Introduce obstack_strndup
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop, struct type *type);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1894 static struct type *dwarf2_per_cu_addr_sized_int_type
1895 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1896
1897 /* Class, the destructor of which frees all allocated queue entries. This
1898 will only have work to do if an error was thrown while processing the
1899 dwarf. If no error was thrown then the queue entries should have all
1900 been processed, and freed, as we went along. */
1901
1902 class dwarf2_queue_guard
1903 {
1904 public:
1905 dwarf2_queue_guard () = default;
1906
1907 /* Free any entries remaining on the queue. There should only be
1908 entries left if we hit an error while processing the dwarf. */
1909 ~dwarf2_queue_guard ()
1910 {
1911 struct dwarf2_queue_item *item, *last;
1912
1913 item = dwarf2_queue;
1914 while (item)
1915 {
1916 /* Anything still marked queued is likely to be in an
1917 inconsistent state, so discard it. */
1918 if (item->per_cu->queued)
1919 {
1920 if (item->per_cu->cu != NULL)
1921 free_one_cached_comp_unit (item->per_cu);
1922 item->per_cu->queued = 0;
1923 }
1924
1925 last = item;
1926 item = item->next;
1927 xfree (last);
1928 }
1929
1930 dwarf2_queue = dwarf2_queue_tail = NULL;
1931 }
1932 };
1933
1934 /* The return type of find_file_and_directory. Note, the enclosed
1935 string pointers are only valid while this object is valid. */
1936
1937 struct file_and_directory
1938 {
1939 /* The filename. This is never NULL. */
1940 const char *name;
1941
1942 /* The compilation directory. NULL if not known. If we needed to
1943 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1944 points directly to the DW_AT_comp_dir string attribute owned by
1945 the obstack that owns the DIE. */
1946 const char *comp_dir;
1947
1948 /* If we needed to build a new string for comp_dir, this is what
1949 owns the storage. */
1950 std::string comp_dir_storage;
1951 };
1952
1953 static file_and_directory find_file_and_directory (struct die_info *die,
1954 struct dwarf2_cu *cu);
1955
1956 static char *file_full_name (int file, struct line_header *lh,
1957 const char *comp_dir);
1958
1959 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1960 enum class rcuh_kind { COMPILE, TYPE };
1961
1962 static const gdb_byte *read_and_check_comp_unit_head
1963 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1964 struct comp_unit_head *header,
1965 struct dwarf2_section_info *section,
1966 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1967 rcuh_kind section_kind);
1968
1969 static void init_cutu_and_read_dies
1970 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1971 int use_existing_cu, int keep, bool skip_partial,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static void init_cutu_and_read_dies_simple
1975 (struct dwarf2_per_cu_data *this_cu,
1976 die_reader_func_ftype *die_reader_func, void *data);
1977
1978 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1979
1980 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1981
1982 static struct dwo_unit *lookup_dwo_unit_in_dwp
1983 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1984 struct dwp_file *dwp_file, const char *comp_dir,
1985 ULONGEST signature, int is_debug_types);
1986
1987 static struct dwp_file *get_dwp_file
1988 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1989
1990 static struct dwo_unit *lookup_dwo_comp_unit
1991 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1992
1993 static struct dwo_unit *lookup_dwo_type_unit
1994 (struct signatured_type *, const char *, const char *);
1995
1996 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1997
1998 /* A unique pointer to a dwo_file. */
1999
2000 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2001
2002 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003
2004 static void check_producer (struct dwarf2_cu *cu);
2005
2006 static void free_line_header_voidp (void *arg);
2007 \f
2008 /* Various complaints about symbol reading that don't abort the process. */
2009
2010 static void
2011 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2012 {
2013 complaint (_("statement list doesn't fit in .debug_line section"));
2014 }
2015
2016 static void
2017 dwarf2_debug_line_missing_file_complaint (void)
2018 {
2019 complaint (_(".debug_line section has line data without a file"));
2020 }
2021
2022 static void
2023 dwarf2_debug_line_missing_end_sequence_complaint (void)
2024 {
2025 complaint (_(".debug_line section has line "
2026 "program sequence without an end"));
2027 }
2028
2029 static void
2030 dwarf2_complex_location_expr_complaint (void)
2031 {
2032 complaint (_("location expression too complex"));
2033 }
2034
2035 static void
2036 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2037 int arg3)
2038 {
2039 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 arg1, arg2, arg3);
2041 }
2042
2043 static void
2044 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2045 {
2046 complaint (_("debug info runs off end of %s section"
2047 " [in module %s]"),
2048 get_section_name (section),
2049 get_section_file_name (section));
2050 }
2051
2052 static void
2053 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2054 {
2055 complaint (_("macro debug info contains a "
2056 "malformed macro definition:\n`%s'"),
2057 arg1);
2058 }
2059
2060 static void
2061 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2062 {
2063 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 arg1, arg2);
2065 }
2066
2067 /* Hash function for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash (const struct line_header *ofs)
2071 {
2072 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2073 }
2074
2075 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash_voidp (const void *item)
2079 {
2080 const struct line_header *ofs = (const struct line_header *) item;
2081
2082 return line_header_hash (ofs);
2083 }
2084
2085 /* Equality function for line_header_hash. */
2086
2087 static int
2088 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2089 {
2090 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2091 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2092
2093 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2094 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 }
2096
2097 \f
2098
2099 /* Read the given attribute value as an address, taking the attribute's
2100 form into account. */
2101
2102 static CORE_ADDR
2103 attr_value_as_address (struct attribute *attr)
2104 {
2105 CORE_ADDR addr;
2106
2107 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2108 && attr->form != DW_FORM_GNU_addr_index)
2109 {
2110 /* Aside from a few clearly defined exceptions, attributes that
2111 contain an address must always be in DW_FORM_addr form.
2112 Unfortunately, some compilers happen to be violating this
2113 requirement by encoding addresses using other forms, such
2114 as DW_FORM_data4 for example. For those broken compilers,
2115 we try to do our best, without any guarantee of success,
2116 to interpret the address correctly. It would also be nice
2117 to generate a complaint, but that would require us to maintain
2118 a list of legitimate cases where a non-address form is allowed,
2119 as well as update callers to pass in at least the CU's DWARF
2120 version. This is more overhead than what we're willing to
2121 expand for a pretty rare case. */
2122 addr = DW_UNSND (attr);
2123 }
2124 else
2125 addr = DW_ADDR (attr);
2126
2127 return addr;
2128 }
2129
2130 /* See declaration. */
2131
2132 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2133 const dwarf2_debug_sections *names)
2134 : objfile (objfile_)
2135 {
2136 if (names == NULL)
2137 names = &dwarf2_elf_names;
2138
2139 bfd *obfd = objfile->obfd;
2140
2141 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2142 locate_sections (obfd, sec, *names);
2143 }
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 /* Everything else should be on the objfile obstack. */
2163 }
2164
2165 /* See declaration. */
2166
2167 void
2168 dwarf2_per_objfile::free_cached_comp_units ()
2169 {
2170 dwarf2_per_cu_data *per_cu = read_in_chain;
2171 dwarf2_per_cu_data **last_chain = &read_in_chain;
2172 while (per_cu != NULL)
2173 {
2174 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2175
2176 delete per_cu->cu;
2177 *last_chain = next_cu;
2178 per_cu = next_cu;
2179 }
2180 }
2181
2182 /* A helper class that calls free_cached_comp_units on
2183 destruction. */
2184
2185 class free_cached_comp_units
2186 {
2187 public:
2188
2189 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2190 : m_per_objfile (per_objfile)
2191 {
2192 }
2193
2194 ~free_cached_comp_units ()
2195 {
2196 m_per_objfile->free_cached_comp_units ();
2197 }
2198
2199 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2200
2201 private:
2202
2203 dwarf2_per_objfile *m_per_objfile;
2204 };
2205
2206 /* Try to locate the sections we need for DWARF 2 debugging
2207 information and return true if we have enough to do something.
2208 NAMES points to the dwarf2 section names, or is NULL if the standard
2209 ELF names are used. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names)
2214 {
2215 if (objfile->flags & OBJF_READNEVER)
2216 return 0;
2217
2218 struct dwarf2_per_objfile *dwarf2_per_objfile
2219 = get_dwarf2_per_objfile (objfile);
2220
2221 if (dwarf2_per_objfile == NULL)
2222 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2223 names);
2224
2225 return (!dwarf2_per_objfile->info.is_virtual
2226 && dwarf2_per_objfile->info.s.section != NULL
2227 && !dwarf2_per_objfile->abbrev.is_virtual
2228 && dwarf2_per_objfile->abbrev.s.section != NULL);
2229 }
2230
2231 /* Return the containing section of virtual section SECTION. */
2232
2233 static struct dwarf2_section_info *
2234 get_containing_section (const struct dwarf2_section_info *section)
2235 {
2236 gdb_assert (section->is_virtual);
2237 return section->s.containing_section;
2238 }
2239
2240 /* Return the bfd owner of SECTION. */
2241
2242 static struct bfd *
2243 get_section_bfd_owner (const struct dwarf2_section_info *section)
2244 {
2245 if (section->is_virtual)
2246 {
2247 section = get_containing_section (section);
2248 gdb_assert (!section->is_virtual);
2249 }
2250 return section->s.section->owner;
2251 }
2252
2253 /* Return the bfd section of SECTION.
2254 Returns NULL if the section is not present. */
2255
2256 static asection *
2257 get_section_bfd_section (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
2264 return section->s.section;
2265 }
2266
2267 /* Return the name of SECTION. */
2268
2269 static const char *
2270 get_section_name (const struct dwarf2_section_info *section)
2271 {
2272 asection *sectp = get_section_bfd_section (section);
2273
2274 gdb_assert (sectp != NULL);
2275 return bfd_section_name (get_section_bfd_owner (section), sectp);
2276 }
2277
2278 /* Return the name of the file SECTION is in. */
2279
2280 static const char *
2281 get_section_file_name (const struct dwarf2_section_info *section)
2282 {
2283 bfd *abfd = get_section_bfd_owner (section);
2284
2285 return bfd_get_filename (abfd);
2286 }
2287
2288 /* Return the id of SECTION.
2289 Returns 0 if SECTION doesn't exist. */
2290
2291 static int
2292 get_section_id (const struct dwarf2_section_info *section)
2293 {
2294 asection *sectp = get_section_bfd_section (section);
2295
2296 if (sectp == NULL)
2297 return 0;
2298 return sectp->id;
2299 }
2300
2301 /* Return the flags of SECTION.
2302 SECTION (or containing section if this is a virtual section) must exist. */
2303
2304 static int
2305 get_section_flags (const struct dwarf2_section_info *section)
2306 {
2307 asection *sectp = get_section_bfd_section (section);
2308
2309 gdb_assert (sectp != NULL);
2310 return bfd_get_section_flags (sectp->owner, sectp);
2311 }
2312
2313 /* When loading sections, we look either for uncompressed section or for
2314 compressed section names. */
2315
2316 static int
2317 section_is_p (const char *section_name,
2318 const struct dwarf2_section_names *names)
2319 {
2320 if (names->normal != NULL
2321 && strcmp (section_name, names->normal) == 0)
2322 return 1;
2323 if (names->compressed != NULL
2324 && strcmp (section_name, names->compressed) == 0)
2325 return 1;
2326 return 0;
2327 }
2328
2329 /* See declaration. */
2330
2331 void
2332 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2333 const dwarf2_debug_sections &names)
2334 {
2335 flagword aflag = bfd_get_section_flags (abfd, sectp);
2336
2337 if ((aflag & SEC_HAS_CONTENTS) == 0)
2338 {
2339 }
2340 else if (section_is_p (sectp->name, &names.info))
2341 {
2342 this->info.s.section = sectp;
2343 this->info.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.abbrev))
2346 {
2347 this->abbrev.s.section = sectp;
2348 this->abbrev.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.line))
2351 {
2352 this->line.s.section = sectp;
2353 this->line.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loc))
2356 {
2357 this->loc.s.section = sectp;
2358 this->loc.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.loclists))
2361 {
2362 this->loclists.s.section = sectp;
2363 this->loclists.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macinfo))
2366 {
2367 this->macinfo.s.section = sectp;
2368 this->macinfo.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.macro))
2371 {
2372 this->macro.s.section = sectp;
2373 this->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.str))
2376 {
2377 this->str.s.section = sectp;
2378 this->str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.line_str))
2381 {
2382 this->line_str.s.section = sectp;
2383 this->line_str.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.addr))
2386 {
2387 this->addr.s.section = sectp;
2388 this->addr.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.frame))
2391 {
2392 this->frame.s.section = sectp;
2393 this->frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.eh_frame))
2396 {
2397 this->eh_frame.s.section = sectp;
2398 this->eh_frame.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.ranges))
2401 {
2402 this->ranges.s.section = sectp;
2403 this->ranges.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.rnglists))
2406 {
2407 this->rnglists.s.section = sectp;
2408 this->rnglists.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.types))
2411 {
2412 struct dwarf2_section_info type_section;
2413
2414 memset (&type_section, 0, sizeof (type_section));
2415 type_section.s.section = sectp;
2416 type_section.size = bfd_get_section_size (sectp);
2417
2418 this->types.push_back (type_section);
2419 }
2420 else if (section_is_p (sectp->name, &names.gdb_index))
2421 {
2422 this->gdb_index.s.section = sectp;
2423 this->gdb_index.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.debug_names))
2426 {
2427 this->debug_names.s.section = sectp;
2428 this->debug_names.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.debug_aranges))
2431 {
2432 this->debug_aranges.s.section = sectp;
2433 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 }
2435
2436 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2437 && bfd_section_vma (abfd, sectp) == 0)
2438 this->has_section_at_zero = true;
2439 }
2440
2441 /* A helper function that decides whether a section is empty,
2442 or not present. */
2443
2444 static int
2445 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2446 {
2447 if (section->is_virtual)
2448 return section->size == 0;
2449 return section->s.section == NULL || section->size == 0;
2450 }
2451
2452 /* See dwarf2read.h. */
2453
2454 void
2455 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2456 {
2457 asection *sectp;
2458 bfd *abfd;
2459 gdb_byte *buf, *retbuf;
2460
2461 if (info->readin)
2462 return;
2463 info->buffer = NULL;
2464 info->readin = true;
2465
2466 if (dwarf2_section_empty_p (info))
2467 return;
2468
2469 sectp = get_section_bfd_section (info);
2470
2471 /* If this is a virtual section we need to read in the real one first. */
2472 if (info->is_virtual)
2473 {
2474 struct dwarf2_section_info *containing_section =
2475 get_containing_section (info);
2476
2477 gdb_assert (sectp != NULL);
2478 if ((sectp->flags & SEC_RELOC) != 0)
2479 {
2480 error (_("Dwarf Error: DWP format V2 with relocations is not"
2481 " supported in section %s [in module %s]"),
2482 get_section_name (info), get_section_file_name (info));
2483 }
2484 dwarf2_read_section (objfile, containing_section);
2485 /* Other code should have already caught virtual sections that don't
2486 fit. */
2487 gdb_assert (info->virtual_offset + info->size
2488 <= containing_section->size);
2489 /* If the real section is empty or there was a problem reading the
2490 section we shouldn't get here. */
2491 gdb_assert (containing_section->buffer != NULL);
2492 info->buffer = containing_section->buffer + info->virtual_offset;
2493 return;
2494 }
2495
2496 /* If the section has relocations, we must read it ourselves.
2497 Otherwise we attach it to the BFD. */
2498 if ((sectp->flags & SEC_RELOC) == 0)
2499 {
2500 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2501 return;
2502 }
2503
2504 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 info->buffer = buf;
2506
2507 /* When debugging .o files, we may need to apply relocations; see
2508 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2509 We never compress sections in .o files, so we only need to
2510 try this when the section is not compressed. */
2511 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 if (retbuf != NULL)
2513 {
2514 info->buffer = retbuf;
2515 return;
2516 }
2517
2518 abfd = get_section_bfd_owner (info);
2519 gdb_assert (abfd != NULL);
2520
2521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2522 || bfd_bread (buf, info->size, abfd) != info->size)
2523 {
2524 error (_("Dwarf Error: Can't read DWARF data"
2525 " in section %s [in module %s]"),
2526 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2527 }
2528 }
2529
2530 /* A helper function that returns the size of a section in a safe way.
2531 If you are positive that the section has been read before using the
2532 size, then it is safe to refer to the dwarf2_section_info object's
2533 "size" field directly. In other cases, you must call this
2534 function, because for compressed sections the size field is not set
2535 correctly until the section has been read. */
2536
2537 static bfd_size_type
2538 dwarf2_section_size (struct objfile *objfile,
2539 struct dwarf2_section_info *info)
2540 {
2541 if (!info->readin)
2542 dwarf2_read_section (objfile, info);
2543 return info->size;
2544 }
2545
2546 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2547 SECTION_NAME. */
2548
2549 void
2550 dwarf2_get_section_info (struct objfile *objfile,
2551 enum dwarf2_section_enum sect,
2552 asection **sectp, const gdb_byte **bufp,
2553 bfd_size_type *sizep)
2554 {
2555 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* See dwarf2read.h. */
2633
2634 struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 bfd_size_type buildid_len_arg;
2639 size_t buildid_len;
2640 bfd_byte *buildid;
2641
2642 if (dwarf2_per_objfile->dwz_file != NULL)
2643 return dwarf2_per_objfile->dwz_file.get ();
2644
2645 bfd_set_error (bfd_error_no_error);
2646 gdb::unique_xmalloc_ptr<char> data
2647 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2648 &buildid_len_arg, &buildid));
2649 if (data == NULL)
2650 {
2651 if (bfd_get_error () == bfd_error_no_error)
2652 return NULL;
2653 error (_("could not read '.gnu_debugaltlink' section: %s"),
2654 bfd_errmsg (bfd_get_error ()));
2655 }
2656
2657 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2658
2659 buildid_len = (size_t) buildid_len_arg;
2660
2661 filename = data.get ();
2662
2663 std::string abs_storage;
2664 if (!IS_ABSOLUTE_PATH (filename))
2665 {
2666 gdb::unique_xmalloc_ptr<char> abs
2667 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2668
2669 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2670 filename = abs_storage.c_str ();
2671 }
2672
2673 /* First try the file name given in the section. If that doesn't
2674 work, try to use the build-id instead. */
2675 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2676 if (dwz_bfd != NULL)
2677 {
2678 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2679 dwz_bfd.reset (nullptr);
2680 }
2681
2682 if (dwz_bfd == NULL)
2683 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2684
2685 if (dwz_bfd == NULL)
2686 error (_("could not find '.gnu_debugaltlink' file for %s"),
2687 objfile_name (dwarf2_per_objfile->objfile));
2688
2689 std::unique_ptr<struct dwz_file> result
2690 (new struct dwz_file (std::move (dwz_bfd)));
2691
2692 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2693 result.get ());
2694
2695 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2696 result->dwz_bfd.get ());
2697 dwarf2_per_objfile->dwz_file = std::move (result);
2698 return dwarf2_per_objfile->dwz_file.get ();
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu, skip_partial);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu, skip_partial);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* See declaration. */
2911
2912 dwarf2_per_cu_data *
2913 dwarf2_per_objfile::get_cutu (int index)
2914 {
2915 if (index >= this->all_comp_units.size ())
2916 {
2917 index -= this->all_comp_units.size ();
2918 gdb_assert (index < this->all_type_units.size ());
2919 return &this->all_type_units[index]->per_cu;
2920 }
2921
2922 return this->all_comp_units[index];
2923 }
2924
2925 /* See declaration. */
2926
2927 dwarf2_per_cu_data *
2928 dwarf2_per_objfile::get_cu (int index)
2929 {
2930 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2931
2932 return this->all_comp_units[index];
2933 }
2934
2935 /* See declaration. */
2936
2937 signatured_type *
2938 dwarf2_per_objfile::get_tu (int index)
2939 {
2940 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2941
2942 return this->all_type_units[index];
2943 }
2944
2945 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2946 objfile_obstack, and constructed with the specified field
2947 values. */
2948
2949 static dwarf2_per_cu_data *
2950 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2951 struct dwarf2_section_info *section,
2952 int is_dwz,
2953 sect_offset sect_off, ULONGEST length)
2954 {
2955 struct objfile *objfile = dwarf2_per_objfile->objfile;
2956 dwarf2_per_cu_data *the_cu
2957 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2958 struct dwarf2_per_cu_data);
2959 the_cu->sect_off = sect_off;
2960 the_cu->length = length;
2961 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2962 the_cu->section = section;
2963 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_quick_data);
2965 the_cu->is_dwz = is_dwz;
2966 return the_cu;
2967 }
2968
2969 /* A helper for create_cus_from_index that handles a given list of
2970 CUs. */
2971
2972 static void
2973 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2974 const gdb_byte *cu_list, offset_type n_elements,
2975 struct dwarf2_section_info *section,
2976 int is_dwz)
2977 {
2978 for (offset_type i = 0; i < n_elements; i += 2)
2979 {
2980 gdb_static_assert (sizeof (ULONGEST) >= 8);
2981
2982 sect_offset sect_off
2983 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2984 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2985 cu_list += 2 * 8;
2986
2987 dwarf2_per_cu_data *per_cu
2988 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2989 sect_off, length);
2990 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2991 }
2992 }
2993
2994 /* Read the CU list from the mapped index, and use it to create all
2995 the CU objects for this objfile. */
2996
2997 static void
2998 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2999 const gdb_byte *cu_list, offset_type cu_list_elements,
3000 const gdb_byte *dwz_list, offset_type dwz_elements)
3001 {
3002 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3003 dwarf2_per_objfile->all_comp_units.reserve
3004 ((cu_list_elements + dwz_elements) / 2);
3005
3006 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3007 &dwarf2_per_objfile->info, 0);
3008
3009 if (dwz_elements == 0)
3010 return;
3011
3012 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3013 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3014 &dwz->info, 1);
3015 }
3016
3017 /* Create the signatured type hash table from the index. */
3018
3019 static void
3020 create_signatured_type_table_from_index
3021 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3022 struct dwarf2_section_info *section,
3023 const gdb_byte *bytes,
3024 offset_type elements)
3025 {
3026 struct objfile *objfile = dwarf2_per_objfile->objfile;
3027
3028 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3029 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3030
3031 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3032
3033 for (offset_type i = 0; i < elements; i += 3)
3034 {
3035 struct signatured_type *sig_type;
3036 ULONGEST signature;
3037 void **slot;
3038 cu_offset type_offset_in_tu;
3039
3040 gdb_static_assert (sizeof (ULONGEST) >= 8);
3041 sect_offset sect_off
3042 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3043 type_offset_in_tu
3044 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3045 BFD_ENDIAN_LITTLE);
3046 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3047 bytes += 3 * 8;
3048
3049 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3050 struct signatured_type);
3051 sig_type->signature = signature;
3052 sig_type->type_offset_in_tu = type_offset_in_tu;
3053 sig_type->per_cu.is_debug_types = 1;
3054 sig_type->per_cu.section = section;
3055 sig_type->per_cu.sect_off = sect_off;
3056 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3057 sig_type->per_cu.v.quick
3058 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3059 struct dwarf2_per_cu_quick_data);
3060
3061 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3062 *slot = sig_type;
3063
3064 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3065 }
3066
3067 dwarf2_per_objfile->signatured_types = sig_types_hash;
3068 }
3069
3070 /* Create the signatured type hash table from .debug_names. */
3071
3072 static void
3073 create_signatured_type_table_from_debug_names
3074 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3075 const mapped_debug_names &map,
3076 struct dwarf2_section_info *section,
3077 struct dwarf2_section_info *abbrev_section)
3078 {
3079 struct objfile *objfile = dwarf2_per_objfile->objfile;
3080
3081 dwarf2_read_section (objfile, section);
3082 dwarf2_read_section (objfile, abbrev_section);
3083
3084 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3085 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3086
3087 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3088
3089 for (uint32_t i = 0; i < map.tu_count; ++i)
3090 {
3091 struct signatured_type *sig_type;
3092 void **slot;
3093
3094 sect_offset sect_off
3095 = (sect_offset) (extract_unsigned_integer
3096 (map.tu_table_reordered + i * map.offset_size,
3097 map.offset_size,
3098 map.dwarf5_byte_order));
3099
3100 comp_unit_head cu_header;
3101 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3102 abbrev_section,
3103 section->buffer + to_underlying (sect_off),
3104 rcuh_kind::TYPE);
3105
3106 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct signatured_type);
3108 sig_type->signature = cu_header.signature;
3109 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3110 sig_type->per_cu.is_debug_types = 1;
3111 sig_type->per_cu.section = section;
3112 sig_type->per_cu.sect_off = sect_off;
3113 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3114 sig_type->per_cu.v.quick
3115 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3116 struct dwarf2_per_cu_quick_data);
3117
3118 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3119 *slot = sig_type;
3120
3121 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3122 }
3123
3124 dwarf2_per_objfile->signatured_types = sig_types_hash;
3125 }
3126
3127 /* Read the address map data from the mapped index, and use it to
3128 populate the objfile's psymtabs_addrmap. */
3129
3130 static void
3131 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3132 struct mapped_index *index)
3133 {
3134 struct objfile *objfile = dwarf2_per_objfile->objfile;
3135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3136 const gdb_byte *iter, *end;
3137 struct addrmap *mutable_map;
3138 CORE_ADDR baseaddr;
3139
3140 auto_obstack temp_obstack;
3141
3142 mutable_map = addrmap_create_mutable (&temp_obstack);
3143
3144 iter = index->address_table.data ();
3145 end = iter + index->address_table.size ();
3146
3147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3148
3149 while (iter < end)
3150 {
3151 ULONGEST hi, lo, cu_index;
3152 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3153 iter += 8;
3154 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 iter += 4;
3158
3159 if (lo > hi)
3160 {
3161 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3162 hex_string (lo), hex_string (hi));
3163 continue;
3164 }
3165
3166 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3167 {
3168 complaint (_(".gdb_index address table has invalid CU number %u"),
3169 (unsigned) cu_index);
3170 continue;
3171 }
3172
3173 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3174 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3175 addrmap_set_empty (mutable_map, lo, hi - 1,
3176 dwarf2_per_objfile->get_cu (cu_index));
3177 }
3178
3179 objfile->partial_symtabs->psymtabs_addrmap
3180 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3181 }
3182
3183 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3184 populate the objfile's psymtabs_addrmap. */
3185
3186 static void
3187 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3188 struct dwarf2_section_info *section)
3189 {
3190 struct objfile *objfile = dwarf2_per_objfile->objfile;
3191 bfd *abfd = objfile->obfd;
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3194 SECT_OFF_TEXT (objfile));
3195
3196 auto_obstack temp_obstack;
3197 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3198
3199 std::unordered_map<sect_offset,
3200 dwarf2_per_cu_data *,
3201 gdb::hash_enum<sect_offset>>
3202 debug_info_offset_to_per_cu;
3203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3204 {
3205 const auto insertpair
3206 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3207 if (!insertpair.second)
3208 {
3209 warning (_("Section .debug_aranges in %s has duplicate "
3210 "debug_info_offset %s, ignoring .debug_aranges."),
3211 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 return;
3213 }
3214 }
3215
3216 dwarf2_read_section (objfile, section);
3217
3218 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3219
3220 const gdb_byte *addr = section->buffer;
3221
3222 while (addr < section->buffer + section->size)
3223 {
3224 const gdb_byte *const entry_addr = addr;
3225 unsigned int bytes_read;
3226
3227 const LONGEST entry_length = read_initial_length (abfd, addr,
3228 &bytes_read);
3229 addr += bytes_read;
3230
3231 const gdb_byte *const entry_end = addr + entry_length;
3232 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3233 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3234 if (addr + entry_length > section->buffer + section->size)
3235 {
3236 warning (_("Section .debug_aranges in %s entry at offset %s "
3237 "length %s exceeds section length %s, "
3238 "ignoring .debug_aranges."),
3239 objfile_name (objfile),
3240 plongest (entry_addr - section->buffer),
3241 plongest (bytes_read + entry_length),
3242 pulongest (section->size));
3243 return;
3244 }
3245
3246 /* The version number. */
3247 const uint16_t version = read_2_bytes (abfd, addr);
3248 addr += 2;
3249 if (version != 2)
3250 {
3251 warning (_("Section .debug_aranges in %s entry at offset %s "
3252 "has unsupported version %d, ignoring .debug_aranges."),
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer), version);
3255 return;
3256 }
3257
3258 const uint64_t debug_info_offset
3259 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3260 addr += offset_size;
3261 const auto per_cu_it
3262 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3263 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3264 {
3265 warning (_("Section .debug_aranges in %s entry at offset %s "
3266 "debug_info_offset %s does not exists, "
3267 "ignoring .debug_aranges."),
3268 objfile_name (objfile),
3269 plongest (entry_addr - section->buffer),
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %s "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile),
3281 plongest (entry_addr - section->buffer), address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %s "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile),
3292 plongest (entry_addr - section->buffer),
3293 segment_selector_size);
3294 return;
3295 }
3296
3297 /* Must pad to an alignment boundary that is twice the address
3298 size. It is undocumented by the DWARF standard but GCC does
3299 use it. */
3300 for (size_t padding = ((-(addr - section->buffer))
3301 & (2 * address_size - 1));
3302 padding > 0; padding--)
3303 if (*addr++ != 0)
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %s "
3306 "padding is not zero, ignoring .debug_aranges."),
3307 objfile_name (objfile),
3308 plongest (entry_addr - section->buffer));
3309 return;
3310 }
3311
3312 for (;;)
3313 {
3314 if (addr + 2 * address_size > entry_end)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %s "
3317 "address list is not properly terminated, "
3318 "ignoring .debug_aranges."),
3319 objfile_name (objfile),
3320 plongest (entry_addr - section->buffer));
3321 return;
3322 }
3323 ULONGEST start = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 ULONGEST length = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 if (start == 0 && length == 0)
3330 break;
3331 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3332 {
3333 /* Symbol was eliminated due to a COMDAT group. */
3334 continue;
3335 }
3336 ULONGEST end = start + length;
3337 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3338 - baseaddr);
3339 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3340 - baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->partial_symtabs->psymtabs_addrmap
3346 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from BUFFER and fills
3412 in MAP. FILENAME is the name of the file containing the data;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns true if all went well, false otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_buffer (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 gdb::array_view<const gdb_byte> buffer,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr = &buffer[0];
3434
3435 /* Version check. */
3436 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3437 /* Versions earlier than 3 emitted every copy of a psymbol. This
3438 causes the index to behave very poorly for certain requests. Version 3
3439 contained incomplete addrmap. So, it seems better to just ignore such
3440 indices. */
3441 if (version < 4)
3442 {
3443 static int warning_printed = 0;
3444 if (!warning_printed)
3445 {
3446 warning (_("Skipping obsolete .gdb_index section in %s."),
3447 filename);
3448 warning_printed = 1;
3449 }
3450 return 0;
3451 }
3452 /* Index version 4 uses a different hash function than index version
3453 5 and later.
3454
3455 Versions earlier than 6 did not emit psymbols for inlined
3456 functions. Using these files will cause GDB not to be able to
3457 set breakpoints on inlined functions by name, so we ignore these
3458 indices unless the user has done
3459 "set use-deprecated-index-sections on". */
3460 if (version < 6 && !deprecated_ok)
3461 {
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3464 {
3465 warning (_("\
3466 Skipping deprecated .gdb_index section in %s.\n\
3467 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3468 to use the section anyway."),
3469 filename);
3470 warning_printed = 1;
3471 }
3472 return 0;
3473 }
3474 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3475 of the TU (for symbols coming from TUs),
3476 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3477 Plus gold-generated indices can have duplicate entries for global symbols,
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3479 These are just performance bugs, and we can't distinguish gdb-generated
3480 indices from gold-generated ones, so issue no warning here. */
3481
3482 /* Indexes with higher version than the one supported by GDB may be no
3483 longer backward compatible. */
3484 if (version > 8)
3485 return 0;
3486
3487 map->version = version;
3488
3489 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3490
3491 int i = 0;
3492 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3493 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3494 / 8);
3495 ++i;
3496
3497 *types_list = addr + MAYBE_SWAP (metadata[i]);
3498 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3499 - MAYBE_SWAP (metadata[i]))
3500 / 8);
3501 ++i;
3502
3503 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3504 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3505 map->address_table
3506 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3507 ++i;
3508
3509 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3510 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3511 map->symbol_table
3512 = gdb::array_view<mapped_index::symbol_table_slot>
3513 ((mapped_index::symbol_table_slot *) symbol_table,
3514 (mapped_index::symbol_table_slot *) symbol_table_end);
3515
3516 ++i;
3517 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518
3519 return 1;
3520 }
3521
3522 /* Callback types for dwarf2_read_gdb_index. */
3523
3524 typedef gdb::function_view
3525 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3526 get_gdb_index_contents_ftype;
3527 typedef gdb::function_view
3528 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3529 get_gdb_index_contents_dwz_ftype;
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index
3536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3537 get_gdb_index_contents_ftype get_gdb_index_contents,
3538 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3539 {
3540 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3541 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3542 struct dwz_file *dwz;
3543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3544
3545 gdb::array_view<const gdb_byte> main_index_contents
3546 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3547
3548 if (main_index_contents.empty ())
3549 return 0;
3550
3551 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3552 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3553 use_deprecated_index_sections,
3554 main_index_contents, map.get (), &cu_list,
3555 &cu_list_elements, &types_list,
3556 &types_list_elements))
3557 return 0;
3558
3559 /* Don't use the index if it's empty. */
3560 if (map->symbol_table.empty ())
3561 return 0;
3562
3563 /* If there is a .dwz file, read it so we can get its CU list as
3564 well. */
3565 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3566 if (dwz != NULL)
3567 {
3568 struct mapped_index dwz_map;
3569 const gdb_byte *dwz_types_ignore;
3570 offset_type dwz_types_elements_ignore;
3571
3572 gdb::array_view<const gdb_byte> dwz_index_content
3573 = get_gdb_index_contents_dwz (objfile, dwz);
3574
3575 if (dwz_index_content.empty ())
3576 return 0;
3577
3578 if (!read_gdb_index_from_buffer (objfile,
3579 bfd_get_filename (dwz->dwz_bfd), 1,
3580 dwz_index_content, &dwz_map,
3581 &dwz_list, &dwz_list_elements,
3582 &dwz_types_ignore,
3583 &dwz_types_elements_ignore))
3584 {
3585 warning (_("could not read '.gdb_index' section from %s; skipping"),
3586 bfd_get_filename (dwz->dwz_bfd));
3587 return 0;
3588 }
3589 }
3590
3591 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3592 dwz_list, dwz_list_elements);
3593
3594 if (types_list_elements)
3595 {
3596 /* We can only handle a single .debug_types when we have an
3597 index. */
3598 if (dwarf2_per_objfile->types.size () != 1)
3599 return 0;
3600
3601 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3602
3603 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3604 types_list, types_list_elements);
3605 }
3606
3607 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3608
3609 dwarf2_per_objfile->index_table = std::move (map);
3610 dwarf2_per_objfile->using_index = 1;
3611 dwarf2_per_objfile->quick_file_names_table =
3612 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613
3614 return 1;
3615 }
3616
3617 /* die_reader_func for dw2_get_file_names. */
3618
3619 static void
3620 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3621 const gdb_byte *info_ptr,
3622 struct die_info *comp_unit_die,
3623 int has_children,
3624 void *data)
3625 {
3626 struct dwarf2_cu *cu = reader->cu;
3627 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = cu->per_cu->dwarf2_per_objfile;
3630 struct objfile *objfile = dwarf2_per_objfile->objfile;
3631 struct dwarf2_per_cu_data *lh_cu;
3632 struct attribute *attr;
3633 int i;
3634 void **slot;
3635 struct quick_file_names *qfn;
3636
3637 gdb_assert (! this_cu->is_debug_types);
3638
3639 /* Our callers never want to match partial units -- instead they
3640 will match the enclosing full CU. */
3641 if (comp_unit_die->tag == DW_TAG_partial_unit)
3642 {
3643 this_cu->v.quick->no_file_data = 1;
3644 return;
3645 }
3646
3647 lh_cu = this_cu;
3648 slot = NULL;
3649
3650 line_header_up lh;
3651 sect_offset line_offset {};
3652
3653 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3654 if (attr)
3655 {
3656 struct quick_file_names find_entry;
3657
3658 line_offset = (sect_offset) DW_UNSND (attr);
3659
3660 /* We may have already read in this line header (TU line header sharing).
3661 If we have we're done. */
3662 find_entry.hash.dwo_unit = cu->dwo_unit;
3663 find_entry.hash.line_sect_off = line_offset;
3664 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3665 &find_entry, INSERT);
3666 if (*slot != NULL)
3667 {
3668 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3669 return;
3670 }
3671
3672 lh = dwarf_decode_line_header (line_offset, cu);
3673 }
3674 if (lh == NULL)
3675 {
3676 lh_cu->v.quick->no_file_data = 1;
3677 return;
3678 }
3679
3680 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3681 qfn->hash.dwo_unit = cu->dwo_unit;
3682 qfn->hash.line_sect_off = line_offset;
3683 gdb_assert (slot != NULL);
3684 *slot = qfn;
3685
3686 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3687
3688 qfn->num_file_names = lh->file_names.size ();
3689 qfn->file_names =
3690 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3691 for (i = 0; i < lh->file_names.size (); ++i)
3692 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3693 qfn->real_names = NULL;
3694
3695 lh_cu->v.quick->file_names = qfn;
3696 }
3697
3698 /* A helper for the "quick" functions which attempts to read the line
3699 table for THIS_CU. */
3700
3701 static struct quick_file_names *
3702 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3703 {
3704 /* This should never be called for TUs. */
3705 gdb_assert (! this_cu->is_debug_types);
3706 /* Nor type unit groups. */
3707 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3708
3709 if (this_cu->v.quick->file_names != NULL)
3710 return this_cu->v.quick->file_names;
3711 /* If we know there is no line data, no point in looking again. */
3712 if (this_cu->v.quick->no_file_data)
3713 return NULL;
3714
3715 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3716
3717 if (this_cu->v.quick->no_file_data)
3718 return NULL;
3719 return this_cu->v.quick->file_names;
3720 }
3721
3722 /* A helper for the "quick" functions which computes and caches the
3723 real path for a given file name from the line table. */
3724
3725 static const char *
3726 dw2_get_real_path (struct objfile *objfile,
3727 struct quick_file_names *qfn, int index)
3728 {
3729 if (qfn->real_names == NULL)
3730 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3731 qfn->num_file_names, const char *);
3732
3733 if (qfn->real_names[index] == NULL)
3734 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3735
3736 return qfn->real_names[index];
3737 }
3738
3739 static struct symtab *
3740 dw2_find_last_source_symtab (struct objfile *objfile)
3741 {
3742 struct dwarf2_per_objfile *dwarf2_per_objfile
3743 = get_dwarf2_per_objfile (objfile);
3744 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3745 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746
3747 if (cust == NULL)
3748 return NULL;
3749
3750 return compunit_primary_filetab (cust);
3751 }
3752
3753 /* Traversal function for dw2_forget_cached_source_info. */
3754
3755 static int
3756 dw2_free_cached_file_names (void **slot, void *info)
3757 {
3758 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3759
3760 if (file_data->real_names)
3761 {
3762 int i;
3763
3764 for (i = 0; i < file_data->num_file_names; ++i)
3765 {
3766 xfree ((void*) file_data->real_names[i]);
3767 file_data->real_names[i] = NULL;
3768 }
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 dw2_forget_cached_source_info (struct objfile *objfile)
3776 {
3777 struct dwarf2_per_objfile *dwarf2_per_objfile
3778 = get_dwarf2_per_objfile (objfile);
3779
3780 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3781 dw2_free_cached_file_names, NULL);
3782 }
3783
3784 /* Helper function for dw2_map_symtabs_matching_filename that expands
3785 the symtabs and calls the iterator. */
3786
3787 static int
3788 dw2_map_expand_apply (struct objfile *objfile,
3789 struct dwarf2_per_cu_data *per_cu,
3790 const char *name, const char *real_path,
3791 gdb::function_view<bool (symtab *)> callback)
3792 {
3793 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3794
3795 /* Don't visit already-expanded CUs. */
3796 if (per_cu->v.quick->compunit_symtab)
3797 return 0;
3798
3799 /* This may expand more than one symtab, and we want to iterate over
3800 all of them. */
3801 dw2_instantiate_symtab (per_cu, false);
3802
3803 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3804 last_made, callback);
3805 }
3806
3807 /* Implementation of the map_symtabs_matching_filename method. */
3808
3809 static bool
3810 dw2_map_symtabs_matching_filename
3811 (struct objfile *objfile, const char *name, const char *real_path,
3812 gdb::function_view<bool (symtab *)> callback)
3813 {
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3822 {
3823 /* We only need to look at symtabs not already expanded. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 quick_file_names *file_data = dw2_get_file_names (per_cu);
3828 if (file_data == NULL)
3829 continue;
3830
3831 for (int j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_name = file_data->file_names[j];
3834 const char *this_real_name;
3835
3836 if (compare_filenames_for_search (this_name, name))
3837 {
3838 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3839 callback))
3840 return true;
3841 continue;
3842 }
3843
3844 /* Before we invoke realpath, which can get expensive when many
3845 files are involved, do a quick comparison of the basenames. */
3846 if (! basenames_may_differ
3847 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3848 continue;
3849
3850 this_real_name = dw2_get_real_path (objfile, file_data, j);
3851 if (compare_filenames_for_search (this_real_name, name))
3852 {
3853 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 callback))
3855 return true;
3856 continue;
3857 }
3858
3859 if (real_path != NULL)
3860 {
3861 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3862 gdb_assert (IS_ABSOLUTE_PATH (name));
3863 if (this_real_name != NULL
3864 && FILENAME_CMP (real_path, this_real_name) == 0)
3865 {
3866 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3867 callback))
3868 return true;
3869 continue;
3870 }
3871 }
3872 }
3873 }
3874
3875 return false;
3876 }
3877
3878 /* Struct used to manage iterating over all CUs looking for a symbol. */
3879
3880 struct dw2_symtab_iterator
3881 {
3882 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3883 struct dwarf2_per_objfile *dwarf2_per_objfile;
3884 /* If set, only look for symbols that match that block. Valid values are
3885 GLOBAL_BLOCK and STATIC_BLOCK. */
3886 gdb::optional<int> block_index;
3887 /* The kind of symbol we're looking for. */
3888 domain_enum domain;
3889 /* The list of CUs from the index entry of the symbol,
3890 or NULL if not found. */
3891 offset_type *vec;
3892 /* The next element in VEC to look at. */
3893 int next;
3894 /* The number of elements in VEC, or zero if there is no match. */
3895 int length;
3896 /* Have we seen a global version of the symbol?
3897 If so we can ignore all further global instances.
3898 This is to work around gold/15646, inefficient gold-generated
3899 indices. */
3900 int global_seen;
3901 };
3902
3903 /* Initialize the index symtab iterator ITER. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 gdb::optional<int> block_index,
3909 domain_enum domain,
3910 const char *name)
3911 {
3912 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3913 iter->block_index = block_index;
3914 iter->domain = domain;
3915 iter->next = 0;
3916 iter->global_seen = 0;
3917
3918 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3919
3920 /* index is NULL if OBJF_READNOW. */
3921 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3922 iter->length = MAYBE_SWAP (*iter->vec);
3923 else
3924 {
3925 iter->vec = NULL;
3926 iter->length = 0;
3927 }
3928 }
3929
3930 /* Return the next matching CU or NULL if there are no more. */
3931
3932 static struct dwarf2_per_cu_data *
3933 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3934 {
3935 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3936
3937 for ( ; iter->next < iter->length; ++iter->next)
3938 {
3939 offset_type cu_index_and_attrs =
3940 MAYBE_SWAP (iter->vec[iter->next + 1]);
3941 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3942 gdb_index_symbol_kind symbol_kind =
3943 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3944 /* Only check the symbol attributes if they're present.
3945 Indices prior to version 7 don't record them,
3946 and indices >= 7 may elide them for certain symbols
3947 (gold does this). */
3948 int attrs_valid =
3949 (dwarf2_per_objfile->index_table->version >= 7
3950 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3951
3952 /* Don't crash on bad data. */
3953 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3954 + dwarf2_per_objfile->all_type_units.size ()))
3955 {
3956 complaint (_(".gdb_index entry has bad CU index"
3957 " [in module %s]"),
3958 objfile_name (dwarf2_per_objfile->objfile));
3959 continue;
3960 }
3961
3962 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3963
3964 /* Skip if already read in. */
3965 if (per_cu->v.quick->compunit_symtab)
3966 continue;
3967
3968 /* Check static vs global. */
3969 if (attrs_valid)
3970 {
3971 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3972
3973 if (iter->block_index.has_value ())
3974 {
3975 bool want_static = *iter->block_index == STATIC_BLOCK;
3976
3977 if (is_static != want_static)
3978 continue;
3979 }
3980
3981 /* Work around gold/15646. */
3982 if (!is_static && iter->global_seen)
3983 continue;
3984 if (!is_static)
3985 iter->global_seen = 1;
3986 }
3987
3988 /* Only check the symbol's kind if it has one. */
3989 if (attrs_valid)
3990 {
3991 switch (iter->domain)
3992 {
3993 case VAR_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3996 /* Some types are also in VAR_DOMAIN. */
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 case STRUCT_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4002 continue;
4003 break;
4004 case LABEL_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4006 continue;
4007 break;
4008 default:
4009 break;
4010 }
4011 }
4012
4013 ++iter->next;
4014 return per_cu;
4015 }
4016
4017 return NULL;
4018 }
4019
4020 static struct compunit_symtab *
4021 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4022 const char *name, domain_enum domain)
4023 {
4024 struct compunit_symtab *stab_best = NULL;
4025 struct dwarf2_per_objfile *dwarf2_per_objfile
4026 = get_dwarf2_per_objfile (objfile);
4027
4028 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4029
4030 struct dw2_symtab_iterator iter;
4031 struct dwarf2_per_cu_data *per_cu;
4032
4033 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4034
4035 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4036 {
4037 struct symbol *sym, *with_opaque = NULL;
4038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4041
4042 sym = block_find_symbol (block, name, domain,
4043 block_find_non_opaque_type_preferred,
4044 &with_opaque);
4045
4046 /* Some caution must be observed with overloaded functions
4047 and methods, since the index will not contain any overload
4048 information (but NAME might contain it). */
4049
4050 if (sym != NULL
4051 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4052 return stab;
4053 if (with_opaque != NULL
4054 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4055 stab_best = stab;
4056
4057 /* Keep looking through other CUs. */
4058 }
4059
4060 return stab_best;
4061 }
4062
4063 static void
4064 dw2_print_stats (struct objfile *objfile)
4065 {
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068 int total = (dwarf2_per_objfile->all_comp_units.size ()
4069 + dwarf2_per_objfile->all_type_units.size ());
4070 int count = 0;
4071
4072 for (int i = 0; i < total; ++i)
4073 {
4074 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4075
4076 if (!per_cu->v.quick->compunit_symtab)
4077 ++count;
4078 }
4079 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4080 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4081 }
4082
4083 /* This dumps minimal information about the index.
4084 It is called via "mt print objfiles".
4085 One use is to verify .gdb_index has been loaded by the
4086 gdb.dwarf2/gdb-index.exp testcase. */
4087
4088 static void
4089 dw2_dump (struct objfile *objfile)
4090 {
4091 struct dwarf2_per_objfile *dwarf2_per_objfile
4092 = get_dwarf2_per_objfile (objfile);
4093
4094 gdb_assert (dwarf2_per_objfile->using_index);
4095 printf_filtered (".gdb_index:");
4096 if (dwarf2_per_objfile->index_table != NULL)
4097 {
4098 printf_filtered (" version %d\n",
4099 dwarf2_per_objfile->index_table->version);
4100 }
4101 else
4102 printf_filtered (" faked for \"readnow\"\n");
4103 printf_filtered ("\n");
4104 }
4105
4106 static void
4107 dw2_expand_symtabs_for_function (struct objfile *objfile,
4108 const char *func_name)
4109 {
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
4112
4113 struct dw2_symtab_iterator iter;
4114 struct dwarf2_per_cu_data *per_cu;
4115
4116 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 dw2_debug_names_iterator (const mapped_debug_names &map,
5661 gdb::optional<block_enum> block_index,
5662 domain_enum domain,
5663 const char *name)
5664 : m_map (map), m_block_index (block_index), m_domain (domain),
5665 m_addr (find_vec_in_debug_names (map, name))
5666 {}
5667
5668 dw2_debug_names_iterator (const mapped_debug_names &map,
5669 search_domain search, uint32_t namei)
5670 : m_map (map),
5671 m_search (search),
5672 m_addr (find_vec_in_debug_names (map, namei))
5673 {}
5674
5675 /* Return the next matching CU or NULL if there are no more. */
5676 dwarf2_per_cu_data *next ();
5677
5678 private:
5679 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5680 const char *name);
5681 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5682 uint32_t namei);
5683
5684 /* The internalized form of .debug_names. */
5685 const mapped_debug_names &m_map;
5686
5687 /* If set, only look for symbols that match that block. Valid values are
5688 GLOBAL_BLOCK and STATIC_BLOCK. */
5689 const gdb::optional<block_enum> m_block_index;
5690
5691 /* The kind of symbol we're looking for. */
5692 const domain_enum m_domain = UNDEF_DOMAIN;
5693 const search_domain m_search = ALL_DOMAIN;
5694
5695 /* The list of CUs from the index entry of the symbol, or NULL if
5696 not found. */
5697 const gdb_byte *m_addr;
5698 };
5699
5700 const char *
5701 mapped_debug_names::namei_to_name (uint32_t namei) const
5702 {
5703 const ULONGEST namei_string_offs
5704 = extract_unsigned_integer ((name_table_string_offs_reordered
5705 + namei * offset_size),
5706 offset_size,
5707 dwarf5_byte_order);
5708 return read_indirect_string_at_offset
5709 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5710 }
5711
5712 /* Find a slot in .debug_names for the object named NAME. If NAME is
5713 found, return pointer to its pool data. If NAME cannot be found,
5714 return NULL. */
5715
5716 const gdb_byte *
5717 dw2_debug_names_iterator::find_vec_in_debug_names
5718 (const mapped_debug_names &map, const char *name)
5719 {
5720 int (*cmp) (const char *, const char *);
5721
5722 gdb::unique_xmalloc_ptr<char> without_params;
5723 if (current_language->la_language == language_cplus
5724 || current_language->la_language == language_fortran
5725 || current_language->la_language == language_d)
5726 {
5727 /* NAME is already canonical. Drop any qualifiers as
5728 .debug_names does not contain any. */
5729
5730 if (strchr (name, '(') != NULL)
5731 {
5732 without_params = cp_remove_params (name);
5733 if (without_params != NULL)
5734 name = without_params.get ();
5735 }
5736 }
5737
5738 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5739
5740 const uint32_t full_hash = dwarf5_djb_hash (name);
5741 uint32_t namei
5742 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5743 (map.bucket_table_reordered
5744 + (full_hash % map.bucket_count)), 4,
5745 map.dwarf5_byte_order);
5746 if (namei == 0)
5747 return NULL;
5748 --namei;
5749 if (namei >= map.name_count)
5750 {
5751 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5752 "[in module %s]"),
5753 namei, map.name_count,
5754 objfile_name (map.dwarf2_per_objfile->objfile));
5755 return NULL;
5756 }
5757
5758 for (;;)
5759 {
5760 const uint32_t namei_full_hash
5761 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5762 (map.hash_table_reordered + namei), 4,
5763 map.dwarf5_byte_order);
5764 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5765 return NULL;
5766
5767 if (full_hash == namei_full_hash)
5768 {
5769 const char *const namei_string = map.namei_to_name (namei);
5770
5771 #if 0 /* An expensive sanity check. */
5772 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5773 {
5774 complaint (_("Wrong .debug_names hash for string at index %u "
5775 "[in module %s]"),
5776 namei, objfile_name (dwarf2_per_objfile->objfile));
5777 return NULL;
5778 }
5779 #endif
5780
5781 if (cmp (namei_string, name) == 0)
5782 {
5783 const ULONGEST namei_entry_offs
5784 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5785 + namei * map.offset_size),
5786 map.offset_size, map.dwarf5_byte_order);
5787 return map.entry_pool + namei_entry_offs;
5788 }
5789 }
5790
5791 ++namei;
5792 if (namei >= map.name_count)
5793 return NULL;
5794 }
5795 }
5796
5797 const gdb_byte *
5798 dw2_debug_names_iterator::find_vec_in_debug_names
5799 (const mapped_debug_names &map, uint32_t namei)
5800 {
5801 if (namei >= map.name_count)
5802 {
5803 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5804 "[in module %s]"),
5805 namei, map.name_count,
5806 objfile_name (map.dwarf2_per_objfile->objfile));
5807 return NULL;
5808 }
5809
5810 const ULONGEST namei_entry_offs
5811 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5812 + namei * map.offset_size),
5813 map.offset_size, map.dwarf5_byte_order);
5814 return map.entry_pool + namei_entry_offs;
5815 }
5816
5817 /* See dw2_debug_names_iterator. */
5818
5819 dwarf2_per_cu_data *
5820 dw2_debug_names_iterator::next ()
5821 {
5822 if (m_addr == NULL)
5823 return NULL;
5824
5825 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5826 struct objfile *objfile = dwarf2_per_objfile->objfile;
5827 bfd *const abfd = objfile->obfd;
5828
5829 again:
5830
5831 unsigned int bytes_read;
5832 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5833 m_addr += bytes_read;
5834 if (abbrev == 0)
5835 return NULL;
5836
5837 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5838 if (indexval_it == m_map.abbrev_map.cend ())
5839 {
5840 complaint (_("Wrong .debug_names undefined abbrev code %s "
5841 "[in module %s]"),
5842 pulongest (abbrev), objfile_name (objfile));
5843 return NULL;
5844 }
5845 const mapped_debug_names::index_val &indexval = indexval_it->second;
5846 gdb::optional<bool> is_static;
5847 dwarf2_per_cu_data *per_cu = NULL;
5848 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5849 {
5850 ULONGEST ull;
5851 switch (attr.form)
5852 {
5853 case DW_FORM_implicit_const:
5854 ull = attr.implicit_const;
5855 break;
5856 case DW_FORM_flag_present:
5857 ull = 1;
5858 break;
5859 case DW_FORM_udata:
5860 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5861 m_addr += bytes_read;
5862 break;
5863 default:
5864 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5865 dwarf_form_name (attr.form),
5866 objfile_name (objfile));
5867 return NULL;
5868 }
5869 switch (attr.dw_idx)
5870 {
5871 case DW_IDX_compile_unit:
5872 /* Don't crash on bad data. */
5873 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5874 {
5875 complaint (_(".debug_names entry has bad CU index %s"
5876 " [in module %s]"),
5877 pulongest (ull),
5878 objfile_name (dwarf2_per_objfile->objfile));
5879 continue;
5880 }
5881 per_cu = dwarf2_per_objfile->get_cutu (ull);
5882 break;
5883 case DW_IDX_type_unit:
5884 /* Don't crash on bad data. */
5885 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5886 {
5887 complaint (_(".debug_names entry has bad TU index %s"
5888 " [in module %s]"),
5889 pulongest (ull),
5890 objfile_name (dwarf2_per_objfile->objfile));
5891 continue;
5892 }
5893 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5894 break;
5895 case DW_IDX_GNU_internal:
5896 if (!m_map.augmentation_is_gdb)
5897 break;
5898 is_static = true;
5899 break;
5900 case DW_IDX_GNU_external:
5901 if (!m_map.augmentation_is_gdb)
5902 break;
5903 is_static = false;
5904 break;
5905 }
5906 }
5907
5908 /* Skip if already read in. */
5909 if (per_cu->v.quick->compunit_symtab)
5910 goto again;
5911
5912 /* Check static vs global. */
5913 if (is_static.has_value () && m_block_index.has_value ())
5914 {
5915 const bool want_static = *m_block_index == STATIC_BLOCK;
5916 if (want_static != *is_static)
5917 goto again;
5918 }
5919
5920 /* Match dw2_symtab_iter_next, symbol_kind
5921 and debug_names::psymbol_tag. */
5922 switch (m_domain)
5923 {
5924 case VAR_DOMAIN:
5925 switch (indexval.dwarf_tag)
5926 {
5927 case DW_TAG_variable:
5928 case DW_TAG_subprogram:
5929 /* Some types are also in VAR_DOMAIN. */
5930 case DW_TAG_typedef:
5931 case DW_TAG_structure_type:
5932 break;
5933 default:
5934 goto again;
5935 }
5936 break;
5937 case STRUCT_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_typedef:
5941 case DW_TAG_structure_type:
5942 break;
5943 default:
5944 goto again;
5945 }
5946 break;
5947 case LABEL_DOMAIN:
5948 switch (indexval.dwarf_tag)
5949 {
5950 case 0:
5951 case DW_TAG_variable:
5952 break;
5953 default:
5954 goto again;
5955 }
5956 break;
5957 default:
5958 break;
5959 }
5960
5961 /* Match dw2_expand_symtabs_matching, symbol_kind and
5962 debug_names::psymbol_tag. */
5963 switch (m_search)
5964 {
5965 case VARIABLES_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_variable:
5969 break;
5970 default:
5971 goto again;
5972 }
5973 break;
5974 case FUNCTIONS_DOMAIN:
5975 switch (indexval.dwarf_tag)
5976 {
5977 case DW_TAG_subprogram:
5978 break;
5979 default:
5980 goto again;
5981 }
5982 break;
5983 case TYPES_DOMAIN:
5984 switch (indexval.dwarf_tag)
5985 {
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 default:
5994 break;
5995 }
5996
5997 return per_cu;
5998 }
5999
6000 static struct compunit_symtab *
6001 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6002 const char *name, domain_enum domain)
6003 {
6004 const block_enum block_index = static_cast<block_enum> (block_index_int);
6005 struct dwarf2_per_objfile *dwarf2_per_objfile
6006 = get_dwarf2_per_objfile (objfile);
6007
6008 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6009 if (!mapp)
6010 {
6011 /* index is NULL if OBJF_READNOW. */
6012 return NULL;
6013 }
6014 const auto &map = *mapp;
6015
6016 dw2_debug_names_iterator iter (map, block_index, domain, name);
6017
6018 struct compunit_symtab *stab_best = NULL;
6019 struct dwarf2_per_cu_data *per_cu;
6020 while ((per_cu = iter.next ()) != NULL)
6021 {
6022 struct symbol *sym, *with_opaque = NULL;
6023 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6024 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6025 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6026
6027 sym = block_find_symbol (block, name, domain,
6028 block_find_non_opaque_type_preferred,
6029 &with_opaque);
6030
6031 /* Some caution must be observed with overloaded functions and
6032 methods, since the index will not contain any overload
6033 information (but NAME might contain it). */
6034
6035 if (sym != NULL
6036 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6037 return stab;
6038 if (with_opaque != NULL
6039 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6040 stab_best = stab;
6041
6042 /* Keep looking through other CUs. */
6043 }
6044
6045 return stab_best;
6046 }
6047
6048 /* This dumps minimal information about .debug_names. It is called
6049 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6050 uses this to verify that .debug_names has been loaded. */
6051
6052 static void
6053 dw2_debug_names_dump (struct objfile *objfile)
6054 {
6055 struct dwarf2_per_objfile *dwarf2_per_objfile
6056 = get_dwarf2_per_objfile (objfile);
6057
6058 gdb_assert (dwarf2_per_objfile->using_index);
6059 printf_filtered (".debug_names:");
6060 if (dwarf2_per_objfile->debug_names_table)
6061 printf_filtered (" exists\n");
6062 else
6063 printf_filtered (" faked for \"readnow\"\n");
6064 printf_filtered ("\n");
6065 }
6066
6067 static void
6068 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6069 const char *func_name)
6070 {
6071 struct dwarf2_per_objfile *dwarf2_per_objfile
6072 = get_dwarf2_per_objfile (objfile);
6073
6074 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6075 if (dwarf2_per_objfile->debug_names_table)
6076 {
6077 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6078
6079 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6080
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6083 dw2_instantiate_symtab (per_cu, false);
6084 }
6085 }
6086
6087 static void
6088 dw2_debug_names_expand_symtabs_matching
6089 (struct objfile *objfile,
6090 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6091 const lookup_name_info &lookup_name,
6092 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6093 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6094 enum search_domain kind)
6095 {
6096 struct dwarf2_per_objfile *dwarf2_per_objfile
6097 = get_dwarf2_per_objfile (objfile);
6098
6099 /* debug_names_table is NULL if OBJF_READNOW. */
6100 if (!dwarf2_per_objfile->debug_names_table)
6101 return;
6102
6103 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6104
6105 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6106
6107 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6108 symbol_matcher,
6109 kind, [&] (offset_type namei)
6110 {
6111 /* The name was matched, now expand corresponding CUs that were
6112 marked. */
6113 dw2_debug_names_iterator iter (map, kind, namei);
6114
6115 struct dwarf2_per_cu_data *per_cu;
6116 while ((per_cu = iter.next ()) != NULL)
6117 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6118 expansion_notify);
6119 });
6120 }
6121
6122 const struct quick_symbol_functions dwarf2_debug_names_functions =
6123 {
6124 dw2_has_symbols,
6125 dw2_find_last_source_symtab,
6126 dw2_forget_cached_source_info,
6127 dw2_map_symtabs_matching_filename,
6128 dw2_debug_names_lookup_symbol,
6129 dw2_print_stats,
6130 dw2_debug_names_dump,
6131 dw2_debug_names_expand_symtabs_for_function,
6132 dw2_expand_all_symtabs,
6133 dw2_expand_symtabs_with_fullname,
6134 dw2_map_matching_symbols,
6135 dw2_debug_names_expand_symtabs_matching,
6136 dw2_find_pc_sect_compunit_symtab,
6137 NULL,
6138 dw2_map_symbol_filenames
6139 };
6140
6141 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6142 to either a dwarf2_per_objfile or dwz_file object. */
6143
6144 template <typename T>
6145 static gdb::array_view<const gdb_byte>
6146 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6147 {
6148 dwarf2_section_info *section = &section_owner->gdb_index;
6149
6150 if (dwarf2_section_empty_p (section))
6151 return {};
6152
6153 /* Older elfutils strip versions could keep the section in the main
6154 executable while splitting it for the separate debug info file. */
6155 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6156 return {};
6157
6158 dwarf2_read_section (obj, section);
6159
6160 /* dwarf2_section_info::size is a bfd_size_type, while
6161 gdb::array_view works with size_t. On 32-bit hosts, with
6162 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6163 is 32-bit. So we need an explicit narrowing conversion here.
6164 This is fine, because it's impossible to allocate or mmap an
6165 array/buffer larger than what size_t can represent. */
6166 return gdb::make_array_view (section->buffer, section->size);
6167 }
6168
6169 /* Lookup the index cache for the contents of the index associated to
6170 DWARF2_OBJ. */
6171
6172 static gdb::array_view<const gdb_byte>
6173 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6174 {
6175 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6176 if (build_id == nullptr)
6177 return {};
6178
6179 return global_index_cache.lookup_gdb_index (build_id,
6180 &dwarf2_obj->index_cache_res);
6181 }
6182
6183 /* Same as the above, but for DWZ. */
6184
6185 static gdb::array_view<const gdb_byte>
6186 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6187 {
6188 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6189 if (build_id == nullptr)
6190 return {};
6191
6192 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6193 }
6194
6195 /* See symfile.h. */
6196
6197 bool
6198 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6199 {
6200 struct dwarf2_per_objfile *dwarf2_per_objfile
6201 = get_dwarf2_per_objfile (objfile);
6202
6203 /* If we're about to read full symbols, don't bother with the
6204 indices. In this case we also don't care if some other debug
6205 format is making psymtabs, because they are all about to be
6206 expanded anyway. */
6207 if ((objfile->flags & OBJF_READNOW))
6208 {
6209 dwarf2_per_objfile->using_index = 1;
6210 create_all_comp_units (dwarf2_per_objfile);
6211 create_all_type_units (dwarf2_per_objfile);
6212 dwarf2_per_objfile->quick_file_names_table
6213 = create_quick_file_names_table
6214 (dwarf2_per_objfile->all_comp_units.size ());
6215
6216 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6217 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6218 {
6219 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6220
6221 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6222 struct dwarf2_per_cu_quick_data);
6223 }
6224
6225 /* Return 1 so that gdb sees the "quick" functions. However,
6226 these functions will be no-ops because we will have expanded
6227 all symtabs. */
6228 *index_kind = dw_index_kind::GDB_INDEX;
6229 return true;
6230 }
6231
6232 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6233 {
6234 *index_kind = dw_index_kind::DEBUG_NAMES;
6235 return true;
6236 }
6237
6238 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6239 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6240 get_gdb_index_contents_from_section<dwz_file>))
6241 {
6242 *index_kind = dw_index_kind::GDB_INDEX;
6243 return true;
6244 }
6245
6246 /* ... otherwise, try to find the index in the index cache. */
6247 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6248 get_gdb_index_contents_from_cache,
6249 get_gdb_index_contents_from_cache_dwz))
6250 {
6251 global_index_cache.hit ();
6252 *index_kind = dw_index_kind::GDB_INDEX;
6253 return true;
6254 }
6255
6256 global_index_cache.miss ();
6257 return false;
6258 }
6259
6260 \f
6261
6262 /* Build a partial symbol table. */
6263
6264 void
6265 dwarf2_build_psymtabs (struct objfile *objfile)
6266 {
6267 struct dwarf2_per_objfile *dwarf2_per_objfile
6268 = get_dwarf2_per_objfile (objfile);
6269
6270 init_psymbol_list (objfile, 1024);
6271
6272 try
6273 {
6274 /* This isn't really ideal: all the data we allocate on the
6275 objfile's obstack is still uselessly kept around. However,
6276 freeing it seems unsafe. */
6277 psymtab_discarder psymtabs (objfile);
6278 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6279 psymtabs.keep ();
6280
6281 /* (maybe) store an index in the cache. */
6282 global_index_cache.store (dwarf2_per_objfile);
6283 }
6284 catch (const gdb_exception_error &except)
6285 {
6286 exception_print (gdb_stderr, except);
6287 }
6288 }
6289
6290 /* Return the total length of the CU described by HEADER. */
6291
6292 static unsigned int
6293 get_cu_length (const struct comp_unit_head *header)
6294 {
6295 return header->initial_length_size + header->length;
6296 }
6297
6298 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6299
6300 static inline bool
6301 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6302 {
6303 sect_offset bottom = cu_header->sect_off;
6304 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6305
6306 return sect_off >= bottom && sect_off < top;
6307 }
6308
6309 /* Find the base address of the compilation unit for range lists and
6310 location lists. It will normally be specified by DW_AT_low_pc.
6311 In DWARF-3 draft 4, the base address could be overridden by
6312 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6313 compilation units with discontinuous ranges. */
6314
6315 static void
6316 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6317 {
6318 struct attribute *attr;
6319
6320 cu->base_known = 0;
6321 cu->base_address = 0;
6322
6323 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6324 if (attr)
6325 {
6326 cu->base_address = attr_value_as_address (attr);
6327 cu->base_known = 1;
6328 }
6329 else
6330 {
6331 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6332 if (attr)
6333 {
6334 cu->base_address = attr_value_as_address (attr);
6335 cu->base_known = 1;
6336 }
6337 }
6338 }
6339
6340 /* Read in the comp unit header information from the debug_info at info_ptr.
6341 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6342 NOTE: This leaves members offset, first_die_offset to be filled in
6343 by the caller. */
6344
6345 static const gdb_byte *
6346 read_comp_unit_head (struct comp_unit_head *cu_header,
6347 const gdb_byte *info_ptr,
6348 struct dwarf2_section_info *section,
6349 rcuh_kind section_kind)
6350 {
6351 int signed_addr;
6352 unsigned int bytes_read;
6353 const char *filename = get_section_file_name (section);
6354 bfd *abfd = get_section_bfd_owner (section);
6355
6356 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6357 cu_header->initial_length_size = bytes_read;
6358 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6359 info_ptr += bytes_read;
6360 cu_header->version = read_2_bytes (abfd, info_ptr);
6361 if (cu_header->version < 2 || cu_header->version > 5)
6362 error (_("Dwarf Error: wrong version in compilation unit header "
6363 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6364 cu_header->version, filename);
6365 info_ptr += 2;
6366 if (cu_header->version < 5)
6367 switch (section_kind)
6368 {
6369 case rcuh_kind::COMPILE:
6370 cu_header->unit_type = DW_UT_compile;
6371 break;
6372 case rcuh_kind::TYPE:
6373 cu_header->unit_type = DW_UT_type;
6374 break;
6375 default:
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: invalid section_kind"));
6378 }
6379 else
6380 {
6381 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6382 (read_1_byte (abfd, info_ptr));
6383 info_ptr += 1;
6384 switch (cu_header->unit_type)
6385 {
6386 case DW_UT_compile:
6387 if (section_kind != rcuh_kind::COMPILE)
6388 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6389 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6390 filename);
6391 break;
6392 case DW_UT_type:
6393 section_kind = rcuh_kind::TYPE;
6394 break;
6395 default:
6396 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6397 "(is %d, should be %d or %d) [in module %s]"),
6398 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6399 }
6400
6401 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6402 info_ptr += 1;
6403 }
6404 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6405 cu_header,
6406 &bytes_read);
6407 info_ptr += bytes_read;
6408 if (cu_header->version < 5)
6409 {
6410 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6411 info_ptr += 1;
6412 }
6413 signed_addr = bfd_get_sign_extend_vma (abfd);
6414 if (signed_addr < 0)
6415 internal_error (__FILE__, __LINE__,
6416 _("read_comp_unit_head: dwarf from non elf file"));
6417 cu_header->signed_addr_p = signed_addr;
6418
6419 if (section_kind == rcuh_kind::TYPE)
6420 {
6421 LONGEST type_offset;
6422
6423 cu_header->signature = read_8_bytes (abfd, info_ptr);
6424 info_ptr += 8;
6425
6426 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6427 info_ptr += bytes_read;
6428 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6429 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6430 error (_("Dwarf Error: Too big type_offset in compilation unit "
6431 "header (is %s) [in module %s]"), plongest (type_offset),
6432 filename);
6433 }
6434
6435 return info_ptr;
6436 }
6437
6438 /* Helper function that returns the proper abbrev section for
6439 THIS_CU. */
6440
6441 static struct dwarf2_section_info *
6442 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6443 {
6444 struct dwarf2_section_info *abbrev;
6445 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6446
6447 if (this_cu->is_dwz)
6448 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6449 else
6450 abbrev = &dwarf2_per_objfile->abbrev;
6451
6452 return abbrev;
6453 }
6454
6455 /* Subroutine of read_and_check_comp_unit_head and
6456 read_and_check_type_unit_head to simplify them.
6457 Perform various error checking on the header. */
6458
6459 static void
6460 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6461 struct comp_unit_head *header,
6462 struct dwarf2_section_info *section,
6463 struct dwarf2_section_info *abbrev_section)
6464 {
6465 const char *filename = get_section_file_name (section);
6466
6467 if (to_underlying (header->abbrev_sect_off)
6468 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6469 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6470 "(offset %s + 6) [in module %s]"),
6471 sect_offset_str (header->abbrev_sect_off),
6472 sect_offset_str (header->sect_off),
6473 filename);
6474
6475 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6476 avoid potential 32-bit overflow. */
6477 if (((ULONGEST) header->sect_off + get_cu_length (header))
6478 > section->size)
6479 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6480 "(offset %s + 0) [in module %s]"),
6481 header->length, sect_offset_str (header->sect_off),
6482 filename);
6483 }
6484
6485 /* Read in a CU/TU header and perform some basic error checking.
6486 The contents of the header are stored in HEADER.
6487 The result is a pointer to the start of the first DIE. */
6488
6489 static const gdb_byte *
6490 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6491 struct comp_unit_head *header,
6492 struct dwarf2_section_info *section,
6493 struct dwarf2_section_info *abbrev_section,
6494 const gdb_byte *info_ptr,
6495 rcuh_kind section_kind)
6496 {
6497 const gdb_byte *beg_of_comp_unit = info_ptr;
6498
6499 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6500
6501 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6502
6503 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6504
6505 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6506 abbrev_section);
6507
6508 return info_ptr;
6509 }
6510
6511 /* Fetch the abbreviation table offset from a comp or type unit header. */
6512
6513 static sect_offset
6514 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6515 struct dwarf2_section_info *section,
6516 sect_offset sect_off)
6517 {
6518 bfd *abfd = get_section_bfd_owner (section);
6519 const gdb_byte *info_ptr;
6520 unsigned int initial_length_size, offset_size;
6521 uint16_t version;
6522
6523 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6524 info_ptr = section->buffer + to_underlying (sect_off);
6525 read_initial_length (abfd, info_ptr, &initial_length_size);
6526 offset_size = initial_length_size == 4 ? 4 : 8;
6527 info_ptr += initial_length_size;
6528
6529 version = read_2_bytes (abfd, info_ptr);
6530 info_ptr += 2;
6531 if (version >= 5)
6532 {
6533 /* Skip unit type and address size. */
6534 info_ptr += 2;
6535 }
6536
6537 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6538 }
6539
6540 /* Allocate a new partial symtab for file named NAME and mark this new
6541 partial symtab as being an include of PST. */
6542
6543 static void
6544 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6545 struct objfile *objfile)
6546 {
6547 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6548
6549 if (!IS_ABSOLUTE_PATH (subpst->filename))
6550 {
6551 /* It shares objfile->objfile_obstack. */
6552 subpst->dirname = pst->dirname;
6553 }
6554
6555 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6556 subpst->dependencies[0] = pst;
6557 subpst->number_of_dependencies = 1;
6558
6559 subpst->read_symtab = pst->read_symtab;
6560
6561 /* No private part is necessary for include psymtabs. This property
6562 can be used to differentiate between such include psymtabs and
6563 the regular ones. */
6564 subpst->read_symtab_private = NULL;
6565 }
6566
6567 /* Read the Line Number Program data and extract the list of files
6568 included by the source file represented by PST. Build an include
6569 partial symtab for each of these included files. */
6570
6571 static void
6572 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6573 struct die_info *die,
6574 struct partial_symtab *pst)
6575 {
6576 line_header_up lh;
6577 struct attribute *attr;
6578
6579 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6580 if (attr)
6581 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6582 if (lh == NULL)
6583 return; /* No linetable, so no includes. */
6584
6585 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6586 that we pass in the raw text_low here; that is ok because we're
6587 only decoding the line table to make include partial symtabs, and
6588 so the addresses aren't really used. */
6589 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6590 pst->raw_text_low (), 1);
6591 }
6592
6593 static hashval_t
6594 hash_signatured_type (const void *item)
6595 {
6596 const struct signatured_type *sig_type
6597 = (const struct signatured_type *) item;
6598
6599 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6600 return sig_type->signature;
6601 }
6602
6603 static int
6604 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6605 {
6606 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6607 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6608
6609 return lhs->signature == rhs->signature;
6610 }
6611
6612 /* Allocate a hash table for signatured types. */
6613
6614 static htab_t
6615 allocate_signatured_type_table (struct objfile *objfile)
6616 {
6617 return htab_create_alloc_ex (41,
6618 hash_signatured_type,
6619 eq_signatured_type,
6620 NULL,
6621 &objfile->objfile_obstack,
6622 hashtab_obstack_allocate,
6623 dummy_obstack_deallocate);
6624 }
6625
6626 /* A helper function to add a signatured type CU to a table. */
6627
6628 static int
6629 add_signatured_type_cu_to_table (void **slot, void *datum)
6630 {
6631 struct signatured_type *sigt = (struct signatured_type *) *slot;
6632 std::vector<signatured_type *> *all_type_units
6633 = (std::vector<signatured_type *> *) datum;
6634
6635 all_type_units->push_back (sigt);
6636
6637 return 1;
6638 }
6639
6640 /* A helper for create_debug_types_hash_table. Read types from SECTION
6641 and fill them into TYPES_HTAB. It will process only type units,
6642 therefore DW_UT_type. */
6643
6644 static void
6645 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6646 struct dwo_file *dwo_file,
6647 dwarf2_section_info *section, htab_t &types_htab,
6648 rcuh_kind section_kind)
6649 {
6650 struct objfile *objfile = dwarf2_per_objfile->objfile;
6651 struct dwarf2_section_info *abbrev_section;
6652 bfd *abfd;
6653 const gdb_byte *info_ptr, *end_ptr;
6654
6655 abbrev_section = (dwo_file != NULL
6656 ? &dwo_file->sections.abbrev
6657 : &dwarf2_per_objfile->abbrev);
6658
6659 if (dwarf_read_debug)
6660 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6661 get_section_name (section),
6662 get_section_file_name (abbrev_section));
6663
6664 dwarf2_read_section (objfile, section);
6665 info_ptr = section->buffer;
6666
6667 if (info_ptr == NULL)
6668 return;
6669
6670 /* We can't set abfd until now because the section may be empty or
6671 not present, in which case the bfd is unknown. */
6672 abfd = get_section_bfd_owner (section);
6673
6674 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6675 because we don't need to read any dies: the signature is in the
6676 header. */
6677
6678 end_ptr = info_ptr + section->size;
6679 while (info_ptr < end_ptr)
6680 {
6681 struct signatured_type *sig_type;
6682 struct dwo_unit *dwo_tu;
6683 void **slot;
6684 const gdb_byte *ptr = info_ptr;
6685 struct comp_unit_head header;
6686 unsigned int length;
6687
6688 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6689
6690 /* Initialize it due to a false compiler warning. */
6691 header.signature = -1;
6692 header.type_cu_offset_in_tu = (cu_offset) -1;
6693
6694 /* We need to read the type's signature in order to build the hash
6695 table, but we don't need anything else just yet. */
6696
6697 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6698 abbrev_section, ptr, section_kind);
6699
6700 length = get_cu_length (&header);
6701
6702 /* Skip dummy type units. */
6703 if (ptr >= info_ptr + length
6704 || peek_abbrev_code (abfd, ptr) == 0
6705 || header.unit_type != DW_UT_type)
6706 {
6707 info_ptr += length;
6708 continue;
6709 }
6710
6711 if (types_htab == NULL)
6712 {
6713 if (dwo_file)
6714 types_htab = allocate_dwo_unit_table (objfile);
6715 else
6716 types_htab = allocate_signatured_type_table (objfile);
6717 }
6718
6719 if (dwo_file)
6720 {
6721 sig_type = NULL;
6722 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6723 struct dwo_unit);
6724 dwo_tu->dwo_file = dwo_file;
6725 dwo_tu->signature = header.signature;
6726 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6727 dwo_tu->section = section;
6728 dwo_tu->sect_off = sect_off;
6729 dwo_tu->length = length;
6730 }
6731 else
6732 {
6733 /* N.B.: type_offset is not usable if this type uses a DWO file.
