child, if any. */
536 struct die_info *sibling; /* Its next sibling, if any. */
537 struct die_info *parent; /* Its parent, if any. */
538
539 struct type *type; /* Cached type information */
540 };
541
542 /* Attributes have a name and a value */
543 struct attribute
544 {
545 enum dwarf_attribute name;
546 enum dwarf_form form;
547 union
548 {
549 char *str;
550 struct dwarf_block *blk;
551 unsigned long unsnd;
552 long int snd;
553 CORE_ADDR addr;
554 }
555 u;
556 };
557
558 struct function_range
559 {
560 const char *name;
561 CORE_ADDR lowpc, highpc;
562 int seen_line;
563 struct function_range *next;
564 };
565
566 /* Get at parts of an attribute structure */
567
568 #define DW_STRING(attr) ((attr)->u.str)
569 #define DW_UNSND(attr) ((attr)->u.unsnd)
570 #define DW_BLOCK(attr) ((attr)->u.blk)
571 #define DW_SND(attr) ((attr)->u.snd)
572 #define DW_ADDR(attr) ((attr)->u.addr)
573
574 /* Blocks are a bunch of untyped bytes. */
575 struct dwarf_block
576 {
577 unsigned int size;
578 gdb_byte *data;
579 };
580
581 #ifndef ATTR_ALLOC_CHUNK
582 #define ATTR_ALLOC_CHUNK 4
583 #endif
584
585 /* Allocate fields for structs, unions and enums in this size. */
586 #ifndef DW_FIELD_ALLOC_CHUNK
587 #define DW_FIELD_ALLOC_CHUNK 4
588 #endif
589
590 /* A zeroed version of a partial die for initialization purposes. */
591 static struct partial_die_info zeroed_partial_die;
592
593 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
594 but this would require a corresponding change in unpack_field_as_long
595 and friends. */
596 static int bits_per_byte = 8;
597
598 /* The routines that read and process dies for a C struct or C++ class
599 pass lists of data member fields and lists of member function fields
600 in an instance of a field_info structure, as defined below. */
601 struct field_info
602 {
603 /* List of data member and baseclasses fields. */
604 struct nextfield
605 {
606 struct nextfield *next;
607 int accessibility;
608 int virtuality;
609 struct field field;
610 }
611 *fields;
612
613 /* Number of fields. */
614 int nfields;
615
616 /* Number of baseclasses. */
617 int nbaseclasses;
618
619 /* Set if the accesibility of one of the fields is not public. */
620 int non_public_fields;
621
622 /* Member function fields array, entries are allocated in the order they
623 are encountered in the object file. */
624 struct nextfnfield
625 {
626 struct nextfnfield *next;
627 struct fn_field fnfield;
628 }
629 *fnfields;
630
631 /* Member function fieldlist array, contains name of possibly overloaded
632 member function, number of overloaded member functions and a pointer
633 to the head of the member function field chain. */
634 struct fnfieldlist
635 {
636 char *name;
637 int length;
638 struct nextfnfield *head;
639 }
640 *fnfieldlists;
641
642 /* Number of entries in the fnfieldlists array. */
643 int nfnfields;
644 };
645
646 /* One item on the queue of compilation units to read in full symbols
647 for. */
648 struct dwarf2_queue_item
649 {
650 struct dwarf2_per_cu_data *per_cu;
651 struct dwarf2_queue_item *next;
652 };
653
654 /* The current queue. */
655 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
656
657 /* Loaded secondary compilation units are kept in memory until they
658 have not been referenced for the processing of this many
659 compilation units. Set this to zero to disable caching. Cache
660 sizes of up to at least twenty will improve startup time for
661 typical inter-CU-reference binaries, at an obvious memory cost. */
662 static int dwarf2_max_cache_age = 5;
663 static void
664 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
665 struct cmd_list_element *c, const char *value)
666 {
667 fprintf_filtered (file, _("\
668 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
669 value);
670 }
671
672
673 /* Various complaints about symbol reading that don't abort the process */
674
675 static void
676 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
677 {
678 complaint (&symfile_complaints,
679 _("statement list doesn't fit in .debug_line section"));
680 }
681
682 static void
683 dwarf2_complex_location_expr_complaint (void)
684 {
685 complaint (&symfile_complaints, _("location expression too complex"));
686 }
687
688 static void
689 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
690 int arg3)
691 {
692 complaint (&symfile_complaints,
693 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
694 arg2, arg3);
695 }
696
697 static void
698 dwarf2_macros_too_long_complaint (void)
699 {
700 complaint (&symfile_complaints,
701 _("macro info runs off end of `.debug_macinfo' section"));
702 }
703
704 static void
705 dwarf2_macro_malformed_definition_complaint (const char *arg1)
706 {
707 complaint (&symfile_complaints,
708 _("macro debug info contains a malformed macro definition:\n`%s'"),
709 arg1);
710 }
711
712 static void
713 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
714 {
715 complaint (&symfile_complaints,
716 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
717 }
718
719 /* local function prototypes */
720
721 static void dwarf2_locate_sections (bfd *, asection *, void *);
722
723 #if 0
724 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
725 #endif
726
727 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
728 struct objfile *);
729
730 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
731 struct partial_die_info *,
732 struct partial_symtab *);
733
734 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
735
736 static void scan_partial_symbols (struct partial_die_info *,
737 CORE_ADDR *, CORE_ADDR *,
738 struct dwarf2_cu *);
739
740 static void add_partial_symbol (struct partial_die_info *,
741 struct dwarf2_cu *);
742
743 static int pdi_needs_namespace (enum dwarf_tag tag);
744
745 static void add_partial_namespace (struct partial_die_info *pdi,
746 CORE_ADDR *lowpc, CORE_ADDR *highpc,
747 struct dwarf2_cu *cu);
748
749 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
750 struct dwarf2_cu *cu);
751
752 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
753 gdb_byte *info_ptr,
754 bfd *abfd,
755 struct dwarf2_cu *cu);
756
757 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
758
759 static void psymtab_to_symtab_1 (struct partial_symtab *);
760
761 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
762
763 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
764
765 static void dwarf2_free_abbrev_table (void *);
766
767 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
768 struct dwarf2_cu *);
769
770 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
771 struct dwarf2_cu *);
772
773 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
774 struct dwarf2_cu *);
775
776 static gdb_byte *read_partial_die (struct partial_die_info *,
777 struct abbrev_info *abbrev, unsigned int,
778 bfd *, gdb_byte *, struct dwarf2_cu *);
779
780 static struct partial_die_info *find_partial_die (unsigned long,
781 struct dwarf2_cu *);
782
783 static void fixup_partial_die (struct partial_die_info *,
784 struct dwarf2_cu *);
785
786 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
787 struct dwarf2_cu *, int *);
788
789 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
790 bfd *, gdb_byte *, struct dwarf2_cu *);
791
792 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
793 bfd *, gdb_byte *, struct dwarf2_cu *);
794
795 static unsigned int read_1_byte (bfd *, gdb_byte *);
796
797 static int read_1_signed_byte (bfd *, gdb_byte *);
798
799 static unsigned int read_2_bytes (bfd *, gdb_byte *);
800
801 static unsigned int read_4_bytes (bfd *, gdb_byte *);
802
803 static unsigned long read_8_bytes (bfd *, gdb_byte *);
804
805 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
806 unsigned int *);
807
808 static LONGEST read_initial_length (bfd *, gdb_byte *,
809 struct comp_unit_head *, unsigned int *);
810
811 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
812 unsigned int *);
813
814 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
815
816 static char *read_string (bfd *, gdb_byte *, unsigned int *);
817
818 static char *read_indirect_string (bfd *, gdb_byte *,
819 const struct comp_unit_head *,
820 unsigned int *);
821
822 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
823
824 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
825
826 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
827
828 static void set_cu_language (unsigned int, struct dwarf2_cu *);
829
830 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
831 struct dwarf2_cu *);
832
833 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
834 struct dwarf2_cu *cu);
835
836 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
837
838 static struct die_info *die_specification (struct die_info *die,
839 struct dwarf2_cu *);
840
841 static void free_line_header (struct line_header *lh);
842
843 static void add_file_name (struct line_header *, char *, unsigned int,
844 unsigned int, unsigned int);
845
846 static struct line_header *(dwarf_decode_line_header
847 (unsigned int offset,
848 bfd *abfd, struct dwarf2_cu *cu));
849
850 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
851 struct dwarf2_cu *, struct partial_symtab *);
852
853 static void dwarf2_start_subfile (char *, char *, char *);
854
855 static struct symbol *new_symbol (struct die_info *, struct type *,
856 struct dwarf2_cu *);
857
858 static void dwarf2_const_value (struct attribute *, struct symbol *,
859 struct dwarf2_cu *);
860
861 static void dwarf2_const_value_data (struct attribute *attr,
862 struct symbol *sym,
863 int bits);
864
865 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
866
867 static struct type *die_containing_type (struct die_info *,
868 struct dwarf2_cu *);
869
870 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
871
872 static void read_type_die (struct die_info *, struct dwarf2_cu *);
873
874 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
875
876 static char *typename_concat (struct obstack *,
877 const char *prefix,
878 const char *suffix,
879 struct dwarf2_cu *);
880
881 static void read_typedef (struct die_info *, struct dwarf2_cu *);
882
883 static void read_base_type (struct die_info *, struct dwarf2_cu *);
884
885 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
886
887 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
888
889 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
890
891 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
892
893 static int dwarf2_get_pc_bounds (struct die_info *,
894 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
895
896 static void get_scope_pc_bounds (struct die_info *,
897 CORE_ADDR *, CORE_ADDR *,
898 struct dwarf2_cu *);
899
900 static void dwarf2_add_field (struct field_info *, struct die_info *,
901 struct dwarf2_cu *);
902
903 static void dwarf2_attach_fields_to_type (struct field_info *,
904 struct type *, struct dwarf2_cu *);
905
906 static void dwarf2_add_member_fn (struct field_info *,
907 struct die_info *, struct type *,
908 struct dwarf2_cu *);
909
910 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
911 struct type *, struct dwarf2_cu *);
912
913 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
914
915 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
916
917 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
918
919 static void read_common_block (struct die_info *, struct dwarf2_cu *);
920
921 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
922
923 static const char *namespace_name (struct die_info *die,
924 int *is_anonymous, struct dwarf2_cu *);
925
926 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
927
928 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
929
930 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
931
932 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
933
934 static void read_array_type (struct die_info *, struct dwarf2_cu *);
935
936 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
937 struct dwarf2_cu *);
938
939 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
940
941 static void read_tag_ptr_to_member_type (struct die_info *,
942 struct dwarf2_cu *);
943
944 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
945
946 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
947
948 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
949
950 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
951
952 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
953
954 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
955
956 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
957 struct dwarf2_cu *,
958 gdb_byte **new_info_ptr,
959 struct die_info *parent);
960
961 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
962 struct dwarf2_cu *,
963 gdb_byte **new_info_ptr,
964 struct die_info *parent);
965
966 static void free_die_list (struct die_info *);
967
968 static void process_die (struct die_info *, struct dwarf2_cu *);
969
970 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
971
972 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
973
974 static struct die_info *dwarf2_extension (struct die_info *die,
975 struct dwarf2_cu *);
976
977 static char *dwarf_tag_name (unsigned int);
978
979 static char *dwarf_attr_name (unsigned int);
980
981 static char *dwarf_form_name (unsigned int);
982
983 static char *dwarf_stack_op_name (unsigned int);
984
985 static char *dwarf_bool_name (unsigned int);
986
987 static char *dwarf_type_encoding_name (unsigned int);
988
989 #if 0
990 static char *dwarf_cfi_name (unsigned int);
991
992 struct die_info *copy_die (struct die_info *);
993 #endif
994
995 static struct die_info *sibling_die (struct die_info *);
996
997 static void dump_die (struct die_info *);
998
999 static void dump_die_list (struct die_info *);
1000
1001 static void store_in_ref_table (unsigned int, struct die_info *,
1002 struct dwarf2_cu *);
1003
1004 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1005 struct dwarf2_cu *);
1006
1007 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1008
1009 static struct die_info *follow_die_ref (struct die_info *,
1010 struct attribute *,
1011 struct dwarf2_cu *);
1012
1013 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1014 struct dwarf2_cu *);
1015
1016 /* memory allocation interface */
1017
1018 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1019
1020 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1021
1022 static struct die_info *dwarf_alloc_die (void);
1023
1024 static void initialize_cu_func_list (struct dwarf2_cu *);
1025
1026 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1027 struct dwarf2_cu *);
1028
1029 static void dwarf_decode_macros (struct line_header *, unsigned int,
1030 char *, bfd *, struct dwarf2_cu *);
1031
1032 static int attr_form_is_block (struct attribute *);
1033
1034 static void
1035 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1036 struct dwarf2_cu *cu);
1037
1038 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
1040
1041 static void free_stack_comp_unit (void *);
1042
1043 static hashval_t partial_die_hash (const void *item);
1044
1045 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
1047 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053 static void free_one_comp_unit (void *);
1054
1055 static void free_cached_comp_units (void *);
1056
1057 static void age_cached_comp_units (void);
1058
1059 static void free_one_cached_comp_unit (void *);
1060
1061 static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1064 static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void create_all_comp_units (struct objfile *);
1068
1069 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1070
1071 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1072
1073 static void dwarf2_add_dependence (struct dwarf2_cu *,
1074 struct dwarf2_per_cu_data *);
1075
1076 static void dwarf2_mark (struct dwarf2_cu *);
1077
1078 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1079
1080 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1081
1082
1083 /* Try to locate the sections we need for DWARF 2 debugging
1084 information and return true if we have enough to do something. */
1085
1086 int
1087 dwarf2_has_info (struct objfile *objfile)
1088 {
1089 struct dwarf2_per_objfile *data;
1090
1091 /* Initialize per-objfile state. */
1092 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1093 memset (data, 0, sizeof (*data));
1094 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1095 dwarf2_per_objfile = data;
1096
1097 dwarf_info_section = 0;
1098 dwarf_abbrev_section = 0;
1099 dwarf_line_section = 0;
1100 dwarf_str_section = 0;
1101 dwarf_macinfo_section = 0;
1102 dwarf_frame_section = 0;
1103 dwarf_eh_frame_section = 0;
1104 dwarf_ranges_section = 0;
1105 dwarf_loc_section = 0;
1106
1107 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1108 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1109 }
1110
1111 /* This function is mapped across the sections and remembers the
1112 offset and size of each of the debugging sections we are interested
1113 in. */
1114
1115 static void
1116 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1117 {
1118 if (strcmp (sectp->name, INFO_SECTION) == 0)
1119 {
1120 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1121 dwarf_info_section = sectp;
1122 }
1123 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1124 {
1125 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1126 dwarf_abbrev_section = sectp;
1127 }
1128 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1129 {
1130 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1131 dwarf_line_section = sectp;
1132 }
1133 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1134 {
1135 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1136 dwarf_pubnames_section = sectp;
1137 }
1138 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1139 {
1140 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1141 dwarf_aranges_section = sectp;
1142 }
1143 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1144 {
1145 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1146 dwarf_loc_section = sectp;
1147 }
1148 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1149 {
1150 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1151 dwarf_macinfo_section = sectp;
1152 }
1153 else if (strcmp (sectp->name, STR_SECTION) == 0)
1154 {
1155 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1156 dwarf_str_section = sectp;
1157 }
1158 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1159 {
1160 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1161 dwarf_frame_section = sectp;
1162 }
1163 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1164 {
1165 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1166 if (aflag & SEC_HAS_CONTENTS)
1167 {
1168 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1169 dwarf_eh_frame_section = sectp;
1170 }
1171 }
1172 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1173 {
1174 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1175 dwarf_ranges_section = sectp;
1176 }
1177
1178 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1179 && bfd_section_vma (abfd, sectp) == 0)
1180 dwarf2_per_objfile->has_section_at_zero = 1;
1181 }
1182
1183 /* Build a partial symbol table. */
1184
1185 void
1186 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1187 {
1188 /* We definitely need the .debug_info and .debug_abbrev sections */
1189
1190 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1191 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1192
1193 if (dwarf_line_section)
1194 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1195 else
1196 dwarf2_per_objfile->line_buffer = NULL;
1197
1198 if (dwarf_str_section)
1199 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1200 else
1201 dwarf2_per_objfile->str_buffer = NULL;
1202
1203 if (dwarf_macinfo_section)
1204 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1205 dwarf_macinfo_section);
1206 else
1207 dwarf2_per_objfile->macinfo_buffer = NULL;
1208
1209 if (dwarf_ranges_section)
1210 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1211 else
1212 dwarf2_per_objfile->ranges_buffer = NULL;
1213
1214 if (dwarf_loc_section)
1215 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1216 else
1217 dwarf2_per_objfile->loc_buffer = NULL;
1218
1219 if (mainline
1220 || (objfile->global_psymbols.size == 0
1221 && objfile->static_psymbols.size == 0))
1222 {
1223 init_psymbol_list (objfile, 1024);
1224 }
1225
1226 #if 0
1227 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1228 {
1229 /* Things are significantly easier if we have .debug_aranges and
1230 .debug_pubnames sections */
1231
1232 dwarf2_build_psymtabs_easy (objfile, mainline);
1233 }
1234 else
1235 #endif
1236 /* only test this case for now */
1237 {
1238 /* In this case we have to work a bit harder */
1239 dwarf2_build_psymtabs_hard (objfile, mainline);
1240 }
1241 }
1242
1243 #if 0
1244 /* Build the partial symbol table from the information in the
1245 .debug_pubnames and .debug_aranges sections. */
1246
1247 static void
1248 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1249 {
1250 bfd *abfd = objfile->obfd;
1251 char *aranges_buffer, *pubnames_buffer;
1252 char *aranges_ptr, *pubnames_ptr;
1253 unsigned int entry_length, version, info_offset, info_size;
1254
1255 pubnames_buffer = dwarf2_read_section (objfile,
1256 dwarf_pubnames_section);
1257 pubnames_ptr = pubnames_buffer;
1258 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1259 {
1260 struct comp_unit_head cu_header;
1261 unsigned int bytes_read;
1262
1263 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1264 &bytes_read);
1265 pubnames_ptr += bytes_read;
1266 version = read_1_byte (abfd, pubnames_ptr);
1267 pubnames_ptr += 1;
1268 info_offset = read_4_bytes (abfd, pubnames_ptr);
1269 pubnames_ptr += 4;
1270 info_size = read_4_bytes (abfd, pubnames_ptr);
1271 pubnames_ptr += 4;
1272 }
1273
1274 aranges_buffer = dwarf2_read_section (objfile,
1275 dwarf_aranges_section);
1276
1277 }
1278 #endif
1279
1280 /* Read in the comp unit header information from the debug_info at
1281 info_ptr. */
1282
1283 static gdb_byte *
1284 read_comp_unit_head (struct comp_unit_head *cu_header,
1285 gdb_byte *info_ptr, bfd *abfd)
1286 {
1287 int signed_addr;
1288 unsigned int bytes_read;
1289 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1290 &bytes_read);
1291 info_ptr += bytes_read;
1292 cu_header->version = read_2_bytes (abfd, info_ptr);
1293 info_ptr += 2;
1294 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1295 &bytes_read);
1296 info_ptr += bytes_read;
1297 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1298 info_ptr += 1;
1299 signed_addr = bfd_get_sign_extend_vma (abfd);
1300 if (signed_addr < 0)
1301 internal_error (__FILE__, __LINE__,
1302 _("read_comp_unit_head: dwarf from non elf file"));
1303 cu_header->signed_addr_p = signed_addr;
1304 return info_ptr;
1305 }
1306
1307 static gdb_byte *
1308 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1309 bfd *abfd)
1310 {
1311 gdb_byte *beg_of_comp_unit = info_ptr;
1312
1313 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1314
1315 if (header->version != 2 && header->version != 3)
1316 error (_("Dwarf Error: wrong version in compilation unit header "
1317 "(is %d, should be %d) [in module %s]"), header->version,
1318 2, bfd_get_filename (abfd));
1319
1320 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1321 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1322 "(offset 0x%lx + 6) [in module %s]"),
1323 (long) header->abbrev_offset,
1324 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1325 bfd_get_filename (abfd));
1326
1327 if (beg_of_comp_unit + header->length + header->initial_length_size
1328 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1329 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1330 "(offset 0x%lx + 0) [in module %s]"),
1331 (long) header->length,
1332 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1333 bfd_get_filename (abfd));
1334
1335 return info_ptr;
1336 }
1337
1338 /* Allocate a new partial symtab for file named NAME and mark this new
1339 partial symtab as being an include of PST. */
1340
1341 static void
1342 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1343 struct objfile *objfile)
1344 {
1345 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1346
1347 subpst->section_offsets = pst->section_offsets;
1348 subpst->textlow = 0;
1349 subpst->texthigh = 0;
1350
1351 subpst->dependencies = (struct partial_symtab **)
1352 obstack_alloc (&objfile->objfile_obstack,
1353 sizeof (struct partial_symtab *));
1354 subpst->dependencies[0] = pst;
1355 subpst->number_of_dependencies = 1;
1356
1357 subpst->globals_offset = 0;
1358 subpst->n_global_syms = 0;
1359 subpst->statics_offset = 0;
1360 subpst->n_static_syms = 0;
1361 subpst->symtab = NULL;
1362 subpst->read_symtab = pst->read_symtab;
1363 subpst->readin = 0;
1364
1365 /* No private part is necessary for include psymtabs. This property
1366 can be used to differentiate between such include psymtabs and
1367 the regular ones. */
1368 subpst->read_symtab_private = NULL;
1369 }
1370
1371 /* Read the Line Number Program data and extract the list of files
1372 included by the source file represented by PST. Build an include
1373 partial symtab for each of these included files.
1374
1375 This procedure assumes that there *is* a Line Number Program in
1376 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1377 before calling this procedure. */
1378
1379 static void
1380 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1381 struct partial_die_info *pdi,
1382 struct partial_symtab *pst)
1383 {
1384 struct objfile *objfile = cu->objfile;
1385 bfd *abfd = objfile->obfd;
1386 struct line_header *lh;
1387
1388 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1389 if (lh == NULL)
1390 return; /* No linetable, so no includes. */
1391
1392 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1393
1394 free_line_header (lh);
1395 }
1396
1397
1398 /* Build the partial symbol table by doing a quick pass through the
1399 .debug_info and .debug_abbrev sections. */
1400
1401 static void
1402 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1403 {
1404 /* Instead of reading this into a big buffer, we should probably use
1405 mmap() on architectures that support it. (FIXME) */
1406 bfd *abfd = objfile->obfd;
1407 gdb_byte *info_ptr;
1408 gdb_byte *beg_of_comp_unit;
1409 struct partial_die_info comp_unit_die;
1410 struct partial_symtab *pst;
1411 struct cleanup *back_to;
1412 CORE_ADDR lowpc, highpc, baseaddr;
1413
1414 info_ptr = dwarf2_per_objfile->info_buffer;
1415
1416 /* Any cached compilation units will be linked by the per-objfile
1417 read_in_chain. Make sure to free them when we're done. */
1418 back_to = make_cleanup (free_cached_comp_units, NULL);
1419
1420 create_all_comp_units (objfile);
1421
1422 /* Since the objects we're extracting from .debug_info vary in
1423 length, only the individual functions to extract them (like
1424 read_comp_unit_head and load_partial_die) can really know whether
1425 the buffer is large enough to hold another complete object.
1426
1427 At the moment, they don't actually check that. If .debug_info
1428 holds just one extra byte after the last compilation unit's dies,
1429 then read_comp_unit_head will happily read off the end of the
1430 buffer. read_partial_die is similarly casual. Those functions
1431 should be fixed.
1432
1433 For this loop condition, simply checking whether there's any data
1434 left at all should be sufficient. */
1435 while (info_ptr < (dwarf2_per_objfile->info_buffer
1436 + dwarf2_per_objfile->info_size))
1437 {
1438 struct cleanup *back_to_inner;
1439 struct dwarf2_cu cu;
1440 struct abbrev_info *abbrev;
1441 unsigned int bytes_read;
1442 struct dwarf2_per_cu_data *this_cu;
1443
1444 beg_of_comp_unit = info_ptr;
1445
1446 memset (&cu, 0, sizeof (cu));
1447
1448 obstack_init (&cu.comp_unit_obstack);
1449
1450 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1451
1452 cu.objfile = objfile;
1453 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1454
1455 /* Complete the cu_header */
1456 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1457 cu.header.first_die_ptr = info_ptr;
1458 cu.header.cu_head_ptr = beg_of_comp_unit;
1459
1460 cu.list_in_scope = &file_symbols;
1461
1462 /* Read the abbrevs for this compilation unit into a table */
1463 dwarf2_read_abbrevs (abfd, &cu);
1464 make_cleanup (dwarf2_free_abbrev_table, &cu);
1465
1466 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1467
1468 /* Read the compilation unit die */
1469 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1470 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1471 abfd, info_ptr, &cu);
1472
1473 /* Set the language we're debugging */
1474 set_cu_language (comp_unit_die.language, &cu);
1475
1476 /* Allocate a new partial symbol table structure */
1477 pst = start_psymtab_common (objfile, objfile->section_offsets,
1478 comp_unit_die.name ? comp_unit_die.name : "",
1479 comp_unit_die.lowpc,
1480 objfile->global_psymbols.next,
1481 objfile->static_psymbols.next);
1482
1483 if (comp_unit_die.dirname)
1484 pst->dirname = xstrdup (comp_unit_die.dirname);
1485
1486 pst->read_symtab_private = (char *) this_cu;
1487
1488 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1489
1490 /* Store the function that reads in the rest of the symbol table */
1491 pst->read_symtab = dwarf2_psymtab_to_symtab;
1492
1493 /* If this compilation unit was already read in, free the
1494 cached copy in order to read it in again. This is
1495 necessary because we skipped some symbols when we first
1496 read in the compilation unit (see load_partial_dies).
1497 This problem could be avoided, but the benefit is
1498 unclear. */
1499 if (this_cu->cu != NULL)
1500 free_one_cached_comp_unit (this_cu->cu);
1501
1502 cu.per_cu = this_cu;
1503
1504 /* Note that this is a pointer to our stack frame, being
1505 added to a global data structure. It will be cleaned up
1506 in free_stack_comp_unit when we finish with this
1507 compilation unit. */
1508 this_cu->cu = &cu;
1509
1510 this_cu->psymtab = pst;
1511
1512 /* Check if comp unit has_children.
1513 If so, read the rest of the partial symbols from this comp unit.
1514 If not, there's no more debug_info for this comp unit. */
1515 if (comp_unit_die.has_children)
1516 {
1517 struct partial_die_info *first_die;
1518
1519 lowpc = ((CORE_ADDR) -1);
1520 highpc = ((CORE_ADDR) 0);
1521
1522 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1523
1524 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1525
1526 /* If we didn't find a lowpc, set it to highpc to avoid
1527 complaints from `maint check'. */
1528 if (lowpc == ((CORE_ADDR) -1))
1529 lowpc = highpc;
1530
1531 /* If the compilation unit didn't have an explicit address range,
1532 then use the information extracted from its child dies. */
1533 if (! comp_unit_die.has_pc_info)
1534 {
1535 comp_unit_die.lowpc = lowpc;
1536 comp_unit_die.highpc = highpc;
1537 }
1538 }
1539 pst->textlow = comp_unit_die.lowpc + baseaddr;
1540 pst->texthigh = comp_unit_die.highpc + baseaddr;
1541
1542 pst->n_global_syms = objfile->global_psymbols.next -
1543 (objfile->global_psymbols.list + pst->globals_offset);
1544 pst->n_static_syms = objfile->static_psymbols.next -
1545 (objfile->static_psymbols.list + pst->statics_offset);
1546 sort_pst_symbols (pst);
1547
1548 /* If there is already a psymtab or symtab for a file of this
1549 name, remove it. (If there is a symtab, more drastic things
1550 also happen.) This happens in VxWorks. */
1551 free_named_symtabs (pst->filename);
1552
1553 info_ptr = beg_of_comp_unit + cu.header.length
1554 + cu.header.initial_length_size;
1555
1556 if (comp_unit_die.has_stmt_list)
1557 {
1558 /* Get the list of files included in the current compilation unit,
1559 and build a psymtab for each of them. */
1560 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1561 }
1562
1563 do_cleanups (back_to_inner);
1564 }
1565 do_cleanups (back_to);
1566 }
1567
1568 /* Load the DIEs for a secondary CU into memory. */
1569
1570 static void
1571 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1572 {
1573 bfd *abfd = objfile->obfd;
1574 gdb_byte *info_ptr, *beg_of_comp_unit;
1575 struct partial_die_info comp_unit_die;
1576 struct dwarf2_cu *cu;
1577 struct abbrev_info *abbrev;
1578 unsigned int bytes_read;
1579 struct cleanup *back_to;
1580
1581 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1582 beg_of_comp_unit = info_ptr;
1583
1584 cu = xmalloc (sizeof (struct dwarf2_cu));
1585 memset (cu, 0, sizeof (struct dwarf2_cu));
1586
1587 obstack_init (&cu->comp_unit_obstack);
1588
1589 cu->objfile = objfile;
1590 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1591
1592 /* Complete the cu_header. */
1593 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1594 cu->header.first_die_ptr = info_ptr;
1595 cu->header.cu_head_ptr = beg_of_comp_unit;
1596
1597 /* Read the abbrevs for this compilation unit into a table. */
1598 dwarf2_read_abbrevs (abfd, cu);
1599 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1600
1601 /* Read the compilation unit die. */
1602 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1603 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1604 abfd, info_ptr, cu);
1605
1606 /* Set the language we're debugging. */
1607 set_cu_language (comp_unit_die.language, cu);
1608
1609 /* Link this compilation unit into the compilation unit tree. */
1610 this_cu->cu = cu;
1611 cu->per_cu = this_cu;
1612
1613 /* Check if comp unit has_children.
1614 If so, read the rest of the partial symbols from this comp unit.
1615 If not, there's no more debug_info for this comp unit. */
1616 if (comp_unit_die.has_children)
1617 load_partial_dies (abfd, info_ptr, 0, cu);
1618
1619 do_cleanups (back_to);
1620 }
1621
1622 /* Create a list of all compilation units in OBJFILE. We do this only
1623 if an inter-comp-unit reference is found; presumably if there is one,
1624 there will be many, and one will occur early in the .debug_info section.
1625 So there's no point in building this list incrementally. */
1626
1627 static void
1628 create_all_comp_units (struct objfile *objfile)
1629 {
1630 int n_allocated;
1631 int n_comp_units;
1632 struct dwarf2_per_cu_data **all_comp_units;
1633 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1634
1635 n_comp_units = 0;
1636 n_allocated = 10;
1637 all_comp_units = xmalloc (n_allocated
1638 * sizeof (struct dwarf2_per_cu_data *));
1639
1640 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1641 {
1642 struct comp_unit_head cu_header;
1643 gdb_byte *beg_of_comp_unit;
1644 struct dwarf2_per_cu_data *this_cu;
1645 unsigned long offset;
1646 unsigned int bytes_read;
1647
1648 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1649
1650 /* Read just enough information to find out where the next
1651 compilation unit is. */
1652 cu_header.initial_length_size = 0;
1653 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1654 &cu_header, &bytes_read);
1655
1656 /* Save the compilation unit for later lookup. */
1657 this_cu = obstack_alloc (&objfile->objfile_obstack,
1658 sizeof (struct dwarf2_per_cu_data));
1659 memset (this_cu, 0, sizeof (*this_cu));
1660 this_cu->offset = offset;
1661 this_cu->length = cu_header.length + cu_header.initial_length_size;
1662
1663 if (n_comp_units == n_allocated)
1664 {
1665 n_allocated *= 2;
1666 all_comp_units = xrealloc (all_comp_units,
1667 n_allocated
1668 * sizeof (struct dwarf2_per_cu_data *));
1669 }
1670 all_comp_units[n_comp_units++] = this_cu;
1671
1672 info_ptr = info_ptr + this_cu->length;
1673 }
1674
1675 dwarf2_per_objfile->all_comp_units
1676 = obstack_alloc (&objfile->objfile_obstack,
1677 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1678 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1679 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1680 xfree (all_comp_units);
1681 dwarf2_per_objfile->n_comp_units = n_comp_units;
1682 }
1683
1684 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1685 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1686 in CU. */
1687
1688 static void
1689 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1690 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1691 {
1692 struct objfile *objfile = cu->objfile;
1693 bfd *abfd = objfile->obfd;
1694 struct partial_die_info *pdi;
1695
1696 /* Now, march along the PDI's, descending into ones which have
1697 interesting children but skipping the children of the other ones,
1698 until we reach the end of the compilation unit. */
1699
1700 pdi = first_die;
1701
1702 while (pdi != NULL)
1703 {
1704 fixup_partial_die (pdi, cu);
1705
1706 /* Anonymous namespaces have no name but have interesting
1707 children, so we need to look at them. Ditto for anonymous
1708 enums. */
1709
1710 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1711 || pdi->tag == DW_TAG_enumeration_type)
1712 {
1713 switch (pdi->tag)
1714 {
1715 case DW_TAG_subprogram:
1716 if (pdi->has_pc_info)
1717 {
1718 if (pdi->lowpc < *lowpc)
1719 {
1720 *lowpc = pdi->lowpc;
1721 }
1722 if (pdi->highpc > *highpc)
1723 {
1724 *highpc = pdi->highpc;
1725 }
1726 if (!pdi->is_declaration)
1727 {
1728 add_partial_symbol (pdi, cu);
1729 }
1730 }
1731 break;
1732 case DW_TAG_variable:
1733 case DW_TAG_typedef:
1734 case DW_TAG_union_type:
1735 if (!pdi->is_declaration)
1736 {
1737 add_partial_symbol (pdi, cu);
1738 }
1739 break;
1740 case DW_TAG_class_type:
1741 case DW_TAG_structure_type:
1742 if (!pdi->is_declaration)
1743 {
1744 add_partial_symbol (pdi, cu);
1745 }
1746 break;
1747 case DW_TAG_enumeration_type:
1748 if (!pdi->is_declaration)
1749 add_partial_enumeration (pdi, cu);
1750 break;
1751 case DW_TAG_base_type:
1752 case DW_TAG_subrange_type:
1753 /* File scope base type definitions are added to the partial
1754 symbol table. */
1755 add_partial_symbol (pdi, cu);
1756 break;
1757 case DW_TAG_namespace:
1758 add_partial_namespace (pdi, lowpc, highpc, cu);
1759 break;
1760 default:
1761 break;
1762 }
1763 }
1764
1765 /* If the die has a sibling, skip to the sibling. */
1766
1767 pdi = pdi->die_sibling;
1768 }
1769 }
1770
1771 /* Functions used to compute the fully scoped name of a partial DIE.
