Fix buffer overrun found by Coverity
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 unsigned int producer_is_icc_lt_14 : 1;
555 bool producer_is_codewarrior : 1;
556
557 /* When set, the file that we're processing is known to have
558 debugging info for C++ namespaces. GCC 3.3.x did not produce
559 this information, but later versions do. */
560
561 unsigned int processing_has_namespace_info : 1;
562
563 struct partial_die_info *find_partial_die (sect_offset sect_off);
564 };
565
566 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
567 This includes type_unit_group and quick_file_names. */
568
569 struct stmt_list_hash
570 {
571 /* The DWO unit this table is from or NULL if there is none. */
572 struct dwo_unit *dwo_unit;
573
574 /* Offset in .debug_line or .debug_line.dwo. */
575 sect_offset line_sect_off;
576 };
577
578 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
579 an object of this type. */
580
581 struct type_unit_group
582 {
583 /* dwarf2read.c's main "handle" on a TU symtab.
584 To simplify things we create an artificial CU that "includes" all the
585 type units using this stmt_list so that the rest of the code still has
586 a "per_cu" handle on the symtab.
587 This PER_CU is recognized by having no section. */
588 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
589 struct dwarf2_per_cu_data per_cu;
590
591 /* The TUs that share this DW_AT_stmt_list entry.
592 This is added to while parsing type units to build partial symtabs,
593 and is deleted afterwards and not used again. */
594 VEC (sig_type_ptr) *tus;
595
596 /* The compunit symtab.
597 Type units in a group needn't all be defined in the same source file,
598 so we create an essentially anonymous symtab as the compunit symtab. */
599 struct compunit_symtab *compunit_symtab;
600
601 /* The data used to construct the hash key. */
602 struct stmt_list_hash hash;
603
604 /* The number of symtabs from the line header.
605 The value here must match line_header.num_file_names. */
606 unsigned int num_symtabs;
607
608 /* The symbol tables for this TU (obtained from the files listed in
609 DW_AT_stmt_list).
610 WARNING: The order of entries here must match the order of entries
611 in the line header. After the first TU using this type_unit_group, the
612 line header for the subsequent TUs is recreated from this. This is done
613 because we need to use the same symtabs for each TU using the same
614 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
615 there's no guarantee the line header doesn't have duplicate entries. */
616 struct symtab **symtabs;
617 };
618
619 /* These sections are what may appear in a (real or virtual) DWO file. */
620
621 struct dwo_sections
622 {
623 struct dwarf2_section_info abbrev;
624 struct dwarf2_section_info line;
625 struct dwarf2_section_info loc;
626 struct dwarf2_section_info loclists;
627 struct dwarf2_section_info macinfo;
628 struct dwarf2_section_info macro;
629 struct dwarf2_section_info str;
630 struct dwarf2_section_info str_offsets;
631 /* In the case of a virtual DWO file, these two are unused. */
632 struct dwarf2_section_info info;
633 VEC (dwarf2_section_info_def) *types;
634 };
635
636 /* CUs/TUs in DWP/DWO files. */
637
638 struct dwo_unit
639 {
640 /* Backlink to the containing struct dwo_file. */
641 struct dwo_file *dwo_file;
642
643 /* The "id" that distinguishes this CU/TU.
644 .debug_info calls this "dwo_id", .debug_types calls this "signature".
645 Since signatures came first, we stick with it for consistency. */
646 ULONGEST signature;
647
648 /* The section this CU/TU lives in, in the DWO file. */
649 struct dwarf2_section_info *section;
650
651 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
652 sect_offset sect_off;
653 unsigned int length;
654
655 /* For types, offset in the type's DIE of the type defined by this TU. */
656 cu_offset type_offset_in_tu;
657 };
658
659 /* include/dwarf2.h defines the DWP section codes.
660 It defines a max value but it doesn't define a min value, which we
661 use for error checking, so provide one. */
662
663 enum dwp_v2_section_ids
664 {
665 DW_SECT_MIN = 1
666 };
667
668 /* Data for one DWO file.
669
670 This includes virtual DWO files (a virtual DWO file is a DWO file as it
671 appears in a DWP file). DWP files don't really have DWO files per se -
672 comdat folding of types "loses" the DWO file they came from, and from
673 a high level view DWP files appear to contain a mass of random types.
674 However, to maintain consistency with the non-DWP case we pretend DWP
675 files contain virtual DWO files, and we assign each TU with one virtual
676 DWO file (generally based on the line and abbrev section offsets -
677 a heuristic that seems to work in practice). */
678
679 struct dwo_file
680 {
681 /* The DW_AT_GNU_dwo_name attribute.
682 For virtual DWO files the name is constructed from the section offsets
683 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
684 from related CU+TUs. */
685 const char *dwo_name;
686
687 /* The DW_AT_comp_dir attribute. */
688 const char *comp_dir;
689
690 /* The bfd, when the file is open. Otherwise this is NULL.
691 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
692 bfd *dbfd;
693
694 /* The sections that make up this DWO file.
695 Remember that for virtual DWO files in DWP V2, these are virtual
696 sections (for lack of a better name). */
697 struct dwo_sections sections;
698
699 /* The CUs in the file.
700 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
701 an extension to handle LLVM's Link Time Optimization output (where
702 multiple source files may be compiled into a single object/dwo pair). */
703 htab_t cus;
704
705 /* Table of TUs in the file.
706 Each element is a struct dwo_unit. */
707 htab_t tus;
708 };
709
710 /* These sections are what may appear in a DWP file. */
711
712 struct dwp_sections
713 {
714 /* These are used by both DWP version 1 and 2. */
715 struct dwarf2_section_info str;
716 struct dwarf2_section_info cu_index;
717 struct dwarf2_section_info tu_index;
718
719 /* These are only used by DWP version 2 files.
720 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
721 sections are referenced by section number, and are not recorded here.
722 In DWP version 2 there is at most one copy of all these sections, each
723 section being (effectively) comprised of the concatenation of all of the
724 individual sections that exist in the version 1 format.
725 To keep the code simple we treat each of these concatenated pieces as a
726 section itself (a virtual section?). */
727 struct dwarf2_section_info abbrev;
728 struct dwarf2_section_info info;
729 struct dwarf2_section_info line;
730 struct dwarf2_section_info loc;
731 struct dwarf2_section_info macinfo;
732 struct dwarf2_section_info macro;
733 struct dwarf2_section_info str_offsets;
734 struct dwarf2_section_info types;
735 };
736
737 /* These sections are what may appear in a virtual DWO file in DWP version 1.
738 A virtual DWO file is a DWO file as it appears in a DWP file. */
739
740 struct virtual_v1_dwo_sections
741 {
742 struct dwarf2_section_info abbrev;
743 struct dwarf2_section_info line;
744 struct dwarf2_section_info loc;
745 struct dwarf2_section_info macinfo;
746 struct dwarf2_section_info macro;
747 struct dwarf2_section_info str_offsets;
748 /* Each DWP hash table entry records one CU or one TU.
749 That is recorded here, and copied to dwo_unit.section. */
750 struct dwarf2_section_info info_or_types;
751 };
752
753 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
754 In version 2, the sections of the DWO files are concatenated together
755 and stored in one section of that name. Thus each ELF section contains
756 several "virtual" sections. */
757
758 struct virtual_v2_dwo_sections
759 {
760 bfd_size_type abbrev_offset;
761 bfd_size_type abbrev_size;
762
763 bfd_size_type line_offset;
764 bfd_size_type line_size;
765
766 bfd_size_type loc_offset;
767 bfd_size_type loc_size;
768
769 bfd_size_type macinfo_offset;
770 bfd_size_type macinfo_size;
771
772 bfd_size_type macro_offset;
773 bfd_size_type macro_size;
774
775 bfd_size_type str_offsets_offset;
776 bfd_size_type str_offsets_size;
777
778 /* Each DWP hash table entry records one CU or one TU.
779 That is recorded here, and copied to dwo_unit.section. */
780 bfd_size_type info_or_types_offset;
781 bfd_size_type info_or_types_size;
782 };
783
784 /* Contents of DWP hash tables. */
785
786 struct dwp_hash_table
787 {
788 uint32_t version, nr_columns;
789 uint32_t nr_units, nr_slots;
790 const gdb_byte *hash_table, *unit_table;
791 union
792 {
793 struct
794 {
795 const gdb_byte *indices;
796 } v1;
797 struct
798 {
799 /* This is indexed by column number and gives the id of the section
800 in that column. */
801 #define MAX_NR_V2_DWO_SECTIONS \
802 (1 /* .debug_info or .debug_types */ \
803 + 1 /* .debug_abbrev */ \
804 + 1 /* .debug_line */ \
805 + 1 /* .debug_loc */ \
806 + 1 /* .debug_str_offsets */ \
807 + 1 /* .debug_macro or .debug_macinfo */)
808 int section_ids[MAX_NR_V2_DWO_SECTIONS];
809 const gdb_byte *offsets;
810 const gdb_byte *sizes;
811 } v2;
812 } section_pool;
813 };
814
815 /* Data for one DWP file. */
816
817 struct dwp_file
818 {
819 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
820 : name (name_),
821 dbfd (std::move (abfd))
822 {
823 }
824
825 /* Name of the file. */
826 const char *name;
827
828 /* File format version. */
829 int version = 0;
830
831 /* The bfd. */
832 gdb_bfd_ref_ptr dbfd;
833
834 /* Section info for this file. */
835 struct dwp_sections sections {};
836
837 /* Table of CUs in the file. */
838 const struct dwp_hash_table *cus = nullptr;
839
840 /* Table of TUs in the file. */
841 const struct dwp_hash_table *tus = nullptr;
842
843 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
844 htab_t loaded_cus {};
845 htab_t loaded_tus {};
846
847 /* Table to map ELF section numbers to their sections.
848 This is only needed for the DWP V1 file format. */
849 unsigned int num_sections = 0;
850 asection **elf_sections = nullptr;
851 };
852
853 /* This represents a '.dwz' file. */
854
855 struct dwz_file
856 {
857 dwz_file (gdb_bfd_ref_ptr &&bfd)
858 : dwz_bfd (std::move (bfd))
859 {
860 }
861
862 /* A dwz file can only contain a few sections. */
863 struct dwarf2_section_info abbrev {};
864 struct dwarf2_section_info info {};
865 struct dwarf2_section_info str {};
866 struct dwarf2_section_info line {};
867 struct dwarf2_section_info macro {};
868 struct dwarf2_section_info gdb_index {};
869 struct dwarf2_section_info debug_names {};
870
871 /* The dwz's BFD. */
872 gdb_bfd_ref_ptr dwz_bfd;
873
874 /* If we loaded the index from an external file, this contains the
875 resources associated to the open file, memory mapping, etc. */
876 std::unique_ptr<index_cache_resource> index_cache_res;
877 };
878
879 /* Struct used to pass misc. parameters to read_die_and_children, et
880 al. which are used for both .debug_info and .debug_types dies.
881 All parameters here are unchanging for the life of the call. This
882 struct exists to abstract away the constant parameters of die reading. */
883
884 struct die_reader_specs
885 {
886 /* The bfd of die_section. */
887 bfd* abfd;
888
889 /* The CU of the DIE we are parsing. */
890 struct dwarf2_cu *cu;
891
892 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
893 struct dwo_file *dwo_file;
894
895 /* The section the die comes from.
896 This is either .debug_info or .debug_types, or the .dwo variants. */
897 struct dwarf2_section_info *die_section;
898
899 /* die_section->buffer. */
900 const gdb_byte *buffer;
901
902 /* The end of the buffer. */
903 const gdb_byte *buffer_end;
904
905 /* The value of the DW_AT_comp_dir attribute. */
906 const char *comp_dir;
907
908 /* The abbreviation table to use when reading the DIEs. */
909 struct abbrev_table *abbrev_table;
910 };
911
912 /* Type of function passed to init_cutu_and_read_dies, et.al. */
913 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
914 const gdb_byte *info_ptr,
915 struct die_info *comp_unit_die,
916 int has_children,
917 void *data);
918
919 /* A 1-based directory index. This is a strong typedef to prevent
920 accidentally using a directory index as a 0-based index into an
921 array/vector. */
922 enum class dir_index : unsigned int {};
923
924 /* Likewise, a 1-based file name index. */
925 enum class file_name_index : unsigned int {};
926
927 struct file_entry
928 {
929 file_entry () = default;
930
931 file_entry (const char *name_, dir_index d_index_,
932 unsigned int mod_time_, unsigned int length_)
933 : name (name_),
934 d_index (d_index_),
935 mod_time (mod_time_),
936 length (length_)
937 {}
938
939 /* Return the include directory at D_INDEX stored in LH. Returns
940 NULL if D_INDEX is out of bounds. */
941 const char *include_dir (const line_header *lh) const;
942
943 /* The file name. Note this is an observing pointer. The memory is
944 owned by debug_line_buffer. */
945 const char *name {};
946
947 /* The directory index (1-based). */
948 dir_index d_index {};
949
950 unsigned int mod_time {};
951
952 unsigned int length {};
953
954 /* True if referenced by the Line Number Program. */
955 bool included_p {};
956
957 /* The associated symbol table, if any. */
958 struct symtab *symtab {};
959 };
960
961 /* The line number information for a compilation unit (found in the
962 .debug_line section) begins with a "statement program header",
963 which contains the following information. */
964 struct line_header
965 {
966 line_header ()
967 : offset_in_dwz {}
968 {}
969
970 /* Add an entry to the include directory table. */
971 void add_include_dir (const char *include_dir);
972
973 /* Add an entry to the file name table. */
974 void add_file_name (const char *name, dir_index d_index,
975 unsigned int mod_time, unsigned int length);
976
977 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
978 is out of bounds. */
979 const char *include_dir_at (dir_index index) const
980 {
981 /* Convert directory index number (1-based) to vector index
982 (0-based). */
983 size_t vec_index = to_underlying (index) - 1;
984
985 if (vec_index >= include_dirs.size ())
986 return NULL;
987 return include_dirs[vec_index];
988 }
989
990 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
991 is out of bounds. */
992 file_entry *file_name_at (file_name_index index)
993 {
994 /* Convert file name index number (1-based) to vector index
995 (0-based). */
996 size_t vec_index = to_underlying (index) - 1;
997
998 if (vec_index >= file_names.size ())
999 return NULL;
1000 return &file_names[vec_index];
1001 }
1002
1003 /* Const version of the above. */
1004 const file_entry *file_name_at (unsigned int index) const
1005 {
1006 if (index >= file_names.size ())
1007 return NULL;
1008 return &file_names[index];
1009 }
1010
1011 /* Offset of line number information in .debug_line section. */
1012 sect_offset sect_off {};
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032
1033 /* The include_directories table. Note these are observing
1034 pointers. The memory is owned by debug_line_buffer. */
1035 std::vector<const char *> include_dirs;
1036
1037 /* The file_names table. */
1038 std::vector<file_entry> file_names;
1039
1040 /* The start and end of the statement program following this
1041 header. These point into dwarf2_per_objfile->line_buffer. */
1042 const gdb_byte *statement_program_start {}, *statement_program_end {};
1043 };
1044
1045 typedef std::unique_ptr<line_header> line_header_up;
1046
1047 const char *
1048 file_entry::include_dir (const line_header *lh) const
1049 {
1050 return lh->include_dir_at (d_index);
1051 }
1052
1053 /* When we construct a partial symbol table entry we only
1054 need this much information. */
1055 struct partial_die_info : public allocate_on_obstack
1056 {
1057 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1058
1059 /* Disable assign but still keep copy ctor, which is needed
1060 load_partial_dies. */
1061 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1062
1063 /* Adjust the partial die before generating a symbol for it. This
1064 function may set the is_external flag or change the DIE's
1065 name. */
1066 void fixup (struct dwarf2_cu *cu);
1067
1068 /* Read a minimal amount of information into the minimal die
1069 structure. */
1070 const gdb_byte *read (const struct die_reader_specs *reader,
1071 const struct abbrev_info &abbrev,
1072 const gdb_byte *info_ptr);
1073
1074 /* Offset of this DIE. */
1075 const sect_offset sect_off;
1076
1077 /* DWARF-2 tag for this DIE. */
1078 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1079
1080 /* Assorted flags describing the data found in this DIE. */
1081 const unsigned int has_children : 1;
1082
1083 unsigned int is_external : 1;
1084 unsigned int is_declaration : 1;
1085 unsigned int has_type : 1;
1086 unsigned int has_specification : 1;
1087 unsigned int has_pc_info : 1;
1088 unsigned int may_be_inlined : 1;
1089
1090 /* This DIE has been marked DW_AT_main_subprogram. */
1091 unsigned int main_subprogram : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1101 unsigned int has_const_value : 1;
1102
1103 /* Flag set if any of the DIE's children are template arguments. */
1104 unsigned int has_template_arguments : 1;
1105
1106 /* Flag set if fixup has been called on this die. */
1107 unsigned int fixup_called : 1;
1108
1109 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1110 unsigned int is_dwz : 1;
1111
1112 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1113 unsigned int spec_is_dwz : 1;
1114
1115 /* The name of this DIE. Normally the value of DW_AT_name, but
1116 sometimes a default name for unnamed DIEs. */
1117 const char *name = nullptr;
1118
1119 /* The linkage name, if present. */
1120 const char *linkage_name = nullptr;
1121
1122 /* The scope to prepend to our children. This is generally
1123 allocated on the comp_unit_obstack, so will disappear
1124 when this compilation unit leaves the cache. */
1125 const char *scope = nullptr;
1126
1127 /* Some data associated with the partial DIE. The tag determines
1128 which field is live. */
1129 union
1130 {
1131 /* The location description associated with this DIE, if any. */
1132 struct dwarf_block *locdesc;
1133 /* The offset of an import, for DW_TAG_imported_unit. */
1134 sect_offset sect_off;
1135 } d {};
1136
1137 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1138 CORE_ADDR lowpc = 0;
1139 CORE_ADDR highpc = 0;
1140
1141 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1142 DW_AT_sibling, if any. */
1143 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1144 could return DW_AT_sibling values to its caller load_partial_dies. */
1145 const gdb_byte *sibling = nullptr;
1146
1147 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1148 DW_AT_specification (or DW_AT_abstract_origin or
1149 DW_AT_extension). */
1150 sect_offset spec_offset {};
1151
1152 /* Pointers to this DIE's parent, first child, and next sibling,
1153 if any. */
1154 struct partial_die_info *die_parent = nullptr;
1155 struct partial_die_info *die_child = nullptr;
1156 struct partial_die_info *die_sibling = nullptr;
1157
1158 friend struct partial_die_info *
1159 dwarf2_cu::find_partial_die (sect_offset sect_off);
1160
1161 private:
1162 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1163 partial_die_info (sect_offset sect_off)
1164 : partial_die_info (sect_off, DW_TAG_padding, 0)
1165 {
1166 }
1167
1168 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1169 int has_children_)
1170 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1171 {
1172 is_external = 0;
1173 is_declaration = 0;
1174 has_type = 0;
1175 has_specification = 0;
1176 has_pc_info = 0;
1177 may_be_inlined = 0;
1178 main_subprogram = 0;
1179 scope_set = 0;
1180 has_byte_size = 0;
1181 has_const_value = 0;
1182 has_template_arguments = 0;
1183 fixup_called = 0;
1184 is_dwz = 0;
1185 spec_is_dwz = 0;
1186 }
1187 };
1188
1189 /* This data structure holds the information of an abbrev. */
1190 struct abbrev_info
1191 {
1192 unsigned int number; /* number identifying abbrev */
1193 enum dwarf_tag tag; /* dwarf tag */
1194 unsigned short has_children; /* boolean */
1195 unsigned short num_attrs; /* number of attributes */
1196 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1197 struct abbrev_info *next; /* next in chain */
1198 };
1199
1200 struct attr_abbrev
1201 {
1202 ENUM_BITFIELD(dwarf_attribute) name : 16;
1203 ENUM_BITFIELD(dwarf_form) form : 16;
1204
1205 /* It is valid only if FORM is DW_FORM_implicit_const. */
1206 LONGEST implicit_const;
1207 };
1208
1209 /* Size of abbrev_table.abbrev_hash_table. */
1210 #define ABBREV_HASH_SIZE 121
1211
1212 /* Top level data structure to contain an abbreviation table. */
1213
1214 struct abbrev_table
1215 {
1216 explicit abbrev_table (sect_offset off)
1217 : sect_off (off)
1218 {
1219 m_abbrevs =
1220 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1221 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1222 }
1223
1224 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1225
1226 /* Allocate space for a struct abbrev_info object in
1227 ABBREV_TABLE. */
1228 struct abbrev_info *alloc_abbrev ();
1229
1230 /* Add an abbreviation to the table. */
1231 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1232
1233 /* Look up an abbrev in the table.
1234 Returns NULL if the abbrev is not found. */
1235
1236 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1237
1238
1239 /* Where the abbrev table came from.
1240 This is used as a sanity check when the table is used. */
1241 const sect_offset sect_off;
1242
1243 /* Storage for the abbrev table. */
1244 auto_obstack abbrev_obstack;
1245
1246 private:
1247
1248 /* Hash table of abbrevs.
1249 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1250 It could be statically allocated, but the previous code didn't so we
1251 don't either. */
1252 struct abbrev_info **m_abbrevs;
1253 };
1254
1255 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1256
1257 /* Attributes have a name and a value. */
1258 struct attribute
1259 {
1260 ENUM_BITFIELD(dwarf_attribute) name : 16;
1261 ENUM_BITFIELD(dwarf_form) form : 15;
1262
1263 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1264 field should be in u.str (existing only for DW_STRING) but it is kept
1265 here for better struct attribute alignment. */
1266 unsigned int string_is_canonical : 1;
1267
1268 union
1269 {
1270 const char *str;
1271 struct dwarf_block *blk;
1272 ULONGEST unsnd;
1273 LONGEST snd;
1274 CORE_ADDR addr;
1275 ULONGEST signature;
1276 }
1277 u;
1278 };
1279
1280 /* This data structure holds a complete die structure. */
1281 struct die_info
1282 {
1283 /* DWARF-2 tag for this DIE. */
1284 ENUM_BITFIELD(dwarf_tag) tag : 16;
1285
1286 /* Number of attributes */
1287 unsigned char num_attrs;
1288
1289 /* True if we're presently building the full type name for the
1290 type derived from this DIE. */
1291 unsigned char building_fullname : 1;
1292
1293 /* True if this die is in process. PR 16581. */
1294 unsigned char in_process : 1;
1295
1296 /* Abbrev number */
1297 unsigned int abbrev;
1298
1299 /* Offset in .debug_info or .debug_types section. */
1300 sect_offset sect_off;
1301
1302 /* The dies in a compilation unit form an n-ary tree. PARENT
1303 points to this die's parent; CHILD points to the first child of
1304 this node; and all the children of a given node are chained
1305 together via their SIBLING fields. */
1306 struct die_info *child; /* Its first child, if any. */
1307 struct die_info *sibling; /* Its next sibling, if any. */
1308 struct die_info *parent; /* Its parent, if any. */
1309
1310 /* An array of attributes, with NUM_ATTRS elements. There may be
1311 zero, but it's not common and zero-sized arrays are not
1312 sufficiently portable C. */
1313 struct attribute attrs[1];
1314 };
1315
1316 /* Get at parts of an attribute structure. */
1317
1318 #define DW_STRING(attr) ((attr)->u.str)
1319 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1320 #define DW_UNSND(attr) ((attr)->u.unsnd)
1321 #define DW_BLOCK(attr) ((attr)->u.blk)
1322 #define DW_SND(attr) ((attr)->u.snd)
1323 #define DW_ADDR(attr) ((attr)->u.addr)
1324 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1325
1326 /* Blocks are a bunch of untyped bytes. */
1327 struct dwarf_block
1328 {
1329 size_t size;
1330
1331 /* Valid only if SIZE is not zero. */
1332 const gdb_byte *data;
1333 };
1334
1335 #ifndef ATTR_ALLOC_CHUNK
1336 #define ATTR_ALLOC_CHUNK 4
1337 #endif
1338
1339 /* Allocate fields for structs, unions and enums in this size. */
1340 #ifndef DW_FIELD_ALLOC_CHUNK
1341 #define DW_FIELD_ALLOC_CHUNK 4
1342 #endif
1343
1344 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1345 but this would require a corresponding change in unpack_field_as_long
1346 and friends. */
1347 static int bits_per_byte = 8;
1348
1349 /* When reading a variant or variant part, we track a bit more
1350 information about the field, and store it in an object of this
1351 type. */
1352
1353 struct variant_field
1354 {
1355 /* If we see a DW_TAG_variant, then this will be the discriminant
1356 value. */
1357 ULONGEST discriminant_value;
1358 /* If we see a DW_TAG_variant, then this will be set if this is the
1359 default branch. */
1360 bool default_branch;
1361 /* While reading a DW_TAG_variant_part, this will be set if this
1362 field is the discriminant. */
1363 bool is_discriminant;
1364 };
1365
1366 struct nextfield
1367 {
1368 int accessibility = 0;
1369 int virtuality = 0;
1370 /* Extra information to describe a variant or variant part. */
1371 struct variant_field variant {};
1372 struct field field {};
1373 };
1374
1375 struct fnfieldlist
1376 {
1377 const char *name = nullptr;
1378 std::vector<struct fn_field> fnfields;
1379 };
1380
1381 /* The routines that read and process dies for a C struct or C++ class
1382 pass lists of data member fields and lists of member function fields
1383 in an instance of a field_info structure, as defined below. */
1384 struct field_info
1385 {
1386 /* List of data member and baseclasses fields. */
1387 std::vector<struct nextfield> fields;
1388 std::vector<struct nextfield> baseclasses;
1389
1390 /* Number of fields (including baseclasses). */
1391 int nfields = 0;
1392
1393 /* Set if the accesibility of one of the fields is not public. */
1394 int non_public_fields = 0;
1395
1396 /* Member function fieldlist array, contains name of possibly overloaded
1397 member function, number of overloaded member functions and a pointer
1398 to the head of the member function field chain. */
1399 std::vector<struct fnfieldlist> fnfieldlists;
1400
1401 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1402 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1403 std::vector<struct decl_field> typedef_field_list;
1404
1405 /* Nested types defined by this class and the number of elements in this
1406 list. */
1407 std::vector<struct decl_field> nested_types_list;
1408 };
1409
1410 /* One item on the queue of compilation units to read in full symbols
1411 for. */
1412 struct dwarf2_queue_item
1413 {
1414 struct dwarf2_per_cu_data *per_cu;
1415 enum language pretend_language;
1416 struct dwarf2_queue_item *next;
1417 };
1418
1419 /* The current queue. */
1420 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1421
1422 /* Loaded secondary compilation units are kept in memory until they
1423 have not been referenced for the processing of this many
1424 compilation units. Set this to zero to disable caching. Cache
1425 sizes of up to at least twenty will improve startup time for
1426 typical inter-CU-reference binaries, at an obvious memory cost. */
1427 static int dwarf_max_cache_age = 5;
1428 static void
1429 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1430 struct cmd_list_element *c, const char *value)
1431 {
1432 fprintf_filtered (file, _("The upper bound on the age of cached "
1433 "DWARF compilation units is %s.\n"),
1434 value);
1435 }
1436 \f
1437 /* local function prototypes */
1438
1439 static const char *get_section_name (const struct dwarf2_section_info *);
1440
1441 static const char *get_section_file_name (const struct dwarf2_section_info *);
1442
1443 static void dwarf2_find_base_address (struct die_info *die,
1444 struct dwarf2_cu *cu);
1445
1446 static struct partial_symtab *create_partial_symtab
1447 (struct dwarf2_per_cu_data *per_cu, const char *name);
1448
1449 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1450 const gdb_byte *info_ptr,
1451 struct die_info *type_unit_die,
1452 int has_children, void *data);
1453
1454 static void dwarf2_build_psymtabs_hard
1455 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1456
1457 static void scan_partial_symbols (struct partial_die_info *,
1458 CORE_ADDR *, CORE_ADDR *,
1459 int, struct dwarf2_cu *);
1460
1461 static void add_partial_symbol (struct partial_die_info *,
1462 struct dwarf2_cu *);
1463
1464 static void add_partial_namespace (struct partial_die_info *pdi,
1465 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1466 int set_addrmap, struct dwarf2_cu *cu);
1467
1468 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1469 CORE_ADDR *highpc, int set_addrmap,
1470 struct dwarf2_cu *cu);
1471
1472 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1473 struct dwarf2_cu *cu);
1474
1475 static void add_partial_subprogram (struct partial_die_info *pdi,
1476 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1477 int need_pc, struct dwarf2_cu *cu);
1478
1479 static void dwarf2_read_symtab (struct partial_symtab *,
1480 struct objfile *);
1481
1482 static void psymtab_to_symtab_1 (struct partial_symtab *);
1483
1484 static abbrev_table_up abbrev_table_read_table
1485 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1486 sect_offset);
1487
1488 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1489
1490 static struct partial_die_info *load_partial_dies
1491 (const struct die_reader_specs *, const gdb_byte *, int);
1492
1493 static struct partial_die_info *find_partial_die (sect_offset, int,
1494 struct dwarf2_cu *);
1495
1496 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1497 struct attribute *, struct attr_abbrev *,
1498 const gdb_byte *);
1499
1500 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1501
1502 static int read_1_signed_byte (bfd *, const gdb_byte *);
1503
1504 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1505
1506 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1507
1508 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1509
1510 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1511 unsigned int *);
1512
1513 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1514
1515 static LONGEST read_checked_initial_length_and_offset
1516 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1517 unsigned int *, unsigned int *);
1518
1519 static LONGEST read_offset (bfd *, const gdb_byte *,
1520 const struct comp_unit_head *,
1521 unsigned int *);
1522
1523 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1524
1525 static sect_offset read_abbrev_offset
1526 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1527 struct dwarf2_section_info *, sect_offset);
1528
1529 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1530
1531 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1532
1533 static const char *read_indirect_string
1534 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1535 const struct comp_unit_head *, unsigned int *);
1536
1537 static const char *read_indirect_line_string
1538 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1539 const struct comp_unit_head *, unsigned int *);
1540
1541 static const char *read_indirect_string_at_offset
1542 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1543 LONGEST str_offset);
1544
1545 static const char *read_indirect_string_from_dwz
1546 (struct objfile *objfile, struct dwz_file *, LONGEST);
1547
1548 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1549
1550 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1551 const gdb_byte *,
1552 unsigned int *);
1553
1554 static const char *read_str_index (const struct die_reader_specs *reader,
1555 ULONGEST str_index);
1556
1557 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1558
1559 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1560 struct dwarf2_cu *);
1561
1562 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1563 unsigned int);
1564
1565 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1566 struct dwarf2_cu *cu);
1567
1568 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1569 struct dwarf2_cu *cu);
1570
1571 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1572
1573 static struct die_info *die_specification (struct die_info *die,
1574 struct dwarf2_cu **);
1575
1576 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1577 struct dwarf2_cu *cu);
1578
1579 static void dwarf_decode_lines (struct line_header *, const char *,
1580 struct dwarf2_cu *, struct partial_symtab *,
1581 CORE_ADDR, int decode_mapping);
1582
1583 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1584 const char *);
1585
1586 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1587 const char *, const char *,
1588 CORE_ADDR);
1589
1590 static struct symbol *new_symbol (struct die_info *, struct type *,
1591 struct dwarf2_cu *, struct symbol * = NULL);
1592
1593 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1594 struct dwarf2_cu *);
1595
1596 static void dwarf2_const_value_attr (const struct attribute *attr,
1597 struct type *type,
1598 const char *name,
1599 struct obstack *obstack,
1600 struct dwarf2_cu *cu, LONGEST *value,
1601 const gdb_byte **bytes,
1602 struct dwarf2_locexpr_baton **baton);
1603
1604 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1605
1606 static int need_gnat_info (struct dwarf2_cu *);
1607
1608 static struct type *die_descriptive_type (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static void set_descriptive_type (struct type *, struct die_info *,
1612 struct dwarf2_cu *);
1613
1614 static struct type *die_containing_type (struct die_info *,
1615 struct dwarf2_cu *);
1616
1617 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1618 struct dwarf2_cu *);
1619
1620 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1621
1622 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1623
1624 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1625
1626 static char *typename_concat (struct obstack *obs, const char *prefix,
1627 const char *suffix, int physname,
1628 struct dwarf2_cu *cu);
1629
1630 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1633
1634 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1639
1640 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *, struct partial_symtab *);
1644
1645 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1646 values. Keep the items ordered with increasing constraints compliance. */
1647 enum pc_bounds_kind
1648 {
1649 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1650 PC_BOUNDS_NOT_PRESENT,
1651
1652 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1653 were present but they do not form a valid range of PC addresses. */
1654 PC_BOUNDS_INVALID,
1655
1656 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1657 PC_BOUNDS_RANGES,
1658
1659 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1660 PC_BOUNDS_HIGH_LOW,
1661 };
1662
1663 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1664 CORE_ADDR *, CORE_ADDR *,
1665 struct dwarf2_cu *,
1666 struct partial_symtab *);
1667
1668 static void get_scope_pc_bounds (struct die_info *,
1669 CORE_ADDR *, CORE_ADDR *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1673 CORE_ADDR, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_field (struct field_info *, struct die_info *,
1676 struct dwarf2_cu *);
1677
1678 static void dwarf2_attach_fields_to_type (struct field_info *,
1679 struct type *, struct dwarf2_cu *);
1680
1681 static void dwarf2_add_member_fn (struct field_info *,
1682 struct die_info *, struct type *,
1683 struct dwarf2_cu *);
1684
1685 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1686 struct type *,
1687 struct dwarf2_cu *);
1688
1689 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1690
1691 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1692
1693 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1694
1695 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1698
1699 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1700
1701 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1702
1703 static struct type *read_module_type (struct die_info *die,
1704 struct dwarf2_cu *cu);
1705
1706 static const char *namespace_name (struct die_info *die,
1707 int *is_anonymous, struct dwarf2_cu *);
1708
1709 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1710
1711 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1712
1713 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1714 struct dwarf2_cu *);
1715
1716 static struct die_info *read_die_and_siblings_1
1717 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1718 struct die_info *);
1719
1720 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1721 const gdb_byte *info_ptr,
1722 const gdb_byte **new_info_ptr,
1723 struct die_info *parent);
1724
1725 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1726 struct die_info **, const gdb_byte *,
1727 int *, int);
1728
1729 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1730 struct die_info **, const gdb_byte *,
1731 int *);
1732
1733 static void process_die (struct die_info *, struct dwarf2_cu *);
1734
1735 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1736 struct obstack *);
1737
1738 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1739
1740 static const char *dwarf2_full_name (const char *name,
1741 struct die_info *die,
1742 struct dwarf2_cu *cu);
1743
1744 static const char *dwarf2_physname (const char *name, struct die_info *die,
1745 struct dwarf2_cu *cu);
1746
1747 static struct die_info *dwarf2_extension (struct die_info *die,
1748 struct dwarf2_cu **);
1749
1750 static const char *dwarf_tag_name (unsigned int);
1751
1752 static const char *dwarf_attr_name (unsigned int);
1753
1754 static const char *dwarf_form_name (unsigned int);
1755
1756 static const char *dwarf_bool_name (unsigned int);
1757
1758 static const char *dwarf_type_encoding_name (unsigned int);
1759
1760 static struct die_info *sibling_die (struct die_info *);
1761
1762 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1763
1764 static void dump_die_for_error (struct die_info *);
1765
1766 static void dump_die_1 (struct ui_file *, int level, int max_level,
1767 struct die_info *);
1768
1769 /*static*/ void dump_die (struct die_info *, int max_level);
1770
1771 static void store_in_ref_table (struct die_info *,
1772 struct dwarf2_cu *);
1773
1774 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1775
1776 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1777
1778 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1779 const struct attribute *,
1780 struct dwarf2_cu **);
1781
1782 static struct die_info *follow_die_ref (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu **);
1785
1786 static struct die_info *follow_die_sig (struct die_info *,
1787 const struct attribute *,
1788 struct dwarf2_cu **);
1789
1790 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1791 struct dwarf2_cu *);
1792
1793 static struct type *get_DW_AT_signature_type (struct die_info *,
1794 const struct attribute *,
1795 struct dwarf2_cu *);
1796
1797 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1798
1799 static void read_signatured_type (struct signatured_type *);
1800
1801 static int attr_to_dynamic_prop (const struct attribute *attr,
1802 struct die_info *die, struct dwarf2_cu *cu,
1803 struct dynamic_prop *prop);
1804
1805 /* memory allocation interface */
1806
1807 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1808
1809 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1810
1811 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1812
1813 static int attr_form_is_block (const struct attribute *);
1814
1815 static int attr_form_is_section_offset (const struct attribute *);
1816
1817 static int attr_form_is_constant (const struct attribute *);
1818
1819 static int attr_form_is_ref (const struct attribute *);
1820
1821 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1822 struct dwarf2_loclist_baton *baton,
1823 const struct attribute *attr);
1824
1825 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1826 struct symbol *sym,
1827 struct dwarf2_cu *cu,
1828 int is_block);
1829
1830 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1831 const gdb_byte *info_ptr,
1832 struct abbrev_info *abbrev);
1833
1834 static hashval_t partial_die_hash (const void *item);
1835
1836 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1837
1838 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1839 (sect_offset sect_off, unsigned int offset_in_dwz,
1840 struct dwarf2_per_objfile *dwarf2_per_objfile);
1841
1842 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1843 struct die_info *comp_unit_die,
1844 enum language pretend_language);
1845
1846 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1847
1848 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1849
1850 static struct type *set_die_type (struct die_info *, struct type *,
1851 struct dwarf2_cu *);
1852
1853 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1854
1855 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1856
1857 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1858 enum language);
1859
1860 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1861 enum language);
1862
1863 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1864 enum language);
1865
1866 static void dwarf2_add_dependence (struct dwarf2_cu *,
1867 struct dwarf2_per_cu_data *);
1868
1869 static void dwarf2_mark (struct dwarf2_cu *);
1870
1871 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1872
1873 static struct type *get_die_type_at_offset (sect_offset,
1874 struct dwarf2_per_cu_data *);
1875
1876 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1877
1878 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1879 enum language pretend_language);
1880
1881 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1882
1883 /* Class, the destructor of which frees all allocated queue entries. This
1884 will only have work to do if an error was thrown while processing the
1885 dwarf. If no error was thrown then the queue entries should have all
1886 been processed, and freed, as we went along. */
1887
1888 class dwarf2_queue_guard
1889 {
1890 public:
1891 dwarf2_queue_guard () = default;
1892
1893 /* Free any entries remaining on the queue. There should only be
1894 entries left if we hit an error while processing the dwarf. */
1895 ~dwarf2_queue_guard ()
1896 {
1897 struct dwarf2_queue_item *item, *last;
1898
1899 item = dwarf2_queue;
1900 while (item)
1901 {
1902 /* Anything still marked queued is likely to be in an
1903 inconsistent state, so discard it. */
1904 if (item->per_cu->queued)
1905 {
1906 if (item->per_cu->cu != NULL)
1907 free_one_cached_comp_unit (item->per_cu);
1908 item->per_cu->queued = 0;
1909 }
1910
1911 last = item;
1912 item = item->next;
1913 xfree (last);
1914 }
1915
1916 dwarf2_queue = dwarf2_queue_tail = NULL;
1917 }
1918 };
1919
1920 /* The return type of find_file_and_directory. Note, the enclosed
1921 string pointers are only valid while this object is valid. */
1922
1923 struct file_and_directory
1924 {
1925 /* The filename. This is never NULL. */
1926 const char *name;
1927
1928 /* The compilation directory. NULL if not known. If we needed to
1929 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1930 points directly to the DW_AT_comp_dir string attribute owned by
1931 the obstack that owns the DIE. */
1932 const char *comp_dir;
1933
1934 /* If we needed to build a new string for comp_dir, this is what
1935 owns the storage. */
1936 std::string comp_dir_storage;
1937 };
1938
1939 static file_and_directory find_file_and_directory (struct die_info *die,
1940 struct dwarf2_cu *cu);
1941
1942 static char *file_full_name (int file, struct line_header *lh,
1943 const char *comp_dir);
1944
1945 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1946 enum class rcuh_kind { COMPILE, TYPE };
1947
1948 static const gdb_byte *read_and_check_comp_unit_head
1949 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1950 struct comp_unit_head *header,
1951 struct dwarf2_section_info *section,
1952 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1953 rcuh_kind section_kind);
1954
1955 static void init_cutu_and_read_dies
1956 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1957 int use_existing_cu, int keep, bool skip_partial,
1958 die_reader_func_ftype *die_reader_func, void *data);
1959
1960 static void init_cutu_and_read_dies_simple
1961 (struct dwarf2_per_cu_data *this_cu,
1962 die_reader_func_ftype *die_reader_func, void *data);
1963
1964 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1965
1966 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1967
1968 static struct dwo_unit *lookup_dwo_unit_in_dwp
1969 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1970 struct dwp_file *dwp_file, const char *comp_dir,
1971 ULONGEST signature, int is_debug_types);
1972
1973 static struct dwp_file *get_dwp_file
1974 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1975
1976 static struct dwo_unit *lookup_dwo_comp_unit
1977 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1978
1979 static struct dwo_unit *lookup_dwo_type_unit
1980 (struct signatured_type *, const char *, const char *);
1981
1982 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1983
1984 static void free_dwo_file (struct dwo_file *);
1985
1986 /* A unique_ptr helper to free a dwo_file. */
1987
1988 struct dwo_file_deleter
1989 {
1990 void operator() (struct dwo_file *df) const
1991 {
1992 free_dwo_file (df);
1993 }
1994 };
1995
1996 /* A unique pointer to a dwo_file. */
1997
1998 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1999
2000 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2001
2002 static void check_producer (struct dwarf2_cu *cu);
2003
2004 static void free_line_header_voidp (void *arg);
2005 \f
2006 /* Various complaints about symbol reading that don't abort the process. */
2007
2008 static void
2009 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2010 {
2011 complaint (_("statement list doesn't fit in .debug_line section"));
2012 }
2013
2014 static void
2015 dwarf2_debug_line_missing_file_complaint (void)
2016 {
2017 complaint (_(".debug_line section has line data without a file"));
2018 }
2019
2020 static void
2021 dwarf2_debug_line_missing_end_sequence_complaint (void)
2022 {
2023 complaint (_(".debug_line section has line "
2024 "program sequence without an end"));
2025 }
2026
2027 static void
2028 dwarf2_complex_location_expr_complaint (void)
2029 {
2030 complaint (_("location expression too complex"));
2031 }
2032
2033 static void
2034 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2035 int arg3)
2036 {
2037 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2038 arg1, arg2, arg3);
2039 }
2040
2041 static void
2042 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2043 {
2044 complaint (_("debug info runs off end of %s section"
2045 " [in module %s]"),
2046 get_section_name (section),
2047 get_section_file_name (section));
2048 }
2049
2050 static void
2051 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2052 {
2053 complaint (_("macro debug info contains a "
2054 "malformed macro definition:\n`%s'"),
2055 arg1);
2056 }
2057
2058 static void
2059 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2060 {
2061 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2062 arg1, arg2);
2063 }
2064
2065 /* Hash function for line_header_hash. */
2066
2067 static hashval_t
2068 line_header_hash (const struct line_header *ofs)
2069 {
2070 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2071 }
2072
2073 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2074
2075 static hashval_t
2076 line_header_hash_voidp (const void *item)
2077 {
2078 const struct line_header *ofs = (const struct line_header *) item;
2079
2080 return line_header_hash (ofs);
2081 }
2082
2083 /* Equality function for line_header_hash. */
2084
2085 static int
2086 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2087 {
2088 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2089 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2090
2091 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2092 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2093 }
2094
2095 \f
2096
2097 /* Read the given attribute value as an address, taking the attribute's
2098 form into account. */
2099
2100 static CORE_ADDR
2101 attr_value_as_address (struct attribute *attr)
2102 {
2103 CORE_ADDR addr;
2104
2105 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2106 {
2107 /* Aside from a few clearly defined exceptions, attributes that
2108 contain an address must always be in DW_FORM_addr form.
2109 Unfortunately, some compilers happen to be violating this
2110 requirement by encoding addresses using other forms, such
2111 as DW_FORM_data4 for example. For those broken compilers,
2112 we try to do our best, without any guarantee of success,
2113 to interpret the address correctly. It would also be nice
2114 to generate a complaint, but that would require us to maintain
2115 a list of legitimate cases where a non-address form is allowed,
2116 as well as update callers to pass in at least the CU's DWARF
2117 version. This is more overhead than what we're willing to
2118 expand for a pretty rare case. */
2119 addr = DW_UNSND (attr);
2120 }
2121 else
2122 addr = DW_ADDR (attr);
2123
2124 return addr;
2125 }
2126
2127 /* See declaration. */
2128
2129 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2130 const dwarf2_debug_sections *names)
2131 : objfile (objfile_)
2132 {
2133 if (names == NULL)
2134 names = &dwarf2_elf_names;
2135
2136 bfd *obfd = objfile->obfd;
2137
2138 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2139 locate_sections (obfd, sec, *names);
2140 }
2141
2142 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2143
2144 dwarf2_per_objfile::~dwarf2_per_objfile ()
2145 {
2146 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2147 free_cached_comp_units ();
2148
2149 if (quick_file_names_table)
2150 htab_delete (quick_file_names_table);
2151
2152 if (line_header_hash)
2153 htab_delete (line_header_hash);
2154
2155 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2156 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2157
2158 for (signatured_type *sig_type : all_type_units)
2159 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2160
2161 VEC_free (dwarf2_section_info_def, types);
2162
2163 if (dwo_files != NULL)
2164 free_dwo_files (dwo_files, objfile);
2165
2166 /* Everything else should be on the objfile obstack. */
2167 }
2168
2169 /* See declaration. */
2170
2171 void
2172 dwarf2_per_objfile::free_cached_comp_units ()
2173 {
2174 dwarf2_per_cu_data *per_cu = read_in_chain;
2175 dwarf2_per_cu_data **last_chain = &read_in_chain;
2176 while (per_cu != NULL)
2177 {
2178 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2179
2180 delete per_cu->cu;
2181 *last_chain = next_cu;
2182 per_cu = next_cu;
2183 }
2184 }
2185
2186 /* A helper class that calls free_cached_comp_units on
2187 destruction. */
2188
2189 class free_cached_comp_units
2190 {
2191 public:
2192
2193 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2194 : m_per_objfile (per_objfile)
2195 {
2196 }
2197
2198 ~free_cached_comp_units ()
2199 {
2200 m_per_objfile->free_cached_comp_units ();
2201 }
2202
2203 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2204
2205 private:
2206
2207 dwarf2_per_objfile *m_per_objfile;
2208 };
2209
2210 /* Try to locate the sections we need for DWARF 2 debugging
2211 information and return true if we have enough to do something.
2212 NAMES points to the dwarf2 section names, or is NULL if the standard
2213 ELF names are used. */
2214
2215 int
2216 dwarf2_has_info (struct objfile *objfile,
2217 const struct dwarf2_debug_sections *names)
2218 {
2219 if (objfile->flags & OBJF_READNEVER)
2220 return 0;
2221
2222 struct dwarf2_per_objfile *dwarf2_per_objfile
2223 = get_dwarf2_per_objfile (objfile);
2224
2225 if (dwarf2_per_objfile == NULL)
2226 {
2227 /* Initialize per-objfile state. */
2228 dwarf2_per_objfile
2229 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2230 names);
2231 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2232 }
2233 return (!dwarf2_per_objfile->info.is_virtual
2234 && dwarf2_per_objfile->info.s.section != NULL
2235 && !dwarf2_per_objfile->abbrev.is_virtual
2236 && dwarf2_per_objfile->abbrev.s.section != NULL);
2237 }
2238
2239 /* Return the containing section of virtual section SECTION. */
2240
2241 static struct dwarf2_section_info *
2242 get_containing_section (const struct dwarf2_section_info *section)
2243 {
2244 gdb_assert (section->is_virtual);
2245 return section->s.containing_section;
2246 }
2247
2248 /* Return the bfd owner of SECTION. */
2249
2250 static struct bfd *
2251 get_section_bfd_owner (const struct dwarf2_section_info *section)
2252 {
2253 if (section->is_virtual)
2254 {
2255 section = get_containing_section (section);
2256 gdb_assert (!section->is_virtual);
2257 }
2258 return section->s.section->owner;
2259 }
2260
2261 /* Return the bfd section of SECTION.
2262 Returns NULL if the section is not present. */
2263
2264 static asection *
2265 get_section_bfd_section (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 {
2269 section = get_containing_section (section);
2270 gdb_assert (!section->is_virtual);
2271 }
2272 return section->s.section;
2273 }
2274
2275 /* Return the name of SECTION. */
2276
2277 static const char *
2278 get_section_name (const struct dwarf2_section_info *section)
2279 {
2280 asection *sectp = get_section_bfd_section (section);
2281
2282 gdb_assert (sectp != NULL);
2283 return bfd_section_name (get_section_bfd_owner (section), sectp);
2284 }
2285
2286 /* Return the name of the file SECTION is in. */
2287
2288 static const char *
2289 get_section_file_name (const struct dwarf2_section_info *section)
2290 {
2291 bfd *abfd = get_section_bfd_owner (section);
2292
2293 return bfd_get_filename (abfd);
2294 }
2295
2296 /* Return the id of SECTION.
2297 Returns 0 if SECTION doesn't exist. */
2298
2299 static int
2300 get_section_id (const struct dwarf2_section_info *section)
2301 {
2302 asection *sectp = get_section_bfd_section (section);
2303
2304 if (sectp == NULL)
2305 return 0;
2306 return sectp->id;
2307 }
2308
2309 /* Return the flags of SECTION.
2310 SECTION (or containing section if this is a virtual section) must exist. */
2311
2312 static int
2313 get_section_flags (const struct dwarf2_section_info *section)
2314 {
2315 asection *sectp = get_section_bfd_section (section);
2316
2317 gdb_assert (sectp != NULL);
2318 return bfd_get_section_flags (sectp->owner, sectp);
2319 }
2320
2321 /* When loading sections, we look either for uncompressed section or for
2322 compressed section names. */
2323
2324 static int
2325 section_is_p (const char *section_name,
2326 const struct dwarf2_section_names *names)
2327 {
2328 if (names->normal != NULL
2329 && strcmp (section_name, names->normal) == 0)
2330 return 1;
2331 if (names->compressed != NULL
2332 && strcmp (section_name, names->compressed) == 0)
2333 return 1;
2334 return 0;
2335 }
2336
2337 /* See declaration. */
2338
2339 void
2340 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2341 const dwarf2_debug_sections &names)
2342 {
2343 flagword aflag = bfd_get_section_flags (abfd, sectp);
2344
2345 if ((aflag & SEC_HAS_CONTENTS) == 0)
2346 {
2347 }
2348 else if (section_is_p (sectp->name, &names.info))
2349 {
2350 this->info.s.section = sectp;
2351 this->info.size = bfd_get_section_size (sectp);
2352 }
2353 else if (section_is_p (sectp->name, &names.abbrev))
2354 {
2355 this->abbrev.s.section = sectp;
2356 this->abbrev.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &names.line))
2359 {
2360 this->line.s.section = sectp;
2361 this->line.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &names.loc))
2364 {
2365 this->loc.s.section = sectp;
2366 this->loc.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &names.loclists))
2369 {
2370 this->loclists.s.section = sectp;
2371 this->loclists.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &names.macinfo))
2374 {
2375 this->macinfo.s.section = sectp;
2376 this->macinfo.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &names.macro))
2379 {
2380 this->macro.s.section = sectp;
2381 this->macro.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.str))
2384 {
2385 this->str.s.section = sectp;
2386 this->str.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line_str))
2389 {
2390 this->line_str.s.section = sectp;
2391 this->line_str.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.addr))
2394 {
2395 this->addr.s.section = sectp;
2396 this->addr.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.frame))
2399 {
2400 this->frame.s.section = sectp;
2401 this->frame.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.eh_frame))
2404 {
2405 this->eh_frame.s.section = sectp;
2406 this->eh_frame.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.ranges))
2409 {
2410 this->ranges.s.section = sectp;
2411 this->ranges.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.rnglists))
2414 {
2415 this->rnglists.s.section = sectp;
2416 this->rnglists.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.types))
2419 {
2420 struct dwarf2_section_info type_section;
2421
2422 memset (&type_section, 0, sizeof (type_section));
2423 type_section.s.section = sectp;
2424 type_section.size = bfd_get_section_size (sectp);
2425
2426 VEC_safe_push (dwarf2_section_info_def, this->types,
2427 &type_section);
2428 }
2429 else if (section_is_p (sectp->name, &names.gdb_index))
2430 {
2431 this->gdb_index.s.section = sectp;
2432 this->gdb_index.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &names.debug_names))
2435 {
2436 this->debug_names.s.section = sectp;
2437 this->debug_names.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &names.debug_aranges))
2440 {
2441 this->debug_aranges.s.section = sectp;
2442 this->debug_aranges.size = bfd_get_section_size (sectp);
2443 }
2444
2445 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2446 && bfd_section_vma (abfd, sectp) == 0)
2447 this->has_section_at_zero = true;
2448 }
2449
2450 /* A helper function that decides whether a section is empty,
2451 or not present. */
2452
2453 static int
2454 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2455 {
2456 if (section->is_virtual)
2457 return section->size == 0;
2458 return section->s.section == NULL || section->size == 0;
2459 }
2460
2461 /* See dwarf2read.h. */
2462
2463 void
2464 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2465 {
2466 asection *sectp;
2467 bfd *abfd;
2468 gdb_byte *buf, *retbuf;
2469
2470 if (info->readin)
2471 return;
2472 info->buffer = NULL;
2473 info->readin = 1;
2474
2475 if (dwarf2_section_empty_p (info))
2476 return;
2477
2478 sectp = get_section_bfd_section (info);
2479
2480 /* If this is a virtual section we need to read in the real one first. */
2481 if (info->is_virtual)
2482 {
2483 struct dwarf2_section_info *containing_section =
2484 get_containing_section (info);
2485
2486 gdb_assert (sectp != NULL);
2487 if ((sectp->flags & SEC_RELOC) != 0)
2488 {
2489 error (_("Dwarf Error: DWP format V2 with relocations is not"
2490 " supported in section %s [in module %s]"),
2491 get_section_name (info), get_section_file_name (info));
2492 }
2493 dwarf2_read_section (objfile, containing_section);
2494 /* Other code should have already caught virtual sections that don't
2495 fit. */
2496 gdb_assert (info->virtual_offset + info->size
2497 <= containing_section->size);
2498 /* If the real section is empty or there was a problem reading the
2499 section we shouldn't get here. */
2500 gdb_assert (containing_section->buffer != NULL);
2501 info->buffer = containing_section->buffer + info->virtual_offset;
2502 return;
2503 }
2504
2505 /* If the section has relocations, we must read it ourselves.
2506 Otherwise we attach it to the BFD. */
2507 if ((sectp->flags & SEC_RELOC) == 0)
2508 {
2509 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2510 return;
2511 }
2512
2513 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2514 info->buffer = buf;
2515
2516 /* When debugging .o files, we may need to apply relocations; see
2517 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2518 We never compress sections in .o files, so we only need to
2519 try this when the section is not compressed. */
2520 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2521 if (retbuf != NULL)
2522 {
2523 info->buffer = retbuf;
2524 return;
2525 }
2526
2527 abfd = get_section_bfd_owner (info);
2528 gdb_assert (abfd != NULL);
2529
2530 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2531 || bfd_bread (buf, info->size, abfd) != info->size)
2532 {
2533 error (_("Dwarf Error: Can't read DWARF data"
2534 " in section %s [in module %s]"),
2535 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2536 }
2537 }
2538
2539 /* A helper function that returns the size of a section in a safe way.
2540 If you are positive that the section has been read before using the
2541 size, then it is safe to refer to the dwarf2_section_info object's
2542 "size" field directly. In other cases, you must call this
2543 function, because for compressed sections the size field is not set
2544 correctly until the section has been read. */
2545
2546 static bfd_size_type
2547 dwarf2_section_size (struct objfile *objfile,
2548 struct dwarf2_section_info *info)
2549 {
2550 if (!info->readin)
2551 dwarf2_read_section (objfile, info);
2552 return info->size;
2553 }
2554
2555 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2556 SECTION_NAME. */
2557
2558 void
2559 dwarf2_get_section_info (struct objfile *objfile,
2560 enum dwarf2_section_enum sect,
2561 asection **sectp, const gdb_byte **bufp,
2562 bfd_size_type *sizep)
2563 {
2564 struct dwarf2_per_objfile *data
2565 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2566 dwarf2_objfile_data_key);
2567 struct dwarf2_section_info *info;
2568
2569 /* We may see an objfile without any DWARF, in which case we just
2570 return nothing. */
2571 if (data == NULL)
2572 {
2573 *sectp = NULL;
2574 *bufp = NULL;
2575 *sizep = 0;
2576 return;
2577 }
2578 switch (sect)
2579 {
2580 case DWARF2_DEBUG_FRAME:
2581 info = &data->frame;
2582 break;
2583 case DWARF2_EH_FRAME:
2584 info = &data->eh_frame;
2585 break;
2586 default:
2587 gdb_assert_not_reached ("unexpected section");
2588 }
2589
2590 dwarf2_read_section (objfile, info);
2591
2592 *sectp = get_section_bfd_section (info);
2593 *bufp = info->buffer;
2594 *sizep = info->size;
2595 }
2596
2597 /* A helper function to find the sections for a .dwz file. */
2598
2599 static void
2600 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2601 {
2602 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2603
2604 /* Note that we only support the standard ELF names, because .dwz
2605 is ELF-only (at the time of writing). */
2606 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2607 {
2608 dwz_file->abbrev.s.section = sectp;
2609 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2612 {
2613 dwz_file->info.s.section = sectp;
2614 dwz_file->info.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2617 {
2618 dwz_file->str.s.section = sectp;
2619 dwz_file->str.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2622 {
2623 dwz_file->line.s.section = sectp;
2624 dwz_file->line.size = bfd_get_section_size (sectp);
2625 }
2626 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2627 {
2628 dwz_file->macro.s.section = sectp;
2629 dwz_file->macro.size = bfd_get_section_size (sectp);
2630 }
2631 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2632 {
2633 dwz_file->gdb_index.s.section = sectp;
2634 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2635 }
2636 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2637 {
2638 dwz_file->debug_names.s.section = sectp;
2639 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2640 }
2641 }
2642
2643 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2644 there is no .gnu_debugaltlink section in the file. Error if there
2645 is such a section but the file cannot be found. */
2646
2647 static struct dwz_file *
2648 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2649 {
2650 const char *filename;
2651 bfd_size_type buildid_len_arg;
2652 size_t buildid_len;
2653 bfd_byte *buildid;
2654
2655 if (dwarf2_per_objfile->dwz_file != NULL)
2656 return dwarf2_per_objfile->dwz_file.get ();
2657
2658 bfd_set_error (bfd_error_no_error);
2659 gdb::unique_xmalloc_ptr<char> data
2660 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2661 &buildid_len_arg, &buildid));
2662 if (data == NULL)
2663 {
2664 if (bfd_get_error () == bfd_error_no_error)
2665 return NULL;
2666 error (_("could not read '.gnu_debugaltlink' section: %s"),
2667 bfd_errmsg (bfd_get_error ()));
2668 }
2669
2670 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2671
2672 buildid_len = (size_t) buildid_len_arg;
2673
2674 filename = data.get ();
2675
2676 std::string abs_storage;
2677 if (!IS_ABSOLUTE_PATH (filename))
2678 {
2679 gdb::unique_xmalloc_ptr<char> abs
2680 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2681
2682 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2683 filename = abs_storage.c_str ();
2684 }
2685
2686 /* First try the file name given in the section. If that doesn't
2687 work, try to use the build-id instead. */
2688 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2689 if (dwz_bfd != NULL)
2690 {
2691 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2692 dwz_bfd.release ();
2693 }
2694
2695 if (dwz_bfd == NULL)
2696 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2697
2698 if (dwz_bfd == NULL)
2699 error (_("could not find '.gnu_debugaltlink' file for %s"),
2700 objfile_name (dwarf2_per_objfile->objfile));
2701
2702 std::unique_ptr<struct dwz_file> result
2703 (new struct dwz_file (std::move (dwz_bfd)));
2704
2705 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2706 result.get ());
2707
2708 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2709 result->dwz_bfd.get ());
2710 dwarf2_per_objfile->dwz_file = std::move (result);
2711 return dwarf2_per_objfile->dwz_file.get ();
2712 }
2713 \f
2714 /* DWARF quick_symbols_functions support. */
2715
2716 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2717 unique line tables, so we maintain a separate table of all .debug_line
2718 derived entries to support the sharing.
2719 All the quick functions need is the list of file names. We discard the
2720 line_header when we're done and don't need to record it here. */
2721 struct quick_file_names
2722 {
2723 /* The data used to construct the hash key. */
2724 struct stmt_list_hash hash;
2725
2726 /* The number of entries in file_names, real_names. */
2727 unsigned int num_file_names;
2728
2729 /* The file names from the line table, after being run through
2730 file_full_name. */
2731 const char **file_names;
2732
2733 /* The file names from the line table after being run through
2734 gdb_realpath. These are computed lazily. */
2735 const char **real_names;
2736 };
2737
2738 /* When using the index (and thus not using psymtabs), each CU has an
2739 object of this type. This is used to hold information needed by
2740 the various "quick" methods. */
2741 struct dwarf2_per_cu_quick_data
2742 {
2743 /* The file table. This can be NULL if there was no file table
2744 or it's currently not read in.
2745 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2746 struct quick_file_names *file_names;
2747
2748 /* The corresponding symbol table. This is NULL if symbols for this
2749 CU have not yet been read. */
2750 struct compunit_symtab *compunit_symtab;
2751
2752 /* A temporary mark bit used when iterating over all CUs in
2753 expand_symtabs_matching. */
2754 unsigned int mark : 1;
2755
2756 /* True if we've tried to read the file table and found there isn't one.
2757 There will be no point in trying to read it again next time. */
2758 unsigned int no_file_data : 1;
2759 };
2760
2761 /* Utility hash function for a stmt_list_hash. */
2762
2763 static hashval_t
2764 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2765 {
2766 hashval_t v = 0;
2767
2768 if (stmt_list_hash->dwo_unit != NULL)
2769 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2770 v += to_underlying (stmt_list_hash->line_sect_off);
2771 return v;
2772 }
2773
2774 /* Utility equality function for a stmt_list_hash. */
2775
2776 static int
2777 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2778 const struct stmt_list_hash *rhs)
2779 {
2780 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2781 return 0;
2782 if (lhs->dwo_unit != NULL
2783 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2784 return 0;
2785
2786 return lhs->line_sect_off == rhs->line_sect_off;
2787 }
2788
2789 /* Hash function for a quick_file_names. */
2790
2791 static hashval_t
2792 hash_file_name_entry (const void *e)
2793 {
2794 const struct quick_file_names *file_data
2795 = (const struct quick_file_names *) e;
2796
2797 return hash_stmt_list_entry (&file_data->hash);
2798 }
2799
2800 /* Equality function for a quick_file_names. */
2801
2802 static int
2803 eq_file_name_entry (const void *a, const void *b)
2804 {
2805 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2806 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2807
2808 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2809 }
2810
2811 /* Delete function for a quick_file_names. */
2812
2813 static void
2814 delete_file_name_entry (void *e)
2815 {
2816 struct quick_file_names *file_data = (struct quick_file_names *) e;
2817 int i;
2818
2819 for (i = 0; i < file_data->num_file_names; ++i)
2820 {
2821 xfree ((void*) file_data->file_names[i]);
2822 if (file_data->real_names)
2823 xfree ((void*) file_data->real_names[i]);
2824 }
2825
2826 /* The space for the struct itself lives on objfile_obstack,
2827 so we don't free it here. */
2828 }
2829
2830 /* Create a quick_file_names hash table. */
2831
2832 static htab_t
2833 create_quick_file_names_table (unsigned int nr_initial_entries)
2834 {
2835 return htab_create_alloc (nr_initial_entries,
2836 hash_file_name_entry, eq_file_name_entry,
2837 delete_file_name_entry, xcalloc, xfree);
2838 }
2839
2840 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2841 have to be created afterwards. You should call age_cached_comp_units after
2842 processing PER_CU->CU. dw2_setup must have been already called. */
2843
2844 static void
2845 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2846 {
2847 if (per_cu->is_debug_types)
2848 load_full_type_unit (per_cu);
2849 else
2850 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2851
2852 if (per_cu->cu == NULL)
2853 return; /* Dummy CU. */
2854
2855 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2856 }
2857
2858 /* Read in the symbols for PER_CU. */
2859
2860 static void
2861 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2862 {
2863 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2864
2865 /* Skip type_unit_groups, reading the type units they contain
2866 is handled elsewhere. */
2867 if (IS_TYPE_UNIT_GROUP (per_cu))
2868 return;
2869
2870 /* The destructor of dwarf2_queue_guard frees any entries left on
2871 the queue. After this point we're guaranteed to leave this function
2872 with the dwarf queue empty. */
2873 dwarf2_queue_guard q_guard;
2874
2875 if (dwarf2_per_objfile->using_index
2876 ? per_cu->v.quick->compunit_symtab == NULL
2877 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2878 {
2879 queue_comp_unit (per_cu, language_minimal);
2880 load_cu (per_cu, skip_partial);
2881
2882 /* If we just loaded a CU from a DWO, and we're working with an index
2883 that may badly handle TUs, load all the TUs in that DWO as well.
2884 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2885 if (!per_cu->is_debug_types
2886 && per_cu->cu != NULL
2887 && per_cu->cu->dwo_unit != NULL
2888 && dwarf2_per_objfile->index_table != NULL
2889 && dwarf2_per_objfile->index_table->version <= 7
2890 /* DWP files aren't supported yet. */
2891 && get_dwp_file (dwarf2_per_objfile) == NULL)
2892 queue_and_load_all_dwo_tus (per_cu);
2893 }
2894
2895 process_queue (dwarf2_per_objfile);
2896
2897 /* Age the cache, releasing compilation units that have not
2898 been used recently. */
2899 age_cached_comp_units (dwarf2_per_objfile);
2900 }
2901
2902 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2903 the objfile from which this CU came. Returns the resulting symbol
2904 table. */
2905
2906 static struct compunit_symtab *
2907 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2908 {
2909 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2910
2911 gdb_assert (dwarf2_per_objfile->using_index);
2912 if (!per_cu->v.quick->compunit_symtab)
2913 {
2914 free_cached_comp_units freer (dwarf2_per_objfile);
2915 scoped_restore decrementer = increment_reading_symtab ();
2916 dw2_do_instantiate_symtab (per_cu, skip_partial);
2917 process_cu_includes (dwarf2_per_objfile);
2918 }
2919
2920 return per_cu->v.quick->compunit_symtab;
2921 }
2922
2923 /* See declaration. */
2924
2925 dwarf2_per_cu_data *
2926 dwarf2_per_objfile::get_cutu (int index)
2927 {
2928 if (index >= this->all_comp_units.size ())
2929 {
2930 index -= this->all_comp_units.size ();
2931 gdb_assert (index < this->all_type_units.size ());
2932 return &this->all_type_units[index]->per_cu;
2933 }
2934
2935 return this->all_comp_units[index];
2936 }
2937
2938 /* See declaration. */
2939
2940 dwarf2_per_cu_data *
2941 dwarf2_per_objfile::get_cu (int index)
2942 {
2943 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2944
2945 return this->all_comp_units[index];
2946 }
2947
2948 /* See declaration. */
2949
2950 signatured_type *
2951 dwarf2_per_objfile::get_tu (int index)
2952 {
2953 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2954
2955 return this->all_type_units[index];
2956 }
2957
2958 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2959 objfile_obstack, and constructed with the specified field
2960 values. */
2961
2962 static dwarf2_per_cu_data *
2963 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2964 struct dwarf2_section_info *section,
2965 int is_dwz,
2966 sect_offset sect_off, ULONGEST length)
2967 {
2968 struct objfile *objfile = dwarf2_per_objfile->objfile;
2969 dwarf2_per_cu_data *the_cu
2970 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2971 struct dwarf2_per_cu_data);
2972 the_cu->sect_off = sect_off;
2973 the_cu->length = length;
2974 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2975 the_cu->section = section;
2976 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2977 struct dwarf2_per_cu_quick_data);
2978 the_cu->is_dwz = is_dwz;
2979 return the_cu;
2980 }
2981
2982 /* A helper for create_cus_from_index that handles a given list of
2983 CUs. */
2984
2985 static void
2986 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2987 const gdb_byte *cu_list, offset_type n_elements,
2988 struct dwarf2_section_info *section,
2989 int is_dwz)
2990 {
2991 for (offset_type i = 0; i < n_elements; i += 2)
2992 {
2993 gdb_static_assert (sizeof (ULONGEST) >= 8);
2994
2995 sect_offset sect_off
2996 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2997 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2998 cu_list += 2 * 8;
2999
3000 dwarf2_per_cu_data *per_cu
3001 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3002 sect_off, length);
3003 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3004 }
3005 }
3006
3007 /* Read the CU list from the mapped index, and use it to create all
3008 the CU objects for this objfile. */
3009
3010 static void
3011 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3012 const gdb_byte *cu_list, offset_type cu_list_elements,
3013 const gdb_byte *dwz_list, offset_type dwz_elements)
3014 {
3015 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3016 dwarf2_per_objfile->all_comp_units.reserve
3017 ((cu_list_elements + dwz_elements) / 2);
3018
3019 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3020 &dwarf2_per_objfile->info, 0);
3021
3022 if (dwz_elements == 0)
3023 return;
3024
3025 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3026 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3027 &dwz->info, 1);
3028 }
3029
3030 /* Create the signatured type hash table from the index. */
3031
3032 static void
3033 create_signatured_type_table_from_index
3034 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3035 struct dwarf2_section_info *section,
3036 const gdb_byte *bytes,
3037 offset_type elements)
3038 {
3039 struct objfile *objfile = dwarf2_per_objfile->objfile;
3040
3041 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3042 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3043
3044 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3045
3046 for (offset_type i = 0; i < elements; i += 3)
3047 {
3048 struct signatured_type *sig_type;
3049 ULONGEST signature;
3050 void **slot;
3051 cu_offset type_offset_in_tu;
3052
3053 gdb_static_assert (sizeof (ULONGEST) >= 8);
3054 sect_offset sect_off
3055 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3056 type_offset_in_tu
3057 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3058 BFD_ENDIAN_LITTLE);
3059 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3060 bytes += 3 * 8;
3061
3062 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3063 struct signatured_type);
3064 sig_type->signature = signature;
3065 sig_type->type_offset_in_tu = type_offset_in_tu;
3066 sig_type->per_cu.is_debug_types = 1;
3067 sig_type->per_cu.section = section;
3068 sig_type->per_cu.sect_off = sect_off;
3069 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3070 sig_type->per_cu.v.quick
3071 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3072 struct dwarf2_per_cu_quick_data);
3073
3074 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3075 *slot = sig_type;
3076
3077 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3078 }
3079
3080 dwarf2_per_objfile->signatured_types = sig_types_hash;
3081 }
3082
3083 /* Create the signatured type hash table from .debug_names. */
3084
3085 static void
3086 create_signatured_type_table_from_debug_names
3087 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3088 const mapped_debug_names &map,
3089 struct dwarf2_section_info *section,
3090 struct dwarf2_section_info *abbrev_section)
3091 {
3092 struct objfile *objfile = dwarf2_per_objfile->objfile;
3093
3094 dwarf2_read_section (objfile, section);
3095 dwarf2_read_section (objfile, abbrev_section);
3096
3097 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3098 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3099
3100 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3101
3102 for (uint32_t i = 0; i < map.tu_count; ++i)
3103 {
3104 struct signatured_type *sig_type;
3105 void **slot;
3106
3107 sect_offset sect_off
3108 = (sect_offset) (extract_unsigned_integer
3109 (map.tu_table_reordered + i * map.offset_size,
3110 map.offset_size,
3111 map.dwarf5_byte_order));
3112
3113 comp_unit_head cu_header;
3114 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3115 abbrev_section,
3116 section->buffer + to_underlying (sect_off),
3117 rcuh_kind::TYPE);
3118
3119 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3120 struct signatured_type);
3121 sig_type->signature = cu_header.signature;
3122 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3123 sig_type->per_cu.is_debug_types = 1;
3124 sig_type->per_cu.section = section;
3125 sig_type->per_cu.sect_off = sect_off;
3126 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3127 sig_type->per_cu.v.quick
3128 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3129 struct dwarf2_per_cu_quick_data);
3130
3131 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3132 *slot = sig_type;
3133
3134 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3135 }
3136
3137 dwarf2_per_objfile->signatured_types = sig_types_hash;
3138 }
3139
3140 /* Read the address map data from the mapped index, and use it to
3141 populate the objfile's psymtabs_addrmap. */
3142
3143 static void
3144 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3145 struct mapped_index *index)
3146 {
3147 struct objfile *objfile = dwarf2_per_objfile->objfile;
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3149 const gdb_byte *iter, *end;
3150 struct addrmap *mutable_map;
3151 CORE_ADDR baseaddr;
3152
3153 auto_obstack temp_obstack;
3154
3155 mutable_map = addrmap_create_mutable (&temp_obstack);
3156
3157 iter = index->address_table.data ();
3158 end = iter + index->address_table.size ();
3159
3160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3161
3162 while (iter < end)
3163 {
3164 ULONGEST hi, lo, cu_index;
3165 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3166 iter += 8;
3167 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3168 iter += 8;
3169 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3170 iter += 4;
3171
3172 if (lo > hi)
3173 {
3174 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3175 hex_string (lo), hex_string (hi));
3176 continue;
3177 }
3178
3179 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3180 {
3181 complaint (_(".gdb_index address table has invalid CU number %u"),
3182 (unsigned) cu_index);
3183 continue;
3184 }
3185
3186 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3187 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3188 addrmap_set_empty (mutable_map, lo, hi - 1,
3189 dwarf2_per_objfile->get_cu (cu_index));
3190 }
3191
3192 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3193 &objfile->objfile_obstack);
3194 }
3195
3196 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3197 populate the objfile's psymtabs_addrmap. */
3198
3199 static void
3200 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3201 struct dwarf2_section_info *section)
3202 {
3203 struct objfile *objfile = dwarf2_per_objfile->objfile;
3204 bfd *abfd = objfile->obfd;
3205 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3206 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3207 SECT_OFF_TEXT (objfile));
3208
3209 auto_obstack temp_obstack;
3210 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3211
3212 std::unordered_map<sect_offset,
3213 dwarf2_per_cu_data *,
3214 gdb::hash_enum<sect_offset>>
3215 debug_info_offset_to_per_cu;
3216 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3217 {
3218 const auto insertpair
3219 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3220 if (!insertpair.second)
3221 {
3222 warning (_("Section .debug_aranges in %s has duplicate "
3223 "debug_info_offset %s, ignoring .debug_aranges."),
3224 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3225 return;
3226 }
3227 }
3228
3229 dwarf2_read_section (objfile, section);
3230
3231 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3232
3233 const gdb_byte *addr = section->buffer;
3234
3235 while (addr < section->buffer + section->size)
3236 {
3237 const gdb_byte *const entry_addr = addr;
3238 unsigned int bytes_read;
3239
3240 const LONGEST entry_length = read_initial_length (abfd, addr,
3241 &bytes_read);
3242 addr += bytes_read;
3243
3244 const gdb_byte *const entry_end = addr + entry_length;
3245 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3246 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3247 if (addr + entry_length > section->buffer + section->size)
3248 {
3249 warning (_("Section .debug_aranges in %s entry at offset %zu "
3250 "length %s exceeds section length %s, "
3251 "ignoring .debug_aranges."),
3252 objfile_name (objfile), entry_addr - section->buffer,
3253 plongest (bytes_read + entry_length),
3254 pulongest (section->size));
3255 return;
3256 }
3257
3258 /* The version number. */
3259 const uint16_t version = read_2_bytes (abfd, addr);
3260 addr += 2;
3261 if (version != 2)
3262 {
3263 warning (_("Section .debug_aranges in %s entry at offset %zu "
3264 "has unsupported version %d, ignoring .debug_aranges."),
3265 objfile_name (objfile), entry_addr - section->buffer,
3266 version);
3267 return;
3268 }
3269
3270 const uint64_t debug_info_offset
3271 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3272 addr += offset_size;
3273 const auto per_cu_it
3274 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3275 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "debug_info_offset %s does not exists, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 pulongest (debug_info_offset));
3282 return;
3283 }
3284 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3285
3286 const uint8_t address_size = *addr++;
3287 if (address_size < 1 || address_size > 8)
3288 {
3289 warning (_("Section .debug_aranges in %s entry at offset %zu "
3290 "address_size %u is invalid, ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 address_size);
3293 return;
3294 }
3295
3296 const uint8_t segment_selector_size = *addr++;
3297 if (segment_selector_size != 0)
3298 {
3299 warning (_("Section .debug_aranges in %s entry at offset %zu "
3300 "segment_selector_size %u is not supported, "
3301 "ignoring .debug_aranges."),
3302 objfile_name (objfile), entry_addr - section->buffer,
3303 segment_selector_size);
3304 return;
3305 }
3306
3307 /* Must pad to an alignment boundary that is twice the address
3308 size. It is undocumented by the DWARF standard but GCC does
3309 use it. */
3310 for (size_t padding = ((-(addr - section->buffer))
3311 & (2 * address_size - 1));
3312 padding > 0; padding--)
3313 if (*addr++ != 0)
3314 {
3315 warning (_("Section .debug_aranges in %s entry at offset %zu "
3316 "padding is not zero, ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320
3321 for (;;)
3322 {
3323 if (addr + 2 * address_size > entry_end)
3324 {
3325 warning (_("Section .debug_aranges in %s entry at offset %zu "
3326 "address list is not properly terminated, "
3327 "ignoring .debug_aranges."),
3328 objfile_name (objfile), entry_addr - section->buffer);
3329 return;
3330 }
3331 ULONGEST start = extract_unsigned_integer (addr, address_size,
3332 dwarf5_byte_order);
3333 addr += address_size;
3334 ULONGEST length = extract_unsigned_integer (addr, address_size,
3335 dwarf5_byte_order);
3336 addr += address_size;
3337 if (start == 0 && length == 0)
3338 break;
3339 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3340 {
3341 /* Symbol was eliminated due to a COMDAT group. */
3342 continue;
3343 }
3344 ULONGEST end = start + length;
3345 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3346 - baseaddr);
3347 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3348 - baseaddr);
3349 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3350 }
3351 }
3352
3353 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3354 &objfile->objfile_obstack);
3355 }
3356
3357 /* Find a slot in the mapped index INDEX for the object named NAME.
3358 If NAME is found, set *VEC_OUT to point to the CU vector in the
3359 constant pool and return true. If NAME cannot be found, return
3360 false. */
3361
3362 static bool
3363 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3364 offset_type **vec_out)
3365 {
3366 offset_type hash;
3367 offset_type slot, step;
3368 int (*cmp) (const char *, const char *);
3369
3370 gdb::unique_xmalloc_ptr<char> without_params;
3371 if (current_language->la_language == language_cplus
3372 || current_language->la_language == language_fortran
3373 || current_language->la_language == language_d)
3374 {
3375 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3376 not contain any. */
3377
3378 if (strchr (name, '(') != NULL)
3379 {
3380 without_params = cp_remove_params (name);
3381
3382 if (without_params != NULL)
3383 name = without_params.get ();
3384 }
3385 }
3386
3387 /* Index version 4 did not support case insensitive searches. But the
3388 indices for case insensitive languages are built in lowercase, therefore
3389 simulate our NAME being searched is also lowercased. */
3390 hash = mapped_index_string_hash ((index->version == 4
3391 && case_sensitivity == case_sensitive_off
3392 ? 5 : index->version),
3393 name);
3394
3395 slot = hash & (index->symbol_table.size () - 1);
3396 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3397 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3398
3399 for (;;)
3400 {
3401 const char *str;
3402
3403 const auto &bucket = index->symbol_table[slot];
3404 if (bucket.name == 0 && bucket.vec == 0)
3405 return false;
3406
3407 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3408 if (!cmp (name, str))
3409 {
3410 *vec_out = (offset_type *) (index->constant_pool
3411 + MAYBE_SWAP (bucket.vec));
3412 return true;
3413 }
3414
3415 slot = (slot + step) & (index->symbol_table.size () - 1);
3416 }
3417 }
3418
3419 /* A helper function that reads the .gdb_index from BUFFER and fills
3420 in MAP. FILENAME is the name of the file containing the data;
3421 it is used for error reporting. DEPRECATED_OK is true if it is
3422 ok to use deprecated sections.
3423
3424 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3425 out parameters that are filled in with information about the CU and
3426 TU lists in the section.
3427
3428 Returns true if all went well, false otherwise. */
3429
3430 static bool
3431 read_gdb_index_from_buffer (struct objfile *objfile,
3432 const char *filename,
3433 bool deprecated_ok,
3434 gdb::array_view<const gdb_byte> buffer,
3435 struct mapped_index *map,
3436 const gdb_byte **cu_list,
3437 offset_type *cu_list_elements,
3438 const gdb_byte **types_list,
3439 offset_type *types_list_elements)
3440 {
3441 const gdb_byte *addr = &buffer[0];
3442
3443 /* Version check. */
3444 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3445 /* Versions earlier than 3 emitted every copy of a psymbol. This
3446 causes the index to behave very poorly for certain requests. Version 3
3447 contained incomplete addrmap. So, it seems better to just ignore such
3448 indices. */
3449 if (version < 4)
3450 {
3451 static int warning_printed = 0;
3452 if (!warning_printed)
3453 {
3454 warning (_("Skipping obsolete .gdb_index section in %s."),
3455 filename);
3456 warning_printed = 1;
3457 }
3458 return 0;
3459 }
3460 /* Index version 4 uses a different hash function than index version
3461 5 and later.
3462
3463 Versions earlier than 6 did not emit psymbols for inlined
3464 functions. Using these files will cause GDB not to be able to
3465 set breakpoints on inlined functions by name, so we ignore these
3466 indices unless the user has done
3467 "set use-deprecated-index-sections on". */
3468 if (version < 6 && !deprecated_ok)
3469 {
3470 static int warning_printed = 0;
3471 if (!warning_printed)
3472 {
3473 warning (_("\
3474 Skipping deprecated .gdb_index section in %s.\n\
3475 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3476 to use the section anyway."),
3477 filename);
3478 warning_printed = 1;
3479 }
3480 return 0;
3481 }
3482 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3483 of the TU (for symbols coming from TUs),
3484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3485 Plus gold-generated indices can have duplicate entries for global symbols,
3486 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3487 These are just performance bugs, and we can't distinguish gdb-generated
3488 indices from gold-generated ones, so issue no warning here. */
3489
3490 /* Indexes with higher version than the one supported by GDB may be no
3491 longer backward compatible. */
3492 if (version > 8)
3493 return 0;
3494
3495 map->version = version;
3496
3497 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3498
3499 int i = 0;
3500 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3501 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3502 / 8);
3503 ++i;
3504
3505 *types_list = addr + MAYBE_SWAP (metadata[i]);
3506 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3507 - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3512 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3513 map->address_table
3514 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3515 ++i;
3516
3517 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->symbol_table
3520 = gdb::array_view<mapped_index::symbol_table_slot>
3521 ((mapped_index::symbol_table_slot *) symbol_table,
3522 (mapped_index::symbol_table_slot *) symbol_table_end);
3523
3524 ++i;
3525 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3526
3527 return 1;
3528 }
3529
3530 /* Callback types for dwarf2_read_gdb_index. */
3531
3532 typedef gdb::function_view
3533 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3534 get_gdb_index_contents_ftype;
3535 typedef gdb::function_view
3536 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3537 get_gdb_index_contents_dwz_ftype;
3538
3539 /* Read .gdb_index. If everything went ok, initialize the "quick"
3540 elements of all the CUs and return 1. Otherwise, return 0. */
3541
3542 static int
3543 dwarf2_read_gdb_index
3544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3545 get_gdb_index_contents_ftype get_gdb_index_contents,
3546 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3547 {
3548 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3549 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3550 struct dwz_file *dwz;
3551 struct objfile *objfile = dwarf2_per_objfile->objfile;
3552
3553 gdb::array_view<const gdb_byte> main_index_contents
3554 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3555
3556 if (main_index_contents.empty ())
3557 return 0;
3558
3559 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3560 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3561 use_deprecated_index_sections,
3562 main_index_contents, map.get (), &cu_list,
3563 &cu_list_elements, &types_list,
3564 &types_list_elements))
3565 return 0;
3566
3567 /* Don't use the index if it's empty. */
3568 if (map->symbol_table.empty ())
3569 return 0;
3570
3571 /* If there is a .dwz file, read it so we can get its CU list as
3572 well. */
3573 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3574 if (dwz != NULL)
3575 {
3576 struct mapped_index dwz_map;
3577 const gdb_byte *dwz_types_ignore;
3578 offset_type dwz_types_elements_ignore;
3579
3580 gdb::array_view<const gdb_byte> dwz_index_content
3581 = get_gdb_index_contents_dwz (objfile, dwz);
3582
3583 if (dwz_index_content.empty ())
3584 return 0;
3585
3586 if (!read_gdb_index_from_buffer (objfile,
3587 bfd_get_filename (dwz->dwz_bfd), 1,
3588 dwz_index_content, &dwz_map,
3589 &dwz_list, &dwz_list_elements,
3590 &dwz_types_ignore,
3591 &dwz_types_elements_ignore))
3592 {
3593 warning (_("could not read '.gdb_index' section from %s; skipping"),
3594 bfd_get_filename (dwz->dwz_bfd));
3595 return 0;
3596 }
3597 }
3598
3599 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3600 dwz_list, dwz_list_elements);
3601
3602 if (types_list_elements)
3603 {
3604 struct dwarf2_section_info *section;
3605
3606 /* We can only handle a single .debug_types when we have an
3607 index. */
3608 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3609 return 0;
3610
3611 section = VEC_index (dwarf2_section_info_def,
3612 dwarf2_per_objfile->types, 0);
3613
3614 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3615 types_list, types_list_elements);
3616 }
3617
3618 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3619
3620 dwarf2_per_objfile->index_table = std::move (map);
3621 dwarf2_per_objfile->using_index = 1;
3622 dwarf2_per_objfile->quick_file_names_table =
3623 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3624
3625 return 1;
3626 }
3627
3628 /* die_reader_func for dw2_get_file_names. */
3629
3630 static void
3631 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3632 const gdb_byte *info_ptr,
3633 struct die_info *comp_unit_die,
3634 int has_children,
3635 void *data)
3636 {
3637 struct dwarf2_cu *cu = reader->cu;
3638 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3639 struct dwarf2_per_objfile *dwarf2_per_objfile
3640 = cu->per_cu->dwarf2_per_objfile;
3641 struct objfile *objfile = dwarf2_per_objfile->objfile;
3642 struct dwarf2_per_cu_data *lh_cu;
3643 struct attribute *attr;
3644 int i;
3645 void **slot;
3646 struct quick_file_names *qfn;
3647
3648 gdb_assert (! this_cu->is_debug_types);
3649
3650 /* Our callers never want to match partial units -- instead they
3651 will match the enclosing full CU. */
3652 if (comp_unit_die->tag == DW_TAG_partial_unit)
3653 {
3654 this_cu->v.quick->no_file_data = 1;
3655 return;
3656 }
3657
3658 lh_cu = this_cu;
3659 slot = NULL;
3660
3661 line_header_up lh;
3662 sect_offset line_offset {};
3663
3664 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3665 if (attr)
3666 {
3667 struct quick_file_names find_entry;
3668
3669 line_offset = (sect_offset) DW_UNSND (attr);
3670
3671 /* We may have already read in this line header (TU line header sharing).