6734 The real type_offset is in the DWO file. */
6735 dwo_tu = NULL;
6736 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6737 struct signatured_type);
6738 sig_type->signature = header.signature;
6739 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6740 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6741 sig_type->per_cu.is_debug_types = 1;
6742 sig_type->per_cu.section = section;
6743 sig_type->per_cu.sect_off = sect_off;
6744 sig_type->per_cu.length = length;
6745 }
6746
6747 slot = htab_find_slot (types_htab,
6748 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6749 INSERT);
6750 gdb_assert (slot != NULL);
6751 if (*slot != NULL)
6752 {
6753 sect_offset dup_sect_off;
6754
6755 if (dwo_file)
6756 {
6757 const struct dwo_unit *dup_tu
6758 = (const struct dwo_unit *) *slot;
6759
6760 dup_sect_off = dup_tu->sect_off;
6761 }
6762 else
6763 {
6764 const struct signatured_type *dup_tu
6765 = (const struct signatured_type *) *slot;
6766
6767 dup_sect_off = dup_tu->per_cu.sect_off;
6768 }
6769
6770 complaint (_("debug type entry at offset %s is duplicate to"
6771 " the entry at offset %s, signature %s"),
6772 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6773 hex_string (header.signature));
6774 }
6775 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6776
6777 if (dwarf_read_debug > 1)
6778 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6779 sect_offset_str (sect_off),
6780 hex_string (header.signature));
6781
6782 info_ptr += length;
6783 }
6784 }
6785
6786 /* Create the hash table of all entries in the .debug_types
6787 (or .debug_types.dwo) section(s).
6788 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6789 otherwise it is NULL.
6790
6791 The result is a pointer to the hash table or NULL if there are no types.
6792
6793 Note: This function processes DWO files only, not DWP files. */
6794
6795 static void
6796 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6797 struct dwo_file *dwo_file,
6798 gdb::array_view<dwarf2_section_info> type_sections,
6799 htab_t &types_htab)
6800 {
6801 for (dwarf2_section_info &section : type_sections)
6802 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6803 types_htab, rcuh_kind::TYPE);
6804 }
6805
6806 /* Create the hash table of all entries in the .debug_types section,
6807 and initialize all_type_units.
6808 The result is zero if there is an error (e.g. missing .debug_types section),
6809 otherwise non-zero. */
6810
6811 static int
6812 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6813 {
6814 htab_t types_htab = NULL;
6815
6816 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6817 &dwarf2_per_objfile->info, types_htab,
6818 rcuh_kind::COMPILE);
6819 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6820 dwarf2_per_objfile->types, types_htab);
6821 if (types_htab == NULL)
6822 {
6823 dwarf2_per_objfile->signatured_types = NULL;
6824 return 0;
6825 }
6826
6827 dwarf2_per_objfile->signatured_types = types_htab;
6828
6829 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6830 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6831
6832 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6833 &dwarf2_per_objfile->all_type_units);
6834
6835 return 1;
6836 }
6837
6838 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6839 If SLOT is non-NULL, it is the entry to use in the hash table.
6840 Otherwise we find one. */
6841
6842 static struct signatured_type *
6843 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6844 void **slot)
6845 {
6846 struct objfile *objfile = dwarf2_per_objfile->objfile;
6847
6848 if (dwarf2_per_objfile->all_type_units.size ()
6849 == dwarf2_per_objfile->all_type_units.capacity ())
6850 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6851
6852 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6853 struct signatured_type);
6854
6855 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6856 sig_type->signature = sig;
6857 sig_type->per_cu.is_debug_types = 1;
6858 if (dwarf2_per_objfile->using_index)
6859 {
6860 sig_type->per_cu.v.quick =
6861 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6862 struct dwarf2_per_cu_quick_data);
6863 }
6864
6865 if (slot == NULL)
6866 {
6867 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6868 sig_type, INSERT);
6869 }
6870 gdb_assert (*slot == NULL);
6871 *slot = sig_type;
6872 /* The rest of sig_type must be filled in by the caller. */
6873 return sig_type;
6874 }
6875
6876 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6877 Fill in SIG_ENTRY with DWO_ENTRY. */
6878
6879 static void
6880 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6881 struct signatured_type *sig_entry,
6882 struct dwo_unit *dwo_entry)
6883 {
6884 /* Make sure we're not clobbering something we don't expect to. */
6885 gdb_assert (! sig_entry->per_cu.queued);
6886 gdb_assert (sig_entry->per_cu.cu == NULL);
6887 if (dwarf2_per_objfile->using_index)
6888 {
6889 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6890 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6891 }
6892 else
6893 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6894 gdb_assert (sig_entry->signature == dwo_entry->signature);
6895 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6896 gdb_assert (sig_entry->type_unit_group == NULL);
6897 gdb_assert (sig_entry->dwo_unit == NULL);
6898
6899 sig_entry->per_cu.section = dwo_entry->section;
6900 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6901 sig_entry->per_cu.length = dwo_entry->length;
6902 sig_entry->per_cu.reading_dwo_directly = 1;
6903 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6904 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6905 sig_entry->dwo_unit = dwo_entry;
6906 }
6907
6908 /* Subroutine of lookup_signatured_type.
6909 If we haven't read the TU yet, create the signatured_type data structure
6910 for a TU to be read in directly from a DWO file, bypassing the stub.
6911 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6912 using .gdb_index, then when reading a CU we want to stay in the DWO file
6913 containing that CU. Otherwise we could end up reading several other DWO
6914 files (due to comdat folding) to process the transitive closure of all the
6915 mentioned TUs, and that can be slow. The current DWO file will have every
6916 type signature that it needs.
6917 We only do this for .gdb_index because in the psymtab case we already have
6918 to read all the DWOs to build the type unit groups. */
6919
6920 static struct signatured_type *
6921 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6922 {
6923 struct dwarf2_per_objfile *dwarf2_per_objfile
6924 = cu->per_cu->dwarf2_per_objfile;
6925 struct objfile *objfile = dwarf2_per_objfile->objfile;
6926 struct dwo_file *dwo_file;
6927 struct dwo_unit find_dwo_entry, *dwo_entry;
6928 struct signatured_type find_sig_entry, *sig_entry;
6929 void **slot;
6930
6931 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6932
6933 /* If TU skeletons have been removed then we may not have read in any
6934 TUs yet. */
6935 if (dwarf2_per_objfile->signatured_types == NULL)
6936 {
6937 dwarf2_per_objfile->signatured_types
6938 = allocate_signatured_type_table (objfile);
6939 }
6940
6941 /* We only ever need to read in one copy of a signatured type.
6942 Use the global signatured_types array to do our own comdat-folding
6943 of types. If this is the first time we're reading this TU, and
6944 the TU has an entry in .gdb_index, replace the recorded data from
6945 .gdb_index with this TU. */
6946
6947 find_sig_entry.signature = sig;
6948 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6949 &find_sig_entry, INSERT);
6950 sig_entry = (struct signatured_type *) *slot;
6951
6952 /* We can get here with the TU already read, *or* in the process of being
6953 read. Don't reassign the global entry to point to this DWO if that's
6954 the case. Also note that if the TU is already being read, it may not
6955 have come from a DWO, the program may be a mix of Fission-compiled
6956 code and non-Fission-compiled code. */
6957
6958 /* Have we already tried to read this TU?
6959 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6960 needn't exist in the global table yet). */
6961 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6962 return sig_entry;
6963
6964 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6965 dwo_unit of the TU itself. */
6966 dwo_file = cu->dwo_unit->dwo_file;
6967
6968 /* Ok, this is the first time we're reading this TU. */
6969 if (dwo_file->tus == NULL)
6970 return NULL;
6971 find_dwo_entry.signature = sig;
6972 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6973 if (dwo_entry == NULL)
6974 return NULL;
6975
6976 /* If the global table doesn't have an entry for this TU, add one. */
6977 if (sig_entry == NULL)
6978 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6979
6980 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6981 sig_entry->per_cu.tu_read = 1;
6982 return sig_entry;
6983 }
6984
6985 /* Subroutine of lookup_signatured_type.
6986 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6987 then try the DWP file. If the TU stub (skeleton) has been removed then
6988 it won't be in .gdb_index. */
6989
6990 static struct signatured_type *
6991 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6992 {
6993 struct dwarf2_per_objfile *dwarf2_per_objfile
6994 = cu->per_cu->dwarf2_per_objfile;
6995 struct objfile *objfile = dwarf2_per_objfile->objfile;
6996 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6997 struct dwo_unit *dwo_entry;
6998 struct signatured_type find_sig_entry, *sig_entry;
6999 void **slot;
7000
7001 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7002 gdb_assert (dwp_file != NULL);
7003
7004 /* If TU skeletons have been removed then we may not have read in any
7005 TUs yet. */
7006 if (dwarf2_per_objfile->signatured_types == NULL)
7007 {
7008 dwarf2_per_objfile->signatured_types
7009 = allocate_signatured_type_table (objfile);
7010 }
7011
7012 find_sig_entry.signature = sig;
7013 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7014 &find_sig_entry, INSERT);
7015 sig_entry = (struct signatured_type *) *slot;
7016
7017 /* Have we already tried to read this TU?
7018 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7019 needn't exist in the global table yet). */
7020 if (sig_entry != NULL)
7021 return sig_entry;
7022
7023 if (dwp_file->tus == NULL)
7024 return NULL;
7025 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7026 sig, 1 /* is_debug_types */);
7027 if (dwo_entry == NULL)
7028 return NULL;
7029
7030 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7031 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7032
7033 return sig_entry;
7034 }
7035
7036 /* Lookup a signature based type for DW_FORM_ref_sig8.
7037 Returns NULL if signature SIG is not present in the table.
7038 It is up to the caller to complain about this. */
7039
7040 static struct signatured_type *
7041 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7042 {
7043 struct dwarf2_per_objfile *dwarf2_per_objfile
7044 = cu->per_cu->dwarf2_per_objfile;
7045
7046 if (cu->dwo_unit
7047 && dwarf2_per_objfile->using_index)
7048 {
7049 /* We're in a DWO/DWP file, and we're using .gdb_index.
7050 These cases require special processing. */
7051 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7052 return lookup_dwo_signatured_type (cu, sig);
7053 else
7054 return lookup_dwp_signatured_type (cu, sig);
7055 }
7056 else
7057 {
7058 struct signatured_type find_entry, *entry;
7059
7060 if (dwarf2_per_objfile->signatured_types == NULL)
7061 return NULL;
7062 find_entry.signature = sig;
7063 entry = ((struct signatured_type *)
7064 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7065 return entry;
7066 }
7067 }
7068 \f
7069 /* Low level DIE reading support. */
7070
7071 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7072
7073 static void
7074 init_cu_die_reader (struct die_reader_specs *reader,
7075 struct dwarf2_cu *cu,
7076 struct dwarf2_section_info *section,
7077 struct dwo_file *dwo_file,
7078 struct abbrev_table *abbrev_table)
7079 {
7080 gdb_assert (section->readin && section->buffer != NULL);
7081 reader->abfd = get_section_bfd_owner (section);
7082 reader->cu = cu;
7083 reader->dwo_file = dwo_file;
7084 reader->die_section = section;
7085 reader->buffer = section->buffer;
7086 reader->buffer_end = section->buffer + section->size;
7087 reader->comp_dir = NULL;
7088 reader->abbrev_table = abbrev_table;
7089 }
7090
7091 /* Subroutine of init_cutu_and_read_dies to simplify it.
7092 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7093 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7094 already.
7095
7096 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7097 from it to the DIE in the DWO. If NULL we are skipping the stub.
7098 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7099 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7100 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7101 STUB_COMP_DIR may be non-NULL.
7102 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7103 are filled in with the info of the DIE from the DWO file.
7104 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7105 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7106 kept around for at least as long as *RESULT_READER.
7107
7108 The result is non-zero if a valid (non-dummy) DIE was found. */
7109
7110 static int
7111 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7112 struct dwo_unit *dwo_unit,
7113 struct die_info *stub_comp_unit_die,
7114 const char *stub_comp_dir,
7115 struct die_reader_specs *result_reader,
7116 const gdb_byte **result_info_ptr,
7117 struct die_info **result_comp_unit_die,
7118 int *result_has_children,
7119 abbrev_table_up *result_dwo_abbrev_table)
7120 {
7121 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7122 struct objfile *objfile = dwarf2_per_objfile->objfile;
7123 struct dwarf2_cu *cu = this_cu->cu;
7124 bfd *abfd;
7125 const gdb_byte *begin_info_ptr, *info_ptr;
7126 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7127 int i,num_extra_attrs;
7128 struct dwarf2_section_info *dwo_abbrev_section;
7129 struct attribute *attr;
7130 struct die_info *comp_unit_die;
7131
7132 /* At most one of these may be provided. */
7133 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7134
7135 /* These attributes aren't processed until later:
7136 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7137 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7138 referenced later. However, these attributes are found in the stub
7139 which we won't have later. In order to not impose this complication
7140 on the rest of the code, we read them here and copy them to the
7141 DWO CU/TU die. */
7142
7143 stmt_list = NULL;
7144 low_pc = NULL;
7145 high_pc = NULL;
7146 ranges = NULL;
7147 comp_dir = NULL;
7148
7149 if (stub_comp_unit_die != NULL)
7150 {
7151 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7152 DWO file. */
7153 if (! this_cu->is_debug_types)
7154 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7155 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7156 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7157 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7158 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7159
7160 /* There should be a DW_AT_addr_base attribute here (if needed).
7161 We need the value before we can process DW_FORM_GNU_addr_index
7162 or DW_FORM_addrx. */
7163 cu->addr_base = 0;
7164 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7165 if (attr)
7166 cu->addr_base = DW_UNSND (attr);
7167
7168 /* There should be a DW_AT_ranges_base attribute here (if needed).
7169 We need the value before we can process DW_AT_ranges. */
7170 cu->ranges_base = 0;
7171 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7172 if (attr)
7173 cu->ranges_base = DW_UNSND (attr);
7174 }
7175 else if (stub_comp_dir != NULL)
7176 {
7177 /* Reconstruct the comp_dir attribute to simplify the code below. */
7178 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7179 comp_dir->name = DW_AT_comp_dir;
7180 comp_dir->form = DW_FORM_string;
7181 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7182 DW_STRING (comp_dir) = stub_comp_dir;
7183 }
7184
7185 /* Set up for reading the DWO CU/TU. */
7186 cu->dwo_unit = dwo_unit;
7187 dwarf2_section_info *section = dwo_unit->section;
7188 dwarf2_read_section (objfile, section);
7189 abfd = get_section_bfd_owner (section);
7190 begin_info_ptr = info_ptr = (section->buffer
7191 + to_underlying (dwo_unit->sect_off));
7192 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7193
7194 if (this_cu->is_debug_types)
7195 {
7196 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7197
7198 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7199 &cu->header, section,
7200 dwo_abbrev_section,
7201 info_ptr, rcuh_kind::TYPE);
7202 /* This is not an assert because it can be caused by bad debug info. */
7203 if (sig_type->signature != cu->header.signature)
7204 {
7205 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7206 " TU at offset %s [in module %s]"),
7207 hex_string (sig_type->signature),
7208 hex_string (cu->header.signature),
7209 sect_offset_str (dwo_unit->sect_off),
7210 bfd_get_filename (abfd));
7211 }
7212 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7213 /* For DWOs coming from DWP files, we don't know the CU length
7214 nor the type's offset in the TU until now. */
7215 dwo_unit->length = get_cu_length (&cu->header);
7216 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7217
7218 /* Establish the type offset that can be used to lookup the type.
7219 For DWO files, we don't know it until now. */
7220 sig_type->type_offset_in_section
7221 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7222 }
7223 else
7224 {
7225 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7226 &cu->header, section,
7227 dwo_abbrev_section,
7228 info_ptr, rcuh_kind::COMPILE);
7229 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7230 /* For DWOs coming from DWP files, we don't know the CU length
7231 until now. */
7232 dwo_unit->length = get_cu_length (&cu->header);
7233 }
7234
7235 *result_dwo_abbrev_table
7236 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7237 cu->header.abbrev_sect_off);
7238 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7239 result_dwo_abbrev_table->get ());
7240
7241 /* Read in the die, but leave space to copy over the attributes
7242 from the stub. This has the benefit of simplifying the rest of
7243 the code - all the work to maintain the illusion of a single
7244 DW_TAG_{compile,type}_unit DIE is done here. */
7245 num_extra_attrs = ((stmt_list != NULL)
7246 + (low_pc != NULL)
7247 + (high_pc != NULL)
7248 + (ranges != NULL)
7249 + (comp_dir != NULL));
7250 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7251 result_has_children, num_extra_attrs);
7252
7253 /* Copy over the attributes from the stub to the DIE we just read in. */
7254 comp_unit_die = *result_comp_unit_die;
7255 i = comp_unit_die->num_attrs;
7256 if (stmt_list != NULL)
7257 comp_unit_die->attrs[i++] = *stmt_list;
7258 if (low_pc != NULL)
7259 comp_unit_die->attrs[i++] = *low_pc;
7260 if (high_pc != NULL)
7261 comp_unit_die->attrs[i++] = *high_pc;
7262 if (ranges != NULL)
7263 comp_unit_die->attrs[i++] = *ranges;
7264 if (comp_dir != NULL)
7265 comp_unit_die->attrs[i++] = *comp_dir;
7266 comp_unit_die->num_attrs += num_extra_attrs;
7267
7268 if (dwarf_die_debug)
7269 {
7270 fprintf_unfiltered (gdb_stdlog,
7271 "Read die from %s@0x%x of %s:\n",
7272 get_section_name (section),
7273 (unsigned) (begin_info_ptr - section->buffer),
7274 bfd_get_filename (abfd));
7275 dump_die (comp_unit_die, dwarf_die_debug);
7276 }
7277
7278 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7279 TUs by skipping the stub and going directly to the entry in the DWO file.
7280 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7281 to get it via circuitous means. Blech. */
7282 if (comp_dir != NULL)
7283 result_reader->comp_dir = DW_STRING (comp_dir);
7284
7285 /* Skip dummy compilation units. */
7286 if (info_ptr >= begin_info_ptr + dwo_unit->length
7287 || peek_abbrev_code (abfd, info_ptr) == 0)
7288 return 0;
7289
7290 *result_info_ptr = info_ptr;
7291 return 1;
7292 }
7293
7294 /* Subroutine of init_cutu_and_read_dies to simplify it.
7295 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7296 Returns NULL if the specified DWO unit cannot be found. */
7297
7298 static struct dwo_unit *
7299 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7300 struct die_info *comp_unit_die)
7301 {
7302 struct dwarf2_cu *cu = this_cu->cu;
7303 ULONGEST signature;
7304 struct dwo_unit *dwo_unit;
7305 const char *comp_dir, *dwo_name;
7306
7307 gdb_assert (cu != NULL);
7308
7309 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7310 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7311 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7312
7313 if (this_cu->is_debug_types)
7314 {
7315 struct signatured_type *sig_type;
7316
7317 /* Since this_cu is the first member of struct signatured_type,
7318 we can go from a pointer to one to a pointer to the other. */
7319 sig_type = (struct signatured_type *) this_cu;
7320 signature = sig_type->signature;
7321 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7322 }
7323 else
7324 {
7325 struct attribute *attr;
7326
7327 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7328 if (! attr)
7329 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7330 " [in module %s]"),
7331 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7332 signature = DW_UNSND (attr);
7333 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7334 signature);
7335 }
7336
7337 return dwo_unit;
7338 }
7339
7340 /* Subroutine of init_cutu_and_read_dies to simplify it.
7341 See it for a description of the parameters.
7342 Read a TU directly from a DWO file, bypassing the stub. */
7343
7344 static void
7345 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7346 int use_existing_cu, int keep,
7347 die_reader_func_ftype *die_reader_func,
7348 void *data)
7349 {
7350 std::unique_ptr<dwarf2_cu> new_cu;
7351 struct signatured_type *sig_type;
7352 struct die_reader_specs reader;
7353 const gdb_byte *info_ptr;
7354 struct die_info *comp_unit_die;
7355 int has_children;
7356 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7357
7358 /* Verify we can do the following downcast, and that we have the
7359 data we need. */
7360 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7361 sig_type = (struct signatured_type *) this_cu;
7362 gdb_assert (sig_type->dwo_unit != NULL);
7363
7364 if (use_existing_cu && this_cu->cu != NULL)
7365 {
7366 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7367 /* There's no need to do the rereading_dwo_cu handling that
7368 init_cutu_and_read_dies does since we don't read the stub. */
7369 }
7370 else
7371 {
7372 /* If !use_existing_cu, this_cu->cu must be NULL. */
7373 gdb_assert (this_cu->cu == NULL);
7374 new_cu.reset (new dwarf2_cu (this_cu));
7375 }
7376
7377 /* A future optimization, if needed, would be to use an existing
7378 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7379 could share abbrev tables. */
7380
7381 /* The abbreviation table used by READER, this must live at least as long as
7382 READER. */
7383 abbrev_table_up dwo_abbrev_table;
7384
7385 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7386 NULL /* stub_comp_unit_die */,
7387 sig_type->dwo_unit->dwo_file->comp_dir,
7388 &reader, &info_ptr,
7389 &comp_unit_die, &has_children,
7390 &dwo_abbrev_table) == 0)
7391 {
7392 /* Dummy die. */
7393 return;
7394 }
7395
7396 /* All the "real" work is done here. */
7397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7398
7399 /* This duplicates the code in init_cutu_and_read_dies,
7400 but the alternative is making the latter more complex.
7401 This function is only for the special case of using DWO files directly:
7402 no point in overly complicating the general case just to handle this. */
7403 if (new_cu != NULL && keep)
7404 {
7405 /* Link this CU into read_in_chain. */
7406 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7407 dwarf2_per_objfile->read_in_chain = this_cu;
7408 /* The chain owns it now. */
7409 new_cu.release ();
7410 }
7411 }
7412
7413 /* Initialize a CU (or TU) and read its DIEs.
7414 If the CU defers to a DWO file, read the DWO file as well.
7415
7416 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7417 Otherwise the table specified in the comp unit header is read in and used.
7418 This is an optimization for when we already have the abbrev table.
7419
7420 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7421 Otherwise, a new CU is allocated with xmalloc.
7422
7423 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7424 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7425
7426 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7427 linker) then DIE_READER_FUNC will not get called. */
7428
7429 static void
7430 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7431 struct abbrev_table *abbrev_table,
7432 int use_existing_cu, int keep,
7433 bool skip_partial,
7434 die_reader_func_ftype *die_reader_func,
7435 void *data)
7436 {
7437 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7438 struct objfile *objfile = dwarf2_per_objfile->objfile;
7439 struct dwarf2_section_info *section = this_cu->section;
7440 bfd *abfd = get_section_bfd_owner (section);
7441 struct dwarf2_cu *cu;
7442 const gdb_byte *begin_info_ptr, *info_ptr;
7443 struct die_reader_specs reader;
7444 struct die_info *comp_unit_die;
7445 int has_children;
7446 struct attribute *attr;
7447 struct signatured_type *sig_type = NULL;
7448 struct dwarf2_section_info *abbrev_section;
7449 /* Non-zero if CU currently points to a DWO file and we need to
7450 reread it. When this happens we need to reread the skeleton die
7451 before we can reread the DWO file (this only applies to CUs, not TUs). */
7452 int rereading_dwo_cu = 0;
7453
7454 if (dwarf_die_debug)
7455 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7456 this_cu->is_debug_types ? "type" : "comp",
7457 sect_offset_str (this_cu->sect_off));
7458
7459 if (use_existing_cu)
7460 gdb_assert (keep);
7461
7462 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7463 file (instead of going through the stub), short-circuit all of this. */
7464 if (this_cu->reading_dwo_directly)
7465 {
7466 /* Narrow down the scope of possibilities to have to understand. */
7467 gdb_assert (this_cu->is_debug_types);
7468 gdb_assert (abbrev_table == NULL);
7469 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7470 die_reader_func, data);
7471 return;
7472 }
7473
7474 /* This is cheap if the section is already read in. */
7475 dwarf2_read_section (objfile, section);
7476
7477 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7478
7479 abbrev_section = get_abbrev_section_for_cu (this_cu);
7480
7481 std::unique_ptr<dwarf2_cu> new_cu;
7482 if (use_existing_cu && this_cu->cu != NULL)
7483 {
7484 cu = this_cu->cu;
7485 /* If this CU is from a DWO file we need to start over, we need to
7486 refetch the attributes from the skeleton CU.
7487 This could be optimized by retrieving those attributes from when we
7488 were here the first time: the previous comp_unit_die was stored in
7489 comp_unit_obstack. But there's no data yet that we need this
7490 optimization. */
7491 if (cu->dwo_unit != NULL)
7492 rereading_dwo_cu = 1;
7493 }
7494 else
7495 {
7496 /* If !use_existing_cu, this_cu->cu must be NULL. */
7497 gdb_assert (this_cu->cu == NULL);
7498 new_cu.reset (new dwarf2_cu (this_cu));
7499 cu = new_cu.get ();
7500 }
7501
7502 /* Get the header. */
7503 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7504 {
7505 /* We already have the header, there's no need to read it in again. */
7506 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7507 }
7508 else
7509 {
7510 if (this_cu->is_debug_types)
7511 {
7512 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7513 &cu->header, section,
7514 abbrev_section, info_ptr,
7515 rcuh_kind::TYPE);
7516
7517 /* Since per_cu is the first member of struct signatured_type,
7518 we can go from a pointer to one to a pointer to the other. */
7519 sig_type = (struct signatured_type *) this_cu;
7520 gdb_assert (sig_type->signature == cu->header.signature);
7521 gdb_assert (sig_type->type_offset_in_tu
7522 == cu->header.type_cu_offset_in_tu);
7523 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7524
7525 /* LENGTH has not been set yet for type units if we're
7526 using .gdb_index. */
7527 this_cu->length = get_cu_length (&cu->header);
7528
7529 /* Establish the type offset that can be used to lookup the type. */
7530 sig_type->type_offset_in_section =
7531 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7532
7533 this_cu->dwarf_version = cu->header.version;
7534 }
7535 else
7536 {
7537 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7538 &cu->header, section,
7539 abbrev_section,
7540 info_ptr,
7541 rcuh_kind::COMPILE);
7542
7543 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7544 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7545 this_cu->dwarf_version = cu->header.version;
7546 }
7547 }
7548
7549 /* Skip dummy compilation units. */
7550 if (info_ptr >= begin_info_ptr + this_cu->length
7551 || peek_abbrev_code (abfd, info_ptr) == 0)
7552 return;
7553
7554 /* If we don't have them yet, read the abbrevs for this compilation unit.
7555 And if we need to read them now, make sure they're freed when we're
7556 done (own the table through ABBREV_TABLE_HOLDER). */
7557 abbrev_table_up abbrev_table_holder;
7558 if (abbrev_table != NULL)
7559 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7560 else
7561 {
7562 abbrev_table_holder
7563 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7564 cu->header.abbrev_sect_off);
7565 abbrev_table = abbrev_table_holder.get ();
7566 }
7567
7568 /* Read the top level CU/TU die. */
7569 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7570 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7571
7572 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7573 return;
7574
7575 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7576 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7577 table from the DWO file and pass the ownership over to us. It will be
7578 referenced from READER, so we must make sure to free it after we're done
7579 with READER.
7580
7581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7582 DWO CU, that this test will fail (the attribute will not be present). */
7583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7584 abbrev_table_up dwo_abbrev_table;
7585 if (attr)
7586 {
7587 struct dwo_unit *dwo_unit;
7588 struct die_info *dwo_comp_unit_die;
7589
7590 if (has_children)
7591 {
7592 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7593 " has children (offset %s) [in module %s]"),
7594 sect_offset_str (this_cu->sect_off),
7595 bfd_get_filename (abfd));
7596 }
7597 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7598 if (dwo_unit != NULL)
7599 {
7600 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7601 comp_unit_die, NULL,
7602 &reader, &info_ptr,
7603 &dwo_comp_unit_die, &has_children,
7604 &dwo_abbrev_table) == 0)
7605 {
7606 /* Dummy die. */
7607 return;
7608 }
7609 comp_unit_die = dwo_comp_unit_die;
7610 }
7611 else
7612 {
7613 /* Yikes, we couldn't find the rest of the DIE, we only have
7614 the stub. A complaint has already been logged. There's
7615 not much more we can do except pass on the stub DIE to
7616 die_reader_func. We don't want to throw an error on bad
7617 debug info. */
7618 }
7619 }
7620
7621 /* All of the above is setup for this call. Yikes. */
7622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7623
7624 /* Done, clean up. */
7625 if (new_cu != NULL && keep)
7626 {
7627 /* Link this CU into read_in_chain. */
7628 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7629 dwarf2_per_objfile->read_in_chain = this_cu;
7630 /* The chain owns it now. */
7631 new_cu.release ();
7632 }
7633 }
7634
7635 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7636 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7637 to have already done the lookup to find the DWO file).
7638
7639 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7640 THIS_CU->is_debug_types, but nothing else.
7641
7642 We fill in THIS_CU->length.
7643
7644 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7645 linker) then DIE_READER_FUNC will not get called.
7646
7647 THIS_CU->cu is always freed when done.
7648 This is done in order to not leave THIS_CU->cu in a state where we have
7649 to care whether it refers to the "main" CU or the DWO CU. */
7650
7651 static void
7652 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7653 struct dwo_file *dwo_file,
7654 die_reader_func_ftype *die_reader_func,
7655 void *data)
7656 {
7657 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7658 struct objfile *objfile = dwarf2_per_objfile->objfile;
7659 struct dwarf2_section_info *section = this_cu->section;
7660 bfd *abfd = get_section_bfd_owner (section);
7661 struct dwarf2_section_info *abbrev_section;
7662 const gdb_byte *begin_info_ptr, *info_ptr;
7663 struct die_reader_specs reader;
7664 struct die_info *comp_unit_die;
7665 int has_children;
7666
7667 if (dwarf_die_debug)
7668 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7669 this_cu->is_debug_types ? "type" : "comp",
7670 sect_offset_str (this_cu->sect_off));
7671
7672 gdb_assert (this_cu->cu == NULL);
7673
7674 abbrev_section = (dwo_file != NULL
7675 ? &dwo_file->sections.abbrev
7676 : get_abbrev_section_for_cu (this_cu));
7677
7678 /* This is cheap if the section is already read in. */
7679 dwarf2_read_section (objfile, section);
7680
7681 struct dwarf2_cu cu (this_cu);
7682
7683 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7684 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7685 &cu.header, section,
7686 abbrev_section, info_ptr,
7687 (this_cu->is_debug_types
7688 ? rcuh_kind::TYPE
7689 : rcuh_kind::COMPILE));
7690
7691 this_cu->length = get_cu_length (&cu.header);
7692
7693 /* Skip dummy compilation units. */
7694 if (info_ptr >= begin_info_ptr + this_cu->length
7695 || peek_abbrev_code (abfd, info_ptr) == 0)
7696 return;
7697
7698 abbrev_table_up abbrev_table
7699 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7700 cu.header.abbrev_sect_off);
7701
7702 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7703 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7704
7705 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7706 }
7707
7708 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7709 does not lookup the specified DWO file.
7710 This cannot be used to read DWO files.
7711
7712 THIS_CU->cu is always freed when done.
7713 This is done in order to not leave THIS_CU->cu in a state where we have
7714 to care whether it refers to the "main" CU or the DWO CU.
7715 We can revisit this if the data shows there's a performance issue. */
7716
7717 static void
7718 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7719 die_reader_func_ftype *die_reader_func,
7720 void *data)
7721 {
7722 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7723 }
7724 \f
7725 /* Type Unit Groups.
7726
7727 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7728 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7729 so that all types coming from the same compilation (.o file) are grouped
7730 together. A future step could be to put the types in the same symtab as
7731 the CU the types ultimately came from. */
7732
7733 static hashval_t
7734 hash_type_unit_group (const void *item)
7735 {
7736 const struct type_unit_group *tu_group
7737 = (const struct type_unit_group *) item;
7738
7739 return hash_stmt_list_entry (&tu_group->hash);
7740 }
7741
7742 static int
7743 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7744 {
7745 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7746 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7747
7748 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7749 }
7750
7751 /* Allocate a hash table for type unit groups. */
7752
7753 static htab_t
7754 allocate_type_unit_groups_table (struct objfile *objfile)
7755 {
7756 return htab_create_alloc_ex (3,
7757 hash_type_unit_group,
7758 eq_type_unit_group,
7759 NULL,
7760 &objfile->objfile_obstack,
7761 hashtab_obstack_allocate,
7762 dummy_obstack_deallocate);
7763 }
7764
7765 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7766 partial symtabs. We combine several TUs per psymtab to not let the size
7767 of any one psymtab grow too big. */
7768 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7769 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7770
7771 /* Helper routine for get_type_unit_group.
7772 Create the type_unit_group object used to hold one or more TUs. */
7773
7774 static struct type_unit_group *
7775 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7776 {
7777 struct dwarf2_per_objfile *dwarf2_per_objfile
7778 = cu->per_cu->dwarf2_per_objfile;
7779 struct objfile *objfile = dwarf2_per_objfile->objfile;
7780 struct dwarf2_per_cu_data *per_cu;
7781 struct type_unit_group *tu_group;
7782
7783 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7784 struct type_unit_group);
7785 per_cu = &tu_group->per_cu;
7786 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7787
7788 if (dwarf2_per_objfile->using_index)
7789 {
7790 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7791 struct dwarf2_per_cu_quick_data);
7792 }
7793 else
7794 {
7795 unsigned int line_offset = to_underlying (line_offset_struct);
7796 struct partial_symtab *pst;
7797 std::string name;
7798
7799 /* Give the symtab a useful name for debug purposes. */
7800 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7801 name = string_printf ("<type_units_%d>",
7802 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7803 else
7804 name = string_printf ("<type_units_at_0x%x>", line_offset);
7805
7806 pst = create_partial_symtab (per_cu, name.c_str ());
7807 pst->anonymous = 1;
7808 }
7809
7810 tu_group->hash.dwo_unit = cu->dwo_unit;
7811 tu_group->hash.line_sect_off = line_offset_struct;
7812
7813 return tu_group;
7814 }
7815
7816 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7817 STMT_LIST is a DW_AT_stmt_list attribute. */
7818
7819 static struct type_unit_group *
7820 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7821 {
7822 struct dwarf2_per_objfile *dwarf2_per_objfile
7823 = cu->per_cu->dwarf2_per_objfile;
7824 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7825 struct type_unit_group *tu_group;
7826 void **slot;
7827 unsigned int line_offset;
7828 struct type_unit_group type_unit_group_for_lookup;
7829
7830 if (dwarf2_per_objfile->type_unit_groups == NULL)
7831 {
7832 dwarf2_per_objfile->type_unit_groups =
7833 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7834 }
7835
7836 /* Do we need to create a new group, or can we use an existing one? */
7837
7838 if (stmt_list)
7839 {
7840 line_offset = DW_UNSND (stmt_list);
7841 ++tu_stats->nr_symtab_sharers;
7842 }
7843 else
7844 {
7845 /* Ugh, no stmt_list. Rare, but we have to handle it.
7846 We can do various things here like create one group per TU or
7847 spread them over multiple groups to split up the expansion work.
7848 To avoid worst case scenarios (too many groups or too large groups)
7849 we, umm, group them in bunches. */
7850 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7851 | (tu_stats->nr_stmt_less_type_units
7852 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7853 ++tu_stats->nr_stmt_less_type_units;
7854 }
7855
7856 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7857 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7858 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7859 &type_unit_group_for_lookup, INSERT);
7860 if (*slot != NULL)
7861 {
7862 tu_group = (struct type_unit_group *) *slot;
7863 gdb_assert (tu_group != NULL);
7864 }
7865 else
7866 {
7867 sect_offset line_offset_struct = (sect_offset) line_offset;
7868 tu_group = create_type_unit_group (cu, line_offset_struct);
7869 *slot = tu_group;
7870 ++tu_stats->nr_symtabs;
7871 }
7872
7873 return tu_group;
7874 }
7875 \f
7876 /* Partial symbol tables. */
7877
7878 /* Create a psymtab named NAME and assign it to PER_CU.
7879
7880 The caller must fill in the following details:
7881 dirname, textlow, texthigh. */
7882
7883 static struct partial_symtab *
7884 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7885 {
7886 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7887 struct partial_symtab *pst;
7888
7889 pst = start_psymtab_common (objfile, name, 0);
7890
7891 pst->psymtabs_addrmap_supported = 1;
7892
7893 /* This is the glue that links PST into GDB's symbol API. */
7894 pst->read_symtab_private = per_cu;
7895 pst->read_symtab = dwarf2_read_symtab;
7896 per_cu->v.psymtab = pst;
7897
7898 return pst;
7899 }
7900
7901 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7902 type. */
7903
7904 struct process_psymtab_comp_unit_data
7905 {
7906 /* True if we are reading a DW_TAG_partial_unit. */
7907
7908 int want_partial_unit;
7909
7910 /* The "pretend" language that is used if the CU doesn't declare a
7911 language. */
7912
7913 enum language pretend_language;
7914 };
7915
7916 /* die_reader_func for process_psymtab_comp_unit. */
7917
7918 static void
7919 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7920 const gdb_byte *info_ptr,
7921 struct die_info *comp_unit_die,
7922 int has_children,
7923 void *data)
7924 {
7925 struct dwarf2_cu *cu = reader->cu;
7926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7928 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7929 CORE_ADDR baseaddr;
7930 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7931 struct partial_symtab *pst;
7932 enum pc_bounds_kind cu_bounds_kind;
7933 const char *filename;
7934 struct process_psymtab_comp_unit_data *info
7935 = (struct process_psymtab_comp_unit_data *) data;
7936
7937 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7938 return;
7939
7940 gdb_assert (! per_cu->is_debug_types);
7941
7942 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7943
7944 /* Allocate a new partial symbol table structure. */
7945 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7946 if (filename == NULL)
7947 filename = "";
7948
7949 pst = create_partial_symtab (per_cu, filename);
7950
7951 /* This must be done before calling dwarf2_build_include_psymtabs. */
7952 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7953
7954 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7955
7956 dwarf2_find_base_address (comp_unit_die, cu);
7957
7958 /* Possibly set the default values of LOWPC and HIGHPC from
7959 `DW_AT_ranges'. */
7960 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7961 &best_highpc, cu, pst);
7962 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7963 {
7964 CORE_ADDR low
7965 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7966 - baseaddr);
7967 CORE_ADDR high
7968 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7969 - baseaddr - 1);
7970 /* Store the contiguous range if it is not empty; it can be
7971 empty for CUs with no code. */
7972 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7973 low, high, pst);
7974 }
7975
7976 /* Check if comp unit has_children.
7977 If so, read the rest of the partial symbols from this comp unit.
7978 If not, there's no more debug_info for this comp unit. */
7979 if (has_children)
7980 {
7981 struct partial_die_info *first_die;
7982 CORE_ADDR lowpc, highpc;
7983
7984 lowpc = ((CORE_ADDR) -1);
7985 highpc = ((CORE_ADDR) 0);
7986
7987 first_die = load_partial_dies (reader, info_ptr, 1);
7988
7989 scan_partial_symbols (first_die, &lowpc, &highpc,
7990 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7991
7992 /* If we didn't find a lowpc, set it to highpc to avoid
7993 complaints from `maint check'. */
7994 if (lowpc == ((CORE_ADDR) -1))
7995 lowpc = highpc;
7996
7997 /* If the compilation unit didn't have an explicit address range,
7998 then use the information extracted from its child dies. */
7999 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8000 {
8001 best_lowpc = lowpc;
8002 best_highpc = highpc;
8003 }
8004 }
8005 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8006 best_lowpc + baseaddr)
8007 - baseaddr);
8008 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8009 best_highpc + baseaddr)
8010 - baseaddr);
8011
8012 end_psymtab_common (objfile, pst);
8013
8014 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8015 {
8016 int i;
8017 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8018 struct dwarf2_per_cu_data *iter;
8019
8020 /* Fill in 'dependencies' here; we fill in 'users' in a
8021 post-pass. */
8022 pst->number_of_dependencies = len;
8023 pst->dependencies
8024 = objfile->partial_symtabs->allocate_dependencies (len);
8025 for (i = 0;
8026 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8027 i, iter);
8028 ++i)
8029 pst->dependencies[i] = iter->v.psymtab;
8030
8031 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8032 }
8033
8034 /* Get the list of files included in the current compilation unit,
8035 and build a psymtab for each of them. */
8036 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8037
8038 if (dwarf_read_debug)
8039 fprintf_unfiltered (gdb_stdlog,
8040 "Psymtab for %s unit @%s: %s - %s"
8041 ", %d global, %d static syms\n",
8042 per_cu->is_debug_types ? "type" : "comp",
8043 sect_offset_str (per_cu->sect_off),
8044 paddress (gdbarch, pst->text_low (objfile)),
8045 paddress (gdbarch, pst->text_high (objfile)),
8046 pst->n_global_syms, pst->n_static_syms);
8047 }
8048
8049 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8050 Process compilation unit THIS_CU for a psymtab. */
8051
8052 static void
8053 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8054 int want_partial_unit,
8055 enum language pretend_language)
8056 {
8057 /* If this compilation unit was already read in, free the
8058 cached copy in order to read it in again. This is
8059 necessary because we skipped some symbols when we first
8060 read in the compilation unit (see load_partial_dies).
8061 This problem could be avoided, but the benefit is unclear. */
8062 if (this_cu->cu != NULL)
8063 free_one_cached_comp_unit (this_cu);
8064
8065 if (this_cu->is_debug_types)
8066 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8067 build_type_psymtabs_reader, NULL);
8068 else
8069 {
8070 process_psymtab_comp_unit_data info;
8071 info.want_partial_unit = want_partial_unit;
8072 info.pretend_language = pretend_language;
8073 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8074 process_psymtab_comp_unit_reader, &info);
8075 }
8076
8077 /* Age out any secondary CUs. */
8078 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8079 }
8080
8081 /* Reader function for build_type_psymtabs. */
8082
8083 static void
8084 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8085 const gdb_byte *info_ptr,
8086 struct die_info *type_unit_die,
8087 int has_children,
8088 void *data)
8089 {
8090 struct dwarf2_per_objfile *dwarf2_per_objfile
8091 = reader->cu->per_cu->dwarf2_per_objfile;
8092 struct objfile *objfile = dwarf2_per_objfile->objfile;
8093 struct dwarf2_cu *cu = reader->cu;
8094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8095 struct signatured_type *sig_type;
8096 struct type_unit_group *tu_group;
8097 struct attribute *attr;
8098 struct partial_die_info *first_die;
8099 CORE_ADDR lowpc, highpc;
8100 struct partial_symtab *pst;
8101
8102 gdb_assert (data == NULL);
8103 gdb_assert (per_cu->is_debug_types);
8104 sig_type = (struct signatured_type *) per_cu;
8105
8106 if (! has_children)
8107 return;
8108
8109 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8110 tu_group = get_type_unit_group (cu, attr);
8111
8112 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8113
8114 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8115 pst = create_partial_symtab (per_cu, "");
8116 pst->anonymous = 1;
8117
8118 first_die = load_partial_dies (reader, info_ptr, 1);
8119
8120 lowpc = (CORE_ADDR) -1;
8121 highpc = (CORE_ADDR) 0;
8122 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8123
8124 end_psymtab_common (objfile, pst);
8125 }
8126
8127 /* Struct used to sort TUs by their abbreviation table offset. */
8128
8129 struct tu_abbrev_offset
8130 {
8131 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8132 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8133 {}
8134
8135 signatured_type *sig_type;
8136 sect_offset abbrev_offset;
8137 };
8138
8139 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8140
8141 static bool
8142 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8143 const struct tu_abbrev_offset &b)
8144 {
8145 return a.abbrev_offset < b.abbrev_offset;
8146 }
8147
8148 /* Efficiently read all the type units.
8149 This does the bulk of the work for build_type_psymtabs.
8150
8151 The efficiency is because we sort TUs by the abbrev table they use and
8152 only read each abbrev table once. In one program there are 200K TUs
8153 sharing 8K abbrev tables.
8154
8155 The main purpose of this function is to support building the
8156 dwarf2_per_objfile->type_unit_groups table.
8157 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8158 can collapse the search space by grouping them by stmt_list.
8159 The savings can be significant, in the same program from above the 200K TUs
8160 share 8K stmt_list tables.
8161
8162 FUNC is expected to call get_type_unit_group, which will create the
8163 struct type_unit_group if necessary and add it to
8164 dwarf2_per_objfile->type_unit_groups. */
8165
8166 static void
8167 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8168 {
8169 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8170 abbrev_table_up abbrev_table;
8171 sect_offset abbrev_offset;
8172
8173 /* It's up to the caller to not call us multiple times. */
8174 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8175
8176 if (dwarf2_per_objfile->all_type_units.empty ())
8177 return;
8178
8179 /* TUs typically share abbrev tables, and there can be way more TUs than
8180 abbrev tables. Sort by abbrev table to reduce the number of times we
8181 read each abbrev table in.
8182 Alternatives are to punt or to maintain a cache of abbrev tables.
8183 This is simpler and efficient enough for now.
8184
8185 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8186 symtab to use). Typically TUs with the same abbrev offset have the same
8187 stmt_list value too so in practice this should work well.
8188
8189 The basic algorithm here is:
8190
8191 sort TUs by abbrev table
8192 for each TU with same abbrev table:
8193 read abbrev table if first user
8194 read TU top level DIE
8195 [IWBN if DWO skeletons had DW_AT_stmt_list]
8196 call FUNC */
8197
8198 if (dwarf_read_debug)
8199 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8200
8201 /* Sort in a separate table to maintain the order of all_type_units
8202 for .gdb_index: TU indices directly index all_type_units. */
8203 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8204 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8205
8206 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8207 sorted_by_abbrev.emplace_back
8208 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8209 sig_type->per_cu.section,
8210 sig_type->per_cu.sect_off));
8211
8212 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8213 sort_tu_by_abbrev_offset);
8214
8215 abbrev_offset = (sect_offset) ~(unsigned) 0;
8216
8217 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8218 {
8219 /* Switch to the next abbrev table if necessary. */
8220 if (abbrev_table == NULL
8221 || tu.abbrev_offset != abbrev_offset)
8222 {
8223 abbrev_offset = tu.abbrev_offset;
8224 abbrev_table =
8225 abbrev_table_read_table (dwarf2_per_objfile,
8226 &dwarf2_per_objfile->abbrev,
8227 abbrev_offset);
8228 ++tu_stats->nr_uniq_abbrev_tables;
8229 }
8230
8231 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8232 0, 0, false, build_type_psymtabs_reader, NULL);
8233 }
8234 }
8235
8236 /* Print collected type unit statistics. */
8237
8238 static void
8239 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8240 {
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242
8243 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8244 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8245 dwarf2_per_objfile->all_type_units.size ());
8246 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8247 tu_stats->nr_uniq_abbrev_tables);
8248 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8249 tu_stats->nr_symtabs);
8250 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8251 tu_stats->nr_symtab_sharers);
8252 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8253 tu_stats->nr_stmt_less_type_units);
8254 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8255 tu_stats->nr_all_type_units_reallocs);
8256 }
8257
8258 /* Traversal function for build_type_psymtabs. */
8259
8260 static int
8261 build_type_psymtab_dependencies (void **slot, void *info)
8262 {
8263 struct dwarf2_per_objfile *dwarf2_per_objfile
8264 = (struct dwarf2_per_objfile *) info;
8265 struct objfile *objfile = dwarf2_per_objfile->objfile;
8266 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8267 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8268 struct partial_symtab *pst = per_cu->v.psymtab;
8269 int len = VEC_length (sig_type_ptr, tu_group->tus);
8270 struct signatured_type *iter;
8271 int i;
8272
8273 gdb_assert (len > 0);
8274 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8275
8276 pst->number_of_dependencies = len;
8277 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8278 for (i = 0;
8279 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8280 ++i)
8281 {
8282 gdb_assert (iter->per_cu.is_debug_types);
8283 pst->dependencies[i] = iter->per_cu.v.psymtab;
8284 iter->type_unit_group = tu_group;
8285 }
8286
8287 VEC_free (sig_type_ptr, tu_group->tus);
8288
8289 return 1;
8290 }
8291
8292 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8293 Build partial symbol tables for the .debug_types comp-units. */
8294
8295 static void
8296 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8297 {
8298 if (! create_all_type_units (dwarf2_per_objfile))
8299 return;
8300
8301 build_type_psymtabs_1 (dwarf2_per_objfile);
8302 }
8303
8304 /* Traversal function for process_skeletonless_type_unit.
8305 Read a TU in a DWO file and build partial symbols for it. */
8306
8307 static int
8308 process_skeletonless_type_unit (void **slot, void *info)
8309 {
8310 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8311 struct dwarf2_per_objfile *dwarf2_per_objfile
8312 = (struct dwarf2_per_objfile *) info;
8313 struct signatured_type find_entry, *entry;
8314
8315 /* If this TU doesn't exist in the global table, add it and read it in. */
8316
8317 if (dwarf2_per_objfile->signatured_types == NULL)
8318 {
8319 dwarf2_per_objfile->signatured_types
8320 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8321 }
8322
8323 find_entry.signature = dwo_unit->signature;
8324 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8325 INSERT);
8326 /* If we've already seen this type there's nothing to do. What's happening
8327 is we're doing our own version of comdat-folding here. */
8328 if (*slot != NULL)
8329 return 1;
8330
8331 /* This does the job that create_all_type_units would have done for
8332 this TU. */
8333 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8334 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8335 *slot = entry;
8336
8337 /* This does the job that build_type_psymtabs_1 would have done. */
8338 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8339 build_type_psymtabs_reader, NULL);
8340
8341 return 1;
8342 }
8343
8344 /* Traversal function for process_skeletonless_type_units. */
8345
8346 static int
8347 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8348 {
8349 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8350
8351 if (dwo_file->tus != NULL)
8352 {
8353 htab_traverse_noresize (dwo_file->tus,
8354 process_skeletonless_type_unit, info);
8355 }
8356
8357 return 1;
8358 }
8359
8360 /* Scan all TUs of DWO files, verifying we've processed them.
8361 This is needed in case a TU was emitted without its skeleton.
8362 Note: This can't be done until we know what all the DWO files are. */
8363
8364 static void
8365 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8366 {
8367 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8368 if (get_dwp_file (dwarf2_per_objfile) == NULL
8369 && dwarf2_per_objfile->dwo_files != NULL)
8370 {
8371 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8372 process_dwo_file_for_skeletonless_type_units,
8373 dwarf2_per_objfile);
8374 }
8375 }
8376
8377 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8378
8379 static void
8380 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8381 {
8382 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8383 {
8384 struct partial_symtab *pst = per_cu->v.psymtab;
8385
8386 if (pst == NULL)
8387 continue;
8388
8389 for (int j = 0; j < pst->number_of_dependencies; ++j)
8390 {
8391 /* Set the 'user' field only if it is not already set. */
8392 if (pst->dependencies[j]->user == NULL)
8393 pst->dependencies[j]->user = pst;
8394 }
8395 }
8396 }
8397
8398 /* Build the partial symbol table by doing a quick pass through the
8399 .debug_info and .debug_abbrev sections. */
8400
8401 static void
8402 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8403 {
8404 struct objfile *objfile = dwarf2_per_objfile->objfile;
8405
8406 if (dwarf_read_debug)
8407 {
8408 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8409 objfile_name (objfile));
8410 }
8411
8412 dwarf2_per_objfile->reading_partial_symbols = 1;
8413
8414 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8415
8416 /* Any cached compilation units will be linked by the per-objfile
8417 read_in_chain. Make sure to free them when we're done. */
8418 free_cached_comp_units freer (dwarf2_per_objfile);
8419
8420 build_type_psymtabs (dwarf2_per_objfile);
8421
8422 create_all_comp_units (dwarf2_per_objfile);
8423
8424 /* Create a temporary address map on a temporary obstack. We later
8425 copy this to the final obstack. */
8426 auto_obstack temp_obstack;
8427
8428 scoped_restore save_psymtabs_addrmap
8429 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8430 addrmap_create_mutable (&temp_obstack));
8431
8432 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8433 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8434
8435 /* This has to wait until we read the CUs, we need the list of DWOs. */
8436 process_skeletonless_type_units (dwarf2_per_objfile);
8437
8438 /* Now that all TUs have been processed we can fill in the dependencies. */
8439 if (dwarf2_per_objfile->type_unit_groups != NULL)
8440 {
8441 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8442 build_type_psymtab_dependencies, dwarf2_per_objfile);
8443 }
8444
8445 if (dwarf_read_debug)
8446 print_tu_stats (dwarf2_per_objfile);
8447
8448 set_partial_user (dwarf2_per_objfile);
8449
8450 objfile->partial_symtabs->psymtabs_addrmap
8451 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8452 objfile->partial_symtabs->obstack ());
8453 /* At this point we want to keep the address map. */
8454 save_psymtabs_addrmap.release ();
8455
8456 if (dwarf_read_debug)
8457 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8458 objfile_name (objfile));
8459 }
8460
8461 /* die_reader_func for load_partial_comp_unit. */
8462
8463 static void
8464 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8465 const gdb_byte *info_ptr,
8466 struct die_info *comp_unit_die,
8467 int has_children,
8468 void *data)
8469 {
8470 struct dwarf2_cu *cu = reader->cu;
8471
8472 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8473
8474 /* Check if comp unit has_children.
8475 If so, read the rest of the partial symbols from this comp unit.
8476 If not, there's no more debug_info for this comp unit. */
8477 if (has_children)
8478 load_partial_dies (reader, info_ptr, 0);
8479 }
8480
8481 /* Load the partial DIEs for a secondary CU into memory.
8482 This is also used when rereading a primary CU with load_all_dies. */
8483
8484 static void
8485 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8486 {
8487 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8488 load_partial_comp_unit_reader, NULL);
8489 }
8490
8491 static void
8492 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8493 struct dwarf2_section_info *section,
8494 struct dwarf2_section_info *abbrev_section,
8495 unsigned int is_dwz)
8496 {
8497 const gdb_byte *info_ptr;
8498 struct objfile *objfile = dwarf2_per_objfile->objfile;
8499
8500 if (dwarf_read_debug)
8501 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8502 get_section_name (section),
8503 get_section_file_name (section));
8504
8505 dwarf2_read_section (objfile, section);
8506
8507 info_ptr = section->buffer;
8508
8509 while (info_ptr < section->buffer + section->size)
8510 {
8511 struct dwarf2_per_cu_data *this_cu;
8512
8513 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8514
8515 comp_unit_head cu_header;
8516 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8517 abbrev_section, info_ptr,
8518 rcuh_kind::COMPILE);
8519
8520 /* Save the compilation unit for later lookup. */
8521 if (cu_header.unit_type != DW_UT_type)
8522 {
8523 this_cu = XOBNEW (&objfile->objfile_obstack,
8524 struct dwarf2_per_cu_data);
8525 memset (this_cu, 0, sizeof (*this_cu));
8526 }
8527 else
8528 {
8529 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8530 struct signatured_type);
8531 memset (sig_type, 0, sizeof (*sig_type));
8532 sig_type->signature = cu_header.signature;
8533 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8534 this_cu = &sig_type->per_cu;
8535 }
8536 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8537 this_cu->sect_off = sect_off;
8538 this_cu->length = cu_header.length + cu_header.initial_length_size;
8539 this_cu->is_dwz = is_dwz;
8540 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8541 this_cu->section = section;
8542
8543 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8544
8545 info_ptr = info_ptr + this_cu->length;
8546 }
8547 }
8548
8549 /* Create a list of all compilation units in OBJFILE.
8550 This is only done for -readnow and building partial symtabs. */
8551
8552 static void
8553 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8554 {
8555 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8556 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8557 &dwarf2_per_objfile->abbrev, 0);
8558
8559 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8560 if (dwz != NULL)
8561 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8562 1);
8563 }
8564
8565 /* Process all loaded DIEs for compilation unit CU, starting at
8566 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8567 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8568 DW_AT_ranges). See the comments of add_partial_subprogram on how
8569 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8570
8571 static void
8572 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8573 CORE_ADDR *highpc, int set_addrmap,
8574 struct dwarf2_cu *cu)
8575 {
8576 struct partial_die_info *pdi;
8577
8578 /* Now, march along the PDI's, descending into ones which have
8579 interesting children but skipping the children of the other ones,
8580 until we reach the end of the compilation unit. */
8581
8582 pdi = first_die;
8583
8584 while (pdi != NULL)
8585 {
8586 pdi->fixup (cu);
8587
8588 /* Anonymous namespaces or modules have no name but have interesting
8589 children, so we need to look at them. Ditto for anonymous
8590 enums. */
8591
8592 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8593 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8594 || pdi->tag == DW_TAG_imported_unit
8595 || pdi->tag == DW_TAG_inlined_subroutine)
8596 {
8597 switch (pdi->tag)
8598 {
8599 case DW_TAG_subprogram:
8600 case DW_TAG_inlined_subroutine:
8601 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8602 break;
8603 case DW_TAG_constant:
8604 case DW_TAG_variable:
8605 case DW_TAG_typedef:
8606 case DW_TAG_union_type:
8607 if (!pdi->is_declaration)
8608 {
8609 add_partial_symbol (pdi, cu);
8610 }
8611 break;
8612 case DW_TAG_class_type:
8613 case DW_TAG_interface_type:
8614 case DW_TAG_structure_type:
8615 if (!pdi->is_declaration)
8616 {
8617 add_partial_symbol (pdi, cu);
8618 }
8619 if ((cu->language == language_rust
8620 || cu->language == language_cplus) && pdi->has_children)
8621 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8622 set_addrmap, cu);
8623 break;
8624 case DW_TAG_enumeration_type:
8625 if (!pdi->is_declaration)
8626 add_partial_enumeration (pdi, cu);
8627 break;
8628 case DW_TAG_base_type:
8629 case DW_TAG_subrange_type:
8630 /* File scope base type definitions are added to the partial
8631 symbol table. */
8632 add_partial_symbol (pdi, cu);
8633 break;
8634 case DW_TAG_namespace:
8635 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8636 break;
8637 case DW_TAG_module:
8638 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8639 break;
8640 case DW_TAG_imported_unit:
8641 {
8642 struct dwarf2_per_cu_data *per_cu;
8643
8644 /* For now we don't handle imported units in type units. */
8645 if (cu->per_cu->is_debug_types)
8646 {
8647 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8648 " supported in type units [in module %s]"),
8649 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8650 }
8651
8652 per_cu = dwarf2_find_containing_comp_unit
8653 (pdi->d.sect_off, pdi->is_dwz,
8654 cu->per_cu->dwarf2_per_objfile);
8655
8656 /* Go read the partial unit, if needed. */
8657 if (per_cu->v.psymtab == NULL)
8658 process_psymtab_comp_unit (per_cu, 1, cu->language);
8659
8660 VEC_safe_push (dwarf2_per_cu_ptr,
8661 cu->per_cu->imported_symtabs, per_cu);
8662 }
8663 break;
8664 case DW_TAG_imported_declaration:
8665 add_partial_symbol (pdi, cu);
8666 break;
8667 default:
8668 break;
8669 }
8670 }
8671
8672 /* If the die has a sibling, skip to the sibling. */
8673
8674 pdi = pdi->die_sibling;
8675 }
8676 }
8677
8678 /* Functions used to compute the fully scoped name of a partial DIE.
8679
8680 Normally, this is simple. For C++, the parent DIE's fully scoped
8681 name is concatenated with "::" and the partial DIE's name.
8682 Enumerators are an exception; they use the scope of their parent
8683 enumeration type, i.e. the name of the enumeration type is not
8684 prepended to the enumerator.
8685
8686 There are two complexities. One is DW_AT_specification; in this
8687 case "parent" means the parent of the target of the specification,
8688 instead of the direct parent of the DIE. The other is compilers
8689 which do not emit DW_TAG_namespace; in this case we try to guess
8690 the fully qualified name of structure types from their members'
8691 linkage names. This must be done using the DIE's children rather
8692 than the children of any DW_AT_specification target. We only need
8693 to do this for structures at the top level, i.e. if the target of
8694 any DW_AT_specification (if any; otherwise the DIE itself) does not
8695 have a parent. */
8696
8697 /* Compute the scope prefix associated with PDI's parent, in
8698 compilation unit CU. The result will be allocated on CU's
8699 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8700 field. NULL is returned if no prefix is necessary. */
8701 static const char *
8702 partial_die_parent_scope (struct partial_die_info *pdi,
8703 struct dwarf2_cu *cu)
8704 {
8705 const char *grandparent_scope;
8706 struct partial_die_info *parent, *real_pdi;
8707
8708 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8709 then this means the parent of the specification DIE. */
8710
8711 real_pdi = pdi;
8712 while (real_pdi->has_specification)
8713 {
8714 auto res = find_partial_die (real_pdi->spec_offset,
8715 real_pdi->spec_is_dwz, cu);
8716 real_pdi = res.pdi;
8717 cu = res.cu;
8718 }
8719
8720 parent = real_pdi->die_parent;
8721 if (parent == NULL)
8722 return NULL;
8723
8724 if (parent->scope_set)
8725 return parent->scope;
8726
8727 parent->fixup (cu);
8728
8729 grandparent_scope = partial_die_parent_scope (parent, cu);
8730
8731 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8732 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8733 Work around this problem here. */
8734 if (cu->language == language_cplus
8735 && parent->tag == DW_TAG_namespace
8736 && strcmp (parent->name, "::") == 0
8737 && grandparent_scope == NULL)
8738 {
8739 parent->scope = NULL;
8740 parent->scope_set = 1;
8741 return NULL;
8742 }
8743
8744 if (pdi->tag == DW_TAG_enumerator)
8745 /* Enumerators should not get the name of the enumeration as a prefix. */
8746 parent->scope = grandparent_scope;
8747 else if (parent->tag == DW_TAG_namespace
8748 || parent->tag == DW_TAG_module
8749 || parent->tag == DW_TAG_structure_type
8750 || parent->tag == DW_TAG_class_type
8751 || parent->tag == DW_TAG_interface_type
8752 || parent->tag == DW_TAG_union_type
8753 || parent->tag == DW_TAG_enumeration_type)
8754 {
8755 if (grandparent_scope == NULL)
8756 parent->scope = parent->name;
8757 else
8758 parent->scope = typename_concat (&cu->comp_unit_obstack,
8759 grandparent_scope,
8760 parent->name, 0, cu);
8761 }
8762 else
8763 {
8764 /* FIXME drow/2004-04-01: What should we be doing with
8765 function-local names? For partial symbols, we should probably be
8766 ignoring them. */
8767 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8768 dwarf_tag_name (parent->tag),
8769 sect_offset_str (pdi->sect_off));
8770 parent->scope = grandparent_scope;
8771 }
8772
8773 parent->scope_set = 1;
8774 return parent->scope;
8775 }
8776
8777 /* Return the fully scoped name associated with PDI, from compilation unit
8778 CU. The result will be allocated with malloc. */
8779
8780 static char *
8781 partial_die_full_name (struct partial_die_info *pdi,
8782 struct dwarf2_cu *cu)
8783 {
8784 const char *parent_scope;
8785
8786 /* If this is a template instantiation, we can not work out the
8787 template arguments from partial DIEs. So, unfortunately, we have
8788 to go through the full DIEs. At least any work we do building
8789 types here will be reused if full symbols are loaded later. */
8790 if (pdi->has_template_arguments)
8791 {
8792 pdi->fixup (cu);
8793
8794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8795 {
8796 struct die_info *die;
8797 struct attribute attr;
8798 struct dwarf2_cu *ref_cu = cu;
8799
8800 /* DW_FORM_ref_addr is using section offset. */
8801 attr.name = (enum dwarf_attribute) 0;
8802 attr.form = DW_FORM_ref_addr;
8803 attr.u.unsnd = to_underlying (pdi->sect_off);
8804 die = follow_die_ref (NULL, &attr, &ref_cu);
8805
8806 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8807 }
8808 }
8809
8810 parent_scope = partial_die_parent_scope (pdi, cu);
8811 if (parent_scope == NULL)
8812 return NULL;
8813 else
8814 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8815 }
8816
8817 static void
8818 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8819 {
8820 struct dwarf2_per_objfile *dwarf2_per_objfile
8821 = cu->per_cu->dwarf2_per_objfile;
8822 struct objfile *objfile = dwarf2_per_objfile->objfile;
8823 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8824 CORE_ADDR addr = 0;
8825 const char *actual_name = NULL;
8826 CORE_ADDR baseaddr;
8827 char *built_actual_name;
8828
8829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8830
8831 built_actual_name = partial_die_full_name (pdi, cu);
8832 if (built_actual_name != NULL)
8833 actual_name = built_actual_name;
8834
8835 if (actual_name == NULL)
8836 actual_name = pdi->name;
8837
8838 switch (pdi->tag)
8839 {
8840 case DW_TAG_inlined_subroutine:
8841 case DW_TAG_subprogram:
8842 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8843 - baseaddr);
8844 if (pdi->is_external || cu->language == language_ada)
8845 {
8846 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8847 of the global scope. But in Ada, we want to be able to access
8848 nested procedures globally. So all Ada subprograms are stored
8849 in the global scope. */
8850 add_psymbol_to_list (actual_name, strlen (actual_name),
8851 built_actual_name != NULL,
8852 VAR_DOMAIN, LOC_BLOCK,
8853 SECT_OFF_TEXT (objfile),
8854 psymbol_placement::GLOBAL,
8855 addr,
8856 cu->language, objfile);
8857 }
8858 else
8859 {
8860 add_psymbol_to_list (actual_name, strlen (actual_name),
8861 built_actual_name != NULL,
8862 VAR_DOMAIN, LOC_BLOCK,
8863 SECT_OFF_TEXT (objfile),
8864 psymbol_placement::STATIC,
8865 addr, cu->language, objfile);
8866 }
8867
8868 if (pdi->main_subprogram && actual_name != NULL)
8869 set_objfile_main_name (objfile, actual_name, cu->language);
8870 break;
8871 case DW_TAG_constant:
8872 add_psymbol_to_list (actual_name, strlen (actual_name),
8873 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8874 -1, (pdi->is_external
8875 ? psymbol_placement::GLOBAL
8876 : psymbol_placement::STATIC),
8877 0, cu->language, objfile);
8878 break;
8879 case DW_TAG_variable:
8880 if (pdi->d.locdesc)
8881 addr = decode_locdesc (pdi->d.locdesc, cu);
8882
8883 if (pdi->d.locdesc
8884 && addr == 0
8885 && !dwarf2_per_objfile->has_section_at_zero)
8886 {
8887 /* A global or static variable may also have been stripped
8888 out by the linker if unused, in which case its address
8889 will be nullified; do not add such variables into partial
8890 symbol table then. */
8891 }
8892 else if (pdi->is_external)
8893 {
8894 /* Global Variable.
8895 Don't enter into the minimal symbol tables as there is
8896 a minimal symbol table entry from the ELF symbols already.
8897 Enter into partial symbol table if it has a location
8898 descriptor or a type.
8899 If the location descriptor is missing, new_symbol will create
8900 a LOC_UNRESOLVED symbol, the address of the variable will then
8901 be determined from the minimal symbol table whenever the variable
8902 is referenced.
8903 The address for the partial symbol table entry is not
8904 used by GDB, but it comes in handy for debugging partial symbol
8905 table building. */
8906
8907 if (pdi->d.locdesc || pdi->has_type)
8908 add_psymbol_to_list (actual_name, strlen (actual_name),
8909 built_actual_name != NULL,
8910 VAR_DOMAIN, LOC_STATIC,
8911 SECT_OFF_TEXT (objfile),
8912 psymbol_placement::GLOBAL,
8913 addr, cu->language, objfile);
8914 }
8915 else
8916 {
8917 int has_loc = pdi->d.locdesc != NULL;
8918
8919 /* Static Variable. Skip symbols whose value we cannot know (those
8920 without location descriptors or constant values). */
8921 if (!has_loc && !pdi->has_const_value)
8922 {
8923 xfree (built_actual_name);
8924 return;
8925 }
8926
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_STATIC,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 has_loc ? addr : 0,
8933 cu->language, objfile);
8934 }
8935 break;
8936 case DW_TAG_typedef:
8937 case DW_TAG_base_type:
8938 case DW_TAG_subrange_type:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL,
8941 VAR_DOMAIN, LOC_TYPEDEF, -1,
8942 psymbol_placement::STATIC,
8943 0, cu->language, objfile);
8944 break;
8945 case DW_TAG_imported_declaration:
8946 case DW_TAG_namespace:
8947 add_psymbol_to_list (actual_name, strlen (actual_name),
8948 built_actual_name != NULL,
8949 VAR_DOMAIN, LOC_TYPEDEF, -1,
8950 psymbol_placement::GLOBAL,
8951 0, cu->language, objfile);
8952 break;
8953 case DW_TAG_module:
8954 /* With Fortran 77 there might be a "BLOCK DATA" module
8955 available without any name. If so, we skip the module as it
8956 doesn't bring any value. */
8957 if (actual_name != nullptr)
8958 add_psymbol_to_list (actual_name, strlen (actual_name),
8959 built_actual_name != NULL,
8960 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8961 psymbol_placement::GLOBAL,
8962 0, cu->language, objfile);
8963 break;
8964 case DW_TAG_class_type:
8965 case DW_TAG_interface_type:
8966 case DW_TAG_structure_type:
8967 case DW_TAG_union_type:
8968 case DW_TAG_enumeration_type:
8969 /* Skip external references. The DWARF standard says in the section
8970 about "Structure, Union, and Class Type Entries": "An incomplete
8971 structure, union or class type is represented by a structure,
8972 union or class entry that does not have a byte size attribute
8973 and that has a DW_AT_declaration attribute." */
8974 if (!pdi->has_byte_size && pdi->is_declaration)
8975 {
8976 xfree (built_actual_name);
8977 return;
8978 }
8979
8980 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8981 static vs. global. */
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8985 cu->language == language_cplus
8986 ? psymbol_placement::GLOBAL
8987 : psymbol_placement::STATIC,
8988 0, cu->language, objfile);
8989
8990 break;
8991 case DW_TAG_enumerator:
8992 add_psymbol_to_list (actual_name, strlen (actual_name),
8993 built_actual_name != NULL,
8994 VAR_DOMAIN, LOC_CONST, -1,
8995 cu->language == language_cplus
8996 ? psymbol_placement::GLOBAL
8997 : psymbol_placement::STATIC,
8998 0, cu->language, objfile);
8999 break;
9000 default:
9001 break;
9002 }
9003
9004 xfree (built_actual_name);
9005 }
9006
9007 /* Read a partial die corresponding to a namespace; also, add a symbol
9008 corresponding to that namespace to the symbol table. NAMESPACE is
9009 the name of the enclosing namespace. */
9010
9011 static void
9012 add_partial_namespace (struct partial_die_info *pdi,
9013 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9014 int set_addrmap, struct dwarf2_cu *cu)
9015 {
9016 /* Add a symbol for the namespace. */
9017
9018 add_partial_symbol (pdi, cu);
9019
9020 /* Now scan partial symbols in that namespace. */
9021
9022 if (pdi->has_children)
9023 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9024 }
9025
9026 /* Read a partial die corresponding to a Fortran module. */
9027
9028 static void
9029 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9030 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9031 {
9032 /* Add a symbol for the namespace. */
9033
9034 add_partial_symbol (pdi, cu);
9035
9036 /* Now scan partial symbols in that module. */
9037
9038 if (pdi->has_children)
9039 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9040 }
9041
9042 /* Read a partial die corresponding to a subprogram or an inlined
9043 subprogram and create a partial symbol for that subprogram.
9044 When the CU language allows it, this routine also defines a partial
9045 symbol for each nested subprogram that this subprogram contains.
9046 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9047 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9048
9049 PDI may also be a lexical block, in which case we simply search
9050 recursively for subprograms defined inside that lexical block.
9051 Again, this is only performed when the CU language allows this
9052 type of definitions. */
9053
9054 static void
9055 add_partial_subprogram (struct partial_die_info *pdi,
9056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9057 int set_addrmap, struct dwarf2_cu *cu)
9058 {
9059 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9060 {
9061 if (pdi->has_pc_info)
9062 {
9063 if (pdi->lowpc < *lowpc)
9064 *lowpc = pdi->lowpc;
9065 if (pdi->highpc > *highpc)
9066 *highpc = pdi->highpc;
9067 if (set_addrmap)
9068 {
9069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9071 CORE_ADDR baseaddr;
9072 CORE_ADDR this_highpc;
9073 CORE_ADDR this_lowpc;
9074
9075 baseaddr = ANOFFSET (objfile->section_offsets,
9076 SECT_OFF_TEXT (objfile));
9077 this_lowpc
9078 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9079 pdi->lowpc + baseaddr)
9080 - baseaddr);
9081 this_highpc
9082 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9083 pdi->highpc + baseaddr)
9084 - baseaddr);
9085 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9086 this_lowpc, this_highpc - 1,
9087 cu->per_cu->v.psymtab);
9088 }
9089 }
9090
9091 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9092 {
9093 if (!pdi->is_declaration)
9094 /* Ignore subprogram DIEs that do not have a name, they are
9095 illegal. Do not emit a complaint at this point, we will
9096 do so when we convert this psymtab into a symtab. */
9097 if (pdi->name)
9098 add_partial_symbol (pdi, cu);
9099 }
9100 }
9101
9102 if (! pdi->has_children)
9103 return;
9104
9105 if (cu->language == language_ada)
9106 {
9107 pdi = pdi->die_child;
9108 while (pdi != NULL)
9109 {
9110 pdi->fixup (cu);
9111 if (pdi->tag == DW_TAG_subprogram
9112 || pdi->tag == DW_TAG_inlined_subroutine
9113 || pdi->tag == DW_TAG_lexical_block)
9114 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9115 pdi = pdi->die_sibling;
9116 }
9117 }
9118 }
9119
9120 /* Read a partial die corresponding to an enumeration type. */
9121
9122 static void
9123 add_partial_enumeration (struct partial_die_info *enum_pdi,
9124 struct dwarf2_cu *cu)
9125 {
9126 struct partial_die_info *pdi;
9127
9128 if (enum_pdi->name != NULL)
9129 add_partial_symbol (enum_pdi, cu);
9130
9131 pdi = enum_pdi->die_child;
9132 while (pdi)
9133 {
9134 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9135 complaint (_("malformed enumerator DIE ignored"));
9136 else
9137 add_partial_symbol (pdi, cu);
9138 pdi = pdi->die_sibling;
9139 }
9140 }
9141
9142 /* Return the initial uleb128 in the die at INFO_PTR. */
9143
9144 static unsigned int
9145 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9146 {
9147 unsigned int bytes_read;
9148
9149 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9150 }
9151
9152 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9153 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9154
9155 Return the corresponding abbrev, or NULL if the number is zero (indicating
9156 an empty DIE). In either case *BYTES_READ will be set to the length of
9157 the initial number. */
9158
9159 static struct abbrev_info *
9160 peek_die_abbrev (const die_reader_specs &reader,
9161 const gdb_byte *info_ptr, unsigned int *bytes_read)
9162 {
9163 dwarf2_cu *cu = reader.cu;
9164 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9165 unsigned int abbrev_number
9166 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9167
9168 if (abbrev_number == 0)
9169 return NULL;
9170
9171 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9172 if (!abbrev)
9173 {
9174 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9175 " at offset %s [in module %s]"),
9176 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9177 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9178 }
9179
9180 return abbrev;
9181 }
9182
9183 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9184 Returns a pointer to the end of a series of DIEs, terminated by an empty
9185 DIE. Any children of the skipped DIEs will also be skipped. */
9186
9187 static const gdb_byte *
9188 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9189 {
9190 while (1)
9191 {
9192 unsigned int bytes_read;
9193 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9194
9195 if (abbrev == NULL)
9196 return info_ptr + bytes_read;
9197 else
9198 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9199 }
9200 }
9201
9202 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9203 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9204 abbrev corresponding to that skipped uleb128 should be passed in
9205 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9206 children. */
9207
9208 static const gdb_byte *
9209 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9210 struct abbrev_info *abbrev)
9211 {
9212 unsigned int bytes_read;
9213 struct attribute attr;
9214 bfd *abfd = reader->abfd;
9215 struct dwarf2_cu *cu = reader->cu;
9216 const gdb_byte *buffer = reader->buffer;
9217 const gdb_byte *buffer_end = reader->buffer_end;
9218 unsigned int form, i;
9219
9220 for (i = 0; i < abbrev->num_attrs; i++)
9221 {
9222 /* The only abbrev we care about is DW_AT_sibling. */
9223 if (abbrev->attrs[i].name == DW_AT_sibling)
9224 {
9225 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9226 if (attr.form == DW_FORM_ref_addr)
9227 complaint (_("ignoring absolute DW_AT_sibling"));
9228 else
9229 {
9230 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9231 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9232
9233 if (sibling_ptr < info_ptr)
9234 complaint (_("DW_AT_sibling points backwards"));
9235 else if (sibling_ptr > reader->buffer_end)
9236 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9237 else
9238 return sibling_ptr;
9239 }
9240 }
9241
9242 /* If it isn't DW_AT_sibling, skip this attribute. */
9243 form = abbrev->attrs[i].form;
9244 skip_attribute:
9245 switch (form)
9246 {
9247 case DW_FORM_ref_addr:
9248 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9249 and later it is offset sized. */
9250 if (cu->header.version == 2)
9251 info_ptr += cu->header.addr_size;
9252 else
9253 info_ptr += cu->header.offset_size;
9254 break;
9255 case DW_FORM_GNU_ref_alt:
9256 info_ptr += cu->header.offset_size;
9257 break;
9258 case DW_FORM_addr:
9259 info_ptr += cu->header.addr_size;
9260 break;
9261 case DW_FORM_data1:
9262 case DW_FORM_ref1:
9263 case DW_FORM_flag:
9264 info_ptr += 1;
9265 break;
9266 case DW_FORM_flag_present:
9267 case DW_FORM_implicit_const:
9268 break;
9269 case DW_FORM_data2:
9270 case DW_FORM_ref2:
9271 info_ptr += 2;
9272 break;
9273 case DW_FORM_data4:
9274 case DW_FORM_ref4:
9275 info_ptr += 4;
9276 break;
9277 case DW_FORM_data8:
9278 case DW_FORM_ref8:
9279 case DW_FORM_ref_sig8:
9280 info_ptr += 8;
9281 break;
9282 case DW_FORM_data16:
9283 info_ptr += 16;
9284 break;
9285 case DW_FORM_string:
9286 read_direct_string (abfd, info_ptr, &bytes_read);
9287 info_ptr += bytes_read;
9288 break;
9289 case DW_FORM_sec_offset:
9290 case DW_FORM_strp:
9291 case DW_FORM_GNU_strp_alt:
9292 info_ptr += cu->header.offset_size;
9293 break;
9294 case DW_FORM_exprloc:
9295 case DW_FORM_block:
9296 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9297 info_ptr += bytes_read;
9298 break;
9299 case DW_FORM_block1:
9300 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9301 break;
9302 case DW_FORM_block2:
9303 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9304 break;
9305 case DW_FORM_block4:
9306 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9307 break;
9308 case DW_FORM_addrx:
9309 case DW_FORM_strx:
9310 case DW_FORM_sdata:
9311 case DW_FORM_udata:
9312 case DW_FORM_ref_udata:
9313 case DW_FORM_GNU_addr_index:
9314 case DW_FORM_GNU_str_index:
9315 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9316 break;
9317 case DW_FORM_indirect:
9318 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9319 info_ptr += bytes_read;
9320 /* We need to continue parsing from here, so just go back to
9321 the top. */
9322 goto skip_attribute;
9323
9324 default:
9325 error (_("Dwarf Error: Cannot handle %s "
9326 "in DWARF reader [in module %s]"),
9327 dwarf_form_name (form),
9328 bfd_get_filename (abfd));
9329 }
9330 }
9331
9332 if (abbrev->has_children)
9333 return skip_children (reader, info_ptr);
9334 else
9335 return info_ptr;
9336 }
9337
9338 /* Locate ORIG_PDI's sibling.