1772
1773 Normally, this is simple. For C++, the parent DIE's fully scoped
1774 name is concatenated with "::" and the partial DIE's name. For
1775 Java, the same thing occurs except that "." is used instead of "::".
1776 Enumerators are an exception; they use the scope of their parent
1777 enumeration type, i.e. the name of the enumeration type is not
1778 prepended to the enumerator.
1779
1780 There are two complexities. One is DW_AT_specification; in this
1781 case "parent" means the parent of the target of the specification,
1782 instead of the direct parent of the DIE. The other is compilers
1783 which do not emit DW_TAG_namespace; in this case we try to guess
1784 the fully qualified name of structure types from their members'
1785 linkage names. This must be done using the DIE's children rather
1786 than the children of any DW_AT_specification target. We only need
1787 to do this for structures at the top level, i.e. if the target of
1788 any DW_AT_specification (if any; otherwise the DIE itself) does not
1789 have a parent. */
1790
1791 /* Compute the scope prefix associated with PDI's parent, in
1792 compilation unit CU. The result will be allocated on CU's
1793 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1794 field. NULL is returned if no prefix is necessary. */
1795 static char *
1796 partial_die_parent_scope (struct partial_die_info *pdi,
1797 struct dwarf2_cu *cu)
1798 {
1799 char *grandparent_scope;
1800 struct partial_die_info *parent, *real_pdi;
1801
1802 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1803 then this means the parent of the specification DIE. */
1804
1805 real_pdi = pdi;
1806 while (real_pdi->has_specification)
1807 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1808
1809 parent = real_pdi->die_parent;
1810 if (parent == NULL)
1811 return NULL;
1812
1813 if (parent->scope_set)
1814 return parent->scope;
1815
1816 fixup_partial_die (parent, cu);
1817
1818 grandparent_scope = partial_die_parent_scope (parent, cu);
1819
1820 if (parent->tag == DW_TAG_namespace
1821 || parent->tag == DW_TAG_structure_type
1822 || parent->tag == DW_TAG_class_type
1823 || parent->tag == DW_TAG_union_type)
1824 {
1825 if (grandparent_scope == NULL)
1826 parent->scope = parent->name;
1827 else
1828 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1829 parent->name, cu);
1830 }
1831 else if (parent->tag == DW_TAG_enumeration_type)
1832 /* Enumerators should not get the name of the enumeration as a prefix. */
1833 parent->scope = grandparent_scope;
1834 else
1835 {
1836 /* FIXME drow/2004-04-01: What should we be doing with
1837 function-local names? For partial symbols, we should probably be
1838 ignoring them. */
1839 complaint (&symfile_complaints,
1840 _("unhandled containing DIE tag %d for DIE at %d"),
1841 parent->tag, pdi->offset);
1842 parent->scope = grandparent_scope;
1843 }
1844
1845 parent->scope_set = 1;
1846 return parent->scope;
1847 }
1848
1849 /* Return the fully scoped name associated with PDI, from compilation unit
1850 CU. The result will be allocated with malloc. */
1851 static char *
1852 partial_die_full_name (struct partial_die_info *pdi,
1853 struct dwarf2_cu *cu)
1854 {
1855 char *parent_scope;
1856
1857 parent_scope = partial_die_parent_scope (pdi, cu);
1858 if (parent_scope == NULL)
1859 return NULL;
1860 else
1861 return typename_concat (NULL, parent_scope, pdi->name, cu);
1862 }
1863
1864 static void
1865 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1866 {
1867 struct objfile *objfile = cu->objfile;
1868 CORE_ADDR addr = 0;
1869 char *actual_name;
1870 const char *my_prefix;
1871 const struct partial_symbol *psym = NULL;
1872 CORE_ADDR baseaddr;
1873 int built_actual_name = 0;
1874
1875 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1876
1877 actual_name = NULL;
1878
1879 if (pdi_needs_namespace (pdi->tag))
1880 {
1881 actual_name = partial_die_full_name (pdi, cu);
1882 if (actual_name)
1883 built_actual_name = 1;
1884 }
1885
1886 if (actual_name == NULL)
1887 actual_name = pdi->name;
1888
1889 switch (pdi->tag)
1890 {
1891 case DW_TAG_subprogram:
1892 if (pdi->is_external)
1893 {
1894 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1895 mst_text, objfile); */
1896 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1897 VAR_DOMAIN, LOC_BLOCK,
1898 &objfile->global_psymbols,
1899 0, pdi->lowpc + baseaddr,
1900 cu->language, objfile);
1901 }
1902 else
1903 {
1904 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1905 mst_file_text, objfile); */
1906 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1907 VAR_DOMAIN, LOC_BLOCK,
1908 &objfile->static_psymbols,
1909 0, pdi->lowpc + baseaddr,
1910 cu->language, objfile);
1911 }
1912 break;
1913 case DW_TAG_variable:
1914 if (pdi->is_external)
1915 {
1916 /* Global Variable.
1917 Don't enter into the minimal symbol tables as there is
1918 a minimal symbol table entry from the ELF symbols already.
1919 Enter into partial symbol table if it has a location
1920 descriptor or a type.
1921 If the location descriptor is missing, new_symbol will create
1922 a LOC_UNRESOLVED symbol, the address of the variable will then
1923 be determined from the minimal symbol table whenever the variable
1924 is referenced.
1925 The address for the partial symbol table entry is not
1926 used by GDB, but it comes in handy for debugging partial symbol
1927 table building. */
1928
1929 if (pdi->locdesc)
1930 addr = decode_locdesc (pdi->locdesc, cu);
1931 if (pdi->locdesc || pdi->has_type)
1932 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1933 VAR_DOMAIN, LOC_STATIC,
1934 &objfile->global_psymbols,
1935 0, addr + baseaddr,
1936 cu->language, objfile);
1937 }
1938 else
1939 {
1940 /* Static Variable. Skip symbols without location descriptors. */
1941 if (pdi->locdesc == NULL)
1942 return;
1943 addr = decode_locdesc (pdi->locdesc, cu);
1944 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1945 mst_file_data, objfile); */
1946 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1947 VAR_DOMAIN, LOC_STATIC,
1948 &objfile->static_psymbols,
1949 0, addr + baseaddr,
1950 cu->language, objfile);
1951 }
1952 break;
1953 case DW_TAG_typedef:
1954 case DW_TAG_base_type:
1955 case DW_TAG_subrange_type:
1956 add_psymbol_to_list (actual_name, strlen (actual_name),
1957 VAR_DOMAIN, LOC_TYPEDEF,
1958 &objfile->static_psymbols,
1959 0, (CORE_ADDR) 0, cu->language, objfile);
1960 break;
1961 case DW_TAG_namespace:
1962 add_psymbol_to_list (actual_name, strlen (actual_name),
1963 VAR_DOMAIN, LOC_TYPEDEF,
1964 &objfile->global_psymbols,
1965 0, (CORE_ADDR) 0, cu->language, objfile);
1966 break;
1967 case DW_TAG_class_type:
1968 case DW_TAG_structure_type:
1969 case DW_TAG_union_type:
1970 case DW_TAG_enumeration_type:
1971 /* Skip aggregate types without children, these are external
1972 references. */
1973 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1974 static vs. global. */
1975 if (pdi->has_children == 0)
1976 return;
1977 add_psymbol_to_list (actual_name, strlen (actual_name),
1978 STRUCT_DOMAIN, LOC_TYPEDEF,
1979 (cu->language == language_cplus
1980 || cu->language == language_java)
1981 ? &objfile->global_psymbols
1982 : &objfile->static_psymbols,
1983 0, (CORE_ADDR) 0, cu->language, objfile);
1984
1985 if (cu->language == language_cplus
1986 || cu->language == language_java)
1987 {
1988 /* For C++ and Java, these implicitly act as typedefs as well. */
1989 add_psymbol_to_list (actual_name, strlen (actual_name),
1990 VAR_DOMAIN, LOC_TYPEDEF,
1991 &objfile->global_psymbols,
1992 0, (CORE_ADDR) 0, cu->language, objfile);
1993 }
1994 break;
1995 case DW_TAG_enumerator:
1996 add_psymbol_to_list (actual_name, strlen (actual_name),
1997 VAR_DOMAIN, LOC_CONST,
1998 (cu->language == language_cplus
1999 || cu->language == language_java)
2000 ? &objfile->global_psymbols
2001 : &objfile->static_psymbols,
2002 0, (CORE_ADDR) 0, cu->language, objfile);
2003 break;
2004 default:
2005 break;
2006 }
2007
2008 /* Check to see if we should scan the name for possible namespace
2009 info. Only do this if this is C++, if we don't have namespace
2010 debugging info in the file, if the psym is of an appropriate type
2011 (otherwise we'll have psym == NULL), and if we actually had a
2012 mangled name to begin with. */
2013
2014 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2015 cases which do not set PSYM above? */
2016
2017 if (cu->language == language_cplus
2018 && cu->has_namespace_info == 0
2019 && psym != NULL
2020 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2021 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2022 objfile);
2023
2024 if (built_actual_name)
2025 xfree (actual_name);
2026 }
2027
2028 /* Determine whether a die of type TAG living in a C++ class or
2029 namespace needs to have the name of the scope prepended to the
2030 name listed in the die. */
2031
2032 static int
2033 pdi_needs_namespace (enum dwarf_tag tag)
2034 {
2035 switch (tag)
2036 {
2037 case DW_TAG_namespace:
2038 case DW_TAG_typedef:
2039 case DW_TAG_class_type:
2040 case DW_TAG_structure_type:
2041 case DW_TAG_union_type:
2042 case DW_TAG_enumeration_type:
2043 case DW_TAG_enumerator:
2044 return 1;
2045 default:
2046 return 0;
2047 }
2048 }
2049
2050 /* Read a partial die corresponding to a namespace; also, add a symbol
2051 corresponding to that namespace to the symbol table. NAMESPACE is
2052 the name of the enclosing namespace. */
2053
2054 static void
2055 add_partial_namespace (struct partial_die_info *pdi,
2056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2057 struct dwarf2_cu *cu)
2058 {
2059 struct objfile *objfile = cu->objfile;
2060
2061 /* Add a symbol for the namespace. */
2062
2063 add_partial_symbol (pdi, cu);
2064
2065 /* Now scan partial symbols in that namespace. */
2066
2067 if (pdi->has_children)
2068 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2069 }
2070
2071 /* See if we can figure out if the class lives in a namespace. We do
2072 this by looking for a member function; its demangled name will
2073 contain namespace info, if there is any. */
2074
2075 static void
2076 guess_structure_name (struct partial_die_info *struct_pdi,
2077 struct dwarf2_cu *cu)
2078 {
2079 if ((cu->language == language_cplus
2080 || cu->language == language_java)
2081 && cu->has_namespace_info == 0
2082 && struct_pdi->has_children)
2083 {
2084 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2085 what template types look like, because the demangler
2086 frequently doesn't give the same name as the debug info. We
2087 could fix this by only using the demangled name to get the
2088 prefix (but see comment in read_structure_type). */
2089
2090 struct partial_die_info *child_pdi = struct_pdi->die_child;
2091 struct partial_die_info *real_pdi;
2092
2093 /* If this DIE (this DIE's specification, if any) has a parent, then
2094 we should not do this. We'll prepend the parent's fully qualified
2095 name when we create the partial symbol. */
2096
2097 real_pdi = struct_pdi;
2098 while (real_pdi->has_specification)
2099 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2100
2101 if (real_pdi->die_parent != NULL)
2102 return;
2103
2104 while (child_pdi != NULL)
2105 {
2106 if (child_pdi->tag == DW_TAG_subprogram)
2107 {
2108 char *actual_class_name
2109 = language_class_name_from_physname (cu->language_defn,
2110 child_pdi->name);
2111 if (actual_class_name != NULL)
2112 {
2113 struct_pdi->name
2114 = obsavestring (actual_class_name,
2115 strlen (actual_class_name),
2116 &cu->comp_unit_obstack);
2117 xfree (actual_class_name);
2118 }
2119 break;
2120 }
2121
2122 child_pdi = child_pdi->die_sibling;
2123 }
2124 }
2125 }
2126
2127 /* Read a partial die corresponding to an enumeration type. */
2128
2129 static void
2130 add_partial_enumeration (struct partial_die_info *enum_pdi,
2131 struct dwarf2_cu *cu)
2132 {
2133 struct objfile *objfile = cu->objfile;
2134 bfd *abfd = objfile->obfd;
2135 struct partial_die_info *pdi;
2136
2137 if (enum_pdi->name != NULL)
2138 add_partial_symbol (enum_pdi, cu);
2139
2140 pdi = enum_pdi->die_child;
2141 while (pdi)
2142 {
2143 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2144 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2145 else
2146 add_partial_symbol (pdi, cu);
2147 pdi = pdi->die_sibling;
2148 }
2149 }
2150
2151 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2152 Return the corresponding abbrev, or NULL if the number is zero (indicating
2153 an empty DIE). In either case *BYTES_READ will be set to the length of
2154 the initial number. */
2155
2156 static struct abbrev_info *
2157 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2158 struct dwarf2_cu *cu)
2159 {
2160 bfd *abfd = cu->objfile->obfd;
2161 unsigned int abbrev_number;
2162 struct abbrev_info *abbrev;
2163
2164 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2165
2166 if (abbrev_number == 0)
2167 return NULL;
2168
2169 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2170 if (!abbrev)
2171 {
2172 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2173 bfd_get_filename (abfd));
2174 }
2175
2176 return abbrev;
2177 }
2178
2179 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2180 pointer to the end of a series of DIEs, terminated by an empty
2181 DIE. Any children of the skipped DIEs will also be skipped. */
2182
2183 static gdb_byte *
2184 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2185 {
2186 struct abbrev_info *abbrev;
2187 unsigned int bytes_read;
2188
2189 while (1)
2190 {
2191 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2192 if (abbrev == NULL)
2193 return info_ptr + bytes_read;
2194 else
2195 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2196 }
2197 }
2198
2199 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2200 should point just after the initial uleb128 of a DIE, and the
2201 abbrev corresponding to that skipped uleb128 should be passed in
2202 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2203 children. */
2204
2205 static gdb_byte *
2206 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2207 struct dwarf2_cu *cu)
2208 {
2209 unsigned int bytes_read;
2210 struct attribute attr;
2211 bfd *abfd = cu->objfile->obfd;
2212 unsigned int form, i;
2213
2214 for (i = 0; i < abbrev->num_attrs; i++)
2215 {
2216 /* The only abbrev we care about is DW_AT_sibling. */
2217 if (abbrev->attrs[i].name == DW_AT_sibling)
2218 {
2219 read_attribute (&attr, &abbrev->attrs[i],
2220 abfd, info_ptr, cu);
2221 if (attr.form == DW_FORM_ref_addr)
2222 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2223 else
2224 return dwarf2_per_objfile->info_buffer
2225 + dwarf2_get_ref_die_offset (&attr, cu);
2226 }
2227
2228 /* If it isn't DW_AT_sibling, skip this attribute. */
2229 form = abbrev->attrs[i].form;
2230 skip_attribute:
2231 switch (form)
2232 {
2233 case DW_FORM_addr:
2234 case DW_FORM_ref_addr:
2235 info_ptr += cu->header.addr_size;
2236 break;
2237 case DW_FORM_data1:
2238 case DW_FORM_ref1:
2239 case DW_FORM_flag:
2240 info_ptr += 1;
2241 break;
2242 case DW_FORM_data2:
2243 case DW_FORM_ref2:
2244 info_ptr += 2;
2245 break;
2246 case DW_FORM_data4:
2247 case DW_FORM_ref4:
2248 info_ptr += 4;
2249 break;
2250 case DW_FORM_data8:
2251 case DW_FORM_ref8:
2252 info_ptr += 8;
2253 break;
2254 case DW_FORM_string:
2255 read_string (abfd, info_ptr, &bytes_read);
2256 info_ptr += bytes_read;
2257 break;
2258 case DW_FORM_strp:
2259 info_ptr += cu->header.offset_size;
2260 break;
2261 case DW_FORM_block:
2262 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2263 info_ptr += bytes_read;
2264 break;
2265 case DW_FORM_block1:
2266 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2267 break;
2268 case DW_FORM_block2:
2269 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2270 break;
2271 case DW_FORM_block4:
2272 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2273 break;
2274 case DW_FORM_sdata:
2275 case DW_FORM_udata:
2276 case DW_FORM_ref_udata:
2277 info_ptr = skip_leb128 (abfd, info_ptr);
2278 break;
2279 case DW_FORM_indirect:
2280 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2281 info_ptr += bytes_read;
2282 /* We need to continue parsing from here, so just go back to
2283 the top. */
2284 goto skip_attribute;
2285
2286 default:
2287 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2288 dwarf_form_name (form),
2289 bfd_get_filename (abfd));
2290 }
2291 }
2292
2293 if (abbrev->has_children)
2294 return skip_children (info_ptr, cu);
2295 else
2296 return info_ptr;
2297 }
2298
2299 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2300 the next DIE after ORIG_PDI. */
2301
2302 static gdb_byte *
2303 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2304 bfd *abfd, struct dwarf2_cu *cu)
2305 {
2306 /* Do we know the sibling already? */
2307
2308 if (orig_pdi->sibling)
2309 return orig_pdi->sibling;
2310
2311 /* Are there any children to deal with? */
2312
2313 if (!orig_pdi->has_children)
2314 return info_ptr;
2315
2316 /* Skip the children the long way. */
2317
2318 return skip_children (info_ptr, cu);
2319 }
2320
2321 /* Expand this partial symbol table into a full symbol table. */
2322
2323 static void
2324 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2325 {
2326 /* FIXME: This is barely more than a stub. */
2327 if (pst != NULL)
2328 {
2329 if (pst->readin)
2330 {
2331 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2332 }
2333 else
2334 {
2335 if (info_verbose)
2336 {
2337 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2338 gdb_flush (gdb_stdout);
2339 }
2340
2341 /* Restore our global data. */
2342 dwarf2_per_objfile = objfile_data (pst->objfile,
2343 dwarf2_objfile_data_key);
2344
2345 psymtab_to_symtab_1 (pst);
2346
2347 /* Finish up the debug error message. */
2348 if (info_verbose)
2349 printf_filtered (_("done.\n"));
2350 }
2351 }
2352 }
2353
2354 /* Add PER_CU to the queue. */
2355
2356 static void
2357 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2358 {
2359 struct dwarf2_queue_item *item;
2360
2361 per_cu->queued = 1;
2362 item = xmalloc (sizeof (*item));
2363 item->per_cu = per_cu;
2364 item->next = NULL;
2365
2366 if (dwarf2_queue == NULL)
2367 dwarf2_queue = item;
2368 else
2369 dwarf2_queue_tail->next = item;
2370
2371 dwarf2_queue_tail = item;
2372 }
2373
2374 /* Process the queue. */
2375
2376 static void
2377 process_queue (struct objfile *objfile)
2378 {
2379 struct dwarf2_queue_item *item, *next_item;
2380
2381 /* Initially, there is just one item on the queue. Load its DIEs,
2382 and the DIEs of any other compilation units it requires,
2383 transitively. */
2384
2385 for (item = dwarf2_queue; item != NULL; item = item->next)
2386 {
2387 /* Read in this compilation unit. This may add new items to
2388 the end of the queue. */
2389 load_full_comp_unit (item->per_cu);
2390
2391 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2392 dwarf2_per_objfile->read_in_chain = item->per_cu;
2393
2394 /* If this compilation unit has already had full symbols created,
2395 reset the TYPE fields in each DIE. */
2396 if (item->per_cu->psymtab->readin)
2397 reset_die_and_siblings_types (item->per_cu->cu->dies,
2398 item->per_cu->cu);
2399 }
2400
2401 /* Now everything left on the queue needs to be read in. Process
2402 them, one at a time, removing from the queue as we finish. */
2403 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2404 {
2405 if (!item->per_cu->psymtab->readin)
2406 process_full_comp_unit (item->per_cu);
2407
2408 item->per_cu->queued = 0;
2409 next_item = item->next;
2410 xfree (item);
2411 }
2412
2413 dwarf2_queue_tail = NULL;
2414 }
2415
2416 /* Free all allocated queue entries. This function only releases anything if
2417 an error was thrown; if the queue was processed then it would have been
2418 freed as we went along. */
2419
2420 static void
2421 dwarf2_release_queue (void *dummy)
2422 {
2423 struct dwarf2_queue_item *item, *last;
2424
2425 item = dwarf2_queue;
2426 while (item)
2427 {
2428 /* Anything still marked queued is likely to be in an
2429 inconsistent state, so discard it. */
2430 if (item->per_cu->queued)
2431 {
2432 if (item->per_cu->cu != NULL)
2433 free_one_cached_comp_unit (item->per_cu->cu);
2434 item->per_cu->queued = 0;
2435 }
2436
2437 last = item;
2438 item = item->next;
2439 xfree (last);
2440 }
2441
2442 dwarf2_queue = dwarf2_queue_tail = NULL;
2443 }
2444
2445 /* Read in full symbols for PST, and anything it depends on. */
2446
2447 static void
2448 psymtab_to_symtab_1 (struct partial_symtab *pst)
2449 {
2450 struct dwarf2_per_cu_data *per_cu;
2451 struct cleanup *back_to;
2452 int i;
2453
2454 for (i = 0; i < pst->number_of_dependencies; i++)
2455 if (!pst->dependencies[i]->readin)
2456 {
2457 /* Inform about additional files that need to be read in. */
2458 if (info_verbose)
2459 {
2460 /* FIXME: i18n: Need to make this a single string. */
2461 fputs_filtered (" ", gdb_stdout);
2462 wrap_here ("");
2463 fputs_filtered ("and ", gdb_stdout);
2464 wrap_here ("");
2465 printf_filtered ("%s...", pst->dependencies[i]->filename);
2466 wrap_here (""); /* Flush output */
2467 gdb_flush (gdb_stdout);
2468 }
2469 psymtab_to_symtab_1 (pst->dependencies[i]);
2470 }
2471
2472 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2473
2474 if (per_cu == NULL)
2475 {
2476 /* It's an include file, no symbols to read for it.
2477 Everything is in the parent symtab. */
2478 pst->readin = 1;
2479 return;
2480 }
2481
2482 back_to = make_cleanup (dwarf2_release_queue, NULL);
2483
2484 queue_comp_unit (per_cu);
2485
2486 process_queue (pst->objfile);
2487
2488 /* Age the cache, releasing compilation units that have not
2489 been used recently. */
2490 age_cached_comp_units ();
2491
2492 do_cleanups (back_to);
2493 }
2494
2495 /* Load the DIEs associated with PST and PER_CU into memory. */
2496
2497 static struct dwarf2_cu *
2498 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2499 {
2500 struct partial_symtab *pst = per_cu->psymtab;
2501 bfd *abfd = pst->objfile->obfd;
2502 struct dwarf2_cu *cu;
2503 unsigned long offset;
2504 gdb_byte *info_ptr;
2505 struct cleanup *back_to, *free_cu_cleanup;
2506 struct attribute *attr;
2507 CORE_ADDR baseaddr;
2508
2509 /* Set local variables from the partial symbol table info. */
2510 offset = per_cu->offset;
2511
2512 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2513
2514 cu = xmalloc (sizeof (struct dwarf2_cu));
2515 memset (cu, 0, sizeof (struct dwarf2_cu));
2516
2517 /* If an error occurs while loading, release our storage. */
2518 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2519
2520 cu->objfile = pst->objfile;
2521
2522 /* read in the comp_unit header */
2523 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2524
2525 /* Read the abbrevs for this compilation unit */
2526 dwarf2_read_abbrevs (abfd, cu);
2527 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2528
2529 cu->header.offset = offset;
2530
2531 cu->per_cu = per_cu;
2532 per_cu->cu = cu;
2533
2534 /* We use this obstack for block values in dwarf_alloc_block. */
2535 obstack_init (&cu->comp_unit_obstack);
2536
2537 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2538
2539 /* We try not to read any attributes in this function, because not
2540 all objfiles needed for references have been loaded yet, and symbol
2541 table processing isn't initialized. But we have to set the CU language,
2542 or we won't be able to build types correctly. */
2543 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2544 if (attr)
2545 set_cu_language (DW_UNSND (attr), cu);
2546 else
2547 set_cu_language (language_minimal, cu);
2548
2549 do_cleanups (back_to);
2550
2551 /* We've successfully allocated this compilation unit. Let our caller
2552 clean it up when finished with it. */
2553 discard_cleanups (free_cu_cleanup);
2554
2555 return cu;
2556 }
2557
2558 /* Generate full symbol information for PST and CU, whose DIEs have
2559 already been loaded into memory. */
2560
2561 static void
2562 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2563 {
2564 struct partial_symtab *pst = per_cu->psymtab;
2565 struct dwarf2_cu *cu = per_cu->cu;
2566 struct objfile *objfile = pst->objfile;
2567 bfd *abfd = objfile->obfd;
2568 CORE_ADDR lowpc, highpc;
2569 struct symtab *symtab;
2570 struct cleanup *back_to;
2571 struct attribute *attr;
2572 CORE_ADDR baseaddr;
2573
2574 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2575
2576 /* We're in the global namespace. */
2577 processing_current_prefix = "";
2578
2579 buildsym_init ();
2580 back_to = make_cleanup (really_free_pendings, NULL);
2581
2582 cu->list_in_scope = &file_symbols;
2583
2584 /* Find the base address of the compilation unit for range lists and
2585 location lists. It will normally be specified by DW_AT_low_pc.
2586 In DWARF-3 draft 4, the base address could be overridden by
2587 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2588 compilation units with discontinuous ranges. */
2589
2590 cu->header.base_known = 0;
2591 cu->header.base_address = 0;
2592
2593 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2594 if (attr)
2595 {
2596 cu->header.base_address = DW_ADDR (attr);
2597 cu->header.base_known = 1;
2598 }
2599 else
2600 {
2601 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2602 if (attr)
2603 {
2604 cu->header.base_address = DW_ADDR (attr);
2605 cu->header.base_known = 1;
2606 }
2607 }
2608
2609 /* Do line number decoding in read_file_scope () */
2610 process_die (cu->dies, cu);
2611
2612 /* Some compilers don't define a DW_AT_high_pc attribute for the
2613 compilation unit. If the DW_AT_high_pc is missing, synthesize
2614 it, by scanning the DIE's below the compilation unit. */
2615 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2616
2617 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2618
2619 /* Set symtab language to language from DW_AT_language.
2620 If the compilation is from a C file generated by language preprocessors,
2621 do not set the language if it was already deduced by start_subfile. */
2622 if (symtab != NULL
2623 && !(cu->language == language_c && symtab->language != language_c))
2624 {
2625 symtab->language = cu->language;
2626 }
2627 pst->symtab = symtab;
2628 pst->readin = 1;
2629
2630 do_cleanups (back_to);
2631 }
2632
2633 /* Process a die and its children. */
2634
2635 static void
2636 process_die (struct die_info *die, struct dwarf2_cu *cu)
2637 {
2638 switch (die->tag)
2639 {
2640 case DW_TAG_padding:
2641 break;
2642 case DW_TAG_compile_unit:
2643 read_file_scope (die, cu);
2644 break;
2645 case DW_TAG_subprogram:
2646 read_subroutine_type (die, cu);
2647 read_func_scope (die, cu);
2648 break;
2649 case DW_TAG_inlined_subroutine:
2650 /* FIXME: These are ignored for now.
2651 They could be used to set breakpoints on all inlined instances
2652 of a function and make GDB `next' properly over inlined functions. */
2653 break;
2654 case DW_TAG_lexical_block:
2655 case DW_TAG_try_block:
2656 case DW_TAG_catch_block:
2657 read_lexical_block_scope (die, cu);
2658 break;
2659 case DW_TAG_class_type:
2660 case DW_TAG_structure_type:
2661 case DW_TAG_union_type:
2662 read_structure_type (die, cu);
2663 process_structure_scope (die, cu);
2664 break;
2665 case DW_TAG_enumeration_type:
2666 read_enumeration_type (die, cu);
2667 process_enumeration_scope (die, cu);
2668 break;
2669
2670 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2671 a symbol or process any children. Therefore it doesn't do anything
2672 that won't be done on-demand by read_type_die. */
2673 case DW_TAG_subroutine_type:
2674 read_subroutine_type (die, cu);
2675 break;
2676 case DW_TAG_set_type:
2677 read_set_type (die, cu);
2678 break;
2679 case DW_TAG_array_type:
2680 read_array_type (die, cu);
2681 break;
2682 case DW_TAG_pointer_type:
2683 read_tag_pointer_type (die, cu);
2684 break;
2685 case DW_TAG_ptr_to_member_type:
2686 read_tag_ptr_to_member_type (die, cu);
2687 break;
2688 case DW_TAG_reference_type:
2689 read_tag_reference_type (die, cu);
2690 break;
2691 case DW_TAG_string_type:
2692 read_tag_string_type (die, cu);
2693 break;
2694 /* END FIXME */
2695
2696 case DW_TAG_base_type:
2697 read_base_type (die, cu);
2698 /* Add a typedef symbol for the type definition, if it has a
2699 DW_AT_name. */
2700 new_symbol (die, die->type, cu);
2701 break;
2702 case DW_TAG_subrange_type:
2703 read_subrange_type (die, cu);
2704 /* Add a typedef symbol for the type definition, if it has a
2705 DW_AT_name. */
2706 new_symbol (die, die->type, cu);
2707 break;
2708 case DW_TAG_common_block:
2709 read_common_block (die, cu);
2710 break;
2711 case DW_TAG_common_inclusion:
2712 break;
2713 case DW_TAG_namespace:
2714 processing_has_namespace_info = 1;
2715 read_namespace (die, cu);
2716 break;
2717 case DW_TAG_imported_declaration:
2718 case DW_TAG_imported_module:
2719 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2720 information contained in these. DW_TAG_imported_declaration
2721 dies shouldn't have children; DW_TAG_imported_module dies
2722 shouldn't in the C++ case, but conceivably could in the
2723 Fortran case, so we'll have to replace this gdb_assert if
2724 Fortran compilers start generating that info. */
2725 processing_has_namespace_info = 1;
2726 gdb_assert (die->child == NULL);
2727 break;
2728 default:
2729 new_symbol (die, NULL, cu);
2730 break;
2731 }
2732 }
2733
2734 static void
2735 initialize_cu_func_list (struct dwarf2_cu *cu)
2736 {
2737 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2738 }
2739
2740 static void
2741 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2742 {
2743 struct objfile *objfile = cu->objfile;
2744 struct comp_unit_head *cu_header = &cu->header;
2745 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2746 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2747 CORE_ADDR highpc = ((CORE_ADDR) 0);
2748 struct attribute *attr;
2749 char *name = "<unknown>";
2750 char *comp_dir = NULL;
2751 struct die_info *child_die;
2752 bfd *abfd = objfile->obfd;
2753 struct line_header *line_header = 0;
2754 CORE_ADDR baseaddr;
2755
2756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2757
2758 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2759
2760 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2761 from finish_block. */
2762 if (lowpc == ((CORE_ADDR) -1))
2763 lowpc = highpc;
2764 lowpc += baseaddr;
2765 highpc += baseaddr;
2766
2767 attr = dwarf2_attr (die, DW_AT_name, cu);
2768 if (attr)
2769 {
2770 name = DW_STRING (attr);
2771 }
2772 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2773 if (attr)
2774 {
2775 comp_dir = DW_STRING (attr);
2776 if (comp_dir)
2777 {
2778 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2779 directory, get rid of it. */
2780 char *cp = strchr (comp_dir, ':');
2781
2782 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2783 comp_dir = cp + 1;
2784 }
2785 }
2786
2787 attr = dwarf2_attr (die, DW_AT_language, cu);
2788 if (attr)
2789 {
2790 set_cu_language (DW_UNSND (attr), cu);
2791 }
2792
2793 attr = dwarf2_attr (die, DW_AT_producer, cu);
2794 if (attr)
2795 cu->producer = DW_STRING (attr);
2796
2797 /* We assume that we're processing GCC output. */
2798 processing_gcc_compilation = 2;
2799 #if 0
2800 /* FIXME:Do something here. */
2801 if (dip->at_producer != NULL)
2802 {
2803 handle_producer (dip->at_producer);
2804 }
2805 #endif
2806
2807 /* The compilation unit may be in a different language or objfile,
2808 zero out all remembered fundamental types. */
2809 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2810
2811 start_symtab (name, comp_dir, lowpc);
2812 record_debugformat ("DWARF 2");
2813
2814 initialize_cu_func_list (cu);
2815
2816 /* Process all dies in compilation unit. */
2817 if (die->child != NULL)
2818 {
2819 child_die = die->child;
2820 while (child_die && child_die->tag)
2821 {
2822 process_die (child_die, cu);
2823 child_die = sibling_die (child_die);
2824 }
2825 }
2826
2827 /* Decode line number information if present. */
2828 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2829 if (attr)
2830 {
2831 unsigned int line_offset = DW_UNSND (attr);
2832 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2833 if (line_header)
2834 {
2835 make_cleanup ((make_cleanup_ftype *) free_line_header,
2836 (void *) line_header);
2837 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2838 }
2839 }
2840
2841 /* Decode macro information, if present. Dwarf 2 macro information
2842 refers to information in the line number info statement program
2843 header, so we can only read it if we've read the header
2844 successfully. */
2845 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2846 if (attr && line_header)
2847 {
2848 unsigned int macro_offset = DW_UNSND (attr);
2849 dwarf_decode_macros (line_header, macro_offset,
2850 comp_dir, abfd, cu);
2851 }
2852 do_cleanups (back_to);
2853 }
2854
2855 static void
2856 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2857 struct dwarf2_cu *cu)
2858 {
2859 struct function_range *thisfn;
2860
2861 thisfn = (struct function_range *)
2862 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2863 thisfn->name = name;
2864 thisfn->lowpc = lowpc;
2865 thisfn->highpc = highpc;
2866 thisfn->seen_line = 0;
2867 thisfn->next = NULL;
2868
2869 if (cu->last_fn == NULL)
2870 cu->first_fn = thisfn;
2871 else
2872 cu->last_fn->next = thisfn;
2873
2874 cu->last_fn = thisfn;
2875 }
2876
2877 static void
2878 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2879 {
2880 struct objfile *objfile = cu->objfile;
2881 struct context_stack *new;
2882 CORE_ADDR lowpc;
2883 CORE_ADDR highpc;
2884 struct die_info *child_die;
2885 struct attribute *attr;
2886 char *name;
2887 const char *previous_prefix = processing_current_prefix;
2888 struct cleanup *back_to = NULL;
2889 CORE_ADDR baseaddr;
2890
2891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2892
2893 name = dwarf2_linkage_name (die, cu);
2894
2895 /* Ignore functions with missing or empty names and functions with
2896 missing or invalid low and high pc attributes. */
2897 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2898 return;
2899
2900 if (cu->language == language_cplus
2901 || cu->language == language_java)
2902 {
2903 struct die_info *spec_die = die_specification (die, cu);
2904
2905 /* NOTE: carlton/2004-01-23: We have to be careful in the
2906 presence of DW_AT_specification. For example, with GCC 3.4,
2907 given the code
2908
2909 namespace N {
2910 void foo() {
2911 // Definition of N::foo.