3672 If we have we're done. */
3673 find_entry.hash.dwo_unit = cu->dwo_unit;
3674 find_entry.hash.line_sect_off = line_offset;
3675 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3676 &find_entry, INSERT);
3677 if (*slot != NULL)
3678 {
3679 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3680 return;
3681 }
3682
3683 lh = dwarf_decode_line_header (line_offset, cu);
3684 }
3685 if (lh == NULL)
3686 {
3687 lh_cu->v.quick->no_file_data = 1;
3688 return;
3689 }
3690
3691 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3692 qfn->hash.dwo_unit = cu->dwo_unit;
3693 qfn->hash.line_sect_off = line_offset;
3694 gdb_assert (slot != NULL);
3695 *slot = qfn;
3696
3697 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3698
3699 qfn->num_file_names = lh->file_names.size ();
3700 qfn->file_names =
3701 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3702 for (i = 0; i < lh->file_names.size (); ++i)
3703 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3704 qfn->real_names = NULL;
3705
3706 lh_cu->v.quick->file_names = qfn;
3707 }
3708
3709 /* A helper for the "quick" functions which attempts to read the line
3710 table for THIS_CU. */
3711
3712 static struct quick_file_names *
3713 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3714 {
3715 /* This should never be called for TUs. */
3716 gdb_assert (! this_cu->is_debug_types);
3717 /* Nor type unit groups. */
3718 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3719
3720 if (this_cu->v.quick->file_names != NULL)
3721 return this_cu->v.quick->file_names;
3722 /* If we know there is no line data, no point in looking again. */
3723 if (this_cu->v.quick->no_file_data)
3724 return NULL;
3725
3726 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3727
3728 if (this_cu->v.quick->no_file_data)
3729 return NULL;
3730 return this_cu->v.quick->file_names;
3731 }
3732
3733 /* A helper for the "quick" functions which computes and caches the
3734 real path for a given file name from the line table. */
3735
3736 static const char *
3737 dw2_get_real_path (struct objfile *objfile,
3738 struct quick_file_names *qfn, int index)
3739 {
3740 if (qfn->real_names == NULL)
3741 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3742 qfn->num_file_names, const char *);
3743
3744 if (qfn->real_names[index] == NULL)
3745 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3746
3747 return qfn->real_names[index];
3748 }
3749
3750 static struct symtab *
3751 dw2_find_last_source_symtab (struct objfile *objfile)
3752 {
3753 struct dwarf2_per_objfile *dwarf2_per_objfile
3754 = get_dwarf2_per_objfile (objfile);
3755 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3756 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3757
3758 if (cust == NULL)
3759 return NULL;
3760
3761 return compunit_primary_filetab (cust);
3762 }
3763
3764 /* Traversal function for dw2_forget_cached_source_info. */
3765
3766 static int
3767 dw2_free_cached_file_names (void **slot, void *info)
3768 {
3769 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3770
3771 if (file_data->real_names)
3772 {
3773 int i;
3774
3775 for (i = 0; i < file_data->num_file_names; ++i)
3776 {
3777 xfree ((void*) file_data->real_names[i]);
3778 file_data->real_names[i] = NULL;
3779 }
3780 }
3781
3782 return 1;
3783 }
3784
3785 static void
3786 dw2_forget_cached_source_info (struct objfile *objfile)
3787 {
3788 struct dwarf2_per_objfile *dwarf2_per_objfile
3789 = get_dwarf2_per_objfile (objfile);
3790
3791 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3792 dw2_free_cached_file_names, NULL);
3793 }
3794
3795 /* Helper function for dw2_map_symtabs_matching_filename that expands
3796 the symtabs and calls the iterator. */
3797
3798 static int
3799 dw2_map_expand_apply (struct objfile *objfile,
3800 struct dwarf2_per_cu_data *per_cu,
3801 const char *name, const char *real_path,
3802 gdb::function_view<bool (symtab *)> callback)
3803 {
3804 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3805
3806 /* Don't visit already-expanded CUs. */
3807 if (per_cu->v.quick->compunit_symtab)
3808 return 0;
3809
3810 /* This may expand more than one symtab, and we want to iterate over
3811 all of them. */
3812 dw2_instantiate_symtab (per_cu, false);
3813
3814 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3815 last_made, callback);
3816 }
3817
3818 /* Implementation of the map_symtabs_matching_filename method. */
3819
3820 static bool
3821 dw2_map_symtabs_matching_filename
3822 (struct objfile *objfile, const char *name, const char *real_path,
3823 gdb::function_view<bool (symtab *)> callback)
3824 {
3825 const char *name_basename = lbasename (name);
3826 struct dwarf2_per_objfile *dwarf2_per_objfile
3827 = get_dwarf2_per_objfile (objfile);
3828
3829 /* The rule is CUs specify all the files, including those used by
3830 any TU, so there's no need to scan TUs here. */
3831
3832 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3833 {
3834 /* We only need to look at symtabs not already expanded. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 continue;
3837
3838 quick_file_names *file_data = dw2_get_file_names (per_cu);
3839 if (file_data == NULL)
3840 continue;
3841
3842 for (int j = 0; j < file_data->num_file_names; ++j)
3843 {
3844 const char *this_name = file_data->file_names[j];
3845 const char *this_real_name;
3846
3847 if (compare_filenames_for_search (this_name, name))
3848 {
3849 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3850 callback))
3851 return true;
3852 continue;
3853 }
3854
3855 /* Before we invoke realpath, which can get expensive when many
3856 files are involved, do a quick comparison of the basenames. */
3857 if (! basenames_may_differ
3858 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (compare_filenames_for_search (this_real_name, name))
3863 {
3864 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3865 callback))
3866 return true;
3867 continue;
3868 }
3869
3870 if (real_path != NULL)
3871 {
3872 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3873 gdb_assert (IS_ABSOLUTE_PATH (name));
3874 if (this_real_name != NULL
3875 && FILENAME_CMP (real_path, this_real_name) == 0)
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882 }
3883 }
3884 }
3885
3886 return false;
3887 }
3888
3889 /* Struct used to manage iterating over all CUs looking for a symbol. */
3890
3891 struct dw2_symtab_iterator
3892 {
3893 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3894 struct dwarf2_per_objfile *dwarf2_per_objfile;
3895 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3896 int want_specific_block;
3897 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3898 Unused if !WANT_SPECIFIC_BLOCK. */
3899 int block_index;
3900 /* The kind of symbol we're looking for. */
3901 domain_enum domain;
3902 /* The list of CUs from the index entry of the symbol,
3903 or NULL if not found. */
3904 offset_type *vec;
3905 /* The next element in VEC to look at. */
3906 int next;
3907 /* The number of elements in VEC, or zero if there is no match. */
3908 int length;
3909 /* Have we seen a global version of the symbol?
3910 If so we can ignore all further global instances.
3911 This is to work around gold/15646, inefficient gold-generated
3912 indices. */
3913 int global_seen;
3914 };
3915
3916 /* Initialize the index symtab iterator ITER.
3917 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3918 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3919
3920 static void
3921 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3922 struct dwarf2_per_objfile *dwarf2_per_objfile,
3923 int want_specific_block,
3924 int block_index,
3925 domain_enum domain,
3926 const char *name)
3927 {
3928 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3929 iter->want_specific_block = want_specific_block;
3930 iter->block_index = block_index;
3931 iter->domain = domain;
3932 iter->next = 0;
3933 iter->global_seen = 0;
3934
3935 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3936
3937 /* index is NULL if OBJF_READNOW. */
3938 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3939 iter->length = MAYBE_SWAP (*iter->vec);
3940 else
3941 {
3942 iter->vec = NULL;
3943 iter->length = 0;
3944 }
3945 }
3946
3947 /* Return the next matching CU or NULL if there are no more. */
3948
3949 static struct dwarf2_per_cu_data *
3950 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3951 {
3952 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3953
3954 for ( ; iter->next < iter->length; ++iter->next)
3955 {
3956 offset_type cu_index_and_attrs =
3957 MAYBE_SWAP (iter->vec[iter->next + 1]);
3958 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3959 int want_static = iter->block_index != GLOBAL_BLOCK;
3960 /* This value is only valid for index versions >= 7. */
3961 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3962 gdb_index_symbol_kind symbol_kind =
3963 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3968 int attrs_valid =
3969 (dwarf2_per_objfile->index_table->version >= 7
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971
3972 /* Don't crash on bad data. */
3973 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3974 + dwarf2_per_objfile->all_type_units.size ()))
3975 {
3976 complaint (_(".gdb_index entry has bad CU index"
3977 " [in module %s]"),
3978 objfile_name (dwarf2_per_objfile->objfile));
3979 continue;
3980 }
3981
3982 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3983
3984 /* Skip if already read in. */
3985 if (per_cu->v.quick->compunit_symtab)
3986 continue;
3987
3988 /* Check static vs global. */
3989 if (attrs_valid)
3990 {
3991 if (iter->want_specific_block
3992 && want_static != is_static)
3993 continue;
3994 /* Work around gold/15646. */
3995 if (!is_static && iter->global_seen)
3996 continue;
3997 if (!is_static)
3998 iter->global_seen = 1;
3999 }
4000
4001 /* Only check the symbol's kind if it has one. */
4002 if (attrs_valid)
4003 {
4004 switch (iter->domain)
4005 {
4006 case VAR_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4008 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4009 /* Some types are also in VAR_DOMAIN. */
4010 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4011 continue;
4012 break;
4013 case STRUCT_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 case LABEL_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 ++iter->next;
4027 return per_cu;
4028 }
4029
4030 return NULL;
4031 }
4032
4033 static struct compunit_symtab *
4034 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4035 const char *name, domain_enum domain)
4036 {
4037 struct compunit_symtab *stab_best = NULL;
4038 struct dwarf2_per_objfile *dwarf2_per_objfile
4039 = get_dwarf2_per_objfile (objfile);
4040
4041 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4042
4043 struct dw2_symtab_iterator iter;
4044 struct dwarf2_per_cu_data *per_cu;
4045
4046 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4047
4048 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4049 {
4050 struct symbol *sym, *with_opaque = NULL;
4051 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4052 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4053 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4054
4055 sym = block_find_symbol (block, name, domain,
4056 block_find_non_opaque_type_preferred,
4057 &with_opaque);
4058
4059 /* Some caution must be observed with overloaded functions
4060 and methods, since the index will not contain any overload
4061 information (but NAME might contain it). */
4062
4063 if (sym != NULL
4064 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4065 return stab;
4066 if (with_opaque != NULL
4067 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4068 stab_best = stab;
4069
4070 /* Keep looking through other CUs. */
4071 }
4072
4073 return stab_best;
4074 }
4075
4076 static void
4077 dw2_print_stats (struct objfile *objfile)
4078 {
4079 struct dwarf2_per_objfile *dwarf2_per_objfile
4080 = get_dwarf2_per_objfile (objfile);
4081 int total = (dwarf2_per_objfile->all_comp_units.size ()
4082 + dwarf2_per_objfile->all_type_units.size ());
4083 int count = 0;
4084
4085 for (int i = 0; i < total; ++i)
4086 {
4087 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4088
4089 if (!per_cu->v.quick->compunit_symtab)
4090 ++count;
4091 }
4092 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4093 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4094 }
4095
4096 /* This dumps minimal information about the index.
4097 It is called via "mt print objfiles".
4098 One use is to verify .gdb_index has been loaded by the
4099 gdb.dwarf2/gdb-index.exp testcase. */
4100
4101 static void
4102 dw2_dump (struct objfile *objfile)
4103 {
4104 struct dwarf2_per_objfile *dwarf2_per_objfile
4105 = get_dwarf2_per_objfile (objfile);
4106
4107 gdb_assert (dwarf2_per_objfile->using_index);
4108 printf_filtered (".gdb_index:");
4109 if (dwarf2_per_objfile->index_table != NULL)
4110 {
4111 printf_filtered (" version %d\n",
4112 dwarf2_per_objfile->index_table->version);
4113 }
4114 else
4115 printf_filtered (" faked for \"readnow\"\n");
4116 printf_filtered ("\n");
4117 }
4118
4119 static void
4120 dw2_expand_symtabs_for_function (struct objfile *objfile,
4121 const char *func_name)
4122 {
4123 struct dwarf2_per_objfile *dwarf2_per_objfile
4124 = get_dwarf2_per_objfile (objfile);
4125
4126 struct dw2_symtab_iterator iter;
4127 struct dwarf2_per_cu_data *per_cu;
4128
4129 /* Note: It doesn't matter what we pass for block_index here. */
4130 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4131 func_name);
4132
4133 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4134 dw2_instantiate_symtab (per_cu, false);
4135
4136 }
4137
4138 static void
4139 dw2_expand_all_symtabs (struct objfile *objfile)
4140 {
4141 struct dwarf2_per_objfile *dwarf2_per_objfile
4142 = get_dwarf2_per_objfile (objfile);
4143 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4144 + dwarf2_per_objfile->all_type_units.size ());
4145
4146 for (int i = 0; i < total_units; ++i)
4147 {
4148 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4149
4150 /* We don't want to directly expand a partial CU, because if we
4151 read it with the wrong language, then assertion failures can
4152 be triggered later on. See PR symtab/23010. So, tell
4153 dw2_instantiate_symtab to skip partial CUs -- any important
4154 partial CU will be read via DW_TAG_imported_unit anyway. */
4155 dw2_instantiate_symtab (per_cu, true);
4156 }
4157 }
4158
4159 static void
4160 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4161 const char *fullname)
4162 {
4163 struct dwarf2_per_objfile *dwarf2_per_objfile
4164 = get_dwarf2_per_objfile (objfile);
4165
4166 /* We don't need to consider type units here.
4167 This is only called for examining code, e.g. expand_line_sal.
4168 There can be an order of magnitude (or more) more type units
4169 than comp units, and we avoid them if we can. */
4170
4171 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4172 {
4173 /* We only need to look at symtabs not already expanded. */
4174 if (per_cu->v.quick->compunit_symtab)
4175 continue;
4176
4177 quick_file_names *file_data = dw2_get_file_names (per_cu);
4178 if (file_data == NULL)
4179 continue;
4180
4181 for (int j = 0; j < file_data->num_file_names; ++j)
4182 {
4183 const char *this_fullname = file_data->file_names[j];
4184
4185 if (filename_cmp (this_fullname, fullname) == 0)
4186 {
4187 dw2_instantiate_symtab (per_cu, false);
4188 break;
4189 }
4190 }
4191 }
4192 }
4193
4194 static void
4195 dw2_map_matching_symbols (struct objfile *objfile,
4196 const char * name, domain_enum domain,
4197 int global,
4198 int (*callback) (struct block *,
4199 struct symbol *, void *),
4200 void *data, symbol_name_match_type match,
4201 symbol_compare_ftype *ordered_compare)
4202 {
4203 /* Currently unimplemented; used for Ada. The function can be called if the
4204 current language is Ada for a non-Ada objfile using GNU index. As Ada
4205 does not look for non-Ada symbols this function should just return. */
4206 }
4207
4208 /* Symbol name matcher for .gdb_index names.
4209
4210 Symbol names in .gdb_index have a few particularities:
4211
4212 - There's no indication of which is the language of each symbol.
4213
4214 Since each language has its own symbol name matching algorithm,
4215 and we don't know which language is the right one, we must match
4216 each symbol against all languages. This would be a potential
4217 performance problem if it were not mitigated by the
4218 mapped_index::name_components lookup table, which significantly
4219 reduces the number of times we need to call into this matcher,
4220 making it a non-issue.
4221
4222 - Symbol names in the index have no overload (parameter)
4223 information. I.e., in C++, "foo(int)" and "foo(long)" both
4224 appear as "foo" in the index, for example.
4225
4226 This means that the lookup names passed to the symbol name
4227 matcher functions must have no parameter information either
4228 because (e.g.) symbol search name "foo" does not match
4229 lookup-name "foo(int)" [while swapping search name for lookup
4230 name would match].
4231 */
4232 class gdb_index_symbol_name_matcher
4233 {
4234 public:
4235 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4236 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4237
4238 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4239 Returns true if any matcher matches. */
4240 bool matches (const char *symbol_name);
4241
4242 private:
4243 /* A reference to the lookup name we're matching against. */
4244 const lookup_name_info &m_lookup_name;
4245
4246 /* A vector holding all the different symbol name matchers, for all
4247 languages. */
4248 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4249 };
4250
4251 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4252 (const lookup_name_info &lookup_name)
4253 : m_lookup_name (lookup_name)
4254 {
4255 /* Prepare the vector of comparison functions upfront, to avoid
4256 doing the same work for each symbol. Care is taken to avoid
4257 matching with the same matcher more than once if/when multiple
4258 languages use the same matcher function. */
4259 auto &matchers = m_symbol_name_matcher_funcs;
4260 matchers.reserve (nr_languages);
4261
4262 matchers.push_back (default_symbol_name_matcher);
4263
4264 for (int i = 0; i < nr_languages; i++)
4265 {
4266 const language_defn *lang = language_def ((enum language) i);
4267 symbol_name_matcher_ftype *name_matcher
4268 = get_symbol_name_matcher (lang, m_lookup_name);
4269
4270 /* Don't insert the same comparison routine more than once.
4271 Note that we do this linear walk instead of a seemingly
4272 cheaper sorted insert, or use a std::set or something like
4273 that, because relative order of function addresses is not
4274 stable. This is not a problem in practice because the number
4275 of supported languages is low, and the cost here is tiny
4276 compared to the number of searches we'll do afterwards using
4277 this object. */
4278 if (name_matcher != default_symbol_name_matcher
4279 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4280 == matchers.end ()))
4281 matchers.push_back (name_matcher);
4282 }
4283 }
4284
4285 bool
4286 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4287 {
4288 for (auto matches_name : m_symbol_name_matcher_funcs)
4289 if (matches_name (symbol_name, m_lookup_name, NULL))
4290 return true;
4291
4292 return false;
4293 }
4294
4295 /* Starting from a search name, return the string that finds the upper
4296 bound of all strings that start with SEARCH_NAME in a sorted name
4297 list. Returns the empty string to indicate that the upper bound is
4298 the end of the list. */
4299
4300 static std::string
4301 make_sort_after_prefix_name (const char *search_name)
4302 {
4303 /* When looking to complete "func", we find the upper bound of all
4304 symbols that start with "func" by looking for where we'd insert
4305 the closest string that would follow "func" in lexicographical
4306 order. Usually, that's "func"-with-last-character-incremented,
4307 i.e. "fund". Mind non-ASCII characters, though. Usually those
4308 will be UTF-8 multi-byte sequences, but we can't be certain.
4309 Especially mind the 0xff character, which is a valid character in
4310 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4311 rule out compilers allowing it in identifiers. Note that
4312 conveniently, strcmp/strcasecmp are specified to compare
4313 characters interpreted as unsigned char. So what we do is treat
4314 the whole string as a base 256 number composed of a sequence of
4315 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4316 to 0, and carries 1 to the following more-significant position.
4317 If the very first character in SEARCH_NAME ends up incremented
4318 and carries/overflows, then the upper bound is the end of the
4319 list. The string after the empty string is also the empty
4320 string.
4321
4322 Some examples of this operation:
4323
4324 SEARCH_NAME => "+1" RESULT
4325
4326 "abc" => "abd"
4327 "ab\xff" => "ac"
4328 "\xff" "a" "\xff" => "\xff" "b"
4329 "\xff" => ""
4330 "\xff\xff" => ""
4331 "" => ""
4332
4333 Then, with these symbols for example:
4334
4335 func
4336 func1
4337 fund
4338
4339 completing "func" looks for symbols between "func" and
4340 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4341 which finds "func" and "func1", but not "fund".
4342
4343 And with:
4344
4345 funcÿ (Latin1 'ÿ' [0xff])
4346 funcÿ1
4347 fund
4348
4349 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4350 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4351
4352 And with:
4353
4354 ÿÿ (Latin1 'ÿ' [0xff])
4355 ÿÿ1
4356
4357 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4358 the end of the list.
4359 */
4360 std::string after = search_name;
4361 while (!after.empty () && (unsigned char) after.back () == 0xff)
4362 after.pop_back ();
4363 if (!after.empty ())
4364 after.back () = (unsigned char) after.back () + 1;
4365 return after;
4366 }
4367
4368 /* See declaration. */
4369
4370 std::pair<std::vector<name_component>::const_iterator,
4371 std::vector<name_component>::const_iterator>
4372 mapped_index_base::find_name_components_bounds
4373 (const lookup_name_info &lookup_name_without_params) const
4374 {
4375 auto *name_cmp
4376 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4377
4378 const char *cplus
4379 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4380
4381 /* Comparison function object for lower_bound that matches against a
4382 given symbol name. */
4383 auto lookup_compare_lower = [&] (const name_component &elem,
4384 const char *name)
4385 {
4386 const char *elem_qualified = this->symbol_name_at (elem.idx);
4387 const char *elem_name = elem_qualified + elem.name_offset;
4388 return name_cmp (elem_name, name) < 0;
4389 };
4390
4391 /* Comparison function object for upper_bound that matches against a
4392 given symbol name. */
4393 auto lookup_compare_upper = [&] (const char *name,
4394 const name_component &elem)
4395 {
4396 const char *elem_qualified = this->symbol_name_at (elem.idx);
4397 const char *elem_name = elem_qualified + elem.name_offset;
4398 return name_cmp (name, elem_name) < 0;
4399 };
4400
4401 auto begin = this->name_components.begin ();
4402 auto end = this->name_components.end ();
4403
4404 /* Find the lower bound. */
4405 auto lower = [&] ()
4406 {
4407 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4408 return begin;
4409 else
4410 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4411 } ();
4412
4413 /* Find the upper bound. */
4414 auto upper = [&] ()
4415 {
4416 if (lookup_name_without_params.completion_mode ())
4417 {
4418 /* In completion mode, we want UPPER to point past all
4419 symbols names that have the same prefix. I.e., with
4420 these symbols, and completing "func":
4421
4422 function << lower bound
4423 function1
4424 other_function << upper bound
4425
4426 We find the upper bound by looking for the insertion
4427 point of "func"-with-last-character-incremented,
4428 i.e. "fund". */
4429 std::string after = make_sort_after_prefix_name (cplus);
4430 if (after.empty ())
4431 return end;
4432 return std::lower_bound (lower, end, after.c_str (),
4433 lookup_compare_lower);
4434 }
4435 else
4436 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4437 } ();
4438
4439 return {lower, upper};
4440 }
4441
4442 /* See declaration. */
4443
4444 void
4445 mapped_index_base::build_name_components ()
4446 {
4447 if (!this->name_components.empty ())
4448 return;
4449
4450 this->name_components_casing = case_sensitivity;
4451 auto *name_cmp
4452 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4453
4454 /* The code below only knows how to break apart components of C++
4455 symbol names (and other languages that use '::' as
4456 namespace/module separator). If we add support for wild matching
4457 to some language that uses some other operator (E.g., Ada, Go and
4458 D use '.'), then we'll need to try splitting the symbol name
4459 according to that language too. Note that Ada does support wild
4460 matching, but doesn't currently support .gdb_index. */
4461 auto count = this->symbol_name_count ();
4462 for (offset_type idx = 0; idx < count; idx++)
4463 {
4464 if (this->symbol_name_slot_invalid (idx))
4465 continue;
4466
4467 const char *name = this->symbol_name_at (idx);
4468
4469 /* Add each name component to the name component table. */
4470 unsigned int previous_len = 0;
4471 for (unsigned int current_len = cp_find_first_component (name);
4472 name[current_len] != '\0';
4473 current_len += cp_find_first_component (name + current_len))
4474 {
4475 gdb_assert (name[current_len] == ':');
4476 this->name_components.push_back ({previous_len, idx});
4477 /* Skip the '::'. */
4478 current_len += 2;
4479 previous_len = current_len;
4480 }
4481 this->name_components.push_back ({previous_len, idx});
4482 }
4483
4484 /* Sort name_components elements by name. */
4485 auto name_comp_compare = [&] (const name_component &left,
4486 const name_component &right)
4487 {
4488 const char *left_qualified = this->symbol_name_at (left.idx);
4489 const char *right_qualified = this->symbol_name_at (right.idx);
4490
4491 const char *left_name = left_qualified + left.name_offset;
4492 const char *right_name = right_qualified + right.name_offset;
4493
4494 return name_cmp (left_name, right_name) < 0;
4495 };
4496
4497 std::sort (this->name_components.begin (),
4498 this->name_components.end (),
4499 name_comp_compare);
4500 }
4501
4502 /* Helper for dw2_expand_symtabs_matching that works with a
4503 mapped_index_base instead of the containing objfile. This is split
4504 to a separate function in order to be able to unit test the
4505 name_components matching using a mock mapped_index_base. For each
4506 symbol name that matches, calls MATCH_CALLBACK, passing it the
4507 symbol's index in the mapped_index_base symbol table. */
4508
4509 static void
4510 dw2_expand_symtabs_matching_symbol
4511 (mapped_index_base &index,
4512 const lookup_name_info &lookup_name_in,
4513 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4514 enum search_domain kind,
4515 gdb::function_view<void (offset_type)> match_callback)
4516 {
4517 lookup_name_info lookup_name_without_params
4518 = lookup_name_in.make_ignore_params ();
4519 gdb_index_symbol_name_matcher lookup_name_matcher
4520 (lookup_name_without_params);
4521
4522 /* Build the symbol name component sorted vector, if we haven't
4523 yet. */
4524 index.build_name_components ();
4525
4526 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4527
4528 /* Now for each symbol name in range, check to see if we have a name
4529 match, and if so, call the MATCH_CALLBACK callback. */
4530
4531 /* The same symbol may appear more than once in the range though.
4532 E.g., if we're looking for symbols that complete "w", and we have
4533 a symbol named "w1::w2", we'll find the two name components for
4534 that same symbol in the range. To be sure we only call the
4535 callback once per symbol, we first collect the symbol name
4536 indexes that matched in a temporary vector and ignore
4537 duplicates. */
4538 std::vector<offset_type> matches;
4539 matches.reserve (std::distance (bounds.first, bounds.second));
4540
4541 for (; bounds.first != bounds.second; ++bounds.first)
4542 {
4543 const char *qualified = index.symbol_name_at (bounds.first->idx);
4544
4545 if (!lookup_name_matcher.matches (qualified)
4546 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4547 continue;
4548
4549 matches.push_back (bounds.first->idx);
4550 }
4551
4552 std::sort (matches.begin (), matches.end ());
4553
4554 /* Finally call the callback, once per match. */
4555 ULONGEST prev = -1;
4556 for (offset_type idx : matches)
4557 {
4558 if (prev != idx)
4559 {
4560 match_callback (idx);
4561 prev = idx;
4562 }
4563 }
4564
4565 /* Above we use a type wider than idx's for 'prev', since 0 and
4566 (offset_type)-1 are both possible values. */
4567 static_assert (sizeof (prev) > sizeof (offset_type), "");
4568 }
4569
4570 #if GDB_SELF_TEST
4571
4572 namespace selftests { namespace dw2_expand_symtabs_matching {
4573
4574 /* A mock .gdb_index/.debug_names-like name index table, enough to
4575 exercise dw2_expand_symtabs_matching_symbol, which works with the
4576 mapped_index_base interface. Builds an index from the symbol list
4577 passed as parameter to the constructor. */
4578 class mock_mapped_index : public mapped_index_base
4579 {
4580 public:
4581 mock_mapped_index (gdb::array_view<const char *> symbols)
4582 : m_symbol_table (symbols)
4583 {}
4584
4585 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4586
4587 /* Return the number of names in the symbol table. */
4588 size_t symbol_name_count () const override
4589 {
4590 return m_symbol_table.size ();
4591 }
4592
4593 /* Get the name of the symbol at IDX in the symbol table. */
4594 const char *symbol_name_at (offset_type idx) const override
4595 {
4596 return m_symbol_table[idx];
4597 }
4598
4599 private:
4600 gdb::array_view<const char *> m_symbol_table;
4601 };
4602
4603 /* Convenience function that converts a NULL pointer to a "<null>"
4604 string, to pass to print routines. */
4605
4606 static const char *
4607 string_or_null (const char *str)
4608 {
4609 return str != NULL ? str : "<null>";
4610 }
4611
4612 /* Check if a lookup_name_info built from
4613 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4614 index. EXPECTED_LIST is the list of expected matches, in expected
4615 matching order. If no match expected, then an empty list is
4616 specified. Returns true on success. On failure prints a warning
4617 indicating the file:line that failed, and returns false. */
4618
4619 static bool
4620 check_match (const char *file, int line,
4621 mock_mapped_index &mock_index,
4622 const char *name, symbol_name_match_type match_type,
4623 bool completion_mode,
4624 std::initializer_list<const char *> expected_list)
4625 {
4626 lookup_name_info lookup_name (name, match_type, completion_mode);
4627
4628 bool matched = true;
4629
4630 auto mismatch = [&] (const char *expected_str,
4631 const char *got)
4632 {
4633 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4634 "expected=\"%s\", got=\"%s\"\n"),
4635 file, line,
4636 (match_type == symbol_name_match_type::FULL
4637 ? "FULL" : "WILD"),
4638 name, string_or_null (expected_str), string_or_null (got));
4639 matched = false;
4640 };
4641
4642 auto expected_it = expected_list.begin ();
4643 auto expected_end = expected_list.end ();
4644
4645 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4646 NULL, ALL_DOMAIN,
4647 [&] (offset_type idx)
4648 {
4649 const char *matched_name = mock_index.symbol_name_at (idx);
4650 const char *expected_str
4651 = expected_it == expected_end ? NULL : *expected_it++;
4652
4653 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4654 mismatch (expected_str, matched_name);
4655 });
4656
4657 const char *expected_str
4658 = expected_it == expected_end ? NULL : *expected_it++;
4659 if (expected_str != NULL)
4660 mismatch (expected_str, NULL);
4661
4662 return matched;
4663 }
4664
4665 /* The symbols added to the mock mapped_index for testing (in
4666 canonical form). */
4667 static const char *test_symbols[] = {
4668 "function",
4669 "std::bar",
4670 "std::zfunction",
4671 "std::zfunction2",
4672 "w1::w2",
4673 "ns::foo<char*>",
4674 "ns::foo<int>",
4675 "ns::foo<long>",
4676 "ns2::tmpl<int>::foo2",
4677 "(anonymous namespace)::A::B::C",
4678
4679 /* These are used to check that the increment-last-char in the
4680 matching algorithm for completion doesn't match "t1_fund" when
4681 completing "t1_func". */
4682 "t1_func",
4683 "t1_func1",
4684 "t1_fund",
4685 "t1_fund1",
4686
4687 /* A UTF-8 name with multi-byte sequences to make sure that
4688 cp-name-parser understands this as a single identifier ("função"
4689 is "function" in PT). */
4690 u8"u8função",
4691
4692 /* \377 (0xff) is Latin1 'ÿ'. */
4693 "yfunc\377",
4694
4695 /* \377 (0xff) is Latin1 'ÿ'. */
4696 "\377",
4697 "\377\377123",
4698
4699 /* A name with all sorts of complications. Starts with "z" to make
4700 it easier for the completion tests below. */
4701 #define Z_SYM_NAME \
4702 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4703 "::tuple<(anonymous namespace)::ui*, " \
4704 "std::default_delete<(anonymous namespace)::ui>, void>"
4705
4706 Z_SYM_NAME
4707 };
4708
4709 /* Returns true if the mapped_index_base::find_name_component_bounds
4710 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4711 in completion mode. */
4712
4713 static bool
4714 check_find_bounds_finds (mapped_index_base &index,
4715 const char *search_name,
4716 gdb::array_view<const char *> expected_syms)
4717 {
4718 lookup_name_info lookup_name (search_name,
4719 symbol_name_match_type::FULL, true);
4720
4721 auto bounds = index.find_name_components_bounds (lookup_name);
4722
4723 size_t distance = std::distance (bounds.first, bounds.second);
4724 if (distance != expected_syms.size ())
4725 return false;
4726
4727 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4728 {
4729 auto nc_elem = bounds.first + exp_elem;
4730 const char *qualified = index.symbol_name_at (nc_elem->idx);
4731 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4732 return false;
4733 }
4734
4735 return true;
4736 }
4737
4738 /* Test the lower-level mapped_index::find_name_component_bounds
4739 method. */
4740
4741 static void
4742 test_mapped_index_find_name_component_bounds ()
4743 {
4744 mock_mapped_index mock_index (test_symbols);
4745
4746 mock_index.build_name_components ();
4747
4748 /* Test the lower-level mapped_index::find_name_component_bounds
4749 method in completion mode. */
4750 {
4751 static const char *expected_syms[] = {
4752 "t1_func",
4753 "t1_func1",
4754 };
4755
4756 SELF_CHECK (check_find_bounds_finds (mock_index,
4757 "t1_func", expected_syms));
4758 }
4759
4760 /* Check that the increment-last-char in the name matching algorithm
4761 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4762 {
4763 static const char *expected_syms1[] = {
4764 "\377",
4765 "\377\377123",
4766 };
4767 SELF_CHECK (check_find_bounds_finds (mock_index,
4768 "\377", expected_syms1));
4769
4770 static const char *expected_syms2[] = {
4771 "\377\377123",
4772 };
4773 SELF_CHECK (check_find_bounds_finds (mock_index,
4774 "\377\377", expected_syms2));
4775 }
4776 }
4777
4778 /* Test dw2_expand_symtabs_matching_symbol. */
4779
4780 static void
4781 test_dw2_expand_symtabs_matching_symbol ()
4782 {
4783 mock_mapped_index mock_index (test_symbols);
4784
4785 /* We let all tests run until the end even if some fails, for debug
4786 convenience. */
4787 bool any_mismatch = false;
4788
4789 /* Create the expected symbols list (an initializer_list). Needed
4790 because lists have commas, and we need to pass them to CHECK,
4791 which is a macro. */
4792 #define EXPECT(...) { __VA_ARGS__ }
4793
4794 /* Wrapper for check_match that passes down the current
4795 __FILE__/__LINE__. */
4796 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4797 any_mismatch |= !check_match (__FILE__, __LINE__, \
4798 mock_index, \
4799 NAME, MATCH_TYPE, COMPLETION_MODE, \
4800 EXPECTED_LIST)
4801
4802 /* Identity checks. */
4803 for (const char *sym : test_symbols)
4804 {
4805 /* Should be able to match all existing symbols. */
4806 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4807 EXPECT (sym));
4808
4809 /* Should be able to match all existing symbols with
4810 parameters. */
4811 std::string with_params = std::string (sym) + "(int)";
4812 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 EXPECT (sym));
4814
4815 /* Should be able to match all existing symbols with
4816 parameters and qualifiers. */
4817 with_params = std::string (sym) + " ( int ) const";
4818 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4819 EXPECT (sym));
4820
4821 /* This should really find sym, but cp-name-parser.y doesn't
4822 know about lvalue/rvalue qualifiers yet. */
4823 with_params = std::string (sym) + " ( int ) &&";
4824 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4825 {});
4826 }
4827
4828 /* Check that the name matching algorithm for completion doesn't get
4829 confused with Latin1 'ÿ' / 0xff. */
4830 {
4831 static const char str[] = "\377";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("\377", "\377\377123"));
4834 }
4835
4836 /* Check that the increment-last-char in the matching algorithm for
4837 completion doesn't match "t1_fund" when completing "t1_func". */
4838 {
4839 static const char str[] = "t1_func";
4840 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4841 EXPECT ("t1_func", "t1_func1"));
4842 }
4843
4844 /* Check that completion mode works at each prefix of the expected
4845 symbol name. */
4846 {
4847 static const char str[] = "function(int)";
4848 size_t len = strlen (str);
4849 std::string lookup;
4850
4851 for (size_t i = 1; i < len; i++)
4852 {
4853 lookup.assign (str, i);
4854 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4855 EXPECT ("function"));
4856 }
4857 }
4858
4859 /* While "w" is a prefix of both components, the match function
4860 should still only be called once. */
4861 {
4862 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4863 EXPECT ("w1::w2"));
4864 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4865 EXPECT ("w1::w2"));
4866 }
4867
4868 /* Same, with a "complicated" symbol. */
4869 {
4870 static const char str[] = Z_SYM_NAME;
4871 size_t len = strlen (str);
4872 std::string lookup;
4873
4874 for (size_t i = 1; i < len; i++)
4875 {
4876 lookup.assign (str, i);
4877 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4878 EXPECT (Z_SYM_NAME));
4879 }
4880 }
4881
4882 /* In FULL mode, an incomplete symbol doesn't match. */
4883 {
4884 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4885 {});
4886 }
4887
4888 /* A complete symbol with parameters matches any overload, since the
4889 index has no overload info. */
4890 {
4891 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4892 EXPECT ("std::zfunction", "std::zfunction2"));
4893 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4894 EXPECT ("std::zfunction", "std::zfunction2"));
4895 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4896 EXPECT ("std::zfunction", "std::zfunction2"));
4897 }
4898
4899 /* Check that whitespace is ignored appropriately. A symbol with a
4900 template argument list. */
4901 {
4902 static const char expected[] = "ns::foo<int>";
4903 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4904 EXPECT (expected));
4905 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4906 EXPECT (expected));
4907 }
4908
4909 /* Check that whitespace is ignored appropriately. A symbol with a
4910 template argument list that includes a pointer. */
4911 {
4912 static const char expected[] = "ns::foo<char*>";
4913 /* Try both completion and non-completion modes. */
4914 static const bool completion_mode[2] = {false, true};
4915 for (size_t i = 0; i < 2; i++)
4916 {
4917 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4918 completion_mode[i], EXPECT (expected));
4919 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4920 completion_mode[i], EXPECT (expected));
4921
4922 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4923 completion_mode[i], EXPECT (expected));
4924 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4925 completion_mode[i], EXPECT (expected));
4926 }
4927 }
4928
4929 {
4930 /* Check method qualifiers are ignored. */
4931 static const char expected[] = "ns::foo<char*>";
4932 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4933 symbol_name_match_type::FULL, true, EXPECT (expected));
4934 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4935 symbol_name_match_type::FULL, true, EXPECT (expected));
4936 CHECK_MATCH ("foo < char * > ( int ) const",
4937 symbol_name_match_type::WILD, true, EXPECT (expected));
4938 CHECK_MATCH ("foo < char * > ( int ) &&",
4939 symbol_name_match_type::WILD, true, EXPECT (expected));
4940 }
4941
4942 /* Test lookup names that don't match anything. */
4943 {
4944 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4945 {});
4946
4947 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4948 {});
4949 }
4950
4951 /* Some wild matching tests, exercising "(anonymous namespace)",
4952 which should not be confused with a parameter list. */
4953 {
4954 static const char *syms[] = {
4955 "A::B::C",
4956 "B::C",
4957 "C",
4958 "A :: B :: C ( int )",
4959 "B :: C ( int )",
4960 "C ( int )",
4961 };
4962
4963 for (const char *s : syms)
4964 {
4965 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4966 EXPECT ("(anonymous namespace)::A::B::C"));
4967 }
4968 }
4969
4970 {
4971 static const char expected[] = "ns2::tmpl<int>::foo2";
4972 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4973 EXPECT (expected));
4974 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4975 EXPECT (expected));
4976 }
4977
4978 SELF_CHECK (!any_mismatch);
4979
4980 #undef EXPECT
4981 #undef CHECK_MATCH
4982 }
4983
4984 static void
4985 run_test ()
4986 {
4987 test_mapped_index_find_name_component_bounds ();
4988 test_dw2_expand_symtabs_matching_symbol ();
4989 }
4990
4991 }} // namespace selftests::dw2_expand_symtabs_matching
4992
4993 #endif /* GDB_SELF_TEST */
4994
4995 /* If FILE_MATCHER is NULL or if PER_CU has
4996 dwarf2_per_cu_quick_data::MARK set (see
4997 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4998 EXPANSION_NOTIFY on it. */
4999
5000 static void
5001 dw2_expand_symtabs_matching_one
5002 (struct dwarf2_per_cu_data *per_cu,
5003 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5004 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5005 {
5006 if (file_matcher == NULL || per_cu->v.quick->mark)
5007 {
5008 bool symtab_was_null
5009 = (per_cu->v.quick->compunit_symtab == NULL);
5010
5011 dw2_instantiate_symtab (per_cu, false);
5012
5013 if (expansion_notify != NULL
5014 && symtab_was_null
5015 && per_cu->v.quick->compunit_symtab != NULL)
5016 expansion_notify (per_cu->v.quick->compunit_symtab);
5017 }
5018 }
5019
5020 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5021 matched, to expand corresponding CUs that were marked. IDX is the
5022 index of the symbol name that matched. */
5023
5024 static void
5025 dw2_expand_marked_cus
5026 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5027 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5028 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5029 search_domain kind)
5030 {
5031 offset_type *vec, vec_len, vec_idx;
5032 bool global_seen = false;
5033 mapped_index &index = *dwarf2_per_objfile->index_table;
5034
5035 vec = (offset_type *) (index.constant_pool
5036 + MAYBE_SWAP (index.symbol_table[idx].vec));
5037 vec_len = MAYBE_SWAP (vec[0]);
5038 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5039 {
5040 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5041 /* This value is only valid for index versions >= 7. */
5042 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5043 gdb_index_symbol_kind symbol_kind =
5044 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5045 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5046 /* Only check the symbol attributes if they're present.
5047 Indices prior to version 7 don't record them,
5048 and indices >= 7 may elide them for certain symbols
5049 (gold does this). */
5050 int attrs_valid =
5051 (index.version >= 7
5052 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5053
5054 /* Work around gold/15646. */
5055 if (attrs_valid)
5056 {
5057 if (!is_static && global_seen)
5058 continue;
5059 if (!is_static)
5060 global_seen = true;
5061 }
5062
5063 /* Only check the symbol's kind if it has one. */
5064 if (attrs_valid)
5065 {
5066 switch (kind)
5067 {
5068 case VARIABLES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5070 continue;
5071 break;
5072 case FUNCTIONS_DOMAIN:
5073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5074 continue;
5075 break;
5076 case TYPES_DOMAIN:
5077 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5078 continue;
5079 break;
5080 default:
5081 break;
5082 }
5083 }
5084
5085 /* Don't crash on bad data. */
5086 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5087 + dwarf2_per_objfile->all_type_units.size ()))
5088 {
5089 complaint (_(".gdb_index entry has bad CU index"
5090 " [in module %s]"),
5091 objfile_name (dwarf2_per_objfile->objfile));
5092 continue;
5093 }
5094
5095 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5096 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5097 expansion_notify);
5098 }
5099 }
5100
5101 /* If FILE_MATCHER is non-NULL, set all the
5102 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5103 that match FILE_MATCHER. */
5104
5105 static void
5106 dw_expand_symtabs_matching_file_matcher
5107 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5108 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5109 {
5110 if (file_matcher == NULL)
5111 return;
5112
5113 objfile *const objfile = dwarf2_per_objfile->objfile;
5114
5115 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5116 htab_eq_pointer,
5117 NULL, xcalloc, xfree));
5118 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5119 htab_eq_pointer,
5120 NULL, xcalloc, xfree));
5121
5122 /* The rule is CUs specify all the files, including those used by
5123 any TU, so there's no need to scan TUs here. */
5124
5125 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5126 {
5127 QUIT;
5128
5129 per_cu->v.quick->mark = 0;
5130
5131 /* We only need to look at symtabs not already expanded. */
5132 if (per_cu->v.quick->compunit_symtab)
5133 continue;
5134
5135 quick_file_names *file_data = dw2_get_file_names (per_cu);
5136 if (file_data == NULL)
5137 continue;
5138
5139 if (htab_find (visited_not_found.get (), file_data) != NULL)
5140 continue;
5141 else if (htab_find (visited_found.get (), file_data) != NULL)
5142 {
5143 per_cu->v.quick->mark = 1;
5144 continue;
5145 }
5146
5147 for (int j = 0; j < file_data->num_file_names; ++j)
5148 {
5149 const char *this_real_name;
5150
5151 if (file_matcher (file_data->file_names[j], false))
5152 {
5153 per_cu->v.quick->mark = 1;
5154 break;
5155 }
5156
5157 /* Before we invoke realpath, which can get expensive when many
5158 files are involved, do a quick comparison of the basenames. */
5159 if (!basenames_may_differ
5160 && !file_matcher (lbasename (file_data->file_names[j]),
5161 true))
5162 continue;
5163
5164 this_real_name = dw2_get_real_path (objfile, file_data, j);
5165 if (file_matcher (this_real_name, false))
5166 {
5167 per_cu->v.quick->mark = 1;
5168 break;
5169 }
5170 }
5171
5172 void **slot = htab_find_slot (per_cu->v.quick->mark
5173 ? visited_found.get ()
5174 : visited_not_found.get (),
5175 file_data, INSERT);
5176 *slot = file_data;
5177 }
5178 }
5179
5180 static void
5181 dw2_expand_symtabs_matching
5182 (struct objfile *objfile,
5183 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5184 const lookup_name_info &lookup_name,
5185 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5186 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5187 enum search_domain kind)
5188 {
5189 struct dwarf2_per_objfile *dwarf2_per_objfile
5190 = get_dwarf2_per_objfile (objfile);
5191
5192 /* index_table is NULL if OBJF_READNOW. */
5193 if (!dwarf2_per_objfile->index_table)
5194 return;
5195
5196 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5197
5198 mapped_index &index = *dwarf2_per_objfile->index_table;
5199
5200 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5201 symbol_matcher,
5202 kind, [&] (offset_type idx)
5203 {
5204 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5205 expansion_notify, kind);
5206 });
5207 }
5208
5209 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5210 symtab. */
5211
5212 static struct compunit_symtab *
5213 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5214 CORE_ADDR pc)
5215 {
5216 int i;
5217
5218 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5219 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5220 return cust;
5221
5222 if (cust->includes == NULL)
5223 return NULL;
5224
5225 for (i = 0; cust->includes[i]; ++i)
5226 {
5227 struct compunit_symtab *s = cust->includes[i];
5228
5229 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5230 if (s != NULL)
5231 return s;
5232 }
5233
5234 return NULL;
5235 }
5236
5237 static struct compunit_symtab *
5238 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5239 struct bound_minimal_symbol msymbol,
5240 CORE_ADDR pc,
5241 struct obj_section *section,
5242 int warn_if_readin)
5243 {
5244 struct dwarf2_per_cu_data *data;
5245 struct compunit_symtab *result;
5246
5247 if (!objfile->psymtabs_addrmap)
5248 return NULL;
5249
5250 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5251 SECT_OFF_TEXT (objfile));
5252 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5253 pc - baseaddr);
5254 if (!data)
5255 return NULL;
5256
5257 if (warn_if_readin && data->v.quick->compunit_symtab)
5258 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5259 paddress (get_objfile_arch (objfile), pc));
5260
5261 result
5262 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5263 false),
5264 pc);
5265 gdb_assert (result != NULL);
5266 return result;
5267 }
5268
5269 static void
5270 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5271 void *data, int need_fullname)
5272 {
5273 struct dwarf2_per_objfile *dwarf2_per_objfile
5274 = get_dwarf2_per_objfile (objfile);
5275
5276 if (!dwarf2_per_objfile->filenames_cache)
5277 {
5278 dwarf2_per_objfile->filenames_cache.emplace ();
5279
5280 htab_up visited (htab_create_alloc (10,
5281 htab_hash_pointer, htab_eq_pointer,
5282 NULL, xcalloc, xfree));
5283
5284 /* The rule is CUs specify all the files, including those used
5285 by any TU, so there's no need to scan TUs here. We can
5286 ignore file names coming from already-expanded CUs. */
5287
5288 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 {
5290 if (per_cu->v.quick->compunit_symtab)
5291 {
5292 void **slot = htab_find_slot (visited.get (),
5293 per_cu->v.quick->file_names,
5294 INSERT);
5295
5296 *slot = per_cu->v.quick->file_names;
5297 }
5298 }
5299
5300 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5301 {
5302 /* We only need to look at symtabs not already expanded. */
5303 if (per_cu->v.quick->compunit_symtab)
5304 continue;
5305
5306 quick_file_names *file_data = dw2_get_file_names (per_cu);
5307 if (file_data == NULL)
5308 continue;
5309
5310 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5311 if (*slot)
5312 {
5313 /* Already visited. */
5314 continue;
5315 }
5316 *slot = file_data;
5317
5318 for (int j = 0; j < file_data->num_file_names; ++j)
5319 {
5320 const char *filename = file_data->file_names[j];
5321 dwarf2_per_objfile->filenames_cache->seen (filename);
5322 }
5323 }
5324 }
5325
5326 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5327 {
5328 gdb::unique_xmalloc_ptr<char> this_real_name;
5329
5330 if (need_fullname)
5331 this_real_name = gdb_realpath (filename);
5332 (*fun) (filename, this_real_name.get (), data);
5333 });
5334 }
5335
5336 static int
5337 dw2_has_symbols (struct objfile *objfile)
5338 {
5339 return 1;
5340 }
5341
5342 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5343 {
5344 dw2_has_symbols,
5345 dw2_find_last_source_symtab,
5346 dw2_forget_cached_source_info,
5347 dw2_map_symtabs_matching_filename,
5348 dw2_lookup_symbol,
5349 dw2_print_stats,
5350 dw2_dump,
5351 dw2_expand_symtabs_for_function,
5352 dw2_expand_all_symtabs,
5353 dw2_expand_symtabs_with_fullname,
5354 dw2_map_matching_symbols,
5355 dw2_expand_symtabs_matching,
5356 dw2_find_pc_sect_compunit_symtab,
5357 NULL,
5358 dw2_map_symbol_filenames
5359 };
5360
5361 /* DWARF-5 debug_names reader. */
5362
5363 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5364 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5365
5366 /* A helper function that reads the .debug_names section in SECTION
5367 and fills in MAP. FILENAME is the name of the file containing the
5368 section; it is used for error reporting.
5369
5370 Returns true if all went well, false otherwise. */
5371
5372 static bool
5373 read_debug_names_from_section (struct objfile *objfile,
5374 const char *filename,
5375 struct dwarf2_section_info *section,
5376 mapped_debug_names &map)
5377 {
5378 if (dwarf2_section_empty_p (section))
5379 return false;
5380
5381 /* Older elfutils strip versions could keep the section in the main
5382 executable while splitting it for the separate debug info file. */
5383 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5384 return false;
5385
5386 dwarf2_read_section (objfile, section);
5387
5388 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5389
5390 const gdb_byte *addr = section->buffer;
5391
5392 bfd *const abfd = get_section_bfd_owner (section);
5393
5394 unsigned int bytes_read;
5395 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5396 addr += bytes_read;
5397
5398 map.dwarf5_is_dwarf64 = bytes_read != 4;
5399 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5400 if (bytes_read + length != section->size)
5401 {
5402 /* There may be multiple per-CU indices. */
5403 warning (_("Section .debug_names in %s length %s does not match "
5404 "section length %s, ignoring .debug_names."),
5405 filename, plongest (bytes_read + length),
5406 pulongest (section->size));
5407 return false;
5408 }
5409
5410 /* The version number. */
5411 uint16_t version = read_2_bytes (abfd, addr);
5412 addr += 2;
5413 if (version != 5)
5414 {
5415 warning (_("Section .debug_names in %s has unsupported version %d, "
5416 "ignoring .debug_names."),
5417 filename, version);
5418 return false;
5419 }
5420
5421 /* Padding. */
5422 uint16_t padding = read_2_bytes (abfd, addr);
5423 addr += 2;
5424 if (padding != 0)
5425 {
5426 warning (_("Section .debug_names in %s has unsupported padding %d, "
5427 "ignoring .debug_names."),
5428 filename, padding);
5429 return false;
5430 }
5431
5432 /* comp_unit_count - The number of CUs in the CU list. */
5433 map.cu_count = read_4_bytes (abfd, addr);
5434 addr += 4;
5435
5436 /* local_type_unit_count - The number of TUs in the local TU
5437 list. */
5438 map.tu_count = read_4_bytes (abfd, addr);
5439 addr += 4;
5440
5441 /* foreign_type_unit_count - The number of TUs in the foreign TU
5442 list. */
5443 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445 if (foreign_tu_count != 0)
5446 {
5447 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5448 "ignoring .debug_names."),
5449 filename, static_cast<unsigned long> (foreign_tu_count));
5450 return false;
5451 }
5452
5453 /* bucket_count - The number of hash buckets in the hash lookup
5454 table. */
5455 map.bucket_count = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* name_count - The number of unique names in the index. */
5459 map.name_count = read_4_bytes (abfd, addr);
5460 addr += 4;
5461
5462 /* abbrev_table_size - The size in bytes of the abbreviations
5463 table. */
5464 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5465 addr += 4;
5466
5467 /* augmentation_string_size - The size in bytes of the augmentation
5468 string. This value is rounded up to a multiple of 4. */
5469 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5470 addr += 4;
5471 map.augmentation_is_gdb = ((augmentation_string_size
5472 == sizeof (dwarf5_augmentation))
5473 && memcmp (addr, dwarf5_augmentation,
5474 sizeof (dwarf5_augmentation)) == 0);
5475 augmentation_string_size += (-augmentation_string_size) & 3;
5476 addr += augmentation_string_size;
5477
5478 /* List of CUs */
5479 map.cu_table_reordered = addr;
5480 addr += map.cu_count * map.offset_size;
5481
5482 /* List of Local TUs */
5483 map.tu_table_reordered = addr;
5484 addr += map.tu_count * map.offset_size;
5485
5486 /* Hash Lookup Table */
5487 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5488 addr += map.bucket_count * 4;
5489 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5490 addr += map.name_count * 4;
5491
5492 /* Name Table */
5493 map.name_table_string_offs_reordered = addr;
5494 addr += map.name_count * map.offset_size;
5495 map.name_table_entry_offs_reordered = addr;
5496 addr += map.name_count * map.offset_size;
5497
5498 const gdb_byte *abbrev_table_start = addr;
5499 for (;;)
5500 {
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503 if (index_num == 0)
5504 break;
5505
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5509 {
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5513 return false;
5514 }
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518
5519 for (;;)
5520 {
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5525 addr += bytes_read;
5526 if (attr.form == DW_FORM_implicit_const)
5527 {
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5529 &bytes_read);
5530 addr += bytes_read;
5531 }
5532 if (attr.dw_idx == 0 && attr.form == 0)
5533 break;
5534 indexval.attr_vec.push_back (std::move (attr));
5535 }
5536 }
5537 if (addr != abbrev_table_start + abbrev_table_size)
5538 {
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547 }
5548
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552 static void
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
5556 bool is_dwz)
5557 {
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582 }
5583
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5586
5587 static void
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591 {
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5594
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5604 true /* is_dwz */);
5605 }
5606
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610 static bool
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5612 {
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5620 *map))
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5638 return false;
5639 }
5640 }
5641
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5643
5644 if (map->tu_count != 0)
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5653
5654 create_signatured_type_table_from_debug_names
5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5656 }
5657
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
5660
5661 dwarf2_per_objfile->debug_names_table = std::move (map);
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5665
5666 return true;
5667 }
5668
5669 /* Type used to manage iterating over all CUs looking for a symbol for
5670 .debug_names. */
5671
5672 class dw2_debug_names_iterator
5673 {
5674 public:
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5680 const char *name)
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5688 : m_map (map),
5689 m_search (search),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696 private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5707
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5710 value. */
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5712
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5716
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5718 not found. */
5719 const gdb_byte *m_addr;
5720 };
5721
5722 const char *
5723 mapped_debug_names::namei_to_name (uint32_t namei) const
5724 {
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5728 offset_size,
5729 dwarf5_byte_order);
5730 return read_indirect_string_at_offset
5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5732 }
5733
5734 /* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5736 return NULL. */
5737
5738 const gdb_byte *
5739 dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5741 {
5742 int (*cmp) (const char *, const char *);
5743
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5755
5756 if (without_params != NULL)
5757 {
5758 name = without_params.get();
5759 }
5760 }
5761 }
5762
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5764
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5766 uint32_t namei
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5771 if (namei == 0)
5772 return NULL;
5773 --namei;
5774 if (namei >= map.name_count)
5775 {
5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5777 "[in module %s]"),
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
5799 complaint (_("Wrong .debug_names hash for string at index %u "
5800 "[in module %s]"),
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5802 return NULL;
5803 }
5804 #endif
5805
5806 if (cmp (namei_string, name) == 0)
5807 {
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5813 }
5814 }
5815
5816 ++namei;
5817 if (namei >= map.name_count)
5818 return NULL;
5819 }
5820 }
5821
5822 const gdb_byte *
5823 dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5825 {
5826 if (namei >= map.name_count)
5827 {
5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5829 "[in module %s]"),
5830 namei, map.name_count,
5831 objfile_name (map.dwarf2_per_objfile->objfile));
5832 return NULL;
5833 }
5834
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5840 }
5841
5842 /* See dw2_debug_names_iterator. */
5843
5844 dwarf2_per_cu_data *
5845 dw2_debug_names_iterator::next ()
5846 {
5847 if (m_addr == NULL)
5848 return NULL;
5849
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
5853
5854 again:
5855
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 if (abbrev == 0)
5860 return NULL;
5861
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5864 {
5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
5866 "[in module %s]"),
5867 pulongest (abbrev), objfile_name (objfile));
5868 return NULL;
5869 }
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5872 bool is_static;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5875 {
5876 ULONGEST ull;
5877 switch (attr.form)
5878 {
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5881 break;
5882 case DW_FORM_flag_present:
5883 ull = 1;
5884 break;
5885 case DW_FORM_udata:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5888 break;
5889 default:
5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5891 dwarf_form_name (attr.form),
5892 objfile_name (objfile));
5893 return NULL;
5894 }
5895 switch (attr.dw_idx)
5896 {
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5900 {
5901 complaint (_(".debug_names entry has bad CU index %s"
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
5908 break;
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5912 {
5913 complaint (_(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu, false);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_debug_names_expand_symtabs_for_function,
6163 dw2_expand_all_symtabs,
6164 dw2_expand_symtabs_with_fullname,
6165 dw2_map_matching_symbols,
6166 dw2_debug_names_expand_symtabs_matching,
6167 dw2_find_pc_sect_compunit_symtab,
6168 NULL,
6169 dw2_map_symbol_filenames
6170 };
6171
6172 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6174
6175 template <typename T>
6176 static gdb::array_view<const gdb_byte>
6177 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6178 {
6179 dwarf2_section_info *section = &section_owner->gdb_index;
6180
6181 if (dwarf2_section_empty_p (section))
6182 return {};
6183
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6187 return {};
6188
6189 dwarf2_read_section (obj, section);
6190
6191 return {section->buffer, section->size};
6192 }
6193
6194 /* Lookup the index cache for the contents of the index associated to
6195 DWARF2_OBJ. */
6196
6197 static gdb::array_view<const gdb_byte>
6198 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6199 {
6200 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6201 if (build_id == nullptr)
6202 return {};
6203
6204 return global_index_cache.lookup_gdb_index (build_id,
6205 &dwarf2_obj->index_cache_res);
6206 }
6207
6208 /* Same as the above, but for DWZ. */
6209
6210 static gdb::array_view<const gdb_byte>
6211 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6212 {
6213 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6214 if (build_id == nullptr)
6215 return {};
6216
6217 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6218 }
6219
6220 /* See symfile.h. */
6221
6222 bool
6223 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6224 {
6225 struct dwarf2_per_objfile *dwarf2_per_objfile
6226 = get_dwarf2_per_objfile (objfile);
6227
6228 /* If we're about to read full symbols, don't bother with the
6229 indices. In this case we also don't care if some other debug
6230 format is making psymtabs, because they are all about to be
6231 expanded anyway. */
6232 if ((objfile->flags & OBJF_READNOW))
6233 {
6234 dwarf2_per_objfile->using_index = 1;
6235 create_all_comp_units (dwarf2_per_objfile);
6236 create_all_type_units (dwarf2_per_objfile);
6237 dwarf2_per_objfile->quick_file_names_table
6238 = create_quick_file_names_table
6239 (dwarf2_per_objfile->all_comp_units.size ());
6240
6241 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6242 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6243 {
6244 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6245
6246 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6247 struct dwarf2_per_cu_quick_data);
6248 }
6249
6250 /* Return 1 so that gdb sees the "quick" functions. However,
6251 these functions will be no-ops because we will have expanded
6252 all symtabs. */
6253 *index_kind = dw_index_kind::GDB_INDEX;
6254 return true;
6255 }
6256
6257 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6258 {
6259 *index_kind = dw_index_kind::DEBUG_NAMES;
6260 return true;
6261 }
6262
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6265 get_gdb_index_contents_from_section<dwz_file>))
6266 {
6267 *index_kind = dw_index_kind::GDB_INDEX;
6268 return true;
6269 }
6270
6271 /* ... otherwise, try to find the index in the index cache. */
6272 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6273 get_gdb_index_contents_from_cache,
6274 get_gdb_index_contents_from_cache_dwz))
6275 {
6276 global_index_cache.hit ();
6277 *index_kind = dw_index_kind::GDB_INDEX;
6278 return true;
6279 }
6280
6281 global_index_cache.miss ();
6282 return false;
6283 }
6284
6285 \f
6286
6287 /* Build a partial symbol table. */
6288
6289 void
6290 dwarf2_build_psymtabs (struct objfile *objfile)
6291 {
6292 struct dwarf2_per_objfile *dwarf2_per_objfile
6293 = get_dwarf2_per_objfile (objfile);
6294
6295 if (objfile->global_psymbols.capacity () == 0
6296 && objfile->static_psymbols.capacity () == 0)
6297 init_psymbol_list (objfile, 1024);
6298
6299 TRY
6300 {
6301 /* This isn't really ideal: all the data we allocate on the
6302 objfile's obstack is still uselessly kept around. However,
6303 freeing it seems unsafe. */
6304 psymtab_discarder psymtabs (objfile);
6305 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6306 psymtabs.keep ();
6307
6308 /* (maybe) store an index in the cache. */
6309 global_index_cache.store (dwarf2_per_objfile);
6310 }
6311 CATCH (except, RETURN_MASK_ERROR)
6312 {
6313 exception_print (gdb_stderr, except);
6314 }
6315 END_CATCH
6316 }
6317
6318 /* Return the total length of the CU described by HEADER. */
6319
6320 static unsigned int
6321 get_cu_length (const struct comp_unit_head *header)
6322 {
6323 return header->initial_length_size + header->length;
6324 }
6325
6326 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6327
6328 static inline bool
6329 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6330 {
6331 sect_offset bottom = cu_header->sect_off;
6332 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6333
6334 return sect_off >= bottom && sect_off < top;
6335 }
6336
6337 /* Find the base address of the compilation unit for range lists and
6338 location lists. It will normally be specified by DW_AT_low_pc.
6339 In DWARF-3 draft 4, the base address could be overridden by
6340 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6341 compilation units with discontinuous ranges. */
6342
6343 static void
6344 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6345 {
6346 struct attribute *attr;
6347
6348 cu->base_known = 0;
6349 cu->base_address = 0;
6350
6351 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6352 if (attr)
6353 {
6354 cu->base_address = attr_value_as_address (attr);
6355 cu->base_known = 1;
6356 }
6357 else
6358 {
6359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6360 if (attr)
6361 {
6362 cu->base_address = attr_value_as_address (attr);
6363 cu->base_known = 1;
6364 }
6365 }
6366 }
6367
6368 /* Read in the comp unit header information from the debug_info at info_ptr.
6369 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6370 NOTE: This leaves members offset, first_die_offset to be filled in
6371 by the caller. */
6372
6373 static const gdb_byte *
6374 read_comp_unit_head (struct comp_unit_head *cu_header,
6375 const gdb_byte *info_ptr,
6376 struct dwarf2_section_info *section,
6377 rcuh_kind section_kind)
6378 {
6379 int signed_addr;
6380 unsigned int bytes_read;
6381 const char *filename = get_section_file_name (section);
6382 bfd *abfd = get_section_bfd_owner (section);
6383
6384 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6385 cu_header->initial_length_size = bytes_read;
6386 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6387 info_ptr += bytes_read;
6388 cu_header->version = read_2_bytes (abfd, info_ptr);
6389 if (cu_header->version < 2 || cu_header->version > 5)
6390 error (_("Dwarf Error: wrong version in compilation unit header "
6391 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6392 cu_header->version, filename);
6393 info_ptr += 2;
6394 if (cu_header->version < 5)
6395 switch (section_kind)
6396 {
6397 case rcuh_kind::COMPILE:
6398 cu_header->unit_type = DW_UT_compile;
6399 break;
6400 case rcuh_kind::TYPE:
6401 cu_header->unit_type = DW_UT_type;
6402 break;
6403 default:
6404 internal_error (__FILE__, __LINE__,
6405 _("read_comp_unit_head: invalid section_kind"));
6406 }
6407 else
6408 {
6409 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6410 (read_1_byte (abfd, info_ptr));
6411 info_ptr += 1;
6412 switch (cu_header->unit_type)
6413 {
6414 case DW_UT_compile:
6415 if (section_kind != rcuh_kind::COMPILE)
6416 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6417 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6418 filename);
6419 break;
6420 case DW_UT_type:
6421 section_kind = rcuh_kind::TYPE;
6422 break;
6423 default:
6424 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6425 "(is %d, should be %d or %d) [in module %s]"),
6426 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6427 }
6428
6429 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6430 info_ptr += 1;
6431 }
6432 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6433 cu_header,
6434 &bytes_read);
6435 info_ptr += bytes_read;
6436 if (cu_header->version < 5)
6437 {
6438 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6439 info_ptr += 1;
6440 }
6441 signed_addr = bfd_get_sign_extend_vma (abfd);
6442 if (signed_addr < 0)
6443 internal_error (__FILE__, __LINE__,
6444 _("read_comp_unit_head: dwarf from non elf file"));
6445 cu_header->signed_addr_p = signed_addr;
6446
6447 if (section_kind == rcuh_kind::TYPE)
6448 {
6449 LONGEST type_offset;
6450
6451 cu_header->signature = read_8_bytes (abfd, info_ptr);
6452 info_ptr += 8;
6453
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6460 filename);
6461 }
6462
6463 return info_ptr;
6464 }
6465
6466 /* Helper function that returns the proper abbrev section for
6467 THIS_CU. */
6468
6469 static struct dwarf2_section_info *
6470 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6471 {
6472 struct dwarf2_section_info *abbrev;
6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6474
6475 if (this_cu->is_dwz)
6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6477 else
6478 abbrev = &dwarf2_per_objfile->abbrev;
6479
6480 return abbrev;
6481 }
6482
6483 /* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6486
6487 static void
6488 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
6492 {
6493 const char *filename = get_section_file_name (section);
6494
6495 if (to_underlying (header->abbrev_sect_off)
6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
6501 filename);
6502
6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6504 avoid potential 32-bit overflow. */
6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
6506 > section->size)
6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
6510 filename);
6511 }
6512
6513 /* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
6516
6517 static const gdb_byte *
6518 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
6520 struct dwarf2_section_info *section,
6521 struct dwarf2_section_info *abbrev_section,
6522 const gdb_byte *info_ptr,
6523 rcuh_kind section_kind)
6524 {
6525 const gdb_byte *beg_of_comp_unit = info_ptr;
6526
6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6528
6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6530
6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6532
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6534 abbrev_section);
6535
6536 return info_ptr;
6537 }
6538
6539 /* Fetch the abbreviation table offset from a comp or type unit header. */
6540
6541 static sect_offset
6542 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
6544 sect_offset sect_off)
6545 {
6546 bfd *abfd = get_section_bfd_owner (section);
6547 const gdb_byte *info_ptr;
6548 unsigned int initial_length_size, offset_size;
6549 uint16_t version;
6550
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6552 info_ptr = section->buffer + to_underlying (sect_off);
6553 read_initial_length (abfd, info_ptr, &initial_length_size);
6554 offset_size = initial_length_size == 4 ? 4 : 8;
6555 info_ptr += initial_length_size;
6556
6557 version = read_2_bytes (abfd, info_ptr);
6558 info_ptr += 2;
6559 if (version >= 5)
6560 {
6561 /* Skip unit type and address size. */
6562 info_ptr += 2;
6563 }
6564
6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6566 }
6567
6568 /* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6570
6571 static void
6572 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6573 struct objfile *objfile)
6574 {
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6576
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6578 {
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6581 }
6582
6583 subpst->dependencies
6584 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6585 subpst->dependencies[0] = pst;
6586 subpst->number_of_dependencies = 1;
6587
6588 subpst->globals_offset = 0;
6589 subpst->n_global_syms = 0;
6590 subpst->statics_offset = 0;
6591 subpst->n_static_syms = 0;
6592 subpst->compunit_symtab = NULL;
6593 subpst->read_symtab = pst->read_symtab;
6594 subpst->readin = 0;
6595
6596 /* No private part is necessary for include psymtabs. This property
6597 can be used to differentiate between such include psymtabs and
6598 the regular ones. */
6599 subpst->read_symtab_private = NULL;
6600 }
6601
6602 /* Read the Line Number Program data and extract the list of files
6603 included by the source file represented by PST. Build an include
6604 partial symtab for each of these included files. */
6605
6606 static void
6607 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6608 struct die_info *die,
6609 struct partial_symtab *pst)
6610 {
6611 line_header_up lh;
6612 struct attribute *attr;
6613
6614 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6615 if (attr)
6616 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6617 if (lh == NULL)
6618 return; /* No linetable, so no includes. */
6619
6620 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6621 that we pass in the raw text_low here; that is ok because we're
6622 only decoding the line table to make include partial symtabs, and
6623 so the addresses aren't really used. */
6624 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6625 pst->raw_text_low (), 1);
6626 }
6627
6628 static hashval_t
6629 hash_signatured_type (const void *item)
6630 {
6631 const struct signatured_type *sig_type
6632 = (const struct signatured_type *) item;
6633
6634 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6635 return sig_type->signature;
6636 }
6637
6638 static int
6639 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6640 {
6641 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6642 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6643
6644 return lhs->signature == rhs->signature;
6645 }
6646
6647 /* Allocate a hash table for signatured types. */
6648
6649 static htab_t
6650 allocate_signatured_type_table (struct objfile *objfile)
6651 {
6652 return htab_create_alloc_ex (41,
6653 hash_signatured_type,
6654 eq_signatured_type,
6655 NULL,
6656 &objfile->objfile_obstack,
6657 hashtab_obstack_allocate,
6658 dummy_obstack_deallocate);
6659 }
6660
6661 /* A helper function to add a signatured type CU to a table. */
6662
6663 static int
6664 add_signatured_type_cu_to_table (void **slot, void *datum)
6665 {
6666 struct signatured_type *sigt = (struct signatured_type *) *slot;
6667 std::vector<signatured_type *> *all_type_units
6668 = (std::vector<signatured_type *> *) datum;
6669
6670 all_type_units->push_back (sigt);
6671
6672 return 1;
6673 }
6674
6675 /* A helper for create_debug_types_hash_table. Read types from SECTION
6676 and fill them into TYPES_HTAB. It will process only type units,
6677 therefore DW_UT_type. */
6678
6679 static void
6680 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6681 struct dwo_file *dwo_file,
6682 dwarf2_section_info *section, htab_t &types_htab,
6683 rcuh_kind section_kind)
6684 {
6685 struct objfile *objfile = dwarf2_per_objfile->objfile;
6686 struct dwarf2_section_info *abbrev_section;
6687 bfd *abfd;
6688 const gdb_byte *info_ptr, *end_ptr;
6689
6690 abbrev_section = (dwo_file != NULL
6691 ? &dwo_file->sections.abbrev
6692 : &dwarf2_per_objfile->abbrev);
6693
6694 if (dwarf_read_debug)
6695 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6696 get_section_name (section),
6697 get_section_file_name (abbrev_section));
6698
6699 dwarf2_read_section (objfile, section);
6700 info_ptr = section->buffer;
6701
6702 if (info_ptr == NULL)
6703 return;
6704
6705 /* We can't set abfd until now because the section may be empty or
6706 not present, in which case the bfd is unknown. */
6707 abfd = get_section_bfd_owner (section);
6708
6709 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6710 because we don't need to read any dies: the signature is in the
6711 header. */
6712
6713 end_ptr = info_ptr + section->size;
6714 while (info_ptr < end_ptr)
6715 {
6716 struct signatured_type *sig_type;
6717 struct dwo_unit *dwo_tu;
6718 void **slot;
6719 const gdb_byte *ptr = info_ptr;
6720 struct comp_unit_head header;
6721 unsigned int length;
6722
6723 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6724
6725 /* Initialize it due to a false compiler warning. */
6726 header.signature = -1;
6727 header.type_cu_offset_in_tu = (cu_offset) -1;
6728
6729 /* We need to read the type's signature in order to build the hash
6730 table, but we don't need anything else just yet. */
6731
6732 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6733 abbrev_section, ptr, section_kind);
6734
6735 length = get_cu_length (&header);
6736
6737 /* Skip dummy type units. */
6738 if (ptr >= info_ptr + length
6739 || peek_abbrev_code (abfd, ptr) == 0
6740 || header.unit_type != DW_UT_type)
6741 {
6742 info_ptr += length;
6743 continue;
6744 }
6745
6746 if (types_htab == NULL)
6747 {
6748 if (dwo_file)
6749 types_htab = allocate_dwo_unit_table (objfile);
6750 else
6751 types_htab = allocate_signatured_type_table (objfile);
6752 }
6753
6754 if (dwo_file)
6755 {
6756 sig_type = NULL;
6757 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6758 struct dwo_unit);
6759 dwo_tu->dwo_file = dwo_file;
6760 dwo_tu->signature = header.signature;
6761 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6762 dwo_tu->section = section;
6763 dwo_tu->sect_off = sect_off;
6764 dwo_tu->length = length;
6765 }
6766 else
6767 {
6768 /* N.B.: type_offset is not usable if this type uses a DWO file.
6769 The real type_offset is in the DWO file. */
6770 dwo_tu = NULL;
6771 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6772 struct signatured_type);
6773 sig_type->signature = header.signature;
6774 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6775 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6776 sig_type->per_cu.is_debug_types = 1;
6777 sig_type->per_cu.section = section;
6778 sig_type->per_cu.sect_off = sect_off;
6779 sig_type->per_cu.length = length;
6780 }
6781
6782 slot = htab_find_slot (types_htab,
6783 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6784 INSERT);
6785 gdb_assert (slot != NULL);
6786 if (*slot != NULL)
6787 {
6788 sect_offset dup_sect_off;
6789
6790 if (dwo_file)
6791 {
6792 const struct dwo_unit *dup_tu
6793 = (const struct dwo_unit *) *slot;
6794
6795 dup_sect_off = dup_tu->sect_off;
6796 }
6797 else
6798 {
6799 const struct signatured_type *dup_tu
6800 = (const struct signatured_type *) *slot;
6801
6802 dup_sect_off = dup_tu->per_cu.sect_off;
6803 }
6804
6805 complaint (_("debug type entry at offset %s is duplicate to"
6806 " the entry at offset %s, signature %s"),
6807 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6808 hex_string (header.signature));
6809 }
6810 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6811
6812 if (dwarf_read_debug > 1)
6813 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6814 sect_offset_str (sect_off),
6815 hex_string (header.signature));
6816
6817 info_ptr += length;
6818 }
6819 }
6820
6821 /* Create the hash table of all entries in the .debug_types
6822 (or .debug_types.dwo) section(s).
6823 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6824 otherwise it is NULL.
6825
6826 The result is a pointer to the hash table or NULL if there are no types.
6827
6828 Note: This function processes DWO files only, not DWP files. */
6829
6830 static void
6831 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct dwo_file *dwo_file,
6833 VEC (dwarf2_section_info_def) *types,
6834 htab_t &types_htab)
6835 {
6836 int ix;
6837 struct dwarf2_section_info *section;
6838
6839 if (VEC_empty (dwarf2_section_info_def, types))
6840 return;
6841
6842 for (ix = 0;
6843 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6844 ++ix)
6845 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6846 types_htab, rcuh_kind::TYPE);
6847 }
6848
6849 /* Create the hash table of all entries in the .debug_types section,
6850 and initialize all_type_units.
6851 The result is zero if there is an error (e.g. missing .debug_types section),
6852 otherwise non-zero. */
6853
6854 static int
6855 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6856 {
6857 htab_t types_htab = NULL;
6858
6859 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6860 &dwarf2_per_objfile->info, types_htab,
6861 rcuh_kind::COMPILE);
6862 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6863 dwarf2_per_objfile->types, types_htab);
6864 if (types_htab == NULL)
6865 {
6866 dwarf2_per_objfile->signatured_types = NULL;
6867 return 0;
6868 }
6869
6870 dwarf2_per_objfile->signatured_types = types_htab;
6871
6872 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6873 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6874
6875 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6876 &dwarf2_per_objfile->all_type_units);
6877
6878 return 1;
6879 }
6880
6881 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6884
6885 static struct signatured_type *
6886 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6887 void **slot)
6888 {
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890
6891 if (dwarf2_per_objfile->all_type_units.size ()
6892 == dwarf2_per_objfile->all_type_units.capacity ())
6893 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6894
6895 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6896 struct signatured_type);
6897
6898 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6899 sig_type->signature = sig;
6900 sig_type->per_cu.is_debug_types = 1;
6901 if (dwarf2_per_objfile->using_index)
6902 {
6903 sig_type->per_cu.v.quick =
6904 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6905 struct dwarf2_per_cu_quick_data);
6906 }
6907
6908 if (slot == NULL)
6909 {
6910 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6911 sig_type, INSERT);
6912 }
6913 gdb_assert (*slot == NULL);
6914 *slot = sig_type;
6915 /* The rest of sig_type must be filled in by the caller. */
6916 return sig_type;
6917 }
6918
6919 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6920 Fill in SIG_ENTRY with DWO_ENTRY. */
6921
6922 static void
6923 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6924 struct signatured_type *sig_entry,
6925 struct dwo_unit *dwo_entry)
6926 {
6927 /* Make sure we're not clobbering something we don't expect to. */
6928 gdb_assert (! sig_entry->per_cu.queued);
6929 gdb_assert (sig_entry->per_cu.cu == NULL);
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6933 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6934 }
6935 else
6936 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6937 gdb_assert (sig_entry->signature == dwo_entry->signature);
6938 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6939 gdb_assert (sig_entry->type_unit_group == NULL);
6940 gdb_assert (sig_entry->dwo_unit == NULL);
6941
6942 sig_entry->per_cu.section = dwo_entry->section;
6943 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6944 sig_entry->per_cu.length = dwo_entry->length;
6945 sig_entry->per_cu.reading_dwo_directly = 1;
6946 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6947 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6948 sig_entry->dwo_unit = dwo_entry;
6949 }
6950
6951 /* Subroutine of lookup_signatured_type.
6952 If we haven't read the TU yet, create the signatured_type data structure
6953 for a TU to be read in directly from a DWO file, bypassing the stub.
6954 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6955 using .gdb_index, then when reading a CU we want to stay in the DWO file
6956 containing that CU. Otherwise we could end up reading several other DWO
6957 files (due to comdat folding) to process the transitive closure of all the
6958 mentioned TUs, and that can be slow. The current DWO file will have every
6959 type signature that it needs.
6960 We only do this for .gdb_index because in the psymtab case we already have
6961 to read all the DWOs to build the type unit groups. */
6962
6963 static struct signatured_type *
6964 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6965 {
6966 struct dwarf2_per_objfile *dwarf2_per_objfile
6967 = cu->per_cu->dwarf2_per_objfile;
6968 struct objfile *objfile = dwarf2_per_objfile->objfile;
6969 struct dwo_file *dwo_file;
6970 struct dwo_unit find_dwo_entry, *dwo_entry;
6971 struct signatured_type find_sig_entry, *sig_entry;
6972 void **slot;
6973
6974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6975
6976 /* If TU skeletons have been removed then we may not have read in any
6977 TUs yet. */
6978 if (dwarf2_per_objfile->signatured_types == NULL)
6979 {
6980 dwarf2_per_objfile->signatured_types
6981 = allocate_signatured_type_table (objfile);
6982 }
6983
6984 /* We only ever need to read in one copy of a signatured type.
6985 Use the global signatured_types array to do our own comdat-folding
6986 of types. If this is the first time we're reading this TU, and
6987 the TU has an entry in .gdb_index, replace the recorded data from
6988 .gdb_index with this TU. */
6989
6990 find_sig_entry.signature = sig;
6991 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6992 &find_sig_entry, INSERT);
6993 sig_entry = (struct signatured_type *) *slot;
6994
6995 /* We can get here with the TU already read, *or* in the process of being
6996 read. Don't reassign the global entry to point to this DWO if that's
6997 the case. Also note that if the TU is already being read, it may not
6998 have come from a DWO, the program may be a mix of Fission-compiled
6999 code and non-Fission-compiled code. */
7000
7001 /* Have we already tried to read this TU?
7002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7003 needn't exist in the global table yet). */
7004 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7005 return sig_entry;
7006
7007 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7008 dwo_unit of the TU itself. */
7009 dwo_file = cu->dwo_unit->dwo_file;
7010
7011 /* Ok, this is the first time we're reading this TU. */
7012 if (dwo_file->tus == NULL)
7013 return NULL;
7014 find_dwo_entry.signature = sig;
7015 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7016 if (dwo_entry == NULL)
7017 return NULL;
7018
7019 /* If the global table doesn't have an entry for this TU, add one. */
7020 if (sig_entry == NULL)
7021 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7022
7023 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7024 sig_entry->per_cu.tu_read = 1;
7025 return sig_entry;
7026 }
7027
7028 /* Subroutine of lookup_signatured_type.
7029 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7030 then try the DWP file. If the TU stub (skeleton) has been removed then
7031 it won't be in .gdb_index. */
7032
7033 static struct signatured_type *
7034 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7035 {
7036 struct dwarf2_per_objfile *dwarf2_per_objfile
7037 = cu->per_cu->dwarf2_per_objfile;
7038 struct objfile *objfile = dwarf2_per_objfile->objfile;
7039 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7040 struct dwo_unit *dwo_entry;
7041 struct signatured_type find_sig_entry, *sig_entry;
7042 void **slot;
7043
7044 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7045 gdb_assert (dwp_file != NULL);
7046
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7050 {
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7053 }
7054
7055 find_sig_entry.signature = sig;
7056 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7057 &find_sig_entry, INSERT);
7058 sig_entry = (struct signatured_type *) *slot;
7059
7060 /* Have we already tried to read this TU?
7061 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7062 needn't exist in the global table yet). */
7063 if (sig_entry != NULL)
7064 return sig_entry;
7065
7066 if (dwp_file->tus == NULL)
7067 return NULL;
7068 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7069 sig, 1 /* is_debug_types */);
7070 if (dwo_entry == NULL)
7071 return NULL;
7072
7073 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7074 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7075
7076 return sig_entry;
7077 }
7078
7079 /* Lookup a signature based type for DW_FORM_ref_sig8.
7080 Returns NULL if signature SIG is not present in the table.
7081 It is up to the caller to complain about this. */
7082
7083 static struct signatured_type *
7084 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile
7087 = cu->per_cu->dwarf2_per_objfile;
7088
7089 if (cu->dwo_unit
7090 && dwarf2_per_objfile->using_index)
7091 {
7092 /* We're in a DWO/DWP file, and we're using .gdb_index.
7093 These cases require special processing. */
7094 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7095 return lookup_dwo_signatured_type (cu, sig);
7096 else
7097 return lookup_dwp_signatured_type (cu, sig);
7098 }
7099 else
7100 {
7101 struct signatured_type find_entry, *entry;
7102
7103 if (dwarf2_per_objfile->signatured_types == NULL)
7104 return NULL;
7105 find_entry.signature = sig;
7106 entry = ((struct signatured_type *)
7107 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7108 return entry;
7109 }
7110 }
7111 \f
7112 /* Low level DIE reading support. */
7113
7114 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7115
7116 static void
7117 init_cu_die_reader (struct die_reader_specs *reader,
7118 struct dwarf2_cu *cu,
7119 struct dwarf2_section_info *section,
7120 struct dwo_file *dwo_file,
7121 struct abbrev_table *abbrev_table)
7122 {
7123 gdb_assert (section->readin && section->buffer != NULL);
7124 reader->abfd = get_section_bfd_owner (section);
7125 reader->cu = cu;
7126 reader->dwo_file = dwo_file;
7127 reader->die_section = section;
7128 reader->buffer = section->buffer;
7129 reader->buffer_end = section->buffer + section->size;
7130 reader->comp_dir = NULL;
7131 reader->abbrev_table = abbrev_table;
7132 }
7133
7134 /* Subroutine of init_cutu_and_read_dies to simplify it.
7135 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7136 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7137 already.
7138
7139 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7140 from it to the DIE in the DWO. If NULL we are skipping the stub.
7141 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7142 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7143 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7144 STUB_COMP_DIR may be non-NULL.
7145 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7146 are filled in with the info of the DIE from the DWO file.
7147 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7148 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7149 kept around for at least as long as *RESULT_READER.
7150
7151 The result is non-zero if a valid (non-dummy) DIE was found. */
7152
7153 static int
7154 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7155 struct dwo_unit *dwo_unit,
7156 struct die_info *stub_comp_unit_die,
7157 const char *stub_comp_dir,
7158 struct die_reader_specs *result_reader,
7159 const gdb_byte **result_info_ptr,
7160 struct die_info **result_comp_unit_die,
7161 int *result_has_children,
7162 abbrev_table_up *result_dwo_abbrev_table)
7163 {
7164 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7165 struct objfile *objfile = dwarf2_per_objfile->objfile;
7166 struct dwarf2_cu *cu = this_cu->cu;
7167 bfd *abfd;
7168 const gdb_byte *begin_info_ptr, *info_ptr;
7169 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7170 int i,num_extra_attrs;
7171 struct dwarf2_section_info *dwo_abbrev_section;
7172 struct attribute *attr;
7173 struct die_info *comp_unit_die;
7174
7175 /* At most one of these may be provided. */
7176 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7177
7178 /* These attributes aren't processed until later:
7179 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7180 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7181 referenced later. However, these attributes are found in the stub
7182 which we won't have later. In order to not impose this complication
7183 on the rest of the code, we read them here and copy them to the
7184 DWO CU/TU die. */
7185
7186 stmt_list = NULL;
7187 low_pc = NULL;
7188 high_pc = NULL;
7189 ranges = NULL;
7190 comp_dir = NULL;
7191
7192 if (stub_comp_unit_die != NULL)
7193 {
7194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7195 DWO file. */
7196 if (! this_cu->is_debug_types)
7197 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7198 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7199 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7200 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7201 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7202
7203 /* There should be a DW_AT_addr_base attribute here (if needed).
7204 We need the value before we can process DW_FORM_GNU_addr_index. */
7205 cu->addr_base = 0;
7206 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7207 if (attr)
7208 cu->addr_base = DW_UNSND (attr);
7209
7210 /* There should be a DW_AT_ranges_base attribute here (if needed).
7211 We need the value before we can process DW_AT_ranges. */
7212 cu->ranges_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7214 if (attr)
7215 cu->ranges_base = DW_UNSND (attr);
7216 }
7217 else if (stub_comp_dir != NULL)
7218 {
7219 /* Reconstruct the comp_dir attribute to simplify the code below. */
7220 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7221 comp_dir->name = DW_AT_comp_dir;
7222 comp_dir->form = DW_FORM_string;
7223 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7224 DW_STRING (comp_dir) = stub_comp_dir;
7225 }
7226
7227 /* Set up for reading the DWO CU/TU. */
7228 cu->dwo_unit = dwo_unit;
7229 dwarf2_section_info *section = dwo_unit->section;
7230 dwarf2_read_section (objfile, section);
7231 abfd = get_section_bfd_owner (section);
7232 begin_info_ptr = info_ptr = (section->buffer
7233 + to_underlying (dwo_unit->sect_off));
7234 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7235
7236 if (this_cu->is_debug_types)
7237 {
7238 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7239
7240 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7241 &cu->header, section,
7242 dwo_abbrev_section,
7243 info_ptr, rcuh_kind::TYPE);
7244 /* This is not an assert because it can be caused by bad debug info. */
7245 if (sig_type->signature != cu->header.signature)
7246 {
7247 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7248 " TU at offset %s [in module %s]"),
7249 hex_string (sig_type->signature),
7250 hex_string (cu->header.signature),
7251 sect_offset_str (dwo_unit->sect_off),
7252 bfd_get_filename (abfd));
7253 }
7254 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7255 /* For DWOs coming from DWP files, we don't know the CU length
7256 nor the type's offset in the TU until now. */
7257 dwo_unit->length = get_cu_length (&cu->header);
7258 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7259
7260 /* Establish the type offset that can be used to lookup the type.