9339 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9340
9341 static const gdb_byte *
9342 locate_pdi_sibling (const struct die_reader_specs *reader,
9343 struct partial_die_info *orig_pdi,
9344 const gdb_byte *info_ptr)
9345 {
9346 /* Do we know the sibling already? */
9347
9348 if (orig_pdi->sibling)
9349 return orig_pdi->sibling;
9350
9351 /* Are there any children to deal with? */
9352
9353 if (!orig_pdi->has_children)
9354 return info_ptr;
9355
9356 /* Skip the children the long way. */
9357
9358 return skip_children (reader, info_ptr);
9359 }
9360
9361 /* Expand this partial symbol table into a full symbol table. SELF is
9362 not NULL. */
9363
9364 static void
9365 dwarf2_read_symtab (struct partial_symtab *self,
9366 struct objfile *objfile)
9367 {
9368 struct dwarf2_per_objfile *dwarf2_per_objfile
9369 = get_dwarf2_per_objfile (objfile);
9370
9371 if (self->readin)
9372 {
9373 warning (_("bug: psymtab for %s is already read in."),
9374 self->filename);
9375 }
9376 else
9377 {
9378 if (info_verbose)
9379 {
9380 printf_filtered (_("Reading in symbols for %s..."),
9381 self->filename);
9382 gdb_flush (gdb_stdout);
9383 }
9384
9385 /* If this psymtab is constructed from a debug-only objfile, the
9386 has_section_at_zero flag will not necessarily be correct. We
9387 can get the correct value for this flag by looking at the data
9388 associated with the (presumably stripped) associated objfile. */
9389 if (objfile->separate_debug_objfile_backlink)
9390 {
9391 struct dwarf2_per_objfile *dpo_backlink
9392 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9393
9394 dwarf2_per_objfile->has_section_at_zero
9395 = dpo_backlink->has_section_at_zero;
9396 }
9397
9398 dwarf2_per_objfile->reading_partial_symbols = 0;
9399
9400 psymtab_to_symtab_1 (self);
9401
9402 /* Finish up the debug error message. */
9403 if (info_verbose)
9404 printf_filtered (_("done.\n"));
9405 }
9406
9407 process_cu_includes (dwarf2_per_objfile);
9408 }
9409 \f
9410 /* Reading in full CUs. */
9411
9412 /* Add PER_CU to the queue. */
9413
9414 static void
9415 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9416 enum language pretend_language)
9417 {
9418 struct dwarf2_queue_item *item;
9419
9420 per_cu->queued = 1;
9421 item = XNEW (struct dwarf2_queue_item);
9422 item->per_cu = per_cu;
9423 item->pretend_language = pretend_language;
9424 item->next = NULL;
9425
9426 if (dwarf2_queue == NULL)
9427 dwarf2_queue = item;
9428 else
9429 dwarf2_queue_tail->next = item;
9430
9431 dwarf2_queue_tail = item;
9432 }
9433
9434 /* If PER_CU is not yet queued, add it to the queue.
9435 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9436 dependency.
9437 The result is non-zero if PER_CU was queued, otherwise the result is zero
9438 meaning either PER_CU is already queued or it is already loaded.
9439
9440 N.B. There is an invariant here that if a CU is queued then it is loaded.
9441 The caller is required to load PER_CU if we return non-zero. */
9442
9443 static int
9444 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9445 struct dwarf2_per_cu_data *per_cu,
9446 enum language pretend_language)
9447 {
9448 /* We may arrive here during partial symbol reading, if we need full
9449 DIEs to process an unusual case (e.g. template arguments). Do
9450 not queue PER_CU, just tell our caller to load its DIEs. */
9451 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9452 {
9453 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9454 return 1;
9455 return 0;
9456 }
9457
9458 /* Mark the dependence relation so that we don't flush PER_CU
9459 too early. */
9460 if (dependent_cu != NULL)
9461 dwarf2_add_dependence (dependent_cu, per_cu);
9462
9463 /* If it's already on the queue, we have nothing to do. */
9464 if (per_cu->queued)
9465 return 0;
9466
9467 /* If the compilation unit is already loaded, just mark it as
9468 used. */
9469 if (per_cu->cu != NULL)
9470 {
9471 per_cu->cu->last_used = 0;
9472 return 0;
9473 }
9474
9475 /* Add it to the queue. */
9476 queue_comp_unit (per_cu, pretend_language);
9477
9478 return 1;
9479 }
9480
9481 /* Process the queue. */
9482
9483 static void
9484 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9485 {
9486 struct dwarf2_queue_item *item, *next_item;
9487
9488 if (dwarf_read_debug)
9489 {
9490 fprintf_unfiltered (gdb_stdlog,
9491 "Expanding one or more symtabs of objfile %s ...\n",
9492 objfile_name (dwarf2_per_objfile->objfile));
9493 }
9494
9495 /* The queue starts out with one item, but following a DIE reference
9496 may load a new CU, adding it to the end of the queue. */
9497 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9498 {
9499 if ((dwarf2_per_objfile->using_index
9500 ? !item->per_cu->v.quick->compunit_symtab
9501 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9502 /* Skip dummy CUs. */
9503 && item->per_cu->cu != NULL)
9504 {
9505 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9506 unsigned int debug_print_threshold;
9507 char buf[100];
9508
9509 if (per_cu->is_debug_types)
9510 {
9511 struct signatured_type *sig_type =
9512 (struct signatured_type *) per_cu;
9513
9514 sprintf (buf, "TU %s at offset %s",
9515 hex_string (sig_type->signature),
9516 sect_offset_str (per_cu->sect_off));
9517 /* There can be 100s of TUs.
9518 Only print them in verbose mode. */
9519 debug_print_threshold = 2;
9520 }
9521 else
9522 {
9523 sprintf (buf, "CU at offset %s",
9524 sect_offset_str (per_cu->sect_off));
9525 debug_print_threshold = 1;
9526 }
9527
9528 if (dwarf_read_debug >= debug_print_threshold)
9529 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9530
9531 if (per_cu->is_debug_types)
9532 process_full_type_unit (per_cu, item->pretend_language);
9533 else
9534 process_full_comp_unit (per_cu, item->pretend_language);
9535
9536 if (dwarf_read_debug >= debug_print_threshold)
9537 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9538 }
9539
9540 item->per_cu->queued = 0;
9541 next_item = item->next;
9542 xfree (item);
9543 }
9544
9545 dwarf2_queue_tail = NULL;
9546
9547 if (dwarf_read_debug)
9548 {
9549 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9550 objfile_name (dwarf2_per_objfile->objfile));
9551 }
9552 }
9553
9554 /* Read in full symbols for PST, and anything it depends on. */
9555
9556 static void
9557 psymtab_to_symtab_1 (struct partial_symtab *pst)
9558 {
9559 struct dwarf2_per_cu_data *per_cu;
9560 int i;
9561
9562 if (pst->readin)
9563 return;
9564
9565 for (i = 0; i < pst->number_of_dependencies; i++)
9566 if (!pst->dependencies[i]->readin
9567 && pst->dependencies[i]->user == NULL)
9568 {
9569 /* Inform about additional files that need to be read in. */
9570 if (info_verbose)
9571 {
9572 /* FIXME: i18n: Need to make this a single string. */
9573 fputs_filtered (" ", gdb_stdout);
9574 wrap_here ("");
9575 fputs_filtered ("and ", gdb_stdout);
9576 wrap_here ("");
9577 printf_filtered ("%s...", pst->dependencies[i]->filename);
9578 wrap_here (""); /* Flush output. */
9579 gdb_flush (gdb_stdout);
9580 }
9581 psymtab_to_symtab_1 (pst->dependencies[i]);
9582 }
9583
9584 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9585
9586 if (per_cu == NULL)
9587 {
9588 /* It's an include file, no symbols to read for it.
9589 Everything is in the parent symtab. */
9590 pst->readin = 1;
9591 return;
9592 }
9593
9594 dw2_do_instantiate_symtab (per_cu, false);
9595 }
9596
9597 /* Trivial hash function for die_info: the hash value of a DIE
9598 is its offset in .debug_info for this objfile. */
9599
9600 static hashval_t
9601 die_hash (const void *item)
9602 {
9603 const struct die_info *die = (const struct die_info *) item;
9604
9605 return to_underlying (die->sect_off);
9606 }
9607
9608 /* Trivial comparison function for die_info structures: two DIEs
9609 are equal if they have the same offset. */
9610
9611 static int
9612 die_eq (const void *item_lhs, const void *item_rhs)
9613 {
9614 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9615 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9616
9617 return die_lhs->sect_off == die_rhs->sect_off;
9618 }
9619
9620 /* die_reader_func for load_full_comp_unit.
9621 This is identical to read_signatured_type_reader,
9622 but is kept separate for now. */
9623
9624 static void
9625 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9626 const gdb_byte *info_ptr,
9627 struct die_info *comp_unit_die,
9628 int has_children,
9629 void *data)
9630 {
9631 struct dwarf2_cu *cu = reader->cu;
9632 enum language *language_ptr = (enum language *) data;
9633
9634 gdb_assert (cu->die_hash == NULL);
9635 cu->die_hash =
9636 htab_create_alloc_ex (cu->header.length / 12,
9637 die_hash,
9638 die_eq,
9639 NULL,
9640 &cu->comp_unit_obstack,
9641 hashtab_obstack_allocate,
9642 dummy_obstack_deallocate);
9643
9644 if (has_children)
9645 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9646 &info_ptr, comp_unit_die);
9647 cu->dies = comp_unit_die;
9648 /* comp_unit_die is not stored in die_hash, no need. */
9649
9650 /* We try not to read any attributes in this function, because not
9651 all CUs needed for references have been loaded yet, and symbol
9652 table processing isn't initialized. But we have to set the CU language,
9653 or we won't be able to build types correctly.
9654 Similarly, if we do not read the producer, we can not apply
9655 producer-specific interpretation. */
9656 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9657 }
9658
9659 /* Load the DIEs associated with PER_CU into memory. */
9660
9661 static void
9662 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9663 bool skip_partial,
9664 enum language pretend_language)
9665 {
9666 gdb_assert (! this_cu->is_debug_types);
9667
9668 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9669 load_full_comp_unit_reader, &pretend_language);
9670 }
9671
9672 /* Add a DIE to the delayed physname list. */
9673
9674 static void
9675 add_to_method_list (struct type *type, int fnfield_index, int index,
9676 const char *name, struct die_info *die,
9677 struct dwarf2_cu *cu)
9678 {
9679 struct delayed_method_info mi;
9680 mi.type = type;
9681 mi.fnfield_index = fnfield_index;
9682 mi.index = index;
9683 mi.name = name;
9684 mi.die = die;
9685 cu->method_list.push_back (mi);
9686 }
9687
9688 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9689 "const" / "volatile". If so, decrements LEN by the length of the
9690 modifier and return true. Otherwise return false. */
9691
9692 template<size_t N>
9693 static bool
9694 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9695 {
9696 size_t mod_len = sizeof (mod) - 1;
9697 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9698 {
9699 len -= mod_len;
9700 return true;
9701 }
9702 return false;
9703 }
9704
9705 /* Compute the physnames of any methods on the CU's method list.
9706
9707 The computation of method physnames is delayed in order to avoid the
9708 (bad) condition that one of the method's formal parameters is of an as yet
9709 incomplete type. */
9710
9711 static void
9712 compute_delayed_physnames (struct dwarf2_cu *cu)
9713 {
9714 /* Only C++ delays computing physnames. */
9715 if (cu->method_list.empty ())
9716 return;
9717 gdb_assert (cu->language == language_cplus);
9718
9719 for (const delayed_method_info &mi : cu->method_list)
9720 {
9721 const char *physname;
9722 struct fn_fieldlist *fn_flp
9723 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9724 physname = dwarf2_physname (mi.name, mi.die, cu);
9725 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9726 = physname ? physname : "";
9727
9728 /* Since there's no tag to indicate whether a method is a
9729 const/volatile overload, extract that information out of the
9730 demangled name. */
9731 if (physname != NULL)
9732 {
9733 size_t len = strlen (physname);
9734
9735 while (1)
9736 {
9737 if (physname[len] == ')') /* shortcut */
9738 break;
9739 else if (check_modifier (physname, len, " const"))
9740 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9741 else if (check_modifier (physname, len, " volatile"))
9742 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9743 else
9744 break;
9745 }
9746 }
9747 }
9748
9749 /* The list is no longer needed. */
9750 cu->method_list.clear ();
9751 }
9752
9753 /* Go objects should be embedded in a DW_TAG_module DIE,
9754 and it's not clear if/how imported objects will appear.
9755 To keep Go support simple until that's worked out,
9756 go back through what we've read and create something usable.
9757 We could do this while processing each DIE, and feels kinda cleaner,
9758 but that way is more invasive.
9759 This is to, for example, allow the user to type "p var" or "b main"
9760 without having to specify the package name, and allow lookups
9761 of module.object to work in contexts that use the expression
9762 parser. */
9763
9764 static void
9765 fixup_go_packaging (struct dwarf2_cu *cu)
9766 {
9767 char *package_name = NULL;
9768 struct pending *list;
9769 int i;
9770
9771 for (list = *cu->get_builder ()->get_global_symbols ();
9772 list != NULL;
9773 list = list->next)
9774 {
9775 for (i = 0; i < list->nsyms; ++i)
9776 {
9777 struct symbol *sym = list->symbol[i];
9778
9779 if (SYMBOL_LANGUAGE (sym) == language_go
9780 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9781 {
9782 char *this_package_name = go_symbol_package_name (sym);
9783
9784 if (this_package_name == NULL)
9785 continue;
9786 if (package_name == NULL)
9787 package_name = this_package_name;
9788 else
9789 {
9790 struct objfile *objfile
9791 = cu->per_cu->dwarf2_per_objfile->objfile;
9792 if (strcmp (package_name, this_package_name) != 0)
9793 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9794 (symbol_symtab (sym) != NULL
9795 ? symtab_to_filename_for_display
9796 (symbol_symtab (sym))
9797 : objfile_name (objfile)),
9798 this_package_name, package_name);
9799 xfree (this_package_name);
9800 }
9801 }
9802 }
9803 }
9804
9805 if (package_name != NULL)
9806 {
9807 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9808 const char *saved_package_name
9809 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9810 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9811 saved_package_name);
9812 struct symbol *sym;
9813
9814 sym = allocate_symbol (objfile);
9815 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9816 SYMBOL_SET_NAMES (sym, saved_package_name,
9817 strlen (saved_package_name), 0, objfile);
9818 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9819 e.g., "main" finds the "main" module and not C's main(). */
9820 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9821 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9822 SYMBOL_TYPE (sym) = type;
9823
9824 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9825
9826 xfree (package_name);
9827 }
9828 }
9829
9830 /* Allocate a fully-qualified name consisting of the two parts on the
9831 obstack. */
9832
9833 static const char *
9834 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9835 {
9836 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9837 }
9838
9839 /* A helper that allocates a struct discriminant_info to attach to a
9840 union type. */
9841
9842 static struct discriminant_info *
9843 alloc_discriminant_info (struct type *type, int discriminant_index,
9844 int default_index)
9845 {
9846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9847 gdb_assert (discriminant_index == -1
9848 || (discriminant_index >= 0
9849 && discriminant_index < TYPE_NFIELDS (type)));
9850 gdb_assert (default_index == -1
9851 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9852
9853 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9854
9855 struct discriminant_info *disc
9856 = ((struct discriminant_info *)
9857 TYPE_ZALLOC (type,
9858 offsetof (struct discriminant_info, discriminants)
9859 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9860 disc->default_index = default_index;
9861 disc->discriminant_index = discriminant_index;
9862
9863 struct dynamic_prop prop;
9864 prop.kind = PROP_UNDEFINED;
9865 prop.data.baton = disc;
9866
9867 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9868
9869 return disc;
9870 }
9871
9872 /* Some versions of rustc emitted enums in an unusual way.
9873
9874 Ordinary enums were emitted as unions. The first element of each
9875 structure in the union was named "RUST$ENUM$DISR". This element
9876 held the discriminant.
9877
9878 These versions of Rust also implemented the "non-zero"
9879 optimization. When the enum had two values, and one is empty and
9880 the other holds a pointer that cannot be zero, the pointer is used
9881 as the discriminant, with a zero value meaning the empty variant.
9882 Here, the union's first member is of the form
9883 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9884 where the fieldnos are the indices of the fields that should be
9885 traversed in order to find the field (which may be several fields deep)
9886 and the variantname is the name of the variant of the case when the
9887 field is zero.
9888
9889 This function recognizes whether TYPE is of one of these forms,
9890 and, if so, smashes it to be a variant type. */
9891
9892 static void
9893 quirk_rust_enum (struct type *type, struct objfile *objfile)
9894 {
9895 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9896
9897 /* We don't need to deal with empty enums. */
9898 if (TYPE_NFIELDS (type) == 0)
9899 return;
9900
9901 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9902 if (TYPE_NFIELDS (type) == 1
9903 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9904 {
9905 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9906
9907 /* Decode the field name to find the offset of the
9908 discriminant. */
9909 ULONGEST bit_offset = 0;
9910 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9911 while (name[0] >= '0' && name[0] <= '9')
9912 {
9913 char *tail;
9914 unsigned long index = strtoul (name, &tail, 10);
9915 name = tail;
9916 if (*name != '$'
9917 || index >= TYPE_NFIELDS (field_type)
9918 || (TYPE_FIELD_LOC_KIND (field_type, index)
9919 != FIELD_LOC_KIND_BITPOS))
9920 {
9921 complaint (_("Could not parse Rust enum encoding string \"%s\""
9922 "[in module %s]"),
9923 TYPE_FIELD_NAME (type, 0),
9924 objfile_name (objfile));
9925 return;
9926 }
9927 ++name;
9928
9929 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9930 field_type = TYPE_FIELD_TYPE (field_type, index);
9931 }
9932
9933 /* Make a union to hold the variants. */
9934 struct type *union_type = alloc_type (objfile);
9935 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9936 TYPE_NFIELDS (union_type) = 3;
9937 TYPE_FIELDS (union_type)
9938 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9939 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9940 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9941
9942 /* Put the discriminant must at index 0. */
9943 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9944 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9945 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9946 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9947
9948 /* The order of fields doesn't really matter, so put the real
9949 field at index 1 and the data-less field at index 2. */
9950 struct discriminant_info *disc
9951 = alloc_discriminant_info (union_type, 0, 1);
9952 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9953 TYPE_FIELD_NAME (union_type, 1)
9954 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9955 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9956 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9957 TYPE_FIELD_NAME (union_type, 1));
9958
9959 const char *dataless_name
9960 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9961 name);
9962 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9963 dataless_name);
9964 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9965 /* NAME points into the original discriminant name, which
9966 already has the correct lifetime. */
9967 TYPE_FIELD_NAME (union_type, 2) = name;
9968 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9969 disc->discriminants[2] = 0;
9970
9971 /* Smash this type to be a structure type. We have to do this
9972 because the type has already been recorded. */
9973 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9974 TYPE_NFIELDS (type) = 1;
9975 TYPE_FIELDS (type)
9976 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9977
9978 /* Install the variant part. */
9979 TYPE_FIELD_TYPE (type, 0) = union_type;
9980 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9981 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9982 }
9983 else if (TYPE_NFIELDS (type) == 1)
9984 {
9985 /* We assume that a union with a single field is a univariant
9986 enum. */
9987 /* Smash this type to be a structure type. We have to do this
9988 because the type has already been recorded. */
9989 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9990
9991 /* Make a union to hold the variants. */
9992 struct type *union_type = alloc_type (objfile);
9993 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9994 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9995 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9996 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9997 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9998
9999 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10000 const char *variant_name
10001 = rust_last_path_segment (TYPE_NAME (field_type));
10002 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10003 TYPE_NAME (field_type)
10004 = rust_fully_qualify (&objfile->objfile_obstack,
10005 TYPE_NAME (type), variant_name);
10006
10007 /* Install the union in the outer struct type. */
10008 TYPE_NFIELDS (type) = 1;
10009 TYPE_FIELDS (type)
10010 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10011 TYPE_FIELD_TYPE (type, 0) = union_type;
10012 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10013 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10014
10015 alloc_discriminant_info (union_type, -1, 0);
10016 }
10017 else
10018 {
10019 struct type *disr_type = nullptr;
10020 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10021 {
10022 disr_type = TYPE_FIELD_TYPE (type, i);
10023
10024 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10025 {
10026 /* All fields of a true enum will be structs. */
10027 return;
10028 }
10029 else if (TYPE_NFIELDS (disr_type) == 0)
10030 {
10031 /* Could be data-less variant, so keep going. */
10032 disr_type = nullptr;
10033 }
10034 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10035 "RUST$ENUM$DISR") != 0)
10036 {
10037 /* Not a Rust enum. */
10038 return;
10039 }
10040 else
10041 {
10042 /* Found one. */
10043 break;
10044 }
10045 }
10046
10047 /* If we got here without a discriminant, then it's probably
10048 just a union. */
10049 if (disr_type == nullptr)
10050 return;
10051
10052 /* Smash this type to be a structure type. We have to do this
10053 because the type has already been recorded. */
10054 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10055
10056 /* Make a union to hold the variants. */
10057 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10058 struct type *union_type = alloc_type (objfile);
10059 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10060 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10061 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10062 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10063 TYPE_FIELDS (union_type)
10064 = (struct field *) TYPE_ZALLOC (union_type,
10065 (TYPE_NFIELDS (union_type)
10066 * sizeof (struct field)));
10067
10068 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10069 TYPE_NFIELDS (type) * sizeof (struct field));
10070
10071 /* Install the discriminant at index 0 in the union. */
10072 TYPE_FIELD (union_type, 0) = *disr_field;
10073 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10074 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10075
10076 /* Install the union in the outer struct type. */
10077 TYPE_FIELD_TYPE (type, 0) = union_type;
10078 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10079 TYPE_NFIELDS (type) = 1;
10080
10081 /* Set the size and offset of the union type. */
10082 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10083
10084 /* We need a way to find the correct discriminant given a
10085 variant name. For convenience we build a map here. */
10086 struct type *enum_type = FIELD_TYPE (*disr_field);
10087 std::unordered_map<std::string, ULONGEST> discriminant_map;
10088 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10089 {
10090 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10091 {
10092 const char *name
10093 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10094 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10095 }
10096 }
10097
10098 int n_fields = TYPE_NFIELDS (union_type);
10099 struct discriminant_info *disc
10100 = alloc_discriminant_info (union_type, 0, -1);
10101 /* Skip the discriminant here. */
10102 for (int i = 1; i < n_fields; ++i)
10103 {
10104 /* Find the final word in the name of this variant's type.
10105 That name can be used to look up the correct
10106 discriminant. */
10107 const char *variant_name
10108 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10109 i)));
10110
10111 auto iter = discriminant_map.find (variant_name);
10112 if (iter != discriminant_map.end ())
10113 disc->discriminants[i] = iter->second;
10114
10115 /* Remove the discriminant field, if it exists. */
10116 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10117 if (TYPE_NFIELDS (sub_type) > 0)
10118 {
10119 --TYPE_NFIELDS (sub_type);
10120 ++TYPE_FIELDS (sub_type);
10121 }
10122 TYPE_FIELD_NAME (union_type, i) = variant_name;
10123 TYPE_NAME (sub_type)
10124 = rust_fully_qualify (&objfile->objfile_obstack,
10125 TYPE_NAME (type), variant_name);
10126 }
10127 }
10128 }
10129
10130 /* Rewrite some Rust unions to be structures with variants parts. */
10131
10132 static void
10133 rust_union_quirks (struct dwarf2_cu *cu)
10134 {
10135 gdb_assert (cu->language == language_rust);
10136 for (type *type_ : cu->rust_unions)
10137 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10138 /* We don't need this any more. */
10139 cu->rust_unions.clear ();
10140 }
10141
10142 /* Return the symtab for PER_CU. This works properly regardless of
10143 whether we're using the index or psymtabs. */
10144
10145 static struct compunit_symtab *
10146 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10147 {
10148 return (per_cu->dwarf2_per_objfile->using_index
10149 ? per_cu->v.quick->compunit_symtab
10150 : per_cu->v.psymtab->compunit_symtab);
10151 }
10152
10153 /* A helper function for computing the list of all symbol tables
10154 included by PER_CU. */
10155
10156 static void
10157 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10158 htab_t all_children, htab_t all_type_symtabs,
10159 struct dwarf2_per_cu_data *per_cu,
10160 struct compunit_symtab *immediate_parent)
10161 {
10162 void **slot;
10163 int ix;
10164 struct compunit_symtab *cust;
10165 struct dwarf2_per_cu_data *iter;
10166
10167 slot = htab_find_slot (all_children, per_cu, INSERT);
10168 if (*slot != NULL)
10169 {
10170 /* This inclusion and its children have been processed. */
10171 return;
10172 }
10173
10174 *slot = per_cu;
10175 /* Only add a CU if it has a symbol table. */
10176 cust = get_compunit_symtab (per_cu);
10177 if (cust != NULL)
10178 {
10179 /* If this is a type unit only add its symbol table if we haven't
10180 seen it yet (type unit per_cu's can share symtabs). */
10181 if (per_cu->is_debug_types)
10182 {
10183 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10184 if (*slot == NULL)
10185 {
10186 *slot = cust;
10187 result->push_back (cust);
10188 if (cust->user == NULL)
10189 cust->user = immediate_parent;
10190 }
10191 }
10192 else
10193 {
10194 result->push_back (cust);
10195 if (cust->user == NULL)
10196 cust->user = immediate_parent;
10197 }
10198 }
10199
10200 for (ix = 0;
10201 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10202 ++ix)
10203 {
10204 recursively_compute_inclusions (result, all_children,
10205 all_type_symtabs, iter, cust);
10206 }
10207 }
10208
10209 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10210 PER_CU. */
10211
10212 static void
10213 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10214 {
10215 gdb_assert (! per_cu->is_debug_types);
10216
10217 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10218 {
10219 int ix, len;
10220 struct dwarf2_per_cu_data *per_cu_iter;
10221 std::vector<compunit_symtab *> result_symtabs;
10222 htab_t all_children, all_type_symtabs;
10223 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10224
10225 /* If we don't have a symtab, we can just skip this case. */
10226 if (cust == NULL)
10227 return;
10228
10229 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10230 NULL, xcalloc, xfree);
10231 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10232 NULL, xcalloc, xfree);
10233
10234 for (ix = 0;
10235 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10236 ix, per_cu_iter);
10237 ++ix)
10238 {
10239 recursively_compute_inclusions (&result_symtabs, all_children,
10240 all_type_symtabs, per_cu_iter,
10241 cust);
10242 }
10243
10244 /* Now we have a transitive closure of all the included symtabs. */
10245 len = result_symtabs.size ();
10246 cust->includes
10247 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10248 struct compunit_symtab *, len + 1);
10249 memcpy (cust->includes, result_symtabs.data (),
10250 len * sizeof (compunit_symtab *));
10251 cust->includes[len] = NULL;
10252
10253 htab_delete (all_children);
10254 htab_delete (all_type_symtabs);
10255 }
10256 }
10257
10258 /* Compute the 'includes' field for the symtabs of all the CUs we just
10259 read. */
10260
10261 static void
10262 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10263 {
10264 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10265 {
10266 if (! iter->is_debug_types)
10267 compute_compunit_symtab_includes (iter);
10268 }
10269
10270 dwarf2_per_objfile->just_read_cus.clear ();
10271 }
10272
10273 /* Generate full symbol information for PER_CU, whose DIEs have
10274 already been loaded into memory. */
10275
10276 static void
10277 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10278 enum language pretend_language)
10279 {
10280 struct dwarf2_cu *cu = per_cu->cu;
10281 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10282 struct objfile *objfile = dwarf2_per_objfile->objfile;
10283 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10284 CORE_ADDR lowpc, highpc;
10285 struct compunit_symtab *cust;
10286 CORE_ADDR baseaddr;
10287 struct block *static_block;
10288 CORE_ADDR addr;
10289
10290 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10291
10292 /* Clear the list here in case something was left over. */
10293 cu->method_list.clear ();
10294
10295 cu->language = pretend_language;
10296 cu->language_defn = language_def (cu->language);
10297
10298 /* Do line number decoding in read_file_scope () */
10299 process_die (cu->dies, cu);
10300
10301 /* For now fudge the Go package. */
10302 if (cu->language == language_go)
10303 fixup_go_packaging (cu);
10304
10305 /* Now that we have processed all the DIEs in the CU, all the types
10306 should be complete, and it should now be safe to compute all of the
10307 physnames. */
10308 compute_delayed_physnames (cu);
10309
10310 if (cu->language == language_rust)
10311 rust_union_quirks (cu);
10312
10313 /* Some compilers don't define a DW_AT_high_pc attribute for the
10314 compilation unit. If the DW_AT_high_pc is missing, synthesize
10315 it, by scanning the DIE's below the compilation unit. */
10316 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10317
10318 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10319 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10320
10321 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10322 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10323 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10324 addrmap to help ensure it has an accurate map of pc values belonging to
10325 this comp unit. */
10326 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10327
10328 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10329 SECT_OFF_TEXT (objfile),
10330 0);
10331
10332 if (cust != NULL)
10333 {
10334 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10335
10336 /* Set symtab language to language from DW_AT_language. If the
10337 compilation is from a C file generated by language preprocessors, do
10338 not set the language if it was already deduced by start_subfile. */
10339 if (!(cu->language == language_c
10340 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10341 COMPUNIT_FILETABS (cust)->language = cu->language;
10342
10343 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10344 produce DW_AT_location with location lists but it can be possibly
10345 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10346 there were bugs in prologue debug info, fixed later in GCC-4.5
10347 by "unwind info for epilogues" patch (which is not directly related).
10348
10349 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10350 needed, it would be wrong due to missing DW_AT_producer there.
10351
10352 Still one can confuse GDB by using non-standard GCC compilation
10353 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10354 */
10355 if (cu->has_loclist && gcc_4_minor >= 5)
10356 cust->locations_valid = 1;
10357
10358 if (gcc_4_minor >= 5)
10359 cust->epilogue_unwind_valid = 1;
10360
10361 cust->call_site_htab = cu->call_site_htab;
10362 }
10363
10364 if (dwarf2_per_objfile->using_index)
10365 per_cu->v.quick->compunit_symtab = cust;
10366 else
10367 {
10368 struct partial_symtab *pst = per_cu->v.psymtab;
10369 pst->compunit_symtab = cust;
10370 pst->readin = 1;
10371 }
10372
10373 /* Push it for inclusion processing later. */
10374 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10375
10376 /* Not needed any more. */
10377 cu->reset_builder ();
10378 }
10379
10380 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10381 already been loaded into memory. */
10382
10383 static void
10384 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10385 enum language pretend_language)
10386 {
10387 struct dwarf2_cu *cu = per_cu->cu;
10388 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10389 struct objfile *objfile = dwarf2_per_objfile->objfile;
10390 struct compunit_symtab *cust;
10391 struct signatured_type *sig_type;
10392
10393 gdb_assert (per_cu->is_debug_types);
10394 sig_type = (struct signatured_type *) per_cu;
10395
10396 /* Clear the list here in case something was left over. */
10397 cu->method_list.clear ();
10398
10399 cu->language = pretend_language;
10400 cu->language_defn = language_def (cu->language);
10401
10402 /* The symbol tables are set up in read_type_unit_scope. */
10403 process_die (cu->dies, cu);
10404
10405 /* For now fudge the Go package. */
10406 if (cu->language == language_go)
10407 fixup_go_packaging (cu);
10408
10409 /* Now that we have processed all the DIEs in the CU, all the types
10410 should be complete, and it should now be safe to compute all of the
10411 physnames. */
10412 compute_delayed_physnames (cu);
10413
10414 if (cu->language == language_rust)
10415 rust_union_quirks (cu);
10416
10417 /* TUs share symbol tables.
10418 If this is the first TU to use this symtab, complete the construction
10419 of it with end_expandable_symtab. Otherwise, complete the addition of
10420 this TU's symbols to the existing symtab. */
10421 if (sig_type->type_unit_group->compunit_symtab == NULL)
10422 {
10423 buildsym_compunit *builder = cu->get_builder ();
10424 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10425 sig_type->type_unit_group->compunit_symtab = cust;
10426
10427 if (cust != NULL)
10428 {
10429 /* Set symtab language to language from DW_AT_language. If the
10430 compilation is from a C file generated by language preprocessors,
10431 do not set the language if it was already deduced by
10432 start_subfile. */
10433 if (!(cu->language == language_c
10434 && COMPUNIT_FILETABS (cust)->language != language_c))
10435 COMPUNIT_FILETABS (cust)->language = cu->language;
10436 }
10437 }
10438 else
10439 {
10440 cu->get_builder ()->augment_type_symtab ();
10441 cust = sig_type->type_unit_group->compunit_symtab;
10442 }
10443
10444 if (dwarf2_per_objfile->using_index)
10445 per_cu->v.quick->compunit_symtab = cust;
10446 else
10447 {
10448 struct partial_symtab *pst = per_cu->v.psymtab;
10449 pst->compunit_symtab = cust;
10450 pst->readin = 1;
10451 }
10452
10453 /* Not needed any more. */
10454 cu->reset_builder ();
10455 }
10456
10457 /* Process an imported unit DIE. */
10458
10459 static void
10460 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10461 {
10462 struct attribute *attr;
10463
10464 /* For now we don't handle imported units in type units. */
10465 if (cu->per_cu->is_debug_types)
10466 {
10467 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10468 " supported in type units [in module %s]"),
10469 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10470 }
10471
10472 attr = dwarf2_attr (die, DW_AT_import, cu);
10473 if (attr != NULL)
10474 {
10475 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10476 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10477 dwarf2_per_cu_data *per_cu
10478 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10479 cu->per_cu->dwarf2_per_objfile);
10480
10481 /* If necessary, add it to the queue and load its DIEs. */
10482 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10483 load_full_comp_unit (per_cu, false, cu->language);
10484
10485 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10486 per_cu);
10487 }
10488 }
10489
10490 /* RAII object that represents a process_die scope: i.e.,
10491 starts/finishes processing a DIE. */
10492 class process_die_scope
10493 {
10494 public:
10495 process_die_scope (die_info *die, dwarf2_cu *cu)
10496 : m_die (die), m_cu (cu)
10497 {
10498 /* We should only be processing DIEs not already in process. */
10499 gdb_assert (!m_die->in_process);
10500 m_die->in_process = true;
10501 }
10502
10503 ~process_die_scope ()
10504 {
10505 m_die->in_process = false;
10506
10507 /* If we're done processing the DIE for the CU that owns the line
10508 header, we don't need the line header anymore. */
10509 if (m_cu->line_header_die_owner == m_die)
10510 {
10511 delete m_cu->line_header;
10512 m_cu->line_header = NULL;
10513 m_cu->line_header_die_owner = NULL;
10514 }
10515 }
10516
10517 private:
10518 die_info *m_die;
10519 dwarf2_cu *m_cu;
10520 };
10521
10522 /* Process a die and its children. */
10523
10524 static void
10525 process_die (struct die_info *die, struct dwarf2_cu *cu)
10526 {
10527 process_die_scope scope (die, cu);
10528
10529 switch (die->tag)
10530 {
10531 case DW_TAG_padding:
10532 break;
10533 case DW_TAG_compile_unit:
10534 case DW_TAG_partial_unit:
10535 read_file_scope (die, cu);
10536 break;
10537 case DW_TAG_type_unit:
10538 read_type_unit_scope (die, cu);
10539 break;
10540 case DW_TAG_subprogram:
10541 case DW_TAG_inlined_subroutine:
10542 read_func_scope (die, cu);
10543 break;
10544 case DW_TAG_lexical_block:
10545 case DW_TAG_try_block:
10546 case DW_TAG_catch_block:
10547 read_lexical_block_scope (die, cu);
10548 break;
10549 case DW_TAG_call_site:
10550 case DW_TAG_GNU_call_site:
10551 read_call_site_scope (die, cu);
10552 break;
10553 case DW_TAG_class_type:
10554 case DW_TAG_interface_type:
10555 case DW_TAG_structure_type:
10556 case DW_TAG_union_type:
10557 process_structure_scope (die, cu);
10558 break;
10559 case DW_TAG_enumeration_type:
10560 process_enumeration_scope (die, cu);
10561 break;
10562
10563 /* These dies have a type, but processing them does not create
10564 a symbol or recurse to process the children. Therefore we can
10565 read them on-demand through read_type_die. */
10566 case DW_TAG_subroutine_type:
10567 case DW_TAG_set_type:
10568 case DW_TAG_array_type:
10569 case DW_TAG_pointer_type:
10570 case DW_TAG_ptr_to_member_type:
10571 case DW_TAG_reference_type:
10572 case DW_TAG_rvalue_reference_type:
10573 case DW_TAG_string_type:
10574 break;
10575
10576 case DW_TAG_base_type:
10577 case DW_TAG_subrange_type:
10578 case DW_TAG_typedef:
10579 /* Add a typedef symbol for the type definition, if it has a
10580 DW_AT_name. */
10581 new_symbol (die, read_type_die (die, cu), cu);
10582 break;
10583 case DW_TAG_common_block:
10584 read_common_block (die, cu);
10585 break;
10586 case DW_TAG_common_inclusion:
10587 break;
10588 case DW_TAG_namespace:
10589 cu->processing_has_namespace_info = true;
10590 read_namespace (die, cu);
10591 break;
10592 case DW_TAG_module:
10593 cu->processing_has_namespace_info = true;
10594 read_module (die, cu);
10595 break;
10596 case DW_TAG_imported_declaration:
10597 cu->processing_has_namespace_info = true;
10598 if (read_namespace_alias (die, cu))
10599 break;
10600 /* The declaration is not a global namespace alias. */
10601 /* Fall through. */
10602 case DW_TAG_imported_module:
10603 cu->processing_has_namespace_info = true;
10604 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10605 || cu->language != language_fortran))
10606 complaint (_("Tag '%s' has unexpected children"),
10607 dwarf_tag_name (die->tag));
10608 read_import_statement (die, cu);
10609 break;
10610
10611 case DW_TAG_imported_unit:
10612 process_imported_unit_die (die, cu);
10613 break;
10614
10615 case DW_TAG_variable:
10616 read_variable (die, cu);
10617 break;
10618
10619 default:
10620 new_symbol (die, NULL, cu);
10621 break;
10622 }
10623 }
10624 \f
10625 /* DWARF name computation. */
10626
10627 /* A helper function for dwarf2_compute_name which determines whether DIE
10628 needs to have the name of the scope prepended to the name listed in the
10629 die. */
10630
10631 static int
10632 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10633 {
10634 struct attribute *attr;
10635
10636 switch (die->tag)
10637 {
10638 case DW_TAG_namespace:
10639 case DW_TAG_typedef:
10640 case DW_TAG_class_type:
10641 case DW_TAG_interface_type:
10642 case DW_TAG_structure_type:
10643 case DW_TAG_union_type:
10644 case DW_TAG_enumeration_type:
10645 case DW_TAG_enumerator:
10646 case DW_TAG_subprogram:
10647 case DW_TAG_inlined_subroutine:
10648 case DW_TAG_member:
10649 case DW_TAG_imported_declaration:
10650 return 1;
10651
10652 case DW_TAG_variable:
10653 case DW_TAG_constant:
10654 /* We only need to prefix "globally" visible variables. These include
10655 any variable marked with DW_AT_external or any variable that
10656 lives in a namespace. [Variables in anonymous namespaces
10657 require prefixing, but they are not DW_AT_external.] */
10658
10659 if (dwarf2_attr (die, DW_AT_specification, cu))
10660 {
10661 struct dwarf2_cu *spec_cu = cu;
10662
10663 return die_needs_namespace (die_specification (die, &spec_cu),
10664 spec_cu);
10665 }
10666
10667 attr = dwarf2_attr (die, DW_AT_external, cu);
10668 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10669 && die->parent->tag != DW_TAG_module)
10670 return 0;
10671 /* A variable in a lexical block of some kind does not need a
10672 namespace, even though in C++ such variables may be external
10673 and have a mangled name. */
10674 if (die->parent->tag == DW_TAG_lexical_block
10675 || die->parent->tag == DW_TAG_try_block
10676 || die->parent->tag == DW_TAG_catch_block
10677 || die->parent->tag == DW_TAG_subprogram)
10678 return 0;
10679 return 1;
10680
10681 default:
10682 return 0;
10683 }
10684 }
10685
10686 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10687 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10688 defined for the given DIE. */
10689
10690 static struct attribute *
10691 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10692 {
10693 struct attribute *attr;
10694
10695 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10696 if (attr == NULL)
10697 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10698
10699 return attr;
10700 }
10701
10702 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10703 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10704 defined for the given DIE. */
10705
10706 static const char *
10707 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10708 {
10709 const char *linkage_name;
10710
10711 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10712 if (linkage_name == NULL)
10713 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10714
10715 return linkage_name;
10716 }
10717
10718 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10719 compute the physname for the object, which include a method's:
10720 - formal parameters (C++),
10721 - receiver type (Go),
10722
10723 The term "physname" is a bit confusing.
10724 For C++, for example, it is the demangled name.
10725 For Go, for example, it's the mangled name.
10726
10727 For Ada, return the DIE's linkage name rather than the fully qualified
10728 name. PHYSNAME is ignored..
10729
10730 The result is allocated on the objfile_obstack and canonicalized. */
10731
10732 static const char *
10733 dwarf2_compute_name (const char *name,
10734 struct die_info *die, struct dwarf2_cu *cu,
10735 int physname)
10736 {
10737 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10738
10739 if (name == NULL)
10740 name = dwarf2_name (die, cu);
10741
10742 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10743 but otherwise compute it by typename_concat inside GDB.
10744 FIXME: Actually this is not really true, or at least not always true.
10745 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10746 Fortran names because there is no mangling standard. So new_symbol
10747 will set the demangled name to the result of dwarf2_full_name, and it is
10748 the demangled name that GDB uses if it exists. */
10749 if (cu->language == language_ada
10750 || (cu->language == language_fortran && physname))
10751 {
10752 /* For Ada unit, we prefer the linkage name over the name, as
10753 the former contains the exported name, which the user expects
10754 to be able to reference. Ideally, we want the user to be able
10755 to reference this entity using either natural or linkage name,
10756 but we haven't started looking at this enhancement yet. */
10757 const char *linkage_name = dw2_linkage_name (die, cu);
10758
10759 if (linkage_name != NULL)
10760 return linkage_name;
10761 }
10762
10763 /* These are the only languages we know how to qualify names in. */
10764 if (name != NULL
10765 && (cu->language == language_cplus
10766 || cu->language == language_fortran || cu->language == language_d
10767 || cu->language == language_rust))
10768 {
10769 if (die_needs_namespace (die, cu))
10770 {
10771 const char *prefix;
10772 const char *canonical_name = NULL;
10773
10774 string_file buf;
10775
10776 prefix = determine_prefix (die, cu);
10777 if (*prefix != '\0')
10778 {
10779 char *prefixed_name = typename_concat (NULL, prefix, name,
10780 physname, cu);
10781
10782 buf.puts (prefixed_name);
10783 xfree (prefixed_name);
10784 }
10785 else
10786 buf.puts (name);
10787
10788 /* Template parameters may be specified in the DIE's DW_AT_name, or
10789 as children with DW_TAG_template_type_param or
10790 DW_TAG_value_type_param. If the latter, add them to the name
10791 here. If the name already has template parameters, then
10792 skip this step; some versions of GCC emit both, and
10793 it is more efficient to use the pre-computed name.
10794
10795 Something to keep in mind about this process: it is very
10796 unlikely, or in some cases downright impossible, to produce
10797 something that will match the mangled name of a function.
10798 If the definition of the function has the same debug info,
10799 we should be able to match up with it anyway. But fallbacks
10800 using the minimal symbol, for instance to find a method
10801 implemented in a stripped copy of libstdc++, will not work.
10802 If we do not have debug info for the definition, we will have to
10803 match them up some other way.
10804
10805 When we do name matching there is a related problem with function
10806 templates; two instantiated function templates are allowed to
10807 differ only by their return types, which we do not add here. */
10808
10809 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10810 {
10811 struct attribute *attr;
10812 struct die_info *child;
10813 int first = 1;
10814
10815 die->building_fullname = 1;
10816
10817 for (child = die->child; child != NULL; child = child->sibling)
10818 {
10819 struct type *type;
10820 LONGEST value;
10821 const gdb_byte *bytes;
10822 struct dwarf2_locexpr_baton *baton;
10823 struct value *v;
10824
10825 if (child->tag != DW_TAG_template_type_param
10826 && child->tag != DW_TAG_template_value_param)
10827 continue;
10828
10829 if (first)
10830 {
10831 buf.puts ("<");
10832 first = 0;
10833 }
10834 else
10835 buf.puts (", ");
10836
10837 attr = dwarf2_attr (child, DW_AT_type, cu);
10838 if (attr == NULL)
10839 {
10840 complaint (_("template parameter missing DW_AT_type"));
10841 buf.puts ("UNKNOWN_TYPE");
10842 continue;
10843 }
10844 type = die_type (child, cu);
10845
10846 if (child->tag == DW_TAG_template_type_param)
10847 {
10848 c_print_type (type, "", &buf, -1, 0, cu->language,
10849 &type_print_raw_options);
10850 continue;
10851 }
10852
10853 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10854 if (attr == NULL)
10855 {
10856 complaint (_("template parameter missing "
10857 "DW_AT_const_value"));
10858 buf.puts ("UNKNOWN_VALUE");
10859 continue;
10860 }
10861
10862 dwarf2_const_value_attr (attr, type, name,
10863 &cu->comp_unit_obstack, cu,
10864 &value, &bytes, &baton);
10865
10866 if (TYPE_NOSIGN (type))
10867 /* GDB prints characters as NUMBER 'CHAR'. If that's
10868 changed, this can use value_print instead. */
10869 c_printchar (value, type, &buf);
10870 else
10871 {
10872 struct value_print_options opts;
10873
10874 if (baton != NULL)
10875 v = dwarf2_evaluate_loc_desc (type, NULL,
10876 baton->data,
10877 baton->size,
10878 baton->per_cu);
10879 else if (bytes != NULL)
10880 {
10881 v = allocate_value (type);
10882 memcpy (value_contents_writeable (v), bytes,
10883 TYPE_LENGTH (type));
10884 }
10885 else
10886 v = value_from_longest (type, value);
10887
10888 /* Specify decimal so that we do not depend on
10889 the radix. */
10890 get_formatted_print_options (&opts, 'd');
10891 opts.raw = 1;
10892 value_print (v, &buf, &opts);
10893 release_value (v);
10894 }
10895 }
10896
10897 die->building_fullname = 0;
10898
10899 if (!first)
10900 {
10901 /* Close the argument list, with a space if necessary
10902 (nested templates). */
10903 if (!buf.empty () && buf.string ().back () == '>')
10904 buf.puts (" >");
10905 else
10906 buf.puts (">");
10907 }
10908 }
10909
10910 /* For C++ methods, append formal parameter type
10911 information, if PHYSNAME. */
10912
10913 if (physname && die->tag == DW_TAG_subprogram
10914 && cu->language == language_cplus)
10915 {
10916 struct type *type = read_type_die (die, cu);
10917
10918 c_type_print_args (type, &buf, 1, cu->language,
10919 &type_print_raw_options);
10920
10921 if (cu->language == language_cplus)
10922 {
10923 /* Assume that an artificial first parameter is
10924 "this", but do not crash if it is not. RealView
10925 marks unnamed (and thus unused) parameters as
10926 artificial; there is no way to differentiate
10927 the two cases. */
10928 if (TYPE_NFIELDS (type) > 0
10929 && TYPE_FIELD_ARTIFICIAL (type, 0)
10930 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10931 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10932 0))))
10933 buf.puts (" const");
10934 }
10935 }
10936
10937 const std::string &intermediate_name = buf.string ();
10938
10939 if (cu->language == language_cplus)
10940 canonical_name
10941 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10942 &objfile->per_bfd->storage_obstack);
10943
10944 /* If we only computed INTERMEDIATE_NAME, or if
10945 INTERMEDIATE_NAME is already canonical, then we need to
10946 copy it to the appropriate obstack. */
10947 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10948 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10949 intermediate_name);
10950 else
10951 name = canonical_name;
10952 }
10953 }
10954
10955 return name;
10956 }
10957
10958 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10959 If scope qualifiers are appropriate they will be added. The result
10960 will be allocated on the storage_obstack, or NULL if the DIE does
10961 not have a name. NAME may either be from a previous call to
10962 dwarf2_name or NULL.
10963
10964 The output string will be canonicalized (if C++). */
10965
10966 static const char *
10967 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10968 {
10969 return dwarf2_compute_name (name, die, cu, 0);
10970 }
10971
10972 /* Construct a physname for the given DIE in CU. NAME may either be
10973 from a previous call to dwarf2_name or NULL. The result will be
10974 allocated on the objfile_objstack or NULL if the DIE does not have a
10975 name.
10976
10977 The output string will be canonicalized (if C++). */
10978
10979 static const char *
10980 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10981 {
10982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10983 const char *retval, *mangled = NULL, *canon = NULL;
10984 int need_copy = 1;
10985
10986 /* In this case dwarf2_compute_name is just a shortcut not building anything
10987 on its own. */
10988 if (!die_needs_namespace (die, cu))
10989 return dwarf2_compute_name (name, die, cu, 1);
10990
10991 mangled = dw2_linkage_name (die, cu);
10992
10993 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10994 See https://github.com/rust-lang/rust/issues/32925. */
10995 if (cu->language == language_rust && mangled != NULL
10996 && strchr (mangled, '{') != NULL)
10997 mangled = NULL;
10998
10999 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11000 has computed. */
11001 gdb::unique_xmalloc_ptr<char> demangled;
11002 if (mangled != NULL)
11003 {
11004
11005 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11006 {
11007 /* Do nothing (do not demangle the symbol name). */
11008 }
11009 else if (cu->language == language_go)
11010 {
11011 /* This is a lie, but we already lie to the caller new_symbol.
11012 new_symbol assumes we return the mangled name.
11013 This just undoes that lie until things are cleaned up. */
11014 }
11015 else
11016 {
11017 /* Use DMGL_RET_DROP for C++ template functions to suppress
11018 their return type. It is easier for GDB users to search
11019 for such functions as `name(params)' than `long name(params)'.
11020 In such case the minimal symbol names do not match the full
11021 symbol names but for template functions there is never a need
11022 to look up their definition from their declaration so
11023 the only disadvantage remains the minimal symbol variant
11024 `long name(params)' does not have the proper inferior type. */
11025 demangled.reset (gdb_demangle (mangled,
11026 (DMGL_PARAMS | DMGL_ANSI
11027 | DMGL_RET_DROP)));
11028 }
11029 if (demangled)
11030 canon = demangled.get ();
11031 else
11032 {
11033 canon = mangled;
11034 need_copy = 0;
11035 }
11036 }
11037
11038 if (canon == NULL || check_physname)
11039 {
11040 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11041
11042 if (canon != NULL && strcmp (physname, canon) != 0)
11043 {
11044 /* It may not mean a bug in GDB. The compiler could also
11045 compute DW_AT_linkage_name incorrectly. But in such case
11046 GDB would need to be bug-to-bug compatible. */
11047
11048 complaint (_("Computed physname <%s> does not match demangled <%s> "
11049 "(from linkage <%s>) - DIE at %s [in module %s]"),
11050 physname, canon, mangled, sect_offset_str (die->sect_off),
11051 objfile_name (objfile));
11052
11053 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11054 is available here - over computed PHYSNAME. It is safer
11055 against both buggy GDB and buggy compilers. */
11056
11057 retval = canon;
11058 }
11059 else
11060 {
11061 retval = physname;
11062 need_copy = 0;
11063 }
11064 }
11065 else
11066 retval = canon;
11067
11068 if (need_copy)
11069 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11070
11071 return retval;
11072 }
11073
11074 /* Inspect DIE in CU for a namespace alias. If one exists, record
11075 a new symbol for it.
11076
11077 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11078
11079 static int
11080 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11081 {
11082 struct attribute *attr;
11083
11084 /* If the die does not have a name, this is not a namespace
11085 alias. */
11086 attr = dwarf2_attr (die, DW_AT_name, cu);
11087 if (attr != NULL)
11088 {
11089 int num;
11090 struct die_info *d = die;
11091 struct dwarf2_cu *imported_cu = cu;
11092
11093 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11094 keep inspecting DIEs until we hit the underlying import. */
11095 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11096 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11097 {
11098 attr = dwarf2_attr (d, DW_AT_import, cu);
11099 if (attr == NULL)
11100 break;
11101
11102 d = follow_die_ref (d, attr, &imported_cu);
11103 if (d->tag != DW_TAG_imported_declaration)
11104 break;
11105 }
11106
11107 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11108 {
11109 complaint (_("DIE at %s has too many recursively imported "
11110 "declarations"), sect_offset_str (d->sect_off));
11111 return 0;
11112 }
11113
11114 if (attr != NULL)
11115 {
11116 struct type *type;
11117 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11118
11119 type = get_die_type_at_offset (sect_off, cu->per_cu);
11120 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11121 {
11122 /* This declaration is a global namespace alias. Add
11123 a symbol for it whose type is the aliased namespace. */
11124 new_symbol (die, type, cu);
11125 return 1;
11126 }
11127 }
11128 }
11129
11130 return 0;
11131 }
11132
11133 /* Return the using directives repository (global or local?) to use in the
11134 current context for CU.
11135
11136 For Ada, imported declarations can materialize renamings, which *may* be
11137 global. However it is impossible (for now?) in DWARF to distinguish
11138 "external" imported declarations and "static" ones. As all imported
11139 declarations seem to be static in all other languages, make them all CU-wide
11140 global only in Ada. */
11141
11142 static struct using_direct **
11143 using_directives (struct dwarf2_cu *cu)
11144 {
11145 if (cu->language == language_ada
11146 && cu->get_builder ()->outermost_context_p ())
11147 return cu->get_builder ()->get_global_using_directives ();
11148 else
11149 return cu->get_builder ()->get_local_using_directives ();
11150 }
11151
11152 /* Read the import statement specified by the given die and record it. */
11153
11154 static void
11155 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11156 {
11157 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11158 struct attribute *import_attr;
11159 struct die_info *imported_die, *child_die;
11160 struct dwarf2_cu *imported_cu;
11161 const char *imported_name;
11162 const char *imported_name_prefix;
11163 const char *canonical_name;
11164 const char *import_alias;
11165 const char *imported_declaration = NULL;
11166 const char *import_prefix;
11167 std::vector<const char *> excludes;
11168
11169 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11170 if (import_attr == NULL)
11171 {
11172 complaint (_("Tag '%s' has no DW_AT_import"),
11173 dwarf_tag_name (die->tag));
11174 return;
11175 }
11176
11177 imported_cu = cu;
11178 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11179 imported_name = dwarf2_name (imported_die, imported_cu);
11180 if (imported_name == NULL)
11181 {
11182 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11183
11184 The import in the following code:
11185 namespace A
11186 {
11187 typedef int B;
11188 }
11189
11190 int main ()
11191 {
11192 using A::B;
11193 B b;
11194 return b;
11195 }
11196
11197 ...
11198 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11199 <52> DW_AT_decl_file : 1
11200 <53> DW_AT_decl_line : 6
11201 <54> DW_AT_import : <0x75>
11202 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11203 <59> DW_AT_name : B
11204 <5b> DW_AT_decl_file : 1
11205 <5c> DW_AT_decl_line : 2
11206 <5d> DW_AT_type : <0x6e>
11207 ...
11208 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11209 <76> DW_AT_byte_size : 4
11210 <77> DW_AT_encoding : 5 (signed)
11211
11212 imports the wrong die ( 0x75 instead of 0x58 ).
11213 This case will be ignored until the gcc bug is fixed. */
11214 return;
11215 }
11216
11217 /* Figure out the local name after import. */
11218 import_alias = dwarf2_name (die, cu);
11219
11220 /* Figure out where the statement is being imported to. */
11221 import_prefix = determine_prefix (die, cu);
11222
11223 /* Figure out what the scope of the imported die is and prepend it
11224 to the name of the imported die. */
11225 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11226
11227 if (imported_die->tag != DW_TAG_namespace
11228 && imported_die->tag != DW_TAG_module)
11229 {
11230 imported_declaration = imported_name;
11231 canonical_name = imported_name_prefix;
11232 }
11233 else if (strlen (imported_name_prefix) > 0)
11234 canonical_name = obconcat (&objfile->objfile_obstack,
11235 imported_name_prefix,
11236 (cu->language == language_d ? "." : "::"),
11237 imported_name, (char *) NULL);
11238 else
11239 canonical_name = imported_name;
11240
11241 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11242 for (child_die = die->child; child_die && child_die->tag;
11243 child_die = sibling_die (child_die))
11244 {
11245 /* DWARF-4: A Fortran use statement with a “rename list” may be
11246 represented by an imported module entry with an import attribute
11247 referring to the module and owned entries corresponding to those
11248 entities that are renamed as part of being imported. */
11249
11250 if (child_die->tag != DW_TAG_imported_declaration)
11251 {
11252 complaint (_("child DW_TAG_imported_declaration expected "
11253 "- DIE at %s [in module %s]"),
11254 sect_offset_str (child_die->sect_off),
11255 objfile_name (objfile));
11256 continue;
11257 }
11258
11259 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11260 if (import_attr == NULL)
11261 {
11262 complaint (_("Tag '%s' has no DW_AT_import"),
11263 dwarf_tag_name (child_die->tag));
11264 continue;
11265 }
11266
11267 imported_cu = cu;
11268 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11269 &imported_cu);
11270 imported_name = dwarf2_name (imported_die, imported_cu);
11271 if (imported_name == NULL)
11272 {
11273 complaint (_("child DW_TAG_imported_declaration has unknown "
11274 "imported name - DIE at %s [in module %s]"),
11275 sect_offset_str (child_die->sect_off),
11276 objfile_name (objfile));
11277 continue;
11278 }
11279
11280 excludes.push_back (imported_name);
11281
11282 process_die (child_die, cu);
11283 }
11284
11285 add_using_directive (using_directives (cu),
11286 import_prefix,
11287 canonical_name,
11288 import_alias,
11289 imported_declaration,
11290 excludes,
11291 0,
11292 &objfile->objfile_obstack);
11293 }
11294
11295 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11296 types, but gives them a size of zero. Starting with version 14,
11297 ICC is compatible with GCC. */
11298
11299 static bool
11300 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11301 {
11302 if (!cu->checked_producer)
11303 check_producer (cu);
11304
11305 return cu->producer_is_icc_lt_14;
11306 }
11307
11308 /* ICC generates a DW_AT_type for C void functions. This was observed on
11309 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11310 which says that void functions should not have a DW_AT_type. */
11311
11312 static bool
11313 producer_is_icc (struct dwarf2_cu *cu)
11314 {
11315 if (!cu->checked_producer)
11316 check_producer (cu);
11317
11318 return cu->producer_is_icc;
11319 }
11320
11321 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11322 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11323 this, it was first present in GCC release 4.3.0. */
11324
11325 static bool
11326 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11327 {
11328 if (!cu->checked_producer)
11329 check_producer (cu);
11330
11331 return cu->producer_is_gcc_lt_4_3;
11332 }
11333
11334 static file_and_directory
11335 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11336 {
11337 file_and_directory res;
11338
11339 /* Find the filename. Do not use dwarf2_name here, since the filename
11340 is not a source language identifier. */
11341 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11342 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11343
11344 if (res.comp_dir == NULL
11345 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11346 && IS_ABSOLUTE_PATH (res.name))
11347 {
11348 res.comp_dir_storage = ldirname (res.name);
11349 if (!res.comp_dir_storage.empty ())
11350 res.comp_dir = res.comp_dir_storage.c_str ();
11351 }
11352 if (res.comp_dir != NULL)
11353 {
11354 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11355 directory, get rid of it. */
11356 const char *cp = strchr (res.comp_dir, ':');
11357
11358 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11359 res.comp_dir = cp + 1;
11360 }
11361
11362 if (res.name == NULL)
11363 res.name = "<unknown>";
11364
11365 return res;
11366 }
11367
11368 /* Handle DW_AT_stmt_list for a compilation unit.
11369 DIE is the DW_TAG_compile_unit die for CU.
11370 COMP_DIR is the compilation directory. LOWPC is passed to
11371 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11372
11373 static void
11374 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11375 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11376 {
11377 struct dwarf2_per_objfile *dwarf2_per_objfile
11378 = cu->per_cu->dwarf2_per_objfile;
11379 struct objfile *objfile = dwarf2_per_objfile->objfile;
11380 struct attribute *attr;
11381 struct line_header line_header_local;
11382 hashval_t line_header_local_hash;
11383 void **slot;
11384 int decode_mapping;
11385
11386 gdb_assert (! cu->per_cu->is_debug_types);
11387
11388 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11389 if (attr == NULL)
11390 return;
11391
11392 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11393
11394 /* The line header hash table is only created if needed (it exists to
11395 prevent redundant reading of the line table for partial_units).
11396 If we're given a partial_unit, we'll need it. If we're given a
11397 compile_unit, then use the line header hash table if it's already
11398 created, but don't create one just yet. */
11399
11400 if (dwarf2_per_objfile->line_header_hash == NULL
11401 && die->tag == DW_TAG_partial_unit)
11402 {
11403 dwarf2_per_objfile->line_header_hash
11404 = htab_create_alloc_ex (127, line_header_hash_voidp,
11405 line_header_eq_voidp,
11406 free_line_header_voidp,
11407 &objfile->objfile_obstack,
11408 hashtab_obstack_allocate,
11409 dummy_obstack_deallocate);
11410 }
11411
11412 line_header_local.sect_off = line_offset;
11413 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11414 line_header_local_hash = line_header_hash (&line_header_local);
11415 if (dwarf2_per_objfile->line_header_hash != NULL)
11416 {
11417 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11418 &line_header_local,
11419 line_header_local_hash, NO_INSERT);
11420
11421 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11422 is not present in *SLOT (since if there is something in *SLOT then
11423 it will be for a partial_unit). */
11424 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11425 {
11426 gdb_assert (*slot != NULL);
11427 cu->line_header = (struct line_header *) *slot;
11428 return;
11429 }
11430 }
11431
11432 /* dwarf_decode_line_header does not yet provide sufficient information.
11433 We always have to call also dwarf_decode_lines for it. */
11434 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11435 if (lh == NULL)
11436 return;
11437
11438 cu->line_header = lh.release ();
11439 cu->line_header_die_owner = die;
11440
11441 if (dwarf2_per_objfile->line_header_hash == NULL)
11442 slot = NULL;
11443 else
11444 {
11445 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11446 &line_header_local,
11447 line_header_local_hash, INSERT);
11448 gdb_assert (slot != NULL);
11449 }
11450 if (slot != NULL && *slot == NULL)
11451 {
11452 /* This newly decoded line number information unit will be owned
11453 by line_header_hash hash table. */
11454 *slot = cu->line_header;
11455 cu->line_header_die_owner = NULL;
11456 }
11457 else
11458 {
11459 /* We cannot free any current entry in (*slot) as that struct line_header
11460 may be already used by multiple CUs. Create only temporary decoded
11461 line_header for this CU - it may happen at most once for each line
11462 number information unit. And if we're not using line_header_hash
11463 then this is what we want as well. */
11464 gdb_assert (die->tag != DW_TAG_partial_unit);
11465 }
11466 decode_mapping = (die->tag != DW_TAG_partial_unit);
11467 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11468 decode_mapping);
11469
11470 }
11471
11472 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11473
11474 static void
11475 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11476 {
11477 struct dwarf2_per_objfile *dwarf2_per_objfile
11478 = cu->per_cu->dwarf2_per_objfile;
11479 struct objfile *objfile = dwarf2_per_objfile->objfile;
11480 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11481 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11482 CORE_ADDR highpc = ((CORE_ADDR) 0);
11483 struct attribute *attr;
11484 struct die_info *child_die;
11485 CORE_ADDR baseaddr;
11486
11487 prepare_one_comp_unit (cu, die, cu->language);
11488 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11489
11490 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11491
11492 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11493 from finish_block. */
11494 if (lowpc == ((CORE_ADDR) -1))
11495 lowpc = highpc;
11496 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11497
11498 file_and_directory fnd = find_file_and_directory (die, cu);
11499
11500 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11501 standardised yet. As a workaround for the language detection we fall
11502 back to the DW_AT_producer string. */
11503 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11504 cu->language = language_opencl;
11505
11506 /* Similar hack for Go. */
11507 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11508 set_cu_language (DW_LANG_Go, cu);
11509
11510 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11511
11512 /* Decode line number information if present. We do this before
11513 processing child DIEs, so that the line header table is available
11514 for DW_AT_decl_file. */
11515 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11516
11517 /* Process all dies in compilation unit. */
11518 if (die->child != NULL)
11519 {
11520 child_die = die->child;
11521 while (child_die && child_die->tag)
11522 {
11523 process_die (child_die, cu);
11524 child_die = sibling_die (child_die);
11525 }
11526 }
11527
11528 /* Decode macro information, if present. Dwarf 2 macro information
11529 refers to information in the line number info statement program
11530 header, so we can only read it if we've read the header
11531 successfully. */
11532 attr = dwarf2_attr (die, DW_AT_macros, cu);
11533 if (attr == NULL)
11534 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11535 if (attr && cu->line_header)
11536 {
11537 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11538 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11539
11540 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11541 }
11542 else
11543 {
11544 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11545 if (attr && cu->line_header)
11546 {
11547 unsigned int macro_offset = DW_UNSND (attr);
11548
11549 dwarf_decode_macros (cu, macro_offset, 0);
11550 }
11551 }
11552 }
11553
11554 void
11555 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11556 {
11557 struct type_unit_group *tu_group;
11558 int first_time;
11559 struct attribute *attr;
11560 unsigned int i;
11561 struct signatured_type *sig_type;
11562
11563 gdb_assert (per_cu->is_debug_types);
11564 sig_type = (struct signatured_type *) per_cu;
11565
11566 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11567
11568 /* If we're using .gdb_index (includes -readnow) then
11569 per_cu->type_unit_group may not have been set up yet. */
11570 if (sig_type->type_unit_group == NULL)
11571 sig_type->type_unit_group = get_type_unit_group (this, attr);
11572 tu_group = sig_type->type_unit_group;
11573
11574 /* If we've already processed this stmt_list there's no real need to
11575 do it again, we could fake it and just recreate the part we need
11576 (file name,index -> symtab mapping). If data shows this optimization
11577 is useful we can do it then. */
11578 first_time = tu_group->compunit_symtab == NULL;
11579
11580 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11581 debug info. */
11582 line_header_up lh;
11583 if (attr != NULL)
11584 {
11585 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11586 lh = dwarf_decode_line_header (line_offset, this);
11587 }
11588 if (lh == NULL)
11589 {
11590 if (first_time)
11591 start_symtab ("", NULL, 0);
11592 else
11593 {
11594 gdb_assert (tu_group->symtabs == NULL);
11595 gdb_assert (m_builder == nullptr);
11596 struct compunit_symtab *cust = tu_group->compunit_symtab;
11597 m_builder.reset (new struct buildsym_compunit
11598 (COMPUNIT_OBJFILE (cust), "",
11599 COMPUNIT_DIRNAME (cust),
11600 compunit_language (cust),
11601 0, cust));
11602 }
11603 return;
11604 }
11605
11606 line_header = lh.release ();
11607 line_header_die_owner = die;
11608
11609 if (first_time)
11610 {
11611 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11612
11613 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11614 still initializing it, and our caller (a few levels up)
11615 process_full_type_unit still needs to know if this is the first
11616 time. */
11617
11618 tu_group->num_symtabs = line_header->file_names.size ();
11619 tu_group->symtabs = XNEWVEC (struct symtab *,
11620 line_header->file_names.size ());
11621
11622 for (i = 0; i < line_header->file_names.size (); ++i)
11623 {
11624 file_entry &fe = line_header->file_names[i];
11625
11626 dwarf2_start_subfile (this, fe.name,
11627 fe.include_dir (line_header));
11628 buildsym_compunit *b = get_builder ();
11629 if (b->get_current_subfile ()->symtab == NULL)
11630 {
11631 /* NOTE: start_subfile will recognize when it's been
11632 passed a file it has already seen. So we can't
11633 assume there's a simple mapping from
11634 cu->line_header->file_names to subfiles, plus
11635 cu->line_header->file_names may contain dups. */
11636 b->get_current_subfile ()->symtab
11637 = allocate_symtab (cust, b->get_current_subfile ()->name);
11638 }
11639
11640 fe.symtab = b->get_current_subfile ()->symtab;
11641 tu_group->symtabs[i] = fe.symtab;
11642 }
11643 }
11644 else
11645 {
11646 gdb_assert (m_builder == nullptr);
11647 struct compunit_symtab *cust = tu_group->compunit_symtab;
11648 m_builder.reset (new struct buildsym_compunit
11649 (COMPUNIT_OBJFILE (cust), "",
11650 COMPUNIT_DIRNAME (cust),
11651 compunit_language (cust),
11652 0, cust));
11653
11654 for (i = 0; i < line_header->file_names.size (); ++i)
11655 {
11656 file_entry &fe = line_header->file_names[i];
11657
11658 fe.symtab = tu_group->symtabs[i];
11659 }
11660 }
11661
11662 /* The main symtab is allocated last. Type units don't have DW_AT_name
11663 so they don't have a "real" (so to speak) symtab anyway.
11664 There is later code that will assign the main symtab to all symbols
11665 that don't have one. We need to handle the case of a symbol with a
11666 missing symtab (DW_AT_decl_file) anyway. */
11667 }
11668
11669 /* Process DW_TAG_type_unit.
11670 For TUs we want to skip the first top level sibling if it's not the
11671 actual type being defined by this TU. In this case the first top
11672 level sibling is there to provide context only. */
11673
11674 static void
11675 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11676 {
11677 struct die_info *child_die;
11678
11679 prepare_one_comp_unit (cu, die, language_minimal);
11680
11681 /* Initialize (or reinitialize) the machinery for building symtabs.
11682 We do this before processing child DIEs, so that the line header table
11683 is available for DW_AT_decl_file. */
11684 cu->setup_type_unit_groups (die);
11685
11686 if (die->child != NULL)
11687 {
11688 child_die = die->child;
11689 while (child_die && child_die->tag)
11690 {
11691 process_die (child_die, cu);
11692 child_die = sibling_die (child_die);
11693 }
11694 }
11695 }
11696 \f
11697 /* DWO/DWP files.
11698
11699 http://gcc.gnu.org/wiki/DebugFission
11700 http://gcc.gnu.org/wiki/DebugFissionDWP
11701
11702 To simplify handling of both DWO files ("object" files with the DWARF info)
11703 and DWP files (a file with the DWOs packaged up into one file), we treat
11704 DWP files as having a collection of virtual DWO files. */
11705
11706 static hashval_t
11707 hash_dwo_file (const void *item)
11708 {
11709 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11710 hashval_t hash;
11711
11712 hash = htab_hash_string (dwo_file->dwo_name);
11713 if (dwo_file->comp_dir != NULL)
11714 hash += htab_hash_string (dwo_file->comp_dir);
11715 return hash;
11716 }
11717
11718 static int
11719 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11720 {
11721 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11722 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11723
11724 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11725 return 0;
11726 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11727 return lhs->comp_dir == rhs->comp_dir;
11728 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11729 }
11730
11731 /* Allocate a hash table for DWO files. */
11732
11733 static htab_up
11734 allocate_dwo_file_hash_table (struct objfile *objfile)
11735 {
11736 auto delete_dwo_file = [] (void *item)
11737 {
11738 struct dwo_file *dwo_file = (struct dwo_file *) item;
11739
11740 delete dwo_file;
11741 };
11742
11743 return htab_up (htab_create_alloc_ex (41,
11744 hash_dwo_file,
11745 eq_dwo_file,
11746 delete_dwo_file,
11747 &objfile->objfile_obstack,
11748 hashtab_obstack_allocate,
11749 dummy_obstack_deallocate));
11750 }
11751
11752 /* Lookup DWO file DWO_NAME. */
11753
11754 static void **
11755 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11756 const char *dwo_name,
11757 const char *comp_dir)
11758 {
11759 struct dwo_file find_entry;
11760 void **slot;
11761
11762 if (dwarf2_per_objfile->dwo_files == NULL)
11763 dwarf2_per_objfile->dwo_files
11764 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11765
11766 find_entry.dwo_name = dwo_name;
11767 find_entry.comp_dir = comp_dir;
11768 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11769 INSERT);
11770
11771 return slot;
11772 }
11773
11774 static hashval_t
11775 hash_dwo_unit (const void *item)
11776 {
11777 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11778
11779 /* This drops the top 32 bits of the id, but is ok for a hash. */
11780 return dwo_unit->signature;
11781 }
11782
11783 static int
11784 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11785 {
11786 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11787 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11788
11789 /* The signature is assumed to be unique within the DWO file.
11790 So while object file CU dwo_id's always have the value zero,
11791 that's OK, assuming each object file DWO file has only one CU,
11792 and that's the rule for now. */
11793 return lhs->signature == rhs->signature;
11794 }
11795
11796 /* Allocate a hash table for DWO CUs,TUs.
11797 There is one of these tables for each of CUs,TUs for each DWO file. */
11798
11799 static htab_t
11800 allocate_dwo_unit_table (struct objfile *objfile)
11801 {
11802 /* Start out with a pretty small number.
11803 Generally DWO files contain only one CU and maybe some TUs. */
11804 return htab_create_alloc_ex (3,
11805 hash_dwo_unit,
11806 eq_dwo_unit,
11807 NULL,
11808 &objfile->objfile_obstack,
11809 hashtab_obstack_allocate,
11810 dummy_obstack_deallocate);
11811 }
11812
11813 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11814
11815 struct create_dwo_cu_data
11816 {
11817 struct dwo_file *dwo_file;
11818 struct dwo_unit dwo_unit;
11819 };
11820
11821 /* die_reader_func for create_dwo_cu. */
11822
11823 static void
11824 create_dwo_cu_reader (const struct die_reader_specs *reader,
11825 const gdb_byte *info_ptr,
11826 struct die_info *comp_unit_die,
11827 int has_children,
11828 void *datap)
11829 {
11830 struct dwarf2_cu *cu = reader->cu;
11831 sect_offset sect_off = cu->per_cu->sect_off;
11832 struct dwarf2_section_info *section = cu->per_cu->section;
11833 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11834 struct dwo_file *dwo_file = data->dwo_file;
11835 struct dwo_unit *dwo_unit = &data->dwo_unit;
11836 struct attribute *attr;
11837
11838 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11839 if (attr == NULL)
11840 {
11841 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11842 " its dwo_id [in module %s]"),
11843 sect_offset_str (sect_off), dwo_file->dwo_name);
11844 return;
11845 }
11846
11847 dwo_unit->dwo_file = dwo_file;
11848 dwo_unit->signature = DW_UNSND (attr);
11849 dwo_unit->section = section;
11850 dwo_unit->sect_off = sect_off;
11851 dwo_unit->length = cu->per_cu->length;
11852
11853 if (dwarf_read_debug)
11854 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11855 sect_offset_str (sect_off),
11856 hex_string (dwo_unit->signature));
11857 }
11858
11859 /* Create the dwo_units for the CUs in a DWO_FILE.
11860 Note: This function processes DWO files only, not DWP files. */
11861
11862 static void
11863 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11864 struct dwo_file &dwo_file, dwarf2_section_info &section,
11865 htab_t &cus_htab)
11866 {
11867 struct objfile *objfile = dwarf2_per_objfile->objfile;
11868 const gdb_byte *info_ptr, *end_ptr;
11869
11870 dwarf2_read_section (objfile, &section);
11871 info_ptr = section.buffer;
11872
11873 if (info_ptr == NULL)
11874 return;
11875
11876 if (dwarf_read_debug)
11877 {
11878 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11879 get_section_name (&section),
11880 get_section_file_name (&section));
11881 }
11882
11883 end_ptr = info_ptr + section.size;
11884 while (info_ptr < end_ptr)
11885 {
11886 struct dwarf2_per_cu_data per_cu;
11887 struct create_dwo_cu_data create_dwo_cu_data;
11888 struct dwo_unit *dwo_unit;
11889 void **slot;
11890 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11891
11892 memset (&create_dwo_cu_data.dwo_unit, 0,
11893 sizeof (create_dwo_cu_data.dwo_unit));
11894 memset (&per_cu, 0, sizeof (per_cu));
11895 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11896 per_cu.is_debug_types = 0;
11897 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11898 per_cu.section = &section;
11899 create_dwo_cu_data.dwo_file = &dwo_file;
11900
11901 init_cutu_and_read_dies_no_follow (
11902 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11903 info_ptr += per_cu.length;
11904
11905 // If the unit could not be parsed, skip it.
11906 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11907 continue;
11908
11909 if (cus_htab == NULL)
11910 cus_htab = allocate_dwo_unit_table (objfile);
11911
11912 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11913 *dwo_unit = create_dwo_cu_data.dwo_unit;
11914 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11915 gdb_assert (slot != NULL);
11916 if (*slot != NULL)
11917 {
11918 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11919 sect_offset dup_sect_off = dup_cu->sect_off;
11920
11921 complaint (_("debug cu entry at offset %s is duplicate to"
11922 " the entry at offset %s, signature %s"),
11923 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11924 hex_string (dwo_unit->signature));
11925 }
11926 *slot = (void *)dwo_unit;
11927 }
11928 }
11929
11930 /* DWP file .debug_{cu,tu}_index section format:
11931 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11932
11933 DWP Version 1:
11934
11935 Both index sections have the same format, and serve to map a 64-bit
11936 signature to a set of section numbers. Each section begins with a header,
11937 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11938 indexes, and a pool of 32-bit section numbers. The index sections will be
11939 aligned at 8-byte boundaries in the file.