2912 }
2913 }
2914
2915 then we'll have a tree of DIEs like this:
2916
2917 1: DW_TAG_compile_unit
2918 2: DW_TAG_namespace // N
2919 3: DW_TAG_subprogram // declaration of N::foo
2920 4: DW_TAG_subprogram // definition of N::foo
2921 DW_AT_specification // refers to die #3
2922
2923 Thus, when processing die #4, we have to pretend that we're
2924 in the context of its DW_AT_specification, namely the contex
2925 of die #3. */
2926
2927 if (spec_die != NULL)
2928 {
2929 char *specification_prefix = determine_prefix (spec_die, cu);
2930 processing_current_prefix = specification_prefix;
2931 back_to = make_cleanup (xfree, specification_prefix);
2932 }
2933 }
2934
2935 lowpc += baseaddr;
2936 highpc += baseaddr;
2937
2938 /* Record the function range for dwarf_decode_lines. */
2939 add_to_cu_func_list (name, lowpc, highpc, cu);
2940
2941 new = push_context (0, lowpc);
2942 new->name = new_symbol (die, die->type, cu);
2943
2944 /* If there is a location expression for DW_AT_frame_base, record
2945 it. */
2946 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2947 if (attr)
2948 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2949 expression is being recorded directly in the function's symbol
2950 and not in a separate frame-base object. I guess this hack is
2951 to avoid adding some sort of frame-base adjunct/annex to the
2952 function's symbol :-(. The problem with doing this is that it
2953 results in a function symbol with a location expression that
2954 has nothing to do with the location of the function, ouch! The
2955 relationship should be: a function's symbol has-a frame base; a
2956 frame-base has-a location expression. */
2957 dwarf2_symbol_mark_computed (attr, new->name, cu);
2958
2959 cu->list_in_scope = &local_symbols;
2960
2961 if (die->child != NULL)
2962 {
2963 child_die = die->child;
2964 while (child_die && child_die->tag)
2965 {
2966 process_die (child_die, cu);
2967 child_die = sibling_die (child_die);
2968 }
2969 }
2970
2971 new = pop_context ();
2972 /* Make a block for the local symbols within. */
2973 finish_block (new->name, &local_symbols, new->old_blocks,
2974 lowpc, highpc, objfile);
2975
2976 /* In C++, we can have functions nested inside functions (e.g., when
2977 a function declares a class that has methods). This means that
2978 when we finish processing a function scope, we may need to go
2979 back to building a containing block's symbol lists. */
2980 local_symbols = new->locals;
2981 param_symbols = new->params;
2982
2983 /* If we've finished processing a top-level function, subsequent
2984 symbols go in the file symbol list. */
2985 if (outermost_context_p ())
2986 cu->list_in_scope = &file_symbols;
2987
2988 processing_current_prefix = previous_prefix;
2989 if (back_to != NULL)
2990 do_cleanups (back_to);
2991 }
2992
2993 /* Process all the DIES contained within a lexical block scope. Start
2994 a new scope, process the dies, and then close the scope. */
2995
2996 static void
2997 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2998 {
2999 struct objfile *objfile = cu->objfile;
3000 struct context_stack *new;
3001 CORE_ADDR lowpc, highpc;
3002 struct die_info *child_die;
3003 CORE_ADDR baseaddr;
3004
3005 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3006
3007 /* Ignore blocks with missing or invalid low and high pc attributes. */
3008 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3009 as multiple lexical blocks? Handling children in a sane way would
3010 be nasty. Might be easier to properly extend generic blocks to
3011 describe ranges. */
3012 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3013 return;
3014 lowpc += baseaddr;
3015 highpc += baseaddr;
3016
3017 push_context (0, lowpc);
3018 if (die->child != NULL)
3019 {
3020 child_die = die->child;
3021 while (child_die && child_die->tag)
3022 {
3023 process_die (child_die, cu);
3024 child_die = sibling_die (child_die);
3025 }
3026 }
3027 new = pop_context ();
3028
3029 if (local_symbols != NULL)
3030 {
3031 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3032 highpc, objfile);
3033 }
3034 local_symbols = new->locals;
3035 }
3036
3037 /* Get low and high pc attributes from a die. Return 1 if the attributes
3038 are present and valid, otherwise, return 0. Return -1 if the range is
3039 discontinuous, i.e. derived from DW_AT_ranges information. */
3040 static int
3041 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3042 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3043 {
3044 struct objfile *objfile = cu->objfile;
3045 struct comp_unit_head *cu_header = &cu->header;
3046 struct attribute *attr;
3047 bfd *obfd = objfile->obfd;
3048 CORE_ADDR low = 0;
3049 CORE_ADDR high = 0;
3050 int ret = 0;
3051
3052 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3053 if (attr)
3054 {
3055 high = DW_ADDR (attr);
3056 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3057 if (attr)
3058 low = DW_ADDR (attr);
3059 else
3060 /* Found high w/o low attribute. */
3061 return 0;
3062
3063 /* Found consecutive range of addresses. */
3064 ret = 1;
3065 }
3066 else
3067 {
3068 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3069 if (attr != NULL)
3070 {
3071 unsigned int addr_size = cu_header->addr_size;
3072 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3073 /* Value of the DW_AT_ranges attribute is the offset in the
3074 .debug_ranges section. */
3075 unsigned int offset = DW_UNSND (attr);
3076 /* Base address selection entry. */
3077 CORE_ADDR base;
3078 int found_base;
3079 unsigned int dummy;
3080 gdb_byte *buffer;
3081 CORE_ADDR marker;
3082 int low_set;
3083
3084 found_base = cu_header->base_known;
3085 base = cu_header->base_address;
3086
3087 if (offset >= dwarf2_per_objfile->ranges_size)
3088 {
3089 complaint (&symfile_complaints,
3090 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3091 offset);
3092 return 0;
3093 }
3094 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3095
3096 /* Read in the largest possible address. */
3097 marker = read_address (obfd, buffer, cu, &dummy);
3098 if ((marker & mask) == mask)
3099 {
3100 /* If we found the largest possible address, then
3101 read the base address. */
3102 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3103 buffer += 2 * addr_size;
3104 offset += 2 * addr_size;
3105 found_base = 1;
3106 }
3107
3108 low_set = 0;
3109
3110 while (1)
3111 {
3112 CORE_ADDR range_beginning, range_end;
3113
3114 range_beginning = read_address (obfd, buffer, cu, &dummy);
3115 buffer += addr_size;
3116 range_end = read_address (obfd, buffer, cu, &dummy);
3117 buffer += addr_size;
3118 offset += 2 * addr_size;
3119
3120 /* An end of list marker is a pair of zero addresses. */
3121 if (range_beginning == 0 && range_end == 0)
3122 /* Found the end of list entry. */
3123 break;
3124
3125 /* Each base address selection entry is a pair of 2 values.
3126 The first is the largest possible address, the second is
3127 the base address. Check for a base address here. */
3128 if ((range_beginning & mask) == mask)
3129 {
3130 /* If we found the largest possible address, then
3131 read the base address. */
3132 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3133 found_base = 1;
3134 continue;
3135 }
3136
3137 if (!found_base)
3138 {
3139 /* We have no valid base address for the ranges
3140 data. */
3141 complaint (&symfile_complaints,
3142 _("Invalid .debug_ranges data (no base address)"));
3143 return 0;
3144 }
3145
3146 range_beginning += base;
3147 range_end += base;
3148
3149 /* FIXME: This is recording everything as a low-high
3150 segment of consecutive addresses. We should have a
3151 data structure for discontiguous block ranges
3152 instead. */
3153 if (! low_set)
3154 {
3155 low = range_beginning;
3156 high = range_end;
3157 low_set = 1;
3158 }
3159 else
3160 {
3161 if (range_beginning < low)
3162 low = range_beginning;
3163 if (range_end > high)
3164 high = range_end;
3165 }
3166 }
3167
3168 if (! low_set)
3169 /* If the first entry is an end-of-list marker, the range
3170 describes an empty scope, i.e. no instructions. */
3171 return 0;
3172
3173 ret = -1;
3174 }
3175 }
3176
3177 if (high < low)
3178 return 0;
3179
3180 /* When using the GNU linker, .gnu.linkonce. sections are used to
3181 eliminate duplicate copies of functions and vtables and such.
3182 The linker will arbitrarily choose one and discard the others.
3183 The AT_*_pc values for such functions refer to local labels in
3184 these sections. If the section from that file was discarded, the
3185 labels are not in the output, so the relocs get a value of 0.
3186 If this is a discarded function, mark the pc bounds as invalid,
3187 so that GDB will ignore it. */
3188 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3189 return 0;
3190
3191 *lowpc = low;
3192 *highpc = high;
3193 return ret;
3194 }
3195
3196 /* Get the low and high pc's represented by the scope DIE, and store
3197 them in *LOWPC and *HIGHPC. If the correct values can't be
3198 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3199
3200 static void
3201 get_scope_pc_bounds (struct die_info *die,
3202 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3203 struct dwarf2_cu *cu)
3204 {
3205 CORE_ADDR best_low = (CORE_ADDR) -1;
3206 CORE_ADDR best_high = (CORE_ADDR) 0;
3207 CORE_ADDR current_low, current_high;
3208
3209 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3210 {
3211 best_low = current_low;
3212 best_high = current_high;
3213 }
3214 else
3215 {
3216 struct die_info *child = die->child;
3217
3218 while (child && child->tag)
3219 {
3220 switch (child->tag) {
3221 case DW_TAG_subprogram:
3222 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3223 {
3224 best_low = min (best_low, current_low);
3225 best_high = max (best_high, current_high);
3226 }
3227 break;
3228 case DW_TAG_namespace:
3229 /* FIXME: carlton/2004-01-16: Should we do this for
3230 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3231 that current GCC's always emit the DIEs corresponding
3232 to definitions of methods of classes as children of a
3233 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3234 the DIEs giving the declarations, which could be
3235 anywhere). But I don't see any reason why the
3236 standards says that they have to be there. */
3237 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3238
3239 if (current_low != ((CORE_ADDR) -1))
3240 {
3241 best_low = min (best_low, current_low);
3242 best_high = max (best_high, current_high);
3243 }
3244 break;
3245 default:
3246 /* Ignore. */
3247 break;
3248 }
3249
3250 child = sibling_die (child);
3251 }
3252 }
3253
3254 *lowpc = best_low;
3255 *highpc = best_high;
3256 }
3257
3258 /* Add an aggregate field to the field list. */
3259
3260 static void
3261 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3262 struct dwarf2_cu *cu)
3263 {
3264 struct objfile *objfile = cu->objfile;
3265 struct nextfield *new_field;
3266 struct attribute *attr;
3267 struct field *fp;
3268 char *fieldname = "";
3269
3270 /* Allocate a new field list entry and link it in. */
3271 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3272 make_cleanup (xfree, new_field);
3273 memset (new_field, 0, sizeof (struct nextfield));
3274 new_field->next = fip->fields;
3275 fip->fields = new_field;
3276 fip->nfields++;
3277
3278 /* Handle accessibility and virtuality of field.
3279 The default accessibility for members is public, the default
3280 accessibility for inheritance is private. */
3281 if (die->tag != DW_TAG_inheritance)
3282 new_field->accessibility = DW_ACCESS_public;
3283 else
3284 new_field->accessibility = DW_ACCESS_private;
3285 new_field->virtuality = DW_VIRTUALITY_none;
3286
3287 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3288 if (attr)
3289 new_field->accessibility = DW_UNSND (attr);
3290 if (new_field->accessibility != DW_ACCESS_public)
3291 fip->non_public_fields = 1;
3292 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3293 if (attr)
3294 new_field->virtuality = DW_UNSND (attr);
3295
3296 fp = &new_field->field;
3297
3298 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3299 {
3300 /* Data member other than a C++ static data member. */
3301
3302 /* Get type of field. */
3303 fp->type = die_type (die, cu);
3304
3305 FIELD_STATIC_KIND (*fp) = 0;
3306
3307 /* Get bit size of field (zero if none). */
3308 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3309 if (attr)
3310 {
3311 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3312 }
3313 else
3314 {
3315 FIELD_BITSIZE (*fp) = 0;
3316 }
3317
3318 /* Get bit offset of field. */
3319 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3320 if (attr)
3321 {
3322 FIELD_BITPOS (*fp) =
3323 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3324 }
3325 else
3326 FIELD_BITPOS (*fp) = 0;
3327 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3328 if (attr)
3329 {
3330 if (BITS_BIG_ENDIAN)
3331 {
3332 /* For big endian bits, the DW_AT_bit_offset gives the
3333 additional bit offset from the MSB of the containing
3334 anonymous object to the MSB of the field. We don't
3335 have to do anything special since we don't need to
3336 know the size of the anonymous object. */
3337 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3338 }
3339 else
3340 {
3341 /* For little endian bits, compute the bit offset to the
3342 MSB of the anonymous object, subtract off the number of
3343 bits from the MSB of the field to the MSB of the
3344 object, and then subtract off the number of bits of
3345 the field itself. The result is the bit offset of
3346 the LSB of the field. */
3347 int anonymous_size;
3348 int bit_offset = DW_UNSND (attr);
3349
3350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3351 if (attr)
3352 {
3353 /* The size of the anonymous object containing
3354 the bit field is explicit, so use the
3355 indicated size (in bytes). */
3356 anonymous_size = DW_UNSND (attr);
3357 }
3358 else
3359 {
3360 /* The size of the anonymous object containing
3361 the bit field must be inferred from the type
3362 attribute of the data member containing the
3363 bit field. */
3364 anonymous_size = TYPE_LENGTH (fp->type);
3365 }
3366 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3367 - bit_offset - FIELD_BITSIZE (*fp);
3368 }
3369 }
3370
3371 /* Get name of field. */
3372 attr = dwarf2_attr (die, DW_AT_name, cu);
3373 if (attr && DW_STRING (attr))
3374 fieldname = DW_STRING (attr);
3375
3376 /* The name is already allocated along with this objfile, so we don't
3377 need to duplicate it for the type. */
3378 fp->name = fieldname;
3379
3380 /* Change accessibility for artificial fields (e.g. virtual table
3381 pointer or virtual base class pointer) to private. */
3382 if (dwarf2_attr (die, DW_AT_artificial, cu))
3383 {
3384 new_field->accessibility = DW_ACCESS_private;
3385 fip->non_public_fields = 1;
3386 }
3387 }
3388 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3389 {
3390 /* C++ static member. */
3391
3392 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3393 is a declaration, but all versions of G++ as of this writing
3394 (so through at least 3.2.1) incorrectly generate
3395 DW_TAG_variable tags. */
3396
3397 char *physname;
3398
3399 /* Get name of field. */
3400 attr = dwarf2_attr (die, DW_AT_name, cu);
3401 if (attr && DW_STRING (attr))
3402 fieldname = DW_STRING (attr);
3403 else
3404 return;
3405
3406 /* Get physical name. */
3407 physname = dwarf2_linkage_name (die, cu);
3408
3409 /* The name is already allocated along with this objfile, so we don't
3410 need to duplicate it for the type. */
3411 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3412 FIELD_TYPE (*fp) = die_type (die, cu);
3413 FIELD_NAME (*fp) = fieldname;
3414 }
3415 else if (die->tag == DW_TAG_inheritance)
3416 {
3417 /* C++ base class field. */
3418 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3419 if (attr)
3420 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3421 * bits_per_byte);
3422 FIELD_BITSIZE (*fp) = 0;
3423 FIELD_STATIC_KIND (*fp) = 0;
3424 FIELD_TYPE (*fp) = die_type (die, cu);
3425 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3426 fip->nbaseclasses++;
3427 }
3428 }
3429
3430 /* Create the vector of fields, and attach it to the type. */
3431
3432 static void
3433 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3434 struct dwarf2_cu *cu)
3435 {
3436 int nfields = fip->nfields;
3437
3438 /* Record the field count, allocate space for the array of fields,
3439 and create blank accessibility bitfields if necessary. */
3440 TYPE_NFIELDS (type) = nfields;
3441 TYPE_FIELDS (type) = (struct field *)
3442 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3443 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3444
3445 if (fip->non_public_fields)
3446 {
3447 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3448
3449 TYPE_FIELD_PRIVATE_BITS (type) =
3450 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3451 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3452
3453 TYPE_FIELD_PROTECTED_BITS (type) =
3454 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3455 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3456
3457 TYPE_FIELD_IGNORE_BITS (type) =
3458 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3459 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3460 }
3461
3462 /* If the type has baseclasses, allocate and clear a bit vector for
3463 TYPE_FIELD_VIRTUAL_BITS. */
3464 if (fip->nbaseclasses)
3465 {
3466 int num_bytes = B_BYTES (fip->nbaseclasses);
3467 unsigned char *pointer;
3468
3469 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3470 pointer = TYPE_ALLOC (type, num_bytes);
3471 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3472 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3473 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3474 }
3475
3476 /* Copy the saved-up fields into the field vector. Start from the head
3477 of the list, adding to the tail of the field array, so that they end
3478 up in the same order in the array in which they were added to the list. */
3479 while (nfields-- > 0)
3480 {
3481 TYPE_FIELD (type, nfields) = fip->fields->field;
3482 switch (fip->fields->accessibility)
3483 {
3484 case DW_ACCESS_private:
3485 SET_TYPE_FIELD_PRIVATE (type, nfields);
3486 break;
3487
3488 case DW_ACCESS_protected:
3489 SET_TYPE_FIELD_PROTECTED (type, nfields);
3490 break;
3491
3492 case DW_ACCESS_public:
3493 break;
3494
3495 default:
3496 /* Unknown accessibility. Complain and treat it as public. */
3497 {
3498 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3499 fip->fields->accessibility);
3500 }
3501 break;
3502 }
3503 if (nfields < fip->nbaseclasses)
3504 {
3505 switch (fip->fields->virtuality)
3506 {
3507 case DW_VIRTUALITY_virtual:
3508 case DW_VIRTUALITY_pure_virtual:
3509 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3510 break;
3511 }
3512 }
3513 fip->fields = fip->fields->next;
3514 }
3515 }
3516
3517 /* Add a member function to the proper fieldlist. */
3518
3519 static void
3520 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3521 struct type *type, struct dwarf2_cu *cu)
3522 {
3523 struct objfile *objfile = cu->objfile;
3524 struct attribute *attr;
3525 struct fnfieldlist *flp;
3526 int i;
3527 struct fn_field *fnp;
3528 char *fieldname;
3529 char *physname;
3530 struct nextfnfield *new_fnfield;
3531
3532 /* Get name of member function. */
3533 attr = dwarf2_attr (die, DW_AT_name, cu);
3534 if (attr && DW_STRING (attr))
3535 fieldname = DW_STRING (attr);
3536 else
3537 return;
3538
3539 /* Get the mangled name. */
3540 physname = dwarf2_linkage_name (die, cu);
3541
3542 /* Look up member function name in fieldlist. */
3543 for (i = 0; i < fip->nfnfields; i++)
3544 {
3545 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3546 break;
3547 }
3548
3549 /* Create new list element if necessary. */
3550 if (i < fip->nfnfields)
3551 flp = &fip->fnfieldlists[i];
3552 else
3553 {
3554 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3555 {
3556 fip->fnfieldlists = (struct fnfieldlist *)
3557 xrealloc (fip->fnfieldlists,
3558 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3559 * sizeof (struct fnfieldlist));
3560 if (fip->nfnfields == 0)
3561 make_cleanup (free_current_contents, &fip->fnfieldlists);
3562 }
3563 flp = &fip->fnfieldlists[fip->nfnfields];
3564 flp->name = fieldname;
3565 flp->length = 0;
3566 flp->head = NULL;
3567 fip->nfnfields++;
3568 }
3569
3570 /* Create a new member function field and chain it to the field list
3571 entry. */
3572 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3573 make_cleanup (xfree, new_fnfield);
3574 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3575 new_fnfield->next = flp->head;
3576 flp->head = new_fnfield;
3577 flp->length++;
3578
3579 /* Fill in the member function field info. */
3580 fnp = &new_fnfield->fnfield;
3581 /* The name is already allocated along with this objfile, so we don't
3582 need to duplicate it for the type. */
3583 fnp->physname = physname ? physname : "";
3584 fnp->type = alloc_type (objfile);
3585 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3586 {
3587 int nparams = TYPE_NFIELDS (die->type);
3588
3589 /* TYPE is the domain of this method, and DIE->TYPE is the type
3590 of the method itself (TYPE_CODE_METHOD). */
3591 smash_to_method_type (fnp->type, type,
3592 TYPE_TARGET_TYPE (die->type),
3593 TYPE_FIELDS (die->type),
3594 TYPE_NFIELDS (die->type),
3595 TYPE_VARARGS (die->type));
3596
3597 /* Handle static member functions.
3598 Dwarf2 has no clean way to discern C++ static and non-static
3599 member functions. G++ helps GDB by marking the first
3600 parameter for non-static member functions (which is the
3601 this pointer) as artificial. We obtain this information
3602 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3603 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3604 fnp->voffset = VOFFSET_STATIC;
3605 }
3606 else
3607 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3608 physname);
3609
3610 /* Get fcontext from DW_AT_containing_type if present. */
3611 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3612 fnp->fcontext = die_containing_type (die, cu);
3613
3614 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3615 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3616
3617 /* Get accessibility. */
3618 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3619 if (attr)
3620 {
3621 switch (DW_UNSND (attr))
3622 {
3623 case DW_ACCESS_private:
3624 fnp->is_private = 1;
3625 break;
3626 case DW_ACCESS_protected:
3627 fnp->is_protected = 1;
3628 break;
3629 }
3630 }
3631
3632 /* Check for artificial methods. */
3633 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3634 if (attr && DW_UNSND (attr) != 0)
3635 fnp->is_artificial = 1;
3636
3637 /* Get index in virtual function table if it is a virtual member function. */
3638 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3639 if (attr)
3640 {
3641 /* Support the .debug_loc offsets */
3642 if (attr_form_is_block (attr))
3643 {
3644 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3645 }
3646 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3647 {
3648 dwarf2_complex_location_expr_complaint ();
3649 }
3650 else
3651 {
3652 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3653 fieldname);
3654 }
3655 }
3656 }
3657
3658 /* Create the vector of member function fields, and attach it to the type. */
3659
3660 static void
3661 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3662 struct dwarf2_cu *cu)
3663 {
3664 struct fnfieldlist *flp;
3665 int total_length = 0;
3666 int i;
3667
3668 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3669 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3670 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3671
3672 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3673 {
3674 struct nextfnfield *nfp = flp->head;
3675 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3676 int k;
3677
3678 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3679 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3680 fn_flp->fn_fields = (struct fn_field *)
3681 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3682 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3683 fn_flp->fn_fields[k] = nfp->fnfield;
3684
3685 total_length += flp->length;
3686 }
3687
3688 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3689 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3690 }
3691
3692
3693 /* Returns non-zero if NAME is the name of a vtable member in CU's
3694 language, zero otherwise. */
3695 static int
3696 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3697 {
3698 static const char vptr[] = "_vptr";
3699 static const char vtable[] = "vtable";
3700
3701 /* Look for the C++ and Java forms of the vtable. */
3702 if ((cu->language == language_java
3703 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3704 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3705 && is_cplus_marker (name[sizeof (vptr) - 1])))
3706 return 1;
3707
3708 return 0;
3709 }
3710
3711
3712 /* Called when we find the DIE that starts a structure or union scope
3713 (definition) to process all dies that define the members of the
3714 structure or union.
3715
3716 NOTE: we need to call struct_type regardless of whether or not the
3717 DIE has an at_name attribute, since it might be an anonymous
3718 structure or union. This gets the type entered into our set of
3719 user defined types.
3720
3721 However, if the structure is incomplete (an opaque struct/union)
3722 then suppress creating a symbol table entry for it since gdb only
3723 wants to find the one with the complete definition. Note that if
3724 it is complete, we just call new_symbol, which does it's own
3725 checking about whether the struct/union is anonymous or not (and
3726 suppresses creating a symbol table entry itself). */
3727
3728 static void
3729 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3730 {
3731 struct objfile *objfile = cu->objfile;
3732 struct type *type;
3733 struct attribute *attr;
3734 const char *previous_prefix = processing_current_prefix;
3735 struct cleanup *back_to = NULL;
3736
3737 if (die->type)
3738 return;
3739
3740 type = alloc_type (objfile);
3741
3742 INIT_CPLUS_SPECIFIC (type);
3743 attr = dwarf2_attr (die, DW_AT_name, cu);
3744 if (attr && DW_STRING (attr))
3745 {
3746 if (cu->language == language_cplus
3747 || cu->language == language_java)
3748 {
3749 char *new_prefix = determine_class_name (die, cu);
3750 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3751 strlen (new_prefix),
3752 &objfile->objfile_obstack);
3753 back_to = make_cleanup (xfree, new_prefix);
3754 processing_current_prefix = new_prefix;
3755 }
3756 else
3757 {
3758 /* The name is already allocated along with this objfile, so
3759 we don't need to duplicate it for the type. */
3760 TYPE_TAG_NAME (type) = DW_STRING (attr);
3761 }
3762 }
3763
3764 if (die->tag == DW_TAG_structure_type)
3765 {
3766 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3767 }
3768 else if (die->tag == DW_TAG_union_type)
3769 {
3770 TYPE_CODE (type) = TYPE_CODE_UNION;
3771 }
3772 else
3773 {
3774 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3775 in gdbtypes.h. */
3776 TYPE_CODE (type) = TYPE_CODE_CLASS;
3777 }
3778
3779 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3780 if (attr)
3781 {
3782 TYPE_LENGTH (type) = DW_UNSND (attr);
3783 }
3784 else
3785 {
3786 TYPE_LENGTH (type) = 0;
3787 }
3788
3789 if (die_is_declaration (die, cu))
3790 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3791
3792 /* We need to add the type field to the die immediately so we don't
3793 infinitely recurse when dealing with pointers to the structure
3794 type within the structure itself. */
3795 set_die_type (die, type, cu);
3796
3797 if (die->child != NULL && ! die_is_declaration (die, cu))
3798 {
3799 struct field_info fi;
3800 struct die_info *child_die;
3801 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3802
3803 memset (&fi, 0, sizeof (struct field_info));
3804
3805 child_die = die->child;
3806
3807 while (child_die && child_die->tag)
3808 {
3809 if (child_die->tag == DW_TAG_member
3810 || child_die->tag == DW_TAG_variable)
3811 {
3812 /* NOTE: carlton/2002-11-05: A C++ static data member
3813 should be a DW_TAG_member that is a declaration, but
3814 all versions of G++ as of this writing (so through at
3815 least 3.2.1) incorrectly generate DW_TAG_variable
3816 tags for them instead. */
3817 dwarf2_add_field (&fi, child_die, cu);
3818 }
3819 else if (child_die->tag == DW_TAG_subprogram)
3820 {
3821 /* C++ member function. */
3822 read_type_die (child_die, cu);
3823 dwarf2_add_member_fn (&fi, child_die, type, cu);
3824 }
3825 else if (child_die->tag == DW_TAG_inheritance)
3826 {
3827 /* C++ base class field. */
3828 dwarf2_add_field (&fi, child_die, cu);
3829 }
3830 child_die = sibling_die (child_die);
3831 }
3832
3833 /* Attach fields and member functions to the type. */
3834 if (fi.nfields)
3835 dwarf2_attach_fields_to_type (&fi, type, cu);
3836 if (fi.nfnfields)
3837 {
3838 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3839
3840 /* Get the type which refers to the base class (possibly this
3841 class itself) which contains the vtable pointer for the current
3842 class from the DW_AT_containing_type attribute. */
3843
3844 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3845 {
3846 struct type *t = die_containing_type (die, cu);
3847
3848 TYPE_VPTR_BASETYPE (type) = t;
3849 if (type == t)
3850 {
3851 int i;
3852
3853 /* Our own class provides vtbl ptr. */
3854 for (i = TYPE_NFIELDS (t) - 1;
3855 i >= TYPE_N_BASECLASSES (t);
3856 --i)
3857 {
3858 char *fieldname = TYPE_FIELD_NAME (t, i);
3859
3860 if (is_vtable_name (fieldname, cu))
3861 {
3862 TYPE_VPTR_FIELDNO (type) = i;
3863 break;
3864 }
3865 }
3866
3867 /* Complain if virtual function table field not found. */
3868 if (i < TYPE_N_BASECLASSES (t))
3869 complaint (&symfile_complaints,
3870 _("virtual function table pointer not found when defining class '%s'"),
3871 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3872 "");
3873 }
3874 else
3875 {
3876 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3877 }
3878 }
3879 else if (cu->producer
3880 && strncmp (cu->producer,
3881 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3882 {
3883 /* The IBM XLC compiler does not provide direct indication
3884 of the containing type, but the vtable pointer is
3885 always named __vfp. */
3886
3887 int i;
3888
3889 for (i = TYPE_NFIELDS (type) - 1;
3890 i >= TYPE_N_BASECLASSES (type);
3891 --i)
3892 {
3893 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3894 {
3895 TYPE_VPTR_FIELDNO (type) = i;
3896 TYPE_VPTR_BASETYPE (type) = type;
3897 break;
3898 }
3899 }
3900 }
3901 }
3902
3903 do_cleanups (back_to);
3904 }
3905
3906 processing_current_prefix = previous_prefix;
3907 if (back_to != NULL)
3908 do_cleanups (back_to);
3909 }
3910
3911 static void
3912 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3913 {
3914 struct objfile *objfile = cu->objfile;
3915 const char *previous_prefix = processing_current_prefix;
3916 struct die_info *child_die = die->child;
3917
3918 if (TYPE_TAG_NAME (die->type) != NULL)
3919 processing_current_prefix = TYPE_TAG_NAME (die->type);
3920
3921 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3922 snapshots) has been known to create a die giving a declaration
3923 for a class that has, as a child, a die giving a definition for a
3924 nested class. So we have to process our children even if the
3925 current die is a declaration. Normally, of course, a declaration
3926 won't have any children at all. */
3927
3928 while (child_die != NULL && child_die->tag)
3929 {
3930 if (child_die->tag == DW_TAG_member
3931 || child_die->tag == DW_TAG_variable
3932 || child_die->tag == DW_TAG_inheritance)
3933 {
3934 /* Do nothing. */
3935 }
3936 else
3937 process_die (child_die, cu);
3938
3939 child_die = sibling_die (child_die);
3940 }
3941
3942 if (die->child != NULL && ! die_is_declaration (die, cu))
3943 new_symbol (die, die->type, cu);
3944
3945 processing_current_prefix = previous_prefix;
3946 }
3947
3948 /* Given a DW_AT_enumeration_type die, set its type. We do not
3949 complete the type's fields yet, or create any symbols. */
3950
3951 static void
3952 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3953 {
3954 struct objfile *objfile = cu->objfile;
3955 struct type *type;
3956 struct attribute *attr;
3957
3958 if (die->type)
3959 return;
3960
3961 type = alloc_type (objfile);
3962
3963 TYPE_CODE (type) = TYPE_CODE_ENUM;
3964 attr = dwarf2_attr (die, DW_AT_name, cu);
3965 if (attr && DW_STRING (attr))
3966 {
3967 char *name = DW_STRING (attr);
3968
3969 if (processing_has_namespace_info)
3970 {
3971 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3972 processing_current_prefix,
3973 name, cu);
3974 }
3975 else
3976 {
3977 /* The name is already allocated along with this objfile, so
3978 we don't need to duplicate it for the type. */
3979 TYPE_TAG_NAME (type) = name;
3980 }
3981 }
3982
3983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3984 if (attr)
3985 {
3986 TYPE_LENGTH (type) = DW_UNSND (attr);
3987 }
3988 else
3989 {
3990 TYPE_LENGTH (type) = 0;
3991 }
3992
3993 set_die_type (die, type, cu);
3994 }
3995
3996 /* Determine the name of the type represented by DIE, which should be
3997 a named C++ or Java compound type. Return the name in question; the caller
3998 is responsible for xfree()'ing it. */
3999
4000 static char *
4001 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4002 {
4003 struct cleanup *back_to = NULL;
4004 struct die_info *spec_die = die_specification (die, cu);
4005 char *new_prefix = NULL;
4006
4007 /* If this is the definition of a class that is declared by another
4008 die, then processing_current_prefix may not be accurate; see
4009 read_func_scope for a similar example. */
4010 if (spec_die != NULL)
4011 {
4012 char *specification_prefix = determine_prefix (spec_die, cu);
4013 processing_current_prefix = specification_prefix;
4014 back_to = make_cleanup (xfree, specification_prefix);
4015 }
4016
4017 /* If we don't have namespace debug info, guess the name by trying
4018 to demangle the names of members, just like we did in
4019 guess_structure_name. */
4020 if (!processing_has_namespace_info)
4021 {
4022 struct die_info *child;
4023
4024 for (child = die->child;
4025 child != NULL && child->tag != 0;
4026 child = sibling_die (child))
4027 {
4028 if (child->tag == DW_TAG_subprogram)
4029 {
4030 new_prefix
4031 = language_class_name_from_physname (cu->language_defn,
4032 dwarf2_linkage_name
4033 (child, cu));
4034
4035 if (new_prefix != NULL)
4036 break;
4037 }
4038 }
4039 }
4040
4041 if (new_prefix == NULL)
4042 {
4043 const char *name = dwarf2_name (die, cu);
4044 new_prefix = typename_concat (NULL, processing_current_prefix,
4045 name ? name : "<<anonymous>>",
4046 cu);
4047 }
4048
4049 if (back_to != NULL)
4050 do_cleanups (back_to);
4051
4052 return new_prefix;
4053 }
4054
4055 /* Given a pointer to a die which begins an enumeration, process all
4056 the dies that define the members of the enumeration, and create the
4057 symbol for the enumeration type.