7261 For DWO files, we don't know it until now. */
7262 sig_type->type_offset_in_section
7263 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7264 }
7265 else
7266 {
7267 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7268 &cu->header, section,
7269 dwo_abbrev_section,
7270 info_ptr, rcuh_kind::COMPILE);
7271 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7272 /* For DWOs coming from DWP files, we don't know the CU length
7273 until now. */
7274 dwo_unit->length = get_cu_length (&cu->header);
7275 }
7276
7277 *result_dwo_abbrev_table
7278 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7279 cu->header.abbrev_sect_off);
7280 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7281 result_dwo_abbrev_table->get ());
7282
7283 /* Read in the die, but leave space to copy over the attributes
7284 from the stub. This has the benefit of simplifying the rest of
7285 the code - all the work to maintain the illusion of a single
7286 DW_TAG_{compile,type}_unit DIE is done here. */
7287 num_extra_attrs = ((stmt_list != NULL)
7288 + (low_pc != NULL)
7289 + (high_pc != NULL)
7290 + (ranges != NULL)
7291 + (comp_dir != NULL));
7292 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7293 result_has_children, num_extra_attrs);
7294
7295 /* Copy over the attributes from the stub to the DIE we just read in. */
7296 comp_unit_die = *result_comp_unit_die;
7297 i = comp_unit_die->num_attrs;
7298 if (stmt_list != NULL)
7299 comp_unit_die->attrs[i++] = *stmt_list;
7300 if (low_pc != NULL)
7301 comp_unit_die->attrs[i++] = *low_pc;
7302 if (high_pc != NULL)
7303 comp_unit_die->attrs[i++] = *high_pc;
7304 if (ranges != NULL)
7305 comp_unit_die->attrs[i++] = *ranges;
7306 if (comp_dir != NULL)
7307 comp_unit_die->attrs[i++] = *comp_dir;
7308 comp_unit_die->num_attrs += num_extra_attrs;
7309
7310 if (dwarf_die_debug)
7311 {
7312 fprintf_unfiltered (gdb_stdlog,
7313 "Read die from %s@0x%x of %s:\n",
7314 get_section_name (section),
7315 (unsigned) (begin_info_ptr - section->buffer),
7316 bfd_get_filename (abfd));
7317 dump_die (comp_unit_die, dwarf_die_debug);
7318 }
7319
7320 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7321 TUs by skipping the stub and going directly to the entry in the DWO file.
7322 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7323 to get it via circuitous means. Blech. */
7324 if (comp_dir != NULL)
7325 result_reader->comp_dir = DW_STRING (comp_dir);
7326
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + dwo_unit->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7330 return 0;
7331
7332 *result_info_ptr = info_ptr;
7333 return 1;
7334 }
7335
7336 /* Subroutine of init_cutu_and_read_dies to simplify it.
7337 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7338 Returns NULL if the specified DWO unit cannot be found. */
7339
7340 static struct dwo_unit *
7341 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7342 struct die_info *comp_unit_die)
7343 {
7344 struct dwarf2_cu *cu = this_cu->cu;
7345 ULONGEST signature;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7348
7349 gdb_assert (cu != NULL);
7350
7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7352 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7354
7355 if (this_cu->is_debug_types)
7356 {
7357 struct signatured_type *sig_type;
7358
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 signature = sig_type->signature;
7363 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7364 }
7365 else
7366 {
7367 struct attribute *attr;
7368
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (! attr)
7371 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7372 " [in module %s]"),
7373 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7374 signature = DW_UNSND (attr);
7375 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7376 signature);
7377 }
7378
7379 return dwo_unit;
7380 }
7381
7382 /* Subroutine of init_cutu_and_read_dies to simplify it.
7383 See it for a description of the parameters.
7384 Read a TU directly from a DWO file, bypassing the stub. */
7385
7386 static void
7387 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7388 int use_existing_cu, int keep,
7389 die_reader_func_ftype *die_reader_func,
7390 void *data)
7391 {
7392 std::unique_ptr<dwarf2_cu> new_cu;
7393 struct signatured_type *sig_type;
7394 struct die_reader_specs reader;
7395 const gdb_byte *info_ptr;
7396 struct die_info *comp_unit_die;
7397 int has_children;
7398 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7399
7400 /* Verify we can do the following downcast, and that we have the
7401 data we need. */
7402 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7403 sig_type = (struct signatured_type *) this_cu;
7404 gdb_assert (sig_type->dwo_unit != NULL);
7405
7406 if (use_existing_cu && this_cu->cu != NULL)
7407 {
7408 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7409 /* There's no need to do the rereading_dwo_cu handling that
7410 init_cutu_and_read_dies does since we don't read the stub. */
7411 }
7412 else
7413 {
7414 /* If !use_existing_cu, this_cu->cu must be NULL. */
7415 gdb_assert (this_cu->cu == NULL);
7416 new_cu.reset (new dwarf2_cu (this_cu));
7417 }
7418
7419 /* A future optimization, if needed, would be to use an existing
7420 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7421 could share abbrev tables. */
7422
7423 /* The abbreviation table used by READER, this must live at least as long as
7424 READER. */
7425 abbrev_table_up dwo_abbrev_table;
7426
7427 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7428 NULL /* stub_comp_unit_die */,
7429 sig_type->dwo_unit->dwo_file->comp_dir,
7430 &reader, &info_ptr,
7431 &comp_unit_die, &has_children,
7432 &dwo_abbrev_table) == 0)
7433 {
7434 /* Dummy die. */
7435 return;
7436 }
7437
7438 /* All the "real" work is done here. */
7439 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7440
7441 /* This duplicates the code in init_cutu_and_read_dies,
7442 but the alternative is making the latter more complex.
7443 This function is only for the special case of using DWO files directly:
7444 no point in overly complicating the general case just to handle this. */
7445 if (new_cu != NULL && keep)
7446 {
7447 /* Link this CU into read_in_chain. */
7448 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7449 dwarf2_per_objfile->read_in_chain = this_cu;
7450 /* The chain owns it now. */
7451 new_cu.release ();
7452 }
7453 }
7454
7455 /* Initialize a CU (or TU) and read its DIEs.
7456 If the CU defers to a DWO file, read the DWO file as well.
7457
7458 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7459 Otherwise the table specified in the comp unit header is read in and used.
7460 This is an optimization for when we already have the abbrev table.
7461
7462 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7463 Otherwise, a new CU is allocated with xmalloc.
7464
7465 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7466 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7467
7468 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7469 linker) then DIE_READER_FUNC will not get called. */
7470
7471 static void
7472 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7473 struct abbrev_table *abbrev_table,
7474 int use_existing_cu, int keep,
7475 bool skip_partial,
7476 die_reader_func_ftype *die_reader_func,
7477 void *data)
7478 {
7479 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7480 struct objfile *objfile = dwarf2_per_objfile->objfile;
7481 struct dwarf2_section_info *section = this_cu->section;
7482 bfd *abfd = get_section_bfd_owner (section);
7483 struct dwarf2_cu *cu;
7484 const gdb_byte *begin_info_ptr, *info_ptr;
7485 struct die_reader_specs reader;
7486 struct die_info *comp_unit_die;
7487 int has_children;
7488 struct attribute *attr;
7489 struct signatured_type *sig_type = NULL;
7490 struct dwarf2_section_info *abbrev_section;
7491 /* Non-zero if CU currently points to a DWO file and we need to
7492 reread it. When this happens we need to reread the skeleton die
7493 before we can reread the DWO file (this only applies to CUs, not TUs). */
7494 int rereading_dwo_cu = 0;
7495
7496 if (dwarf_die_debug)
7497 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7498 this_cu->is_debug_types ? "type" : "comp",
7499 sect_offset_str (this_cu->sect_off));
7500
7501 if (use_existing_cu)
7502 gdb_assert (keep);
7503
7504 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7505 file (instead of going through the stub), short-circuit all of this. */
7506 if (this_cu->reading_dwo_directly)
7507 {
7508 /* Narrow down the scope of possibilities to have to understand. */
7509 gdb_assert (this_cu->is_debug_types);
7510 gdb_assert (abbrev_table == NULL);
7511 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7512 die_reader_func, data);
7513 return;
7514 }
7515
7516 /* This is cheap if the section is already read in. */
7517 dwarf2_read_section (objfile, section);
7518
7519 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7520
7521 abbrev_section = get_abbrev_section_for_cu (this_cu);
7522
7523 std::unique_ptr<dwarf2_cu> new_cu;
7524 if (use_existing_cu && this_cu->cu != NULL)
7525 {
7526 cu = this_cu->cu;
7527 /* If this CU is from a DWO file we need to start over, we need to
7528 refetch the attributes from the skeleton CU.
7529 This could be optimized by retrieving those attributes from when we
7530 were here the first time: the previous comp_unit_die was stored in
7531 comp_unit_obstack. But there's no data yet that we need this
7532 optimization. */
7533 if (cu->dwo_unit != NULL)
7534 rereading_dwo_cu = 1;
7535 }
7536 else
7537 {
7538 /* If !use_existing_cu, this_cu->cu must be NULL. */
7539 gdb_assert (this_cu->cu == NULL);
7540 new_cu.reset (new dwarf2_cu (this_cu));
7541 cu = new_cu.get ();
7542 }
7543
7544 /* Get the header. */
7545 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7546 {
7547 /* We already have the header, there's no need to read it in again. */
7548 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7549 }
7550 else
7551 {
7552 if (this_cu->is_debug_types)
7553 {
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
7556 abbrev_section, info_ptr,
7557 rcuh_kind::TYPE);
7558
7559 /* Since per_cu is the first member of struct signatured_type,
7560 we can go from a pointer to one to a pointer to the other. */
7561 sig_type = (struct signatured_type *) this_cu;
7562 gdb_assert (sig_type->signature == cu->header.signature);
7563 gdb_assert (sig_type->type_offset_in_tu
7564 == cu->header.type_cu_offset_in_tu);
7565 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7566
7567 /* LENGTH has not been set yet for type units if we're
7568 using .gdb_index. */
7569 this_cu->length = get_cu_length (&cu->header);
7570
7571 /* Establish the type offset that can be used to lookup the type. */
7572 sig_type->type_offset_in_section =
7573 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7574
7575 this_cu->dwarf_version = cu->header.version;
7576 }
7577 else
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section,
7582 info_ptr,
7583 rcuh_kind::COMPILE);
7584
7585 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7586 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7587 this_cu->dwarf_version = cu->header.version;
7588 }
7589 }
7590
7591 /* Skip dummy compilation units. */
7592 if (info_ptr >= begin_info_ptr + this_cu->length
7593 || peek_abbrev_code (abfd, info_ptr) == 0)
7594 return;
7595
7596 /* If we don't have them yet, read the abbrevs for this compilation unit.
7597 And if we need to read them now, make sure they're freed when we're
7598 done (own the table through ABBREV_TABLE_HOLDER). */
7599 abbrev_table_up abbrev_table_holder;
7600 if (abbrev_table != NULL)
7601 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7602 else
7603 {
7604 abbrev_table_holder
7605 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7606 cu->header.abbrev_sect_off);
7607 abbrev_table = abbrev_table_holder.get ();
7608 }
7609
7610 /* Read the top level CU/TU die. */
7611 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7612 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7613
7614 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7615 return;
7616
7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7621 with READER.
7622
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7626 abbrev_table_up dwo_abbrev_table;
7627 if (attr)
7628 {
7629 struct dwo_unit *dwo_unit;
7630 struct die_info *dwo_comp_unit_die;
7631
7632 if (has_children)
7633 {
7634 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7635 " has children (offset %s) [in module %s]"),
7636 sect_offset_str (this_cu->sect_off),
7637 bfd_get_filename (abfd));
7638 }
7639 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7640 if (dwo_unit != NULL)
7641 {
7642 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7643 comp_unit_die, NULL,
7644 &reader, &info_ptr,
7645 &dwo_comp_unit_die, &has_children,
7646 &dwo_abbrev_table) == 0)
7647 {
7648 /* Dummy die. */
7649 return;
7650 }
7651 comp_unit_die = dwo_comp_unit_die;
7652 }
7653 else
7654 {
7655 /* Yikes, we couldn't find the rest of the DIE, we only have
7656 the stub. A complaint has already been logged. There's
7657 not much more we can do except pass on the stub DIE to
7658 die_reader_func. We don't want to throw an error on bad
7659 debug info. */
7660 }
7661 }
7662
7663 /* All of the above is setup for this call. Yikes. */
7664 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7665
7666 /* Done, clean up. */
7667 if (new_cu != NULL && keep)
7668 {
7669 /* Link this CU into read_in_chain. */
7670 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7671 dwarf2_per_objfile->read_in_chain = this_cu;
7672 /* The chain owns it now. */
7673 new_cu.release ();
7674 }
7675 }
7676
7677 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7678 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7679 to have already done the lookup to find the DWO file).
7680
7681 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7682 THIS_CU->is_debug_types, but nothing else.
7683
7684 We fill in THIS_CU->length.
7685
7686 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7687 linker) then DIE_READER_FUNC will not get called.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU. */
7692
7693 static void
7694 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7695 struct dwo_file *dwo_file,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7700 struct objfile *objfile = dwarf2_per_objfile->objfile;
7701 struct dwarf2_section_info *section = this_cu->section;
7702 bfd *abfd = get_section_bfd_owner (section);
7703 struct dwarf2_section_info *abbrev_section;
7704 const gdb_byte *begin_info_ptr, *info_ptr;
7705 struct die_reader_specs reader;
7706 struct die_info *comp_unit_die;
7707 int has_children;
7708
7709 if (dwarf_die_debug)
7710 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7711 this_cu->is_debug_types ? "type" : "comp",
7712 sect_offset_str (this_cu->sect_off));
7713
7714 gdb_assert (this_cu->cu == NULL);
7715
7716 abbrev_section = (dwo_file != NULL
7717 ? &dwo_file->sections.abbrev
7718 : get_abbrev_section_for_cu (this_cu));
7719
7720 /* This is cheap if the section is already read in. */
7721 dwarf2_read_section (objfile, section);
7722
7723 struct dwarf2_cu cu (this_cu);
7724
7725 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7726 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7727 &cu.header, section,
7728 abbrev_section, info_ptr,
7729 (this_cu->is_debug_types
7730 ? rcuh_kind::TYPE
7731 : rcuh_kind::COMPILE));
7732
7733 this_cu->length = get_cu_length (&cu.header);
7734
7735 /* Skip dummy compilation units. */
7736 if (info_ptr >= begin_info_ptr + this_cu->length
7737 || peek_abbrev_code (abfd, info_ptr) == 0)
7738 return;
7739
7740 abbrev_table_up abbrev_table
7741 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7742 cu.header.abbrev_sect_off);
7743
7744 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7745 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7746
7747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7748 }
7749
7750 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7751 does not lookup the specified DWO file.
7752 This cannot be used to read DWO files.
7753
7754 THIS_CU->cu is always freed when done.
7755 This is done in order to not leave THIS_CU->cu in a state where we have
7756 to care whether it refers to the "main" CU or the DWO CU.
7757 We can revisit this if the data shows there's a performance issue. */
7758
7759 static void
7760 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7761 die_reader_func_ftype *die_reader_func,
7762 void *data)
7763 {
7764 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7765 }
7766 \f
7767 /* Type Unit Groups.
7768
7769 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7770 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7771 so that all types coming from the same compilation (.o file) are grouped
7772 together. A future step could be to put the types in the same symtab as
7773 the CU the types ultimately came from. */
7774
7775 static hashval_t
7776 hash_type_unit_group (const void *item)
7777 {
7778 const struct type_unit_group *tu_group
7779 = (const struct type_unit_group *) item;
7780
7781 return hash_stmt_list_entry (&tu_group->hash);
7782 }
7783
7784 static int
7785 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7786 {
7787 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7788 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7789
7790 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7791 }
7792
7793 /* Allocate a hash table for type unit groups. */
7794
7795 static htab_t
7796 allocate_type_unit_groups_table (struct objfile *objfile)
7797 {
7798 return htab_create_alloc_ex (3,
7799 hash_type_unit_group,
7800 eq_type_unit_group,
7801 NULL,
7802 &objfile->objfile_obstack,
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
7805 }
7806
7807 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7808 partial symtabs. We combine several TUs per psymtab to not let the size
7809 of any one psymtab grow too big. */
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7812
7813 /* Helper routine for get_type_unit_group.
7814 Create the type_unit_group object used to hold one or more TUs. */
7815
7816 static struct type_unit_group *
7817 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7818 {
7819 struct dwarf2_per_objfile *dwarf2_per_objfile
7820 = cu->per_cu->dwarf2_per_objfile;
7821 struct objfile *objfile = dwarf2_per_objfile->objfile;
7822 struct dwarf2_per_cu_data *per_cu;
7823 struct type_unit_group *tu_group;
7824
7825 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7826 struct type_unit_group);
7827 per_cu = &tu_group->per_cu;
7828 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7829
7830 if (dwarf2_per_objfile->using_index)
7831 {
7832 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct dwarf2_per_cu_quick_data);
7834 }
7835 else
7836 {
7837 unsigned int line_offset = to_underlying (line_offset_struct);
7838 struct partial_symtab *pst;
7839 std::string name;
7840
7841 /* Give the symtab a useful name for debug purposes. */
7842 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7843 name = string_printf ("<type_units_%d>",
7844 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7845 else
7846 name = string_printf ("<type_units_at_0x%x>", line_offset);
7847
7848 pst = create_partial_symtab (per_cu, name.c_str ());
7849 pst->anonymous = 1;
7850 }
7851
7852 tu_group->hash.dwo_unit = cu->dwo_unit;
7853 tu_group->hash.line_sect_off = line_offset_struct;
7854
7855 return tu_group;
7856 }
7857
7858 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7859 STMT_LIST is a DW_AT_stmt_list attribute. */
7860
7861 static struct type_unit_group *
7862 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7863 {
7864 struct dwarf2_per_objfile *dwarf2_per_objfile
7865 = cu->per_cu->dwarf2_per_objfile;
7866 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7867 struct type_unit_group *tu_group;
7868 void **slot;
7869 unsigned int line_offset;
7870 struct type_unit_group type_unit_group_for_lookup;
7871
7872 if (dwarf2_per_objfile->type_unit_groups == NULL)
7873 {
7874 dwarf2_per_objfile->type_unit_groups =
7875 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7876 }
7877
7878 /* Do we need to create a new group, or can we use an existing one? */
7879
7880 if (stmt_list)
7881 {
7882 line_offset = DW_UNSND (stmt_list);
7883 ++tu_stats->nr_symtab_sharers;
7884 }
7885 else
7886 {
7887 /* Ugh, no stmt_list. Rare, but we have to handle it.
7888 We can do various things here like create one group per TU or
7889 spread them over multiple groups to split up the expansion work.
7890 To avoid worst case scenarios (too many groups or too large groups)
7891 we, umm, group them in bunches. */
7892 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7893 | (tu_stats->nr_stmt_less_type_units
7894 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7895 ++tu_stats->nr_stmt_less_type_units;
7896 }
7897
7898 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7899 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7900 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7901 &type_unit_group_for_lookup, INSERT);
7902 if (*slot != NULL)
7903 {
7904 tu_group = (struct type_unit_group *) *slot;
7905 gdb_assert (tu_group != NULL);
7906 }
7907 else
7908 {
7909 sect_offset line_offset_struct = (sect_offset) line_offset;
7910 tu_group = create_type_unit_group (cu, line_offset_struct);
7911 *slot = tu_group;
7912 ++tu_stats->nr_symtabs;
7913 }
7914
7915 return tu_group;
7916 }
7917 \f
7918 /* Partial symbol tables. */
7919
7920 /* Create a psymtab named NAME and assign it to PER_CU.
7921
7922 The caller must fill in the following details:
7923 dirname, textlow, texthigh. */
7924
7925 static struct partial_symtab *
7926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7927 {
7928 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7929 struct partial_symtab *pst;
7930
7931 pst = start_psymtab_common (objfile, name, 0,
7932 objfile->global_psymbols,
7933 objfile->static_psymbols);
7934
7935 pst->psymtabs_addrmap_supported = 1;
7936
7937 /* This is the glue that links PST into GDB's symbol API. */
7938 pst->read_symtab_private = per_cu;
7939 pst->read_symtab = dwarf2_read_symtab;
7940 per_cu->v.psymtab = pst;
7941
7942 return pst;
7943 }
7944
7945 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7946 type. */
7947
7948 struct process_psymtab_comp_unit_data
7949 {
7950 /* True if we are reading a DW_TAG_partial_unit. */
7951
7952 int want_partial_unit;
7953
7954 /* The "pretend" language that is used if the CU doesn't declare a
7955 language. */
7956
7957 enum language pretend_language;
7958 };
7959
7960 /* die_reader_func for process_psymtab_comp_unit. */
7961
7962 static void
7963 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7964 const gdb_byte *info_ptr,
7965 struct die_info *comp_unit_die,
7966 int has_children,
7967 void *data)
7968 {
7969 struct dwarf2_cu *cu = reader->cu;
7970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7973 CORE_ADDR baseaddr;
7974 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7975 struct partial_symtab *pst;
7976 enum pc_bounds_kind cu_bounds_kind;
7977 const char *filename;
7978 struct process_psymtab_comp_unit_data *info
7979 = (struct process_psymtab_comp_unit_data *) data;
7980
7981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7982 return;
7983
7984 gdb_assert (! per_cu->is_debug_types);
7985
7986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7987
7988 /* Allocate a new partial symbol table structure. */
7989 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7990 if (filename == NULL)
7991 filename = "";
7992
7993 pst = create_partial_symtab (per_cu, filename);
7994
7995 /* This must be done before calling dwarf2_build_include_psymtabs. */
7996 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7997
7998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7999
8000 dwarf2_find_base_address (comp_unit_die, cu);
8001
8002 /* Possibly set the default values of LOWPC and HIGHPC from
8003 `DW_AT_ranges'. */
8004 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8005 &best_highpc, cu, pst);
8006 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8007 {
8008 CORE_ADDR low
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8010 - baseaddr);
8011 CORE_ADDR high
8012 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8013 - baseaddr - 1);
8014 /* Store the contiguous range if it is not empty; it can be
8015 empty for CUs with no code. */
8016 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8017 }
8018
8019 /* Check if comp unit has_children.
8020 If so, read the rest of the partial symbols from this comp unit.
8021 If not, there's no more debug_info for this comp unit. */
8022 if (has_children)
8023 {
8024 struct partial_die_info *first_die;
8025 CORE_ADDR lowpc, highpc;
8026
8027 lowpc = ((CORE_ADDR) -1);
8028 highpc = ((CORE_ADDR) 0);
8029
8030 first_die = load_partial_dies (reader, info_ptr, 1);
8031
8032 scan_partial_symbols (first_die, &lowpc, &highpc,
8033 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8034
8035 /* If we didn't find a lowpc, set it to highpc to avoid
8036 complaints from `maint check'. */
8037 if (lowpc == ((CORE_ADDR) -1))
8038 lowpc = highpc;
8039
8040 /* If the compilation unit didn't have an explicit address range,
8041 then use the information extracted from its child dies. */
8042 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8043 {
8044 best_lowpc = lowpc;
8045 best_highpc = highpc;
8046 }
8047 }
8048 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_lowpc + baseaddr)
8050 - baseaddr);
8051 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8052 best_highpc + baseaddr)
8053 - baseaddr);
8054
8055 end_psymtab_common (objfile, pst);
8056
8057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8058 {
8059 int i;
8060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8061 struct dwarf2_per_cu_data *iter;
8062
8063 /* Fill in 'dependencies' here; we fill in 'users' in a
8064 post-pass. */
8065 pst->number_of_dependencies = len;
8066 pst->dependencies =
8067 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8068 for (i = 0;
8069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8070 i, iter);
8071 ++i)
8072 pst->dependencies[i] = iter->v.psymtab;
8073
8074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8075 }
8076
8077 /* Get the list of files included in the current compilation unit,
8078 and build a psymtab for each of them. */
8079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8080
8081 if (dwarf_read_debug)
8082 fprintf_unfiltered (gdb_stdlog,
8083 "Psymtab for %s unit @%s: %s - %s"
8084 ", %d global, %d static syms\n",
8085 per_cu->is_debug_types ? "type" : "comp",
8086 sect_offset_str (per_cu->sect_off),
8087 paddress (gdbarch, pst->text_low (objfile)),
8088 paddress (gdbarch, pst->text_high (objfile)),
8089 pst->n_global_syms, pst->n_static_syms);
8090 }
8091
8092 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8093 Process compilation unit THIS_CU for a psymtab. */
8094
8095 static void
8096 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8097 int want_partial_unit,
8098 enum language pretend_language)
8099 {
8100 /* If this compilation unit was already read in, free the
8101 cached copy in order to read it in again. This is
8102 necessary because we skipped some symbols when we first
8103 read in the compilation unit (see load_partial_dies).
8104 This problem could be avoided, but the benefit is unclear. */
8105 if (this_cu->cu != NULL)
8106 free_one_cached_comp_unit (this_cu);
8107
8108 if (this_cu->is_debug_types)
8109 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8110 build_type_psymtabs_reader, NULL);
8111 else
8112 {
8113 process_psymtab_comp_unit_data info;
8114 info.want_partial_unit = want_partial_unit;
8115 info.pretend_language = pretend_language;
8116 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8117 process_psymtab_comp_unit_reader, &info);
8118 }
8119
8120 /* Age out any secondary CUs. */
8121 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8122 }
8123
8124 /* Reader function for build_type_psymtabs. */
8125
8126 static void
8127 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8128 const gdb_byte *info_ptr,
8129 struct die_info *type_unit_die,
8130 int has_children,
8131 void *data)
8132 {
8133 struct dwarf2_per_objfile *dwarf2_per_objfile
8134 = reader->cu->per_cu->dwarf2_per_objfile;
8135 struct objfile *objfile = dwarf2_per_objfile->objfile;
8136 struct dwarf2_cu *cu = reader->cu;
8137 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8138 struct signatured_type *sig_type;
8139 struct type_unit_group *tu_group;
8140 struct attribute *attr;
8141 struct partial_die_info *first_die;
8142 CORE_ADDR lowpc, highpc;
8143 struct partial_symtab *pst;
8144
8145 gdb_assert (data == NULL);
8146 gdb_assert (per_cu->is_debug_types);
8147 sig_type = (struct signatured_type *) per_cu;
8148
8149 if (! has_children)
8150 return;
8151
8152 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8153 tu_group = get_type_unit_group (cu, attr);
8154
8155 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8156
8157 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8158 pst = create_partial_symtab (per_cu, "");
8159 pst->anonymous = 1;
8160
8161 first_die = load_partial_dies (reader, info_ptr, 1);
8162
8163 lowpc = (CORE_ADDR) -1;
8164 highpc = (CORE_ADDR) 0;
8165 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8166
8167 end_psymtab_common (objfile, pst);
8168 }
8169
8170 /* Struct used to sort TUs by their abbreviation table offset. */
8171
8172 struct tu_abbrev_offset
8173 {
8174 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8175 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8176 {}
8177
8178 signatured_type *sig_type;
8179 sect_offset abbrev_offset;
8180 };
8181
8182 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8183
8184 static bool
8185 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8186 const struct tu_abbrev_offset &b)
8187 {
8188 return a.abbrev_offset < b.abbrev_offset;
8189 }
8190
8191 /* Efficiently read all the type units.
8192 This does the bulk of the work for build_type_psymtabs.
8193
8194 The efficiency is because we sort TUs by the abbrev table they use and
8195 only read each abbrev table once. In one program there are 200K TUs
8196 sharing 8K abbrev tables.
8197
8198 The main purpose of this function is to support building the
8199 dwarf2_per_objfile->type_unit_groups table.
8200 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8201 can collapse the search space by grouping them by stmt_list.
8202 The savings can be significant, in the same program from above the 200K TUs
8203 share 8K stmt_list tables.
8204
8205 FUNC is expected to call get_type_unit_group, which will create the
8206 struct type_unit_group if necessary and add it to
8207 dwarf2_per_objfile->type_unit_groups. */
8208
8209 static void
8210 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8211 {
8212 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8213 abbrev_table_up abbrev_table;
8214 sect_offset abbrev_offset;
8215
8216 /* It's up to the caller to not call us multiple times. */
8217 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8218
8219 if (dwarf2_per_objfile->all_type_units.empty ())
8220 return;
8221
8222 /* TUs typically share abbrev tables, and there can be way more TUs than
8223 abbrev tables. Sort by abbrev table to reduce the number of times we
8224 read each abbrev table in.
8225 Alternatives are to punt or to maintain a cache of abbrev tables.
8226 This is simpler and efficient enough for now.
8227
8228 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8229 symtab to use). Typically TUs with the same abbrev offset have the same
8230 stmt_list value too so in practice this should work well.
8231
8232 The basic algorithm here is:
8233
8234 sort TUs by abbrev table
8235 for each TU with same abbrev table:
8236 read abbrev table if first user
8237 read TU top level DIE
8238 [IWBN if DWO skeletons had DW_AT_stmt_list]
8239 call FUNC */
8240
8241 if (dwarf_read_debug)
8242 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8243
8244 /* Sort in a separate table to maintain the order of all_type_units
8245 for .gdb_index: TU indices directly index all_type_units. */
8246 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8247 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8248
8249 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8250 sorted_by_abbrev.emplace_back
8251 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8252 sig_type->per_cu.section,
8253 sig_type->per_cu.sect_off));
8254
8255 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8256 sort_tu_by_abbrev_offset);
8257
8258 abbrev_offset = (sect_offset) ~(unsigned) 0;
8259
8260 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8261 {
8262 /* Switch to the next abbrev table if necessary. */
8263 if (abbrev_table == NULL
8264 || tu.abbrev_offset != abbrev_offset)
8265 {
8266 abbrev_offset = tu.abbrev_offset;
8267 abbrev_table =
8268 abbrev_table_read_table (dwarf2_per_objfile,
8269 &dwarf2_per_objfile->abbrev,
8270 abbrev_offset);
8271 ++tu_stats->nr_uniq_abbrev_tables;
8272 }
8273
8274 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8275 0, 0, false, build_type_psymtabs_reader, NULL);
8276 }
8277 }
8278
8279 /* Print collected type unit statistics. */
8280
8281 static void
8282 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8283 {
8284 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8285
8286 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8287 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8288 dwarf2_per_objfile->all_type_units.size ());
8289 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8290 tu_stats->nr_uniq_abbrev_tables);
8291 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8292 tu_stats->nr_symtabs);
8293 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8294 tu_stats->nr_symtab_sharers);
8295 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8296 tu_stats->nr_stmt_less_type_units);
8297 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8298 tu_stats->nr_all_type_units_reallocs);
8299 }
8300
8301 /* Traversal function for build_type_psymtabs. */
8302
8303 static int
8304 build_type_psymtab_dependencies (void **slot, void *info)
8305 {
8306 struct dwarf2_per_objfile *dwarf2_per_objfile
8307 = (struct dwarf2_per_objfile *) info;
8308 struct objfile *objfile = dwarf2_per_objfile->objfile;
8309 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8310 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8311 struct partial_symtab *pst = per_cu->v.psymtab;
8312 int len = VEC_length (sig_type_ptr, tu_group->tus);
8313 struct signatured_type *iter;
8314 int i;
8315
8316 gdb_assert (len > 0);
8317 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8318
8319 pst->number_of_dependencies = len;
8320 pst->dependencies =
8321 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8322 for (i = 0;
8323 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8324 ++i)
8325 {
8326 gdb_assert (iter->per_cu.is_debug_types);
8327 pst->dependencies[i] = iter->per_cu.v.psymtab;
8328 iter->type_unit_group = tu_group;
8329 }
8330
8331 VEC_free (sig_type_ptr, tu_group->tus);
8332
8333 return 1;
8334 }
8335
8336 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8337 Build partial symbol tables for the .debug_types comp-units. */
8338
8339 static void
8340 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8341 {
8342 if (! create_all_type_units (dwarf2_per_objfile))
8343 return;
8344
8345 build_type_psymtabs_1 (dwarf2_per_objfile);
8346 }
8347
8348 /* Traversal function for process_skeletonless_type_unit.
8349 Read a TU in a DWO file and build partial symbols for it. */
8350
8351 static int
8352 process_skeletonless_type_unit (void **slot, void *info)
8353 {
8354 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8355 struct dwarf2_per_objfile *dwarf2_per_objfile
8356 = (struct dwarf2_per_objfile *) info;
8357 struct signatured_type find_entry, *entry;
8358
8359 /* If this TU doesn't exist in the global table, add it and read it in. */
8360
8361 if (dwarf2_per_objfile->signatured_types == NULL)
8362 {
8363 dwarf2_per_objfile->signatured_types
8364 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8365 }
8366
8367 find_entry.signature = dwo_unit->signature;
8368 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8369 INSERT);
8370 /* If we've already seen this type there's nothing to do. What's happening
8371 is we're doing our own version of comdat-folding here. */
8372 if (*slot != NULL)
8373 return 1;
8374
8375 /* This does the job that create_all_type_units would have done for
8376 this TU. */
8377 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8378 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8379 *slot = entry;
8380
8381 /* This does the job that build_type_psymtabs_1 would have done. */
8382 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8383 build_type_psymtabs_reader, NULL);
8384
8385 return 1;
8386 }
8387
8388 /* Traversal function for process_skeletonless_type_units. */
8389
8390 static int
8391 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8392 {
8393 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8394
8395 if (dwo_file->tus != NULL)
8396 {
8397 htab_traverse_noresize (dwo_file->tus,
8398 process_skeletonless_type_unit, info);
8399 }
8400
8401 return 1;
8402 }
8403
8404 /* Scan all TUs of DWO files, verifying we've processed them.
8405 This is needed in case a TU was emitted without its skeleton.
8406 Note: This can't be done until we know what all the DWO files are. */
8407
8408 static void
8409 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8410 {
8411 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8412 if (get_dwp_file (dwarf2_per_objfile) == NULL
8413 && dwarf2_per_objfile->dwo_files != NULL)
8414 {
8415 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8416 process_dwo_file_for_skeletonless_type_units,
8417 dwarf2_per_objfile);
8418 }
8419 }
8420
8421 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8422
8423 static void
8424 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8425 {
8426 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8427 {
8428 struct partial_symtab *pst = per_cu->v.psymtab;
8429
8430 if (pst == NULL)
8431 continue;
8432
8433 for (int j = 0; j < pst->number_of_dependencies; ++j)
8434 {
8435 /* Set the 'user' field only if it is not already set. */
8436 if (pst->dependencies[j]->user == NULL)
8437 pst->dependencies[j]->user = pst;
8438 }
8439 }
8440 }
8441
8442 /* Build the partial symbol table by doing a quick pass through the
8443 .debug_info and .debug_abbrev sections. */
8444
8445 static void
8446 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8447 {
8448 struct objfile *objfile = dwarf2_per_objfile->objfile;
8449
8450 if (dwarf_read_debug)
8451 {
8452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8453 objfile_name (objfile));
8454 }
8455
8456 dwarf2_per_objfile->reading_partial_symbols = 1;
8457
8458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8459
8460 /* Any cached compilation units will be linked by the per-objfile
8461 read_in_chain. Make sure to free them when we're done. */
8462 free_cached_comp_units freer (dwarf2_per_objfile);
8463
8464 build_type_psymtabs (dwarf2_per_objfile);
8465
8466 create_all_comp_units (dwarf2_per_objfile);
8467
8468 /* Create a temporary address map on a temporary obstack. We later
8469 copy this to the final obstack. */
8470 auto_obstack temp_obstack;
8471
8472 scoped_restore save_psymtabs_addrmap
8473 = make_scoped_restore (&objfile->psymtabs_addrmap,
8474 addrmap_create_mutable (&temp_obstack));
8475
8476 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8477 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8478
8479 /* This has to wait until we read the CUs, we need the list of DWOs. */
8480 process_skeletonless_type_units (dwarf2_per_objfile);
8481
8482 /* Now that all TUs have been processed we can fill in the dependencies. */
8483 if (dwarf2_per_objfile->type_unit_groups != NULL)
8484 {
8485 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8486 build_type_psymtab_dependencies, dwarf2_per_objfile);
8487 }
8488
8489 if (dwarf_read_debug)
8490 print_tu_stats (dwarf2_per_objfile);
8491
8492 set_partial_user (dwarf2_per_objfile);
8493
8494 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8495 &objfile->objfile_obstack);
8496 /* At this point we want to keep the address map. */
8497 save_psymtabs_addrmap.release ();
8498
8499 if (dwarf_read_debug)
8500 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8501 objfile_name (objfile));
8502 }
8503
8504 /* die_reader_func for load_partial_comp_unit. */
8505
8506 static void
8507 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8508 const gdb_byte *info_ptr,
8509 struct die_info *comp_unit_die,
8510 int has_children,
8511 void *data)
8512 {
8513 struct dwarf2_cu *cu = reader->cu;
8514
8515 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8516
8517 /* Check if comp unit has_children.
8518 If so, read the rest of the partial symbols from this comp unit.
8519 If not, there's no more debug_info for this comp unit. */
8520 if (has_children)
8521 load_partial_dies (reader, info_ptr, 0);
8522 }
8523
8524 /* Load the partial DIEs for a secondary CU into memory.
8525 This is also used when rereading a primary CU with load_all_dies. */
8526
8527 static void
8528 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8529 {
8530 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8531 load_partial_comp_unit_reader, NULL);
8532 }
8533
8534 static void
8535 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8536 struct dwarf2_section_info *section,
8537 struct dwarf2_section_info *abbrev_section,
8538 unsigned int is_dwz)
8539 {
8540 const gdb_byte *info_ptr;
8541 struct objfile *objfile = dwarf2_per_objfile->objfile;
8542
8543 if (dwarf_read_debug)
8544 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8545 get_section_name (section),
8546 get_section_file_name (section));
8547
8548 dwarf2_read_section (objfile, section);
8549
8550 info_ptr = section->buffer;
8551
8552 while (info_ptr < section->buffer + section->size)
8553 {
8554 struct dwarf2_per_cu_data *this_cu;
8555
8556 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8557
8558 comp_unit_head cu_header;
8559 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8560 abbrev_section, info_ptr,
8561 rcuh_kind::COMPILE);
8562
8563 /* Save the compilation unit for later lookup. */
8564 if (cu_header.unit_type != DW_UT_type)
8565 {
8566 this_cu = XOBNEW (&objfile->objfile_obstack,
8567 struct dwarf2_per_cu_data);
8568 memset (this_cu, 0, sizeof (*this_cu));
8569 }
8570 else
8571 {
8572 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8573 struct signatured_type);
8574 memset (sig_type, 0, sizeof (*sig_type));
8575 sig_type->signature = cu_header.signature;
8576 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8577 this_cu = &sig_type->per_cu;
8578 }
8579 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8580 this_cu->sect_off = sect_off;
8581 this_cu->length = cu_header.length + cu_header.initial_length_size;
8582 this_cu->is_dwz = is_dwz;
8583 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8584 this_cu->section = section;
8585
8586 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8587
8588 info_ptr = info_ptr + this_cu->length;
8589 }
8590 }
8591
8592 /* Create a list of all compilation units in OBJFILE.
8593 This is only done for -readnow and building partial symtabs. */
8594
8595 static void
8596 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8597 {
8598 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8599 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8600 &dwarf2_per_objfile->abbrev, 0);
8601
8602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8603 if (dwz != NULL)
8604 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8605 1);
8606 }
8607
8608 /* Process all loaded DIEs for compilation unit CU, starting at
8609 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8610 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8611 DW_AT_ranges). See the comments of add_partial_subprogram on how
8612 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8613
8614 static void
8615 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8616 CORE_ADDR *highpc, int set_addrmap,
8617 struct dwarf2_cu *cu)
8618 {
8619 struct partial_die_info *pdi;
8620
8621 /* Now, march along the PDI's, descending into ones which have
8622 interesting children but skipping the children of the other ones,
8623 until we reach the end of the compilation unit. */
8624
8625 pdi = first_die;
8626
8627 while (pdi != NULL)
8628 {
8629 pdi->fixup (cu);
8630
8631 /* Anonymous namespaces or modules have no name but have interesting
8632 children, so we need to look at them. Ditto for anonymous
8633 enums. */
8634
8635 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8636 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8637 || pdi->tag == DW_TAG_imported_unit
8638 || pdi->tag == DW_TAG_inlined_subroutine)
8639 {
8640 switch (pdi->tag)
8641 {
8642 case DW_TAG_subprogram:
8643 case DW_TAG_inlined_subroutine:
8644 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8645 break;
8646 case DW_TAG_constant:
8647 case DW_TAG_variable:
8648 case DW_TAG_typedef:
8649 case DW_TAG_union_type:
8650 if (!pdi->is_declaration)
8651 {
8652 add_partial_symbol (pdi, cu);
8653 }
8654 break;
8655 case DW_TAG_class_type:
8656 case DW_TAG_interface_type:
8657 case DW_TAG_structure_type:
8658 if (!pdi->is_declaration)
8659 {
8660 add_partial_symbol (pdi, cu);
8661 }
8662 if ((cu->language == language_rust
8663 || cu->language == language_cplus) && pdi->has_children)
8664 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8665 set_addrmap, cu);
8666 break;
8667 case DW_TAG_enumeration_type:
8668 if (!pdi->is_declaration)
8669 add_partial_enumeration (pdi, cu);
8670 break;
8671 case DW_TAG_base_type:
8672 case DW_TAG_subrange_type:
8673 /* File scope base type definitions are added to the partial
8674 symbol table. */
8675 add_partial_symbol (pdi, cu);
8676 break;
8677 case DW_TAG_namespace:
8678 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8679 break;
8680 case DW_TAG_module:
8681 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8682 break;
8683 case DW_TAG_imported_unit:
8684 {
8685 struct dwarf2_per_cu_data *per_cu;
8686
8687 /* For now we don't handle imported units in type units. */
8688 if (cu->per_cu->is_debug_types)
8689 {
8690 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8691 " supported in type units [in module %s]"),
8692 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8693 }
8694
8695 per_cu = dwarf2_find_containing_comp_unit
8696 (pdi->d.sect_off, pdi->is_dwz,
8697 cu->per_cu->dwarf2_per_objfile);
8698
8699 /* Go read the partial unit, if needed. */
8700 if (per_cu->v.psymtab == NULL)
8701 process_psymtab_comp_unit (per_cu, 1, cu->language);
8702
8703 VEC_safe_push (dwarf2_per_cu_ptr,
8704 cu->per_cu->imported_symtabs, per_cu);
8705 }
8706 break;
8707 case DW_TAG_imported_declaration:
8708 add_partial_symbol (pdi, cu);
8709 break;
8710 default:
8711 break;
8712 }
8713 }
8714
8715 /* If the die has a sibling, skip to the sibling. */
8716
8717 pdi = pdi->die_sibling;
8718 }
8719 }
8720
8721 /* Functions used to compute the fully scoped name of a partial DIE.
8722
8723 Normally, this is simple. For C++, the parent DIE's fully scoped
8724 name is concatenated with "::" and the partial DIE's name.
8725 Enumerators are an exception; they use the scope of their parent
8726 enumeration type, i.e. the name of the enumeration type is not
8727 prepended to the enumerator.
8728
8729 There are two complexities. One is DW_AT_specification; in this
8730 case "parent" means the parent of the target of the specification,
8731 instead of the direct parent of the DIE. The other is compilers
8732 which do not emit DW_TAG_namespace; in this case we try to guess
8733 the fully qualified name of structure types from their members'
8734 linkage names. This must be done using the DIE's children rather
8735 than the children of any DW_AT_specification target. We only need
8736 to do this for structures at the top level, i.e. if the target of
8737 any DW_AT_specification (if any; otherwise the DIE itself) does not
8738 have a parent. */
8739
8740 /* Compute the scope prefix associated with PDI's parent, in
8741 compilation unit CU. The result will be allocated on CU's
8742 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8743 field. NULL is returned if no prefix is necessary. */
8744 static const char *
8745 partial_die_parent_scope (struct partial_die_info *pdi,
8746 struct dwarf2_cu *cu)
8747 {
8748 const char *grandparent_scope;
8749 struct partial_die_info *parent, *real_pdi;
8750
8751 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8752 then this means the parent of the specification DIE. */
8753
8754 real_pdi = pdi;
8755 while (real_pdi->has_specification)
8756 real_pdi = find_partial_die (real_pdi->spec_offset,
8757 real_pdi->spec_is_dwz, cu);
8758
8759 parent = real_pdi->die_parent;
8760 if (parent == NULL)
8761 return NULL;
8762
8763 if (parent->scope_set)
8764 return parent->scope;
8765
8766 parent->fixup (cu);
8767
8768 grandparent_scope = partial_die_parent_scope (parent, cu);
8769
8770 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8771 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8772 Work around this problem here. */
8773 if (cu->language == language_cplus
8774 && parent->tag == DW_TAG_namespace
8775 && strcmp (parent->name, "::") == 0
8776 && grandparent_scope == NULL)
8777 {
8778 parent->scope = NULL;
8779 parent->scope_set = 1;
8780 return NULL;
8781 }
8782
8783 if (pdi->tag == DW_TAG_enumerator)
8784 /* Enumerators should not get the name of the enumeration as a prefix. */
8785 parent->scope = grandparent_scope;
8786 else if (parent->tag == DW_TAG_namespace
8787 || parent->tag == DW_TAG_module
8788 || parent->tag == DW_TAG_structure_type
8789 || parent->tag == DW_TAG_class_type
8790 || parent->tag == DW_TAG_interface_type
8791 || parent->tag == DW_TAG_union_type
8792 || parent->tag == DW_TAG_enumeration_type)
8793 {
8794 if (grandparent_scope == NULL)
8795 parent->scope = parent->name;
8796 else
8797 parent->scope = typename_concat (&cu->comp_unit_obstack,
8798 grandparent_scope,
8799 parent->name, 0, cu);
8800 }
8801 else
8802 {
8803 /* FIXME drow/2004-04-01: What should we be doing with
8804 function-local names? For partial symbols, we should probably be
8805 ignoring them. */
8806 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8807 parent->tag, sect_offset_str (pdi->sect_off));
8808 parent->scope = grandparent_scope;
8809 }
8810
8811 parent->scope_set = 1;
8812 return parent->scope;
8813 }
8814
8815 /* Return the fully scoped name associated with PDI, from compilation unit
8816 CU. The result will be allocated with malloc. */
8817
8818 static char *
8819 partial_die_full_name (struct partial_die_info *pdi,
8820 struct dwarf2_cu *cu)
8821 {
8822 const char *parent_scope;
8823
8824 /* If this is a template instantiation, we can not work out the
8825 template arguments from partial DIEs. So, unfortunately, we have
8826 to go through the full DIEs. At least any work we do building
8827 types here will be reused if full symbols are loaded later. */
8828 if (pdi->has_template_arguments)
8829 {
8830 pdi->fixup (cu);
8831
8832 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8833 {
8834 struct die_info *die;
8835 struct attribute attr;
8836 struct dwarf2_cu *ref_cu = cu;
8837
8838 /* DW_FORM_ref_addr is using section offset. */
8839 attr.name = (enum dwarf_attribute) 0;
8840 attr.form = DW_FORM_ref_addr;
8841 attr.u.unsnd = to_underlying (pdi->sect_off);
8842 die = follow_die_ref (NULL, &attr, &ref_cu);
8843
8844 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8845 }
8846 }
8847
8848 parent_scope = partial_die_parent_scope (pdi, cu);
8849 if (parent_scope == NULL)
8850 return NULL;
8851 else
8852 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8853 }
8854
8855 static void
8856 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8857 {
8858 struct dwarf2_per_objfile *dwarf2_per_objfile
8859 = cu->per_cu->dwarf2_per_objfile;
8860 struct objfile *objfile = dwarf2_per_objfile->objfile;
8861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8862 CORE_ADDR addr = 0;
8863 const char *actual_name = NULL;
8864 CORE_ADDR baseaddr;
8865 char *built_actual_name;
8866
8867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8868
8869 built_actual_name = partial_die_full_name (pdi, cu);
8870 if (built_actual_name != NULL)
8871 actual_name = built_actual_name;
8872
8873 if (actual_name == NULL)
8874 actual_name = pdi->name;
8875
8876 switch (pdi->tag)
8877 {
8878 case DW_TAG_inlined_subroutine:
8879 case DW_TAG_subprogram:
8880 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8881 - baseaddr);
8882 if (pdi->is_external || cu->language == language_ada)
8883 {
8884 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8885 of the global scope. But in Ada, we want to be able to access
8886 nested procedures globally. So all Ada subprograms are stored
8887 in the global scope. */
8888 add_psymbol_to_list (actual_name, strlen (actual_name),
8889 built_actual_name != NULL,
8890 VAR_DOMAIN, LOC_BLOCK,
8891 SECT_OFF_TEXT (objfile),
8892 &objfile->global_psymbols,
8893 addr,
8894 cu->language, objfile);
8895 }
8896 else
8897 {
8898 add_psymbol_to_list (actual_name, strlen (actual_name),
8899 built_actual_name != NULL,
8900 VAR_DOMAIN, LOC_BLOCK,
8901 SECT_OFF_TEXT (objfile),
8902 &objfile->static_psymbols,
8903 addr, cu->language, objfile);
8904 }
8905
8906 if (pdi->main_subprogram && actual_name != NULL)
8907 set_objfile_main_name (objfile, actual_name, cu->language);
8908 break;
8909 case DW_TAG_constant:
8910 {
8911 std::vector<partial_symbol *> *list;
8912
8913 if (pdi->is_external)
8914 list = &objfile->global_psymbols;
8915 else
8916 list = &objfile->static_psymbols;
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8919 -1, list, 0, cu->language, objfile);
8920 }
8921 break;
8922 case DW_TAG_variable:
8923 if (pdi->d.locdesc)
8924 addr = decode_locdesc (pdi->d.locdesc, cu);
8925
8926 if (pdi->d.locdesc
8927 && addr == 0
8928 && !dwarf2_per_objfile->has_section_at_zero)
8929 {
8930 /* A global or static variable may also have been stripped
8931 out by the linker if unused, in which case its address
8932 will be nullified; do not add such variables into partial
8933 symbol table then. */
8934 }
8935 else if (pdi->is_external)
8936 {
8937 /* Global Variable.
8938 Don't enter into the minimal symbol tables as there is
8939 a minimal symbol table entry from the ELF symbols already.
8940 Enter into partial symbol table if it has a location
8941 descriptor or a type.
8942 If the location descriptor is missing, new_symbol will create
8943 a LOC_UNRESOLVED symbol, the address of the variable will then
8944 be determined from the minimal symbol table whenever the variable
8945 is referenced.
8946 The address for the partial symbol table entry is not
8947 used by GDB, but it comes in handy for debugging partial symbol
8948 table building. */
8949
8950 if (pdi->d.locdesc || pdi->has_type)
8951 add_psymbol_to_list (actual_name, strlen (actual_name),
8952 built_actual_name != NULL,
8953 VAR_DOMAIN, LOC_STATIC,
8954 SECT_OFF_TEXT (objfile),
8955 &objfile->global_psymbols,
8956 addr, cu->language, objfile);
8957 }
8958 else
8959 {
8960 int has_loc = pdi->d.locdesc != NULL;
8961
8962 /* Static Variable. Skip symbols whose value we cannot know (those
8963 without location descriptors or constant values). */
8964 if (!has_loc && !pdi->has_const_value)
8965 {
8966 xfree (built_actual_name);
8967 return;
8968 }
8969
8970 add_psymbol_to_list (actual_name, strlen (actual_name),
8971 built_actual_name != NULL,
8972 VAR_DOMAIN, LOC_STATIC,
8973 SECT_OFF_TEXT (objfile),
8974 &objfile->static_psymbols,
8975 has_loc ? addr : 0,
8976 cu->language, objfile);
8977 }
8978 break;
8979 case DW_TAG_typedef:
8980 case DW_TAG_base_type:
8981 case DW_TAG_subrange_type:
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 VAR_DOMAIN, LOC_TYPEDEF, -1,
8985 &objfile->static_psymbols,
8986 0, cu->language, objfile);
8987 break;
8988 case DW_TAG_imported_declaration:
8989 case DW_TAG_namespace:
8990 add_psymbol_to_list (actual_name, strlen (actual_name),
8991 built_actual_name != NULL,
8992 VAR_DOMAIN, LOC_TYPEDEF, -1,
8993 &objfile->global_psymbols,
8994 0, cu->language, objfile);
8995 break;
8996 case DW_TAG_module:
8997 add_psymbol_to_list (actual_name, strlen (actual_name),
8998 built_actual_name != NULL,
8999 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9000 &objfile->global_psymbols,
9001 0, cu->language, objfile);
9002 break;
9003 case DW_TAG_class_type:
9004 case DW_TAG_interface_type:
9005 case DW_TAG_structure_type:
9006 case DW_TAG_union_type:
9007 case DW_TAG_enumeration_type:
9008 /* Skip external references. The DWARF standard says in the section
9009 about "Structure, Union, and Class Type Entries": "An incomplete
9010 structure, union or class type is represented by a structure,
9011 union or class entry that does not have a byte size attribute
9012 and that has a DW_AT_declaration attribute." */
9013 if (!pdi->has_byte_size && pdi->is_declaration)
9014 {
9015 xfree (built_actual_name);
9016 return;
9017 }
9018
9019 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9020 static vs. global. */
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9024 cu->language == language_cplus
9025 ? &objfile->global_psymbols
9026 : &objfile->static_psymbols,
9027 0, cu->language, objfile);
9028
9029 break;
9030 case DW_TAG_enumerator:
9031 add_psymbol_to_list (actual_name, strlen (actual_name),
9032 built_actual_name != NULL,
9033 VAR_DOMAIN, LOC_CONST, -1,
9034 cu->language == language_cplus
9035 ? &objfile->global_psymbols
9036 : &objfile->static_psymbols,
9037 0, cu->language, objfile);
9038 break;
9039 default:
9040 break;
9041 }
9042
9043 xfree (built_actual_name);
9044 }
9045
9046 /* Read a partial die corresponding to a namespace; also, add a symbol
9047 corresponding to that namespace to the symbol table. NAMESPACE is
9048 the name of the enclosing namespace. */
9049
9050 static void
9051 add_partial_namespace (struct partial_die_info *pdi,
9052 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9053 int set_addrmap, struct dwarf2_cu *cu)
9054 {
9055 /* Add a symbol for the namespace. */
9056
9057 add_partial_symbol (pdi, cu);
9058
9059 /* Now scan partial symbols in that namespace. */
9060
9061 if (pdi->has_children)
9062 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9063 }
9064
9065 /* Read a partial die corresponding to a Fortran module. */
9066
9067 static void
9068 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9069 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9070 {
9071 /* Add a symbol for the namespace. */
9072
9073 add_partial_symbol (pdi, cu);
9074
9075 /* Now scan partial symbols in that module. */
9076
9077 if (pdi->has_children)
9078 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9079 }
9080
9081 /* Read a partial die corresponding to a subprogram or an inlined
9082 subprogram and create a partial symbol for that subprogram.
9083 When the CU language allows it, this routine also defines a partial
9084 symbol for each nested subprogram that this subprogram contains.
9085 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9086 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9087
9088 PDI may also be a lexical block, in which case we simply search
9089 recursively for subprograms defined inside that lexical block.
9090 Again, this is only performed when the CU language allows this
9091 type of definitions. */
9092
9093 static void
9094 add_partial_subprogram (struct partial_die_info *pdi,
9095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9096 int set_addrmap, struct dwarf2_cu *cu)
9097 {
9098 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9099 {
9100 if (pdi->has_pc_info)
9101 {
9102 if (pdi->lowpc < *lowpc)
9103 *lowpc = pdi->lowpc;
9104 if (pdi->highpc > *highpc)
9105 *highpc = pdi->highpc;
9106 if (set_addrmap)
9107 {
9108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9110 CORE_ADDR baseaddr;
9111 CORE_ADDR this_highpc;
9112 CORE_ADDR this_lowpc;
9113
9114 baseaddr = ANOFFSET (objfile->section_offsets,
9115 SECT_OFF_TEXT (objfile));
9116 this_lowpc
9117 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9118 pdi->lowpc + baseaddr)
9119 - baseaddr);
9120 this_highpc
9121 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9122 pdi->highpc + baseaddr)
9123 - baseaddr);
9124 addrmap_set_empty (objfile->psymtabs_addrmap,
9125 this_lowpc, this_highpc - 1,
9126 cu->per_cu->v.psymtab);
9127 }
9128 }
9129
9130 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9131 {
9132 if (!pdi->is_declaration)
9133 /* Ignore subprogram DIEs that do not have a name, they are
9134 illegal. Do not emit a complaint at this point, we will
9135 do so when we convert this psymtab into a symtab. */
9136 if (pdi->name)
9137 add_partial_symbol (pdi, cu);
9138 }
9139 }
9140
9141 if (! pdi->has_children)
9142 return;
9143
9144 if (cu->language == language_ada)
9145 {
9146 pdi = pdi->die_child;
9147 while (pdi != NULL)
9148 {
9149 pdi->fixup (cu);
9150 if (pdi->tag == DW_TAG_subprogram
9151 || pdi->tag == DW_TAG_inlined_subroutine
9152 || pdi->tag == DW_TAG_lexical_block)
9153 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9154 pdi = pdi->die_sibling;
9155 }
9156 }
9157 }
9158
9159 /* Read a partial die corresponding to an enumeration type. */
9160
9161 static void
9162 add_partial_enumeration (struct partial_die_info *enum_pdi,
9163 struct dwarf2_cu *cu)
9164 {
9165 struct partial_die_info *pdi;
9166
9167 if (enum_pdi->name != NULL)
9168 add_partial_symbol (enum_pdi, cu);
9169
9170 pdi = enum_pdi->die_child;
9171 while (pdi)
9172 {
9173 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9174 complaint (_("malformed enumerator DIE ignored"));
9175 else
9176 add_partial_symbol (pdi, cu);
9177 pdi = pdi->die_sibling;
9178 }
9179 }
9180
9181 /* Return the initial uleb128 in the die at INFO_PTR. */
9182
9183 static unsigned int
9184 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9185 {
9186 unsigned int bytes_read;
9187
9188 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9189 }
9190
9191 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9192 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9193
9194 Return the corresponding abbrev, or NULL if the number is zero (indicating
9195 an empty DIE). In either case *BYTES_READ will be set to the length of
9196 the initial number. */
9197
9198 static struct abbrev_info *
9199 peek_die_abbrev (const die_reader_specs &reader,
9200 const gdb_byte *info_ptr, unsigned int *bytes_read)
9201 {
9202 dwarf2_cu *cu = reader.cu;
9203 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9204 unsigned int abbrev_number
9205 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9206
9207 if (abbrev_number == 0)
9208 return NULL;
9209
9210 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9211 if (!abbrev)
9212 {
9213 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9214 " at offset %s [in module %s]"),
9215 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9216 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9217 }
9218
9219 return abbrev;
9220 }
9221
9222 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9223 Returns a pointer to the end of a series of DIEs, terminated by an empty
9224 DIE. Any children of the skipped DIEs will also be skipped. */
9225
9226 static const gdb_byte *
9227 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9228 {
9229 while (1)
9230 {
9231 unsigned int bytes_read;
9232 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9233
9234 if (abbrev == NULL)
9235 return info_ptr + bytes_read;
9236 else
9237 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9238 }
9239 }
9240
9241 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9242 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9243 abbrev corresponding to that skipped uleb128 should be passed in
9244 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9245 children. */
9246
9247 static const gdb_byte *
9248 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9249 struct abbrev_info *abbrev)
9250 {
9251 unsigned int bytes_read;
9252 struct attribute attr;
9253 bfd *abfd = reader->abfd;
9254 struct dwarf2_cu *cu = reader->cu;
9255 const gdb_byte *buffer = reader->buffer;
9256 const gdb_byte *buffer_end = reader->buffer_end;
9257 unsigned int form, i;
9258
9259 for (i = 0; i < abbrev->num_attrs; i++)
9260 {
9261 /* The only abbrev we care about is DW_AT_sibling. */
9262 if (abbrev->attrs[i].name == DW_AT_sibling)
9263 {
9264 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9265 if (attr.form == DW_FORM_ref_addr)
9266 complaint (_("ignoring absolute DW_AT_sibling"));
9267 else
9268 {
9269 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9270 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9271
9272 if (sibling_ptr < info_ptr)
9273 complaint (_("DW_AT_sibling points backwards"));
9274 else if (sibling_ptr > reader->buffer_end)
9275 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9276 else
9277 return sibling_ptr;
9278 }
9279 }
9280
9281 /* If it isn't DW_AT_sibling, skip this attribute. */
9282 form = abbrev->attrs[i].form;
9283 skip_attribute:
9284 switch (form)
9285 {
9286 case DW_FORM_ref_addr:
9287 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9288 and later it is offset sized. */
9289 if (cu->header.version == 2)
9290 info_ptr += cu->header.addr_size;
9291 else
9292 info_ptr += cu->header.offset_size;
9293 break;
9294 case DW_FORM_GNU_ref_alt:
9295 info_ptr += cu->header.offset_size;
9296 break;
9297 case DW_FORM_addr:
9298 info_ptr += cu->header.addr_size;
9299 break;
9300 case DW_FORM_data1:
9301 case DW_FORM_ref1:
9302 case DW_FORM_flag:
9303 info_ptr += 1;
9304 break;
9305 case DW_FORM_flag_present:
9306 case DW_FORM_implicit_const:
9307 break;
9308 case DW_FORM_data2:
9309 case DW_FORM_ref2:
9310 info_ptr += 2;
9311 break;
9312 case DW_FORM_data4:
9313 case DW_FORM_ref4:
9314 info_ptr += 4;
9315 break;
9316 case DW_FORM_data8:
9317 case DW_FORM_ref8:
9318 case DW_FORM_ref_sig8:
9319 info_ptr += 8;
9320 break;
9321 case DW_FORM_data16:
9322 info_ptr += 16;
9323 break;
9324 case DW_FORM_string:
9325 read_direct_string (abfd, info_ptr, &bytes_read);
9326 info_ptr += bytes_read;
9327 break;
9328 case DW_FORM_sec_offset:
9329 case DW_FORM_strp:
9330 case DW_FORM_GNU_strp_alt:
9331 info_ptr += cu->header.offset_size;
9332 break;
9333 case DW_FORM_exprloc:
9334 case DW_FORM_block:
9335 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9336 info_ptr += bytes_read;
9337 break;
9338 case DW_FORM_block1:
9339 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9340 break;
9341 case DW_FORM_block2:
9342 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9343 break;
9344 case DW_FORM_block4:
9345 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9346 break;
9347 case DW_FORM_sdata:
9348 case DW_FORM_udata:
9349 case DW_FORM_ref_udata:
9350 case DW_FORM_GNU_addr_index:
9351 case DW_FORM_GNU_str_index:
9352 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9353 break;
9354 case DW_FORM_indirect:
9355 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9356 info_ptr += bytes_read;
9357 /* We need to continue parsing from here, so just go back to
9358 the top. */
9359 goto skip_attribute;
9360
9361 default:
9362 error (_("Dwarf Error: Cannot handle %s "
9363 "in DWARF reader [in module %s]"),
9364 dwarf_form_name (form),
9365 bfd_get_filename (abfd));
9366 }
9367 }
9368
9369 if (abbrev->has_children)
9370 return skip_children (reader, info_ptr);
9371 else
9372 return info_ptr;
9373 }
9374
9375 /* Locate ORIG_PDI's sibling.
9376 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9377
9378 static const gdb_byte *
9379 locate_pdi_sibling (const struct die_reader_specs *reader,
9380 struct partial_die_info *orig_pdi,
9381 const gdb_byte *info_ptr)
9382 {
9383 /* Do we know the sibling already? */
9384
9385 if (orig_pdi->sibling)
9386 return orig_pdi->sibling;
9387
9388 /* Are there any children to deal with? */
9389
9390 if (!orig_pdi->has_children)
9391 return info_ptr;
9392
9393 /* Skip the children the long way. */
9394
9395 return skip_children (reader, info_ptr);
9396 }
9397
9398 /* Expand this partial symbol table into a full symbol table. SELF is
9399 not NULL. */
9400
9401 static void
9402 dwarf2_read_symtab (struct partial_symtab *self,
9403 struct objfile *objfile)
9404 {
9405 struct dwarf2_per_objfile *dwarf2_per_objfile
9406 = get_dwarf2_per_objfile (objfile);
9407
9408 if (self->readin)
9409 {
9410 warning (_("bug: psymtab for %s is already read in."),
9411 self->filename);
9412 }
9413 else
9414 {
9415 if (info_verbose)
9416 {
9417 printf_filtered (_("Reading in symbols for %s..."),
9418 self->filename);
9419 gdb_flush (gdb_stdout);
9420 }
9421
9422 /* If this psymtab is constructed from a debug-only objfile, the
9423 has_section_at_zero flag will not necessarily be correct. We
9424 can get the correct value for this flag by looking at the data
9425 associated with the (presumably stripped) associated objfile. */
9426 if (objfile->separate_debug_objfile_backlink)
9427 {
9428 struct dwarf2_per_objfile *dpo_backlink
9429 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9430
9431 dwarf2_per_objfile->has_section_at_zero
9432 = dpo_backlink->has_section_at_zero;
9433 }
9434
9435 dwarf2_per_objfile->reading_partial_symbols = 0;
9436
9437 psymtab_to_symtab_1 (self);
9438
9439 /* Finish up the debug error message. */
9440 if (info_verbose)
9441 printf_filtered (_("done.\n"));
9442 }
9443
9444 process_cu_includes (dwarf2_per_objfile);
9445 }
9446 \f
9447 /* Reading in full CUs. */
9448
9449 /* Add PER_CU to the queue. */
9450
9451 static void
9452 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9453 enum language pretend_language)
9454 {
9455 struct dwarf2_queue_item *item;
9456
9457 per_cu->queued = 1;
9458 item = XNEW (struct dwarf2_queue_item);
9459 item->per_cu = per_cu;
9460 item->pretend_language = pretend_language;
9461 item->next = NULL;
9462
9463 if (dwarf2_queue == NULL)
9464 dwarf2_queue = item;
9465 else
9466 dwarf2_queue_tail->next = item;
9467
9468 dwarf2_queue_tail = item;
9469 }
9470
9471 /* If PER_CU is not yet queued, add it to the queue.
9472 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9473 dependency.
9474 The result is non-zero if PER_CU was queued, otherwise the result is zero
9475 meaning either PER_CU is already queued or it is already loaded.
9476
9477 N.B. There is an invariant here that if a CU is queued then it is loaded.
9478 The caller is required to load PER_CU if we return non-zero. */
9479
9480 static int
9481 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9482 struct dwarf2_per_cu_data *per_cu,
9483 enum language pretend_language)
9484 {
9485 /* We may arrive here during partial symbol reading, if we need full
9486 DIEs to process an unusual case (e.g. template arguments). Do
9487 not queue PER_CU, just tell our caller to load its DIEs. */
9488 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9489 {
9490 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9491 return 1;
9492 return 0;
9493 }
9494
9495 /* Mark the dependence relation so that we don't flush PER_CU
9496 too early. */
9497 if (dependent_cu != NULL)
9498 dwarf2_add_dependence (dependent_cu, per_cu);
9499
9500 /* If it's already on the queue, we have nothing to do. */
9501 if (per_cu->queued)
9502 return 0;
9503
9504 /* If the compilation unit is already loaded, just mark it as
9505 used. */
9506 if (per_cu->cu != NULL)
9507 {
9508 per_cu->cu->last_used = 0;
9509 return 0;
9510 }
9511
9512 /* Add it to the queue. */
9513 queue_comp_unit (per_cu, pretend_language);
9514
9515 return 1;
9516 }
9517
9518 /* Process the queue. */
9519
9520 static void
9521 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9522 {
9523 struct dwarf2_queue_item *item, *next_item;
9524
9525 if (dwarf_read_debug)
9526 {
9527 fprintf_unfiltered (gdb_stdlog,
9528 "Expanding one or more symtabs of objfile %s ...\n",
9529 objfile_name (dwarf2_per_objfile->objfile));
9530 }
9531
9532 /* The queue starts out with one item, but following a DIE reference
9533 may load a new CU, adding it to the end of the queue. */
9534 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9535 {
9536 if ((dwarf2_per_objfile->using_index
9537 ? !item->per_cu->v.quick->compunit_symtab
9538 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9539 /* Skip dummy CUs. */
9540 && item->per_cu->cu != NULL)
9541 {
9542 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9543 unsigned int debug_print_threshold;
9544 char buf[100];
9545
9546 if (per_cu->is_debug_types)
9547 {
9548 struct signatured_type *sig_type =
9549 (struct signatured_type *) per_cu;
9550
9551 sprintf (buf, "TU %s at offset %s",
9552 hex_string (sig_type->signature),
9553 sect_offset_str (per_cu->sect_off));
9554 /* There can be 100s of TUs.
9555 Only print them in verbose mode. */
9556 debug_print_threshold = 2;
9557 }
9558 else
9559 {
9560 sprintf (buf, "CU at offset %s",
9561 sect_offset_str (per_cu->sect_off));
9562 debug_print_threshold = 1;
9563 }
9564
9565 if (dwarf_read_debug >= debug_print_threshold)
9566 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9567
9568 if (per_cu->is_debug_types)
9569 process_full_type_unit (per_cu, item->pretend_language);
9570 else
9571 process_full_comp_unit (per_cu, item->pretend_language);
9572
9573 if (dwarf_read_debug >= debug_print_threshold)
9574 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9575 }
9576
9577 item->per_cu->queued = 0;
9578 next_item = item->next;
9579 xfree (item);
9580 }
9581
9582 dwarf2_queue_tail = NULL;
9583
9584 if (dwarf_read_debug)
9585 {
9586 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9587 objfile_name (dwarf2_per_objfile->objfile));
9588 }
9589 }
9590
9591 /* Read in full symbols for PST, and anything it depends on. */
9592
9593 static void
9594 psymtab_to_symtab_1 (struct partial_symtab *pst)
9595 {
9596 struct dwarf2_per_cu_data *per_cu;
9597 int i;
9598
9599 if (pst->readin)
9600 return;
9601
9602 for (i = 0; i < pst->number_of_dependencies; i++)
9603 if (!pst->dependencies[i]->readin
9604 && pst->dependencies[i]->user == NULL)
9605 {
9606 /* Inform about additional files that need to be read in. */
9607 if (info_verbose)
9608 {
9609 /* FIXME: i18n: Need to make this a single string. */
9610 fputs_filtered (" ", gdb_stdout);
9611 wrap_here ("");
9612 fputs_filtered ("and ", gdb_stdout);
9613 wrap_here ("");
9614 printf_filtered ("%s...", pst->dependencies[i]->filename);
9615 wrap_here (""); /* Flush output. */
9616 gdb_flush (gdb_stdout);
9617 }
9618 psymtab_to_symtab_1 (pst->dependencies[i]);
9619 }
9620
9621 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9622
9623 if (per_cu == NULL)
9624 {
9625 /* It's an include file, no symbols to read for it.
9626 Everything is in the parent symtab. */
9627 pst->readin = 1;
9628 return;
9629 }
9630
9631 dw2_do_instantiate_symtab (per_cu, false);
9632 }
9633
9634 /* Trivial hash function for die_info: the hash value of a DIE
9635 is its offset in .debug_info for this objfile. */
9636
9637 static hashval_t
9638 die_hash (const void *item)
9639 {
9640 const struct die_info *die = (const struct die_info *) item;
9641
9642 return to_underlying (die->sect_off);
9643 }
9644
9645 /* Trivial comparison function for die_info structures: two DIEs
9646 are equal if they have the same offset. */
9647
9648 static int
9649 die_eq (const void *item_lhs, const void *item_rhs)
9650 {
9651 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9652 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9653
9654 return die_lhs->sect_off == die_rhs->sect_off;
9655 }
9656
9657 /* die_reader_func for load_full_comp_unit.
9658 This is identical to read_signatured_type_reader,
9659 but is kept separate for now. */
9660
9661 static void
9662 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9663 const gdb_byte *info_ptr,
9664 struct die_info *comp_unit_die,
9665 int has_children,
9666 void *data)
9667 {
9668 struct dwarf2_cu *cu = reader->cu;
9669 enum language *language_ptr = (enum language *) data;
9670
9671 gdb_assert (cu->die_hash == NULL);
9672 cu->die_hash =
9673 htab_create_alloc_ex (cu->header.length / 12,
9674 die_hash,
9675 die_eq,
9676 NULL,
9677 &cu->comp_unit_obstack,
9678 hashtab_obstack_allocate,
9679 dummy_obstack_deallocate);
9680
9681 if (has_children)
9682 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9683 &info_ptr, comp_unit_die);
9684 cu->dies = comp_unit_die;
9685 /* comp_unit_die is not stored in die_hash, no need. */
9686
9687 /* We try not to read any attributes in this function, because not
9688 all CUs needed for references have been loaded yet, and symbol
9689 table processing isn't initialized. But we have to set the CU language,
9690 or we won't be able to build types correctly.
9691 Similarly, if we do not read the producer, we can not apply
9692 producer-specific interpretation. */
9693 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9694 }
9695
9696 /* Load the DIEs associated with PER_CU into memory. */
9697
9698 static void
9699 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9700 bool skip_partial,
9701 enum language pretend_language)
9702 {
9703 gdb_assert (! this_cu->is_debug_types);
9704
9705 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9706 load_full_comp_unit_reader, &pretend_language);
9707 }
9708
9709 /* Add a DIE to the delayed physname list. */
9710
9711 static void
9712 add_to_method_list (struct type *type, int fnfield_index, int index,
9713 const char *name, struct die_info *die,
9714 struct dwarf2_cu *cu)
9715 {
9716 struct delayed_method_info mi;
9717 mi.type = type;
9718 mi.fnfield_index = fnfield_index;
9719 mi.index = index;
9720 mi.name = name;
9721 mi.die = die;
9722 cu->method_list.push_back (mi);
9723 }
9724
9725 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9726 "const" / "volatile". If so, decrements LEN by the length of the
9727 modifier and return true. Otherwise return false. */
9728
9729 template<size_t N>
9730 static bool
9731 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9732 {
9733 size_t mod_len = sizeof (mod) - 1;
9734 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9735 {
9736 len -= mod_len;
9737 return true;
9738 }
9739 return false;
9740 }
9741
9742 /* Compute the physnames of any methods on the CU's method list.
9743
9744 The computation of method physnames is delayed in order to avoid the
9745 (bad) condition that one of the method's formal parameters is of an as yet
9746 incomplete type. */
9747
9748 static void
9749 compute_delayed_physnames (struct dwarf2_cu *cu)
9750 {
9751 /* Only C++ delays computing physnames. */
9752 if (cu->method_list.empty ())
9753 return;
9754 gdb_assert (cu->language == language_cplus);
9755
9756 for (const delayed_method_info &mi : cu->method_list)
9757 {
9758 const char *physname;
9759 struct fn_fieldlist *fn_flp
9760 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9761 physname = dwarf2_physname (mi.name, mi.die, cu);
9762 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9763 = physname ? physname : "";
9764
9765 /* Since there's no tag to indicate whether a method is a
9766 const/volatile overload, extract that information out of the
9767 demangled name. */
9768 if (physname != NULL)
9769 {
9770 size_t len = strlen (physname);
9771
9772 while (1)
9773 {
9774 if (physname[len] == ')') /* shortcut */
9775 break;
9776 else if (check_modifier (physname, len, " const"))
9777 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9778 else if (check_modifier (physname, len, " volatile"))
9779 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9780 else
9781 break;
9782 }
9783 }
9784 }
9785
9786 /* The list is no longer needed. */
9787 cu->method_list.clear ();
9788 }
9789
9790 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9791 the same as all other symbols in LISTHEAD. If a new symbol is added
9792 with a different language, this function asserts. */
9793
9794 static inline void
9795 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9796 {
9797 /* Only assert if LISTHEAD already contains symbols of a different
9798 language (dict_create_hashed/insert_symbol_hashed requires that all
9799 symbols in this list are of the same language). */
9800 gdb_assert ((*listhead) == NULL
9801 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9802 == SYMBOL_LANGUAGE (symbol)));
9803
9804 add_symbol_to_list (symbol, listhead);
9805 }
9806
9807 /* Go objects should be embedded in a DW_TAG_module DIE,
9808 and it's not clear if/how imported objects will appear.
9809 To keep Go support simple until that's worked out,
9810 go back through what we've read and create something usable.
9811 We could do this while processing each DIE, and feels kinda cleaner,
9812 but that way is more invasive.
9813 This is to, for example, allow the user to type "p var" or "b main"
9814 without having to specify the package name, and allow lookups
9815 of module.object to work in contexts that use the expression
9816 parser. */
9817
9818 static void
9819 fixup_go_packaging (struct dwarf2_cu *cu)
9820 {
9821 char *package_name = NULL;
9822 struct pending *list;
9823 int i;
9824
9825 for (list = *cu->builder->get_global_symbols ();
9826 list != NULL;
9827 list = list->next)
9828 {
9829 for (i = 0; i < list->nsyms; ++i)
9830 {
9831 struct symbol *sym = list->symbol[i];
9832
9833 if (SYMBOL_LANGUAGE (sym) == language_go
9834 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9835 {
9836 char *this_package_name = go_symbol_package_name (sym);
9837
9838 if (this_package_name == NULL)
9839 continue;
9840 if (package_name == NULL)
9841 package_name = this_package_name;
9842 else
9843 {
9844 struct objfile *objfile
9845 = cu->per_cu->dwarf2_per_objfile->objfile;
9846 if (strcmp (package_name, this_package_name) != 0)
9847 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9848 (symbol_symtab (sym) != NULL
9849 ? symtab_to_filename_for_display
9850 (symbol_symtab (sym))
9851 : objfile_name (objfile)),
9852 this_package_name, package_name);
9853 xfree (this_package_name);
9854 }
9855 }
9856 }
9857 }
9858
9859 if (package_name != NULL)
9860 {
9861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9862 const char *saved_package_name
9863 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9864 package_name,
9865 strlen (package_name));
9866 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9867 saved_package_name);
9868 struct symbol *sym;
9869
9870 sym = allocate_symbol (objfile);
9871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9872 SYMBOL_SET_NAMES (sym, saved_package_name,
9873 strlen (saved_package_name), 0, objfile);
9874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9875 e.g., "main" finds the "main" module and not C's main(). */
9876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9878 SYMBOL_TYPE (sym) = type;
9879
9880 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9881
9882 xfree (package_name);
9883 }
9884 }
9885
9886 /* Allocate a fully-qualified name consisting of the two parts on the
9887 obstack. */
9888
9889 static const char *
9890 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9891 {
9892 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9893 }
9894
9895 /* A helper that allocates a struct discriminant_info to attach to a
9896 union type. */
9897
9898 static struct discriminant_info *
9899 alloc_discriminant_info (struct type *type, int discriminant_index,
9900 int default_index)
9901 {
9902 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9903 gdb_assert (discriminant_index == -1
9904 || (discriminant_index >= 0
9905 && discriminant_index < TYPE_NFIELDS (type)));
9906 gdb_assert (default_index == -1
9907 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9908
9909 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9910
9911 struct discriminant_info *disc
9912 = ((struct discriminant_info *)
9913 TYPE_ZALLOC (type,
9914 offsetof (struct discriminant_info, discriminants)
9915 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9916 disc->default_index = default_index;
9917 disc->discriminant_index = discriminant_index;
9918
9919 struct dynamic_prop prop;
9920 prop.kind = PROP_UNDEFINED;
9921 prop.data.baton = disc;
9922
9923 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9924
9925 return disc;
9926 }
9927
9928 /* Some versions of rustc emitted enums in an unusual way.
9929
9930 Ordinary enums were emitted as unions. The first element of each
9931 structure in the union was named "RUST$ENUM$DISR". This element
9932 held the discriminant.
9933
9934 These versions of Rust also implemented the "non-zero"
9935 optimization. When the enum had two values, and one is empty and
9936 the other holds a pointer that cannot be zero, the pointer is used
9937 as the discriminant, with a zero value meaning the empty variant.
9938 Here, the union's first member is of the form
9939 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9940 where the fieldnos are the indices of the fields that should be
9941 traversed in order to find the field (which may be several fields deep)
9942 and the variantname is the name of the variant of the case when the
9943 field is zero.
9944
9945 This function recognizes whether TYPE is of one of these forms,
9946 and, if so, smashes it to be a variant type. */
9947
9948 static void
9949 quirk_rust_enum (struct type *type, struct objfile *objfile)
9950 {
9951 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9952
9953 /* We don't need to deal with empty enums. */
9954 if (TYPE_NFIELDS (type) == 0)
9955 return;
9956
9957 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9958 if (TYPE_NFIELDS (type) == 1
9959 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9960 {
9961 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9962
9963 /* Decode the field name to find the offset of the
9964 discriminant. */
9965 ULONGEST bit_offset = 0;
9966 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9967 while (name[0] >= '0' && name[0] <= '9')
9968 {
9969 char *tail;
9970 unsigned long index = strtoul (name, &tail, 10);
9971 name = tail;
9972 if (*name != '$'
9973 || index >= TYPE_NFIELDS (field_type)
9974 || (TYPE_FIELD_LOC_KIND (field_type, index)
9975 != FIELD_LOC_KIND_BITPOS))
9976 {
9977 complaint (_("Could not parse Rust enum encoding string \"%s\""
9978 "[in module %s]"),
9979 TYPE_FIELD_NAME (type, 0),
9980 objfile_name (objfile));
9981 return;
9982 }
9983 ++name;
9984
9985 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9986 field_type = TYPE_FIELD_TYPE (field_type, index);
9987 }
9988
9989 /* Make a union to hold the variants. */
9990 struct type *union_type = alloc_type (objfile);
9991 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9992 TYPE_NFIELDS (union_type) = 3;
9993 TYPE_FIELDS (union_type)
9994 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9995 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9996 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9997
9998 /* Put the discriminant must at index 0. */
9999 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10000 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10001 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10002 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10003
10004 /* The order of fields doesn't really matter, so put the real
10005 field at index 1 and the data-less field at index 2. */
10006 struct discriminant_info *disc
10007 = alloc_discriminant_info (union_type, 0, 1);
10008 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10009 TYPE_FIELD_NAME (union_type, 1)
10010 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10011 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10012 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10013 TYPE_FIELD_NAME (union_type, 1));
10014
10015 const char *dataless_name
10016 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10017 name);
10018 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10019 dataless_name);
10020 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10021 /* NAME points into the original discriminant name, which
10022 already has the correct lifetime. */
10023 TYPE_FIELD_NAME (union_type, 2) = name;
10024 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10025 disc->discriminants[2] = 0;
10026
10027 /* Smash this type to be a structure type. We have to do this
10028 because the type has already been recorded. */
10029 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10030 TYPE_NFIELDS (type) = 1;
10031 TYPE_FIELDS (type)
10032 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10033
10034 /* Install the variant part. */
10035 TYPE_FIELD_TYPE (type, 0) = union_type;
10036 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10037 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10038 }
10039 else if (TYPE_NFIELDS (type) == 1)
10040 {
10041 /* We assume that a union with a single field is a univariant
10042 enum. */
10043 /* Smash this type to be a structure type. We have to do this
10044 because the type has already been recorded. */
10045 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10046
10047 /* Make a union to hold the variants. */
10048 struct type *union_type = alloc_type (objfile);
10049 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10050 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10051 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10052 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10053 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10054
10055 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10056 const char *variant_name
10057 = rust_last_path_segment (TYPE_NAME (field_type));
10058 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10059 TYPE_NAME (field_type)
10060 = rust_fully_qualify (&objfile->objfile_obstack,
10061 TYPE_NAME (type), variant_name);
10062
10063 /* Install the union in the outer struct type. */
10064 TYPE_NFIELDS (type) = 1;
10065 TYPE_FIELDS (type)
10066 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10067 TYPE_FIELD_TYPE (type, 0) = union_type;
10068 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10069 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10070
10071 alloc_discriminant_info (union_type, -1, 0);
10072 }
10073 else
10074 {
10075 struct type *disr_type = nullptr;
10076 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10077 {
10078 disr_type = TYPE_FIELD_TYPE (type, i);
10079
10080 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10081 {
10082 /* All fields of a true enum will be structs. */
10083 return;
10084 }
10085 else if (TYPE_NFIELDS (disr_type) == 0)
10086 {
10087 /* Could be data-less variant, so keep going. */
10088 disr_type = nullptr;
10089 }
10090 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10091 "RUST$ENUM$DISR") != 0)
10092 {
10093 /* Not a Rust enum. */
10094 return;
10095 }
10096 else
10097 {
10098 /* Found one. */
10099 break;
10100 }
10101 }
10102
10103 /* If we got here without a discriminant, then it's probably
10104 just a union. */
10105 if (disr_type == nullptr)
10106 return;
10107
10108 /* Smash this type to be a structure type. We have to do this
10109 because the type has already been recorded. */
10110 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10111
10112 /* Make a union to hold the variants. */
10113 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10114 struct type *union_type = alloc_type (objfile);
10115 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10116 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10117 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10118 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10119 TYPE_FIELDS (union_type)
10120 = (struct field *) TYPE_ZALLOC (union_type,
10121 (TYPE_NFIELDS (union_type)
10122 * sizeof (struct field)));
10123
10124 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10125 TYPE_NFIELDS (type) * sizeof (struct field));
10126
10127 /* Install the discriminant at index 0 in the union. */
10128 TYPE_FIELD (union_type, 0) = *disr_field;
10129 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10130 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10131
10132 /* Install the union in the outer struct type. */
10133 TYPE_FIELD_TYPE (type, 0) = union_type;
10134 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10135 TYPE_NFIELDS (type) = 1;
10136
10137 /* Set the size and offset of the union type. */
10138 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10139
10140 /* We need a way to find the correct discriminant given a
10141 variant name. For convenience we build a map here. */
10142 struct type *enum_type = FIELD_TYPE (*disr_field);
10143 std::unordered_map<std::string, ULONGEST> discriminant_map;
10144 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10145 {
10146 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10147 {
10148 const char *name
10149 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10150 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10151 }
10152 }
10153
10154 int n_fields = TYPE_NFIELDS (union_type);
10155 struct discriminant_info *disc
10156 = alloc_discriminant_info (union_type, 0, -1);
10157 /* Skip the discriminant here. */
10158 for (int i = 1; i < n_fields; ++i)
10159 {
10160 /* Find the final word in the name of this variant's type.