11940
11941 The index section header consists of:
11942
11943 V, 32 bit version number
11944 -, 32 bits unused
11945 N, 32 bit number of compilation units or type units in the index
11946 M, 32 bit number of slots in the hash table
11947
11948 Numbers are recorded using the byte order of the application binary.
11949
11950 The hash table begins at offset 16 in the section, and consists of an array
11951 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11952 order of the application binary). Unused slots in the hash table are 0.
11953 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11954
11955 The parallel table begins immediately after the hash table
11956 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11957 array of 32-bit indexes (using the byte order of the application binary),
11958 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11959 table contains a 32-bit index into the pool of section numbers. For unused
11960 hash table slots, the corresponding entry in the parallel table will be 0.
11961
11962 The pool of section numbers begins immediately following the hash table
11963 (at offset 16 + 12 * M from the beginning of the section). The pool of
11964 section numbers consists of an array of 32-bit words (using the byte order
11965 of the application binary). Each item in the array is indexed starting
11966 from 0. The hash table entry provides the index of the first section
11967 number in the set. Additional section numbers in the set follow, and the
11968 set is terminated by a 0 entry (section number 0 is not used in ELF).
11969
11970 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11971 section must be the first entry in the set, and the .debug_abbrev.dwo must
11972 be the second entry. Other members of the set may follow in any order.
11973
11974 ---
11975
11976 DWP Version 2:
11977
11978 DWP Version 2 combines all the .debug_info, etc. sections into one,
11979 and the entries in the index tables are now offsets into these sections.
11980 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11981 section.
11982
11983 Index Section Contents:
11984 Header
11985 Hash Table of Signatures dwp_hash_table.hash_table
11986 Parallel Table of Indices dwp_hash_table.unit_table
11987 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11988 Table of Section Sizes dwp_hash_table.v2.sizes
11989
11990 The index section header consists of:
11991
11992 V, 32 bit version number
11993 L, 32 bit number of columns in the table of section offsets
11994 N, 32 bit number of compilation units or type units in the index
11995 M, 32 bit number of slots in the hash table
11996
11997 Numbers are recorded using the byte order of the application binary.
11998
11999 The hash table has the same format as version 1.
12000 The parallel table of indices has the same format as version 1,
12001 except that the entries are origin-1 indices into the table of sections
12002 offsets and the table of section sizes.
12003
12004 The table of offsets begins immediately following the parallel table
12005 (at offset 16 + 12 * M from the beginning of the section). The table is
12006 a two-dimensional array of 32-bit words (using the byte order of the
12007 application binary), with L columns and N+1 rows, in row-major order.
12008 Each row in the array is indexed starting from 0. The first row provides
12009 a key to the remaining rows: each column in this row provides an identifier
12010 for a debug section, and the offsets in the same column of subsequent rows
12011 refer to that section. The section identifiers are:
12012
12013 DW_SECT_INFO 1 .debug_info.dwo
12014 DW_SECT_TYPES 2 .debug_types.dwo
12015 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12016 DW_SECT_LINE 4 .debug_line.dwo
12017 DW_SECT_LOC 5 .debug_loc.dwo
12018 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12019 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12020 DW_SECT_MACRO 8 .debug_macro.dwo
12021
12022 The offsets provided by the CU and TU index sections are the base offsets
12023 for the contributions made by each CU or TU to the corresponding section
12024 in the package file. Each CU and TU header contains an abbrev_offset
12025 field, used to find the abbreviations table for that CU or TU within the
12026 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12027 be interpreted as relative to the base offset given in the index section.
12028 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12029 should be interpreted as relative to the base offset for .debug_line.dwo,
12030 and offsets into other debug sections obtained from DWARF attributes should
12031 also be interpreted as relative to the corresponding base offset.
12032
12033 The table of sizes begins immediately following the table of offsets.
12034 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12035 with L columns and N rows, in row-major order. Each row in the array is
12036 indexed starting from 1 (row 0 is shared by the two tables).
12037
12038 ---
12039
12040 Hash table lookup is handled the same in version 1 and 2:
12041
12042 We assume that N and M will not exceed 2^32 - 1.
12043 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12044
12045 Given a 64-bit compilation unit signature or a type signature S, an entry
12046 in the hash table is located as follows:
12047
12048 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12049 the low-order k bits all set to 1.
12050
12051 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12052
12053 3) If the hash table entry at index H matches the signature, use that
12054 entry. If the hash table entry at index H is unused (all zeroes),
12055 terminate the search: the signature is not present in the table.
12056
12057 4) Let H = (H + H') modulo M. Repeat at Step 3.
12058
12059 Because M > N and H' and M are relatively prime, the search is guaranteed
12060 to stop at an unused slot or find the match. */
12061
12062 /* Create a hash table to map DWO IDs to their CU/TU entry in
12063 .debug_{info,types}.dwo in DWP_FILE.
12064 Returns NULL if there isn't one.
12065 Note: This function processes DWP files only, not DWO files. */
12066
12067 static struct dwp_hash_table *
12068 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12069 struct dwp_file *dwp_file, int is_debug_types)
12070 {
12071 struct objfile *objfile = dwarf2_per_objfile->objfile;
12072 bfd *dbfd = dwp_file->dbfd.get ();
12073 const gdb_byte *index_ptr, *index_end;
12074 struct dwarf2_section_info *index;
12075 uint32_t version, nr_columns, nr_units, nr_slots;
12076 struct dwp_hash_table *htab;
12077
12078 if (is_debug_types)
12079 index = &dwp_file->sections.tu_index;
12080 else
12081 index = &dwp_file->sections.cu_index;
12082
12083 if (dwarf2_section_empty_p (index))
12084 return NULL;
12085 dwarf2_read_section (objfile, index);
12086
12087 index_ptr = index->buffer;
12088 index_end = index_ptr + index->size;
12089
12090 version = read_4_bytes (dbfd, index_ptr);
12091 index_ptr += 4;
12092 if (version == 2)
12093 nr_columns = read_4_bytes (dbfd, index_ptr);
12094 else
12095 nr_columns = 0;
12096 index_ptr += 4;
12097 nr_units = read_4_bytes (dbfd, index_ptr);
12098 index_ptr += 4;
12099 nr_slots = read_4_bytes (dbfd, index_ptr);
12100 index_ptr += 4;
12101
12102 if (version != 1 && version != 2)
12103 {
12104 error (_("Dwarf Error: unsupported DWP file version (%s)"
12105 " [in module %s]"),
12106 pulongest (version), dwp_file->name);
12107 }
12108 if (nr_slots != (nr_slots & -nr_slots))
12109 {
12110 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12111 " is not power of 2 [in module %s]"),
12112 pulongest (nr_slots), dwp_file->name);
12113 }
12114
12115 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12116 htab->version = version;
12117 htab->nr_columns = nr_columns;
12118 htab->nr_units = nr_units;
12119 htab->nr_slots = nr_slots;
12120 htab->hash_table = index_ptr;
12121 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12122
12123 /* Exit early if the table is empty. */
12124 if (nr_slots == 0 || nr_units == 0
12125 || (version == 2 && nr_columns == 0))
12126 {
12127 /* All must be zero. */
12128 if (nr_slots != 0 || nr_units != 0
12129 || (version == 2 && nr_columns != 0))
12130 {
12131 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12132 " all zero [in modules %s]"),
12133 dwp_file->name);
12134 }
12135 return htab;
12136 }
12137
12138 if (version == 1)
12139 {
12140 htab->section_pool.v1.indices =
12141 htab->unit_table + sizeof (uint32_t) * nr_slots;
12142 /* It's harder to decide whether the section is too small in v1.
12143 V1 is deprecated anyway so we punt. */
12144 }
12145 else
12146 {
12147 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12148 int *ids = htab->section_pool.v2.section_ids;
12149 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12150 /* Reverse map for error checking. */
12151 int ids_seen[DW_SECT_MAX + 1];
12152 int i;
12153
12154 if (nr_columns < 2)
12155 {
12156 error (_("Dwarf Error: bad DWP hash table, too few columns"
12157 " in section table [in module %s]"),
12158 dwp_file->name);
12159 }
12160 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12161 {
12162 error (_("Dwarf Error: bad DWP hash table, too many columns"
12163 " in section table [in module %s]"),
12164 dwp_file->name);
12165 }
12166 memset (ids, 255, sizeof_ids);
12167 memset (ids_seen, 255, sizeof (ids_seen));
12168 for (i = 0; i < nr_columns; ++i)
12169 {
12170 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12171
12172 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12173 {
12174 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12175 " in section table [in module %s]"),
12176 id, dwp_file->name);
12177 }
12178 if (ids_seen[id] != -1)
12179 {
12180 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12181 " id %d in section table [in module %s]"),
12182 id, dwp_file->name);
12183 }
12184 ids_seen[id] = i;
12185 ids[i] = id;
12186 }
12187 /* Must have exactly one info or types section. */
12188 if (((ids_seen[DW_SECT_INFO] != -1)
12189 + (ids_seen[DW_SECT_TYPES] != -1))
12190 != 1)
12191 {
12192 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12193 " DWO info/types section [in module %s]"),
12194 dwp_file->name);
12195 }
12196 /* Must have an abbrev section. */
12197 if (ids_seen[DW_SECT_ABBREV] == -1)
12198 {
12199 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12200 " section [in module %s]"),
12201 dwp_file->name);
12202 }
12203 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12204 htab->section_pool.v2.sizes =
12205 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12206 * nr_units * nr_columns);
12207 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12208 * nr_units * nr_columns))
12209 > index_end)
12210 {
12211 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12212 " [in module %s]"),
12213 dwp_file->name);
12214 }
12215 }
12216
12217 return htab;
12218 }
12219
12220 /* Update SECTIONS with the data from SECTP.
12221
12222 This function is like the other "locate" section routines that are
12223 passed to bfd_map_over_sections, but in this context the sections to
12224 read comes from the DWP V1 hash table, not the full ELF section table.
12225
12226 The result is non-zero for success, or zero if an error was found. */
12227
12228 static int
12229 locate_v1_virtual_dwo_sections (asection *sectp,
12230 struct virtual_v1_dwo_sections *sections)
12231 {
12232 const struct dwop_section_names *names = &dwop_section_names;
12233
12234 if (section_is_p (sectp->name, &names->abbrev_dwo))
12235 {
12236 /* There can be only one. */
12237 if (sections->abbrev.s.section != NULL)
12238 return 0;
12239 sections->abbrev.s.section = sectp;
12240 sections->abbrev.size = bfd_get_section_size (sectp);
12241 }
12242 else if (section_is_p (sectp->name, &names->info_dwo)
12243 || section_is_p (sectp->name, &names->types_dwo))
12244 {
12245 /* There can be only one. */
12246 if (sections->info_or_types.s.section != NULL)
12247 return 0;
12248 sections->info_or_types.s.section = sectp;
12249 sections->info_or_types.size = bfd_get_section_size (sectp);
12250 }
12251 else if (section_is_p (sectp->name, &names->line_dwo))
12252 {
12253 /* There can be only one. */
12254 if (sections->line.s.section != NULL)
12255 return 0;
12256 sections->line.s.section = sectp;
12257 sections->line.size = bfd_get_section_size (sectp);
12258 }
12259 else if (section_is_p (sectp->name, &names->loc_dwo))
12260 {
12261 /* There can be only one. */
12262 if (sections->loc.s.section != NULL)
12263 return 0;
12264 sections->loc.s.section = sectp;
12265 sections->loc.size = bfd_get_section_size (sectp);
12266 }
12267 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12268 {
12269 /* There can be only one. */
12270 if (sections->macinfo.s.section != NULL)
12271 return 0;
12272 sections->macinfo.s.section = sectp;
12273 sections->macinfo.size = bfd_get_section_size (sectp);
12274 }
12275 else if (section_is_p (sectp->name, &names->macro_dwo))
12276 {
12277 /* There can be only one. */
12278 if (sections->macro.s.section != NULL)
12279 return 0;
12280 sections->macro.s.section = sectp;
12281 sections->macro.size = bfd_get_section_size (sectp);
12282 }
12283 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12284 {
12285 /* There can be only one. */
12286 if (sections->str_offsets.s.section != NULL)
12287 return 0;
12288 sections->str_offsets.s.section = sectp;
12289 sections->str_offsets.size = bfd_get_section_size (sectp);
12290 }
12291 else
12292 {
12293 /* No other kind of section is valid. */
12294 return 0;
12295 }
12296
12297 return 1;
12298 }
12299
12300 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12301 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12302 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12303 This is for DWP version 1 files. */
12304
12305 static struct dwo_unit *
12306 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12307 struct dwp_file *dwp_file,
12308 uint32_t unit_index,
12309 const char *comp_dir,
12310 ULONGEST signature, int is_debug_types)
12311 {
12312 struct objfile *objfile = dwarf2_per_objfile->objfile;
12313 const struct dwp_hash_table *dwp_htab =
12314 is_debug_types ? dwp_file->tus : dwp_file->cus;
12315 bfd *dbfd = dwp_file->dbfd.get ();
12316 const char *kind = is_debug_types ? "TU" : "CU";
12317 struct dwo_file *dwo_file;
12318 struct dwo_unit *dwo_unit;
12319 struct virtual_v1_dwo_sections sections;
12320 void **dwo_file_slot;
12321 int i;
12322
12323 gdb_assert (dwp_file->version == 1);
12324
12325 if (dwarf_read_debug)
12326 {
12327 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12328 kind,
12329 pulongest (unit_index), hex_string (signature),
12330 dwp_file->name);
12331 }
12332
12333 /* Fetch the sections of this DWO unit.
12334 Put a limit on the number of sections we look for so that bad data
12335 doesn't cause us to loop forever. */
12336
12337 #define MAX_NR_V1_DWO_SECTIONS \
12338 (1 /* .debug_info or .debug_types */ \
12339 + 1 /* .debug_abbrev */ \
12340 + 1 /* .debug_line */ \
12341 + 1 /* .debug_loc */ \
12342 + 1 /* .debug_str_offsets */ \
12343 + 1 /* .debug_macro or .debug_macinfo */ \
12344 + 1 /* trailing zero */)
12345
12346 memset (&sections, 0, sizeof (sections));
12347
12348 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12349 {
12350 asection *sectp;
12351 uint32_t section_nr =
12352 read_4_bytes (dbfd,
12353 dwp_htab->section_pool.v1.indices
12354 + (unit_index + i) * sizeof (uint32_t));
12355
12356 if (section_nr == 0)
12357 break;
12358 if (section_nr >= dwp_file->num_sections)
12359 {
12360 error (_("Dwarf Error: bad DWP hash table, section number too large"
12361 " [in module %s]"),
12362 dwp_file->name);
12363 }
12364
12365 sectp = dwp_file->elf_sections[section_nr];
12366 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12367 {
12368 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12369 " [in module %s]"),
12370 dwp_file->name);
12371 }
12372 }
12373
12374 if (i < 2
12375 || dwarf2_section_empty_p (&sections.info_or_types)
12376 || dwarf2_section_empty_p (&sections.abbrev))
12377 {
12378 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12379 " [in module %s]"),
12380 dwp_file->name);
12381 }
12382 if (i == MAX_NR_V1_DWO_SECTIONS)
12383 {
12384 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12385 " [in module %s]"),
12386 dwp_file->name);
12387 }
12388
12389 /* It's easier for the rest of the code if we fake a struct dwo_file and
12390 have dwo_unit "live" in that. At least for now.
12391
12392 The DWP file can be made up of a random collection of CUs and TUs.
12393 However, for each CU + set of TUs that came from the same original DWO
12394 file, we can combine them back into a virtual DWO file to save space
12395 (fewer struct dwo_file objects to allocate). Remember that for really
12396 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12397
12398 std::string virtual_dwo_name =
12399 string_printf ("virtual-dwo/%d-%d-%d-%d",
12400 get_section_id (&sections.abbrev),
12401 get_section_id (&sections.line),
12402 get_section_id (&sections.loc),
12403 get_section_id (&sections.str_offsets));
12404 /* Can we use an existing virtual DWO file? */
12405 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12406 virtual_dwo_name.c_str (),
12407 comp_dir);
12408 /* Create one if necessary. */
12409 if (*dwo_file_slot == NULL)
12410 {
12411 if (dwarf_read_debug)
12412 {
12413 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12414 virtual_dwo_name.c_str ());
12415 }
12416 dwo_file = new struct dwo_file;
12417 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12418 virtual_dwo_name);
12419 dwo_file->comp_dir = comp_dir;
12420 dwo_file->sections.abbrev = sections.abbrev;
12421 dwo_file->sections.line = sections.line;
12422 dwo_file->sections.loc = sections.loc;
12423 dwo_file->sections.macinfo = sections.macinfo;
12424 dwo_file->sections.macro = sections.macro;
12425 dwo_file->sections.str_offsets = sections.str_offsets;
12426 /* The "str" section is global to the entire DWP file. */
12427 dwo_file->sections.str = dwp_file->sections.str;
12428 /* The info or types section is assigned below to dwo_unit,
12429 there's no need to record it in dwo_file.
12430 Also, we can't simply record type sections in dwo_file because
12431 we record a pointer into the vector in dwo_unit. As we collect more
12432 types we'll grow the vector and eventually have to reallocate space
12433 for it, invalidating all copies of pointers into the previous
12434 contents. */
12435 *dwo_file_slot = dwo_file;
12436 }
12437 else
12438 {
12439 if (dwarf_read_debug)
12440 {
12441 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12442 virtual_dwo_name.c_str ());
12443 }
12444 dwo_file = (struct dwo_file *) *dwo_file_slot;
12445 }
12446
12447 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12448 dwo_unit->dwo_file = dwo_file;
12449 dwo_unit->signature = signature;
12450 dwo_unit->section =
12451 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12452 *dwo_unit->section = sections.info_or_types;
12453 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12454
12455 return dwo_unit;
12456 }
12457
12458 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12459 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12460 piece within that section used by a TU/CU, return a virtual section
12461 of just that piece. */
12462
12463 static struct dwarf2_section_info
12464 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12465 struct dwarf2_section_info *section,
12466 bfd_size_type offset, bfd_size_type size)
12467 {
12468 struct dwarf2_section_info result;
12469 asection *sectp;
12470
12471 gdb_assert (section != NULL);
12472 gdb_assert (!section->is_virtual);
12473
12474 memset (&result, 0, sizeof (result));
12475 result.s.containing_section = section;
12476 result.is_virtual = true;
12477
12478 if (size == 0)
12479 return result;
12480
12481 sectp = get_section_bfd_section (section);
12482
12483 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12484 bounds of the real section. This is a pretty-rare event, so just
12485 flag an error (easier) instead of a warning and trying to cope. */
12486 if (sectp == NULL
12487 || offset + size > bfd_get_section_size (sectp))
12488 {
12489 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12490 " in section %s [in module %s]"),
12491 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12492 objfile_name (dwarf2_per_objfile->objfile));
12493 }
12494
12495 result.virtual_offset = offset;
12496 result.size = size;
12497 return result;
12498 }
12499
12500 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12501 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12502 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12503 This is for DWP version 2 files. */
12504
12505 static struct dwo_unit *
12506 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12507 struct dwp_file *dwp_file,
12508 uint32_t unit_index,
12509 const char *comp_dir,
12510 ULONGEST signature, int is_debug_types)
12511 {
12512 struct objfile *objfile = dwarf2_per_objfile->objfile;
12513 const struct dwp_hash_table *dwp_htab =
12514 is_debug_types ? dwp_file->tus : dwp_file->cus;
12515 bfd *dbfd = dwp_file->dbfd.get ();
12516 const char *kind = is_debug_types ? "TU" : "CU";
12517 struct dwo_file *dwo_file;
12518 struct dwo_unit *dwo_unit;
12519 struct virtual_v2_dwo_sections sections;
12520 void **dwo_file_slot;
12521 int i;
12522
12523 gdb_assert (dwp_file->version == 2);
12524
12525 if (dwarf_read_debug)
12526 {
12527 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12528 kind,
12529 pulongest (unit_index), hex_string (signature),
12530 dwp_file->name);
12531 }
12532
12533 /* Fetch the section offsets of this DWO unit. */
12534
12535 memset (&sections, 0, sizeof (sections));
12536
12537 for (i = 0; i < dwp_htab->nr_columns; ++i)
12538 {
12539 uint32_t offset = read_4_bytes (dbfd,
12540 dwp_htab->section_pool.v2.offsets
12541 + (((unit_index - 1) * dwp_htab->nr_columns
12542 + i)
12543 * sizeof (uint32_t)));
12544 uint32_t size = read_4_bytes (dbfd,
12545 dwp_htab->section_pool.v2.sizes
12546 + (((unit_index - 1) * dwp_htab->nr_columns
12547 + i)
12548 * sizeof (uint32_t)));
12549
12550 switch (dwp_htab->section_pool.v2.section_ids[i])
12551 {
12552 case DW_SECT_INFO:
12553 case DW_SECT_TYPES:
12554 sections.info_or_types_offset = offset;
12555 sections.info_or_types_size = size;
12556 break;
12557 case DW_SECT_ABBREV:
12558 sections.abbrev_offset = offset;
12559 sections.abbrev_size = size;
12560 break;
12561 case DW_SECT_LINE:
12562 sections.line_offset = offset;
12563 sections.line_size = size;
12564 break;
12565 case DW_SECT_LOC:
12566 sections.loc_offset = offset;
12567 sections.loc_size = size;
12568 break;
12569 case DW_SECT_STR_OFFSETS:
12570 sections.str_offsets_offset = offset;
12571 sections.str_offsets_size = size;
12572 break;
12573 case DW_SECT_MACINFO:
12574 sections.macinfo_offset = offset;
12575 sections.macinfo_size = size;
12576 break;
12577 case DW_SECT_MACRO:
12578 sections.macro_offset = offset;
12579 sections.macro_size = size;
12580 break;
12581 }
12582 }
12583
12584 /* It's easier for the rest of the code if we fake a struct dwo_file and
12585 have dwo_unit "live" in that. At least for now.
12586
12587 The DWP file can be made up of a random collection of CUs and TUs.
12588 However, for each CU + set of TUs that came from the same original DWO
12589 file, we can combine them back into a virtual DWO file to save space
12590 (fewer struct dwo_file objects to allocate). Remember that for really
12591 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12592
12593 std::string virtual_dwo_name =
12594 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12595 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12596 (long) (sections.line_size ? sections.line_offset : 0),
12597 (long) (sections.loc_size ? sections.loc_offset : 0),
12598 (long) (sections.str_offsets_size
12599 ? sections.str_offsets_offset : 0));
12600 /* Can we use an existing virtual DWO file? */
12601 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12602 virtual_dwo_name.c_str (),
12603 comp_dir);
12604 /* Create one if necessary. */
12605 if (*dwo_file_slot == NULL)
12606 {
12607 if (dwarf_read_debug)
12608 {
12609 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12610 virtual_dwo_name.c_str ());
12611 }
12612 dwo_file = new struct dwo_file;
12613 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12614 virtual_dwo_name);
12615 dwo_file->comp_dir = comp_dir;
12616 dwo_file->sections.abbrev =
12617 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12618 sections.abbrev_offset, sections.abbrev_size);
12619 dwo_file->sections.line =
12620 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12621 sections.line_offset, sections.line_size);
12622 dwo_file->sections.loc =
12623 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12624 sections.loc_offset, sections.loc_size);
12625 dwo_file->sections.macinfo =
12626 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12627 sections.macinfo_offset, sections.macinfo_size);
12628 dwo_file->sections.macro =
12629 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12630 sections.macro_offset, sections.macro_size);
12631 dwo_file->sections.str_offsets =
12632 create_dwp_v2_section (dwarf2_per_objfile,
12633 &dwp_file->sections.str_offsets,
12634 sections.str_offsets_offset,
12635 sections.str_offsets_size);
12636 /* The "str" section is global to the entire DWP file. */
12637 dwo_file->sections.str = dwp_file->sections.str;
12638 /* The info or types section is assigned below to dwo_unit,
12639 there's no need to record it in dwo_file.
12640 Also, we can't simply record type sections in dwo_file because
12641 we record a pointer into the vector in dwo_unit. As we collect more
12642 types we'll grow the vector and eventually have to reallocate space
12643 for it, invalidating all copies of pointers into the previous
12644 contents. */
12645 *dwo_file_slot = dwo_file;
12646 }
12647 else
12648 {
12649 if (dwarf_read_debug)
12650 {
12651 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12652 virtual_dwo_name.c_str ());
12653 }
12654 dwo_file = (struct dwo_file *) *dwo_file_slot;
12655 }
12656
12657 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12658 dwo_unit->dwo_file = dwo_file;
12659 dwo_unit->signature = signature;
12660 dwo_unit->section =
12661 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12662 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12663 is_debug_types
12664 ? &dwp_file->sections.types
12665 : &dwp_file->sections.info,
12666 sections.info_or_types_offset,
12667 sections.info_or_types_size);
12668 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12669
12670 return dwo_unit;
12671 }
12672
12673 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12674 Returns NULL if the signature isn't found. */
12675
12676 static struct dwo_unit *
12677 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12678 struct dwp_file *dwp_file, const char *comp_dir,
12679 ULONGEST signature, int is_debug_types)
12680 {
12681 const struct dwp_hash_table *dwp_htab =
12682 is_debug_types ? dwp_file->tus : dwp_file->cus;
12683 bfd *dbfd = dwp_file->dbfd.get ();
12684 uint32_t mask = dwp_htab->nr_slots - 1;
12685 uint32_t hash = signature & mask;
12686 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12687 unsigned int i;
12688 void **slot;
12689 struct dwo_unit find_dwo_cu;
12690
12691 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12692 find_dwo_cu.signature = signature;
12693 slot = htab_find_slot (is_debug_types
12694 ? dwp_file->loaded_tus
12695 : dwp_file->loaded_cus,
12696 &find_dwo_cu, INSERT);
12697
12698 if (*slot != NULL)
12699 return (struct dwo_unit *) *slot;
12700
12701 /* Use a for loop so that we don't loop forever on bad debug info. */
12702 for (i = 0; i < dwp_htab->nr_slots; ++i)
12703 {
12704 ULONGEST signature_in_table;
12705
12706 signature_in_table =
12707 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12708 if (signature_in_table == signature)
12709 {
12710 uint32_t unit_index =
12711 read_4_bytes (dbfd,
12712 dwp_htab->unit_table + hash * sizeof (uint32_t));
12713
12714 if (dwp_file->version == 1)
12715 {
12716 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12717 dwp_file, unit_index,
12718 comp_dir, signature,
12719 is_debug_types);
12720 }
12721 else
12722 {
12723 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12724 dwp_file, unit_index,
12725 comp_dir, signature,
12726 is_debug_types);
12727 }
12728 return (struct dwo_unit *) *slot;
12729 }
12730 if (signature_in_table == 0)
12731 return NULL;
12732 hash = (hash + hash2) & mask;
12733 }
12734
12735 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12736 " [in module %s]"),
12737 dwp_file->name);
12738 }
12739
12740 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12741 Open the file specified by FILE_NAME and hand it off to BFD for
12742 preliminary analysis. Return a newly initialized bfd *, which
12743 includes a canonicalized copy of FILE_NAME.
12744 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12745 SEARCH_CWD is true if the current directory is to be searched.
12746 It will be searched before debug-file-directory.
12747 If successful, the file is added to the bfd include table of the
12748 objfile's bfd (see gdb_bfd_record_inclusion).
12749 If unable to find/open the file, return NULL.
12750 NOTE: This function is derived from symfile_bfd_open. */
12751
12752 static gdb_bfd_ref_ptr
12753 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12754 const char *file_name, int is_dwp, int search_cwd)
12755 {
12756 int desc;
12757 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12758 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12759 to debug_file_directory. */
12760 const char *search_path;
12761 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12762
12763 gdb::unique_xmalloc_ptr<char> search_path_holder;
12764 if (search_cwd)
12765 {
12766 if (*debug_file_directory != '\0')
12767 {
12768 search_path_holder.reset (concat (".", dirname_separator_string,
12769 debug_file_directory,
12770 (char *) NULL));
12771 search_path = search_path_holder.get ();
12772 }
12773 else
12774 search_path = ".";
12775 }
12776 else
12777 search_path = debug_file_directory;
12778
12779 openp_flags flags = OPF_RETURN_REALPATH;
12780 if (is_dwp)
12781 flags |= OPF_SEARCH_IN_PATH;
12782
12783 gdb::unique_xmalloc_ptr<char> absolute_name;
12784 desc = openp (search_path, flags, file_name,
12785 O_RDONLY | O_BINARY, &absolute_name);
12786 if (desc < 0)
12787 return NULL;
12788
12789 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12790 gnutarget, desc));
12791 if (sym_bfd == NULL)
12792 return NULL;
12793 bfd_set_cacheable (sym_bfd.get (), 1);
12794
12795 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12796 return NULL;
12797
12798 /* Success. Record the bfd as having been included by the objfile's bfd.
12799 This is important because things like demangled_names_hash lives in the
12800 objfile's per_bfd space and may have references to things like symbol
12801 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12802 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12803
12804 return sym_bfd;
12805 }
12806
12807 /* Try to open DWO file FILE_NAME.
12808 COMP_DIR is the DW_AT_comp_dir attribute.
12809 The result is the bfd handle of the file.
12810 If there is a problem finding or opening the file, return NULL.
12811 Upon success, the canonicalized path of the file is stored in the bfd,
12812 same as symfile_bfd_open. */
12813
12814 static gdb_bfd_ref_ptr
12815 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12816 const char *file_name, const char *comp_dir)
12817 {
12818 if (IS_ABSOLUTE_PATH (file_name))
12819 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12820 0 /*is_dwp*/, 0 /*search_cwd*/);
12821
12822 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12823
12824 if (comp_dir != NULL)
12825 {
12826 char *path_to_try = concat (comp_dir, SLASH_STRING,
12827 file_name, (char *) NULL);
12828
12829 /* NOTE: If comp_dir is a relative path, this will also try the
12830 search path, which seems useful. */
12831 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12832 path_to_try,
12833 0 /*is_dwp*/,
12834 1 /*search_cwd*/));
12835 xfree (path_to_try);
12836 if (abfd != NULL)
12837 return abfd;
12838 }
12839
12840 /* That didn't work, try debug-file-directory, which, despite its name,
12841 is a list of paths. */
12842
12843 if (*debug_file_directory == '\0')
12844 return NULL;
12845
12846 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12847 0 /*is_dwp*/, 1 /*search_cwd*/);
12848 }
12849
12850 /* This function is mapped across the sections and remembers the offset and
12851 size of each of the DWO debugging sections we are interested in. */
12852
12853 static void
12854 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12855 {
12856 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12857 const struct dwop_section_names *names = &dwop_section_names;
12858
12859 if (section_is_p (sectp->name, &names->abbrev_dwo))
12860 {
12861 dwo_sections->abbrev.s.section = sectp;
12862 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12863 }
12864 else if (section_is_p (sectp->name, &names->info_dwo))
12865 {
12866 dwo_sections->info.s.section = sectp;
12867 dwo_sections->info.size = bfd_get_section_size (sectp);
12868 }
12869 else if (section_is_p (sectp->name, &names->line_dwo))
12870 {
12871 dwo_sections->line.s.section = sectp;
12872 dwo_sections->line.size = bfd_get_section_size (sectp);
12873 }
12874 else if (section_is_p (sectp->name, &names->loc_dwo))
12875 {
12876 dwo_sections->loc.s.section = sectp;
12877 dwo_sections->loc.size = bfd_get_section_size (sectp);
12878 }
12879 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12880 {
12881 dwo_sections->macinfo.s.section = sectp;
12882 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12883 }
12884 else if (section_is_p (sectp->name, &names->macro_dwo))
12885 {
12886 dwo_sections->macro.s.section = sectp;
12887 dwo_sections->macro.size = bfd_get_section_size (sectp);
12888 }
12889 else if (section_is_p (sectp->name, &names->str_dwo))
12890 {
12891 dwo_sections->str.s.section = sectp;
12892 dwo_sections->str.size = bfd_get_section_size (sectp);
12893 }
12894 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12895 {
12896 dwo_sections->str_offsets.s.section = sectp;
12897 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12898 }
12899 else if (section_is_p (sectp->name, &names->types_dwo))
12900 {
12901 struct dwarf2_section_info type_section;
12902
12903 memset (&type_section, 0, sizeof (type_section));
12904 type_section.s.section = sectp;
12905 type_section.size = bfd_get_section_size (sectp);
12906 dwo_sections->types.push_back (type_section);
12907 }
12908 }
12909
12910 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12911 by PER_CU. This is for the non-DWP case.
12912 The result is NULL if DWO_NAME can't be found. */
12913
12914 static struct dwo_file *
12915 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12916 const char *dwo_name, const char *comp_dir)
12917 {
12918 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12919
12920 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12921 if (dbfd == NULL)
12922 {
12923 if (dwarf_read_debug)
12924 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12925 return NULL;
12926 }
12927
12928 dwo_file_up dwo_file (new struct dwo_file);
12929 dwo_file->dwo_name = dwo_name;
12930 dwo_file->comp_dir = comp_dir;
12931 dwo_file->dbfd = std::move (dbfd);
12932
12933 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12934 &dwo_file->sections);
12935
12936 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12937 dwo_file->cus);
12938
12939 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12940 dwo_file->sections.types, dwo_file->tus);
12941
12942 if (dwarf_read_debug)
12943 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12944
12945 return dwo_file.release ();
12946 }
12947
12948 /* This function is mapped across the sections and remembers the offset and
12949 size of each of the DWP debugging sections common to version 1 and 2 that
12950 we are interested in. */
12951
12952 static void
12953 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12954 void *dwp_file_ptr)
12955 {
12956 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12957 const struct dwop_section_names *names = &dwop_section_names;
12958 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12959
12960 /* Record the ELF section number for later lookup: this is what the
12961 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12962 gdb_assert (elf_section_nr < dwp_file->num_sections);
12963 dwp_file->elf_sections[elf_section_nr] = sectp;
12964
12965 /* Look for specific sections that we need. */
12966 if (section_is_p (sectp->name, &names->str_dwo))
12967 {
12968 dwp_file->sections.str.s.section = sectp;
12969 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12970 }
12971 else if (section_is_p (sectp->name, &names->cu_index))
12972 {
12973 dwp_file->sections.cu_index.s.section = sectp;
12974 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12975 }
12976 else if (section_is_p (sectp->name, &names->tu_index))
12977 {
12978 dwp_file->sections.tu_index.s.section = sectp;
12979 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12980 }
12981 }
12982
12983 /* This function is mapped across the sections and remembers the offset and
12984 size of each of the DWP version 2 debugging sections that we are interested
12985 in. This is split into a separate function because we don't know if we
12986 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12987
12988 static void
12989 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12990 {
12991 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12992 const struct dwop_section_names *names = &dwop_section_names;
12993 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12994
12995 /* Record the ELF section number for later lookup: this is what the
12996 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12997 gdb_assert (elf_section_nr < dwp_file->num_sections);
12998 dwp_file->elf_sections[elf_section_nr] = sectp;
12999
13000 /* Look for specific sections that we need. */
13001 if (section_is_p (sectp->name, &names->abbrev_dwo))
13002 {
13003 dwp_file->sections.abbrev.s.section = sectp;
13004 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13005 }
13006 else if (section_is_p (sectp->name, &names->info_dwo))
13007 {
13008 dwp_file->sections.info.s.section = sectp;
13009 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13010 }
13011 else if (section_is_p (sectp->name, &names->line_dwo))
13012 {
13013 dwp_file->sections.line.s.section = sectp;
13014 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13015 }
13016 else if (section_is_p (sectp->name, &names->loc_dwo))
13017 {
13018 dwp_file->sections.loc.s.section = sectp;
13019 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13020 }
13021 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13022 {
13023 dwp_file->sections.macinfo.s.section = sectp;
13024 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13025 }
13026 else if (section_is_p (sectp->name, &names->macro_dwo))
13027 {
13028 dwp_file->sections.macro.s.section = sectp;
13029 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13030 }
13031 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13032 {
13033 dwp_file->sections.str_offsets.s.section = sectp;
13034 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13035 }
13036 else if (section_is_p (sectp->name, &names->types_dwo))
13037 {
13038 dwp_file->sections.types.s.section = sectp;
13039 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13040 }
13041 }
13042
13043 /* Hash function for dwp_file loaded CUs/TUs. */
13044
13045 static hashval_t
13046 hash_dwp_loaded_cutus (const void *item)
13047 {
13048 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13049
13050 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13051 return dwo_unit->signature;
13052 }
13053
13054 /* Equality function for dwp_file loaded CUs/TUs. */
13055
13056 static int
13057 eq_dwp_loaded_cutus (const void *a, const void *b)
13058 {
13059 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13060 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13061
13062 return dua->signature == dub->signature;
13063 }
13064
13065 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13066
13067 static htab_t
13068 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13069 {
13070 return htab_create_alloc_ex (3,
13071 hash_dwp_loaded_cutus,
13072 eq_dwp_loaded_cutus,
13073 NULL,
13074 &objfile->objfile_obstack,
13075 hashtab_obstack_allocate,
13076 dummy_obstack_deallocate);
13077 }
13078
13079 /* Try to open DWP file FILE_NAME.
13080 The result is the bfd handle of the file.
13081 If there is a problem finding or opening the file, return NULL.
13082 Upon success, the canonicalized path of the file is stored in the bfd,
13083 same as symfile_bfd_open. */
13084
13085 static gdb_bfd_ref_ptr
13086 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13087 const char *file_name)
13088 {
13089 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13090 1 /*is_dwp*/,
13091 1 /*search_cwd*/));
13092 if (abfd != NULL)
13093 return abfd;
13094
13095 /* Work around upstream bug 15652.
13096 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13097 [Whether that's a "bug" is debatable, but it is getting in our way.]
13098 We have no real idea where the dwp file is, because gdb's realpath-ing
13099 of the executable's path may have discarded the needed info.
13100 [IWBN if the dwp file name was recorded in the executable, akin to
13101 .gnu_debuglink, but that doesn't exist yet.]
13102 Strip the directory from FILE_NAME and search again. */
13103 if (*debug_file_directory != '\0')
13104 {
13105 /* Don't implicitly search the current directory here.
13106 If the user wants to search "." to handle this case,
13107 it must be added to debug-file-directory. */
13108 return try_open_dwop_file (dwarf2_per_objfile,
13109 lbasename (file_name), 1 /*is_dwp*/,
13110 0 /*search_cwd*/);
13111 }
13112
13113 return NULL;
13114 }
13115
13116 /* Initialize the use of the DWP file for the current objfile.
13117 By convention the name of the DWP file is ${objfile}.dwp.
13118 The result is NULL if it can't be found. */
13119
13120 static std::unique_ptr<struct dwp_file>
13121 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13122 {
13123 struct objfile *objfile = dwarf2_per_objfile->objfile;
13124
13125 /* Try to find first .dwp for the binary file before any symbolic links
13126 resolving. */
13127
13128 /* If the objfile is a debug file, find the name of the real binary
13129 file and get the name of dwp file from there. */
13130 std::string dwp_name;
13131 if (objfile->separate_debug_objfile_backlink != NULL)
13132 {
13133 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13134 const char *backlink_basename = lbasename (backlink->original_name);
13135
13136 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13137 }
13138 else
13139 dwp_name = objfile->original_name;
13140
13141 dwp_name += ".dwp";
13142
13143 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13144 if (dbfd == NULL
13145 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13146 {
13147 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13148 dwp_name = objfile_name (objfile);
13149 dwp_name += ".dwp";
13150 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13151 }
13152
13153 if (dbfd == NULL)
13154 {
13155 if (dwarf_read_debug)
13156 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13157 return std::unique_ptr<dwp_file> ();
13158 }
13159
13160 const char *name = bfd_get_filename (dbfd.get ());
13161 std::unique_ptr<struct dwp_file> dwp_file
13162 (new struct dwp_file (name, std::move (dbfd)));
13163
13164 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13165 dwp_file->elf_sections =
13166 OBSTACK_CALLOC (&objfile->objfile_obstack,
13167 dwp_file->num_sections, asection *);
13168
13169 bfd_map_over_sections (dwp_file->dbfd.get (),
13170 dwarf2_locate_common_dwp_sections,
13171 dwp_file.get ());
13172
13173 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13174 0);
13175
13176 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13177 1);
13178
13179 /* The DWP file version is stored in the hash table. Oh well. */
13180 if (dwp_file->cus && dwp_file->tus
13181 && dwp_file->cus->version != dwp_file->tus->version)
13182 {
13183 /* Technically speaking, we should try to limp along, but this is
13184 pretty bizarre. We use pulongest here because that's the established
13185 portability solution (e.g, we cannot use %u for uint32_t). */
13186 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13187 " TU version %s [in DWP file %s]"),
13188 pulongest (dwp_file->cus->version),
13189 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13190 }
13191
13192 if (dwp_file->cus)
13193 dwp_file->version = dwp_file->cus->version;
13194 else if (dwp_file->tus)
13195 dwp_file->version = dwp_file->tus->version;
13196 else
13197 dwp_file->version = 2;
13198
13199 if (dwp_file->version == 2)
13200 bfd_map_over_sections (dwp_file->dbfd.get (),
13201 dwarf2_locate_v2_dwp_sections,
13202 dwp_file.get ());
13203
13204 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13205 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13206
13207 if (dwarf_read_debug)
13208 {
13209 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13210 fprintf_unfiltered (gdb_stdlog,
13211 " %s CUs, %s TUs\n",
13212 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13213 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13214 }
13215
13216 return dwp_file;
13217 }
13218
13219 /* Wrapper around open_and_init_dwp_file, only open it once. */
13220
13221 static struct dwp_file *
13222 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13223 {
13224 if (! dwarf2_per_objfile->dwp_checked)
13225 {
13226 dwarf2_per_objfile->dwp_file
13227 = open_and_init_dwp_file (dwarf2_per_objfile);
13228 dwarf2_per_objfile->dwp_checked = 1;
13229 }
13230 return dwarf2_per_objfile->dwp_file.get ();
13231 }
13232
13233 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13234 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13235 or in the DWP file for the objfile, referenced by THIS_UNIT.
13236 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13237 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13238
13239 This is called, for example, when wanting to read a variable with a
13240 complex location. Therefore we don't want to do file i/o for every call.
13241 Therefore we don't want to look for a DWO file on every call.
13242 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13243 then we check if we've already seen DWO_NAME, and only THEN do we check
13244 for a DWO file.
13245
13246 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13247 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13248
13249 static struct dwo_unit *
13250 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13251 const char *dwo_name, const char *comp_dir,
13252 ULONGEST signature, int is_debug_types)
13253 {
13254 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13255 struct objfile *objfile = dwarf2_per_objfile->objfile;
13256 const char *kind = is_debug_types ? "TU" : "CU";
13257 void **dwo_file_slot;
13258 struct dwo_file *dwo_file;
13259 struct dwp_file *dwp_file;
13260
13261 /* First see if there's a DWP file.
13262 If we have a DWP file but didn't find the DWO inside it, don't
13263 look for the original DWO file. It makes gdb behave differently
13264 depending on whether one is debugging in the build tree. */
13265
13266 dwp_file = get_dwp_file (dwarf2_per_objfile);
13267 if (dwp_file != NULL)
13268 {
13269 const struct dwp_hash_table *dwp_htab =
13270 is_debug_types ? dwp_file->tus : dwp_file->cus;
13271
13272 if (dwp_htab != NULL)
13273 {
13274 struct dwo_unit *dwo_cutu =
13275 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13276 signature, is_debug_types);
13277
13278 if (dwo_cutu != NULL)
13279 {
13280 if (dwarf_read_debug)
13281 {
13282 fprintf_unfiltered (gdb_stdlog,
13283 "Virtual DWO %s %s found: @%s\n",
13284 kind, hex_string (signature),
13285 host_address_to_string (dwo_cutu));
13286 }
13287 return dwo_cutu;
13288 }
13289 }
13290 }
13291 else
13292 {
13293 /* No DWP file, look for the DWO file. */
13294
13295 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13296 dwo_name, comp_dir);
13297 if (*dwo_file_slot == NULL)
13298 {
13299 /* Read in the file and build a table of the CUs/TUs it contains. */
13300 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13301 }
13302 /* NOTE: This will be NULL if unable to open the file. */
13303 dwo_file = (struct dwo_file *) *dwo_file_slot;
13304
13305 if (dwo_file != NULL)
13306 {
13307 struct dwo_unit *dwo_cutu = NULL;
13308
13309 if (is_debug_types && dwo_file->tus)
13310 {
13311 struct dwo_unit find_dwo_cutu;
13312
13313 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13314 find_dwo_cutu.signature = signature;
13315 dwo_cutu
13316 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13317 }
13318 else if (!is_debug_types && dwo_file->cus)
13319 {
13320 struct dwo_unit find_dwo_cutu;
13321
13322 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13323 find_dwo_cutu.signature = signature;
13324 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13325 &find_dwo_cutu);
13326 }
13327
13328 if (dwo_cutu != NULL)
13329 {
13330 if (dwarf_read_debug)
13331 {
13332 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13333 kind, dwo_name, hex_string (signature),
13334 host_address_to_string (dwo_cutu));
13335 }
13336 return dwo_cutu;
13337 }
13338 }
13339 }
13340
13341 /* We didn't find it. This could mean a dwo_id mismatch, or
13342 someone deleted the DWO/DWP file, or the search path isn't set up
13343 correctly to find the file. */
13344
13345 if (dwarf_read_debug)
13346 {
13347 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13348 kind, dwo_name, hex_string (signature));
13349 }
13350
13351 /* This is a warning and not a complaint because it can be caused by
13352 pilot error (e.g., user accidentally deleting the DWO). */
13353 {
13354 /* Print the name of the DWP file if we looked there, helps the user
13355 better diagnose the problem. */
13356 std::string dwp_text;
13357
13358 if (dwp_file != NULL)
13359 dwp_text = string_printf (" [in DWP file %s]",
13360 lbasename (dwp_file->name));
13361
13362 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13363 " [in module %s]"),
13364 kind, dwo_name, hex_string (signature),
13365 dwp_text.c_str (),
13366 this_unit->is_debug_types ? "TU" : "CU",
13367 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13368 }
13369 return NULL;
13370 }
13371
13372 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13373 See lookup_dwo_cutu_unit for details. */
13374
13375 static struct dwo_unit *
13376 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13377 const char *dwo_name, const char *comp_dir,
13378 ULONGEST signature)
13379 {
13380 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13381 }
13382
13383 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13384 See lookup_dwo_cutu_unit for details. */
13385
13386 static struct dwo_unit *
13387 lookup_dwo_type_unit (struct signatured_type *this_tu,
13388 const char *dwo_name, const char *comp_dir)
13389 {
13390 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13391 }
13392
13393 /* Traversal function for queue_and_load_all_dwo_tus. */
13394
13395 static int
13396 queue_and_load_dwo_tu (void **slot, void *info)
13397 {
13398 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13399 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13400 ULONGEST signature = dwo_unit->signature;
13401 struct signatured_type *sig_type =
13402 lookup_dwo_signatured_type (per_cu->cu, signature);
13403
13404 if (sig_type != NULL)
13405 {
13406 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13407
13408 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13409 a real dependency of PER_CU on SIG_TYPE. That is detected later
13410 while processing PER_CU. */
13411 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13412 load_full_type_unit (sig_cu);
13413 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13414 }
13415
13416 return 1;
13417 }
13418
13419 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13420 The DWO may have the only definition of the type, though it may not be
13421 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13422 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13423
13424 static void
13425 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13426 {
13427 struct dwo_unit *dwo_unit;
13428 struct dwo_file *dwo_file;
13429
13430 gdb_assert (!per_cu->is_debug_types);
13431 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13432 gdb_assert (per_cu->cu != NULL);
13433
13434 dwo_unit = per_cu->cu->dwo_unit;
13435 gdb_assert (dwo_unit != NULL);
13436
13437 dwo_file = dwo_unit->dwo_file;
13438 if (dwo_file->tus != NULL)
13439 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13440 }
13441
13442 /* Read in various DIEs. */
13443
13444 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13445 Inherit only the children of the DW_AT_abstract_origin DIE not being
13446 already referenced by DW_AT_abstract_origin from the children of the
13447 current DIE. */
13448
13449 static void
13450 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13451 {
13452 struct die_info *child_die;
13453 sect_offset *offsetp;
13454 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13455 struct die_info *origin_die;
13456 /* Iterator of the ORIGIN_DIE children. */
13457 struct die_info *origin_child_die;
13458 struct attribute *attr;
13459 struct dwarf2_cu *origin_cu;
13460 struct pending **origin_previous_list_in_scope;
13461
13462 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13463 if (!attr)
13464 return;
13465
13466 /* Note that following die references may follow to a die in a
13467 different cu. */
13468
13469 origin_cu = cu;
13470 origin_die = follow_die_ref (die, attr, &origin_cu);
13471
13472 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13473 symbols in. */
13474 origin_previous_list_in_scope = origin_cu->list_in_scope;
13475 origin_cu->list_in_scope = cu->list_in_scope;
13476
13477 if (die->tag != origin_die->tag
13478 && !(die->tag == DW_TAG_inlined_subroutine
13479 && origin_die->tag == DW_TAG_subprogram))
13480 complaint (_("DIE %s and its abstract origin %s have different tags"),
13481 sect_offset_str (die->sect_off),
13482 sect_offset_str (origin_die->sect_off));
13483
13484 std::vector<sect_offset> offsets;
13485
13486 for (child_die = die->child;
13487 child_die && child_die->tag;
13488 child_die = sibling_die (child_die))
13489 {
13490 struct die_info *child_origin_die;
13491 struct dwarf2_cu *child_origin_cu;
13492
13493 /* We are trying to process concrete instance entries:
13494 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13495 it's not relevant to our analysis here. i.e. detecting DIEs that are
13496 present in the abstract instance but not referenced in the concrete
13497 one. */
13498 if (child_die->tag == DW_TAG_call_site
13499 || child_die->tag == DW_TAG_GNU_call_site)
13500 continue;
13501
13502 /* For each CHILD_DIE, find the corresponding child of
13503 ORIGIN_DIE. If there is more than one layer of
13504 DW_AT_abstract_origin, follow them all; there shouldn't be,
13505 but GCC versions at least through 4.4 generate this (GCC PR
13506 40573). */
13507 child_origin_die = child_die;
13508 child_origin_cu = cu;
13509 while (1)
13510 {
13511 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13512 child_origin_cu);
13513 if (attr == NULL)
13514 break;
13515 child_origin_die = follow_die_ref (child_origin_die, attr,
13516 &child_origin_cu);
13517 }
13518
13519 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13520 counterpart may exist. */
13521 if (child_origin_die != child_die)
13522 {
13523 if (child_die->tag != child_origin_die->tag
13524 && !(child_die->tag == DW_TAG_inlined_subroutine
13525 && child_origin_die->tag == DW_TAG_subprogram))
13526 complaint (_("Child DIE %s and its abstract origin %s have "
13527 "different tags"),
13528 sect_offset_str (child_die->sect_off),
13529 sect_offset_str (child_origin_die->sect_off));
13530 if (child_origin_die->parent != origin_die)
13531 complaint (_("Child DIE %s and its abstract origin %s have "
13532 "different parents"),
13533 sect_offset_str (child_die->sect_off),
13534 sect_offset_str (child_origin_die->sect_off));
13535 else
13536 offsets.push_back (child_origin_die->sect_off);
13537 }
13538 }
13539 std::sort (offsets.begin (), offsets.end ());
13540 sect_offset *offsets_end = offsets.data () + offsets.size ();
13541 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13542 if (offsetp[-1] == *offsetp)
13543 complaint (_("Multiple children of DIE %s refer "
13544 "to DIE %s as their abstract origin"),
13545 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13546
13547 offsetp = offsets.data ();
13548 origin_child_die = origin_die->child;
13549 while (origin_child_die && origin_child_die->tag)
13550 {
13551 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13552 while (offsetp < offsets_end
13553 && *offsetp < origin_child_die->sect_off)
13554 offsetp++;
13555 if (offsetp >= offsets_end
13556 || *offsetp > origin_child_die->sect_off)
13557 {
13558 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13559 Check whether we're already processing ORIGIN_CHILD_DIE.
13560 This can happen with mutually referenced abstract_origins.
13561 PR 16581. */
13562 if (!origin_child_die->in_process)
13563 process_die (origin_child_die, origin_cu);
13564 }
13565 origin_child_die = sibling_die (origin_child_die);
13566 }
13567 origin_cu->list_in_scope = origin_previous_list_in_scope;
13568 }
13569
13570 static void
13571 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13572 {
13573 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13574 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13575 struct context_stack *newobj;
13576 CORE_ADDR lowpc;
13577 CORE_ADDR highpc;
13578 struct die_info *child_die;
13579 struct attribute *attr, *call_line, *call_file;
13580 const char *name;
13581 CORE_ADDR baseaddr;
13582 struct block *block;
13583 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13584 std::vector<struct symbol *> template_args;
13585 struct template_symbol *templ_func = NULL;
13586
13587 if (inlined_func)
13588 {
13589 /* If we do not have call site information, we can't show the
13590 caller of this inlined function. That's too confusing, so
13591 only use the scope for local variables. */
13592 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13593 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13594 if (call_line == NULL || call_file == NULL)
13595 {
13596 read_lexical_block_scope (die, cu);
13597 return;
13598 }
13599 }
13600
13601 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13602
13603 name = dwarf2_name (die, cu);
13604
13605 /* Ignore functions with missing or empty names. These are actually
13606 illegal according to the DWARF standard. */
13607 if (name == NULL)
13608 {
13609 complaint (_("missing name for subprogram DIE at %s"),
13610 sect_offset_str (die->sect_off));
13611 return;
13612 }
13613
13614 /* Ignore functions with missing or invalid low and high pc attributes. */
13615 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13616 <= PC_BOUNDS_INVALID)
13617 {
13618 attr = dwarf2_attr (die, DW_AT_external, cu);
13619 if (!attr || !DW_UNSND (attr))
13620 complaint (_("cannot get low and high bounds "
13621 "for subprogram DIE at %s"),
13622 sect_offset_str (die->sect_off));
13623 return;
13624 }
13625
13626 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13627 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13628
13629 /* If we have any template arguments, then we must allocate a
13630 different sort of symbol. */
13631 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13632 {
13633 if (child_die->tag == DW_TAG_template_type_param
13634 || child_die->tag == DW_TAG_template_value_param)
13635 {
13636 templ_func = allocate_template_symbol (objfile);
13637 templ_func->subclass = SYMBOL_TEMPLATE;
13638 break;
13639 }
13640 }
13641
13642 newobj = cu->get_builder ()->push_context (0, lowpc);
13643 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13644 (struct symbol *) templ_func);
13645
13646 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13647 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13648 cu->language);
13649
13650 /* If there is a location expression for DW_AT_frame_base, record
13651 it. */
13652 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13653 if (attr)
13654 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13655
13656 /* If there is a location for the static link, record it. */
13657 newobj->static_link = NULL;
13658 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13659 if (attr)
13660 {
13661 newobj->static_link
13662 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13663 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13664 dwarf2_per_cu_addr_type (cu->per_cu));
13665 }
13666
13667 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13668
13669 if (die->child != NULL)
13670 {
13671 child_die = die->child;
13672 while (child_die && child_die->tag)
13673 {
13674 if (child_die->tag == DW_TAG_template_type_param
13675 || child_die->tag == DW_TAG_template_value_param)
13676 {
13677 struct symbol *arg = new_symbol (child_die, NULL, cu);
13678
13679 if (arg != NULL)
13680 template_args.push_back (arg);
13681 }
13682 else
13683 process_die (child_die, cu);
13684 child_die = sibling_die (child_die);
13685 }
13686 }
13687
13688 inherit_abstract_dies (die, cu);
13689
13690 /* If we have a DW_AT_specification, we might need to import using
13691 directives from the context of the specification DIE. See the
13692 comment in determine_prefix. */
13693 if (cu->language == language_cplus
13694 && dwarf2_attr (die, DW_AT_specification, cu))
13695 {
13696 struct dwarf2_cu *spec_cu = cu;
13697 struct die_info *spec_die = die_specification (die, &spec_cu);
13698
13699 while (spec_die)
13700 {
13701 child_die = spec_die->child;
13702 while (child_die && child_die->tag)
13703 {
13704 if (child_die->tag == DW_TAG_imported_module)
13705 process_die (child_die, spec_cu);
13706 child_die = sibling_die (child_die);
13707 }
13708
13709 /* In some cases, GCC generates specification DIEs that
13710 themselves contain DW_AT_specification attributes. */
13711 spec_die = die_specification (spec_die, &spec_cu);
13712 }
13713 }
13714
13715 struct context_stack cstk = cu->get_builder ()->pop_context ();
13716 /* Make a block for the local symbols within. */
13717 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13718 cstk.static_link, lowpc, highpc);
13719
13720 /* For C++, set the block's scope. */
13721 if ((cu->language == language_cplus
13722 || cu->language == language_fortran
13723 || cu->language == language_d
13724 || cu->language == language_rust)
13725 && cu->processing_has_namespace_info)
13726 block_set_scope (block, determine_prefix (die, cu),
13727 &objfile->objfile_obstack);
13728
13729 /* If we have address ranges, record them. */
13730 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13731
13732 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13733
13734 /* Attach template arguments to function. */
13735 if (!template_args.empty ())
13736 {
13737 gdb_assert (templ_func != NULL);
13738
13739 templ_func->n_template_arguments = template_args.size ();
13740 templ_func->template_arguments
13741 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13742 templ_func->n_template_arguments);
13743 memcpy (templ_func->template_arguments,
13744 template_args.data (),
13745 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13746
13747 /* Make sure that the symtab is set on the new symbols. Even
13748 though they don't appear in this symtab directly, other parts
13749 of gdb assume that symbols do, and this is reasonably
13750 true. */
13751 for (symbol *sym : template_args)
13752 symbol_set_symtab (sym, symbol_symtab (templ_func));
13753 }
13754
13755 /* In C++, we can have functions nested inside functions (e.g., when
13756 a function declares a class that has methods). This means that
13757 when we finish processing a function scope, we may need to go
13758 back to building a containing block's symbol lists. */
13759 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13760 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13761
13762 /* If we've finished processing a top-level function, subsequent
13763 symbols go in the file symbol list. */
13764 if (cu->get_builder ()->outermost_context_p ())
13765 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13766 }
13767
13768 /* Process all the DIES contained within a lexical block scope. Start
13769 a new scope, process the dies, and then close the scope. */
13770
13771 static void
13772 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13773 {
13774 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13775 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13776 CORE_ADDR lowpc, highpc;
13777 struct die_info *child_die;
13778 CORE_ADDR baseaddr;
13779
13780 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13781
13782 /* Ignore blocks with missing or invalid low and high pc attributes. */
13783 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13784 as multiple lexical blocks? Handling children in a sane way would
13785 be nasty. Might be easier to properly extend generic blocks to
13786 describe ranges. */
13787 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13788 {
13789 case PC_BOUNDS_NOT_PRESENT:
13790 /* DW_TAG_lexical_block has no attributes, process its children as if
13791 there was no wrapping by that DW_TAG_lexical_block.
13792 GCC does no longer produces such DWARF since GCC r224161. */
13793 for (child_die = die->child;
13794 child_die != NULL && child_die->tag;
13795 child_die = sibling_die (child_die))
13796 process_die (child_die, cu);
13797 return;
13798 case PC_BOUNDS_INVALID:
13799 return;
13800 }
13801 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13802 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13803
13804 cu->get_builder ()->push_context (0, lowpc);
13805 if (die->child != NULL)
13806 {
13807 child_die = die->child;
13808 while (child_die && child_die->tag)
13809 {
13810 process_die (child_die, cu);
13811 child_die = sibling_die (child_die);
13812 }
13813 }
13814 inherit_abstract_dies (die, cu);
13815 struct context_stack cstk = cu->get_builder ()->pop_context ();
13816
13817 if (*cu->get_builder ()->get_local_symbols () != NULL
13818 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13819 {
13820 struct block *block
13821 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13822 cstk.start_addr, highpc);
13823
13824 /* Note that recording ranges after traversing children, as we
13825 do here, means that recording a parent's ranges entails
13826 walking across all its children's ranges as they appear in
13827 the address map, which is quadratic behavior.
13828
13829 It would be nicer to record the parent's ranges before
13830 traversing its children, simply overriding whatever you find
13831 there. But since we don't even decide whether to create a
13832 block until after we've traversed its children, that's hard
13833 to do. */
13834 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13835 }
13836 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13837 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13838 }
13839
13840 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13841
13842 static void
13843 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13844 {
13845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13846 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13847 CORE_ADDR pc, baseaddr;
13848 struct attribute *attr;
13849 struct call_site *call_site, call_site_local;
13850 void **slot;
13851 int nparams;
13852 struct die_info *child_die;
13853
13854 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13855
13856 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13857 if (attr == NULL)
13858 {
13859 /* This was a pre-DWARF-5 GNU extension alias
13860 for DW_AT_call_return_pc. */
13861 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13862 }
13863 if (!attr)
13864 {
13865 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13866 "DIE %s [in module %s]"),
13867 sect_offset_str (die->sect_off), objfile_name (objfile));
13868 return;
13869 }
13870 pc = attr_value_as_address (attr) + baseaddr;
13871 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13872
13873 if (cu->call_site_htab == NULL)
13874 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13875 NULL, &objfile->objfile_obstack,
13876 hashtab_obstack_allocate, NULL);
13877 call_site_local.pc = pc;
13878 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13879 if (*slot != NULL)
13880 {
13881 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13882 "DIE %s [in module %s]"),
13883 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13884 objfile_name (objfile));
13885 return;
13886 }
13887
13888 /* Count parameters at the caller. */
13889
13890 nparams = 0;
13891 for (child_die = die->child; child_die && child_die->tag;
13892 child_die = sibling_die (child_die))
13893 {
13894 if (child_die->tag != DW_TAG_call_site_parameter
13895 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13896 {
13897 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13898 "DW_TAG_call_site child DIE %s [in module %s]"),
13899 child_die->tag, sect_offset_str (child_die->sect_off),
13900 objfile_name (objfile));
13901 continue;
13902 }
13903
13904 nparams++;
13905 }
13906
13907 call_site
13908 = ((struct call_site *)
13909 obstack_alloc (&objfile->objfile_obstack,
13910 sizeof (*call_site)
13911 + (sizeof (*call_site->parameter) * (nparams - 1))));
13912 *slot = call_site;
13913 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13914 call_site->pc = pc;
13915
13916 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13917 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13918 {
13919 struct die_info *func_die;
13920
13921 /* Skip also over DW_TAG_inlined_subroutine. */
13922 for (func_die = die->parent;
13923 func_die && func_die->tag != DW_TAG_subprogram
13924 && func_die->tag != DW_TAG_subroutine_type;
13925 func_die = func_die->parent);
13926
13927 /* DW_AT_call_all_calls is a superset
13928 of DW_AT_call_all_tail_calls. */
13929 if (func_die
13930 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13931 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13932 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13933 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13934 {
13935 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13936 not complete. But keep CALL_SITE for look ups via call_site_htab,
13937 both the initial caller containing the real return address PC and
13938 the final callee containing the current PC of a chain of tail
13939 calls do not need to have the tail call list complete. But any
13940 function candidate for a virtual tail call frame searched via
13941 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13942 determined unambiguously. */
13943 }
13944 else
13945 {
13946 struct type *func_type = NULL;
13947
13948 if (func_die)
13949 func_type = get_die_type (func_die, cu);
13950 if (func_type != NULL)
13951 {
13952 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13953
13954 /* Enlist this call site to the function. */
13955 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13956 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13957 }
13958 else
13959 complaint (_("Cannot find function owning DW_TAG_call_site "
13960 "DIE %s [in module %s]"),
13961 sect_offset_str (die->sect_off), objfile_name (objfile));
13962 }
13963 }
13964
13965 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13966 if (attr == NULL)
13967 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13968 if (attr == NULL)
13969 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13970 if (attr == NULL)
13971 {
13972 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13973 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13974 }
13975 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13976 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13977 /* Keep NULL DWARF_BLOCK. */;
13978 else if (attr_form_is_block (attr))
13979 {
13980 struct dwarf2_locexpr_baton *dlbaton;
13981
13982 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13983 dlbaton->data = DW_BLOCK (attr)->data;
13984 dlbaton->size = DW_BLOCK (attr)->size;
13985 dlbaton->per_cu = cu->per_cu;
13986
13987 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13988 }
13989 else if (attr_form_is_ref (attr))
13990 {
13991 struct dwarf2_cu *target_cu = cu;
13992 struct die_info *target_die;
13993
13994 target_die = follow_die_ref (die, attr, &target_cu);
13995 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13996 if (die_is_declaration (target_die, target_cu))
13997 {
13998 const char *target_physname;
13999
14000 /* Prefer the mangled name; otherwise compute the demangled one. */
14001 target_physname = dw2_linkage_name (target_die, target_cu);
14002 if (target_physname == NULL)
14003 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14004 if (target_physname == NULL)
14005 complaint (_("DW_AT_call_target target DIE has invalid "
14006 "physname, for referencing DIE %s [in module %s]"),
14007 sect_offset_str (die->sect_off), objfile_name (objfile));
14008 else
14009 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14010 }
14011 else
14012 {
14013 CORE_ADDR lowpc;
14014
14015 /* DW_AT_entry_pc should be preferred. */
14016 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14017 <= PC_BOUNDS_INVALID)
14018 complaint (_("DW_AT_call_target target DIE has invalid "
14019 "low pc, for referencing DIE %s [in module %s]"),
14020 sect_offset_str (die->sect_off), objfile_name (objfile));
14021 else
14022 {
14023 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14024 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14025 }
14026 }
14027 }
14028 else
14029 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14030 "block nor reference, for DIE %s [in module %s]"),
14031 sect_offset_str (die->sect_off), objfile_name (objfile));
14032
14033 call_site->per_cu = cu->per_cu;
14034
14035 for (child_die = die->child;
14036 child_die && child_die->tag;
14037 child_die = sibling_die (child_die))
14038 {
14039 struct call_site_parameter *parameter;
14040 struct attribute *loc, *origin;
14041
14042 if (child_die->tag != DW_TAG_call_site_parameter
14043 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14044 {
14045 /* Already printed the complaint above. */
14046 continue;
14047 }
14048
14049 gdb_assert (call_site->parameter_count < nparams);
14050 parameter = &call_site->parameter[call_site->parameter_count];
14051
14052 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14053 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14054 register is contained in DW_AT_call_value. */
14055
14056 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14057 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14058 if (origin == NULL)
14059 {
14060 /* This was a pre-DWARF-5 GNU extension alias
14061 for DW_AT_call_parameter. */
14062 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14063 }
14064 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14065 {
14066 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14067
14068 sect_offset sect_off
14069 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14070 if (!offset_in_cu_p (&cu->header, sect_off))
14071 {
14072 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14073 binding can be done only inside one CU. Such referenced DIE
14074 therefore cannot be even moved to DW_TAG_partial_unit. */
14075 complaint (_("DW_AT_call_parameter offset is not in CU for "
14076 "DW_TAG_call_site child DIE %s [in module %s]"),
14077 sect_offset_str (child_die->sect_off),
14078 objfile_name (objfile));
14079 continue;
14080 }
14081 parameter->u.param_cu_off
14082 = (cu_offset) (sect_off - cu->header.sect_off);
14083 }
14084 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14085 {
14086 complaint (_("No DW_FORM_block* DW_AT_location for "
14087 "DW_TAG_call_site child DIE %s [in module %s]"),
14088 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14089 continue;
14090 }
14091 else
14092 {
14093 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14094 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14095 if (parameter->u.dwarf_reg != -1)
14096 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14097 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14098 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14099 &parameter->u.fb_offset))
14100 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14101 else
14102 {
14103 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14104 "for DW_FORM_block* DW_AT_location is supported for "
14105 "DW_TAG_call_site child DIE %s "
14106 "[in module %s]"),
14107 sect_offset_str (child_die->sect_off),
14108 objfile_name (objfile));
14109 continue;
14110 }
14111 }
14112
14113 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14114 if (attr == NULL)
14115 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14116 if (!attr_form_is_block (attr))
14117 {
14118 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14119 "DW_TAG_call_site child DIE %s [in module %s]"),
14120 sect_offset_str (child_die->sect_off),
14121 objfile_name (objfile));
14122 continue;
14123 }
14124 parameter->value = DW_BLOCK (attr)->data;
14125 parameter->value_size = DW_BLOCK (attr)->size;
14126
14127 /* Parameters are not pre-cleared by memset above. */
14128 parameter->data_value = NULL;
14129 parameter->data_value_size = 0;
14130 call_site->parameter_count++;
14131
14132 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14133 if (attr == NULL)
14134 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14135 if (attr)
14136 {
14137 if (!attr_form_is_block (attr))
14138 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14139 "DW_TAG_call_site child DIE %s [in module %s]"),
14140 sect_offset_str (child_die->sect_off),
14141 objfile_name (objfile));
14142 else
14143 {
14144 parameter->data_value = DW_BLOCK (attr)->data;
14145 parameter->data_value_size = DW_BLOCK (attr)->size;
14146 }
14147 }
14148 }
14149 }
14150
14151 /* Helper function for read_variable. If DIE represents a virtual
14152 table, then return the type of the concrete object that is
14153 associated with the virtual table. Otherwise, return NULL. */
14154
14155 static struct type *
14156 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14157 {
14158 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14159 if (attr == NULL)
14160 return NULL;
14161
14162 /* Find the type DIE. */
14163 struct die_info *type_die = NULL;
14164 struct dwarf2_cu *type_cu = cu;
14165
14166 if (attr_form_is_ref (attr))
14167 type_die = follow_die_ref (die, attr, &type_cu);
14168 if (type_die == NULL)
14169 return NULL;
14170
14171 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14172 return NULL;
14173 return die_containing_type (type_die, type_cu);
14174 }
14175
14176 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14177
14178 static void
14179 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14180 {
14181 struct rust_vtable_symbol *storage = NULL;
14182
14183 if (cu->language == language_rust)
14184 {
14185 struct type *containing_type = rust_containing_type (die, cu);
14186
14187 if (containing_type != NULL)
14188 {
14189 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14190
14191 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14192 struct rust_vtable_symbol);
14193 initialize_objfile_symbol (storage);
14194 storage->concrete_type = containing_type;
14195 storage->subclass = SYMBOL_RUST_VTABLE;
14196 }
14197 }
14198
14199 struct symbol *res = new_symbol (die, NULL, cu, storage);
14200 struct attribute *abstract_origin
14201 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14202 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14203 if (res == NULL && loc && abstract_origin)
14204 {
14205 /* We have a variable without a name, but with a location and an abstract
14206 origin. This may be a concrete instance of an abstract variable
14207 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14208 later. */
14209 struct dwarf2_cu *origin_cu = cu;
14210 struct die_info *origin_die
14211 = follow_die_ref (die, abstract_origin, &origin_cu);
14212 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14213 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14214 }
14215 }
14216
14217 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14218 reading .debug_rnglists.
14219 Callback's type should be:
14220 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14221 Return true if the attributes are present and valid, otherwise,
14222 return false. */
14223
14224 template <typename Callback>
14225 static bool
14226 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14227 Callback &&callback)
14228 {
14229 struct dwarf2_per_objfile *dwarf2_per_objfile
14230 = cu->per_cu->dwarf2_per_objfile;
14231 struct objfile *objfile = dwarf2_per_objfile->objfile;
14232 bfd *obfd = objfile->obfd;
14233 /* Base address selection entry. */
14234 CORE_ADDR base;
14235 int found_base;
14236 const gdb_byte *buffer;
14237 CORE_ADDR baseaddr;
14238 bool overflow = false;
14239
14240 found_base = cu->base_known;
14241 base = cu->base_address;
14242
14243 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14244 if (offset >= dwarf2_per_objfile->rnglists.size)
14245 {
14246 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14247 offset);
14248 return false;
14249 }
14250 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14251
14252 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14253
14254 while (1)
14255 {
14256 /* Initialize it due to a false compiler warning. */
14257 CORE_ADDR range_beginning = 0, range_end = 0;
14258 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14259 + dwarf2_per_objfile->rnglists.size);
14260 unsigned int bytes_read;
14261
14262 if (buffer == buf_end)
14263 {
14264 overflow = true;
14265 break;
14266 }
14267 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14268 switch (rlet)
14269 {
14270 case DW_RLE_end_of_list:
14271 break;
14272 case DW_RLE_base_address:
14273 if (buffer + cu->header.addr_size > buf_end)
14274 {
14275 overflow = true;
14276 break;
14277 }
14278 base = read_address (obfd, buffer, cu, &bytes_read);
14279 found_base = 1;
14280 buffer += bytes_read;
14281 break;
14282 case DW_RLE_start_length:
14283 if (buffer + cu->header.addr_size > buf_end)
14284 {
14285 overflow = true;
14286 break;
14287 }
14288 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14289 buffer += bytes_read;
14290 range_end = (range_beginning
14291 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14292 buffer += bytes_read;
14293 if (buffer > buf_end)
14294 {
14295 overflow = true;
14296 break;
14297 }
14298 break;
14299 case DW_RLE_offset_pair:
14300 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14301 buffer += bytes_read;
14302 if (buffer > buf_end)
14303 {
14304 overflow = true;
14305 break;
14306 }
14307 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14308 buffer += bytes_read;
14309 if (buffer > buf_end)
14310 {
14311 overflow = true;
14312 break;
14313 }
14314 break;
14315 case DW_RLE_start_end:
14316 if (buffer + 2 * cu->header.addr_size > buf_end)
14317 {
14318 overflow = true;
14319 break;
14320 }
14321 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14322 buffer += bytes_read;
14323 range_end = read_address (obfd, buffer, cu, &bytes_read);
14324 buffer += bytes_read;
14325 break;
14326 default:
14327 complaint (_("Invalid .debug_rnglists data (no base address)"));
14328 return false;
14329 }
14330 if (rlet == DW_RLE_end_of_list || overflow)
14331 break;
14332 if (rlet == DW_RLE_base_address)
14333 continue;
14334
14335 if (!found_base)
14336 {
14337 /* We have no valid base address for the ranges
14338 data. */
14339 complaint (_("Invalid .debug_rnglists data (no base address)"));
14340 return false;
14341 }
14342
14343 if (range_beginning > range_end)
14344 {
14345 /* Inverted range entries are invalid. */
14346 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14347 return false;
14348 }
14349
14350 /* Empty range entries have no effect. */
14351 if (range_beginning == range_end)
14352 continue;
14353
14354 range_beginning += base;
14355 range_end += base;
14356
14357 /* A not-uncommon case of bad debug info.
14358 Don't pollute the addrmap with bad data. */
14359 if (range_beginning + baseaddr == 0
14360 && !dwarf2_per_objfile->has_section_at_zero)
14361 {
14362 complaint (_(".debug_rnglists entry has start address of zero"
14363 " [in module %s]"), objfile_name (objfile));
14364 continue;
14365 }
14366
14367 callback (range_beginning, range_end);
14368 }
14369
14370 if (overflow)
14371 {
14372 complaint (_("Offset %d is not terminated "
14373 "for DW_AT_ranges attribute"),
14374 offset);
14375 return false;
14376 }
14377
14378 return true;
14379 }
14380
14381 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14382 Callback's type should be:
14383 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14384 Return 1 if the attributes are present and valid, otherwise, return 0. */
14385
14386 template <typename Callback>
14387 static int
14388 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14389 Callback &&callback)
14390 {
14391 struct dwarf2_per_objfile *dwarf2_per_objfile
14392 = cu->per_cu->dwarf2_per_objfile;
14393 struct objfile *objfile = dwarf2_per_objfile->objfile;
14394 struct comp_unit_head *cu_header = &cu->header;
14395 bfd *obfd = objfile->obfd;
14396 unsigned int addr_size = cu_header->addr_size;
14397 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14398 /* Base address selection entry. */
14399 CORE_ADDR base;
14400 int found_base;
14401 unsigned int dummy;
14402 const gdb_byte *buffer;
14403 CORE_ADDR baseaddr;
14404
14405 if (cu_header->version >= 5)
14406 return dwarf2_rnglists_process (offset, cu, callback);
14407
14408 found_base = cu->base_known;
14409 base = cu->base_address;
14410
14411 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14412 if (offset >= dwarf2_per_objfile->ranges.size)
14413 {
14414 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14415 offset);
14416 return 0;
14417 }
14418 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14419
14420 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14421
14422 while (1)
14423 {
14424 CORE_ADDR range_beginning, range_end;
14425
14426 range_beginning = read_address (obfd, buffer, cu, &dummy);
14427 buffer += addr_size;
14428 range_end = read_address (obfd, buffer, cu, &dummy);
14429 buffer += addr_size;
14430 offset += 2 * addr_size;
14431
14432 /* An end of list marker is a pair of zero addresses. */
14433 if (range_beginning == 0 && range_end == 0)
14434 /* Found the end of list entry. */
14435 break;
14436
14437 /* Each base address selection entry is a pair of 2 values.
14438 The first is the largest possible address, the second is
14439 the base address. Check for a base address here. */
14440 if ((range_beginning & mask) == mask)
14441 {
14442 /* If we found the largest possible address, then we already
14443 have the base address in range_end. */
14444 base = range_end;
14445 found_base = 1;
14446 continue;
14447 }
14448
14449 if (!found_base)
14450 {
14451 /* We have no valid base address for the ranges
14452 data. */
14453 complaint (_("Invalid .debug_ranges data (no base address)"));
14454 return 0;
14455 }
14456
14457 if (range_beginning > range_end)
14458 {
14459 /* Inverted range entries are invalid. */
14460 complaint (_("Invalid .debug_ranges data (inverted range)"));
14461 return 0;
14462 }
14463
14464 /* Empty range entries have no effect. */
14465 if (range_beginning == range_end)
14466 continue;
14467
14468 range_beginning += base;
14469 range_end += base;
14470
14471 /* A not-uncommon case of bad debug info.
14472 Don't pollute the addrmap with bad data. */
14473 if (range_beginning + baseaddr == 0
14474 && !dwarf2_per_objfile->has_section_at_zero)
14475 {
14476 complaint (_(".debug_ranges entry has start address of zero"
14477 " [in module %s]"), objfile_name (objfile));
14478 continue;
14479 }
14480
14481 callback (range_beginning, range_end);
14482 }
14483
14484 return 1;
14485 }
14486
14487 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14488 Return 1 if the attributes are present and valid, otherwise, return 0.