4058
4059 NOTE: We reverse the order of the element list. */
4060
4061 static void
4062 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4063 {
4064 struct objfile *objfile = cu->objfile;
4065 struct die_info *child_die;
4066 struct field *fields;
4067 struct attribute *attr;
4068 struct symbol *sym;
4069 int num_fields;
4070 int unsigned_enum = 1;
4071
4072 num_fields = 0;
4073 fields = NULL;
4074 if (die->child != NULL)
4075 {
4076 child_die = die->child;
4077 while (child_die && child_die->tag)
4078 {
4079 if (child_die->tag != DW_TAG_enumerator)
4080 {
4081 process_die (child_die, cu);
4082 }
4083 else
4084 {
4085 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4086 if (attr)
4087 {
4088 sym = new_symbol (child_die, die->type, cu);
4089 if (SYMBOL_VALUE (sym) < 0)
4090 unsigned_enum = 0;
4091
4092 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4093 {
4094 fields = (struct field *)
4095 xrealloc (fields,
4096 (num_fields + DW_FIELD_ALLOC_CHUNK)
4097 * sizeof (struct field));
4098 }
4099
4100 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4101 FIELD_TYPE (fields[num_fields]) = NULL;
4102 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4103 FIELD_BITSIZE (fields[num_fields]) = 0;
4104 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4105
4106 num_fields++;
4107 }
4108 }
4109
4110 child_die = sibling_die (child_die);
4111 }
4112
4113 if (num_fields)
4114 {
4115 TYPE_NFIELDS (die->type) = num_fields;
4116 TYPE_FIELDS (die->type) = (struct field *)
4117 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4118 memcpy (TYPE_FIELDS (die->type), fields,
4119 sizeof (struct field) * num_fields);
4120 xfree (fields);
4121 }
4122 if (unsigned_enum)
4123 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4124 }
4125
4126 new_symbol (die, die->type, cu);
4127 }
4128
4129 /* Extract all information from a DW_TAG_array_type DIE and put it in
4130 the DIE's type field. For now, this only handles one dimensional
4131 arrays. */
4132
4133 static void
4134 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4135 {
4136 struct objfile *objfile = cu->objfile;
4137 struct die_info *child_die;
4138 struct type *type = NULL;
4139 struct type *element_type, *range_type, *index_type;
4140 struct type **range_types = NULL;
4141 struct attribute *attr;
4142 int ndim = 0;
4143 struct cleanup *back_to;
4144
4145 /* Return if we've already decoded this type. */
4146 if (die->type)
4147 {
4148 return;
4149 }
4150
4151 element_type = die_type (die, cu);
4152
4153 /* Irix 6.2 native cc creates array types without children for
4154 arrays with unspecified length. */
4155 if (die->child == NULL)
4156 {
4157 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4158 range_type = create_range_type (NULL, index_type, 0, -1);
4159 set_die_type (die, create_array_type (NULL, element_type, range_type),
4160 cu);
4161 return;
4162 }
4163
4164 back_to = make_cleanup (null_cleanup, NULL);
4165 child_die = die->child;
4166 while (child_die && child_die->tag)
4167 {
4168 if (child_die->tag == DW_TAG_subrange_type)
4169 {
4170 read_subrange_type (child_die, cu);
4171
4172 if (child_die->type != NULL)
4173 {
4174 /* The range type was succesfully read. Save it for
4175 the array type creation. */
4176 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4177 {
4178 range_types = (struct type **)
4179 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4180 * sizeof (struct type *));
4181 if (ndim == 0)
4182 make_cleanup (free_current_contents, &range_types);
4183 }
4184 range_types[ndim++] = child_die->type;
4185 }
4186 }
4187 child_die = sibling_die (child_die);
4188 }
4189
4190 /* Dwarf2 dimensions are output from left to right, create the
4191 necessary array types in backwards order. */
4192
4193 type = element_type;
4194
4195 if (read_array_order (die, cu) == DW_ORD_col_major)
4196 {
4197 int i = 0;
4198 while (i < ndim)
4199 type = create_array_type (NULL, type, range_types[i++]);
4200 }
4201 else
4202 {
4203 while (ndim-- > 0)
4204 type = create_array_type (NULL, type, range_types[ndim]);
4205 }
4206
4207 /* Understand Dwarf2 support for vector types (like they occur on
4208 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4209 array type. This is not part of the Dwarf2/3 standard yet, but a
4210 custom vendor extension. The main difference between a regular
4211 array and the vector variant is that vectors are passed by value
4212 to functions. */
4213 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4214 if (attr)
4215 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4216
4217 do_cleanups (back_to);
4218
4219 /* Install the type in the die. */
4220 set_die_type (die, type, cu);
4221 }
4222
4223 static enum dwarf_array_dim_ordering
4224 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4225 {
4226 struct attribute *attr;
4227
4228 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4229
4230 if (attr) return DW_SND (attr);
4231
4232 /*
4233 GNU F77 is a special case, as at 08/2004 array type info is the
4234 opposite order to the dwarf2 specification, but data is still
4235 laid out as per normal fortran.
4236
4237 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4238 version checking.
4239 */
4240
4241 if (cu->language == language_fortran &&
4242 cu->producer && strstr (cu->producer, "GNU F77"))
4243 {
4244 return DW_ORD_row_major;
4245 }
4246
4247 switch (cu->language_defn->la_array_ordering)
4248 {
4249 case array_column_major:
4250 return DW_ORD_col_major;
4251 case array_row_major:
4252 default:
4253 return DW_ORD_row_major;
4254 };
4255 }
4256
4257 /* Extract all information from a DW_TAG_set_type DIE and put it in
4258 the DIE's type field. */
4259
4260 static void
4261 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4262 {
4263 if (die->type == NULL)
4264 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4265 }
4266
4267 /* First cut: install each common block member as a global variable. */
4268
4269 static void
4270 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4271 {
4272 struct die_info *child_die;
4273 struct attribute *attr;
4274 struct symbol *sym;
4275 CORE_ADDR base = (CORE_ADDR) 0;
4276
4277 attr = dwarf2_attr (die, DW_AT_location, cu);
4278 if (attr)
4279 {
4280 /* Support the .debug_loc offsets */
4281 if (attr_form_is_block (attr))
4282 {
4283 base = decode_locdesc (DW_BLOCK (attr), cu);
4284 }
4285 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4286 {
4287 dwarf2_complex_location_expr_complaint ();
4288 }
4289 else
4290 {
4291 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4292 "common block member");
4293 }
4294 }
4295 if (die->child != NULL)
4296 {
4297 child_die = die->child;
4298 while (child_die && child_die->tag)
4299 {
4300 sym = new_symbol (child_die, NULL, cu);
4301 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4302 if (attr)
4303 {
4304 SYMBOL_VALUE_ADDRESS (sym) =
4305 base + decode_locdesc (DW_BLOCK (attr), cu);
4306 add_symbol_to_list (sym, &global_symbols);
4307 }
4308 child_die = sibling_die (child_die);
4309 }
4310 }
4311 }
4312
4313 /* Read a C++ namespace. */
4314
4315 static void
4316 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4317 {
4318 struct objfile *objfile = cu->objfile;
4319 const char *previous_prefix = processing_current_prefix;
4320 const char *name;
4321 int is_anonymous;
4322 struct die_info *current_die;
4323 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4324
4325 name = namespace_name (die, &is_anonymous, cu);
4326
4327 /* Now build the name of the current namespace. */
4328
4329 if (previous_prefix[0] == '\0')
4330 {
4331 processing_current_prefix = name;
4332 }
4333 else
4334 {
4335 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4336 make_cleanup (xfree, temp_name);
4337 processing_current_prefix = temp_name;
4338 }
4339
4340 /* Add a symbol associated to this if we haven't seen the namespace
4341 before. Also, add a using directive if it's an anonymous
4342 namespace. */
4343
4344 if (dwarf2_extension (die, cu) == NULL)
4345 {
4346 struct type *type;
4347
4348 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4349 this cast will hopefully become unnecessary. */
4350 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4351 (char *) processing_current_prefix,
4352 objfile);
4353 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4354
4355 new_symbol (die, type, cu);
4356 set_die_type (die, type, cu);
4357
4358 if (is_anonymous)
4359 cp_add_using_directive (processing_current_prefix,
4360 strlen (previous_prefix),
4361 strlen (processing_current_prefix));
4362 }
4363
4364 if (die->child != NULL)
4365 {
4366 struct die_info *child_die = die->child;
4367
4368 while (child_die && child_die->tag)
4369 {
4370 process_die (child_die, cu);
4371 child_die = sibling_die (child_die);
4372 }
4373 }
4374
4375 processing_current_prefix = previous_prefix;
4376 do_cleanups (back_to);
4377 }
4378
4379 /* Return the name of the namespace represented by DIE. Set
4380 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4381 namespace. */
4382
4383 static const char *
4384 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4385 {
4386 struct die_info *current_die;
4387 const char *name = NULL;
4388
4389 /* Loop through the extensions until we find a name. */
4390
4391 for (current_die = die;
4392 current_die != NULL;
4393 current_die = dwarf2_extension (die, cu))
4394 {
4395 name = dwarf2_name (current_die, cu);
4396 if (name != NULL)
4397 break;
4398 }
4399
4400 /* Is it an anonymous namespace? */
4401
4402 *is_anonymous = (name == NULL);
4403 if (*is_anonymous)
4404 name = "(anonymous namespace)";
4405
4406 return name;
4407 }
4408
4409 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4410 the user defined type vector. */
4411
4412 static void
4413 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4414 {
4415 struct comp_unit_head *cu_header = &cu->header;
4416 struct type *type;
4417 struct attribute *attr_byte_size;
4418 struct attribute *attr_address_class;
4419 int byte_size, addr_class;
4420
4421 if (die->type)
4422 {
4423 return;
4424 }
4425
4426 type = lookup_pointer_type (die_type (die, cu));
4427
4428 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4429 if (attr_byte_size)
4430 byte_size = DW_UNSND (attr_byte_size);
4431 else
4432 byte_size = cu_header->addr_size;
4433
4434 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4435 if (attr_address_class)
4436 addr_class = DW_UNSND (attr_address_class);
4437 else
4438 addr_class = DW_ADDR_none;
4439
4440 /* If the pointer size or address class is different than the
4441 default, create a type variant marked as such and set the
4442 length accordingly. */
4443 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4444 {
4445 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4446 {
4447 int type_flags;
4448
4449 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4450 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4451 type = make_type_with_address_space (type, type_flags);
4452 }
4453 else if (TYPE_LENGTH (type) != byte_size)
4454 {
4455 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4456 }
4457 else {
4458 /* Should we also complain about unhandled address classes? */
4459 }
4460 }
4461
4462 TYPE_LENGTH (type) = byte_size;
4463 set_die_type (die, type, cu);
4464 }
4465
4466 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4467 the user defined type vector. */
4468
4469 static void
4470 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4471 {
4472 struct objfile *objfile = cu->objfile;
4473 struct type *type;
4474 struct type *to_type;
4475 struct type *domain;
4476
4477 if (die->type)
4478 {
4479 return;
4480 }
4481
4482 type = alloc_type (objfile);
4483 to_type = die_type (die, cu);
4484 domain = die_containing_type (die, cu);
4485 smash_to_member_type (type, domain, to_type);
4486
4487 set_die_type (die, type, cu);
4488 }
4489
4490 /* Extract all information from a DW_TAG_reference_type DIE and add to
4491 the user defined type vector. */
4492
4493 static void
4494 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4495 {
4496 struct comp_unit_head *cu_header = &cu->header;
4497 struct type *type;
4498 struct attribute *attr;
4499
4500 if (die->type)
4501 {
4502 return;
4503 }
4504
4505 type = lookup_reference_type (die_type (die, cu));
4506 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4507 if (attr)
4508 {
4509 TYPE_LENGTH (type) = DW_UNSND (attr);
4510 }
4511 else
4512 {
4513 TYPE_LENGTH (type) = cu_header->addr_size;
4514 }
4515 set_die_type (die, type, cu);
4516 }
4517
4518 static void
4519 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4520 {
4521 struct type *base_type;
4522
4523 if (die->type)
4524 {
4525 return;
4526 }
4527
4528 base_type = die_type (die, cu);
4529 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4530 cu);
4531 }
4532
4533 static void
4534 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4535 {
4536 struct type *base_type;
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
4543 base_type = die_type (die, cu);
4544 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4545 cu);
4546 }
4547
4548 /* Extract all information from a DW_TAG_string_type DIE and add to
4549 the user defined type vector. It isn't really a user defined type,
4550 but it behaves like one, with other DIE's using an AT_user_def_type
4551 attribute to reference it. */
4552
4553 static void
4554 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4555 {
4556 struct objfile *objfile = cu->objfile;
4557 struct type *type, *range_type, *index_type, *char_type;
4558 struct attribute *attr;
4559 unsigned int length;
4560
4561 if (die->type)
4562 {
4563 return;
4564 }
4565
4566 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4567 if (attr)
4568 {
4569 length = DW_UNSND (attr);
4570 }
4571 else
4572 {
4573 /* check for the DW_AT_byte_size attribute */
4574 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4575 if (attr)
4576 {
4577 length = DW_UNSND (attr);
4578 }
4579 else
4580 {
4581 length = 1;
4582 }
4583 }
4584 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4585 range_type = create_range_type (NULL, index_type, 1, length);
4586 if (cu->language == language_fortran)
4587 {
4588 /* Need to create a unique string type for bounds
4589 information */
4590 type = create_string_type (0, range_type);
4591 }
4592 else
4593 {
4594 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4595 type = create_string_type (char_type, range_type);
4596 }
4597 set_die_type (die, type, cu);
4598 }
4599
4600 /* Handle DIES due to C code like:
4601
4602 struct foo
4603 {
4604 int (*funcp)(int a, long l);
4605 int b;
4606 };
4607
4608 ('funcp' generates a DW_TAG_subroutine_type DIE)
4609 */
4610
4611 static void
4612 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4613 {
4614 struct type *type; /* Type that this function returns */
4615 struct type *ftype; /* Function that returns above type */
4616 struct attribute *attr;
4617
4618 /* Decode the type that this subroutine returns */
4619 if (die->type)
4620 {
4621 return;
4622 }
4623 type = die_type (die, cu);
4624 ftype = make_function_type (type, (struct type **) 0);
4625
4626 /* All functions in C++ and Java have prototypes. */
4627 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4628 if ((attr && (DW_UNSND (attr) != 0))
4629 || cu->language == language_cplus
4630 || cu->language == language_java)
4631 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4632
4633 if (die->child != NULL)
4634 {
4635 struct die_info *child_die;
4636 int nparams = 0;
4637 int iparams = 0;
4638
4639 /* Count the number of parameters.
4640 FIXME: GDB currently ignores vararg functions, but knows about
4641 vararg member functions. */
4642 child_die = die->child;
4643 while (child_die && child_die->tag)
4644 {
4645 if (child_die->tag == DW_TAG_formal_parameter)
4646 nparams++;
4647 else if (child_die->tag == DW_TAG_unspecified_parameters)
4648 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4649 child_die = sibling_die (child_die);
4650 }
4651
4652 /* Allocate storage for parameters and fill them in. */
4653 TYPE_NFIELDS (ftype) = nparams;
4654 TYPE_FIELDS (ftype) = (struct field *)
4655 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4656
4657 child_die = die->child;
4658 while (child_die && child_die->tag)
4659 {
4660 if (child_die->tag == DW_TAG_formal_parameter)
4661 {
4662 /* Dwarf2 has no clean way to discern C++ static and non-static
4663 member functions. G++ helps GDB by marking the first
4664 parameter for non-static member functions (which is the
4665 this pointer) as artificial. We pass this information
4666 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4667 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4668 if (attr)
4669 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4670 else
4671 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4672 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4673 iparams++;
4674 }
4675 child_die = sibling_die (child_die);
4676 }
4677 }
4678
4679 set_die_type (die, ftype, cu);
4680 }
4681
4682 static void
4683 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4684 {
4685 struct objfile *objfile = cu->objfile;
4686 struct attribute *attr;
4687 char *name = NULL;
4688
4689 if (!die->type)
4690 {
4691 attr = dwarf2_attr (die, DW_AT_name, cu);
4692 if (attr && DW_STRING (attr))
4693 {
4694 name = DW_STRING (attr);
4695 }
4696 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4697 TYPE_FLAG_TARGET_STUB, name, objfile),
4698 cu);
4699 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4700 }
4701 }
4702
4703 /* Find a representation of a given base type and install
4704 it in the TYPE field of the die. */
4705
4706 static void
4707 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4708 {
4709 struct objfile *objfile = cu->objfile;
4710 struct type *type;
4711 struct attribute *attr;
4712 int encoding = 0, size = 0;
4713
4714 /* If we've already decoded this die, this is a no-op. */
4715 if (die->type)
4716 {
4717 return;
4718 }
4719
4720 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4721 if (attr)
4722 {
4723 encoding = DW_UNSND (attr);
4724 }
4725 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4726 if (attr)
4727 {
4728 size = DW_UNSND (attr);
4729 }
4730 attr = dwarf2_attr (die, DW_AT_name, cu);
4731 if (attr && DW_STRING (attr))
4732 {
4733 enum type_code code = TYPE_CODE_INT;
4734 int type_flags = 0;
4735
4736 switch (encoding)
4737 {
4738 case DW_ATE_address:
4739 /* Turn DW_ATE_address into a void * pointer. */
4740 code = TYPE_CODE_PTR;
4741 type_flags |= TYPE_FLAG_UNSIGNED;
4742 break;
4743 case DW_ATE_boolean:
4744 code = TYPE_CODE_BOOL;
4745 type_flags |= TYPE_FLAG_UNSIGNED;
4746 break;
4747 case DW_ATE_complex_float:
4748 code = TYPE_CODE_COMPLEX;
4749 break;
4750 case DW_ATE_float:
4751 code = TYPE_CODE_FLT;
4752 break;
4753 case DW_ATE_signed:
4754 break;
4755 case DW_ATE_unsigned:
4756 type_flags |= TYPE_FLAG_UNSIGNED;
4757 break;
4758 case DW_ATE_signed_char:
4759 if (cu->language == language_m2)
4760 code = TYPE_CODE_CHAR;
4761 break;
4762 case DW_ATE_unsigned_char:
4763 if (cu->language == language_m2)
4764 code = TYPE_CODE_CHAR;
4765 type_flags |= TYPE_FLAG_UNSIGNED;
4766 break;
4767 default:
4768 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4769 dwarf_type_encoding_name (encoding));
4770 break;
4771 }
4772 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4773 if (encoding == DW_ATE_address)
4774 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4775 cu);
4776 else if (encoding == DW_ATE_complex_float)
4777 {
4778 if (size == 32)
4779 TYPE_TARGET_TYPE (type)
4780 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4781 else if (size == 16)
4782 TYPE_TARGET_TYPE (type)
4783 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4784 else if (size == 8)
4785 TYPE_TARGET_TYPE (type)
4786 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4787 }
4788 }
4789 else
4790 {
4791 type = dwarf_base_type (encoding, size, cu);
4792 }
4793 set_die_type (die, type, cu);
4794 }
4795
4796 /* Read the given DW_AT_subrange DIE. */
4797
4798 static void
4799 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4800 {
4801 struct type *base_type;
4802 struct type *range_type;
4803 struct attribute *attr;
4804 int low = 0;
4805 int high = -1;
4806
4807 /* If we have already decoded this die, then nothing more to do. */
4808 if (die->type)
4809 return;
4810
4811 base_type = die_type (die, cu);
4812 if (base_type == NULL)
4813 {
4814 complaint (&symfile_complaints,
4815 _("DW_AT_type missing from DW_TAG_subrange_type"));
4816 return;
4817 }
4818
4819 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4820 base_type = alloc_type (NULL);
4821
4822 if (cu->language == language_fortran)
4823 {
4824 /* FORTRAN implies a lower bound of 1, if not given. */
4825 low = 1;
4826 }
4827
4828 /* FIXME: For variable sized arrays either of these could be
4829 a variable rather than a constant value. We'll allow it,
4830 but we don't know how to handle it. */
4831 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4832 if (attr)
4833 low = dwarf2_get_attr_constant_value (attr, 0);
4834
4835 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4836 if (attr)
4837 {
4838 if (attr->form == DW_FORM_block1)
4839 {
4840 /* GCC encodes arrays with unspecified or dynamic length
4841 with a DW_FORM_block1 attribute.
4842 FIXME: GDB does not yet know how to handle dynamic
4843 arrays properly, treat them as arrays with unspecified
4844 length for now.
4845
4846 FIXME: jimb/2003-09-22: GDB does not really know
4847 how to handle arrays of unspecified length
4848 either; we just represent them as zero-length
4849 arrays. Choose an appropriate upper bound given
4850 the lower bound we've computed above. */
4851 high = low - 1;
4852 }
4853 else
4854 high = dwarf2_get_attr_constant_value (attr, 1);
4855 }
4856
4857 range_type = create_range_type (NULL, base_type, low, high);
4858
4859 attr = dwarf2_attr (die, DW_AT_name, cu);
4860 if (attr && DW_STRING (attr))
4861 TYPE_NAME (range_type) = DW_STRING (attr);
4862
4863 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4864 if (attr)
4865 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4866
4867 set_die_type (die, range_type, cu);
4868 }
4869
4870 static void
4871 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4872 {
4873 struct type *type;
4874 struct attribute *attr;
4875
4876 if (die->type)
4877 return;
4878
4879 /* For now, we only support the C meaning of an unspecified type: void. */
4880
4881 attr = dwarf2_attr (die, DW_AT_name, cu);
4882 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
4883 cu->objfile);
4884
4885 set_die_type (die, type, cu);
4886 }
4887
4888 /* Read a whole compilation unit into a linked list of dies. */
4889
4890 static struct die_info *
4891 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4892 {
4893 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4894 }
4895
4896 /* Read a single die and all its descendents. Set the die's sibling
4897 field to NULL; set other fields in the die correctly, and set all
4898 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4899 location of the info_ptr after reading all of those dies. PARENT
4900 is the parent of the die in question. */
4901
4902 static struct die_info *
4903 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
4904 struct dwarf2_cu *cu,
4905 gdb_byte **new_info_ptr,
4906 struct die_info *parent)
4907 {
4908 struct die_info *die;
4909 gdb_byte *cur_ptr;
4910 int has_children;
4911
4912 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4913 store_in_ref_table (die->offset, die, cu);
4914
4915 if (has_children)
4916 {
4917 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4918 new_info_ptr, die);
4919 }
4920 else
4921 {
4922 die->child = NULL;
4923 *new_info_ptr = cur_ptr;
4924 }
4925
4926 die->sibling = NULL;
4927 die->parent = parent;
4928 return die;
4929 }
4930
4931 /* Read a die, all of its descendents, and all of its siblings; set
4932 all of the fields of all of the dies correctly. Arguments are as
4933 in read_die_and_children. */
4934
4935 static struct die_info *
4936 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
4937 struct dwarf2_cu *cu,
4938 gdb_byte **new_info_ptr,
4939 struct die_info *parent)
4940 {
4941 struct die_info *first_die, *last_sibling;
4942 gdb_byte *cur_ptr;
4943
4944 cur_ptr = info_ptr;
4945 first_die = last_sibling = NULL;
4946
4947 while (1)
4948 {
4949 struct die_info *die
4950 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4951
4952 if (!first_die)
4953 {
4954 first_die = die;
4955 }
4956 else
4957 {
4958 last_sibling->sibling = die;
4959 }
4960
4961 if (die->tag == 0)
4962 {
4963 *new_info_ptr = cur_ptr;
4964 return first_die;
4965 }
4966 else
4967 {
4968 last_sibling = die;
4969 }
4970 }
4971 }
4972
4973 /* Free a linked list of dies. */
4974
4975 static void
4976 free_die_list (struct die_info *dies)
4977 {
4978 struct die_info *die, *next;
4979
4980 die = dies;
4981 while (die)
4982 {
4983 if (die->child != NULL)
4984 free_die_list (die->child);
4985 next = die->sibling;
4986 xfree (die->attrs);
4987 xfree (die);
4988 die = next;
4989 }
4990 }
4991
4992 /* Read the contents of the section at OFFSET and of size SIZE from the
4993 object file specified by OBJFILE into the objfile_obstack and return it. */
4994
4995 gdb_byte *
4996 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4997 {
4998 bfd *abfd = objfile->obfd;
4999 gdb_byte *buf, *retbuf;
5000 bfd_size_type size = bfd_get_section_size (sectp);
5001
5002 if (size == 0)
5003 return NULL;
5004
5005 buf = obstack_alloc (&objfile->objfile_obstack, size);
5006 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5007 if (retbuf != NULL)
5008 return retbuf;
5009
5010 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5011 || bfd_bread (buf, size, abfd) != size)
5012 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5013 bfd_get_filename (abfd));
5014
5015 return buf;
5016 }
5017
5018 /* In DWARF version 2, the description of the debugging information is
5019 stored in a separate .debug_abbrev section. Before we read any
5020 dies from a section we read in all abbreviations and install them
5021 in a hash table. This function also sets flags in CU describing
5022 the data found in the abbrev table. */
5023
5024 static void
5025 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5026 {
5027 struct comp_unit_head *cu_header = &cu->header;
5028 gdb_byte *abbrev_ptr;
5029 struct abbrev_info *cur_abbrev;
5030 unsigned int abbrev_number, bytes_read, abbrev_name;
5031 unsigned int abbrev_form, hash_number;
5032 struct attr_abbrev *cur_attrs;
5033 unsigned int allocated_attrs;
5034
5035 /* Initialize dwarf2 abbrevs */
5036 obstack_init (&cu->abbrev_obstack);
5037 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5038 (ABBREV_HASH_SIZE
5039 * sizeof (struct abbrev_info *)));
5040 memset (cu->dwarf2_abbrevs, 0,
5041 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5042
5043 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5044 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5045 abbrev_ptr += bytes_read;
5046
5047 allocated_attrs = ATTR_ALLOC_CHUNK;
5048 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5049
5050 /* loop until we reach an abbrev number of 0 */
5051 while (abbrev_number)
5052 {
5053 cur_abbrev = dwarf_alloc_abbrev (cu);
5054
5055 /* read in abbrev header */
5056 cur_abbrev->number = abbrev_number;
5057 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5058 abbrev_ptr += bytes_read;
5059 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5060 abbrev_ptr += 1;
5061
5062 if (cur_abbrev->tag == DW_TAG_namespace)
5063 cu->has_namespace_info = 1;
5064
5065 /* now read in declarations */
5066 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5067 abbrev_ptr += bytes_read;
5068 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5069 abbrev_ptr += bytes_read;
5070 while (abbrev_name)
5071 {
5072 if (cur_abbrev->num_attrs == allocated_attrs)
5073 {
5074 allocated_attrs += ATTR_ALLOC_CHUNK;
5075 cur_attrs
5076 = xrealloc (cur_attrs, (allocated_attrs
5077 * sizeof (struct attr_abbrev)));
5078 }
5079
5080 /* Record whether this compilation unit might have
5081 inter-compilation-unit references. If we don't know what form
5082 this attribute will have, then it might potentially be a
5083 DW_FORM_ref_addr, so we conservatively expect inter-CU
5084 references. */
5085
5086 if (abbrev_form == DW_FORM_ref_addr
5087 || abbrev_form == DW_FORM_indirect)
5088 cu->has_form_ref_addr = 1;
5089
5090 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5091 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5092 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5093 abbrev_ptr += bytes_read;
5094 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5095 abbrev_ptr += bytes_read;
5096 }
5097
5098 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5099 (cur_abbrev->num_attrs
5100 * sizeof (struct attr_abbrev)));
5101 memcpy (cur_abbrev->attrs, cur_attrs,
5102 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5103
5104 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5105 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5106 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5107
5108 /* Get next abbreviation.
5109 Under Irix6 the abbreviations for a compilation unit are not
5110 always properly terminated with an abbrev number of 0.
5111 Exit loop if we encounter an abbreviation which we have
5112 already read (which means we are about to read the abbreviations
5113 for the next compile unit) or if the end of the abbreviation
5114 table is reached. */
5115 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5116 >= dwarf2_per_objfile->abbrev_size)
5117 break;
5118 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5119 abbrev_ptr += bytes_read;
5120 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5121 break;
5122 }
5123
5124 xfree (cur_attrs);
5125 }
5126
5127 /* Release the memory used by the abbrev table for a compilation unit. */
5128
5129 static void
5130 dwarf2_free_abbrev_table (void *ptr_to_cu)
5131 {
5132 struct dwarf2_cu *cu = ptr_to_cu;
5133
5134 obstack_free (&cu->abbrev_obstack, NULL);
5135 cu->dwarf2_abbrevs = NULL;
5136 }
5137
5138 /* Lookup an abbrev_info structure in the abbrev hash table. */
5139
5140 static struct abbrev_info *
5141 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5142 {
5143 unsigned int hash_number;
5144 struct abbrev_info *abbrev;
5145
5146 hash_number = number % ABBREV_HASH_SIZE;
5147 abbrev = cu->dwarf2_abbrevs[hash_number];
5148
5149 while (abbrev)
5150 {
5151 if (abbrev->number == number)
5152 return abbrev;
5153 else
5154 abbrev = abbrev->next;
5155 }
5156 return NULL;
5157 }
5158
5159 /* Returns nonzero if TAG represents a type that we might generate a partial
5160 symbol for. */
5161
5162 static int
5163 is_type_tag_for_partial (int tag)
5164 {
5165 switch (tag)
5166 {
5167 #if 0
5168 /* Some types that would be reasonable to generate partial symbols for,
5169 that we don't at present. */
5170 case DW_TAG_array_type:
5171 case DW_TAG_file_type:
5172 case DW_TAG_ptr_to_member_type:
5173 case DW_TAG_set_type:
5174 case DW_TAG_string_type:
5175 case DW_TAG_subroutine_type:
5176 #endif
5177 case DW_TAG_base_type:
5178 case DW_TAG_class_type:
5179 case DW_TAG_enumeration_type:
5180 case DW_TAG_structure_type:
5181 case DW_TAG_subrange_type:
5182 case DW_TAG_typedef:
5183 case DW_TAG_union_type:
5184 return 1;
5185 default:
5186 return 0;
5187 }
5188 }
5189
5190 /* Load all DIEs that are interesting for partial symbols into memory. */
5191
5192 static struct partial_die_info *
5193 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5194 struct dwarf2_cu *cu)
5195 {
5196 struct partial_die_info *part_die;
5197 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5198 struct abbrev_info *abbrev;
5199 unsigned int bytes_read;
5200 unsigned int load_all = 0;
5201
5202 int nesting_level = 1;
5203
5204 parent_die = NULL;
5205 last_die = NULL;
5206
5207 if (cu->per_cu && cu->per_cu->load_all_dies)
5208 load_all = 1;
5209
5210 cu->partial_dies
5211 = htab_create_alloc_ex (cu->header.length / 12,
5212 partial_die_hash,
5213 partial_die_eq,
5214 NULL,
5215 &cu->comp_unit_obstack,
5216 hashtab_obstack_allocate,
5217 dummy_obstack_deallocate);
5218
5219 part_die = obstack_alloc (&cu->comp_unit_obstack,
5220 sizeof (struct partial_die_info));
5221
5222 while (1)
5223 {
5224 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5225
5226 /* A NULL abbrev means the end of a series of children. */
5227 if (abbrev == NULL)
5228 {
5229 if (--nesting_level == 0)
5230 {
5231 /* PART_DIE was probably the last thing allocated on the
5232 comp_unit_obstack, so we could call obstack_free
5233 here. We don't do that because the waste is small,
5234 and will be cleaned up when we're done with this
5235 compilation unit. This way, we're also more robust
5236 against other users of the comp_unit_obstack. */
5237 return first_die;
5238 }
5239 info_ptr += bytes_read;
5240 last_die = parent_die;
5241 parent_die = parent_die->die_parent;
5242 continue;
5243 }
5244
5245 /* Check whether this DIE is interesting enough to save. Normally
5246 we would not be interested in members here, but there may be
5247 later variables referencing them via DW_AT_specification (for
5248 static members). */
5249 if (!load_all
5250 && !is_type_tag_for_partial (abbrev->tag)
5251 && abbrev->tag != DW_TAG_enumerator
5252 && abbrev->tag != DW_TAG_subprogram
5253 && abbrev->tag != DW_TAG_variable
5254 && abbrev->tag != DW_TAG_namespace
5255 && abbrev->tag != DW_TAG_member)
5256 {
5257 /* Otherwise we skip to the next sibling, if any. */
5258 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5259 continue;
5260 }
5261
5262 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5263 abfd, info_ptr, cu);
5264
5265 /* This two-pass algorithm for processing partial symbols has a
5266 high cost in cache pressure. Thus, handle some simple cases
5267 here which cover the majority of C partial symbols. DIEs
5268 which neither have specification tags in them, nor could have
5269 specification tags elsewhere pointing at them, can simply be
5270 processed and discarded.
5271
5272 This segment is also optional; scan_partial_symbols and
5273 add_partial_symbol will handle these DIEs if we chain
5274 them in normally. When compilers which do not emit large
5275 quantities of duplicate debug information are more common,
5276 this code can probably be removed. */
5277
5278 /* Any complete simple types at the top level (pretty much all
5279 of them, for a language without namespaces), can be processed
5280 directly. */
5281 if (parent_die == NULL
5282 && part_die->has_specification == 0
5283 && part_die->is_declaration == 0
5284 && (part_die->tag == DW_TAG_typedef
5285 || part_die->tag == DW_TAG_base_type
5286 || part_die->tag == DW_TAG_subrange_type))
5287 {
5288 if (building_psymtab && part_die->name != NULL)
5289 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5290 VAR_DOMAIN, LOC_TYPEDEF,
5291 &cu->objfile->static_psymbols,
5292 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5293 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5294 continue;
5295 }
5296
5297 /* If we're at the second level, and we're an enumerator, and
5298 our parent has no specification (meaning possibly lives in a
5299 namespace elsewhere), then we can add the partial symbol now
5300 instead of queueing it. */
5301 if (part_die->tag == DW_TAG_enumerator
5302 && parent_die != NULL
5303 && parent_die->die_parent == NULL
5304 && parent_die->tag == DW_TAG_enumeration_type
5305 && parent_die->has_specification == 0)
5306 {
5307 if (part_die->name == NULL)
5308 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5309 else if (building_psymtab)
5310 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5311 VAR_DOMAIN, LOC_CONST,
5312 (cu->language == language_cplus
5313 || cu->language == language_java)
5314 ? &cu->objfile->global_psymbols
5315 : &cu->objfile->static_psymbols,
5316 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5317
5318 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5319 continue;
5320 }
5321
5322 /* We'll save this DIE so link it in. */
5323 part_die->die_parent = parent_die;
5324 part_die->die_sibling = NULL;
5325 part_die->die_child = NULL;
5326
5327 if (last_die && last_die == parent_die)
5328 last_die->die_child = part_die;
5329 else if (last_die)
5330 last_die->die_sibling = part_die;
5331
5332 last_die = part_die;
5333
5334 if (first_die == NULL)
5335 first_die = part_die;
5336
5337 /* Maybe add the DIE to the hash table. Not all DIEs that we
5338 find interesting need to be in the hash table, because we
5339 also have the parent/sibling/child chains; only those that we
5340 might refer to by offset later during partial symbol reading.