10161 That name can be used to look up the correct
10162 discriminant. */
10163 const char *variant_name
10164 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10165 i)));
10166
10167 auto iter = discriminant_map.find (variant_name);
10168 if (iter != discriminant_map.end ())
10169 disc->discriminants[i] = iter->second;
10170
10171 /* Remove the discriminant field, if it exists. */
10172 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10173 if (TYPE_NFIELDS (sub_type) > 0)
10174 {
10175 --TYPE_NFIELDS (sub_type);
10176 ++TYPE_FIELDS (sub_type);
10177 }
10178 TYPE_FIELD_NAME (union_type, i) = variant_name;
10179 TYPE_NAME (sub_type)
10180 = rust_fully_qualify (&objfile->objfile_obstack,
10181 TYPE_NAME (type), variant_name);
10182 }
10183 }
10184 }
10185
10186 /* Rewrite some Rust unions to be structures with variants parts. */
10187
10188 static void
10189 rust_union_quirks (struct dwarf2_cu *cu)
10190 {
10191 gdb_assert (cu->language == language_rust);
10192 for (type *type_ : cu->rust_unions)
10193 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10194 /* We don't need this any more. */
10195 cu->rust_unions.clear ();
10196 }
10197
10198 /* Return the symtab for PER_CU. This works properly regardless of
10199 whether we're using the index or psymtabs. */
10200
10201 static struct compunit_symtab *
10202 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10203 {
10204 return (per_cu->dwarf2_per_objfile->using_index
10205 ? per_cu->v.quick->compunit_symtab
10206 : per_cu->v.psymtab->compunit_symtab);
10207 }
10208
10209 /* A helper function for computing the list of all symbol tables
10210 included by PER_CU. */
10211
10212 static void
10213 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10214 htab_t all_children, htab_t all_type_symtabs,
10215 struct dwarf2_per_cu_data *per_cu,
10216 struct compunit_symtab *immediate_parent)
10217 {
10218 void **slot;
10219 int ix;
10220 struct compunit_symtab *cust;
10221 struct dwarf2_per_cu_data *iter;
10222
10223 slot = htab_find_slot (all_children, per_cu, INSERT);
10224 if (*slot != NULL)
10225 {
10226 /* This inclusion and its children have been processed. */
10227 return;
10228 }
10229
10230 *slot = per_cu;
10231 /* Only add a CU if it has a symbol table. */
10232 cust = get_compunit_symtab (per_cu);
10233 if (cust != NULL)
10234 {
10235 /* If this is a type unit only add its symbol table if we haven't
10236 seen it yet (type unit per_cu's can share symtabs). */
10237 if (per_cu->is_debug_types)
10238 {
10239 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10240 if (*slot == NULL)
10241 {
10242 *slot = cust;
10243 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10244 if (cust->user == NULL)
10245 cust->user = immediate_parent;
10246 }
10247 }
10248 else
10249 {
10250 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10253 }
10254 }
10255
10256 for (ix = 0;
10257 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10258 ++ix)
10259 {
10260 recursively_compute_inclusions (result, all_children,
10261 all_type_symtabs, iter, cust);
10262 }
10263 }
10264
10265 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10266 PER_CU. */
10267
10268 static void
10269 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10270 {
10271 gdb_assert (! per_cu->is_debug_types);
10272
10273 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10274 {
10275 int ix, len;
10276 struct dwarf2_per_cu_data *per_cu_iter;
10277 struct compunit_symtab *compunit_symtab_iter;
10278 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10279 htab_t all_children, all_type_symtabs;
10280 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10281
10282 /* If we don't have a symtab, we can just skip this case. */
10283 if (cust == NULL)
10284 return;
10285
10286 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10287 NULL, xcalloc, xfree);
10288 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10289 NULL, xcalloc, xfree);
10290
10291 for (ix = 0;
10292 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10293 ix, per_cu_iter);
10294 ++ix)
10295 {
10296 recursively_compute_inclusions (&result_symtabs, all_children,
10297 all_type_symtabs, per_cu_iter,
10298 cust);
10299 }
10300
10301 /* Now we have a transitive closure of all the included symtabs. */
10302 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10303 cust->includes
10304 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10305 struct compunit_symtab *, len + 1);
10306 for (ix = 0;
10307 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10308 compunit_symtab_iter);
10309 ++ix)
10310 cust->includes[ix] = compunit_symtab_iter;
10311 cust->includes[len] = NULL;
10312
10313 VEC_free (compunit_symtab_ptr, result_symtabs);
10314 htab_delete (all_children);
10315 htab_delete (all_type_symtabs);
10316 }
10317 }
10318
10319 /* Compute the 'includes' field for the symtabs of all the CUs we just
10320 read. */
10321
10322 static void
10323 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10324 {
10325 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10326 {
10327 if (! iter->is_debug_types)
10328 compute_compunit_symtab_includes (iter);
10329 }
10330
10331 dwarf2_per_objfile->just_read_cus.clear ();
10332 }
10333
10334 /* Generate full symbol information for PER_CU, whose DIEs have
10335 already been loaded into memory. */
10336
10337 static void
10338 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10339 enum language pretend_language)
10340 {
10341 struct dwarf2_cu *cu = per_cu->cu;
10342 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10343 struct objfile *objfile = dwarf2_per_objfile->objfile;
10344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10345 CORE_ADDR lowpc, highpc;
10346 struct compunit_symtab *cust;
10347 CORE_ADDR baseaddr;
10348 struct block *static_block;
10349 CORE_ADDR addr;
10350
10351 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10352
10353 /* Clear the list here in case something was left over. */
10354 cu->method_list.clear ();
10355
10356 cu->language = pretend_language;
10357 cu->language_defn = language_def (cu->language);
10358
10359 /* Do line number decoding in read_file_scope () */
10360 process_die (cu->dies, cu);
10361
10362 /* For now fudge the Go package. */
10363 if (cu->language == language_go)
10364 fixup_go_packaging (cu);
10365
10366 /* Now that we have processed all the DIEs in the CU, all the types
10367 should be complete, and it should now be safe to compute all of the
10368 physnames. */
10369 compute_delayed_physnames (cu);
10370
10371 if (cu->language == language_rust)
10372 rust_union_quirks (cu);
10373
10374 /* Some compilers don't define a DW_AT_high_pc attribute for the
10375 compilation unit. If the DW_AT_high_pc is missing, synthesize
10376 it, by scanning the DIE's below the compilation unit. */
10377 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10378
10379 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10380 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10381
10382 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10383 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10384 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10385 addrmap to help ensure it has an accurate map of pc values belonging to
10386 this comp unit. */
10387 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10388
10389 cust = cu->builder->end_symtab_from_static_block (static_block,
10390 SECT_OFF_TEXT (objfile),
10391 0);
10392
10393 if (cust != NULL)
10394 {
10395 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10396
10397 /* Set symtab language to language from DW_AT_language. If the
10398 compilation is from a C file generated by language preprocessors, do
10399 not set the language if it was already deduced by start_subfile. */
10400 if (!(cu->language == language_c
10401 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10402 COMPUNIT_FILETABS (cust)->language = cu->language;
10403
10404 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10405 produce DW_AT_location with location lists but it can be possibly
10406 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10407 there were bugs in prologue debug info, fixed later in GCC-4.5
10408 by "unwind info for epilogues" patch (which is not directly related).
10409
10410 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10411 needed, it would be wrong due to missing DW_AT_producer there.
10412
10413 Still one can confuse GDB by using non-standard GCC compilation
10414 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10415 */
10416 if (cu->has_loclist && gcc_4_minor >= 5)
10417 cust->locations_valid = 1;
10418
10419 if (gcc_4_minor >= 5)
10420 cust->epilogue_unwind_valid = 1;
10421
10422 cust->call_site_htab = cu->call_site_htab;
10423 }
10424
10425 if (dwarf2_per_objfile->using_index)
10426 per_cu->v.quick->compunit_symtab = cust;
10427 else
10428 {
10429 struct partial_symtab *pst = per_cu->v.psymtab;
10430 pst->compunit_symtab = cust;
10431 pst->readin = 1;
10432 }
10433
10434 /* Push it for inclusion processing later. */
10435 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10436
10437 /* Not needed any more. */
10438 cu->builder.reset ();
10439 }
10440
10441 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10442 already been loaded into memory. */
10443
10444 static void
10445 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10446 enum language pretend_language)
10447 {
10448 struct dwarf2_cu *cu = per_cu->cu;
10449 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10450 struct objfile *objfile = dwarf2_per_objfile->objfile;
10451 struct compunit_symtab *cust;
10452 struct signatured_type *sig_type;
10453
10454 gdb_assert (per_cu->is_debug_types);
10455 sig_type = (struct signatured_type *) per_cu;
10456
10457 /* Clear the list here in case something was left over. */
10458 cu->method_list.clear ();
10459
10460 cu->language = pretend_language;
10461 cu->language_defn = language_def (cu->language);
10462
10463 /* The symbol tables are set up in read_type_unit_scope. */
10464 process_die (cu->dies, cu);
10465
10466 /* For now fudge the Go package. */
10467 if (cu->language == language_go)
10468 fixup_go_packaging (cu);
10469
10470 /* Now that we have processed all the DIEs in the CU, all the types
10471 should be complete, and it should now be safe to compute all of the
10472 physnames. */
10473 compute_delayed_physnames (cu);
10474
10475 if (cu->language == language_rust)
10476 rust_union_quirks (cu);
10477
10478 /* TUs share symbol tables.
10479 If this is the first TU to use this symtab, complete the construction
10480 of it with end_expandable_symtab. Otherwise, complete the addition of
10481 this TU's symbols to the existing symtab. */
10482 if (sig_type->type_unit_group->compunit_symtab == NULL)
10483 {
10484 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10485 sig_type->type_unit_group->compunit_symtab = cust;
10486
10487 if (cust != NULL)
10488 {
10489 /* Set symtab language to language from DW_AT_language. If the
10490 compilation is from a C file generated by language preprocessors,
10491 do not set the language if it was already deduced by
10492 start_subfile. */
10493 if (!(cu->language == language_c
10494 && COMPUNIT_FILETABS (cust)->language != language_c))
10495 COMPUNIT_FILETABS (cust)->language = cu->language;
10496 }
10497 }
10498 else
10499 {
10500 cu->builder->augment_type_symtab ();
10501 cust = sig_type->type_unit_group->compunit_symtab;
10502 }
10503
10504 if (dwarf2_per_objfile->using_index)
10505 per_cu->v.quick->compunit_symtab = cust;
10506 else
10507 {
10508 struct partial_symtab *pst = per_cu->v.psymtab;
10509 pst->compunit_symtab = cust;
10510 pst->readin = 1;
10511 }
10512
10513 /* Not needed any more. */
10514 cu->builder.reset ();
10515 }
10516
10517 /* Process an imported unit DIE. */
10518
10519 static void
10520 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10521 {
10522 struct attribute *attr;
10523
10524 /* For now we don't handle imported units in type units. */
10525 if (cu->per_cu->is_debug_types)
10526 {
10527 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10528 " supported in type units [in module %s]"),
10529 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10530 }
10531
10532 attr = dwarf2_attr (die, DW_AT_import, cu);
10533 if (attr != NULL)
10534 {
10535 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10536 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10537 dwarf2_per_cu_data *per_cu
10538 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10539 cu->per_cu->dwarf2_per_objfile);
10540
10541 /* If necessary, add it to the queue and load its DIEs. */
10542 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10543 load_full_comp_unit (per_cu, false, cu->language);
10544
10545 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10546 per_cu);
10547 }
10548 }
10549
10550 /* RAII object that represents a process_die scope: i.e.,
10551 starts/finishes processing a DIE. */
10552 class process_die_scope
10553 {
10554 public:
10555 process_die_scope (die_info *die, dwarf2_cu *cu)
10556 : m_die (die), m_cu (cu)
10557 {
10558 /* We should only be processing DIEs not already in process. */
10559 gdb_assert (!m_die->in_process);
10560 m_die->in_process = true;
10561 }
10562
10563 ~process_die_scope ()
10564 {
10565 m_die->in_process = false;
10566
10567 /* If we're done processing the DIE for the CU that owns the line
10568 header, we don't need the line header anymore. */
10569 if (m_cu->line_header_die_owner == m_die)
10570 {
10571 delete m_cu->line_header;
10572 m_cu->line_header = NULL;
10573 m_cu->line_header_die_owner = NULL;
10574 }
10575 }
10576
10577 private:
10578 die_info *m_die;
10579 dwarf2_cu *m_cu;
10580 };
10581
10582 /* Process a die and its children. */
10583
10584 static void
10585 process_die (struct die_info *die, struct dwarf2_cu *cu)
10586 {
10587 process_die_scope scope (die, cu);
10588
10589 switch (die->tag)
10590 {
10591 case DW_TAG_padding:
10592 break;
10593 case DW_TAG_compile_unit:
10594 case DW_TAG_partial_unit:
10595 read_file_scope (die, cu);
10596 break;
10597 case DW_TAG_type_unit:
10598 read_type_unit_scope (die, cu);
10599 break;
10600 case DW_TAG_subprogram:
10601 case DW_TAG_inlined_subroutine:
10602 read_func_scope (die, cu);
10603 break;
10604 case DW_TAG_lexical_block:
10605 case DW_TAG_try_block:
10606 case DW_TAG_catch_block:
10607 read_lexical_block_scope (die, cu);
10608 break;
10609 case DW_TAG_call_site:
10610 case DW_TAG_GNU_call_site:
10611 read_call_site_scope (die, cu);
10612 break;
10613 case DW_TAG_class_type:
10614 case DW_TAG_interface_type:
10615 case DW_TAG_structure_type:
10616 case DW_TAG_union_type:
10617 process_structure_scope (die, cu);
10618 break;
10619 case DW_TAG_enumeration_type:
10620 process_enumeration_scope (die, cu);
10621 break;
10622
10623 /* These dies have a type, but processing them does not create
10624 a symbol or recurse to process the children. Therefore we can
10625 read them on-demand through read_type_die. */
10626 case DW_TAG_subroutine_type:
10627 case DW_TAG_set_type:
10628 case DW_TAG_array_type:
10629 case DW_TAG_pointer_type:
10630 case DW_TAG_ptr_to_member_type:
10631 case DW_TAG_reference_type:
10632 case DW_TAG_rvalue_reference_type:
10633 case DW_TAG_string_type:
10634 break;
10635
10636 case DW_TAG_base_type:
10637 case DW_TAG_subrange_type:
10638 case DW_TAG_typedef:
10639 /* Add a typedef symbol for the type definition, if it has a
10640 DW_AT_name. */
10641 new_symbol (die, read_type_die (die, cu), cu);
10642 break;
10643 case DW_TAG_common_block:
10644 read_common_block (die, cu);
10645 break;
10646 case DW_TAG_common_inclusion:
10647 break;
10648 case DW_TAG_namespace:
10649 cu->processing_has_namespace_info = 1;
10650 read_namespace (die, cu);
10651 break;
10652 case DW_TAG_module:
10653 cu->processing_has_namespace_info = 1;
10654 read_module (die, cu);
10655 break;
10656 case DW_TAG_imported_declaration:
10657 cu->processing_has_namespace_info = 1;
10658 if (read_namespace_alias (die, cu))
10659 break;
10660 /* The declaration is not a global namespace alias. */
10661 /* Fall through. */
10662 case DW_TAG_imported_module:
10663 cu->processing_has_namespace_info = 1;
10664 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10665 || cu->language != language_fortran))
10666 complaint (_("Tag '%s' has unexpected children"),
10667 dwarf_tag_name (die->tag));
10668 read_import_statement (die, cu);
10669 break;
10670
10671 case DW_TAG_imported_unit:
10672 process_imported_unit_die (die, cu);
10673 break;
10674
10675 case DW_TAG_variable:
10676 read_variable (die, cu);
10677 break;
10678
10679 default:
10680 new_symbol (die, NULL, cu);
10681 break;
10682 }
10683 }
10684 \f
10685 /* DWARF name computation. */
10686
10687 /* A helper function for dwarf2_compute_name which determines whether DIE
10688 needs to have the name of the scope prepended to the name listed in the
10689 die. */
10690
10691 static int
10692 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10693 {
10694 struct attribute *attr;
10695
10696 switch (die->tag)
10697 {
10698 case DW_TAG_namespace:
10699 case DW_TAG_typedef:
10700 case DW_TAG_class_type:
10701 case DW_TAG_interface_type:
10702 case DW_TAG_structure_type:
10703 case DW_TAG_union_type:
10704 case DW_TAG_enumeration_type:
10705 case DW_TAG_enumerator:
10706 case DW_TAG_subprogram:
10707 case DW_TAG_inlined_subroutine:
10708 case DW_TAG_member:
10709 case DW_TAG_imported_declaration:
10710 return 1;
10711
10712 case DW_TAG_variable:
10713 case DW_TAG_constant:
10714 /* We only need to prefix "globally" visible variables. These include
10715 any variable marked with DW_AT_external or any variable that
10716 lives in a namespace. [Variables in anonymous namespaces
10717 require prefixing, but they are not DW_AT_external.] */
10718
10719 if (dwarf2_attr (die, DW_AT_specification, cu))
10720 {
10721 struct dwarf2_cu *spec_cu = cu;
10722
10723 return die_needs_namespace (die_specification (die, &spec_cu),
10724 spec_cu);
10725 }
10726
10727 attr = dwarf2_attr (die, DW_AT_external, cu);
10728 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10729 && die->parent->tag != DW_TAG_module)
10730 return 0;
10731 /* A variable in a lexical block of some kind does not need a
10732 namespace, even though in C++ such variables may be external
10733 and have a mangled name. */
10734 if (die->parent->tag == DW_TAG_lexical_block
10735 || die->parent->tag == DW_TAG_try_block
10736 || die->parent->tag == DW_TAG_catch_block
10737 || die->parent->tag == DW_TAG_subprogram)
10738 return 0;
10739 return 1;
10740
10741 default:
10742 return 0;
10743 }
10744 }
10745
10746 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10747 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10748 defined for the given DIE. */
10749
10750 static struct attribute *
10751 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10752 {
10753 struct attribute *attr;
10754
10755 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10756 if (attr == NULL)
10757 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10758
10759 return attr;
10760 }
10761
10762 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10763 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10764 defined for the given DIE. */
10765
10766 static const char *
10767 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10768 {
10769 const char *linkage_name;
10770
10771 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10772 if (linkage_name == NULL)
10773 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10774
10775 return linkage_name;
10776 }
10777
10778 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10779 compute the physname for the object, which include a method's:
10780 - formal parameters (C++),
10781 - receiver type (Go),
10782
10783 The term "physname" is a bit confusing.
10784 For C++, for example, it is the demangled name.
10785 For Go, for example, it's the mangled name.
10786
10787 For Ada, return the DIE's linkage name rather than the fully qualified
10788 name. PHYSNAME is ignored..
10789
10790 The result is allocated on the objfile_obstack and canonicalized. */
10791
10792 static const char *
10793 dwarf2_compute_name (const char *name,
10794 struct die_info *die, struct dwarf2_cu *cu,
10795 int physname)
10796 {
10797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10798
10799 if (name == NULL)
10800 name = dwarf2_name (die, cu);
10801
10802 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10803 but otherwise compute it by typename_concat inside GDB.
10804 FIXME: Actually this is not really true, or at least not always true.
10805 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10806 Fortran names because there is no mangling standard. So new_symbol
10807 will set the demangled name to the result of dwarf2_full_name, and it is
10808 the demangled name that GDB uses if it exists. */
10809 if (cu->language == language_ada
10810 || (cu->language == language_fortran && physname))
10811 {
10812 /* For Ada unit, we prefer the linkage name over the name, as
10813 the former contains the exported name, which the user expects
10814 to be able to reference. Ideally, we want the user to be able
10815 to reference this entity using either natural or linkage name,
10816 but we haven't started looking at this enhancement yet. */
10817 const char *linkage_name = dw2_linkage_name (die, cu);
10818
10819 if (linkage_name != NULL)
10820 return linkage_name;
10821 }
10822
10823 /* These are the only languages we know how to qualify names in. */
10824 if (name != NULL
10825 && (cu->language == language_cplus
10826 || cu->language == language_fortran || cu->language == language_d
10827 || cu->language == language_rust))
10828 {
10829 if (die_needs_namespace (die, cu))
10830 {
10831 const char *prefix;
10832 const char *canonical_name = NULL;
10833
10834 string_file buf;
10835
10836 prefix = determine_prefix (die, cu);
10837 if (*prefix != '\0')
10838 {
10839 char *prefixed_name = typename_concat (NULL, prefix, name,
10840 physname, cu);
10841
10842 buf.puts (prefixed_name);
10843 xfree (prefixed_name);
10844 }
10845 else
10846 buf.puts (name);
10847
10848 /* Template parameters may be specified in the DIE's DW_AT_name, or
10849 as children with DW_TAG_template_type_param or
10850 DW_TAG_value_type_param. If the latter, add them to the name
10851 here. If the name already has template parameters, then
10852 skip this step; some versions of GCC emit both, and
10853 it is more efficient to use the pre-computed name.
10854
10855 Something to keep in mind about this process: it is very
10856 unlikely, or in some cases downright impossible, to produce
10857 something that will match the mangled name of a function.
10858 If the definition of the function has the same debug info,
10859 we should be able to match up with it anyway. But fallbacks
10860 using the minimal symbol, for instance to find a method
10861 implemented in a stripped copy of libstdc++, will not work.
10862 If we do not have debug info for the definition, we will have to
10863 match them up some other way.
10864
10865 When we do name matching there is a related problem with function
10866 templates; two instantiated function templates are allowed to
10867 differ only by their return types, which we do not add here. */
10868
10869 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10870 {
10871 struct attribute *attr;
10872 struct die_info *child;
10873 int first = 1;
10874
10875 die->building_fullname = 1;
10876
10877 for (child = die->child; child != NULL; child = child->sibling)
10878 {
10879 struct type *type;
10880 LONGEST value;
10881 const gdb_byte *bytes;
10882 struct dwarf2_locexpr_baton *baton;
10883 struct value *v;
10884
10885 if (child->tag != DW_TAG_template_type_param
10886 && child->tag != DW_TAG_template_value_param)
10887 continue;
10888
10889 if (first)
10890 {
10891 buf.puts ("<");
10892 first = 0;
10893 }
10894 else
10895 buf.puts (", ");
10896
10897 attr = dwarf2_attr (child, DW_AT_type, cu);
10898 if (attr == NULL)
10899 {
10900 complaint (_("template parameter missing DW_AT_type"));
10901 buf.puts ("UNKNOWN_TYPE");
10902 continue;
10903 }
10904 type = die_type (child, cu);
10905
10906 if (child->tag == DW_TAG_template_type_param)
10907 {
10908 c_print_type (type, "", &buf, -1, 0, cu->language,
10909 &type_print_raw_options);
10910 continue;
10911 }
10912
10913 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10914 if (attr == NULL)
10915 {
10916 complaint (_("template parameter missing "
10917 "DW_AT_const_value"));
10918 buf.puts ("UNKNOWN_VALUE");
10919 continue;
10920 }
10921
10922 dwarf2_const_value_attr (attr, type, name,
10923 &cu->comp_unit_obstack, cu,
10924 &value, &bytes, &baton);
10925
10926 if (TYPE_NOSIGN (type))
10927 /* GDB prints characters as NUMBER 'CHAR'. If that's
10928 changed, this can use value_print instead. */
10929 c_printchar (value, type, &buf);
10930 else
10931 {
10932 struct value_print_options opts;
10933
10934 if (baton != NULL)
10935 v = dwarf2_evaluate_loc_desc (type, NULL,
10936 baton->data,
10937 baton->size,
10938 baton->per_cu);
10939 else if (bytes != NULL)
10940 {
10941 v = allocate_value (type);
10942 memcpy (value_contents_writeable (v), bytes,
10943 TYPE_LENGTH (type));
10944 }
10945 else
10946 v = value_from_longest (type, value);
10947
10948 /* Specify decimal so that we do not depend on
10949 the radix. */
10950 get_formatted_print_options (&opts, 'd');
10951 opts.raw = 1;
10952 value_print (v, &buf, &opts);
10953 release_value (v);
10954 }
10955 }
10956
10957 die->building_fullname = 0;
10958
10959 if (!first)
10960 {
10961 /* Close the argument list, with a space if necessary
10962 (nested templates). */
10963 if (!buf.empty () && buf.string ().back () == '>')
10964 buf.puts (" >");
10965 else
10966 buf.puts (">");
10967 }
10968 }
10969
10970 /* For C++ methods, append formal parameter type
10971 information, if PHYSNAME. */
10972
10973 if (physname && die->tag == DW_TAG_subprogram
10974 && cu->language == language_cplus)
10975 {
10976 struct type *type = read_type_die (die, cu);
10977
10978 c_type_print_args (type, &buf, 1, cu->language,
10979 &type_print_raw_options);
10980
10981 if (cu->language == language_cplus)
10982 {
10983 /* Assume that an artificial first parameter is
10984 "this", but do not crash if it is not. RealView
10985 marks unnamed (and thus unused) parameters as
10986 artificial; there is no way to differentiate
10987 the two cases. */
10988 if (TYPE_NFIELDS (type) > 0
10989 && TYPE_FIELD_ARTIFICIAL (type, 0)
10990 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10991 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10992 0))))
10993 buf.puts (" const");
10994 }
10995 }
10996
10997 const std::string &intermediate_name = buf.string ();
10998
10999 if (cu->language == language_cplus)
11000 canonical_name
11001 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11002 &objfile->per_bfd->storage_obstack);
11003
11004 /* If we only computed INTERMEDIATE_NAME, or if
11005 INTERMEDIATE_NAME is already canonical, then we need to
11006 copy it to the appropriate obstack. */
11007 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11008 name = ((const char *)
11009 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11010 intermediate_name.c_str (),
11011 intermediate_name.length ()));
11012 else
11013 name = canonical_name;
11014 }
11015 }
11016
11017 return name;
11018 }
11019
11020 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11021 If scope qualifiers are appropriate they will be added. The result
11022 will be allocated on the storage_obstack, or NULL if the DIE does
11023 not have a name. NAME may either be from a previous call to
11024 dwarf2_name or NULL.
11025
11026 The output string will be canonicalized (if C++). */
11027
11028 static const char *
11029 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11030 {
11031 return dwarf2_compute_name (name, die, cu, 0);
11032 }
11033
11034 /* Construct a physname for the given DIE in CU. NAME may either be
11035 from a previous call to dwarf2_name or NULL. The result will be
11036 allocated on the objfile_objstack or NULL if the DIE does not have a
11037 name.
11038
11039 The output string will be canonicalized (if C++). */
11040
11041 static const char *
11042 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11043 {
11044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11045 const char *retval, *mangled = NULL, *canon = NULL;
11046 int need_copy = 1;
11047
11048 /* In this case dwarf2_compute_name is just a shortcut not building anything
11049 on its own. */
11050 if (!die_needs_namespace (die, cu))
11051 return dwarf2_compute_name (name, die, cu, 1);
11052
11053 mangled = dw2_linkage_name (die, cu);
11054
11055 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11056 See https://github.com/rust-lang/rust/issues/32925. */
11057 if (cu->language == language_rust && mangled != NULL
11058 && strchr (mangled, '{') != NULL)
11059 mangled = NULL;
11060
11061 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11062 has computed. */
11063 gdb::unique_xmalloc_ptr<char> demangled;
11064 if (mangled != NULL)
11065 {
11066
11067 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11068 {
11069 /* Do nothing (do not demangle the symbol name). */
11070 }
11071 else if (cu->language == language_go)
11072 {
11073 /* This is a lie, but we already lie to the caller new_symbol.
11074 new_symbol assumes we return the mangled name.
11075 This just undoes that lie until things are cleaned up. */
11076 }
11077 else
11078 {
11079 /* Use DMGL_RET_DROP for C++ template functions to suppress
11080 their return type. It is easier for GDB users to search
11081 for such functions as `name(params)' than `long name(params)'.
11082 In such case the minimal symbol names do not match the full
11083 symbol names but for template functions there is never a need
11084 to look up their definition from their declaration so
11085 the only disadvantage remains the minimal symbol variant
11086 `long name(params)' does not have the proper inferior type. */
11087 demangled.reset (gdb_demangle (mangled,
11088 (DMGL_PARAMS | DMGL_ANSI
11089 | DMGL_RET_DROP)));
11090 }
11091 if (demangled)
11092 canon = demangled.get ();
11093 else
11094 {
11095 canon = mangled;
11096 need_copy = 0;
11097 }
11098 }
11099
11100 if (canon == NULL || check_physname)
11101 {
11102 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11103
11104 if (canon != NULL && strcmp (physname, canon) != 0)
11105 {
11106 /* It may not mean a bug in GDB. The compiler could also
11107 compute DW_AT_linkage_name incorrectly. But in such case
11108 GDB would need to be bug-to-bug compatible. */
11109
11110 complaint (_("Computed physname <%s> does not match demangled <%s> "
11111 "(from linkage <%s>) - DIE at %s [in module %s]"),
11112 physname, canon, mangled, sect_offset_str (die->sect_off),
11113 objfile_name (objfile));
11114
11115 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11116 is available here - over computed PHYSNAME. It is safer
11117 against both buggy GDB and buggy compilers. */
11118
11119 retval = canon;
11120 }
11121 else
11122 {
11123 retval = physname;
11124 need_copy = 0;
11125 }
11126 }
11127 else
11128 retval = canon;
11129
11130 if (need_copy)
11131 retval = ((const char *)
11132 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11133 retval, strlen (retval)));
11134
11135 return retval;
11136 }
11137
11138 /* Inspect DIE in CU for a namespace alias. If one exists, record
11139 a new symbol for it.
11140
11141 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11142
11143 static int
11144 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11145 {
11146 struct attribute *attr;
11147
11148 /* If the die does not have a name, this is not a namespace
11149 alias. */
11150 attr = dwarf2_attr (die, DW_AT_name, cu);
11151 if (attr != NULL)
11152 {
11153 int num;
11154 struct die_info *d = die;
11155 struct dwarf2_cu *imported_cu = cu;
11156
11157 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11158 keep inspecting DIEs until we hit the underlying import. */
11159 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11160 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11161 {
11162 attr = dwarf2_attr (d, DW_AT_import, cu);
11163 if (attr == NULL)
11164 break;
11165
11166 d = follow_die_ref (d, attr, &imported_cu);
11167 if (d->tag != DW_TAG_imported_declaration)
11168 break;
11169 }
11170
11171 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11172 {
11173 complaint (_("DIE at %s has too many recursively imported "
11174 "declarations"), sect_offset_str (d->sect_off));
11175 return 0;
11176 }
11177
11178 if (attr != NULL)
11179 {
11180 struct type *type;
11181 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11182
11183 type = get_die_type_at_offset (sect_off, cu->per_cu);
11184 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11185 {
11186 /* This declaration is a global namespace alias. Add
11187 a symbol for it whose type is the aliased namespace. */
11188 new_symbol (die, type, cu);
11189 return 1;
11190 }
11191 }
11192 }
11193
11194 return 0;
11195 }
11196
11197 /* Return the using directives repository (global or local?) to use in the
11198 current context for CU.
11199
11200 For Ada, imported declarations can materialize renamings, which *may* be
11201 global. However it is impossible (for now?) in DWARF to distinguish
11202 "external" imported declarations and "static" ones. As all imported
11203 declarations seem to be static in all other languages, make them all CU-wide
11204 global only in Ada. */
11205
11206 static struct using_direct **
11207 using_directives (struct dwarf2_cu *cu)
11208 {
11209 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11210 return cu->builder->get_global_using_directives ();
11211 else
11212 return cu->builder->get_local_using_directives ();
11213 }
11214
11215 /* Read the import statement specified by the given die and record it. */
11216
11217 static void
11218 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11219 {
11220 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11221 struct attribute *import_attr;
11222 struct die_info *imported_die, *child_die;
11223 struct dwarf2_cu *imported_cu;
11224 const char *imported_name;
11225 const char *imported_name_prefix;
11226 const char *canonical_name;
11227 const char *import_alias;
11228 const char *imported_declaration = NULL;
11229 const char *import_prefix;
11230 std::vector<const char *> excludes;
11231
11232 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11233 if (import_attr == NULL)
11234 {
11235 complaint (_("Tag '%s' has no DW_AT_import"),
11236 dwarf_tag_name (die->tag));
11237 return;
11238 }
11239
11240 imported_cu = cu;
11241 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11242 imported_name = dwarf2_name (imported_die, imported_cu);
11243 if (imported_name == NULL)
11244 {
11245 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11246
11247 The import in the following code:
11248 namespace A
11249 {
11250 typedef int B;
11251 }
11252
11253 int main ()
11254 {
11255 using A::B;
11256 B b;
11257 return b;
11258 }
11259
11260 ...
11261 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11262 <52> DW_AT_decl_file : 1
11263 <53> DW_AT_decl_line : 6
11264 <54> DW_AT_import : <0x75>
11265 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11266 <59> DW_AT_name : B
11267 <5b> DW_AT_decl_file : 1
11268 <5c> DW_AT_decl_line : 2
11269 <5d> DW_AT_type : <0x6e>
11270 ...
11271 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11272 <76> DW_AT_byte_size : 4
11273 <77> DW_AT_encoding : 5 (signed)
11274
11275 imports the wrong die ( 0x75 instead of 0x58 ).
11276 This case will be ignored until the gcc bug is fixed. */
11277 return;
11278 }
11279
11280 /* Figure out the local name after import. */
11281 import_alias = dwarf2_name (die, cu);
11282
11283 /* Figure out where the statement is being imported to. */
11284 import_prefix = determine_prefix (die, cu);
11285
11286 /* Figure out what the scope of the imported die is and prepend it
11287 to the name of the imported die. */
11288 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11289
11290 if (imported_die->tag != DW_TAG_namespace
11291 && imported_die->tag != DW_TAG_module)
11292 {
11293 imported_declaration = imported_name;
11294 canonical_name = imported_name_prefix;
11295 }
11296 else if (strlen (imported_name_prefix) > 0)
11297 canonical_name = obconcat (&objfile->objfile_obstack,
11298 imported_name_prefix,
11299 (cu->language == language_d ? "." : "::"),
11300 imported_name, (char *) NULL);
11301 else
11302 canonical_name = imported_name;
11303
11304 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11305 for (child_die = die->child; child_die && child_die->tag;
11306 child_die = sibling_die (child_die))
11307 {
11308 /* DWARF-4: A Fortran use statement with a “rename list” may be
11309 represented by an imported module entry with an import attribute
11310 referring to the module and owned entries corresponding to those
11311 entities that are renamed as part of being imported. */
11312
11313 if (child_die->tag != DW_TAG_imported_declaration)
11314 {
11315 complaint (_("child DW_TAG_imported_declaration expected "
11316 "- DIE at %s [in module %s]"),
11317 sect_offset_str (child_die->sect_off),
11318 objfile_name (objfile));
11319 continue;
11320 }
11321
11322 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11323 if (import_attr == NULL)
11324 {
11325 complaint (_("Tag '%s' has no DW_AT_import"),
11326 dwarf_tag_name (child_die->tag));
11327 continue;
11328 }
11329
11330 imported_cu = cu;
11331 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11332 &imported_cu);
11333 imported_name = dwarf2_name (imported_die, imported_cu);
11334 if (imported_name == NULL)
11335 {
11336 complaint (_("child DW_TAG_imported_declaration has unknown "
11337 "imported name - DIE at %s [in module %s]"),
11338 sect_offset_str (child_die->sect_off),
11339 objfile_name (objfile));
11340 continue;
11341 }
11342
11343 excludes.push_back (imported_name);
11344
11345 process_die (child_die, cu);
11346 }
11347
11348 add_using_directive (using_directives (cu),
11349 import_prefix,
11350 canonical_name,
11351 import_alias,
11352 imported_declaration,
11353 excludes,
11354 0,
11355 &objfile->objfile_obstack);
11356 }
11357
11358 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11359 types, but gives them a size of zero. Starting with version 14,
11360 ICC is compatible with GCC. */
11361
11362 static int
11363 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11364 {
11365 if (!cu->checked_producer)
11366 check_producer (cu);
11367
11368 return cu->producer_is_icc_lt_14;
11369 }
11370
11371 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11372 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11373 this, it was first present in GCC release 4.3.0. */
11374
11375 static int
11376 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11377 {
11378 if (!cu->checked_producer)
11379 check_producer (cu);
11380
11381 return cu->producer_is_gcc_lt_4_3;
11382 }
11383
11384 static file_and_directory
11385 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11386 {
11387 file_and_directory res;
11388
11389 /* Find the filename. Do not use dwarf2_name here, since the filename
11390 is not a source language identifier. */
11391 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11392 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11393
11394 if (res.comp_dir == NULL
11395 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11396 && IS_ABSOLUTE_PATH (res.name))
11397 {
11398 res.comp_dir_storage = ldirname (res.name);
11399 if (!res.comp_dir_storage.empty ())
11400 res.comp_dir = res.comp_dir_storage.c_str ();
11401 }
11402 if (res.comp_dir != NULL)
11403 {
11404 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11405 directory, get rid of it. */
11406 const char *cp = strchr (res.comp_dir, ':');
11407
11408 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11409 res.comp_dir = cp + 1;
11410 }
11411
11412 if (res.name == NULL)
11413 res.name = "<unknown>";
11414
11415 return res;
11416 }
11417
11418 /* Handle DW_AT_stmt_list for a compilation unit.
11419 DIE is the DW_TAG_compile_unit die for CU.
11420 COMP_DIR is the compilation directory. LOWPC is passed to
11421 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11422
11423 static void
11424 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11425 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11426 {
11427 struct dwarf2_per_objfile *dwarf2_per_objfile
11428 = cu->per_cu->dwarf2_per_objfile;
11429 struct objfile *objfile = dwarf2_per_objfile->objfile;
11430 struct attribute *attr;
11431 struct line_header line_header_local;
11432 hashval_t line_header_local_hash;
11433 void **slot;
11434 int decode_mapping;
11435
11436 gdb_assert (! cu->per_cu->is_debug_types);
11437
11438 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11439 if (attr == NULL)
11440 return;
11441
11442 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11443
11444 /* The line header hash table is only created if needed (it exists to
11445 prevent redundant reading of the line table for partial_units).
11446 If we're given a partial_unit, we'll need it. If we're given a
11447 compile_unit, then use the line header hash table if it's already
11448 created, but don't create one just yet. */
11449
11450 if (dwarf2_per_objfile->line_header_hash == NULL
11451 && die->tag == DW_TAG_partial_unit)
11452 {
11453 dwarf2_per_objfile->line_header_hash
11454 = htab_create_alloc_ex (127, line_header_hash_voidp,
11455 line_header_eq_voidp,
11456 free_line_header_voidp,
11457 &objfile->objfile_obstack,
11458 hashtab_obstack_allocate,
11459 dummy_obstack_deallocate);
11460 }
11461
11462 line_header_local.sect_off = line_offset;
11463 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11464 line_header_local_hash = line_header_hash (&line_header_local);
11465 if (dwarf2_per_objfile->line_header_hash != NULL)
11466 {
11467 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11468 &line_header_local,
11469 line_header_local_hash, NO_INSERT);
11470
11471 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11472 is not present in *SLOT (since if there is something in *SLOT then
11473 it will be for a partial_unit). */
11474 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11475 {
11476 gdb_assert (*slot != NULL);
11477 cu->line_header = (struct line_header *) *slot;
11478 return;
11479 }
11480 }
11481
11482 /* dwarf_decode_line_header does not yet provide sufficient information.
11483 We always have to call also dwarf_decode_lines for it. */
11484 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11485 if (lh == NULL)
11486 return;
11487
11488 cu->line_header = lh.release ();
11489 cu->line_header_die_owner = die;
11490
11491 if (dwarf2_per_objfile->line_header_hash == NULL)
11492 slot = NULL;
11493 else
11494 {
11495 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11496 &line_header_local,
11497 line_header_local_hash, INSERT);
11498 gdb_assert (slot != NULL);
11499 }
11500 if (slot != NULL && *slot == NULL)
11501 {
11502 /* This newly decoded line number information unit will be owned
11503 by line_header_hash hash table. */
11504 *slot = cu->line_header;
11505 cu->line_header_die_owner = NULL;
11506 }
11507 else
11508 {
11509 /* We cannot free any current entry in (*slot) as that struct line_header
11510 may be already used by multiple CUs. Create only temporary decoded
11511 line_header for this CU - it may happen at most once for each line
11512 number information unit. And if we're not using line_header_hash
11513 then this is what we want as well. */
11514 gdb_assert (die->tag != DW_TAG_partial_unit);
11515 }
11516 decode_mapping = (die->tag != DW_TAG_partial_unit);
11517 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11518 decode_mapping);
11519
11520 }
11521
11522 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11523
11524 static void
11525 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11526 {
11527 struct dwarf2_per_objfile *dwarf2_per_objfile
11528 = cu->per_cu->dwarf2_per_objfile;
11529 struct objfile *objfile = dwarf2_per_objfile->objfile;
11530 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11531 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11532 CORE_ADDR highpc = ((CORE_ADDR) 0);
11533 struct attribute *attr;
11534 struct die_info *child_die;
11535 CORE_ADDR baseaddr;
11536
11537 prepare_one_comp_unit (cu, die, cu->language);
11538 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11539
11540 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11541
11542 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11543 from finish_block. */
11544 if (lowpc == ((CORE_ADDR) -1))
11545 lowpc = highpc;
11546 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11547
11548 file_and_directory fnd = find_file_and_directory (die, cu);
11549
11550 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11551 standardised yet. As a workaround for the language detection we fall
11552 back to the DW_AT_producer string. */
11553 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11554 cu->language = language_opencl;
11555
11556 /* Similar hack for Go. */
11557 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11558 set_cu_language (DW_LANG_Go, cu);
11559
11560 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11561
11562 /* Decode line number information if present. We do this before
11563 processing child DIEs, so that the line header table is available
11564 for DW_AT_decl_file. */
11565 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11566
11567 /* Process all dies in compilation unit. */
11568 if (die->child != NULL)
11569 {
11570 child_die = die->child;
11571 while (child_die && child_die->tag)
11572 {
11573 process_die (child_die, cu);
11574 child_die = sibling_die (child_die);
11575 }
11576 }
11577
11578 /* Decode macro information, if present. Dwarf 2 macro information
11579 refers to information in the line number info statement program
11580 header, so we can only read it if we've read the header
11581 successfully. */
11582 attr = dwarf2_attr (die, DW_AT_macros, cu);
11583 if (attr == NULL)
11584 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11585 if (attr && cu->line_header)
11586 {
11587 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11588 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11589
11590 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11591 }
11592 else
11593 {
11594 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11595 if (attr && cu->line_header)
11596 {
11597 unsigned int macro_offset = DW_UNSND (attr);
11598
11599 dwarf_decode_macros (cu, macro_offset, 0);
11600 }
11601 }
11602 }
11603
11604 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11605 Create the set of symtabs used by this TU, or if this TU is sharing
11606 symtabs with another TU and the symtabs have already been created
11607 then restore those symtabs in the line header.
11608 We don't need the pc/line-number mapping for type units. */
11609
11610 static void
11611 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11612 {
11613 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11614 struct type_unit_group *tu_group;
11615 int first_time;
11616 struct attribute *attr;
11617 unsigned int i;
11618 struct signatured_type *sig_type;
11619
11620 gdb_assert (per_cu->is_debug_types);
11621 sig_type = (struct signatured_type *) per_cu;
11622
11623 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11624
11625 /* If we're using .gdb_index (includes -readnow) then
11626 per_cu->type_unit_group may not have been set up yet. */
11627 if (sig_type->type_unit_group == NULL)
11628 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11629 tu_group = sig_type->type_unit_group;
11630
11631 /* If we've already processed this stmt_list there's no real need to
11632 do it again, we could fake it and just recreate the part we need
11633 (file name,index -> symtab mapping). If data shows this optimization
11634 is useful we can do it then. */
11635 first_time = tu_group->compunit_symtab == NULL;
11636
11637 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11638 debug info. */
11639 line_header_up lh;
11640 if (attr != NULL)
11641 {
11642 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11643 lh = dwarf_decode_line_header (line_offset, cu);
11644 }
11645 if (lh == NULL)
11646 {
11647 if (first_time)
11648 dwarf2_start_symtab (cu, "", NULL, 0);
11649 else
11650 {
11651 gdb_assert (tu_group->symtabs == NULL);
11652 gdb_assert (cu->builder == nullptr);
11653 struct compunit_symtab *cust = tu_group->compunit_symtab;
11654 cu->builder.reset (new struct buildsym_compunit
11655 (COMPUNIT_OBJFILE (cust), "",
11656 COMPUNIT_DIRNAME (cust),
11657 compunit_language (cust),
11658 0, cust));
11659 }
11660 return;
11661 }
11662
11663 cu->line_header = lh.release ();
11664 cu->line_header_die_owner = die;
11665
11666 if (first_time)
11667 {
11668 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11669
11670 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11671 still initializing it, and our caller (a few levels up)
11672 process_full_type_unit still needs to know if this is the first
11673 time. */
11674
11675 tu_group->num_symtabs = cu->line_header->file_names.size ();
11676 tu_group->symtabs = XNEWVEC (struct symtab *,
11677 cu->line_header->file_names.size ());
11678
11679 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11680 {
11681 file_entry &fe = cu->line_header->file_names[i];
11682
11683 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11684
11685 if (cu->builder->get_current_subfile ()->symtab == NULL)
11686 {
11687 /* NOTE: start_subfile will recognize when it's been
11688 passed a file it has already seen. So we can't
11689 assume there's a simple mapping from
11690 cu->line_header->file_names to subfiles, plus
11691 cu->line_header->file_names may contain dups. */
11692 cu->builder->get_current_subfile ()->symtab
11693 = allocate_symtab (cust,
11694 cu->builder->get_current_subfile ()->name);
11695 }
11696
11697 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11698 tu_group->symtabs[i] = fe.symtab;
11699 }
11700 }
11701 else
11702 {
11703 gdb_assert (cu->builder == nullptr);
11704 struct compunit_symtab *cust = tu_group->compunit_symtab;
11705 cu->builder.reset (new struct buildsym_compunit
11706 (COMPUNIT_OBJFILE (cust), "",
11707 COMPUNIT_DIRNAME (cust),
11708 compunit_language (cust),
11709 0, cust));
11710
11711 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11712 {
11713 file_entry &fe = cu->line_header->file_names[i];
11714
11715 fe.symtab = tu_group->symtabs[i];
11716 }
11717 }
11718
11719 /* The main symtab is allocated last. Type units don't have DW_AT_name
11720 so they don't have a "real" (so to speak) symtab anyway.
11721 There is later code that will assign the main symtab to all symbols
11722 that don't have one. We need to handle the case of a symbol with a
11723 missing symtab (DW_AT_decl_file) anyway. */
11724 }
11725
11726 /* Process DW_TAG_type_unit.
11727 For TUs we want to skip the first top level sibling if it's not the
11728 actual type being defined by this TU. In this case the first top
11729 level sibling is there to provide context only. */
11730
11731 static void
11732 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11733 {
11734 struct die_info *child_die;
11735
11736 prepare_one_comp_unit (cu, die, language_minimal);
11737
11738 /* Initialize (or reinitialize) the machinery for building symtabs.
11739 We do this before processing child DIEs, so that the line header table
11740 is available for DW_AT_decl_file. */
11741 setup_type_unit_groups (die, cu);
11742
11743 if (die->child != NULL)
11744 {
11745 child_die = die->child;
11746 while (child_die && child_die->tag)
11747 {
11748 process_die (child_die, cu);
11749 child_die = sibling_die (child_die);
11750 }
11751 }
11752 }
11753 \f
11754 /* DWO/DWP files.
11755
11756 http://gcc.gnu.org/wiki/DebugFission
11757 http://gcc.gnu.org/wiki/DebugFissionDWP
11758
11759 To simplify handling of both DWO files ("object" files with the DWARF info)
11760 and DWP files (a file with the DWOs packaged up into one file), we treat
11761 DWP files as having a collection of virtual DWO files. */
11762
11763 static hashval_t
11764 hash_dwo_file (const void *item)
11765 {
11766 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11767 hashval_t hash;
11768
11769 hash = htab_hash_string (dwo_file->dwo_name);
11770 if (dwo_file->comp_dir != NULL)
11771 hash += htab_hash_string (dwo_file->comp_dir);
11772 return hash;
11773 }
11774
11775 static int
11776 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11777 {
11778 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11779 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11780
11781 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11782 return 0;
11783 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11784 return lhs->comp_dir == rhs->comp_dir;
11785 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11786 }
11787
11788 /* Allocate a hash table for DWO files. */
11789
11790 static htab_t
11791 allocate_dwo_file_hash_table (struct objfile *objfile)
11792 {
11793 return htab_create_alloc_ex (41,
11794 hash_dwo_file,
11795 eq_dwo_file,
11796 NULL,
11797 &objfile->objfile_obstack,
11798 hashtab_obstack_allocate,
11799 dummy_obstack_deallocate);
11800 }
11801
11802 /* Lookup DWO file DWO_NAME. */
11803
11804 static void **
11805 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11806 const char *dwo_name,
11807 const char *comp_dir)
11808 {
11809 struct dwo_file find_entry;
11810 void **slot;
11811
11812 if (dwarf2_per_objfile->dwo_files == NULL)
11813 dwarf2_per_objfile->dwo_files
11814 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11815
11816 memset (&find_entry, 0, sizeof (find_entry));
11817 find_entry.dwo_name = dwo_name;
11818 find_entry.comp_dir = comp_dir;
11819 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11820
11821 return slot;
11822 }
11823
11824 static hashval_t
11825 hash_dwo_unit (const void *item)
11826 {
11827 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11828
11829 /* This drops the top 32 bits of the id, but is ok for a hash. */
11830 return dwo_unit->signature;
11831 }
11832
11833 static int
11834 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11835 {
11836 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11837 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11838
11839 /* The signature is assumed to be unique within the DWO file.
11840 So while object file CU dwo_id's always have the value zero,
11841 that's OK, assuming each object file DWO file has only one CU,
11842 and that's the rule for now. */
11843 return lhs->signature == rhs->signature;
11844 }
11845
11846 /* Allocate a hash table for DWO CUs,TUs.
11847 There is one of these tables for each of CUs,TUs for each DWO file. */
11848
11849 static htab_t
11850 allocate_dwo_unit_table (struct objfile *objfile)
11851 {
11852 /* Start out with a pretty small number.
11853 Generally DWO files contain only one CU and maybe some TUs. */
11854 return htab_create_alloc_ex (3,
11855 hash_dwo_unit,
11856 eq_dwo_unit,
11857 NULL,
11858 &objfile->objfile_obstack,
11859 hashtab_obstack_allocate,
11860 dummy_obstack_deallocate);
11861 }
11862
11863 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11864
11865 struct create_dwo_cu_data
11866 {
11867 struct dwo_file *dwo_file;
11868 struct dwo_unit dwo_unit;
11869 };
11870
11871 /* die_reader_func for create_dwo_cu. */
11872
11873 static void
11874 create_dwo_cu_reader (const struct die_reader_specs *reader,
11875 const gdb_byte *info_ptr,
11876 struct die_info *comp_unit_die,
11877 int has_children,
11878 void *datap)
11879 {
11880 struct dwarf2_cu *cu = reader->cu;
11881 sect_offset sect_off = cu->per_cu->sect_off;
11882 struct dwarf2_section_info *section = cu->per_cu->section;
11883 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11884 struct dwo_file *dwo_file = data->dwo_file;
11885 struct dwo_unit *dwo_unit = &data->dwo_unit;
11886 struct attribute *attr;
11887
11888 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11889 if (attr == NULL)
11890 {
11891 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11892 " its dwo_id [in module %s]"),
11893 sect_offset_str (sect_off), dwo_file->dwo_name);
11894 return;
11895 }
11896
11897 dwo_unit->dwo_file = dwo_file;
11898 dwo_unit->signature = DW_UNSND (attr);
11899 dwo_unit->section = section;
11900 dwo_unit->sect_off = sect_off;
11901 dwo_unit->length = cu->per_cu->length;
11902
11903 if (dwarf_read_debug)
11904 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11905 sect_offset_str (sect_off),
11906 hex_string (dwo_unit->signature));
11907 }
11908
11909 /* Create the dwo_units for the CUs in a DWO_FILE.
11910 Note: This function processes DWO files only, not DWP files. */
11911
11912 static void
11913 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11914 struct dwo_file &dwo_file, dwarf2_section_info &section,
11915 htab_t &cus_htab)
11916 {
11917 struct objfile *objfile = dwarf2_per_objfile->objfile;
11918 const gdb_byte *info_ptr, *end_ptr;
11919
11920 dwarf2_read_section (objfile, &section);
11921 info_ptr = section.buffer;
11922
11923 if (info_ptr == NULL)
11924 return;
11925
11926 if (dwarf_read_debug)
11927 {
11928 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11929 get_section_name (&section),
11930 get_section_file_name (&section));
11931 }
11932
11933 end_ptr = info_ptr + section.size;
11934 while (info_ptr < end_ptr)
11935 {
11936 struct dwarf2_per_cu_data per_cu;
11937 struct create_dwo_cu_data create_dwo_cu_data;
11938 struct dwo_unit *dwo_unit;
11939 void **slot;
11940 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11941
11942 memset (&create_dwo_cu_data.dwo_unit, 0,
11943 sizeof (create_dwo_cu_data.dwo_unit));
11944 memset (&per_cu, 0, sizeof (per_cu));
11945 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11946 per_cu.is_debug_types = 0;
11947 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11948 per_cu.section = &section;
11949 create_dwo_cu_data.dwo_file = &dwo_file;
11950
11951 init_cutu_and_read_dies_no_follow (
11952 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11953 info_ptr += per_cu.length;
11954
11955 // If the unit could not be parsed, skip it.
11956 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11957 continue;
11958
11959 if (cus_htab == NULL)
11960 cus_htab = allocate_dwo_unit_table (objfile);
11961
11962 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11963 *dwo_unit = create_dwo_cu_data.dwo_unit;
11964 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11965 gdb_assert (slot != NULL);
11966 if (*slot != NULL)
11967 {
11968 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11969 sect_offset dup_sect_off = dup_cu->sect_off;
11970
11971 complaint (_("debug cu entry at offset %s is duplicate to"
11972 " the entry at offset %s, signature %s"),
11973 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11974 hex_string (dwo_unit->signature));
11975 }
11976 *slot = (void *)dwo_unit;
11977 }
11978 }
11979
11980 /* DWP file .debug_{cu,tu}_index section format:
11981 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11982
11983 DWP Version 1:
11984
11985 Both index sections have the same format, and serve to map a 64-bit
11986 signature to a set of section numbers. Each section begins with a header,
11987 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11988 indexes, and a pool of 32-bit section numbers. The index sections will be
11989 aligned at 8-byte boundaries in the file.
11990
11991 The index section header consists of:
11992
11993 V, 32 bit version number
11994 -, 32 bits unused
11995 N, 32 bit number of compilation units or type units in the index
11996 M, 32 bit number of slots in the hash table
11997
11998 Numbers are recorded using the byte order of the application binary.
11999
12000 The hash table begins at offset 16 in the section, and consists of an array
12001 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12002 order of the application binary). Unused slots in the hash table are 0.
12003 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12004
12005 The parallel table begins immediately after the hash table
12006 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12007 array of 32-bit indexes (using the byte order of the application binary),
12008 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12009 table contains a 32-bit index into the pool of section numbers. For unused
12010 hash table slots, the corresponding entry in the parallel table will be 0.
12011
12012 The pool of section numbers begins immediately following the hash table
12013 (at offset 16 + 12 * M from the beginning of the section). The pool of
12014 section numbers consists of an array of 32-bit words (using the byte order
12015 of the application binary). Each item in the array is indexed starting
12016 from 0. The hash table entry provides the index of the first section
12017 number in the set. Additional section numbers in the set follow, and the
12018 set is terminated by a 0 entry (section number 0 is not used in ELF).
12019
12020 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12021 section must be the first entry in the set, and the .debug_abbrev.dwo must
12022 be the second entry. Other members of the set may follow in any order.
12023
12024 ---
12025
12026 DWP Version 2:
12027
12028 DWP Version 2 combines all the .debug_info, etc. sections into one,
12029 and the entries in the index tables are now offsets into these sections.
12030 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12031 section.
12032
12033 Index Section Contents:
12034 Header
12035 Hash Table of Signatures dwp_hash_table.hash_table
12036 Parallel Table of Indices dwp_hash_table.unit_table
12037 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12038 Table of Section Sizes dwp_hash_table.v2.sizes
12039
12040 The index section header consists of:
12041
12042 V, 32 bit version number
12043 L, 32 bit number of columns in the table of section offsets
12044 N, 32 bit number of compilation units or type units in the index
12045 M, 32 bit number of slots in the hash table
12046
12047 Numbers are recorded using the byte order of the application binary.
12048
12049 The hash table has the same format as version 1.
12050 The parallel table of indices has the same format as version 1,
12051 except that the entries are origin-1 indices into the table of sections
12052 offsets and the table of section sizes.
12053
12054 The table of offsets begins immediately following the parallel table
12055 (at offset 16 + 12 * M from the beginning of the section). The table is
12056 a two-dimensional array of 32-bit words (using the byte order of the
12057 application binary), with L columns and N+1 rows, in row-major order.
12058 Each row in the array is indexed starting from 0. The first row provides
12059 a key to the remaining rows: each column in this row provides an identifier
12060 for a debug section, and the offsets in the same column of subsequent rows
12061 refer to that section. The section identifiers are:
12062
12063 DW_SECT_INFO 1 .debug_info.dwo
12064 DW_SECT_TYPES 2 .debug_types.dwo
12065 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12066 DW_SECT_LINE 4 .debug_line.dwo
12067 DW_SECT_LOC 5 .debug_loc.dwo
12068 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12069 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12070 DW_SECT_MACRO 8 .debug_macro.dwo
12071
12072 The offsets provided by the CU and TU index sections are the base offsets
12073 for the contributions made by each CU or TU to the corresponding section
12074 in the package file. Each CU and TU header contains an abbrev_offset
12075 field, used to find the abbreviations table for that CU or TU within the
12076 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12077 be interpreted as relative to the base offset given in the index section.
12078 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12079 should be interpreted as relative to the base offset for .debug_line.dwo,
12080 and offsets into other debug sections obtained from DWARF attributes should
12081 also be interpreted as relative to the corresponding base offset.
12082
12083 The table of sizes begins immediately following the table of offsets.
12084 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12085 with L columns and N rows, in row-major order. Each row in the array is
12086 indexed starting from 1 (row 0 is shared by the two tables).
12087
12088 ---
12089
12090 Hash table lookup is handled the same in version 1 and 2:
12091
12092 We assume that N and M will not exceed 2^32 - 1.
12093 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12094
12095 Given a 64-bit compilation unit signature or a type signature S, an entry
12096 in the hash table is located as follows:
12097
12098 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12099 the low-order k bits all set to 1.
12100
12101 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12102
12103 3) If the hash table entry at index H matches the signature, use that
12104 entry. If the hash table entry at index H is unused (all zeroes),
12105 terminate the search: the signature is not present in the table.
12106
12107 4) Let H = (H + H') modulo M. Repeat at Step 3.
12108
12109 Because M > N and H' and M are relatively prime, the search is guaranteed
12110 to stop at an unused slot or find the match. */
12111
12112 /* Create a hash table to map DWO IDs to their CU/TU entry in
12113 .debug_{info,types}.dwo in DWP_FILE.
12114 Returns NULL if there isn't one.
12115 Note: This function processes DWP files only, not DWO files. */
12116
12117 static struct dwp_hash_table *
12118 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12119 struct dwp_file *dwp_file, int is_debug_types)
12120 {
12121 struct objfile *objfile = dwarf2_per_objfile->objfile;
12122 bfd *dbfd = dwp_file->dbfd.get ();
12123 const gdb_byte *index_ptr, *index_end;
12124 struct dwarf2_section_info *index;
12125 uint32_t version, nr_columns, nr_units, nr_slots;
12126 struct dwp_hash_table *htab;
12127
12128 if (is_debug_types)
12129 index = &dwp_file->sections.tu_index;
12130 else
12131 index = &dwp_file->sections.cu_index;
12132
12133 if (dwarf2_section_empty_p (index))
12134 return NULL;
12135 dwarf2_read_section (objfile, index);
12136
12137 index_ptr = index->buffer;
12138 index_end = index_ptr + index->size;
12139
12140 version = read_4_bytes (dbfd, index_ptr);
12141 index_ptr += 4;
12142 if (version == 2)
12143 nr_columns = read_4_bytes (dbfd, index_ptr);
12144 else
12145 nr_columns = 0;
12146 index_ptr += 4;
12147 nr_units = read_4_bytes (dbfd, index_ptr);
12148 index_ptr += 4;
12149 nr_slots = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151
12152 if (version != 1 && version != 2)
12153 {
12154 error (_("Dwarf Error: unsupported DWP file version (%s)"
12155 " [in module %s]"),
12156 pulongest (version), dwp_file->name);
12157 }
12158 if (nr_slots != (nr_slots & -nr_slots))
12159 {
12160 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12161 " is not power of 2 [in module %s]"),
12162 pulongest (nr_slots), dwp_file->name);
12163 }
12164
12165 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12166 htab->version = version;
12167 htab->nr_columns = nr_columns;
12168 htab->nr_units = nr_units;
12169 htab->nr_slots = nr_slots;
12170 htab->hash_table = index_ptr;
12171 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12172
12173 /* Exit early if the table is empty. */
12174 if (nr_slots == 0 || nr_units == 0
12175 || (version == 2 && nr_columns == 0))
12176 {
12177 /* All must be zero. */
12178 if (nr_slots != 0 || nr_units != 0
12179 || (version == 2 && nr_columns != 0))
12180 {
12181 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12182 " all zero [in modules %s]"),
12183 dwp_file->name);
12184 }
12185 return htab;
12186 }
12187
12188 if (version == 1)
12189 {
12190 htab->section_pool.v1.indices =
12191 htab->unit_table + sizeof (uint32_t) * nr_slots;
12192 /* It's harder to decide whether the section is too small in v1.
12193 V1 is deprecated anyway so we punt. */
12194 }
12195 else
12196 {
12197 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12198 int *ids = htab->section_pool.v2.section_ids;
12199 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12202 int i;
12203
12204 if (nr_columns < 2)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12214 dwp_file->name);
12215 }
12216 memset (ids, 255, sizeof_ids);
12217 memset (ids_seen, 255, sizeof (ids_seen));
12218 for (i = 0; i < nr_columns; ++i)
12219 {
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12221
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 if (ids_seen[id] != -1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12233 }
12234 ids_seen[id] = i;
12235 ids[i] = id;
12236 }
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12240 != 1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12244 dwp_file->name);
12245 }
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12259 > index_end)
12260 {
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12263 dwp_file->name);
12264 }
12265 }
12266
12267 return htab;
12268 }
12269
12270 /* Update SECTIONS with the data from SECTP.
12271
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
12274 read comes from the DWP V1 hash table, not the full ELF section table.
12275
12276 The result is non-zero for success, or zero if an error was found. */
12277
12278 static int
12279 locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
12281 {
12282 const struct dwop_section_names *names = &dwop_section_names;
12283
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12285 {
12286 /* There can be only one. */
12287 if (sections->abbrev.s.section != NULL)
12288 return 0;
12289 sections->abbrev.s.section = sectp;
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12294 {
12295 /* There can be only one. */
12296 if (sections->info_or_types.s.section != NULL)
12297 return 0;
12298 sections->info_or_types.s.section = sectp;
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12302 {
12303 /* There can be only one. */
12304 if (sections->line.s.section != NULL)
12305 return 0;
12306 sections->line.s.section = sectp;
12307 sections->line.size = bfd_get_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12310 {
12311 /* There can be only one. */
12312 if (sections->loc.s.section != NULL)
12313 return 0;
12314 sections->loc.s.section = sectp;
12315 sections->loc.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12318 {
12319 /* There can be only one. */
12320 if (sections->macinfo.s.section != NULL)
12321 return 0;
12322 sections->macinfo.s.section = sectp;
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12326 {
12327 /* There can be only one. */
12328 if (sections->macro.s.section != NULL)
12329 return 0;
12330 sections->macro.s.section = sectp;
12331 sections->macro.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12334 {
12335 /* There can be only one. */
12336 if (sections->str_offsets.s.section != NULL)
12337 return 0;
12338 sections->str_offsets.s.section = sectp;
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12340 }
12341 else
12342 {
12343 /* No other kind of section is valid. */
12344 return 0;
12345 }
12346
12347 return 1;
12348 }
12349
12350 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
12354
12355 static struct dwo_unit *
12356 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12357 struct dwp_file *dwp_file,
12358 uint32_t unit_index,
12359 const char *comp_dir,
12360 ULONGEST signature, int is_debug_types)
12361 {
12362 struct objfile *objfile = dwarf2_per_objfile->objfile;
12363 const struct dwp_hash_table *dwp_htab =
12364 is_debug_types ? dwp_file->tus : dwp_file->cus;
12365 bfd *dbfd = dwp_file->dbfd.get ();
12366 const char *kind = is_debug_types ? "TU" : "CU";
12367 struct dwo_file *dwo_file;
12368 struct dwo_unit *dwo_unit;
12369 struct virtual_v1_dwo_sections sections;
12370 void **dwo_file_slot;
12371 int i;
12372
12373 gdb_assert (dwp_file->version == 1);
12374
12375 if (dwarf_read_debug)
12376 {
12377 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12378 kind,
12379 pulongest (unit_index), hex_string (signature),
12380 dwp_file->name);
12381 }
12382
12383 /* Fetch the sections of this DWO unit.
12384 Put a limit on the number of sections we look for so that bad data
12385 doesn't cause us to loop forever. */
12386
12387 #define MAX_NR_V1_DWO_SECTIONS \
12388 (1 /* .debug_info or .debug_types */ \
12389 + 1 /* .debug_abbrev */ \
12390 + 1 /* .debug_line */ \
12391 + 1 /* .debug_loc */ \
12392 + 1 /* .debug_str_offsets */ \
12393 + 1 /* .debug_macro or .debug_macinfo */ \
12394 + 1 /* trailing zero */)
12395
12396 memset (&sections, 0, sizeof (sections));
12397
12398 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12399 {
12400 asection *sectp;
12401 uint32_t section_nr =
12402 read_4_bytes (dbfd,
12403 dwp_htab->section_pool.v1.indices
12404 + (unit_index + i) * sizeof (uint32_t));
12405
12406 if (section_nr == 0)
12407 break;
12408 if (section_nr >= dwp_file->num_sections)
12409 {
12410 error (_("Dwarf Error: bad DWP hash table, section number too large"
12411 " [in module %s]"),
12412 dwp_file->name);
12413 }
12414
12415 sectp = dwp_file->elf_sections[section_nr];
12416 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12417 {
12418 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12419 " [in module %s]"),
12420 dwp_file->name);
12421 }
12422 }
12423
12424 if (i < 2
12425 || dwarf2_section_empty_p (&sections.info_or_types)
12426 || dwarf2_section_empty_p (&sections.abbrev))
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432 if (i == MAX_NR_V1_DWO_SECTIONS)
12433 {
12434 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12435 " [in module %s]"),
12436 dwp_file->name);
12437 }
12438
12439 /* It's easier for the rest of the code if we fake a struct dwo_file and
12440 have dwo_unit "live" in that. At least for now.
12441
12442 The DWP file can be made up of a random collection of CUs and TUs.
12443 However, for each CU + set of TUs that came from the same original DWO
12444 file, we can combine them back into a virtual DWO file to save space
12445 (fewer struct dwo_file objects to allocate). Remember that for really
12446 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12447
12448 std::string virtual_dwo_name =
12449 string_printf ("virtual-dwo/%d-%d-%d-%d",
12450 get_section_id (&sections.abbrev),
12451 get_section_id (&sections.line),
12452 get_section_id (&sections.loc),
12453 get_section_id (&sections.str_offsets));
12454 /* Can we use an existing virtual DWO file? */
12455 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12456 virtual_dwo_name.c_str (),
12457 comp_dir);
12458 /* Create one if necessary. */
12459 if (*dwo_file_slot == NULL)
12460 {
12461 if (dwarf_read_debug)
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12464 virtual_dwo_name.c_str ());
12465 }
12466 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12467 dwo_file->dwo_name
12468 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12469 virtual_dwo_name.c_str (),
12470 virtual_dwo_name.size ());
12471 dwo_file->comp_dir = comp_dir;
12472 dwo_file->sections.abbrev = sections.abbrev;
12473 dwo_file->sections.line = sections.line;
12474 dwo_file->sections.loc = sections.loc;
12475 dwo_file->sections.macinfo = sections.macinfo;
12476 dwo_file->sections.macro = sections.macro;
12477 dwo_file->sections.str_offsets = sections.str_offsets;
12478 /* The "str" section is global to the entire DWP file. */
12479 dwo_file->sections.str = dwp_file->sections.str;
12480 /* The info or types section is assigned below to dwo_unit,
12481 there's no need to record it in dwo_file.
12482 Also, we can't simply record type sections in dwo_file because
12483 we record a pointer into the vector in dwo_unit. As we collect more
12484 types we'll grow the vector and eventually have to reallocate space
12485 for it, invalidating all copies of pointers into the previous
12486 contents. */
12487 *dwo_file_slot = dwo_file;
12488 }
12489 else
12490 {
12491 if (dwarf_read_debug)
12492 {
12493 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12494 virtual_dwo_name.c_str ());
12495 }
12496 dwo_file = (struct dwo_file *) *dwo_file_slot;
12497 }
12498
12499 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12500 dwo_unit->dwo_file = dwo_file;
12501 dwo_unit->signature = signature;
12502 dwo_unit->section =
12503 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12504 *dwo_unit->section = sections.info_or_types;
12505 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12506
12507 return dwo_unit;
12508 }
12509
12510 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12511 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12512 piece within that section used by a TU/CU, return a virtual section
12513 of just that piece. */
12514
12515 static struct dwarf2_section_info
12516 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12517 struct dwarf2_section_info *section,
12518 bfd_size_type offset, bfd_size_type size)
12519 {
12520 struct dwarf2_section_info result;
12521 asection *sectp;
12522
12523 gdb_assert (section != NULL);
12524 gdb_assert (!section->is_virtual);
12525
12526 memset (&result, 0, sizeof (result));
12527 result.s.containing_section = section;
12528 result.is_virtual = 1;
12529
12530 if (size == 0)
12531 return result;
12532
12533 sectp = get_section_bfd_section (section);
12534
12535 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12536 bounds of the real section. This is a pretty-rare event, so just
12537 flag an error (easier) instead of a warning and trying to cope. */
12538 if (sectp == NULL
12539 || offset + size > bfd_get_section_size (sectp))
12540 {
12541 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12542 " in section %s [in module %s]"),
12543 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12544 objfile_name (dwarf2_per_objfile->objfile));
12545 }
12546
12547 result.virtual_offset = offset;
12548 result.size = size;
12549 return result;
12550 }
12551
12552 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12553 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12554 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12555 This is for DWP version 2 files. */
12556
12557 static struct dwo_unit *
12558 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12559 struct dwp_file *dwp_file,
12560 uint32_t unit_index,
12561 const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12563 {
12564 struct objfile *objfile = dwarf2_per_objfile->objfile;
12565 const struct dwp_hash_table *dwp_htab =
12566 is_debug_types ? dwp_file->tus : dwp_file->cus;
12567 bfd *dbfd = dwp_file->dbfd.get ();
12568 const char *kind = is_debug_types ? "TU" : "CU";
12569 struct dwo_file *dwo_file;
12570 struct dwo_unit *dwo_unit;
12571 struct virtual_v2_dwo_sections sections;
12572 void **dwo_file_slot;
12573 int i;
12574
12575 gdb_assert (dwp_file->version == 2);
12576
12577 if (dwarf_read_debug)
12578 {
12579 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12580 kind,
12581 pulongest (unit_index), hex_string (signature),
12582 dwp_file->name);
12583 }
12584
12585 /* Fetch the section offsets of this DWO unit. */
12586
12587 memset (&sections, 0, sizeof (sections));
12588
12589 for (i = 0; i < dwp_htab->nr_columns; ++i)
12590 {
12591 uint32_t offset = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.offsets
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596 uint32_t size = read_4_bytes (dbfd,
12597 dwp_htab->section_pool.v2.sizes
12598 + (((unit_index - 1) * dwp_htab->nr_columns
12599 + i)
12600 * sizeof (uint32_t)));
12601
12602 switch (dwp_htab->section_pool.v2.section_ids[i])
12603 {
12604 case DW_SECT_INFO:
12605 case DW_SECT_TYPES:
12606 sections.info_or_types_offset = offset;
12607 sections.info_or_types_size = size;
12608 break;
12609 case DW_SECT_ABBREV:
12610 sections.abbrev_offset = offset;
12611 sections.abbrev_size = size;
12612 break;
12613 case DW_SECT_LINE:
12614 sections.line_offset = offset;
12615 sections.line_size = size;
12616 break;
12617 case DW_SECT_LOC:
12618 sections.loc_offset = offset;
12619 sections.loc_size = size;
12620 break;
12621 case DW_SECT_STR_OFFSETS:
12622 sections.str_offsets_offset = offset;
12623 sections.str_offsets_size = size;
12624 break;
12625 case DW_SECT_MACINFO:
12626 sections.macinfo_offset = offset;
12627 sections.macinfo_size = size;
12628 break;
12629 case DW_SECT_MACRO:
12630 sections.macro_offset = offset;
12631 sections.macro_size = size;
12632 break;
12633 }
12634 }
12635
12636 /* It's easier for the rest of the code if we fake a struct dwo_file and
12637 have dwo_unit "live" in that. At least for now.
12638
12639 The DWP file can be made up of a random collection of CUs and TUs.
12640 However, for each CU + set of TUs that came from the same original DWO
12641 file, we can combine them back into a virtual DWO file to save space
12642 (fewer struct dwo_file objects to allocate). Remember that for really
12643 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12644
12645 std::string virtual_dwo_name =
12646 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12647 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12648 (long) (sections.line_size ? sections.line_offset : 0),
12649 (long) (sections.loc_size ? sections.loc_offset : 0),
12650 (long) (sections.str_offsets_size
12651 ? sections.str_offsets_offset : 0));
12652 /* Can we use an existing virtual DWO file? */
12653 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12654 virtual_dwo_name.c_str (),
12655 comp_dir);
12656 /* Create one if necessary. */
12657 if (*dwo_file_slot == NULL)
12658 {
12659 if (dwarf_read_debug)
12660 {
12661 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12662 virtual_dwo_name.c_str ());
12663 }
12664 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12665 dwo_file->dwo_name
12666 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12667 virtual_dwo_name.c_str (),
12668 virtual_dwo_name.size ());
12669 dwo_file->comp_dir = comp_dir;
12670 dwo_file->sections.abbrev =
12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12672 sections.abbrev_offset, sections.abbrev_size);
12673 dwo_file->sections.line =
12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12675 sections.line_offset, sections.line_size);
12676 dwo_file->sections.loc =
12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12678 sections.loc_offset, sections.loc_size);
12679 dwo_file->sections.macinfo =
12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12681 sections.macinfo_offset, sections.macinfo_size);
12682 dwo_file->sections.macro =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12684 sections.macro_offset, sections.macro_size);
12685 dwo_file->sections.str_offsets =
12686 create_dwp_v2_section (dwarf2_per_objfile,
12687 &dwp_file->sections.str_offsets,
12688 sections.str_offsets_offset,
12689 sections.str_offsets_size);
12690 /* The "str" section is global to the entire DWP file. */
12691 dwo_file->sections.str = dwp_file->sections.str;
12692 /* The info or types section is assigned below to dwo_unit,
12693 there's no need to record it in dwo_file.
12694 Also, we can't simply record type sections in dwo_file because
12695 we record a pointer into the vector in dwo_unit. As we collect more
12696 types we'll grow the vector and eventually have to reallocate space
12697 for it, invalidating all copies of pointers into the previous
12698 contents. */
12699 *dwo_file_slot = dwo_file;
12700 }
12701 else
12702 {
12703 if (dwarf_read_debug)
12704 {
12705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12706 virtual_dwo_name.c_str ());
12707 }
12708 dwo_file = (struct dwo_file *) *dwo_file_slot;
12709 }
12710
12711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12712 dwo_unit->dwo_file = dwo_file;
12713 dwo_unit->signature = signature;
12714 dwo_unit->section =
12715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12716 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12717 is_debug_types
12718 ? &dwp_file->sections.types
12719 : &dwp_file->sections.info,
12720 sections.info_or_types_offset,
12721 sections.info_or_types_size);
12722 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12723
12724 return dwo_unit;
12725 }
12726
12727 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12728 Returns NULL if the signature isn't found. */
12729
12730 static struct dwo_unit *
12731 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12732 struct dwp_file *dwp_file, const char *comp_dir,
12733 ULONGEST signature, int is_debug_types)
12734 {
12735 const struct dwp_hash_table *dwp_htab =
12736 is_debug_types ? dwp_file->tus : dwp_file->cus;
12737 bfd *dbfd = dwp_file->dbfd.get ();
12738 uint32_t mask = dwp_htab->nr_slots - 1;
12739 uint32_t hash = signature & mask;
12740 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12741 unsigned int i;
12742 void **slot;
12743 struct dwo_unit find_dwo_cu;
12744
12745 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12746 find_dwo_cu.signature = signature;
12747 slot = htab_find_slot (is_debug_types
12748 ? dwp_file->loaded_tus
12749 : dwp_file->loaded_cus,
12750 &find_dwo_cu, INSERT);
12751
12752 if (*slot != NULL)
12753 return (struct dwo_unit *) *slot;
12754
12755 /* Use a for loop so that we don't loop forever on bad debug info. */
12756 for (i = 0; i < dwp_htab->nr_slots; ++i)
12757 {
12758 ULONGEST signature_in_table;
12759
12760 signature_in_table =
12761 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12762 if (signature_in_table == signature)
12763 {
12764 uint32_t unit_index =
12765 read_4_bytes (dbfd,
12766 dwp_htab->unit_table + hash * sizeof (uint32_t));
12767
12768 if (dwp_file->version == 1)
12769 {
12770 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12771 dwp_file, unit_index,
12772 comp_dir, signature,
12773 is_debug_types);
12774 }
12775 else
12776 {
12777 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
12779 comp_dir, signature,
12780 is_debug_types);
12781 }
12782 return (struct dwo_unit *) *slot;
12783 }
12784 if (signature_in_table == 0)
12785 return NULL;
12786 hash = (hash + hash2) & mask;
12787 }
12788
12789 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12790 " [in module %s]"),
12791 dwp_file->name);
12792 }
12793
12794 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12795 Open the file specified by FILE_NAME and hand it off to BFD for
12796 preliminary analysis. Return a newly initialized bfd *, which
12797 includes a canonicalized copy of FILE_NAME.
12798 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12799 SEARCH_CWD is true if the current directory is to be searched.
12800 It will be searched before debug-file-directory.
12801 If successful, the file is added to the bfd include table of the
12802 objfile's bfd (see gdb_bfd_record_inclusion).
12803 If unable to find/open the file, return NULL.
12804 NOTE: This function is derived from symfile_bfd_open. */
12805
12806 static gdb_bfd_ref_ptr
12807 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12808 const char *file_name, int is_dwp, int search_cwd)
12809 {
12810 int desc;
12811 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12812 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12813 to debug_file_directory. */
12814 const char *search_path;
12815 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12816
12817 gdb::unique_xmalloc_ptr<char> search_path_holder;
12818 if (search_cwd)
12819 {
12820 if (*debug_file_directory != '\0')
12821 {
12822 search_path_holder.reset (concat (".", dirname_separator_string,
12823 debug_file_directory,
12824 (char *) NULL));
12825 search_path = search_path_holder.get ();
12826 }
12827 else
12828 search_path = ".";
12829 }
12830 else
12831 search_path = debug_file_directory;
12832
12833 openp_flags flags = OPF_RETURN_REALPATH;
12834 if (is_dwp)
12835 flags |= OPF_SEARCH_IN_PATH;
12836
12837 gdb::unique_xmalloc_ptr<char> absolute_name;
12838 desc = openp (search_path, flags, file_name,
12839 O_RDONLY | O_BINARY, &absolute_name);
12840 if (desc < 0)
12841 return NULL;
12842
12843 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12844 gnutarget, desc));
12845 if (sym_bfd == NULL)
12846 return NULL;
12847 bfd_set_cacheable (sym_bfd.get (), 1);
12848
12849 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12850 return NULL;
12851
12852 /* Success. Record the bfd as having been included by the objfile's bfd.
12853 This is important because things like demangled_names_hash lives in the
12854 objfile's per_bfd space and may have references to things like symbol
12855 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12856 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12857
12858 return sym_bfd;
12859 }
12860
12861 /* Try to open DWO file FILE_NAME.
12862 COMP_DIR is the DW_AT_comp_dir attribute.
12863 The result is the bfd handle of the file.
12864 If there is a problem finding or opening the file, return NULL.
12865 Upon success, the canonicalized path of the file is stored in the bfd,
12866 same as symfile_bfd_open. */
12867
12868 static gdb_bfd_ref_ptr
12869 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12870 const char *file_name, const char *comp_dir)
12871 {
12872 if (IS_ABSOLUTE_PATH (file_name))
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 0 /*search_cwd*/);
12875
12876 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12877
12878 if (comp_dir != NULL)
12879 {
12880 char *path_to_try = concat (comp_dir, SLASH_STRING,
12881 file_name, (char *) NULL);
12882
12883 /* NOTE: If comp_dir is a relative path, this will also try the
12884 search path, which seems useful. */
12885 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12886 path_to_try,
12887 0 /*is_dwp*/,
12888 1 /*search_cwd*/));
12889 xfree (path_to_try);
12890 if (abfd != NULL)
12891 return abfd;
12892 }
12893
12894 /* That didn't work, try debug-file-directory, which, despite its name,
12895 is a list of paths. */
12896
12897 if (*debug_file_directory == '\0')
12898 return NULL;
12899
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 1 /*search_cwd*/);
12902 }
12903
12904 /* This function is mapped across the sections and remembers the offset and
12905 size of each of the DWO debugging sections we are interested in. */
12906
12907 static void
12908 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12909 {
12910 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12911 const struct dwop_section_names *names = &dwop_section_names;
12912
12913 if (section_is_p (sectp->name, &names->abbrev_dwo))
12914 {
12915 dwo_sections->abbrev.s.section = sectp;
12916 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12917 }
12918 else if (section_is_p (sectp->name, &names->info_dwo))
12919 {
12920 dwo_sections->info.s.section = sectp;
12921 dwo_sections->info.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->line_dwo))
12924 {
12925 dwo_sections->line.s.section = sectp;
12926 dwo_sections->line.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->loc_dwo))
12929 {
12930 dwo_sections->loc.s.section = sectp;
12931 dwo_sections->loc.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12934 {
12935 dwo_sections->macinfo.s.section = sectp;
12936 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->macro_dwo))
12939 {
12940 dwo_sections->macro.s.section = sectp;
12941 dwo_sections->macro.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->str_dwo))
12944 {
12945 dwo_sections->str.s.section = sectp;
12946 dwo_sections->str.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12949 {
12950 dwo_sections->str_offsets.s.section = sectp;
12951 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->types_dwo))
12954 {
12955 struct dwarf2_section_info type_section;
12956
12957 memset (&type_section, 0, sizeof (type_section));
12958 type_section.s.section = sectp;
12959 type_section.size = bfd_get_section_size (sectp);
12960 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12961 &type_section);
12962 }
12963 }
12964
12965 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12966 by PER_CU. This is for the non-DWP case.
12967 The result is NULL if DWO_NAME can't be found. */
12968
12969 static struct dwo_file *
12970 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12971 const char *dwo_name, const char *comp_dir)
12972 {
12973 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12974 struct objfile *objfile = dwarf2_per_objfile->objfile;
12975
12976 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12977 if (dbfd == NULL)
12978 {
12979 if (dwarf_read_debug)
12980 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12981 return NULL;
12982 }
12983
12984 /* We use a unique pointer here, despite the obstack allocation,
12985 because a dwo_file needs some cleanup if it is abandoned. */
12986 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12987 struct dwo_file));
12988 dwo_file->dwo_name = dwo_name;
12989 dwo_file->comp_dir = comp_dir;
12990 dwo_file->dbfd = dbfd.release ();
12991
12992 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12993 &dwo_file->sections);
12994
12995 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12996 dwo_file->cus);
12997
12998 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12999 dwo_file->sections.types, dwo_file->tus);
13000
13001 if (dwarf_read_debug)
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13003
13004 return dwo_file.release ();
13005 }
13006
13007 /* This function is mapped across the sections and remembers the offset and
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
13010
13011 static void
13012 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
13014 {
13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13018
13019 /* Record the ELF section number for later lookup: this is what the
13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
13023
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13026 {
13027 dwp_file->sections.str.s.section = sectp;
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->cu_index))
13031 {
13032 dwp_file->sections.cu_index.s.section = sectp;
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13034 }
13035 else if (section_is_p (sectp->name, &names->tu_index))
13036 {
13037 dwp_file->sections.tu_index.s.section = sectp;
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13039 }
13040 }
13041
13042 /* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13046
13047 static void
13048 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13049 {
13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13053
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13058
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13061 {
13062 dwp_file->sections.abbrev.s.section = sectp;
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13066 {
13067 dwp_file->sections.info.s.section = sectp;
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13071 {
13072 dwp_file->sections.line.s.section = sectp;
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13076 {
13077 dwp_file->sections.loc.s.section = sectp;
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13081 {
13082 dwp_file->sections.macinfo.s.section = sectp;
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13086 {
13087 dwp_file->sections.macro.s.section = sectp;
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13091 {
13092 dwp_file->sections.str_offsets.s.section = sectp;
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13096 {
13097 dwp_file->sections.types.s.section = sectp;
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13099 }
13100 }
13101
13102 /* Hash function for dwp_file loaded CUs/TUs. */
13103
13104 static hashval_t
13105 hash_dwp_loaded_cutus (const void *item)
13106 {
13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13108
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
13111 }
13112
13113 /* Equality function for dwp_file loaded CUs/TUs. */
13114
13115 static int
13116 eq_dwp_loaded_cutus (const void *a, const void *b)
13117 {
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13120
13121 return dua->signature == dub->signature;
13122 }
13123
13124 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13125
13126 static htab_t
13127 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13128 {
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13132 NULL,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13136 }
13137
13138 /* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13143
13144 static gdb_bfd_ref_ptr
13145 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
13147 {
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13149 1 /*is_dwp*/,
13150 1 /*search_cwd*/));
13151 if (abfd != NULL)
13152 return abfd;
13153
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13163 {
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
13169 0 /*search_cwd*/);
13170 }
13171
13172 return NULL;
13173 }
13174
13175 /* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
13178
13179 static std::unique_ptr<struct dwp_file>
13180 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13181 {
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
13183
13184 /* Try to find first .dwp for the binary file before any symbolic links
13185 resolving. */
13186
13187 /* If the objfile is a debug file, find the name of the real binary
13188 file and get the name of dwp file from there. */
13189 std::string dwp_name;
13190 if (objfile->separate_debug_objfile_backlink != NULL)
13191 {
13192 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13193 const char *backlink_basename = lbasename (backlink->original_name);
13194
13195 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13196 }
13197 else
13198 dwp_name = objfile->original_name;
13199
13200 dwp_name += ".dwp";
13201
13202 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13203 if (dbfd == NULL
13204 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13205 {
13206 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13207 dwp_name = objfile_name (objfile);
13208 dwp_name += ".dwp";
13209 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13210 }
13211
13212 if (dbfd == NULL)
13213 {
13214 if (dwarf_read_debug)
13215 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13216 return std::unique_ptr<dwp_file> ();
13217 }
13218
13219 const char *name = bfd_get_filename (dbfd.get ());
13220 std::unique_ptr<struct dwp_file> dwp_file
13221 (new struct dwp_file (name, std::move (dbfd)));
13222
13223 /* +1: section 0 is unused */
13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13228
13229 bfd_map_over_sections (dwp_file->dbfd.get (),
13230 dwarf2_locate_common_dwp_sections,
13231 dwp_file.get ());
13232
13233 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13234 0);
13235
13236 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13237 1);
13238
13239 /* The DWP file version is stored in the hash table. Oh well. */
13240 if (dwp_file->cus && dwp_file->tus
13241 && dwp_file->cus->version != dwp_file->tus->version)
13242 {
13243 /* Technically speaking, we should try to limp along, but this is
13244 pretty bizarre. We use pulongest here because that's the established
13245 portability solution (e.g, we cannot use %u for uint32_t). */
13246 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13247 " TU version %s [in DWP file %s]"),
13248 pulongest (dwp_file->cus->version),
13249 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13250 }
13251
13252 if (dwp_file->cus)
13253 dwp_file->version = dwp_file->cus->version;
13254 else if (dwp_file->tus)
13255 dwp_file->version = dwp_file->tus->version;
13256 else
13257 dwp_file->version = 2;
13258
13259 if (dwp_file->version == 2)
13260 bfd_map_over_sections (dwp_file->dbfd.get (),
13261 dwarf2_locate_v2_dwp_sections,
13262 dwp_file.get ());
13263
13264 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13265 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13266
13267 if (dwarf_read_debug)
13268 {
13269 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13270 fprintf_unfiltered (gdb_stdlog,
13271 " %s CUs, %s TUs\n",
13272 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13273 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13274 }
13275
13276 return dwp_file;
13277 }
13278
13279 /* Wrapper around open_and_init_dwp_file, only open it once. */
13280
13281 static struct dwp_file *
13282 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13283 {
13284 if (! dwarf2_per_objfile->dwp_checked)
13285 {
13286 dwarf2_per_objfile->dwp_file
13287 = open_and_init_dwp_file (dwarf2_per_objfile);
13288 dwarf2_per_objfile->dwp_checked = 1;
13289 }
13290 return dwarf2_per_objfile->dwp_file.get ();
13291 }
13292
13293 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13294 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13295 or in the DWP file for the objfile, referenced by THIS_UNIT.
13296 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13297 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13298
13299 This is called, for example, when wanting to read a variable with a
13300 complex location. Therefore we don't want to do file i/o for every call.
13301 Therefore we don't want to look for a DWO file on every call.
13302 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13303 then we check if we've already seen DWO_NAME, and only THEN do we check
13304 for a DWO file.
13305
13306 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13307 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13308
13309 static struct dwo_unit *
13310 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13311 const char *dwo_name, const char *comp_dir,
13312 ULONGEST signature, int is_debug_types)
13313 {
13314 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13315 struct objfile *objfile = dwarf2_per_objfile->objfile;
13316 const char *kind = is_debug_types ? "TU" : "CU";
13317 void **dwo_file_slot;
13318 struct dwo_file *dwo_file;
13319 struct dwp_file *dwp_file;
13320
13321 /* First see if there's a DWP file.