14489 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14490
14491 static int
14492 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14493 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14494 struct partial_symtab *ranges_pst)
14495 {
14496 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14497 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14498 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14499 SECT_OFF_TEXT (objfile));
14500 int low_set = 0;
14501 CORE_ADDR low = 0;
14502 CORE_ADDR high = 0;
14503 int retval;
14504
14505 retval = dwarf2_ranges_process (offset, cu,
14506 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14507 {
14508 if (ranges_pst != NULL)
14509 {
14510 CORE_ADDR lowpc;
14511 CORE_ADDR highpc;
14512
14513 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14514 range_beginning + baseaddr)
14515 - baseaddr);
14516 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14517 range_end + baseaddr)
14518 - baseaddr);
14519 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14520 lowpc, highpc - 1, ranges_pst);
14521 }
14522
14523 /* FIXME: This is recording everything as a low-high
14524 segment of consecutive addresses. We should have a
14525 data structure for discontiguous block ranges
14526 instead. */
14527 if (! low_set)
14528 {
14529 low = range_beginning;
14530 high = range_end;
14531 low_set = 1;
14532 }
14533 else
14534 {
14535 if (range_beginning < low)
14536 low = range_beginning;
14537 if (range_end > high)
14538 high = range_end;
14539 }
14540 });
14541 if (!retval)
14542 return 0;
14543
14544 if (! low_set)
14545 /* If the first entry is an end-of-list marker, the range
14546 describes an empty scope, i.e. no instructions. */
14547 return 0;
14548
14549 if (low_return)
14550 *low_return = low;
14551 if (high_return)
14552 *high_return = high;
14553 return 1;
14554 }
14555
14556 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14557 definition for the return value. *LOWPC and *HIGHPC are set iff
14558 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14559
14560 static enum pc_bounds_kind
14561 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14562 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14563 struct partial_symtab *pst)
14564 {
14565 struct dwarf2_per_objfile *dwarf2_per_objfile
14566 = cu->per_cu->dwarf2_per_objfile;
14567 struct attribute *attr;
14568 struct attribute *attr_high;
14569 CORE_ADDR low = 0;
14570 CORE_ADDR high = 0;
14571 enum pc_bounds_kind ret;
14572
14573 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14574 if (attr_high)
14575 {
14576 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14577 if (attr)
14578 {
14579 low = attr_value_as_address (attr);
14580 high = attr_value_as_address (attr_high);
14581 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14582 high += low;
14583 }
14584 else
14585 /* Found high w/o low attribute. */
14586 return PC_BOUNDS_INVALID;
14587
14588 /* Found consecutive range of addresses. */
14589 ret = PC_BOUNDS_HIGH_LOW;
14590 }
14591 else
14592 {
14593 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14594 if (attr != NULL)
14595 {
14596 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14597 We take advantage of the fact that DW_AT_ranges does not appear
14598 in DW_TAG_compile_unit of DWO files. */
14599 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14600 unsigned int ranges_offset = (DW_UNSND (attr)
14601 + (need_ranges_base
14602 ? cu->ranges_base
14603 : 0));
14604
14605 /* Value of the DW_AT_ranges attribute is the offset in the
14606 .debug_ranges section. */
14607 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14608 return PC_BOUNDS_INVALID;
14609 /* Found discontinuous range of addresses. */
14610 ret = PC_BOUNDS_RANGES;
14611 }
14612 else
14613 return PC_BOUNDS_NOT_PRESENT;
14614 }
14615
14616 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14617 if (high <= low)
14618 return PC_BOUNDS_INVALID;
14619
14620 /* When using the GNU linker, .gnu.linkonce. sections are used to
14621 eliminate duplicate copies of functions and vtables and such.
14622 The linker will arbitrarily choose one and discard the others.
14623 The AT_*_pc values for such functions refer to local labels in
14624 these sections. If the section from that file was discarded, the
14625 labels are not in the output, so the relocs get a value of 0.
14626 If this is a discarded function, mark the pc bounds as invalid,
14627 so that GDB will ignore it. */
14628 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14629 return PC_BOUNDS_INVALID;
14630
14631 *lowpc = low;
14632 if (highpc)
14633 *highpc = high;
14634 return ret;
14635 }
14636
14637 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14638 its low and high PC addresses. Do nothing if these addresses could not
14639 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14640 and HIGHPC to the high address if greater than HIGHPC. */
14641
14642 static void
14643 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14644 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14645 struct dwarf2_cu *cu)
14646 {
14647 CORE_ADDR low, high;
14648 struct die_info *child = die->child;
14649
14650 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14651 {
14652 *lowpc = std::min (*lowpc, low);
14653 *highpc = std::max (*highpc, high);
14654 }
14655
14656 /* If the language does not allow nested subprograms (either inside
14657 subprograms or lexical blocks), we're done. */
14658 if (cu->language != language_ada)
14659 return;
14660
14661 /* Check all the children of the given DIE. If it contains nested
14662 subprograms, then check their pc bounds. Likewise, we need to
14663 check lexical blocks as well, as they may also contain subprogram
14664 definitions. */
14665 while (child && child->tag)
14666 {
14667 if (child->tag == DW_TAG_subprogram
14668 || child->tag == DW_TAG_lexical_block)
14669 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14670 child = sibling_die (child);
14671 }
14672 }
14673
14674 /* Get the low and high pc's represented by the scope DIE, and store
14675 them in *LOWPC and *HIGHPC. If the correct values can't be
14676 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14677
14678 static void
14679 get_scope_pc_bounds (struct die_info *die,
14680 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14681 struct dwarf2_cu *cu)
14682 {
14683 CORE_ADDR best_low = (CORE_ADDR) -1;
14684 CORE_ADDR best_high = (CORE_ADDR) 0;
14685 CORE_ADDR current_low, current_high;
14686
14687 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14688 >= PC_BOUNDS_RANGES)
14689 {
14690 best_low = current_low;
14691 best_high = current_high;
14692 }
14693 else
14694 {
14695 struct die_info *child = die->child;
14696
14697 while (child && child->tag)
14698 {
14699 switch (child->tag) {
14700 case DW_TAG_subprogram:
14701 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14702 break;
14703 case DW_TAG_namespace:
14704 case DW_TAG_module:
14705 /* FIXME: carlton/2004-01-16: Should we do this for
14706 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14707 that current GCC's always emit the DIEs corresponding
14708 to definitions of methods of classes as children of a
14709 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14710 the DIEs giving the declarations, which could be
14711 anywhere). But I don't see any reason why the
14712 standards says that they have to be there. */
14713 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14714
14715 if (current_low != ((CORE_ADDR) -1))
14716 {
14717 best_low = std::min (best_low, current_low);
14718 best_high = std::max (best_high, current_high);
14719 }
14720 break;
14721 default:
14722 /* Ignore. */
14723 break;
14724 }
14725
14726 child = sibling_die (child);
14727 }
14728 }
14729
14730 *lowpc = best_low;
14731 *highpc = best_high;
14732 }
14733
14734 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14735 in DIE. */
14736
14737 static void
14738 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14739 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14740 {
14741 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14742 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14743 struct attribute *attr;
14744 struct attribute *attr_high;
14745
14746 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14747 if (attr_high)
14748 {
14749 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14750 if (attr)
14751 {
14752 CORE_ADDR low = attr_value_as_address (attr);
14753 CORE_ADDR high = attr_value_as_address (attr_high);
14754
14755 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14756 high += low;
14757
14758 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14759 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14760 cu->get_builder ()->record_block_range (block, low, high - 1);
14761 }
14762 }
14763
14764 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14765 if (attr)
14766 {
14767 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14768 We take advantage of the fact that DW_AT_ranges does not appear
14769 in DW_TAG_compile_unit of DWO files. */
14770 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14771
14772 /* The value of the DW_AT_ranges attribute is the offset of the
14773 address range list in the .debug_ranges section. */
14774 unsigned long offset = (DW_UNSND (attr)
14775 + (need_ranges_base ? cu->ranges_base : 0));
14776
14777 std::vector<blockrange> blockvec;
14778 dwarf2_ranges_process (offset, cu,
14779 [&] (CORE_ADDR start, CORE_ADDR end)
14780 {
14781 start += baseaddr;
14782 end += baseaddr;
14783 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14784 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14785 cu->get_builder ()->record_block_range (block, start, end - 1);
14786 blockvec.emplace_back (start, end);
14787 });
14788
14789 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14790 }
14791 }
14792
14793 /* Check whether the producer field indicates either of GCC < 4.6, or the
14794 Intel C/C++ compiler, and cache the result in CU. */
14795
14796 static void
14797 check_producer (struct dwarf2_cu *cu)
14798 {
14799 int major, minor;
14800
14801 if (cu->producer == NULL)
14802 {
14803 /* For unknown compilers expect their behavior is DWARF version
14804 compliant.
14805
14806 GCC started to support .debug_types sections by -gdwarf-4 since
14807 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14808 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14809 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14810 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14811 }
14812 else if (producer_is_gcc (cu->producer, &major, &minor))
14813 {
14814 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14815 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14816 }
14817 else if (producer_is_icc (cu->producer, &major, &minor))
14818 {
14819 cu->producer_is_icc = true;
14820 cu->producer_is_icc_lt_14 = major < 14;
14821 }
14822 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14823 cu->producer_is_codewarrior = true;
14824 else
14825 {
14826 /* For other non-GCC compilers, expect their behavior is DWARF version
14827 compliant. */
14828 }
14829
14830 cu->checked_producer = true;
14831 }
14832
14833 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14834 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14835 during 4.6.0 experimental. */
14836
14837 static bool
14838 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14839 {
14840 if (!cu->checked_producer)
14841 check_producer (cu);
14842
14843 return cu->producer_is_gxx_lt_4_6;
14844 }
14845
14846
14847 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14848 with incorrect is_stmt attributes. */
14849
14850 static bool
14851 producer_is_codewarrior (struct dwarf2_cu *cu)
14852 {
14853 if (!cu->checked_producer)
14854 check_producer (cu);
14855
14856 return cu->producer_is_codewarrior;
14857 }
14858
14859 /* Return the default accessibility type if it is not overriden by
14860 DW_AT_accessibility. */
14861
14862 static enum dwarf_access_attribute
14863 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14864 {
14865 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14866 {
14867 /* The default DWARF 2 accessibility for members is public, the default
14868 accessibility for inheritance is private. */
14869
14870 if (die->tag != DW_TAG_inheritance)
14871 return DW_ACCESS_public;
14872 else
14873 return DW_ACCESS_private;
14874 }
14875 else
14876 {
14877 /* DWARF 3+ defines the default accessibility a different way. The same
14878 rules apply now for DW_TAG_inheritance as for the members and it only
14879 depends on the container kind. */
14880
14881 if (die->parent->tag == DW_TAG_class_type)
14882 return DW_ACCESS_private;
14883 else
14884 return DW_ACCESS_public;
14885 }
14886 }
14887
14888 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14889 offset. If the attribute was not found return 0, otherwise return
14890 1. If it was found but could not properly be handled, set *OFFSET
14891 to 0. */
14892
14893 static int
14894 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14895 LONGEST *offset)
14896 {
14897 struct attribute *attr;
14898
14899 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14900 if (attr != NULL)
14901 {
14902 *offset = 0;
14903
14904 /* Note that we do not check for a section offset first here.
14905 This is because DW_AT_data_member_location is new in DWARF 4,
14906 so if we see it, we can assume that a constant form is really
14907 a constant and not a section offset. */
14908 if (attr_form_is_constant (attr))
14909 *offset = dwarf2_get_attr_constant_value (attr, 0);
14910 else if (attr_form_is_section_offset (attr))
14911 dwarf2_complex_location_expr_complaint ();
14912 else if (attr_form_is_block (attr))
14913 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14914 else
14915 dwarf2_complex_location_expr_complaint ();
14916
14917 return 1;
14918 }
14919
14920 return 0;
14921 }
14922
14923 /* Add an aggregate field to the field list. */
14924
14925 static void
14926 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14927 struct dwarf2_cu *cu)
14928 {
14929 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14930 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14931 struct nextfield *new_field;
14932 struct attribute *attr;
14933 struct field *fp;
14934 const char *fieldname = "";
14935
14936 if (die->tag == DW_TAG_inheritance)
14937 {
14938 fip->baseclasses.emplace_back ();
14939 new_field = &fip->baseclasses.back ();
14940 }
14941 else
14942 {
14943 fip->fields.emplace_back ();
14944 new_field = &fip->fields.back ();
14945 }
14946
14947 fip->nfields++;
14948
14949 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14950 if (attr)
14951 new_field->accessibility = DW_UNSND (attr);
14952 else
14953 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14954 if (new_field->accessibility != DW_ACCESS_public)
14955 fip->non_public_fields = 1;
14956
14957 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14958 if (attr)
14959 new_field->virtuality = DW_UNSND (attr);
14960 else
14961 new_field->virtuality = DW_VIRTUALITY_none;
14962
14963 fp = &new_field->field;
14964
14965 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14966 {
14967 LONGEST offset;
14968
14969 /* Data member other than a C++ static data member. */
14970
14971 /* Get type of field. */
14972 fp->type = die_type (die, cu);
14973
14974 SET_FIELD_BITPOS (*fp, 0);
14975
14976 /* Get bit size of field (zero if none). */
14977 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14978 if (attr)
14979 {
14980 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14981 }
14982 else
14983 {
14984 FIELD_BITSIZE (*fp) = 0;
14985 }
14986
14987 /* Get bit offset of field. */
14988 if (handle_data_member_location (die, cu, &offset))
14989 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14990 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14991 if (attr)
14992 {
14993 if (gdbarch_bits_big_endian (gdbarch))
14994 {
14995 /* For big endian bits, the DW_AT_bit_offset gives the
14996 additional bit offset from the MSB of the containing
14997 anonymous object to the MSB of the field. We don't
14998 have to do anything special since we don't need to
14999 know the size of the anonymous object. */
15000 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15001 }
15002 else
15003 {
15004 /* For little endian bits, compute the bit offset to the
15005 MSB of the anonymous object, subtract off the number of
15006 bits from the MSB of the field to the MSB of the
15007 object, and then subtract off the number of bits of
15008 the field itself. The result is the bit offset of
15009 the LSB of the field. */
15010 int anonymous_size;
15011 int bit_offset = DW_UNSND (attr);
15012
15013 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15014 if (attr)
15015 {
15016 /* The size of the anonymous object containing
15017 the bit field is explicit, so use the
15018 indicated size (in bytes). */
15019 anonymous_size = DW_UNSND (attr);
15020 }
15021 else
15022 {
15023 /* The size of the anonymous object containing
15024 the bit field must be inferred from the type
15025 attribute of the data member containing the
15026 bit field. */
15027 anonymous_size = TYPE_LENGTH (fp->type);
15028 }
15029 SET_FIELD_BITPOS (*fp,
15030 (FIELD_BITPOS (*fp)
15031 + anonymous_size * bits_per_byte
15032 - bit_offset - FIELD_BITSIZE (*fp)));
15033 }
15034 }
15035 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15036 if (attr != NULL)
15037 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15038 + dwarf2_get_attr_constant_value (attr, 0)));
15039
15040 /* Get name of field. */
15041 fieldname = dwarf2_name (die, cu);
15042 if (fieldname == NULL)
15043 fieldname = "";
15044
15045 /* The name is already allocated along with this objfile, so we don't
15046 need to duplicate it for the type. */
15047 fp->name = fieldname;
15048
15049 /* Change accessibility for artificial fields (e.g. virtual table
15050 pointer or virtual base class pointer) to private. */
15051 if (dwarf2_attr (die, DW_AT_artificial, cu))
15052 {
15053 FIELD_ARTIFICIAL (*fp) = 1;
15054 new_field->accessibility = DW_ACCESS_private;
15055 fip->non_public_fields = 1;
15056 }
15057 }
15058 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15059 {
15060 /* C++ static member. */
15061
15062 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15063 is a declaration, but all versions of G++ as of this writing
15064 (so through at least 3.2.1) incorrectly generate
15065 DW_TAG_variable tags. */
15066
15067 const char *physname;
15068
15069 /* Get name of field. */
15070 fieldname = dwarf2_name (die, cu);
15071 if (fieldname == NULL)
15072 return;
15073
15074 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15075 if (attr
15076 /* Only create a symbol if this is an external value.
15077 new_symbol checks this and puts the value in the global symbol
15078 table, which we want. If it is not external, new_symbol
15079 will try to put the value in cu->list_in_scope which is wrong. */
15080 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15081 {
15082 /* A static const member, not much different than an enum as far as
15083 we're concerned, except that we can support more types. */
15084 new_symbol (die, NULL, cu);
15085 }
15086
15087 /* Get physical name. */
15088 physname = dwarf2_physname (fieldname, die, cu);
15089
15090 /* The name is already allocated along with this objfile, so we don't
15091 need to duplicate it for the type. */
15092 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15093 FIELD_TYPE (*fp) = die_type (die, cu);
15094 FIELD_NAME (*fp) = fieldname;
15095 }
15096 else if (die->tag == DW_TAG_inheritance)
15097 {
15098 LONGEST offset;
15099
15100 /* C++ base class field. */
15101 if (handle_data_member_location (die, cu, &offset))
15102 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15103 FIELD_BITSIZE (*fp) = 0;
15104 FIELD_TYPE (*fp) = die_type (die, cu);
15105 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15106 }
15107 else if (die->tag == DW_TAG_variant_part)
15108 {
15109 /* process_structure_scope will treat this DIE as a union. */
15110 process_structure_scope (die, cu);
15111
15112 /* The variant part is relative to the start of the enclosing
15113 structure. */
15114 SET_FIELD_BITPOS (*fp, 0);
15115 fp->type = get_die_type (die, cu);
15116 fp->artificial = 1;
15117 fp->name = "<<variant>>";
15118
15119 /* Normally a DW_TAG_variant_part won't have a size, but our
15120 representation requires one, so set it to the maximum of the
15121 child sizes. */
15122 if (TYPE_LENGTH (fp->type) == 0)
15123 {
15124 unsigned max = 0;
15125 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15126 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15127 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15128 TYPE_LENGTH (fp->type) = max;
15129 }
15130 }
15131 else
15132 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15133 }
15134
15135 /* Can the type given by DIE define another type? */
15136
15137 static bool
15138 type_can_define_types (const struct die_info *die)
15139 {
15140 switch (die->tag)
15141 {
15142 case DW_TAG_typedef:
15143 case DW_TAG_class_type:
15144 case DW_TAG_structure_type:
15145 case DW_TAG_union_type:
15146 case DW_TAG_enumeration_type:
15147 return true;
15148
15149 default:
15150 return false;
15151 }
15152 }
15153
15154 /* Add a type definition defined in the scope of the FIP's class. */
15155
15156 static void
15157 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15158 struct dwarf2_cu *cu)
15159 {
15160 struct decl_field fp;
15161 memset (&fp, 0, sizeof (fp));
15162
15163 gdb_assert (type_can_define_types (die));
15164
15165 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15166 fp.name = dwarf2_name (die, cu);
15167 fp.type = read_type_die (die, cu);
15168
15169 /* Save accessibility. */
15170 enum dwarf_access_attribute accessibility;
15171 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15172 if (attr != NULL)
15173 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15174 else
15175 accessibility = dwarf2_default_access_attribute (die, cu);
15176 switch (accessibility)
15177 {
15178 case DW_ACCESS_public:
15179 /* The assumed value if neither private nor protected. */
15180 break;
15181 case DW_ACCESS_private:
15182 fp.is_private = 1;
15183 break;
15184 case DW_ACCESS_protected:
15185 fp.is_protected = 1;
15186 break;
15187 default:
15188 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15189 }
15190
15191 if (die->tag == DW_TAG_typedef)
15192 fip->typedef_field_list.push_back (fp);
15193 else
15194 fip->nested_types_list.push_back (fp);
15195 }
15196
15197 /* Create the vector of fields, and attach it to the type. */
15198
15199 static void
15200 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15201 struct dwarf2_cu *cu)
15202 {
15203 int nfields = fip->nfields;
15204
15205 /* Record the field count, allocate space for the array of fields,
15206 and create blank accessibility bitfields if necessary. */
15207 TYPE_NFIELDS (type) = nfields;
15208 TYPE_FIELDS (type) = (struct field *)
15209 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15210
15211 if (fip->non_public_fields && cu->language != language_ada)
15212 {
15213 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15214
15215 TYPE_FIELD_PRIVATE_BITS (type) =
15216 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15217 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15218
15219 TYPE_FIELD_PROTECTED_BITS (type) =
15220 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15221 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15222
15223 TYPE_FIELD_IGNORE_BITS (type) =
15224 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15225 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15226 }
15227
15228 /* If the type has baseclasses, allocate and clear a bit vector for
15229 TYPE_FIELD_VIRTUAL_BITS. */
15230 if (!fip->baseclasses.empty () && cu->language != language_ada)
15231 {
15232 int num_bytes = B_BYTES (fip->baseclasses.size ());
15233 unsigned char *pointer;
15234
15235 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15236 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15237 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15238 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15239 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15240 }
15241
15242 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15243 {
15244 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15245
15246 for (int index = 0; index < nfields; ++index)
15247 {
15248 struct nextfield &field = fip->fields[index];
15249
15250 if (field.variant.is_discriminant)
15251 di->discriminant_index = index;
15252 else if (field.variant.default_branch)
15253 di->default_index = index;
15254 else
15255 di->discriminants[index] = field.variant.discriminant_value;
15256 }
15257 }
15258
15259 /* Copy the saved-up fields into the field vector. */
15260 for (int i = 0; i < nfields; ++i)
15261 {
15262 struct nextfield &field
15263 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15264 : fip->fields[i - fip->baseclasses.size ()]);
15265
15266 TYPE_FIELD (type, i) = field.field;
15267 switch (field.accessibility)
15268 {
15269 case DW_ACCESS_private:
15270 if (cu->language != language_ada)
15271 SET_TYPE_FIELD_PRIVATE (type, i);
15272 break;
15273
15274 case DW_ACCESS_protected:
15275 if (cu->language != language_ada)
15276 SET_TYPE_FIELD_PROTECTED (type, i);
15277 break;
15278
15279 case DW_ACCESS_public:
15280 break;
15281
15282 default:
15283 /* Unknown accessibility. Complain and treat it as public. */
15284 {
15285 complaint (_("unsupported accessibility %d"),
15286 field.accessibility);
15287 }
15288 break;
15289 }
15290 if (i < fip->baseclasses.size ())
15291 {
15292 switch (field.virtuality)
15293 {
15294 case DW_VIRTUALITY_virtual:
15295 case DW_VIRTUALITY_pure_virtual:
15296 if (cu->language == language_ada)
15297 error (_("unexpected virtuality in component of Ada type"));
15298 SET_TYPE_FIELD_VIRTUAL (type, i);
15299 break;
15300 }
15301 }
15302 }
15303 }
15304
15305 /* Return true if this member function is a constructor, false
15306 otherwise. */
15307
15308 static int
15309 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15310 {
15311 const char *fieldname;
15312 const char *type_name;
15313 int len;
15314
15315 if (die->parent == NULL)
15316 return 0;
15317
15318 if (die->parent->tag != DW_TAG_structure_type
15319 && die->parent->tag != DW_TAG_union_type
15320 && die->parent->tag != DW_TAG_class_type)
15321 return 0;
15322
15323 fieldname = dwarf2_name (die, cu);
15324 type_name = dwarf2_name (die->parent, cu);
15325 if (fieldname == NULL || type_name == NULL)
15326 return 0;
15327
15328 len = strlen (fieldname);
15329 return (strncmp (fieldname, type_name, len) == 0
15330 && (type_name[len] == '\0' || type_name[len] == '<'));
15331 }
15332
15333 /* Add a member function to the proper fieldlist. */
15334
15335 static void
15336 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15337 struct type *type, struct dwarf2_cu *cu)
15338 {
15339 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15340 struct attribute *attr;
15341 int i;
15342 struct fnfieldlist *flp = nullptr;
15343 struct fn_field *fnp;
15344 const char *fieldname;
15345 struct type *this_type;
15346 enum dwarf_access_attribute accessibility;
15347
15348 if (cu->language == language_ada)
15349 error (_("unexpected member function in Ada type"));
15350
15351 /* Get name of member function. */
15352 fieldname = dwarf2_name (die, cu);
15353 if (fieldname == NULL)
15354 return;
15355
15356 /* Look up member function name in fieldlist. */
15357 for (i = 0; i < fip->fnfieldlists.size (); i++)
15358 {
15359 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15360 {
15361 flp = &fip->fnfieldlists[i];
15362 break;
15363 }
15364 }
15365
15366 /* Create a new fnfieldlist if necessary. */
15367 if (flp == nullptr)
15368 {
15369 fip->fnfieldlists.emplace_back ();
15370 flp = &fip->fnfieldlists.back ();
15371 flp->name = fieldname;
15372 i = fip->fnfieldlists.size () - 1;
15373 }
15374
15375 /* Create a new member function field and add it to the vector of
15376 fnfieldlists. */
15377 flp->fnfields.emplace_back ();
15378 fnp = &flp->fnfields.back ();
15379
15380 /* Delay processing of the physname until later. */
15381 if (cu->language == language_cplus)
15382 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15383 die, cu);
15384 else
15385 {
15386 const char *physname = dwarf2_physname (fieldname, die, cu);
15387 fnp->physname = physname ? physname : "";
15388 }
15389
15390 fnp->type = alloc_type (objfile);
15391 this_type = read_type_die (die, cu);
15392 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15393 {
15394 int nparams = TYPE_NFIELDS (this_type);
15395
15396 /* TYPE is the domain of this method, and THIS_TYPE is the type
15397 of the method itself (TYPE_CODE_METHOD). */
15398 smash_to_method_type (fnp->type, type,
15399 TYPE_TARGET_TYPE (this_type),
15400 TYPE_FIELDS (this_type),
15401 TYPE_NFIELDS (this_type),
15402 TYPE_VARARGS (this_type));
15403
15404 /* Handle static member functions.
15405 Dwarf2 has no clean way to discern C++ static and non-static
15406 member functions. G++ helps GDB by marking the first
15407 parameter for non-static member functions (which is the this
15408 pointer) as artificial. We obtain this information from
15409 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15410 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15411 fnp->voffset = VOFFSET_STATIC;
15412 }
15413 else
15414 complaint (_("member function type missing for '%s'"),
15415 dwarf2_full_name (fieldname, die, cu));
15416
15417 /* Get fcontext from DW_AT_containing_type if present. */
15418 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15419 fnp->fcontext = die_containing_type (die, cu);
15420
15421 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15422 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15423
15424 /* Get accessibility. */
15425 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15426 if (attr)
15427 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15428 else
15429 accessibility = dwarf2_default_access_attribute (die, cu);
15430 switch (accessibility)
15431 {
15432 case DW_ACCESS_private:
15433 fnp->is_private = 1;
15434 break;
15435 case DW_ACCESS_protected:
15436 fnp->is_protected = 1;
15437 break;
15438 }
15439
15440 /* Check for artificial methods. */
15441 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15442 if (attr && DW_UNSND (attr) != 0)
15443 fnp->is_artificial = 1;
15444
15445 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15446
15447 /* Get index in virtual function table if it is a virtual member
15448 function. For older versions of GCC, this is an offset in the
15449 appropriate virtual table, as specified by DW_AT_containing_type.
15450 For everyone else, it is an expression to be evaluated relative
15451 to the object address. */
15452
15453 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15454 if (attr)
15455 {
15456 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15457 {
15458 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15459 {
15460 /* Old-style GCC. */
15461 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15462 }
15463 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15464 || (DW_BLOCK (attr)->size > 1
15465 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15466 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15467 {
15468 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15469 if ((fnp->voffset % cu->header.addr_size) != 0)
15470 dwarf2_complex_location_expr_complaint ();
15471 else
15472 fnp->voffset /= cu->header.addr_size;
15473 fnp->voffset += 2;
15474 }
15475 else
15476 dwarf2_complex_location_expr_complaint ();
15477
15478 if (!fnp->fcontext)
15479 {
15480 /* If there is no `this' field and no DW_AT_containing_type,
15481 we cannot actually find a base class context for the
15482 vtable! */
15483 if (TYPE_NFIELDS (this_type) == 0
15484 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15485 {
15486 complaint (_("cannot determine context for virtual member "
15487 "function \"%s\" (offset %s)"),
15488 fieldname, sect_offset_str (die->sect_off));
15489 }
15490 else
15491 {
15492 fnp->fcontext
15493 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15494 }
15495 }
15496 }
15497 else if (attr_form_is_section_offset (attr))
15498 {
15499 dwarf2_complex_location_expr_complaint ();
15500 }
15501 else
15502 {
15503 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15504 fieldname);
15505 }
15506 }
15507 else
15508 {
15509 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15510 if (attr && DW_UNSND (attr))
15511 {
15512 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15513 complaint (_("Member function \"%s\" (offset %s) is virtual "
15514 "but the vtable offset is not specified"),
15515 fieldname, sect_offset_str (die->sect_off));
15516 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15517 TYPE_CPLUS_DYNAMIC (type) = 1;
15518 }
15519 }
15520 }
15521
15522 /* Create the vector of member function fields, and attach it to the type. */
15523
15524 static void
15525 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15526 struct dwarf2_cu *cu)
15527 {
15528 if (cu->language == language_ada)
15529 error (_("unexpected member functions in Ada type"));
15530
15531 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15532 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15533 TYPE_ALLOC (type,
15534 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15535
15536 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15537 {
15538 struct fnfieldlist &nf = fip->fnfieldlists[i];
15539 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15540
15541 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15542 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15543 fn_flp->fn_fields = (struct fn_field *)
15544 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15545
15546 for (int k = 0; k < nf.fnfields.size (); ++k)
15547 fn_flp->fn_fields[k] = nf.fnfields[k];
15548 }
15549
15550 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15551 }
15552
15553 /* Returns non-zero if NAME is the name of a vtable member in CU's
15554 language, zero otherwise. */
15555 static int
15556 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15557 {
15558 static const char vptr[] = "_vptr";
15559
15560 /* Look for the C++ form of the vtable. */
15561 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15562 return 1;
15563
15564 return 0;
15565 }
15566
15567 /* GCC outputs unnamed structures that are really pointers to member
15568 functions, with the ABI-specified layout. If TYPE describes
15569 such a structure, smash it into a member function type.
15570
15571 GCC shouldn't do this; it should just output pointer to member DIEs.
15572 This is GCC PR debug/28767. */
15573
15574 static void
15575 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15576 {
15577 struct type *pfn_type, *self_type, *new_type;
15578
15579 /* Check for a structure with no name and two children. */
15580 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15581 return;
15582
15583 /* Check for __pfn and __delta members. */
15584 if (TYPE_FIELD_NAME (type, 0) == NULL
15585 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15586 || TYPE_FIELD_NAME (type, 1) == NULL
15587 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15588 return;
15589
15590 /* Find the type of the method. */
15591 pfn_type = TYPE_FIELD_TYPE (type, 0);
15592 if (pfn_type == NULL
15593 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15594 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15595 return;
15596
15597 /* Look for the "this" argument. */
15598 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15599 if (TYPE_NFIELDS (pfn_type) == 0
15600 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15601 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15602 return;
15603
15604 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15605 new_type = alloc_type (objfile);
15606 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15607 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15608 TYPE_VARARGS (pfn_type));
15609 smash_to_methodptr_type (type, new_type);
15610 }
15611
15612 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15613 appropriate error checking and issuing complaints if there is a
15614 problem. */
15615
15616 static ULONGEST
15617 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15618 {
15619 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15620
15621 if (attr == nullptr)
15622 return 0;
15623
15624 if (!attr_form_is_constant (attr))
15625 {
15626 complaint (_("DW_AT_alignment must have constant form"
15627 " - DIE at %s [in module %s]"),
15628 sect_offset_str (die->sect_off),
15629 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15630 return 0;
15631 }
15632
15633 ULONGEST align;
15634 if (attr->form == DW_FORM_sdata)
15635 {
15636 LONGEST val = DW_SND (attr);
15637 if (val < 0)
15638 {
15639 complaint (_("DW_AT_alignment value must not be negative"
15640 " - DIE at %s [in module %s]"),
15641 sect_offset_str (die->sect_off),
15642 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15643 return 0;
15644 }
15645 align = val;
15646 }
15647 else
15648 align = DW_UNSND (attr);
15649
15650 if (align == 0)
15651 {
15652 complaint (_("DW_AT_alignment value must not be zero"
15653 " - DIE at %s [in module %s]"),
15654 sect_offset_str (die->sect_off),
15655 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15656 return 0;
15657 }
15658 if ((align & (align - 1)) != 0)
15659 {
15660 complaint (_("DW_AT_alignment value must be a power of 2"
15661 " - DIE at %s [in module %s]"),
15662 sect_offset_str (die->sect_off),
15663 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15664 return 0;
15665 }
15666
15667 return align;
15668 }
15669
15670 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15671 the alignment for TYPE. */
15672
15673 static void
15674 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15675 struct type *type)
15676 {
15677 if (!set_type_align (type, get_alignment (cu, die)))
15678 complaint (_("DW_AT_alignment value too large"
15679 " - DIE at %s [in module %s]"),
15680 sect_offset_str (die->sect_off),
15681 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15682 }
15683
15684 /* Called when we find the DIE that starts a structure or union scope
15685 (definition) to create a type for the structure or union. Fill in
15686 the type's name and general properties; the members will not be
15687 processed until process_structure_scope. A symbol table entry for
15688 the type will also not be done until process_structure_scope (assuming
15689 the type has a name).
15690
15691 NOTE: we need to call these functions regardless of whether or not the
15692 DIE has a DW_AT_name attribute, since it might be an anonymous
15693 structure or union. This gets the type entered into our set of
15694 user defined types. */
15695
15696 static struct type *
15697 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15698 {
15699 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15700 struct type *type;
15701 struct attribute *attr;
15702 const char *name;
15703
15704 /* If the definition of this type lives in .debug_types, read that type.
15705 Don't follow DW_AT_specification though, that will take us back up
15706 the chain and we want to go down. */
15707 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15708 if (attr)
15709 {
15710 type = get_DW_AT_signature_type (die, attr, cu);
15711
15712 /* The type's CU may not be the same as CU.
15713 Ensure TYPE is recorded with CU in die_type_hash. */
15714 return set_die_type (die, type, cu);
15715 }
15716
15717 type = alloc_type (objfile);
15718 INIT_CPLUS_SPECIFIC (type);
15719
15720 name = dwarf2_name (die, cu);
15721 if (name != NULL)
15722 {
15723 if (cu->language == language_cplus
15724 || cu->language == language_d
15725 || cu->language == language_rust)
15726 {
15727 const char *full_name = dwarf2_full_name (name, die, cu);
15728
15729 /* dwarf2_full_name might have already finished building the DIE's
15730 type. If so, there is no need to continue. */
15731 if (get_die_type (die, cu) != NULL)
15732 return get_die_type (die, cu);
15733
15734 TYPE_NAME (type) = full_name;
15735 }
15736 else
15737 {
15738 /* The name is already allocated along with this objfile, so
15739 we don't need to duplicate it for the type. */
15740 TYPE_NAME (type) = name;
15741 }
15742 }
15743
15744 if (die->tag == DW_TAG_structure_type)
15745 {
15746 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15747 }
15748 else if (die->tag == DW_TAG_union_type)
15749 {
15750 TYPE_CODE (type) = TYPE_CODE_UNION;
15751 }
15752 else if (die->tag == DW_TAG_variant_part)
15753 {
15754 TYPE_CODE (type) = TYPE_CODE_UNION;
15755 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15756 }
15757 else
15758 {
15759 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15760 }
15761
15762 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15763 TYPE_DECLARED_CLASS (type) = 1;
15764
15765 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15766 if (attr)
15767 {
15768 if (attr_form_is_constant (attr))
15769 TYPE_LENGTH (type) = DW_UNSND (attr);
15770 else
15771 {
15772 /* For the moment, dynamic type sizes are not supported
15773 by GDB's struct type. The actual size is determined
15774 on-demand when resolving the type of a given object,
15775 so set the type's length to zero for now. Otherwise,
15776 we record an expression as the length, and that expression
15777 could lead to a very large value, which could eventually
15778 lead to us trying to allocate that much memory when creating
15779 a value of that type. */
15780 TYPE_LENGTH (type) = 0;
15781 }
15782 }
15783 else
15784 {
15785 TYPE_LENGTH (type) = 0;
15786 }
15787
15788 maybe_set_alignment (cu, die, type);
15789
15790 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15791 {
15792 /* ICC<14 does not output the required DW_AT_declaration on
15793 incomplete types, but gives them a size of zero. */
15794 TYPE_STUB (type) = 1;
15795 }
15796 else
15797 TYPE_STUB_SUPPORTED (type) = 1;
15798
15799 if (die_is_declaration (die, cu))
15800 TYPE_STUB (type) = 1;
15801 else if (attr == NULL && die->child == NULL
15802 && producer_is_realview (cu->producer))
15803 /* RealView does not output the required DW_AT_declaration
15804 on incomplete types. */
15805 TYPE_STUB (type) = 1;
15806
15807 /* We need to add the type field to the die immediately so we don't
15808 infinitely recurse when dealing with pointers to the structure
15809 type within the structure itself. */
15810 set_die_type (die, type, cu);
15811
15812 /* set_die_type should be already done. */
15813 set_descriptive_type (type, die, cu);
15814
15815 return type;
15816 }
15817
15818 /* A helper for process_structure_scope that handles a single member
15819 DIE. */
15820
15821 static void
15822 handle_struct_member_die (struct die_info *child_die, struct type *type,
15823 struct field_info *fi,
15824 std::vector<struct symbol *> *template_args,
15825 struct dwarf2_cu *cu)
15826 {
15827 if (child_die->tag == DW_TAG_member
15828 || child_die->tag == DW_TAG_variable
15829 || child_die->tag == DW_TAG_variant_part)
15830 {
15831 /* NOTE: carlton/2002-11-05: A C++ static data member
15832 should be a DW_TAG_member that is a declaration, but
15833 all versions of G++ as of this writing (so through at
15834 least 3.2.1) incorrectly generate DW_TAG_variable
15835 tags for them instead. */
15836 dwarf2_add_field (fi, child_die, cu);
15837 }
15838 else if (child_die->tag == DW_TAG_subprogram)
15839 {
15840 /* Rust doesn't have member functions in the C++ sense.
15841 However, it does emit ordinary functions as children
15842 of a struct DIE. */
15843 if (cu->language == language_rust)
15844 read_func_scope (child_die, cu);
15845 else
15846 {
15847 /* C++ member function. */
15848 dwarf2_add_member_fn (fi, child_die, type, cu);
15849 }
15850 }
15851 else if (child_die->tag == DW_TAG_inheritance)
15852 {
15853 /* C++ base class field. */
15854 dwarf2_add_field (fi, child_die, cu);
15855 }
15856 else if (type_can_define_types (child_die))
15857 dwarf2_add_type_defn (fi, child_die, cu);
15858 else if (child_die->tag == DW_TAG_template_type_param
15859 || child_die->tag == DW_TAG_template_value_param)
15860 {
15861 struct symbol *arg = new_symbol (child_die, NULL, cu);
15862
15863 if (arg != NULL)
15864 template_args->push_back (arg);
15865 }
15866 else if (child_die->tag == DW_TAG_variant)
15867 {
15868 /* In a variant we want to get the discriminant and also add a
15869 field for our sole member child. */
15870 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15871
15872 for (die_info *variant_child = child_die->child;
15873 variant_child != NULL;
15874 variant_child = sibling_die (variant_child))
15875 {
15876 if (variant_child->tag == DW_TAG_member)
15877 {
15878 handle_struct_member_die (variant_child, type, fi,
15879 template_args, cu);
15880 /* Only handle the one. */
15881 break;
15882 }
15883 }
15884
15885 /* We don't handle this but we might as well report it if we see
15886 it. */
15887 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15888 complaint (_("DW_AT_discr_list is not supported yet"
15889 " - DIE at %s [in module %s]"),
15890 sect_offset_str (child_die->sect_off),
15891 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15892
15893 /* The first field was just added, so we can stash the
15894 discriminant there. */
15895 gdb_assert (!fi->fields.empty ());
15896 if (discr == NULL)
15897 fi->fields.back ().variant.default_branch = true;
15898 else
15899 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15900 }
15901 }
15902
15903 /* Finish creating a structure or union type, including filling in
15904 its members and creating a symbol for it. */
15905
15906 static void
15907 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15908 {
15909 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15910 struct die_info *child_die;
15911 struct type *type;
15912
15913 type = get_die_type (die, cu);
15914 if (type == NULL)
15915 type = read_structure_type (die, cu);
15916
15917 /* When reading a DW_TAG_variant_part, we need to notice when we
15918 read the discriminant member, so we can record it later in the
15919 discriminant_info. */
15920 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15921 sect_offset discr_offset;
15922 bool has_template_parameters = false;
15923
15924 if (is_variant_part)
15925 {
15926 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15927 if (discr == NULL)
15928 {
15929 /* Maybe it's a univariant form, an extension we support.
15930 In this case arrange not to check the offset. */
15931 is_variant_part = false;
15932 }
15933 else if (attr_form_is_ref (discr))
15934 {
15935 struct dwarf2_cu *target_cu = cu;
15936 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15937
15938 discr_offset = target_die->sect_off;
15939 }
15940 else
15941 {
15942 complaint (_("DW_AT_discr does not have DIE reference form"
15943 " - DIE at %s [in module %s]"),
15944 sect_offset_str (die->sect_off),
15945 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15946 is_variant_part = false;
15947 }
15948 }
15949
15950 if (die->child != NULL && ! die_is_declaration (die, cu))
15951 {
15952 struct field_info fi;
15953 std::vector<struct symbol *> template_args;
15954
15955 child_die = die->child;
15956
15957 while (child_die && child_die->tag)
15958 {
15959 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15960
15961 if (is_variant_part && discr_offset == child_die->sect_off)
15962 fi.fields.back ().variant.is_discriminant = true;
15963
15964 child_die = sibling_die (child_die);
15965 }
15966
15967 /* Attach template arguments to type. */
15968 if (!template_args.empty ())
15969 {
15970 has_template_parameters = true;
15971 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15972 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15973 TYPE_TEMPLATE_ARGUMENTS (type)
15974 = XOBNEWVEC (&objfile->objfile_obstack,
15975 struct symbol *,
15976 TYPE_N_TEMPLATE_ARGUMENTS (type));
15977 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15978 template_args.data (),
15979 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15980 * sizeof (struct symbol *)));
15981 }
15982
15983 /* Attach fields and member functions to the type. */
15984 if (fi.nfields)
15985 dwarf2_attach_fields_to_type (&fi, type, cu);
15986 if (!fi.fnfieldlists.empty ())
15987 {
15988 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15989
15990 /* Get the type which refers to the base class (possibly this
15991 class itself) which contains the vtable pointer for the current
15992 class from the DW_AT_containing_type attribute. This use of
15993 DW_AT_containing_type is a GNU extension. */
15994
15995 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15996 {
15997 struct type *t = die_containing_type (die, cu);
15998
15999 set_type_vptr_basetype (type, t);
16000 if (type == t)
16001 {
16002 int i;
16003
16004 /* Our own class provides vtbl ptr. */
16005 for (i = TYPE_NFIELDS (t) - 1;
16006 i >= TYPE_N_BASECLASSES (t);
16007 --i)
16008 {
16009 const char *fieldname = TYPE_FIELD_NAME (t, i);
16010
16011 if (is_vtable_name (fieldname, cu))
16012 {
16013 set_type_vptr_fieldno (type, i);
16014 break;
16015 }
16016 }
16017
16018 /* Complain if virtual function table field not found. */
16019 if (i < TYPE_N_BASECLASSES (t))
16020 complaint (_("virtual function table pointer "
16021 "not found when defining class '%s'"),
16022 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16023 }
16024 else
16025 {
16026 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16027 }
16028 }
16029 else if (cu->producer
16030 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16031 {
16032 /* The IBM XLC compiler does not provide direct indication
16033 of the containing type, but the vtable pointer is
16034 always named __vfp. */
16035
16036 int i;
16037
16038 for (i = TYPE_NFIELDS (type) - 1;
16039 i >= TYPE_N_BASECLASSES (type);
16040 --i)
16041 {
16042 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16043 {
16044 set_type_vptr_fieldno (type, i);
16045 set_type_vptr_basetype (type, type);
16046 break;
16047 }
16048 }
16049 }
16050 }
16051
16052 /* Copy fi.typedef_field_list linked list elements content into the
16053 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16054 if (!fi.typedef_field_list.empty ())
16055 {
16056 int count = fi.typedef_field_list.size ();
16057
16058 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16059 TYPE_TYPEDEF_FIELD_ARRAY (type)
16060 = ((struct decl_field *)
16061 TYPE_ALLOC (type,
16062 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16063 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16064
16065 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16066 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16067 }
16068
16069 /* Copy fi.nested_types_list linked list elements content into the
16070 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16071 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16072 {
16073 int count = fi.nested_types_list.size ();
16074
16075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16076 TYPE_NESTED_TYPES_ARRAY (type)
16077 = ((struct decl_field *)
16078 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16079 TYPE_NESTED_TYPES_COUNT (type) = count;
16080
16081 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16082 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16083 }
16084 }
16085
16086 quirk_gcc_member_function_pointer (type, objfile);
16087 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16088 cu->rust_unions.push_back (type);
16089
16090 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16091 snapshots) has been known to create a die giving a declaration
16092 for a class that has, as a child, a die giving a definition for a
16093 nested class. So we have to process our children even if the
16094 current die is a declaration. Normally, of course, a declaration
16095 won't have any children at all. */
16096
16097 child_die = die->child;
16098
16099 while (child_die != NULL && child_die->tag)
16100 {
16101 if (child_die->tag == DW_TAG_member
16102 || child_die->tag == DW_TAG_variable
16103 || child_die->tag == DW_TAG_inheritance
16104 || child_die->tag == DW_TAG_template_value_param
16105 || child_die->tag == DW_TAG_template_type_param)
16106 {
16107 /* Do nothing. */
16108 }
16109 else
16110 process_die (child_die, cu);
16111
16112 child_die = sibling_die (child_die);
16113 }
16114
16115 /* Do not consider external references. According to the DWARF standard,
16116 these DIEs are identified by the fact that they have no byte_size
16117 attribute, and a declaration attribute. */
16118 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16119 || !die_is_declaration (die, cu))
16120 {
16121 struct symbol *sym = new_symbol (die, type, cu);
16122
16123 if (has_template_parameters)
16124 {
16125 struct symtab *symtab;
16126 if (sym != nullptr)
16127 symtab = symbol_symtab (sym);
16128 else if (cu->line_header != nullptr)
16129 {
16130 /* Any related symtab will do. */
16131 symtab
16132 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16133 }
16134 else
16135 {
16136 symtab = nullptr;
16137 complaint (_("could not find suitable "
16138 "symtab for template parameter"
16139 " - DIE at %s [in module %s]"),
16140 sect_offset_str (die->sect_off),
16141 objfile_name (objfile));
16142 }
16143
16144 if (symtab != nullptr)
16145 {
16146 /* Make sure that the symtab is set on the new symbols.
16147 Even though they don't appear in this symtab directly,
16148 other parts of gdb assume that symbols do, and this is
16149 reasonably true. */
16150 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16151 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16152 }
16153 }
16154 }
16155 }
16156
16157 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16158 update TYPE using some information only available in DIE's children. */
16159
16160 static void
16161 update_enumeration_type_from_children (struct die_info *die,
16162 struct type *type,
16163 struct dwarf2_cu *cu)
16164 {
16165 struct die_info *child_die;
16166 int unsigned_enum = 1;
16167 int flag_enum = 1;
16168 ULONGEST mask = 0;
16169
16170 auto_obstack obstack;
16171
16172 for (child_die = die->child;
16173 child_die != NULL && child_die->tag;
16174 child_die = sibling_die (child_die))
16175 {
16176 struct attribute *attr;
16177 LONGEST value;
16178 const gdb_byte *bytes;
16179 struct dwarf2_locexpr_baton *baton;
16180 const char *name;
16181
16182 if (child_die->tag != DW_TAG_enumerator)
16183 continue;
16184
16185 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16186 if (attr == NULL)
16187 continue;
16188
16189 name = dwarf2_name (child_die, cu);
16190 if (name == NULL)
16191 name = "<anonymous enumerator>";
16192
16193 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16194 &value, &bytes, &baton);
16195 if (value < 0)
16196 {
16197 unsigned_enum = 0;
16198 flag_enum = 0;
16199 }
16200 else if ((mask & value) != 0)
16201 flag_enum = 0;
16202 else
16203 mask |= value;
16204
16205 /* If we already know that the enum type is neither unsigned, nor
16206 a flag type, no need to look at the rest of the enumerates. */
16207 if (!unsigned_enum && !flag_enum)
16208 break;
16209 }
16210
16211 if (unsigned_enum)
16212 TYPE_UNSIGNED (type) = 1;
16213 if (flag_enum)
16214 TYPE_FLAG_ENUM (type) = 1;
16215 }
16216
16217 /* Given a DW_AT_enumeration_type die, set its type. We do not
16218 complete the type's fields yet, or create any symbols. */
16219
16220 static struct type *
16221 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16222 {
16223 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16224 struct type *type;
16225 struct attribute *attr;
16226 const char *name;
16227
16228 /* If the definition of this type lives in .debug_types, read that type.
16229 Don't follow DW_AT_specification though, that will take us back up
16230 the chain and we want to go down. */
16231 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16232 if (attr)
16233 {
16234 type = get_DW_AT_signature_type (die, attr, cu);
16235
16236 /* The type's CU may not be the same as CU.
16237 Ensure TYPE is recorded with CU in die_type_hash. */
16238 return set_die_type (die, type, cu);
16239 }
16240
16241 type = alloc_type (objfile);
16242
16243 TYPE_CODE (type) = TYPE_CODE_ENUM;
16244 name = dwarf2_full_name (NULL, die, cu);
16245 if (name != NULL)
16246 TYPE_NAME (type) = name;
16247
16248 attr = dwarf2_attr (die, DW_AT_type, cu);
16249 if (attr != NULL)
16250 {
16251 struct type *underlying_type = die_type (die, cu);
16252
16253 TYPE_TARGET_TYPE (type) = underlying_type;
16254 }
16255
16256 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16257 if (attr)
16258 {
16259 TYPE_LENGTH (type) = DW_UNSND (attr);
16260 }
16261 else
16262 {
16263 TYPE_LENGTH (type) = 0;
16264 }
16265
16266 maybe_set_alignment (cu, die, type);
16267
16268 /* The enumeration DIE can be incomplete. In Ada, any type can be
16269 declared as private in the package spec, and then defined only
16270 inside the package body. Such types are known as Taft Amendment
16271 Types. When another package uses such a type, an incomplete DIE
16272 may be generated by the compiler. */
16273 if (die_is_declaration (die, cu))
16274 TYPE_STUB (type) = 1;
16275
16276 /* Finish the creation of this type by using the enum's children.
16277 We must call this even when the underlying type has been provided
16278 so that we can determine if we're looking at a "flag" enum. */
16279 update_enumeration_type_from_children (die, type, cu);
16280
16281 /* If this type has an underlying type that is not a stub, then we
16282 may use its attributes. We always use the "unsigned" attribute
16283 in this situation, because ordinarily we guess whether the type
16284 is unsigned -- but the guess can be wrong and the underlying type
16285 can tell us the reality. However, we defer to a local size
16286 attribute if one exists, because this lets the compiler override
16287 the underlying type if needed. */
16288 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16289 {
16290 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16291 if (TYPE_LENGTH (type) == 0)
16292 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16293 if (TYPE_RAW_ALIGN (type) == 0
16294 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16295 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16296 }
16297
16298 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16299
16300 return set_die_type (die, type, cu);
16301 }
16302
16303 /* Given a pointer to a die which begins an enumeration, process all
16304 the dies that define the members of the enumeration, and create the
16305 symbol for the enumeration type.
16306
16307 NOTE: We reverse the order of the element list. */
16308
16309 static void
16310 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16311 {
16312 struct type *this_type;
16313
16314 this_type = get_die_type (die, cu);
16315 if (this_type == NULL)
16316 this_type = read_enumeration_type (die, cu);
16317
16318 if (die->child != NULL)
16319 {
16320 struct die_info *child_die;
16321 struct symbol *sym;
16322 struct field *fields = NULL;
16323 int num_fields = 0;
16324 const char *name;
16325
16326 child_die = die->child;
16327 while (child_die && child_die->tag)
16328 {
16329 if (child_die->tag != DW_TAG_enumerator)
16330 {
16331 process_die (child_die, cu);
16332 }
16333 else
16334 {
16335 name = dwarf2_name (child_die, cu);
16336 if (name)
16337 {
16338 sym = new_symbol (child_die, this_type, cu);
16339
16340 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16341 {
16342 fields = (struct field *)
16343 xrealloc (fields,
16344 (num_fields + DW_FIELD_ALLOC_CHUNK)
16345 * sizeof (struct field));
16346 }
16347
16348 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16349 FIELD_TYPE (fields[num_fields]) = NULL;
16350 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16351 FIELD_BITSIZE (fields[num_fields]) = 0;
16352
16353 num_fields++;
16354 }
16355 }
16356
16357 child_die = sibling_die (child_die);
16358 }
16359
16360 if (num_fields)
16361 {
16362 TYPE_NFIELDS (this_type) = num_fields;
16363 TYPE_FIELDS (this_type) = (struct field *)
16364 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16365 memcpy (TYPE_FIELDS (this_type), fields,
16366 sizeof (struct field) * num_fields);
16367 xfree (fields);
16368 }
16369 }
16370
16371 /* If we are reading an enum from a .debug_types unit, and the enum
16372 is a declaration, and the enum is not the signatured type in the
16373 unit, then we do not want to add a symbol for it. Adding a
16374 symbol would in some cases obscure the true definition of the
16375 enum, giving users an incomplete type when the definition is
16376 actually available. Note that we do not want to do this for all
16377 enums which are just declarations, because C++0x allows forward
16378 enum declarations. */
16379 if (cu->per_cu->is_debug_types
16380 && die_is_declaration (die, cu))
16381 {
16382 struct signatured_type *sig_type;
16383
16384 sig_type = (struct signatured_type *) cu->per_cu;
16385 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16386 if (sig_type->type_offset_in_section != die->sect_off)
16387 return;
16388 }
16389
16390 new_symbol (die, this_type, cu);
16391 }
16392
16393 /* Extract all information from a DW_TAG_array_type DIE and put it in
16394 the DIE's type field. For now, this only handles one dimensional
16395 arrays. */
16396
16397 static struct type *
16398 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16399 {
16400 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16401 struct die_info *child_die;
16402 struct type *type;
16403 struct type *element_type, *range_type, *index_type;
16404 struct attribute *attr;
16405 const char *name;
16406 struct dynamic_prop *byte_stride_prop = NULL;
16407 unsigned int bit_stride = 0;
16408
16409 element_type = die_type (die, cu);
16410
16411 /* The die_type call above may have already set the type for this DIE. */
16412 type = get_die_type (die, cu);
16413 if (type)
16414 return type;
16415
16416 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16417 if (attr != NULL)
16418 {
16419 int stride_ok;
16420 struct type *prop_type
16421 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16422
16423 byte_stride_prop
16424 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16425 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16426 prop_type);
16427 if (!stride_ok)
16428 {
16429 complaint (_("unable to read array DW_AT_byte_stride "
16430 " - DIE at %s [in module %s]"),
16431 sect_offset_str (die->sect_off),
16432 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16433 /* Ignore this attribute. We will likely not be able to print
16434 arrays of this type correctly, but there is little we can do
16435 to help if we cannot read the attribute's value. */
16436 byte_stride_prop = NULL;
16437 }
16438 }
16439
16440 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16441 if (attr != NULL)
16442 bit_stride = DW_UNSND (attr);
16443
16444 /* Irix 6.2 native cc creates array types without children for
16445 arrays with unspecified length. */
16446 if (die->child == NULL)
16447 {
16448 index_type = objfile_type (objfile)->builtin_int;
16449 range_type = create_static_range_type (NULL, index_type, 0, -1);
16450 type = create_array_type_with_stride (NULL, element_type, range_type,
16451 byte_stride_prop, bit_stride);
16452 return set_die_type (die, type, cu);
16453 }
16454
16455 std::vector<struct type *> range_types;
16456 child_die = die->child;
16457 while (child_die && child_die->tag)
16458 {
16459 if (child_die->tag == DW_TAG_subrange_type)
16460 {
16461 struct type *child_type = read_type_die (child_die, cu);
16462
16463 if (child_type != NULL)
16464 {
16465 /* The range type was succesfully read. Save it for the
16466 array type creation. */
16467 range_types.push_back (child_type);
16468 }
16469 }
16470 child_die = sibling_die (child_die);
16471 }
16472
16473 /* Dwarf2 dimensions are output from left to right, create the
16474 necessary array types in backwards order. */
16475
16476 type = element_type;
16477
16478 if (read_array_order (die, cu) == DW_ORD_col_major)
16479 {
16480 int i = 0;
16481
16482 while (i < range_types.size ())
16483 type = create_array_type_with_stride (NULL, type, range_types[i++],
16484 byte_stride_prop, bit_stride);
16485 }
16486 else
16487 {
16488 size_t ndim = range_types.size ();
16489 while (ndim-- > 0)
16490 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16491 byte_stride_prop, bit_stride);
16492 }
16493
16494 /* Understand Dwarf2 support for vector types (like they occur on
16495 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16496 array type. This is not part of the Dwarf2/3 standard yet, but a
16497 custom vendor extension. The main difference between a regular
16498 array and the vector variant is that vectors are passed by value
16499 to functions. */
16500 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16501 if (attr)
16502 make_vector_type (type);
16503
16504 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16505 implementation may choose to implement triple vectors using this
16506 attribute. */
16507 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16508 if (attr)
16509 {
16510 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16511 TYPE_LENGTH (type) = DW_UNSND (attr);
16512 else
16513 complaint (_("DW_AT_byte_size for array type smaller "
16514 "than the total size of elements"));
16515 }
16516
16517 name = dwarf2_name (die, cu);
16518 if (name)
16519 TYPE_NAME (type) = name;
16520
16521 maybe_set_alignment (cu, die, type);
16522
16523 /* Install the type in the die. */
16524 set_die_type (die, type, cu);
16525
16526 /* set_die_type should be already done. */
16527 set_descriptive_type (type, die, cu);
16528
16529 return type;
16530 }
16531
16532 static enum dwarf_array_dim_ordering
16533 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16534 {
16535 struct attribute *attr;
16536
16537 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16538
16539 if (attr)
16540 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16541
16542 /* GNU F77 is a special case, as at 08/2004 array type info is the
16543 opposite order to the dwarf2 specification, but data is still
16544 laid out as per normal fortran.
16545
16546 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16547 version checking. */
16548
16549 if (cu->language == language_fortran
16550 && cu->producer && strstr (cu->producer, "GNU F77"))
16551 {
16552 return DW_ORD_row_major;
16553 }
16554
16555 switch (cu->language_defn->la_array_ordering)
16556 {
16557 case array_column_major:
16558 return DW_ORD_col_major;
16559 case array_row_major:
16560 default:
16561 return DW_ORD_row_major;
16562 };
16563 }
16564
16565 /* Extract all information from a DW_TAG_set_type DIE and put it in
16566 the DIE's type field. */
16567
16568 static struct type *
16569 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16570 {
16571 struct type *domain_type, *set_type;
16572 struct attribute *attr;
16573
16574 domain_type = die_type (die, cu);
16575
16576 /* The die_type call above may have already set the type for this DIE. */
16577 set_type = get_die_type (die, cu);
16578 if (set_type)
16579 return set_type;
16580
16581 set_type = create_set_type (NULL, domain_type);
16582
16583 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16584 if (attr)
16585 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16586
16587 maybe_set_alignment (cu, die, set_type);
16588
16589 return set_die_type (die, set_type, cu);
16590 }
16591
16592 /* A helper for read_common_block that creates a locexpr baton.
16593 SYM is the symbol which we are marking as computed.
16594 COMMON_DIE is the DIE for the common block.
16595 COMMON_LOC is the location expression attribute for the common
16596 block itself.
16597 MEMBER_LOC is the location expression attribute for the particular
16598 member of the common block that we are processing.
16599 CU is the CU from which the above come. */
16600
16601 static void
16602 mark_common_block_symbol_computed (struct symbol *sym,
16603 struct die_info *common_die,
16604 struct attribute *common_loc,
16605 struct attribute *member_loc,
16606 struct dwarf2_cu *cu)
16607 {
16608 struct dwarf2_per_objfile *dwarf2_per_objfile
16609 = cu->per_cu->dwarf2_per_objfile;
16610 struct objfile *objfile = dwarf2_per_objfile->objfile;
16611 struct dwarf2_locexpr_baton *baton;
16612 gdb_byte *ptr;
16613 unsigned int cu_off;
16614 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16615 LONGEST offset = 0;
16616
16617 gdb_assert (common_loc && member_loc);
16618 gdb_assert (attr_form_is_block (common_loc));
16619 gdb_assert (attr_form_is_block (member_loc)
16620 || attr_form_is_constant (member_loc));
16621
16622 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16623 baton->per_cu = cu->per_cu;
16624 gdb_assert (baton->per_cu);
16625
16626 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16627
16628 if (attr_form_is_constant (member_loc))
16629 {
16630 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16631 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16632 }
16633 else
16634 baton->size += DW_BLOCK (member_loc)->size;
16635
16636 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16637 baton->data = ptr;
16638
16639 *ptr++ = DW_OP_call4;
16640 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16641 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16642 ptr += 4;
16643
16644 if (attr_form_is_constant (member_loc))
16645 {
16646 *ptr++ = DW_OP_addr;
16647 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16648 ptr += cu->header.addr_size;
16649 }
16650 else
16651 {
16652 /* We have to copy the data here, because DW_OP_call4 will only
16653 use a DW_AT_location attribute. */
16654 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16655 ptr += DW_BLOCK (member_loc)->size;
16656 }
16657
16658 *ptr++ = DW_OP_plus;
16659 gdb_assert (ptr - baton->data == baton->size);
16660
16661 SYMBOL_LOCATION_BATON (sym) = baton;
16662 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16663 }
16664
16665 /* Create appropriate locally-scoped variables for all the
16666 DW_TAG_common_block entries. Also create a struct common_block
16667 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16668 is used to sepate the common blocks name namespace from regular
16669 variable names. */
16670
16671 static void
16672 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16673 {
16674 struct attribute *attr;
16675
16676 attr = dwarf2_attr (die, DW_AT_location, cu);
16677 if (attr)
16678 {
16679 /* Support the .debug_loc offsets. */
16680 if (attr_form_is_block (attr))
16681 {
16682 /* Ok. */
16683 }
16684 else if (attr_form_is_section_offset (attr))
16685 {
16686 dwarf2_complex_location_expr_complaint ();
16687 attr = NULL;
16688 }
16689 else
16690 {
16691 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16692 "common block member");
16693 attr = NULL;
16694 }
16695 }
16696
16697 if (die->child != NULL)
16698 {
16699 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16700 struct die_info *child_die;
16701 size_t n_entries = 0, size;
16702 struct common_block *common_block;
16703 struct symbol *sym;
16704
16705 for (child_die = die->child;
16706 child_die && child_die->tag;
16707 child_die = sibling_die (child_die))
16708 ++n_entries;
16709
16710 size = (sizeof (struct common_block)
16711 + (n_entries - 1) * sizeof (struct symbol *));
16712 common_block
16713 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16714 size);
16715 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16716 common_block->n_entries = 0;
16717
16718 for (child_die = die->child;
16719 child_die && child_die->tag;
16720 child_die = sibling_die (child_die))
16721 {
16722 /* Create the symbol in the DW_TAG_common_block block in the current
16723 symbol scope. */
16724 sym = new_symbol (child_die, NULL, cu);
16725 if (sym != NULL)
16726 {
16727 struct attribute *member_loc;
16728
16729 common_block->contents[common_block->n_entries++] = sym;
16730
16731 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16732 cu);
16733 if (member_loc)
16734 {
16735 /* GDB has handled this for a long time, but it is
16736 not specified by DWARF. It seems to have been
16737 emitted by gfortran at least as recently as:
16738 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16739 complaint (_("Variable in common block has "
16740 "DW_AT_data_member_location "
16741 "- DIE at %s [in module %s]"),
16742 sect_offset_str (child_die->sect_off),
16743 objfile_name (objfile));
16744
16745 if (attr_form_is_section_offset (member_loc))
16746 dwarf2_complex_location_expr_complaint ();
16747 else if (attr_form_is_constant (member_loc)
16748 || attr_form_is_block (member_loc))
16749 {
16750 if (attr)
16751 mark_common_block_symbol_computed (sym, die, attr,
16752 member_loc, cu);
16753 }
16754 else
16755 dwarf2_complex_location_expr_complaint ();
16756 }
16757 }
16758 }
16759
16760 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16761 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16762 }
16763 }
16764
16765 /* Create a type for a C++ namespace. */
16766
16767 static struct type *
16768 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16769 {
16770 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16771 const char *previous_prefix, *name;
16772 int is_anonymous;
16773 struct type *type;
16774
16775 /* For extensions, reuse the type of the original namespace. */
16776 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16777 {
16778 struct die_info *ext_die;
16779 struct dwarf2_cu *ext_cu = cu;
16780
16781 ext_die = dwarf2_extension (die, &ext_cu);
16782 type = read_type_die (ext_die, ext_cu);
16783
16784 /* EXT_CU may not be the same as CU.
16785 Ensure TYPE is recorded with CU in die_type_hash. */
16786 return set_die_type (die, type, cu);
16787 }
16788
16789 name = namespace_name (die, &is_anonymous, cu);
16790
16791 /* Now build the name of the current namespace. */
16792
16793 previous_prefix = determine_prefix (die, cu);
16794 if (previous_prefix[0] != '\0')
16795 name = typename_concat (&objfile->objfile_obstack,
16796 previous_prefix, name, 0, cu);
16797
16798 /* Create the type. */
16799 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16800
16801 return set_die_type (die, type, cu);
16802 }
16803
16804 /* Read a namespace scope. */
16805
16806 static void
16807 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16808 {
16809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16810 int is_anonymous;
16811
16812 /* Add a symbol associated to this if we haven't seen the namespace
16813 before. Also, add a using directive if it's an anonymous
16814 namespace. */
16815
16816 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16817 {
16818 struct type *type;
16819
16820 type = read_type_die (die, cu);
16821 new_symbol (die, type, cu);
16822
16823 namespace_name (die, &is_anonymous, cu);
16824 if (is_anonymous)
16825 {
16826 const char *previous_prefix = determine_prefix (die, cu);
16827
16828 std::vector<const char *> excludes;
16829 add_using_directive (using_directives (cu),
16830 previous_prefix, TYPE_NAME (type), NULL,
16831 NULL, excludes, 0, &objfile->objfile_obstack);
16832 }
16833 }
16834
16835 if (die->child != NULL)
16836 {
16837 struct die_info *child_die = die->child;
16838
16839 while (child_die && child_die->tag)
16840 {
16841 process_die (child_die, cu);
16842 child_die = sibling_die (child_die);
16843 }
16844 }
16845 }
16846
16847 /* Read a Fortran module as type. This DIE can be only a declaration used for
16848 imported module. Still we need that type as local Fortran "use ... only"
16849 declaration imports depend on the created type in determine_prefix. */
16850
16851 static struct type *
16852 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16853 {
16854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16855 const char *module_name;
16856 struct type *type;
16857
16858 module_name = dwarf2_name (die, cu);
16859 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16860
16861 return set_die_type (die, type, cu);
16862 }
16863
16864 /* Read a Fortran module. */
16865
16866 static void
16867 read_module (struct die_info *die, struct dwarf2_cu *cu)
16868 {
16869 struct die_info *child_die = die->child;
16870 struct type *type;
16871
16872 type = read_type_die (die, cu);
16873 new_symbol (die, type, cu);
16874
16875 while (child_die && child_die->tag)
16876 {
16877 process_die (child_die, cu);
16878 child_die = sibling_die (child_die);
16879 }
16880 }
16881
16882 /* Return the name of the namespace represented by DIE. Set
16883 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16884 namespace. */
16885
16886 static const char *
16887 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16888 {
16889 struct die_info *current_die;
16890 const char *name = NULL;
16891
16892 /* Loop through the extensions until we find a name. */
16893
16894 for (current_die = die;
16895 current_die != NULL;
16896 current_die = dwarf2_extension (die, &cu))
16897 {
16898 /* We don't use dwarf2_name here so that we can detect the absence
16899 of a name -> anonymous namespace. */
16900 name = dwarf2_string_attr (die, DW_AT_name, cu);
16901
16902 if (name != NULL)
16903 break;
16904 }
16905
16906 /* Is it an anonymous namespace? */
16907
16908 *is_anonymous = (name == NULL);
16909 if (*is_anonymous)
16910 name = CP_ANONYMOUS_NAMESPACE_STR;
16911
16912 return name;
16913 }
16914
16915 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16916 the user defined type vector. */
16917
16918 static struct type *
16919 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16920 {
16921 struct gdbarch *gdbarch
16922 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16923 struct comp_unit_head *cu_header = &cu->header;
16924 struct type *type;
16925 struct attribute *attr_byte_size;
16926 struct attribute *attr_address_class;
16927 int byte_size, addr_class;
16928 struct type *target_type;
16929
16930 target_type = die_type (die, cu);
16931
16932 /* The die_type call above may have already set the type for this DIE. */
16933 type = get_die_type (die, cu);
16934 if (type)
16935 return type;
16936
16937 type = lookup_pointer_type (target_type);
16938
16939 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16940 if (attr_byte_size)
16941 byte_size = DW_UNSND (attr_byte_size);
16942 else
16943 byte_size = cu_header->addr_size;
16944
16945 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16946 if (attr_address_class)
16947 addr_class = DW_UNSND (attr_address_class);
16948 else
16949 addr_class = DW_ADDR_none;
16950
16951 ULONGEST alignment = get_alignment (cu, die);
16952
16953 /* If the pointer size, alignment, or address class is different
16954 than the default, create a type variant marked as such and set
16955 the length accordingly. */
16956 if (TYPE_LENGTH (type) != byte_size
16957 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16958 && alignment != TYPE_RAW_ALIGN (type))
16959 || addr_class != DW_ADDR_none)
16960 {
16961 if (gdbarch_address_class_type_flags_p (gdbarch))
16962 {
16963 int type_flags;
16964
16965 type_flags = gdbarch_address_class_type_flags
16966 (gdbarch, byte_size, addr_class);
16967 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16968 == 0);
16969 type = make_type_with_address_space (type, type_flags);
16970 }
16971 else if (TYPE_LENGTH (type) != byte_size)
16972 {
16973 complaint (_("invalid pointer size %d"), byte_size);
16974 }
16975 else if (TYPE_RAW_ALIGN (type) != alignment)
16976 {
16977 complaint (_("Invalid DW_AT_alignment"
16978 " - DIE at %s [in module %s]"),
16979 sect_offset_str (die->sect_off),
16980 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16981 }
16982 else
16983 {
16984 /* Should we also complain about unhandled address classes? */
16985 }
16986 }
16987
16988 TYPE_LENGTH (type) = byte_size;
16989 set_type_align (type, alignment);
16990 return set_die_type (die, type, cu);
16991 }
16992
16993 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16994 the user defined type vector. */
16995
16996 static struct type *
16997 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16998 {
16999 struct type *type;
17000 struct type *to_type;
17001 struct type *domain;
17002
17003 to_type = die_type (die, cu);
17004 domain = die_containing_type (die, cu);
17005
17006 /* The calls above may have already set the type for this DIE. */
17007 type = get_die_type (die, cu);
17008 if (type)
17009 return type;
17010
17011 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17012 type = lookup_methodptr_type (to_type);
17013 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17014 {
17015 struct type *new_type
17016 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17017
17018 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17019 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17020 TYPE_VARARGS (to_type));
17021 type = lookup_methodptr_type (new_type);
17022 }
17023 else
17024 type = lookup_memberptr_type (to_type, domain);
17025
17026 return set_die_type (die, type, cu);
17027 }
17028
17029 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17030 the user defined type vector. */
17031
17032 static struct type *
17033 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17034 enum type_code refcode)
17035 {
17036 struct comp_unit_head *cu_header = &cu->header;
17037 struct type *type, *target_type;
17038 struct attribute *attr;
17039
17040 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17041
17042 target_type = die_type (die, cu);
17043
17044 /* The die_type call above may have already set the type for this DIE. */
17045 type = get_die_type (die, cu);
17046 if (type)
17047 return type;
17048
17049 type = lookup_reference_type (target_type, refcode);
17050 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17051 if (attr)
17052 {
17053 TYPE_LENGTH (type) = DW_UNSND (attr);
17054 }
17055 else
17056 {
17057 TYPE_LENGTH (type) = cu_header->addr_size;
17058 }
17059 maybe_set_alignment (cu, die, type);
17060 return set_die_type (die, type, cu);
17061 }
17062
17063 /* Add the given cv-qualifiers to the element type of the array. GCC
17064 outputs DWARF type qualifiers that apply to an array, not the
17065 element type. But GDB relies on the array element type to carry
17066 the cv-qualifiers. This mimics section 6.7.3 of the C99
17067 specification. */
17068
17069 static struct type *
17070 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17071 struct type *base_type, int cnst, int voltl)
17072 {
17073 struct type *el_type, *inner_array;
17074
17075 base_type = copy_type (base_type);
17076 inner_array = base_type;
17077
17078 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17079 {
17080 TYPE_TARGET_TYPE (inner_array) =
17081 copy_type (TYPE_TARGET_TYPE (inner_array));
17082 inner_array = TYPE_TARGET_TYPE (inner_array);
17083 }
17084
17085 el_type = TYPE_TARGET_TYPE (inner_array);
17086 cnst |= TYPE_CONST (el_type);
17087 voltl |= TYPE_VOLATILE (el_type);
17088 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17089
17090 return set_die_type (die, base_type, cu);
17091 }
17092
17093 static struct type *
17094 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17095 {
17096 struct type *base_type, *cv_type;
17097
17098 base_type = die_type (die, cu);
17099
17100 /* The die_type call above may have already set the type for this DIE. */
17101 cv_type = get_die_type (die, cu);
17102 if (cv_type)
17103 return cv_type;
17104
17105 /* In case the const qualifier is applied to an array type, the element type
17106 is so qualified, not the array type (section 6.7.3 of C99). */
17107 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17108 return add_array_cv_type (die, cu, base_type, 1, 0);
17109
17110 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17111 return set_die_type (die, cv_type, cu);
17112 }
17113
17114 static struct type *
17115 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17116 {
17117 struct type *base_type, *cv_type;
17118
17119 base_type = die_type (die, cu);
17120
17121 /* The die_type call above may have already set the type for this DIE. */
17122 cv_type = get_die_type (die, cu);
17123 if (cv_type)
17124 return cv_type;
17125
17126 /* In case the volatile qualifier is applied to an array type, the
17127 element type is so qualified, not the array type (section 6.7.3
17128 of C99). */
17129 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17130 return add_array_cv_type (die, cu, base_type, 0, 1);
17131
17132 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17133 return set_die_type (die, cv_type, cu);
17134 }
17135
17136 /* Handle DW_TAG_restrict_type. */
17137
17138 static struct type *
17139 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17140 {
17141 struct type *base_type, *cv_type;
17142
17143 base_type = die_type (die, cu);
17144
17145 /* The die_type call above may have already set the type for this DIE. */
17146 cv_type = get_die_type (die, cu);
17147 if (cv_type)
17148 return cv_type;
17149
17150 cv_type = make_restrict_type (base_type);
17151 return set_die_type (die, cv_type, cu);
17152 }
17153
17154 /* Handle DW_TAG_atomic_type. */
17155
17156 static struct type *
17157 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17158 {
17159 struct type *base_type, *cv_type;
17160
17161 base_type = die_type (die, cu);
17162
17163 /* The die_type call above may have already set the type for this DIE. */
17164 cv_type = get_die_type (die, cu);
17165 if (cv_type)
17166 return cv_type;
17167
17168 cv_type = make_atomic_type (base_type);
17169 return set_die_type (die, cv_type, cu);
17170 }
17171
17172 /* Extract all information from a DW_TAG_string_type DIE and add to
17173 the user defined type vector. It isn't really a user defined type,
17174 but it behaves like one, with other DIE's using an AT_user_def_type
17175 attribute to reference it. */
17176
17177 static struct type *
17178 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17179 {
17180 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17182 struct type *type, *range_type, *index_type, *char_type;
17183 struct attribute *attr;
17184 unsigned int length;
17185
17186 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17187 if (attr)
17188 {
17189 length = DW_UNSND (attr);
17190 }
17191 else
17192 {
17193 /* Check for the DW_AT_byte_size attribute. */
17194 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17195 if (attr)
17196 {
17197 length = DW_UNSND (attr);
17198 }
17199 else
17200 {
17201 length = 1;
17202 }
17203 }
17204
17205 index_type = objfile_type (objfile)->builtin_int;
17206 range_type = create_static_range_type (NULL, index_type, 1, length);
17207 char_type = language_string_char_type (cu->language_defn, gdbarch);
17208 type = create_string_type (NULL, char_type, range_type);
17209
17210 return set_die_type (die, type, cu);
17211 }
17212
17213 /* Assuming that DIE corresponds to a function, returns nonzero
17214 if the function is prototyped. */
17215
17216 static int
17217 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17218 {
17219 struct attribute *attr;
17220
17221 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17222 if (attr && (DW_UNSND (attr) != 0))
17223 return 1;
17224
17225 /* The DWARF standard implies that the DW_AT_prototyped attribute
17226 is only meaninful for C, but the concept also extends to other
17227 languages that allow unprototyped functions (Eg: Objective C).
17228 For all other languages, assume that functions are always
17229 prototyped. */
17230 if (cu->language != language_c
17231 && cu->language != language_objc
17232 && cu->language != language_opencl)
17233 return 1;
17234
17235 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17236 prototyped and unprototyped functions; default to prototyped,
17237 since that is more common in modern code (and RealView warns
17238 about unprototyped functions). */
17239 if (producer_is_realview (cu->producer))
17240 return 1;
17241
17242 return 0;
17243 }
17244
17245 /* Handle DIES due to C code like:
17246
17247 struct foo
17248 {
17249 int (*funcp)(int a, long l);
17250 int b;
17251 };
17252
17253 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17254
17255 static struct type *
17256 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17257 {
17258 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17259 struct type *type; /* Type that this function returns. */
17260 struct type *ftype; /* Function that returns above type. */
17261 struct attribute *attr;
17262
17263 type = die_type (die, cu);
17264
17265 /* The die_type call above may have already set the type for this DIE. */
17266 ftype = get_die_type (die, cu);
17267 if (ftype)
17268 return ftype;
17269
17270 ftype = lookup_function_type (type);
17271
17272 if (prototyped_function_p (die, cu))
17273 TYPE_PROTOTYPED (ftype) = 1;
17274
17275 /* Store the calling convention in the type if it's available in
17276 the subroutine die. Otherwise set the calling convention to
17277 the default value DW_CC_normal. */
17278 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17279 if (attr)
17280 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17281 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17282 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17283 else
17284 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17285
17286 /* Record whether the function returns normally to its caller or not
17287 if the DWARF producer set that information. */
17288 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17289 if (attr && (DW_UNSND (attr) != 0))
17290 TYPE_NO_RETURN (ftype) = 1;
17291
17292 /* We need to add the subroutine type to the die immediately so
17293 we don't infinitely recurse when dealing with parameters
17294 declared as the same subroutine type. */
17295 set_die_type (die, ftype, cu);
17296
17297 if (die->child != NULL)
17298 {
17299 struct type *void_type = objfile_type (objfile)->builtin_void;
17300 struct die_info *child_die;
17301 int nparams, iparams;
17302
17303 /* Count the number of parameters.