5341
5342 For now this means things that might have be the target of a
5343 DW_AT_specification, DW_AT_abstract_origin, or
5344 DW_AT_extension. DW_AT_extension will refer only to
5345 namespaces; DW_AT_abstract_origin refers to functions (and
5346 many things under the function DIE, but we do not recurse
5347 into function DIEs during partial symbol reading) and
5348 possibly variables as well; DW_AT_specification refers to
5349 declarations. Declarations ought to have the DW_AT_declaration
5350 flag. It happens that GCC forgets to put it in sometimes, but
5351 only for functions, not for types.
5352
5353 Adding more things than necessary to the hash table is harmless
5354 except for the performance cost. Adding too few will result in
5355 wasted time in find_partial_die, when we reread the compilation
5356 unit with load_all_dies set. */
5357
5358 if (load_all
5359 || abbrev->tag == DW_TAG_subprogram
5360 || abbrev->tag == DW_TAG_variable
5361 || abbrev->tag == DW_TAG_namespace
5362 || part_die->is_declaration)
5363 {
5364 void **slot;
5365
5366 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5367 part_die->offset, INSERT);
5368 *slot = part_die;
5369 }
5370
5371 part_die = obstack_alloc (&cu->comp_unit_obstack,
5372 sizeof (struct partial_die_info));
5373
5374 /* For some DIEs we want to follow their children (if any). For C
5375 we have no reason to follow the children of structures; for other
5376 languages we have to, both so that we can get at method physnames
5377 to infer fully qualified class names, and for DW_AT_specification. */
5378 if (last_die->has_children
5379 && (load_all
5380 || last_die->tag == DW_TAG_namespace
5381 || last_die->tag == DW_TAG_enumeration_type
5382 || (cu->language != language_c
5383 && (last_die->tag == DW_TAG_class_type
5384 || last_die->tag == DW_TAG_structure_type
5385 || last_die->tag == DW_TAG_union_type))))
5386 {
5387 nesting_level++;
5388 parent_die = last_die;
5389 continue;
5390 }
5391
5392 /* Otherwise we skip to the next sibling, if any. */
5393 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5394
5395 /* Back to the top, do it again. */
5396 }
5397 }
5398
5399 /* Read a minimal amount of information into the minimal die structure. */
5400
5401 static gdb_byte *
5402 read_partial_die (struct partial_die_info *part_die,
5403 struct abbrev_info *abbrev,
5404 unsigned int abbrev_len, bfd *abfd,
5405 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5406 {
5407 unsigned int bytes_read, i;
5408 struct attribute attr;
5409 int has_low_pc_attr = 0;
5410 int has_high_pc_attr = 0;
5411
5412 memset (part_die, 0, sizeof (struct partial_die_info));
5413
5414 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5415
5416 info_ptr += abbrev_len;
5417
5418 if (abbrev == NULL)
5419 return info_ptr;
5420
5421 part_die->tag = abbrev->tag;
5422 part_die->has_children = abbrev->has_children;
5423
5424 for (i = 0; i < abbrev->num_attrs; ++i)
5425 {
5426 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5427
5428 /* Store the data if it is of an attribute we want to keep in a
5429 partial symbol table. */
5430 switch (attr.name)
5431 {
5432 case DW_AT_name:
5433
5434 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5435 if (part_die->name == NULL)
5436 part_die->name = DW_STRING (&attr);
5437 break;
5438 case DW_AT_comp_dir:
5439 if (part_die->dirname == NULL)
5440 part_die->dirname = DW_STRING (&attr);
5441 break;
5442 case DW_AT_MIPS_linkage_name:
5443 part_die->name = DW_STRING (&attr);
5444 break;
5445 case DW_AT_low_pc:
5446 has_low_pc_attr = 1;
5447 part_die->lowpc = DW_ADDR (&attr);
5448 break;
5449 case DW_AT_high_pc:
5450 has_high_pc_attr = 1;
5451 part_die->highpc = DW_ADDR (&attr);
5452 break;
5453 case DW_AT_location:
5454 /* Support the .debug_loc offsets */
5455 if (attr_form_is_block (&attr))
5456 {
5457 part_die->locdesc = DW_BLOCK (&attr);
5458 }
5459 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5460 {
5461 dwarf2_complex_location_expr_complaint ();
5462 }
5463 else
5464 {
5465 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5466 "partial symbol information");
5467 }
5468 break;
5469 case DW_AT_language:
5470 part_die->language = DW_UNSND (&attr);
5471 break;
5472 case DW_AT_external:
5473 part_die->is_external = DW_UNSND (&attr);
5474 break;
5475 case DW_AT_declaration:
5476 part_die->is_declaration = DW_UNSND (&attr);
5477 break;
5478 case DW_AT_type:
5479 part_die->has_type = 1;
5480 break;
5481 case DW_AT_abstract_origin:
5482 case DW_AT_specification:
5483 case DW_AT_extension:
5484 part_die->has_specification = 1;
5485 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5486 break;
5487 case DW_AT_sibling:
5488 /* Ignore absolute siblings, they might point outside of
5489 the current compile unit. */
5490 if (attr.form == DW_FORM_ref_addr)
5491 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5492 else
5493 part_die->sibling = dwarf2_per_objfile->info_buffer
5494 + dwarf2_get_ref_die_offset (&attr, cu);
5495 break;
5496 case DW_AT_stmt_list:
5497 part_die->has_stmt_list = 1;
5498 part_die->line_offset = DW_UNSND (&attr);
5499 break;
5500 default:
5501 break;
5502 }
5503 }
5504
5505 /* When using the GNU linker, .gnu.linkonce. sections are used to
5506 eliminate duplicate copies of functions and vtables and such.
5507 The linker will arbitrarily choose one and discard the others.
5508 The AT_*_pc values for such functions refer to local labels in
5509 these sections. If the section from that file was discarded, the
5510 labels are not in the output, so the relocs get a value of 0.
5511 If this is a discarded function, mark the pc bounds as invalid,
5512 so that GDB will ignore it. */
5513 if (has_low_pc_attr && has_high_pc_attr
5514 && part_die->lowpc < part_die->highpc
5515 && (part_die->lowpc != 0
5516 || dwarf2_per_objfile->has_section_at_zero))
5517 part_die->has_pc_info = 1;
5518 return info_ptr;
5519 }
5520
5521 /* Find a cached partial DIE at OFFSET in CU. */
5522
5523 static struct partial_die_info *
5524 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5525 {
5526 struct partial_die_info *lookup_die = NULL;
5527 struct partial_die_info part_die;
5528
5529 part_die.offset = offset;
5530 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5531
5532 return lookup_die;
5533 }
5534
5535 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5536
5537 static struct partial_die_info *
5538 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5539 {
5540 struct dwarf2_per_cu_data *per_cu = NULL;
5541 struct partial_die_info *pd = NULL;
5542
5543 if (offset >= cu->header.offset
5544 && offset < cu->header.offset + cu->header.length)
5545 {
5546 pd = find_partial_die_in_comp_unit (offset, cu);
5547 if (pd != NULL)
5548 return pd;
5549 }
5550
5551 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5552
5553 if (per_cu->cu == NULL)
5554 {
5555 load_comp_unit (per_cu, cu->objfile);
5556 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5557 dwarf2_per_objfile->read_in_chain = per_cu;
5558 }
5559
5560 per_cu->cu->last_used = 0;
5561 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5562
5563 if (pd == NULL && per_cu->load_all_dies == 0)
5564 {
5565 struct cleanup *back_to;
5566 struct partial_die_info comp_unit_die;
5567 struct abbrev_info *abbrev;
5568 unsigned int bytes_read;
5569 char *info_ptr;
5570
5571 per_cu->load_all_dies = 1;
5572
5573 /* Re-read the DIEs. */
5574 back_to = make_cleanup (null_cleanup, 0);
5575 if (per_cu->cu->dwarf2_abbrevs == NULL)
5576 {
5577 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5578 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5579 }
5580 info_ptr = per_cu->cu->header.first_die_ptr;
5581 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5582 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5583 per_cu->cu->objfile->obfd, info_ptr,
5584 per_cu->cu);
5585 if (comp_unit_die.has_children)
5586 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5587 do_cleanups (back_to);
5588
5589 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5590 }
5591
5592 if (pd == NULL)
5593 internal_error (__FILE__, __LINE__,
5594 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5595 offset, bfd_get_filename (cu->objfile->obfd));
5596 return pd;
5597 }
5598
5599 /* Adjust PART_DIE before generating a symbol for it. This function
5600 may set the is_external flag or change the DIE's name. */
5601
5602 static void
5603 fixup_partial_die (struct partial_die_info *part_die,
5604 struct dwarf2_cu *cu)
5605 {
5606 /* If we found a reference attribute and the DIE has no name, try
5607 to find a name in the referred to DIE. */
5608
5609 if (part_die->name == NULL && part_die->has_specification)
5610 {
5611 struct partial_die_info *spec_die;
5612
5613 spec_die = find_partial_die (part_die->spec_offset, cu);
5614
5615 fixup_partial_die (spec_die, cu);
5616
5617 if (spec_die->name)
5618 {
5619 part_die->name = spec_die->name;
5620
5621 /* Copy DW_AT_external attribute if it is set. */
5622 if (spec_die->is_external)
5623 part_die->is_external = spec_die->is_external;
5624 }
5625 }
5626
5627 /* Set default names for some unnamed DIEs. */
5628 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5629 || part_die->tag == DW_TAG_class_type))
5630 part_die->name = "(anonymous class)";
5631
5632 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5633 part_die->name = "(anonymous namespace)";
5634
5635 if (part_die->tag == DW_TAG_structure_type
5636 || part_die->tag == DW_TAG_class_type
5637 || part_die->tag == DW_TAG_union_type)
5638 guess_structure_name (part_die, cu);
5639 }
5640
5641 /* Read the die from the .debug_info section buffer. Set DIEP to
5642 point to a newly allocated die with its information, except for its
5643 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5644 whether the die has children or not. */
5645
5646 static gdb_byte *
5647 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5648 struct dwarf2_cu *cu, int *has_children)
5649 {
5650 unsigned int abbrev_number, bytes_read, i, offset;
5651 struct abbrev_info *abbrev;
5652 struct die_info *die;
5653
5654 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5655 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5656 info_ptr += bytes_read;
5657 if (!abbrev_number)
5658 {
5659 die = dwarf_alloc_die ();
5660 die->tag = 0;
5661 die->abbrev = abbrev_number;
5662 die->type = NULL;
5663 *diep = die;
5664 *has_children = 0;
5665 return info_ptr;
5666 }
5667
5668 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5669 if (!abbrev)
5670 {
5671 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5672 abbrev_number,
5673 bfd_get_filename (abfd));
5674 }
5675 die = dwarf_alloc_die ();
5676 die->offset = offset;
5677 die->tag = abbrev->tag;
5678 die->abbrev = abbrev_number;
5679 die->type = NULL;
5680
5681 die->num_attrs = abbrev->num_attrs;
5682 die->attrs = (struct attribute *)
5683 xmalloc (die->num_attrs * sizeof (struct attribute));
5684
5685 for (i = 0; i < abbrev->num_attrs; ++i)
5686 {
5687 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5688 abfd, info_ptr, cu);
5689
5690 /* If this attribute is an absolute reference to a different
5691 compilation unit, make sure that compilation unit is loaded
5692 also. */
5693 if (die->attrs[i].form == DW_FORM_ref_addr
5694 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5695 || (DW_ADDR (&die->attrs[i])
5696 >= cu->header.offset + cu->header.length)))
5697 {
5698 struct dwarf2_per_cu_data *per_cu;
5699 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5700 cu->objfile);
5701
5702 /* Mark the dependence relation so that we don't flush PER_CU
5703 too early. */
5704 dwarf2_add_dependence (cu, per_cu);
5705
5706 /* If it's already on the queue, we have nothing to do. */
5707 if (per_cu->queued)
5708 continue;
5709
5710 /* If the compilation unit is already loaded, just mark it as
5711 used. */
5712 if (per_cu->cu != NULL)
5713 {
5714 per_cu->cu->last_used = 0;
5715 continue;
5716 }
5717
5718 /* Add it to the queue. */
5719 queue_comp_unit (per_cu);
5720 }
5721 }
5722
5723 *diep = die;
5724 *has_children = abbrev->has_children;
5725 return info_ptr;
5726 }
5727
5728 /* Read an attribute value described by an attribute form. */
5729
5730 static gdb_byte *
5731 read_attribute_value (struct attribute *attr, unsigned form,
5732 bfd *abfd, gdb_byte *info_ptr,
5733 struct dwarf2_cu *cu)
5734 {
5735 struct comp_unit_head *cu_header = &cu->header;
5736 unsigned int bytes_read;
5737 struct dwarf_block *blk;
5738
5739 attr->form = form;
5740 switch (form)
5741 {
5742 case DW_FORM_addr:
5743 case DW_FORM_ref_addr:
5744 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5745 info_ptr += bytes_read;
5746 break;
5747 case DW_FORM_block2:
5748 blk = dwarf_alloc_block (cu);
5749 blk->size = read_2_bytes (abfd, info_ptr);
5750 info_ptr += 2;
5751 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5752 info_ptr += blk->size;
5753 DW_BLOCK (attr) = blk;
5754 break;
5755 case DW_FORM_block4:
5756 blk = dwarf_alloc_block (cu);
5757 blk->size = read_4_bytes (abfd, info_ptr);
5758 info_ptr += 4;
5759 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5760 info_ptr += blk->size;
5761 DW_BLOCK (attr) = blk;
5762 break;
5763 case DW_FORM_data2:
5764 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5765 info_ptr += 2;
5766 break;
5767 case DW_FORM_data4:
5768 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5769 info_ptr += 4;
5770 break;
5771 case DW_FORM_data8:
5772 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5773 info_ptr += 8;
5774 break;
5775 case DW_FORM_string:
5776 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5777 info_ptr += bytes_read;
5778 break;
5779 case DW_FORM_strp:
5780 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5781 &bytes_read);
5782 info_ptr += bytes_read;
5783 break;
5784 case DW_FORM_block:
5785 blk = dwarf_alloc_block (cu);
5786 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5787 info_ptr += bytes_read;
5788 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5789 info_ptr += blk->size;
5790 DW_BLOCK (attr) = blk;
5791 break;
5792 case DW_FORM_block1:
5793 blk = dwarf_alloc_block (cu);
5794 blk->size = read_1_byte (abfd, info_ptr);
5795 info_ptr += 1;
5796 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5797 info_ptr += blk->size;
5798 DW_BLOCK (attr) = blk;
5799 break;
5800 case DW_FORM_data1:
5801 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5802 info_ptr += 1;
5803 break;
5804 case DW_FORM_flag:
5805 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5806 info_ptr += 1;
5807 break;
5808 case DW_FORM_sdata:
5809 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5810 info_ptr += bytes_read;
5811 break;
5812 case DW_FORM_udata:
5813 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5814 info_ptr += bytes_read;
5815 break;
5816 case DW_FORM_ref1:
5817 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5818 info_ptr += 1;
5819 break;
5820 case DW_FORM_ref2:
5821 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5822 info_ptr += 2;
5823 break;
5824 case DW_FORM_ref4:
5825 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5826 info_ptr += 4;
5827 break;
5828 case DW_FORM_ref8:
5829 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5830 info_ptr += 8;
5831 break;
5832 case DW_FORM_ref_udata:
5833 DW_ADDR (attr) = (cu->header.offset
5834 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5835 info_ptr += bytes_read;
5836 break;
5837 case DW_FORM_indirect:
5838 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5839 info_ptr += bytes_read;
5840 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5841 break;
5842 default:
5843 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5844 dwarf_form_name (form),
5845 bfd_get_filename (abfd));
5846 }
5847 return info_ptr;
5848 }
5849
5850 /* Read an attribute described by an abbreviated attribute. */
5851
5852 static gdb_byte *
5853 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5854 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5855 {
5856 attr->name = abbrev->name;
5857 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5858 }
5859
5860 /* read dwarf information from a buffer */
5861
5862 static unsigned int
5863 read_1_byte (bfd *abfd, gdb_byte *buf)
5864 {
5865 return bfd_get_8 (abfd, buf);
5866 }
5867
5868 static int
5869 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5870 {
5871 return bfd_get_signed_8 (abfd, buf);
5872 }
5873
5874 static unsigned int
5875 read_2_bytes (bfd *abfd, gdb_byte *buf)
5876 {
5877 return bfd_get_16 (abfd, buf);
5878 }
5879
5880 static int
5881 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
5882 {
5883 return bfd_get_signed_16 (abfd, buf);
5884 }
5885
5886 static unsigned int
5887 read_4_bytes (bfd *abfd, gdb_byte *buf)
5888 {
5889 return bfd_get_32 (abfd, buf);
5890 }
5891
5892 static int
5893 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
5894 {
5895 return bfd_get_signed_32 (abfd, buf);
5896 }
5897
5898 static unsigned long
5899 read_8_bytes (bfd *abfd, gdb_byte *buf)
5900 {
5901 return bfd_get_64 (abfd, buf);
5902 }
5903
5904 static CORE_ADDR
5905 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
5906 unsigned int *bytes_read)
5907 {
5908 struct comp_unit_head *cu_header = &cu->header;
5909 CORE_ADDR retval = 0;
5910
5911 if (cu_header->signed_addr_p)
5912 {
5913 switch (cu_header->addr_size)
5914 {
5915 case 2:
5916 retval = bfd_get_signed_16 (abfd, buf);
5917 break;
5918 case 4:
5919 retval = bfd_get_signed_32 (abfd, buf);
5920 break;
5921 case 8:
5922 retval = bfd_get_signed_64 (abfd, buf);
5923 break;
5924 default:
5925 internal_error (__FILE__, __LINE__,
5926 _("read_address: bad switch, signed [in module %s]"),
5927 bfd_get_filename (abfd));
5928 }
5929 }
5930 else
5931 {
5932 switch (cu_header->addr_size)
5933 {
5934 case 2:
5935 retval = bfd_get_16 (abfd, buf);
5936 break;
5937 case 4:
5938 retval = bfd_get_32 (abfd, buf);
5939 break;
5940 case 8:
5941 retval = bfd_get_64 (abfd, buf);
5942 break;
5943 default:
5944 internal_error (__FILE__, __LINE__,
5945 _("read_address: bad switch, unsigned [in module %s]"),
5946 bfd_get_filename (abfd));
5947 }
5948 }
5949
5950 *bytes_read = cu_header->addr_size;
5951 return retval;
5952 }
5953
5954 /* Read the initial length from a section. The (draft) DWARF 3
5955 specification allows the initial length to take up either 4 bytes
5956 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5957 bytes describe the length and all offsets will be 8 bytes in length
5958 instead of 4.
5959
5960 An older, non-standard 64-bit format is also handled by this
5961 function. The older format in question stores the initial length
5962 as an 8-byte quantity without an escape value. Lengths greater
5963 than 2^32 aren't very common which means that the initial 4 bytes
5964 is almost always zero. Since a length value of zero doesn't make
5965 sense for the 32-bit format, this initial zero can be considered to
5966 be an escape value which indicates the presence of the older 64-bit
5967 format. As written, the code can't detect (old format) lengths
5968 greater than 4GB. If it becomes necessary to handle lengths
5969 somewhat larger than 4GB, we could allow other small values (such
5970 as the non-sensical values of 1, 2, and 3) to also be used as
5971 escape values indicating the presence of the old format.
5972
5973 The value returned via bytes_read should be used to increment the
5974 relevant pointer after calling read_initial_length().
5975
5976 As a side effect, this function sets the fields initial_length_size
5977 and offset_size in cu_header to the values appropriate for the
5978 length field. (The format of the initial length field determines
5979 the width of file offsets to be fetched later with read_offset().)
5980
5981 [ Note: read_initial_length() and read_offset() are based on the
5982 document entitled "DWARF Debugging Information Format", revision
5983 3, draft 8, dated November 19, 2001. This document was obtained
5984 from:
5985
5986 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5987
5988 This document is only a draft and is subject to change. (So beware.)
5989
5990 Details regarding the older, non-standard 64-bit format were
5991 determined empirically by examining 64-bit ELF files produced by
5992 the SGI toolchain on an IRIX 6.5 machine.
5993
5994 - Kevin, July 16, 2002
5995 ] */
5996
5997 static LONGEST
5998 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
5999 unsigned int *bytes_read)
6000 {
6001 LONGEST length = bfd_get_32 (abfd, buf);
6002
6003 if (length == 0xffffffff)
6004 {
6005 length = bfd_get_64 (abfd, buf + 4);
6006 *bytes_read = 12;
6007 }
6008 else if (length == 0)
6009 {
6010 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6011 length = bfd_get_64 (abfd, buf);
6012 *bytes_read = 8;
6013 }
6014 else
6015 {
6016 *bytes_read = 4;
6017 }
6018
6019 if (cu_header)
6020 {
6021 gdb_assert (cu_header->initial_length_size == 0
6022 || cu_header->initial_length_size == 4
6023 || cu_header->initial_length_size == 8
6024 || cu_header->initial_length_size == 12);
6025
6026 if (cu_header->initial_length_size != 0
6027 && cu_header->initial_length_size != *bytes_read)
6028 complaint (&symfile_complaints,
6029 _("intermixed 32-bit and 64-bit DWARF sections"));
6030
6031 cu_header->initial_length_size = *bytes_read;
6032 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6033 }
6034
6035 return length;
6036 }
6037
6038 /* Read an offset from the data stream. The size of the offset is
6039 given by cu_header->offset_size. */
6040
6041 static LONGEST
6042 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6043 unsigned int *bytes_read)
6044 {
6045 LONGEST retval = 0;
6046
6047 switch (cu_header->offset_size)
6048 {
6049 case 4:
6050 retval = bfd_get_32 (abfd, buf);
6051 *bytes_read = 4;
6052 break;
6053 case 8:
6054 retval = bfd_get_64 (abfd, buf);
6055 *bytes_read = 8;
6056 break;
6057 default:
6058 internal_error (__FILE__, __LINE__,
6059 _("read_offset: bad switch [in module %s]"),
6060 bfd_get_filename (abfd));
6061 }
6062
6063 return retval;
6064 }
6065
6066 static gdb_byte *
6067 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6068 {
6069 /* If the size of a host char is 8 bits, we can return a pointer
6070 to the buffer, otherwise we have to copy the data to a buffer
6071 allocated on the temporary obstack. */
6072 gdb_assert (HOST_CHAR_BIT == 8);
6073 return buf;
6074 }
6075
6076 static char *
6077 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6078 {
6079 /* If the size of a host char is 8 bits, we can return a pointer
6080 to the string, otherwise we have to copy the string to a buffer
6081 allocated on the temporary obstack. */
6082 gdb_assert (HOST_CHAR_BIT == 8);
6083 if (*buf == '\0')
6084 {
6085 *bytes_read_ptr = 1;
6086 return NULL;
6087 }
6088 *bytes_read_ptr = strlen ((char *) buf) + 1;
6089 return (char *) buf;
6090 }
6091
6092 static char *
6093 read_indirect_string (bfd *abfd, gdb_byte *buf,
6094 const struct comp_unit_head *cu_header,
6095 unsigned int *bytes_read_ptr)
6096 {
6097 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6098 bytes_read_ptr);
6099
6100 if (dwarf2_per_objfile->str_buffer == NULL)
6101 {
6102 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6103 bfd_get_filename (abfd));
6104 return NULL;
6105 }
6106 if (str_offset >= dwarf2_per_objfile->str_size)
6107 {
6108 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6109 bfd_get_filename (abfd));
6110 return NULL;
6111 }
6112 gdb_assert (HOST_CHAR_BIT == 8);
6113 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6114 return NULL;
6115 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6116 }
6117
6118 static unsigned long
6119 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6120 {
6121 unsigned long result;
6122 unsigned int num_read;
6123 int i, shift;
6124 unsigned char byte;
6125
6126 result = 0;
6127 shift = 0;
6128 num_read = 0;
6129 i = 0;
6130 while (1)
6131 {
6132 byte = bfd_get_8 (abfd, buf);
6133 buf++;
6134 num_read++;
6135 result |= ((unsigned long)(byte & 127) << shift);
6136 if ((byte & 128) == 0)
6137 {
6138 break;
6139 }
6140 shift += 7;
6141 }
6142 *bytes_read_ptr = num_read;
6143 return result;
6144 }
6145
6146 static long
6147 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6148 {
6149 long result;
6150 int i, shift, num_read;
6151 unsigned char byte;
6152
6153 result = 0;
6154 shift = 0;
6155 num_read = 0;
6156 i = 0;
6157 while (1)
6158 {
6159 byte = bfd_get_8 (abfd, buf);
6160 buf++;
6161 num_read++;
6162 result |= ((long)(byte & 127) << shift);
6163 shift += 7;
6164 if ((byte & 128) == 0)
6165 {
6166 break;
6167 }
6168 }
6169 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6170 result |= -(((long)1) << shift);
6171 *bytes_read_ptr = num_read;
6172 return result;
6173 }
6174
6175 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6176
6177 static gdb_byte *
6178 skip_leb128 (bfd *abfd, gdb_byte *buf)
6179 {
6180 int byte;
6181
6182 while (1)
6183 {
6184 byte = bfd_get_8 (abfd, buf);
6185 buf++;
6186 if ((byte & 128) == 0)
6187 return buf;
6188 }
6189 }
6190
6191 static void
6192 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6193 {
6194 switch (lang)
6195 {
6196 case DW_LANG_C89:
6197 case DW_LANG_C:
6198 cu->language = language_c;
6199 break;
6200 case DW_LANG_C_plus_plus:
6201 cu->language = language_cplus;
6202 break;
6203 case DW_LANG_Fortran77:
6204 case DW_LANG_Fortran90:
6205 case DW_LANG_Fortran95:
6206 cu->language = language_fortran;
6207 break;
6208 case DW_LANG_Mips_Assembler:
6209 cu->language = language_asm;
6210 break;
6211 case DW_LANG_Java:
6212 cu->language = language_java;
6213 break;
6214 case DW_LANG_Ada83:
6215 case DW_LANG_Ada95:
6216 cu->language = language_ada;
6217 break;
6218 case DW_LANG_Modula2:
6219 cu->language = language_m2;
6220 break;
6221 case DW_LANG_Cobol74:
6222 case DW_LANG_Cobol85:
6223 case DW_LANG_Pascal83:
6224 default:
6225 cu->language = language_minimal;
6226 break;
6227 }
6228 cu->language_defn = language_def (cu->language);
6229 }
6230
6231 /* Return the named attribute or NULL if not there. */
6232
6233 static struct attribute *
6234 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6235 {
6236 unsigned int i;
6237 struct attribute *spec = NULL;
6238
6239 for (i = 0; i < die->num_attrs; ++i)
6240 {
6241 if (die->attrs[i].name == name)
6242 return &die->attrs[i];
6243 if (die->attrs[i].name == DW_AT_specification
6244 || die->attrs[i].name == DW_AT_abstract_origin)
6245 spec = &die->attrs[i];
6246 }
6247
6248 if (spec)
6249 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6250
6251 return NULL;
6252 }
6253
6254 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6255 and holds a non-zero value. This function should only be used for
6256 DW_FORM_flag attributes. */
6257
6258 static int
6259 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6260 {
6261 struct attribute *attr = dwarf2_attr (die, name, cu);
6262
6263 return (attr && DW_UNSND (attr));
6264 }
6265
6266 static int
6267 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6268 {
6269 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6270 which value is non-zero. However, we have to be careful with
6271 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6272 (via dwarf2_flag_true_p) follows this attribute. So we may
6273 end up accidently finding a declaration attribute that belongs
6274 to a different DIE referenced by the specification attribute,
6275 even though the given DIE does not have a declaration attribute. */
6276 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6277 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6278 }
6279
6280 /* Return the die giving the specification for DIE, if there is
6281 one. */
6282
6283 static struct die_info *
6284 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6285 {
6286 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6287
6288 if (spec_attr == NULL)
6289 return NULL;
6290 else
6291 return follow_die_ref (die, spec_attr, cu);
6292 }
6293
6294 /* Free the line_header structure *LH, and any arrays and strings it
6295 refers to. */
6296 static void
6297 free_line_header (struct line_header *lh)
6298 {
6299 if (lh->standard_opcode_lengths)
6300 xfree (lh->standard_opcode_lengths);
6301
6302 /* Remember that all the lh->file_names[i].name pointers are
6303 pointers into debug_line_buffer, and don't need to be freed. */
6304 if (lh->file_names)
6305 xfree (lh->file_names);
6306
6307 /* Similarly for the include directory names. */
6308 if (lh->include_dirs)
6309 xfree (lh->include_dirs);
6310
6311 xfree (lh);
6312 }
6313
6314
6315 /* Add an entry to LH's include directory table. */
6316 static void
6317 add_include_dir (struct line_header *lh, char *include_dir)
6318 {
6319 /* Grow the array if necessary. */
6320 if (lh->include_dirs_size == 0)
6321 {
6322 lh->include_dirs_size = 1; /* for testing */
6323 lh->include_dirs = xmalloc (lh->include_dirs_size
6324 * sizeof (*lh->include_dirs));
6325 }
6326 else if (lh->num_include_dirs >= lh->include_dirs_size)
6327 {
6328 lh->include_dirs_size *= 2;
6329 lh->include_dirs = xrealloc (lh->include_dirs,
6330 (lh->include_dirs_size
6331 * sizeof (*lh->include_dirs)));
6332 }
6333
6334 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6335 }
6336
6337
6338 /* Add an entry to LH's file name table. */
6339 static void
6340 add_file_name (struct line_header *lh,
6341 char *name,
6342 unsigned int dir_index,
6343 unsigned int mod_time,
6344 unsigned int length)
6345 {
6346 struct file_entry *fe;
6347
6348 /* Grow the array if necessary. */
6349 if (lh->file_names_size == 0)
6350 {
6351 lh->file_names_size = 1; /* for testing */
6352 lh->file_names = xmalloc (lh->file_names_size
6353 * sizeof (*lh->file_names));
6354 }
6355 else if (lh->num_file_names >= lh->file_names_size)
6356 {
6357 lh->file_names_size *= 2;
6358 lh->file_names = xrealloc (lh->file_names,
6359 (lh->file_names_size
6360 * sizeof (*lh->file_names)));
6361 }
6362
6363 fe = &lh->file_names[lh->num_file_names++];
6364 fe->name = name;
6365 fe->dir_index = dir_index;
6366 fe->mod_time = mod_time;
6367 fe->length = length;
6368 fe->included_p = 0;
6369 }
6370
6371
6372 /* Read the statement program header starting at OFFSET in
6373 .debug_line, according to the endianness of ABFD. Return a pointer
6374 to a struct line_header, allocated using xmalloc.
6375
6376 NOTE: the strings in the include directory and file name tables of
6377 the returned object point into debug_line_buffer, and must not be
6378 freed. */
6379 static struct line_header *
6380 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6381 struct dwarf2_cu *cu)
6382 {
6383 struct cleanup *back_to;
6384 struct line_header *lh;
6385 gdb_byte *line_ptr;
6386 unsigned int bytes_read;
6387 int i;
6388 char *cur_dir, *cur_file;
6389
6390 if (dwarf2_per_objfile->line_buffer == NULL)
6391 {
6392 complaint (&symfile_complaints, _("missing .debug_line section"));
6393 return 0;
6394 }
6395
6396 /* Make sure that at least there's room for the total_length field.
6397 That could be 12 bytes long, but we're just going to fudge that. */
6398 if (offset + 4 >= dwarf2_per_objfile->line_size)
6399 {
6400 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6401 return 0;
6402 }
6403
6404 lh = xmalloc (sizeof (*lh));
6405 memset (lh, 0, sizeof (*lh));
6406 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6407 (void *) lh);
6408
6409 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6410
6411 /* Read in the header. */
6412 lh->total_length =
6413 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6414 line_ptr += bytes_read;
6415 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6416 + dwarf2_per_objfile->line_size))
6417 {
6418 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6419 return 0;
6420 }
6421 lh->statement_program_end = line_ptr + lh->total_length;
6422 lh->version = read_2_bytes (abfd, line_ptr);
6423 line_ptr += 2;
6424 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6425 line_ptr += bytes_read;
6426 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6427 line_ptr += 1;
6428 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6429 line_ptr += 1;
6430 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6431 line_ptr += 1;
6432 lh->line_range = read_1_byte (abfd, line_ptr);
6433 line_ptr += 1;
6434 lh->opcode_base = read_1_byte (abfd, line_ptr);
6435 line_ptr += 1;
6436 lh->standard_opcode_lengths
6437 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6438
6439 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6440 for (i = 1; i < lh->opcode_base; ++i)
6441 {
6442 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6443 line_ptr += 1;
6444 }
6445
6446 /* Read directory table. */
6447 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6448 {
6449 line_ptr += bytes_read;
6450 add_include_dir (lh, cur_dir);
6451 }
6452 line_ptr += bytes_read;
6453
6454 /* Read file name table. */
6455 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6456 {
6457 unsigned int dir_index, mod_time, length;
6458
6459 line_ptr += bytes_read;
6460 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6461 line_ptr += bytes_read;
6462 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6463 line_ptr += bytes_read;
6464 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6465 line_ptr += bytes_read;
6466
6467 add_file_name (lh, cur_file, dir_index, mod_time, length);
6468 }
6469 line_ptr += bytes_read;
6470 lh->statement_program_start = line_ptr;
6471
6472 if (line_ptr > (dwarf2_per_objfile->line_buffer
6473 + dwarf2_per_objfile->line_size))
6474 complaint (&symfile_complaints,
6475 _("line number info header doesn't fit in `.debug_line' section"));
6476
6477 discard_cleanups (back_to);
6478 return lh;
6479 }
6480
6481 /* This function exists to work around a bug in certain compilers
6482 (particularly GCC 2.95), in which the first line number marker of a
6483 function does not show up until after the prologue, right before
6484 the second line number marker. This function shifts ADDRESS down
6485 to the beginning of the function if necessary, and is called on
6486 addresses passed to record_line. */
6487
6488 static CORE_ADDR
6489 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6490 {
6491 struct function_range *fn;
6492
6493 /* Find the function_range containing address. */
6494 if (!cu->first_fn)
6495 return address;
6496
6497 if (!cu->cached_fn)
6498 cu->cached_fn = cu->first_fn;
6499
6500 fn = cu->cached_fn;
6501 while (fn)
6502 if (fn->lowpc <= address && fn->highpc > address)
6503 goto found;
6504 else
6505 fn = fn->next;
6506
6507 fn = cu->first_fn;
6508 while (fn && fn != cu->cached_fn)
6509 if (fn->lowpc <= address && fn->highpc > address)
6510 goto found;
6511 else
6512 fn = fn->next;
6513
6514 return address;
6515
6516 found:
6517 if (fn->seen_line)
6518 return address;
6519 if (address != fn->lowpc)
6520 complaint (&symfile_complaints,
6521 _("misplaced first line number at 0x%lx for '%s'"),
6522 (unsigned long) address, fn->name);
6523 fn->seen_line = 1;
6524 return fn->lowpc;
6525 }
6526
6527 /* Decode the Line Number Program (LNP) for the given line_header
6528 structure and CU. The actual information extracted and the type
6529 of structures created from the LNP depends on the value of PST.