13322 If we have a DWP file but didn't find the DWO inside it, don't
13323 look for the original DWO file. It makes gdb behave differently
13324 depending on whether one is debugging in the build tree. */
13325
13326 dwp_file = get_dwp_file (dwarf2_per_objfile);
13327 if (dwp_file != NULL)
13328 {
13329 const struct dwp_hash_table *dwp_htab =
13330 is_debug_types ? dwp_file->tus : dwp_file->cus;
13331
13332 if (dwp_htab != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu =
13335 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13336 signature, is_debug_types);
13337
13338 if (dwo_cutu != NULL)
13339 {
13340 if (dwarf_read_debug)
13341 {
13342 fprintf_unfiltered (gdb_stdlog,
13343 "Virtual DWO %s %s found: @%s\n",
13344 kind, hex_string (signature),
13345 host_address_to_string (dwo_cutu));
13346 }
13347 return dwo_cutu;
13348 }
13349 }
13350 }
13351 else
13352 {
13353 /* No DWP file, look for the DWO file. */
13354
13355 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13356 dwo_name, comp_dir);
13357 if (*dwo_file_slot == NULL)
13358 {
13359 /* Read in the file and build a table of the CUs/TUs it contains. */
13360 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13361 }
13362 /* NOTE: This will be NULL if unable to open the file. */
13363 dwo_file = (struct dwo_file *) *dwo_file_slot;
13364
13365 if (dwo_file != NULL)
13366 {
13367 struct dwo_unit *dwo_cutu = NULL;
13368
13369 if (is_debug_types && dwo_file->tus)
13370 {
13371 struct dwo_unit find_dwo_cutu;
13372
13373 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13374 find_dwo_cutu.signature = signature;
13375 dwo_cutu
13376 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13377 }
13378 else if (!is_debug_types && dwo_file->cus)
13379 {
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13385 &find_dwo_cutu);
13386 }
13387
13388 if (dwo_cutu != NULL)
13389 {
13390 if (dwarf_read_debug)
13391 {
13392 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13393 kind, dwo_name, hex_string (signature),
13394 host_address_to_string (dwo_cutu));
13395 }
13396 return dwo_cutu;
13397 }
13398 }
13399 }
13400
13401 /* We didn't find it. This could mean a dwo_id mismatch, or
13402 someone deleted the DWO/DWP file, or the search path isn't set up
13403 correctly to find the file. */
13404
13405 if (dwarf_read_debug)
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13408 kind, dwo_name, hex_string (signature));
13409 }
13410
13411 /* This is a warning and not a complaint because it can be caused by
13412 pilot error (e.g., user accidentally deleting the DWO). */
13413 {
13414 /* Print the name of the DWP file if we looked there, helps the user
13415 better diagnose the problem. */
13416 std::string dwp_text;
13417
13418 if (dwp_file != NULL)
13419 dwp_text = string_printf (" [in DWP file %s]",
13420 lbasename (dwp_file->name));
13421
13422 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13423 " [in module %s]"),
13424 kind, dwo_name, hex_string (signature),
13425 dwp_text.c_str (),
13426 this_unit->is_debug_types ? "TU" : "CU",
13427 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13428 }
13429 return NULL;
13430 }
13431
13432 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13433 See lookup_dwo_cutu_unit for details. */
13434
13435 static struct dwo_unit *
13436 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13437 const char *dwo_name, const char *comp_dir,
13438 ULONGEST signature)
13439 {
13440 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13441 }
13442
13443 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446 static struct dwo_unit *
13447 lookup_dwo_type_unit (struct signatured_type *this_tu,
13448 const char *dwo_name, const char *comp_dir)
13449 {
13450 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13451 }
13452
13453 /* Traversal function for queue_and_load_all_dwo_tus. */
13454
13455 static int
13456 queue_and_load_dwo_tu (void **slot, void *info)
13457 {
13458 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13459 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13460 ULONGEST signature = dwo_unit->signature;
13461 struct signatured_type *sig_type =
13462 lookup_dwo_signatured_type (per_cu->cu, signature);
13463
13464 if (sig_type != NULL)
13465 {
13466 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13467
13468 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13469 a real dependency of PER_CU on SIG_TYPE. That is detected later
13470 while processing PER_CU. */
13471 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13472 load_full_type_unit (sig_cu);
13473 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13474 }
13475
13476 return 1;
13477 }
13478
13479 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13480 The DWO may have the only definition of the type, though it may not be
13481 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13483
13484 static void
13485 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13486 {
13487 struct dwo_unit *dwo_unit;
13488 struct dwo_file *dwo_file;
13489
13490 gdb_assert (!per_cu->is_debug_types);
13491 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13492 gdb_assert (per_cu->cu != NULL);
13493
13494 dwo_unit = per_cu->cu->dwo_unit;
13495 gdb_assert (dwo_unit != NULL);
13496
13497 dwo_file = dwo_unit->dwo_file;
13498 if (dwo_file->tus != NULL)
13499 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13500 }
13501
13502 /* Free all resources associated with DWO_FILE.
13503 Close the DWO file and munmap the sections. */
13504
13505 static void
13506 free_dwo_file (struct dwo_file *dwo_file)
13507 {
13508 /* Note: dbfd is NULL for virtual DWO files. */
13509 gdb_bfd_unref (dwo_file->dbfd);
13510
13511 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13512 }
13513
13514 /* Traversal function for free_dwo_files. */
13515
13516 static int
13517 free_dwo_file_from_slot (void **slot, void *info)
13518 {
13519 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13520
13521 free_dwo_file (dwo_file);
13522
13523 return 1;
13524 }
13525
13526 /* Free all resources associated with DWO_FILES. */
13527
13528 static void
13529 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13530 {
13531 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13532 }
13533 \f
13534 /* Read in various DIEs. */
13535
13536 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13537 Inherit only the children of the DW_AT_abstract_origin DIE not being
13538 already referenced by DW_AT_abstract_origin from the children of the
13539 current DIE. */
13540
13541 static void
13542 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13543 {
13544 struct die_info *child_die;
13545 sect_offset *offsetp;
13546 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13547 struct die_info *origin_die;
13548 /* Iterator of the ORIGIN_DIE children. */
13549 struct die_info *origin_child_die;
13550 struct attribute *attr;
13551 struct dwarf2_cu *origin_cu;
13552 struct pending **origin_previous_list_in_scope;
13553
13554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13555 if (!attr)
13556 return;
13557
13558 /* Note that following die references may follow to a die in a
13559 different cu. */
13560
13561 origin_cu = cu;
13562 origin_die = follow_die_ref (die, attr, &origin_cu);
13563
13564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13565 symbols in. */
13566 origin_previous_list_in_scope = origin_cu->list_in_scope;
13567 origin_cu->list_in_scope = cu->list_in_scope;
13568
13569 if (die->tag != origin_die->tag
13570 && !(die->tag == DW_TAG_inlined_subroutine
13571 && origin_die->tag == DW_TAG_subprogram))
13572 complaint (_("DIE %s and its abstract origin %s have different tags"),
13573 sect_offset_str (die->sect_off),
13574 sect_offset_str (origin_die->sect_off));
13575
13576 std::vector<sect_offset> offsets;
13577
13578 for (child_die = die->child;
13579 child_die && child_die->tag;
13580 child_die = sibling_die (child_die))
13581 {
13582 struct die_info *child_origin_die;
13583 struct dwarf2_cu *child_origin_cu;
13584
13585 /* We are trying to process concrete instance entries:
13586 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13587 it's not relevant to our analysis here. i.e. detecting DIEs that are
13588 present in the abstract instance but not referenced in the concrete
13589 one. */
13590 if (child_die->tag == DW_TAG_call_site
13591 || child_die->tag == DW_TAG_GNU_call_site)
13592 continue;
13593
13594 /* For each CHILD_DIE, find the corresponding child of
13595 ORIGIN_DIE. If there is more than one layer of
13596 DW_AT_abstract_origin, follow them all; there shouldn't be,
13597 but GCC versions at least through 4.4 generate this (GCC PR
13598 40573). */
13599 child_origin_die = child_die;
13600 child_origin_cu = cu;
13601 while (1)
13602 {
13603 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13604 child_origin_cu);
13605 if (attr == NULL)
13606 break;
13607 child_origin_die = follow_die_ref (child_origin_die, attr,
13608 &child_origin_cu);
13609 }
13610
13611 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13612 counterpart may exist. */
13613 if (child_origin_die != child_die)
13614 {
13615 if (child_die->tag != child_origin_die->tag
13616 && !(child_die->tag == DW_TAG_inlined_subroutine
13617 && child_origin_die->tag == DW_TAG_subprogram))
13618 complaint (_("Child DIE %s and its abstract origin %s have "
13619 "different tags"),
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
13622 if (child_origin_die->parent != origin_die)
13623 complaint (_("Child DIE %s and its abstract origin %s have "
13624 "different parents"),
13625 sect_offset_str (child_die->sect_off),
13626 sect_offset_str (child_origin_die->sect_off));
13627 else
13628 offsets.push_back (child_origin_die->sect_off);
13629 }
13630 }
13631 std::sort (offsets.begin (), offsets.end ());
13632 sect_offset *offsets_end = offsets.data () + offsets.size ();
13633 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13634 if (offsetp[-1] == *offsetp)
13635 complaint (_("Multiple children of DIE %s refer "
13636 "to DIE %s as their abstract origin"),
13637 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13638
13639 offsetp = offsets.data ();
13640 origin_child_die = origin_die->child;
13641 while (origin_child_die && origin_child_die->tag)
13642 {
13643 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13644 while (offsetp < offsets_end
13645 && *offsetp < origin_child_die->sect_off)
13646 offsetp++;
13647 if (offsetp >= offsets_end
13648 || *offsetp > origin_child_die->sect_off)
13649 {
13650 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13651 Check whether we're already processing ORIGIN_CHILD_DIE.
13652 This can happen with mutually referenced abstract_origins.
13653 PR 16581. */
13654 if (!origin_child_die->in_process)
13655 process_die (origin_child_die, origin_cu);
13656 }
13657 origin_child_die = sibling_die (origin_child_die);
13658 }
13659 origin_cu->list_in_scope = origin_previous_list_in_scope;
13660 }
13661
13662 static void
13663 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13664 {
13665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13667 struct context_stack *newobj;
13668 CORE_ADDR lowpc;
13669 CORE_ADDR highpc;
13670 struct die_info *child_die;
13671 struct attribute *attr, *call_line, *call_file;
13672 const char *name;
13673 CORE_ADDR baseaddr;
13674 struct block *block;
13675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13676 std::vector<struct symbol *> template_args;
13677 struct template_symbol *templ_func = NULL;
13678
13679 if (inlined_func)
13680 {
13681 /* If we do not have call site information, we can't show the
13682 caller of this inlined function. That's too confusing, so
13683 only use the scope for local variables. */
13684 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13685 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13686 if (call_line == NULL || call_file == NULL)
13687 {
13688 read_lexical_block_scope (die, cu);
13689 return;
13690 }
13691 }
13692
13693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13694
13695 name = dwarf2_name (die, cu);
13696
13697 /* Ignore functions with missing or empty names. These are actually
13698 illegal according to the DWARF standard. */
13699 if (name == NULL)
13700 {
13701 complaint (_("missing name for subprogram DIE at %s"),
13702 sect_offset_str (die->sect_off));
13703 return;
13704 }
13705
13706 /* Ignore functions with missing or invalid low and high pc attributes. */
13707 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13708 <= PC_BOUNDS_INVALID)
13709 {
13710 attr = dwarf2_attr (die, DW_AT_external, cu);
13711 if (!attr || !DW_UNSND (attr))
13712 complaint (_("cannot get low and high bounds "
13713 "for subprogram DIE at %s"),
13714 sect_offset_str (die->sect_off));
13715 return;
13716 }
13717
13718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13720
13721 /* If we have any template arguments, then we must allocate a
13722 different sort of symbol. */
13723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13724 {
13725 if (child_die->tag == DW_TAG_template_type_param
13726 || child_die->tag == DW_TAG_template_value_param)
13727 {
13728 templ_func = allocate_template_symbol (objfile);
13729 templ_func->subclass = SYMBOL_TEMPLATE;
13730 break;
13731 }
13732 }
13733
13734 newobj = cu->builder->push_context (0, lowpc);
13735 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13736 (struct symbol *) templ_func);
13737
13738 /* If there is a location expression for DW_AT_frame_base, record
13739 it. */
13740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13741 if (attr)
13742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13743
13744 /* If there is a location for the static link, record it. */
13745 newobj->static_link = NULL;
13746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13747 if (attr)
13748 {
13749 newobj->static_link
13750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13752 }
13753
13754 cu->list_in_scope = cu->builder->get_local_symbols ();
13755
13756 if (die->child != NULL)
13757 {
13758 child_die = die->child;
13759 while (child_die && child_die->tag)
13760 {
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13765
13766 if (arg != NULL)
13767 template_args.push_back (arg);
13768 }
13769 else
13770 process_die (child_die, cu);
13771 child_die = sibling_die (child_die);
13772 }
13773 }
13774
13775 inherit_abstract_dies (die, cu);
13776
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13782 {
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13785
13786 while (spec_die)
13787 {
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13790 {
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13794 }
13795
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13799 }
13800 }
13801
13802 struct context_stack cstk = cu->builder->pop_context ();
13803 /* Make a block for the local symbols within. */
13804 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13805 cstk.static_link, lowpc, highpc);
13806
13807 /* For C++, set the block's scope. */
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
13810 || cu->language == language_d
13811 || cu->language == language_rust)
13812 && cu->processing_has_namespace_info)
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
13815
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13818
13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13820
13821 /* Attach template arguments to function. */
13822 if (!template_args.empty ())
13823 {
13824 gdb_assert (templ_func != NULL);
13825
13826 templ_func->n_template_arguments = template_args.size ();
13827 templ_func->template_arguments
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
13830 memcpy (templ_func->template_arguments,
13831 template_args.data (),
13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13833
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13837 true. */
13838 for (symbol *sym : template_args)
13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
13840 }
13841
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
13846 *cu->builder->get_local_symbols () = cstk.locals;
13847 cu->builder->set_local_using_directives (cstk.local_using_directives);
13848
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
13851 if (cu->builder->outermost_context_p ())
13852 cu->list_in_scope = cu->builder->get_file_symbols ();
13853 }
13854
13855 /* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13857
13858 static void
13859 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
13865 CORE_ADDR baseaddr;
13866
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13868
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
13872 be nasty. Might be easier to properly extend generic blocks to
13873 describe ranges. */
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13875 {
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13884 return;
13885 case PC_BOUNDS_INVALID:
13886 return;
13887 }
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13890
13891 cu->builder->push_context (0, lowpc);
13892 if (die->child != NULL)
13893 {
13894 child_die = die->child;
13895 while (child_die && child_die->tag)
13896 {
13897 process_die (child_die, cu);
13898 child_die = sibling_die (child_die);
13899 }
13900 }
13901 inherit_abstract_dies (die, cu);
13902 struct context_stack cstk = cu->builder->pop_context ();
13903
13904 if (*cu->builder->get_local_symbols () != NULL
13905 || (*cu->builder->get_local_using_directives ()) != NULL)
13906 {
13907 struct block *block
13908 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13909 cstk.start_addr, highpc);
13910
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13915
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13920 to do. */
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13922 }
13923 *cu->builder->get_local_symbols () = cstk.locals;
13924 cu->builder->set_local_using_directives (cstk.local_using_directives);
13925 }
13926
13927 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13928
13929 static void
13930 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13931 {
13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13937 void **slot;
13938 int nparams;
13939 struct die_info *child_die;
13940
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13942
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13944 if (attr == NULL)
13945 {
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13949 }
13950 if (!attr)
13951 {
13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
13955 return;
13956 }
13957 pc = attr_value_as_address (attr) + baseaddr;
13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13959
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13966 if (*slot != NULL)
13967 {
13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13971 objfile_name (objfile));
13972 return;
13973 }
13974
13975 /* Count parameters at the caller. */
13976
13977 nparams = 0;
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13983 {
13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
13987 objfile_name (objfile));
13988 continue;
13989 }
13990
13991 nparams++;
13992 }
13993
13994 call_site
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
13999 *slot = call_site;
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14002
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14005 {
14006 struct die_info *func_die;
14007
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14013
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
14016 if (func_die
14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14021 {
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14030 }
14031 else
14032 {
14033 struct type *func_type = NULL;
14034
14035 if (func_die)
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14038 {
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14040
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14044 }
14045 else
14046 complaint (_("Cannot find function owning DW_TAG_call_site "
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
14049 }
14050 }
14051
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14057 if (attr == NULL)
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14061 }
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14066 {
14067 struct dwarf2_locexpr_baton *dlbaton;
14068
14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14073
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14075 }
14076 else if (attr_form_is_ref (attr))
14077 {
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14080
14081 target_die = follow_die_ref (die, attr, &target_cu);
14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14083 if (die_is_declaration (target_die, target_cu))
14084 {
14085 const char *target_physname;
14086
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
14088 target_physname = dw2_linkage_name (target_die, target_cu);
14089 if (target_physname == NULL)
14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14091 if (target_physname == NULL)
14092 complaint (_("DW_AT_call_target target DIE has invalid "
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
14095 else
14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14097 }
14098 else
14099 {
14100 CORE_ADDR lowpc;
14101
14102 /* DW_AT_entry_pc should be preferred. */
14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14104 <= PC_BOUNDS_INVALID)
14105 complaint (_("DW_AT_call_target target DIE has invalid "
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
14108 else
14109 {
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14112 }
14113 }
14114 }
14115 else
14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
14119
14120 call_site->per_cu = cu->per_cu;
14121
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14125 {
14126 struct call_site_parameter *parameter;
14127 struct attribute *loc, *origin;
14128
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14131 {
14132 /* Already printed the complaint above. */
14133 continue;
14134 }
14135
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14138
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14141 register is contained in DW_AT_call_value. */
14142
14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14146 {
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14150 }
14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14152 {
14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14154
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
14158 {
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
14165 objfile_name (objfile));
14166 continue;
14167 }
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
14170 }
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14172 {
14173 complaint (_("No DW_FORM_block* DW_AT_location for "
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14176 continue;
14177 }
14178 else
14179 {
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 &parameter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14188 else
14189 {
14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14191 "for DW_FORM_block* DW_AT_location is supported for "
14192 "DW_TAG_call_site child DIE %s "
14193 "[in module %s]"),
14194 sect_offset_str (child_die->sect_off),
14195 objfile_name (objfile));
14196 continue;
14197 }
14198 }
14199
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14201 if (attr == NULL)
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14203 if (!attr_form_is_block (attr))
14204 {
14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
14208 objfile_name (objfile));
14209 continue;
14210 }
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14213
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14218
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14222 if (attr)
14223 {
14224 if (!attr_form_is_block (attr))
14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
14228 objfile_name (objfile));
14229 else
14230 {
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14233 }
14234 }
14235 }
14236 }
14237
14238 /* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14241
14242 static struct type *
14243 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14246 if (attr == NULL)
14247 return NULL;
14248
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14252
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14256 return NULL;
14257
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14259 return NULL;
14260 return die_containing_type (type_die, type_cu);
14261 }
14262
14263 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14264
14265 static void
14266 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14267 {
14268 struct rust_vtable_symbol *storage = NULL;
14269
14270 if (cu->language == language_rust)
14271 {
14272 struct type *containing_type = rust_containing_type (die, cu);
14273
14274 if (containing_type != NULL)
14275 {
14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14277
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
14282 storage->subclass = SYMBOL_RUST_VTABLE;
14283 }
14284 }
14285
14286 struct symbol *res = new_symbol (die, NULL, cu, storage);
14287 struct attribute *abstract_origin
14288 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14289 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14290 if (res == NULL && loc && abstract_origin)
14291 {
14292 /* We have a variable without a name, but with a location and an abstract
14293 origin. This may be a concrete instance of an abstract variable
14294 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14295 later. */
14296 struct dwarf2_cu *origin_cu = cu;
14297 struct die_info *origin_die
14298 = follow_die_ref (die, abstract_origin, &origin_cu);
14299 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14300 dpo->abstract_to_concrete[origin_die].push_back (die);
14301 }
14302 }
14303
14304 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14305 reading .debug_rnglists.
14306 Callback's type should be:
14307 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14308 Return true if the attributes are present and valid, otherwise,
14309 return false. */
14310
14311 template <typename Callback>
14312 static bool
14313 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14314 Callback &&callback)
14315 {
14316 struct dwarf2_per_objfile *dwarf2_per_objfile
14317 = cu->per_cu->dwarf2_per_objfile;
14318 struct objfile *objfile = dwarf2_per_objfile->objfile;
14319 bfd *obfd = objfile->obfd;
14320 /* Base address selection entry. */
14321 CORE_ADDR base;
14322 int found_base;
14323 const gdb_byte *buffer;
14324 CORE_ADDR baseaddr;
14325 bool overflow = false;
14326
14327 found_base = cu->base_known;
14328 base = cu->base_address;
14329
14330 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14331 if (offset >= dwarf2_per_objfile->rnglists.size)
14332 {
14333 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14334 offset);
14335 return false;
14336 }
14337 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14338
14339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14340
14341 while (1)
14342 {
14343 /* Initialize it due to a false compiler warning. */
14344 CORE_ADDR range_beginning = 0, range_end = 0;
14345 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14346 + dwarf2_per_objfile->rnglists.size);
14347 unsigned int bytes_read;
14348
14349 if (buffer == buf_end)
14350 {
14351 overflow = true;
14352 break;
14353 }
14354 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14355 switch (rlet)
14356 {
14357 case DW_RLE_end_of_list:
14358 break;
14359 case DW_RLE_base_address:
14360 if (buffer + cu->header.addr_size > buf_end)
14361 {
14362 overflow = true;
14363 break;
14364 }
14365 base = read_address (obfd, buffer, cu, &bytes_read);
14366 found_base = 1;
14367 buffer += bytes_read;
14368 break;
14369 case DW_RLE_start_length:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14376 buffer += bytes_read;
14377 range_end = (range_beginning
14378 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14379 buffer += bytes_read;
14380 if (buffer > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 break;
14386 case DW_RLE_offset_pair:
14387 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14395 buffer += bytes_read;
14396 if (buffer > buf_end)
14397 {
14398 overflow = true;
14399 break;
14400 }
14401 break;
14402 case DW_RLE_start_end:
14403 if (buffer + 2 * cu->header.addr_size > buf_end)
14404 {
14405 overflow = true;
14406 break;
14407 }
14408 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14409 buffer += bytes_read;
14410 range_end = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14412 break;
14413 default:
14414 complaint (_("Invalid .debug_rnglists data (no base address)"));
14415 return false;
14416 }
14417 if (rlet == DW_RLE_end_of_list || overflow)
14418 break;
14419 if (rlet == DW_RLE_base_address)
14420 continue;
14421
14422 if (!found_base)
14423 {
14424 /* We have no valid base address for the ranges
14425 data. */
14426 complaint (_("Invalid .debug_rnglists data (no base address)"));
14427 return false;
14428 }
14429
14430 if (range_beginning > range_end)
14431 {
14432 /* Inverted range entries are invalid. */
14433 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14434 return false;
14435 }
14436
14437 /* Empty range entries have no effect. */
14438 if (range_beginning == range_end)
14439 continue;
14440
14441 range_beginning += base;
14442 range_end += base;
14443
14444 /* A not-uncommon case of bad debug info.
14445 Don't pollute the addrmap with bad data. */
14446 if (range_beginning + baseaddr == 0
14447 && !dwarf2_per_objfile->has_section_at_zero)
14448 {
14449 complaint (_(".debug_rnglists entry has start address of zero"
14450 " [in module %s]"), objfile_name (objfile));
14451 continue;
14452 }
14453
14454 callback (range_beginning, range_end);
14455 }
14456
14457 if (overflow)
14458 {
14459 complaint (_("Offset %d is not terminated "
14460 "for DW_AT_ranges attribute"),
14461 offset);
14462 return false;
14463 }
14464
14465 return true;
14466 }
14467
14468 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14469 Callback's type should be:
14470 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14471 Return 1 if the attributes are present and valid, otherwise, return 0. */
14472
14473 template <typename Callback>
14474 static int
14475 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14476 Callback &&callback)
14477 {
14478 struct dwarf2_per_objfile *dwarf2_per_objfile
14479 = cu->per_cu->dwarf2_per_objfile;
14480 struct objfile *objfile = dwarf2_per_objfile->objfile;
14481 struct comp_unit_head *cu_header = &cu->header;
14482 bfd *obfd = objfile->obfd;
14483 unsigned int addr_size = cu_header->addr_size;
14484 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14485 /* Base address selection entry. */
14486 CORE_ADDR base;
14487 int found_base;
14488 unsigned int dummy;
14489 const gdb_byte *buffer;
14490 CORE_ADDR baseaddr;
14491
14492 if (cu_header->version >= 5)
14493 return dwarf2_rnglists_process (offset, cu, callback);
14494
14495 found_base = cu->base_known;
14496 base = cu->base_address;
14497
14498 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14499 if (offset >= dwarf2_per_objfile->ranges.size)
14500 {
14501 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14502 offset);
14503 return 0;
14504 }
14505 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14506
14507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14508
14509 while (1)
14510 {
14511 CORE_ADDR range_beginning, range_end;
14512
14513 range_beginning = read_address (obfd, buffer, cu, &dummy);
14514 buffer += addr_size;
14515 range_end = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 offset += 2 * addr_size;
14518
14519 /* An end of list marker is a pair of zero addresses. */
14520 if (range_beginning == 0 && range_end == 0)
14521 /* Found the end of list entry. */
14522 break;
14523
14524 /* Each base address selection entry is a pair of 2 values.
14525 The first is the largest possible address, the second is
14526 the base address. Check for a base address here. */
14527 if ((range_beginning & mask) == mask)
14528 {
14529 /* If we found the largest possible address, then we already
14530 have the base address in range_end. */
14531 base = range_end;
14532 found_base = 1;
14533 continue;
14534 }
14535
14536 if (!found_base)
14537 {
14538 /* We have no valid base address for the ranges
14539 data. */
14540 complaint (_("Invalid .debug_ranges data (no base address)"));
14541 return 0;
14542 }
14543
14544 if (range_beginning > range_end)
14545 {
14546 /* Inverted range entries are invalid. */
14547 complaint (_("Invalid .debug_ranges data (inverted range)"));
14548 return 0;
14549 }
14550
14551 /* Empty range entries have no effect. */
14552 if (range_beginning == range_end)
14553 continue;
14554
14555 range_beginning += base;
14556 range_end += base;
14557
14558 /* A not-uncommon case of bad debug info.
14559 Don't pollute the addrmap with bad data. */
14560 if (range_beginning + baseaddr == 0
14561 && !dwarf2_per_objfile->has_section_at_zero)
14562 {
14563 complaint (_(".debug_ranges entry has start address of zero"
14564 " [in module %s]"), objfile_name (objfile));
14565 continue;
14566 }
14567
14568 callback (range_beginning, range_end);
14569 }
14570
14571 return 1;
14572 }
14573
14574 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14575 Return 1 if the attributes are present and valid, otherwise, return 0.
14576 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14577
14578 static int
14579 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14580 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14581 struct partial_symtab *ranges_pst)
14582 {
14583 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14585 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14586 SECT_OFF_TEXT (objfile));
14587 int low_set = 0;
14588 CORE_ADDR low = 0;
14589 CORE_ADDR high = 0;
14590 int retval;
14591
14592 retval = dwarf2_ranges_process (offset, cu,
14593 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14594 {
14595 if (ranges_pst != NULL)
14596 {
14597 CORE_ADDR lowpc;
14598 CORE_ADDR highpc;
14599
14600 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14601 range_beginning + baseaddr)
14602 - baseaddr);
14603 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14604 range_end + baseaddr)
14605 - baseaddr);
14606 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14607 ranges_pst);
14608 }
14609
14610 /* FIXME: This is recording everything as a low-high
14611 segment of consecutive addresses. We should have a
14612 data structure for discontiguous block ranges
14613 instead. */
14614 if (! low_set)
14615 {
14616 low = range_beginning;
14617 high = range_end;
14618 low_set = 1;
14619 }
14620 else
14621 {
14622 if (range_beginning < low)
14623 low = range_beginning;
14624 if (range_end > high)
14625 high = range_end;
14626 }
14627 });
14628 if (!retval)
14629 return 0;
14630
14631 if (! low_set)
14632 /* If the first entry is an end-of-list marker, the range
14633 describes an empty scope, i.e. no instructions. */
14634 return 0;
14635
14636 if (low_return)
14637 *low_return = low;
14638 if (high_return)
14639 *high_return = high;
14640 return 1;
14641 }
14642
14643 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14644 definition for the return value. *LOWPC and *HIGHPC are set iff
14645 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14646
14647 static enum pc_bounds_kind
14648 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14649 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14650 struct partial_symtab *pst)
14651 {
14652 struct dwarf2_per_objfile *dwarf2_per_objfile
14653 = cu->per_cu->dwarf2_per_objfile;
14654 struct attribute *attr;
14655 struct attribute *attr_high;
14656 CORE_ADDR low = 0;
14657 CORE_ADDR high = 0;
14658 enum pc_bounds_kind ret;
14659
14660 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14661 if (attr_high)
14662 {
14663 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14664 if (attr)
14665 {
14666 low = attr_value_as_address (attr);
14667 high = attr_value_as_address (attr_high);
14668 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14669 high += low;
14670 }
14671 else
14672 /* Found high w/o low attribute. */
14673 return PC_BOUNDS_INVALID;
14674
14675 /* Found consecutive range of addresses. */
14676 ret = PC_BOUNDS_HIGH_LOW;
14677 }
14678 else
14679 {
14680 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14681 if (attr != NULL)
14682 {
14683 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14684 We take advantage of the fact that DW_AT_ranges does not appear
14685 in DW_TAG_compile_unit of DWO files. */
14686 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14687 unsigned int ranges_offset = (DW_UNSND (attr)
14688 + (need_ranges_base
14689 ? cu->ranges_base
14690 : 0));
14691
14692 /* Value of the DW_AT_ranges attribute is the offset in the
14693 .debug_ranges section. */
14694 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14695 return PC_BOUNDS_INVALID;
14696 /* Found discontinuous range of addresses. */
14697 ret = PC_BOUNDS_RANGES;
14698 }
14699 else
14700 return PC_BOUNDS_NOT_PRESENT;
14701 }
14702
14703 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14704 if (high <= low)
14705 return PC_BOUNDS_INVALID;
14706
14707 /* When using the GNU linker, .gnu.linkonce. sections are used to
14708 eliminate duplicate copies of functions and vtables and such.
14709 The linker will arbitrarily choose one and discard the others.
14710 The AT_*_pc values for such functions refer to local labels in
14711 these sections. If the section from that file was discarded, the
14712 labels are not in the output, so the relocs get a value of 0.
14713 If this is a discarded function, mark the pc bounds as invalid,
14714 so that GDB will ignore it. */
14715 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14716 return PC_BOUNDS_INVALID;
14717
14718 *lowpc = low;
14719 if (highpc)
14720 *highpc = high;
14721 return ret;
14722 }
14723
14724 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14725 its low and high PC addresses. Do nothing if these addresses could not
14726 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14727 and HIGHPC to the high address if greater than HIGHPC. */
14728
14729 static void
14730 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14732 struct dwarf2_cu *cu)
14733 {
14734 CORE_ADDR low, high;
14735 struct die_info *child = die->child;
14736
14737 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14738 {
14739 *lowpc = std::min (*lowpc, low);
14740 *highpc = std::max (*highpc, high);
14741 }
14742
14743 /* If the language does not allow nested subprograms (either inside
14744 subprograms or lexical blocks), we're done. */
14745 if (cu->language != language_ada)
14746 return;
14747
14748 /* Check all the children of the given DIE. If it contains nested
14749 subprograms, then check their pc bounds. Likewise, we need to
14750 check lexical blocks as well, as they may also contain subprogram
14751 definitions. */
14752 while (child && child->tag)
14753 {
14754 if (child->tag == DW_TAG_subprogram
14755 || child->tag == DW_TAG_lexical_block)
14756 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14757 child = sibling_die (child);
14758 }
14759 }
14760
14761 /* Get the low and high pc's represented by the scope DIE, and store
14762 them in *LOWPC and *HIGHPC. If the correct values can't be
14763 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14764
14765 static void
14766 get_scope_pc_bounds (struct die_info *die,
14767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14768 struct dwarf2_cu *cu)
14769 {
14770 CORE_ADDR best_low = (CORE_ADDR) -1;
14771 CORE_ADDR best_high = (CORE_ADDR) 0;
14772 CORE_ADDR current_low, current_high;
14773
14774 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14775 >= PC_BOUNDS_RANGES)
14776 {
14777 best_low = current_low;
14778 best_high = current_high;
14779 }
14780 else
14781 {
14782 struct die_info *child = die->child;
14783
14784 while (child && child->tag)
14785 {
14786 switch (child->tag) {
14787 case DW_TAG_subprogram:
14788 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14789 break;
14790 case DW_TAG_namespace:
14791 case DW_TAG_module:
14792 /* FIXME: carlton/2004-01-16: Should we do this for
14793 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14794 that current GCC's always emit the DIEs corresponding
14795 to definitions of methods of classes as children of a
14796 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14797 the DIEs giving the declarations, which could be
14798 anywhere). But I don't see any reason why the
14799 standards says that they have to be there. */
14800 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14801
14802 if (current_low != ((CORE_ADDR) -1))
14803 {
14804 best_low = std::min (best_low, current_low);
14805 best_high = std::max (best_high, current_high);
14806 }
14807 break;
14808 default:
14809 /* Ignore. */
14810 break;
14811 }
14812
14813 child = sibling_die (child);
14814 }
14815 }
14816
14817 *lowpc = best_low;
14818 *highpc = best_high;
14819 }
14820
14821 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14822 in DIE. */
14823
14824 static void
14825 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14826 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14827 {
14828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14830 struct attribute *attr;
14831 struct attribute *attr_high;
14832
14833 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14834 if (attr_high)
14835 {
14836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14837 if (attr)
14838 {
14839 CORE_ADDR low = attr_value_as_address (attr);
14840 CORE_ADDR high = attr_value_as_address (attr_high);
14841
14842 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14843 high += low;
14844
14845 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14846 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14847 cu->builder->record_block_range (block, low, high - 1);
14848 }
14849 }
14850
14851 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14852 if (attr)
14853 {
14854 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14855 We take advantage of the fact that DW_AT_ranges does not appear
14856 in DW_TAG_compile_unit of DWO files. */
14857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14858
14859 /* The value of the DW_AT_ranges attribute is the offset of the
14860 address range list in the .debug_ranges section. */
14861 unsigned long offset = (DW_UNSND (attr)
14862 + (need_ranges_base ? cu->ranges_base : 0));
14863
14864 std::vector<blockrange> blockvec;
14865 dwarf2_ranges_process (offset, cu,
14866 [&] (CORE_ADDR start, CORE_ADDR end)
14867 {
14868 start += baseaddr;
14869 end += baseaddr;
14870 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14871 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14872 cu->builder->record_block_range (block, start, end - 1);
14873 blockvec.emplace_back (start, end);
14874 });
14875
14876 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14877 }
14878 }
14879
14880 /* Check whether the producer field indicates either of GCC < 4.6, or the
14881 Intel C/C++ compiler, and cache the result in CU. */
14882
14883 static void
14884 check_producer (struct dwarf2_cu *cu)
14885 {
14886 int major, minor;
14887
14888 if (cu->producer == NULL)
14889 {
14890 /* For unknown compilers expect their behavior is DWARF version
14891 compliant.
14892
14893 GCC started to support .debug_types sections by -gdwarf-4 since
14894 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14895 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14896 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14897 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14898 }
14899 else if (producer_is_gcc (cu->producer, &major, &minor))
14900 {
14901 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14902 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14903 }
14904 else if (producer_is_icc (cu->producer, &major, &minor))
14905 cu->producer_is_icc_lt_14 = major < 14;
14906 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14907 cu->producer_is_codewarrior = true;
14908 else
14909 {
14910 /* For other non-GCC compilers, expect their behavior is DWARF version
14911 compliant. */
14912 }
14913
14914 cu->checked_producer = 1;
14915 }
14916
14917 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14918 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14919 during 4.6.0 experimental. */
14920
14921 static int
14922 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14923 {
14924 if (!cu->checked_producer)
14925 check_producer (cu);
14926
14927 return cu->producer_is_gxx_lt_4_6;
14928 }
14929
14930
14931 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14932 with incorrect is_stmt attributes. */
14933
14934 static bool
14935 producer_is_codewarrior (struct dwarf2_cu *cu)
14936 {
14937 if (!cu->checked_producer)
14938 check_producer (cu);
14939
14940 return cu->producer_is_codewarrior;
14941 }
14942
14943 /* Return the default accessibility type if it is not overriden by
14944 DW_AT_accessibility. */
14945
14946 static enum dwarf_access_attribute
14947 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14948 {
14949 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14950 {
14951 /* The default DWARF 2 accessibility for members is public, the default
14952 accessibility for inheritance is private. */
14953
14954 if (die->tag != DW_TAG_inheritance)
14955 return DW_ACCESS_public;
14956 else
14957 return DW_ACCESS_private;
14958 }
14959 else
14960 {
14961 /* DWARF 3+ defines the default accessibility a different way. The same
14962 rules apply now for DW_TAG_inheritance as for the members and it only
14963 depends on the container kind. */
14964
14965 if (die->parent->tag == DW_TAG_class_type)
14966 return DW_ACCESS_private;
14967 else
14968 return DW_ACCESS_public;
14969 }
14970 }
14971
14972 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14973 offset. If the attribute was not found return 0, otherwise return
14974 1. If it was found but could not properly be handled, set *OFFSET
14975 to 0. */
14976
14977 static int
14978 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14979 LONGEST *offset)
14980 {
14981 struct attribute *attr;
14982
14983 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14984 if (attr != NULL)
14985 {
14986 *offset = 0;
14987
14988 /* Note that we do not check for a section offset first here.
14989 This is because DW_AT_data_member_location is new in DWARF 4,
14990 so if we see it, we can assume that a constant form is really
14991 a constant and not a section offset. */
14992 if (attr_form_is_constant (attr))
14993 *offset = dwarf2_get_attr_constant_value (attr, 0);
14994 else if (attr_form_is_section_offset (attr))
14995 dwarf2_complex_location_expr_complaint ();
14996 else if (attr_form_is_block (attr))
14997 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14998 else
14999 dwarf2_complex_location_expr_complaint ();
15000
15001 return 1;
15002 }
15003
15004 return 0;
15005 }
15006
15007 /* Add an aggregate field to the field list. */
15008
15009 static void
15010 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15011 struct dwarf2_cu *cu)
15012 {
15013 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15014 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15015 struct nextfield *new_field;
15016 struct attribute *attr;
15017 struct field *fp;
15018 const char *fieldname = "";
15019
15020 if (die->tag == DW_TAG_inheritance)
15021 {
15022 fip->baseclasses.emplace_back ();
15023 new_field = &fip->baseclasses.back ();
15024 }
15025 else
15026 {
15027 fip->fields.emplace_back ();
15028 new_field = &fip->fields.back ();
15029 }
15030
15031 fip->nfields++;
15032
15033 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15034 if (attr)
15035 new_field->accessibility = DW_UNSND (attr);
15036 else
15037 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15038 if (new_field->accessibility != DW_ACCESS_public)
15039 fip->non_public_fields = 1;
15040
15041 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15042 if (attr)
15043 new_field->virtuality = DW_UNSND (attr);
15044 else
15045 new_field->virtuality = DW_VIRTUALITY_none;
15046
15047 fp = &new_field->field;
15048
15049 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15050 {
15051 LONGEST offset;
15052
15053 /* Data member other than a C++ static data member. */
15054
15055 /* Get type of field. */
15056 fp->type = die_type (die, cu);
15057
15058 SET_FIELD_BITPOS (*fp, 0);
15059
15060 /* Get bit size of field (zero if none). */
15061 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15062 if (attr)
15063 {
15064 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15065 }
15066 else
15067 {
15068 FIELD_BITSIZE (*fp) = 0;
15069 }
15070
15071 /* Get bit offset of field. */
15072 if (handle_data_member_location (die, cu, &offset))
15073 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15074 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15075 if (attr)
15076 {
15077 if (gdbarch_bits_big_endian (gdbarch))
15078 {
15079 /* For big endian bits, the DW_AT_bit_offset gives the
15080 additional bit offset from the MSB of the containing
15081 anonymous object to the MSB of the field. We don't
15082 have to do anything special since we don't need to
15083 know the size of the anonymous object. */
15084 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15085 }
15086 else
15087 {
15088 /* For little endian bits, compute the bit offset to the
15089 MSB of the anonymous object, subtract off the number of
15090 bits from the MSB of the field to the MSB of the
15091 object, and then subtract off the number of bits of
15092 the field itself. The result is the bit offset of
15093 the LSB of the field. */
15094 int anonymous_size;
15095 int bit_offset = DW_UNSND (attr);
15096
15097 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15098 if (attr)
15099 {
15100 /* The size of the anonymous object containing
15101 the bit field is explicit, so use the
15102 indicated size (in bytes). */
15103 anonymous_size = DW_UNSND (attr);
15104 }
15105 else
15106 {
15107 /* The size of the anonymous object containing
15108 the bit field must be inferred from the type
15109 attribute of the data member containing the
15110 bit field. */
15111 anonymous_size = TYPE_LENGTH (fp->type);
15112 }
15113 SET_FIELD_BITPOS (*fp,
15114 (FIELD_BITPOS (*fp)
15115 + anonymous_size * bits_per_byte
15116 - bit_offset - FIELD_BITSIZE (*fp)));
15117 }
15118 }
15119 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15120 if (attr != NULL)
15121 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15122 + dwarf2_get_attr_constant_value (attr, 0)));
15123
15124 /* Get name of field. */
15125 fieldname = dwarf2_name (die, cu);
15126 if (fieldname == NULL)
15127 fieldname = "";
15128
15129 /* The name is already allocated along with this objfile, so we don't
15130 need to duplicate it for the type. */
15131 fp->name = fieldname;
15132
15133 /* Change accessibility for artificial fields (e.g. virtual table
15134 pointer or virtual base class pointer) to private. */
15135 if (dwarf2_attr (die, DW_AT_artificial, cu))
15136 {
15137 FIELD_ARTIFICIAL (*fp) = 1;
15138 new_field->accessibility = DW_ACCESS_private;
15139 fip->non_public_fields = 1;
15140 }
15141 }
15142 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15143 {
15144 /* C++ static member. */
15145
15146 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15147 is a declaration, but all versions of G++ as of this writing
15148 (so through at least 3.2.1) incorrectly generate
15149 DW_TAG_variable tags. */
15150
15151 const char *physname;
15152
15153 /* Get name of field. */
15154 fieldname = dwarf2_name (die, cu);
15155 if (fieldname == NULL)
15156 return;
15157
15158 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15159 if (attr
15160 /* Only create a symbol if this is an external value.
15161 new_symbol checks this and puts the value in the global symbol
15162 table, which we want. If it is not external, new_symbol
15163 will try to put the value in cu->list_in_scope which is wrong. */
15164 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15165 {
15166 /* A static const member, not much different than an enum as far as
15167 we're concerned, except that we can support more types. */
15168 new_symbol (die, NULL, cu);
15169 }
15170
15171 /* Get physical name. */
15172 physname = dwarf2_physname (fieldname, die, cu);
15173
15174 /* The name is already allocated along with this objfile, so we don't
15175 need to duplicate it for the type. */
15176 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15177 FIELD_TYPE (*fp) = die_type (die, cu);
15178 FIELD_NAME (*fp) = fieldname;
15179 }
15180 else if (die->tag == DW_TAG_inheritance)
15181 {
15182 LONGEST offset;
15183
15184 /* C++ base class field. */
15185 if (handle_data_member_location (die, cu, &offset))
15186 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15187 FIELD_BITSIZE (*fp) = 0;
15188 FIELD_TYPE (*fp) = die_type (die, cu);
15189 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15190 }
15191 else if (die->tag == DW_TAG_variant_part)
15192 {
15193 /* process_structure_scope will treat this DIE as a union. */
15194 process_structure_scope (die, cu);
15195
15196 /* The variant part is relative to the start of the enclosing
15197 structure. */
15198 SET_FIELD_BITPOS (*fp, 0);
15199 fp->type = get_die_type (die, cu);
15200 fp->artificial = 1;
15201 fp->name = "<<variant>>";
15202
15203 /* Normally a DW_TAG_variant_part won't have a size, but our
15204 representation requires one, so set it to the maximum of the
15205 child sizes. */
15206 if (TYPE_LENGTH (fp->type) == 0)
15207 {
15208 unsigned max = 0;
15209 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15210 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15211 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15212 TYPE_LENGTH (fp->type) = max;
15213 }
15214 }
15215 else
15216 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15217 }
15218
15219 /* Can the type given by DIE define another type? */
15220
15221 static bool
15222 type_can_define_types (const struct die_info *die)
15223 {
15224 switch (die->tag)
15225 {
15226 case DW_TAG_typedef:
15227 case DW_TAG_class_type:
15228 case DW_TAG_structure_type:
15229 case DW_TAG_union_type:
15230 case DW_TAG_enumeration_type:
15231 return true;
15232
15233 default:
15234 return false;
15235 }
15236 }
15237
15238 /* Add a type definition defined in the scope of the FIP's class. */
15239
15240 static void
15241 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15242 struct dwarf2_cu *cu)
15243 {
15244 struct decl_field fp;
15245 memset (&fp, 0, sizeof (fp));
15246
15247 gdb_assert (type_can_define_types (die));
15248
15249 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15250 fp.name = dwarf2_name (die, cu);
15251 fp.type = read_type_die (die, cu);
15252
15253 /* Save accessibility. */
15254 enum dwarf_access_attribute accessibility;
15255 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15256 if (attr != NULL)
15257 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15258 else
15259 accessibility = dwarf2_default_access_attribute (die, cu);
15260 switch (accessibility)
15261 {
15262 case DW_ACCESS_public:
15263 /* The assumed value if neither private nor protected. */
15264 break;
15265 case DW_ACCESS_private:
15266 fp.is_private = 1;
15267 break;
15268 case DW_ACCESS_protected:
15269 fp.is_protected = 1;
15270 break;
15271 default:
15272 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15273 }
15274
15275 if (die->tag == DW_TAG_typedef)
15276 fip->typedef_field_list.push_back (fp);
15277 else
15278 fip->nested_types_list.push_back (fp);
15279 }
15280
15281 /* Create the vector of fields, and attach it to the type. */
15282
15283 static void
15284 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15285 struct dwarf2_cu *cu)
15286 {
15287 int nfields = fip->nfields;
15288
15289 /* Record the field count, allocate space for the array of fields,
15290 and create blank accessibility bitfields if necessary. */
15291 TYPE_NFIELDS (type) = nfields;
15292 TYPE_FIELDS (type) = (struct field *)
15293 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15294
15295 if (fip->non_public_fields && cu->language != language_ada)
15296 {
15297 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15298
15299 TYPE_FIELD_PRIVATE_BITS (type) =
15300 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15301 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15302
15303 TYPE_FIELD_PROTECTED_BITS (type) =
15304 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15305 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15306
15307 TYPE_FIELD_IGNORE_BITS (type) =
15308 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15309 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15310 }
15311
15312 /* If the type has baseclasses, allocate and clear a bit vector for
15313 TYPE_FIELD_VIRTUAL_BITS. */
15314 if (!fip->baseclasses.empty () && cu->language != language_ada)
15315 {
15316 int num_bytes = B_BYTES (fip->baseclasses.size ());
15317 unsigned char *pointer;
15318
15319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15320 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15321 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15322 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15323 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15324 }
15325
15326 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15327 {
15328 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15329
15330 for (int index = 0; index < nfields; ++index)
15331 {
15332 struct nextfield &field = fip->fields[index];
15333
15334 if (field.variant.is_discriminant)
15335 di->discriminant_index = index;
15336 else if (field.variant.default_branch)
15337 di->default_index = index;
15338 else
15339 di->discriminants[index] = field.variant.discriminant_value;
15340 }
15341 }
15342
15343 /* Copy the saved-up fields into the field vector. */
15344 for (int i = 0; i < nfields; ++i)
15345 {
15346 struct nextfield &field
15347 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15348 : fip->fields[i - fip->baseclasses.size ()]);
15349
15350 TYPE_FIELD (type, i) = field.field;
15351 switch (field.accessibility)
15352 {
15353 case DW_ACCESS_private:
15354 if (cu->language != language_ada)
15355 SET_TYPE_FIELD_PRIVATE (type, i);
15356 break;
15357
15358 case DW_ACCESS_protected:
15359 if (cu->language != language_ada)
15360 SET_TYPE_FIELD_PROTECTED (type, i);
15361 break;
15362
15363 case DW_ACCESS_public:
15364 break;
15365
15366 default:
15367 /* Unknown accessibility. Complain and treat it as public. */
15368 {
15369 complaint (_("unsupported accessibility %d"),
15370 field.accessibility);
15371 }
15372 break;
15373 }
15374 if (i < fip->baseclasses.size ())
15375 {
15376 switch (field.virtuality)
15377 {
15378 case DW_VIRTUALITY_virtual:
15379 case DW_VIRTUALITY_pure_virtual:
15380 if (cu->language == language_ada)
15381 error (_("unexpected virtuality in component of Ada type"));
15382 SET_TYPE_FIELD_VIRTUAL (type, i);
15383 break;
15384 }
15385 }
15386 }
15387 }
15388
15389 /* Return true if this member function is a constructor, false
15390 otherwise. */
15391
15392 static int
15393 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15394 {
15395 const char *fieldname;
15396 const char *type_name;
15397 int len;
15398
15399 if (die->parent == NULL)
15400 return 0;
15401
15402 if (die->parent->tag != DW_TAG_structure_type
15403 && die->parent->tag != DW_TAG_union_type
15404 && die->parent->tag != DW_TAG_class_type)
15405 return 0;
15406
15407 fieldname = dwarf2_name (die, cu);
15408 type_name = dwarf2_name (die->parent, cu);
15409 if (fieldname == NULL || type_name == NULL)
15410 return 0;
15411
15412 len = strlen (fieldname);
15413 return (strncmp (fieldname, type_name, len) == 0
15414 && (type_name[len] == '\0' || type_name[len] == '<'));
15415 }
15416
15417 /* Add a member function to the proper fieldlist. */
15418
15419 static void
15420 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15421 struct type *type, struct dwarf2_cu *cu)
15422 {
15423 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15424 struct attribute *attr;
15425 int i;
15426 struct fnfieldlist *flp = nullptr;
15427 struct fn_field *fnp;
15428 const char *fieldname;
15429 struct type *this_type;
15430 enum dwarf_access_attribute accessibility;
15431
15432 if (cu->language == language_ada)
15433 error (_("unexpected member function in Ada type"));
15434
15435 /* Get name of member function. */
15436 fieldname = dwarf2_name (die, cu);
15437 if (fieldname == NULL)
15438 return;
15439
15440 /* Look up member function name in fieldlist. */
15441 for (i = 0; i < fip->fnfieldlists.size (); i++)
15442 {
15443 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15444 {
15445 flp = &fip->fnfieldlists[i];
15446 break;
15447 }
15448 }
15449
15450 /* Create a new fnfieldlist if necessary. */
15451 if (flp == nullptr)
15452 {
15453 fip->fnfieldlists.emplace_back ();
15454 flp = &fip->fnfieldlists.back ();
15455 flp->name = fieldname;
15456 i = fip->fnfieldlists.size () - 1;
15457 }
15458
15459 /* Create a new member function field and add it to the vector of
15460 fnfieldlists. */
15461 flp->fnfields.emplace_back ();
15462 fnp = &flp->fnfields.back ();
15463
15464 /* Delay processing of the physname until later. */
15465 if (cu->language == language_cplus)
15466 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15467 die, cu);
15468 else
15469 {
15470 const char *physname = dwarf2_physname (fieldname, die, cu);
15471 fnp->physname = physname ? physname : "";
15472 }
15473
15474 fnp->type = alloc_type (objfile);
15475 this_type = read_type_die (die, cu);
15476 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15477 {
15478 int nparams = TYPE_NFIELDS (this_type);
15479
15480 /* TYPE is the domain of this method, and THIS_TYPE is the type
15481 of the method itself (TYPE_CODE_METHOD). */
15482 smash_to_method_type (fnp->type, type,
15483 TYPE_TARGET_TYPE (this_type),
15484 TYPE_FIELDS (this_type),
15485 TYPE_NFIELDS (this_type),
15486 TYPE_VARARGS (this_type));
15487
15488 /* Handle static member functions.
15489 Dwarf2 has no clean way to discern C++ static and non-static
15490 member functions. G++ helps GDB by marking the first
15491 parameter for non-static member functions (which is the this
15492 pointer) as artificial. We obtain this information from
15493 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15494 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15495 fnp->voffset = VOFFSET_STATIC;
15496 }
15497 else
15498 complaint (_("member function type missing for '%s'"),
15499 dwarf2_full_name (fieldname, die, cu));
15500
15501 /* Get fcontext from DW_AT_containing_type if present. */
15502 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15503 fnp->fcontext = die_containing_type (die, cu);
15504
15505 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15506 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15507
15508 /* Get accessibility. */
15509 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15510 if (attr)
15511 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15512 else
15513 accessibility = dwarf2_default_access_attribute (die, cu);
15514 switch (accessibility)
15515 {
15516 case DW_ACCESS_private:
15517 fnp->is_private = 1;
15518 break;
15519 case DW_ACCESS_protected:
15520 fnp->is_protected = 1;
15521 break;
15522 }
15523
15524 /* Check for artificial methods. */
15525 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15526 if (attr && DW_UNSND (attr) != 0)
15527 fnp->is_artificial = 1;
15528
15529 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15530
15531 /* Get index in virtual function table if it is a virtual member
15532 function. For older versions of GCC, this is an offset in the
15533 appropriate virtual table, as specified by DW_AT_containing_type.
15534 For everyone else, it is an expression to be evaluated relative
15535 to the object address. */
15536
15537 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15538 if (attr)
15539 {
15540 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15541 {
15542 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15543 {
15544 /* Old-style GCC. */
15545 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15546 }
15547 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15548 || (DW_BLOCK (attr)->size > 1
15549 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15550 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15551 {
15552 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15553 if ((fnp->voffset % cu->header.addr_size) != 0)
15554 dwarf2_complex_location_expr_complaint ();
15555 else
15556 fnp->voffset /= cu->header.addr_size;
15557 fnp->voffset += 2;
15558 }
15559 else
15560 dwarf2_complex_location_expr_complaint ();
15561
15562 if (!fnp->fcontext)
15563 {
15564 /* If there is no `this' field and no DW_AT_containing_type,
15565 we cannot actually find a base class context for the
15566 vtable! */
15567 if (TYPE_NFIELDS (this_type) == 0
15568 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15569 {
15570 complaint (_("cannot determine context for virtual member "
15571 "function \"%s\" (offset %s)"),
15572 fieldname, sect_offset_str (die->sect_off));
15573 }
15574 else
15575 {
15576 fnp->fcontext
15577 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15578 }
15579 }
15580 }
15581 else if (attr_form_is_section_offset (attr))
15582 {
15583 dwarf2_complex_location_expr_complaint ();
15584 }
15585 else
15586 {
15587 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15588 fieldname);
15589 }
15590 }
15591 else
15592 {
15593 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15594 if (attr && DW_UNSND (attr))
15595 {
15596 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15597 complaint (_("Member function \"%s\" (offset %s) is virtual "
15598 "but the vtable offset is not specified"),
15599 fieldname, sect_offset_str (die->sect_off));
15600 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15601 TYPE_CPLUS_DYNAMIC (type) = 1;
15602 }
15603 }
15604 }
15605
15606 /* Create the vector of member function fields, and attach it to the type. */
15607
15608 static void
15609 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15610 struct dwarf2_cu *cu)
15611 {
15612 if (cu->language == language_ada)
15613 error (_("unexpected member functions in Ada type"));
15614
15615 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15616 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15617 TYPE_ALLOC (type,
15618 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15619
15620 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15621 {
15622 struct fnfieldlist &nf = fip->fnfieldlists[i];
15623 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15624
15625 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15626 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15627 fn_flp->fn_fields = (struct fn_field *)
15628 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15629
15630 for (int k = 0; k < nf.fnfields.size (); ++k)
15631 fn_flp->fn_fields[k] = nf.fnfields[k];
15632 }
15633
15634 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15635 }
15636
15637 /* Returns non-zero if NAME is the name of a vtable member in CU's
15638 language, zero otherwise. */
15639 static int
15640 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15641 {
15642 static const char vptr[] = "_vptr";
15643
15644 /* Look for the C++ form of the vtable. */
15645 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15646 return 1;
15647
15648 return 0;
15649 }
15650
15651 /* GCC outputs unnamed structures that are really pointers to member
15652 functions, with the ABI-specified layout. If TYPE describes
15653 such a structure, smash it into a member function type.
15654
15655 GCC shouldn't do this; it should just output pointer to member DIEs.
15656 This is GCC PR debug/28767. */
15657
15658 static void
15659 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15660 {
15661 struct type *pfn_type, *self_type, *new_type;
15662
15663 /* Check for a structure with no name and two children. */
15664 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15665 return;
15666
15667 /* Check for __pfn and __delta members. */
15668 if (TYPE_FIELD_NAME (type, 0) == NULL
15669 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15670 || TYPE_FIELD_NAME (type, 1) == NULL
15671 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15672 return;
15673
15674 /* Find the type of the method. */
15675 pfn_type = TYPE_FIELD_TYPE (type, 0);
15676 if (pfn_type == NULL
15677 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15678 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15679 return;
15680
15681 /* Look for the "this" argument. */
15682 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15683 if (TYPE_NFIELDS (pfn_type) == 0
15684 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15685 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15686 return;
15687
15688 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15689 new_type = alloc_type (objfile);
15690 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15691 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15692 TYPE_VARARGS (pfn_type));
15693 smash_to_methodptr_type (type, new_type);
15694 }
15695
15696 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15697 appropriate error checking and issuing complaints if there is a
15698 problem. */
15699
15700 static ULONGEST
15701 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15702 {
15703 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15704
15705 if (attr == nullptr)
15706 return 0;
15707
15708 if (!attr_form_is_constant (attr))
15709 {
15710 complaint (_("DW_AT_alignment must have constant form"
15711 " - DIE at %s [in module %s]"),
15712 sect_offset_str (die->sect_off),
15713 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15714 return 0;
15715 }
15716
15717 ULONGEST align;
15718 if (attr->form == DW_FORM_sdata)
15719 {
15720 LONGEST val = DW_SND (attr);
15721 if (val < 0)
15722 {
15723 complaint (_("DW_AT_alignment value must not be negative"
15724 " - DIE at %s [in module %s]"),
15725 sect_offset_str (die->sect_off),
15726 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15727 return 0;
15728 }
15729 align = val;
15730 }
15731 else
15732 align = DW_UNSND (attr);
15733
15734 if (align == 0)
15735 {
15736 complaint (_("DW_AT_alignment value must not be zero"
15737 " - DIE at %s [in module %s]"),
15738 sect_offset_str (die->sect_off),
15739 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15740 return 0;
15741 }
15742 if ((align & (align - 1)) != 0)
15743 {
15744 complaint (_("DW_AT_alignment value must be a power of 2"
15745 " - DIE at %s [in module %s]"),
15746 sect_offset_str (die->sect_off),
15747 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15748 return 0;
15749 }
15750
15751 return align;
15752 }
15753
15754 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15755 the alignment for TYPE. */
15756
15757 static void
15758 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15759 struct type *type)
15760 {
15761 if (!set_type_align (type, get_alignment (cu, die)))
15762 complaint (_("DW_AT_alignment value too large"
15763 " - DIE at %s [in module %s]"),
15764 sect_offset_str (die->sect_off),
15765 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15766 }
15767
15768 /* Called when we find the DIE that starts a structure or union scope
15769 (definition) to create a type for the structure or union. Fill in
15770 the type's name and general properties; the members will not be
15771 processed until process_structure_scope. A symbol table entry for
15772 the type will also not be done until process_structure_scope (assuming
15773 the type has a name).
15774
15775 NOTE: we need to call these functions regardless of whether or not the
15776 DIE has a DW_AT_name attribute, since it might be an anonymous
15777 structure or union. This gets the type entered into our set of
15778 user defined types. */
15779
15780 static struct type *
15781 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15782 {
15783 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15784 struct type *type;
15785 struct attribute *attr;
15786 const char *name;
15787
15788 /* If the definition of this type lives in .debug_types, read that type.
15789 Don't follow DW_AT_specification though, that will take us back up
15790 the chain and we want to go down. */
15791 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15792 if (attr)
15793 {
15794 type = get_DW_AT_signature_type (die, attr, cu);
15795
15796 /* The type's CU may not be the same as CU.
15797 Ensure TYPE is recorded with CU in die_type_hash. */
15798 return set_die_type (die, type, cu);
15799 }
15800
15801 type = alloc_type (objfile);
15802 INIT_CPLUS_SPECIFIC (type);
15803
15804 name = dwarf2_name (die, cu);
15805 if (name != NULL)
15806 {
15807 if (cu->language == language_cplus
15808 || cu->language == language_d
15809 || cu->language == language_rust)
15810 {
15811 const char *full_name = dwarf2_full_name (name, die, cu);
15812
15813 /* dwarf2_full_name might have already finished building the DIE's
15814 type. If so, there is no need to continue. */
15815 if (get_die_type (die, cu) != NULL)
15816 return get_die_type (die, cu);
15817
15818 TYPE_NAME (type) = full_name;
15819 }
15820 else
15821 {
15822 /* The name is already allocated along with this objfile, so
15823 we don't need to duplicate it for the type. */
15824 TYPE_NAME (type) = name;
15825 }
15826 }
15827
15828 if (die->tag == DW_TAG_structure_type)
15829 {
15830 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15831 }
15832 else if (die->tag == DW_TAG_union_type)
15833 {
15834 TYPE_CODE (type) = TYPE_CODE_UNION;
15835 }
15836 else if (die->tag == DW_TAG_variant_part)
15837 {
15838 TYPE_CODE (type) = TYPE_CODE_UNION;
15839 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15840 }
15841 else
15842 {
15843 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15844 }
15845
15846 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15847 TYPE_DECLARED_CLASS (type) = 1;
15848
15849 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15850 if (attr)
15851 {
15852 if (attr_form_is_constant (attr))
15853 TYPE_LENGTH (type) = DW_UNSND (attr);
15854 else
15855 {
15856 /* For the moment, dynamic type sizes are not supported
15857 by GDB's struct type. The actual size is determined
15858 on-demand when resolving the type of a given object,
15859 so set the type's length to zero for now. Otherwise,
15860 we record an expression as the length, and that expression
15861 could lead to a very large value, which could eventually
15862 lead to us trying to allocate that much memory when creating
15863 a value of that type. */
15864 TYPE_LENGTH (type) = 0;
15865 }
15866 }
15867 else
15868 {
15869 TYPE_LENGTH (type) = 0;
15870 }
15871
15872 maybe_set_alignment (cu, die, type);
15873
15874 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15875 {
15876 /* ICC<14 does not output the required DW_AT_declaration on
15877 incomplete types, but gives them a size of zero. */
15878 TYPE_STUB (type) = 1;
15879 }
15880 else
15881 TYPE_STUB_SUPPORTED (type) = 1;
15882
15883 if (die_is_declaration (die, cu))
15884 TYPE_STUB (type) = 1;
15885 else if (attr == NULL && die->child == NULL
15886 && producer_is_realview (cu->producer))
15887 /* RealView does not output the required DW_AT_declaration
15888 on incomplete types. */
15889 TYPE_STUB (type) = 1;
15890
15891 /* We need to add the type field to the die immediately so we don't
15892 infinitely recurse when dealing with pointers to the structure
15893 type within the structure itself. */
15894 set_die_type (die, type, cu);
15895
15896 /* set_die_type should be already done. */
15897 set_descriptive_type (type, die, cu);
15898
15899 return type;
15900 }
15901
15902 /* A helper for process_structure_scope that handles a single member
15903 DIE. */
15904
15905 static void
15906 handle_struct_member_die (struct die_info *child_die, struct type *type,
15907 struct field_info *fi,
15908 std::vector<struct symbol *> *template_args,
15909 struct dwarf2_cu *cu)
15910 {
15911 if (child_die->tag == DW_TAG_member
15912 || child_die->tag == DW_TAG_variable
15913 || child_die->tag == DW_TAG_variant_part)
15914 {
15915 /* NOTE: carlton/2002-11-05: A C++ static data member
15916 should be a DW_TAG_member that is a declaration, but
15917 all versions of G++ as of this writing (so through at
15918 least 3.2.1) incorrectly generate DW_TAG_variable
15919 tags for them instead. */
15920 dwarf2_add_field (fi, child_die, cu);
15921 }
15922 else if (child_die->tag == DW_TAG_subprogram)
15923 {
15924 /* Rust doesn't have member functions in the C++ sense.
15925 However, it does emit ordinary functions as children
15926 of a struct DIE. */
15927 if (cu->language == language_rust)
15928 read_func_scope (child_die, cu);
15929 else
15930 {
15931 /* C++ member function. */
15932 dwarf2_add_member_fn (fi, child_die, type, cu);
15933 }
15934 }
15935 else if (child_die->tag == DW_TAG_inheritance)
15936 {
15937 /* C++ base class field. */
15938 dwarf2_add_field (fi, child_die, cu);
15939 }
15940 else if (type_can_define_types (child_die))
15941 dwarf2_add_type_defn (fi, child_die, cu);
15942 else if (child_die->tag == DW_TAG_template_type_param
15943 || child_die->tag == DW_TAG_template_value_param)
15944 {
15945 struct symbol *arg = new_symbol (child_die, NULL, cu);
15946
15947 if (arg != NULL)
15948 template_args->push_back (arg);
15949 }
15950 else if (child_die->tag == DW_TAG_variant)
15951 {
15952 /* In a variant we want to get the discriminant and also add a
15953 field for our sole member child. */
15954 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15955
15956 for (struct die_info *variant_child = child_die->child;
15957 variant_child != NULL;
15958 variant_child = sibling_die (variant_child))
15959 {
15960 if (variant_child->tag == DW_TAG_member)
15961 {
15962 handle_struct_member_die (variant_child, type, fi,
15963 template_args, cu);
15964 /* Only handle the one. */
15965 break;
15966 }
15967 }
15968
15969 /* We don't handle this but we might as well report it if we see
15970 it. */
15971 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15972 complaint (_("DW_AT_discr_list is not supported yet"
15973 " - DIE at %s [in module %s]"),
15974 sect_offset_str (child_die->sect_off),
15975 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15976
15977 /* The first field was just added, so we can stash the
15978 discriminant there. */
15979 gdb_assert (!fi->fields.empty ());
15980 if (discr == NULL)
15981 fi->fields.back ().variant.default_branch = true;
15982 else
15983 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15984 }
15985 }
15986
15987 /* Finish creating a structure or union type, including filling in
15988 its members and creating a symbol for it. */
15989
15990 static void
15991 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15992 {
15993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15994 struct die_info *child_die;
15995 struct type *type;
15996
15997 type = get_die_type (die, cu);
15998 if (type == NULL)
15999 type = read_structure_type (die, cu);
16000
16001 /* When reading a DW_TAG_variant_part, we need to notice when we
16002 read the discriminant member, so we can record it later in the
16003 discriminant_info. */
16004 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16005 sect_offset discr_offset;
16006 bool has_template_parameters = false;
16007
16008 if (is_variant_part)
16009 {
16010 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16011 if (discr == NULL)
16012 {
16013 /* Maybe it's a univariant form, an extension we support.
16014 In this case arrange not to check the offset. */
16015 is_variant_part = false;
16016 }
16017 else if (attr_form_is_ref (discr))
16018 {
16019 struct dwarf2_cu *target_cu = cu;
16020 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16021
16022 discr_offset = target_die->sect_off;
16023 }
16024 else
16025 {
16026 complaint (_("DW_AT_discr does not have DIE reference form"
16027 " - DIE at %s [in module %s]"),
16028 sect_offset_str (die->sect_off),
16029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16030 is_variant_part = false;
16031 }
16032 }
16033
16034 if (die->child != NULL && ! die_is_declaration (die, cu))
16035 {
16036 struct field_info fi;
16037 std::vector<struct symbol *> template_args;
16038
16039 child_die = die->child;
16040
16041 while (child_die && child_die->tag)
16042 {
16043 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16044
16045 if (is_variant_part && discr_offset == child_die->sect_off)
16046 fi.fields.back ().variant.is_discriminant = true;
16047
16048 child_die = sibling_die (child_die);
16049 }
16050
16051 /* Attach template arguments to type. */
16052 if (!template_args.empty ())
16053 {
16054 has_template_parameters = true;
16055 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16056 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16057 TYPE_TEMPLATE_ARGUMENTS (type)
16058 = XOBNEWVEC (&objfile->objfile_obstack,
16059 struct symbol *,
16060 TYPE_N_TEMPLATE_ARGUMENTS (type));
16061 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16062 template_args.data (),
16063 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16064 * sizeof (struct symbol *)));
16065 }
16066
16067 /* Attach fields and member functions to the type. */
16068 if (fi.nfields)
16069 dwarf2_attach_fields_to_type (&fi, type, cu);
16070 if (!fi.fnfieldlists.empty ())
16071 {
16072 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16073
16074 /* Get the type which refers to the base class (possibly this
16075 class itself) which contains the vtable pointer for the current
16076 class from the DW_AT_containing_type attribute. This use of
16077 DW_AT_containing_type is a GNU extension. */
16078
16079 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16080 {
16081 struct type *t = die_containing_type (die, cu);
16082
16083 set_type_vptr_basetype (type, t);
16084 if (type == t)
16085 {
16086 int i;
16087
16088 /* Our own class provides vtbl ptr. */
16089 for (i = TYPE_NFIELDS (t) - 1;
16090 i >= TYPE_N_BASECLASSES (t);
16091 --i)
16092 {
16093 const char *fieldname = TYPE_FIELD_NAME (t, i);
16094
16095 if (is_vtable_name (fieldname, cu))
16096 {
16097 set_type_vptr_fieldno (type, i);
16098 break;
16099 }
16100 }
16101
16102 /* Complain if virtual function table field not found. */
16103 if (i < TYPE_N_BASECLASSES (t))
16104 complaint (_("virtual function table pointer "
16105 "not found when defining class '%s'"),
16106 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16107 }
16108 else
16109 {
16110 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16111 }
16112 }
16113 else if (cu->producer
16114 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16115 {
16116 /* The IBM XLC compiler does not provide direct indication
16117 of the containing type, but the vtable pointer is
16118 always named __vfp. */
16119
16120 int i;
16121
16122 for (i = TYPE_NFIELDS (type) - 1;
16123 i >= TYPE_N_BASECLASSES (type);
16124 --i)
16125 {
16126 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16127 {
16128 set_type_vptr_fieldno (type, i);
16129 set_type_vptr_basetype (type, type);
16130 break;
16131 }
16132 }
16133 }
16134 }
16135
16136 /* Copy fi.typedef_field_list linked list elements content into the
16137 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16138 if (!fi.typedef_field_list.empty ())
16139 {
16140 int count = fi.typedef_field_list.size ();
16141
16142 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16143 TYPE_TYPEDEF_FIELD_ARRAY (type)
16144 = ((struct decl_field *)
16145 TYPE_ALLOC (type,
16146 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16147 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16148
16149 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16150 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16151 }
16152
16153 /* Copy fi.nested_types_list linked list elements content into the
16154 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16155 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16156 {
16157 int count = fi.nested_types_list.size ();
16158
16159 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16160 TYPE_NESTED_TYPES_ARRAY (type)
16161 = ((struct decl_field *)
16162 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16163 TYPE_NESTED_TYPES_COUNT (type) = count;
16164
16165 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16166 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16167 }
16168 }
16169
16170 quirk_gcc_member_function_pointer (type, objfile);
16171 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16172 cu->rust_unions.push_back (type);
16173
16174 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16175 snapshots) has been known to create a die giving a declaration
16176 for a class that has, as a child, a die giving a definition for a
16177 nested class. So we have to process our children even if the
16178 current die is a declaration. Normally, of course, a declaration
16179 won't have any children at all. */
16180
16181 child_die = die->child;
16182
16183 while (child_die != NULL && child_die->tag)
16184 {
16185 if (child_die->tag == DW_TAG_member
16186 || child_die->tag == DW_TAG_variable
16187 || child_die->tag == DW_TAG_inheritance
16188 || child_die->tag == DW_TAG_template_value_param
16189 || child_die->tag == DW_TAG_template_type_param)
16190 {
16191 /* Do nothing. */
16192 }
16193 else
16194 process_die (child_die, cu);
16195
16196 child_die = sibling_die (child_die);
16197 }
16198
16199 /* Do not consider external references. According to the DWARF standard,
16200 these DIEs are identified by the fact that they have no byte_size
16201 attribute, and a declaration attribute. */
16202 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16203 || !die_is_declaration (die, cu))
16204 {
16205 struct symbol *sym = new_symbol (die, type, cu);
16206
16207 if (has_template_parameters)
16208 {
16209 /* Make sure that the symtab is set on the new symbols.
16210 Even though they don't appear in this symtab directly,
16211 other parts of gdb assume that symbols do, and this is
16212 reasonably true. */
16213 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16214 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16215 symbol_symtab (sym));
16216 }
16217 }
16218 }
16219
16220 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16221 update TYPE using some information only available in DIE's children. */
16222
16223 static void
16224 update_enumeration_type_from_children (struct die_info *die,
16225 struct type *type,
16226 struct dwarf2_cu *cu)
16227 {
16228 struct die_info *child_die;
16229 int unsigned_enum = 1;
16230 int flag_enum = 1;
16231 ULONGEST mask = 0;
16232
16233 auto_obstack obstack;
16234
16235 for (child_die = die->child;
16236 child_die != NULL && child_die->tag;
16237 child_die = sibling_die (child_die))
16238 {
16239 struct attribute *attr;
16240 LONGEST value;
16241 const gdb_byte *bytes;
16242 struct dwarf2_locexpr_baton *baton;
16243 const char *name;
16244
16245 if (child_die->tag != DW_TAG_enumerator)
16246 continue;
16247
16248 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16249 if (attr == NULL)
16250 continue;
16251
16252 name = dwarf2_name (child_die, cu);
16253 if (name == NULL)
16254 name = "<anonymous enumerator>";
16255
16256 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16257 &value, &bytes, &baton);
16258 if (value < 0)
16259 {
16260 unsigned_enum = 0;
16261 flag_enum = 0;
16262 }
16263 else if ((mask & value) != 0)
16264 flag_enum = 0;
16265 else
16266 mask |= value;
16267
16268 /* If we already know that the enum type is neither unsigned, nor
16269 a flag type, no need to look at the rest of the enumerates. */
16270 if (!unsigned_enum && !flag_enum)
16271 break;
16272 }
16273
16274 if (unsigned_enum)
16275 TYPE_UNSIGNED (type) = 1;
16276 if (flag_enum)
16277 TYPE_FLAG_ENUM (type) = 1;
16278 }
16279
16280 /* Given a DW_AT_enumeration_type die, set its type. We do not
16281 complete the type's fields yet, or create any symbols. */
16282
16283 static struct type *
16284 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16285 {
16286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16287 struct type *type;
16288 struct attribute *attr;
16289 const char *name;
16290
16291 /* If the definition of this type lives in .debug_types, read that type.
16292 Don't follow DW_AT_specification though, that will take us back up
16293 the chain and we want to go down. */
16294 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16295 if (attr)
16296 {
16297 type = get_DW_AT_signature_type (die, attr, cu);
16298
16299 /* The type's CU may not be the same as CU.
16300 Ensure TYPE is recorded with CU in die_type_hash. */
16301 return set_die_type (die, type, cu);
16302 }
16303
16304 type = alloc_type (objfile);
16305
16306 TYPE_CODE (type) = TYPE_CODE_ENUM;
16307 name = dwarf2_full_name (NULL, die, cu);
16308 if (name != NULL)
16309 TYPE_NAME (type) = name;
16310
16311 attr = dwarf2_attr (die, DW_AT_type, cu);
16312 if (attr != NULL)
16313 {
16314 struct type *underlying_type = die_type (die, cu);
16315
16316 TYPE_TARGET_TYPE (type) = underlying_type;
16317 }
16318
16319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16320 if (attr)
16321 {
16322 TYPE_LENGTH (type) = DW_UNSND (attr);
16323 }
16324 else
16325 {
16326 TYPE_LENGTH (type) = 0;
16327 }
16328
16329 maybe_set_alignment (cu, die, type);
16330
16331 /* The enumeration DIE can be incomplete. In Ada, any type can be
16332 declared as private in the package spec, and then defined only
16333 inside the package body. Such types are known as Taft Amendment
16334 Types. When another package uses such a type, an incomplete DIE
16335 may be generated by the compiler. */
16336 if (die_is_declaration (die, cu))
16337 TYPE_STUB (type) = 1;
16338
16339 /* Finish the creation of this type by using the enum's children.
16340 We must call this even when the underlying type has been provided
16341 so that we can determine if we're looking at a "flag" enum. */
16342 update_enumeration_type_from_children (die, type, cu);
16343
16344 /* If this type has an underlying type that is not a stub, then we
16345 may use its attributes. We always use the "unsigned" attribute
16346 in this situation, because ordinarily we guess whether the type
16347 is unsigned -- but the guess can be wrong and the underlying type
16348 can tell us the reality. However, we defer to a local size
16349 attribute if one exists, because this lets the compiler override
16350 the underlying type if needed. */
16351 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16352 {
16353 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16354 if (TYPE_LENGTH (type) == 0)
16355 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16356 if (TYPE_RAW_ALIGN (type) == 0
16357 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16358 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16359 }
16360
16361 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16362
16363 return set_die_type (die, type, cu);
16364 }
16365
16366 /* Given a pointer to a die which begins an enumeration, process all
16367 the dies that define the members of the enumeration, and create the
16368 symbol for the enumeration type.
16369
16370 NOTE: We reverse the order of the element list. */
16371
16372 static void
16373 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16374 {
16375 struct type *this_type;
16376
16377 this_type = get_die_type (die, cu);
16378 if (this_type == NULL)
16379 this_type = read_enumeration_type (die, cu);
16380
16381 if (die->child != NULL)
16382 {
16383 struct die_info *child_die;
16384 struct symbol *sym;
16385 struct field *fields = NULL;
16386 int num_fields = 0;
16387 const char *name;
16388
16389 child_die = die->child;
16390 while (child_die && child_die->tag)
16391 {
16392 if (child_die->tag != DW_TAG_enumerator)
16393 {
16394 process_die (child_die, cu);
16395 }
16396 else
16397 {
16398 name = dwarf2_name (child_die, cu);
16399 if (name)
16400 {
16401 sym = new_symbol (child_die, this_type, cu);
16402
16403 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16404 {
16405 fields = (struct field *)
16406 xrealloc (fields,
16407 (num_fields + DW_FIELD_ALLOC_CHUNK)
16408 * sizeof (struct field));
16409 }
16410
16411 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16412 FIELD_TYPE (fields[num_fields]) = NULL;
16413 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16414 FIELD_BITSIZE (fields[num_fields]) = 0;
16415
16416 num_fields++;
16417 }
16418 }
16419
16420 child_die = sibling_die (child_die);
16421 }
16422
16423 if (num_fields)
16424 {
16425 TYPE_NFIELDS (this_type) = num_fields;
16426 TYPE_FIELDS (this_type) = (struct field *)
16427 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16428 memcpy (TYPE_FIELDS (this_type), fields,
16429 sizeof (struct field) * num_fields);
16430 xfree (fields);
16431 }
16432 }
16433
16434 /* If we are reading an enum from a .debug_types unit, and the enum
16435 is a declaration, and the enum is not the signatured type in the
16436 unit, then we do not want to add a symbol for it. Adding a
16437 symbol would in some cases obscure the true definition of the
16438 enum, giving users an incomplete type when the definition is
16439 actually available. Note that we do not want to do this for all
16440 enums which are just declarations, because C++0x allows forward
16441 enum declarations. */
16442 if (cu->per_cu->is_debug_types
16443 && die_is_declaration (die, cu))
16444 {
16445 struct signatured_type *sig_type;
16446
16447 sig_type = (struct signatured_type *) cu->per_cu;
16448 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16449 if (sig_type->type_offset_in_section != die->sect_off)
16450 return;
16451 }
16452
16453 new_symbol (die, this_type, cu);
16454 }
16455
16456 /* Extract all information from a DW_TAG_array_type DIE and put it in
16457 the DIE's type field. For now, this only handles one dimensional
16458 arrays. */
16459
16460 static struct type *
16461 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16462 {
16463 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16464 struct die_info *child_die;
16465 struct type *type;
16466 struct type *element_type, *range_type, *index_type;
16467 struct attribute *attr;
16468 const char *name;
16469 struct dynamic_prop *byte_stride_prop = NULL;
16470 unsigned int bit_stride = 0;
16471
16472 element_type = die_type (die, cu);
16473
16474 /* The die_type call above may have already set the type for this DIE. */
16475 type = get_die_type (die, cu);
16476 if (type)
16477 return type;
16478
16479 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16480 if (attr != NULL)
16481 {
16482 int stride_ok;
16483
16484 byte_stride_prop
16485 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16486 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16487 if (!stride_ok)
16488 {
16489 complaint (_("unable to read array DW_AT_byte_stride "
16490 " - DIE at %s [in module %s]"),
16491 sect_offset_str (die->sect_off),
16492 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16493 /* Ignore this attribute. We will likely not be able to print
16494 arrays of this type correctly, but there is little we can do
16495 to help if we cannot read the attribute's value. */
16496 byte_stride_prop = NULL;
16497 }
16498 }
16499
16500 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16501 if (attr != NULL)
16502 bit_stride = DW_UNSND (attr);
16503
16504 /* Irix 6.2 native cc creates array types without children for
16505 arrays with unspecified length. */
16506 if (die->child == NULL)
16507 {
16508 index_type = objfile_type (objfile)->builtin_int;
16509 range_type = create_static_range_type (NULL, index_type, 0, -1);
16510 type = create_array_type_with_stride (NULL, element_type, range_type,
16511 byte_stride_prop, bit_stride);
16512 return set_die_type (die, type, cu);
16513 }
16514
16515 std::vector<struct type *> range_types;
16516 child_die = die->child;
16517 while (child_die && child_die->tag)
16518 {
16519 if (child_die->tag == DW_TAG_subrange_type)
16520 {
16521 struct type *child_type = read_type_die (child_die, cu);
16522
16523 if (child_type != NULL)
16524 {
16525 /* The range type was succesfully read. Save it for the
16526 array type creation. */
16527 range_types.push_back (child_type);
16528 }
16529 }
16530 child_die = sibling_die (child_die);
16531 }
16532
16533 /* Dwarf2 dimensions are output from left to right, create the
16534 necessary array types in backwards order. */
16535
16536 type = element_type;
16537
16538 if (read_array_order (die, cu) == DW_ORD_col_major)
16539 {
16540 int i = 0;
16541
16542 while (i < range_types.size ())
16543 type = create_array_type_with_stride (NULL, type, range_types[i++],
16544 byte_stride_prop, bit_stride);
16545 }
16546 else
16547 {
16548 size_t ndim = range_types.size ();
16549 while (ndim-- > 0)
16550 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16551 byte_stride_prop, bit_stride);
16552 }
16553
16554 /* Understand Dwarf2 support for vector types (like they occur on
16555 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16556 array type. This is not part of the Dwarf2/3 standard yet, but a
16557 custom vendor extension. The main difference between a regular
16558 array and the vector variant is that vectors are passed by value
16559 to functions. */
16560 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16561 if (attr)
16562 make_vector_type (type);
16563
16564 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16565 implementation may choose to implement triple vectors using this
16566 attribute. */
16567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16568 if (attr)
16569 {
16570 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16571 TYPE_LENGTH (type) = DW_UNSND (attr);
16572 else
16573 complaint (_("DW_AT_byte_size for array type smaller "
16574 "than the total size of elements"));
16575 }
16576
16577 name = dwarf2_name (die, cu);
16578 if (name)
16579 TYPE_NAME (type) = name;
16580
16581 maybe_set_alignment (cu, die, type);
16582
16583 /* Install the type in the die. */
16584 set_die_type (die, type, cu);
16585
16586 /* set_die_type should be already done. */
16587 set_descriptive_type (type, die, cu);
16588
16589 return type;
16590 }
16591
16592 static enum dwarf_array_dim_ordering
16593 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16594 {
16595 struct attribute *attr;
16596
16597 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16598
16599 if (attr)
16600 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16601
16602 /* GNU F77 is a special case, as at 08/2004 array type info is the
16603 opposite order to the dwarf2 specification, but data is still
16604 laid out as per normal fortran.
16605
16606 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16607 version checking. */
16608
16609 if (cu->language == language_fortran
16610 && cu->producer && strstr (cu->producer, "GNU F77"))
16611 {
16612 return DW_ORD_row_major;
16613 }
16614
16615 switch (cu->language_defn->la_array_ordering)
16616 {
16617 case array_column_major:
16618 return DW_ORD_col_major;
16619 case array_row_major:
16620 default:
16621 return DW_ORD_row_major;
16622 };
16623 }
16624
16625 /* Extract all information from a DW_TAG_set_type DIE and put it in
16626 the DIE's type field. */
16627
16628 static struct type *
16629 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16630 {
16631 struct type *domain_type, *set_type;
16632 struct attribute *attr;
16633
16634 domain_type = die_type (die, cu);
16635
16636 /* The die_type call above may have already set the type for this DIE. */
16637 set_type = get_die_type (die, cu);
16638 if (set_type)
16639 return set_type;
16640
16641 set_type = create_set_type (NULL, domain_type);
16642
16643 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16644 if (attr)
16645 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16646
16647 maybe_set_alignment (cu, die, set_type);
16648
16649 return set_die_type (die, set_type, cu);
16650 }
16651
16652 /* A helper for read_common_block that creates a locexpr baton.
16653 SYM is the symbol which we are marking as computed.
16654 COMMON_DIE is the DIE for the common block.
16655 COMMON_LOC is the location expression attribute for the common
16656 block itself.
16657 MEMBER_LOC is the location expression attribute for the particular
16658 member of the common block that we are processing.
16659 CU is the CU from which the above come. */
16660
16661 static void
16662 mark_common_block_symbol_computed (struct symbol *sym,
16663 struct die_info *common_die,
16664 struct attribute *common_loc,
16665 struct attribute *member_loc,
16666 struct dwarf2_cu *cu)
16667 {
16668 struct dwarf2_per_objfile *dwarf2_per_objfile
16669 = cu->per_cu->dwarf2_per_objfile;
16670 struct objfile *objfile = dwarf2_per_objfile->objfile;
16671 struct dwarf2_locexpr_baton *baton;
16672 gdb_byte *ptr;
16673 unsigned int cu_off;
16674 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16675 LONGEST offset = 0;
16676
16677 gdb_assert (common_loc && member_loc);
16678 gdb_assert (attr_form_is_block (common_loc));
16679 gdb_assert (attr_form_is_block (member_loc)
16680 || attr_form_is_constant (member_loc));
16681
16682 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16683 baton->per_cu = cu->per_cu;
16684 gdb_assert (baton->per_cu);
16685
16686 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16687
16688 if (attr_form_is_constant (member_loc))
16689 {
16690 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16691 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16692 }
16693 else
16694 baton->size += DW_BLOCK (member_loc)->size;
16695
16696 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16697 baton->data = ptr;
16698
16699 *ptr++ = DW_OP_call4;
16700 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16701 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16702 ptr += 4;
16703
16704 if (attr_form_is_constant (member_loc))
16705 {
16706 *ptr++ = DW_OP_addr;
16707 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16708 ptr += cu->header.addr_size;
16709 }
16710 else
16711 {
16712 /* We have to copy the data here, because DW_OP_call4 will only
16713 use a DW_AT_location attribute. */
16714 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16715 ptr += DW_BLOCK (member_loc)->size;
16716 }
16717
16718 *ptr++ = DW_OP_plus;
16719 gdb_assert (ptr - baton->data == baton->size);
16720
16721 SYMBOL_LOCATION_BATON (sym) = baton;
16722 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16723 }
16724
16725 /* Create appropriate locally-scoped variables for all the
16726 DW_TAG_common_block entries. Also create a struct common_block
16727 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16728 is used to sepate the common blocks name namespace from regular
16729 variable names. */
16730
16731 static void
16732 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16733 {
16734 struct attribute *attr;
16735
16736 attr = dwarf2_attr (die, DW_AT_location, cu);
16737 if (attr)
16738 {
16739 /* Support the .debug_loc offsets. */
16740 if (attr_form_is_block (attr))
16741 {
16742 /* Ok. */
16743 }
16744 else if (attr_form_is_section_offset (attr))
16745 {
16746 dwarf2_complex_location_expr_complaint ();
16747 attr = NULL;
16748 }
16749 else
16750 {
16751 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16752 "common block member");
16753 attr = NULL;
16754 }
16755 }
16756
16757 if (die->child != NULL)
16758 {
16759 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16760 struct die_info *child_die;
16761 size_t n_entries = 0, size;
16762 struct common_block *common_block;
16763 struct symbol *sym;
16764
16765 for (child_die = die->child;
16766 child_die && child_die->tag;
16767 child_die = sibling_die (child_die))
16768 ++n_entries;
16769
16770 size = (sizeof (struct common_block)
16771 + (n_entries - 1) * sizeof (struct symbol *));
16772 common_block
16773 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16774 size);
16775 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16776 common_block->n_entries = 0;
16777
16778 for (child_die = die->child;
16779 child_die && child_die->tag;
16780 child_die = sibling_die (child_die))
16781 {
16782 /* Create the symbol in the DW_TAG_common_block block in the current
16783 symbol scope. */
16784 sym = new_symbol (child_die, NULL, cu);
16785 if (sym != NULL)
16786 {
16787 struct attribute *member_loc;
16788
16789 common_block->contents[common_block->n_entries++] = sym;
16790
16791 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16792 cu);
16793 if (member_loc)
16794 {
16795 /* GDB has handled this for a long time, but it is
16796 not specified by DWARF. It seems to have been
16797 emitted by gfortran at least as recently as:
16798 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16799 complaint (_("Variable in common block has "
16800 "DW_AT_data_member_location "
16801 "- DIE at %s [in module %s]"),
16802 sect_offset_str (child_die->sect_off),
16803 objfile_name (objfile));
16804
16805 if (attr_form_is_section_offset (member_loc))
16806 dwarf2_complex_location_expr_complaint ();
16807 else if (attr_form_is_constant (member_loc)
16808 || attr_form_is_block (member_loc))
16809 {
16810 if (attr)
16811 mark_common_block_symbol_computed (sym, die, attr,
16812 member_loc, cu);
16813 }
16814 else
16815 dwarf2_complex_location_expr_complaint ();
16816 }
16817 }
16818 }
16819
16820 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16821 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16822 }
16823 }
16824
16825 /* Create a type for a C++ namespace. */
16826
16827 static struct type *
16828 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16829 {
16830 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16831 const char *previous_prefix, *name;
16832 int is_anonymous;
16833 struct type *type;
16834
16835 /* For extensions, reuse the type of the original namespace. */
16836 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16837 {
16838 struct die_info *ext_die;
16839 struct dwarf2_cu *ext_cu = cu;
16840
16841 ext_die = dwarf2_extension (die, &ext_cu);
16842 type = read_type_die (ext_die, ext_cu);
16843
16844 /* EXT_CU may not be the same as CU.