17304 FIXME: GDB currently ignores vararg functions, but knows about
17305 vararg member functions. */
17306 nparams = 0;
17307 child_die = die->child;
17308 while (child_die && child_die->tag)
17309 {
17310 if (child_die->tag == DW_TAG_formal_parameter)
17311 nparams++;
17312 else if (child_die->tag == DW_TAG_unspecified_parameters)
17313 TYPE_VARARGS (ftype) = 1;
17314 child_die = sibling_die (child_die);
17315 }
17316
17317 /* Allocate storage for parameters and fill them in. */
17318 TYPE_NFIELDS (ftype) = nparams;
17319 TYPE_FIELDS (ftype) = (struct field *)
17320 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17321
17322 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17323 even if we error out during the parameters reading below. */
17324 for (iparams = 0; iparams < nparams; iparams++)
17325 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17326
17327 iparams = 0;
17328 child_die = die->child;
17329 while (child_die && child_die->tag)
17330 {
17331 if (child_die->tag == DW_TAG_formal_parameter)
17332 {
17333 struct type *arg_type;
17334
17335 /* DWARF version 2 has no clean way to discern C++
17336 static and non-static member functions. G++ helps
17337 GDB by marking the first parameter for non-static
17338 member functions (which is the this pointer) as
17339 artificial. We pass this information to
17340 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17341
17342 DWARF version 3 added DW_AT_object_pointer, which GCC
17343 4.5 does not yet generate. */
17344 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17345 if (attr)
17346 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17347 else
17348 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17349 arg_type = die_type (child_die, cu);
17350
17351 /* RealView does not mark THIS as const, which the testsuite
17352 expects. GCC marks THIS as const in method definitions,
17353 but not in the class specifications (GCC PR 43053). */
17354 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17355 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17356 {
17357 int is_this = 0;
17358 struct dwarf2_cu *arg_cu = cu;
17359 const char *name = dwarf2_name (child_die, cu);
17360
17361 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17362 if (attr)
17363 {
17364 /* If the compiler emits this, use it. */
17365 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17366 is_this = 1;
17367 }
17368 else if (name && strcmp (name, "this") == 0)
17369 /* Function definitions will have the argument names. */
17370 is_this = 1;
17371 else if (name == NULL && iparams == 0)
17372 /* Declarations may not have the names, so like
17373 elsewhere in GDB, assume an artificial first
17374 argument is "this". */
17375 is_this = 1;
17376
17377 if (is_this)
17378 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17379 arg_type, 0);
17380 }
17381
17382 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17383 iparams++;
17384 }
17385 child_die = sibling_die (child_die);
17386 }
17387 }
17388
17389 return ftype;
17390 }
17391
17392 static struct type *
17393 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17394 {
17395 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17396 const char *name = NULL;
17397 struct type *this_type, *target_type;
17398
17399 name = dwarf2_full_name (NULL, die, cu);
17400 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17401 TYPE_TARGET_STUB (this_type) = 1;
17402 set_die_type (die, this_type, cu);
17403 target_type = die_type (die, cu);
17404 if (target_type != this_type)
17405 TYPE_TARGET_TYPE (this_type) = target_type;
17406 else
17407 {
17408 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17409 spec and cause infinite loops in GDB. */
17410 complaint (_("Self-referential DW_TAG_typedef "
17411 "- DIE at %s [in module %s]"),
17412 sect_offset_str (die->sect_off), objfile_name (objfile));
17413 TYPE_TARGET_TYPE (this_type) = NULL;
17414 }
17415 return this_type;
17416 }
17417
17418 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17419 (which may be different from NAME) to the architecture back-end to allow
17420 it to guess the correct format if necessary. */
17421
17422 static struct type *
17423 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17424 const char *name_hint)
17425 {
17426 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17427 const struct floatformat **format;
17428 struct type *type;
17429
17430 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17431 if (format)
17432 type = init_float_type (objfile, bits, name, format);
17433 else
17434 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17435
17436 return type;
17437 }
17438
17439 /* Allocate an integer type of size BITS and name NAME. */
17440
17441 static struct type *
17442 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17443 int bits, int unsigned_p, const char *name)
17444 {
17445 struct type *type;
17446
17447 /* Versions of Intel's C Compiler generate an integer type called "void"
17448 instead of using DW_TAG_unspecified_type. This has been seen on
17449 at least versions 14, 17, and 18. */
17450 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17451 && strcmp (name, "void") == 0)
17452 type = objfile_type (objfile)->builtin_void;
17453 else
17454 type = init_integer_type (objfile, bits, unsigned_p, name);
17455
17456 return type;
17457 }
17458
17459 /* Initialise and return a floating point type of size BITS suitable for
17460 use as a component of a complex number. The NAME_HINT is passed through
17461 when initialising the floating point type and is the name of the complex
17462 type.
17463
17464 As DWARF doesn't currently provide an explicit name for the components
17465 of a complex number, but it can be helpful to have these components
17466 named, we try to select a suitable name based on the size of the
17467 component. */
17468 static struct type *
17469 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17470 struct objfile *objfile,
17471 int bits, const char *name_hint)
17472 {
17473 gdbarch *gdbarch = get_objfile_arch (objfile);
17474 struct type *tt = nullptr;
17475
17476 /* Try to find a suitable floating point builtin type of size BITS.
17477 We're going to use the name of this type as the name for the complex
17478 target type that we are about to create. */
17479 switch (cu->language)
17480 {
17481 case language_fortran:
17482 switch (bits)
17483 {
17484 case 32:
17485 tt = builtin_f_type (gdbarch)->builtin_real;
17486 break;
17487 case 64:
17488 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17489 break;
17490 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17491 case 128:
17492 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17493 break;
17494 }
17495 break;
17496 default:
17497 switch (bits)
17498 {
17499 case 32:
17500 tt = builtin_type (gdbarch)->builtin_float;
17501 break;
17502 case 64:
17503 tt = builtin_type (gdbarch)->builtin_double;
17504 break;
17505 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17506 case 128:
17507 tt = builtin_type (gdbarch)->builtin_long_double;
17508 break;
17509 }
17510 break;
17511 }
17512
17513 /* If the type we found doesn't match the size we were looking for, then
17514 pretend we didn't find a type at all, the complex target type we
17515 create will then be nameless. */
17516 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17517 tt = nullptr;
17518
17519 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17520 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17521 }
17522
17523 /* Find a representation of a given base type and install
17524 it in the TYPE field of the die. */
17525
17526 static struct type *
17527 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17528 {
17529 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17530 struct type *type;
17531 struct attribute *attr;
17532 int encoding = 0, bits = 0;
17533 const char *name;
17534
17535 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17536 if (attr)
17537 {
17538 encoding = DW_UNSND (attr);
17539 }
17540 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17541 if (attr)
17542 {
17543 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17544 }
17545 name = dwarf2_name (die, cu);
17546 if (!name)
17547 {
17548 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17549 }
17550
17551 switch (encoding)
17552 {
17553 case DW_ATE_address:
17554 /* Turn DW_ATE_address into a void * pointer. */
17555 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17556 type = init_pointer_type (objfile, bits, name, type);
17557 break;
17558 case DW_ATE_boolean:
17559 type = init_boolean_type (objfile, bits, 1, name);
17560 break;
17561 case DW_ATE_complex_float:
17562 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17563 type = init_complex_type (objfile, name, type);
17564 break;
17565 case DW_ATE_decimal_float:
17566 type = init_decfloat_type (objfile, bits, name);
17567 break;
17568 case DW_ATE_float:
17569 type = dwarf2_init_float_type (objfile, bits, name, name);
17570 break;
17571 case DW_ATE_signed:
17572 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17573 break;
17574 case DW_ATE_unsigned:
17575 if (cu->language == language_fortran
17576 && name
17577 && startswith (name, "character("))
17578 type = init_character_type (objfile, bits, 1, name);
17579 else
17580 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17581 break;
17582 case DW_ATE_signed_char:
17583 if (cu->language == language_ada || cu->language == language_m2
17584 || cu->language == language_pascal
17585 || cu->language == language_fortran)
17586 type = init_character_type (objfile, bits, 0, name);
17587 else
17588 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17589 break;
17590 case DW_ATE_unsigned_char:
17591 if (cu->language == language_ada || cu->language == language_m2
17592 || cu->language == language_pascal
17593 || cu->language == language_fortran
17594 || cu->language == language_rust)
17595 type = init_character_type (objfile, bits, 1, name);
17596 else
17597 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17598 break;
17599 case DW_ATE_UTF:
17600 {
17601 gdbarch *arch = get_objfile_arch (objfile);
17602
17603 if (bits == 16)
17604 type = builtin_type (arch)->builtin_char16;
17605 else if (bits == 32)
17606 type = builtin_type (arch)->builtin_char32;
17607 else
17608 {
17609 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17610 bits);
17611 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17612 }
17613 return set_die_type (die, type, cu);
17614 }
17615 break;
17616
17617 default:
17618 complaint (_("unsupported DW_AT_encoding: '%s'"),
17619 dwarf_type_encoding_name (encoding));
17620 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17621 break;
17622 }
17623
17624 if (name && strcmp (name, "char") == 0)
17625 TYPE_NOSIGN (type) = 1;
17626
17627 maybe_set_alignment (cu, die, type);
17628
17629 return set_die_type (die, type, cu);
17630 }
17631
17632 /* Parse dwarf attribute if it's a block, reference or constant and put the
17633 resulting value of the attribute into struct bound_prop.
17634 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17635
17636 static int
17637 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17638 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17639 struct type *default_type)
17640 {
17641 struct dwarf2_property_baton *baton;
17642 struct obstack *obstack
17643 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17644
17645 gdb_assert (default_type != NULL);
17646
17647 if (attr == NULL || prop == NULL)
17648 return 0;
17649
17650 if (attr_form_is_block (attr))
17651 {
17652 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17653 baton->property_type = default_type;
17654 baton->locexpr.per_cu = cu->per_cu;
17655 baton->locexpr.size = DW_BLOCK (attr)->size;
17656 baton->locexpr.data = DW_BLOCK (attr)->data;
17657 baton->locexpr.is_reference = false;
17658 prop->data.baton = baton;
17659 prop->kind = PROP_LOCEXPR;
17660 gdb_assert (prop->data.baton != NULL);
17661 }
17662 else if (attr_form_is_ref (attr))
17663 {
17664 struct dwarf2_cu *target_cu = cu;
17665 struct die_info *target_die;
17666 struct attribute *target_attr;
17667
17668 target_die = follow_die_ref (die, attr, &target_cu);
17669 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17670 if (target_attr == NULL)
17671 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17672 target_cu);
17673 if (target_attr == NULL)
17674 return 0;
17675
17676 switch (target_attr->name)
17677 {
17678 case DW_AT_location:
17679 if (attr_form_is_section_offset (target_attr))
17680 {
17681 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17682 baton->property_type = die_type (target_die, target_cu);
17683 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17684 prop->data.baton = baton;
17685 prop->kind = PROP_LOCLIST;
17686 gdb_assert (prop->data.baton != NULL);
17687 }
17688 else if (attr_form_is_block (target_attr))
17689 {
17690 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17691 baton->property_type = die_type (target_die, target_cu);
17692 baton->locexpr.per_cu = cu->per_cu;
17693 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17694 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17695 baton->locexpr.is_reference = true;
17696 prop->data.baton = baton;
17697 prop->kind = PROP_LOCEXPR;
17698 gdb_assert (prop->data.baton != NULL);
17699 }
17700 else
17701 {
17702 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17703 "dynamic property");
17704 return 0;
17705 }
17706 break;
17707 case DW_AT_data_member_location:
17708 {
17709 LONGEST offset;
17710
17711 if (!handle_data_member_location (target_die, target_cu,
17712 &offset))
17713 return 0;
17714
17715 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17716 baton->property_type = read_type_die (target_die->parent,
17717 target_cu);
17718 baton->offset_info.offset = offset;
17719 baton->offset_info.type = die_type (target_die, target_cu);
17720 prop->data.baton = baton;
17721 prop->kind = PROP_ADDR_OFFSET;
17722 break;
17723 }
17724 }
17725 }
17726 else if (attr_form_is_constant (attr))
17727 {
17728 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17729 prop->kind = PROP_CONST;
17730 }
17731 else
17732 {
17733 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17734 dwarf2_name (die, cu));
17735 return 0;
17736 }
17737
17738 return 1;
17739 }
17740
17741 /* Find an integer type the same size as the address size given in the
17742 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17743 is unsigned or not. */
17744
17745 static struct type *
17746 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17747 bool unsigned_p)
17748 {
17749 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17750 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17751 struct type *int_type;
17752
17753 /* Helper macro to examine the various builtin types. */
17754 #define TRY_TYPE(F) \
17755 int_type = (unsigned_p \
17756 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17757 : objfile_type (objfile)->builtin_ ## F); \
17758 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17759 return int_type
17760
17761 TRY_TYPE (char);
17762 TRY_TYPE (short);
17763 TRY_TYPE (int);
17764 TRY_TYPE (long);
17765 TRY_TYPE (long_long);
17766
17767 #undef TRY_TYPE
17768
17769 gdb_assert_not_reached ("unable to find suitable integer type");
17770 }
17771
17772 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17773 present (which is valid) then compute the default type based on the
17774 compilation units address size. */
17775
17776 static struct type *
17777 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17778 {
17779 struct type *index_type = die_type (die, cu);
17780
17781 /* Dwarf-2 specifications explicitly allows to create subrange types
17782 without specifying a base type.
17783 In that case, the base type must be set to the type of
17784 the lower bound, upper bound or count, in that order, if any of these
17785 three attributes references an object that has a type.
17786 If no base type is found, the Dwarf-2 specifications say that
17787 a signed integer type of size equal to the size of an address should
17788 be used.
17789 For the following C code: `extern char gdb_int [];'
17790 GCC produces an empty range DIE.
17791 FIXME: muller/2010-05-28: Possible references to object for low bound,
17792 high bound or count are not yet handled by this code. */
17793 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17794 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17795
17796 return index_type;
17797 }
17798
17799 /* Read the given DW_AT_subrange DIE. */
17800
17801 static struct type *
17802 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17803 {
17804 struct type *base_type, *orig_base_type;
17805 struct type *range_type;
17806 struct attribute *attr;
17807 struct dynamic_prop low, high;
17808 int low_default_is_valid;
17809 int high_bound_is_count = 0;
17810 const char *name;
17811 ULONGEST negative_mask;
17812
17813 orig_base_type = read_subrange_index_type (die, cu);
17814
17815 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17816 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17817 creating the range type, but we use the result of check_typedef
17818 when examining properties of the type. */
17819 base_type = check_typedef (orig_base_type);
17820
17821 /* The die_type call above may have already set the type for this DIE. */
17822 range_type = get_die_type (die, cu);
17823 if (range_type)
17824 return range_type;
17825
17826 low.kind = PROP_CONST;
17827 high.kind = PROP_CONST;
17828 high.data.const_val = 0;
17829
17830 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17831 omitting DW_AT_lower_bound. */
17832 switch (cu->language)
17833 {
17834 case language_c:
17835 case language_cplus:
17836 low.data.const_val = 0;
17837 low_default_is_valid = 1;
17838 break;
17839 case language_fortran:
17840 low.data.const_val = 1;
17841 low_default_is_valid = 1;
17842 break;
17843 case language_d:
17844 case language_objc:
17845 case language_rust:
17846 low.data.const_val = 0;
17847 low_default_is_valid = (cu->header.version >= 4);
17848 break;
17849 case language_ada:
17850 case language_m2:
17851 case language_pascal:
17852 low.data.const_val = 1;
17853 low_default_is_valid = (cu->header.version >= 4);
17854 break;
17855 default:
17856 low.data.const_val = 0;
17857 low_default_is_valid = 0;
17858 break;
17859 }
17860
17861 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17862 if (attr)
17863 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17864 else if (!low_default_is_valid)
17865 complaint (_("Missing DW_AT_lower_bound "
17866 "- DIE at %s [in module %s]"),
17867 sect_offset_str (die->sect_off),
17868 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17869
17870 struct attribute *attr_ub, *attr_count;
17871 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17872 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17873 {
17874 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17875 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17876 {
17877 /* If bounds are constant do the final calculation here. */
17878 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17879 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17880 else
17881 high_bound_is_count = 1;
17882 }
17883 else
17884 {
17885 if (attr_ub != NULL)
17886 complaint (_("Unresolved DW_AT_upper_bound "
17887 "- DIE at %s [in module %s]"),
17888 sect_offset_str (die->sect_off),
17889 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17890 if (attr_count != NULL)
17891 complaint (_("Unresolved DW_AT_count "
17892 "- DIE at %s [in module %s]"),
17893 sect_offset_str (die->sect_off),
17894 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17895 }
17896 }
17897
17898 /* Normally, the DWARF producers are expected to use a signed
17899 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17900 But this is unfortunately not always the case, as witnessed
17901 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17902 is used instead. To work around that ambiguity, we treat
17903 the bounds as signed, and thus sign-extend their values, when
17904 the base type is signed. */
17905 negative_mask =
17906 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17907 if (low.kind == PROP_CONST
17908 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17909 low.data.const_val |= negative_mask;
17910 if (high.kind == PROP_CONST
17911 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17912 high.data.const_val |= negative_mask;
17913
17914 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17915
17916 if (high_bound_is_count)
17917 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17918
17919 /* Ada expects an empty array on no boundary attributes. */
17920 if (attr == NULL && cu->language != language_ada)
17921 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17922
17923 name = dwarf2_name (die, cu);
17924 if (name)
17925 TYPE_NAME (range_type) = name;
17926
17927 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17928 if (attr)
17929 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17930
17931 maybe_set_alignment (cu, die, range_type);
17932
17933 set_die_type (die, range_type, cu);
17934
17935 /* set_die_type should be already done. */
17936 set_descriptive_type (range_type, die, cu);
17937
17938 return range_type;
17939 }
17940
17941 static struct type *
17942 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17943 {
17944 struct type *type;
17945
17946 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17947 NULL);
17948 TYPE_NAME (type) = dwarf2_name (die, cu);
17949
17950 /* In Ada, an unspecified type is typically used when the description
17951 of the type is defered to a different unit. When encountering
17952 such a type, we treat it as a stub, and try to resolve it later on,
17953 when needed. */
17954 if (cu->language == language_ada)
17955 TYPE_STUB (type) = 1;
17956
17957 return set_die_type (die, type, cu);
17958 }
17959
17960 /* Read a single die and all its descendents. Set the die's sibling
17961 field to NULL; set other fields in the die correctly, and set all
17962 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17963 location of the info_ptr after reading all of those dies. PARENT
17964 is the parent of the die in question. */
17965
17966 static struct die_info *
17967 read_die_and_children (const struct die_reader_specs *reader,
17968 const gdb_byte *info_ptr,
17969 const gdb_byte **new_info_ptr,
17970 struct die_info *parent)
17971 {
17972 struct die_info *die;
17973 const gdb_byte *cur_ptr;
17974 int has_children;
17975
17976 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17977 if (die == NULL)
17978 {
17979 *new_info_ptr = cur_ptr;
17980 return NULL;
17981 }
17982 store_in_ref_table (die, reader->cu);
17983
17984 if (has_children)
17985 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17986 else
17987 {
17988 die->child = NULL;
17989 *new_info_ptr = cur_ptr;
17990 }
17991
17992 die->sibling = NULL;
17993 die->parent = parent;
17994 return die;
17995 }
17996
17997 /* Read a die, all of its descendents, and all of its siblings; set
17998 all of the fields of all of the dies correctly. Arguments are as
17999 in read_die_and_children. */
18000
18001 static struct die_info *
18002 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18003 const gdb_byte *info_ptr,
18004 const gdb_byte **new_info_ptr,
18005 struct die_info *parent)
18006 {
18007 struct die_info *first_die, *last_sibling;
18008 const gdb_byte *cur_ptr;
18009
18010 cur_ptr = info_ptr;
18011 first_die = last_sibling = NULL;
18012
18013 while (1)
18014 {
18015 struct die_info *die
18016 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18017
18018 if (die == NULL)
18019 {
18020 *new_info_ptr = cur_ptr;
18021 return first_die;
18022 }
18023
18024 if (!first_die)
18025 first_die = die;
18026 else
18027 last_sibling->sibling = die;
18028
18029 last_sibling = die;
18030 }
18031 }
18032
18033 /* Read a die, all of its descendents, and all of its siblings; set
18034 all of the fields of all of the dies correctly. Arguments are as
18035 in read_die_and_children.
18036 This the main entry point for reading a DIE and all its children. */
18037
18038 static struct die_info *
18039 read_die_and_siblings (const struct die_reader_specs *reader,
18040 const gdb_byte *info_ptr,
18041 const gdb_byte **new_info_ptr,
18042 struct die_info *parent)
18043 {
18044 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18045 new_info_ptr, parent);
18046
18047 if (dwarf_die_debug)
18048 {
18049 fprintf_unfiltered (gdb_stdlog,
18050 "Read die from %s@0x%x of %s:\n",
18051 get_section_name (reader->die_section),
18052 (unsigned) (info_ptr - reader->die_section->buffer),
18053 bfd_get_filename (reader->abfd));
18054 dump_die (die, dwarf_die_debug);
18055 }
18056
18057 return die;
18058 }
18059
18060 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18061 attributes.
18062 The caller is responsible for filling in the extra attributes
18063 and updating (*DIEP)->num_attrs.
18064 Set DIEP to point to a newly allocated die with its information,
18065 except for its child, sibling, and parent fields.
18066 Set HAS_CHILDREN to tell whether the die has children or not. */
18067
18068 static const gdb_byte *
18069 read_full_die_1 (const struct die_reader_specs *reader,
18070 struct die_info **diep, const gdb_byte *info_ptr,
18071 int *has_children, int num_extra_attrs)
18072 {
18073 unsigned int abbrev_number, bytes_read, i;
18074 struct abbrev_info *abbrev;
18075 struct die_info *die;
18076 struct dwarf2_cu *cu = reader->cu;
18077 bfd *abfd = reader->abfd;
18078
18079 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18080 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18081 info_ptr += bytes_read;
18082 if (!abbrev_number)
18083 {
18084 *diep = NULL;
18085 *has_children = 0;
18086 return info_ptr;
18087 }
18088
18089 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18090 if (!abbrev)
18091 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18092 abbrev_number,
18093 bfd_get_filename (abfd));
18094
18095 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18096 die->sect_off = sect_off;
18097 die->tag = abbrev->tag;
18098 die->abbrev = abbrev_number;
18099
18100 /* Make the result usable.
18101 The caller needs to update num_attrs after adding the extra
18102 attributes. */
18103 die->num_attrs = abbrev->num_attrs;
18104
18105 for (i = 0; i < abbrev->num_attrs; ++i)
18106 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18107 info_ptr);
18108
18109 *diep = die;
18110 *has_children = abbrev->has_children;
18111 return info_ptr;
18112 }
18113
18114 /* Read a die and all its attributes.
18115 Set DIEP to point to a newly allocated die with its information,
18116 except for its child, sibling, and parent fields.
18117 Set HAS_CHILDREN to tell whether the die has children or not. */
18118
18119 static const gdb_byte *
18120 read_full_die (const struct die_reader_specs *reader,
18121 struct die_info **diep, const gdb_byte *info_ptr,
18122 int *has_children)
18123 {
18124 const gdb_byte *result;
18125
18126 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18127
18128 if (dwarf_die_debug)
18129 {
18130 fprintf_unfiltered (gdb_stdlog,
18131 "Read die from %s@0x%x of %s:\n",
18132 get_section_name (reader->die_section),
18133 (unsigned) (info_ptr - reader->die_section->buffer),
18134 bfd_get_filename (reader->abfd));
18135 dump_die (*diep, dwarf_die_debug);
18136 }
18137
18138 return result;
18139 }
18140 \f
18141 /* Abbreviation tables.
18142
18143 In DWARF version 2, the description of the debugging information is
18144 stored in a separate .debug_abbrev section. Before we read any
18145 dies from a section we read in all abbreviations and install them
18146 in a hash table. */
18147
18148 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18149
18150 struct abbrev_info *
18151 abbrev_table::alloc_abbrev ()
18152 {
18153 struct abbrev_info *abbrev;
18154
18155 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18156 memset (abbrev, 0, sizeof (struct abbrev_info));
18157
18158 return abbrev;
18159 }
18160
18161 /* Add an abbreviation to the table. */
18162
18163 void
18164 abbrev_table::add_abbrev (unsigned int abbrev_number,
18165 struct abbrev_info *abbrev)
18166 {
18167 unsigned int hash_number;
18168
18169 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18170 abbrev->next = m_abbrevs[hash_number];
18171 m_abbrevs[hash_number] = abbrev;
18172 }
18173
18174 /* Look up an abbrev in the table.
18175 Returns NULL if the abbrev is not found. */
18176
18177 struct abbrev_info *
18178 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18179 {
18180 unsigned int hash_number;
18181 struct abbrev_info *abbrev;
18182
18183 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18184 abbrev = m_abbrevs[hash_number];
18185
18186 while (abbrev)
18187 {
18188 if (abbrev->number == abbrev_number)
18189 return abbrev;
18190 abbrev = abbrev->next;
18191 }
18192 return NULL;
18193 }
18194
18195 /* Read in an abbrev table. */
18196
18197 static abbrev_table_up
18198 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18199 struct dwarf2_section_info *section,
18200 sect_offset sect_off)
18201 {
18202 struct objfile *objfile = dwarf2_per_objfile->objfile;
18203 bfd *abfd = get_section_bfd_owner (section);
18204 const gdb_byte *abbrev_ptr;
18205 struct abbrev_info *cur_abbrev;
18206 unsigned int abbrev_number, bytes_read, abbrev_name;
18207 unsigned int abbrev_form;
18208 struct attr_abbrev *cur_attrs;
18209 unsigned int allocated_attrs;
18210
18211 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18212
18213 dwarf2_read_section (objfile, section);
18214 abbrev_ptr = section->buffer + to_underlying (sect_off);
18215 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18216 abbrev_ptr += bytes_read;
18217
18218 allocated_attrs = ATTR_ALLOC_CHUNK;
18219 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18220
18221 /* Loop until we reach an abbrev number of 0. */
18222 while (abbrev_number)
18223 {
18224 cur_abbrev = abbrev_table->alloc_abbrev ();
18225
18226 /* read in abbrev header */
18227 cur_abbrev->number = abbrev_number;
18228 cur_abbrev->tag
18229 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18230 abbrev_ptr += bytes_read;
18231 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18232 abbrev_ptr += 1;
18233
18234 /* now read in declarations */
18235 for (;;)
18236 {
18237 LONGEST implicit_const;
18238
18239 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18240 abbrev_ptr += bytes_read;
18241 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18242 abbrev_ptr += bytes_read;
18243 if (abbrev_form == DW_FORM_implicit_const)
18244 {
18245 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18246 &bytes_read);
18247 abbrev_ptr += bytes_read;
18248 }
18249 else
18250 {
18251 /* Initialize it due to a false compiler warning. */
18252 implicit_const = -1;
18253 }
18254
18255 if (abbrev_name == 0)
18256 break;
18257
18258 if (cur_abbrev->num_attrs == allocated_attrs)
18259 {
18260 allocated_attrs += ATTR_ALLOC_CHUNK;
18261 cur_attrs
18262 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18263 }
18264
18265 cur_attrs[cur_abbrev->num_attrs].name
18266 = (enum dwarf_attribute) abbrev_name;
18267 cur_attrs[cur_abbrev->num_attrs].form
18268 = (enum dwarf_form) abbrev_form;
18269 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18270 ++cur_abbrev->num_attrs;
18271 }
18272
18273 cur_abbrev->attrs =
18274 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18275 cur_abbrev->num_attrs);
18276 memcpy (cur_abbrev->attrs, cur_attrs,
18277 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18278
18279 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18280
18281 /* Get next abbreviation.
18282 Under Irix6 the abbreviations for a compilation unit are not
18283 always properly terminated with an abbrev number of 0.
18284 Exit loop if we encounter an abbreviation which we have
18285 already read (which means we are about to read the abbreviations
18286 for the next compile unit) or if the end of the abbreviation
18287 table is reached. */
18288 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18289 break;
18290 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18291 abbrev_ptr += bytes_read;
18292 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18293 break;
18294 }
18295
18296 xfree (cur_attrs);
18297 return abbrev_table;
18298 }
18299
18300 /* Returns nonzero if TAG represents a type that we might generate a partial
18301 symbol for. */
18302
18303 static int
18304 is_type_tag_for_partial (int tag)
18305 {
18306 switch (tag)
18307 {
18308 #if 0
18309 /* Some types that would be reasonable to generate partial symbols for,
18310 that we don't at present. */
18311 case DW_TAG_array_type:
18312 case DW_TAG_file_type:
18313 case DW_TAG_ptr_to_member_type:
18314 case DW_TAG_set_type:
18315 case DW_TAG_string_type:
18316 case DW_TAG_subroutine_type:
18317 #endif
18318 case DW_TAG_base_type:
18319 case DW_TAG_class_type:
18320 case DW_TAG_interface_type:
18321 case DW_TAG_enumeration_type:
18322 case DW_TAG_structure_type:
18323 case DW_TAG_subrange_type:
18324 case DW_TAG_typedef:
18325 case DW_TAG_union_type:
18326 return 1;
18327 default:
18328 return 0;
18329 }
18330 }
18331
18332 /* Load all DIEs that are interesting for partial symbols into memory. */
18333
18334 static struct partial_die_info *
18335 load_partial_dies (const struct die_reader_specs *reader,
18336 const gdb_byte *info_ptr, int building_psymtab)
18337 {
18338 struct dwarf2_cu *cu = reader->cu;
18339 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18340 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18341 unsigned int bytes_read;
18342 unsigned int load_all = 0;
18343 int nesting_level = 1;
18344
18345 parent_die = NULL;
18346 last_die = NULL;
18347
18348 gdb_assert (cu->per_cu != NULL);
18349 if (cu->per_cu->load_all_dies)
18350 load_all = 1;
18351
18352 cu->partial_dies
18353 = htab_create_alloc_ex (cu->header.length / 12,
18354 partial_die_hash,
18355 partial_die_eq,
18356 NULL,
18357 &cu->comp_unit_obstack,
18358 hashtab_obstack_allocate,
18359 dummy_obstack_deallocate);
18360
18361 while (1)
18362 {
18363 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18364
18365 /* A NULL abbrev means the end of a series of children. */
18366 if (abbrev == NULL)
18367 {
18368 if (--nesting_level == 0)
18369 return first_die;
18370
18371 info_ptr += bytes_read;
18372 last_die = parent_die;
18373 parent_die = parent_die->die_parent;
18374 continue;
18375 }
18376
18377 /* Check for template arguments. We never save these; if
18378 they're seen, we just mark the parent, and go on our way. */
18379 if (parent_die != NULL
18380 && cu->language == language_cplus
18381 && (abbrev->tag == DW_TAG_template_type_param
18382 || abbrev->tag == DW_TAG_template_value_param))
18383 {
18384 parent_die->has_template_arguments = 1;
18385
18386 if (!load_all)
18387 {
18388 /* We don't need a partial DIE for the template argument. */
18389 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18390 continue;
18391 }
18392 }
18393
18394 /* We only recurse into c++ subprograms looking for template arguments.
18395 Skip their other children. */
18396 if (!load_all
18397 && cu->language == language_cplus
18398 && parent_die != NULL
18399 && parent_die->tag == DW_TAG_subprogram)
18400 {
18401 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18402 continue;
18403 }
18404
18405 /* Check whether this DIE is interesting enough to save. Normally
18406 we would not be interested in members here, but there may be
18407 later variables referencing them via DW_AT_specification (for
18408 static members). */
18409 if (!load_all
18410 && !is_type_tag_for_partial (abbrev->tag)
18411 && abbrev->tag != DW_TAG_constant
18412 && abbrev->tag != DW_TAG_enumerator
18413 && abbrev->tag != DW_TAG_subprogram
18414 && abbrev->tag != DW_TAG_inlined_subroutine
18415 && abbrev->tag != DW_TAG_lexical_block
18416 && abbrev->tag != DW_TAG_variable
18417 && abbrev->tag != DW_TAG_namespace
18418 && abbrev->tag != DW_TAG_module
18419 && abbrev->tag != DW_TAG_member
18420 && abbrev->tag != DW_TAG_imported_unit
18421 && abbrev->tag != DW_TAG_imported_declaration)
18422 {
18423 /* Otherwise we skip to the next sibling, if any. */
18424 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18425 continue;
18426 }
18427
18428 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18429 abbrev);
18430
18431 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18432
18433 /* This two-pass algorithm for processing partial symbols has a
18434 high cost in cache pressure. Thus, handle some simple cases
18435 here which cover the majority of C partial symbols. DIEs
18436 which neither have specification tags in them, nor could have
18437 specification tags elsewhere pointing at them, can simply be
18438 processed and discarded.
18439
18440 This segment is also optional; scan_partial_symbols and
18441 add_partial_symbol will handle these DIEs if we chain
18442 them in normally. When compilers which do not emit large
18443 quantities of duplicate debug information are more common,
18444 this code can probably be removed. */
18445
18446 /* Any complete simple types at the top level (pretty much all
18447 of them, for a language without namespaces), can be processed
18448 directly. */
18449 if (parent_die == NULL
18450 && pdi.has_specification == 0
18451 && pdi.is_declaration == 0
18452 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18453 || pdi.tag == DW_TAG_base_type
18454 || pdi.tag == DW_TAG_subrange_type))
18455 {
18456 if (building_psymtab && pdi.name != NULL)
18457 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18458 VAR_DOMAIN, LOC_TYPEDEF, -1,
18459 psymbol_placement::STATIC,
18460 0, cu->language, objfile);
18461 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18462 continue;
18463 }
18464
18465 /* The exception for DW_TAG_typedef with has_children above is
18466 a workaround of GCC PR debug/47510. In the case of this complaint
18467 type_name_or_error will error on such types later.
18468
18469 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18470 it could not find the child DIEs referenced later, this is checked
18471 above. In correct DWARF DW_TAG_typedef should have no children. */
18472
18473 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18474 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18475 "- DIE at %s [in module %s]"),
18476 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18477
18478 /* If we're at the second level, and we're an enumerator, and
18479 our parent has no specification (meaning possibly lives in a
18480 namespace elsewhere), then we can add the partial symbol now
18481 instead of queueing it. */
18482 if (pdi.tag == DW_TAG_enumerator
18483 && parent_die != NULL
18484 && parent_die->die_parent == NULL
18485 && parent_die->tag == DW_TAG_enumeration_type
18486 && parent_die->has_specification == 0)
18487 {
18488 if (pdi.name == NULL)
18489 complaint (_("malformed enumerator DIE ignored"));
18490 else if (building_psymtab)
18491 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18492 VAR_DOMAIN, LOC_CONST, -1,
18493 cu->language == language_cplus
18494 ? psymbol_placement::GLOBAL
18495 : psymbol_placement::STATIC,
18496 0, cu->language, objfile);
18497
18498 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18499 continue;
18500 }
18501
18502 struct partial_die_info *part_die
18503 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18504
18505 /* We'll save this DIE so link it in. */
18506 part_die->die_parent = parent_die;
18507 part_die->die_sibling = NULL;
18508 part_die->die_child = NULL;
18509
18510 if (last_die && last_die == parent_die)
18511 last_die->die_child = part_die;
18512 else if (last_die)
18513 last_die->die_sibling = part_die;
18514
18515 last_die = part_die;
18516
18517 if (first_die == NULL)
18518 first_die = part_die;
18519
18520 /* Maybe add the DIE to the hash table. Not all DIEs that we
18521 find interesting need to be in the hash table, because we
18522 also have the parent/sibling/child chains; only those that we
18523 might refer to by offset later during partial symbol reading.
18524
18525 For now this means things that might have be the target of a
18526 DW_AT_specification, DW_AT_abstract_origin, or
18527 DW_AT_extension. DW_AT_extension will refer only to
18528 namespaces; DW_AT_abstract_origin refers to functions (and
18529 many things under the function DIE, but we do not recurse
18530 into function DIEs during partial symbol reading) and
18531 possibly variables as well; DW_AT_specification refers to
18532 declarations. Declarations ought to have the DW_AT_declaration
18533 flag. It happens that GCC forgets to put it in sometimes, but
18534 only for functions, not for types.
18535
18536 Adding more things than necessary to the hash table is harmless
18537 except for the performance cost. Adding too few will result in
18538 wasted time in find_partial_die, when we reread the compilation
18539 unit with load_all_dies set. */
18540
18541 if (load_all
18542 || abbrev->tag == DW_TAG_constant
18543 || abbrev->tag == DW_TAG_subprogram
18544 || abbrev->tag == DW_TAG_variable
18545 || abbrev->tag == DW_TAG_namespace
18546 || part_die->is_declaration)
18547 {
18548 void **slot;
18549
18550 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18551 to_underlying (part_die->sect_off),
18552 INSERT);
18553 *slot = part_die;
18554 }
18555
18556 /* For some DIEs we want to follow their children (if any). For C
18557 we have no reason to follow the children of structures; for other
18558 languages we have to, so that we can get at method physnames
18559 to infer fully qualified class names, for DW_AT_specification,
18560 and for C++ template arguments. For C++, we also look one level
18561 inside functions to find template arguments (if the name of the
18562 function does not already contain the template arguments).
18563
18564 For Ada, we need to scan the children of subprograms and lexical
18565 blocks as well because Ada allows the definition of nested
18566 entities that could be interesting for the debugger, such as
18567 nested subprograms for instance. */
18568 if (last_die->has_children
18569 && (load_all
18570 || last_die->tag == DW_TAG_namespace
18571 || last_die->tag == DW_TAG_module
18572 || last_die->tag == DW_TAG_enumeration_type
18573 || (cu->language == language_cplus
18574 && last_die->tag == DW_TAG_subprogram
18575 && (last_die->name == NULL
18576 || strchr (last_die->name, '<') == NULL))
18577 || (cu->language != language_c
18578 && (last_die->tag == DW_TAG_class_type
18579 || last_die->tag == DW_TAG_interface_type
18580 || last_die->tag == DW_TAG_structure_type
18581 || last_die->tag == DW_TAG_union_type))
18582 || (cu->language == language_ada
18583 && (last_die->tag == DW_TAG_subprogram
18584 || last_die->tag == DW_TAG_lexical_block))))
18585 {
18586 nesting_level++;
18587 parent_die = last_die;
18588 continue;
18589 }
18590
18591 /* Otherwise we skip to the next sibling, if any. */
18592 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18593
18594 /* Back to the top, do it again. */
18595 }
18596 }
18597
18598 partial_die_info::partial_die_info (sect_offset sect_off_,
18599 struct abbrev_info *abbrev)
18600 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18601 {
18602 }
18603
18604 /* Read a minimal amount of information into the minimal die structure.
18605 INFO_PTR should point just after the initial uleb128 of a DIE. */
18606
18607 const gdb_byte *
18608 partial_die_info::read (const struct die_reader_specs *reader,
18609 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18610 {
18611 struct dwarf2_cu *cu = reader->cu;
18612 struct dwarf2_per_objfile *dwarf2_per_objfile
18613 = cu->per_cu->dwarf2_per_objfile;
18614 unsigned int i;
18615 int has_low_pc_attr = 0;
18616 int has_high_pc_attr = 0;
18617 int high_pc_relative = 0;
18618
18619 for (i = 0; i < abbrev.num_attrs; ++i)
18620 {
18621 struct attribute attr;
18622
18623 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18624
18625 /* Store the data if it is of an attribute we want to keep in a
18626 partial symbol table. */
18627 switch (attr.name)
18628 {
18629 case DW_AT_name:
18630 switch (tag)
18631 {
18632 case DW_TAG_compile_unit:
18633 case DW_TAG_partial_unit:
18634 case DW_TAG_type_unit:
18635 /* Compilation units have a DW_AT_name that is a filename, not
18636 a source language identifier. */
18637 case DW_TAG_enumeration_type:
18638 case DW_TAG_enumerator:
18639 /* These tags always have simple identifiers already; no need
18640 to canonicalize them. */
18641 name = DW_STRING (&attr);
18642 break;
18643 default:
18644 {
18645 struct objfile *objfile = dwarf2_per_objfile->objfile;
18646
18647 name
18648 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18649 &objfile->per_bfd->storage_obstack);
18650 }
18651 break;
18652 }
18653 break;
18654 case DW_AT_linkage_name:
18655 case DW_AT_MIPS_linkage_name:
18656 /* Note that both forms of linkage name might appear. We
18657 assume they will be the same, and we only store the last
18658 one we see. */
18659 linkage_name = DW_STRING (&attr);
18660 break;
18661 case DW_AT_low_pc:
18662 has_low_pc_attr = 1;
18663 lowpc = attr_value_as_address (&attr);
18664 break;
18665 case DW_AT_high_pc:
18666 has_high_pc_attr = 1;
18667 highpc = attr_value_as_address (&attr);
18668 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18669 high_pc_relative = 1;
18670 break;
18671 case DW_AT_location:
18672 /* Support the .debug_loc offsets. */
18673 if (attr_form_is_block (&attr))
18674 {
18675 d.locdesc = DW_BLOCK (&attr);
18676 }
18677 else if (attr_form_is_section_offset (&attr))
18678 {
18679 dwarf2_complex_location_expr_complaint ();
18680 }
18681 else
18682 {
18683 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18684 "partial symbol information");
18685 }
18686 break;
18687 case DW_AT_external:
18688 is_external = DW_UNSND (&attr);
18689 break;
18690 case DW_AT_declaration:
18691 is_declaration = DW_UNSND (&attr);
18692 break;
18693 case DW_AT_type:
18694 has_type = 1;
18695 break;
18696 case DW_AT_abstract_origin:
18697 case DW_AT_specification:
18698 case DW_AT_extension:
18699 has_specification = 1;
18700 spec_offset = dwarf2_get_ref_die_offset (&attr);
18701 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18702 || cu->per_cu->is_dwz);
18703 break;
18704 case DW_AT_sibling:
18705 /* Ignore absolute siblings, they might point outside of
18706 the current compile unit. */
18707 if (attr.form == DW_FORM_ref_addr)
18708 complaint (_("ignoring absolute DW_AT_sibling"));
18709 else
18710 {
18711 const gdb_byte *buffer = reader->buffer;
18712 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18713 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18714
18715 if (sibling_ptr < info_ptr)
18716 complaint (_("DW_AT_sibling points backwards"));
18717 else if (sibling_ptr > reader->buffer_end)
18718 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18719 else
18720 sibling = sibling_ptr;
18721 }
18722 break;
18723 case DW_AT_byte_size:
18724 has_byte_size = 1;
18725 break;
18726 case DW_AT_const_value:
18727 has_const_value = 1;
18728 break;
18729 case DW_AT_calling_convention:
18730 /* DWARF doesn't provide a way to identify a program's source-level
18731 entry point. DW_AT_calling_convention attributes are only meant
18732 to describe functions' calling conventions.
18733
18734 However, because it's a necessary piece of information in
18735 Fortran, and before DWARF 4 DW_CC_program was the only
18736 piece of debugging information whose definition refers to
18737 a 'main program' at all, several compilers marked Fortran
18738 main programs with DW_CC_program --- even when those
18739 functions use the standard calling conventions.
18740
18741 Although DWARF now specifies a way to provide this
18742 information, we support this practice for backward
18743 compatibility. */
18744 if (DW_UNSND (&attr) == DW_CC_program
18745 && cu->language == language_fortran)
18746 main_subprogram = 1;
18747 break;
18748 case DW_AT_inline:
18749 if (DW_UNSND (&attr) == DW_INL_inlined
18750 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18751 may_be_inlined = 1;
18752 break;
18753
18754 case DW_AT_import:
18755 if (tag == DW_TAG_imported_unit)
18756 {
18757 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18758 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18759 || cu->per_cu->is_dwz);
18760 }
18761 break;
18762
18763 case DW_AT_main_subprogram:
18764 main_subprogram = DW_UNSND (&attr);
18765 break;
18766
18767 case DW_AT_ranges:
18768 {
18769 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18770 but that requires a full DIE, so instead we just
18771 reimplement it. */
18772 int need_ranges_base = tag != DW_TAG_compile_unit;
18773 unsigned int ranges_offset = (DW_UNSND (&attr)
18774 + (need_ranges_base
18775 ? cu->ranges_base
18776 : 0));
18777
18778 /* Value of the DW_AT_ranges attribute is the offset in the
18779 .debug_ranges section. */
18780 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18781 nullptr))
18782 has_pc_info = 1;
18783 }
18784 break;
18785
18786 default:
18787 break;
18788 }
18789 }
18790
18791 /* For Ada, if both the name and the linkage name appear, we prefer
18792 the latter. This lets "catch exception" work better, regardless
18793 of the order in which the name and linkage name were emitted.
18794 Really, though, this is just a workaround for the fact that gdb
18795 doesn't store both the name and the linkage name. */
18796 if (cu->language == language_ada && linkage_name != nullptr)
18797 name = linkage_name;
18798
18799 if (high_pc_relative)
18800 highpc += lowpc;
18801
18802 if (has_low_pc_attr && has_high_pc_attr)
18803 {
18804 /* When using the GNU linker, .gnu.linkonce. sections are used to
18805 eliminate duplicate copies of functions and vtables and such.
18806 The linker will arbitrarily choose one and discard the others.
18807 The AT_*_pc values for such functions refer to local labels in
18808 these sections. If the section from that file was discarded, the
18809 labels are not in the output, so the relocs get a value of 0.
18810 If this is a discarded function, mark the pc bounds as invalid,
18811 so that GDB will ignore it. */
18812 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18813 {
18814 struct objfile *objfile = dwarf2_per_objfile->objfile;
18815 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18816
18817 complaint (_("DW_AT_low_pc %s is zero "
18818 "for DIE at %s [in module %s]"),
18819 paddress (gdbarch, lowpc),
18820 sect_offset_str (sect_off),
18821 objfile_name (objfile));
18822 }
18823 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18824 else if (lowpc >= highpc)
18825 {
18826 struct objfile *objfile = dwarf2_per_objfile->objfile;
18827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18828
18829 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18830 "for DIE at %s [in module %s]"),
18831 paddress (gdbarch, lowpc),
18832 paddress (gdbarch, highpc),
18833 sect_offset_str (sect_off),
18834 objfile_name (objfile));
18835 }
18836 else
18837 has_pc_info = 1;
18838 }
18839
18840 return info_ptr;
18841 }
18842
18843 /* Find a cached partial DIE at OFFSET in CU. */
18844
18845 struct partial_die_info *
18846 dwarf2_cu::find_partial_die (sect_offset sect_off)
18847 {
18848 struct partial_die_info *lookup_die = NULL;
18849 struct partial_die_info part_die (sect_off);
18850
18851 lookup_die = ((struct partial_die_info *)
18852 htab_find_with_hash (partial_dies, &part_die,
18853 to_underlying (sect_off)));
18854
18855 return lookup_die;
18856 }
18857
18858 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18859 except in the case of .debug_types DIEs which do not reference
18860 outside their CU (they do however referencing other types via
18861 DW_FORM_ref_sig8). */
18862
18863 static const struct cu_partial_die_info
18864 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18865 {
18866 struct dwarf2_per_objfile *dwarf2_per_objfile
18867 = cu->per_cu->dwarf2_per_objfile;
18868 struct objfile *objfile = dwarf2_per_objfile->objfile;
18869 struct dwarf2_per_cu_data *per_cu = NULL;
18870 struct partial_die_info *pd = NULL;
18871
18872 if (offset_in_dwz == cu->per_cu->is_dwz
18873 && offset_in_cu_p (&cu->header, sect_off))
18874 {
18875 pd = cu->find_partial_die (sect_off);
18876 if (pd != NULL)
18877 return { cu, pd };
18878 /* We missed recording what we needed.
18879 Load all dies and try again. */
18880 per_cu = cu->per_cu;
18881 }
18882 else
18883 {
18884 /* TUs don't reference other CUs/TUs (except via type signatures). */
18885 if (cu->per_cu->is_debug_types)
18886 {
18887 error (_("Dwarf Error: Type Unit at offset %s contains"
18888 " external reference to offset %s [in module %s].\n"),
18889 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18890 bfd_get_filename (objfile->obfd));
18891 }
18892 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18893 dwarf2_per_objfile);
18894
18895 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18896 load_partial_comp_unit (per_cu);
18897
18898 per_cu->cu->last_used = 0;
18899 pd = per_cu->cu->find_partial_die (sect_off);
18900 }
18901
18902 /* If we didn't find it, and not all dies have been loaded,
18903 load them all and try again. */
18904
18905 if (pd == NULL && per_cu->load_all_dies == 0)
18906 {
18907 per_cu->load_all_dies = 1;
18908
18909 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18910 THIS_CU->cu may already be in use. So we can't just free it and
18911 replace its DIEs with the ones we read in. Instead, we leave those
18912 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18913 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18914 set. */
18915 load_partial_comp_unit (per_cu);
18916
18917 pd = per_cu->cu->find_partial_die (sect_off);
18918 }
18919
18920 if (pd == NULL)
18921 internal_error (__FILE__, __LINE__,
18922 _("could not find partial DIE %s "
18923 "in cache [from module %s]\n"),
18924 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18925 return { per_cu->cu, pd };
18926 }
18927
18928 /* See if we can figure out if the class lives in a namespace. We do
18929 this by looking for a member function; its demangled name will
18930 contain namespace info, if there is any. */
18931
18932 static void
18933 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18934 struct dwarf2_cu *cu)
18935 {
18936 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18937 what template types look like, because the demangler
18938 frequently doesn't give the same name as the debug info. We
18939 could fix this by only using the demangled name to get the
18940 prefix (but see comment in read_structure_type). */
18941
18942 struct partial_die_info *real_pdi;
18943 struct partial_die_info *child_pdi;
18944
18945 /* If this DIE (this DIE's specification, if any) has a parent, then
18946 we should not do this. We'll prepend the parent's fully qualified
18947 name when we create the partial symbol. */
18948
18949 real_pdi = struct_pdi;
18950 while (real_pdi->has_specification)
18951 {
18952 auto res = find_partial_die (real_pdi->spec_offset,
18953 real_pdi->spec_is_dwz, cu);
18954 real_pdi = res.pdi;
18955 cu = res.cu;
18956 }
18957
18958 if (real_pdi->die_parent != NULL)
18959 return;
18960
18961 for (child_pdi = struct_pdi->die_child;
18962 child_pdi != NULL;
18963 child_pdi = child_pdi->die_sibling)
18964 {
18965 if (child_pdi->tag == DW_TAG_subprogram
18966 && child_pdi->linkage_name != NULL)
18967 {
18968 char *actual_class_name
18969 = language_class_name_from_physname (cu->language_defn,
18970 child_pdi->linkage_name);
18971 if (actual_class_name != NULL)
18972 {
18973 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18974 struct_pdi->name
18975 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18976 actual_class_name);
18977 xfree (actual_class_name);
18978 }
18979 break;
18980 }
18981 }
18982 }
18983
18984 void
18985 partial_die_info::fixup (struct dwarf2_cu *cu)
18986 {
18987 /* Once we've fixed up a die, there's no point in doing so again.
18988 This also avoids a memory leak if we were to call
18989 guess_partial_die_structure_name multiple times. */
18990 if (fixup_called)
18991 return;
18992
18993 /* If we found a reference attribute and the DIE has no name, try
18994 to find a name in the referred to DIE. */
18995
18996 if (name == NULL && has_specification)
18997 {
18998 struct partial_die_info *spec_die;
18999
19000 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19001 spec_die = res.pdi;
19002 cu = res.cu;
19003
19004 spec_die->fixup (cu);
19005
19006 if (spec_die->name)
19007 {
19008 name = spec_die->name;
19009
19010 /* Copy DW_AT_external attribute if it is set. */
19011 if (spec_die->is_external)
19012 is_external = spec_die->is_external;
19013 }
19014 }
19015
19016 /* Set default names for some unnamed DIEs. */
19017
19018 if (name == NULL && tag == DW_TAG_namespace)
19019 name = CP_ANONYMOUS_NAMESPACE_STR;
19020
19021 /* If there is no parent die to provide a namespace, and there are
19022 children, see if we can determine the namespace from their linkage
19023 name. */
19024 if (cu->language == language_cplus
19025 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19026 && die_parent == NULL
19027 && has_children
19028 && (tag == DW_TAG_class_type
19029 || tag == DW_TAG_structure_type
19030 || tag == DW_TAG_union_type))
19031 guess_partial_die_structure_name (this, cu);
19032
19033 /* GCC might emit a nameless struct or union that has a linkage
19034 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19035 if (name == NULL
19036 && (tag == DW_TAG_class_type
19037 || tag == DW_TAG_interface_type
19038 || tag == DW_TAG_structure_type
19039 || tag == DW_TAG_union_type)
19040 && linkage_name != NULL)
19041 {
19042 char *demangled;
19043
19044 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19045 if (demangled)
19046 {
19047 const char *base;
19048
19049 /* Strip any leading namespaces/classes, keep only the base name.
19050 DW_AT_name for named DIEs does not contain the prefixes. */
19051 base = strrchr (demangled, ':');
19052 if (base && base > demangled && base[-1] == ':')
19053 base++;
19054 else
19055 base = demangled;
19056
19057 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19058 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19059 xfree (demangled);
19060 }
19061 }
19062
19063 fixup_called = 1;
19064 }
19065
19066 /* Read an attribute value described by an attribute form. */
19067
19068 static const gdb_byte *
19069 read_attribute_value (const struct die_reader_specs *reader,
19070 struct attribute *attr, unsigned form,
19071 LONGEST implicit_const, const gdb_byte *info_ptr)
19072 {
19073 struct dwarf2_cu *cu = reader->cu;
19074 struct dwarf2_per_objfile *dwarf2_per_objfile
19075 = cu->per_cu->dwarf2_per_objfile;
19076 struct objfile *objfile = dwarf2_per_objfile->objfile;
19077 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19078 bfd *abfd = reader->abfd;
19079 struct comp_unit_head *cu_header = &cu->header;
19080 unsigned int bytes_read;
19081 struct dwarf_block *blk;
19082
19083 attr->form = (enum dwarf_form) form;
19084 switch (form)
19085 {
19086 case DW_FORM_ref_addr:
19087 if (cu->header.version == 2)
19088 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19089 else
19090 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19091 &cu->header, &bytes_read);
19092 info_ptr += bytes_read;
19093 break;
19094 case DW_FORM_GNU_ref_alt:
19095 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19096 info_ptr += bytes_read;
19097 break;
19098 case DW_FORM_addr:
19099 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19100 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19101 info_ptr += bytes_read;
19102 break;
19103 case DW_FORM_block2:
19104 blk = dwarf_alloc_block (cu);
19105 blk->size = read_2_bytes (abfd, info_ptr);
19106 info_ptr += 2;
19107 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19108 info_ptr += blk->size;
19109 DW_BLOCK (attr) = blk;
19110 break;
19111 case DW_FORM_block4:
19112 blk = dwarf_alloc_block (cu);
19113 blk->size = read_4_bytes (abfd, info_ptr);
19114 info_ptr += 4;
19115 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19116 info_ptr += blk->size;
19117 DW_BLOCK (attr) = blk;
19118 break;
19119 case DW_FORM_data2:
19120 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19121 info_ptr += 2;
19122 break;
19123 case DW_FORM_data4:
19124 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19125 info_ptr += 4;
19126 break;
19127 case DW_FORM_data8:
19128 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19129 info_ptr += 8;
19130 break;
19131 case DW_FORM_data16:
19132 blk = dwarf_alloc_block (cu);
19133 blk->size = 16;
19134 blk->data = read_n_bytes (abfd, info_ptr, 16);
19135 info_ptr += 16;
19136 DW_BLOCK (attr) = blk;
19137 break;
19138 case DW_FORM_sec_offset:
19139 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19140 info_ptr += bytes_read;
19141 break;
19142 case DW_FORM_string:
19143 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19144 DW_STRING_IS_CANONICAL (attr) = 0;
19145 info_ptr += bytes_read;
19146 break;
19147 case DW_FORM_strp:
19148 if (!cu->per_cu->is_dwz)
19149 {
19150 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19151 abfd, info_ptr, cu_header,
19152 &bytes_read);
19153 DW_STRING_IS_CANONICAL (attr) = 0;
19154 info_ptr += bytes_read;
19155 break;
19156 }
19157 /* FALLTHROUGH */
19158 case DW_FORM_line_strp:
19159 if (!cu->per_cu->is_dwz)
19160 {
19161 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19162 abfd, info_ptr,
19163 cu_header, &bytes_read);
19164 DW_STRING_IS_CANONICAL (attr) = 0;
19165 info_ptr += bytes_read;
19166 break;
19167 }
19168 /* FALLTHROUGH */
19169 case DW_FORM_GNU_strp_alt:
19170 {
19171 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19172 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19173 &bytes_read);
19174
19175 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19176 dwz, str_offset);
19177 DW_STRING_IS_CANONICAL (attr) = 0;
19178 info_ptr += bytes_read;
19179 }
19180 break;
19181 case DW_FORM_exprloc:
19182 case DW_FORM_block:
19183 blk = dwarf_alloc_block (cu);
19184 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19185 info_ptr += bytes_read;
19186 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19187 info_ptr += blk->size;
19188 DW_BLOCK (attr) = blk;
19189 break;
19190 case DW_FORM_block1:
19191 blk = dwarf_alloc_block (cu);
19192 blk->size = read_1_byte (abfd, info_ptr);
19193 info_ptr += 1;
19194 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19195 info_ptr += blk->size;
19196 DW_BLOCK (attr) = blk;
19197 break;
19198 case DW_FORM_data1:
19199 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19200 info_ptr += 1;
19201 break;
19202 case DW_FORM_flag:
19203 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19204 info_ptr += 1;
19205 break;
19206 case DW_FORM_flag_present:
19207 DW_UNSND (attr) = 1;
19208 break;
19209 case DW_FORM_sdata:
19210 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19211 info_ptr += bytes_read;
19212 break;
19213 case DW_FORM_udata:
19214 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19215 info_ptr += bytes_read;
19216 break;
19217 case DW_FORM_ref1:
19218 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19219 + read_1_byte (abfd, info_ptr));
19220 info_ptr += 1;
19221 break;
19222 case DW_FORM_ref2:
19223 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19224 + read_2_bytes (abfd, info_ptr));
19225 info_ptr += 2;
19226 break;
19227 case DW_FORM_ref4:
19228 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19229 + read_4_bytes (abfd, info_ptr));
19230 info_ptr += 4;
19231 break;
19232 case DW_FORM_ref8:
19233 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19234 + read_8_bytes (abfd, info_ptr));
19235 info_ptr += 8;
19236 break;
19237 case DW_FORM_ref_sig8:
19238 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19239 info_ptr += 8;
19240 break;
19241 case DW_FORM_ref_udata:
19242 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19243 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19244 info_ptr += bytes_read;
19245 break;
19246 case DW_FORM_indirect:
19247 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19248 info_ptr += bytes_read;
19249 if (form == DW_FORM_implicit_const)
19250 {
19251 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19252 info_ptr += bytes_read;
19253 }
19254 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19255 info_ptr);
19256 break;
19257 case DW_FORM_implicit_const:
19258 DW_SND (attr) = implicit_const;
19259 break;
19260 case DW_FORM_addrx:
19261 case DW_FORM_GNU_addr_index:
19262 if (reader->dwo_file == NULL)
19263 {
19264 /* For now flag a hard error.
19265 Later we can turn this into a complaint. */
19266 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19267 dwarf_form_name (form),
19268 bfd_get_filename (abfd));
19269 }
19270 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19271 info_ptr += bytes_read;
19272 break;
19273 case DW_FORM_strx:
19274 case DW_FORM_strx1:
19275 case DW_FORM_strx2:
19276 case DW_FORM_strx3:
19277 case DW_FORM_strx4:
19278 case DW_FORM_GNU_str_index:
19279 if (reader->dwo_file == NULL)
19280 {
19281 /* For now flag a hard error.
19282 Later we can turn this into a complaint if warranted. */
19283 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19284 dwarf_form_name (form),
19285 bfd_get_filename (abfd));
19286 }
19287 {
19288 ULONGEST str_index;
19289 if (form == DW_FORM_strx1)
19290 {
19291 str_index = read_1_byte (abfd, info_ptr);
19292 info_ptr += 1;
19293 }
19294 else if (form == DW_FORM_strx2)
19295 {
19296 str_index = read_2_bytes (abfd, info_ptr);
19297 info_ptr += 2;
19298 }
19299 else if (form == DW_FORM_strx3)
19300 {
19301 str_index = read_3_bytes (abfd, info_ptr);
19302 info_ptr += 3;
19303 }
19304 else if (form == DW_FORM_strx4)
19305 {
19306 str_index = read_4_bytes (abfd, info_ptr);
19307 info_ptr += 4;
19308 }
19309 else
19310 {
19311 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19312 info_ptr += bytes_read;
19313 }
19314 DW_STRING (attr) = read_str_index (reader, str_index);
19315 DW_STRING_IS_CANONICAL (attr) = 0;
19316 }
19317 break;
19318 default:
19319 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19320 dwarf_form_name (form),
19321 bfd_get_filename (abfd));
19322 }
19323
19324 /* Super hack. */
19325 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19326 attr->form = DW_FORM_GNU_ref_alt;
19327
19328 /* We have seen instances where the compiler tried to emit a byte
19329 size attribute of -1 which ended up being encoded as an unsigned
19330 0xffffffff. Although 0xffffffff is technically a valid size value,
19331 an object of this size seems pretty unlikely so we can relatively
19332 safely treat these cases as if the size attribute was invalid and
19333 treat them as zero by default. */
19334 if (attr->name == DW_AT_byte_size
19335 && form == DW_FORM_data4
19336 && DW_UNSND (attr) >= 0xffffffff)
19337 {
19338 complaint
19339 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19340 hex_string (DW_UNSND (attr)));
19341 DW_UNSND (attr) = 0;
19342 }
19343
19344 return info_ptr;
19345 }
19346
19347 /* Read an attribute described by an abbreviated attribute. */
19348
19349 static const gdb_byte *
19350 read_attribute (const struct die_reader_specs *reader,
19351 struct attribute *attr, struct attr_abbrev *abbrev,
19352 const gdb_byte *info_ptr)
19353 {
19354 attr->name = abbrev->name;
19355 return read_attribute_value (reader, attr, abbrev->form,
19356 abbrev->implicit_const, info_ptr);
19357 }
19358
19359 /* Read dwarf information from a buffer. */
19360
19361 static unsigned int
19362 read_1_byte (bfd *abfd, const gdb_byte *buf)
19363 {
19364 return bfd_get_8 (abfd, buf);
19365 }
19366
19367 static int
19368 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19369 {
19370 return bfd_get_signed_8 (abfd, buf);
19371 }
19372
19373 static unsigned int
19374 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19375 {
19376 return bfd_get_16 (abfd, buf);
19377 }
19378
19379 static int
19380 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19381 {
19382 return bfd_get_signed_16 (abfd, buf);
19383 }
19384
19385 static unsigned int
19386 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19387 {
19388 unsigned int result = 0;
19389 for (int i = 0; i < 3; ++i)
19390 {
19391 unsigned char byte = bfd_get_8 (abfd, buf);
19392 buf++;
19393 result |= ((unsigned int) byte << (i * 8));
19394 }
19395 return result;
19396 }
19397
19398 static unsigned int
19399 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19400 {
19401 return bfd_get_32 (abfd, buf);
19402 }
19403
19404 static int
19405 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19406 {
19407 return bfd_get_signed_32 (abfd, buf);
19408 }
19409
19410 static ULONGEST
19411 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19412 {
19413 return bfd_get_64 (abfd, buf);
19414 }
19415
19416 static CORE_ADDR
19417 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19418 unsigned int *bytes_read)
19419 {
19420 struct comp_unit_head *cu_header = &cu->header;
19421 CORE_ADDR retval = 0;
19422
19423 if (cu_header->signed_addr_p)
19424 {
19425 switch (cu_header->addr_size)
19426 {
19427 case 2:
19428 retval = bfd_get_signed_16 (abfd, buf);
19429 break;
19430 case 4:
19431 retval = bfd_get_signed_32 (abfd, buf);
19432 break;
19433 case 8:
19434 retval = bfd_get_signed_64 (abfd, buf);
19435 break;
19436 default:
19437 internal_error (__FILE__, __LINE__,
19438 _("read_address: bad switch, signed [in module %s]"),
19439 bfd_get_filename (abfd));
19440 }
19441 }
19442 else
19443 {
19444 switch (cu_header->addr_size)
19445 {
19446 case 2:
19447 retval = bfd_get_16 (abfd, buf);
19448 break;
19449 case 4:
19450 retval = bfd_get_32 (abfd, buf);
19451 break;
19452 case 8:
19453 retval = bfd_get_64 (abfd, buf);
19454 break;
19455 default:
19456 internal_error (__FILE__, __LINE__,
19457 _("read_address: bad switch, "
19458 "unsigned [in module %s]"),
19459 bfd_get_filename (abfd));
19460 }
19461 }
19462
19463 *bytes_read = cu_header->addr_size;
19464 return retval;
19465 }
19466
19467 /* Read the initial length from a section. The (draft) DWARF 3
19468 specification allows the initial length to take up either 4 bytes
19469 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19470 bytes describe the length and all offsets will be 8 bytes in length
19471 instead of 4.
19472
19473 An older, non-standard 64-bit format is also handled by this
19474 function. The older format in question stores the initial length
19475 as an 8-byte quantity without an escape value. Lengths greater
19476 than 2^32 aren't very common which means that the initial 4 bytes
19477 is almost always zero. Since a length value of zero doesn't make
19478 sense for the 32-bit format, this initial zero can be considered to
19479 be an escape value which indicates the presence of the older 64-bit
19480 format. As written, the code can't detect (old format) lengths
19481 greater than 4GB. If it becomes necessary to handle lengths
19482 somewhat larger than 4GB, we could allow other small values (such
19483 as the non-sensical values of 1, 2, and 3) to also be used as
19484 escape values indicating the presence of the old format.
19485
19486 The value returned via bytes_read should be used to increment the
19487 relevant pointer after calling read_initial_length().
19488
19489 [ Note: read_initial_length() and read_offset() are based on the
19490 document entitled "DWARF Debugging Information Format", revision
19491 3, draft 8, dated November 19, 2001. This document was obtained
19492 from:
19493
19494 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19495
19496 This document is only a draft and is subject to change. (So beware.)
19497
19498 Details regarding the older, non-standard 64-bit format were
19499 determined empirically by examining 64-bit ELF files produced by
19500 the SGI toolchain on an IRIX 6.5 machine.
19501
19502 - Kevin, July 16, 2002
19503 ] */
19504
19505 static LONGEST
19506 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19507 {
19508 LONGEST length = bfd_get_32 (abfd, buf);
19509
19510 if (length == 0xffffffff)
19511 {
19512 length = bfd_get_64 (abfd, buf + 4);
19513 *bytes_read = 12;
19514 }
19515 else if (length == 0)
19516 {
19517 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19518 length = bfd_get_64 (abfd, buf);
19519 *bytes_read = 8;
19520 }
19521 else
19522 {
19523 *bytes_read = 4;
19524 }
19525
19526 return length;
19527 }
19528
19529 /* Cover function for read_initial_length.
19530 Returns the length of the object at BUF, and stores the size of the
19531 initial length in *BYTES_READ and stores the size that offsets will be in
19532 *OFFSET_SIZE.
19533 If the initial length size is not equivalent to that specified in
19534 CU_HEADER then issue a complaint.
19535 This is useful when reading non-comp-unit headers. */
19536
19537 static LONGEST
19538 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19539 const struct comp_unit_head *cu_header,
19540 unsigned int *bytes_read,
19541 unsigned int *offset_size)
19542 {
19543 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19544
19545 gdb_assert (cu_header->initial_length_size == 4
19546 || cu_header->initial_length_size == 8
19547 || cu_header->initial_length_size == 12);
19548
19549 if (cu_header->initial_length_size != *bytes_read)
19550 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19551
19552 *offset_size = (*bytes_read == 4) ? 4 : 8;
19553 return length;
19554 }
19555
19556 /* Read an offset from the data stream. The size of the offset is
19557 given by cu_header->offset_size. */
19558
19559 static LONGEST
19560 read_offset (bfd *abfd, const gdb_byte *buf,
19561 const struct comp_unit_head *cu_header,
19562 unsigned int *bytes_read)
19563 {
19564 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19565
19566 *bytes_read = cu_header->offset_size;
19567 return offset;
19568 }
19569
19570 /* Read an offset from the data stream. */
19571
19572 static LONGEST
19573 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19574 {
19575 LONGEST retval = 0;
19576
19577 switch (offset_size)
19578 {
19579 case 4:
19580 retval = bfd_get_32 (abfd, buf);
19581 break;
19582 case 8:
19583 retval = bfd_get_64 (abfd, buf);
19584 break;
19585 default:
19586 internal_error (__FILE__, __LINE__,
19587 _("read_offset_1: bad switch [in module %s]"),
19588 bfd_get_filename (abfd));
19589 }
19590
19591 return retval;
19592 }
19593
19594 static const gdb_byte *
19595 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19596 {
19597 /* If the size of a host char is 8 bits, we can return a pointer
19598 to the buffer, otherwise we have to copy the data to a buffer
19599 allocated on the temporary obstack. */
19600 gdb_assert (HOST_CHAR_BIT == 8);
19601 return buf;
19602 }
19603
19604 static const char *
19605 read_direct_string (bfd *abfd, const gdb_byte *buf,
19606 unsigned int *bytes_read_ptr)
19607 {
19608 /* If the size of a host char is 8 bits, we can return a pointer
19609 to the string, otherwise we have to copy the string to a buffer
19610 allocated on the temporary obstack. */
19611 gdb_assert (HOST_CHAR_BIT == 8);
19612 if (*buf == '\0')
19613 {
19614 *bytes_read_ptr = 1;
19615 return NULL;
19616 }
19617 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19618 return (const char *) buf;
19619 }
19620
19621 /* Return pointer to string at section SECT offset STR_OFFSET with error
19622 reporting strings FORM_NAME and SECT_NAME. */
19623
19624 static const char *
19625 read_indirect_string_at_offset_from (struct objfile *objfile,
19626 bfd *abfd, LONGEST str_offset,
19627 struct dwarf2_section_info *sect,
19628 const char *form_name,
19629 const char *sect_name)
19630 {
19631 dwarf2_read_section (objfile, sect);
19632 if (sect->buffer == NULL)
19633 error (_("%s used without %s section [in module %s]"),
19634 form_name, sect_name, bfd_get_filename (abfd));
19635 if (str_offset >= sect->size)
19636 error (_("%s pointing outside of %s section [in module %s]"),
19637 form_name, sect_name, bfd_get_filename (abfd));
19638 gdb_assert (HOST_CHAR_BIT == 8);
19639 if (sect->buffer[str_offset] == '\0')
19640 return NULL;
19641 return (const char *) (sect->buffer + str_offset);
19642 }
19643
19644 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19645
19646 static const char *
19647 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19648 bfd *abfd, LONGEST str_offset)
19649 {
19650 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19651 abfd, str_offset,
19652 &dwarf2_per_objfile->str,
19653 "DW_FORM_strp", ".debug_str");
19654 }
19655
19656 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19657
19658 static const char *
19659 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19660 bfd *abfd, LONGEST str_offset)
19661 {
19662 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19663 abfd, str_offset,
19664 &dwarf2_per_objfile->line_str,
19665 "DW_FORM_line_strp",
19666 ".debug_line_str");
19667 }
19668
19669 /* Read a string at offset STR_OFFSET in the .debug_str section from
19670 the .dwz file DWZ. Throw an error if the offset is too large. If
19671 the string consists of a single NUL byte, return NULL; otherwise
19672 return a pointer to the string. */
19673
19674 static const char *
19675 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19676 LONGEST str_offset)
19677 {
19678 dwarf2_read_section (objfile, &dwz->str);
19679
19680 if (dwz->str.buffer == NULL)
19681 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19682 "section [in module %s]"),
19683 bfd_get_filename (dwz->dwz_bfd));
19684 if (str_offset >= dwz->str.size)
19685 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19686 ".debug_str section [in module %s]"),
19687 bfd_get_filename (dwz->dwz_bfd));
19688 gdb_assert (HOST_CHAR_BIT == 8);
19689 if (dwz->str.buffer[str_offset] == '\0')
19690 return NULL;
19691 return (const char *) (dwz->str.buffer + str_offset);
19692 }
19693
19694 /* Return pointer to string at .debug_str offset as read from BUF.
19695 BUF is assumed to be in a compilation unit described by CU_HEADER.
19696 Return *BYTES_READ_PTR count of bytes read from BUF. */
19697
19698 static const char *
19699 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19700 const gdb_byte *buf,
19701 const struct comp_unit_head *cu_header,
19702 unsigned int *bytes_read_ptr)
19703 {
19704 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19705
19706 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19707 }
19708
19709 /* Return pointer to string at .debug_line_str offset as read from BUF.
19710 BUF is assumed to be in a compilation unit described by CU_HEADER.
19711 Return *BYTES_READ_PTR count of bytes read from BUF. */
19712
19713 static const char *
19714 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19715 bfd *abfd, const gdb_byte *buf,
19716 const struct comp_unit_head *cu_header,
19717 unsigned int *bytes_read_ptr)
19718 {
19719 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19720
19721 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19722 str_offset);
19723 }
19724
19725 ULONGEST
19726 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19727 unsigned int *bytes_read_ptr)
19728 {
19729 ULONGEST result;
19730 unsigned int num_read;
19731 int shift;
19732 unsigned char byte;
19733
19734 result = 0;
19735 shift = 0;
19736 num_read = 0;
19737 while (1)
19738 {
19739 byte = bfd_get_8 (abfd, buf);
19740 buf++;
19741 num_read++;
19742 result |= ((ULONGEST) (byte & 127) << shift);
19743 if ((byte & 128) == 0)
19744 {
19745 break;
19746 }
19747 shift += 7;
19748 }
19749 *bytes_read_ptr = num_read;
19750 return result;
19751 }
19752
19753 static LONGEST
19754 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19755 unsigned int *bytes_read_ptr)
19756 {
19757 ULONGEST result;
19758 int shift, num_read;
19759 unsigned char byte;
19760
19761 result = 0;
19762 shift = 0;
19763 num_read = 0;
19764 while (1)
19765 {
19766 byte = bfd_get_8 (abfd, buf);
19767 buf++;
19768 num_read++;
19769 result |= ((ULONGEST) (byte & 127) << shift);
19770 shift += 7;
19771 if ((byte & 128) == 0)
19772 {
19773 break;
19774 }
19775 }
19776 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19777 result |= -(((ULONGEST) 1) << shift);
19778 *bytes_read_ptr = num_read;
19779 return result;
19780 }
19781
19782 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19783 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19784 ADDR_SIZE is the size of addresses from the CU header. */
19785
19786 static CORE_ADDR
19787 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19788 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19789 {
19790 struct objfile *objfile = dwarf2_per_objfile->objfile;
19791 bfd *abfd = objfile->obfd;
19792 const gdb_byte *info_ptr;
19793
19794 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19795 if (dwarf2_per_objfile->addr.buffer == NULL)
19796 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19797 objfile_name (objfile));
19798 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19799 error (_("DW_FORM_addr_index pointing outside of "
19800 ".debug_addr section [in module %s]"),
19801 objfile_name (objfile));
19802 info_ptr = (dwarf2_per_objfile->addr.buffer
19803 + addr_base + addr_index * addr_size);
19804 if (addr_size == 4)
19805 return bfd_get_32 (abfd, info_ptr);
19806 else
19807 return bfd_get_64 (abfd, info_ptr);
19808 }
19809
19810 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19811
19812 static CORE_ADDR
19813 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19814 {
19815 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19816 cu->addr_base, cu->header.addr_size);
19817 }
19818
19819 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19820
19821 static CORE_ADDR
19822 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19823 unsigned int *bytes_read)
19824 {
19825 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19826 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19827
19828 return read_addr_index (cu, addr_index);
19829 }
19830
19831 /* Data structure to pass results from dwarf2_read_addr_index_reader
19832 back to dwarf2_read_addr_index. */
19833
19834 struct dwarf2_read_addr_index_data
19835 {
19836 ULONGEST addr_base;
19837 int addr_size;
19838 };
19839
19840 /* die_reader_func for dwarf2_read_addr_index. */
19841
19842 static void
19843 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19844 const gdb_byte *info_ptr,
19845 struct die_info *comp_unit_die,
19846 int has_children,
19847 void *data)
19848 {
19849 struct dwarf2_cu *cu = reader->cu;
19850 struct dwarf2_read_addr_index_data *aidata =
19851 (struct dwarf2_read_addr_index_data *) data;
19852
19853 aidata->addr_base = cu->addr_base;
19854 aidata->addr_size = cu->header.addr_size;
19855 }
19856
19857 /* Given an index in .debug_addr, fetch the value.
19858 NOTE: This can be called during dwarf expression evaluation,
19859 long after the debug information has been read, and thus per_cu->cu
19860 may no longer exist. */
19861
19862 CORE_ADDR
19863 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19864 unsigned int addr_index)
19865 {
19866 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19867 struct dwarf2_cu *cu = per_cu->cu;
19868 ULONGEST addr_base;
19869 int addr_size;
19870
19871 /* We need addr_base and addr_size.
19872 If we don't have PER_CU->cu, we have to get it.
19873 Nasty, but the alternative is storing the needed info in PER_CU,
19874 which at this point doesn't seem justified: it's not clear how frequently
19875 it would get used and it would increase the size of every PER_CU.
19876 Entry points like dwarf2_per_cu_addr_size do a similar thing
19877 so we're not in uncharted territory here.
19878 Alas we need to be a bit more complicated as addr_base is contained
19879 in the DIE.