6530
6531 1. If PST is NULL, then this procedure uses the data from the program
6532 to create all necessary symbol tables, and their linetables.
6533 The compilation directory of the file is passed in COMP_DIR,
6534 and must not be NULL.
6535
6536 2. If PST is not NULL, this procedure reads the program to determine
6537 the list of files included by the unit represented by PST, and
6538 builds all the associated partial symbol tables. In this case,
6539 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6540 is not used to compute the full name of the symtab, and therefore
6541 omitting it when building the partial symtab does not introduce
6542 the potential for inconsistency - a partial symtab and its associated
6543 symbtab having a different fullname -). */
6544
6545 static void
6546 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6547 struct dwarf2_cu *cu, struct partial_symtab *pst)
6548 {
6549 gdb_byte *line_ptr;
6550 gdb_byte *line_end;
6551 unsigned int bytes_read;
6552 unsigned char op_code, extended_op, adj_opcode;
6553 CORE_ADDR baseaddr;
6554 struct objfile *objfile = cu->objfile;
6555 const int decode_for_pst_p = (pst != NULL);
6556
6557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6558
6559 line_ptr = lh->statement_program_start;
6560 line_end = lh->statement_program_end;
6561
6562 /* Read the statement sequences until there's nothing left. */
6563 while (line_ptr < line_end)
6564 {
6565 /* state machine registers */
6566 CORE_ADDR address = 0;
6567 unsigned int file = 1;
6568 unsigned int line = 1;
6569 unsigned int column = 0;
6570 int is_stmt = lh->default_is_stmt;
6571 int basic_block = 0;
6572 int end_sequence = 0;
6573
6574 if (!decode_for_pst_p && lh->num_file_names >= file)
6575 {
6576 /* Start a subfile for the current file of the state machine. */
6577 /* lh->include_dirs and lh->file_names are 0-based, but the
6578 directory and file name numbers in the statement program
6579 are 1-based. */
6580 struct file_entry *fe = &lh->file_names[file - 1];
6581 char *dir = NULL;
6582
6583 if (fe->dir_index)
6584 dir = lh->include_dirs[fe->dir_index - 1];
6585
6586 dwarf2_start_subfile (fe->name, dir, comp_dir);
6587 }
6588
6589 /* Decode the table. */
6590 while (!end_sequence)
6591 {
6592 op_code = read_1_byte (abfd, line_ptr);
6593 line_ptr += 1;
6594
6595 if (op_code >= lh->opcode_base)
6596 {
6597 /* Special operand. */
6598 adj_opcode = op_code - lh->opcode_base;
6599 address += (adj_opcode / lh->line_range)
6600 * lh->minimum_instruction_length;
6601 line += lh->line_base + (adj_opcode % lh->line_range);
6602 lh->file_names[file - 1].included_p = 1;
6603 if (!decode_for_pst_p)
6604 {
6605 /* Append row to matrix using current values. */
6606 record_line (current_subfile, line,
6607 check_cu_functions (address, cu));
6608 }
6609 basic_block = 1;
6610 }
6611 else switch (op_code)
6612 {
6613 case DW_LNS_extended_op:
6614 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6615 line_ptr += bytes_read;
6616 extended_op = read_1_byte (abfd, line_ptr);
6617 line_ptr += 1;
6618 switch (extended_op)
6619 {
6620 case DW_LNE_end_sequence:
6621 end_sequence = 1;
6622 lh->file_names[file - 1].included_p = 1;
6623 if (!decode_for_pst_p)
6624 record_line (current_subfile, 0, address);
6625 break;
6626 case DW_LNE_set_address:
6627 address = read_address (abfd, line_ptr, cu, &bytes_read);
6628 line_ptr += bytes_read;
6629 address += baseaddr;
6630 break;
6631 case DW_LNE_define_file:
6632 {
6633 char *cur_file;
6634 unsigned int dir_index, mod_time, length;
6635
6636 cur_file = read_string (abfd, line_ptr, &bytes_read);
6637 line_ptr += bytes_read;
6638 dir_index =
6639 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6640 line_ptr += bytes_read;
6641 mod_time =
6642 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6643 line_ptr += bytes_read;
6644 length =
6645 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6646 line_ptr += bytes_read;
6647 add_file_name (lh, cur_file, dir_index, mod_time, length);
6648 }
6649 break;
6650 default:
6651 complaint (&symfile_complaints,
6652 _("mangled .debug_line section"));
6653 return;
6654 }
6655 break;
6656 case DW_LNS_copy:
6657 lh->file_names[file - 1].included_p = 1;
6658 if (!decode_for_pst_p)
6659 record_line (current_subfile, line,
6660 check_cu_functions (address, cu));
6661 basic_block = 0;
6662 break;
6663 case DW_LNS_advance_pc:
6664 address += lh->minimum_instruction_length
6665 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6666 line_ptr += bytes_read;
6667 break;
6668 case DW_LNS_advance_line:
6669 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6670 line_ptr += bytes_read;
6671 break;
6672 case DW_LNS_set_file:
6673 {
6674 /* The arrays lh->include_dirs and lh->file_names are
6675 0-based, but the directory and file name numbers in
6676 the statement program are 1-based. */
6677 struct file_entry *fe;
6678 char *dir = NULL;
6679
6680 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6681 line_ptr += bytes_read;
6682 fe = &lh->file_names[file - 1];
6683 if (fe->dir_index)
6684 dir = lh->include_dirs[fe->dir_index - 1];
6685
6686 if (!decode_for_pst_p)
6687 dwarf2_start_subfile (fe->name, dir, comp_dir);
6688 }
6689 break;
6690 case DW_LNS_set_column:
6691 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6692 line_ptr += bytes_read;
6693 break;
6694 case DW_LNS_negate_stmt:
6695 is_stmt = (!is_stmt);
6696 break;
6697 case DW_LNS_set_basic_block:
6698 basic_block = 1;
6699 break;
6700 /* Add to the address register of the state machine the
6701 address increment value corresponding to special opcode
6702 255. I.e., this value is scaled by the minimum
6703 instruction length since special opcode 255 would have
6704 scaled the the increment. */
6705 case DW_LNS_const_add_pc:
6706 address += (lh->minimum_instruction_length
6707 * ((255 - lh->opcode_base) / lh->line_range));
6708 break;
6709 case DW_LNS_fixed_advance_pc:
6710 address += read_2_bytes (abfd, line_ptr);
6711 line_ptr += 2;
6712 break;
6713 default:
6714 {
6715 /* Unknown standard opcode, ignore it. */
6716 int i;
6717
6718 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6719 {
6720 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6721 line_ptr += bytes_read;
6722 }
6723 }
6724 }
6725 }
6726 }
6727
6728 if (decode_for_pst_p)
6729 {
6730 int file_index;
6731
6732 /* Now that we're done scanning the Line Header Program, we can
6733 create the psymtab of each included file. */
6734 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6735 if (lh->file_names[file_index].included_p == 1)
6736 {
6737 const struct file_entry fe = lh->file_names [file_index];
6738 char *include_name = fe.name;
6739 char *dir_name = NULL;
6740 char *pst_filename = pst->filename;
6741
6742 if (fe.dir_index)
6743 dir_name = lh->include_dirs[fe.dir_index - 1];
6744
6745 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6746 {
6747 include_name = concat (dir_name, SLASH_STRING,
6748 include_name, (char *)NULL);
6749 make_cleanup (xfree, include_name);
6750 }
6751
6752 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6753 {
6754 pst_filename = concat (pst->dirname, SLASH_STRING,
6755 pst_filename, (char *)NULL);
6756 make_cleanup (xfree, pst_filename);
6757 }
6758
6759 if (strcmp (include_name, pst_filename) != 0)
6760 dwarf2_create_include_psymtab (include_name, pst, objfile);
6761 }
6762 }
6763 }
6764
6765 /* Start a subfile for DWARF. FILENAME is the name of the file and
6766 DIRNAME the name of the source directory which contains FILENAME
6767 or NULL if not known. COMP_DIR is the compilation directory for the
6768 linetable's compilation unit or NULL if not known.
6769 This routine tries to keep line numbers from identical absolute and
6770 relative file names in a common subfile.
6771
6772 Using the `list' example from the GDB testsuite, which resides in
6773 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6774 of /srcdir/list0.c yields the following debugging information for list0.c:
6775
6776 DW_AT_name: /srcdir/list0.c
6777 DW_AT_comp_dir: /compdir
6778 files.files[0].name: list0.h
6779 files.files[0].dir: /srcdir
6780 files.files[1].name: list0.c
6781 files.files[1].dir: /srcdir
6782
6783 The line number information for list0.c has to end up in a single
6784 subfile, so that `break /srcdir/list0.c:1' works as expected.
6785 start_subfile will ensure that this happens provided that we pass the
6786 concatenation of files.files[1].dir and files.files[1].name as the
6787 subfile's name. */
6788
6789 static void
6790 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6791 {
6792 char *fullname;
6793
6794 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6795 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6796 second argument to start_subfile. To be consistent, we do the
6797 same here. In order not to lose the line information directory,
6798 we concatenate it to the filename when it makes sense.
6799 Note that the Dwarf3 standard says (speaking of filenames in line
6800 information): ``The directory index is ignored for file names
6801 that represent full path names''. Thus ignoring dirname in the
6802 `else' branch below isn't an issue. */
6803
6804 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6805 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6806 else
6807 fullname = filename;
6808
6809 start_subfile (fullname, comp_dir);
6810
6811 if (fullname != filename)
6812 xfree (fullname);
6813 }
6814
6815 static void
6816 var_decode_location (struct attribute *attr, struct symbol *sym,
6817 struct dwarf2_cu *cu)
6818 {
6819 struct objfile *objfile = cu->objfile;
6820 struct comp_unit_head *cu_header = &cu->header;
6821
6822 /* NOTE drow/2003-01-30: There used to be a comment and some special
6823 code here to turn a symbol with DW_AT_external and a
6824 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6825 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6826 with some versions of binutils) where shared libraries could have
6827 relocations against symbols in their debug information - the
6828 minimal symbol would have the right address, but the debug info
6829 would not. It's no longer necessary, because we will explicitly
6830 apply relocations when we read in the debug information now. */
6831
6832 /* A DW_AT_location attribute with no contents indicates that a
6833 variable has been optimized away. */
6834 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6835 {
6836 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6837 return;
6838 }
6839
6840 /* Handle one degenerate form of location expression specially, to
6841 preserve GDB's previous behavior when section offsets are
6842 specified. If this is just a DW_OP_addr then mark this symbol
6843 as LOC_STATIC. */
6844
6845 if (attr_form_is_block (attr)
6846 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6847 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6848 {
6849 unsigned int dummy;
6850
6851 SYMBOL_VALUE_ADDRESS (sym) =
6852 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6853 fixup_symbol_section (sym, objfile);
6854 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6855 SYMBOL_SECTION (sym));
6856 SYMBOL_CLASS (sym) = LOC_STATIC;
6857 return;
6858 }
6859
6860 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6861 expression evaluator, and use LOC_COMPUTED only when necessary
6862 (i.e. when the value of a register or memory location is
6863 referenced, or a thread-local block, etc.). Then again, it might
6864 not be worthwhile. I'm assuming that it isn't unless performance
6865 or memory numbers show me otherwise. */
6866
6867 dwarf2_symbol_mark_computed (attr, sym, cu);
6868 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6869 }
6870
6871 /* Given a pointer to a DWARF information entry, figure out if we need
6872 to make a symbol table entry for it, and if so, create a new entry
6873 and return a pointer to it.
6874 If TYPE is NULL, determine symbol type from the die, otherwise
6875 used the passed type. */
6876
6877 static struct symbol *
6878 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6879 {
6880 struct objfile *objfile = cu->objfile;
6881 struct symbol *sym = NULL;
6882 char *name;
6883 struct attribute *attr = NULL;
6884 struct attribute *attr2 = NULL;
6885 CORE_ADDR baseaddr;
6886
6887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6888
6889 if (die->tag != DW_TAG_namespace)
6890 name = dwarf2_linkage_name (die, cu);
6891 else
6892 name = TYPE_NAME (type);
6893
6894 if (name)
6895 {
6896 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6897 sizeof (struct symbol));
6898 OBJSTAT (objfile, n_syms++);
6899 memset (sym, 0, sizeof (struct symbol));
6900
6901 /* Cache this symbol's name and the name's demangled form (if any). */
6902 SYMBOL_LANGUAGE (sym) = cu->language;
6903 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6904
6905 /* Default assumptions.
6906 Use the passed type or decode it from the die. */
6907 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6908 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6909 if (type != NULL)
6910 SYMBOL_TYPE (sym) = type;
6911 else
6912 SYMBOL_TYPE (sym) = die_type (die, cu);
6913 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6914 if (attr)
6915 {
6916 SYMBOL_LINE (sym) = DW_UNSND (attr);
6917 }
6918 switch (die->tag)
6919 {
6920 case DW_TAG_label:
6921 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6922 if (attr)
6923 {
6924 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6925 }
6926 SYMBOL_CLASS (sym) = LOC_LABEL;
6927 break;
6928 case DW_TAG_subprogram:
6929 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6930 finish_block. */
6931 SYMBOL_CLASS (sym) = LOC_BLOCK;
6932 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6933 if (attr2 && (DW_UNSND (attr2) != 0))
6934 {
6935 add_symbol_to_list (sym, &global_symbols);
6936 }
6937 else
6938 {
6939 add_symbol_to_list (sym, cu->list_in_scope);
6940 }
6941 break;
6942 case DW_TAG_variable:
6943 /* Compilation with minimal debug info may result in variables
6944 with missing type entries. Change the misleading `void' type
6945 to something sensible. */
6946 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6947 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6948 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6949 "<variable, no debug info>",
6950 objfile);
6951 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6952 if (attr)
6953 {
6954 dwarf2_const_value (attr, sym, cu);
6955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6956 if (attr2 && (DW_UNSND (attr2) != 0))
6957 add_symbol_to_list (sym, &global_symbols);
6958 else
6959 add_symbol_to_list (sym, cu->list_in_scope);
6960 break;
6961 }
6962 attr = dwarf2_attr (die, DW_AT_location, cu);
6963 if (attr)
6964 {
6965 var_decode_location (attr, sym, cu);
6966 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6967 if (attr2 && (DW_UNSND (attr2) != 0))
6968 add_symbol_to_list (sym, &global_symbols);
6969 else
6970 add_symbol_to_list (sym, cu->list_in_scope);
6971 }
6972 else
6973 {
6974 /* We do not know the address of this symbol.
6975 If it is an external symbol and we have type information
6976 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6977 The address of the variable will then be determined from
6978 the minimal symbol table whenever the variable is
6979 referenced. */
6980 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6981 if (attr2 && (DW_UNSND (attr2) != 0)
6982 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6983 {
6984 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6985 add_symbol_to_list (sym, &global_symbols);
6986 }
6987 }
6988 break;
6989 case DW_TAG_formal_parameter:
6990 attr = dwarf2_attr (die, DW_AT_location, cu);
6991 if (attr)
6992 {
6993 var_decode_location (attr, sym, cu);
6994 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6995 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6996 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6997 }
6998 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6999 if (attr)
7000 {
7001 dwarf2_const_value (attr, sym, cu);
7002 }
7003 add_symbol_to_list (sym, cu->list_in_scope);
7004 break;
7005 case DW_TAG_unspecified_parameters:
7006 /* From varargs functions; gdb doesn't seem to have any
7007 interest in this information, so just ignore it for now.
7008 (FIXME?) */
7009 break;
7010 case DW_TAG_class_type:
7011 case DW_TAG_structure_type:
7012 case DW_TAG_union_type:
7013 case DW_TAG_set_type:
7014 case DW_TAG_enumeration_type:
7015 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7016 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7017
7018 /* Make sure that the symbol includes appropriate enclosing
7019 classes/namespaces in its name. These are calculated in
7020 read_structure_type, and the correct name is saved in
7021 the type. */
7022
7023 if (cu->language == language_cplus
7024 || cu->language == language_java)
7025 {
7026 struct type *type = SYMBOL_TYPE (sym);
7027
7028 if (TYPE_TAG_NAME (type) != NULL)
7029 {
7030 /* FIXME: carlton/2003-11-10: Should this use
7031 SYMBOL_SET_NAMES instead? (The same problem also
7032 arises further down in this function.) */
7033 /* The type's name is already allocated along with
7034 this objfile, so we don't need to duplicate it
7035 for the symbol. */
7036 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7037 }
7038 }
7039
7040 {
7041 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7042 really ever be static objects: otherwise, if you try
7043 to, say, break of a class's method and you're in a file
7044 which doesn't mention that class, it won't work unless
7045 the check for all static symbols in lookup_symbol_aux
7046 saves you. See the OtherFileClass tests in
7047 gdb.c++/namespace.exp. */
7048
7049 struct pending **list_to_add;
7050
7051 list_to_add = (cu->list_in_scope == &file_symbols
7052 && (cu->language == language_cplus
7053 || cu->language == language_java)
7054 ? &global_symbols : cu->list_in_scope);
7055
7056 add_symbol_to_list (sym, list_to_add);
7057
7058 /* The semantics of C++ state that "struct foo { ... }" also
7059 defines a typedef for "foo". A Java class declaration also
7060 defines a typedef for the class. Synthesize a typedef symbol
7061 so that "ptype foo" works as expected. */
7062 if (cu->language == language_cplus
7063 || cu->language == language_java)
7064 {
7065 struct symbol *typedef_sym = (struct symbol *)
7066 obstack_alloc (&objfile->objfile_obstack,
7067 sizeof (struct symbol));
7068 *typedef_sym = *sym;
7069 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7070 /* The symbol's name is already allocated along with
7071 this objfile, so we don't need to duplicate it for
7072 the type. */
7073 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7074 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7075 add_symbol_to_list (typedef_sym, list_to_add);
7076 }
7077 }
7078 break;
7079 case DW_TAG_typedef:
7080 if (processing_has_namespace_info
7081 && processing_current_prefix[0] != '\0')
7082 {
7083 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7084 processing_current_prefix,
7085 name, cu);
7086 }
7087 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7088 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7089 add_symbol_to_list (sym, cu->list_in_scope);
7090 break;
7091 case DW_TAG_base_type:
7092 case DW_TAG_subrange_type:
7093 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7095 add_symbol_to_list (sym, cu->list_in_scope);
7096 break;
7097 case DW_TAG_enumerator:
7098 if (processing_has_namespace_info
7099 && processing_current_prefix[0] != '\0')
7100 {
7101 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7102 processing_current_prefix,
7103 name, cu);
7104 }
7105 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7106 if (attr)
7107 {
7108 dwarf2_const_value (attr, sym, cu);
7109 }
7110 {
7111 /* NOTE: carlton/2003-11-10: See comment above in the
7112 DW_TAG_class_type, etc. block. */
7113
7114 struct pending **list_to_add;
7115
7116 list_to_add = (cu->list_in_scope == &file_symbols
7117 && (cu->language == language_cplus
7118 || cu->language == language_java)
7119 ? &global_symbols : cu->list_in_scope);
7120
7121 add_symbol_to_list (sym, list_to_add);
7122 }
7123 break;
7124 case DW_TAG_namespace:
7125 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7126 add_symbol_to_list (sym, &global_symbols);
7127 break;
7128 default:
7129 /* Not a tag we recognize. Hopefully we aren't processing
7130 trash data, but since we must specifically ignore things
7131 we don't recognize, there is nothing else we should do at
7132 this point. */
7133 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7134 dwarf_tag_name (die->tag));
7135 break;
7136 }
7137 }
7138 return (sym);
7139 }
7140
7141 /* Copy constant value from an attribute to a symbol. */
7142
7143 static void
7144 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7145 struct dwarf2_cu *cu)
7146 {
7147 struct objfile *objfile = cu->objfile;
7148 struct comp_unit_head *cu_header = &cu->header;
7149 struct dwarf_block *blk;
7150
7151 switch (attr->form)
7152 {
7153 case DW_FORM_addr:
7154 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7155 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7156 cu_header->addr_size,
7157 TYPE_LENGTH (SYMBOL_TYPE
7158 (sym)));
7159 SYMBOL_VALUE_BYTES (sym) =
7160 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7161 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7162 it's body - store_unsigned_integer. */
7163 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7164 DW_ADDR (attr));
7165 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7166 break;
7167 case DW_FORM_block1:
7168 case DW_FORM_block2:
7169 case DW_FORM_block4:
7170 case DW_FORM_block:
7171 blk = DW_BLOCK (attr);
7172 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7173 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7174 blk->size,
7175 TYPE_LENGTH (SYMBOL_TYPE
7176 (sym)));
7177 SYMBOL_VALUE_BYTES (sym) =
7178 obstack_alloc (&objfile->objfile_obstack, blk->size);
7179 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7180 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7181 break;
7182
7183 /* The DW_AT_const_value attributes are supposed to carry the
7184 symbol's value "represented as it would be on the target
7185 architecture." By the time we get here, it's already been
7186 converted to host endianness, so we just need to sign- or
7187 zero-extend it as appropriate. */
7188 case DW_FORM_data1:
7189 dwarf2_const_value_data (attr, sym, 8);
7190 break;
7191 case DW_FORM_data2:
7192 dwarf2_const_value_data (attr, sym, 16);
7193 break;
7194 case DW_FORM_data4:
7195 dwarf2_const_value_data (attr, sym, 32);
7196 break;
7197 case DW_FORM_data8:
7198 dwarf2_const_value_data (attr, sym, 64);
7199 break;
7200
7201 case DW_FORM_sdata:
7202 SYMBOL_VALUE (sym) = DW_SND (attr);
7203 SYMBOL_CLASS (sym) = LOC_CONST;
7204 break;
7205
7206 case DW_FORM_udata:
7207 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7208 SYMBOL_CLASS (sym) = LOC_CONST;
7209 break;
7210
7211 default:
7212 complaint (&symfile_complaints,
7213 _("unsupported const value attribute form: '%s'"),
7214 dwarf_form_name (attr->form));
7215 SYMBOL_VALUE (sym) = 0;
7216 SYMBOL_CLASS (sym) = LOC_CONST;
7217 break;
7218 }
7219 }
7220
7221
7222 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7223 or zero-extend it as appropriate for the symbol's type. */
7224 static void
7225 dwarf2_const_value_data (struct attribute *attr,
7226 struct symbol *sym,
7227 int bits)
7228 {
7229 LONGEST l = DW_UNSND (attr);
7230
7231 if (bits < sizeof (l) * 8)
7232 {
7233 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7234 l &= ((LONGEST) 1 << bits) - 1;
7235 else
7236 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7237 }
7238
7239 SYMBOL_VALUE (sym) = l;
7240 SYMBOL_CLASS (sym) = LOC_CONST;
7241 }
7242
7243
7244 /* Return the type of the die in question using its DW_AT_type attribute. */
7245
7246 static struct type *
7247 die_type (struct die_info *die, struct dwarf2_cu *cu)
7248 {
7249 struct type *type;
7250 struct attribute *type_attr;
7251 struct die_info *type_die;
7252
7253 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7254 if (!type_attr)
7255 {
7256 /* A missing DW_AT_type represents a void type. */
7257 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7258 }
7259 else
7260 type_die = follow_die_ref (die, type_attr, cu);
7261
7262 type = tag_type_to_type (type_die, cu);
7263 if (!type)
7264 {
7265 dump_die (type_die);
7266 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7267 cu->objfile->name);
7268 }
7269 return type;
7270 }
7271
7272 /* Return the containing type of the die in question using its
7273 DW_AT_containing_type attribute. */
7274
7275 static struct type *
7276 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7277 {
7278 struct type *type = NULL;
7279 struct attribute *type_attr;
7280 struct die_info *type_die = NULL;
7281
7282 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7283 if (type_attr)
7284 {
7285 type_die = follow_die_ref (die, type_attr, cu);
7286 type = tag_type_to_type (type_die, cu);
7287 }
7288 if (!type)
7289 {
7290 if (type_die)
7291 dump_die (type_die);
7292 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7293 cu->objfile->name);
7294 }
7295 return type;
7296 }
7297
7298 static struct type *
7299 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7300 {
7301 if (die->type)
7302 {
7303 return die->type;
7304 }
7305 else
7306 {
7307 read_type_die (die, cu);
7308 if (!die->type)
7309 {
7310 dump_die (die);
7311 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7312 cu->objfile->name);
7313 }
7314 return die->type;
7315 }
7316 }
7317
7318 static void
7319 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7320 {
7321 char *prefix = determine_prefix (die, cu);
7322 const char *old_prefix = processing_current_prefix;
7323 struct cleanup *back_to = make_cleanup (xfree, prefix);
7324 processing_current_prefix = prefix;
7325
7326 switch (die->tag)
7327 {
7328 case DW_TAG_class_type:
7329 case DW_TAG_structure_type:
7330 case DW_TAG_union_type:
7331 read_structure_type (die, cu);
7332 break;
7333 case DW_TAG_enumeration_type:
7334 read_enumeration_type (die, cu);
7335 break;
7336 case DW_TAG_subprogram:
7337 case DW_TAG_subroutine_type:
7338 read_subroutine_type (die, cu);
7339 break;
7340 case DW_TAG_array_type:
7341 read_array_type (die, cu);
7342 break;
7343 case DW_TAG_set_type:
7344 read_set_type (die, cu);
7345 break;
7346 case DW_TAG_pointer_type:
7347 read_tag_pointer_type (die, cu);
7348 break;
7349 case DW_TAG_ptr_to_member_type:
7350 read_tag_ptr_to_member_type (die, cu);
7351 break;
7352 case DW_TAG_reference_type:
7353 read_tag_reference_type (die, cu);
7354 break;
7355 case DW_TAG_const_type:
7356 read_tag_const_type (die, cu);
7357 break;
7358 case DW_TAG_volatile_type:
7359 read_tag_volatile_type (die, cu);
7360 break;
7361 case DW_TAG_string_type:
7362 read_tag_string_type (die, cu);
7363 break;
7364 case DW_TAG_typedef:
7365 read_typedef (die, cu);
7366 break;
7367 case DW_TAG_subrange_type:
7368 read_subrange_type (die, cu);
7369 break;
7370 case DW_TAG_base_type:
7371 read_base_type (die, cu);
7372 break;
7373 case DW_TAG_unspecified_type:
7374 read_unspecified_type (die, cu);
7375 break;
7376 default:
7377 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7378 dwarf_tag_name (die->tag));
7379 break;
7380 }
7381
7382 processing_current_prefix = old_prefix;
7383 do_cleanups (back_to);
7384 }
7385
7386 /* Return the name of the namespace/class that DIE is defined within,
7387 or "" if we can't tell. The caller should xfree the result. */
7388
7389 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7390 therein) for an example of how to use this function to deal with
7391 DW_AT_specification. */
7392
7393 static char *
7394 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7395 {
7396 struct die_info *parent;
7397
7398 if (cu->language != language_cplus
7399 && cu->language != language_java)
7400 return NULL;
7401
7402 parent = die->parent;
7403
7404 if (parent == NULL)
7405 {
7406 return xstrdup ("");
7407 }
7408 else
7409 {
7410 switch (parent->tag) {
7411 case DW_TAG_namespace:
7412 {
7413 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7414 before doing this check? */
7415 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7416 {
7417 return xstrdup (TYPE_TAG_NAME (parent->type));
7418 }
7419 else
7420 {
7421 int dummy;
7422 char *parent_prefix = determine_prefix (parent, cu);
7423 char *retval = typename_concat (NULL, parent_prefix,
7424 namespace_name (parent, &dummy,
7425 cu),
7426 cu);
7427 xfree (parent_prefix);
7428 return retval;
7429 }
7430 }
7431 break;
7432 case DW_TAG_class_type:
7433 case DW_TAG_structure_type:
7434 {
7435 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7436 {
7437 return xstrdup (TYPE_TAG_NAME (parent->type));
7438 }
7439 else
7440 {
7441 const char *old_prefix = processing_current_prefix;
7442 char *new_prefix = determine_prefix (parent, cu);
7443 char *retval;
7444
7445 processing_current_prefix = new_prefix;
7446 retval = determine_class_name (parent, cu);
7447 processing_current_prefix = old_prefix;
7448
7449 xfree (new_prefix);
7450 return retval;
7451 }
7452 }
7453 default:
7454 return determine_prefix (parent, cu);
7455 }
7456 }
7457 }
7458
7459 /* Return a newly-allocated string formed by concatenating PREFIX and
7460 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7461 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7462 perform an obconcat, otherwise allocate storage for the result. The CU argument
7463 is used to determine the language and hence, the appropriate separator. */
7464
7465 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7466
7467 static char *
7468 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7469 struct dwarf2_cu *cu)
7470 {
7471 char *sep;
7472
7473 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7474 sep = "";
7475 else if (cu->language == language_java)
7476 sep = ".";
7477 else
7478 sep = "::";
7479
7480 if (obs == NULL)
7481 {
7482 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7483 retval[0] = '\0';
7484
7485 if (prefix)
7486 {
7487 strcpy (retval, prefix);
7488 strcat (retval, sep);
7489 }
7490 if (suffix)
7491 strcat (retval, suffix);
7492
7493 return retval;
7494 }
7495 else
7496 {
7497 /* We have an obstack. */
7498 return obconcat (obs, prefix, sep, suffix);
7499 }
7500 }
7501
7502 static struct type *
7503 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7504 {
7505 struct objfile *objfile = cu->objfile;
7506
7507 /* FIXME - this should not produce a new (struct type *)
7508 every time. It should cache base types. */
7509 struct type *type;
7510 switch (encoding)
7511 {
7512 case DW_ATE_address:
7513 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7514 return type;
7515 case DW_ATE_boolean:
7516 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7517 return type;
7518 case DW_ATE_complex_float:
7519 if (size == 16)
7520 {
7521 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7522 }
7523 else
7524 {