16845 Ensure TYPE is recorded with CU in die_type_hash. */
16846 return set_die_type (die, type, cu);
16847 }
16848
16849 name = namespace_name (die, &is_anonymous, cu);
16850
16851 /* Now build the name of the current namespace. */
16852
16853 previous_prefix = determine_prefix (die, cu);
16854 if (previous_prefix[0] != '\0')
16855 name = typename_concat (&objfile->objfile_obstack,
16856 previous_prefix, name, 0, cu);
16857
16858 /* Create the type. */
16859 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16860
16861 return set_die_type (die, type, cu);
16862 }
16863
16864 /* Read a namespace scope. */
16865
16866 static void
16867 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16868 {
16869 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16870 int is_anonymous;
16871
16872 /* Add a symbol associated to this if we haven't seen the namespace
16873 before. Also, add a using directive if it's an anonymous
16874 namespace. */
16875
16876 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16877 {
16878 struct type *type;
16879
16880 type = read_type_die (die, cu);
16881 new_symbol (die, type, cu);
16882
16883 namespace_name (die, &is_anonymous, cu);
16884 if (is_anonymous)
16885 {
16886 const char *previous_prefix = determine_prefix (die, cu);
16887
16888 std::vector<const char *> excludes;
16889 add_using_directive (using_directives (cu),
16890 previous_prefix, TYPE_NAME (type), NULL,
16891 NULL, excludes, 0, &objfile->objfile_obstack);
16892 }
16893 }
16894
16895 if (die->child != NULL)
16896 {
16897 struct die_info *child_die = die->child;
16898
16899 while (child_die && child_die->tag)
16900 {
16901 process_die (child_die, cu);
16902 child_die = sibling_die (child_die);
16903 }
16904 }
16905 }
16906
16907 /* Read a Fortran module as type. This DIE can be only a declaration used for
16908 imported module. Still we need that type as local Fortran "use ... only"
16909 declaration imports depend on the created type in determine_prefix. */
16910
16911 static struct type *
16912 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16913 {
16914 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16915 const char *module_name;
16916 struct type *type;
16917
16918 module_name = dwarf2_name (die, cu);
16919 if (!module_name)
16920 complaint (_("DW_TAG_module has no name, offset %s"),
16921 sect_offset_str (die->sect_off));
16922 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16923
16924 return set_die_type (die, type, cu);
16925 }
16926
16927 /* Read a Fortran module. */
16928
16929 static void
16930 read_module (struct die_info *die, struct dwarf2_cu *cu)
16931 {
16932 struct die_info *child_die = die->child;
16933 struct type *type;
16934
16935 type = read_type_die (die, cu);
16936 new_symbol (die, type, cu);
16937
16938 while (child_die && child_die->tag)
16939 {
16940 process_die (child_die, cu);
16941 child_die = sibling_die (child_die);
16942 }
16943 }
16944
16945 /* Return the name of the namespace represented by DIE. Set
16946 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16947 namespace. */
16948
16949 static const char *
16950 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16951 {
16952 struct die_info *current_die;
16953 const char *name = NULL;
16954
16955 /* Loop through the extensions until we find a name. */
16956
16957 for (current_die = die;
16958 current_die != NULL;
16959 current_die = dwarf2_extension (die, &cu))
16960 {
16961 /* We don't use dwarf2_name here so that we can detect the absence
16962 of a name -> anonymous namespace. */
16963 name = dwarf2_string_attr (die, DW_AT_name, cu);
16964
16965 if (name != NULL)
16966 break;
16967 }
16968
16969 /* Is it an anonymous namespace? */
16970
16971 *is_anonymous = (name == NULL);
16972 if (*is_anonymous)
16973 name = CP_ANONYMOUS_NAMESPACE_STR;
16974
16975 return name;
16976 }
16977
16978 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16979 the user defined type vector. */
16980
16981 static struct type *
16982 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16983 {
16984 struct gdbarch *gdbarch
16985 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16986 struct comp_unit_head *cu_header = &cu->header;
16987 struct type *type;
16988 struct attribute *attr_byte_size;
16989 struct attribute *attr_address_class;
16990 int byte_size, addr_class;
16991 struct type *target_type;
16992
16993 target_type = die_type (die, cu);
16994
16995 /* The die_type call above may have already set the type for this DIE. */
16996 type = get_die_type (die, cu);
16997 if (type)
16998 return type;
16999
17000 type = lookup_pointer_type (target_type);
17001
17002 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17003 if (attr_byte_size)
17004 byte_size = DW_UNSND (attr_byte_size);
17005 else
17006 byte_size = cu_header->addr_size;
17007
17008 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17009 if (attr_address_class)
17010 addr_class = DW_UNSND (attr_address_class);
17011 else
17012 addr_class = DW_ADDR_none;
17013
17014 ULONGEST alignment = get_alignment (cu, die);
17015
17016 /* If the pointer size, alignment, or address class is different
17017 than the default, create a type variant marked as such and set
17018 the length accordingly. */
17019 if (TYPE_LENGTH (type) != byte_size
17020 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17021 && alignment != TYPE_RAW_ALIGN (type))
17022 || addr_class != DW_ADDR_none)
17023 {
17024 if (gdbarch_address_class_type_flags_p (gdbarch))
17025 {
17026 int type_flags;
17027
17028 type_flags = gdbarch_address_class_type_flags
17029 (gdbarch, byte_size, addr_class);
17030 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17031 == 0);
17032 type = make_type_with_address_space (type, type_flags);
17033 }
17034 else if (TYPE_LENGTH (type) != byte_size)
17035 {
17036 complaint (_("invalid pointer size %d"), byte_size);
17037 }
17038 else if (TYPE_RAW_ALIGN (type) != alignment)
17039 {
17040 complaint (_("Invalid DW_AT_alignment"
17041 " - DIE at %s [in module %s]"),
17042 sect_offset_str (die->sect_off),
17043 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17044 }
17045 else
17046 {
17047 /* Should we also complain about unhandled address classes? */
17048 }
17049 }
17050
17051 TYPE_LENGTH (type) = byte_size;
17052 set_type_align (type, alignment);
17053 return set_die_type (die, type, cu);
17054 }
17055
17056 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17057 the user defined type vector. */
17058
17059 static struct type *
17060 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17061 {
17062 struct type *type;
17063 struct type *to_type;
17064 struct type *domain;
17065
17066 to_type = die_type (die, cu);
17067 domain = die_containing_type (die, cu);
17068
17069 /* The calls above may have already set the type for this DIE. */
17070 type = get_die_type (die, cu);
17071 if (type)
17072 return type;
17073
17074 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17075 type = lookup_methodptr_type (to_type);
17076 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17077 {
17078 struct type *new_type
17079 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17080
17081 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17082 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17083 TYPE_VARARGS (to_type));
17084 type = lookup_methodptr_type (new_type);
17085 }
17086 else
17087 type = lookup_memberptr_type (to_type, domain);
17088
17089 return set_die_type (die, type, cu);
17090 }
17091
17092 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17093 the user defined type vector. */
17094
17095 static struct type *
17096 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17097 enum type_code refcode)
17098 {
17099 struct comp_unit_head *cu_header = &cu->header;
17100 struct type *type, *target_type;
17101 struct attribute *attr;
17102
17103 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17104
17105 target_type = die_type (die, cu);
17106
17107 /* The die_type call above may have already set the type for this DIE. */
17108 type = get_die_type (die, cu);
17109 if (type)
17110 return type;
17111
17112 type = lookup_reference_type (target_type, refcode);
17113 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17114 if (attr)
17115 {
17116 TYPE_LENGTH (type) = DW_UNSND (attr);
17117 }
17118 else
17119 {
17120 TYPE_LENGTH (type) = cu_header->addr_size;
17121 }
17122 maybe_set_alignment (cu, die, type);
17123 return set_die_type (die, type, cu);
17124 }
17125
17126 /* Add the given cv-qualifiers to the element type of the array. GCC
17127 outputs DWARF type qualifiers that apply to an array, not the
17128 element type. But GDB relies on the array element type to carry
17129 the cv-qualifiers. This mimics section 6.7.3 of the C99
17130 specification. */
17131
17132 static struct type *
17133 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17134 struct type *base_type, int cnst, int voltl)
17135 {
17136 struct type *el_type, *inner_array;
17137
17138 base_type = copy_type (base_type);
17139 inner_array = base_type;
17140
17141 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17142 {
17143 TYPE_TARGET_TYPE (inner_array) =
17144 copy_type (TYPE_TARGET_TYPE (inner_array));
17145 inner_array = TYPE_TARGET_TYPE (inner_array);
17146 }
17147
17148 el_type = TYPE_TARGET_TYPE (inner_array);
17149 cnst |= TYPE_CONST (el_type);
17150 voltl |= TYPE_VOLATILE (el_type);
17151 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17152
17153 return set_die_type (die, base_type, cu);
17154 }
17155
17156 static struct type *
17157 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17158 {
17159 struct type *base_type, *cv_type;
17160
17161 base_type = die_type (die, cu);
17162
17163 /* The die_type call above may have already set the type for this DIE. */
17164 cv_type = get_die_type (die, cu);
17165 if (cv_type)
17166 return cv_type;
17167
17168 /* In case the const qualifier is applied to an array type, the element type
17169 is so qualified, not the array type (section 6.7.3 of C99). */
17170 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17171 return add_array_cv_type (die, cu, base_type, 1, 0);
17172
17173 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17174 return set_die_type (die, cv_type, cu);
17175 }
17176
17177 static struct type *
17178 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17179 {
17180 struct type *base_type, *cv_type;
17181
17182 base_type = die_type (die, cu);
17183
17184 /* The die_type call above may have already set the type for this DIE. */
17185 cv_type = get_die_type (die, cu);
17186 if (cv_type)
17187 return cv_type;
17188
17189 /* In case the volatile qualifier is applied to an array type, the
17190 element type is so qualified, not the array type (section 6.7.3
17191 of C99). */
17192 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17193 return add_array_cv_type (die, cu, base_type, 0, 1);
17194
17195 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17196 return set_die_type (die, cv_type, cu);
17197 }
17198
17199 /* Handle DW_TAG_restrict_type. */
17200
17201 static struct type *
17202 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17203 {
17204 struct type *base_type, *cv_type;
17205
17206 base_type = die_type (die, cu);
17207
17208 /* The die_type call above may have already set the type for this DIE. */
17209 cv_type = get_die_type (die, cu);
17210 if (cv_type)
17211 return cv_type;
17212
17213 cv_type = make_restrict_type (base_type);
17214 return set_die_type (die, cv_type, cu);
17215 }
17216
17217 /* Handle DW_TAG_atomic_type. */
17218
17219 static struct type *
17220 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17221 {
17222 struct type *base_type, *cv_type;
17223
17224 base_type = die_type (die, cu);
17225
17226 /* The die_type call above may have already set the type for this DIE. */
17227 cv_type = get_die_type (die, cu);
17228 if (cv_type)
17229 return cv_type;
17230
17231 cv_type = make_atomic_type (base_type);
17232 return set_die_type (die, cv_type, cu);
17233 }
17234
17235 /* Extract all information from a DW_TAG_string_type DIE and add to
17236 the user defined type vector. It isn't really a user defined type,
17237 but it behaves like one, with other DIE's using an AT_user_def_type
17238 attribute to reference it. */
17239
17240 static struct type *
17241 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17242 {
17243 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17245 struct type *type, *range_type, *index_type, *char_type;
17246 struct attribute *attr;
17247 unsigned int length;
17248
17249 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17250 if (attr)
17251 {
17252 length = DW_UNSND (attr);
17253 }
17254 else
17255 {
17256 /* Check for the DW_AT_byte_size attribute. */
17257 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17258 if (attr)
17259 {
17260 length = DW_UNSND (attr);
17261 }
17262 else
17263 {
17264 length = 1;
17265 }
17266 }
17267
17268 index_type = objfile_type (objfile)->builtin_int;
17269 range_type = create_static_range_type (NULL, index_type, 1, length);
17270 char_type = language_string_char_type (cu->language_defn, gdbarch);
17271 type = create_string_type (NULL, char_type, range_type);
17272
17273 return set_die_type (die, type, cu);
17274 }
17275
17276 /* Assuming that DIE corresponds to a function, returns nonzero
17277 if the function is prototyped. */
17278
17279 static int
17280 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17281 {
17282 struct attribute *attr;
17283
17284 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17285 if (attr && (DW_UNSND (attr) != 0))
17286 return 1;
17287
17288 /* The DWARF standard implies that the DW_AT_prototyped attribute
17289 is only meaninful for C, but the concept also extends to other
17290 languages that allow unprototyped functions (Eg: Objective C).
17291 For all other languages, assume that functions are always
17292 prototyped. */
17293 if (cu->language != language_c
17294 && cu->language != language_objc
17295 && cu->language != language_opencl)
17296 return 1;
17297
17298 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17299 prototyped and unprototyped functions; default to prototyped,
17300 since that is more common in modern code (and RealView warns
17301 about unprototyped functions). */
17302 if (producer_is_realview (cu->producer))
17303 return 1;
17304
17305 return 0;
17306 }
17307
17308 /* Handle DIES due to C code like:
17309
17310 struct foo
17311 {
17312 int (*funcp)(int a, long l);
17313 int b;
17314 };
17315
17316 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17317
17318 static struct type *
17319 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17320 {
17321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17322 struct type *type; /* Type that this function returns. */
17323 struct type *ftype; /* Function that returns above type. */
17324 struct attribute *attr;
17325
17326 type = die_type (die, cu);
17327
17328 /* The die_type call above may have already set the type for this DIE. */
17329 ftype = get_die_type (die, cu);
17330 if (ftype)
17331 return ftype;
17332
17333 ftype = lookup_function_type (type);
17334
17335 if (prototyped_function_p (die, cu))
17336 TYPE_PROTOTYPED (ftype) = 1;
17337
17338 /* Store the calling convention in the type if it's available in
17339 the subroutine die. Otherwise set the calling convention to
17340 the default value DW_CC_normal. */
17341 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17342 if (attr)
17343 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17344 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17345 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17346 else
17347 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17348
17349 /* Record whether the function returns normally to its caller or not
17350 if the DWARF producer set that information. */
17351 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17352 if (attr && (DW_UNSND (attr) != 0))
17353 TYPE_NO_RETURN (ftype) = 1;
17354
17355 /* We need to add the subroutine type to the die immediately so
17356 we don't infinitely recurse when dealing with parameters
17357 declared as the same subroutine type. */
17358 set_die_type (die, ftype, cu);
17359
17360 if (die->child != NULL)
17361 {
17362 struct type *void_type = objfile_type (objfile)->builtin_void;
17363 struct die_info *child_die;
17364 int nparams, iparams;
17365
17366 /* Count the number of parameters.
17367 FIXME: GDB currently ignores vararg functions, but knows about
17368 vararg member functions. */
17369 nparams = 0;
17370 child_die = die->child;
17371 while (child_die && child_die->tag)
17372 {
17373 if (child_die->tag == DW_TAG_formal_parameter)
17374 nparams++;
17375 else if (child_die->tag == DW_TAG_unspecified_parameters)
17376 TYPE_VARARGS (ftype) = 1;
17377 child_die = sibling_die (child_die);
17378 }
17379
17380 /* Allocate storage for parameters and fill them in. */
17381 TYPE_NFIELDS (ftype) = nparams;
17382 TYPE_FIELDS (ftype) = (struct field *)
17383 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17384
17385 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17386 even if we error out during the parameters reading below. */
17387 for (iparams = 0; iparams < nparams; iparams++)
17388 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17389
17390 iparams = 0;
17391 child_die = die->child;
17392 while (child_die && child_die->tag)
17393 {
17394 if (child_die->tag == DW_TAG_formal_parameter)
17395 {
17396 struct type *arg_type;
17397
17398 /* DWARF version 2 has no clean way to discern C++
17399 static and non-static member functions. G++ helps
17400 GDB by marking the first parameter for non-static
17401 member functions (which is the this pointer) as
17402 artificial. We pass this information to
17403 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17404
17405 DWARF version 3 added DW_AT_object_pointer, which GCC
17406 4.5 does not yet generate. */
17407 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17408 if (attr)
17409 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17410 else
17411 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17412 arg_type = die_type (child_die, cu);
17413
17414 /* RealView does not mark THIS as const, which the testsuite
17415 expects. GCC marks THIS as const in method definitions,
17416 but not in the class specifications (GCC PR 43053). */
17417 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17418 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17419 {
17420 int is_this = 0;
17421 struct dwarf2_cu *arg_cu = cu;
17422 const char *name = dwarf2_name (child_die, cu);
17423
17424 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17425 if (attr)
17426 {
17427 /* If the compiler emits this, use it. */
17428 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17429 is_this = 1;
17430 }
17431 else if (name && strcmp (name, "this") == 0)
17432 /* Function definitions will have the argument names. */
17433 is_this = 1;
17434 else if (name == NULL && iparams == 0)
17435 /* Declarations may not have the names, so like
17436 elsewhere in GDB, assume an artificial first
17437 argument is "this". */
17438 is_this = 1;
17439
17440 if (is_this)
17441 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17442 arg_type, 0);
17443 }
17444
17445 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17446 iparams++;
17447 }
17448 child_die = sibling_die (child_die);
17449 }
17450 }
17451
17452 return ftype;
17453 }
17454
17455 static struct type *
17456 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17457 {
17458 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17459 const char *name = NULL;
17460 struct type *this_type, *target_type;
17461
17462 name = dwarf2_full_name (NULL, die, cu);
17463 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17464 TYPE_TARGET_STUB (this_type) = 1;
17465 set_die_type (die, this_type, cu);
17466 target_type = die_type (die, cu);
17467 if (target_type != this_type)
17468 TYPE_TARGET_TYPE (this_type) = target_type;
17469 else
17470 {
17471 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17472 spec and cause infinite loops in GDB. */
17473 complaint (_("Self-referential DW_TAG_typedef "
17474 "- DIE at %s [in module %s]"),
17475 sect_offset_str (die->sect_off), objfile_name (objfile));
17476 TYPE_TARGET_TYPE (this_type) = NULL;
17477 }
17478 return this_type;
17479 }
17480
17481 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17482 (which may be different from NAME) to the architecture back-end to allow
17483 it to guess the correct format if necessary. */
17484
17485 static struct type *
17486 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17487 const char *name_hint)
17488 {
17489 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17490 const struct floatformat **format;
17491 struct type *type;
17492
17493 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17494 if (format)
17495 type = init_float_type (objfile, bits, name, format);
17496 else
17497 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17498
17499 return type;
17500 }
17501
17502 /* Find a representation of a given base type and install
17503 it in the TYPE field of the die. */
17504
17505 static struct type *
17506 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17507 {
17508 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17509 struct type *type;
17510 struct attribute *attr;
17511 int encoding = 0, bits = 0;
17512 const char *name;
17513
17514 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17515 if (attr)
17516 {
17517 encoding = DW_UNSND (attr);
17518 }
17519 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17520 if (attr)
17521 {
17522 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17523 }
17524 name = dwarf2_name (die, cu);
17525 if (!name)
17526 {
17527 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17528 }
17529
17530 switch (encoding)
17531 {
17532 case DW_ATE_address:
17533 /* Turn DW_ATE_address into a void * pointer. */
17534 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17535 type = init_pointer_type (objfile, bits, name, type);
17536 break;
17537 case DW_ATE_boolean:
17538 type = init_boolean_type (objfile, bits, 1, name);
17539 break;
17540 case DW_ATE_complex_float:
17541 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17542 type = init_complex_type (objfile, name, type);
17543 break;
17544 case DW_ATE_decimal_float:
17545 type = init_decfloat_type (objfile, bits, name);
17546 break;
17547 case DW_ATE_float:
17548 type = dwarf2_init_float_type (objfile, bits, name, name);
17549 break;
17550 case DW_ATE_signed:
17551 type = init_integer_type (objfile, bits, 0, name);
17552 break;
17553 case DW_ATE_unsigned:
17554 if (cu->language == language_fortran
17555 && name
17556 && startswith (name, "character("))
17557 type = init_character_type (objfile, bits, 1, name);
17558 else
17559 type = init_integer_type (objfile, bits, 1, name);
17560 break;
17561 case DW_ATE_signed_char:
17562 if (cu->language == language_ada || cu->language == language_m2
17563 || cu->language == language_pascal
17564 || cu->language == language_fortran)
17565 type = init_character_type (objfile, bits, 0, name);
17566 else
17567 type = init_integer_type (objfile, bits, 0, name);
17568 break;
17569 case DW_ATE_unsigned_char:
17570 if (cu->language == language_ada || cu->language == language_m2
17571 || cu->language == language_pascal
17572 || cu->language == language_fortran
17573 || cu->language == language_rust)
17574 type = init_character_type (objfile, bits, 1, name);
17575 else
17576 type = init_integer_type (objfile, bits, 1, name);
17577 break;
17578 case DW_ATE_UTF:
17579 {
17580 gdbarch *arch = get_objfile_arch (objfile);
17581
17582 if (bits == 16)
17583 type = builtin_type (arch)->builtin_char16;
17584 else if (bits == 32)
17585 type = builtin_type (arch)->builtin_char32;
17586 else
17587 {
17588 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17589 bits);
17590 type = init_integer_type (objfile, bits, 1, name);
17591 }
17592 return set_die_type (die, type, cu);
17593 }
17594 break;
17595
17596 default:
17597 complaint (_("unsupported DW_AT_encoding: '%s'"),
17598 dwarf_type_encoding_name (encoding));
17599 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17600 break;
17601 }
17602
17603 if (name && strcmp (name, "char") == 0)
17604 TYPE_NOSIGN (type) = 1;
17605
17606 maybe_set_alignment (cu, die, type);
17607
17608 return set_die_type (die, type, cu);
17609 }
17610
17611 /* Parse dwarf attribute if it's a block, reference or constant and put the
17612 resulting value of the attribute into struct bound_prop.
17613 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17614
17615 static int
17616 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17617 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17618 {
17619 struct dwarf2_property_baton *baton;
17620 struct obstack *obstack
17621 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17622
17623 if (attr == NULL || prop == NULL)
17624 return 0;
17625
17626 if (attr_form_is_block (attr))
17627 {
17628 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17629 baton->referenced_type = NULL;
17630 baton->locexpr.per_cu = cu->per_cu;
17631 baton->locexpr.size = DW_BLOCK (attr)->size;
17632 baton->locexpr.data = DW_BLOCK (attr)->data;
17633 prop->data.baton = baton;
17634 prop->kind = PROP_LOCEXPR;
17635 gdb_assert (prop->data.baton != NULL);
17636 }
17637 else if (attr_form_is_ref (attr))
17638 {
17639 struct dwarf2_cu *target_cu = cu;
17640 struct die_info *target_die;
17641 struct attribute *target_attr;
17642
17643 target_die = follow_die_ref (die, attr, &target_cu);
17644 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17645 if (target_attr == NULL)
17646 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17647 target_cu);
17648 if (target_attr == NULL)
17649 return 0;
17650
17651 switch (target_attr->name)
17652 {
17653 case DW_AT_location:
17654 if (attr_form_is_section_offset (target_attr))
17655 {
17656 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17657 baton->referenced_type = die_type (target_die, target_cu);
17658 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17659 prop->data.baton = baton;
17660 prop->kind = PROP_LOCLIST;
17661 gdb_assert (prop->data.baton != NULL);
17662 }
17663 else if (attr_form_is_block (target_attr))
17664 {
17665 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17666 baton->referenced_type = die_type (target_die, target_cu);
17667 baton->locexpr.per_cu = cu->per_cu;
17668 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17669 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17670 prop->data.baton = baton;
17671 prop->kind = PROP_LOCEXPR;
17672 gdb_assert (prop->data.baton != NULL);
17673 }
17674 else
17675 {
17676 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17677 "dynamic property");
17678 return 0;
17679 }
17680 break;
17681 case DW_AT_data_member_location:
17682 {
17683 LONGEST offset;
17684
17685 if (!handle_data_member_location (target_die, target_cu,
17686 &offset))
17687 return 0;
17688
17689 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17690 baton->referenced_type = read_type_die (target_die->parent,
17691 target_cu);
17692 baton->offset_info.offset = offset;
17693 baton->offset_info.type = die_type (target_die, target_cu);
17694 prop->data.baton = baton;
17695 prop->kind = PROP_ADDR_OFFSET;
17696 break;
17697 }
17698 }
17699 }
17700 else if (attr_form_is_constant (attr))
17701 {
17702 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17703 prop->kind = PROP_CONST;
17704 }
17705 else
17706 {
17707 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17708 dwarf2_name (die, cu));
17709 return 0;
17710 }
17711
17712 return 1;
17713 }
17714
17715 /* Read the given DW_AT_subrange DIE. */
17716
17717 static struct type *
17718 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17719 {
17720 struct type *base_type, *orig_base_type;
17721 struct type *range_type;
17722 struct attribute *attr;
17723 struct dynamic_prop low, high;
17724 int low_default_is_valid;
17725 int high_bound_is_count = 0;
17726 const char *name;
17727 ULONGEST negative_mask;
17728
17729 orig_base_type = die_type (die, cu);
17730 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17731 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17732 creating the range type, but we use the result of check_typedef
17733 when examining properties of the type. */
17734 base_type = check_typedef (orig_base_type);
17735
17736 /* The die_type call above may have already set the type for this DIE. */
17737 range_type = get_die_type (die, cu);
17738 if (range_type)
17739 return range_type;
17740
17741 low.kind = PROP_CONST;
17742 high.kind = PROP_CONST;
17743 high.data.const_val = 0;
17744
17745 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17746 omitting DW_AT_lower_bound. */
17747 switch (cu->language)
17748 {
17749 case language_c:
17750 case language_cplus:
17751 low.data.const_val = 0;
17752 low_default_is_valid = 1;
17753 break;
17754 case language_fortran:
17755 low.data.const_val = 1;
17756 low_default_is_valid = 1;
17757 break;
17758 case language_d:
17759 case language_objc:
17760 case language_rust:
17761 low.data.const_val = 0;
17762 low_default_is_valid = (cu->header.version >= 4);
17763 break;
17764 case language_ada:
17765 case language_m2:
17766 case language_pascal:
17767 low.data.const_val = 1;
17768 low_default_is_valid = (cu->header.version >= 4);
17769 break;
17770 default:
17771 low.data.const_val = 0;
17772 low_default_is_valid = 0;
17773 break;
17774 }
17775
17776 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17777 if (attr)
17778 attr_to_dynamic_prop (attr, die, cu, &low);
17779 else if (!low_default_is_valid)
17780 complaint (_("Missing DW_AT_lower_bound "
17781 "- DIE at %s [in module %s]"),
17782 sect_offset_str (die->sect_off),
17783 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17784
17785 struct attribute *attr_ub, *attr_count;
17786 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17787 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17788 {
17789 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17790 if (attr_to_dynamic_prop (attr, die, cu, &high))
17791 {
17792 /* If bounds are constant do the final calculation here. */
17793 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17794 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17795 else
17796 high_bound_is_count = 1;
17797 }
17798 else
17799 {
17800 if (attr_ub != NULL)
17801 complaint (_("Unresolved DW_AT_upper_bound "
17802 "- DIE at %s [in module %s]"),
17803 sect_offset_str (die->sect_off),
17804 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17805 if (attr_count != NULL)
17806 complaint (_("Unresolved DW_AT_count "
17807 "- DIE at %s [in module %s]"),
17808 sect_offset_str (die->sect_off),
17809 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17810 }
17811
17812 }
17813
17814 /* Dwarf-2 specifications explicitly allows to create subrange types
17815 without specifying a base type.
17816 In that case, the base type must be set to the type of
17817 the lower bound, upper bound or count, in that order, if any of these
17818 three attributes references an object that has a type.
17819 If no base type is found, the Dwarf-2 specifications say that
17820 a signed integer type of size equal to the size of an address should
17821 be used.
17822 For the following C code: `extern char gdb_int [];'
17823 GCC produces an empty range DIE.
17824 FIXME: muller/2010-05-28: Possible references to object for low bound,
17825 high bound or count are not yet handled by this code. */
17826 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17827 {
17828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17830 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17831 struct type *int_type = objfile_type (objfile)->builtin_int;
17832
17833 /* Test "int", "long int", and "long long int" objfile types,
17834 and select the first one having a size above or equal to the
17835 architecture address size. */
17836 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17837 base_type = int_type;
17838 else
17839 {
17840 int_type = objfile_type (objfile)->builtin_long;
17841 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17842 base_type = int_type;
17843 else
17844 {
17845 int_type = objfile_type (objfile)->builtin_long_long;
17846 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17847 base_type = int_type;
17848 }
17849 }
17850 }
17851
17852 /* Normally, the DWARF producers are expected to use a signed
17853 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17854 But this is unfortunately not always the case, as witnessed
17855 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17856 is used instead. To work around that ambiguity, we treat
17857 the bounds as signed, and thus sign-extend their values, when
17858 the base type is signed. */
17859 negative_mask =
17860 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17861 if (low.kind == PROP_CONST
17862 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17863 low.data.const_val |= negative_mask;
17864 if (high.kind == PROP_CONST
17865 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17866 high.data.const_val |= negative_mask;
17867
17868 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17869
17870 if (high_bound_is_count)
17871 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17872
17873 /* Ada expects an empty array on no boundary attributes. */
17874 if (attr == NULL && cu->language != language_ada)
17875 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17876
17877 name = dwarf2_name (die, cu);
17878 if (name)
17879 TYPE_NAME (range_type) = name;
17880
17881 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17882 if (attr)
17883 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17884
17885 maybe_set_alignment (cu, die, range_type);
17886
17887 set_die_type (die, range_type, cu);
17888
17889 /* set_die_type should be already done. */
17890 set_descriptive_type (range_type, die, cu);
17891
17892 return range_type;
17893 }
17894
17895 static struct type *
17896 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17897 {
17898 struct type *type;
17899
17900 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17901 NULL);
17902 TYPE_NAME (type) = dwarf2_name (die, cu);
17903
17904 /* In Ada, an unspecified type is typically used when the description
17905 of the type is defered to a different unit. When encountering
17906 such a type, we treat it as a stub, and try to resolve it later on,
17907 when needed. */
17908 if (cu->language == language_ada)
17909 TYPE_STUB (type) = 1;
17910
17911 return set_die_type (die, type, cu);
17912 }
17913
17914 /* Read a single die and all its descendents. Set the die's sibling
17915 field to NULL; set other fields in the die correctly, and set all
17916 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17917 location of the info_ptr after reading all of those dies. PARENT
17918 is the parent of the die in question. */
17919
17920 static struct die_info *
17921 read_die_and_children (const struct die_reader_specs *reader,
17922 const gdb_byte *info_ptr,
17923 const gdb_byte **new_info_ptr,
17924 struct die_info *parent)
17925 {
17926 struct die_info *die;
17927 const gdb_byte *cur_ptr;
17928 int has_children;
17929
17930 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17931 if (die == NULL)
17932 {
17933 *new_info_ptr = cur_ptr;
17934 return NULL;
17935 }
17936 store_in_ref_table (die, reader->cu);
17937
17938 if (has_children)
17939 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17940 else
17941 {
17942 die->child = NULL;
17943 *new_info_ptr = cur_ptr;
17944 }
17945
17946 die->sibling = NULL;
17947 die->parent = parent;
17948 return die;
17949 }
17950
17951 /* Read a die, all of its descendents, and all of its siblings; set
17952 all of the fields of all of the dies correctly. Arguments are as
17953 in read_die_and_children. */
17954
17955 static struct die_info *
17956 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17957 const gdb_byte *info_ptr,
17958 const gdb_byte **new_info_ptr,
17959 struct die_info *parent)
17960 {
17961 struct die_info *first_die, *last_sibling;
17962 const gdb_byte *cur_ptr;
17963
17964 cur_ptr = info_ptr;
17965 first_die = last_sibling = NULL;
17966
17967 while (1)
17968 {
17969 struct die_info *die
17970 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17971
17972 if (die == NULL)
17973 {
17974 *new_info_ptr = cur_ptr;
17975 return first_die;
17976 }
17977
17978 if (!first_die)
17979 first_die = die;
17980 else
17981 last_sibling->sibling = die;
17982
17983 last_sibling = die;
17984 }
17985 }
17986
17987 /* Read a die, all of its descendents, and all of its siblings; set
17988 all of the fields of all of the dies correctly. Arguments are as
17989 in read_die_and_children.
17990 This the main entry point for reading a DIE and all its children. */
17991
17992 static struct die_info *
17993 read_die_and_siblings (const struct die_reader_specs *reader,
17994 const gdb_byte *info_ptr,
17995 const gdb_byte **new_info_ptr,
17996 struct die_info *parent)
17997 {
17998 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17999 new_info_ptr, parent);
18000
18001 if (dwarf_die_debug)
18002 {
18003 fprintf_unfiltered (gdb_stdlog,
18004 "Read die from %s@0x%x of %s:\n",
18005 get_section_name (reader->die_section),
18006 (unsigned) (info_ptr - reader->die_section->buffer),
18007 bfd_get_filename (reader->abfd));
18008 dump_die (die, dwarf_die_debug);
18009 }
18010
18011 return die;
18012 }
18013
18014 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18015 attributes.
18016 The caller is responsible for filling in the extra attributes
18017 and updating (*DIEP)->num_attrs.
18018 Set DIEP to point to a newly allocated die with its information,
18019 except for its child, sibling, and parent fields.
18020 Set HAS_CHILDREN to tell whether the die has children or not. */
18021
18022 static const gdb_byte *
18023 read_full_die_1 (const struct die_reader_specs *reader,
18024 struct die_info **diep, const gdb_byte *info_ptr,
18025 int *has_children, int num_extra_attrs)
18026 {
18027 unsigned int abbrev_number, bytes_read, i;
18028 struct abbrev_info *abbrev;
18029 struct die_info *die;
18030 struct dwarf2_cu *cu = reader->cu;
18031 bfd *abfd = reader->abfd;
18032
18033 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18034 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18035 info_ptr += bytes_read;
18036 if (!abbrev_number)
18037 {
18038 *diep = NULL;
18039 *has_children = 0;
18040 return info_ptr;
18041 }
18042
18043 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18044 if (!abbrev)
18045 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18046 abbrev_number,
18047 bfd_get_filename (abfd));
18048
18049 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18050 die->sect_off = sect_off;
18051 die->tag = abbrev->tag;
18052 die->abbrev = abbrev_number;
18053
18054 /* Make the result usable.
18055 The caller needs to update num_attrs after adding the extra
18056 attributes. */
18057 die->num_attrs = abbrev->num_attrs;
18058
18059 for (i = 0; i < abbrev->num_attrs; ++i)
18060 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18061 info_ptr);
18062
18063 *diep = die;
18064 *has_children = abbrev->has_children;
18065 return info_ptr;
18066 }
18067
18068 /* Read a die and all its attributes.
18069 Set DIEP to point to a newly allocated die with its information,
18070 except for its child, sibling, and parent fields.
18071 Set HAS_CHILDREN to tell whether the die has children or not. */
18072
18073 static const gdb_byte *
18074 read_full_die (const struct die_reader_specs *reader,
18075 struct die_info **diep, const gdb_byte *info_ptr,
18076 int *has_children)
18077 {
18078 const gdb_byte *result;
18079
18080 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18081
18082 if (dwarf_die_debug)
18083 {
18084 fprintf_unfiltered (gdb_stdlog,
18085 "Read die from %s@0x%x of %s:\n",
18086 get_section_name (reader->die_section),
18087 (unsigned) (info_ptr - reader->die_section->buffer),
18088 bfd_get_filename (reader->abfd));
18089 dump_die (*diep, dwarf_die_debug);
18090 }
18091
18092 return result;
18093 }
18094 \f
18095 /* Abbreviation tables.
18096
18097 In DWARF version 2, the description of the debugging information is
18098 stored in a separate .debug_abbrev section. Before we read any
18099 dies from a section we read in all abbreviations and install them
18100 in a hash table. */
18101
18102 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18103
18104 struct abbrev_info *
18105 abbrev_table::alloc_abbrev ()
18106 {
18107 struct abbrev_info *abbrev;
18108
18109 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18110 memset (abbrev, 0, sizeof (struct abbrev_info));
18111
18112 return abbrev;
18113 }
18114
18115 /* Add an abbreviation to the table. */
18116
18117 void
18118 abbrev_table::add_abbrev (unsigned int abbrev_number,
18119 struct abbrev_info *abbrev)
18120 {
18121 unsigned int hash_number;
18122
18123 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18124 abbrev->next = m_abbrevs[hash_number];
18125 m_abbrevs[hash_number] = abbrev;
18126 }
18127
18128 /* Look up an abbrev in the table.
18129 Returns NULL if the abbrev is not found. */
18130
18131 struct abbrev_info *
18132 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18133 {
18134 unsigned int hash_number;
18135 struct abbrev_info *abbrev;
18136
18137 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18138 abbrev = m_abbrevs[hash_number];
18139
18140 while (abbrev)
18141 {
18142 if (abbrev->number == abbrev_number)
18143 return abbrev;
18144 abbrev = abbrev->next;
18145 }
18146 return NULL;
18147 }
18148
18149 /* Read in an abbrev table. */
18150
18151 static abbrev_table_up
18152 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18153 struct dwarf2_section_info *section,
18154 sect_offset sect_off)
18155 {
18156 struct objfile *objfile = dwarf2_per_objfile->objfile;
18157 bfd *abfd = get_section_bfd_owner (section);
18158 const gdb_byte *abbrev_ptr;
18159 struct abbrev_info *cur_abbrev;
18160 unsigned int abbrev_number, bytes_read, abbrev_name;
18161 unsigned int abbrev_form;
18162 struct attr_abbrev *cur_attrs;
18163 unsigned int allocated_attrs;
18164
18165 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18166
18167 dwarf2_read_section (objfile, section);
18168 abbrev_ptr = section->buffer + to_underlying (sect_off);
18169 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18170 abbrev_ptr += bytes_read;
18171
18172 allocated_attrs = ATTR_ALLOC_CHUNK;
18173 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18174
18175 /* Loop until we reach an abbrev number of 0. */
18176 while (abbrev_number)
18177 {
18178 cur_abbrev = abbrev_table->alloc_abbrev ();
18179
18180 /* read in abbrev header */
18181 cur_abbrev->number = abbrev_number;
18182 cur_abbrev->tag
18183 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18184 abbrev_ptr += bytes_read;
18185 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18186 abbrev_ptr += 1;
18187
18188 /* now read in declarations */
18189 for (;;)
18190 {
18191 LONGEST implicit_const;
18192
18193 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18194 abbrev_ptr += bytes_read;
18195 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18196 abbrev_ptr += bytes_read;
18197 if (abbrev_form == DW_FORM_implicit_const)
18198 {
18199 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18200 &bytes_read);
18201 abbrev_ptr += bytes_read;
18202 }
18203 else
18204 {
18205 /* Initialize it due to a false compiler warning. */
18206 implicit_const = -1;
18207 }
18208
18209 if (abbrev_name == 0)
18210 break;
18211
18212 if (cur_abbrev->num_attrs == allocated_attrs)
18213 {
18214 allocated_attrs += ATTR_ALLOC_CHUNK;
18215 cur_attrs
18216 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18217 }
18218
18219 cur_attrs[cur_abbrev->num_attrs].name
18220 = (enum dwarf_attribute) abbrev_name;
18221 cur_attrs[cur_abbrev->num_attrs].form
18222 = (enum dwarf_form) abbrev_form;
18223 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18224 ++cur_abbrev->num_attrs;
18225 }
18226
18227 cur_abbrev->attrs =
18228 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18229 cur_abbrev->num_attrs);
18230 memcpy (cur_abbrev->attrs, cur_attrs,
18231 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18232
18233 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18234
18235 /* Get next abbreviation.
18236 Under Irix6 the abbreviations for a compilation unit are not
18237 always properly terminated with an abbrev number of 0.
18238 Exit loop if we encounter an abbreviation which we have
18239 already read (which means we are about to read the abbreviations
18240 for the next compile unit) or if the end of the abbreviation
18241 table is reached. */
18242 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18243 break;
18244 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18245 abbrev_ptr += bytes_read;
18246 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18247 break;
18248 }
18249
18250 xfree (cur_attrs);
18251 return abbrev_table;
18252 }
18253
18254 /* Returns nonzero if TAG represents a type that we might generate a partial
18255 symbol for. */
18256
18257 static int
18258 is_type_tag_for_partial (int tag)
18259 {
18260 switch (tag)
18261 {
18262 #if 0
18263 /* Some types that would be reasonable to generate partial symbols for,
18264 that we don't at present. */
18265 case DW_TAG_array_type:
18266 case DW_TAG_file_type:
18267 case DW_TAG_ptr_to_member_type:
18268 case DW_TAG_set_type:
18269 case DW_TAG_string_type:
18270 case DW_TAG_subroutine_type:
18271 #endif
18272 case DW_TAG_base_type:
18273 case DW_TAG_class_type:
18274 case DW_TAG_interface_type:
18275 case DW_TAG_enumeration_type:
18276 case DW_TAG_structure_type:
18277 case DW_TAG_subrange_type:
18278 case DW_TAG_typedef:
18279 case DW_TAG_union_type:
18280 return 1;
18281 default:
18282 return 0;
18283 }
18284 }
18285
18286 /* Load all DIEs that are interesting for partial symbols into memory. */
18287
18288 static struct partial_die_info *
18289 load_partial_dies (const struct die_reader_specs *reader,
18290 const gdb_byte *info_ptr, int building_psymtab)
18291 {
18292 struct dwarf2_cu *cu = reader->cu;
18293 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18294 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18295 unsigned int bytes_read;
18296 unsigned int load_all = 0;
18297 int nesting_level = 1;
18298
18299 parent_die = NULL;
18300 last_die = NULL;
18301
18302 gdb_assert (cu->per_cu != NULL);
18303 if (cu->per_cu->load_all_dies)
18304 load_all = 1;
18305
18306 cu->partial_dies
18307 = htab_create_alloc_ex (cu->header.length / 12,
18308 partial_die_hash,
18309 partial_die_eq,
18310 NULL,
18311 &cu->comp_unit_obstack,
18312 hashtab_obstack_allocate,
18313 dummy_obstack_deallocate);
18314
18315 while (1)
18316 {
18317 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18318
18319 /* A NULL abbrev means the end of a series of children. */
18320 if (abbrev == NULL)
18321 {
18322 if (--nesting_level == 0)
18323 return first_die;
18324
18325 info_ptr += bytes_read;
18326 last_die = parent_die;
18327 parent_die = parent_die->die_parent;
18328 continue;
18329 }
18330
18331 /* Check for template arguments. We never save these; if
18332 they're seen, we just mark the parent, and go on our way. */
18333 if (parent_die != NULL
18334 && cu->language == language_cplus
18335 && (abbrev->tag == DW_TAG_template_type_param
18336 || abbrev->tag == DW_TAG_template_value_param))
18337 {
18338 parent_die->has_template_arguments = 1;
18339
18340 if (!load_all)
18341 {
18342 /* We don't need a partial DIE for the template argument. */
18343 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18344 continue;
18345 }
18346 }
18347
18348 /* We only recurse into c++ subprograms looking for template arguments.
18349 Skip their other children. */
18350 if (!load_all
18351 && cu->language == language_cplus
18352 && parent_die != NULL
18353 && parent_die->tag == DW_TAG_subprogram)
18354 {
18355 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18356 continue;
18357 }
18358
18359 /* Check whether this DIE is interesting enough to save. Normally
18360 we would not be interested in members here, but there may be
18361 later variables referencing them via DW_AT_specification (for
18362 static members). */
18363 if (!load_all
18364 && !is_type_tag_for_partial (abbrev->tag)
18365 && abbrev->tag != DW_TAG_constant
18366 && abbrev->tag != DW_TAG_enumerator
18367 && abbrev->tag != DW_TAG_subprogram
18368 && abbrev->tag != DW_TAG_inlined_subroutine
18369 && abbrev->tag != DW_TAG_lexical_block
18370 && abbrev->tag != DW_TAG_variable
18371 && abbrev->tag != DW_TAG_namespace
18372 && abbrev->tag != DW_TAG_module
18373 && abbrev->tag != DW_TAG_member
18374 && abbrev->tag != DW_TAG_imported_unit
18375 && abbrev->tag != DW_TAG_imported_declaration)
18376 {
18377 /* Otherwise we skip to the next sibling, if any. */
18378 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18379 continue;
18380 }
18381
18382 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18383 abbrev);
18384
18385 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18386
18387 /* This two-pass algorithm for processing partial symbols has a
18388 high cost in cache pressure. Thus, handle some simple cases
18389 here which cover the majority of C partial symbols. DIEs
18390 which neither have specification tags in them, nor could have
18391 specification tags elsewhere pointing at them, can simply be
18392 processed and discarded.
18393
18394 This segment is also optional; scan_partial_symbols and
18395 add_partial_symbol will handle these DIEs if we chain
18396 them in normally. When compilers which do not emit large
18397 quantities of duplicate debug information are more common,
18398 this code can probably be removed. */
18399
18400 /* Any complete simple types at the top level (pretty much all
18401 of them, for a language without namespaces), can be processed
18402 directly. */
18403 if (parent_die == NULL
18404 && pdi.has_specification == 0
18405 && pdi.is_declaration == 0
18406 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18407 || pdi.tag == DW_TAG_base_type
18408 || pdi.tag == DW_TAG_subrange_type))
18409 {
18410 if (building_psymtab && pdi.name != NULL)
18411 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18412 VAR_DOMAIN, LOC_TYPEDEF, -1,
18413 &objfile->static_psymbols,
18414 0, cu->language, objfile);
18415 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18416 continue;
18417 }
18418
18419 /* The exception for DW_TAG_typedef with has_children above is
18420 a workaround of GCC PR debug/47510. In the case of this complaint
18421 type_name_or_error will error on such types later.
18422
18423 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18424 it could not find the child DIEs referenced later, this is checked
18425 above. In correct DWARF DW_TAG_typedef should have no children. */
18426
18427 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18428 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18429 "- DIE at %s [in module %s]"),
18430 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18431
18432 /* If we're at the second level, and we're an enumerator, and
18433 our parent has no specification (meaning possibly lives in a
18434 namespace elsewhere), then we can add the partial symbol now
18435 instead of queueing it. */
18436 if (pdi.tag == DW_TAG_enumerator
18437 && parent_die != NULL
18438 && parent_die->die_parent == NULL
18439 && parent_die->tag == DW_TAG_enumeration_type
18440 && parent_die->has_specification == 0)
18441 {
18442 if (pdi.name == NULL)
18443 complaint (_("malformed enumerator DIE ignored"));
18444 else if (building_psymtab)
18445 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18446 VAR_DOMAIN, LOC_CONST, -1,
18447 cu->language == language_cplus
18448 ? &objfile->global_psymbols
18449 : &objfile->static_psymbols,
18450 0, cu->language, objfile);
18451
18452 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18453 continue;
18454 }
18455
18456 struct partial_die_info *part_die
18457 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18458
18459 /* We'll save this DIE so link it in. */
18460 part_die->die_parent = parent_die;
18461 part_die->die_sibling = NULL;
18462 part_die->die_child = NULL;
18463
18464 if (last_die && last_die == parent_die)
18465 last_die->die_child = part_die;
18466 else if (last_die)
18467 last_die->die_sibling = part_die;
18468
18469 last_die = part_die;
18470
18471 if (first_die == NULL)
18472 first_die = part_die;
18473
18474 /* Maybe add the DIE to the hash table. Not all DIEs that we
18475 find interesting need to be in the hash table, because we
18476 also have the parent/sibling/child chains; only those that we
18477 might refer to by offset later during partial symbol reading.
18478
18479 For now this means things that might have be the target of a
18480 DW_AT_specification, DW_AT_abstract_origin, or
18481 DW_AT_extension. DW_AT_extension will refer only to
18482 namespaces; DW_AT_abstract_origin refers to functions (and
18483 many things under the function DIE, but we do not recurse
18484 into function DIEs during partial symbol reading) and
18485 possibly variables as well; DW_AT_specification refers to
18486 declarations. Declarations ought to have the DW_AT_declaration
18487 flag. It happens that GCC forgets to put it in sometimes, but
18488 only for functions, not for types.
18489
18490 Adding more things than necessary to the hash table is harmless
18491 except for the performance cost. Adding too few will result in
18492 wasted time in find_partial_die, when we reread the compilation
18493 unit with load_all_dies set. */
18494
18495 if (load_all
18496 || abbrev->tag == DW_TAG_constant
18497 || abbrev->tag == DW_TAG_subprogram
18498 || abbrev->tag == DW_TAG_variable
18499 || abbrev->tag == DW_TAG_namespace
18500 || part_die->is_declaration)
18501 {
18502 void **slot;
18503
18504 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18505 to_underlying (part_die->sect_off),
18506 INSERT);
18507 *slot = part_die;
18508 }
18509
18510 /* For some DIEs we want to follow their children (if any). For C
18511 we have no reason to follow the children of structures; for other
18512 languages we have to, so that we can get at method physnames
18513 to infer fully qualified class names, for DW_AT_specification,
18514 and for C++ template arguments. For C++, we also look one level
18515 inside functions to find template arguments (if the name of the
18516 function does not already contain the template arguments).
18517
18518 For Ada, we need to scan the children of subprograms and lexical
18519 blocks as well because Ada allows the definition of nested
18520 entities that could be interesting for the debugger, such as
18521 nested subprograms for instance. */
18522 if (last_die->has_children
18523 && (load_all
18524 || last_die->tag == DW_TAG_namespace
18525 || last_die->tag == DW_TAG_module
18526 || last_die->tag == DW_TAG_enumeration_type
18527 || (cu->language == language_cplus
18528 && last_die->tag == DW_TAG_subprogram
18529 && (last_die->name == NULL
18530 || strchr (last_die->name, '<') == NULL))
18531 || (cu->language != language_c
18532 && (last_die->tag == DW_TAG_class_type
18533 || last_die->tag == DW_TAG_interface_type
18534 || last_die->tag == DW_TAG_structure_type
18535 || last_die->tag == DW_TAG_union_type))
18536 || (cu->language == language_ada
18537 && (last_die->tag == DW_TAG_subprogram
18538 || last_die->tag == DW_TAG_lexical_block))))
18539 {
18540 nesting_level++;
18541 parent_die = last_die;
18542 continue;
18543 }
18544
18545 /* Otherwise we skip to the next sibling, if any. */
18546 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18547
18548 /* Back to the top, do it again. */
18549 }
18550 }
18551
18552 partial_die_info::partial_die_info (sect_offset sect_off_,
18553 struct abbrev_info *abbrev)
18554 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18555 {
18556 }
18557
18558 /* Read a minimal amount of information into the minimal die structure.
18559 INFO_PTR should point just after the initial uleb128 of a DIE. */
18560
18561 const gdb_byte *
18562 partial_die_info::read (const struct die_reader_specs *reader,
18563 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18564 {
18565 struct dwarf2_cu *cu = reader->cu;
18566 struct dwarf2_per_objfile *dwarf2_per_objfile
18567 = cu->per_cu->dwarf2_per_objfile;
18568 unsigned int i;
18569 int has_low_pc_attr = 0;
18570 int has_high_pc_attr = 0;
18571 int high_pc_relative = 0;
18572
18573 for (i = 0; i < abbrev.num_attrs; ++i)
18574 {
18575 struct attribute attr;
18576
18577 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18578
18579 /* Store the data if it is of an attribute we want to keep in a
18580 partial symbol table. */
18581 switch (attr.name)
18582 {
18583 case DW_AT_name:
18584 switch (tag)
18585 {
18586 case DW_TAG_compile_unit:
18587 case DW_TAG_partial_unit:
18588 case DW_TAG_type_unit:
18589 /* Compilation units have a DW_AT_name that is a filename, not
18590 a source language identifier. */
18591 case DW_TAG_enumeration_type:
18592 case DW_TAG_enumerator:
18593 /* These tags always have simple identifiers already; no need
18594 to canonicalize them. */
18595 name = DW_STRING (&attr);
18596 break;
18597 default:
18598 {
18599 struct objfile *objfile = dwarf2_per_objfile->objfile;
18600
18601 name
18602 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18603 &objfile->per_bfd->storage_obstack);
18604 }
18605 break;
18606 }
18607 break;
18608 case DW_AT_linkage_name:
18609 case DW_AT_MIPS_linkage_name:
18610 /* Note that both forms of linkage name might appear. We
18611 assume they will be the same, and we only store the last
18612 one we see. */
18613 if (cu->language == language_ada)
18614 name = DW_STRING (&attr);
18615 linkage_name = DW_STRING (&attr);
18616 break;
18617 case DW_AT_low_pc:
18618 has_low_pc_attr = 1;
18619 lowpc = attr_value_as_address (&attr);
18620 break;
18621 case DW_AT_high_pc:
18622 has_high_pc_attr = 1;
18623 highpc = attr_value_as_address (&attr);
18624 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18625 high_pc_relative = 1;
18626 break;
18627 case DW_AT_location:
18628 /* Support the .debug_loc offsets. */
18629 if (attr_form_is_block (&attr))
18630 {
18631 d.locdesc = DW_BLOCK (&attr);
18632 }
18633 else if (attr_form_is_section_offset (&attr))
18634 {
18635 dwarf2_complex_location_expr_complaint ();
18636 }
18637 else
18638 {
18639 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18640 "partial symbol information");
18641 }
18642 break;
18643 case DW_AT_external:
18644 is_external = DW_UNSND (&attr);
18645 break;
18646 case DW_AT_declaration:
18647 is_declaration = DW_UNSND (&attr);
18648 break;
18649 case DW_AT_type:
18650 has_type = 1;
18651 break;
18652 case DW_AT_abstract_origin:
18653 case DW_AT_specification:
18654 case DW_AT_extension:
18655 has_specification = 1;
18656 spec_offset = dwarf2_get_ref_die_offset (&attr);
18657 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18658 || cu->per_cu->is_dwz);
18659 break;
18660 case DW_AT_sibling:
18661 /* Ignore absolute siblings, they might point outside of
18662 the current compile unit. */
18663 if (attr.form == DW_FORM_ref_addr)
18664 complaint (_("ignoring absolute DW_AT_sibling"));
18665 else
18666 {
18667 const gdb_byte *buffer = reader->buffer;
18668 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18669 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18670
18671 if (sibling_ptr < info_ptr)
18672 complaint (_("DW_AT_sibling points backwards"));
18673 else if (sibling_ptr > reader->buffer_end)
18674 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18675 else
18676 sibling = sibling_ptr;
18677 }
18678 break;
18679 case DW_AT_byte_size:
18680 has_byte_size = 1;
18681 break;
18682 case DW_AT_const_value:
18683 has_const_value = 1;
18684 break;
18685 case DW_AT_calling_convention:
18686 /* DWARF doesn't provide a way to identify a program's source-level
18687 entry point. DW_AT_calling_convention attributes are only meant
18688 to describe functions' calling conventions.
18689
18690 However, because it's a necessary piece of information in
18691 Fortran, and before DWARF 4 DW_CC_program was the only
18692 piece of debugging information whose definition refers to
18693 a 'main program' at all, several compilers marked Fortran
18694 main programs with DW_CC_program --- even when those
18695 functions use the standard calling conventions.
18696
18697 Although DWARF now specifies a way to provide this
18698 information, we support this practice for backward
18699 compatibility. */
18700 if (DW_UNSND (&attr) == DW_CC_program
18701 && cu->language == language_fortran)
18702 main_subprogram = 1;
18703 break;
18704 case DW_AT_inline:
18705 if (DW_UNSND (&attr) == DW_INL_inlined
18706 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18707 may_be_inlined = 1;
18708 break;
18709
18710 case DW_AT_import:
18711 if (tag == DW_TAG_imported_unit)
18712 {
18713 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18714 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18715 || cu->per_cu->is_dwz);
18716 }
18717 break;
18718
18719 case DW_AT_main_subprogram:
18720 main_subprogram = DW_UNSND (&attr);
18721 break;
18722
18723 default:
18724 break;
18725 }
18726 }
18727
18728 if (high_pc_relative)
18729 highpc += lowpc;
18730
18731 if (has_low_pc_attr && has_high_pc_attr)
18732 {
18733 /* When using the GNU linker, .gnu.linkonce. sections are used to
18734 eliminate duplicate copies of functions and vtables and such.
18735 The linker will arbitrarily choose one and discard the others.
18736 The AT_*_pc values for such functions refer to local labels in
18737 these sections. If the section from that file was discarded, the
18738 labels are not in the output, so the relocs get a value of 0.
18739 If this is a discarded function, mark the pc bounds as invalid,
18740 so that GDB will ignore it. */
18741 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18742 {
18743 struct objfile *objfile = dwarf2_per_objfile->objfile;
18744 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18745
18746 complaint (_("DW_AT_low_pc %s is zero "
18747 "for DIE at %s [in module %s]"),
18748 paddress (gdbarch, lowpc),
18749 sect_offset_str (sect_off),
18750 objfile_name (objfile));
18751 }
18752 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18753 else if (lowpc >= highpc)
18754 {
18755 struct objfile *objfile = dwarf2_per_objfile->objfile;
18756 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18757
18758 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18759 "for DIE at %s [in module %s]"),
18760 paddress (gdbarch, lowpc),
18761 paddress (gdbarch, highpc),
18762 sect_offset_str (sect_off),
18763 objfile_name (objfile));
18764 }
18765 else
18766 has_pc_info = 1;
18767 }
18768
18769 return info_ptr;
18770 }
18771
18772 /* Find a cached partial DIE at OFFSET in CU. */
18773
18774 struct partial_die_info *
18775 dwarf2_cu::find_partial_die (sect_offset sect_off)
18776 {
18777 struct partial_die_info *lookup_die = NULL;
18778 struct partial_die_info part_die (sect_off);
18779
18780 lookup_die = ((struct partial_die_info *)
18781 htab_find_with_hash (partial_dies, &part_die,
18782 to_underlying (sect_off)));
18783
18784 return lookup_die;
18785 }
18786
18787 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18788 except in the case of .debug_types DIEs which do not reference
18789 outside their CU (they do however referencing other types via
18790 DW_FORM_ref_sig8). */
18791
18792 static struct partial_die_info *
18793 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18794 {
18795 struct dwarf2_per_objfile *dwarf2_per_objfile
18796 = cu->per_cu->dwarf2_per_objfile;
18797 struct objfile *objfile = dwarf2_per_objfile->objfile;
18798 struct dwarf2_per_cu_data *per_cu = NULL;
18799 struct partial_die_info *pd = NULL;
18800
18801 if (offset_in_dwz == cu->per_cu->is_dwz
18802 && offset_in_cu_p (&cu->header, sect_off))
18803 {
18804 pd = cu->find_partial_die (sect_off);
18805 if (pd != NULL)
18806 return pd;
18807 /* We missed recording what we needed.
18808 Load all dies and try again. */
18809 per_cu = cu->per_cu;
18810 }
18811 else
18812 {
18813 /* TUs don't reference other CUs/TUs (except via type signatures). */
18814 if (cu->per_cu->is_debug_types)
18815 {
18816 error (_("Dwarf Error: Type Unit at offset %s contains"
18817 " external reference to offset %s [in module %s].\n"),
18818 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18819 bfd_get_filename (objfile->obfd));
18820 }
18821 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18822 dwarf2_per_objfile);
18823
18824 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18825 load_partial_comp_unit (per_cu);
18826
18827 per_cu->cu->last_used = 0;
18828 pd = per_cu->cu->find_partial_die (sect_off);
18829 }
18830
18831 /* If we didn't find it, and not all dies have been loaded,
18832 load them all and try again. */
18833
18834 if (pd == NULL && per_cu->load_all_dies == 0)
18835 {
18836 per_cu->load_all_dies = 1;
18837
18838 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18839 THIS_CU->cu may already be in use. So we can't just free it and
18840 replace its DIEs with the ones we read in. Instead, we leave those
18841 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18842 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18843 set. */
18844 load_partial_comp_unit (per_cu);
18845
18846 pd = per_cu->cu->find_partial_die (sect_off);
18847 }
18848
18849 if (pd == NULL)
18850 internal_error (__FILE__, __LINE__,
18851 _("could not find partial DIE %s "
18852 "in cache [from module %s]\n"),
18853 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18854 return pd;
18855 }
18856
18857 /* See if we can figure out if the class lives in a namespace. We do
18858 this by looking for a member function; its demangled name will
18859 contain namespace info, if there is any. */
18860
18861 static void
18862 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18863 struct dwarf2_cu *cu)
18864 {
18865 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18866 what template types look like, because the demangler
18867 frequently doesn't give the same name as the debug info. We
18868 could fix this by only using the demangled name to get the
18869 prefix (but see comment in read_structure_type). */
18870
18871 struct partial_die_info *real_pdi;
18872 struct partial_die_info *child_pdi;
18873
18874 /* If this DIE (this DIE's specification, if any) has a parent, then
18875 we should not do this. We'll prepend the parent's fully qualified
18876 name when we create the partial symbol. */
18877
18878 real_pdi = struct_pdi;
18879 while (real_pdi->has_specification)
18880 real_pdi = find_partial_die (real_pdi->spec_offset,
18881 real_pdi->spec_is_dwz, cu);
18882
18883 if (real_pdi->die_parent != NULL)
18884 return;
18885
18886 for (child_pdi = struct_pdi->die_child;
18887 child_pdi != NULL;
18888 child_pdi = child_pdi->die_sibling)
18889 {
18890 if (child_pdi->tag == DW_TAG_subprogram
18891 && child_pdi->linkage_name != NULL)
18892 {
18893 char *actual_class_name
18894 = language_class_name_from_physname (cu->language_defn,
18895 child_pdi->linkage_name);
18896 if (actual_class_name != NULL)
18897 {
18898 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18899 struct_pdi->name
18900 = ((const char *)
18901 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18902 actual_class_name,
18903 strlen (actual_class_name)));
18904 xfree (actual_class_name);
18905 }
18906 break;
18907 }
18908 }
18909 }
18910
18911 void
18912 partial_die_info::fixup (struct dwarf2_cu *cu)
18913 {
18914 /* Once we've fixed up a die, there's no point in doing so again.
18915 This also avoids a memory leak if we were to call
18916 guess_partial_die_structure_name multiple times. */
18917 if (fixup_called)
18918 return;
18919
18920 /* If we found a reference attribute and the DIE has no name, try
18921 to find a name in the referred to DIE. */
18922
18923 if (name == NULL && has_specification)
18924 {
18925 struct partial_die_info *spec_die;
18926
18927 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18928
18929 spec_die->fixup (cu);
18930
18931 if (spec_die->name)
18932 {
18933 name = spec_die->name;
18934
18935 /* Copy DW_AT_external attribute if it is set. */
18936 if (spec_die->is_external)
18937 is_external = spec_die->is_external;
18938 }
18939 }
18940
18941 /* Set default names for some unnamed DIEs. */
18942
18943 if (name == NULL && tag == DW_TAG_namespace)
18944 name = CP_ANONYMOUS_NAMESPACE_STR;
18945
18946 /* If there is no parent die to provide a namespace, and there are
18947 children, see if we can determine the namespace from their linkage
18948 name. */
18949 if (cu->language == language_cplus
18950 && !VEC_empty (dwarf2_section_info_def,
18951 cu->per_cu->dwarf2_per_objfile->types)
18952 && die_parent == NULL
18953 && has_children
18954 && (tag == DW_TAG_class_type
18955 || tag == DW_TAG_structure_type
18956 || tag == DW_TAG_union_type))
18957 guess_partial_die_structure_name (this, cu);
18958
18959 /* GCC might emit a nameless struct or union that has a linkage
18960 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18961 if (name == NULL
18962 && (tag == DW_TAG_class_type
18963 || tag == DW_TAG_interface_type
18964 || tag == DW_TAG_structure_type
18965 || tag == DW_TAG_union_type)
18966 && linkage_name != NULL)
18967 {
18968 char *demangled;
18969
18970 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18971 if (demangled)
18972 {
18973 const char *base;
18974
18975 /* Strip any leading namespaces/classes, keep only the base name.
18976 DW_AT_name for named DIEs does not contain the prefixes. */
18977 base = strrchr (demangled, ':');
18978 if (base && base > demangled && base[-1] == ':')
18979 base++;
18980 else
18981 base = demangled;
18982
18983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18984 name
18985 = ((const char *)
18986 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18987 base, strlen (base)));
18988 xfree (demangled);
18989 }
18990 }
18991
18992 fixup_called = 1;
18993 }
18994
18995 /* Read an attribute value described by an attribute form. */
18996
18997 static const gdb_byte *
18998 read_attribute_value (const struct die_reader_specs *reader,
18999 struct attribute *attr, unsigned form,
19000 LONGEST implicit_const, const gdb_byte *info_ptr)
19001 {
19002 struct dwarf2_cu *cu = reader->cu;
19003 struct dwarf2_per_objfile *dwarf2_per_objfile
19004 = cu->per_cu->dwarf2_per_objfile;
19005 struct objfile *objfile = dwarf2_per_objfile->objfile;
19006 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19007 bfd *abfd = reader->abfd;
19008 struct comp_unit_head *cu_header = &cu->header;
19009 unsigned int bytes_read;
19010 struct dwarf_block *blk;
19011
19012 attr->form = (enum dwarf_form) form;
19013 switch (form)
19014 {
19015 case DW_FORM_ref_addr:
19016 if (cu->header.version == 2)
19017 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19018 else
19019 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19020 &cu->header, &bytes_read);
19021 info_ptr += bytes_read;
19022 break;
19023 case DW_FORM_GNU_ref_alt:
19024 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19025 info_ptr += bytes_read;
19026 break;
19027 case DW_FORM_addr:
19028 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19029 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19030 info_ptr += bytes_read;
19031 break;
19032 case DW_FORM_block2:
19033 blk = dwarf_alloc_block (cu);
19034 blk->size = read_2_bytes (abfd, info_ptr);
19035 info_ptr += 2;
19036 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19037 info_ptr += blk->size;
19038 DW_BLOCK (attr) = blk;
19039 break;
19040 case DW_FORM_block4:
19041 blk = dwarf_alloc_block (cu);
19042 blk->size = read_4_bytes (abfd, info_ptr);
19043 info_ptr += 4;
19044 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19045 info_ptr += blk->size;
19046 DW_BLOCK (attr) = blk;
19047 break;
19048 case DW_FORM_data2:
19049 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19050 info_ptr += 2;
19051 break;
19052 case DW_FORM_data4:
19053 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19054 info_ptr += 4;
19055 break;
19056 case DW_FORM_data8:
19057 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19058 info_ptr += 8;
19059 break;
19060 case DW_FORM_data16:
19061 blk = dwarf_alloc_block (cu);
19062 blk->size = 16;
19063 blk->data = read_n_bytes (abfd, info_ptr, 16);
19064 info_ptr += 16;
19065 DW_BLOCK (attr) = blk;
19066 break;
19067 case DW_FORM_sec_offset:
19068 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19069 info_ptr += bytes_read;
19070 break;
19071 case DW_FORM_string:
19072 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19073 DW_STRING_IS_CANONICAL (attr) = 0;
19074 info_ptr += bytes_read;
19075 break;
19076 case DW_FORM_strp:
19077 if (!cu->per_cu->is_dwz)
19078 {
19079 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19080 abfd, info_ptr, cu_header,
19081 &bytes_read);
19082 DW_STRING_IS_CANONICAL (attr) = 0;
19083 info_ptr += bytes_read;
19084 break;
19085 }
19086 /* FALLTHROUGH */
19087 case DW_FORM_line_strp:
19088 if (!cu->per_cu->is_dwz)
19089 {
19090 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19091 abfd, info_ptr,
19092 cu_header, &bytes_read);
19093 DW_STRING_IS_CANONICAL (attr) = 0;
19094 info_ptr += bytes_read;
19095 break;
19096 }
19097 /* FALLTHROUGH */
19098 case DW_FORM_GNU_strp_alt:
19099 {
19100 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19101 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19102 &bytes_read);
19103
19104 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19105 dwz, str_offset);
19106 DW_STRING_IS_CANONICAL (attr) = 0;
19107 info_ptr += bytes_read;
19108 }
19109 break;
19110 case DW_FORM_exprloc:
19111 case DW_FORM_block:
19112 blk = dwarf_alloc_block (cu);
19113 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19114 info_ptr += bytes_read;
19115 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19116 info_ptr += blk->size;
19117 DW_BLOCK (attr) = blk;
19118 break;
19119 case DW_FORM_block1:
19120 blk = dwarf_alloc_block (cu);
19121 blk->size = read_1_byte (abfd, info_ptr);
19122 info_ptr += 1;
19123 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19124 info_ptr += blk->size;
19125 DW_BLOCK (attr) = blk;
19126 break;
19127 case DW_FORM_data1:
19128 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19129 info_ptr += 1;
19130 break;
19131 case DW_FORM_flag:
19132 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19133 info_ptr += 1;
19134 break;
19135 case DW_FORM_flag_present:
19136 DW_UNSND (attr) = 1;
19137 break;
19138 case DW_FORM_sdata:
19139 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19140 info_ptr += bytes_read;
19141 break;
19142 case DW_FORM_udata:
19143 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19144 info_ptr += bytes_read;
19145 break;
19146 case DW_FORM_ref1:
19147 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19148 + read_1_byte (abfd, info_ptr));
19149 info_ptr += 1;
19150 break;
19151 case DW_FORM_ref2:
19152 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19153 + read_2_bytes (abfd, info_ptr));
19154 info_ptr += 2;
19155 break;
19156 case DW_FORM_ref4:
19157 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19158 + read_4_bytes (abfd, info_ptr));
19159 info_ptr += 4;
19160 break;
19161 case DW_FORM_ref8:
19162 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19163 + read_8_bytes (abfd, info_ptr));
19164 info_ptr += 8;
19165 break;
19166 case DW_FORM_ref_sig8:
19167 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19168 info_ptr += 8;
19169 break;
19170 case DW_FORM_ref_udata:
19171 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19172 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19173 info_ptr += bytes_read;
19174 break;
19175 case DW_FORM_indirect:
19176 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19177 info_ptr += bytes_read;
19178 if (form == DW_FORM_implicit_const)
19179 {
19180 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19181 info_ptr += bytes_read;
19182 }
19183 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19184 info_ptr);
19185 break;
19186 case DW_FORM_implicit_const:
19187 DW_SND (attr) = implicit_const;
19188 break;
19189 case DW_FORM_GNU_addr_index:
19190 if (reader->dwo_file == NULL)
19191 {
19192 /* For now flag a hard error.
19193 Later we can turn this into a complaint. */
19194 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19195 dwarf_form_name (form),
19196 bfd_get_filename (abfd));
19197 }
19198 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19199 info_ptr += bytes_read;
19200 break;
19201 case DW_FORM_GNU_str_index:
19202 if (reader->dwo_file == NULL)
19203 {
19204 /* For now flag a hard error.
19205 Later we can turn this into a complaint if warranted. */
19206 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19207 dwarf_form_name (form),
19208 bfd_get_filename (abfd));
19209 }
19210 {
19211 ULONGEST str_index =
19212 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19213
19214 DW_STRING (attr) = read_str_index (reader, str_index);
19215 DW_STRING_IS_CANONICAL (attr) = 0;
19216 info_ptr += bytes_read;
19217 }
19218 break;
19219 default:
19220 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19221 dwarf_form_name (form),
19222 bfd_get_filename (abfd));
19223 }
19224
19225 /* Super hack. */
19226 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19227 attr->form = DW_FORM_GNU_ref_alt;
19228
19229 /* We have seen instances where the compiler tried to emit a byte
19230 size attribute of -1 which ended up being encoded as an unsigned
19231 0xffffffff. Although 0xffffffff is technically a valid size value,
19232 an object of this size seems pretty unlikely so we can relatively
19233 safely treat these cases as if the size attribute was invalid and
19234 treat them as zero by default. */
19235 if (attr->name == DW_AT_byte_size
19236 && form == DW_FORM_data4
19237 && DW_UNSND (attr) >= 0xffffffff)
19238 {
19239 complaint
19240 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19241 hex_string (DW_UNSND (attr)));
19242 DW_UNSND (attr) = 0;
19243 }
19244
19245 return info_ptr;
19246 }
19247
19248 /* Read an attribute described by an abbreviated attribute. */
19249
19250 static const gdb_byte *
19251 read_attribute (const struct die_reader_specs *reader,
19252 struct attribute *attr, struct attr_abbrev *abbrev,
19253 const gdb_byte *info_ptr)
19254 {
19255 attr->name = abbrev->name;
19256 return read_attribute_value (reader, attr, abbrev->form,
19257 abbrev->implicit_const, info_ptr);
19258 }
19259
19260 /* Read dwarf information from a buffer. */
19261
19262 static unsigned int
19263 read_1_byte (bfd *abfd, const gdb_byte *buf)
19264 {
19265 return bfd_get_8 (abfd, buf);
19266 }
19267
19268 static int
19269 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19270 {
19271 return bfd_get_signed_8 (abfd, buf);
19272 }
19273
19274 static unsigned int
19275 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19276 {
19277 return bfd_get_16 (abfd, buf);
19278 }
19279
19280 static int
19281 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19282 {
19283 return bfd_get_signed_16 (abfd, buf);
19284 }
19285
19286 static unsigned int
19287 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19288 {
19289 return bfd_get_32 (abfd, buf);
19290 }
19291
19292 static int
19293 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19294 {
19295 return bfd_get_signed_32 (abfd, buf);
19296 }
19297
19298 static ULONGEST
19299 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19300 {
19301 return bfd_get_64 (abfd, buf);
19302 }
19303
19304 static CORE_ADDR
19305 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19306 unsigned int *bytes_read)
19307 {
19308 struct comp_unit_head *cu_header = &cu->header;
19309 CORE_ADDR retval = 0;
19310
19311 if (cu_header->signed_addr_p)
19312 {
19313 switch (cu_header->addr_size)
19314 {
19315 case 2:
19316 retval = bfd_get_signed_16 (abfd, buf);
19317 break;
19318 case 4:
19319 retval = bfd_get_signed_32 (abfd, buf);
19320 break;
19321 case 8:
19322 retval = bfd_get_signed_64 (abfd, buf);
19323 break;
19324 default:
19325 internal_error (__FILE__, __LINE__,
19326 _("read_address: bad switch, signed [in module %s]"),
19327 bfd_get_filename (abfd));
19328 }
19329 }
19330 else
19331 {
19332 switch (cu_header->addr_size)
19333 {
19334 case 2:
19335 retval = bfd_get_16 (abfd, buf);
19336 break;
19337 case 4:
19338 retval = bfd_get_32 (abfd, buf);
19339 break;
19340 case 8:
19341 retval = bfd_get_64 (abfd, buf);
19342 break;
19343 default:
19344 internal_error (__FILE__, __LINE__,
19345 _("read_address: bad switch, "
19346 "unsigned [in module %s]"),
19347 bfd_get_filename (abfd));
19348 }
19349 }
19350
19351 *bytes_read = cu_header->addr_size;
19352 return retval;
19353 }
19354
19355 /* Read the initial length from a section. The (draft) DWARF 3
19356 specification allows the initial length to take up either 4 bytes
19357 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19358 bytes describe the length and all offsets will be 8 bytes in length
19359 instead of 4.
19360
19361 An older, non-standard 64-bit format is also handled by this
19362 function. The older format in question stores the initial length
19363 as an 8-byte quantity without an escape value. Lengths greater
19364 than 2^32 aren't very common which means that the initial 4 bytes
19365 is almost always zero. Since a length value of zero doesn't make
19366 sense for the 32-bit format, this initial zero can be considered to
19367 be an escape value which indicates the presence of the older 64-bit
19368 format. As written, the code can't detect (old format) lengths
19369 greater than 4GB. If it becomes necessary to handle lengths
19370 somewhat larger than 4GB, we could allow other small values (such
19371 as the non-sensical values of 1, 2, and 3) to also be used as
19372 escape values indicating the presence of the old format.
19373
19374 The value returned via bytes_read should be used to increment the
19375 relevant pointer after calling read_initial_length().
19376
19377 [ Note: read_initial_length() and read_offset() are based on the
19378 document entitled "DWARF Debugging Information Format", revision
19379 3, draft 8, dated November 19, 2001. This document was obtained
19380 from:
19381
19382 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19383
19384 This document is only a draft and is subject to change. (So beware.)
19385
19386 Details regarding the older, non-standard 64-bit format were
19387 determined empirically by examining 64-bit ELF files produced by
19388 the SGI toolchain on an IRIX 6.5 machine.
19389
19390 - Kevin, July 16, 2002
19391 ] */
19392
19393 static LONGEST
19394 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19395 {
19396 LONGEST length = bfd_get_32 (abfd, buf);
19397
19398 if (length == 0xffffffff)
19399 {
19400 length = bfd_get_64 (abfd, buf + 4);
19401 *bytes_read = 12;
19402 }
19403 else if (length == 0)
19404 {
19405 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19406 length = bfd_get_64 (abfd, buf);
19407 *bytes_read = 8;
19408 }
19409 else
19410 {
19411 *bytes_read = 4;
19412 }
19413
19414 return length;
19415 }
19416
19417 /* Cover function for read_initial_length.
19418 Returns the length of the object at BUF, and stores the size of the
19419 initial length in *BYTES_READ and stores the size that offsets will be in
19420 *OFFSET_SIZE.
19421 If the initial length size is not equivalent to that specified in
19422 CU_HEADER then issue a complaint.
19423 This is useful when reading non-comp-unit headers. */
19424
19425 static LONGEST
19426 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19427 const struct comp_unit_head *cu_header,
19428 unsigned int *bytes_read,
19429 unsigned int *offset_size)
19430 {
19431 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19432
19433 gdb_assert (cu_header->initial_length_size == 4
19434 || cu_header->initial_length_size == 8
19435 || cu_header->initial_length_size == 12);
19436
19437 if (cu_header->initial_length_size != *bytes_read)
19438 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19439
19440 *offset_size = (*bytes_read == 4) ? 4 : 8;
19441 return length;
19442 }
19443
19444 /* Read an offset from the data stream. The size of the offset is
19445 given by cu_header->offset_size. */
19446
19447 static LONGEST
19448 read_offset (bfd *abfd, const gdb_byte *buf,
19449 const struct comp_unit_head *cu_header,
19450 unsigned int *bytes_read)
19451 {
19452 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19453
19454 *bytes_read = cu_header->offset_size;
19455 return offset;
19456 }
19457
19458 /* Read an offset from the data stream. */
19459
19460 static LONGEST
19461 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19462 {
19463 LONGEST retval = 0;
19464
19465 switch (offset_size)
19466 {
19467 case 4:
19468 retval = bfd_get_32 (abfd, buf);
19469 break;
19470 case 8:
19471 retval = bfd_get_64 (abfd, buf);
19472 break;
19473 default:
19474 internal_error (__FILE__, __LINE__,
19475 _("read_offset_1: bad switch [in module %s]"),
19476 bfd_get_filename (abfd));
19477 }
19478
19479 return retval;
19480 }
19481
19482 static const gdb_byte *
19483 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19484 {
19485 /* If the size of a host char is 8 bits, we can return a pointer
19486 to the buffer, otherwise we have to copy the data to a buffer
19487 allocated on the temporary obstack. */
19488 gdb_assert (HOST_CHAR_BIT == 8);
19489 return buf;
19490 }
19491
19492 static const char *
19493 read_direct_string (bfd *abfd, const gdb_byte *buf,
19494 unsigned int *bytes_read_ptr)
19495 {
19496 /* If the size of a host char is 8 bits, we can return a pointer
19497 to the string, otherwise we have to copy the string to a buffer
19498 allocated on the temporary obstack. */
19499 gdb_assert (HOST_CHAR_BIT == 8);
19500 if (*buf == '\0')
19501 {
19502 *bytes_read_ptr = 1;
19503 return NULL;
19504 }
19505 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19506 return (const char *) buf;
19507 }
19508
19509 /* Return pointer to string at section SECT offset STR_OFFSET with error
19510 reporting strings FORM_NAME and SECT_NAME. */
19511
19512 static const char *
19513 read_indirect_string_at_offset_from (struct objfile *objfile,
19514 bfd *abfd, LONGEST str_offset,
19515 struct dwarf2_section_info *sect,
19516 const char *form_name,
19517 const char *sect_name)
19518 {
19519 dwarf2_read_section (objfile, sect);
19520 if (sect->buffer == NULL)
19521 error (_("%s used without %s section [in module %s]"),
19522 form_name, sect_name, bfd_get_filename (abfd));
19523 if (str_offset >= sect->size)
19524 error (_("%s pointing outside of %s section [in module %s]"),
19525 form_name, sect_name, bfd_get_filename (abfd));
19526 gdb_assert (HOST_CHAR_BIT == 8);
19527 if (sect->buffer[str_offset] == '\0')
19528 return NULL;
19529 return (const char *) (sect->buffer + str_offset);
19530 }
19531
19532 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19533
19534 static const char *
19535 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19536 bfd *abfd, LONGEST str_offset)
19537 {
19538 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19539 abfd, str_offset,
19540 &dwarf2_per_objfile->str,
19541 "DW_FORM_strp", ".debug_str");
19542 }
19543
19544 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19545
19546 static const char *
19547 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19548 bfd *abfd, LONGEST str_offset)
19549 {
19550 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19551 abfd, str_offset,
19552 &dwarf2_per_objfile->line_str,
19553 "DW_FORM_line_strp",
19554 ".debug_line_str");
19555 }
19556
19557 /* Read a string at offset STR_OFFSET in the .debug_str section from
19558 the .dwz file DWZ. Throw an error if the offset is too large. If
19559 the string consists of a single NUL byte, return NULL; otherwise
19560 return a pointer to the string. */
19561
19562 static const char *
19563 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19564 LONGEST str_offset)
19565 {
19566 dwarf2_read_section (objfile, &dwz->str);
19567
19568 if (dwz->str.buffer == NULL)
19569 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19570 "section [in module %s]"),
19571 bfd_get_filename (dwz->dwz_bfd));
19572 if (str_offset >= dwz->str.size)
19573 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19574 ".debug_str section [in module %s]"),
19575 bfd_get_filename (dwz->dwz_bfd));
19576 gdb_assert (HOST_CHAR_BIT == 8);
19577 if (dwz->str.buffer[str_offset] == '\0')
19578 return NULL;
19579 return (const char *) (dwz->str.buffer + str_offset);
19580 }
19581
19582 /* Return pointer to string at .debug_str offset as read from BUF.
19583 BUF is assumed to be in a compilation unit described by CU_HEADER.
19584 Return *BYTES_READ_PTR count of bytes read from BUF. */
19585
19586 static const char *
19587 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19588 const gdb_byte *buf,
19589 const struct comp_unit_head *cu_header,
19590 unsigned int *bytes_read_ptr)
19591 {
19592 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19593
19594 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19595 }
19596
19597 /* Return pointer to string at .debug_line_str offset as read from BUF.
19598 BUF is assumed to be in a compilation unit described by CU_HEADER.
19599 Return *BYTES_READ_PTR count of bytes read from BUF. */
19600
19601 static const char *
19602 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19603 bfd *abfd, const gdb_byte *buf,
19604 const struct comp_unit_head *cu_header,
19605 unsigned int *bytes_read_ptr)
19606 {
19607 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19608
19609 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19610 str_offset);
19611 }
19612
19613 ULONGEST
19614 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19615 unsigned int *bytes_read_ptr)
19616 {
19617 ULONGEST result;
19618 unsigned int num_read;
19619 int shift;
19620 unsigned char byte;
19621
19622 result = 0;
19623 shift = 0;
19624 num_read = 0;
19625 while (1)
19626 {
19627 byte = bfd_get_8 (abfd, buf);
19628 buf++;
19629 num_read++;
19630 result |= ((ULONGEST) (byte & 127) << shift);
19631 if ((byte & 128) == 0)
19632 {
19633 break;
19634 }
19635 shift += 7;
19636 }
19637 *bytes_read_ptr = num_read;
19638 return result;
19639 }
19640
19641 static LONGEST
19642 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19643 unsigned int *bytes_read_ptr)
19644 {
19645 ULONGEST result;
19646 int shift, num_read;
19647 unsigned char byte;
19648
19649 result = 0;
19650 shift = 0;
19651 num_read = 0;
19652 while (1)
19653 {
19654 byte = bfd_get_8 (abfd, buf);
19655 buf++;
19656 num_read++;
19657 result |= ((ULONGEST) (byte & 127) << shift);
19658 shift += 7;
19659 if ((byte & 128) == 0)
19660 {
19661 break;
19662 }
19663 }
19664 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19665 result |= -(((ULONGEST) 1) << shift);
19666 *bytes_read_ptr = num_read;
19667 return result;
19668 }
19669
19670 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19671 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19672 ADDR_SIZE is the size of addresses from the CU header. */
19673
19674 static CORE_ADDR
19675 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19676 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19677 {
19678 struct objfile *objfile = dwarf2_per_objfile->objfile;
19679 bfd *abfd = objfile->obfd;
19680 const gdb_byte *info_ptr;
19681
19682 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19683 if (dwarf2_per_objfile->addr.buffer == NULL)
19684 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19685 objfile_name (objfile));
19686 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19687 error (_("DW_FORM_addr_index pointing outside of "
19688 ".debug_addr section [in module %s]"),
19689 objfile_name (objfile));
19690 info_ptr = (dwarf2_per_objfile->addr.buffer
19691 + addr_base + addr_index * addr_size);
19692 if (addr_size == 4)
19693 return bfd_get_32 (abfd, info_ptr);
19694 else
19695 return bfd_get_64 (abfd, info_ptr);
19696 }
19697
19698 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19699
19700 static CORE_ADDR
19701 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19702 {
19703 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19704 cu->addr_base, cu->header.addr_size);
19705 }
19706
19707 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19708
19709 static CORE_ADDR
19710 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19711 unsigned int *bytes_read)
19712 {
19713 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19714 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19715
19716 return read_addr_index (cu, addr_index);
19717 }
19718
19719 /* Data structure to pass results from dwarf2_read_addr_index_reader
19720 back to dwarf2_read_addr_index. */
19721
19722 struct dwarf2_read_addr_index_data
19723 {
19724 ULONGEST addr_base;
19725 int addr_size;
19726 };
19727
19728 /* die_reader_func for dwarf2_read_addr_index. */
19729
19730 static void
19731 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19732 const gdb_byte *info_ptr,
19733 struct die_info *comp_unit_die,
19734 int has_children,
19735 void *data)
19736 {
19737 struct dwarf2_cu *cu = reader->cu;
19738 struct dwarf2_read_addr_index_data *aidata =
19739 (struct dwarf2_read_addr_index_data *) data;
19740
19741 aidata->addr_base = cu->addr_base;
19742 aidata->addr_size = cu->header.addr_size;
19743 }
19744
19745 /* Given an index in .debug_addr, fetch the value.