19880
19881 We don't need to read the entire CU(/TU).
19882 We just need the header and top level die.
19883
19884 IWBN to use the aging mechanism to let us lazily later discard the CU.
19885 For now we skip this optimization. */
19886
19887 if (cu != NULL)
19888 {
19889 addr_base = cu->addr_base;
19890 addr_size = cu->header.addr_size;
19891 }
19892 else
19893 {
19894 struct dwarf2_read_addr_index_data aidata;
19895
19896 /* Note: We can't use init_cutu_and_read_dies_simple here,
19897 we need addr_base. */
19898 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19899 dwarf2_read_addr_index_reader, &aidata);
19900 addr_base = aidata.addr_base;
19901 addr_size = aidata.addr_size;
19902 }
19903
19904 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19905 addr_size);
19906 }
19907
19908 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19909 This is only used by the Fission support. */
19910
19911 static const char *
19912 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19913 {
19914 struct dwarf2_cu *cu = reader->cu;
19915 struct dwarf2_per_objfile *dwarf2_per_objfile
19916 = cu->per_cu->dwarf2_per_objfile;
19917 struct objfile *objfile = dwarf2_per_objfile->objfile;
19918 const char *objf_name = objfile_name (objfile);
19919 bfd *abfd = objfile->obfd;
19920 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19921 struct dwarf2_section_info *str_offsets_section =
19922 &reader->dwo_file->sections.str_offsets;
19923 const gdb_byte *info_ptr;
19924 ULONGEST str_offset;
19925 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19926
19927 dwarf2_read_section (objfile, str_section);
19928 dwarf2_read_section (objfile, str_offsets_section);
19929 if (str_section->buffer == NULL)
19930 error (_("%s used without .debug_str.dwo section"
19931 " in CU at offset %s [in module %s]"),
19932 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19933 if (str_offsets_section->buffer == NULL)
19934 error (_("%s used without .debug_str_offsets.dwo section"
19935 " in CU at offset %s [in module %s]"),
19936 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19937 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19938 error (_("%s pointing outside of .debug_str_offsets.dwo"
19939 " section in CU at offset %s [in module %s]"),
19940 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19941 info_ptr = (str_offsets_section->buffer
19942 + str_index * cu->header.offset_size);
19943 if (cu->header.offset_size == 4)
19944 str_offset = bfd_get_32 (abfd, info_ptr);
19945 else
19946 str_offset = bfd_get_64 (abfd, info_ptr);
19947 if (str_offset >= str_section->size)
19948 error (_("Offset from %s pointing outside of"
19949 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19950 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19951 return (const char *) (str_section->buffer + str_offset);
19952 }
19953
19954 /* Return the length of an LEB128 number in BUF. */
19955
19956 static int
19957 leb128_size (const gdb_byte *buf)
19958 {
19959 const gdb_byte *begin = buf;
19960 gdb_byte byte;
19961
19962 while (1)
19963 {
19964 byte = *buf++;
19965 if ((byte & 128) == 0)
19966 return buf - begin;
19967 }
19968 }
19969
19970 static void
19971 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19972 {
19973 switch (lang)
19974 {
19975 case DW_LANG_C89:
19976 case DW_LANG_C99:
19977 case DW_LANG_C11:
19978 case DW_LANG_C:
19979 case DW_LANG_UPC:
19980 cu->language = language_c;
19981 break;
19982 case DW_LANG_Java:
19983 case DW_LANG_C_plus_plus:
19984 case DW_LANG_C_plus_plus_11:
19985 case DW_LANG_C_plus_plus_14:
19986 cu->language = language_cplus;
19987 break;
19988 case DW_LANG_D:
19989 cu->language = language_d;
19990 break;
19991 case DW_LANG_Fortran77:
19992 case DW_LANG_Fortran90:
19993 case DW_LANG_Fortran95:
19994 case DW_LANG_Fortran03:
19995 case DW_LANG_Fortran08:
19996 cu->language = language_fortran;
19997 break;
19998 case DW_LANG_Go:
19999 cu->language = language_go;
20000 break;
20001 case DW_LANG_Mips_Assembler:
20002 cu->language = language_asm;
20003 break;
20004 case DW_LANG_Ada83:
20005 case DW_LANG_Ada95:
20006 cu->language = language_ada;
20007 break;
20008 case DW_LANG_Modula2:
20009 cu->language = language_m2;
20010 break;
20011 case DW_LANG_Pascal83:
20012 cu->language = language_pascal;
20013 break;
20014 case DW_LANG_ObjC:
20015 cu->language = language_objc;
20016 break;
20017 case DW_LANG_Rust:
20018 case DW_LANG_Rust_old:
20019 cu->language = language_rust;
20020 break;
20021 case DW_LANG_Cobol74:
20022 case DW_LANG_Cobol85:
20023 default:
20024 cu->language = language_minimal;
20025 break;
20026 }
20027 cu->language_defn = language_def (cu->language);
20028 }
20029
20030 /* Return the named attribute or NULL if not there. */
20031
20032 static struct attribute *
20033 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20034 {
20035 for (;;)
20036 {
20037 unsigned int i;
20038 struct attribute *spec = NULL;
20039
20040 for (i = 0; i < die->num_attrs; ++i)
20041 {
20042 if (die->attrs[i].name == name)
20043 return &die->attrs[i];
20044 if (die->attrs[i].name == DW_AT_specification
20045 || die->attrs[i].name == DW_AT_abstract_origin)
20046 spec = &die->attrs[i];
20047 }
20048
20049 if (!spec)
20050 break;
20051
20052 die = follow_die_ref (die, spec, &cu);
20053 }
20054
20055 return NULL;
20056 }
20057
20058 /* Return the named attribute or NULL if not there,
20059 but do not follow DW_AT_specification, etc.
20060 This is for use in contexts where we're reading .debug_types dies.
20061 Following DW_AT_specification, DW_AT_abstract_origin will take us
20062 back up the chain, and we want to go down. */
20063
20064 static struct attribute *
20065 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20066 {
20067 unsigned int i;
20068
20069 for (i = 0; i < die->num_attrs; ++i)
20070 if (die->attrs[i].name == name)
20071 return &die->attrs[i];
20072
20073 return NULL;
20074 }
20075
20076 /* Return the string associated with a string-typed attribute, or NULL if it
20077 is either not found or is of an incorrect type. */
20078
20079 static const char *
20080 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20081 {
20082 struct attribute *attr;
20083 const char *str = NULL;
20084
20085 attr = dwarf2_attr (die, name, cu);
20086
20087 if (attr != NULL)
20088 {
20089 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20090 || attr->form == DW_FORM_string
20091 || attr->form == DW_FORM_strx
20092 || attr->form == DW_FORM_GNU_str_index
20093 || attr->form == DW_FORM_GNU_strp_alt)
20094 str = DW_STRING (attr);
20095 else
20096 complaint (_("string type expected for attribute %s for "
20097 "DIE at %s in module %s"),
20098 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20099 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20100 }
20101
20102 return str;
20103 }
20104
20105 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20106 and holds a non-zero value. This function should only be used for
20107 DW_FORM_flag or DW_FORM_flag_present attributes. */
20108
20109 static int
20110 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20111 {
20112 struct attribute *attr = dwarf2_attr (die, name, cu);
20113
20114 return (attr && DW_UNSND (attr));
20115 }
20116
20117 static int
20118 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20119 {
20120 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20121 which value is non-zero. However, we have to be careful with
20122 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20123 (via dwarf2_flag_true_p) follows this attribute. So we may
20124 end up accidently finding a declaration attribute that belongs
20125 to a different DIE referenced by the specification attribute,
20126 even though the given DIE does not have a declaration attribute. */
20127 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20128 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20129 }
20130
20131 /* Return the die giving the specification for DIE, if there is
20132 one. *SPEC_CU is the CU containing DIE on input, and the CU
20133 containing the return value on output. If there is no
20134 specification, but there is an abstract origin, that is
20135 returned. */
20136
20137 static struct die_info *
20138 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20139 {
20140 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20141 *spec_cu);
20142
20143 if (spec_attr == NULL)
20144 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20145
20146 if (spec_attr == NULL)
20147 return NULL;
20148 else
20149 return follow_die_ref (die, spec_attr, spec_cu);
20150 }
20151
20152 /* Stub for free_line_header to match void * callback types. */
20153
20154 static void
20155 free_line_header_voidp (void *arg)
20156 {
20157 struct line_header *lh = (struct line_header *) arg;
20158
20159 delete lh;
20160 }
20161
20162 void
20163 line_header::add_include_dir (const char *include_dir)
20164 {
20165 if (dwarf_line_debug >= 2)
20166 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20167 include_dirs.size () + 1, include_dir);
20168
20169 include_dirs.push_back (include_dir);
20170 }
20171
20172 void
20173 line_header::add_file_name (const char *name,
20174 dir_index d_index,
20175 unsigned int mod_time,
20176 unsigned int length)
20177 {
20178 if (dwarf_line_debug >= 2)
20179 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20180 (unsigned) file_names.size () + 1, name);
20181
20182 file_names.emplace_back (name, d_index, mod_time, length);
20183 }
20184
20185 /* A convenience function to find the proper .debug_line section for a CU. */
20186
20187 static struct dwarf2_section_info *
20188 get_debug_line_section (struct dwarf2_cu *cu)
20189 {
20190 struct dwarf2_section_info *section;
20191 struct dwarf2_per_objfile *dwarf2_per_objfile
20192 = cu->per_cu->dwarf2_per_objfile;
20193
20194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20195 DWO file. */
20196 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20197 section = &cu->dwo_unit->dwo_file->sections.line;
20198 else if (cu->per_cu->is_dwz)
20199 {
20200 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20201
20202 section = &dwz->line;
20203 }
20204 else
20205 section = &dwarf2_per_objfile->line;
20206
20207 return section;
20208 }
20209
20210 /* Read directory or file name entry format, starting with byte of
20211 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20212 entries count and the entries themselves in the described entry
20213 format. */
20214
20215 static void
20216 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20217 bfd *abfd, const gdb_byte **bufp,
20218 struct line_header *lh,
20219 const struct comp_unit_head *cu_header,
20220 void (*callback) (struct line_header *lh,
20221 const char *name,
20222 dir_index d_index,
20223 unsigned int mod_time,
20224 unsigned int length))
20225 {
20226 gdb_byte format_count, formati;
20227 ULONGEST data_count, datai;
20228 const gdb_byte *buf = *bufp;
20229 const gdb_byte *format_header_data;
20230 unsigned int bytes_read;
20231
20232 format_count = read_1_byte (abfd, buf);
20233 buf += 1;
20234 format_header_data = buf;
20235 for (formati = 0; formati < format_count; formati++)
20236 {
20237 read_unsigned_leb128 (abfd, buf, &bytes_read);
20238 buf += bytes_read;
20239 read_unsigned_leb128 (abfd, buf, &bytes_read);
20240 buf += bytes_read;
20241 }
20242
20243 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20244 buf += bytes_read;
20245 for (datai = 0; datai < data_count; datai++)
20246 {
20247 const gdb_byte *format = format_header_data;
20248 struct file_entry fe;
20249
20250 for (formati = 0; formati < format_count; formati++)
20251 {
20252 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20253 format += bytes_read;
20254
20255 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20256 format += bytes_read;
20257
20258 gdb::optional<const char *> string;
20259 gdb::optional<unsigned int> uint;
20260
20261 switch (form)
20262 {
20263 case DW_FORM_string:
20264 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20265 buf += bytes_read;
20266 break;
20267
20268 case DW_FORM_line_strp:
20269 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20270 abfd, buf,
20271 cu_header,
20272 &bytes_read));
20273 buf += bytes_read;
20274 break;
20275
20276 case DW_FORM_data1:
20277 uint.emplace (read_1_byte (abfd, buf));
20278 buf += 1;
20279 break;
20280
20281 case DW_FORM_data2:
20282 uint.emplace (read_2_bytes (abfd, buf));
20283 buf += 2;
20284 break;
20285
20286 case DW_FORM_data4:
20287 uint.emplace (read_4_bytes (abfd, buf));
20288 buf += 4;
20289 break;
20290
20291 case DW_FORM_data8:
20292 uint.emplace (read_8_bytes (abfd, buf));
20293 buf += 8;
20294 break;
20295
20296 case DW_FORM_udata:
20297 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20298 buf += bytes_read;
20299 break;
20300
20301 case DW_FORM_block:
20302 /* It is valid only for DW_LNCT_timestamp which is ignored by
20303 current GDB. */
20304 break;
20305 }
20306
20307 switch (content_type)
20308 {
20309 case DW_LNCT_path:
20310 if (string.has_value ())
20311 fe.name = *string;
20312 break;
20313 case DW_LNCT_directory_index:
20314 if (uint.has_value ())
20315 fe.d_index = (dir_index) *uint;
20316 break;
20317 case DW_LNCT_timestamp:
20318 if (uint.has_value ())
20319 fe.mod_time = *uint;
20320 break;
20321 case DW_LNCT_size:
20322 if (uint.has_value ())
20323 fe.length = *uint;
20324 break;
20325 case DW_LNCT_MD5:
20326 break;
20327 default:
20328 complaint (_("Unknown format content type %s"),
20329 pulongest (content_type));
20330 }
20331 }
20332
20333 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20334 }
20335
20336 *bufp = buf;
20337 }
20338
20339 /* Read the statement program header starting at OFFSET in
20340 .debug_line, or .debug_line.dwo. Return a pointer
20341 to a struct line_header, allocated using xmalloc.
20342 Returns NULL if there is a problem reading the header, e.g., if it
20343 has a version we don't understand.
20344
20345 NOTE: the strings in the include directory and file name tables of
20346 the returned object point into the dwarf line section buffer,
20347 and must not be freed. */
20348
20349 static line_header_up
20350 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20351 {
20352 const gdb_byte *line_ptr;
20353 unsigned int bytes_read, offset_size;
20354 int i;
20355 const char *cur_dir, *cur_file;
20356 struct dwarf2_section_info *section;
20357 bfd *abfd;
20358 struct dwarf2_per_objfile *dwarf2_per_objfile
20359 = cu->per_cu->dwarf2_per_objfile;
20360
20361 section = get_debug_line_section (cu);
20362 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20363 if (section->buffer == NULL)
20364 {
20365 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20366 complaint (_("missing .debug_line.dwo section"));
20367 else
20368 complaint (_("missing .debug_line section"));
20369 return 0;
20370 }
20371
20372 /* We can't do this until we know the section is non-empty.
20373 Only then do we know we have such a section. */
20374 abfd = get_section_bfd_owner (section);
20375
20376 /* Make sure that at least there's room for the total_length field.
20377 That could be 12 bytes long, but we're just going to fudge that. */
20378 if (to_underlying (sect_off) + 4 >= section->size)
20379 {
20380 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20381 return 0;
20382 }
20383
20384 line_header_up lh (new line_header ());
20385
20386 lh->sect_off = sect_off;
20387 lh->offset_in_dwz = cu->per_cu->is_dwz;
20388
20389 line_ptr = section->buffer + to_underlying (sect_off);
20390
20391 /* Read in the header. */
20392 lh->total_length =
20393 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20394 &bytes_read, &offset_size);
20395 line_ptr += bytes_read;
20396 if (line_ptr + lh->total_length > (section->buffer + section->size))
20397 {
20398 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20399 return 0;
20400 }
20401 lh->statement_program_end = line_ptr + lh->total_length;
20402 lh->version = read_2_bytes (abfd, line_ptr);
20403 line_ptr += 2;
20404 if (lh->version > 5)
20405 {
20406 /* This is a version we don't understand. The format could have
20407 changed in ways we don't handle properly so just punt. */
20408 complaint (_("unsupported version in .debug_line section"));
20409 return NULL;
20410 }
20411 if (lh->version >= 5)
20412 {
20413 gdb_byte segment_selector_size;
20414
20415 /* Skip address size. */
20416 read_1_byte (abfd, line_ptr);
20417 line_ptr += 1;
20418
20419 segment_selector_size = read_1_byte (abfd, line_ptr);
20420 line_ptr += 1;
20421 if (segment_selector_size != 0)
20422 {
20423 complaint (_("unsupported segment selector size %u "
20424 "in .debug_line section"),
20425 segment_selector_size);
20426 return NULL;
20427 }
20428 }
20429 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20430 line_ptr += offset_size;
20431 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20432 line_ptr += 1;
20433 if (lh->version >= 4)
20434 {
20435 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20436 line_ptr += 1;
20437 }
20438 else
20439 lh->maximum_ops_per_instruction = 1;
20440
20441 if (lh->maximum_ops_per_instruction == 0)
20442 {
20443 lh->maximum_ops_per_instruction = 1;
20444 complaint (_("invalid maximum_ops_per_instruction "
20445 "in `.debug_line' section"));
20446 }
20447
20448 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20449 line_ptr += 1;
20450 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20451 line_ptr += 1;
20452 lh->line_range = read_1_byte (abfd, line_ptr);
20453 line_ptr += 1;
20454 lh->opcode_base = read_1_byte (abfd, line_ptr);
20455 line_ptr += 1;
20456 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20457
20458 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20459 for (i = 1; i < lh->opcode_base; ++i)
20460 {
20461 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20462 line_ptr += 1;
20463 }
20464
20465 if (lh->version >= 5)
20466 {
20467 /* Read directory table. */
20468 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20469 &cu->header,
20470 [] (struct line_header *header, const char *name,
20471 dir_index d_index, unsigned int mod_time,
20472 unsigned int length)
20473 {
20474 header->add_include_dir (name);
20475 });
20476
20477 /* Read file name table. */
20478 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20479 &cu->header,
20480 [] (struct line_header *header, const char *name,
20481 dir_index d_index, unsigned int mod_time,
20482 unsigned int length)
20483 {
20484 header->add_file_name (name, d_index, mod_time, length);
20485 });
20486 }
20487 else
20488 {
20489 /* Read directory table. */
20490 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20491 {
20492 line_ptr += bytes_read;
20493 lh->add_include_dir (cur_dir);
20494 }
20495 line_ptr += bytes_read;
20496
20497 /* Read file name table. */
20498 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20499 {
20500 unsigned int mod_time, length;
20501 dir_index d_index;
20502
20503 line_ptr += bytes_read;
20504 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20505 line_ptr += bytes_read;
20506 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20507 line_ptr += bytes_read;
20508 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20509 line_ptr += bytes_read;
20510
20511 lh->add_file_name (cur_file, d_index, mod_time, length);
20512 }
20513 line_ptr += bytes_read;
20514 }
20515 lh->statement_program_start = line_ptr;
20516
20517 if (line_ptr > (section->buffer + section->size))
20518 complaint (_("line number info header doesn't "
20519 "fit in `.debug_line' section"));
20520
20521 return lh;
20522 }
20523
20524 /* Subroutine of dwarf_decode_lines to simplify it.
20525 Return the file name of the psymtab for included file FILE_INDEX
20526 in line header LH of PST.
20527 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20528 If space for the result is malloc'd, *NAME_HOLDER will be set.
20529 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20530
20531 static const char *
20532 psymtab_include_file_name (const struct line_header *lh, int file_index,
20533 const struct partial_symtab *pst,
20534 const char *comp_dir,
20535 gdb::unique_xmalloc_ptr<char> *name_holder)
20536 {
20537 const file_entry &fe = lh->file_names[file_index];
20538 const char *include_name = fe.name;
20539 const char *include_name_to_compare = include_name;
20540 const char *pst_filename;
20541 int file_is_pst;
20542
20543 const char *dir_name = fe.include_dir (lh);
20544
20545 gdb::unique_xmalloc_ptr<char> hold_compare;
20546 if (!IS_ABSOLUTE_PATH (include_name)
20547 && (dir_name != NULL || comp_dir != NULL))
20548 {
20549 /* Avoid creating a duplicate psymtab for PST.
20550 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20551 Before we do the comparison, however, we need to account
20552 for DIR_NAME and COMP_DIR.
20553 First prepend dir_name (if non-NULL). If we still don't
20554 have an absolute path prepend comp_dir (if non-NULL).
20555 However, the directory we record in the include-file's
20556 psymtab does not contain COMP_DIR (to match the
20557 corresponding symtab(s)).
20558
20559 Example:
20560
20561 bash$ cd /tmp
20562 bash$ gcc -g ./hello.c
20563 include_name = "hello.c"
20564 dir_name = "."
20565 DW_AT_comp_dir = comp_dir = "/tmp"
20566 DW_AT_name = "./hello.c"
20567
20568 */
20569
20570 if (dir_name != NULL)
20571 {
20572 name_holder->reset (concat (dir_name, SLASH_STRING,
20573 include_name, (char *) NULL));
20574 include_name = name_holder->get ();
20575 include_name_to_compare = include_name;
20576 }
20577 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20578 {
20579 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20580 include_name, (char *) NULL));
20581 include_name_to_compare = hold_compare.get ();
20582 }
20583 }
20584
20585 pst_filename = pst->filename;
20586 gdb::unique_xmalloc_ptr<char> copied_name;
20587 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20588 {
20589 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20590 pst_filename, (char *) NULL));
20591 pst_filename = copied_name.get ();
20592 }
20593
20594 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20595
20596 if (file_is_pst)
20597 return NULL;
20598 return include_name;
20599 }
20600
20601 /* State machine to track the state of the line number program. */
20602
20603 class lnp_state_machine
20604 {
20605 public:
20606 /* Initialize a machine state for the start of a line number
20607 program. */
20608 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20609 bool record_lines_p);
20610
20611 file_entry *current_file ()
20612 {
20613 /* lh->file_names is 0-based, but the file name numbers in the
20614 statement program are 1-based. */
20615 return m_line_header->file_name_at (m_file);
20616 }
20617
20618 /* Record the line in the state machine. END_SEQUENCE is true if
20619 we're processing the end of a sequence. */
20620 void record_line (bool end_sequence);
20621
20622 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20623 nop-out rest of the lines in this sequence. */
20624 void check_line_address (struct dwarf2_cu *cu,
20625 const gdb_byte *line_ptr,
20626 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20627
20628 void handle_set_discriminator (unsigned int discriminator)
20629 {
20630 m_discriminator = discriminator;
20631 m_line_has_non_zero_discriminator |= discriminator != 0;
20632 }
20633
20634 /* Handle DW_LNE_set_address. */
20635 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20636 {
20637 m_op_index = 0;
20638 address += baseaddr;
20639 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20640 }
20641
20642 /* Handle DW_LNS_advance_pc. */
20643 void handle_advance_pc (CORE_ADDR adjust);
20644
20645 /* Handle a special opcode. */
20646 void handle_special_opcode (unsigned char op_code);
20647
20648 /* Handle DW_LNS_advance_line. */
20649 void handle_advance_line (int line_delta)
20650 {
20651 advance_line (line_delta);
20652 }
20653
20654 /* Handle DW_LNS_set_file. */
20655 void handle_set_file (file_name_index file);
20656
20657 /* Handle DW_LNS_negate_stmt. */
20658 void handle_negate_stmt ()
20659 {
20660 m_is_stmt = !m_is_stmt;
20661 }
20662
20663 /* Handle DW_LNS_const_add_pc. */
20664 void handle_const_add_pc ();
20665
20666 /* Handle DW_LNS_fixed_advance_pc. */
20667 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20668 {
20669 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20670 m_op_index = 0;
20671 }
20672
20673 /* Handle DW_LNS_copy. */
20674 void handle_copy ()
20675 {
20676 record_line (false);
20677 m_discriminator = 0;
20678 }
20679
20680 /* Handle DW_LNE_end_sequence. */
20681 void handle_end_sequence ()
20682 {
20683 m_currently_recording_lines = true;
20684 }
20685
20686 private:
20687 /* Advance the line by LINE_DELTA. */
20688 void advance_line (int line_delta)
20689 {
20690 m_line += line_delta;
20691
20692 if (line_delta != 0)
20693 m_line_has_non_zero_discriminator = m_discriminator != 0;
20694 }
20695
20696 struct dwarf2_cu *m_cu;
20697
20698 gdbarch *m_gdbarch;
20699
20700 /* True if we're recording lines.
20701 Otherwise we're building partial symtabs and are just interested in
20702 finding include files mentioned by the line number program. */
20703 bool m_record_lines_p;
20704
20705 /* The line number header. */
20706 line_header *m_line_header;
20707
20708 /* These are part of the standard DWARF line number state machine,
20709 and initialized according to the DWARF spec. */
20710
20711 unsigned char m_op_index = 0;
20712 /* The line table index (1-based) of the current file. */
20713 file_name_index m_file = (file_name_index) 1;
20714 unsigned int m_line = 1;
20715
20716 /* These are initialized in the constructor. */
20717
20718 CORE_ADDR m_address;
20719 bool m_is_stmt;
20720 unsigned int m_discriminator;
20721
20722 /* Additional bits of state we need to track. */
20723
20724 /* The last file that we called dwarf2_start_subfile for.
20725 This is only used for TLLs. */
20726 unsigned int m_last_file = 0;
20727 /* The last file a line number was recorded for. */
20728 struct subfile *m_last_subfile = NULL;
20729
20730 /* When true, record the lines we decode. */
20731 bool m_currently_recording_lines = false;
20732
20733 /* The last line number that was recorded, used to coalesce
20734 consecutive entries for the same line. This can happen, for
20735 example, when discriminators are present. PR 17276. */
20736 unsigned int m_last_line = 0;
20737 bool m_line_has_non_zero_discriminator = false;
20738 };
20739
20740 void
20741 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20742 {
20743 CORE_ADDR addr_adj = (((m_op_index + adjust)
20744 / m_line_header->maximum_ops_per_instruction)
20745 * m_line_header->minimum_instruction_length);
20746 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20747 m_op_index = ((m_op_index + adjust)
20748 % m_line_header->maximum_ops_per_instruction);
20749 }
20750
20751 void
20752 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20753 {
20754 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20755 CORE_ADDR addr_adj = (((m_op_index
20756 + (adj_opcode / m_line_header->line_range))
20757 / m_line_header->maximum_ops_per_instruction)
20758 * m_line_header->minimum_instruction_length);
20759 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20760 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20761 % m_line_header->maximum_ops_per_instruction);
20762
20763 int line_delta = (m_line_header->line_base
20764 + (adj_opcode % m_line_header->line_range));
20765 advance_line (line_delta);
20766 record_line (false);
20767 m_discriminator = 0;
20768 }
20769
20770 void
20771 lnp_state_machine::handle_set_file (file_name_index file)
20772 {
20773 m_file = file;
20774
20775 const file_entry *fe = current_file ();
20776 if (fe == NULL)
20777 dwarf2_debug_line_missing_file_complaint ();
20778 else if (m_record_lines_p)
20779 {
20780 const char *dir = fe->include_dir (m_line_header);
20781
20782 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20783 m_line_has_non_zero_discriminator = m_discriminator != 0;
20784 dwarf2_start_subfile (m_cu, fe->name, dir);
20785 }
20786 }
20787
20788 void
20789 lnp_state_machine::handle_const_add_pc ()
20790 {
20791 CORE_ADDR adjust
20792 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20793
20794 CORE_ADDR addr_adj
20795 = (((m_op_index + adjust)
20796 / m_line_header->maximum_ops_per_instruction)
20797 * m_line_header->minimum_instruction_length);
20798
20799 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20800 m_op_index = ((m_op_index + adjust)
20801 % m_line_header->maximum_ops_per_instruction);
20802 }
20803
20804 /* Return non-zero if we should add LINE to the line number table.
20805 LINE is the line to add, LAST_LINE is the last line that was added,
20806 LAST_SUBFILE is the subfile for LAST_LINE.
20807 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20808 had a non-zero discriminator.
20809
20810 We have to be careful in the presence of discriminators.
20811 E.g., for this line:
20812
20813 for (i = 0; i < 100000; i++);
20814
20815 clang can emit four line number entries for that one line,
20816 each with a different discriminator.
20817 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20818
20819 However, we want gdb to coalesce all four entries into one.
20820 Otherwise the user could stepi into the middle of the line and
20821 gdb would get confused about whether the pc really was in the
20822 middle of the line.
20823
20824 Things are further complicated by the fact that two consecutive
20825 line number entries for the same line is a heuristic used by gcc
20826 to denote the end of the prologue. So we can't just discard duplicate
20827 entries, we have to be selective about it. The heuristic we use is
20828 that we only collapse consecutive entries for the same line if at least
20829 one of those entries has a non-zero discriminator. PR 17276.
20830
20831 Note: Addresses in the line number state machine can never go backwards
20832 within one sequence, thus this coalescing is ok. */
20833
20834 static int
20835 dwarf_record_line_p (struct dwarf2_cu *cu,
20836 unsigned int line, unsigned int last_line,
20837 int line_has_non_zero_discriminator,
20838 struct subfile *last_subfile)
20839 {
20840 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20841 return 1;
20842 if (line != last_line)
20843 return 1;
20844 /* Same line for the same file that we've seen already.
20845 As a last check, for pr 17276, only record the line if the line
20846 has never had a non-zero discriminator. */
20847 if (!line_has_non_zero_discriminator)
20848 return 1;
20849 return 0;
20850 }
20851
20852 /* Use the CU's builder to record line number LINE beginning at
20853 address ADDRESS in the line table of subfile SUBFILE. */
20854
20855 static void
20856 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20857 unsigned int line, CORE_ADDR address,
20858 struct dwarf2_cu *cu)
20859 {
20860 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20861
20862 if (dwarf_line_debug)
20863 {
20864 fprintf_unfiltered (gdb_stdlog,
20865 "Recording line %u, file %s, address %s\n",
20866 line, lbasename (subfile->name),
20867 paddress (gdbarch, address));
20868 }
20869
20870 if (cu != nullptr)
20871 cu->get_builder ()->record_line (subfile, line, addr);
20872 }
20873
20874 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20875 Mark the end of a set of line number records.
20876 The arguments are the same as for dwarf_record_line_1.
20877 If SUBFILE is NULL the request is ignored. */
20878
20879 static void
20880 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20881 CORE_ADDR address, struct dwarf2_cu *cu)
20882 {
20883 if (subfile == NULL)
20884 return;
20885
20886 if (dwarf_line_debug)
20887 {
20888 fprintf_unfiltered (gdb_stdlog,
20889 "Finishing current line, file %s, address %s\n",
20890 lbasename (subfile->name),
20891 paddress (gdbarch, address));
20892 }
20893
20894 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20895 }
20896
20897 void
20898 lnp_state_machine::record_line (bool end_sequence)
20899 {
20900 if (dwarf_line_debug)
20901 {
20902 fprintf_unfiltered (gdb_stdlog,
20903 "Processing actual line %u: file %u,"
20904 " address %s, is_stmt %u, discrim %u\n",
20905 m_line, to_underlying (m_file),
20906 paddress (m_gdbarch, m_address),
20907 m_is_stmt, m_discriminator);
20908 }
20909
20910 file_entry *fe = current_file ();
20911
20912 if (fe == NULL)
20913 dwarf2_debug_line_missing_file_complaint ();
20914 /* For now we ignore lines not starting on an instruction boundary.
20915 But not when processing end_sequence for compatibility with the
20916 previous version of the code. */
20917 else if (m_op_index == 0 || end_sequence)
20918 {
20919 fe->included_p = 1;
20920 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20921 {
20922 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20923 || end_sequence)
20924 {
20925 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20926 m_currently_recording_lines ? m_cu : nullptr);
20927 }
20928
20929 if (!end_sequence)
20930 {
20931 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20932 m_line_has_non_zero_discriminator,
20933 m_last_subfile))
20934 {
20935 buildsym_compunit *builder = m_cu->get_builder ();
20936 dwarf_record_line_1 (m_gdbarch,
20937 builder->get_current_subfile (),
20938 m_line, m_address,
20939 m_currently_recording_lines ? m_cu : nullptr);
20940 }
20941 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20942 m_last_line = m_line;
20943 }
20944 }
20945 }
20946 }
20947
20948 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20949 line_header *lh, bool record_lines_p)
20950 {
20951 m_cu = cu;
20952 m_gdbarch = arch;
20953 m_record_lines_p = record_lines_p;
20954 m_line_header = lh;
20955
20956 m_currently_recording_lines = true;
20957
20958 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20959 was a line entry for it so that the backend has a chance to adjust it
20960 and also record it in case it needs it. This is currently used by MIPS
20961 code, cf. `mips_adjust_dwarf2_line'. */
20962 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20963 m_is_stmt = lh->default_is_stmt;
20964 m_discriminator = 0;
20965 }
20966
20967 void
20968 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20969 const gdb_byte *line_ptr,
20970 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20971 {
20972 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20973 the pc range of the CU. However, we restrict the test to only ADDRESS
20974 values of zero to preserve GDB's previous behaviour which is to handle
20975 the specific case of a function being GC'd by the linker. */
20976
20977 if (address == 0 && address < unrelocated_lowpc)
20978 {
20979 /* This line table is for a function which has been
20980 GCd by the linker. Ignore it. PR gdb/12528 */
20981
20982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20983 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20984
20985 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20986 line_offset, objfile_name (objfile));
20987 m_currently_recording_lines = false;
20988 /* Note: m_currently_recording_lines is left as false until we see
20989 DW_LNE_end_sequence. */
20990 }
20991 }
20992
20993 /* Subroutine of dwarf_decode_lines to simplify it.
20994 Process the line number information in LH.
20995 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20996 program in order to set included_p for every referenced header. */
20997
20998 static void
20999 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21000 const int decode_for_pst_p, CORE_ADDR lowpc)
21001 {
21002 const gdb_byte *line_ptr, *extended_end;
21003 const gdb_byte *line_end;
21004 unsigned int bytes_read, extended_len;
21005 unsigned char op_code, extended_op;
21006 CORE_ADDR baseaddr;
21007 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21008 bfd *abfd = objfile->obfd;
21009 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21010 /* True if we're recording line info (as opposed to building partial
21011 symtabs and just interested in finding include files mentioned by
21012 the line number program). */
21013 bool record_lines_p = !decode_for_pst_p;
21014
21015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21016
21017 line_ptr = lh->statement_program_start;
21018 line_end = lh->statement_program_end;
21019
21020 /* Read the statement sequences until there's nothing left. */
21021 while (line_ptr < line_end)
21022 {
21023 /* The DWARF line number program state machine. Reset the state
21024 machine at the start of each sequence. */
21025 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21026 bool end_sequence = false;
21027
21028 if (record_lines_p)
21029 {
21030 /* Start a subfile for the current file of the state
21031 machine. */
21032 const file_entry *fe = state_machine.current_file ();
21033
21034 if (fe != NULL)
21035 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21036 }
21037
21038 /* Decode the table. */
21039 while (line_ptr < line_end && !end_sequence)
21040 {
21041 op_code = read_1_byte (abfd, line_ptr);
21042 line_ptr += 1;
21043
21044 if (op_code >= lh->opcode_base)
21045 {
21046 /* Special opcode. */
21047 state_machine.handle_special_opcode (op_code);
21048 }
21049 else switch (op_code)
21050 {
21051 case DW_LNS_extended_op:
21052 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21053 &bytes_read);
21054 line_ptr += bytes_read;
21055 extended_end = line_ptr + extended_len;
21056 extended_op = read_1_byte (abfd, line_ptr);
21057 line_ptr += 1;
21058 switch (extended_op)
21059 {
21060 case DW_LNE_end_sequence:
21061 state_machine.handle_end_sequence ();
21062 end_sequence = true;
21063 break;
21064 case DW_LNE_set_address:
21065 {
21066 CORE_ADDR address
21067 = read_address (abfd, line_ptr, cu, &bytes_read);
21068 line_ptr += bytes_read;
21069
21070 state_machine.check_line_address (cu, line_ptr,
21071 lowpc - baseaddr, address);
21072 state_machine.handle_set_address (baseaddr, address);
21073 }
21074 break;
21075 case DW_LNE_define_file:
21076 {
21077 const char *cur_file;
21078 unsigned int mod_time, length;
21079 dir_index dindex;
21080
21081 cur_file = read_direct_string (abfd, line_ptr,
21082 &bytes_read);
21083 line_ptr += bytes_read;
21084 dindex = (dir_index)
21085 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21086 line_ptr += bytes_read;
21087 mod_time =
21088 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21089 line_ptr += bytes_read;
21090 length =
21091 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21092 line_ptr += bytes_read;
21093 lh->add_file_name (cur_file, dindex, mod_time, length);
21094 }
21095 break;
21096 case DW_LNE_set_discriminator:
21097 {
21098 /* The discriminator is not interesting to the
21099 debugger; just ignore it. We still need to
21100 check its value though:
21101 if there are consecutive entries for the same
21102 (non-prologue) line we want to coalesce them.
21103 PR 17276. */
21104 unsigned int discr
21105 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21106 line_ptr += bytes_read;
21107
21108 state_machine.handle_set_discriminator (discr);
21109 }
21110 break;
21111 default:
21112 complaint (_("mangled .debug_line section"));
21113 return;
21114 }
21115 /* Make sure that we parsed the extended op correctly. If e.g.
21116 we expected a different address size than the producer used,
21117 we may have read the wrong number of bytes. */
21118 if (line_ptr != extended_end)
21119 {
21120 complaint (_("mangled .debug_line section"));
21121 return;
21122 }
21123 break;
21124 case DW_LNS_copy:
21125 state_machine.handle_copy ();
21126 break;
21127 case DW_LNS_advance_pc:
21128 {
21129 CORE_ADDR adjust
21130 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21131 line_ptr += bytes_read;
21132
21133 state_machine.handle_advance_pc (adjust);
21134 }
21135 break;
21136 case DW_LNS_advance_line:
21137 {
21138 int line_delta
21139 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21140 line_ptr += bytes_read;
21141
21142 state_machine.handle_advance_line (line_delta);
21143 }
21144 break;
21145 case DW_LNS_set_file:
21146 {
21147 file_name_index file
21148 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21149 &bytes_read);
21150 line_ptr += bytes_read;
21151
21152 state_machine.handle_set_file (file);
21153 }
21154 break;
21155 case DW_LNS_set_column:
21156 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21157 line_ptr += bytes_read;
21158 break;
21159 case DW_LNS_negate_stmt:
21160 state_machine.handle_negate_stmt ();
21161 break;
21162 case DW_LNS_set_basic_block:
21163 break;
21164 /* Add to the address register of the state machine the
21165 address increment value corresponding to special opcode
21166 255. I.e., this value is scaled by the minimum
21167 instruction length since special opcode 255 would have
21168 scaled the increment. */
21169 case DW_LNS_const_add_pc:
21170 state_machine.handle_const_add_pc ();
21171 break;
21172 case DW_LNS_fixed_advance_pc:
21173 {
21174 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21175 line_ptr += 2;
21176
21177 state_machine.handle_fixed_advance_pc (addr_adj);
21178 }
21179 break;
21180 default:
21181 {
21182 /* Unknown standard opcode, ignore it. */
21183 int i;
21184
21185 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21186 {
21187 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21188 line_ptr += bytes_read;
21189 }
21190 }
21191 }
21192 }
21193
21194 if (!end_sequence)
21195 dwarf2_debug_line_missing_end_sequence_complaint ();
21196
21197 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21198 in which case we still finish recording the last line). */
21199 state_machine.record_line (true);
21200 }
21201 }
21202
21203 /* Decode the Line Number Program (LNP) for the given line_header
21204 structure and CU. The actual information extracted and the type
21205 of structures created from the LNP depends on the value of PST.
21206
21207 1. If PST is NULL, then this procedure uses the data from the program
21208 to create all necessary symbol tables, and their linetables.
21209
21210 2. If PST is not NULL, this procedure reads the program to determine
21211 the list of files included by the unit represented by PST, and
21212 builds all the associated partial symbol tables.
21213
21214 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21215 It is used for relative paths in the line table.
21216 NOTE: When processing partial symtabs (pst != NULL),
21217 comp_dir == pst->dirname.
21218
21219 NOTE: It is important that psymtabs have the same file name (via strcmp)
21220 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21221 symtab we don't use it in the name of the psymtabs we create.
21222 E.g. expand_line_sal requires this when finding psymtabs to expand.
21223 A good testcase for this is mb-inline.exp.
21224
21225 LOWPC is the lowest address in CU (or 0 if not known).
21226
21227 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21228 for its PC<->lines mapping information. Otherwise only the filename
21229 table is read in. */
21230
21231 static void
21232 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21233 struct dwarf2_cu *cu, struct partial_symtab *pst,
21234 CORE_ADDR lowpc, int decode_mapping)
21235 {
21236 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21237 const int decode_for_pst_p = (pst != NULL);
21238
21239 if (decode_mapping)
21240 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21241
21242 if (decode_for_pst_p)
21243 {
21244 int file_index;
21245
21246 /* Now that we're done scanning the Line Header Program, we can
21247 create the psymtab of each included file. */
21248 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21249 if (lh->file_names[file_index].included_p == 1)
21250 {
21251 gdb::unique_xmalloc_ptr<char> name_holder;
21252 const char *include_name =
21253 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21254 &name_holder);
21255 if (include_name != NULL)
21256 dwarf2_create_include_psymtab (include_name, pst, objfile);
21257 }
21258 }
21259 else
21260 {
21261 /* Make sure a symtab is created for every file, even files
21262 which contain only variables (i.e. no code with associated
21263 line numbers). */
21264 buildsym_compunit *builder = cu->get_builder ();
21265 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21266 int i;
21267
21268 for (i = 0; i < lh->file_names.size (); i++)
21269 {
21270 file_entry &fe = lh->file_names[i];
21271
21272 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21273
21274 if (builder->get_current_subfile ()->symtab == NULL)
21275 {
21276 builder->get_current_subfile ()->symtab
21277 = allocate_symtab (cust,
21278 builder->get_current_subfile ()->name);
21279 }
21280 fe.symtab = builder->get_current_subfile ()->symtab;
21281 }
21282 }
21283 }
21284
21285 /* Start a subfile for DWARF. FILENAME is the name of the file and
21286 DIRNAME the name of the source directory which contains FILENAME
21287 or NULL if not known.
21288 This routine tries to keep line numbers from identical absolute and
21289 relative file names in a common subfile.
21290
21291 Using the `list' example from the GDB testsuite, which resides in
21292 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21293 of /srcdir/list0.c yields the following debugging information for list0.c:
21294
21295 DW_AT_name: /srcdir/list0.c
21296 DW_AT_comp_dir: /compdir
21297 files.files[0].name: list0.h
21298 files.files[0].dir: /srcdir
21299 files.files[1].name: list0.c
21300 files.files[1].dir: /srcdir
21301
21302 The line number information for list0.c has to end up in a single
21303 subfile, so that `break /srcdir/list0.c:1' works as expected.
21304 start_subfile will ensure that this happens provided that we pass the
21305 concatenation of files.files[1].dir and files.files[1].name as the
21306 subfile's name. */
21307
21308 static void
21309 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21310 const char *dirname)
21311 {
21312 char *copy = NULL;
21313
21314 /* In order not to lose the line information directory,
21315 we concatenate it to the filename when it makes sense.
21316 Note that the Dwarf3 standard says (speaking of filenames in line
21317 information): ``The directory index is ignored for file names
21318 that represent full path names''. Thus ignoring dirname in the
21319 `else' branch below isn't an issue. */
21320
21321 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21322 {
21323 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21324 filename = copy;
21325 }
21326
21327 cu->get_builder ()->start_subfile (filename);
21328
21329 if (copy != NULL)
21330 xfree (copy);
21331 }
21332
21333 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21334 buildsym_compunit constructor. */
21335
21336 struct compunit_symtab *
21337 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21338 CORE_ADDR low_pc)
21339 {
21340 gdb_assert (m_builder == nullptr);
21341
21342 m_builder.reset (new struct buildsym_compunit
21343 (per_cu->dwarf2_per_objfile->objfile,
21344 name, comp_dir, language, low_pc));
21345
21346 list_in_scope = get_builder ()->get_file_symbols ();
21347
21348 get_builder ()->record_debugformat ("DWARF 2");
21349 get_builder ()->record_producer (producer);
21350
21351 processing_has_namespace_info = false;
21352
21353 return get_builder ()->get_compunit_symtab ();
21354 }
21355
21356 static void
21357 var_decode_location (struct attribute *attr, struct symbol *sym,
21358 struct dwarf2_cu *cu)
21359 {
21360 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21361 struct comp_unit_head *cu_header = &cu->header;
21362
21363 /* NOTE drow/2003-01-30: There used to be a comment and some special
21364 code here to turn a symbol with DW_AT_external and a
21365 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21366 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21367 with some versions of binutils) where shared libraries could have
21368 relocations against symbols in their debug information - the
21369 minimal symbol would have the right address, but the debug info
21370 would not. It's no longer necessary, because we will explicitly
21371 apply relocations when we read in the debug information now. */
21372
21373 /* A DW_AT_location attribute with no contents indicates that a
21374 variable has been optimized away. */
21375 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21376 {
21377 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21378 return;
21379 }
21380
21381 /* Handle one degenerate form of location expression specially, to
21382 preserve GDB's previous behavior when section offsets are
21383 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21384 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21385
21386 if (attr_form_is_block (attr)
21387 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21388 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21389 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21390 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21391 && (DW_BLOCK (attr)->size
21392 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21393 {
21394 unsigned int dummy;
21395
21396 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21397 SYMBOL_VALUE_ADDRESS (sym) =
21398 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21399 else
21400 SYMBOL_VALUE_ADDRESS (sym) =
21401 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21402 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21403 fixup_symbol_section (sym, objfile);
21404 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21405 SYMBOL_SECTION (sym));
21406 return;
21407 }
21408
21409 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21410 expression evaluator, and use LOC_COMPUTED only when necessary
21411 (i.e. when the value of a register or memory location is
21412 referenced, or a thread-local block, etc.). Then again, it might
21413 not be worthwhile. I'm assuming that it isn't unless performance
21414 or memory numbers show me otherwise. */
21415
21416 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21417
21418 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21419 cu->has_loclist = true;
21420 }
21421
21422 /* Given a pointer to a DWARF information entry, figure out if we need
21423 to make a symbol table entry for it, and if so, create a new entry
21424 and return a pointer to it.
21425 If TYPE is NULL, determine symbol type from the die, otherwise
21426 used the passed type.
21427 If SPACE is not NULL, use it to hold the new symbol. If it is
21428 NULL, allocate a new symbol on the objfile's obstack. */
21429
21430 static struct symbol *
21431 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21432 struct symbol *space)
21433 {
21434 struct dwarf2_per_objfile *dwarf2_per_objfile
21435 = cu->per_cu->dwarf2_per_objfile;
21436 struct objfile *objfile = dwarf2_per_objfile->objfile;
21437 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21438 struct symbol *sym = NULL;
21439 const char *name;
21440 struct attribute *attr = NULL;
21441 struct attribute *attr2 = NULL;
21442 CORE_ADDR baseaddr;
21443 struct pending **list_to_add = NULL;
21444
21445 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21446
21447 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21448
21449 name = dwarf2_name (die, cu);
21450 if (name)
21451 {
21452 const char *linkagename;
21453 int suppress_add = 0;
21454
21455 if (space)
21456 sym = space;
21457 else
21458 sym = allocate_symbol (objfile);
21459 OBJSTAT (objfile, n_syms++);
21460
21461 /* Cache this symbol's name and the name's demangled form (if any). */
21462 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21463 linkagename = dwarf2_physname (name, die, cu);
21464 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21465
21466 /* Fortran does not have mangling standard and the mangling does differ
21467 between gfortran, iFort etc. */
21468 if (cu->language == language_fortran
21469 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21470 symbol_set_demangled_name (&(sym->ginfo),
21471 dwarf2_full_name (name, die, cu),
21472 NULL);
21473
21474 /* Default assumptions.
21475 Use the passed type or decode it from the die. */
21476 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21477 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21478 if (type != NULL)
21479 SYMBOL_TYPE (sym) = type;
21480 else
21481 SYMBOL_TYPE (sym) = die_type (die, cu);
21482 attr = dwarf2_attr (die,
21483 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21484 cu);
21485 if (attr)
21486 {
21487 SYMBOL_LINE (sym) = DW_UNSND (attr);
21488 }
21489
21490 attr = dwarf2_attr (die,
21491 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21492 cu);
21493 if (attr)
21494 {
21495 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21496 struct file_entry *fe;
21497
21498 if (cu->line_header != NULL)
21499 fe = cu->line_header->file_name_at (file_index);
21500 else
21501 fe = NULL;
21502
21503 if (fe == NULL)
21504 complaint (_("file index out of range"));
21505 else
21506 symbol_set_symtab (sym, fe->symtab);
21507 }
21508
21509 switch (die->tag)
21510 {
21511 case DW_TAG_label:
21512 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21513 if (attr)
21514 {
21515 CORE_ADDR addr;
21516
21517 addr = attr_value_as_address (attr);
21518 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21519 SYMBOL_VALUE_ADDRESS (sym) = addr;
21520 }
21521 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21522 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21523 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21524 add_symbol_to_list (sym, cu->list_in_scope);
21525 break;
21526 case DW_TAG_subprogram:
21527 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21528 finish_block. */
21529 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21530 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21531 if ((attr2 && (DW_UNSND (attr2) != 0))
21532 || cu->language == language_ada)
21533 {
21534 /* Subprograms marked external are stored as a global symbol.
21535 Ada subprograms, whether marked external or not, are always
21536 stored as a global symbol, because we want to be able to
21537 access them globally. For instance, we want to be able
21538 to break on a nested subprogram without having to
21539 specify the context. */
21540 list_to_add = cu->get_builder ()->get_global_symbols ();
21541 }
21542 else
21543 {
21544 list_to_add = cu->list_in_scope;
21545 }
21546 break;
21547 case DW_TAG_inlined_subroutine:
21548 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21549 finish_block. */
21550 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21551 SYMBOL_INLINED (sym) = 1;
21552 list_to_add = cu->list_in_scope;
21553 break;
21554 case DW_TAG_template_value_param:
21555 suppress_add = 1;
21556 /* Fall through. */
21557 case DW_TAG_constant:
21558 case DW_TAG_variable:
21559 case DW_TAG_member:
21560 /* Compilation with minimal debug info may result in
21561 variables with missing type entries. Change the
21562 misleading `void' type to something sensible. */
21563 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21564 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21565
21566 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21567 /* In the case of DW_TAG_member, we should only be called for
21568 static const members. */
21569 if (die->tag == DW_TAG_member)
21570 {
21571 /* dwarf2_add_field uses die_is_declaration,
21572 so we do the same. */
21573 gdb_assert (die_is_declaration (die, cu));
21574 gdb_assert (attr);
21575 }
21576 if (attr)
21577 {
21578 dwarf2_const_value (attr, sym, cu);
21579 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21580 if (!suppress_add)
21581 {
21582 if (attr2 && (DW_UNSND (attr2) != 0))
21583 list_to_add = cu->get_builder ()->get_global_symbols ();
21584 else
21585 list_to_add = cu->list_in_scope;
21586 }
21587 break;
21588 }
21589 attr = dwarf2_attr (die, DW_AT_location, cu);
21590 if (attr)
21591 {
21592 var_decode_location (attr, sym, cu);
21593 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21594
21595 /* Fortran explicitly imports any global symbols to the local
21596 scope by DW_TAG_common_block. */
21597 if (cu->language == language_fortran && die->parent
21598 && die->parent->tag == DW_TAG_common_block)
21599 attr2 = NULL;
21600
21601 if (SYMBOL_CLASS (sym) == LOC_STATIC
21602 && SYMBOL_VALUE_ADDRESS (sym) == 0
21603 && !dwarf2_per_objfile->has_section_at_zero)
21604 {
21605 /* When a static variable is eliminated by the linker,
21606 the corresponding debug information is not stripped
21607 out, but the variable address is set to null;
21608 do not add such variables into symbol table. */
21609 }
21610 else if (attr2 && (DW_UNSND (attr2) != 0))
21611 {
21612 /* Workaround gfortran PR debug/40040 - it uses
21613 DW_AT_location for variables in -fPIC libraries which may
21614 get overriden by other libraries/executable and get
21615 a different address. Resolve it by the minimal symbol
21616 which may come from inferior's executable using copy
21617 relocation. Make this workaround only for gfortran as for
21618 other compilers GDB cannot guess the minimal symbol
21619 Fortran mangling kind. */
21620 if (cu->language == language_fortran && die->parent
21621 && die->parent->tag == DW_TAG_module
21622 && cu->producer
21623 && startswith (cu->producer, "GNU Fortran"))
21624 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21625
21626 /* A variable with DW_AT_external is never static,
21627 but it may be block-scoped. */
21628 list_to_add
21629 = ((cu->list_in_scope
21630 == cu->get_builder ()->get_file_symbols ())
21631 ? cu->get_builder ()->get_global_symbols ()
21632 : cu->list_in_scope);
21633 }
21634 else
21635 list_to_add = cu->list_in_scope;
21636 }
21637 else
21638 {
21639 /* We do not know the address of this symbol.
21640 If it is an external symbol and we have type information
21641 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21642 The address of the variable will then be determined from
21643 the minimal symbol table whenever the variable is
21644 referenced. */
21645 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21646
21647 /* Fortran explicitly imports any global symbols to the local
21648 scope by DW_TAG_common_block. */
21649 if (cu->language == language_fortran && die->parent
21650 && die->parent->tag == DW_TAG_common_block)
21651 {
21652 /* SYMBOL_CLASS doesn't matter here because
21653 read_common_block is going to reset it. */
21654 if (!suppress_add)
21655 list_to_add = cu->list_in_scope;
21656 }
21657 else if (attr2 && (DW_UNSND (attr2) != 0)
21658 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21659 {
21660 /* A variable with DW_AT_external is never static, but it
21661 may be block-scoped. */
21662 list_to_add
21663 = ((cu->list_in_scope
21664 == cu->get_builder ()->get_file_symbols ())
21665 ? cu->get_builder ()->get_global_symbols ()
21666 : cu->list_in_scope);
21667
21668 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21669 }
21670 else if (!die_is_declaration (die, cu))
21671 {
21672 /* Use the default LOC_OPTIMIZED_OUT class. */
21673 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21674 if (!suppress_add)
21675 list_to_add = cu->list_in_scope;
21676 }
21677 }
21678 break;
21679 case DW_TAG_formal_parameter:
21680 {
21681 /* If we are inside a function, mark this as an argument. If
21682 not, we might be looking at an argument to an inlined function
21683 when we do not have enough information to show inlined frames;
21684 pretend it's a local variable in that case so that the user can
21685 still see it. */
21686 struct context_stack *curr
21687 = cu->get_builder ()->get_current_context_stack ();
21688 if (curr != nullptr && curr->name != nullptr)
21689 SYMBOL_IS_ARGUMENT (sym) = 1;
21690 attr = dwarf2_attr (die, DW_AT_location, cu);
21691 if (attr)
21692 {
21693 var_decode_location (attr, sym, cu);
21694 }
21695 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21696 if (attr)
21697 {
21698 dwarf2_const_value (attr, sym, cu);
21699 }
21700
21701 list_to_add = cu->list_in_scope;
21702 }
21703 break;
21704 case DW_TAG_unspecified_parameters:
21705 /* From varargs functions; gdb doesn't seem to have any
21706 interest in this information, so just ignore it for now.
21707 (FIXME?) */
21708 break;
21709 case DW_TAG_template_type_param:
21710 suppress_add = 1;
21711 /* Fall through. */
21712 case DW_TAG_class_type:
21713 case DW_TAG_interface_type:
21714 case DW_TAG_structure_type:
21715 case DW_TAG_union_type:
21716 case DW_TAG_set_type:
21717 case DW_TAG_enumeration_type:
21718 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21719 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21720
21721 {
21722 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21723 really ever be static objects: otherwise, if you try
21724 to, say, break of a class's method and you're in a file
21725 which doesn't mention that class, it won't work unless
21726 the check for all static symbols in lookup_symbol_aux
21727 saves you. See the OtherFileClass tests in
21728 gdb.c++/namespace.exp. */
21729
21730 if (!suppress_add)
21731 {
21732 buildsym_compunit *builder = cu->get_builder ();
21733 list_to_add
21734 = (cu->list_in_scope == builder->get_file_symbols ()
21735 && cu->language == language_cplus
21736 ? builder->get_global_symbols ()
21737 : cu->list_in_scope);
21738
21739 /* The semantics of C++ state that "struct foo {
21740 ... }" also defines a typedef for "foo". */
21741 if (cu->language == language_cplus
21742 || cu->language == language_ada
21743 || cu->language == language_d
21744 || cu->language == language_rust)
21745 {
21746 /* The symbol's name is already allocated along
21747 with this objfile, so we don't need to
21748 duplicate it for the type. */
21749 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21750 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21751 }
21752 }
21753 }
21754 break;
21755 case DW_TAG_typedef:
21756 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21757 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21758 list_to_add = cu->list_in_scope;
21759 break;
21760 case DW_TAG_base_type:
21761 case DW_TAG_subrange_type:
21762 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21763 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21764 list_to_add = cu->list_in_scope;
21765 break;
21766 case DW_TAG_enumerator:
21767 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21768 if (attr)
21769 {
21770 dwarf2_const_value (attr, sym, cu);
21771 }
21772 {
21773 /* NOTE: carlton/2003-11-10: See comment above in the
21774 DW_TAG_class_type, etc. block. */
21775
21776 list_to_add
21777 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21778 && cu->language == language_cplus
21779 ? cu->get_builder ()->get_global_symbols ()
21780 : cu->list_in_scope);
21781 }
21782 break;
21783 case DW_TAG_imported_declaration:
21784 case DW_TAG_namespace:
21785 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21786 list_to_add = cu->get_builder ()->get_global_symbols ();
21787 break;
21788 case DW_TAG_module:
21789 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21790 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21791 list_to_add = cu->get_builder ()->get_global_symbols ();
21792 break;
21793 case DW_TAG_common_block:
21794 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21795 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21796 add_symbol_to_list (sym, cu->list_in_scope);
21797 break;
21798 default:
21799 /* Not a tag we recognize. Hopefully we aren't processing
21800 trash data, but since we must specifically ignore things
21801 we don't recognize, there is nothing else we should do at
21802 this point. */
21803 complaint (_("unsupported tag: '%s'"),
21804 dwarf_tag_name (die->tag));
21805 break;
21806 }
21807
21808 if (suppress_add)
21809 {
21810 sym->hash_next = objfile->template_symbols;
21811 objfile->template_symbols = sym;
21812 list_to_add = NULL;
21813 }
21814
21815 if (list_to_add != NULL)
21816 add_symbol_to_list (sym, list_to_add);
21817
21818 /* For the benefit of old versions of GCC, check for anonymous
21819 namespaces based on the demangled name. */
21820 if (!cu->processing_has_namespace_info
21821 && cu->language == language_cplus)
21822 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21823 }
21824 return (sym);
21825 }
21826
21827 /* Given an attr with a DW_FORM_dataN value in host byte order,
21828 zero-extend it as appropriate for the symbol's type. The DWARF
21829 standard (v4) is not entirely clear about the meaning of using
21830 DW_FORM_dataN for a constant with a signed type, where the type is
21831 wider than the data. The conclusion of a discussion on the DWARF
21832 list was that this is unspecified. We choose to always zero-extend
21833 because that is the interpretation long in use by GCC. */
21834
21835 static gdb_byte *
21836 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21837 struct dwarf2_cu *cu, LONGEST *value, int bits)
21838 {
21839 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21840 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21841 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21842 LONGEST l = DW_UNSND (attr);
21843
21844 if (bits < sizeof (*value) * 8)
21845 {
21846 l &= ((LONGEST) 1 << bits) - 1;
21847 *value = l;
21848 }
21849 else if (bits == sizeof (*value) * 8)
21850 *value = l;
21851 else
21852 {
21853 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21854 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21855 return bytes;
21856 }
21857
21858 return NULL;
21859 }
21860
21861 /* Read a constant value from an attribute. Either set *VALUE, or if
21862 the value does not fit in *VALUE, set *BYTES - either already
21863 allocated on the objfile obstack, or newly allocated on OBSTACK,
21864 or, set *BATON, if we translated the constant to a location
21865 expression. */
21866
21867 static void
21868 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21869 const char *name, struct obstack *obstack,
21870 struct dwarf2_cu *cu,
21871 LONGEST *value, const gdb_byte **bytes,
21872 struct dwarf2_locexpr_baton **baton)
21873 {
21874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21875 struct comp_unit_head *cu_header = &cu->header;
21876 struct dwarf_block *blk;
21877 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21878 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21879
21880 *value = 0;
21881 *bytes = NULL;
21882 *baton = NULL;
21883
21884 switch (attr->form)
21885 {
21886 case DW_FORM_addr:
21887 case DW_FORM_addrx:
21888 case DW_FORM_GNU_addr_index:
21889 {
21890 gdb_byte *data;
21891
21892 if (TYPE_LENGTH (type) != cu_header->addr_size)
21893 dwarf2_const_value_length_mismatch_complaint (name,
21894 cu_header->addr_size,
21895 TYPE_LENGTH (type));
21896 /* Symbols of this form are reasonably rare, so we just
21897 piggyback on the existing location code rather than writing
21898 a new implementation of symbol_computed_ops. */
21899 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21900 (*baton)->per_cu = cu->per_cu;
21901 gdb_assert ((*baton)->per_cu);
21902
21903 (*baton)->size = 2 + cu_header->addr_size;
21904 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21905 (*baton)->data = data;
21906
21907 data[0] = DW_OP_addr;
21908 store_unsigned_integer (&data[1], cu_header->addr_size,
21909 byte_order, DW_ADDR (attr));
21910 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21911 }
21912 break;
21913 case DW_FORM_string:
21914 case DW_FORM_strp:
21915 case DW_FORM_strx:
21916 case DW_FORM_GNU_str_index:
21917 case DW_FORM_GNU_strp_alt:
21918 /* DW_STRING is already allocated on the objfile obstack, point
21919 directly to it. */
21920 *bytes = (const gdb_byte *) DW_STRING (attr);
21921 break;
21922 case DW_FORM_block1:
21923 case DW_FORM_block2:
21924 case DW_FORM_block4:
21925 case DW_FORM_block:
21926 case DW_FORM_exprloc:
21927 case DW_FORM_data16:
21928 blk = DW_BLOCK (attr);
21929 if (TYPE_LENGTH (type) != blk->size)
21930 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21931 TYPE_LENGTH (type));
21932 *bytes = blk->data;
21933 break;
21934
21935 /* The DW_AT_const_value attributes are supposed to carry the
21936 symbol's value "represented as it would be on the target
21937 architecture." By the time we get here, it's already been
21938 converted to host endianness, so we just need to sign- or
21939 zero-extend it as appropriate. */
21940 case DW_FORM_data1:
21941 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21942 break;
21943 case DW_FORM_data2:
21944 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21945 break;
21946 case DW_FORM_data4:
21947 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21948 break;
21949 case DW_FORM_data8:
21950 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21951 break;
21952
21953 case DW_FORM_sdata:
21954 case DW_FORM_implicit_const:
21955 *value = DW_SND (attr);
21956 break;
21957
21958 case DW_FORM_udata:
21959 *value = DW_UNSND (attr);
21960 break;
21961
21962 default:
21963 complaint (_("unsupported const value attribute form: '%s'"),
21964 dwarf_form_name (attr->form));
21965 *value = 0;
21966 break;
21967 }
21968 }
21969
21970
21971 /* Copy constant value from an attribute to a symbol. */
21972
21973 static void
21974 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21975 struct dwarf2_cu *cu)
21976 {
21977 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21978 LONGEST value;
21979 const gdb_byte *bytes;
21980 struct dwarf2_locexpr_baton *baton;
21981
21982 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21983 SYMBOL_PRINT_NAME (sym),
21984 &objfile->objfile_obstack, cu,
21985 &value, &bytes, &baton);
21986
21987 if (baton != NULL)
21988 {
21989 SYMBOL_LOCATION_BATON (sym) = baton;
21990 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21991 }
21992 else if (bytes != NULL)
21993 {
21994 SYMBOL_VALUE_BYTES (sym) = bytes;
21995 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21996 }
21997 else
21998 {
21999 SYMBOL_VALUE (sym) = value;
22000 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22001 }
22002 }
22003
22004 /* Return the type of the die in question using its DW_AT_type attribute. */
22005
22006 static struct type *
22007 die_type (struct die_info *die, struct dwarf2_cu *cu)
22008 {
22009 struct attribute *type_attr;
22010
22011 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22012 if (!type_attr)
22013 {
22014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22015 /* A missing DW_AT_type represents a void type. */
22016 return objfile_type (objfile)->builtin_void;
22017 }
22018
22019 return lookup_die_type (die, type_attr, cu);
22020 }
22021
22022 /* True iff CU's producer generates GNAT Ada auxiliary information
22023 that allows to find parallel types through that information instead
22024 of having to do expensive parallel lookups by type name. */
22025
22026 static int
22027 need_gnat_info (struct dwarf2_cu *cu)
22028 {
22029 /* Assume that the Ada compiler was GNAT, which always produces
22030 the auxiliary information. */
22031 return (cu->language == language_ada);
22032 }
22033
22034 /* Return the auxiliary type of the die in question using its
22035 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22036 attribute is not present. */
22037
22038 static struct type *
22039 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22040 {
22041 struct attribute *type_attr;
22042
22043 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22044 if (!type_attr)
22045 return NULL;
22046
22047 return lookup_die_type (die, type_attr, cu);
22048 }
22049
22050 /* If DIE has a descriptive_type attribute, then set the TYPE's
22051 descriptive type accordingly. */
22052
22053 static void
22054 set_descriptive_type (struct type *type, struct die_info *die,
22055 struct dwarf2_cu *cu)
22056 {
22057 struct type *descriptive_type = die_descriptive_type (die, cu);
22058
22059 if (descriptive_type)
22060 {
22061 ALLOCATE_GNAT_AUX_TYPE (type);
22062 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22063 }
22064 }
22065
22066 /* Return the containing type of the die in question using its
22067 DW_AT_containing_type attribute. */
22068
22069 static struct type *
22070 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22071 {
22072 struct attribute *type_attr;
22073 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22074
22075 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22076 if (!type_attr)
22077 error (_("Dwarf Error: Problem turning containing type into gdb type "
22078 "[in module %s]"), objfile_name (objfile));
22079
22080 return lookup_die_type (die, type_attr, cu);
22081 }
22082
22083 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22084
22085 static struct type *
22086 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22087 {
22088 struct dwarf2_per_objfile *dwarf2_per_objfile
22089 = cu->per_cu->dwarf2_per_objfile;
22090 struct objfile *objfile = dwarf2_per_objfile->objfile;
22091 char *saved;
22092
22093 std::string message
22094 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22095 objfile_name (objfile),
22096 sect_offset_str (cu->header.sect_off),
22097 sect_offset_str (die->sect_off));
22098 saved = obstack_strdup (&objfile->objfile_obstack, message);
22099
22100 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22101 }
22102
22103 /* Look up the type of DIE in CU using its type attribute ATTR.
22104 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22105 DW_AT_containing_type.
22106 If there is no type substitute an error marker. */
22107
22108 static struct type *
22109 lookup_die_type (struct die_info *die, const struct attribute *attr,
22110 struct dwarf2_cu *cu)
22111 {
22112 struct dwarf2_per_objfile *dwarf2_per_objfile
22113 = cu->per_cu->dwarf2_per_objfile;
22114 struct objfile *objfile = dwarf2_per_objfile->objfile;
22115 struct type *this_type;
22116
22117 gdb_assert (attr->name == DW_AT_type
22118 || attr->name == DW_AT_GNAT_descriptive_type
22119 || attr->name == DW_AT_containing_type);
22120
22121 /* First see if we have it cached. */
22122
22123 if (attr->form == DW_FORM_GNU_ref_alt)
22124 {
22125 struct dwarf2_per_cu_data *per_cu;
22126 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22127
22128 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22129 dwarf2_per_objfile);
22130 this_type = get_die_type_at_offset (sect_off, per_cu);
22131 }
22132 else if (attr_form_is_ref (attr))
22133 {
22134 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22135
22136 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22137 }
22138 else if (attr->form == DW_FORM_ref_sig8)
22139 {
22140 ULONGEST signature = DW_SIGNATURE (attr);
22141
22142 return get_signatured_type (die, signature, cu);
22143 }
22144 else
22145 {
22146 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22147 " at %s [in module %s]"),
22148 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22149 objfile_name (objfile));
22150 return build_error_marker_type (cu, die);
22151 }
22152
22153 /* If not cached we need to read it in. */
22154
22155 if (this_type == NULL)
22156 {
22157 struct die_info *type_die = NULL;
22158 struct dwarf2_cu *type_cu = cu;
22159
22160 if (attr_form_is_ref (attr))
22161 type_die = follow_die_ref (die, attr, &type_cu);
22162 if (type_die == NULL)
22163 return build_error_marker_type (cu, die);
22164 /* If we find the type now, it's probably because the type came
22165 from an inter-CU reference and the type's CU got expanded before
22166 ours. */
22167 this_type = read_type_die (type_die, type_cu);
22168 }
22169
22170 /* If we still don't have a type use an error marker. */
22171
22172 if (this_type == NULL)
22173 return build_error_marker_type (cu, die);
22174
22175 return this_type;
22176 }
22177
22178 /* Return the type in DIE, CU.
22179 Returns NULL for invalid types.
22180
22181 This first does a lookup in die_type_hash,
22182 and only reads the die in if necessary.
22183
22184 NOTE: This can be called when reading in partial or full symbols. */
22185
22186 static struct type *
22187 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22188 {
22189 struct type *this_type;
22190
22191 this_type = get_die_type (die, cu);
22192 if (this_type)
22193 return this_type;
22194
22195 return read_type_die_1 (die, cu);
22196 }
22197
22198 /* Read the type in DIE, CU.
22199 Returns NULL for invalid types. */
22200
22201 static struct type *
22202 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22203 {
22204 struct type *this_type = NULL;
22205
22206 switch (die->tag)
22207 {
22208 case DW_TAG_class_type:
22209 case DW_TAG_interface_type:
22210 case DW_TAG_structure_type:
22211 case DW_TAG_union_type:
22212 this_type = read_structure_type (die, cu);
22213 break;
22214 case DW_TAG_enumeration_type:
22215 this_type = read_enumeration_type (die, cu);
22216 break;
22217 case DW_TAG_subprogram:
22218 case DW_TAG_subroutine_type:
22219 case DW_TAG_inlined_subroutine:
22220 this_type = read_subroutine_type (die, cu);
22221 break;
22222 case DW_TAG_array_type:
22223 this_type = read_array_type (die, cu);
22224 break;
22225 case DW_TAG_set_type:
22226 this_type = read_set_type (die, cu);
22227 break;
22228 case DW_TAG_pointer_type:
22229 this_type = read_tag_pointer_type (die, cu);
22230 break;
22231 case DW_TAG_ptr_to_member_type:
22232 this_type = read_tag_ptr_to_member_type (die, cu);
22233 break;
22234 case DW_TAG_reference_type:
22235 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22236 break;
22237 case DW_TAG_rvalue_reference_type:
22238 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22239 break;
22240 case DW_TAG_const_type:
22241 this_type = read_tag_const_type (die, cu);
22242 break;
22243 case DW_TAG_volatile_type:
22244 this_type = read_tag_volatile_type (die, cu);
22245 break;
22246 case DW_TAG_restrict_type:
22247 this_type = read_tag_restrict_type (die, cu);
22248 break;
22249 case DW_TAG_string_type:
22250 this_type = read_tag_string_type (die, cu);
22251 break;
22252 case DW_TAG_typedef:
22253 this_type = read_typedef (die, cu);
22254 break;
22255 case DW_TAG_subrange_type:
22256 this_type = read_subrange_type (die, cu);
22257 break;
22258 case DW_TAG_base_type:
22259 this_type = read_base_type (die, cu);
22260 break;
22261 case DW_TAG_unspecified_type:
22262 this_type = read_unspecified_type (die, cu);
22263 break;
22264 case DW_TAG_namespace:
22265 this_type = read_namespace_type (die, cu);
22266 break;
22267 case DW_TAG_module:
22268 this_type = read_module_type (die, cu);
22269 break;
22270 case DW_TAG_atomic_type:
22271 this_type = read_tag_atomic_type (die, cu);
22272 break;
22273 default:
22274 complaint (_("unexpected tag in read_type_die: '%s'"),
22275 dwarf_tag_name (die->tag));
22276 break;
22277 }
22278
22279 return this_type;
22280 }
22281
22282 /* See if we can figure out if the class lives in a namespace. We do
22283 this by looking for a member function; its demangled name will
22284 contain namespace info, if there is any.
22285 Return the computed name or NULL.
22286 Space for the result is allocated on the objfile's obstack.
22287 This is the full-die version of guess_partial_die_structure_name.
22288 In this case we know DIE has no useful parent. */
22289
22290 static char *
22291 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22292 {
22293 struct die_info *spec_die;
22294 struct dwarf2_cu *spec_cu;
22295 struct die_info *child;
22296 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22297
22298 spec_cu = cu;
22299 spec_die = die_specification (die, &spec_cu);
22300 if (spec_die != NULL)
22301 {
22302 die = spec_die;
22303 cu = spec_cu;
22304 }
22305
22306 for (child = die->child;
22307 child != NULL;
22308 child = child->sibling)
22309 {
22310 if (child->tag == DW_TAG_subprogram)
22311 {
22312 const char *linkage_name = dw2_linkage_name (child, cu);
22313
22314 if (linkage_name != NULL)
22315 {
22316 char *actual_name
22317 = language_class_name_from_physname (cu->language_defn,
22318 linkage_name);
22319 char *name = NULL;
22320
22321 if (actual_name != NULL)
22322 {
22323 const char *die_name = dwarf2_name (die, cu);
22324
22325 if (die_name != NULL
22326 && strcmp (die_name, actual_name) != 0)
22327 {
22328 /* Strip off the class name from the full name.
22329 We want the prefix. */
22330 int die_name_len = strlen (die_name);
22331 int actual_name_len = strlen (actual_name);
22332
22333 /* Test for '::' as a sanity check. */
22334 if (actual_name_len > die_name_len + 2
22335 && actual_name[actual_name_len
22336 - die_name_len - 1] == ':')
22337 name = obstack_strndup (
22338 &objfile->per_bfd->storage_obstack,
22339 actual_name, actual_name_len - die_name_len - 2);
22340 }
22341 }
22342 xfree (actual_name);
22343 return name;
22344 }
22345 }
22346 }
22347
22348 return NULL;
22349 }
22350
22351 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22352 prefix part in such case. See
22353 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22354
22355 static const char *
22356 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22357 {
22358 struct attribute *attr;
22359 const char *base;
22360
22361 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22362 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22363 return NULL;
22364
22365 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22366 return NULL;
22367
22368 attr = dw2_linkage_name_attr (die, cu);
22369 if (attr == NULL || DW_STRING (attr) == NULL)
22370 return NULL;
22371
22372 /* dwarf2_name had to be already called. */
22373 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22374
22375 /* Strip the base name, keep any leading namespaces/classes. */
22376 base = strrchr (DW_STRING (attr), ':');
22377 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22378 return "";
22379
22380 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22381 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22382 DW_STRING (attr),
22383 &base[-1] - DW_STRING (attr));
22384 }
22385
22386 /* Return the name of the namespace/class that DIE is defined within,
22387 or "" if we can't tell. The caller should not xfree the result.
22388
22389 For example, if we're within the method foo() in the following
22390 code:
22391
22392 namespace N {
22393 class C {
22394 void foo () {
22395 }
22396 };
22397 }
22398
22399 then determine_prefix on foo's die will return "N::C". */
22400
22401 static const char *
22402 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22403 {
22404 struct dwarf2_per_objfile *dwarf2_per_objfile
22405 = cu->per_cu->dwarf2_per_objfile;
22406 struct die_info *parent, *spec_die;
22407 struct dwarf2_cu *spec_cu;
22408 struct type *parent_type;
22409 const char *retval;
22410
22411 if (cu->language != language_cplus
22412 && cu->language != language_fortran && cu->language != language_d
22413 && cu->language != language_rust)
22414 return "";
22415
22416 retval = anonymous_struct_prefix (die, cu);
22417 if (retval)
22418 return retval;
22419
22420 /* We have to be careful in the presence of DW_AT_specification.
22421 For example, with GCC 3.4, given the code
22422
22423 namespace N {
22424 void foo() {
22425 // Definition of N::foo.
22426 }
22427 }
22428
22429 then we'll have a tree of DIEs like this:
22430
22431 1: DW_TAG_compile_unit
22432 2: DW_TAG_namespace // N
22433 3: DW_TAG_subprogram // declaration of N::foo
22434 4: DW_TAG_subprogram // definition of N::foo
22435 DW_AT_specification // refers to die #3
22436
22437 Thus, when processing die #4, we have to pretend that we're in
22438 the context of its DW_AT_specification, namely the contex of die
22439 #3. */
22440 spec_cu = cu;
22441 spec_die = die_specification (die, &spec_cu);
22442 if (spec_die == NULL)
22443 parent = die->parent;
22444 else
22445 {
22446 parent = spec_die->parent;
22447 cu = spec_cu;
22448 }
22449
22450 if (parent == NULL)
22451 return "";
22452 else if (parent->building_fullname)
22453 {
22454 const char *name;
22455 const char *parent_name;
22456
22457 /* It has been seen on RealView 2.2 built binaries,
22458 DW_TAG_template_type_param types actually _defined_ as
22459 children of the parent class:
22460
22461 enum E {};
22462 template class <class Enum> Class{};
22463 Class<enum E> class_e;
22464
22465 1: DW_TAG_class_type (Class)
22466 2: DW_TAG_enumeration_type (E)
22467 3: DW_TAG_enumerator (enum1:0)
22468 3: DW_TAG_enumerator (enum2:1)
22469 ...
22470 2: DW_TAG_template_type_param
22471 DW_AT_type DW_FORM_ref_udata (E)
22472
22473 Besides being broken debug info, it can put GDB into an
22474 infinite loop. Consider:
22475
22476 When we're building the full name for Class<E>, we'll start
22477 at Class, and go look over its template type parameters,
22478 finding E. We'll then try to build the full name of E, and
22479 reach here. We're now trying to build the full name of E,
22480 and look over the parent DIE for containing scope. In the
22481 broken case, if we followed the parent DIE of E, we'd again
22482 find Class, and once again go look at its template type
22483 arguments, etc., etc. Simply don't consider such parent die
22484 as source-level parent of this die (it can't be, the language
22485 doesn't allow it), and break the loop here. */
22486 name = dwarf2_name (die, cu);
22487 parent_name = dwarf2_name (parent, cu);
22488 complaint (_("template param type '%s' defined within parent '%s'"),
22489 name ? name : "<unknown>",
22490 parent_name ? parent_name : "<unknown>");
22491 return "";
22492 }
22493 else
22494 switch (parent->tag)
22495 {
22496 case DW_TAG_namespace:
22497 parent_type = read_type_die (parent, cu);
22498 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22499 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22500 Work around this problem here. */
22501 if (cu->language == language_cplus
22502 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22503 return "";
22504 /* We give a name to even anonymous namespaces. */
22505 return TYPE_NAME (parent_type);
22506 case DW_TAG_class_type:
22507 case DW_TAG_interface_type:
22508 case DW_TAG_structure_type:
22509 case DW_TAG_union_type:
22510 case DW_TAG_module:
22511 parent_type = read_type_die (parent, cu);
22512 if (TYPE_NAME (parent_type) != NULL)
22513 return TYPE_NAME (parent_type);
22514 else
22515 /* An anonymous structure is only allowed non-static data
22516 members; no typedefs, no member functions, et cetera.