7525 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7526 }
7527 return type;
7528 case DW_ATE_float:
7529 if (size == 8)
7530 {
7531 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7532 }
7533 else
7534 {
7535 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7536 }
7537 return type;
7538 case DW_ATE_signed:
7539 switch (size)
7540 {
7541 case 1:
7542 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7543 break;
7544 case 2:
7545 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7546 break;
7547 default:
7548 case 4:
7549 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7550 break;
7551 }
7552 return type;
7553 case DW_ATE_signed_char:
7554 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7555 return type;
7556 case DW_ATE_unsigned:
7557 switch (size)
7558 {
7559 case 1:
7560 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7561 break;
7562 case 2:
7563 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7564 break;
7565 default:
7566 case 4:
7567 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7568 break;
7569 }
7570 return type;
7571 case DW_ATE_unsigned_char:
7572 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7573 return type;
7574 default:
7575 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7576 return type;
7577 }
7578 }
7579
7580 #if 0
7581 struct die_info *
7582 copy_die (struct die_info *old_die)
7583 {
7584 struct die_info *new_die;
7585 int i, num_attrs;
7586
7587 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7588 memset (new_die, 0, sizeof (struct die_info));
7589
7590 new_die->tag = old_die->tag;
7591 new_die->has_children = old_die->has_children;
7592 new_die->abbrev = old_die->abbrev;
7593 new_die->offset = old_die->offset;
7594 new_die->type = NULL;
7595
7596 num_attrs = old_die->num_attrs;
7597 new_die->num_attrs = num_attrs;
7598 new_die->attrs = (struct attribute *)
7599 xmalloc (num_attrs * sizeof (struct attribute));
7600
7601 for (i = 0; i < old_die->num_attrs; ++i)
7602 {
7603 new_die->attrs[i].name = old_die->attrs[i].name;
7604 new_die->attrs[i].form = old_die->attrs[i].form;
7605 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7606 }
7607
7608 new_die->next = NULL;
7609 return new_die;
7610 }
7611 #endif
7612
7613 /* Return sibling of die, NULL if no sibling. */
7614
7615 static struct die_info *
7616 sibling_die (struct die_info *die)
7617 {
7618 return die->sibling;
7619 }
7620
7621 /* Get linkage name of a die, return NULL if not found. */
7622
7623 static char *
7624 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7625 {
7626 struct attribute *attr;
7627
7628 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7629 if (attr && DW_STRING (attr))
7630 return DW_STRING (attr);
7631 attr = dwarf2_attr (die, DW_AT_name, cu);
7632 if (attr && DW_STRING (attr))
7633 return DW_STRING (attr);
7634 return NULL;
7635 }
7636
7637 /* Get name of a die, return NULL if not found. */
7638
7639 static char *
7640 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7641 {
7642 struct attribute *attr;
7643
7644 attr = dwarf2_attr (die, DW_AT_name, cu);
7645 if (attr && DW_STRING (attr))
7646 return DW_STRING (attr);
7647 return NULL;
7648 }
7649
7650 /* Return the die that this die in an extension of, or NULL if there
7651 is none. */
7652
7653 static struct die_info *
7654 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7655 {
7656 struct attribute *attr;
7657
7658 attr = dwarf2_attr (die, DW_AT_extension, cu);
7659 if (attr == NULL)
7660 return NULL;
7661
7662 return follow_die_ref (die, attr, cu);
7663 }
7664
7665 /* Convert a DIE tag into its string name. */
7666
7667 static char *
7668 dwarf_tag_name (unsigned tag)
7669 {
7670 switch (tag)
7671 {
7672 case DW_TAG_padding:
7673 return "DW_TAG_padding";
7674 case DW_TAG_array_type:
7675 return "DW_TAG_array_type";
7676 case DW_TAG_class_type:
7677 return "DW_TAG_class_type";
7678 case DW_TAG_entry_point:
7679 return "DW_TAG_entry_point";
7680 case DW_TAG_enumeration_type:
7681 return "DW_TAG_enumeration_type";
7682 case DW_TAG_formal_parameter:
7683 return "DW_TAG_formal_parameter";
7684 case DW_TAG_imported_declaration:
7685 return "DW_TAG_imported_declaration";
7686 case DW_TAG_label:
7687 return "DW_TAG_label";
7688 case DW_TAG_lexical_block:
7689 return "DW_TAG_lexical_block";
7690 case DW_TAG_member:
7691 return "DW_TAG_member";
7692 case DW_TAG_pointer_type:
7693 return "DW_TAG_pointer_type";
7694 case DW_TAG_reference_type:
7695 return "DW_TAG_reference_type";
7696 case DW_TAG_compile_unit:
7697 return "DW_TAG_compile_unit";
7698 case DW_TAG_string_type:
7699 return "DW_TAG_string_type";
7700 case DW_TAG_structure_type:
7701 return "DW_TAG_structure_type";
7702 case DW_TAG_subroutine_type:
7703 return "DW_TAG_subroutine_type";
7704 case DW_TAG_typedef:
7705 return "DW_TAG_typedef";
7706 case DW_TAG_union_type:
7707 return "DW_TAG_union_type";
7708 case DW_TAG_unspecified_parameters:
7709 return "DW_TAG_unspecified_parameters";
7710 case DW_TAG_variant:
7711 return "DW_TAG_variant";
7712 case DW_TAG_common_block:
7713 return "DW_TAG_common_block";
7714 case DW_TAG_common_inclusion:
7715 return "DW_TAG_common_inclusion";
7716 case DW_TAG_inheritance:
7717 return "DW_TAG_inheritance";
7718 case DW_TAG_inlined_subroutine:
7719 return "DW_TAG_inlined_subroutine";
7720 case DW_TAG_module:
7721 return "DW_TAG_module";
7722 case DW_TAG_ptr_to_member_type:
7723 return "DW_TAG_ptr_to_member_type";
7724 case DW_TAG_set_type:
7725 return "DW_TAG_set_type";
7726 case DW_TAG_subrange_type:
7727 return "DW_TAG_subrange_type";
7728 case DW_TAG_with_stmt:
7729 return "DW_TAG_with_stmt";
7730 case DW_TAG_access_declaration:
7731 return "DW_TAG_access_declaration";
7732 case DW_TAG_base_type:
7733 return "DW_TAG_base_type";
7734 case DW_TAG_catch_block:
7735 return "DW_TAG_catch_block";
7736 case DW_TAG_const_type:
7737 return "DW_TAG_const_type";
7738 case DW_TAG_constant:
7739 return "DW_TAG_constant";
7740 case DW_TAG_enumerator:
7741 return "DW_TAG_enumerator";
7742 case DW_TAG_file_type:
7743 return "DW_TAG_file_type";
7744 case DW_TAG_friend:
7745 return "DW_TAG_friend";
7746 case DW_TAG_namelist:
7747 return "DW_TAG_namelist";
7748 case DW_TAG_namelist_item:
7749 return "DW_TAG_namelist_item";
7750 case DW_TAG_packed_type:
7751 return "DW_TAG_packed_type";
7752 case DW_TAG_subprogram:
7753 return "DW_TAG_subprogram";
7754 case DW_TAG_template_type_param:
7755 return "DW_TAG_template_type_param";
7756 case DW_TAG_template_value_param:
7757 return "DW_TAG_template_value_param";
7758 case DW_TAG_thrown_type:
7759 return "DW_TAG_thrown_type";
7760 case DW_TAG_try_block:
7761 return "DW_TAG_try_block";
7762 case DW_TAG_variant_part:
7763 return "DW_TAG_variant_part";
7764 case DW_TAG_variable:
7765 return "DW_TAG_variable";
7766 case DW_TAG_volatile_type:
7767 return "DW_TAG_volatile_type";
7768 case DW_TAG_dwarf_procedure:
7769 return "DW_TAG_dwarf_procedure";
7770 case DW_TAG_restrict_type:
7771 return "DW_TAG_restrict_type";
7772 case DW_TAG_interface_type:
7773 return "DW_TAG_interface_type";
7774 case DW_TAG_namespace:
7775 return "DW_TAG_namespace";
7776 case DW_TAG_imported_module:
7777 return "DW_TAG_imported_module";
7778 case DW_TAG_unspecified_type:
7779 return "DW_TAG_unspecified_type";
7780 case DW_TAG_partial_unit:
7781 return "DW_TAG_partial_unit";
7782 case DW_TAG_imported_unit:
7783 return "DW_TAG_imported_unit";
7784 case DW_TAG_MIPS_loop:
7785 return "DW_TAG_MIPS_loop";
7786 case DW_TAG_format_label:
7787 return "DW_TAG_format_label";
7788 case DW_TAG_function_template:
7789 return "DW_TAG_function_template";
7790 case DW_TAG_class_template:
7791 return "DW_TAG_class_template";
7792 default:
7793 return "DW_TAG_<unknown>";
7794 }
7795 }
7796
7797 /* Convert a DWARF attribute code into its string name. */
7798
7799 static char *
7800 dwarf_attr_name (unsigned attr)
7801 {
7802 switch (attr)
7803 {
7804 case DW_AT_sibling:
7805 return "DW_AT_sibling";
7806 case DW_AT_location:
7807 return "DW_AT_location";
7808 case DW_AT_name:
7809 return "DW_AT_name";
7810 case DW_AT_ordering:
7811 return "DW_AT_ordering";
7812 case DW_AT_subscr_data:
7813 return "DW_AT_subscr_data";
7814 case DW_AT_byte_size:
7815 return "DW_AT_byte_size";
7816 case DW_AT_bit_offset:
7817 return "DW_AT_bit_offset";
7818 case DW_AT_bit_size:
7819 return "DW_AT_bit_size";
7820 case DW_AT_element_list:
7821 return "DW_AT_element_list";
7822 case DW_AT_stmt_list:
7823 return "DW_AT_stmt_list";
7824 case DW_AT_low_pc:
7825 return "DW_AT_low_pc";
7826 case DW_AT_high_pc:
7827 return "DW_AT_high_pc";
7828 case DW_AT_language:
7829 return "DW_AT_language";
7830 case DW_AT_member:
7831 return "DW_AT_member";
7832 case DW_AT_discr:
7833 return "DW_AT_discr";
7834 case DW_AT_discr_value:
7835 return "DW_AT_discr_value";
7836 case DW_AT_visibility:
7837 return "DW_AT_visibility";
7838 case DW_AT_import:
7839 return "DW_AT_import";
7840 case DW_AT_string_length:
7841 return "DW_AT_string_length";
7842 case DW_AT_common_reference:
7843 return "DW_AT_common_reference";
7844 case DW_AT_comp_dir:
7845 return "DW_AT_comp_dir";
7846 case DW_AT_const_value:
7847 return "DW_AT_const_value";
7848 case DW_AT_containing_type:
7849 return "DW_AT_containing_type";
7850 case DW_AT_default_value:
7851 return "DW_AT_default_value";
7852 case DW_AT_inline:
7853 return "DW_AT_inline";
7854 case DW_AT_is_optional:
7855 return "DW_AT_is_optional";
7856 case DW_AT_lower_bound:
7857 return "DW_AT_lower_bound";
7858 case DW_AT_producer:
7859 return "DW_AT_producer";
7860 case DW_AT_prototyped:
7861 return "DW_AT_prototyped";
7862 case DW_AT_return_addr:
7863 return "DW_AT_return_addr";
7864 case DW_AT_start_scope:
7865 return "DW_AT_start_scope";
7866 case DW_AT_stride_size:
7867 return "DW_AT_stride_size";
7868 case DW_AT_upper_bound:
7869 return "DW_AT_upper_bound";
7870 case DW_AT_abstract_origin:
7871 return "DW_AT_abstract_origin";
7872 case DW_AT_accessibility:
7873 return "DW_AT_accessibility";
7874 case DW_AT_address_class:
7875 return "DW_AT_address_class";
7876 case DW_AT_artificial:
7877 return "DW_AT_artificial";
7878 case DW_AT_base_types:
7879 return "DW_AT_base_types";
7880 case DW_AT_calling_convention:
7881 return "DW_AT_calling_convention";
7882 case DW_AT_count:
7883 return "DW_AT_count";
7884 case DW_AT_data_member_location:
7885 return "DW_AT_data_member_location";
7886 case DW_AT_decl_column:
7887 return "DW_AT_decl_column";
7888 case DW_AT_decl_file:
7889 return "DW_AT_decl_file";
7890 case DW_AT_decl_line:
7891 return "DW_AT_decl_line";
7892 case DW_AT_declaration:
7893 return "DW_AT_declaration";
7894 case DW_AT_discr_list:
7895 return "DW_AT_discr_list";
7896 case DW_AT_encoding:
7897 return "DW_AT_encoding";
7898 case DW_AT_external:
7899 return "DW_AT_external";
7900 case DW_AT_frame_base:
7901 return "DW_AT_frame_base";
7902 case DW_AT_friend:
7903 return "DW_AT_friend";
7904 case DW_AT_identifier_case:
7905 return "DW_AT_identifier_case";
7906 case DW_AT_macro_info:
7907 return "DW_AT_macro_info";
7908 case DW_AT_namelist_items:
7909 return "DW_AT_namelist_items";
7910 case DW_AT_priority:
7911 return "DW_AT_priority";
7912 case DW_AT_segment:
7913 return "DW_AT_segment";
7914 case DW_AT_specification:
7915 return "DW_AT_specification";
7916 case DW_AT_static_link:
7917 return "DW_AT_static_link";
7918 case DW_AT_type:
7919 return "DW_AT_type";
7920 case DW_AT_use_location:
7921 return "DW_AT_use_location";
7922 case DW_AT_variable_parameter:
7923 return "DW_AT_variable_parameter";
7924 case DW_AT_virtuality:
7925 return "DW_AT_virtuality";
7926 case DW_AT_vtable_elem_location:
7927 return "DW_AT_vtable_elem_location";
7928 case DW_AT_allocated:
7929 return "DW_AT_allocated";
7930 case DW_AT_associated:
7931 return "DW_AT_associated";
7932 case DW_AT_data_location:
7933 return "DW_AT_data_location";
7934 case DW_AT_stride:
7935 return "DW_AT_stride";
7936 case DW_AT_entry_pc:
7937 return "DW_AT_entry_pc";
7938 case DW_AT_use_UTF8:
7939 return "DW_AT_use_UTF8";
7940 case DW_AT_extension:
7941 return "DW_AT_extension";
7942 case DW_AT_ranges:
7943 return "DW_AT_ranges";
7944 case DW_AT_trampoline:
7945 return "DW_AT_trampoline";
7946 case DW_AT_call_column:
7947 return "DW_AT_call_column";
7948 case DW_AT_call_file:
7949 return "DW_AT_call_file";
7950 case DW_AT_call_line:
7951 return "DW_AT_call_line";
7952 #ifdef MIPS
7953 case DW_AT_MIPS_fde:
7954 return "DW_AT_MIPS_fde";
7955 case DW_AT_MIPS_loop_begin:
7956 return "DW_AT_MIPS_loop_begin";
7957 case DW_AT_MIPS_tail_loop_begin:
7958 return "DW_AT_MIPS_tail_loop_begin";
7959 case DW_AT_MIPS_epilog_begin:
7960 return "DW_AT_MIPS_epilog_begin";
7961 case DW_AT_MIPS_loop_unroll_factor:
7962 return "DW_AT_MIPS_loop_unroll_factor";
7963 case DW_AT_MIPS_software_pipeline_depth:
7964 return "DW_AT_MIPS_software_pipeline_depth";
7965 #endif
7966 case DW_AT_MIPS_linkage_name:
7967 return "DW_AT_MIPS_linkage_name";
7968
7969 case DW_AT_sf_names:
7970 return "DW_AT_sf_names";
7971 case DW_AT_src_info:
7972 return "DW_AT_src_info";
7973 case DW_AT_mac_info:
7974 return "DW_AT_mac_info";
7975 case DW_AT_src_coords:
7976 return "DW_AT_src_coords";
7977 case DW_AT_body_begin:
7978 return "DW_AT_body_begin";
7979 case DW_AT_body_end:
7980 return "DW_AT_body_end";
7981 case DW_AT_GNU_vector:
7982 return "DW_AT_GNU_vector";
7983 default:
7984 return "DW_AT_<unknown>";
7985 }
7986 }
7987
7988 /* Convert a DWARF value form code into its string name. */
7989
7990 static char *
7991 dwarf_form_name (unsigned form)
7992 {
7993 switch (form)
7994 {
7995 case DW_FORM_addr:
7996 return "DW_FORM_addr";
7997 case DW_FORM_block2:
7998 return "DW_FORM_block2";
7999 case DW_FORM_block4:
8000 return "DW_FORM_block4";
8001 case DW_FORM_data2:
8002 return "DW_FORM_data2";
8003 case DW_FORM_data4:
8004 return "DW_FORM_data4";
8005 case DW_FORM_data8:
8006 return "DW_FORM_data8";
8007 case DW_FORM_string:
8008 return "DW_FORM_string";
8009 case DW_FORM_block:
8010 return "DW_FORM_block";
8011 case DW_FORM_block1:
8012 return "DW_FORM_block1";
8013 case DW_FORM_data1:
8014 return "DW_FORM_data1";
8015 case DW_FORM_flag:
8016 return "DW_FORM_flag";
8017 case DW_FORM_sdata:
8018 return "DW_FORM_sdata";
8019 case DW_FORM_strp:
8020 return "DW_FORM_strp";
8021 case DW_FORM_udata:
8022 return "DW_FORM_udata";
8023 case DW_FORM_ref_addr:
8024 return "DW_FORM_ref_addr";
8025 case DW_FORM_ref1:
8026 return "DW_FORM_ref1";
8027 case DW_FORM_ref2:
8028 return "DW_FORM_ref2";
8029 case DW_FORM_ref4:
8030 return "DW_FORM_ref4";
8031 case DW_FORM_ref8:
8032 return "DW_FORM_ref8";
8033 case DW_FORM_ref_udata:
8034 return "DW_FORM_ref_udata";
8035 case DW_FORM_indirect:
8036 return "DW_FORM_indirect";
8037 default:
8038 return "DW_FORM_<unknown>";
8039 }
8040 }
8041
8042 /* Convert a DWARF stack opcode into its string name. */
8043
8044 static char *
8045 dwarf_stack_op_name (unsigned op)
8046 {
8047 switch (op)
8048 {
8049 case DW_OP_addr:
8050 return "DW_OP_addr";
8051 case DW_OP_deref:
8052 return "DW_OP_deref";
8053 case DW_OP_const1u:
8054 return "DW_OP_const1u";
8055 case DW_OP_const1s:
8056 return "DW_OP_const1s";
8057 case DW_OP_const2u:
8058 return "DW_OP_const2u";
8059 case DW_OP_const2s:
8060 return "DW_OP_const2s";
8061 case DW_OP_const4u:
8062 return "DW_OP_const4u";
8063 case DW_OP_const4s:
8064 return "DW_OP_const4s";
8065 case DW_OP_const8u:
8066 return "DW_OP_const8u";
8067 case DW_OP_const8s:
8068 return "DW_OP_const8s";
8069 case DW_OP_constu:
8070 return "DW_OP_constu";
8071 case DW_OP_consts:
8072 return "DW_OP_consts";
8073 case DW_OP_dup:
8074 return "DW_OP_dup";
8075 case DW_OP_drop:
8076 return "DW_OP_drop";
8077 case DW_OP_over:
8078 return "DW_OP_over";
8079 case DW_OP_pick:
8080 return "DW_OP_pick";
8081 case DW_OP_swap:
8082 return "DW_OP_swap";
8083 case DW_OP_rot:
8084 return "DW_OP_rot";
8085 case DW_OP_xderef:
8086 return "DW_OP_xderef";
8087 case DW_OP_abs:
8088 return "DW_OP_abs";
8089 case DW_OP_and:
8090 return "DW_OP_and";
8091 case DW_OP_div:
8092 return "DW_OP_div";
8093 case DW_OP_minus:
8094 return "DW_OP_minus";
8095 case DW_OP_mod:
8096 return "DW_OP_mod";
8097 case DW_OP_mul:
8098 return "DW_OP_mul";
8099 case DW_OP_neg:
8100 return "DW_OP_neg";
8101 case DW_OP_not:
8102 return "DW_OP_not";
8103 case DW_OP_or:
8104 return "DW_OP_or";
8105 case DW_OP_plus:
8106 return "DW_OP_plus";
8107 case DW_OP_plus_uconst:
8108 return "DW_OP_plus_uconst";
8109 case DW_OP_shl:
8110 return "DW_OP_shl";
8111 case DW_OP_shr:
8112 return "DW_OP_shr";
8113 case DW_OP_shra:
8114 return "DW_OP_shra";
8115 case DW_OP_xor:
8116 return "DW_OP_xor";
8117 case DW_OP_bra:
8118 return "DW_OP_bra";
8119 case DW_OP_eq:
8120 return "DW_OP_eq";
8121 case DW_OP_ge:
8122 return "DW_OP_ge";
8123 case DW_OP_gt:
8124 return "DW_OP_gt";
8125 case DW_OP_le:
8126 return "DW_OP_le";
8127 case DW_OP_lt:
8128 return "DW_OP_lt";
8129 case DW_OP_ne:
8130 return "DW_OP_ne";
8131 case DW_OP_skip:
8132 return "DW_OP_skip";
8133 case DW_OP_lit0:
8134 return "DW_OP_lit0";
8135 case DW_OP_lit1:
8136 return "DW_OP_lit1";
8137 case DW_OP_lit2:
8138 return "DW_OP_lit2";
8139 case DW_OP_lit3:
8140 return "DW_OP_lit3";
8141 case DW_OP_lit4:
8142 return "DW_OP_lit4";
8143 case DW_OP_lit5:
8144 return "DW_OP_lit5";
8145 case DW_OP_lit6:
8146 return "DW_OP_lit6";
8147 case DW_OP_lit7:
8148 return "DW_OP_lit7";
8149 case DW_OP_lit8:
8150 return "DW_OP_lit8";
8151 case DW_OP_lit9:
8152 return "DW_OP_lit9";
8153 case DW_OP_lit10:
8154 return "DW_OP_lit10";
8155 case DW_OP_lit11:
8156 return "DW_OP_lit11";
8157 case DW_OP_lit12:
8158 return "DW_OP_lit12";
8159 case DW_OP_lit13:
8160 return "DW_OP_lit13";
8161 case DW_OP_lit14:
8162 return "DW_OP_lit14";
8163 case DW_OP_lit15:
8164 return "DW_OP_lit15";
8165 case DW_OP_lit16:
8166 return "DW_OP_lit16";
8167 case DW_OP_lit17:
8168 return "DW_OP_lit17";
8169 case DW_OP_lit18:
8170 return "DW_OP_lit18";
8171 case DW_OP_lit19:
8172 return "DW_OP_lit19";
8173 case DW_OP_lit20:
8174 return "DW_OP_lit20";
8175 case DW_OP_lit21:
8176 return "DW_OP_lit21";
8177 case DW_OP_lit22:
8178 return "DW_OP_lit22";
8179 case DW_OP_lit23:
8180 return "DW_OP_lit23";
8181 case DW_OP_lit24:
8182 return "DW_OP_lit24";
8183 case DW_OP_lit25:
8184 return "DW_OP_lit25";
8185 case DW_OP_lit26:
8186 return "DW_OP_lit26";
8187 case DW_OP_lit27:
8188 return "DW_OP_lit27";
8189 case DW_OP_lit28:
8190 return "DW_OP_lit28";
8191 case DW_OP_lit29:
8192 return "DW_OP_lit29";
8193 case DW_OP_lit30:
8194 return "DW_OP_lit30";
8195 case DW_OP_lit31:
8196 return "DW_OP_lit31";
8197 case DW_OP_reg0:
8198 return "DW_OP_reg0";
8199 case DW_OP_reg1:
8200 return "DW_OP_reg1";
8201 case DW_OP_reg2:
8202 return "DW_OP_reg2";
8203 case DW_OP_reg3:
8204 return "DW_OP_reg3";
8205 case DW_OP_reg4:
8206 return "DW_OP_reg4";
8207 case DW_OP_reg5:
8208 return "DW_OP_reg5";
8209 case DW_OP_reg6:
8210 return "DW_OP_reg6";
8211 case DW_OP_reg7:
8212 return "DW_OP_reg7";
8213 case DW_OP_reg8:
8214 return "DW_OP_reg8";
8215 case DW_OP_reg9:
8216 return "DW_OP_reg9";
8217 case DW_OP_reg10:
8218 return "DW_OP_reg10";
8219 case DW_OP_reg11:
8220 return "DW_OP_reg11";
8221 case DW_OP_reg12:
8222 return "DW_OP_reg12";
8223 case DW_OP_reg13:
8224 return "DW_OP_reg13";
8225 case DW_OP_reg14:
8226 return "DW_OP_reg14";
8227 case DW_OP_reg15:
8228 return "DW_OP_reg15";
8229 case DW_OP_reg16:
8230 return "DW_OP_reg16";
8231 case DW_OP_reg17:
8232 return "DW_OP_reg17";
8233 case DW_OP_reg18:
8234 return "DW_OP_reg18";
8235 case DW_OP_reg19:
8236 return "DW_OP_reg19";
8237 case DW_OP_reg20:
8238 return "DW_OP_reg20";
8239 case DW_OP_reg21:
8240 return "DW_OP_reg21";
8241 case DW_OP_reg22:
8242 return "DW_OP_reg22";
8243 case DW_OP_reg23:
8244 return "DW_OP_reg23";
8245 case DW_OP_reg24:
8246 return "DW_OP_reg24";
8247 case DW_OP_reg25:
8248 return "DW_OP_reg25";
8249 case DW_OP_reg26:
8250 return "DW_OP_reg26";
8251 case DW_OP_reg27:
8252 return "DW_OP_reg27";
8253 case DW_OP_reg28:
8254 return "DW_OP_reg28";
8255 case DW_OP_reg29:
8256 return "DW_OP_reg29";
8257 case DW_OP_reg30:
8258 return "DW_OP_reg30";
8259 case DW_OP_reg31:
8260 return "DW_OP_reg31";
8261 case DW_OP_breg0:
8262 return "DW_OP_breg0";
8263 case DW_OP_breg1:
8264 return "DW_OP_breg1";
8265 case DW_OP_breg2:
8266 return "DW_OP_breg2";
8267 case DW_OP_breg3:
8268 return "DW_OP_breg3";
8269 case DW_OP_breg4:
8270 return "DW_OP_breg4";
8271 case DW_OP_breg5:
8272 return "DW_OP_breg5";
8273 case DW_OP_breg6:
8274 return "DW_OP_breg6";
8275 case DW_OP_breg7:
8276 return "DW_OP_breg7";
8277 case DW_OP_breg8:
8278 return "DW_OP_breg8";
8279 case DW_OP_breg9:
8280 return "DW_OP_breg9";
8281 case DW_OP_breg10:
8282 return "DW_OP_breg10";
8283 case DW_OP_breg11:
8284 return "DW_OP_breg11";
8285 case DW_OP_breg12:
8286 return "DW_OP_breg12";
8287 case DW_OP_breg13:
8288 return "DW_OP_breg13";
8289 case DW_OP_breg14:
8290 return "DW_OP_breg14";
8291 case DW_OP_breg15:
8292 return "DW_OP_breg15";
8293 case DW_OP_breg16:
8294 return "DW_OP_breg16";
8295 case DW_OP_breg17:
8296 return "DW_OP_breg17";
8297 case DW_OP_breg18:
8298 return "DW_OP_breg18";
8299 case DW_OP_breg19:
8300 return "DW_OP_breg19";
8301 case DW_OP_breg20:
8302 return "DW_OP_breg20";
8303 case DW_OP_breg21:
8304 return "DW_OP_breg21";
8305 case DW_OP_breg22:
8306 return "DW_OP_breg22";
8307 case DW_OP_breg23:
8308 return "DW_OP_breg23";
8309 case DW_OP_breg24:
8310 return "DW_OP_breg24";
8311 case DW_OP_breg25:
8312 return "DW_OP_breg25";
8313 case DW_OP_breg26:
8314 return "DW_OP_breg26";
8315 case DW_OP_breg27:
8316 return "DW_OP_breg27";
8317 case DW_OP_breg28:
8318 return "DW_OP_breg28";
8319 case DW_OP_breg29:
8320 return "DW_OP_breg29";
8321 case DW_OP_breg30:
8322 return "DW_OP_breg30";
8323 case DW_OP_breg31:
8324 return "DW_OP_breg31";
8325 case DW_OP_regx:
8326 return "DW_OP_regx";
8327 case DW_OP_fbreg:
8328 return "DW_OP_fbreg";
8329 case DW_OP_bregx:
8330 return "DW_OP_bregx";
8331 case DW_OP_piece:
8332 return "DW_OP_piece";
8333 case DW_OP_deref_size:
8334 return "DW_OP_deref_size";
8335 case DW_OP_xderef_size:
8336 return "DW_OP_xderef_size";
8337 case DW_OP_nop:
8338 return "DW_OP_nop";
8339 /* DWARF 3 extensions. */
8340 case DW_OP_push_object_address:
8341 return "DW_OP_push_object_address";
8342 case DW_OP_call2:
8343 return "DW_OP_call2";
8344 case DW_OP_call4:
8345 return "DW_OP_call4";
8346 case DW_OP_call_ref:
8347 return "DW_OP_call_ref";
8348 /* GNU extensions. */
8349 case DW_OP_GNU_push_tls_address:
8350 return "DW_OP_GNU_push_tls_address";
8351 default:
8352 return "OP_<unknown>";
8353 }
8354 }
8355
8356 static char *
8357 dwarf_bool_name (unsigned mybool)
8358 {
8359 if (mybool)
8360 return "TRUE";
8361 else
8362 return "FALSE";
8363 }
8364
8365 /* Convert a DWARF type code into its string name. */
8366
8367 static char *
8368 dwarf_type_encoding_name (unsigned enc)
8369 {
8370 switch (enc)
8371 {
8372 case DW_ATE_address:
8373 return "DW_ATE_address";
8374 case DW_ATE_boolean:
8375 return "DW_ATE_boolean";
8376 case DW_ATE_complex_float:
8377 return "DW_ATE_complex_float";
8378 case DW_ATE_float:
8379 return "DW_ATE_float";
8380 case DW_ATE_signed:
8381 return "DW_ATE_signed";
8382 case DW_ATE_signed_char:
8383 return "DW_ATE_signed_char";
8384 case DW_ATE_unsigned:
8385 return "DW_ATE_unsigned";
8386 case DW_ATE_unsigned_char:
8387 return "DW_ATE_unsigned_char";
8388 case DW_ATE_imaginary_float:
8389 return "DW_ATE_imaginary_float";
8390 default:
8391 return "DW_ATE_<unknown>";
8392 }
8393 }
8394
8395 /* Convert a DWARF call frame info operation to its string name. */
8396
8397 #if 0
8398 static char *
8399 dwarf_cfi_name (unsigned cfi_opc)
8400 {
8401 switch (cfi_opc)
8402 {
8403 case DW_CFA_advance_loc:
8404 return "DW_CFA_advance_loc";
8405 case DW_CFA_offset:
8406 return "DW_CFA_offset";
8407 case DW_CFA_restore:
8408 return "DW_CFA_restore";
8409 case DW_CFA_nop:
8410 return "DW_CFA_nop";
8411 case DW_CFA_set_loc:
8412 return "DW_CFA_set_loc";
8413 case DW_CFA_advance_loc1:
8414 return "DW_CFA_advance_loc1";
8415 case DW_CFA_advance_loc2:
8416 return "DW_CFA_advance_loc2";
8417 case DW_CFA_advance_loc4:
8418 return "DW_CFA_advance_loc4";
8419 case DW_CFA_offset_extended:
8420 return "DW_CFA_offset_extended";
8421 case DW_CFA_restore_extended:
8422 return "DW_CFA_restore_extended";
8423 case DW_CFA_undefined:
8424 return "DW_CFA_undefined";
8425 case DW_CFA_same_value:
8426 return "DW_CFA_same_value";
8427 case DW_CFA_register:
8428 return "DW_CFA_register";
8429 case DW_CFA_remember_state:
8430 return "DW_CFA_remember_state";
8431 case DW_CFA_restore_state:
8432 return "DW_CFA_restore_state";
8433 case DW_CFA_def_cfa:
8434 return "DW_CFA_def_cfa";
8435 case DW_CFA_def_cfa_register:
8436 return "DW_CFA_def_cfa_register";
8437 case DW_CFA_def_cfa_offset:
8438 return "DW_CFA_def_cfa_offset";
8439
8440 /* DWARF 3 */
8441 case DW_CFA_def_cfa_expression:
8442 return "DW_CFA_def_cfa_expression";
8443 case DW_CFA_expression:
8444 return "DW_CFA_expression";
8445 case DW_CFA_offset_extended_sf:
8446 return "DW_CFA_offset_extended_sf";
8447 case DW_CFA_def_cfa_sf:
8448 return "DW_CFA_def_cfa_sf";
8449 case DW_CFA_def_cfa_offset_sf:
8450 return "DW_CFA_def_cfa_offset_sf";
8451
8452 /* SGI/MIPS specific */
8453 case DW_CFA_MIPS_advance_loc8:
8454 return "DW_CFA_MIPS_advance_loc8";
8455
8456 /* GNU extensions */
8457 case DW_CFA_GNU_window_save:
8458 return "DW_CFA_GNU_window_save";
8459 case DW_CFA_GNU_args_size:
8460 return "DW_CFA_GNU_args_size";
8461 case DW_CFA_GNU_negative_offset_extended:
8462 return "DW_CFA_GNU_negative_offset_extended";
8463
8464 default:
8465 return "DW_CFA_<unknown>";
8466 }
8467 }
8468 #endif
8469
8470 static void
8471 dump_die (struct die_info *die)
8472 {
8473 unsigned int i;
8474
8475 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8476 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8477 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8478 dwarf_bool_name (die->child != NULL));
8479
8480 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8481 for (i = 0; i < die->num_attrs; ++i)
8482 {
8483 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8484 dwarf_attr_name (die->attrs[i].name),
8485 dwarf_form_name (die->attrs[i].form));
8486 switch (die->attrs[i].form)
8487 {
8488 case DW_FORM_ref_addr:
8489 case DW_FORM_addr:
8490 fprintf_unfiltered (gdb_stderr, "address: ");
8491 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8492 break;
8493 case DW_FORM_block2:
8494 case DW_FORM_block4:
8495 case DW_FORM_block:
8496 case DW_FORM_block1:
8497 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8498 break;
8499 case DW_FORM_ref1:
8500 case DW_FORM_ref2:
8501 case DW_FORM_ref4:
8502 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8503 (long) (DW_ADDR (&die->attrs[i])));
8504 break;
8505 case DW_FORM_data1:
8506 case DW_FORM_data2:
8507 case DW_FORM_data4:
8508 case DW_FORM_data8:
8509 case DW_FORM_udata:
8510 case DW_FORM_sdata:
8511 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8512 break;
8513 case DW_FORM_string:
8514 case DW_FORM_strp:
8515 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8516 DW_STRING (&die->attrs[i])
8517 ? DW_STRING (&die->attrs[i]) : "");
8518 break;
8519 case DW_FORM_flag:
8520 if (DW_UNSND (&die->attrs[i]))
8521 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8522 else
8523 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8524 break;
8525 case DW_FORM_indirect:
8526 /* the reader will have reduced the indirect form to
8527 the "base form" so this form should not occur */
8528 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8529 break;
8530 default:
8531 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8532 die->attrs[i].form);
8533 }
8534 fprintf_unfiltered (gdb_stderr, "\n");
8535 }
8536 }
8537
8538 static void
8539 dump_die_list (struct die_info *die)
8540 {
8541 while (die)
8542 {
8543 dump_die (die);
8544 if (die->child != NULL)
8545 dump_die_list (die->child);
8546 if (die->sibling != NULL)
8547 dump_die_list (die->sibling);
8548 }
8549 }
8550
8551 static void
8552 store_in_ref_table (unsigned int offset, struct die_info *die,
8553 struct dwarf2_cu *cu)
8554 {
8555 int h;
8556 struct die_info *old;
8557
8558 h = (offset % REF_HASH_SIZE);
8559 old = cu->die_ref_table[h];
8560 die->next_ref = old;
8561 cu->die_ref_table[h] = die;
8562 }
8563
8564 static unsigned int
8565 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8566 {
8567 unsigned int result = 0;
8568
8569 switch (attr->form)
8570 {
8571 case DW_FORM_ref_addr:
8572 case DW_FORM_ref1:
8573 case DW_FORM_ref2:
8574 case DW_FORM_ref4:
8575 case DW_FORM_ref8:
8576 case DW_FORM_ref_udata:
8577 result = DW_ADDR (attr);
8578 break;
8579 default:
8580 complaint (&symfile_complaints,
8581 _("unsupported die ref attribute form: '%s'"),
8582 dwarf_form_name (attr->form));
8583 }
8584 return result;
8585 }
8586
8587 /* Return the constant value held by the given attribute. Return -1
8588 if the value held by the attribute is not constant. */
8589
8590 static int
8591 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8592 {
8593 if (attr->form == DW_FORM_sdata)
8594 return DW_SND (attr);
8595 else if (attr->form == DW_FORM_udata
8596 || attr->form == DW_FORM_data1
8597 || attr->form == DW_FORM_data2
8598 || attr->form == DW_FORM_data4
8599 || attr->form == DW_FORM_data8)
8600 return DW_UNSND (attr);
8601 else
8602 {
8603 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8604 dwarf_form_name (attr->form));
8605 return default_value;
8606 }
8607 }
8608
8609 static struct die_info *
8610 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8611 struct dwarf2_cu *cu)
8612 {
8613 struct die_info *die;
8614 unsigned int offset;
8615 int h;
8616 struct die_info temp_die;
8617 struct dwarf2_cu *target_cu;
8618
8619 offset = dwarf2_get_ref_die_offset (attr, cu);
8620
8621 if (DW_ADDR (attr) < cu->header.offset
8622 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8623 {
8624 struct dwarf2_per_cu_data *per_cu;
8625 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8626 cu->objfile);
8627 target_cu = per_cu->cu;
8628 }
8629 else
8630 target_cu = cu;
8631
8632 h = (offset % REF_HASH_SIZE);
8633 die = target_cu->die_ref_table[h];
8634 while (die)
8635 {
8636 if (die->offset == offset)
8637 return die;
8638 die = die->next_ref;
8639 }
8640
8641 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8642 "at 0x%lx [in module %s]"),
8643 (long) src_die->offset, (long) offset, cu->objfile->name);
8644
8645 return NULL;
8646 }
8647
8648 static struct type *
8649 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8650 struct dwarf2_cu *cu)
8651 {
8652 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8653 {
8654 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8655 typeid, objfile->name);
8656 }
8657
8658 /* Look for this particular type in the fundamental type vector. If
8659 one is not found, create and install one appropriate for the
8660 current language and the current target machine. */
8661
8662 if (cu->ftypes[typeid] == NULL)
8663 {
8664 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8665 }
8666
8667 return (cu->ftypes[typeid]);
8668 }
8669
8670 /* Decode simple location descriptions.