19746 NOTE: This can be called during dwarf expression evaluation,
19747 long after the debug information has been read, and thus per_cu->cu
19748 may no longer exist. */
19749
19750 CORE_ADDR
19751 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19752 unsigned int addr_index)
19753 {
19754 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19755 struct dwarf2_cu *cu = per_cu->cu;
19756 ULONGEST addr_base;
19757 int addr_size;
19758
19759 /* We need addr_base and addr_size.
19760 If we don't have PER_CU->cu, we have to get it.
19761 Nasty, but the alternative is storing the needed info in PER_CU,
19762 which at this point doesn't seem justified: it's not clear how frequently
19763 it would get used and it would increase the size of every PER_CU.
19764 Entry points like dwarf2_per_cu_addr_size do a similar thing
19765 so we're not in uncharted territory here.
19766 Alas we need to be a bit more complicated as addr_base is contained
19767 in the DIE.
19768
19769 We don't need to read the entire CU(/TU).
19770 We just need the header and top level die.
19771
19772 IWBN to use the aging mechanism to let us lazily later discard the CU.
19773 For now we skip this optimization. */
19774
19775 if (cu != NULL)
19776 {
19777 addr_base = cu->addr_base;
19778 addr_size = cu->header.addr_size;
19779 }
19780 else
19781 {
19782 struct dwarf2_read_addr_index_data aidata;
19783
19784 /* Note: We can't use init_cutu_and_read_dies_simple here,
19785 we need addr_base. */
19786 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19787 dwarf2_read_addr_index_reader, &aidata);
19788 addr_base = aidata.addr_base;
19789 addr_size = aidata.addr_size;
19790 }
19791
19792 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19793 addr_size);
19794 }
19795
19796 /* Given a DW_FORM_GNU_str_index, fetch the string.
19797 This is only used by the Fission support. */
19798
19799 static const char *
19800 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19801 {
19802 struct dwarf2_cu *cu = reader->cu;
19803 struct dwarf2_per_objfile *dwarf2_per_objfile
19804 = cu->per_cu->dwarf2_per_objfile;
19805 struct objfile *objfile = dwarf2_per_objfile->objfile;
19806 const char *objf_name = objfile_name (objfile);
19807 bfd *abfd = objfile->obfd;
19808 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19809 struct dwarf2_section_info *str_offsets_section =
19810 &reader->dwo_file->sections.str_offsets;
19811 const gdb_byte *info_ptr;
19812 ULONGEST str_offset;
19813 static const char form_name[] = "DW_FORM_GNU_str_index";
19814
19815 dwarf2_read_section (objfile, str_section);
19816 dwarf2_read_section (objfile, str_offsets_section);
19817 if (str_section->buffer == NULL)
19818 error (_("%s used without .debug_str.dwo section"
19819 " in CU at offset %s [in module %s]"),
19820 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19821 if (str_offsets_section->buffer == NULL)
19822 error (_("%s used without .debug_str_offsets.dwo section"
19823 " in CU at offset %s [in module %s]"),
19824 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19825 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19826 error (_("%s pointing outside of .debug_str_offsets.dwo"
19827 " section in CU at offset %s [in module %s]"),
19828 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19829 info_ptr = (str_offsets_section->buffer
19830 + str_index * cu->header.offset_size);
19831 if (cu->header.offset_size == 4)
19832 str_offset = bfd_get_32 (abfd, info_ptr);
19833 else
19834 str_offset = bfd_get_64 (abfd, info_ptr);
19835 if (str_offset >= str_section->size)
19836 error (_("Offset from %s pointing outside of"
19837 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19838 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19839 return (const char *) (str_section->buffer + str_offset);
19840 }
19841
19842 /* Return the length of an LEB128 number in BUF. */
19843
19844 static int
19845 leb128_size (const gdb_byte *buf)
19846 {
19847 const gdb_byte *begin = buf;
19848 gdb_byte byte;
19849
19850 while (1)
19851 {
19852 byte = *buf++;
19853 if ((byte & 128) == 0)
19854 return buf - begin;
19855 }
19856 }
19857
19858 static void
19859 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19860 {
19861 switch (lang)
19862 {
19863 case DW_LANG_C89:
19864 case DW_LANG_C99:
19865 case DW_LANG_C11:
19866 case DW_LANG_C:
19867 case DW_LANG_UPC:
19868 cu->language = language_c;
19869 break;
19870 case DW_LANG_Java:
19871 case DW_LANG_C_plus_plus:
19872 case DW_LANG_C_plus_plus_11:
19873 case DW_LANG_C_plus_plus_14:
19874 cu->language = language_cplus;
19875 break;
19876 case DW_LANG_D:
19877 cu->language = language_d;
19878 break;
19879 case DW_LANG_Fortran77:
19880 case DW_LANG_Fortran90:
19881 case DW_LANG_Fortran95:
19882 case DW_LANG_Fortran03:
19883 case DW_LANG_Fortran08:
19884 cu->language = language_fortran;
19885 break;
19886 case DW_LANG_Go:
19887 cu->language = language_go;
19888 break;
19889 case DW_LANG_Mips_Assembler:
19890 cu->language = language_asm;
19891 break;
19892 case DW_LANG_Ada83:
19893 case DW_LANG_Ada95:
19894 cu->language = language_ada;
19895 break;
19896 case DW_LANG_Modula2:
19897 cu->language = language_m2;
19898 break;
19899 case DW_LANG_Pascal83:
19900 cu->language = language_pascal;
19901 break;
19902 case DW_LANG_ObjC:
19903 cu->language = language_objc;
19904 break;
19905 case DW_LANG_Rust:
19906 case DW_LANG_Rust_old:
19907 cu->language = language_rust;
19908 break;
19909 case DW_LANG_Cobol74:
19910 case DW_LANG_Cobol85:
19911 default:
19912 cu->language = language_minimal;
19913 break;
19914 }
19915 cu->language_defn = language_def (cu->language);
19916 }
19917
19918 /* Return the named attribute or NULL if not there. */
19919
19920 static struct attribute *
19921 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19922 {
19923 for (;;)
19924 {
19925 unsigned int i;
19926 struct attribute *spec = NULL;
19927
19928 for (i = 0; i < die->num_attrs; ++i)
19929 {
19930 if (die->attrs[i].name == name)
19931 return &die->attrs[i];
19932 if (die->attrs[i].name == DW_AT_specification
19933 || die->attrs[i].name == DW_AT_abstract_origin)
19934 spec = &die->attrs[i];
19935 }
19936
19937 if (!spec)
19938 break;
19939
19940 die = follow_die_ref (die, spec, &cu);
19941 }
19942
19943 return NULL;
19944 }
19945
19946 /* Return the named attribute or NULL if not there,
19947 but do not follow DW_AT_specification, etc.
19948 This is for use in contexts where we're reading .debug_types dies.
19949 Following DW_AT_specification, DW_AT_abstract_origin will take us
19950 back up the chain, and we want to go down. */
19951
19952 static struct attribute *
19953 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19954 {
19955 unsigned int i;
19956
19957 for (i = 0; i < die->num_attrs; ++i)
19958 if (die->attrs[i].name == name)
19959 return &die->attrs[i];
19960
19961 return NULL;
19962 }
19963
19964 /* Return the string associated with a string-typed attribute, or NULL if it
19965 is either not found or is of an incorrect type. */
19966
19967 static const char *
19968 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19969 {
19970 struct attribute *attr;
19971 const char *str = NULL;
19972
19973 attr = dwarf2_attr (die, name, cu);
19974
19975 if (attr != NULL)
19976 {
19977 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19978 || attr->form == DW_FORM_string
19979 || attr->form == DW_FORM_GNU_str_index
19980 || attr->form == DW_FORM_GNU_strp_alt)
19981 str = DW_STRING (attr);
19982 else
19983 complaint (_("string type expected for attribute %s for "
19984 "DIE at %s in module %s"),
19985 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19986 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19987 }
19988
19989 return str;
19990 }
19991
19992 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19993 and holds a non-zero value. This function should only be used for
19994 DW_FORM_flag or DW_FORM_flag_present attributes. */
19995
19996 static int
19997 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19998 {
19999 struct attribute *attr = dwarf2_attr (die, name, cu);
20000
20001 return (attr && DW_UNSND (attr));
20002 }
20003
20004 static int
20005 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20006 {
20007 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20008 which value is non-zero. However, we have to be careful with
20009 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20010 (via dwarf2_flag_true_p) follows this attribute. So we may
20011 end up accidently finding a declaration attribute that belongs
20012 to a different DIE referenced by the specification attribute,
20013 even though the given DIE does not have a declaration attribute. */
20014 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20015 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20016 }
20017
20018 /* Return the die giving the specification for DIE, if there is
20019 one. *SPEC_CU is the CU containing DIE on input, and the CU
20020 containing the return value on output. If there is no
20021 specification, but there is an abstract origin, that is
20022 returned. */
20023
20024 static struct die_info *
20025 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20026 {
20027 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20028 *spec_cu);
20029
20030 if (spec_attr == NULL)
20031 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20032
20033 if (spec_attr == NULL)
20034 return NULL;
20035 else
20036 return follow_die_ref (die, spec_attr, spec_cu);
20037 }
20038
20039 /* Stub for free_line_header to match void * callback types. */
20040
20041 static void
20042 free_line_header_voidp (void *arg)
20043 {
20044 struct line_header *lh = (struct line_header *) arg;
20045
20046 delete lh;
20047 }
20048
20049 void
20050 line_header::add_include_dir (const char *include_dir)
20051 {
20052 if (dwarf_line_debug >= 2)
20053 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20054 include_dirs.size () + 1, include_dir);
20055
20056 include_dirs.push_back (include_dir);
20057 }
20058
20059 void
20060 line_header::add_file_name (const char *name,
20061 dir_index d_index,
20062 unsigned int mod_time,
20063 unsigned int length)
20064 {
20065 if (dwarf_line_debug >= 2)
20066 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20067 (unsigned) file_names.size () + 1, name);
20068
20069 file_names.emplace_back (name, d_index, mod_time, length);
20070 }
20071
20072 /* A convenience function to find the proper .debug_line section for a CU. */
20073
20074 static struct dwarf2_section_info *
20075 get_debug_line_section (struct dwarf2_cu *cu)
20076 {
20077 struct dwarf2_section_info *section;
20078 struct dwarf2_per_objfile *dwarf2_per_objfile
20079 = cu->per_cu->dwarf2_per_objfile;
20080
20081 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20082 DWO file. */
20083 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20084 section = &cu->dwo_unit->dwo_file->sections.line;
20085 else if (cu->per_cu->is_dwz)
20086 {
20087 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20088
20089 section = &dwz->line;
20090 }
20091 else
20092 section = &dwarf2_per_objfile->line;
20093
20094 return section;
20095 }
20096
20097 /* Read directory or file name entry format, starting with byte of
20098 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20099 entries count and the entries themselves in the described entry
20100 format. */
20101
20102 static void
20103 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20104 bfd *abfd, const gdb_byte **bufp,
20105 struct line_header *lh,
20106 const struct comp_unit_head *cu_header,
20107 void (*callback) (struct line_header *lh,
20108 const char *name,
20109 dir_index d_index,
20110 unsigned int mod_time,
20111 unsigned int length))
20112 {
20113 gdb_byte format_count, formati;
20114 ULONGEST data_count, datai;
20115 const gdb_byte *buf = *bufp;
20116 const gdb_byte *format_header_data;
20117 unsigned int bytes_read;
20118
20119 format_count = read_1_byte (abfd, buf);
20120 buf += 1;
20121 format_header_data = buf;
20122 for (formati = 0; formati < format_count; formati++)
20123 {
20124 read_unsigned_leb128 (abfd, buf, &bytes_read);
20125 buf += bytes_read;
20126 read_unsigned_leb128 (abfd, buf, &bytes_read);
20127 buf += bytes_read;
20128 }
20129
20130 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20131 buf += bytes_read;
20132 for (datai = 0; datai < data_count; datai++)
20133 {
20134 const gdb_byte *format = format_header_data;
20135 struct file_entry fe;
20136
20137 for (formati = 0; formati < format_count; formati++)
20138 {
20139 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20140 format += bytes_read;
20141
20142 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20143 format += bytes_read;
20144
20145 gdb::optional<const char *> string;
20146 gdb::optional<unsigned int> uint;
20147
20148 switch (form)
20149 {
20150 case DW_FORM_string:
20151 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20152 buf += bytes_read;
20153 break;
20154
20155 case DW_FORM_line_strp:
20156 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20157 abfd, buf,
20158 cu_header,
20159 &bytes_read));
20160 buf += bytes_read;
20161 break;
20162
20163 case DW_FORM_data1:
20164 uint.emplace (read_1_byte (abfd, buf));
20165 buf += 1;
20166 break;
20167
20168 case DW_FORM_data2:
20169 uint.emplace (read_2_bytes (abfd, buf));
20170 buf += 2;
20171 break;
20172
20173 case DW_FORM_data4:
20174 uint.emplace (read_4_bytes (abfd, buf));
20175 buf += 4;
20176 break;
20177
20178 case DW_FORM_data8:
20179 uint.emplace (read_8_bytes (abfd, buf));
20180 buf += 8;
20181 break;
20182
20183 case DW_FORM_udata:
20184 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20185 buf += bytes_read;
20186 break;
20187
20188 case DW_FORM_block:
20189 /* It is valid only for DW_LNCT_timestamp which is ignored by
20190 current GDB. */
20191 break;
20192 }
20193
20194 switch (content_type)
20195 {
20196 case DW_LNCT_path:
20197 if (string.has_value ())
20198 fe.name = *string;
20199 break;
20200 case DW_LNCT_directory_index:
20201 if (uint.has_value ())
20202 fe.d_index = (dir_index) *uint;
20203 break;
20204 case DW_LNCT_timestamp:
20205 if (uint.has_value ())
20206 fe.mod_time = *uint;
20207 break;
20208 case DW_LNCT_size:
20209 if (uint.has_value ())
20210 fe.length = *uint;
20211 break;
20212 case DW_LNCT_MD5:
20213 break;
20214 default:
20215 complaint (_("Unknown format content type %s"),
20216 pulongest (content_type));
20217 }
20218 }
20219
20220 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20221 }
20222
20223 *bufp = buf;
20224 }
20225
20226 /* Read the statement program header starting at OFFSET in
20227 .debug_line, or .debug_line.dwo. Return a pointer
20228 to a struct line_header, allocated using xmalloc.
20229 Returns NULL if there is a problem reading the header, e.g., if it
20230 has a version we don't understand.
20231
20232 NOTE: the strings in the include directory and file name tables of
20233 the returned object point into the dwarf line section buffer,
20234 and must not be freed. */
20235
20236 static line_header_up
20237 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20238 {
20239 const gdb_byte *line_ptr;
20240 unsigned int bytes_read, offset_size;
20241 int i;
20242 const char *cur_dir, *cur_file;
20243 struct dwarf2_section_info *section;
20244 bfd *abfd;
20245 struct dwarf2_per_objfile *dwarf2_per_objfile
20246 = cu->per_cu->dwarf2_per_objfile;
20247
20248 section = get_debug_line_section (cu);
20249 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20250 if (section->buffer == NULL)
20251 {
20252 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20253 complaint (_("missing .debug_line.dwo section"));
20254 else
20255 complaint (_("missing .debug_line section"));
20256 return 0;
20257 }
20258
20259 /* We can't do this until we know the section is non-empty.
20260 Only then do we know we have such a section. */
20261 abfd = get_section_bfd_owner (section);
20262
20263 /* Make sure that at least there's room for the total_length field.
20264 That could be 12 bytes long, but we're just going to fudge that. */
20265 if (to_underlying (sect_off) + 4 >= section->size)
20266 {
20267 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20268 return 0;
20269 }
20270
20271 line_header_up lh (new line_header ());
20272
20273 lh->sect_off = sect_off;
20274 lh->offset_in_dwz = cu->per_cu->is_dwz;
20275
20276 line_ptr = section->buffer + to_underlying (sect_off);
20277
20278 /* Read in the header. */
20279 lh->total_length =
20280 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20281 &bytes_read, &offset_size);
20282 line_ptr += bytes_read;
20283 if (line_ptr + lh->total_length > (section->buffer + section->size))
20284 {
20285 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20286 return 0;
20287 }
20288 lh->statement_program_end = line_ptr + lh->total_length;
20289 lh->version = read_2_bytes (abfd, line_ptr);
20290 line_ptr += 2;
20291 if (lh->version > 5)
20292 {
20293 /* This is a version we don't understand. The format could have
20294 changed in ways we don't handle properly so just punt. */
20295 complaint (_("unsupported version in .debug_line section"));
20296 return NULL;
20297 }
20298 if (lh->version >= 5)
20299 {
20300 gdb_byte segment_selector_size;
20301
20302 /* Skip address size. */
20303 read_1_byte (abfd, line_ptr);
20304 line_ptr += 1;
20305
20306 segment_selector_size = read_1_byte (abfd, line_ptr);
20307 line_ptr += 1;
20308 if (segment_selector_size != 0)
20309 {
20310 complaint (_("unsupported segment selector size %u "
20311 "in .debug_line section"),
20312 segment_selector_size);
20313 return NULL;
20314 }
20315 }
20316 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20317 line_ptr += offset_size;
20318 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20319 line_ptr += 1;
20320 if (lh->version >= 4)
20321 {
20322 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20323 line_ptr += 1;
20324 }
20325 else
20326 lh->maximum_ops_per_instruction = 1;
20327
20328 if (lh->maximum_ops_per_instruction == 0)
20329 {
20330 lh->maximum_ops_per_instruction = 1;
20331 complaint (_("invalid maximum_ops_per_instruction "
20332 "in `.debug_line' section"));
20333 }
20334
20335 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20336 line_ptr += 1;
20337 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20338 line_ptr += 1;
20339 lh->line_range = read_1_byte (abfd, line_ptr);
20340 line_ptr += 1;
20341 lh->opcode_base = read_1_byte (abfd, line_ptr);
20342 line_ptr += 1;
20343 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20344
20345 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20346 for (i = 1; i < lh->opcode_base; ++i)
20347 {
20348 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20349 line_ptr += 1;
20350 }
20351
20352 if (lh->version >= 5)
20353 {
20354 /* Read directory table. */
20355 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20356 &cu->header,
20357 [] (struct line_header *header, const char *name,
20358 dir_index d_index, unsigned int mod_time,
20359 unsigned int length)
20360 {
20361 header->add_include_dir (name);
20362 });
20363
20364 /* Read file name table. */
20365 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20366 &cu->header,
20367 [] (struct line_header *header, const char *name,
20368 dir_index d_index, unsigned int mod_time,
20369 unsigned int length)
20370 {
20371 header->add_file_name (name, d_index, mod_time, length);
20372 });
20373 }
20374 else
20375 {
20376 /* Read directory table. */
20377 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20378 {
20379 line_ptr += bytes_read;
20380 lh->add_include_dir (cur_dir);
20381 }
20382 line_ptr += bytes_read;
20383
20384 /* Read file name table. */
20385 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20386 {
20387 unsigned int mod_time, length;
20388 dir_index d_index;
20389
20390 line_ptr += bytes_read;
20391 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20392 line_ptr += bytes_read;
20393 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20394 line_ptr += bytes_read;
20395 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20396 line_ptr += bytes_read;
20397
20398 lh->add_file_name (cur_file, d_index, mod_time, length);
20399 }
20400 line_ptr += bytes_read;
20401 }
20402 lh->statement_program_start = line_ptr;
20403
20404 if (line_ptr > (section->buffer + section->size))
20405 complaint (_("line number info header doesn't "
20406 "fit in `.debug_line' section"));
20407
20408 return lh;
20409 }
20410
20411 /* Subroutine of dwarf_decode_lines to simplify it.
20412 Return the file name of the psymtab for included file FILE_INDEX
20413 in line header LH of PST.
20414 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20415 If space for the result is malloc'd, *NAME_HOLDER will be set.
20416 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20417
20418 static const char *
20419 psymtab_include_file_name (const struct line_header *lh, int file_index,
20420 const struct partial_symtab *pst,
20421 const char *comp_dir,
20422 gdb::unique_xmalloc_ptr<char> *name_holder)
20423 {
20424 const file_entry &fe = lh->file_names[file_index];
20425 const char *include_name = fe.name;
20426 const char *include_name_to_compare = include_name;
20427 const char *pst_filename;
20428 int file_is_pst;
20429
20430 const char *dir_name = fe.include_dir (lh);
20431
20432 gdb::unique_xmalloc_ptr<char> hold_compare;
20433 if (!IS_ABSOLUTE_PATH (include_name)
20434 && (dir_name != NULL || comp_dir != NULL))
20435 {
20436 /* Avoid creating a duplicate psymtab for PST.
20437 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20438 Before we do the comparison, however, we need to account
20439 for DIR_NAME and COMP_DIR.
20440 First prepend dir_name (if non-NULL). If we still don't
20441 have an absolute path prepend comp_dir (if non-NULL).
20442 However, the directory we record in the include-file's
20443 psymtab does not contain COMP_DIR (to match the
20444 corresponding symtab(s)).
20445
20446 Example:
20447
20448 bash$ cd /tmp
20449 bash$ gcc -g ./hello.c
20450 include_name = "hello.c"
20451 dir_name = "."
20452 DW_AT_comp_dir = comp_dir = "/tmp"
20453 DW_AT_name = "./hello.c"
20454
20455 */
20456
20457 if (dir_name != NULL)
20458 {
20459 name_holder->reset (concat (dir_name, SLASH_STRING,
20460 include_name, (char *) NULL));
20461 include_name = name_holder->get ();
20462 include_name_to_compare = include_name;
20463 }
20464 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20465 {
20466 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20467 include_name, (char *) NULL));
20468 include_name_to_compare = hold_compare.get ();
20469 }
20470 }
20471
20472 pst_filename = pst->filename;
20473 gdb::unique_xmalloc_ptr<char> copied_name;
20474 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20475 {
20476 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20477 pst_filename, (char *) NULL));
20478 pst_filename = copied_name.get ();
20479 }
20480
20481 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20482
20483 if (file_is_pst)
20484 return NULL;
20485 return include_name;
20486 }
20487
20488 /* State machine to track the state of the line number program. */
20489
20490 class lnp_state_machine
20491 {
20492 public:
20493 /* Initialize a machine state for the start of a line number
20494 program. */
20495 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20496 bool record_lines_p);
20497
20498 file_entry *current_file ()
20499 {
20500 /* lh->file_names is 0-based, but the file name numbers in the
20501 statement program are 1-based. */
20502 return m_line_header->file_name_at (m_file);
20503 }
20504
20505 /* Record the line in the state machine. END_SEQUENCE is true if
20506 we're processing the end of a sequence. */
20507 void record_line (bool end_sequence);
20508
20509 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20510 nop-out rest of the lines in this sequence. */
20511 void check_line_address (struct dwarf2_cu *cu,
20512 const gdb_byte *line_ptr,
20513 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20514
20515 void handle_set_discriminator (unsigned int discriminator)
20516 {
20517 m_discriminator = discriminator;
20518 m_line_has_non_zero_discriminator |= discriminator != 0;
20519 }
20520
20521 /* Handle DW_LNE_set_address. */
20522 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20523 {
20524 m_op_index = 0;
20525 address += baseaddr;
20526 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20527 }
20528
20529 /* Handle DW_LNS_advance_pc. */
20530 void handle_advance_pc (CORE_ADDR adjust);
20531
20532 /* Handle a special opcode. */
20533 void handle_special_opcode (unsigned char op_code);
20534
20535 /* Handle DW_LNS_advance_line. */
20536 void handle_advance_line (int line_delta)
20537 {
20538 advance_line (line_delta);
20539 }
20540
20541 /* Handle DW_LNS_set_file. */
20542 void handle_set_file (file_name_index file);
20543
20544 /* Handle DW_LNS_negate_stmt. */
20545 void handle_negate_stmt ()
20546 {
20547 m_is_stmt = !m_is_stmt;
20548 }
20549
20550 /* Handle DW_LNS_const_add_pc. */
20551 void handle_const_add_pc ();
20552
20553 /* Handle DW_LNS_fixed_advance_pc. */
20554 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20555 {
20556 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20557 m_op_index = 0;
20558 }
20559
20560 /* Handle DW_LNS_copy. */
20561 void handle_copy ()
20562 {
20563 record_line (false);
20564 m_discriminator = 0;
20565 }
20566
20567 /* Handle DW_LNE_end_sequence. */
20568 void handle_end_sequence ()
20569 {
20570 m_currently_recording_lines = true;
20571 }
20572
20573 private:
20574 /* Advance the line by LINE_DELTA. */
20575 void advance_line (int line_delta)
20576 {
20577 m_line += line_delta;
20578
20579 if (line_delta != 0)
20580 m_line_has_non_zero_discriminator = m_discriminator != 0;
20581 }
20582
20583 struct dwarf2_cu *m_cu;
20584
20585 gdbarch *m_gdbarch;
20586
20587 /* True if we're recording lines.
20588 Otherwise we're building partial symtabs and are just interested in
20589 finding include files mentioned by the line number program. */
20590 bool m_record_lines_p;
20591
20592 /* The line number header. */
20593 line_header *m_line_header;
20594
20595 /* These are part of the standard DWARF line number state machine,
20596 and initialized according to the DWARF spec. */
20597
20598 unsigned char m_op_index = 0;
20599 /* The line table index (1-based) of the current file. */
20600 file_name_index m_file = (file_name_index) 1;
20601 unsigned int m_line = 1;
20602
20603 /* These are initialized in the constructor. */
20604
20605 CORE_ADDR m_address;
20606 bool m_is_stmt;
20607 unsigned int m_discriminator;
20608
20609 /* Additional bits of state we need to track. */
20610
20611 /* The last file that we called dwarf2_start_subfile for.
20612 This is only used for TLLs. */
20613 unsigned int m_last_file = 0;
20614 /* The last file a line number was recorded for. */
20615 struct subfile *m_last_subfile = NULL;
20616
20617 /* When true, record the lines we decode. */
20618 bool m_currently_recording_lines = false;
20619
20620 /* The last line number that was recorded, used to coalesce
20621 consecutive entries for the same line. This can happen, for
20622 example, when discriminators are present. PR 17276. */
20623 unsigned int m_last_line = 0;
20624 bool m_line_has_non_zero_discriminator = false;
20625 };
20626
20627 void
20628 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20629 {
20630 CORE_ADDR addr_adj = (((m_op_index + adjust)
20631 / m_line_header->maximum_ops_per_instruction)
20632 * m_line_header->minimum_instruction_length);
20633 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20634 m_op_index = ((m_op_index + adjust)
20635 % m_line_header->maximum_ops_per_instruction);
20636 }
20637
20638 void
20639 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20640 {
20641 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20642 CORE_ADDR addr_adj = (((m_op_index
20643 + (adj_opcode / m_line_header->line_range))
20644 / m_line_header->maximum_ops_per_instruction)
20645 * m_line_header->minimum_instruction_length);
20646 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20647 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20648 % m_line_header->maximum_ops_per_instruction);
20649
20650 int line_delta = (m_line_header->line_base
20651 + (adj_opcode % m_line_header->line_range));
20652 advance_line (line_delta);
20653 record_line (false);
20654 m_discriminator = 0;
20655 }
20656
20657 void
20658 lnp_state_machine::handle_set_file (file_name_index file)
20659 {
20660 m_file = file;
20661
20662 const file_entry *fe = current_file ();
20663 if (fe == NULL)
20664 dwarf2_debug_line_missing_file_complaint ();
20665 else if (m_record_lines_p)
20666 {
20667 const char *dir = fe->include_dir (m_line_header);
20668
20669 m_last_subfile = m_cu->builder->get_current_subfile ();
20670 m_line_has_non_zero_discriminator = m_discriminator != 0;
20671 dwarf2_start_subfile (m_cu, fe->name, dir);
20672 }
20673 }
20674
20675 void
20676 lnp_state_machine::handle_const_add_pc ()
20677 {
20678 CORE_ADDR adjust
20679 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20680
20681 CORE_ADDR addr_adj
20682 = (((m_op_index + adjust)
20683 / m_line_header->maximum_ops_per_instruction)
20684 * m_line_header->minimum_instruction_length);
20685
20686 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20687 m_op_index = ((m_op_index + adjust)
20688 % m_line_header->maximum_ops_per_instruction);
20689 }
20690
20691 /* Return non-zero if we should add LINE to the line number table.
20692 LINE is the line to add, LAST_LINE is the last line that was added,
20693 LAST_SUBFILE is the subfile for LAST_LINE.
20694 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20695 had a non-zero discriminator.
20696
20697 We have to be careful in the presence of discriminators.
20698 E.g., for this line:
20699
20700 for (i = 0; i < 100000; i++);
20701
20702 clang can emit four line number entries for that one line,
20703 each with a different discriminator.
20704 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20705
20706 However, we want gdb to coalesce all four entries into one.
20707 Otherwise the user could stepi into the middle of the line and
20708 gdb would get confused about whether the pc really was in the
20709 middle of the line.
20710
20711 Things are further complicated by the fact that two consecutive
20712 line number entries for the same line is a heuristic used by gcc
20713 to denote the end of the prologue. So we can't just discard duplicate
20714 entries, we have to be selective about it. The heuristic we use is
20715 that we only collapse consecutive entries for the same line if at least
20716 one of those entries has a non-zero discriminator. PR 17276.
20717
20718 Note: Addresses in the line number state machine can never go backwards
20719 within one sequence, thus this coalescing is ok. */
20720
20721 static int
20722 dwarf_record_line_p (struct dwarf2_cu *cu,
20723 unsigned int line, unsigned int last_line,
20724 int line_has_non_zero_discriminator,
20725 struct subfile *last_subfile)
20726 {
20727 if (cu->builder->get_current_subfile () != last_subfile)
20728 return 1;
20729 if (line != last_line)
20730 return 1;
20731 /* Same line for the same file that we've seen already.
20732 As a last check, for pr 17276, only record the line if the line
20733 has never had a non-zero discriminator. */
20734 if (!line_has_non_zero_discriminator)
20735 return 1;
20736 return 0;
20737 }
20738
20739 /* Use the CU's builder to record line number LINE beginning at
20740 address ADDRESS in the line table of subfile SUBFILE. */
20741
20742 static void
20743 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20744 unsigned int line, CORE_ADDR address,
20745 struct dwarf2_cu *cu)
20746 {
20747 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20748
20749 if (dwarf_line_debug)
20750 {
20751 fprintf_unfiltered (gdb_stdlog,
20752 "Recording line %u, file %s, address %s\n",
20753 line, lbasename (subfile->name),
20754 paddress (gdbarch, address));
20755 }
20756
20757 if (cu != nullptr)
20758 cu->builder->record_line (subfile, line, addr);
20759 }
20760
20761 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20762 Mark the end of a set of line number records.
20763 The arguments are the same as for dwarf_record_line_1.
20764 If SUBFILE is NULL the request is ignored. */
20765
20766 static void
20767 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20768 CORE_ADDR address, struct dwarf2_cu *cu)
20769 {
20770 if (subfile == NULL)
20771 return;
20772
20773 if (dwarf_line_debug)
20774 {
20775 fprintf_unfiltered (gdb_stdlog,
20776 "Finishing current line, file %s, address %s\n",
20777 lbasename (subfile->name),
20778 paddress (gdbarch, address));
20779 }
20780
20781 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20782 }
20783
20784 void
20785 lnp_state_machine::record_line (bool end_sequence)
20786 {
20787 if (dwarf_line_debug)
20788 {
20789 fprintf_unfiltered (gdb_stdlog,
20790 "Processing actual line %u: file %u,"
20791 " address %s, is_stmt %u, discrim %u\n",
20792 m_line, to_underlying (m_file),
20793 paddress (m_gdbarch, m_address),
20794 m_is_stmt, m_discriminator);
20795 }
20796
20797 file_entry *fe = current_file ();
20798
20799 if (fe == NULL)
20800 dwarf2_debug_line_missing_file_complaint ();
20801 /* For now we ignore lines not starting on an instruction boundary.
20802 But not when processing end_sequence for compatibility with the
20803 previous version of the code. */
20804 else if (m_op_index == 0 || end_sequence)
20805 {
20806 fe->included_p = 1;
20807 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20808 {
20809 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20810 || end_sequence)
20811 {
20812 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20813 m_currently_recording_lines ? m_cu : nullptr);
20814 }
20815
20816 if (!end_sequence)
20817 {
20818 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20819 m_line_has_non_zero_discriminator,
20820 m_last_subfile))
20821 {
20822 dwarf_record_line_1 (m_gdbarch,
20823 m_cu->builder->get_current_subfile (),
20824 m_line, m_address,
20825 m_currently_recording_lines ? m_cu : nullptr);
20826 }
20827 m_last_subfile = m_cu->builder->get_current_subfile ();
20828 m_last_line = m_line;
20829 }
20830 }
20831 }
20832 }
20833
20834 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20835 line_header *lh, bool record_lines_p)
20836 {
20837 m_cu = cu;
20838 m_gdbarch = arch;
20839 m_record_lines_p = record_lines_p;
20840 m_line_header = lh;
20841
20842 m_currently_recording_lines = true;
20843
20844 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20845 was a line entry for it so that the backend has a chance to adjust it
20846 and also record it in case it needs it. This is currently used by MIPS
20847 code, cf. `mips_adjust_dwarf2_line'. */
20848 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20849 m_is_stmt = lh->default_is_stmt;
20850 m_discriminator = 0;
20851 }
20852
20853 void
20854 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20855 const gdb_byte *line_ptr,
20856 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20857 {
20858 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20859 the pc range of the CU. However, we restrict the test to only ADDRESS
20860 values of zero to preserve GDB's previous behaviour which is to handle
20861 the specific case of a function being GC'd by the linker. */
20862
20863 if (address == 0 && address < unrelocated_lowpc)
20864 {
20865 /* This line table is for a function which has been
20866 GCd by the linker. Ignore it. PR gdb/12528 */
20867
20868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20869 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20870
20871 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20872 line_offset, objfile_name (objfile));
20873 m_currently_recording_lines = false;
20874 /* Note: m_currently_recording_lines is left as false until we see
20875 DW_LNE_end_sequence. */
20876 }
20877 }
20878
20879 /* Subroutine of dwarf_decode_lines to simplify it.
20880 Process the line number information in LH.
20881 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20882 program in order to set included_p for every referenced header. */
20883
20884 static void
20885 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20886 const int decode_for_pst_p, CORE_ADDR lowpc)
20887 {
20888 const gdb_byte *line_ptr, *extended_end;
20889 const gdb_byte *line_end;
20890 unsigned int bytes_read, extended_len;
20891 unsigned char op_code, extended_op;
20892 CORE_ADDR baseaddr;
20893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20894 bfd *abfd = objfile->obfd;
20895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20896 /* True if we're recording line info (as opposed to building partial
20897 symtabs and just interested in finding include files mentioned by
20898 the line number program). */
20899 bool record_lines_p = !decode_for_pst_p;
20900
20901 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20902
20903 line_ptr = lh->statement_program_start;
20904 line_end = lh->statement_program_end;
20905
20906 /* Read the statement sequences until there's nothing left. */
20907 while (line_ptr < line_end)
20908 {
20909 /* The DWARF line number program state machine. Reset the state
20910 machine at the start of each sequence. */
20911 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20912 bool end_sequence = false;
20913
20914 if (record_lines_p)
20915 {
20916 /* Start a subfile for the current file of the state
20917 machine. */
20918 const file_entry *fe = state_machine.current_file ();
20919
20920 if (fe != NULL)
20921 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20922 }
20923
20924 /* Decode the table. */
20925 while (line_ptr < line_end && !end_sequence)
20926 {
20927 op_code = read_1_byte (abfd, line_ptr);
20928 line_ptr += 1;
20929
20930 if (op_code >= lh->opcode_base)
20931 {
20932 /* Special opcode. */
20933 state_machine.handle_special_opcode (op_code);
20934 }
20935 else switch (op_code)
20936 {
20937 case DW_LNS_extended_op:
20938 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20939 &bytes_read);
20940 line_ptr += bytes_read;
20941 extended_end = line_ptr + extended_len;
20942 extended_op = read_1_byte (abfd, line_ptr);
20943 line_ptr += 1;
20944 switch (extended_op)
20945 {
20946 case DW_LNE_end_sequence:
20947 state_machine.handle_end_sequence ();
20948 end_sequence = true;
20949 break;
20950 case DW_LNE_set_address:
20951 {
20952 CORE_ADDR address
20953 = read_address (abfd, line_ptr, cu, &bytes_read);
20954 line_ptr += bytes_read;
20955
20956 state_machine.check_line_address (cu, line_ptr,
20957 lowpc - baseaddr, address);
20958 state_machine.handle_set_address (baseaddr, address);
20959 }
20960 break;
20961 case DW_LNE_define_file:
20962 {
20963 const char *cur_file;
20964 unsigned int mod_time, length;
20965 dir_index dindex;
20966
20967 cur_file = read_direct_string (abfd, line_ptr,
20968 &bytes_read);
20969 line_ptr += bytes_read;
20970 dindex = (dir_index)
20971 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20972 line_ptr += bytes_read;
20973 mod_time =
20974 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20975 line_ptr += bytes_read;
20976 length =
20977 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20978 line_ptr += bytes_read;
20979 lh->add_file_name (cur_file, dindex, mod_time, length);
20980 }
20981 break;
20982 case DW_LNE_set_discriminator:
20983 {
20984 /* The discriminator is not interesting to the
20985 debugger; just ignore it. We still need to
20986 check its value though:
20987 if there are consecutive entries for the same
20988 (non-prologue) line we want to coalesce them.
20989 PR 17276. */
20990 unsigned int discr
20991 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20992 line_ptr += bytes_read;
20993
20994 state_machine.handle_set_discriminator (discr);
20995 }
20996 break;
20997 default:
20998 complaint (_("mangled .debug_line section"));
20999 return;
21000 }
21001 /* Make sure that we parsed the extended op correctly. If e.g.
21002 we expected a different address size than the producer used,
21003 we may have read the wrong number of bytes. */
21004 if (line_ptr != extended_end)
21005 {
21006 complaint (_("mangled .debug_line section"));
21007 return;
21008 }
21009 break;
21010 case DW_LNS_copy:
21011 state_machine.handle_copy ();
21012 break;
21013 case DW_LNS_advance_pc:
21014 {
21015 CORE_ADDR adjust
21016 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21017 line_ptr += bytes_read;
21018
21019 state_machine.handle_advance_pc (adjust);
21020 }
21021 break;
21022 case DW_LNS_advance_line:
21023 {
21024 int line_delta
21025 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21026 line_ptr += bytes_read;
21027
21028 state_machine.handle_advance_line (line_delta);
21029 }
21030 break;
21031 case DW_LNS_set_file:
21032 {
21033 file_name_index file
21034 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21035 &bytes_read);
21036 line_ptr += bytes_read;
21037
21038 state_machine.handle_set_file (file);
21039 }
21040 break;
21041 case DW_LNS_set_column:
21042 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21043 line_ptr += bytes_read;
21044 break;
21045 case DW_LNS_negate_stmt:
21046 state_machine.handle_negate_stmt ();
21047 break;
21048 case DW_LNS_set_basic_block:
21049 break;
21050 /* Add to the address register of the state machine the
21051 address increment value corresponding to special opcode
21052 255. I.e., this value is scaled by the minimum
21053 instruction length since special opcode 255 would have
21054 scaled the increment. */
21055 case DW_LNS_const_add_pc:
21056 state_machine.handle_const_add_pc ();
21057 break;
21058 case DW_LNS_fixed_advance_pc:
21059 {
21060 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21061 line_ptr += 2;
21062
21063 state_machine.handle_fixed_advance_pc (addr_adj);
21064 }
21065 break;
21066 default:
21067 {
21068 /* Unknown standard opcode, ignore it. */
21069 int i;
21070
21071 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21072 {
21073 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21074 line_ptr += bytes_read;
21075 }
21076 }
21077 }
21078 }
21079
21080 if (!end_sequence)
21081 dwarf2_debug_line_missing_end_sequence_complaint ();
21082
21083 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21084 in which case we still finish recording the last line). */
21085 state_machine.record_line (true);
21086 }
21087 }
21088
21089 /* Decode the Line Number Program (LNP) for the given line_header
21090 structure and CU. The actual information extracted and the type
21091 of structures created from the LNP depends on the value of PST.
21092
21093 1. If PST is NULL, then this procedure uses the data from the program
21094 to create all necessary symbol tables, and their linetables.
21095
21096 2. If PST is not NULL, this procedure reads the program to determine
21097 the list of files included by the unit represented by PST, and
21098 builds all the associated partial symbol tables.
21099
21100 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21101 It is used for relative paths in the line table.
21102 NOTE: When processing partial symtabs (pst != NULL),
21103 comp_dir == pst->dirname.
21104
21105 NOTE: It is important that psymtabs have the same file name (via strcmp)
21106 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21107 symtab we don't use it in the name of the psymtabs we create.
21108 E.g. expand_line_sal requires this when finding psymtabs to expand.
21109 A good testcase for this is mb-inline.exp.
21110
21111 LOWPC is the lowest address in CU (or 0 if not known).
21112
21113 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21114 for its PC<->lines mapping information. Otherwise only the filename
21115 table is read in. */
21116
21117 static void
21118 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21119 struct dwarf2_cu *cu, struct partial_symtab *pst,
21120 CORE_ADDR lowpc, int decode_mapping)
21121 {
21122 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21123 const int decode_for_pst_p = (pst != NULL);
21124
21125 if (decode_mapping)
21126 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21127
21128 if (decode_for_pst_p)
21129 {
21130 int file_index;
21131
21132 /* Now that we're done scanning the Line Header Program, we can
21133 create the psymtab of each included file. */
21134 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21135 if (lh->file_names[file_index].included_p == 1)
21136 {
21137 gdb::unique_xmalloc_ptr<char> name_holder;
21138 const char *include_name =
21139 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21140 &name_holder);
21141 if (include_name != NULL)
21142 dwarf2_create_include_psymtab (include_name, pst, objfile);
21143 }
21144 }
21145 else
21146 {
21147 /* Make sure a symtab is created for every file, even files
21148 which contain only variables (i.e. no code with associated
21149 line numbers). */
21150 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21151 int i;
21152
21153 for (i = 0; i < lh->file_names.size (); i++)
21154 {
21155 file_entry &fe = lh->file_names[i];
21156
21157 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21158
21159 if (cu->builder->get_current_subfile ()->symtab == NULL)
21160 {
21161 cu->builder->get_current_subfile ()->symtab
21162 = allocate_symtab (cust,
21163 cu->builder->get_current_subfile ()->name);
21164 }
21165 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21166 }
21167 }
21168 }
21169
21170 /* Start a subfile for DWARF. FILENAME is the name of the file and
21171 DIRNAME the name of the source directory which contains FILENAME
21172 or NULL if not known.
21173 This routine tries to keep line numbers from identical absolute and
21174 relative file names in a common subfile.
21175
21176 Using the `list' example from the GDB testsuite, which resides in
21177 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21178 of /srcdir/list0.c yields the following debugging information for list0.c:
21179
21180 DW_AT_name: /srcdir/list0.c
21181 DW_AT_comp_dir: /compdir
21182 files.files[0].name: list0.h
21183 files.files[0].dir: /srcdir
21184 files.files[1].name: list0.c
21185 files.files[1].dir: /srcdir
21186
21187 The line number information for list0.c has to end up in a single
21188 subfile, so that `break /srcdir/list0.c:1' works as expected.
21189 start_subfile will ensure that this happens provided that we pass the
21190 concatenation of files.files[1].dir and files.files[1].name as the
21191 subfile's name. */
21192
21193 static void
21194 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21195 const char *dirname)
21196 {
21197 char *copy = NULL;
21198
21199 /* In order not to lose the line information directory,
21200 we concatenate it to the filename when it makes sense.
21201 Note that the Dwarf3 standard says (speaking of filenames in line
21202 information): ``The directory index is ignored for file names
21203 that represent full path names''. Thus ignoring dirname in the
21204 `else' branch below isn't an issue. */
21205
21206 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21207 {
21208 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21209 filename = copy;
21210 }
21211
21212 cu->builder->start_subfile (filename);
21213
21214 if (copy != NULL)
21215 xfree (copy);
21216 }
21217
21218 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21219 buildsym_compunit constructor. */
21220
21221 static struct compunit_symtab *
21222 dwarf2_start_symtab (struct dwarf2_cu *cu,
21223 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21224 {
21225 gdb_assert (cu->builder == nullptr);
21226
21227 cu->builder.reset (new struct buildsym_compunit
21228 (cu->per_cu->dwarf2_per_objfile->objfile,
21229 name, comp_dir, cu->language, low_pc));
21230
21231 cu->list_in_scope = cu->builder->get_file_symbols ();
21232
21233 cu->builder->record_debugformat ("DWARF 2");
21234 cu->builder->record_producer (cu->producer);
21235
21236 cu->processing_has_namespace_info = 0;
21237
21238 return cu->builder->get_compunit_symtab ();
21239 }
21240
21241 static void
21242 var_decode_location (struct attribute *attr, struct symbol *sym,
21243 struct dwarf2_cu *cu)
21244 {
21245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21246 struct comp_unit_head *cu_header = &cu->header;
21247
21248 /* NOTE drow/2003-01-30: There used to be a comment and some special
21249 code here to turn a symbol with DW_AT_external and a
21250 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21251 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21252 with some versions of binutils) where shared libraries could have
21253 relocations against symbols in their debug information - the
21254 minimal symbol would have the right address, but the debug info
21255 would not. It's no longer necessary, because we will explicitly
21256 apply relocations when we read in the debug information now. */
21257
21258 /* A DW_AT_location attribute with no contents indicates that a
21259 variable has been optimized away. */
21260 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21261 {
21262 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21263 return;
21264 }
21265
21266 /* Handle one degenerate form of location expression specially, to
21267 preserve GDB's previous behavior when section offsets are
21268 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21269 then mark this symbol as LOC_STATIC. */
21270
21271 if (attr_form_is_block (attr)
21272 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21273 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21274 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21275 && (DW_BLOCK (attr)->size
21276 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21277 {
21278 unsigned int dummy;
21279
21280 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21281 SYMBOL_VALUE_ADDRESS (sym) =
21282 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21283 else
21284 SYMBOL_VALUE_ADDRESS (sym) =
21285 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21286 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21287 fixup_symbol_section (sym, objfile);
21288 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21289 SYMBOL_SECTION (sym));
21290 return;
21291 }
21292
21293 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21294 expression evaluator, and use LOC_COMPUTED only when necessary
21295 (i.e. when the value of a register or memory location is
21296 referenced, or a thread-local block, etc.). Then again, it might
21297 not be worthwhile. I'm assuming that it isn't unless performance
21298 or memory numbers show me otherwise. */
21299
21300 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21301
21302 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21303 cu->has_loclist = 1;
21304 }
21305
21306 /* Given a pointer to a DWARF information entry, figure out if we need
21307 to make a symbol table entry for it, and if so, create a new entry
21308 and return a pointer to it.
21309 If TYPE is NULL, determine symbol type from the die, otherwise
21310 used the passed type.
21311 If SPACE is not NULL, use it to hold the new symbol. If it is
21312 NULL, allocate a new symbol on the objfile's obstack. */
21313
21314 static struct symbol *
21315 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21316 struct symbol *space)
21317 {
21318 struct dwarf2_per_objfile *dwarf2_per_objfile
21319 = cu->per_cu->dwarf2_per_objfile;
21320 struct objfile *objfile = dwarf2_per_objfile->objfile;
21321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21322 struct symbol *sym = NULL;
21323 const char *name;
21324 struct attribute *attr = NULL;
21325 struct attribute *attr2 = NULL;
21326 CORE_ADDR baseaddr;
21327 struct pending **list_to_add = NULL;
21328
21329 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21330
21331 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21332
21333 name = dwarf2_name (die, cu);
21334 if (name)
21335 {
21336 const char *linkagename;
21337 int suppress_add = 0;
21338
21339 if (space)
21340 sym = space;
21341 else
21342 sym = allocate_symbol (objfile);
21343 OBJSTAT (objfile, n_syms++);
21344
21345 /* Cache this symbol's name and the name's demangled form (if any). */
21346 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21347 linkagename = dwarf2_physname (name, die, cu);
21348 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21349
21350 /* Fortran does not have mangling standard and the mangling does differ
21351 between gfortran, iFort etc. */
21352 if (cu->language == language_fortran
21353 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21354 symbol_set_demangled_name (&(sym->ginfo),
21355 dwarf2_full_name (name, die, cu),
21356 NULL);
21357
21358 /* Default assumptions.
21359 Use the passed type or decode it from the die. */
21360 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21361 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21362 if (type != NULL)
21363 SYMBOL_TYPE (sym) = type;
21364 else
21365 SYMBOL_TYPE (sym) = die_type (die, cu);
21366 attr = dwarf2_attr (die,
21367 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21368 cu);
21369 if (attr)
21370 {
21371 SYMBOL_LINE (sym) = DW_UNSND (attr);
21372 }
21373
21374 attr = dwarf2_attr (die,
21375 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21376 cu);
21377 if (attr)
21378 {
21379 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21380 struct file_entry *fe;
21381
21382 if (cu->line_header != NULL)
21383 fe = cu->line_header->file_name_at (file_index);
21384 else
21385 fe = NULL;
21386
21387 if (fe == NULL)
21388 complaint (_("file index out of range"));
21389 else
21390 symbol_set_symtab (sym, fe->symtab);
21391 }
21392
21393 switch (die->tag)
21394 {
21395 case DW_TAG_label:
21396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21397 if (attr)
21398 {
21399 CORE_ADDR addr;
21400
21401 addr = attr_value_as_address (attr);
21402 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21403 SYMBOL_VALUE_ADDRESS (sym) = addr;
21404 }
21405 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21406 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21407 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21408 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21409 break;
21410 case DW_TAG_subprogram:
21411 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21412 finish_block. */
21413 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21414 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21415 if ((attr2 && (DW_UNSND (attr2) != 0))
21416 || cu->language == language_ada)
21417 {
21418 /* Subprograms marked external are stored as a global symbol.
21419 Ada subprograms, whether marked external or not, are always
21420 stored as a global symbol, because we want to be able to
21421 access them globally. For instance, we want to be able
21422 to break on a nested subprogram without having to
21423 specify the context. */
21424 list_to_add = cu->builder->get_global_symbols ();
21425 }
21426 else
21427 {
21428 list_to_add = cu->list_in_scope;
21429 }
21430 break;
21431 case DW_TAG_inlined_subroutine:
21432 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21433 finish_block. */
21434 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21435 SYMBOL_INLINED (sym) = 1;
21436 list_to_add = cu->list_in_scope;
21437 break;
21438 case DW_TAG_template_value_param:
21439 suppress_add = 1;
21440 /* Fall through. */
21441 case DW_TAG_constant:
21442 case DW_TAG_variable:
21443 case DW_TAG_member:
21444 /* Compilation with minimal debug info may result in
21445 variables with missing type entries. Change the
21446 misleading `void' type to something sensible. */
21447 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21448 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21449
21450 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21451 /* In the case of DW_TAG_member, we should only be called for
21452 static const members. */
21453 if (die->tag == DW_TAG_member)
21454 {
21455 /* dwarf2_add_field uses die_is_declaration,
21456 so we do the same. */
21457 gdb_assert (die_is_declaration (die, cu));
21458 gdb_assert (attr);
21459 }
21460 if (attr)
21461 {
21462 dwarf2_const_value (attr, sym, cu);
21463 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21464 if (!suppress_add)
21465 {
21466 if (attr2 && (DW_UNSND (attr2) != 0))
21467 list_to_add = cu->builder->get_global_symbols ();
21468 else
21469 list_to_add = cu->list_in_scope;
21470 }
21471 break;
21472 }
21473 attr = dwarf2_attr (die, DW_AT_location, cu);
21474 if (attr)
21475 {
21476 var_decode_location (attr, sym, cu);
21477 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21478
21479 /* Fortran explicitly imports any global symbols to the local
21480 scope by DW_TAG_common_block. */
21481 if (cu->language == language_fortran && die->parent
21482 && die->parent->tag == DW_TAG_common_block)
21483 attr2 = NULL;
21484
21485 if (SYMBOL_CLASS (sym) == LOC_STATIC
21486 && SYMBOL_VALUE_ADDRESS (sym) == 0
21487 && !dwarf2_per_objfile->has_section_at_zero)
21488 {
21489 /* When a static variable is eliminated by the linker,
21490 the corresponding debug information is not stripped
21491 out, but the variable address is set to null;
21492 do not add such variables into symbol table. */
21493 }
21494 else if (attr2 && (DW_UNSND (attr2) != 0))
21495 {
21496 /* Workaround gfortran PR debug/40040 - it uses
21497 DW_AT_location for variables in -fPIC libraries which may
21498 get overriden by other libraries/executable and get
21499 a different address. Resolve it by the minimal symbol
21500 which may come from inferior's executable using copy
21501 relocation. Make this workaround only for gfortran as for
21502 other compilers GDB cannot guess the minimal symbol
21503 Fortran mangling kind. */
21504 if (cu->language == language_fortran && die->parent
21505 && die->parent->tag == DW_TAG_module
21506 && cu->producer
21507 && startswith (cu->producer, "GNU Fortran"))
21508 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21509
21510 /* A variable with DW_AT_external is never static,
21511 but it may be block-scoped. */
21512 list_to_add
21513 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21514 ? cu->builder->get_global_symbols ()
21515 : cu->list_in_scope);
21516 }
21517 else
21518 list_to_add = cu->list_in_scope;
21519 }
21520 else
21521 {
21522 /* We do not know the address of this symbol.
21523 If it is an external symbol and we have type information
21524 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21525 The address of the variable will then be determined from
21526 the minimal symbol table whenever the variable is
21527 referenced. */
21528 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21529
21530 /* Fortran explicitly imports any global symbols to the local
21531 scope by DW_TAG_common_block. */
21532 if (cu->language == language_fortran && die->parent
21533 && die->parent->tag == DW_TAG_common_block)
21534 {
21535 /* SYMBOL_CLASS doesn't matter here because
21536 read_common_block is going to reset it. */
21537 if (!suppress_add)
21538 list_to_add = cu->list_in_scope;
21539 }
21540 else if (attr2 && (DW_UNSND (attr2) != 0)
21541 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21542 {
21543 /* A variable with DW_AT_external is never static, but it
21544 may be block-scoped. */
21545 list_to_add
21546 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21547 ? cu->builder->get_global_symbols ()
21548 : cu->list_in_scope);
21549
21550 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21551 }
21552 else if (!die_is_declaration (die, cu))
21553 {
21554 /* Use the default LOC_OPTIMIZED_OUT class. */
21555 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21556 if (!suppress_add)
21557 list_to_add = cu->list_in_scope;
21558 }
21559 }
21560 break;
21561 case DW_TAG_formal_parameter:
21562 {
21563 /* If we are inside a function, mark this as an argument. If
21564 not, we might be looking at an argument to an inlined function
21565 when we do not have enough information to show inlined frames;
21566 pretend it's a local variable in that case so that the user can
21567 still see it. */
21568 struct context_stack *curr
21569 = cu->builder->get_current_context_stack ();
21570 if (curr != nullptr && curr->name != nullptr)
21571 SYMBOL_IS_ARGUMENT (sym) = 1;
21572 attr = dwarf2_attr (die, DW_AT_location, cu);
21573 if (attr)
21574 {
21575 var_decode_location (attr, sym, cu);
21576 }
21577 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21578 if (attr)
21579 {
21580 dwarf2_const_value (attr, sym, cu);
21581 }
21582
21583 list_to_add = cu->list_in_scope;
21584 }
21585 break;
21586 case DW_TAG_unspecified_parameters:
21587 /* From varargs functions; gdb doesn't seem to have any
21588 interest in this information, so just ignore it for now.
21589 (FIXME?) */
21590 break;
21591 case DW_TAG_template_type_param:
21592 suppress_add = 1;
21593 /* Fall through. */
21594 case DW_TAG_class_type:
21595 case DW_TAG_interface_type:
21596 case DW_TAG_structure_type:
21597 case DW_TAG_union_type:
21598 case DW_TAG_set_type:
21599 case DW_TAG_enumeration_type:
21600 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21601 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21602
21603 {
21604 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21605 really ever be static objects: otherwise, if you try
21606 to, say, break of a class's method and you're in a file
21607 which doesn't mention that class, it won't work unless
21608 the check for all static symbols in lookup_symbol_aux
21609 saves you. See the OtherFileClass tests in
21610 gdb.c++/namespace.exp. */
21611
21612 if (!suppress_add)
21613 {
21614 list_to_add
21615 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21616 && cu->language == language_cplus
21617 ? cu->builder->get_global_symbols ()
21618 : cu->list_in_scope);
21619
21620 /* The semantics of C++ state that "struct foo {
21621 ... }" also defines a typedef for "foo". */
21622 if (cu->language == language_cplus
21623 || cu->language == language_ada
21624 || cu->language == language_d
21625 || cu->language == language_rust)
21626 {
21627 /* The symbol's name is already allocated along
21628 with this objfile, so we don't need to
21629 duplicate it for the type. */
21630 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21631 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21632 }
21633 }
21634 }
21635 break;
21636 case DW_TAG_typedef:
21637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21638 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21639 list_to_add = cu->list_in_scope;
21640 break;
21641 case DW_TAG_base_type:
21642 case DW_TAG_subrange_type:
21643 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21644 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21645 list_to_add = cu->list_in_scope;
21646 break;
21647 case DW_TAG_enumerator:
21648 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21649 if (attr)
21650 {
21651 dwarf2_const_value (attr, sym, cu);
21652 }
21653 {
21654 /* NOTE: carlton/2003-11-10: See comment above in the
21655 DW_TAG_class_type, etc. block. */
21656
21657 list_to_add
21658 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21659 && cu->language == language_cplus
21660 ? cu->builder->get_global_symbols ()
21661 : cu->list_in_scope);
21662 }
21663 break;
21664 case DW_TAG_imported_declaration:
21665 case DW_TAG_namespace:
21666 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21667 list_to_add = cu->builder->get_global_symbols ();
21668 break;
21669 case DW_TAG_module:
21670 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21671 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21672 list_to_add = cu->builder->get_global_symbols ();
21673 break;
21674 case DW_TAG_common_block:
21675 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21676 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21677 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21678 break;
21679 default:
21680 /* Not a tag we recognize. Hopefully we aren't processing
21681 trash data, but since we must specifically ignore things
21682 we don't recognize, there is nothing else we should do at
21683 this point. */
21684 complaint (_("unsupported tag: '%s'"),
21685 dwarf_tag_name (die->tag));
21686 break;
21687 }
21688
21689 if (suppress_add)
21690 {
21691 sym->hash_next = objfile->template_symbols;
21692 objfile->template_symbols = sym;
21693 list_to_add = NULL;
21694 }
21695
21696 if (list_to_add != NULL)
21697 dw2_add_symbol_to_list (sym, list_to_add);
21698
21699 /* For the benefit of old versions of GCC, check for anonymous
21700 namespaces based on the demangled name. */
21701 if (!cu->processing_has_namespace_info
21702 && cu->language == language_cplus)
21703 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21704 }
21705 return (sym);
21706 }
21707
21708 /* Given an attr with a DW_FORM_dataN value in host byte order,
21709 zero-extend it as appropriate for the symbol's type. The DWARF
21710 standard (v4) is not entirely clear about the meaning of using
21711 DW_FORM_dataN for a constant with a signed type, where the type is
21712 wider than the data. The conclusion of a discussion on the DWARF
21713 list was that this is unspecified. We choose to always zero-extend
21714 because that is the interpretation long in use by GCC. */
21715
21716 static gdb_byte *
21717 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21718 struct dwarf2_cu *cu, LONGEST *value, int bits)
21719 {
21720 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21721 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21722 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21723 LONGEST l = DW_UNSND (attr);
21724
21725 if (bits < sizeof (*value) * 8)
21726 {
21727 l &= ((LONGEST) 1 << bits) - 1;
21728 *value = l;
21729 }
21730 else if (bits == sizeof (*value) * 8)
21731 *value = l;
21732 else
21733 {
21734 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21735 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21736 return bytes;
21737 }
21738
21739 return NULL;
21740 }
21741
21742 /* Read a constant value from an attribute. Either set *VALUE, or if
21743 the value does not fit in *VALUE, set *BYTES - either already
21744 allocated on the objfile obstack, or newly allocated on OBSTACK,
21745 or, set *BATON, if we translated the constant to a location
21746 expression. */
21747
21748 static void
21749 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21750 const char *name, struct obstack *obstack,
21751 struct dwarf2_cu *cu,
21752 LONGEST *value, const gdb_byte **bytes,
21753 struct dwarf2_locexpr_baton **baton)
21754 {
21755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21756 struct comp_unit_head *cu_header = &cu->header;
21757 struct dwarf_block *blk;
21758 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21759 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21760
21761 *value = 0;
21762 *bytes = NULL;
21763 *baton = NULL;
21764
21765 switch (attr->form)
21766 {
21767 case DW_FORM_addr:
21768 case DW_FORM_GNU_addr_index:
21769 {
21770 gdb_byte *data;
21771
21772 if (TYPE_LENGTH (type) != cu_header->addr_size)
21773 dwarf2_const_value_length_mismatch_complaint (name,
21774 cu_header->addr_size,
21775 TYPE_LENGTH (type));
21776 /* Symbols of this form are reasonably rare, so we just
21777 piggyback on the existing location code rather than writing
21778 a new implementation of symbol_computed_ops. */
21779 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21780 (*baton)->per_cu = cu->per_cu;
21781 gdb_assert ((*baton)->per_cu);
21782
21783 (*baton)->size = 2 + cu_header->addr_size;
21784 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21785 (*baton)->data = data;
21786
21787 data[0] = DW_OP_addr;
21788 store_unsigned_integer (&data[1], cu_header->addr_size,
21789 byte_order, DW_ADDR (attr));
21790 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21791 }
21792 break;
21793 case DW_FORM_string:
21794 case DW_FORM_strp:
21795 case DW_FORM_GNU_str_index:
21796 case DW_FORM_GNU_strp_alt:
21797 /* DW_STRING is already allocated on the objfile obstack, point
21798 directly to it. */
21799 *bytes = (const gdb_byte *) DW_STRING (attr);
21800 break;
21801 case DW_FORM_block1:
21802 case DW_FORM_block2:
21803 case DW_FORM_block4:
21804 case DW_FORM_block:
21805 case DW_FORM_exprloc:
21806 case DW_FORM_data16:
21807 blk = DW_BLOCK (attr);
21808 if (TYPE_LENGTH (type) != blk->size)
21809 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21810 TYPE_LENGTH (type));
21811 *bytes = blk->data;
21812 break;
21813
21814 /* The DW_AT_const_value attributes are supposed to carry the
21815 symbol's value "represented as it would be on the target
21816 architecture." By the time we get here, it's already been
21817 converted to host endianness, so we just need to sign- or
21818 zero-extend it as appropriate. */
21819 case DW_FORM_data1:
21820 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21821 break;
21822 case DW_FORM_data2:
21823 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21824 break;
21825 case DW_FORM_data4:
21826 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21827 break;
21828 case DW_FORM_data8:
21829 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21830 break;
21831
21832 case DW_FORM_sdata:
21833 case DW_FORM_implicit_const:
21834 *value = DW_SND (attr);
21835 break;
21836
21837 case DW_FORM_udata:
21838 *value = DW_UNSND (attr);
21839 break;
21840
21841 default:
21842 complaint (_("unsupported const value attribute form: '%s'"),
21843 dwarf_form_name (attr->form));
21844 *value = 0;
21845 break;
21846 }
21847 }
21848
21849
21850 /* Copy constant value from an attribute to a symbol. */
21851
21852 static void
21853 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21854 struct dwarf2_cu *cu)
21855 {
21856 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21857 LONGEST value;
21858 const gdb_byte *bytes;
21859 struct dwarf2_locexpr_baton *baton;
21860
21861 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21862 SYMBOL_PRINT_NAME (sym),
21863 &objfile->objfile_obstack, cu,
21864 &value, &bytes, &baton);
21865
21866 if (baton != NULL)
21867 {
21868 SYMBOL_LOCATION_BATON (sym) = baton;
21869 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21870 }
21871 else if (bytes != NULL)
21872 {
21873 SYMBOL_VALUE_BYTES (sym) = bytes;
21874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21875 }
21876 else
21877 {
21878 SYMBOL_VALUE (sym) = value;
21879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21880 }
21881 }
21882
21883 /* Return the type of the die in question using its DW_AT_type attribute. */
21884
21885 static struct type *
21886 die_type (struct die_info *die, struct dwarf2_cu *cu)
21887 {
21888 struct attribute *type_attr;
21889
21890 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21891 if (!type_attr)
21892 {
21893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21894 /* A missing DW_AT_type represents a void type. */
21895 return objfile_type (objfile)->builtin_void;
21896 }
21897
21898 return lookup_die_type (die, type_attr, cu);
21899 }
21900
21901 /* True iff CU's producer generates GNAT Ada auxiliary information
21902 that allows to find parallel types through that information instead
21903 of having to do expensive parallel lookups by type name. */
21904
21905 static int
21906 need_gnat_info (struct dwarf2_cu *cu)
21907 {
21908 /* Assume that the Ada compiler was GNAT, which always produces
21909 the auxiliary information. */
21910 return (cu->language == language_ada);
21911 }
21912
21913 /* Return the auxiliary type of the die in question using its
21914 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21915 attribute is not present. */
21916
21917 static struct type *
21918 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21919 {
21920 struct attribute *type_attr;
21921
21922 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21923 if (!type_attr)
21924 return NULL;
21925
21926 return lookup_die_type (die, type_attr, cu);
21927 }
21928
21929 /* If DIE has a descriptive_type attribute, then set the TYPE's
21930 descriptive type accordingly. */
21931
21932 static void
21933 set_descriptive_type (struct type *type, struct die_info *die,
21934 struct dwarf2_cu *cu)
21935 {
21936 struct type *descriptive_type = die_descriptive_type (die, cu);
21937
21938 if (descriptive_type)
21939 {
21940 ALLOCATE_GNAT_AUX_TYPE (type);
21941 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21942 }
21943 }
21944
21945 /* Return the containing type of the die in question using its
21946 DW_AT_containing_type attribute. */
21947
21948 static struct type *
21949 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21950 {
21951 struct attribute *type_attr;
21952 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21953
21954 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21955 if (!type_attr)
21956 error (_("Dwarf Error: Problem turning containing type into gdb type "
21957 "[in module %s]"), objfile_name (objfile));
21958
21959 return lookup_die_type (die, type_attr, cu);
21960 }
21961
21962 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21963
21964 static struct type *
21965 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21966 {
21967 struct dwarf2_per_objfile *dwarf2_per_objfile
21968 = cu->per_cu->dwarf2_per_objfile;
21969 struct objfile *objfile = dwarf2_per_objfile->objfile;
21970 char *saved;
21971
21972 std::string message
21973 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21974 objfile_name (objfile),
21975 sect_offset_str (cu->header.sect_off),
21976 sect_offset_str (die->sect_off));
21977 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21978 message.c_str (), message.length ());
21979
21980 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21981 }
21982
21983 /* Look up the type of DIE in CU using its type attribute ATTR.
21984 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21985 DW_AT_containing_type.
21986 If there is no type substitute an error marker. */
21987
21988 static struct type *
21989 lookup_die_type (struct die_info *die, const struct attribute *attr,
21990 struct dwarf2_cu *cu)
21991 {
21992 struct dwarf2_per_objfile *dwarf2_per_objfile
21993 = cu->per_cu->dwarf2_per_objfile;
21994 struct objfile *objfile = dwarf2_per_objfile->objfile;
21995 struct type *this_type;
21996
21997 gdb_assert (attr->name == DW_AT_type
21998 || attr->name == DW_AT_GNAT_descriptive_type
21999 || attr->name == DW_AT_containing_type);
22000
22001 /* First see if we have it cached. */
22002
22003 if (attr->form == DW_FORM_GNU_ref_alt)
22004 {
22005 struct dwarf2_per_cu_data *per_cu;
22006 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22007
22008 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22009 dwarf2_per_objfile);
22010 this_type = get_die_type_at_offset (sect_off, per_cu);
22011 }
22012 else if (attr_form_is_ref (attr))
22013 {
22014 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22015
22016 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22017 }
22018 else if (attr->form == DW_FORM_ref_sig8)
22019 {
22020 ULONGEST signature = DW_SIGNATURE (attr);
22021
22022 return get_signatured_type (die, signature, cu);
22023 }
22024 else
22025 {
22026 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22027 " at %s [in module %s]"),
22028 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22029 objfile_name (objfile));
22030 return build_error_marker_type (cu, die);
22031 }
22032
22033 /* If not cached we need to read it in. */
22034
22035 if (this_type == NULL)
22036 {
22037 struct die_info *type_die = NULL;
22038 struct dwarf2_cu *type_cu = cu;
22039
22040 if (attr_form_is_ref (attr))
22041 type_die = follow_die_ref (die, attr, &type_cu);
22042 if (type_die == NULL)
22043 return build_error_marker_type (cu, die);
22044 /* If we find the type now, it's probably because the type came
22045 from an inter-CU reference and the type's CU got expanded before
22046 ours. */
22047 this_type = read_type_die (type_die, type_cu);
22048 }
22049
22050 /* If we still don't have a type use an error marker. */
22051
22052 if (this_type == NULL)
22053 return build_error_marker_type (cu, die);
22054
22055 return this_type;
22056 }
22057
22058 /* Return the type in DIE, CU.
22059 Returns NULL for invalid types.
22060
22061 This first does a lookup in die_type_hash,
22062 and only reads the die in if necessary.
22063
22064 NOTE: This can be called when reading in partial or full symbols. */
22065
22066 static struct type *
22067 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22068 {
22069 struct type *this_type;
22070
22071 this_type = get_die_type (die, cu);
22072 if (this_type)
22073 return this_type;
22074
22075 return read_type_die_1 (die, cu);
22076 }
22077
22078 /* Read the type in DIE, CU.
22079 Returns NULL for invalid types. */
22080
22081 static struct type *
22082 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22083 {
22084 struct type *this_type = NULL;
22085
22086 switch (die->tag)
22087 {
22088 case DW_TAG_class_type:
22089 case DW_TAG_interface_type:
22090 case DW_TAG_structure_type:
22091 case DW_TAG_union_type:
22092 this_type = read_structure_type (die, cu);
22093 break;
22094 case DW_TAG_enumeration_type:
22095 this_type = read_enumeration_type (die, cu);
22096 break;
22097 case DW_TAG_subprogram:
22098 case DW_TAG_subroutine_type:
22099 case DW_TAG_inlined_subroutine:
22100 this_type = read_subroutine_type (die, cu);
22101 break;
22102 case DW_TAG_array_type:
22103 this_type = read_array_type (die, cu);
22104 break;
22105 case DW_TAG_set_type:
22106 this_type = read_set_type (die, cu);
22107 break;
22108 case DW_TAG_pointer_type:
22109 this_type = read_tag_pointer_type (die, cu);
22110 break;
22111 case DW_TAG_ptr_to_member_type:
22112 this_type = read_tag_ptr_to_member_type (die, cu);
22113 break;
22114 case DW_TAG_reference_type:
22115 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22116 break;
22117 case DW_TAG_rvalue_reference_type:
22118 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22119 break;
22120 case DW_TAG_const_type:
22121 this_type = read_tag_const_type (die, cu);
22122 break;
22123 case DW_TAG_volatile_type:
22124 this_type = read_tag_volatile_type (die, cu);
22125 break;
22126 case DW_TAG_restrict_type:
22127 this_type = read_tag_restrict_type (die, cu);
22128 break;
22129 case DW_TAG_string_type:
22130 this_type = read_tag_string_type (die, cu);
22131 break;
22132 case DW_TAG_typedef:
22133 this_type = read_typedef (die, cu);
22134 break;
22135 case DW_TAG_subrange_type:
22136 this_type = read_subrange_type (die, cu);
22137 break;
22138 case DW_TAG_base_type:
22139 this_type = read_base_type (die, cu);
22140 break;
22141 case DW_TAG_unspecified_type:
22142 this_type = read_unspecified_type (die, cu);
22143 break;
22144 case DW_TAG_namespace:
22145 this_type = read_namespace_type (die, cu);
22146 break;
22147 case DW_TAG_module:
22148 this_type = read_module_type (die, cu);
22149 break;
22150 case DW_TAG_atomic_type:
22151 this_type = read_tag_atomic_type (die, cu);
22152 break;
22153 default:
22154 complaint (_("unexpected tag in read_type_die: '%s'"),
22155 dwarf_tag_name (die->tag));
22156 break;
22157 }
22158
22159 return this_type;
22160 }
22161
22162 /* See if we can figure out if the class lives in a namespace. We do
22163 this by looking for a member function; its demangled name will
22164 contain namespace info, if there is any.
22165 Return the computed name or NULL.
22166 Space for the result is allocated on the objfile's obstack.
22167 This is the full-die version of guess_partial_die_structure_name.
22168 In this case we know DIE has no useful parent. */
22169
22170 static char *
22171 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22172 {
22173 struct die_info *spec_die;
22174 struct dwarf2_cu *spec_cu;
22175 struct die_info *child;
22176 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22177
22178 spec_cu = cu;
22179 spec_die = die_specification (die, &spec_cu);
22180 if (spec_die != NULL)
22181 {
22182 die = spec_die;
22183 cu = spec_cu;
22184 }
22185
22186 for (child = die->child;
22187 child != NULL;
22188 child = child->sibling)
22189 {
22190 if (child->tag == DW_TAG_subprogram)
22191 {
22192 const char *linkage_name = dw2_linkage_name (child, cu);
22193
22194 if (linkage_name != NULL)
22195 {
22196 char *actual_name
22197 = language_class_name_from_physname (cu->language_defn,
22198 linkage_name);
22199 char *name = NULL;
22200
22201 if (actual_name != NULL)
22202 {
22203 const char *die_name = dwarf2_name (die, cu);
22204
22205 if (die_name != NULL
22206 && strcmp (die_name, actual_name) != 0)
22207 {
22208 /* Strip off the class name from the full name.
22209 We want the prefix. */
22210 int die_name_len = strlen (die_name);
22211 int actual_name_len = strlen (actual_name);
22212
22213 /* Test for '::' as a sanity check. */
22214 if (actual_name_len > die_name_len + 2
22215 && actual_name[actual_name_len
22216 - die_name_len - 1] == ':')
22217 name = (char *) obstack_copy0 (
22218 &objfile->per_bfd->storage_obstack,
22219 actual_name, actual_name_len - die_name_len - 2);
22220 }
22221 }
22222 xfree (actual_name);
22223 return name;
22224 }
22225 }
22226 }
22227
22228 return NULL;
22229 }
22230
22231 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22232 prefix part in such case. See
22233 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22234
22235 static const char *
22236 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22237 {
22238 struct attribute *attr;
22239 const char *base;
22240
22241 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22242 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22243 return NULL;
22244
22245 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22246 return NULL;
22247
22248 attr = dw2_linkage_name_attr (die, cu);
22249 if (attr == NULL || DW_STRING (attr) == NULL)
22250 return NULL;
22251
22252 /* dwarf2_name had to be already called. */
22253 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22254
22255 /* Strip the base name, keep any leading namespaces/classes. */
22256 base = strrchr (DW_STRING (attr), ':');
22257 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22258 return "";
22259
22260 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22261 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22262 DW_STRING (attr),
22263 &base[-1] - DW_STRING (attr));
22264 }
22265
22266 /* Return the name of the namespace/class that DIE is defined within,
22267 or "" if we can't tell. The caller should not xfree the result.
22268
22269 For example, if we're within the method foo() in the following
22270 code:
22271
22272 namespace N {
22273 class C {
22274 void foo () {
22275 }
22276 };
22277 }
22278
22279 then determine_prefix on foo's die will return "N::C". */
22280
22281 static const char *
22282 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22283 {
22284 struct dwarf2_per_objfile *dwarf2_per_objfile
22285 = cu->per_cu->dwarf2_per_objfile;
22286 struct die_info *parent, *spec_die;
22287 struct dwarf2_cu *spec_cu;
22288 struct type *parent_type;
22289 const char *retval;
22290
22291 if (cu->language != language_cplus
22292 && cu->language != language_fortran && cu->language != language_d
22293 && cu->language != language_rust)
22294 return "";
22295
22296 retval = anonymous_struct_prefix (die, cu);
22297 if (retval)
22298 return retval;
22299
22300 /* We have to be careful in the presence of DW_AT_specification.
22301 For example, with GCC 3.4, given the code
22302
22303 namespace N {
22304 void foo() {
22305 // Definition of N::foo.
22306 }
22307 }
22308
22309 then we'll have a tree of DIEs like this:
22310
22311 1: DW_TAG_compile_unit
22312 2: DW_TAG_namespace // N
22313 3: DW_TAG_subprogram // declaration of N::foo
22314 4: DW_TAG_subprogram // definition of N::foo
22315 DW_AT_specification // refers to die #3
22316
22317 Thus, when processing die #4, we have to pretend that we're in
22318 the context of its DW_AT_specification, namely the contex of die
22319 #3. */
22320 spec_cu = cu;
22321 spec_die = die_specification (die, &spec_cu);
22322 if (spec_die == NULL)
22323 parent = die->parent;
22324 else
22325 {
22326 parent = spec_die->parent;
22327 cu = spec_cu;
22328 }
22329
22330 if (parent == NULL)
22331 return "";
22332 else if (parent->building_fullname)
22333 {
22334 const char *name;
22335 const char *parent_name;
22336
22337 /* It has been seen on RealView 2.2 built binaries,
22338 DW_TAG_template_type_param types actually _defined_ as
22339 children of the parent class:
22340
22341 enum E {};
22342 template class <class Enum> Class{};
22343 Class<enum E> class_e;
22344
22345 1: DW_TAG_class_type (Class)
22346 2: DW_TAG_enumeration_type (E)
22347 3: DW_TAG_enumerator (enum1:0)
22348 3: DW_TAG_enumerator (enum2:1)
22349 ...
22350 2: DW_TAG_template_type_param
22351 DW_AT_type DW_FORM_ref_udata (E)
22352
22353 Besides being broken debug info, it can put GDB into an
22354 infinite loop. Consider:
22355
22356 When we're building the full name for Class<E>, we'll start
22357 at Class, and go look over its template type parameters,
22358 finding E. We'll then try to build the full name of E, and
22359 reach here. We're now trying to build the full name of E,
22360 and look over the parent DIE for containing scope. In the
22361 broken case, if we followed the parent DIE of E, we'd again
22362 find Class, and once again go look at its template type
22363 arguments, etc., etc. Simply don't consider such parent die
22364 as source-level parent of this die (it can't be, the language
22365 doesn't allow it), and break the loop here. */
22366 name = dwarf2_name (die, cu);
22367 parent_name = dwarf2_name (parent, cu);
22368 complaint (_("template param type '%s' defined within parent '%s'"),
22369 name ? name : "<unknown>",
22370 parent_name ? parent_name : "<unknown>");
22371 return "";
22372 }
22373 else
22374 switch (parent->tag)
22375 {
22376 case DW_TAG_namespace:
22377 parent_type = read_type_die (parent, cu);
22378 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22379 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22380 Work around this problem here. */
22381 if (cu->language == language_cplus
22382 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22383 return "";
22384 /* We give a name to even anonymous namespaces. */
22385 return TYPE_NAME (parent_type);
22386 case DW_TAG_class_type:
22387 case DW_TAG_interface_type:
22388 case DW_TAG_structure_type:
22389 case DW_TAG_union_type:
22390 case DW_TAG_module:
22391 parent_type = read_type_die (parent, cu);
22392 if (TYPE_NAME (parent_type) != NULL)
22393 return TYPE_NAME (parent_type);
22394 else
22395 /* An anonymous structure is only allowed non-static data
22396 members; no typedefs, no member functions, et cetera.
22397 So it does not need a prefix. */
22398 return "";
22399 case DW_TAG_compile_unit:
22400 case DW_TAG_partial_unit:
22401 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22402 if (cu->language == language_cplus
22403 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22404 && die->child != NULL
22405 && (die->tag == DW_TAG_class_type
22406 || die->tag == DW_TAG_structure_type
22407 || die->tag == DW_TAG_union_type))
22408 {
22409 char *name = guess_full_die_structure_name (die, cu);
22410 if (name != NULL)
22411 return name;
22412 }
22413 return "";
22414 case DW_TAG_enumeration_type:
22415 parent_type = read_type_die (parent, cu);
22416 if (TYPE_DECLARED_CLASS (parent_type))
22417 {
22418 if (TYPE_NAME (parent_type) != NULL)
22419 return TYPE_NAME (parent_type);
22420 return "";
22421 }
22422 /* Fall through. */
22423 default:
22424 return determine_prefix (parent, cu);
22425 }
22426 }
22427
22428 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22429 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22430 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22431 an obconcat, otherwise allocate storage for the result. The CU argument is
22432 used to determine the language and hence, the appropriate separator. */
22433
22434 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22435
22436 static char *
22437 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22438 int physname, struct dwarf2_cu *cu)
22439 {
22440 const char *lead = "";
22441 const char *sep;
22442
22443 if (suffix == NULL || suffix[0] == '\0'
22444 || prefix == NULL || prefix[0] == '\0')
22445 sep = "";
22446 else if (cu->language == language_d)
22447 {
22448 /* For D, the 'main' function could be defined in any module, but it
22449 should never be prefixed. */
22450 if (strcmp (suffix, "D main") == 0)
22451 {
22452 prefix = "";
22453 sep = "";
22454 }
22455 else
22456 sep = ".";
22457 }
22458 else if (cu->language == language_fortran && physname)
22459 {
22460 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22461 DW_AT_MIPS_linkage_name is preferred and used instead. */
22462
22463 lead = "__";
22464 sep = "_MOD_";
22465 }
22466 else
22467 sep = "::";
22468
22469 if (prefix == NULL)
22470 prefix = "";
22471 if (suffix == NULL)
22472 suffix = "";
22473
22474 if (obs == NULL)
22475 {
22476 char *retval
22477 = ((char *)
22478 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22479
22480 strcpy (retval, lead);
22481 strcat (retval, prefix);
22482 strcat (retval, sep);
22483 strcat (retval, suffix);
22484 return retval;
22485 }
22486 else
22487 {
22488 /* We have an obstack. */
22489 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22490 }
22491 }
22492
22493 /* Return sibling of die, NULL if no sibling. */
22494
22495 static struct die_info *
22496 sibling_die (struct die_info *die)
22497 {
22498 return die->sibling;
22499 }
22500
22501 /* Get name of a die, return NULL if not found. */
22502
22503 static const char *
22504 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22505 struct obstack *obstack)
22506 {
22507 if (name && cu->language == language_cplus)
22508 {
22509 std::string canon_name = cp_canonicalize_string (name);
22510
22511 if (!canon_name.empty ())
22512 {
22513 if (canon_name != name)
22514 name = (const char *) obstack_copy0 (obstack,
22515 canon_name.c_str (),
22516 canon_name.length ());
22517 }
22518 }
22519
22520 return name;
22521 }
22522
22523 /* Get name of a die, return NULL if not found.
22524 Anonymous namespaces are converted to their magic string. */
22525
22526 static const char *
22527 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22528 {
22529 struct attribute *attr;
22530 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22531
22532 attr = dwarf2_attr (die, DW_AT_name, cu);
22533 if ((!attr || !DW_STRING (attr))
22534 && die->tag != DW_TAG_namespace
22535 && die->tag != DW_TAG_class_type
22536 && die->tag != DW_TAG_interface_type
22537 && die->tag != DW_TAG_structure_type
22538 && die->tag != DW_TAG_union_type)
22539 return NULL;
22540
22541 switch (die->tag)
22542 {
22543 case DW_TAG_compile_unit:
22544 case DW_TAG_partial_unit:
22545 /* Compilation units have a DW_AT_name that is a filename, not
22546 a source language identifier. */
22547 case DW_TAG_enumeration_type:
22548 case DW_TAG_enumerator:
22549 /* These tags always have simple identifiers already; no need
22550 to canonicalize them. */
22551 return DW_STRING (attr);
22552
22553 case DW_TAG_namespace:
22554 if (attr != NULL && DW_STRING (attr) != NULL)
22555 return DW_STRING (attr);
22556 return CP_ANONYMOUS_NAMESPACE_STR;
22557
22558 case DW_TAG_class_type:
22559 case DW_TAG_interface_type:
22560 case DW_TAG_structure_type:
22561 case DW_TAG_union_type:
22562 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22563 structures or unions. These were of the form "._%d" in GCC 4.1,
22564 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22565 and GCC 4.4. We work around this problem by ignoring these. */
22566 if (attr && DW_STRING (attr)
22567 && (startswith (DW_STRING (attr), "._")
22568 || startswith (DW_STRING (attr), "<anonymous")))
22569 return NULL;
22570
22571 /* GCC might emit a nameless typedef that has a linkage name. See
22572 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22573 if (!attr || DW_STRING (attr) == NULL)
22574 {
22575 char *demangled = NULL;
22576
22577 attr = dw2_linkage_name_attr (die, cu);
22578 if (attr == NULL || DW_STRING (attr) == NULL)
22579 return NULL;
22580
22581 /* Avoid demangling DW_STRING (attr) the second time on a second
22582 call for the same DIE. */
22583 if (!DW_STRING_IS_CANONICAL (attr))
22584 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22585
22586 if (demangled)
22587 {
22588 const char *base;
22589
22590 /* FIXME: we already did this for the partial symbol... */
22591 DW_STRING (attr)
22592 = ((const char *)
22593 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22594 demangled, strlen (demangled)));
22595 DW_STRING_IS_CANONICAL (attr) = 1;
22596 xfree (demangled);
22597
22598 /* Strip any leading namespaces/classes, keep only the base name.
22599 DW_AT_name for named DIEs does not contain the prefixes. */
22600 base = strrchr (DW_STRING (attr), ':');
22601 if (base && base > DW_STRING (attr) && base[-1] == ':')
22602 return &base[1];
22603 else
22604 return DW_STRING (attr);
22605 }
22606 }
22607 break;
22608
22609 default:
22610 break;
22611 }
22612
22613 if (!DW_STRING_IS_CANONICAL (attr))
22614 {
22615 DW_STRING (attr)
22616 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22617 &objfile->per_bfd->storage_obstack);
22618 DW_STRING_IS_CANONICAL (attr) = 1;
22619 }
22620 return DW_STRING (attr);
22621 }
22622
22623 /* Return the die that this die in an extension of, or NULL if there
22624 is none. *EXT_CU is the CU containing DIE on input, and the CU
22625 containing the return value on output. */
22626
22627 static struct die_info *
22628 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22629 {
22630 struct attribute *attr;
22631
22632 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22633 if (attr == NULL)
22634 return NULL;
22635
22636 return follow_die_ref (die, attr, ext_cu);
22637 }
22638
22639 /* Convert a DIE tag into its string name. */
22640
22641 static const char *
22642 dwarf_tag_name (unsigned tag)
22643 {
22644 const char *name = get_DW_TAG_name (tag);
22645
22646 if (name == NULL)
22647 return "DW_TAG_<unknown>";
22648
22649 return name;
22650 }
22651
22652 /* Convert a DWARF attribute code into its string name. */
22653
22654 static const char *
22655 dwarf_attr_name (unsigned attr)
22656 {
22657 const char *name;
22658
22659 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22660 if (attr == DW_AT_MIPS_fde)
22661 return "DW_AT_MIPS_fde";
22662 #else
22663 if (attr == DW_AT_HP_block_index)
22664 return "DW_AT_HP_block_index";
22665 #endif
22666
22667 name = get_DW_AT_name (attr);
22668
22669 if (name == NULL)
22670 return "DW_AT_<unknown>";
22671
22672 return name;
22673 }
22674
22675 /* Convert a DWARF value form code into its string name. */
22676
22677 static const char *
22678 dwarf_form_name (unsigned form)
22679 {
22680 const char *name = get_DW_FORM_name (form);
22681
22682 if (name == NULL)
22683 return "DW_FORM_<unknown>";
22684
22685 return name;
22686 }
22687
22688 static const char *
22689 dwarf_bool_name (unsigned mybool)
22690 {
22691 if (mybool)
22692 return "TRUE";
22693 else
22694 return "FALSE";
22695 }
22696
22697 /* Convert a DWARF type code into its string name. */
22698
22699 static const char *
22700 dwarf_type_encoding_name (unsigned enc)
22701 {
22702 const char *name = get_DW_ATE_name (enc);
22703
22704 if (name == NULL)
22705 return "DW_ATE_<unknown>";
22706
22707 return name;
22708 }
22709
22710 static void
22711 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22712 {
22713 unsigned int i;
22714
22715 print_spaces (indent, f);
22716 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22717 dwarf_tag_name (die->tag), die->abbrev,
22718 sect_offset_str (die->sect_off));
22719
22720 if (die->parent != NULL)
22721 {
22722 print_spaces (indent, f);
22723 fprintf_unfiltered (f, " parent at offset: %s\n",
22724 sect_offset_str (die->parent->sect_off));
22725 }
22726
22727 print_spaces (indent, f);
22728 fprintf_unfiltered (f, " has children: %s\n",
22729 dwarf_bool_name (die->child != NULL));
22730
22731 print_spaces (indent, f);
22732 fprintf_unfiltered (f, " attributes:\n");
22733
22734 for (i = 0; i < die->num_attrs; ++i)
22735 {
22736 print_spaces (indent, f);
22737 fprintf_unfiltered (f, " %s (%s) ",
22738 dwarf_attr_name (die->attrs[i].name),
22739 dwarf_form_name (die->attrs[i].form));
22740
22741 switch (die->attrs[i].form)
22742 {
22743 case DW_FORM_addr:
22744 case DW_FORM_GNU_addr_index:
22745 fprintf_unfiltered (f, "address: ");
22746 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22747 break;
22748 case DW_FORM_block2:
22749 case DW_FORM_block4:
22750 case DW_FORM_block:
22751 case DW_FORM_block1:
22752 fprintf_unfiltered (f, "block: size %s",
22753 pulongest (DW_BLOCK (&die->attrs[i])->size));
22754 break;
22755 case DW_FORM_exprloc:
22756 fprintf_unfiltered (f, "expression: size %s",
22757 pulongest (DW_BLOCK (&die->attrs[i])->size));
22758 break;
22759 case DW_FORM_data16:
22760 fprintf_unfiltered (f, "constant of 16 bytes");
22761 break;
22762 case DW_FORM_ref_addr:
22763 fprintf_unfiltered (f, "ref address: ");
22764 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22765 break;
22766 case DW_FORM_GNU_ref_alt:
22767 fprintf_unfiltered (f, "alt ref address: ");
22768 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22769 break;
22770 case DW_FORM_ref1:
22771 case DW_FORM_ref2:
22772 case DW_FORM_ref4:
22773 case DW_FORM_ref8:
22774 case DW_FORM_ref_udata:
22775 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22776 (long) (DW_UNSND (&die->attrs[i])));
22777 break;
22778 case DW_FORM_data1:
22779 case DW_FORM_data2:
22780 case DW_FORM_data4:
22781 case DW_FORM_data8:
22782 case DW_FORM_udata:
22783 case DW_FORM_sdata:
22784 fprintf_unfiltered (f, "constant: %s",
22785 pulongest (DW_UNSND (&die->attrs[i])));
22786 break;
22787 case DW_FORM_sec_offset:
22788 fprintf_unfiltered (f, "section offset: %s",
22789 pulongest (DW_UNSND (&die->attrs[i])));
22790 break;
22791 case DW_FORM_ref_sig8:
22792 fprintf_unfiltered (f, "signature: %s",
22793 hex_string (DW_SIGNATURE (&die->attrs[i])));
22794 break;
22795 case DW_FORM_string:
22796 case DW_FORM_strp:
22797 case DW_FORM_line_strp:
22798 case DW_FORM_GNU_str_index:
22799 case DW_FORM_GNU_strp_alt:
22800 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22801 DW_STRING (&die->attrs[i])
22802 ? DW_STRING (&die->attrs[i]) : "",
22803 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22804 break;
22805 case DW_FORM_flag:
22806 if (DW_UNSND (&die->attrs[i]))
22807 fprintf_unfiltered (f, "flag: TRUE");
22808 else
22809 fprintf_unfiltered (f, "flag: FALSE");
22810 break;
22811 case DW_FORM_flag_present:
22812 fprintf_unfiltered (f, "flag: TRUE");
22813 break;
22814 case DW_FORM_indirect:
22815 /* The reader will have reduced the indirect form to
22816 the "base form" so this form should not occur. */
22817 fprintf_unfiltered (f,
22818 "unexpected attribute form: DW_FORM_indirect");
22819 break;
22820 case DW_FORM_implicit_const:
22821 fprintf_unfiltered (f, "constant: %s",
22822 plongest (DW_SND (&die->attrs[i])));
22823 break;
22824 default:
22825 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22826 die->attrs[i].form);
22827 break;
22828 }
22829 fprintf_unfiltered (f, "\n");
22830 }
22831 }
22832
22833 static void
22834 dump_die_for_error (struct die_info *die)
22835 {
22836 dump_die_shallow (gdb_stderr, 0, die);
22837 }
22838
22839 static void
22840 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22841 {
22842 int indent = level * 4;
22843
22844 gdb_assert (die != NULL);
22845
22846 if (level >= max_level)
22847 return;
22848
22849 dump_die_shallow (f, indent, die);
22850
22851 if (die->child != NULL)
22852 {
22853 print_spaces (indent, f);
22854 fprintf_unfiltered (f, " Children:");
22855 if (level + 1 < max_level)
22856 {
22857 fprintf_unfiltered (f, "\n");
22858 dump_die_1 (f, level + 1, max_level, die->child);
22859 }
22860 else
22861 {
22862 fprintf_unfiltered (f,
22863 " [not printed, max nesting level reached]\n");
22864 }
22865 }
22866
22867 if (die->sibling != NULL && level > 0)
22868 {
22869 dump_die_1 (f, level, max_level, die->sibling);
22870 }
22871 }
22872
22873 /* This is called from the pdie macro in gdbinit.in.
22874 It's not static so gcc will keep a copy callable from gdb. */
22875
22876 void
22877 dump_die (struct die_info *die, int max_level)
22878 {
22879 dump_die_1 (gdb_stdlog, 0, max_level, die);
22880 }
22881
22882 static void
22883 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22884 {
22885 void **slot;
22886
22887 slot = htab_find_slot_with_hash (cu->die_hash, die,
22888 to_underlying (die->sect_off),
22889 INSERT);
22890
22891 *slot = die;
22892 }
22893
22894 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22895 required kind. */
22896
22897 static sect_offset
22898 dwarf2_get_ref_die_offset (const struct attribute *attr)
22899 {
22900 if (attr_form_is_ref (attr))
22901 return (sect_offset) DW_UNSND (attr);
22902
22903 complaint (_("unsupported die ref attribute form: '%s'"),
22904 dwarf_form_name (attr->form));
22905 return {};
22906 }
22907
22908 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22909 * the value held by the attribute is not constant. */
22910
22911 static LONGEST
22912 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22913 {
22914 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22915 return DW_SND (attr);
22916 else if (attr->form == DW_FORM_udata
22917 || attr->form == DW_FORM_data1
22918 || attr->form == DW_FORM_data2
22919 || attr->form == DW_FORM_data4
22920 || attr->form == DW_FORM_data8)
22921 return DW_UNSND (attr);
22922 else
22923 {
22924 /* For DW_FORM_data16 see attr_form_is_constant. */
22925 complaint (_("Attribute value is not a constant (%s)"),
22926 dwarf_form_name (attr->form));
22927 return default_value;
22928 }
22929 }
22930
22931 /* Follow reference or signature attribute ATTR of SRC_DIE.
22932 On entry *REF_CU is the CU of SRC_DIE.
22933 On exit *REF_CU is the CU of the result. */
22934
22935 static struct die_info *
22936 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22937 struct dwarf2_cu **ref_cu)
22938 {
22939 struct die_info *die;
22940
22941 if (attr_form_is_ref (attr))
22942 die = follow_die_ref (src_die, attr, ref_cu);
22943 else if (attr->form == DW_FORM_ref_sig8)
22944 die = follow_die_sig (src_die, attr, ref_cu);
22945 else
22946 {
22947 dump_die_for_error (src_die);
22948 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22949 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22950 }
22951
22952 return die;
22953 }
22954
22955 /* Follow reference OFFSET.
22956 On entry *REF_CU is the CU of the source die referencing OFFSET.
22957 On exit *REF_CU is the CU of the result.
22958 Returns NULL if OFFSET is invalid. */
22959
22960 static struct die_info *
22961 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22962 struct dwarf2_cu **ref_cu)
22963 {
22964 struct die_info temp_die;
22965 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22966 struct dwarf2_per_objfile *dwarf2_per_objfile
22967 = cu->per_cu->dwarf2_per_objfile;
22968
22969 gdb_assert (cu->per_cu != NULL);
22970
22971 target_cu = cu;
22972
22973 if (cu->per_cu->is_debug_types)
22974 {
22975 /* .debug_types CUs cannot reference anything outside their CU.
22976 If they need to, they have to reference a signatured type via
22977 DW_FORM_ref_sig8. */
22978 if (!offset_in_cu_p (&cu->header, sect_off))
22979 return NULL;
22980 }
22981 else if (offset_in_dwz != cu->per_cu->is_dwz
22982 || !offset_in_cu_p (&cu->header, sect_off))
22983 {
22984 struct dwarf2_per_cu_data *per_cu;
22985
22986 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22987 dwarf2_per_objfile);
22988
22989 /* If necessary, add it to the queue and load its DIEs. */
22990 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22991 load_full_comp_unit (per_cu, false, cu->language);
22992
22993 target_cu = per_cu->cu;
22994 }
22995 else if (cu->dies == NULL)
22996 {
22997 /* We're loading full DIEs during partial symbol reading. */
22998 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22999 load_full_comp_unit (cu->per_cu, false, language_minimal);
23000 }
23001
23002 *ref_cu = target_cu;
23003 temp_die.sect_off = sect_off;
23004 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23005 &temp_die,
23006 to_underlying (sect_off));
23007 }
23008
23009 /* Follow reference attribute ATTR of SRC_DIE.
23010 On entry *REF_CU is the CU of SRC_DIE.
23011 On exit *REF_CU is the CU of the result. */
23012
23013 static struct die_info *
23014 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23015 struct dwarf2_cu **ref_cu)
23016 {
23017 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23018 struct dwarf2_cu *cu = *ref_cu;
23019 struct die_info *die;
23020
23021 die = follow_die_offset (sect_off,
23022 (attr->form == DW_FORM_GNU_ref_alt
23023 || cu->per_cu->is_dwz),
23024 ref_cu);
23025 if (!die)
23026 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23027 "at %s [in module %s]"),
23028 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23030
23031 return die;
23032 }
23033
23034 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23035 Returned value is intended for DW_OP_call*. Returned
23036 dwarf2_locexpr_baton->data has lifetime of
23037 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23038
23039 struct dwarf2_locexpr_baton
23040 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23041 struct dwarf2_per_cu_data *per_cu,
23042 CORE_ADDR (*get_frame_pc) (void *baton),
23043 void *baton, bool resolve_abstract_p)
23044 {
23045 struct dwarf2_cu *cu;
23046 struct die_info *die;
23047 struct attribute *attr;
23048 struct dwarf2_locexpr_baton retval;
23049 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23050 struct objfile *objfile = dwarf2_per_objfile->objfile;
23051
23052 if (per_cu->cu == NULL)
23053 load_cu (per_cu, false);
23054 cu = per_cu->cu;
23055 if (cu == NULL)
23056 {
23057 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23058 Instead just throw an error, not much else we can do. */
23059 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23060 sect_offset_str (sect_off), objfile_name (objfile));
23061 }
23062
23063 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23064 if (!die)
23065 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23066 sect_offset_str (sect_off), objfile_name (objfile));
23067
23068 attr = dwarf2_attr (die, DW_AT_location, cu);
23069 if (!attr && resolve_abstract_p
23070 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23071 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23072 {
23073 CORE_ADDR pc = (*get_frame_pc) (baton);
23074
23075 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23076 {
23077 if (!cand->parent
23078 || cand->parent->tag != DW_TAG_subprogram)
23079 continue;
23080
23081 CORE_ADDR pc_low, pc_high;
23082 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23083 if (pc_low == ((CORE_ADDR) -1)
23084 || !(pc_low <= pc && pc < pc_high))
23085 continue;
23086
23087 die = cand;
23088 attr = dwarf2_attr (die, DW_AT_location, cu);
23089 break;
23090 }
23091 }
23092
23093 if (!attr)
23094 {
23095 /* DWARF: "If there is no such attribute, then there is no effect.".
23096 DATA is ignored if SIZE is 0. */
23097
23098 retval.data = NULL;
23099 retval.size = 0;
23100 }
23101 else if (attr_form_is_section_offset (attr))
23102 {
23103 struct dwarf2_loclist_baton loclist_baton;
23104 CORE_ADDR pc = (*get_frame_pc) (baton);
23105 size_t size;
23106
23107 fill_in_loclist_baton (cu, &loclist_baton, attr);
23108
23109 retval.data = dwarf2_find_location_expression (&loclist_baton,
23110 &size, pc);
23111 retval.size = size;
23112 }
23113 else
23114 {
23115 if (!attr_form_is_block (attr))
23116 error (_("Dwarf Error: DIE at %s referenced in module %s "
23117 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23118 sect_offset_str (sect_off), objfile_name (objfile));
23119
23120 retval.data = DW_BLOCK (attr)->data;
23121 retval.size = DW_BLOCK (attr)->size;
23122 }
23123 retval.per_cu = cu->per_cu;
23124
23125 age_cached_comp_units (dwarf2_per_objfile);
23126
23127 return retval;
23128 }
23129
23130 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23131 offset. */
23132
23133 struct dwarf2_locexpr_baton
23134 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23135 struct dwarf2_per_cu_data *per_cu,
23136 CORE_ADDR (*get_frame_pc) (void *baton),
23137 void *baton)
23138 {
23139 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23140
23141 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23142 }
23143
23144 /* Write a constant of a given type as target-ordered bytes into
23145 OBSTACK. */
23146
23147 static const gdb_byte *
23148 write_constant_as_bytes (struct obstack *obstack,
23149 enum bfd_endian byte_order,
23150 struct type *type,
23151 ULONGEST value,
23152 LONGEST *len)
23153 {
23154 gdb_byte *result;
23155
23156 *len = TYPE_LENGTH (type);
23157 result = (gdb_byte *) obstack_alloc (obstack, *len);
23158 store_unsigned_integer (result, *len, byte_order, value);
23159
23160 return result;
23161 }
23162
23163 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23164 pointer to the constant bytes and set LEN to the length of the
23165 data. If memory is needed, allocate it on OBSTACK. If the DIE
23166 does not have a DW_AT_const_value, return NULL. */
23167
23168 const gdb_byte *
23169 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23170 struct dwarf2_per_cu_data *per_cu,
23171 struct obstack *obstack,
23172 LONGEST *len)
23173 {
23174 struct dwarf2_cu *cu;
23175 struct die_info *die;
23176 struct attribute *attr;
23177 const gdb_byte *result = NULL;
23178 struct type *type;
23179 LONGEST value;
23180 enum bfd_endian byte_order;
23181 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23182
23183 if (per_cu->cu == NULL)
23184 load_cu (per_cu, false);
23185 cu = per_cu->cu;
23186 if (cu == NULL)
23187 {
23188 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23189 Instead just throw an error, not much else we can do. */
23190 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23191 sect_offset_str (sect_off), objfile_name (objfile));
23192 }
23193
23194 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23195 if (!die)
23196 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23197 sect_offset_str (sect_off), objfile_name (objfile));
23198
23199 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23200 if (attr == NULL)
23201 return NULL;
23202
23203 byte_order = (bfd_big_endian (objfile->obfd)
23204 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23205
23206 switch (attr->form)
23207 {
23208 case DW_FORM_addr:
23209 case DW_FORM_GNU_addr_index:
23210 {
23211 gdb_byte *tem;
23212
23213 *len = cu->header.addr_size;
23214 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23215 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23216 result = tem;
23217 }
23218 break;
23219 case DW_FORM_string:
23220 case DW_FORM_strp:
23221 case DW_FORM_GNU_str_index:
23222 case DW_FORM_GNU_strp_alt:
23223 /* DW_STRING is already allocated on the objfile obstack, point
23224 directly to it. */
23225 result = (const gdb_byte *) DW_STRING (attr);
23226 *len = strlen (DW_STRING (attr));
23227 break;
23228 case DW_FORM_block1:
23229 case DW_FORM_block2:
23230 case DW_FORM_block4:
23231 case DW_FORM_block:
23232 case DW_FORM_exprloc:
23233 case DW_FORM_data16:
23234 result = DW_BLOCK (attr)->data;
23235 *len = DW_BLOCK (attr)->size;
23236 break;
23237
23238 /* The DW_AT_const_value attributes are supposed to carry the
23239 symbol's value "represented as it would be on the target
23240 architecture." By the time we get here, it's already been
23241 converted to host endianness, so we just need to sign- or
23242 zero-extend it as appropriate. */
23243 case DW_FORM_data1:
23244 type = die_type (die, cu);
23245 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23246 if (result == NULL)
23247 result = write_constant_as_bytes (obstack, byte_order,
23248 type, value, len);
23249 break;
23250 case DW_FORM_data2:
23251 type = die_type (die, cu);
23252 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23253 if (result == NULL)
23254 result = write_constant_as_bytes (obstack, byte_order,
23255 type, value, len);
23256 break;
23257 case DW_FORM_data4:
23258 type = die_type (die, cu);
23259 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23260 if (result == NULL)
23261 result = write_constant_as_bytes (obstack, byte_order,
23262 type, value, len);
23263 break;
23264 case DW_FORM_data8:
23265 type = die_type (die, cu);
23266 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23267 if (result == NULL)
23268 result = write_constant_as_bytes (obstack, byte_order,
23269 type, value, len);
23270 break;
23271
23272 case DW_FORM_sdata:
23273 case DW_FORM_implicit_const:
23274 type = die_type (die, cu);
23275 result = write_constant_as_bytes (obstack, byte_order,
23276 type, DW_SND (attr), len);
23277 break;
23278
23279 case DW_FORM_udata:
23280 type = die_type (die, cu);
23281 result = write_constant_as_bytes (obstack, byte_order,
23282 type, DW_UNSND (attr), len);
23283 break;
23284
23285 default:
23286 complaint (_("unsupported const value attribute form: '%s'"),
23287 dwarf_form_name (attr->form));
23288 break;
23289 }
23290
23291 return result;
23292 }
23293
23294 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23295 valid type for this die is found. */
23296
23297 struct type *
23298 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23299 struct dwarf2_per_cu_data *per_cu)
23300 {
23301 struct dwarf2_cu *cu;
23302 struct die_info *die;
23303
23304 if (per_cu->cu == NULL)
23305 load_cu (per_cu, false);
23306 cu = per_cu->cu;
23307 if (!cu)
23308 return NULL;
23309
23310 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23311 if (!die)
23312 return NULL;
23313
23314 return die_type (die, cu);
23315 }
23316
23317 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23318 PER_CU. */
23319
23320 struct type *
23321 dwarf2_get_die_type (cu_offset die_offset,
23322 struct dwarf2_per_cu_data *per_cu)
23323 {
23324 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23325 return get_die_type_at_offset (die_offset_sect, per_cu);
23326 }
23327
23328 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23329 On entry *REF_CU is the CU of SRC_DIE.
23330 On exit *REF_CU is the CU of the result.
23331 Returns NULL if the referenced DIE isn't found. */
23332
23333 static struct die_info *
23334 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23335 struct dwarf2_cu **ref_cu)
23336 {
23337 struct die_info temp_die;
23338 struct dwarf2_cu *sig_cu;
23339 struct die_info *die;
23340
23341 /* While it might be nice to assert sig_type->type == NULL here,
23342 we can get here for DW_AT_imported_declaration where we need
23343 the DIE not the type. */
23344
23345 /* If necessary, add it to the queue and load its DIEs. */
23346
23347 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23348 read_signatured_type (sig_type);
23349
23350 sig_cu = sig_type->per_cu.cu;
23351 gdb_assert (sig_cu != NULL);
23352 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23353 temp_die.sect_off = sig_type->type_offset_in_section;
23354 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23355 to_underlying (temp_die.sect_off));
23356 if (die)
23357 {
23358 struct dwarf2_per_objfile *dwarf2_per_objfile
23359 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23360
23361 /* For .gdb_index version 7 keep track of included TUs.
23362 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23363 if (dwarf2_per_objfile->index_table != NULL
23364 && dwarf2_per_objfile->index_table->version <= 7)
23365 {
23366 VEC_safe_push (dwarf2_per_cu_ptr,
23367 (*ref_cu)->per_cu->imported_symtabs,
23368 sig_cu->per_cu);
23369 }
23370
23371 *ref_cu = sig_cu;
23372 return die;
23373 }
23374
23375 return NULL;
23376 }
23377
23378 /* Follow signatured type referenced by ATTR in SRC_DIE.
23379 On entry *REF_CU is the CU of SRC_DIE.
23380 On exit *REF_CU is the CU of the result.
23381 The result is the DIE of the type.
23382 If the referenced type cannot be found an error is thrown. */
23383
23384 static struct die_info *
23385 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23386 struct dwarf2_cu **ref_cu)
23387 {
23388 ULONGEST signature = DW_SIGNATURE (attr);
23389 struct signatured_type *sig_type;
23390 struct die_info *die;
23391
23392 gdb_assert (attr->form == DW_FORM_ref_sig8);
23393
23394 sig_type = lookup_signatured_type (*ref_cu, signature);
23395 /* sig_type will be NULL if the signatured type is missing from
23396 the debug info. */
23397 if (sig_type == NULL)
23398 {
23399 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23400 " from DIE at %s [in module %s]"),
23401 hex_string (signature), sect_offset_str (src_die->sect_off),
23402 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23403 }
23404
23405 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23406 if (die == NULL)
23407 {
23408 dump_die_for_error (src_die);
23409 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23410 " from DIE at %s [in module %s]"),
23411 hex_string (signature), sect_offset_str (src_die->sect_off),
23412 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23413 }
23414
23415 return die;
23416 }
23417
23418 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23419 reading in and processing the type unit if necessary. */
23420
23421 static struct type *
23422 get_signatured_type (struct die_info *die, ULONGEST signature,
23423 struct dwarf2_cu *cu)
23424 {
23425 struct dwarf2_per_objfile *dwarf2_per_objfile
23426 = cu->per_cu->dwarf2_per_objfile;
23427 struct signatured_type *sig_type;
23428 struct dwarf2_cu *type_cu;
23429 struct die_info *type_die;
23430 struct type *type;
23431
23432 sig_type = lookup_signatured_type (cu, signature);
23433 /* sig_type will be NULL if the signatured type is missing from
23434 the debug info. */
23435 if (sig_type == NULL)
23436 {
23437 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23438 " from DIE at %s [in module %s]"),
23439 hex_string (signature), sect_offset_str (die->sect_off),
23440 objfile_name (dwarf2_per_objfile->objfile));
23441 return build_error_marker_type (cu, die);
23442 }
23443
23444 /* If we already know the type we're done. */
23445 if (sig_type->type != NULL)
23446 return sig_type->type;
23447
23448 type_cu = cu;
23449 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23450 if (type_die != NULL)
23451 {
23452 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23453 is created. This is important, for example, because for c++ classes
23454 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23455 type = read_type_die (type_die, type_cu);
23456 if (type == NULL)
23457 {
23458 complaint (_("Dwarf Error: Cannot build signatured type %s"
23459 " referenced from DIE at %s [in module %s]"),
23460 hex_string (signature), sect_offset_str (die->sect_off),
23461 objfile_name (dwarf2_per_objfile->objfile));
23462 type = build_error_marker_type (cu, die);
23463 }
23464 }
23465 else
23466 {
23467 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23468 " from DIE at %s [in module %s]"),
23469 hex_string (signature), sect_offset_str (die->sect_off),
23470 objfile_name (dwarf2_per_objfile->objfile));
23471 type = build_error_marker_type (cu, die);
23472 }
23473 sig_type->type = type;
23474
23475 return type;
23476 }
23477
23478 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23479 reading in and processing the type unit if necessary. */
23480
23481 static struct type *
23482 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23483 struct dwarf2_cu *cu) /* ARI: editCase function */
23484 {
23485 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23486 if (attr_form_is_ref (attr))
23487 {
23488 struct dwarf2_cu *type_cu = cu;
23489 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23490
23491 return read_type_die (type_die, type_cu);
23492 }
23493 else if (attr->form == DW_FORM_ref_sig8)
23494 {
23495 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23496 }
23497 else
23498 {
23499 struct dwarf2_per_objfile *dwarf2_per_objfile
23500 = cu->per_cu->dwarf2_per_objfile;
23501
23502 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23503 " at %s [in module %s]"),
23504 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23505 objfile_name (dwarf2_per_objfile->objfile));
23506 return build_error_marker_type (cu, die);
23507 }
23508 }
23509
23510 /* Load the DIEs associated with type unit PER_CU into memory. */
23511
23512 static void
23513 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23514 {
23515 struct signatured_type *sig_type;
23516
23517 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23518 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23519
23520 /* We have the per_cu, but we need the signatured_type.
23521 Fortunately this is an easy translation. */
23522 gdb_assert (per_cu->is_debug_types);
23523 sig_type = (struct signatured_type *) per_cu;
23524
23525 gdb_assert (per_cu->cu == NULL);
23526
23527 read_signatured_type (sig_type);
23528
23529 gdb_assert (per_cu->cu != NULL);
23530 }
23531
23532 /* die_reader_func for read_signatured_type.
23533 This is identical to load_full_comp_unit_reader,
23534 but is kept separate for now. */
23535
23536 static void
23537 read_signatured_type_reader (const struct die_reader_specs *reader,
23538 const gdb_byte *info_ptr,
23539 struct die_info *comp_unit_die,
23540 int has_children,
23541 void *data)
23542 {
23543 struct dwarf2_cu *cu = reader->cu;
23544
23545 gdb_assert (cu->die_hash == NULL);
23546 cu->die_hash =
23547 htab_create_alloc_ex (cu->header.length / 12,
23548 die_hash,
23549 die_eq,
23550 NULL,
23551 &cu->comp_unit_obstack,
23552 hashtab_obstack_allocate,
23553 dummy_obstack_deallocate);
23554
23555 if (has_children)
23556 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23557 &info_ptr, comp_unit_die);
23558 cu->dies = comp_unit_die;
23559 /* comp_unit_die is not stored in die_hash, no need. */
23560
23561 /* We try not to read any attributes in this function, because not
23562 all CUs needed for references have been loaded yet, and symbol
23563 table processing isn't initialized. But we have to set the CU language,
23564 or we won't be able to build types correctly.
23565 Similarly, if we do not read the producer, we can not apply
23566 producer-specific interpretation. */
23567 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23568 }
23569
23570 /* Read in a signatured type and build its CU and DIEs.
23571 If the type is a stub for the real type in a DWO file,
23572 read in the real type from the DWO file as well. */
23573
23574 static void
23575 read_signatured_type (struct signatured_type *sig_type)
23576 {
23577 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23578
23579 gdb_assert (per_cu->is_debug_types);
23580 gdb_assert (per_cu->cu == NULL);
23581
23582 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23583 read_signatured_type_reader, NULL);
23584 sig_type->per_cu.tu_read = 1;
23585 }
23586
23587 /* Decode simple location descriptions.
23588 Given a pointer to a dwarf block that defines a location, compute
23589 the location and return the value.
23590
23591 NOTE drow/2003-11-18: This function is called in two situations
23592 now: for the address of static or global variables (partial symbols
23593 only) and for offsets into structures which are expected to be
23594 (more or less) constant. The partial symbol case should go away,
23595 and only the constant case should remain. That will let this
23596 function complain more accurately. A few special modes are allowed
23597 without complaint for global variables (for instance, global
23598 register values and thread-local values).
23599
23600 A location description containing no operations indicates that the
23601 object is optimized out. The return value is 0 for that case.
23602 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23603 callers will only want a very basic result and this can become a
23604 complaint.
23605
23606 Note that stack[0] is unused except as a default error return. */
23607
23608 static CORE_ADDR
23609 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23610 {
23611 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23612 size_t i;
23613 size_t size = blk->size;
23614 const gdb_byte *data = blk->data;
23615 CORE_ADDR stack[64];
23616 int stacki;
23617 unsigned int bytes_read, unsnd;
23618 gdb_byte op;
23619
23620 i = 0;
23621 stacki = 0;
23622 stack[stacki] = 0;
23623 stack[++stacki] = 0;
23624
23625 while (i < size)
23626 {
23627 op = data[i++];
23628 switch (op)
23629 {
23630 case DW_OP_lit0:
23631 case DW_OP_lit1:
23632 case DW_OP_lit2:
23633 case DW_OP_lit3:
23634 case DW_OP_lit4:
23635 case DW_OP_lit5:
23636 case DW_OP_lit6:
23637 case DW_OP_lit7:
23638 case DW_OP_lit8:
23639 case DW_OP_lit9:
23640 case DW_OP_lit10:
23641 case DW_OP_lit11:
23642 case DW_OP_lit12:
23643 case DW_OP_lit13:
23644 case DW_OP_lit14:
23645 case DW_OP_lit15:
23646 case DW_OP_lit16:
23647 case DW_OP_lit17:
23648 case DW_OP_lit18:
23649 case DW_OP_lit19:
23650 case DW_OP_lit20:
23651 case DW_OP_lit21:
23652 case DW_OP_lit22:
23653 case DW_OP_lit23:
23654 case DW_OP_lit24:
23655 case DW_OP_lit25:
23656 case DW_OP_lit26:
23657 case DW_OP_lit27:
23658 case DW_OP_lit28:
23659 case DW_OP_lit29:
23660 case DW_OP_lit30:
23661 case DW_OP_lit31:
23662 stack[++stacki] = op - DW_OP_lit0;
23663 break;
23664
23665 case DW_OP_reg0:
23666 case DW_OP_reg1:
23667 case DW_OP_reg2:
23668 case DW_OP_reg3:
23669 case DW_OP_reg4:
23670 case DW_OP_reg5:
23671 case DW_OP_reg6:
23672 case DW_OP_reg7:
23673 case DW_OP_reg8:
23674 case DW_OP_reg9:
23675 case DW_OP_reg10:
23676 case DW_OP_reg11:
23677 case DW_OP_reg12:
23678 case DW_OP_reg13:
23679 case DW_OP_reg14:
23680 case DW_OP_reg15:
23681 case DW_OP_reg16:
23682 case DW_OP_reg17:
23683 case DW_OP_reg18:
23684 case DW_OP_reg19:
23685 case DW_OP_reg20:
23686 case DW_OP_reg21:
23687 case DW_OP_reg22:
23688 case DW_OP_reg23:
23689 case DW_OP_reg24:
23690 case DW_OP_reg25:
23691 case DW_OP_reg26:
23692 case DW_OP_reg27:
23693 case DW_OP_reg28:
23694 case DW_OP_reg29:
23695 case DW_OP_reg30:
23696 case DW_OP_reg31:
23697 stack[++stacki] = op - DW_OP_reg0;
23698 if (i < size)
23699 dwarf2_complex_location_expr_complaint ();
23700 break;
23701
23702 case DW_OP_regx:
23703 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23704 i += bytes_read;
23705 stack[++stacki] = unsnd;
23706 if (i < size)
23707 dwarf2_complex_location_expr_complaint ();
23708 break;
23709
23710 case DW_OP_addr:
23711 stack[++stacki] = read_address (objfile->obfd, &data[i],
23712 cu, &bytes_read);
23713 i += bytes_read;
23714 break;
23715
23716 case DW_OP_const1u:
23717 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23718 i += 1;
23719 break;
23720
23721 case DW_OP_const1s:
23722 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23723 i += 1;
23724 break;
23725
23726 case DW_OP_const2u:
23727 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23728 i += 2;
23729 break;
23730
23731 case DW_OP_const2s:
23732 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23733 i += 2;
23734 break;
23735
23736 case DW_OP_const4u:
23737 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23738 i += 4;
23739 break;
23740
23741 case DW_OP_const4s:
23742 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23743 i += 4;
23744 break;
23745
23746 case DW_OP_const8u:
23747 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23748 i += 8;
23749 break;
23750
23751 case DW_OP_constu:
23752 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23753 &bytes_read);
23754 i += bytes_read;
23755 break;
23756
23757 case DW_OP_consts:
23758 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23759 i += bytes_read;
23760 break;
23761
23762 case DW_OP_dup:
23763 stack[stacki + 1] = stack[stacki];
23764 stacki++;
23765 break;
23766
23767 case DW_OP_plus:
23768 stack[stacki - 1] += stack[stacki];
23769 stacki--;
23770 break;
23771
23772 case DW_OP_plus_uconst:
23773 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23774 &bytes_read);
23775 i += bytes_read;
23776 break;
23777
23778 case DW_OP_minus:
23779 stack[stacki - 1] -= stack[stacki];
23780 stacki--;
23781 break;
23782
23783 case DW_OP_deref:
23784 /* If we're not the last op, then we definitely can't encode
23785 this using GDB's address_class enum. This is valid for partial
23786 global symbols, although the variable's address will be bogus
23787 in the psymtab. */
23788 if (i < size)
23789 dwarf2_complex_location_expr_complaint ();
23790 break;
23791
23792 case DW_OP_GNU_push_tls_address:
23793 case DW_OP_form_tls_address:
23794 /* The top of the stack has the offset from the beginning
23795 of the thread control block at which the variable is located. */
23796 /* Nothing should follow this operator, so the top of stack would
23797 be returned. */
23798 /* This is valid for partial global symbols, but the variable's
23799 address will be bogus in the psymtab. Make it always at least
23800 non-zero to not look as a variable garbage collected by linker
23801 which have DW_OP_addr 0. */
23802 if (i < size)
23803 dwarf2_complex_location_expr_complaint ();
23804 stack[stacki]++;
23805 break;
23806
23807 case DW_OP_GNU_uninit:
23808 break;
23809
23810 case DW_OP_GNU_addr_index:
23811 case DW_OP_GNU_const_index:
23812 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23813 &bytes_read);
23814 i += bytes_read;
23815 break;
23816
23817 default:
23818 {
23819 const char *name = get_DW_OP_name (op);
23820
23821 if (name)
23822 complaint (_("unsupported stack op: '%s'"),
23823 name);
23824 else
23825 complaint (_("unsupported stack op: '%02x'"),
23826 op);
23827 }
23828
23829 return (stack[stacki]);
23830 }
23831
23832 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23833 outside of the allocated space. Also enforce minimum>0. */
23834 if (stacki >= ARRAY_SIZE (stack) - 1)
23835 {
23836 complaint (_("location description stack overflow"));
23837 return 0;
23838 }
23839
23840 if (stacki <= 0)
23841 {
23842 complaint (_("location description stack underflow"));
23843 return 0;
23844 }
23845 }
23846 return (stack[stacki]);
23847 }
23848
23849 /* memory allocation interface */
23850
23851 static struct dwarf_block *
23852 dwarf_alloc_block (struct dwarf2_cu *cu)
23853 {
23854 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23855 }
23856
23857 static struct die_info *
23858 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23859 {
23860 struct die_info *die;
23861 size_t size = sizeof (struct die_info);
23862
23863 if (num_attrs > 1)
23864 size += (num_attrs - 1) * sizeof (struct attribute);
23865
23866 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23867 memset (die, 0, sizeof (struct die_info));
23868 return (die);
23869 }
23870
23871 \f
23872 /* Macro support. */
23873
23874 /* Return file name relative to the compilation directory of file number I in
23875 *LH's file name table. The result is allocated using xmalloc; the caller is
23876 responsible for freeing it. */
23877
23878 static char *
23879 file_file_name (int file, struct line_header *lh)
23880 {
23881 /* Is the file number a valid index into the line header's file name
23882 table? Remember that file numbers start with one, not zero. */
23883 if (1 <= file && file <= lh->file_names.size ())
23884 {
23885 const file_entry &fe = lh->file_names[file - 1];
23886
23887 if (!IS_ABSOLUTE_PATH (fe.name))
23888 {
23889 const char *dir = fe.include_dir (lh);
23890 if (dir != NULL)
23891 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23892 }
23893 return xstrdup (fe.name);
23894 }
23895 else
23896 {
23897 /* The compiler produced a bogus file number. We can at least
23898 record the macro definitions made in the file, even if we
23899 won't be able to find the file by name. */
23900 char fake_name[80];
23901
23902 xsnprintf (fake_name, sizeof (fake_name),
23903 "<bad macro file number %d>", file);
23904
23905 complaint (_("bad file number in macro information (%d)"),
23906 file);
23907
23908 return xstrdup (fake_name);
23909 }
23910 }
23911
23912 /* Return the full name of file number I in *LH's file name table.
23913 Use COMP_DIR as the name of the current directory of the
23914 compilation. The result is allocated using xmalloc; the caller is
23915 responsible for freeing it. */
23916 static char *
23917 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23918 {
23919 /* Is the file number a valid index into the line header's file name
23920 table? Remember that file numbers start with one, not zero. */
23921 if (1 <= file && file <= lh->file_names.size ())
23922 {
23923 char *relative = file_file_name (file, lh);
23924
23925 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23926 return relative;
23927 return reconcat (relative, comp_dir, SLASH_STRING,
23928 relative, (char *) NULL);
23929 }
23930 else
23931 return file_file_name (file, lh);
23932 }
23933
23934
23935 static struct macro_source_file *
23936 macro_start_file (struct dwarf2_cu *cu,
23937 int file, int line,
23938 struct macro_source_file *current_file,
23939 struct line_header *lh)
23940 {
23941 /* File name relative to the compilation directory of this source file. */
23942 char *file_name = file_file_name (file, lh);
23943
23944 if (! current_file)
23945 {
23946 /* Note: We don't create a macro table for this compilation unit
23947 at all until we actually get a filename. */
23948 struct macro_table *macro_table = cu->builder->get_macro_table ();
23949
23950 /* If we have no current file, then this must be the start_file
23951 directive for the compilation unit's main source file. */
23952 current_file = macro_set_main (macro_table, file_name);
23953 macro_define_special (macro_table);
23954 }
23955 else
23956 current_file = macro_include (current_file, line, file_name);
23957
23958 xfree (file_name);
23959
23960 return current_file;
23961 }
23962
23963 static const char *
23964 consume_improper_spaces (const char *p, const char *body)
23965 {
23966 if (*p == ' ')
23967 {
23968 complaint (_("macro definition contains spaces "
23969 "in formal argument list:\n`%s'"),
23970 body);
23971
23972 while (*p == ' ')
23973 p++;
23974 }
23975
23976 return p;
23977 }
23978
23979
23980 static void
23981 parse_macro_definition (struct macro_source_file *file, int line,
23982 const char *body)
23983 {
23984 const char *p;
23985
23986 /* The body string takes one of two forms. For object-like macro
23987 definitions, it should be:
23988
23989 <macro name> " " <definition>
23990
23991 For function-like macro definitions, it should be:
23992
23993 <macro name> "() " <definition>
23994 or
23995 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23996
23997 Spaces may appear only where explicitly indicated, and in the
23998 <definition>.
23999
24000 The Dwarf 2 spec says that an object-like macro's name is always
24001 followed by a space, but versions of GCC around March 2002 omit
24002 the space when the macro's definition is the empty string.
24003
24004 The Dwarf 2 spec says that there should be no spaces between the
24005 formal arguments in a function-like macro's formal argument list,
24006 but versions of GCC around March 2002 include spaces after the
24007 commas. */
24008
24009
24010 /* Find the extent of the macro name. The macro name is terminated
24011 by either a space or null character (for an object-like macro) or
24012 an opening paren (for a function-like macro). */
24013 for (p = body; *p; p++)
24014 if (*p == ' ' || *p == '(')
24015 break;
24016
24017 if (*p == ' ' || *p == '\0')
24018 {
24019 /* It's an object-like macro. */
24020 int name_len = p - body;
24021 char *name = savestring (body, name_len);
24022 const char *replacement;
24023
24024 if (*p == ' ')
24025 replacement = body + name_len + 1;
24026 else
24027 {
24028 dwarf2_macro_malformed_definition_complaint (body);
24029 replacement = body + name_len;
24030 }
24031
24032 macro_define_object (file, line, name, replacement);
24033
24034 xfree (name);
24035 }
24036 else if (*p == '(')
24037 {
24038 /* It's a function-like macro. */
24039 char *name = savestring (body, p - body);
24040 int argc = 0;
24041 int argv_size = 1;
24042 char **argv = XNEWVEC (char *, argv_size);
24043
24044 p++;
24045
24046 p = consume_improper_spaces (p, body);
24047
24048 /* Parse the formal argument list. */
24049 while (*p && *p != ')')
24050 {
24051 /* Find the extent of the current argument name. */
24052 const char *arg_start = p;
24053
24054 while (*p && *p != ',' && *p != ')' && *p != ' ')
24055 p++;
24056
24057 if (! *p || p == arg_start)
24058 dwarf2_macro_malformed_definition_complaint (body);
24059 else
24060 {
24061 /* Make sure argv has room for the new argument. */
24062 if (argc >= argv_size)
24063 {
24064 argv_size *= 2;
24065 argv = XRESIZEVEC (char *, argv, argv_size);
24066 }
24067
24068 argv[argc++] = savestring (arg_start, p - arg_start);
24069 }
24070
24071 p = consume_improper_spaces (p, body);
24072
24073 /* Consume the comma, if present. */
24074 if (*p == ',')
24075 {
24076 p++;
24077
24078 p = consume_improper_spaces (p, body);
24079 }
24080 }
24081
24082 if (*p == ')')
24083 {
24084 p++;
24085
24086 if (*p == ' ')
24087 /* Perfectly formed definition, no complaints. */
24088 macro_define_function (file, line, name,
24089 argc, (const char **) argv,
24090 p + 1);
24091 else if (*p == '\0')
24092 {
24093 /* Complain, but do define it. */
24094 dwarf2_macro_malformed_definition_complaint (body);
24095 macro_define_function (file, line, name,
24096 argc, (const char **) argv,
24097 p);
24098 }
24099 else
24100 /* Just complain. */
24101 dwarf2_macro_malformed_definition_complaint (body);
24102 }
24103 else
24104 /* Just complain. */
24105 dwarf2_macro_malformed_definition_complaint (body);
24106
24107 xfree (name);
24108 {
24109 int i;
24110
24111 for (i = 0; i < argc; i++)
24112 xfree (argv[i]);
24113 }
24114 xfree (argv);
24115 }
24116 else
24117 dwarf2_macro_malformed_definition_complaint (body);
24118 }
24119
24120 /* Skip some bytes from BYTES according to the form given in FORM.
24121 Returns the new pointer. */
24122
24123 static const gdb_byte *
24124 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24125 enum dwarf_form form,
24126 unsigned int offset_size,
24127 struct dwarf2_section_info *section)
24128 {
24129 unsigned int bytes_read;
24130
24131 switch (form)
24132 {
24133 case DW_FORM_data1:
24134 case DW_FORM_flag:
24135 ++bytes;
24136 break;
24137
24138 case DW_FORM_data2:
24139 bytes += 2;
24140 break;
24141
24142 case DW_FORM_data4:
24143 bytes += 4;
24144 break;
24145
24146 case DW_FORM_data8:
24147 bytes += 8;
24148 break;
24149
24150 case DW_FORM_data16:
24151 bytes += 16;
24152 break;
24153
24154 case DW_FORM_string:
24155 read_direct_string (abfd, bytes, &bytes_read);
24156 bytes += bytes_read;
24157 break;
24158
24159 case DW_FORM_sec_offset:
24160 case DW_FORM_strp:
24161 case DW_FORM_GNU_strp_alt:
24162 bytes += offset_size;
24163 break;
24164
24165 case DW_FORM_block:
24166 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24167 bytes += bytes_read;
24168 break;
24169
24170 case DW_FORM_block1:
24171 bytes += 1 + read_1_byte (abfd, bytes);
24172 break;
24173 case DW_FORM_block2:
24174 bytes += 2 + read_2_bytes (abfd, bytes);
24175 break;
24176 case DW_FORM_block4:
24177 bytes += 4 + read_4_bytes (abfd, bytes);
24178 break;
24179
24180 case DW_FORM_sdata:
24181 case DW_FORM_udata:
24182 case DW_FORM_GNU_addr_index:
24183 case DW_FORM_GNU_str_index:
24184 bytes = gdb_skip_leb128 (bytes, buffer_end);
24185 if (bytes == NULL)
24186 {
24187 dwarf2_section_buffer_overflow_complaint (section);
24188 return NULL;
24189 }
24190 break;
24191
24192 case DW_FORM_implicit_const:
24193 break;
24194
24195 default:
24196 {
24197 complaint (_("invalid form 0x%x in `%s'"),
24198 form, get_section_name (section));
24199 return NULL;
24200 }
24201 }
24202
24203 return bytes;
24204 }
24205
24206 /* A helper for dwarf_decode_macros that handles skipping an unknown
24207 opcode. Returns an updated pointer to the macro data buffer; or,
24208 on error, issues a complaint and returns NULL. */
24209
24210 static const gdb_byte *
24211 skip_unknown_opcode (unsigned int opcode,
24212 const gdb_byte **opcode_definitions,
24213 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24214 bfd *abfd,
24215 unsigned int offset_size,
24216 struct dwarf2_section_info *section)
24217 {
24218 unsigned int bytes_read, i;
24219 unsigned long arg;
24220 const gdb_byte *defn;
24221
24222 if (opcode_definitions[opcode] == NULL)
24223 {
24224 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24225 opcode);
24226 return NULL;
24227 }
24228
24229 defn = opcode_definitions[opcode];
24230 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24231 defn += bytes_read;
24232
24233 for (i = 0; i < arg; ++i)
24234 {
24235 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24236 (enum dwarf_form) defn[i], offset_size,
24237 section);
24238 if (mac_ptr == NULL)
24239 {
24240 /* skip_form_bytes already issued the complaint. */
24241 return NULL;
24242 }
24243 }
24244
24245 return mac_ptr;
24246 }
24247
24248 /* A helper function which parses the header of a macro section.
24249 If the macro section is the extended (for now called "GNU") type,
24250 then this updates *OFFSET_SIZE. Returns a pointer to just after
24251 the header, or issues a complaint and returns NULL on error. */
24252
24253 static const gdb_byte *
24254 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24255 bfd *abfd,
24256 const gdb_byte *mac_ptr,
24257 unsigned int *offset_size,
24258 int section_is_gnu)
24259 {
24260 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24261
24262 if (section_is_gnu)
24263 {
24264 unsigned int version, flags;
24265
24266 version = read_2_bytes (abfd, mac_ptr);
24267 if (version != 4 && version != 5)
24268 {
24269 complaint (_("unrecognized version `%d' in .debug_macro section"),
24270 version);
24271 return NULL;
24272 }
24273 mac_ptr += 2;
24274
24275 flags = read_1_byte (abfd, mac_ptr);
24276 ++mac_ptr;
24277 *offset_size = (flags & 1) ? 8 : 4;
24278
24279 if ((flags & 2) != 0)
24280 /* We don't need the line table offset. */
24281 mac_ptr += *offset_size;
24282
24283 /* Vendor opcode descriptions. */
24284 if ((flags & 4) != 0)
24285 {
24286 unsigned int i, count;
24287
24288 count = read_1_byte (abfd, mac_ptr);
24289 ++mac_ptr;
24290 for (i = 0; i < count; ++i)
24291 {
24292 unsigned int opcode, bytes_read;
24293 unsigned long arg;
24294
24295 opcode = read_1_byte (abfd, mac_ptr);
24296 ++mac_ptr;
24297 opcode_definitions[opcode] = mac_ptr;
24298 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24299 mac_ptr += bytes_read;
24300 mac_ptr += arg;
24301 }
24302 }
24303 }
24304
24305 return mac_ptr;
24306 }
24307
24308 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24309 including DW_MACRO_import. */
24310
24311 static void
24312 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24313 bfd *abfd,
24314 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24315 struct macro_source_file *current_file,
24316 struct line_header *lh,
24317 struct dwarf2_section_info *section,
24318 int section_is_gnu, int section_is_dwz,
24319 unsigned int offset_size,
24320 htab_t include_hash)
24321 {
24322 struct dwarf2_per_objfile *dwarf2_per_objfile
24323 = cu->per_cu->dwarf2_per_objfile;
24324 struct objfile *objfile = dwarf2_per_objfile->objfile;
24325 enum dwarf_macro_record_type macinfo_type;
24326 int at_commandline;
24327 const gdb_byte *opcode_definitions[256];
24328
24329 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24330 &offset_size, section_is_gnu);
24331 if (mac_ptr == NULL)
24332 {
24333 /* We already issued a complaint. */
24334 return;
24335 }
24336
24337 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24338 GDB is still reading the definitions from command line. First
24339 DW_MACINFO_start_file will need to be ignored as it was already executed
24340 to create CURRENT_FILE for the main source holding also the command line
24341 definitions. On first met DW_MACINFO_start_file this flag is reset to
24342 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24343
24344 at_commandline = 1;
24345
24346 do
24347 {
24348 /* Do we at least have room for a macinfo type byte? */
24349 if (mac_ptr >= mac_end)
24350 {
24351 dwarf2_section_buffer_overflow_complaint (section);
24352 break;
24353 }
24354
24355 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24356 mac_ptr++;
24357
24358 /* Note that we rely on the fact that the corresponding GNU and
24359 DWARF constants are the same. */
24360 DIAGNOSTIC_PUSH
24361 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24362 switch (macinfo_type)
24363 {
24364 /* A zero macinfo type indicates the end of the macro
24365 information. */
24366 case 0:
24367 break;
24368
24369 case DW_MACRO_define:
24370 case DW_MACRO_undef:
24371 case DW_MACRO_define_strp:
24372 case DW_MACRO_undef_strp:
24373 case DW_MACRO_define_sup:
24374 case DW_MACRO_undef_sup:
24375 {
24376 unsigned int bytes_read;
24377 int line;
24378 const char *body;
24379 int is_define;
24380
24381 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24382 mac_ptr += bytes_read;
24383
24384 if (macinfo_type == DW_MACRO_define
24385 || macinfo_type == DW_MACRO_undef)
24386 {
24387 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24388 mac_ptr += bytes_read;
24389 }
24390 else
24391 {
24392 LONGEST str_offset;
24393
24394 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24395 mac_ptr += offset_size;
24396
24397 if (macinfo_type == DW_MACRO_define_sup
24398 || macinfo_type == DW_MACRO_undef_sup
24399 || section_is_dwz)
24400 {
24401 struct dwz_file *dwz
24402 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24403
24404 body = read_indirect_string_from_dwz (objfile,
24405 dwz, str_offset);
24406 }
24407 else
24408 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24409 abfd, str_offset);
24410 }
24411
24412 is_define = (macinfo_type == DW_MACRO_define
24413 || macinfo_type == DW_MACRO_define_strp
24414 || macinfo_type == DW_MACRO_define_sup);
24415 if (! current_file)
24416 {
24417 /* DWARF violation as no main source is present. */
24418 complaint (_("debug info with no main source gives macro %s "
24419 "on line %d: %s"),
24420 is_define ? _("definition") : _("undefinition"),
24421 line, body);
24422 break;
24423 }
24424 if ((line == 0 && !at_commandline)
24425 || (line != 0 && at_commandline))
24426 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24427 at_commandline ? _("command-line") : _("in-file"),
24428 is_define ? _("definition") : _("undefinition"),
24429 line == 0 ? _("zero") : _("non-zero"), line, body);
24430
24431 if (is_define)
24432 parse_macro_definition (current_file, line, body);
24433 else
24434 {
24435 gdb_assert (macinfo_type == DW_MACRO_undef
24436 || macinfo_type == DW_MACRO_undef_strp
24437 || macinfo_type == DW_MACRO_undef_sup);
24438 macro_undef (current_file, line, body);
24439 }
24440 }
24441 break;
24442
24443 case DW_MACRO_start_file:
24444 {
24445 unsigned int bytes_read;
24446 int line, file;
24447
24448 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24449 mac_ptr += bytes_read;
24450 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24451 mac_ptr += bytes_read;
24452
24453 if ((line == 0 && !at_commandline)
24454 || (line != 0 && at_commandline))
24455 complaint (_("debug info gives source %d included "
24456 "from %s at %s line %d"),
24457 file, at_commandline ? _("command-line") : _("file"),
24458 line == 0 ? _("zero") : _("non-zero"), line);
24459
24460 if (at_commandline)
24461 {
24462 /* This DW_MACRO_start_file was executed in the
24463 pass one. */
24464 at_commandline = 0;
24465 }
24466 else
24467 current_file = macro_start_file (cu, file, line, current_file,
24468 lh);
24469 }
24470 break;
24471
24472 case DW_MACRO_end_file:
24473 if (! current_file)
24474 complaint (_("macro debug info has an unmatched "
24475 "`close_file' directive"));
24476 else
24477 {
24478 current_file = current_file->included_by;
24479 if (! current_file)
24480 {
24481 enum dwarf_macro_record_type next_type;
24482
24483 /* GCC circa March 2002 doesn't produce the zero
24484 type byte marking the end of the compilation
24485 unit. Complain if it's not there, but exit no
24486 matter what. */
24487
24488 /* Do we at least have room for a macinfo type byte? */
24489 if (mac_ptr >= mac_end)
24490 {
24491 dwarf2_section_buffer_overflow_complaint (section);
24492 return;
24493 }
24494
24495 /* We don't increment mac_ptr here, so this is just
24496 a look-ahead. */
24497 next_type
24498 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24499 mac_ptr);
24500 if (next_type != 0)
24501 complaint (_("no terminating 0-type entry for "
24502 "macros in `.debug_macinfo' section"));
24503
24504 return;
24505 }
24506 }
24507 break;
24508
24509 case DW_MACRO_import:
24510 case DW_MACRO_import_sup:
24511 {
24512 LONGEST offset;
24513 void **slot;
24514 bfd *include_bfd = abfd;
24515 struct dwarf2_section_info *include_section = section;
24516 const gdb_byte *include_mac_end = mac_end;
24517 int is_dwz = section_is_dwz;
24518 const gdb_byte *new_mac_ptr;
24519
24520 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24521 mac_ptr += offset_size;
24522
24523 if (macinfo_type == DW_MACRO_import_sup)
24524 {
24525 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24526
24527 dwarf2_read_section (objfile, &dwz->macro);
24528
24529 include_section = &dwz->macro;
24530 include_bfd = get_section_bfd_owner (include_section);
24531 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24532 is_dwz = 1;
24533 }
24534
24535 new_mac_ptr = include_section->buffer + offset;
24536 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24537
24538 if (*slot != NULL)
24539 {
24540 /* This has actually happened; see
24541 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24542 complaint (_("recursive DW_MACRO_import in "
24543 ".debug_macro section"));
24544 }
24545 else
24546 {
24547 *slot = (void *) new_mac_ptr;
24548
24549 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24550 include_mac_end, current_file, lh,
24551 section, section_is_gnu, is_dwz,
24552 offset_size, include_hash);
24553
24554 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24555 }
24556 }
24557 break;
24558
24559 case DW_MACINFO_vendor_ext:
24560 if (!section_is_gnu)
24561 {
24562 unsigned int bytes_read;
24563
24564 /* This reads the constant, but since we don't recognize
24565 any vendor extensions, we ignore it. */
24566 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24567 mac_ptr += bytes_read;
24568 read_direct_string (abfd, mac_ptr, &bytes_read);
24569 mac_ptr += bytes_read;
24570
24571 /* We don't recognize any vendor extensions. */
24572 break;
24573 }
24574 /* FALLTHROUGH */
24575
24576 default:
24577 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24578 mac_ptr, mac_end, abfd, offset_size,
24579 section);
24580 if (mac_ptr == NULL)
24581 return;
24582 break;
24583 }
24584 DIAGNOSTIC_POP
24585 } while (macinfo_type != 0);
24586 }
24587
24588 static void
24589 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24590 int section_is_gnu)
24591 {
24592 struct dwarf2_per_objfile *dwarf2_per_objfile
24593 = cu->per_cu->dwarf2_per_objfile;
24594 struct objfile *objfile = dwarf2_per_objfile->objfile;
24595 struct line_header *lh = cu->line_header;
24596 bfd *abfd;
24597 const gdb_byte *mac_ptr, *mac_end;
24598 struct macro_source_file *current_file = 0;
24599 enum dwarf_macro_record_type macinfo_type;
24600 unsigned int offset_size = cu->header.offset_size;
24601 const gdb_byte *opcode_definitions[256];
24602 void **slot;
24603 struct dwarf2_section_info *section;
24604 const char *section_name;
24605
24606 if (cu->dwo_unit != NULL)
24607 {
24608 if (section_is_gnu)
24609 {
24610 section = &cu->dwo_unit->dwo_file->sections.macro;
24611 section_name = ".debug_macro.dwo";
24612 }
24613 else
24614 {
24615 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24616 section_name = ".debug_macinfo.dwo";
24617 }
24618 }
24619 else
24620 {
24621 if (section_is_gnu)
24622 {
24623 section = &dwarf2_per_objfile->macro;
24624 section_name = ".debug_macro";
24625 }
24626 else
24627 {
24628 section = &dwarf2_per_objfile->macinfo;
24629 section_name = ".debug_macinfo";
24630 }
24631 }
24632
24633 dwarf2_read_section (objfile, section);
24634 if (section->buffer == NULL)
24635 {
24636 complaint (_("missing %s section"), section_name);
24637 return;
24638 }
24639 abfd = get_section_bfd_owner (section);
24640
24641 /* First pass: Find the name of the base filename.
24642 This filename is needed in order to process all macros whose definition
24643 (or undefinition) comes from the command line. These macros are defined
24644 before the first DW_MACINFO_start_file entry, and yet still need to be
24645 associated to the base file.
24646
24647 To determine the base file name, we scan the macro definitions until we
24648 reach the first DW_MACINFO_start_file entry. We then initialize
24649 CURRENT_FILE accordingly so that any macro definition found before the
24650 first DW_MACINFO_start_file can still be associated to the base file. */
24651
24652 mac_ptr = section->buffer + offset;
24653 mac_end = section->buffer + section->size;
24654
24655 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24656 &offset_size, section_is_gnu);
24657 if (mac_ptr == NULL)
24658 {
24659 /* We already issued a complaint. */
24660 return;
24661 }
24662
24663 do
24664 {
24665 /* Do we at least have room for a macinfo type byte? */
24666 if (mac_ptr >= mac_end)
24667 {
24668 /* Complaint is printed during the second pass as GDB will probably
24669 stop the first pass earlier upon finding
24670 DW_MACINFO_start_file. */
24671 break;
24672 }
24673
24674 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24675 mac_ptr++;
24676
24677 /* Note that we rely on the fact that the corresponding GNU and
24678 DWARF constants are the same. */
24679 DIAGNOSTIC_PUSH
24680 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24681 switch (macinfo_type)
24682 {
24683 /* A zero macinfo type indicates the end of the macro
24684 information. */
24685 case 0:
24686 break;
24687
24688 case DW_MACRO_define:
24689 case DW_MACRO_undef:
24690 /* Only skip the data by MAC_PTR. */
24691 {
24692 unsigned int bytes_read;
24693
24694 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24695 mac_ptr += bytes_read;
24696 read_direct_string (abfd, mac_ptr, &bytes_read);
24697 mac_ptr += bytes_read;
24698 }
24699 break;
24700
24701 case DW_MACRO_start_file:
24702 {
24703 unsigned int bytes_read;
24704 int line, file;
24705
24706 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24707 mac_ptr += bytes_read;
24708 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24709 mac_ptr += bytes_read;
24710
24711 current_file = macro_start_file (cu, file, line, current_file, lh);
24712 }
24713 break;
24714
24715 case DW_MACRO_end_file:
24716 /* No data to skip by MAC_PTR. */
24717 break;
24718
24719 case DW_MACRO_define_strp:
24720 case DW_MACRO_undef_strp:
24721 case DW_MACRO_define_sup:
24722 case DW_MACRO_undef_sup:
24723 {
24724 unsigned int bytes_read;
24725
24726 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24727 mac_ptr += bytes_read;
24728 mac_ptr += offset_size;
24729 }
24730 break;
24731
24732 case DW_MACRO_import:
24733 case DW_MACRO_import_sup:
24734 /* Note that, according to the spec, a transparent include
24735 chain cannot call DW_MACRO_start_file. So, we can just
24736 skip this opcode. */
24737 mac_ptr += offset_size;
24738 break;
24739
24740 case DW_MACINFO_vendor_ext:
24741 /* Only skip the data by MAC_PTR. */
24742 if (!section_is_gnu)
24743 {
24744 unsigned int bytes_read;
24745
24746 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24747 mac_ptr += bytes_read;
24748 read_direct_string (abfd, mac_ptr, &bytes_read);
24749 mac_ptr += bytes_read;
24750 }
24751 /* FALLTHROUGH */
24752
24753 default:
24754 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24755 mac_ptr, mac_end, abfd, offset_size,
24756 section);
24757 if (mac_ptr == NULL)
24758 return;
24759 break;
24760 }
24761 DIAGNOSTIC_POP
24762 } while (macinfo_type != 0 && current_file == NULL);
24763
24764 /* Second pass: Process all entries.
24765
24766 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24767 command-line macro definitions/undefinitions. This flag is unset when we
24768 reach the first DW_MACINFO_start_file entry. */
24769
24770 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24771 htab_eq_pointer,
24772 NULL, xcalloc, xfree));
24773 mac_ptr = section->buffer + offset;
24774 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24775 *slot = (void *) mac_ptr;
24776 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24777 current_file, lh, section,
24778 section_is_gnu, 0, offset_size,
24779 include_hash.get ());
24780 }
24781
24782 /* Check if the attribute's form is a DW_FORM_block*
24783 if so return true else false. */
24784
24785 static int
24786 attr_form_is_block (const struct attribute *attr)
24787 {
24788 return (attr == NULL ? 0 :
24789 attr->form == DW_FORM_block1
24790 || attr->form == DW_FORM_block2
24791 || attr->form == DW_FORM_block4
24792 || attr->form == DW_FORM_block
24793 || attr->form == DW_FORM_exprloc);
24794 }
24795
24796 /* Return non-zero if ATTR's value is a section offset --- classes
24797 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24798 You may use DW_UNSND (attr) to retrieve such offsets.
24799
24800 Section 7.5.4, "Attribute Encodings", explains that no attribute
24801 may have a value that belongs to more than one of these classes; it
24802 would be ambiguous if we did, because we use the same forms for all
24803 of them. */
24804
24805 static int
24806 attr_form_is_section_offset (const struct attribute *attr)
24807 {
24808 return (attr->form == DW_FORM_data4
24809 || attr->form == DW_FORM_data8
24810 || attr->form == DW_FORM_sec_offset);
24811 }
24812
24813 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24814 zero otherwise. When this function returns true, you can apply
24815 dwarf2_get_attr_constant_value to it.
24816
24817 However, note that for some attributes you must check
24818 attr_form_is_section_offset before using this test. DW_FORM_data4
24819 and DW_FORM_data8 are members of both the constant class, and of
24820 the classes that contain offsets into other debug sections
24821 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24822 that, if an attribute's can be either a constant or one of the
24823 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24824 taken as section offsets, not constants.
24825
24826 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24827 cannot handle that. */
24828
24829 static int
24830 attr_form_is_constant (const struct attribute *attr)
24831 {
24832 switch (attr->form)
24833 {
24834 case DW_FORM_sdata:
24835 case DW_FORM_udata:
24836 case DW_FORM_data1:
24837 case DW_FORM_data2:
24838 case DW_FORM_data4:
24839 case DW_FORM_data8:
24840 case DW_FORM_implicit_const:
24841 return 1;
24842 default:
24843 return 0;
24844 }
24845 }
24846
24847
24848 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24849 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24850
24851 static int
24852 attr_form_is_ref (const struct attribute *attr)
24853 {
24854 switch (attr->form)
24855 {
24856 case DW_FORM_ref_addr:
24857 case DW_FORM_ref1:
24858 case DW_FORM_ref2:
24859 case DW_FORM_ref4:
24860 case DW_FORM_ref8:
24861 case DW_FORM_ref_udata:
24862 case DW_FORM_GNU_ref_alt:
24863 return 1;
24864 default:
24865 return 0;
24866 }
24867 }
24868
24869 /* Return the .debug_loc section to use for CU.
24870 For DWO files use .debug_loc.dwo. */
24871
24872 static struct dwarf2_section_info *
24873 cu_debug_loc_section (struct dwarf2_cu *cu)
24874 {
24875 struct dwarf2_per_objfile *dwarf2_per_objfile
24876 = cu->per_cu->dwarf2_per_objfile;
24877
24878 if (cu->dwo_unit)
24879 {
24880 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24881
24882 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24883 }
24884 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24885 : &dwarf2_per_objfile->loc);
24886 }
24887
24888 /* A helper function that fills in a dwarf2_loclist_baton. */
24889
24890 static void
24891 fill_in_loclist_baton (struct dwarf2_cu *cu,
24892 struct dwarf2_loclist_baton *baton,
24893 const struct attribute *attr)
24894 {
24895 struct dwarf2_per_objfile *dwarf2_per_objfile
24896 = cu->per_cu->dwarf2_per_objfile;
24897 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24898
24899 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24900
24901 baton->per_cu = cu->per_cu;
24902 gdb_assert (baton->per_cu);
24903 /* We don't know how long the location list is, but make sure we
24904 don't run off the edge of the section. */
24905 baton->size = section->size - DW_UNSND (attr);
24906 baton->data = section->buffer + DW_UNSND (attr);
24907 baton->base_address = cu->base_address;
24908 baton->from_dwo = cu->dwo_unit != NULL;
24909 }
24910
24911 static void
24912 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24913 struct dwarf2_cu *cu, int is_block)
24914 {
24915 struct dwarf2_per_objfile *dwarf2_per_objfile
24916 = cu->per_cu->dwarf2_per_objfile;
24917 struct objfile *objfile = dwarf2_per_objfile->objfile;
24918 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24919
24920 if (attr_form_is_section_offset (attr)
24921 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24922 the section. If so, fall through to the complaint in the
24923 other branch. */
24924 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24925 {
24926 struct dwarf2_loclist_baton *baton;
24927
24928 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24929
24930 fill_in_loclist_baton (cu, baton, attr);
24931
24932 if (cu->base_known == 0)
24933 complaint (_("Location list used without "
24934 "specifying the CU base address."));
24935
24936 SYMBOL_ACLASS_INDEX (sym) = (is_block
24937 ? dwarf2_loclist_block_index
24938 : dwarf2_loclist_index);
24939 SYMBOL_LOCATION_BATON (sym) = baton;
24940 }
24941 else
24942 {
24943 struct dwarf2_locexpr_baton *baton;
24944
24945 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24946 baton->per_cu = cu->per_cu;
24947 gdb_assert (baton->per_cu);
24948
24949 if (attr_form_is_block (attr))
24950 {
24951 /* Note that we're just copying the block's data pointer
24952 here, not the actual data. We're still pointing into the
24953 info_buffer for SYM's objfile; right now we never release
24954 that buffer, but when we do clean up properly this may
24955 need to change. */
24956 baton->size = DW_BLOCK (attr)->size;
24957 baton->data = DW_BLOCK (attr)->data;
24958 }
24959 else
24960 {
24961 dwarf2_invalid_attrib_class_complaint ("location description",
24962 SYMBOL_NATURAL_NAME (sym));
24963 baton->size = 0;
24964 }
24965
24966 SYMBOL_ACLASS_INDEX (sym) = (is_block
24967 ? dwarf2_locexpr_block_index
24968 : dwarf2_locexpr_index);
24969 SYMBOL_LOCATION_BATON (sym) = baton;
24970 }
24971 }
24972
24973 /* Return the OBJFILE associated with the compilation unit CU. If CU
24974 came from a separate debuginfo file, then the master objfile is
24975 returned. */
24976
24977 struct objfile *
24978 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24979 {
24980 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24981
24982 /* Return the master objfile, so that we can report and look up the
24983 correct file containing this variable. */
24984 if (objfile->separate_debug_objfile_backlink)
24985 objfile = objfile->separate_debug_objfile_backlink;
24986
24987 return objfile;
24988 }
24989
24990 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24991 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24992 CU_HEADERP first. */
24993
24994 static const struct comp_unit_head *
24995 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24996 struct dwarf2_per_cu_data *per_cu)
24997 {
24998 const gdb_byte *info_ptr;
24999
25000 if (per_cu->cu)
25001 return &per_cu->cu->header;
25002
25003 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25004
25005 memset (cu_headerp, 0, sizeof (*cu_headerp));
25006 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25007 rcuh_kind::COMPILE);
25008
25009 return cu_headerp;
25010 }
25011
25012 /* Return the address size given in the compilation unit header for CU. */
25013
25014 int
25015 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25016 {
25017 struct comp_unit_head cu_header_local;
25018 const struct comp_unit_head *cu_headerp;
25019
25020 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25021
25022 return cu_headerp->addr_size;
25023 }
25024
25025 /* Return the offset size given in the compilation unit header for CU. */
25026
25027 int
25028 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25029 {
25030 struct comp_unit_head cu_header_local;
25031 const struct comp_unit_head *cu_headerp;
25032
25033 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25034
25035 return cu_headerp->offset_size;
25036 }
25037
25038 /* See its dwarf2loc.h declaration. */
25039
25040 int
25041 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25042 {
25043 struct comp_unit_head cu_header_local;
25044 const struct comp_unit_head *cu_headerp;
25045
25046 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25047
25048 if (cu_headerp->version == 2)
25049 return cu_headerp->addr_size;
25050 else
25051 return cu_headerp->offset_size;
25052 }
25053
25054 /* Return the text offset of the CU. The returned offset comes from
25055 this CU's objfile. If this objfile came from a separate debuginfo
25056 file, then the offset may be different from the corresponding
25057 offset in the parent objfile. */
25058
25059 CORE_ADDR
25060 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25061 {
25062 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25063
25064 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25065 }
25066
25067 /* Return DWARF version number of PER_CU. */
25068
25069 short
25070 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25071 {
25072 return per_cu->dwarf_version;
25073 }
25074
25075 /* Locate the .debug_info compilation unit from CU's objfile which contains
25076 the DIE at OFFSET. Raises an error on failure. */
25077
25078 static struct dwarf2_per_cu_data *
25079 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25080 unsigned int offset_in_dwz,
25081 struct dwarf2_per_objfile *dwarf2_per_objfile)
25082 {
25083 struct dwarf2_per_cu_data *this_cu;
25084 int low, high;
25085 const sect_offset *cu_off;
25086
25087 low = 0;
25088 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25089 while (high > low)
25090 {
25091 struct dwarf2_per_cu_data *mid_cu;
25092 int mid = low + (high - low) / 2;
25093
25094 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25095 cu_off = &mid_cu->sect_off;
25096 if (mid_cu->is_dwz > offset_in_dwz
25097 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25098 high = mid;
25099 else
25100 low = mid + 1;
25101 }
25102 gdb_assert (low == high);
25103 this_cu = dwarf2_per_objfile->all_comp_units[low];
25104 cu_off = &this_cu->sect_off;
25105 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25106 {
25107 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25108 error (_("Dwarf Error: could not find partial DIE containing "
25109 "offset %s [in module %s]"),
25110 sect_offset_str (sect_off),
25111 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25112
25113 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25114 <= sect_off);
25115 return dwarf2_per_objfile->all_comp_units[low-1];
25116 }
25117 else
25118 {
25119 this_cu = dwarf2_per_objfile->all_comp_units[low];
25120 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25121 && sect_off >= this_cu->sect_off + this_cu->length)
25122 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25123 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25124 return this_cu;
25125 }
25126 }
25127
25128 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25129
25130 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25131 : per_cu (per_cu_),
25132 mark (0),
25133 has_loclist (0),
25134 checked_producer (0),
25135 producer_is_gxx_lt_4_6 (0),
25136 producer_is_gcc_lt_4_3 (0),
25137 producer_is_icc_lt_14 (0),
25138 producer_is_codewarrior (false),
25139 processing_has_namespace_info (0)
25140 {
25141 per_cu->cu = this;
25142 }
25143
25144 /* Destroy a dwarf2_cu. */
25145
25146 dwarf2_cu::~dwarf2_cu ()
25147 {
25148 per_cu->cu = NULL;
25149 }
25150
25151 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25152
25153 static void
25154 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25155 enum language pretend_language)
25156 {
25157 struct attribute *attr;
25158
25159 /* Set the language we're debugging. */
25160 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25161 if (attr)
25162 set_cu_language (DW_UNSND (attr), cu);
25163 else
25164 {
25165 cu->language = pretend_language;
25166 cu->language_defn = language_def (cu->language);
25167 }
25168
25169 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25170 }
25171
25172 /* Increase the age counter on each cached compilation unit, and free
25173 any that are too old. */
25174
25175 static void
25176 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25177 {
25178 struct dwarf2_per_cu_data *per_cu, **last_chain;
25179
25180 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25181 per_cu = dwarf2_per_objfile->read_in_chain;
25182 while (per_cu != NULL)
25183 {
25184 per_cu->cu->last_used ++;
25185 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25186 dwarf2_mark (per_cu->cu);
25187 per_cu = per_cu->cu->read_in_chain;
25188 }
25189
25190 per_cu = dwarf2_per_objfile->read_in_chain;
25191 last_chain = &dwarf2_per_objfile->read_in_chain;
25192 while (per_cu != NULL)
25193 {
25194 struct dwarf2_per_cu_data *next_cu;
25195
25196 next_cu = per_cu->cu->read_in_chain;
25197
25198 if (!per_cu->cu->mark)
25199 {
25200 delete per_cu->cu;
25201 *last_chain = next_cu;
25202 }
25203 else
25204 last_chain = &per_cu->cu->read_in_chain;
25205
25206 per_cu = next_cu;
25207 }
25208 }
25209
25210 /* Remove a single compilation unit from the cache. */
25211
25212 static void
25213 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25214 {
25215 struct dwarf2_per_cu_data *per_cu, **last_chain;
25216 struct dwarf2_per_objfile *dwarf2_per_objfile
25217 = target_per_cu->dwarf2_per_objfile;
25218
25219 per_cu = dwarf2_per_objfile->read_in_chain;
25220 last_chain = &dwarf2_per_objfile->read_in_chain;
25221 while (per_cu != NULL)
25222 {
25223 struct dwarf2_per_cu_data *next_cu;
25224
25225 next_cu = per_cu->cu->read_in_chain;
25226
25227 if (per_cu == target_per_cu)
25228 {
25229 delete per_cu->cu;
25230 per_cu->cu = NULL;
25231 *last_chain = next_cu;
25232 break;
25233 }
25234 else
25235 last_chain = &per_cu->cu->read_in_chain;
25236
25237 per_cu = next_cu;
25238 }
25239 }
25240
25241 /* Cleanup function for the dwarf2_per_objfile data. */
25242
25243 static void
25244 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25245 {
25246 struct dwarf2_per_objfile *dwarf2_per_objfile
25247 = static_cast<struct dwarf2_per_objfile *> (datum);
25248
25249 delete dwarf2_per_objfile;
25250 }
25251
25252 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25253 We store these in a hash table separate from the DIEs, and preserve them
25254 when the DIEs are flushed out of cache.
25255
25256 The CU "per_cu" pointer is needed because offset alone is not enough to
25257 uniquely identify the type. A file may have multiple .debug_types sections,
25258 or the type may come from a DWO file. Furthermore, while it's more logical
25259 to use per_cu->section+offset, with Fission the section with the data is in
25260 the DWO file but we don't know that section at the point we need it.
25261 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25262 because we can enter the lookup routine, get_die_type_at_offset, from
25263 outside this file, and thus won't necessarily have PER_CU->cu.
25264 Fortunately, PER_CU is stable for the life of the objfile. */
25265
25266 struct dwarf2_per_cu_offset_and_type
25267 {
25268 const struct dwarf2_per_cu_data *per_cu;
25269 sect_offset sect_off;
25270 struct type *type;
25271 };
25272
25273 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25274
25275 static hashval_t
25276 per_cu_offset_and_type_hash (const void *item)
25277 {
25278 const struct dwarf2_per_cu_offset_and_type *ofs
25279 = (const struct dwarf2_per_cu_offset_and_type *) item;
25280
25281 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25282 }
25283
25284 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25285
25286 static int
25287 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25288 {
25289 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25290 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25291 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25292 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25293
25294 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25295 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25296 }
25297
25298 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25299 table if necessary. For convenience, return TYPE.
25300
25301 The DIEs reading must have careful ordering to:
25302 * Not cause infite loops trying to read in DIEs as a prerequisite for
25303 reading current DIE.
25304 * Not trying to dereference contents of still incompletely read in types
25305 while reading in other DIEs.
25306 * Enable referencing still incompletely read in types just by a pointer to
25307 the type without accessing its fields.
25308
25309 Therefore caller should follow these rules:
25310 * Try to fetch any prerequisite types we may need to build this DIE type
25311 before building the type and calling set_die_type.
25312 * After building type call set_die_type for current DIE as soon as
25313 possible before fetching more types to complete the current type.
25314 * Make the type as complete as possible before fetching more types. */
25315
25316 static struct type *
25317 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25318 {
25319 struct dwarf2_per_objfile *dwarf2_per_objfile
25320 = cu->per_cu->dwarf2_per_objfile;
25321 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25322 struct objfile *objfile = dwarf2_per_objfile->objfile;
25323 struct attribute *attr;
25324 struct dynamic_prop prop;
25325
25326 /* For Ada types, make sure that the gnat-specific data is always
25327 initialized (if not already set). There are a few types where
25328 we should not be doing so, because the type-specific area is
25329 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25330 where the type-specific area is used to store the floatformat).
25331 But this is not a problem, because the gnat-specific information
25332 is actually not needed for these types. */
25333 if (need_gnat_info (cu)
25334 && TYPE_CODE (type) != TYPE_CODE_FUNC
25335 && TYPE_CODE (type) != TYPE_CODE_FLT
25336 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25337 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25338 && TYPE_CODE (type) != TYPE_CODE_METHOD
25339 && !HAVE_GNAT_AUX_INFO (type))
25340 INIT_GNAT_SPECIFIC (type);
25341
25342 /* Read DW_AT_allocated and set in type. */
25343 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25344 if (attr_form_is_block (attr))
25345 {
25346 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25347 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25348 }
25349 else if (attr != NULL)
25350 {
25351 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25352 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25353 sect_offset_str (die->sect_off));
25354 }
25355
25356 /* Read DW_AT_associated and set in type. */
25357 attr = dwarf2_attr (die, DW_AT_associated, cu);
25358 if (attr_form_is_block (attr))
25359 {
25360 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25361 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25362 }
25363 else if (attr != NULL)
25364 {
25365 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25366 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25367 sect_offset_str (die->sect_off));
25368 }
25369
25370 /* Read DW_AT_data_location and set in type. */
25371 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25372 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25373 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25374
25375 if (dwarf2_per_objfile->die_type_hash == NULL)
25376 {
25377 dwarf2_per_objfile->die_type_hash =
25378 htab_create_alloc_ex (127,
25379 per_cu_offset_and_type_hash,
25380 per_cu_offset_and_type_eq,
25381 NULL,
25382 &objfile->objfile_obstack,
25383 hashtab_obstack_allocate,
25384 dummy_obstack_deallocate);
25385 }
25386
25387 ofs.per_cu = cu->per_cu;
25388 ofs.sect_off = die->sect_off;
25389 ofs.type = type;
25390 slot = (struct dwarf2_per_cu_offset_and_type **)
25391 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25392 if (*slot)
25393 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25394 sect_offset_str (die->sect_off));
25395 *slot = XOBNEW (&objfile->objfile_obstack,
25396 struct dwarf2_per_cu_offset_and_type);
25397 **slot = ofs;
25398 return type;
25399 }
25400
25401 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25402 or return NULL if the die does not have a saved type. */
25403
25404 static struct type *
25405 get_die_type_at_offset (sect_offset sect_off,
25406 struct dwarf2_per_cu_data *per_cu)
25407 {
25408 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25409 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25410
25411 if (dwarf2_per_objfile->die_type_hash == NULL)
25412 return NULL;
25413
25414 ofs.per_cu = per_cu;
25415 ofs.sect_off = sect_off;
25416 slot = ((struct dwarf2_per_cu_offset_and_type *)
25417 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25418 if (slot)
25419 return slot->type;
25420 else
25421 return NULL;
25422 }
25423
25424 /* Look up the type for DIE in CU in die_type_hash,
25425 or return NULL if DIE does not have a saved type. */
25426
25427 static struct type *
25428 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25429 {
25430 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25431 }
25432
25433 /* Add a dependence relationship from CU to REF_PER_CU. */
25434
25435 static void
25436 dwarf2_add_dependence (struct dwarf2_cu *cu,
25437 struct dwarf2_per_cu_data *ref_per_cu)
25438 {
25439 void **slot;
25440
25441 if (cu->dependencies == NULL)
25442 cu->dependencies
25443 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25444 NULL, &cu->comp_unit_obstack,
25445 hashtab_obstack_allocate,
25446 dummy_obstack_deallocate);
25447
25448 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25449 if (*slot == NULL)
25450 *slot = ref_per_cu;
25451 }
25452
25453 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25454 Set the mark field in every compilation unit in the
25455 cache that we must keep because we are keeping CU. */
25456
25457 static int
25458 dwarf2_mark_helper (void **slot, void *data)
25459 {
25460 struct dwarf2_per_cu_data *per_cu;
25461
25462 per_cu = (struct dwarf2_per_cu_data *) *slot;
25463
25464 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25465 reading of the chain. As such dependencies remain valid it is not much
25466 useful to track and undo them during QUIT cleanups. */
25467 if (per_cu->cu == NULL)
25468 return 1;
25469
25470 if (per_cu->cu->mark)
25471 return 1;
25472 per_cu->cu->mark = 1;
25473
25474 if (per_cu->cu->dependencies != NULL)
25475 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25476
25477 return 1;
25478 }
25479
25480 /* Set the mark field in CU and in every other compilation unit in the
25481 cache that we must keep because we are keeping CU. */
25482
25483 static void
25484 dwarf2_mark (struct dwarf2_cu *cu)
25485 {
25486 if (cu->mark)
25487 return;
25488 cu->mark = 1;
25489 if (cu->dependencies != NULL)
25490 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25491 }
25492
25493 static void
25494 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25495 {
25496 while (per_cu)
25497 {
25498 per_cu->cu->mark = 0;
25499 per_cu = per_cu->cu->read_in_chain;
25500 }
25501 }
25502
25503 /* Trivial hash function for partial_die_info: the hash value of a DIE
25504 is its offset in .debug_info for this objfile. */
25505
25506 static hashval_t
25507 partial_die_hash (const void *item)
25508 {
25509 const struct partial_die_info *part_die
25510 = (const struct partial_die_info *) item;
25511
25512 return to_underlying (part_die->sect_off);
25513 }
25514
25515 /* Trivial comparison function for partial_die_info structures: two DIEs
25516 are equal if they have the same offset. */
25517
25518 static int
25519 partial_die_eq (const void *item_lhs, const void *item_rhs)
25520 {
25521 const struct partial_die_info *part_die_lhs
25522 = (const struct partial_die_info *) item_lhs;
25523 const struct partial_die_info *part_die_rhs
25524 = (const struct partial_die_info *) item_rhs;
25525
25526 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25527 }
25528
25529 struct cmd_list_element *set_dwarf_cmdlist;
25530 struct cmd_list_element *show_dwarf_cmdlist;
25531
25532 static void
25533 set_dwarf_cmd (const char *args, int from_tty)
25534 {
25535 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25536 gdb_stdout);
25537 }
25538
25539 static void
25540 show_dwarf_cmd (const char *args, int from_tty)
25541 {
25542 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25543 }
25544
25545 int dwarf_always_disassemble;
25546
25547 static void
25548 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25549 struct cmd_list_element *c, const char *value)
25550 {
25551 fprintf_filtered (file,
25552 _("Whether to always disassemble "
25553 "DWARF expressions is %s.\n"),
25554 value);
25555 }
25556
25557 static void
25558 show_check_physname (struct ui_file *file, int from_tty,
25559 struct cmd_list_element *c, const char *value)
25560 {
25561 fprintf_filtered (file,
25562 _("Whether to check \"physname\" is %s.\n"),
25563 value);
25564 }
25565
25566 void
25567 _initialize_dwarf2_read (void)
25568 {
25569 dwarf2_objfile_data_key
25570 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25571
25572 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25573 Set DWARF specific variables.\n\
25574 Configure DWARF variables such as the cache size"),
25575 &set_dwarf_cmdlist, "maintenance set dwarf ",
25576 0/*allow-unknown*/, &maintenance_set_cmdlist);
25577
25578 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25579 Show DWARF specific variables\n\
25580 Show DWARF variables such as the cache size"),
25581 &show_dwarf_cmdlist, "maintenance show dwarf ",
25582 0/*allow-unknown*/, &maintenance_show_cmdlist);
25583
25584 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25585 &dwarf_max_cache_age, _("\
25586 Set the upper bound on the age of cached DWARF compilation units."), _("\
25587 Show the upper bound on the age of cached DWARF compilation units."), _("\
25588 A higher limit means that cached compilation units will be stored\n\
25589 in memory longer, and more total memory will be used. Zero disables\n\
25590 caching, which can slow down startup."),
25591 NULL,
25592 show_dwarf_max_cache_age,
25593 &set_dwarf_cmdlist,
25594 &show_dwarf_cmdlist);
25595
25596 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25597 &dwarf_always_disassemble, _("\
25598 Set whether `info address' always disassembles DWARF expressions."), _("\
25599 Show whether `info address' always disassembles DWARF expressions."), _("\
25600 When enabled, DWARF expressions are always printed in an assembly-like\n\
25601 syntax. When disabled, expressions will be printed in a more\n\
25602 conversational style, when possible."),
25603 NULL,
25604 show_dwarf_always_disassemble,
25605 &set_dwarf_cmdlist,
25606 &show_dwarf_cmdlist);
25607
25608 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25609 Set debugging of the DWARF reader."), _("\
25610 Show debugging of the DWARF reader."), _("\
25611 When enabled (non-zero), debugging messages are printed during DWARF\n\
25612 reading and symtab expansion. A value of 1 (one) provides basic\n\
25613 information. A value greater than 1 provides more verbose information."),
25614 NULL,
25615 NULL,
25616 &setdebuglist, &showdebuglist);
25617
25618 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25619 Set debugging of the DWARF DIE reader."), _("\
25620 Show debugging of the DWARF DIE reader."), _("\
25621 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25622 The value is the maximum depth to print."),
25623 NULL,
25624 NULL,
25625 &setdebuglist, &showdebuglist);
25626
25627 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25628 Set debugging of the dwarf line reader."), _("\
25629 Show debugging of the dwarf line reader."), _("\
25630 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25631 A value of 1 (one) provides basic information.\n\
25632 A value greater than 1 provides more verbose information."),
25633 NULL,
25634 NULL,
25635 &setdebuglist, &showdebuglist);
25636
25637 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25638 Set cross-checking of \"physname\" code against demangler."), _("\
25639 Show cross-checking of \"physname\" code against demangler."), _("\
25640 When enabled, GDB's internal \"physname\" code is checked against\n\
25641 the demangler."),
25642 NULL, show_check_physname,
25643 &setdebuglist, &showdebuglist);
25644
25645 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25646 no_class, &use_deprecated_index_sections, _("\
25647 Set whether to use deprecated gdb_index sections."), _("\
25648 Show whether to use deprecated gdb_index sections."), _("\
25649 When enabled, deprecated .gdb_index sections are used anyway.\n\
25650 Normally they are ignored either because of a missing feature or\n\
25651 performance issue.\n\
25652 Warning: This option must be enabled before gdb reads the file."),
25653 NULL,
25654 NULL,
25655 &setlist, &showlist);
25656
25657 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25658 &dwarf2_locexpr_funcs);
25659 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25660 &dwarf2_loclist_funcs);
25661
25662 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25663 &dwarf2_block_frame_base_locexpr_funcs);
25664 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25665 &dwarf2_block_frame_base_loclist_funcs);
25666
25667 #if GDB_SELF_TEST
25668 selftests::register_test ("dw2_expand_symtabs_matching",
25669 selftests::dw2_expand_symtabs_matching::run_test);
25670 #endif
25671 }
This page took 0.563529 seconds and 5 git commands to generate.