8671 Given a pointer to a dwarf block that defines a location, compute
8672 the location and return the value.
8673
8674 NOTE drow/2003-11-18: This function is called in two situations
8675 now: for the address of static or global variables (partial symbols
8676 only) and for offsets into structures which are expected to be
8677 (more or less) constant. The partial symbol case should go away,
8678 and only the constant case should remain. That will let this
8679 function complain more accurately. A few special modes are allowed
8680 without complaint for global variables (for instance, global
8681 register values and thread-local values).
8682
8683 A location description containing no operations indicates that the
8684 object is optimized out. The return value is 0 for that case.
8685 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8686 callers will only want a very basic result and this can become a
8687 complaint.
8688
8689 Note that stack[0] is unused except as a default error return.
8690 Note that stack overflow is not yet handled. */
8691
8692 static CORE_ADDR
8693 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8694 {
8695 struct objfile *objfile = cu->objfile;
8696 struct comp_unit_head *cu_header = &cu->header;
8697 int i;
8698 int size = blk->size;
8699 gdb_byte *data = blk->data;
8700 CORE_ADDR stack[64];
8701 int stacki;
8702 unsigned int bytes_read, unsnd;
8703 gdb_byte op;
8704
8705 i = 0;
8706 stacki = 0;
8707 stack[stacki] = 0;
8708
8709 while (i < size)
8710 {
8711 op = data[i++];
8712 switch (op)
8713 {
8714 case DW_OP_lit0:
8715 case DW_OP_lit1:
8716 case DW_OP_lit2:
8717 case DW_OP_lit3:
8718 case DW_OP_lit4:
8719 case DW_OP_lit5:
8720 case DW_OP_lit6:
8721 case DW_OP_lit7:
8722 case DW_OP_lit8:
8723 case DW_OP_lit9:
8724 case DW_OP_lit10:
8725 case DW_OP_lit11:
8726 case DW_OP_lit12:
8727 case DW_OP_lit13:
8728 case DW_OP_lit14:
8729 case DW_OP_lit15:
8730 case DW_OP_lit16:
8731 case DW_OP_lit17:
8732 case DW_OP_lit18:
8733 case DW_OP_lit19:
8734 case DW_OP_lit20:
8735 case DW_OP_lit21:
8736 case DW_OP_lit22:
8737 case DW_OP_lit23:
8738 case DW_OP_lit24:
8739 case DW_OP_lit25:
8740 case DW_OP_lit26:
8741 case DW_OP_lit27:
8742 case DW_OP_lit28:
8743 case DW_OP_lit29:
8744 case DW_OP_lit30:
8745 case DW_OP_lit31:
8746 stack[++stacki] = op - DW_OP_lit0;
8747 break;
8748
8749 case DW_OP_reg0:
8750 case DW_OP_reg1:
8751 case DW_OP_reg2:
8752 case DW_OP_reg3:
8753 case DW_OP_reg4:
8754 case DW_OP_reg5:
8755 case DW_OP_reg6:
8756 case DW_OP_reg7:
8757 case DW_OP_reg8:
8758 case DW_OP_reg9:
8759 case DW_OP_reg10:
8760 case DW_OP_reg11:
8761 case DW_OP_reg12:
8762 case DW_OP_reg13:
8763 case DW_OP_reg14:
8764 case DW_OP_reg15:
8765 case DW_OP_reg16:
8766 case DW_OP_reg17:
8767 case DW_OP_reg18:
8768 case DW_OP_reg19:
8769 case DW_OP_reg20:
8770 case DW_OP_reg21:
8771 case DW_OP_reg22:
8772 case DW_OP_reg23:
8773 case DW_OP_reg24:
8774 case DW_OP_reg25:
8775 case DW_OP_reg26:
8776 case DW_OP_reg27:
8777 case DW_OP_reg28:
8778 case DW_OP_reg29:
8779 case DW_OP_reg30:
8780 case DW_OP_reg31:
8781 stack[++stacki] = op - DW_OP_reg0;
8782 if (i < size)
8783 dwarf2_complex_location_expr_complaint ();
8784 break;
8785
8786 case DW_OP_regx:
8787 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8788 i += bytes_read;
8789 stack[++stacki] = unsnd;
8790 if (i < size)
8791 dwarf2_complex_location_expr_complaint ();
8792 break;
8793
8794 case DW_OP_addr:
8795 stack[++stacki] = read_address (objfile->obfd, &data[i],
8796 cu, &bytes_read);
8797 i += bytes_read;
8798 break;
8799
8800 case DW_OP_const1u:
8801 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8802 i += 1;
8803 break;
8804
8805 case DW_OP_const1s:
8806 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8807 i += 1;
8808 break;
8809
8810 case DW_OP_const2u:
8811 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8812 i += 2;
8813 break;
8814
8815 case DW_OP_const2s:
8816 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8817 i += 2;
8818 break;
8819
8820 case DW_OP_const4u:
8821 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8822 i += 4;
8823 break;
8824
8825 case DW_OP_const4s:
8826 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8827 i += 4;
8828 break;
8829
8830 case DW_OP_constu:
8831 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8832 &bytes_read);
8833 i += bytes_read;
8834 break;
8835
8836 case DW_OP_consts:
8837 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8838 i += bytes_read;
8839 break;
8840
8841 case DW_OP_dup:
8842 stack[stacki + 1] = stack[stacki];
8843 stacki++;
8844 break;
8845
8846 case DW_OP_plus:
8847 stack[stacki - 1] += stack[stacki];
8848 stacki--;
8849 break;
8850
8851 case DW_OP_plus_uconst:
8852 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8853 i += bytes_read;
8854 break;
8855
8856 case DW_OP_minus:
8857 stack[stacki - 1] -= stack[stacki];
8858 stacki--;
8859 break;
8860
8861 case DW_OP_deref:
8862 /* If we're not the last op, then we definitely can't encode
8863 this using GDB's address_class enum. This is valid for partial
8864 global symbols, although the variable's address will be bogus
8865 in the psymtab. */
8866 if (i < size)
8867 dwarf2_complex_location_expr_complaint ();
8868 break;
8869
8870 case DW_OP_GNU_push_tls_address:
8871 /* The top of the stack has the offset from the beginning
8872 of the thread control block at which the variable is located. */
8873 /* Nothing should follow this operator, so the top of stack would
8874 be returned. */
8875 /* This is valid for partial global symbols, but the variable's
8876 address will be bogus in the psymtab. */
8877 if (i < size)
8878 dwarf2_complex_location_expr_complaint ();
8879 break;
8880
8881 default:
8882 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8883 dwarf_stack_op_name (op));
8884 return (stack[stacki]);
8885 }
8886 }
8887 return (stack[stacki]);
8888 }
8889
8890 /* memory allocation interface */
8891
8892 static struct dwarf_block *
8893 dwarf_alloc_block (struct dwarf2_cu *cu)
8894 {
8895 struct dwarf_block *blk;
8896
8897 blk = (struct dwarf_block *)
8898 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8899 return (blk);
8900 }
8901
8902 static struct abbrev_info *
8903 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8904 {
8905 struct abbrev_info *abbrev;
8906
8907 abbrev = (struct abbrev_info *)
8908 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8909 memset (abbrev, 0, sizeof (struct abbrev_info));
8910 return (abbrev);
8911 }
8912
8913 static struct die_info *
8914 dwarf_alloc_die (void)
8915 {
8916 struct die_info *die;
8917
8918 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8919 memset (die, 0, sizeof (struct die_info));
8920 return (die);
8921 }
8922
8923 \f
8924 /* Macro support. */
8925
8926
8927 /* Return the full name of file number I in *LH's file name table.
8928 Use COMP_DIR as the name of the current directory of the
8929 compilation. The result is allocated using xmalloc; the caller is
8930 responsible for freeing it. */
8931 static char *
8932 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8933 {
8934 /* Is the file number a valid index into the line header's file name
8935 table? Remember that file numbers start with one, not zero. */
8936 if (1 <= file && file <= lh->num_file_names)
8937 {
8938 struct file_entry *fe = &lh->file_names[file - 1];
8939
8940 if (IS_ABSOLUTE_PATH (fe->name))
8941 return xstrdup (fe->name);
8942 else
8943 {
8944 const char *dir;
8945 int dir_len;
8946 char *full_name;
8947
8948 if (fe->dir_index)
8949 dir = lh->include_dirs[fe->dir_index - 1];
8950 else
8951 dir = comp_dir;
8952
8953 if (dir)
8954 {
8955 dir_len = strlen (dir);
8956 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8957 strcpy (full_name, dir);
8958 full_name[dir_len] = '/';
8959 strcpy (full_name + dir_len + 1, fe->name);
8960 return full_name;
8961 }
8962 else
8963 return xstrdup (fe->name);
8964 }
8965 }
8966 else
8967 {
8968 /* The compiler produced a bogus file number. We can at least
8969 record the macro definitions made in the file, even if we
8970 won't be able to find the file by name. */
8971 char fake_name[80];
8972 sprintf (fake_name, "<bad macro file number %d>", file);
8973
8974 complaint (&symfile_complaints,
8975 _("bad file number in macro information (%d)"),
8976 file);
8977
8978 return xstrdup (fake_name);
8979 }
8980 }
8981
8982
8983 static struct macro_source_file *
8984 macro_start_file (int file, int line,
8985 struct macro_source_file *current_file,
8986 const char *comp_dir,
8987 struct line_header *lh, struct objfile *objfile)
8988 {
8989 /* The full name of this source file. */
8990 char *full_name = file_full_name (file, lh, comp_dir);
8991
8992 /* We don't create a macro table for this compilation unit
8993 at all until we actually get a filename. */
8994 if (! pending_macros)
8995 pending_macros = new_macro_table (&objfile->objfile_obstack,
8996 objfile->macro_cache);
8997
8998 if (! current_file)
8999 /* If we have no current file, then this must be the start_file
9000 directive for the compilation unit's main source file. */
9001 current_file = macro_set_main (pending_macros, full_name);
9002 else
9003 current_file = macro_include (current_file, line, full_name);
9004
9005 xfree (full_name);
9006
9007 return current_file;
9008 }
9009
9010
9011 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9012 followed by a null byte. */
9013 static char *
9014 copy_string (const char *buf, int len)
9015 {
9016 char *s = xmalloc (len + 1);
9017 memcpy (s, buf, len);
9018 s[len] = '\0';
9019
9020 return s;
9021 }
9022
9023
9024 static const char *
9025 consume_improper_spaces (const char *p, const char *body)
9026 {
9027 if (*p == ' ')
9028 {
9029 complaint (&symfile_complaints,
9030 _("macro definition contains spaces in formal argument list:\n`%s'"),
9031 body);
9032
9033 while (*p == ' ')
9034 p++;
9035 }
9036
9037 return p;
9038 }
9039
9040
9041 static void
9042 parse_macro_definition (struct macro_source_file *file, int line,
9043 const char *body)
9044 {
9045 const char *p;
9046
9047 /* The body string takes one of two forms. For object-like macro
9048 definitions, it should be:
9049
9050 <macro name> " " <definition>
9051
9052 For function-like macro definitions, it should be:
9053
9054 <macro name> "() " <definition>
9055 or
9056 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9057
9058 Spaces may appear only where explicitly indicated, and in the
9059 <definition>.
9060
9061 The Dwarf 2 spec says that an object-like macro's name is always
9062 followed by a space, but versions of GCC around March 2002 omit
9063 the space when the macro's definition is the empty string.
9064
9065 The Dwarf 2 spec says that there should be no spaces between the
9066 formal arguments in a function-like macro's formal argument list,
9067 but versions of GCC around March 2002 include spaces after the
9068 commas. */
9069
9070
9071 /* Find the extent of the macro name. The macro name is terminated
9072 by either a space or null character (for an object-like macro) or
9073 an opening paren (for a function-like macro). */
9074 for (p = body; *p; p++)
9075 if (*p == ' ' || *p == '(')
9076 break;
9077
9078 if (*p == ' ' || *p == '\0')
9079 {
9080 /* It's an object-like macro. */
9081 int name_len = p - body;
9082 char *name = copy_string (body, name_len);
9083 const char *replacement;
9084
9085 if (*p == ' ')
9086 replacement = body + name_len + 1;
9087 else
9088 {
9089 dwarf2_macro_malformed_definition_complaint (body);
9090 replacement = body + name_len;
9091 }
9092
9093 macro_define_object (file, line, name, replacement);
9094
9095 xfree (name);
9096 }
9097 else if (*p == '(')
9098 {
9099 /* It's a function-like macro. */
9100 char *name = copy_string (body, p - body);
9101 int argc = 0;
9102 int argv_size = 1;
9103 char **argv = xmalloc (argv_size * sizeof (*argv));
9104
9105 p++;
9106
9107 p = consume_improper_spaces (p, body);
9108
9109 /* Parse the formal argument list. */
9110 while (*p && *p != ')')
9111 {
9112 /* Find the extent of the current argument name. */
9113 const char *arg_start = p;
9114
9115 while (*p && *p != ',' && *p != ')' && *p != ' ')
9116 p++;
9117
9118 if (! *p || p == arg_start)
9119 dwarf2_macro_malformed_definition_complaint (body);
9120 else
9121 {
9122 /* Make sure argv has room for the new argument. */
9123 if (argc >= argv_size)
9124 {
9125 argv_size *= 2;
9126 argv = xrealloc (argv, argv_size * sizeof (*argv));
9127 }
9128
9129 argv[argc++] = copy_string (arg_start, p - arg_start);
9130 }
9131
9132 p = consume_improper_spaces (p, body);
9133
9134 /* Consume the comma, if present. */
9135 if (*p == ',')
9136 {
9137 p++;
9138
9139 p = consume_improper_spaces (p, body);
9140 }
9141 }
9142
9143 if (*p == ')')
9144 {
9145 p++;
9146
9147 if (*p == ' ')
9148 /* Perfectly formed definition, no complaints. */
9149 macro_define_function (file, line, name,
9150 argc, (const char **) argv,
9151 p + 1);
9152 else if (*p == '\0')
9153 {
9154 /* Complain, but do define it. */
9155 dwarf2_macro_malformed_definition_complaint (body);
9156 macro_define_function (file, line, name,
9157 argc, (const char **) argv,
9158 p);
9159 }
9160 else
9161 /* Just complain. */
9162 dwarf2_macro_malformed_definition_complaint (body);
9163 }
9164 else
9165 /* Just complain. */
9166 dwarf2_macro_malformed_definition_complaint (body);
9167
9168 xfree (name);
9169 {
9170 int i;
9171
9172 for (i = 0; i < argc; i++)
9173 xfree (argv[i]);
9174 }
9175 xfree (argv);
9176 }
9177 else
9178 dwarf2_macro_malformed_definition_complaint (body);
9179 }
9180
9181
9182 static void
9183 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9184 char *comp_dir, bfd *abfd,
9185 struct dwarf2_cu *cu)
9186 {
9187 gdb_byte *mac_ptr, *mac_end;
9188 struct macro_source_file *current_file = 0;
9189
9190 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9191 {
9192 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9193 return;
9194 }
9195
9196 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9197 mac_end = dwarf2_per_objfile->macinfo_buffer
9198 + dwarf2_per_objfile->macinfo_size;
9199
9200 for (;;)
9201 {
9202 enum dwarf_macinfo_record_type macinfo_type;
9203
9204 /* Do we at least have room for a macinfo type byte? */
9205 if (mac_ptr >= mac_end)
9206 {
9207 dwarf2_macros_too_long_complaint ();
9208 return;
9209 }
9210
9211 macinfo_type = read_1_byte (abfd, mac_ptr);
9212 mac_ptr++;
9213
9214 switch (macinfo_type)
9215 {
9216 /* A zero macinfo type indicates the end of the macro
9217 information. */
9218 case 0:
9219 return;
9220
9221 case DW_MACINFO_define:
9222 case DW_MACINFO_undef:
9223 {
9224 unsigned int bytes_read;
9225 int line;
9226 char *body;
9227
9228 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9229 mac_ptr += bytes_read;
9230 body = read_string (abfd, mac_ptr, &bytes_read);
9231 mac_ptr += bytes_read;
9232
9233 if (! current_file)
9234 complaint (&symfile_complaints,
9235 _("debug info gives macro %s outside of any file: %s"),
9236 macinfo_type ==
9237 DW_MACINFO_define ? "definition" : macinfo_type ==
9238 DW_MACINFO_undef ? "undefinition" :
9239 "something-or-other", body);
9240 else
9241 {
9242 if (macinfo_type == DW_MACINFO_define)
9243 parse_macro_definition (current_file, line, body);
9244 else if (macinfo_type == DW_MACINFO_undef)
9245 macro_undef (current_file, line, body);
9246 }
9247 }
9248 break;
9249
9250 case DW_MACINFO_start_file:
9251 {
9252 unsigned int bytes_read;
9253 int line, file;
9254
9255 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9256 mac_ptr += bytes_read;
9257 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9258 mac_ptr += bytes_read;
9259
9260 current_file = macro_start_file (file, line,
9261 current_file, comp_dir,
9262 lh, cu->objfile);
9263 }
9264 break;
9265
9266 case DW_MACINFO_end_file:
9267 if (! current_file)
9268 complaint (&symfile_complaints,
9269 _("macro debug info has an unmatched `close_file' directive"));
9270 else
9271 {
9272 current_file = current_file->included_by;
9273 if (! current_file)
9274 {
9275 enum dwarf_macinfo_record_type next_type;
9276
9277 /* GCC circa March 2002 doesn't produce the zero
9278 type byte marking the end of the compilation
9279 unit. Complain if it's not there, but exit no
9280 matter what. */
9281
9282 /* Do we at least have room for a macinfo type byte? */
9283 if (mac_ptr >= mac_end)
9284 {
9285 dwarf2_macros_too_long_complaint ();
9286 return;
9287 }
9288
9289 /* We don't increment mac_ptr here, so this is just
9290 a look-ahead. */
9291 next_type = read_1_byte (abfd, mac_ptr);
9292 if (next_type != 0)
9293 complaint (&symfile_complaints,
9294 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9295
9296 return;
9297 }
9298 }
9299 break;
9300
9301 case DW_MACINFO_vendor_ext:
9302 {
9303 unsigned int bytes_read;
9304 int constant;
9305 char *string;
9306
9307 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9308 mac_ptr += bytes_read;
9309 string = read_string (abfd, mac_ptr, &bytes_read);
9310 mac_ptr += bytes_read;
9311
9312 /* We don't recognize any vendor extensions. */
9313 }
9314 break;
9315 }
9316 }
9317 }
9318
9319 /* Check if the attribute's form is a DW_FORM_block*
9320 if so return true else false. */
9321 static int
9322 attr_form_is_block (struct attribute *attr)
9323 {
9324 return (attr == NULL ? 0 :
9325 attr->form == DW_FORM_block1
9326 || attr->form == DW_FORM_block2
9327 || attr->form == DW_FORM_block4
9328 || attr->form == DW_FORM_block);
9329 }
9330
9331 static void
9332 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9333 struct dwarf2_cu *cu)
9334 {
9335 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9336 /* ".debug_loc" may not exist at all, or the offset may be outside
9337 the section. If so, fall through to the complaint in the
9338 other branch. */
9339 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9340 {
9341 struct dwarf2_loclist_baton *baton;
9342
9343 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9344 sizeof (struct dwarf2_loclist_baton));
9345 baton->objfile = cu->objfile;
9346
9347 /* We don't know how long the location list is, but make sure we
9348 don't run off the edge of the section. */
9349 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9350 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9351 baton->base_address = cu->header.base_address;
9352 if (cu->header.base_known == 0)
9353 complaint (&symfile_complaints,
9354 _("Location list used without specifying the CU base address."));
9355
9356 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9357 SYMBOL_LOCATION_BATON (sym) = baton;
9358 }
9359 else
9360 {
9361 struct dwarf2_locexpr_baton *baton;
9362
9363 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9364 sizeof (struct dwarf2_locexpr_baton));
9365 baton->objfile = cu->objfile;
9366
9367 if (attr_form_is_block (attr))
9368 {
9369 /* Note that we're just copying the block's data pointer
9370 here, not the actual data. We're still pointing into the
9371 info_buffer for SYM's objfile; right now we never release
9372 that buffer, but when we do clean up properly this may
9373 need to change. */
9374 baton->size = DW_BLOCK (attr)->size;
9375 baton->data = DW_BLOCK (attr)->data;
9376 }
9377 else
9378 {
9379 dwarf2_invalid_attrib_class_complaint ("location description",
9380 SYMBOL_NATURAL_NAME (sym));
9381 baton->size = 0;
9382 baton->data = NULL;
9383 }
9384
9385 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9386 SYMBOL_LOCATION_BATON (sym) = baton;
9387 }
9388 }
9389
9390 /* Locate the compilation unit from CU's objfile which contains the
9391 DIE at OFFSET. Raises an error on failure. */
9392
9393 static struct dwarf2_per_cu_data *
9394 dwarf2_find_containing_comp_unit (unsigned long offset,
9395 struct objfile *objfile)
9396 {
9397 struct dwarf2_per_cu_data *this_cu;
9398 int low, high;
9399
9400 low = 0;
9401 high = dwarf2_per_objfile->n_comp_units - 1;
9402 while (high > low)
9403 {
9404 int mid = low + (high - low) / 2;
9405 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9406 high = mid;
9407 else
9408 low = mid + 1;
9409 }
9410 gdb_assert (low == high);
9411 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9412 {
9413 if (low == 0)
9414 error (_("Dwarf Error: could not find partial DIE containing "
9415 "offset 0x%lx [in module %s]"),
9416 (long) offset, bfd_get_filename (objfile->obfd));
9417
9418 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9419 return dwarf2_per_objfile->all_comp_units[low-1];
9420 }
9421 else
9422 {
9423 this_cu = dwarf2_per_objfile->all_comp_units[low];
9424 if (low == dwarf2_per_objfile->n_comp_units - 1
9425 && offset >= this_cu->offset + this_cu->length)
9426 error (_("invalid dwarf2 offset %ld"), offset);
9427 gdb_assert (offset < this_cu->offset + this_cu->length);
9428 return this_cu;
9429 }
9430 }
9431
9432 /* Locate the compilation unit from OBJFILE which is located at exactly
9433 OFFSET. Raises an error on failure. */
9434
9435 static struct dwarf2_per_cu_data *
9436 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9437 {
9438 struct dwarf2_per_cu_data *this_cu;
9439 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9440 if (this_cu->offset != offset)
9441 error (_("no compilation unit with offset %ld."), offset);
9442 return this_cu;
9443 }
9444
9445 /* Release one cached compilation unit, CU. We unlink it from the tree
9446 of compilation units, but we don't remove it from the read_in_chain;
9447 the caller is responsible for that. */
9448
9449 static void
9450 free_one_comp_unit (void *data)
9451 {
9452 struct dwarf2_cu *cu = data;
9453
9454 if (cu->per_cu != NULL)
9455 cu->per_cu->cu = NULL;
9456 cu->per_cu = NULL;
9457
9458 obstack_free (&cu->comp_unit_obstack, NULL);
9459 if (cu->dies)
9460 free_die_list (cu->dies);
9461
9462 xfree (cu);
9463 }
9464
9465 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9466 when we're finished with it. We can't free the pointer itself, but be
9467 sure to unlink it from the cache. Also release any associated storage
9468 and perform cache maintenance.
9469
9470 Only used during partial symbol parsing. */
9471
9472 static void
9473 free_stack_comp_unit (void *data)
9474 {
9475 struct dwarf2_cu *cu = data;
9476
9477 obstack_free (&cu->comp_unit_obstack, NULL);
9478 cu->partial_dies = NULL;
9479
9480 if (cu->per_cu != NULL)
9481 {
9482 /* This compilation unit is on the stack in our caller, so we
9483 should not xfree it. Just unlink it. */
9484 cu->per_cu->cu = NULL;
9485 cu->per_cu = NULL;
9486
9487 /* If we had a per-cu pointer, then we may have other compilation
9488 units loaded, so age them now. */
9489 age_cached_comp_units ();
9490 }
9491 }
9492
9493 /* Free all cached compilation units. */
9494
9495 static void
9496 free_cached_comp_units (void *data)
9497 {
9498 struct dwarf2_per_cu_data *per_cu, **last_chain;
9499
9500 per_cu = dwarf2_per_objfile->read_in_chain;
9501 last_chain = &dwarf2_per_objfile->read_in_chain;
9502 while (per_cu != NULL)
9503 {
9504 struct dwarf2_per_cu_data *next_cu;
9505
9506 next_cu = per_cu->cu->read_in_chain;
9507
9508 free_one_comp_unit (per_cu->cu);
9509 *last_chain = next_cu;
9510
9511 per_cu = next_cu;
9512 }
9513 }
9514
9515 /* Increase the age counter on each cached compilation unit, and free
9516 any that are too old. */
9517
9518 static void
9519 age_cached_comp_units (void)
9520 {
9521 struct dwarf2_per_cu_data *per_cu, **last_chain;
9522
9523 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9524 per_cu = dwarf2_per_objfile->read_in_chain;
9525 while (per_cu != NULL)
9526 {
9527 per_cu->cu->last_used ++;
9528 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9529 dwarf2_mark (per_cu->cu);
9530 per_cu = per_cu->cu->read_in_chain;
9531 }
9532
9533 per_cu = dwarf2_per_objfile->read_in_chain;
9534 last_chain = &dwarf2_per_objfile->read_in_chain;
9535 while (per_cu != NULL)
9536 {
9537 struct dwarf2_per_cu_data *next_cu;
9538
9539 next_cu = per_cu->cu->read_in_chain;
9540
9541 if (!per_cu->cu->mark)
9542 {
9543 free_one_comp_unit (per_cu->cu);
9544 *last_chain = next_cu;
9545 }
9546 else
9547 last_chain = &per_cu->cu->read_in_chain;
9548
9549 per_cu = next_cu;
9550 }
9551 }
9552
9553 /* Remove a single compilation unit from the cache. */
9554
9555 static void
9556 free_one_cached_comp_unit (void *target_cu)
9557 {
9558 struct dwarf2_per_cu_data *per_cu, **last_chain;
9559
9560 per_cu = dwarf2_per_objfile->read_in_chain;
9561 last_chain = &dwarf2_per_objfile->read_in_chain;
9562 while (per_cu != NULL)
9563 {
9564 struct dwarf2_per_cu_data *next_cu;
9565
9566 next_cu = per_cu->cu->read_in_chain;
9567
9568 if (per_cu->cu == target_cu)
9569 {
9570 free_one_comp_unit (per_cu->cu);
9571 *last_chain = next_cu;
9572 break;
9573 }
9574 else
9575 last_chain = &per_cu->cu->read_in_chain;
9576
9577 per_cu = next_cu;
9578 }
9579 }
9580
9581 /* A pair of DIE offset and GDB type pointer. We store these
9582 in a hash table separate from the DIEs, and preserve them
9583 when the DIEs are flushed out of cache. */
9584
9585 struct dwarf2_offset_and_type
9586 {
9587 unsigned int offset;
9588 struct type *type;
9589 };
9590
9591 /* Hash function for a dwarf2_offset_and_type. */
9592
9593 static hashval_t
9594 offset_and_type_hash (const void *item)
9595 {
9596 const struct dwarf2_offset_and_type *ofs = item;
9597 return ofs->offset;
9598 }
9599
9600 /* Equality function for a dwarf2_offset_and_type. */
9601
9602 static int
9603 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9604 {
9605 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9606 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9607 return ofs_lhs->offset == ofs_rhs->offset;
9608 }
9609
9610 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9611 table if necessary. */
9612
9613 static void
9614 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9615 {
9616 struct dwarf2_offset_and_type **slot, ofs;
9617
9618 die->type = type;
9619
9620 if (cu->per_cu == NULL)
9621 return;
9622
9623 if (cu->per_cu->type_hash == NULL)
9624 cu->per_cu->type_hash
9625 = htab_create_alloc_ex (cu->header.length / 24,
9626 offset_and_type_hash,
9627 offset_and_type_eq,
9628 NULL,
9629 &cu->objfile->objfile_obstack,
9630 hashtab_obstack_allocate,
9631 dummy_obstack_deallocate);
9632
9633 ofs.offset = die->offset;
9634 ofs.type = type;
9635 slot = (struct dwarf2_offset_and_type **)
9636 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9637 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9638 **slot = ofs;
9639 }
9640
9641 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9642 have a saved type. */
9643
9644 static struct type *
9645 get_die_type (struct die_info *die, htab_t type_hash)
9646 {
9647 struct dwarf2_offset_and_type *slot, ofs;
9648
9649 ofs.offset = die->offset;
9650 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9651 if (slot)
9652 return slot->type;
9653 else
9654 return NULL;
9655 }
9656
9657 /* Restore the types of the DIE tree starting at START_DIE from the hash
9658 table saved in CU. */
9659
9660 static void
9661 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9662 {
9663 struct die_info *die;
9664
9665 if (cu->per_cu->type_hash == NULL)
9666 return;
9667
9668 for (die = start_die; die != NULL; die = die->sibling)
9669 {
9670 die->type = get_die_type (die, cu->per_cu->type_hash);
9671 if (die->child != NULL)
9672 reset_die_and_siblings_types (die->child, cu);
9673 }
9674 }
9675
9676 /* Set the mark field in CU and in every other compilation unit in the
9677 cache that we must keep because we are keeping CU. */
9678
9679 /* Add a dependence relationship from CU to REF_PER_CU. */
9680
9681 static void
9682 dwarf2_add_dependence (struct dwarf2_cu *cu,
9683 struct dwarf2_per_cu_data *ref_per_cu)
9684 {
9685 void **slot;
9686
9687 if (cu->dependencies == NULL)
9688 cu->dependencies
9689 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9690 NULL, &cu->comp_unit_obstack,
9691 hashtab_obstack_allocate,
9692 dummy_obstack_deallocate);
9693
9694 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9695 if (*slot == NULL)
9696 *slot = ref_per_cu;
9697 }
9698
9699 /* Set the mark field in CU and in every other compilation unit in the
9700 cache that we must keep because we are keeping CU. */
9701
9702 static int
9703 dwarf2_mark_helper (void **slot, void *data)
9704 {
9705 struct dwarf2_per_cu_data *per_cu;
9706
9707 per_cu = (struct dwarf2_per_cu_data *) *slot;
9708 if (per_cu->cu->mark)
9709 return 1;
9710 per_cu->cu->mark = 1;
9711
9712 if (per_cu->cu->dependencies != NULL)
9713 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9714
9715 return 1;
9716 }
9717
9718 static void
9719 dwarf2_mark (struct dwarf2_cu *cu)
9720 {
9721 if (cu->mark)
9722 return;
9723 cu->mark = 1;
9724 if (cu->dependencies != NULL)
9725 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9726 }
9727
9728 static void
9729 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9730 {
9731 while (per_cu)
9732 {
9733 per_cu->cu->mark = 0;
9734 per_cu = per_cu->cu->read_in_chain;
9735 }
9736 }
9737
9738 /* Trivial hash function for partial_die_info: the hash value of a DIE
9739 is its offset in .debug_info for this objfile. */
9740
9741 static hashval_t
9742 partial_die_hash (const void *item)
9743 {
9744 const struct partial_die_info *part_die = item;
9745 return part_die->offset;
9746 }
9747
9748 /* Trivial comparison function for partial_die_info structures: two DIEs
9749 are equal if they have the same offset. */
9750
9751 static int
9752 partial_die_eq (const void *item_lhs, const void *item_rhs)
9753 {
9754 const struct partial_die_info *part_die_lhs = item_lhs;
9755 const struct partial_die_info *part_die_rhs = item_rhs;
9756 return part_die_lhs->offset == part_die_rhs->offset;
9757 }
9758
9759 static struct cmd_list_element *set_dwarf2_cmdlist;
9760 static struct cmd_list_element *show_dwarf2_cmdlist;
9761
9762 static void
9763 set_dwarf2_cmd (char *args, int from_tty)
9764 {
9765 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9766 }
9767
9768 static void
9769 show_dwarf2_cmd (char *args, int from_tty)
9770 {
9771 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9772 }
9773
9774 void _initialize_dwarf2_read (void);
9775
9776 void
9777 _initialize_dwarf2_read (void)
9778 {
9779 dwarf2_objfile_data_key = register_objfile_data ();
9780
9781 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9782 Set DWARF 2 specific variables.\n\
9783 Configure DWARF 2 variables such as the cache size"),
9784 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9785 0/*allow-unknown*/, &maintenance_set_cmdlist);
9786
9787 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9788 Show DWARF 2 specific variables\n\
9789 Show DWARF 2 variables such as the cache size"),
9790 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9791 0/*allow-unknown*/, &maintenance_show_cmdlist);
9792
9793 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9794 &dwarf2_max_cache_age, _("\
9795 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9796 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9797 A higher limit means that cached compilation units will be stored\n\
9798 in memory longer, and more total memory will be used. Zero disables\n\
9799 caching, which can slow down startup."),
9800 NULL,
9801 show_dwarf2_max_cache_age,
9802 &set_dwarf2_cmdlist,
9803 &show_dwarf2_cmdlist);
9804 }
This page took 0.239356 seconds and 4 git commands to generate.