22517 So it does not need a prefix. */
22518 return "";
22519 case DW_TAG_compile_unit:
22520 case DW_TAG_partial_unit:
22521 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22522 if (cu->language == language_cplus
22523 && !dwarf2_per_objfile->types.empty ()
22524 && die->child != NULL
22525 && (die->tag == DW_TAG_class_type
22526 || die->tag == DW_TAG_structure_type
22527 || die->tag == DW_TAG_union_type))
22528 {
22529 char *name = guess_full_die_structure_name (die, cu);
22530 if (name != NULL)
22531 return name;
22532 }
22533 return "";
22534 case DW_TAG_enumeration_type:
22535 parent_type = read_type_die (parent, cu);
22536 if (TYPE_DECLARED_CLASS (parent_type))
22537 {
22538 if (TYPE_NAME (parent_type) != NULL)
22539 return TYPE_NAME (parent_type);
22540 return "";
22541 }
22542 /* Fall through. */
22543 default:
22544 return determine_prefix (parent, cu);
22545 }
22546 }
22547
22548 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22549 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22550 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22551 an obconcat, otherwise allocate storage for the result. The CU argument is
22552 used to determine the language and hence, the appropriate separator. */
22553
22554 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22555
22556 static char *
22557 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22558 int physname, struct dwarf2_cu *cu)
22559 {
22560 const char *lead = "";
22561 const char *sep;
22562
22563 if (suffix == NULL || suffix[0] == '\0'
22564 || prefix == NULL || prefix[0] == '\0')
22565 sep = "";
22566 else if (cu->language == language_d)
22567 {
22568 /* For D, the 'main' function could be defined in any module, but it
22569 should never be prefixed. */
22570 if (strcmp (suffix, "D main") == 0)
22571 {
22572 prefix = "";
22573 sep = "";
22574 }
22575 else
22576 sep = ".";
22577 }
22578 else if (cu->language == language_fortran && physname)
22579 {
22580 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22581 DW_AT_MIPS_linkage_name is preferred and used instead. */
22582
22583 lead = "__";
22584 sep = "_MOD_";
22585 }
22586 else
22587 sep = "::";
22588
22589 if (prefix == NULL)
22590 prefix = "";
22591 if (suffix == NULL)
22592 suffix = "";
22593
22594 if (obs == NULL)
22595 {
22596 char *retval
22597 = ((char *)
22598 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22599
22600 strcpy (retval, lead);
22601 strcat (retval, prefix);
22602 strcat (retval, sep);
22603 strcat (retval, suffix);
22604 return retval;
22605 }
22606 else
22607 {
22608 /* We have an obstack. */
22609 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22610 }
22611 }
22612
22613 /* Return sibling of die, NULL if no sibling. */
22614
22615 static struct die_info *
22616 sibling_die (struct die_info *die)
22617 {
22618 return die->sibling;
22619 }
22620
22621 /* Get name of a die, return NULL if not found. */
22622
22623 static const char *
22624 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22625 struct obstack *obstack)
22626 {
22627 if (name && cu->language == language_cplus)
22628 {
22629 std::string canon_name = cp_canonicalize_string (name);
22630
22631 if (!canon_name.empty ())
22632 {
22633 if (canon_name != name)
22634 name = obstack_strdup (obstack, canon_name);
22635 }
22636 }
22637
22638 return name;
22639 }
22640
22641 /* Get name of a die, return NULL if not found.
22642 Anonymous namespaces are converted to their magic string. */
22643
22644 static const char *
22645 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22646 {
22647 struct attribute *attr;
22648 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22649
22650 attr = dwarf2_attr (die, DW_AT_name, cu);
22651 if ((!attr || !DW_STRING (attr))
22652 && die->tag != DW_TAG_namespace
22653 && die->tag != DW_TAG_class_type
22654 && die->tag != DW_TAG_interface_type
22655 && die->tag != DW_TAG_structure_type
22656 && die->tag != DW_TAG_union_type)
22657 return NULL;
22658
22659 switch (die->tag)
22660 {
22661 case DW_TAG_compile_unit:
22662 case DW_TAG_partial_unit:
22663 /* Compilation units have a DW_AT_name that is a filename, not
22664 a source language identifier. */
22665 case DW_TAG_enumeration_type:
22666 case DW_TAG_enumerator:
22667 /* These tags always have simple identifiers already; no need
22668 to canonicalize them. */
22669 return DW_STRING (attr);
22670
22671 case DW_TAG_namespace:
22672 if (attr != NULL && DW_STRING (attr) != NULL)
22673 return DW_STRING (attr);
22674 return CP_ANONYMOUS_NAMESPACE_STR;
22675
22676 case DW_TAG_class_type:
22677 case DW_TAG_interface_type:
22678 case DW_TAG_structure_type:
22679 case DW_TAG_union_type:
22680 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22681 structures or unions. These were of the form "._%d" in GCC 4.1,
22682 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22683 and GCC 4.4. We work around this problem by ignoring these. */
22684 if (attr && DW_STRING (attr)
22685 && (startswith (DW_STRING (attr), "._")
22686 || startswith (DW_STRING (attr), "<anonymous")))
22687 return NULL;
22688
22689 /* GCC might emit a nameless typedef that has a linkage name. See
22690 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22691 if (!attr || DW_STRING (attr) == NULL)
22692 {
22693 char *demangled = NULL;
22694
22695 attr = dw2_linkage_name_attr (die, cu);
22696 if (attr == NULL || DW_STRING (attr) == NULL)
22697 return NULL;
22698
22699 /* Avoid demangling DW_STRING (attr) the second time on a second
22700 call for the same DIE. */
22701 if (!DW_STRING_IS_CANONICAL (attr))
22702 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22703
22704 if (demangled)
22705 {
22706 const char *base;
22707
22708 /* FIXME: we already did this for the partial symbol... */
22709 DW_STRING (attr)
22710 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22711 demangled);
22712 DW_STRING_IS_CANONICAL (attr) = 1;
22713 xfree (demangled);
22714
22715 /* Strip any leading namespaces/classes, keep only the base name.
22716 DW_AT_name for named DIEs does not contain the prefixes. */
22717 base = strrchr (DW_STRING (attr), ':');
22718 if (base && base > DW_STRING (attr) && base[-1] == ':')
22719 return &base[1];
22720 else
22721 return DW_STRING (attr);
22722 }
22723 }
22724 break;
22725
22726 default:
22727 break;
22728 }
22729
22730 if (!DW_STRING_IS_CANONICAL (attr))
22731 {
22732 DW_STRING (attr)
22733 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22734 &objfile->per_bfd->storage_obstack);
22735 DW_STRING_IS_CANONICAL (attr) = 1;
22736 }
22737 return DW_STRING (attr);
22738 }
22739
22740 /* Return the die that this die in an extension of, or NULL if there
22741 is none. *EXT_CU is the CU containing DIE on input, and the CU
22742 containing the return value on output. */
22743
22744 static struct die_info *
22745 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22746 {
22747 struct attribute *attr;
22748
22749 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22750 if (attr == NULL)
22751 return NULL;
22752
22753 return follow_die_ref (die, attr, ext_cu);
22754 }
22755
22756 /* A convenience function that returns an "unknown" DWARF name,
22757 including the value of V. STR is the name of the entity being
22758 printed, e.g., "TAG". */
22759
22760 static const char *
22761 dwarf_unknown (const char *str, unsigned v)
22762 {
22763 char *cell = get_print_cell ();
22764 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22765 return cell;
22766 }
22767
22768 /* Convert a DIE tag into its string name. */
22769
22770 static const char *
22771 dwarf_tag_name (unsigned tag)
22772 {
22773 const char *name = get_DW_TAG_name (tag);
22774
22775 if (name == NULL)
22776 return dwarf_unknown ("TAG", tag);
22777
22778 return name;
22779 }
22780
22781 /* Convert a DWARF attribute code into its string name. */
22782
22783 static const char *
22784 dwarf_attr_name (unsigned attr)
22785 {
22786 const char *name;
22787
22788 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22789 if (attr == DW_AT_MIPS_fde)
22790 return "DW_AT_MIPS_fde";
22791 #else
22792 if (attr == DW_AT_HP_block_index)
22793 return "DW_AT_HP_block_index";
22794 #endif
22795
22796 name = get_DW_AT_name (attr);
22797
22798 if (name == NULL)
22799 return dwarf_unknown ("AT", attr);
22800
22801 return name;
22802 }
22803
22804 /* Convert a DWARF value form code into its string name. */
22805
22806 static const char *
22807 dwarf_form_name (unsigned form)
22808 {
22809 const char *name = get_DW_FORM_name (form);
22810
22811 if (name == NULL)
22812 return dwarf_unknown ("FORM", form);
22813
22814 return name;
22815 }
22816
22817 static const char *
22818 dwarf_bool_name (unsigned mybool)
22819 {
22820 if (mybool)
22821 return "TRUE";
22822 else
22823 return "FALSE";
22824 }
22825
22826 /* Convert a DWARF type code into its string name. */
22827
22828 static const char *
22829 dwarf_type_encoding_name (unsigned enc)
22830 {
22831 const char *name = get_DW_ATE_name (enc);
22832
22833 if (name == NULL)
22834 return dwarf_unknown ("ATE", enc);
22835
22836 return name;
22837 }
22838
22839 static void
22840 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22841 {
22842 unsigned int i;
22843
22844 print_spaces (indent, f);
22845 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22846 dwarf_tag_name (die->tag), die->abbrev,
22847 sect_offset_str (die->sect_off));
22848
22849 if (die->parent != NULL)
22850 {
22851 print_spaces (indent, f);
22852 fprintf_unfiltered (f, " parent at offset: %s\n",
22853 sect_offset_str (die->parent->sect_off));
22854 }
22855
22856 print_spaces (indent, f);
22857 fprintf_unfiltered (f, " has children: %s\n",
22858 dwarf_bool_name (die->child != NULL));
22859
22860 print_spaces (indent, f);
22861 fprintf_unfiltered (f, " attributes:\n");
22862
22863 for (i = 0; i < die->num_attrs; ++i)
22864 {
22865 print_spaces (indent, f);
22866 fprintf_unfiltered (f, " %s (%s) ",
22867 dwarf_attr_name (die->attrs[i].name),
22868 dwarf_form_name (die->attrs[i].form));
22869
22870 switch (die->attrs[i].form)
22871 {
22872 case DW_FORM_addr:
22873 case DW_FORM_addrx:
22874 case DW_FORM_GNU_addr_index:
22875 fprintf_unfiltered (f, "address: ");
22876 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22877 break;
22878 case DW_FORM_block2:
22879 case DW_FORM_block4:
22880 case DW_FORM_block:
22881 case DW_FORM_block1:
22882 fprintf_unfiltered (f, "block: size %s",
22883 pulongest (DW_BLOCK (&die->attrs[i])->size));
22884 break;
22885 case DW_FORM_exprloc:
22886 fprintf_unfiltered (f, "expression: size %s",
22887 pulongest (DW_BLOCK (&die->attrs[i])->size));
22888 break;
22889 case DW_FORM_data16:
22890 fprintf_unfiltered (f, "constant of 16 bytes");
22891 break;
22892 case DW_FORM_ref_addr:
22893 fprintf_unfiltered (f, "ref address: ");
22894 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22895 break;
22896 case DW_FORM_GNU_ref_alt:
22897 fprintf_unfiltered (f, "alt ref address: ");
22898 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22899 break;
22900 case DW_FORM_ref1:
22901 case DW_FORM_ref2:
22902 case DW_FORM_ref4:
22903 case DW_FORM_ref8:
22904 case DW_FORM_ref_udata:
22905 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22906 (long) (DW_UNSND (&die->attrs[i])));
22907 break;
22908 case DW_FORM_data1:
22909 case DW_FORM_data2:
22910 case DW_FORM_data4:
22911 case DW_FORM_data8:
22912 case DW_FORM_udata:
22913 case DW_FORM_sdata:
22914 fprintf_unfiltered (f, "constant: %s",
22915 pulongest (DW_UNSND (&die->attrs[i])));
22916 break;
22917 case DW_FORM_sec_offset:
22918 fprintf_unfiltered (f, "section offset: %s",
22919 pulongest (DW_UNSND (&die->attrs[i])));
22920 break;
22921 case DW_FORM_ref_sig8:
22922 fprintf_unfiltered (f, "signature: %s",
22923 hex_string (DW_SIGNATURE (&die->attrs[i])));
22924 break;
22925 case DW_FORM_string:
22926 case DW_FORM_strp:
22927 case DW_FORM_line_strp:
22928 case DW_FORM_strx:
22929 case DW_FORM_GNU_str_index:
22930 case DW_FORM_GNU_strp_alt:
22931 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22932 DW_STRING (&die->attrs[i])
22933 ? DW_STRING (&die->attrs[i]) : "",
22934 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22935 break;
22936 case DW_FORM_flag:
22937 if (DW_UNSND (&die->attrs[i]))
22938 fprintf_unfiltered (f, "flag: TRUE");
22939 else
22940 fprintf_unfiltered (f, "flag: FALSE");
22941 break;
22942 case DW_FORM_flag_present:
22943 fprintf_unfiltered (f, "flag: TRUE");
22944 break;
22945 case DW_FORM_indirect:
22946 /* The reader will have reduced the indirect form to
22947 the "base form" so this form should not occur. */
22948 fprintf_unfiltered (f,
22949 "unexpected attribute form: DW_FORM_indirect");
22950 break;
22951 case DW_FORM_implicit_const:
22952 fprintf_unfiltered (f, "constant: %s",
22953 plongest (DW_SND (&die->attrs[i])));
22954 break;
22955 default:
22956 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22957 die->attrs[i].form);
22958 break;
22959 }
22960 fprintf_unfiltered (f, "\n");
22961 }
22962 }
22963
22964 static void
22965 dump_die_for_error (struct die_info *die)
22966 {
22967 dump_die_shallow (gdb_stderr, 0, die);
22968 }
22969
22970 static void
22971 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22972 {
22973 int indent = level * 4;
22974
22975 gdb_assert (die != NULL);
22976
22977 if (level >= max_level)
22978 return;
22979
22980 dump_die_shallow (f, indent, die);
22981
22982 if (die->child != NULL)
22983 {
22984 print_spaces (indent, f);
22985 fprintf_unfiltered (f, " Children:");
22986 if (level + 1 < max_level)
22987 {
22988 fprintf_unfiltered (f, "\n");
22989 dump_die_1 (f, level + 1, max_level, die->child);
22990 }
22991 else
22992 {
22993 fprintf_unfiltered (f,
22994 " [not printed, max nesting level reached]\n");
22995 }
22996 }
22997
22998 if (die->sibling != NULL && level > 0)
22999 {
23000 dump_die_1 (f, level, max_level, die->sibling);
23001 }
23002 }
23003
23004 /* This is called from the pdie macro in gdbinit.in.
23005 It's not static so gcc will keep a copy callable from gdb. */
23006
23007 void
23008 dump_die (struct die_info *die, int max_level)
23009 {
23010 dump_die_1 (gdb_stdlog, 0, max_level, die);
23011 }
23012
23013 static void
23014 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23015 {
23016 void **slot;
23017
23018 slot = htab_find_slot_with_hash (cu->die_hash, die,
23019 to_underlying (die->sect_off),
23020 INSERT);
23021
23022 *slot = die;
23023 }
23024
23025 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23026 required kind. */
23027
23028 static sect_offset
23029 dwarf2_get_ref_die_offset (const struct attribute *attr)
23030 {
23031 if (attr_form_is_ref (attr))
23032 return (sect_offset) DW_UNSND (attr);
23033
23034 complaint (_("unsupported die ref attribute form: '%s'"),
23035 dwarf_form_name (attr->form));
23036 return {};
23037 }
23038
23039 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23040 * the value held by the attribute is not constant. */
23041
23042 static LONGEST
23043 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23044 {
23045 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23046 return DW_SND (attr);
23047 else if (attr->form == DW_FORM_udata
23048 || attr->form == DW_FORM_data1
23049 || attr->form == DW_FORM_data2
23050 || attr->form == DW_FORM_data4
23051 || attr->form == DW_FORM_data8)
23052 return DW_UNSND (attr);
23053 else
23054 {
23055 /* For DW_FORM_data16 see attr_form_is_constant. */
23056 complaint (_("Attribute value is not a constant (%s)"),
23057 dwarf_form_name (attr->form));
23058 return default_value;
23059 }
23060 }
23061
23062 /* Follow reference or signature attribute ATTR of SRC_DIE.
23063 On entry *REF_CU is the CU of SRC_DIE.
23064 On exit *REF_CU is the CU of the result. */
23065
23066 static struct die_info *
23067 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23068 struct dwarf2_cu **ref_cu)
23069 {
23070 struct die_info *die;
23071
23072 if (attr_form_is_ref (attr))
23073 die = follow_die_ref (src_die, attr, ref_cu);
23074 else if (attr->form == DW_FORM_ref_sig8)
23075 die = follow_die_sig (src_die, attr, ref_cu);
23076 else
23077 {
23078 dump_die_for_error (src_die);
23079 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23080 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23081 }
23082
23083 return die;
23084 }
23085
23086 /* Follow reference OFFSET.
23087 On entry *REF_CU is the CU of the source die referencing OFFSET.
23088 On exit *REF_CU is the CU of the result.
23089 Returns NULL if OFFSET is invalid. */
23090
23091 static struct die_info *
23092 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23093 struct dwarf2_cu **ref_cu)
23094 {
23095 struct die_info temp_die;
23096 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23097 struct dwarf2_per_objfile *dwarf2_per_objfile
23098 = cu->per_cu->dwarf2_per_objfile;
23099
23100 gdb_assert (cu->per_cu != NULL);
23101
23102 target_cu = cu;
23103
23104 if (cu->per_cu->is_debug_types)
23105 {
23106 /* .debug_types CUs cannot reference anything outside their CU.
23107 If they need to, they have to reference a signatured type via
23108 DW_FORM_ref_sig8. */
23109 if (!offset_in_cu_p (&cu->header, sect_off))
23110 return NULL;
23111 }
23112 else if (offset_in_dwz != cu->per_cu->is_dwz
23113 || !offset_in_cu_p (&cu->header, sect_off))
23114 {
23115 struct dwarf2_per_cu_data *per_cu;
23116
23117 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23118 dwarf2_per_objfile);
23119
23120 /* If necessary, add it to the queue and load its DIEs. */
23121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23122 load_full_comp_unit (per_cu, false, cu->language);
23123
23124 target_cu = per_cu->cu;
23125 }
23126 else if (cu->dies == NULL)
23127 {
23128 /* We're loading full DIEs during partial symbol reading. */
23129 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23130 load_full_comp_unit (cu->per_cu, false, language_minimal);
23131 }
23132
23133 *ref_cu = target_cu;
23134 temp_die.sect_off = sect_off;
23135
23136 if (target_cu != cu)
23137 target_cu->ancestor = cu;
23138
23139 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23140 &temp_die,
23141 to_underlying (sect_off));
23142 }
23143
23144 /* Follow reference attribute ATTR of SRC_DIE.
23145 On entry *REF_CU is the CU of SRC_DIE.
23146 On exit *REF_CU is the CU of the result. */
23147
23148 static struct die_info *
23149 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23150 struct dwarf2_cu **ref_cu)
23151 {
23152 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23153 struct dwarf2_cu *cu = *ref_cu;
23154 struct die_info *die;
23155
23156 die = follow_die_offset (sect_off,
23157 (attr->form == DW_FORM_GNU_ref_alt
23158 || cu->per_cu->is_dwz),
23159 ref_cu);
23160 if (!die)
23161 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23162 "at %s [in module %s]"),
23163 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23164 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23165
23166 return die;
23167 }
23168
23169 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23170 Returned value is intended for DW_OP_call*. Returned
23171 dwarf2_locexpr_baton->data has lifetime of
23172 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23173
23174 struct dwarf2_locexpr_baton
23175 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23176 struct dwarf2_per_cu_data *per_cu,
23177 CORE_ADDR (*get_frame_pc) (void *baton),
23178 void *baton, bool resolve_abstract_p)
23179 {
23180 struct dwarf2_cu *cu;
23181 struct die_info *die;
23182 struct attribute *attr;
23183 struct dwarf2_locexpr_baton retval;
23184 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23185 struct objfile *objfile = dwarf2_per_objfile->objfile;
23186
23187 if (per_cu->cu == NULL)
23188 load_cu (per_cu, false);
23189 cu = per_cu->cu;
23190 if (cu == NULL)
23191 {
23192 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23193 Instead just throw an error, not much else we can do. */
23194 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23195 sect_offset_str (sect_off), objfile_name (objfile));
23196 }
23197
23198 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23199 if (!die)
23200 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23201 sect_offset_str (sect_off), objfile_name (objfile));
23202
23203 attr = dwarf2_attr (die, DW_AT_location, cu);
23204 if (!attr && resolve_abstract_p
23205 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23206 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23207 {
23208 CORE_ADDR pc = (*get_frame_pc) (baton);
23209
23210 for (const auto &cand_off
23211 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23212 {
23213 struct dwarf2_cu *cand_cu = cu;
23214 struct die_info *cand
23215 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23216 if (!cand
23217 || !cand->parent
23218 || cand->parent->tag != DW_TAG_subprogram)
23219 continue;
23220
23221 CORE_ADDR pc_low, pc_high;
23222 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23223 if (pc_low == ((CORE_ADDR) -1)
23224 || !(pc_low <= pc && pc < pc_high))
23225 continue;
23226
23227 die = cand;
23228 attr = dwarf2_attr (die, DW_AT_location, cu);
23229 break;
23230 }
23231 }
23232
23233 if (!attr)
23234 {
23235 /* DWARF: "If there is no such attribute, then there is no effect.".
23236 DATA is ignored if SIZE is 0. */
23237
23238 retval.data = NULL;
23239 retval.size = 0;
23240 }
23241 else if (attr_form_is_section_offset (attr))
23242 {
23243 struct dwarf2_loclist_baton loclist_baton;
23244 CORE_ADDR pc = (*get_frame_pc) (baton);
23245 size_t size;
23246
23247 fill_in_loclist_baton (cu, &loclist_baton, attr);
23248
23249 retval.data = dwarf2_find_location_expression (&loclist_baton,
23250 &size, pc);
23251 retval.size = size;
23252 }
23253 else
23254 {
23255 if (!attr_form_is_block (attr))
23256 error (_("Dwarf Error: DIE at %s referenced in module %s "
23257 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23258 sect_offset_str (sect_off), objfile_name (objfile));
23259
23260 retval.data = DW_BLOCK (attr)->data;
23261 retval.size = DW_BLOCK (attr)->size;
23262 }
23263 retval.per_cu = cu->per_cu;
23264
23265 age_cached_comp_units (dwarf2_per_objfile);
23266
23267 return retval;
23268 }
23269
23270 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23271 offset. */
23272
23273 struct dwarf2_locexpr_baton
23274 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23275 struct dwarf2_per_cu_data *per_cu,
23276 CORE_ADDR (*get_frame_pc) (void *baton),
23277 void *baton)
23278 {
23279 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23280
23281 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23282 }
23283
23284 /* Write a constant of a given type as target-ordered bytes into
23285 OBSTACK. */
23286
23287 static const gdb_byte *
23288 write_constant_as_bytes (struct obstack *obstack,
23289 enum bfd_endian byte_order,
23290 struct type *type,
23291 ULONGEST value,
23292 LONGEST *len)
23293 {
23294 gdb_byte *result;
23295
23296 *len = TYPE_LENGTH (type);
23297 result = (gdb_byte *) obstack_alloc (obstack, *len);
23298 store_unsigned_integer (result, *len, byte_order, value);
23299
23300 return result;
23301 }
23302
23303 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23304 pointer to the constant bytes and set LEN to the length of the
23305 data. If memory is needed, allocate it on OBSTACK. If the DIE
23306 does not have a DW_AT_const_value, return NULL. */
23307
23308 const gdb_byte *
23309 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23310 struct dwarf2_per_cu_data *per_cu,
23311 struct obstack *obstack,
23312 LONGEST *len)
23313 {
23314 struct dwarf2_cu *cu;
23315 struct die_info *die;
23316 struct attribute *attr;
23317 const gdb_byte *result = NULL;
23318 struct type *type;
23319 LONGEST value;
23320 enum bfd_endian byte_order;
23321 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23322
23323 if (per_cu->cu == NULL)
23324 load_cu (per_cu, false);
23325 cu = per_cu->cu;
23326 if (cu == NULL)
23327 {
23328 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23329 Instead just throw an error, not much else we can do. */
23330 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23331 sect_offset_str (sect_off), objfile_name (objfile));
23332 }
23333
23334 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23335 if (!die)
23336 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23337 sect_offset_str (sect_off), objfile_name (objfile));
23338
23339 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23340 if (attr == NULL)
23341 return NULL;
23342
23343 byte_order = (bfd_big_endian (objfile->obfd)
23344 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23345
23346 switch (attr->form)
23347 {
23348 case DW_FORM_addr:
23349 case DW_FORM_addrx:
23350 case DW_FORM_GNU_addr_index:
23351 {
23352 gdb_byte *tem;
23353
23354 *len = cu->header.addr_size;
23355 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23356 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23357 result = tem;
23358 }
23359 break;
23360 case DW_FORM_string:
23361 case DW_FORM_strp:
23362 case DW_FORM_strx:
23363 case DW_FORM_GNU_str_index:
23364 case DW_FORM_GNU_strp_alt:
23365 /* DW_STRING is already allocated on the objfile obstack, point
23366 directly to it. */
23367 result = (const gdb_byte *) DW_STRING (attr);
23368 *len = strlen (DW_STRING (attr));
23369 break;
23370 case DW_FORM_block1:
23371 case DW_FORM_block2:
23372 case DW_FORM_block4:
23373 case DW_FORM_block:
23374 case DW_FORM_exprloc:
23375 case DW_FORM_data16:
23376 result = DW_BLOCK (attr)->data;
23377 *len = DW_BLOCK (attr)->size;
23378 break;
23379
23380 /* The DW_AT_const_value attributes are supposed to carry the
23381 symbol's value "represented as it would be on the target
23382 architecture." By the time we get here, it's already been
23383 converted to host endianness, so we just need to sign- or
23384 zero-extend it as appropriate. */
23385 case DW_FORM_data1:
23386 type = die_type (die, cu);
23387 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23388 if (result == NULL)
23389 result = write_constant_as_bytes (obstack, byte_order,
23390 type, value, len);
23391 break;
23392 case DW_FORM_data2:
23393 type = die_type (die, cu);
23394 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23395 if (result == NULL)
23396 result = write_constant_as_bytes (obstack, byte_order,
23397 type, value, len);
23398 break;
23399 case DW_FORM_data4:
23400 type = die_type (die, cu);
23401 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23402 if (result == NULL)
23403 result = write_constant_as_bytes (obstack, byte_order,
23404 type, value, len);
23405 break;
23406 case DW_FORM_data8:
23407 type = die_type (die, cu);
23408 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23409 if (result == NULL)
23410 result = write_constant_as_bytes (obstack, byte_order,
23411 type, value, len);
23412 break;
23413
23414 case DW_FORM_sdata:
23415 case DW_FORM_implicit_const:
23416 type = die_type (die, cu);
23417 result = write_constant_as_bytes (obstack, byte_order,
23418 type, DW_SND (attr), len);
23419 break;
23420
23421 case DW_FORM_udata:
23422 type = die_type (die, cu);
23423 result = write_constant_as_bytes (obstack, byte_order,
23424 type, DW_UNSND (attr), len);
23425 break;
23426
23427 default:
23428 complaint (_("unsupported const value attribute form: '%s'"),
23429 dwarf_form_name (attr->form));
23430 break;
23431 }
23432
23433 return result;
23434 }
23435
23436 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23437 valid type for this die is found. */
23438
23439 struct type *
23440 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23441 struct dwarf2_per_cu_data *per_cu)
23442 {
23443 struct dwarf2_cu *cu;
23444 struct die_info *die;
23445
23446 if (per_cu->cu == NULL)
23447 load_cu (per_cu, false);
23448 cu = per_cu->cu;
23449 if (!cu)
23450 return NULL;
23451
23452 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23453 if (!die)
23454 return NULL;
23455
23456 return die_type (die, cu);
23457 }
23458
23459 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23460 PER_CU. */
23461
23462 struct type *
23463 dwarf2_get_die_type (cu_offset die_offset,
23464 struct dwarf2_per_cu_data *per_cu)
23465 {
23466 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23467 return get_die_type_at_offset (die_offset_sect, per_cu);
23468 }
23469
23470 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23471 On entry *REF_CU is the CU of SRC_DIE.
23472 On exit *REF_CU is the CU of the result.
23473 Returns NULL if the referenced DIE isn't found. */
23474
23475 static struct die_info *
23476 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23477 struct dwarf2_cu **ref_cu)
23478 {
23479 struct die_info temp_die;
23480 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23481 struct die_info *die;
23482
23483 /* While it might be nice to assert sig_type->type == NULL here,
23484 we can get here for DW_AT_imported_declaration where we need
23485 the DIE not the type. */
23486
23487 /* If necessary, add it to the queue and load its DIEs. */
23488
23489 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23490 read_signatured_type (sig_type);
23491
23492 sig_cu = sig_type->per_cu.cu;
23493 gdb_assert (sig_cu != NULL);
23494 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23495 temp_die.sect_off = sig_type->type_offset_in_section;
23496 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23497 to_underlying (temp_die.sect_off));
23498 if (die)
23499 {
23500 struct dwarf2_per_objfile *dwarf2_per_objfile
23501 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23502
23503 /* For .gdb_index version 7 keep track of included TUs.
23504 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23505 if (dwarf2_per_objfile->index_table != NULL
23506 && dwarf2_per_objfile->index_table->version <= 7)
23507 {
23508 VEC_safe_push (dwarf2_per_cu_ptr,
23509 (*ref_cu)->per_cu->imported_symtabs,
23510 sig_cu->per_cu);
23511 }
23512
23513 *ref_cu = sig_cu;
23514 if (sig_cu != cu)
23515 sig_cu->ancestor = cu;
23516
23517 return die;
23518 }
23519
23520 return NULL;
23521 }
23522
23523 /* Follow signatured type referenced by ATTR in SRC_DIE.
23524 On entry *REF_CU is the CU of SRC_DIE.
23525 On exit *REF_CU is the CU of the result.
23526 The result is the DIE of the type.
23527 If the referenced type cannot be found an error is thrown. */
23528
23529 static struct die_info *
23530 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23531 struct dwarf2_cu **ref_cu)
23532 {
23533 ULONGEST signature = DW_SIGNATURE (attr);
23534 struct signatured_type *sig_type;
23535 struct die_info *die;
23536
23537 gdb_assert (attr->form == DW_FORM_ref_sig8);
23538
23539 sig_type = lookup_signatured_type (*ref_cu, signature);
23540 /* sig_type will be NULL if the signatured type is missing from
23541 the debug info. */
23542 if (sig_type == NULL)
23543 {
23544 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23545 " from DIE at %s [in module %s]"),
23546 hex_string (signature), sect_offset_str (src_die->sect_off),
23547 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23548 }
23549
23550 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23551 if (die == NULL)
23552 {
23553 dump_die_for_error (src_die);
23554 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23555 " from DIE at %s [in module %s]"),
23556 hex_string (signature), sect_offset_str (src_die->sect_off),
23557 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23558 }
23559
23560 return die;
23561 }
23562
23563 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23564 reading in and processing the type unit if necessary. */
23565
23566 static struct type *
23567 get_signatured_type (struct die_info *die, ULONGEST signature,
23568 struct dwarf2_cu *cu)
23569 {
23570 struct dwarf2_per_objfile *dwarf2_per_objfile
23571 = cu->per_cu->dwarf2_per_objfile;
23572 struct signatured_type *sig_type;
23573 struct dwarf2_cu *type_cu;
23574 struct die_info *type_die;
23575 struct type *type;
23576
23577 sig_type = lookup_signatured_type (cu, signature);
23578 /* sig_type will be NULL if the signatured type is missing from
23579 the debug info. */
23580 if (sig_type == NULL)
23581 {
23582 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23583 " from DIE at %s [in module %s]"),
23584 hex_string (signature), sect_offset_str (die->sect_off),
23585 objfile_name (dwarf2_per_objfile->objfile));
23586 return build_error_marker_type (cu, die);
23587 }
23588
23589 /* If we already know the type we're done. */
23590 if (sig_type->type != NULL)
23591 return sig_type->type;
23592
23593 type_cu = cu;
23594 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23595 if (type_die != NULL)
23596 {
23597 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23598 is created. This is important, for example, because for c++ classes
23599 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23600 type = read_type_die (type_die, type_cu);
23601 if (type == NULL)
23602 {
23603 complaint (_("Dwarf Error: Cannot build signatured type %s"
23604 " referenced from DIE at %s [in module %s]"),
23605 hex_string (signature), sect_offset_str (die->sect_off),
23606 objfile_name (dwarf2_per_objfile->objfile));
23607 type = build_error_marker_type (cu, die);
23608 }
23609 }
23610 else
23611 {
23612 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23613 " from DIE at %s [in module %s]"),
23614 hex_string (signature), sect_offset_str (die->sect_off),
23615 objfile_name (dwarf2_per_objfile->objfile));
23616 type = build_error_marker_type (cu, die);
23617 }
23618 sig_type->type = type;
23619
23620 return type;
23621 }
23622
23623 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23624 reading in and processing the type unit if necessary. */
23625
23626 static struct type *
23627 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23628 struct dwarf2_cu *cu) /* ARI: editCase function */
23629 {
23630 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23631 if (attr_form_is_ref (attr))
23632 {
23633 struct dwarf2_cu *type_cu = cu;
23634 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23635
23636 return read_type_die (type_die, type_cu);
23637 }
23638 else if (attr->form == DW_FORM_ref_sig8)
23639 {
23640 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23641 }
23642 else
23643 {
23644 struct dwarf2_per_objfile *dwarf2_per_objfile
23645 = cu->per_cu->dwarf2_per_objfile;
23646
23647 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23648 " at %s [in module %s]"),
23649 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23650 objfile_name (dwarf2_per_objfile->objfile));
23651 return build_error_marker_type (cu, die);
23652 }
23653 }
23654
23655 /* Load the DIEs associated with type unit PER_CU into memory. */
23656
23657 static void
23658 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23659 {
23660 struct signatured_type *sig_type;
23661
23662 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23663 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23664
23665 /* We have the per_cu, but we need the signatured_type.
23666 Fortunately this is an easy translation. */
23667 gdb_assert (per_cu->is_debug_types);
23668 sig_type = (struct signatured_type *) per_cu;
23669
23670 gdb_assert (per_cu->cu == NULL);
23671
23672 read_signatured_type (sig_type);
23673
23674 gdb_assert (per_cu->cu != NULL);
23675 }
23676
23677 /* die_reader_func for read_signatured_type.
23678 This is identical to load_full_comp_unit_reader,
23679 but is kept separate for now. */
23680
23681 static void
23682 read_signatured_type_reader (const struct die_reader_specs *reader,
23683 const gdb_byte *info_ptr,
23684 struct die_info *comp_unit_die,
23685 int has_children,
23686 void *data)
23687 {
23688 struct dwarf2_cu *cu = reader->cu;
23689
23690 gdb_assert (cu->die_hash == NULL);
23691 cu->die_hash =
23692 htab_create_alloc_ex (cu->header.length / 12,
23693 die_hash,
23694 die_eq,
23695 NULL,
23696 &cu->comp_unit_obstack,
23697 hashtab_obstack_allocate,
23698 dummy_obstack_deallocate);
23699
23700 if (has_children)
23701 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23702 &info_ptr, comp_unit_die);
23703 cu->dies = comp_unit_die;
23704 /* comp_unit_die is not stored in die_hash, no need. */
23705
23706 /* We try not to read any attributes in this function, because not
23707 all CUs needed for references have been loaded yet, and symbol
23708 table processing isn't initialized. But we have to set the CU language,
23709 or we won't be able to build types correctly.
23710 Similarly, if we do not read the producer, we can not apply
23711 producer-specific interpretation. */
23712 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23713 }
23714
23715 /* Read in a signatured type and build its CU and DIEs.
23716 If the type is a stub for the real type in a DWO file,
23717 read in the real type from the DWO file as well. */
23718
23719 static void
23720 read_signatured_type (struct signatured_type *sig_type)
23721 {
23722 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23723
23724 gdb_assert (per_cu->is_debug_types);
23725 gdb_assert (per_cu->cu == NULL);
23726
23727 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23728 read_signatured_type_reader, NULL);
23729 sig_type->per_cu.tu_read = 1;
23730 }
23731
23732 /* Decode simple location descriptions.
23733 Given a pointer to a dwarf block that defines a location, compute
23734 the location and return the value.
23735
23736 NOTE drow/2003-11-18: This function is called in two situations
23737 now: for the address of static or global variables (partial symbols
23738 only) and for offsets into structures which are expected to be
23739 (more or less) constant. The partial symbol case should go away,
23740 and only the constant case should remain. That will let this
23741 function complain more accurately. A few special modes are allowed
23742 without complaint for global variables (for instance, global
23743 register values and thread-local values).
23744
23745 A location description containing no operations indicates that the
23746 object is optimized out. The return value is 0 for that case.
23747 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23748 callers will only want a very basic result and this can become a
23749 complaint.
23750
23751 Note that stack[0] is unused except as a default error return. */
23752
23753 static CORE_ADDR
23754 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23755 {
23756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23757 size_t i;
23758 size_t size = blk->size;
23759 const gdb_byte *data = blk->data;
23760 CORE_ADDR stack[64];
23761 int stacki;
23762 unsigned int bytes_read, unsnd;
23763 gdb_byte op;
23764
23765 i = 0;
23766 stacki = 0;
23767 stack[stacki] = 0;
23768 stack[++stacki] = 0;
23769
23770 while (i < size)
23771 {
23772 op = data[i++];
23773 switch (op)
23774 {
23775 case DW_OP_lit0:
23776 case DW_OP_lit1:
23777 case DW_OP_lit2:
23778 case DW_OP_lit3:
23779 case DW_OP_lit4:
23780 case DW_OP_lit5:
23781 case DW_OP_lit6:
23782 case DW_OP_lit7:
23783 case DW_OP_lit8:
23784 case DW_OP_lit9:
23785 case DW_OP_lit10:
23786 case DW_OP_lit11:
23787 case DW_OP_lit12:
23788 case DW_OP_lit13:
23789 case DW_OP_lit14:
23790 case DW_OP_lit15:
23791 case DW_OP_lit16:
23792 case DW_OP_lit17:
23793 case DW_OP_lit18:
23794 case DW_OP_lit19:
23795 case DW_OP_lit20:
23796 case DW_OP_lit21:
23797 case DW_OP_lit22:
23798 case DW_OP_lit23:
23799 case DW_OP_lit24:
23800 case DW_OP_lit25:
23801 case DW_OP_lit26:
23802 case DW_OP_lit27:
23803 case DW_OP_lit28:
23804 case DW_OP_lit29:
23805 case DW_OP_lit30:
23806 case DW_OP_lit31:
23807 stack[++stacki] = op - DW_OP_lit0;
23808 break;
23809
23810 case DW_OP_reg0:
23811 case DW_OP_reg1:
23812 case DW_OP_reg2:
23813 case DW_OP_reg3:
23814 case DW_OP_reg4:
23815 case DW_OP_reg5:
23816 case DW_OP_reg6:
23817 case DW_OP_reg7:
23818 case DW_OP_reg8:
23819 case DW_OP_reg9:
23820 case DW_OP_reg10:
23821 case DW_OP_reg11:
23822 case DW_OP_reg12:
23823 case DW_OP_reg13:
23824 case DW_OP_reg14:
23825 case DW_OP_reg15:
23826 case DW_OP_reg16:
23827 case DW_OP_reg17:
23828 case DW_OP_reg18:
23829 case DW_OP_reg19:
23830 case DW_OP_reg20:
23831 case DW_OP_reg21:
23832 case DW_OP_reg22:
23833 case DW_OP_reg23:
23834 case DW_OP_reg24:
23835 case DW_OP_reg25:
23836 case DW_OP_reg26:
23837 case DW_OP_reg27:
23838 case DW_OP_reg28:
23839 case DW_OP_reg29:
23840 case DW_OP_reg30:
23841 case DW_OP_reg31:
23842 stack[++stacki] = op - DW_OP_reg0;
23843 if (i < size)
23844 dwarf2_complex_location_expr_complaint ();
23845 break;
23846
23847 case DW_OP_regx:
23848 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23849 i += bytes_read;
23850 stack[++stacki] = unsnd;
23851 if (i < size)
23852 dwarf2_complex_location_expr_complaint ();
23853 break;
23854
23855 case DW_OP_addr:
23856 stack[++stacki] = read_address (objfile->obfd, &data[i],
23857 cu, &bytes_read);
23858 i += bytes_read;
23859 break;
23860
23861 case DW_OP_const1u:
23862 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23863 i += 1;
23864 break;
23865
23866 case DW_OP_const1s:
23867 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23868 i += 1;
23869 break;
23870
23871 case DW_OP_const2u:
23872 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23873 i += 2;
23874 break;
23875
23876 case DW_OP_const2s:
23877 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23878 i += 2;
23879 break;
23880
23881 case DW_OP_const4u:
23882 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23883 i += 4;
23884 break;
23885
23886 case DW_OP_const4s:
23887 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23888 i += 4;
23889 break;
23890
23891 case DW_OP_const8u:
23892 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23893 i += 8;
23894 break;
23895
23896 case DW_OP_constu:
23897 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23898 &bytes_read);
23899 i += bytes_read;
23900 break;
23901
23902 case DW_OP_consts:
23903 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23904 i += bytes_read;
23905 break;
23906
23907 case DW_OP_dup:
23908 stack[stacki + 1] = stack[stacki];
23909 stacki++;
23910 break;
23911
23912 case DW_OP_plus:
23913 stack[stacki - 1] += stack[stacki];
23914 stacki--;
23915 break;
23916
23917 case DW_OP_plus_uconst:
23918 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23919 &bytes_read);
23920 i += bytes_read;
23921 break;
23922
23923 case DW_OP_minus:
23924 stack[stacki - 1] -= stack[stacki];
23925 stacki--;
23926 break;
23927
23928 case DW_OP_deref:
23929 /* If we're not the last op, then we definitely can't encode
23930 this using GDB's address_class enum. This is valid for partial
23931 global symbols, although the variable's address will be bogus
23932 in the psymtab. */
23933 if (i < size)
23934 dwarf2_complex_location_expr_complaint ();
23935 break;
23936
23937 case DW_OP_GNU_push_tls_address:
23938 case DW_OP_form_tls_address:
23939 /* The top of the stack has the offset from the beginning
23940 of the thread control block at which the variable is located. */
23941 /* Nothing should follow this operator, so the top of stack would
23942 be returned. */
23943 /* This is valid for partial global symbols, but the variable's
23944 address will be bogus in the psymtab. Make it always at least
23945 non-zero to not look as a variable garbage collected by linker
23946 which have DW_OP_addr 0. */
23947 if (i < size)
23948 dwarf2_complex_location_expr_complaint ();
23949 stack[stacki]++;
23950 break;
23951
23952 case DW_OP_GNU_uninit:
23953 break;
23954
23955 case DW_OP_addrx:
23956 case DW_OP_GNU_addr_index:
23957 case DW_OP_GNU_const_index:
23958 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23959 &bytes_read);
23960 i += bytes_read;
23961 break;
23962
23963 default:
23964 {
23965 const char *name = get_DW_OP_name (op);
23966
23967 if (name)
23968 complaint (_("unsupported stack op: '%s'"),
23969 name);
23970 else
23971 complaint (_("unsupported stack op: '%02x'"),
23972 op);
23973 }
23974
23975 return (stack[stacki]);
23976 }
23977
23978 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23979 outside of the allocated space. Also enforce minimum>0. */
23980 if (stacki >= ARRAY_SIZE (stack) - 1)
23981 {
23982 complaint (_("location description stack overflow"));
23983 return 0;
23984 }
23985
23986 if (stacki <= 0)
23987 {
23988 complaint (_("location description stack underflow"));
23989 return 0;
23990 }
23991 }
23992 return (stack[stacki]);
23993 }
23994
23995 /* memory allocation interface */
23996
23997 static struct dwarf_block *
23998 dwarf_alloc_block (struct dwarf2_cu *cu)
23999 {
24000 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24001 }
24002
24003 static struct die_info *
24004 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24005 {
24006 struct die_info *die;
24007 size_t size = sizeof (struct die_info);
24008
24009 if (num_attrs > 1)
24010 size += (num_attrs - 1) * sizeof (struct attribute);
24011
24012 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24013 memset (die, 0, sizeof (struct die_info));
24014 return (die);
24015 }
24016
24017 \f
24018 /* Macro support. */
24019
24020 /* Return file name relative to the compilation directory of file number I in
24021 *LH's file name table. The result is allocated using xmalloc; the caller is
24022 responsible for freeing it. */
24023
24024 static char *
24025 file_file_name (int file, struct line_header *lh)
24026 {
24027 /* Is the file number a valid index into the line header's file name
24028 table? Remember that file numbers start with one, not zero. */
24029 if (1 <= file && file <= lh->file_names.size ())
24030 {
24031 const file_entry &fe = lh->file_names[file - 1];
24032
24033 if (!IS_ABSOLUTE_PATH (fe.name))
24034 {
24035 const char *dir = fe.include_dir (lh);
24036 if (dir != NULL)
24037 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24038 }
24039 return xstrdup (fe.name);
24040 }
24041 else
24042 {
24043 /* The compiler produced a bogus file number. We can at least
24044 record the macro definitions made in the file, even if we
24045 won't be able to find the file by name. */
24046 char fake_name[80];
24047
24048 xsnprintf (fake_name, sizeof (fake_name),
24049 "<bad macro file number %d>", file);
24050
24051 complaint (_("bad file number in macro information (%d)"),
24052 file);
24053
24054 return xstrdup (fake_name);
24055 }
24056 }
24057
24058 /* Return the full name of file number I in *LH's file name table.
24059 Use COMP_DIR as the name of the current directory of the
24060 compilation. The result is allocated using xmalloc; the caller is
24061 responsible for freeing it. */
24062 static char *
24063 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24064 {
24065 /* Is the file number a valid index into the line header's file name
24066 table? Remember that file numbers start with one, not zero. */
24067 if (1 <= file && file <= lh->file_names.size ())
24068 {
24069 char *relative = file_file_name (file, lh);
24070
24071 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24072 return relative;
24073 return reconcat (relative, comp_dir, SLASH_STRING,
24074 relative, (char *) NULL);
24075 }
24076 else
24077 return file_file_name (file, lh);
24078 }
24079
24080
24081 static struct macro_source_file *
24082 macro_start_file (struct dwarf2_cu *cu,
24083 int file, int line,
24084 struct macro_source_file *current_file,
24085 struct line_header *lh)
24086 {
24087 /* File name relative to the compilation directory of this source file. */
24088 char *file_name = file_file_name (file, lh);
24089
24090 if (! current_file)
24091 {
24092 /* Note: We don't create a macro table for this compilation unit
24093 at all until we actually get a filename. */
24094 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24095
24096 /* If we have no current file, then this must be the start_file
24097 directive for the compilation unit's main source file. */
24098 current_file = macro_set_main (macro_table, file_name);
24099 macro_define_special (macro_table);
24100 }
24101 else
24102 current_file = macro_include (current_file, line, file_name);
24103
24104 xfree (file_name);
24105
24106 return current_file;
24107 }
24108
24109 static const char *
24110 consume_improper_spaces (const char *p, const char *body)
24111 {
24112 if (*p == ' ')
24113 {
24114 complaint (_("macro definition contains spaces "
24115 "in formal argument list:\n`%s'"),
24116 body);
24117
24118 while (*p == ' ')
24119 p++;
24120 }
24121
24122 return p;
24123 }
24124
24125
24126 static void
24127 parse_macro_definition (struct macro_source_file *file, int line,
24128 const char *body)
24129 {
24130 const char *p;
24131
24132 /* The body string takes one of two forms. For object-like macro
24133 definitions, it should be:
24134
24135 <macro name> " " <definition>
24136
24137 For function-like macro definitions, it should be:
24138
24139 <macro name> "() " <definition>
24140 or
24141 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24142
24143 Spaces may appear only where explicitly indicated, and in the
24144 <definition>.
24145
24146 The Dwarf 2 spec says that an object-like macro's name is always
24147 followed by a space, but versions of GCC around March 2002 omit
24148 the space when the macro's definition is the empty string.
24149
24150 The Dwarf 2 spec says that there should be no spaces between the
24151 formal arguments in a function-like macro's formal argument list,
24152 but versions of GCC around March 2002 include spaces after the
24153 commas. */
24154
24155
24156 /* Find the extent of the macro name. The macro name is terminated
24157 by either a space or null character (for an object-like macro) or
24158 an opening paren (for a function-like macro). */
24159 for (p = body; *p; p++)
24160 if (*p == ' ' || *p == '(')
24161 break;
24162
24163 if (*p == ' ' || *p == '\0')
24164 {
24165 /* It's an object-like macro. */
24166 int name_len = p - body;
24167 char *name = savestring (body, name_len);
24168 const char *replacement;
24169
24170 if (*p == ' ')
24171 replacement = body + name_len + 1;
24172 else
24173 {
24174 dwarf2_macro_malformed_definition_complaint (body);
24175 replacement = body + name_len;
24176 }
24177
24178 macro_define_object (file, line, name, replacement);
24179
24180 xfree (name);
24181 }
24182 else if (*p == '(')
24183 {
24184 /* It's a function-like macro. */
24185 char *name = savestring (body, p - body);
24186 int argc = 0;
24187 int argv_size = 1;
24188 char **argv = XNEWVEC (char *, argv_size);
24189
24190 p++;
24191
24192 p = consume_improper_spaces (p, body);
24193
24194 /* Parse the formal argument list. */
24195 while (*p && *p != ')')
24196 {
24197 /* Find the extent of the current argument name. */
24198 const char *arg_start = p;
24199
24200 while (*p && *p != ',' && *p != ')' && *p != ' ')
24201 p++;
24202
24203 if (! *p || p == arg_start)
24204 dwarf2_macro_malformed_definition_complaint (body);
24205 else
24206 {
24207 /* Make sure argv has room for the new argument. */
24208 if (argc >= argv_size)
24209 {
24210 argv_size *= 2;
24211 argv = XRESIZEVEC (char *, argv, argv_size);
24212 }
24213
24214 argv[argc++] = savestring (arg_start, p - arg_start);
24215 }
24216
24217 p = consume_improper_spaces (p, body);
24218
24219 /* Consume the comma, if present. */
24220 if (*p == ',')
24221 {
24222 p++;
24223
24224 p = consume_improper_spaces (p, body);
24225 }
24226 }
24227
24228 if (*p == ')')
24229 {
24230 p++;
24231
24232 if (*p == ' ')
24233 /* Perfectly formed definition, no complaints. */
24234 macro_define_function (file, line, name,
24235 argc, (const char **) argv,
24236 p + 1);
24237 else if (*p == '\0')
24238 {
24239 /* Complain, but do define it. */
24240 dwarf2_macro_malformed_definition_complaint (body);
24241 macro_define_function (file, line, name,
24242 argc, (const char **) argv,
24243 p);
24244 }
24245 else
24246 /* Just complain. */
24247 dwarf2_macro_malformed_definition_complaint (body);
24248 }
24249 else
24250 /* Just complain. */
24251 dwarf2_macro_malformed_definition_complaint (body);
24252
24253 xfree (name);
24254 {
24255 int i;
24256
24257 for (i = 0; i < argc; i++)
24258 xfree (argv[i]);
24259 }
24260 xfree (argv);
24261 }
24262 else
24263 dwarf2_macro_malformed_definition_complaint (body);
24264 }
24265
24266 /* Skip some bytes from BYTES according to the form given in FORM.
24267 Returns the new pointer. */
24268
24269 static const gdb_byte *
24270 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24271 enum dwarf_form form,
24272 unsigned int offset_size,
24273 struct dwarf2_section_info *section)
24274 {
24275 unsigned int bytes_read;
24276
24277 switch (form)
24278 {
24279 case DW_FORM_data1:
24280 case DW_FORM_flag:
24281 ++bytes;
24282 break;
24283
24284 case DW_FORM_data2:
24285 bytes += 2;
24286 break;
24287
24288 case DW_FORM_data4:
24289 bytes += 4;
24290 break;
24291
24292 case DW_FORM_data8:
24293 bytes += 8;
24294 break;
24295
24296 case DW_FORM_data16:
24297 bytes += 16;
24298 break;
24299
24300 case DW_FORM_string:
24301 read_direct_string (abfd, bytes, &bytes_read);
24302 bytes += bytes_read;
24303 break;
24304
24305 case DW_FORM_sec_offset:
24306 case DW_FORM_strp:
24307 case DW_FORM_GNU_strp_alt:
24308 bytes += offset_size;
24309 break;
24310
24311 case DW_FORM_block:
24312 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24313 bytes += bytes_read;
24314 break;
24315
24316 case DW_FORM_block1:
24317 bytes += 1 + read_1_byte (abfd, bytes);
24318 break;
24319 case DW_FORM_block2:
24320 bytes += 2 + read_2_bytes (abfd, bytes);
24321 break;
24322 case DW_FORM_block4:
24323 bytes += 4 + read_4_bytes (abfd, bytes);
24324 break;
24325
24326 case DW_FORM_addrx:
24327 case DW_FORM_sdata:
24328 case DW_FORM_strx:
24329 case DW_FORM_udata:
24330 case DW_FORM_GNU_addr_index:
24331 case DW_FORM_GNU_str_index:
24332 bytes = gdb_skip_leb128 (bytes, buffer_end);
24333 if (bytes == NULL)
24334 {
24335 dwarf2_section_buffer_overflow_complaint (section);
24336 return NULL;
24337 }
24338 break;
24339
24340 case DW_FORM_implicit_const:
24341 break;
24342
24343 default:
24344 {
24345 complaint (_("invalid form 0x%x in `%s'"),
24346 form, get_section_name (section));
24347 return NULL;
24348 }
24349 }
24350
24351 return bytes;
24352 }
24353
24354 /* A helper for dwarf_decode_macros that handles skipping an unknown
24355 opcode. Returns an updated pointer to the macro data buffer; or,
24356 on error, issues a complaint and returns NULL. */
24357
24358 static const gdb_byte *
24359 skip_unknown_opcode (unsigned int opcode,
24360 const gdb_byte **opcode_definitions,
24361 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24362 bfd *abfd,
24363 unsigned int offset_size,
24364 struct dwarf2_section_info *section)
24365 {
24366 unsigned int bytes_read, i;
24367 unsigned long arg;
24368 const gdb_byte *defn;
24369
24370 if (opcode_definitions[opcode] == NULL)
24371 {
24372 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24373 opcode);
24374 return NULL;
24375 }
24376
24377 defn = opcode_definitions[opcode];
24378 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24379 defn += bytes_read;
24380
24381 for (i = 0; i < arg; ++i)
24382 {
24383 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24384 (enum dwarf_form) defn[i], offset_size,
24385 section);
24386 if (mac_ptr == NULL)
24387 {
24388 /* skip_form_bytes already issued the complaint. */
24389 return NULL;
24390 }
24391 }
24392
24393 return mac_ptr;
24394 }
24395
24396 /* A helper function which parses the header of a macro section.
24397 If the macro section is the extended (for now called "GNU") type,
24398 then this updates *OFFSET_SIZE. Returns a pointer to just after
24399 the header, or issues a complaint and returns NULL on error. */
24400
24401 static const gdb_byte *
24402 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24403 bfd *abfd,
24404 const gdb_byte *mac_ptr,
24405 unsigned int *offset_size,
24406 int section_is_gnu)
24407 {
24408 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24409
24410 if (section_is_gnu)
24411 {
24412 unsigned int version, flags;
24413
24414 version = read_2_bytes (abfd, mac_ptr);
24415 if (version != 4 && version != 5)
24416 {
24417 complaint (_("unrecognized version `%d' in .debug_macro section"),
24418 version);
24419 return NULL;
24420 }
24421 mac_ptr += 2;
24422
24423 flags = read_1_byte (abfd, mac_ptr);
24424 ++mac_ptr;
24425 *offset_size = (flags & 1) ? 8 : 4;
24426
24427 if ((flags & 2) != 0)
24428 /* We don't need the line table offset. */
24429 mac_ptr += *offset_size;
24430
24431 /* Vendor opcode descriptions. */
24432 if ((flags & 4) != 0)
24433 {
24434 unsigned int i, count;
24435
24436 count = read_1_byte (abfd, mac_ptr);
24437 ++mac_ptr;
24438 for (i = 0; i < count; ++i)
24439 {
24440 unsigned int opcode, bytes_read;
24441 unsigned long arg;
24442
24443 opcode = read_1_byte (abfd, mac_ptr);
24444 ++mac_ptr;
24445 opcode_definitions[opcode] = mac_ptr;
24446 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24447 mac_ptr += bytes_read;
24448 mac_ptr += arg;
24449 }
24450 }
24451 }
24452
24453 return mac_ptr;
24454 }
24455
24456 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24457 including DW_MACRO_import. */
24458
24459 static void
24460 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24461 bfd *abfd,
24462 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24463 struct macro_source_file *current_file,
24464 struct line_header *lh,
24465 struct dwarf2_section_info *section,
24466 int section_is_gnu, int section_is_dwz,
24467 unsigned int offset_size,
24468 htab_t include_hash)
24469 {
24470 struct dwarf2_per_objfile *dwarf2_per_objfile
24471 = cu->per_cu->dwarf2_per_objfile;
24472 struct objfile *objfile = dwarf2_per_objfile->objfile;
24473 enum dwarf_macro_record_type macinfo_type;
24474 int at_commandline;
24475 const gdb_byte *opcode_definitions[256];
24476
24477 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24478 &offset_size, section_is_gnu);
24479 if (mac_ptr == NULL)
24480 {
24481 /* We already issued a complaint. */
24482 return;
24483 }
24484
24485 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24486 GDB is still reading the definitions from command line. First
24487 DW_MACINFO_start_file will need to be ignored as it was already executed
24488 to create CURRENT_FILE for the main source holding also the command line
24489 definitions. On first met DW_MACINFO_start_file this flag is reset to
24490 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24491
24492 at_commandline = 1;
24493
24494 do
24495 {
24496 /* Do we at least have room for a macinfo type byte? */
24497 if (mac_ptr >= mac_end)
24498 {
24499 dwarf2_section_buffer_overflow_complaint (section);
24500 break;
24501 }
24502
24503 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24504 mac_ptr++;
24505
24506 /* Note that we rely on the fact that the corresponding GNU and
24507 DWARF constants are the same. */
24508 DIAGNOSTIC_PUSH
24509 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24510 switch (macinfo_type)
24511 {
24512 /* A zero macinfo type indicates the end of the macro
24513 information. */
24514 case 0:
24515 break;
24516
24517 case DW_MACRO_define:
24518 case DW_MACRO_undef:
24519 case DW_MACRO_define_strp:
24520 case DW_MACRO_undef_strp:
24521 case DW_MACRO_define_sup:
24522 case DW_MACRO_undef_sup:
24523 {
24524 unsigned int bytes_read;
24525 int line;
24526 const char *body;
24527 int is_define;
24528
24529 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24530 mac_ptr += bytes_read;
24531
24532 if (macinfo_type == DW_MACRO_define
24533 || macinfo_type == DW_MACRO_undef)
24534 {
24535 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24536 mac_ptr += bytes_read;
24537 }
24538 else
24539 {
24540 LONGEST str_offset;
24541
24542 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24543 mac_ptr += offset_size;
24544
24545 if (macinfo_type == DW_MACRO_define_sup
24546 || macinfo_type == DW_MACRO_undef_sup
24547 || section_is_dwz)
24548 {
24549 struct dwz_file *dwz
24550 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24551
24552 body = read_indirect_string_from_dwz (objfile,
24553 dwz, str_offset);
24554 }
24555 else
24556 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24557 abfd, str_offset);
24558 }
24559
24560 is_define = (macinfo_type == DW_MACRO_define
24561 || macinfo_type == DW_MACRO_define_strp
24562 || macinfo_type == DW_MACRO_define_sup);
24563 if (! current_file)
24564 {
24565 /* DWARF violation as no main source is present. */
24566 complaint (_("debug info with no main source gives macro %s "
24567 "on line %d: %s"),
24568 is_define ? _("definition") : _("undefinition"),
24569 line, body);
24570 break;
24571 }
24572 if ((line == 0 && !at_commandline)
24573 || (line != 0 && at_commandline))
24574 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24575 at_commandline ? _("command-line") : _("in-file"),
24576 is_define ? _("definition") : _("undefinition"),
24577 line == 0 ? _("zero") : _("non-zero"), line, body);
24578
24579 if (body == NULL)
24580 {
24581 /* Fedora's rpm-build's "debugedit" binary
24582 corrupted .debug_macro sections.
24583
24584 For more info, see
24585 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24586 complaint (_("debug info gives %s invalid macro %s "
24587 "without body (corrupted?) at line %d "
24588 "on file %s"),
24589 at_commandline ? _("command-line") : _("in-file"),
24590 is_define ? _("definition") : _("undefinition"),
24591 line, current_file->filename);
24592 }
24593 else if (is_define)
24594 parse_macro_definition (current_file, line, body);
24595 else
24596 {
24597 gdb_assert (macinfo_type == DW_MACRO_undef
24598 || macinfo_type == DW_MACRO_undef_strp
24599 || macinfo_type == DW_MACRO_undef_sup);
24600 macro_undef (current_file, line, body);
24601 }
24602 }
24603 break;
24604
24605 case DW_MACRO_start_file:
24606 {
24607 unsigned int bytes_read;
24608 int line, file;
24609
24610 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24611 mac_ptr += bytes_read;
24612 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24613 mac_ptr += bytes_read;
24614
24615 if ((line == 0 && !at_commandline)
24616 || (line != 0 && at_commandline))
24617 complaint (_("debug info gives source %d included "
24618 "from %s at %s line %d"),
24619 file, at_commandline ? _("command-line") : _("file"),
24620 line == 0 ? _("zero") : _("non-zero"), line);
24621
24622 if (at_commandline)
24623 {
24624 /* This DW_MACRO_start_file was executed in the
24625 pass one. */
24626 at_commandline = 0;
24627 }
24628 else
24629 current_file = macro_start_file (cu, file, line, current_file,
24630 lh);
24631 }
24632 break;
24633
24634 case DW_MACRO_end_file:
24635 if (! current_file)
24636 complaint (_("macro debug info has an unmatched "
24637 "`close_file' directive"));
24638 else
24639 {
24640 current_file = current_file->included_by;
24641 if (! current_file)
24642 {
24643 enum dwarf_macro_record_type next_type;
24644
24645 /* GCC circa March 2002 doesn't produce the zero
24646 type byte marking the end of the compilation
24647 unit. Complain if it's not there, but exit no
24648 matter what. */
24649
24650 /* Do we at least have room for a macinfo type byte? */
24651 if (mac_ptr >= mac_end)
24652 {
24653 dwarf2_section_buffer_overflow_complaint (section);
24654 return;
24655 }
24656
24657 /* We don't increment mac_ptr here, so this is just
24658 a look-ahead. */
24659 next_type
24660 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24661 mac_ptr);
24662 if (next_type != 0)
24663 complaint (_("no terminating 0-type entry for "
24664 "macros in `.debug_macinfo' section"));
24665
24666 return;
24667 }
24668 }
24669 break;
24670
24671 case DW_MACRO_import:
24672 case DW_MACRO_import_sup:
24673 {
24674 LONGEST offset;
24675 void **slot;
24676 bfd *include_bfd = abfd;
24677 struct dwarf2_section_info *include_section = section;
24678 const gdb_byte *include_mac_end = mac_end;
24679 int is_dwz = section_is_dwz;
24680 const gdb_byte *new_mac_ptr;
24681
24682 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24683 mac_ptr += offset_size;
24684
24685 if (macinfo_type == DW_MACRO_import_sup)
24686 {
24687 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24688
24689 dwarf2_read_section (objfile, &dwz->macro);
24690
24691 include_section = &dwz->macro;
24692 include_bfd = get_section_bfd_owner (include_section);
24693 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24694 is_dwz = 1;
24695 }
24696
24697 new_mac_ptr = include_section->buffer + offset;
24698 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24699
24700 if (*slot != NULL)
24701 {
24702 /* This has actually happened; see
24703 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24704 complaint (_("recursive DW_MACRO_import in "
24705 ".debug_macro section"));
24706 }
24707 else
24708 {
24709 *slot = (void *) new_mac_ptr;
24710
24711 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24712 include_mac_end, current_file, lh,
24713 section, section_is_gnu, is_dwz,
24714 offset_size, include_hash);
24715
24716 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24717 }
24718 }
24719 break;
24720
24721 case DW_MACINFO_vendor_ext:
24722 if (!section_is_gnu)
24723 {
24724 unsigned int bytes_read;
24725
24726 /* This reads the constant, but since we don't recognize
24727 any vendor extensions, we ignore it. */
24728 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24729 mac_ptr += bytes_read;
24730 read_direct_string (abfd, mac_ptr, &bytes_read);
24731 mac_ptr += bytes_read;
24732
24733 /* We don't recognize any vendor extensions. */
24734 break;
24735 }
24736 /* FALLTHROUGH */
24737
24738 default:
24739 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24740 mac_ptr, mac_end, abfd, offset_size,
24741 section);
24742 if (mac_ptr == NULL)
24743 return;
24744 break;
24745 }
24746 DIAGNOSTIC_POP
24747 } while (macinfo_type != 0);
24748 }
24749
24750 static void
24751 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24752 int section_is_gnu)
24753 {
24754 struct dwarf2_per_objfile *dwarf2_per_objfile
24755 = cu->per_cu->dwarf2_per_objfile;
24756 struct objfile *objfile = dwarf2_per_objfile->objfile;
24757 struct line_header *lh = cu->line_header;
24758 bfd *abfd;
24759 const gdb_byte *mac_ptr, *mac_end;
24760 struct macro_source_file *current_file = 0;
24761 enum dwarf_macro_record_type macinfo_type;
24762 unsigned int offset_size = cu->header.offset_size;
24763 const gdb_byte *opcode_definitions[256];
24764 void **slot;
24765 struct dwarf2_section_info *section;
24766 const char *section_name;
24767
24768 if (cu->dwo_unit != NULL)
24769 {
24770 if (section_is_gnu)
24771 {
24772 section = &cu->dwo_unit->dwo_file->sections.macro;
24773 section_name = ".debug_macro.dwo";
24774 }
24775 else
24776 {
24777 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24778 section_name = ".debug_macinfo.dwo";
24779 }
24780 }
24781 else
24782 {
24783 if (section_is_gnu)
24784 {
24785 section = &dwarf2_per_objfile->macro;
24786 section_name = ".debug_macro";
24787 }
24788 else
24789 {
24790 section = &dwarf2_per_objfile->macinfo;
24791 section_name = ".debug_macinfo";
24792 }
24793 }
24794
24795 dwarf2_read_section (objfile, section);
24796 if (section->buffer == NULL)
24797 {
24798 complaint (_("missing %s section"), section_name);
24799 return;
24800 }
24801 abfd = get_section_bfd_owner (section);
24802
24803 /* First pass: Find the name of the base filename.
24804 This filename is needed in order to process all macros whose definition
24805 (or undefinition) comes from the command line. These macros are defined
24806 before the first DW_MACINFO_start_file entry, and yet still need to be
24807 associated to the base file.
24808
24809 To determine the base file name, we scan the macro definitions until we
24810 reach the first DW_MACINFO_start_file entry. We then initialize
24811 CURRENT_FILE accordingly so that any macro definition found before the
24812 first DW_MACINFO_start_file can still be associated to the base file. */
24813
24814 mac_ptr = section->buffer + offset;
24815 mac_end = section->buffer + section->size;
24816
24817 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24818 &offset_size, section_is_gnu);
24819 if (mac_ptr == NULL)
24820 {
24821 /* We already issued a complaint. */
24822 return;
24823 }
24824
24825 do
24826 {
24827 /* Do we at least have room for a macinfo type byte? */
24828 if (mac_ptr >= mac_end)
24829 {
24830 /* Complaint is printed during the second pass as GDB will probably
24831 stop the first pass earlier upon finding
24832 DW_MACINFO_start_file. */
24833 break;
24834 }
24835
24836 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24837 mac_ptr++;
24838
24839 /* Note that we rely on the fact that the corresponding GNU and
24840 DWARF constants are the same. */
24841 DIAGNOSTIC_PUSH
24842 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24843 switch (macinfo_type)
24844 {
24845 /* A zero macinfo type indicates the end of the macro
24846 information. */
24847 case 0:
24848 break;
24849
24850 case DW_MACRO_define:
24851 case DW_MACRO_undef:
24852 /* Only skip the data by MAC_PTR. */
24853 {
24854 unsigned int bytes_read;
24855
24856 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24857 mac_ptr += bytes_read;
24858 read_direct_string (abfd, mac_ptr, &bytes_read);
24859 mac_ptr += bytes_read;
24860 }
24861 break;
24862
24863 case DW_MACRO_start_file:
24864 {
24865 unsigned int bytes_read;
24866 int line, file;
24867
24868 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24869 mac_ptr += bytes_read;
24870 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24871 mac_ptr += bytes_read;
24872
24873 current_file = macro_start_file (cu, file, line, current_file, lh);
24874 }
24875 break;
24876
24877 case DW_MACRO_end_file:
24878 /* No data to skip by MAC_PTR. */
24879 break;
24880
24881 case DW_MACRO_define_strp:
24882 case DW_MACRO_undef_strp:
24883 case DW_MACRO_define_sup:
24884 case DW_MACRO_undef_sup:
24885 {
24886 unsigned int bytes_read;
24887
24888 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24889 mac_ptr += bytes_read;
24890 mac_ptr += offset_size;
24891 }
24892 break;
24893
24894 case DW_MACRO_import:
24895 case DW_MACRO_import_sup:
24896 /* Note that, according to the spec, a transparent include
24897 chain cannot call DW_MACRO_start_file. So, we can just
24898 skip this opcode. */
24899 mac_ptr += offset_size;
24900 break;
24901
24902 case DW_MACINFO_vendor_ext:
24903 /* Only skip the data by MAC_PTR. */
24904 if (!section_is_gnu)
24905 {
24906 unsigned int bytes_read;
24907
24908 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24909 mac_ptr += bytes_read;
24910 read_direct_string (abfd, mac_ptr, &bytes_read);
24911 mac_ptr += bytes_read;
24912 }
24913 /* FALLTHROUGH */
24914
24915 default:
24916 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24917 mac_ptr, mac_end, abfd, offset_size,
24918 section);
24919 if (mac_ptr == NULL)
24920 return;
24921 break;
24922 }
24923 DIAGNOSTIC_POP
24924 } while (macinfo_type != 0 && current_file == NULL);
24925
24926 /* Second pass: Process all entries.
24927
24928 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24929 command-line macro definitions/undefinitions. This flag is unset when we
24930 reach the first DW_MACINFO_start_file entry. */
24931
24932 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24933 htab_eq_pointer,
24934 NULL, xcalloc, xfree));
24935 mac_ptr = section->buffer + offset;
24936 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24937 *slot = (void *) mac_ptr;
24938 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24939 current_file, lh, section,
24940 section_is_gnu, 0, offset_size,
24941 include_hash.get ());
24942 }
24943
24944 /* Check if the attribute's form is a DW_FORM_block*
24945 if so return true else false. */
24946
24947 static int
24948 attr_form_is_block (const struct attribute *attr)
24949 {
24950 return (attr == NULL ? 0 :
24951 attr->form == DW_FORM_block1
24952 || attr->form == DW_FORM_block2
24953 || attr->form == DW_FORM_block4
24954 || attr->form == DW_FORM_block
24955 || attr->form == DW_FORM_exprloc);
24956 }
24957
24958 /* Return non-zero if ATTR's value is a section offset --- classes
24959 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24960 You may use DW_UNSND (attr) to retrieve such offsets.
24961
24962 Section 7.5.4, "Attribute Encodings", explains that no attribute
24963 may have a value that belongs to more than one of these classes; it
24964 would be ambiguous if we did, because we use the same forms for all
24965 of them. */
24966
24967 static int
24968 attr_form_is_section_offset (const struct attribute *attr)
24969 {
24970 return (attr->form == DW_FORM_data4
24971 || attr->form == DW_FORM_data8
24972 || attr->form == DW_FORM_sec_offset);
24973 }
24974
24975 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24976 zero otherwise. When this function returns true, you can apply
24977 dwarf2_get_attr_constant_value to it.
24978
24979 However, note that for some attributes you must check
24980 attr_form_is_section_offset before using this test. DW_FORM_data4
24981 and DW_FORM_data8 are members of both the constant class, and of
24982 the classes that contain offsets into other debug sections
24983 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24984 that, if an attribute's can be either a constant or one of the
24985 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24986 taken as section offsets, not constants.
24987
24988 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24989 cannot handle that. */
24990
24991 static int
24992 attr_form_is_constant (const struct attribute *attr)
24993 {
24994 switch (attr->form)
24995 {
24996 case DW_FORM_sdata:
24997 case DW_FORM_udata:
24998 case DW_FORM_data1:
24999 case DW_FORM_data2:
25000 case DW_FORM_data4:
25001 case DW_FORM_data8:
25002 case DW_FORM_implicit_const:
25003 return 1;
25004 default:
25005 return 0;
25006 }
25007 }
25008
25009
25010 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25011 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25012
25013 static int
25014 attr_form_is_ref (const struct attribute *attr)
25015 {
25016 switch (attr->form)
25017 {
25018 case DW_FORM_ref_addr:
25019 case DW_FORM_ref1:
25020 case DW_FORM_ref2:
25021 case DW_FORM_ref4:
25022 case DW_FORM_ref8:
25023 case DW_FORM_ref_udata:
25024 case DW_FORM_GNU_ref_alt:
25025 return 1;
25026 default:
25027 return 0;
25028 }
25029 }
25030
25031 /* Return the .debug_loc section to use for CU.
25032 For DWO files use .debug_loc.dwo. */
25033
25034 static struct dwarf2_section_info *
25035 cu_debug_loc_section (struct dwarf2_cu *cu)
25036 {
25037 struct dwarf2_per_objfile *dwarf2_per_objfile
25038 = cu->per_cu->dwarf2_per_objfile;
25039
25040 if (cu->dwo_unit)
25041 {
25042 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25043
25044 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25045 }
25046 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25047 : &dwarf2_per_objfile->loc);
25048 }
25049
25050 /* A helper function that fills in a dwarf2_loclist_baton. */
25051
25052 static void
25053 fill_in_loclist_baton (struct dwarf2_cu *cu,
25054 struct dwarf2_loclist_baton *baton,
25055 const struct attribute *attr)
25056 {
25057 struct dwarf2_per_objfile *dwarf2_per_objfile
25058 = cu->per_cu->dwarf2_per_objfile;
25059 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25060
25061 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25062
25063 baton->per_cu = cu->per_cu;
25064 gdb_assert (baton->per_cu);
25065 /* We don't know how long the location list is, but make sure we
25066 don't run off the edge of the section. */
25067 baton->size = section->size - DW_UNSND (attr);
25068 baton->data = section->buffer + DW_UNSND (attr);
25069 baton->base_address = cu->base_address;
25070 baton->from_dwo = cu->dwo_unit != NULL;
25071 }
25072
25073 static void
25074 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25075 struct dwarf2_cu *cu, int is_block)
25076 {
25077 struct dwarf2_per_objfile *dwarf2_per_objfile
25078 = cu->per_cu->dwarf2_per_objfile;
25079 struct objfile *objfile = dwarf2_per_objfile->objfile;
25080 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25081
25082 if (attr_form_is_section_offset (attr)
25083 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25084 the section. If so, fall through to the complaint in the
25085 other branch. */
25086 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25087 {
25088 struct dwarf2_loclist_baton *baton;
25089
25090 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25091
25092 fill_in_loclist_baton (cu, baton, attr);
25093
25094 if (cu->base_known == 0)
25095 complaint (_("Location list used without "
25096 "specifying the CU base address."));
25097
25098 SYMBOL_ACLASS_INDEX (sym) = (is_block
25099 ? dwarf2_loclist_block_index
25100 : dwarf2_loclist_index);
25101 SYMBOL_LOCATION_BATON (sym) = baton;
25102 }
25103 else
25104 {
25105 struct dwarf2_locexpr_baton *baton;
25106
25107 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25108 baton->per_cu = cu->per_cu;
25109 gdb_assert (baton->per_cu);
25110
25111 if (attr_form_is_block (attr))
25112 {
25113 /* Note that we're just copying the block's data pointer
25114 here, not the actual data. We're still pointing into the
25115 info_buffer for SYM's objfile; right now we never release
25116 that buffer, but when we do clean up properly this may
25117 need to change. */
25118 baton->size = DW_BLOCK (attr)->size;
25119 baton->data = DW_BLOCK (attr)->data;
25120 }
25121 else
25122 {
25123 dwarf2_invalid_attrib_class_complaint ("location description",
25124 SYMBOL_NATURAL_NAME (sym));
25125 baton->size = 0;
25126 }
25127
25128 SYMBOL_ACLASS_INDEX (sym) = (is_block
25129 ? dwarf2_locexpr_block_index
25130 : dwarf2_locexpr_index);
25131 SYMBOL_LOCATION_BATON (sym) = baton;
25132 }
25133 }
25134
25135 /* Return the OBJFILE associated with the compilation unit CU. If CU
25136 came from a separate debuginfo file, then the master objfile is
25137 returned. */
25138
25139 struct objfile *
25140 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25141 {
25142 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25143
25144 /* Return the master objfile, so that we can report and look up the
25145 correct file containing this variable. */
25146 if (objfile->separate_debug_objfile_backlink)
25147 objfile = objfile->separate_debug_objfile_backlink;
25148
25149 return objfile;
25150 }
25151
25152 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25153 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25154 CU_HEADERP first. */
25155
25156 static const struct comp_unit_head *
25157 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25158 struct dwarf2_per_cu_data *per_cu)
25159 {
25160 const gdb_byte *info_ptr;
25161
25162 if (per_cu->cu)
25163 return &per_cu->cu->header;
25164
25165 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25166
25167 memset (cu_headerp, 0, sizeof (*cu_headerp));
25168 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25169 rcuh_kind::COMPILE);
25170
25171 return cu_headerp;
25172 }
25173
25174 /* Return the address size given in the compilation unit header for CU. */
25175
25176 int
25177 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25178 {
25179 struct comp_unit_head cu_header_local;
25180 const struct comp_unit_head *cu_headerp;
25181
25182 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25183
25184 return cu_headerp->addr_size;
25185 }
25186
25187 /* Return the offset size given in the compilation unit header for CU. */
25188
25189 int
25190 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25191 {
25192 struct comp_unit_head cu_header_local;
25193 const struct comp_unit_head *cu_headerp;
25194
25195 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25196
25197 return cu_headerp->offset_size;
25198 }
25199
25200 /* See its dwarf2loc.h declaration. */
25201
25202 int
25203 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25204 {
25205 struct comp_unit_head cu_header_local;
25206 const struct comp_unit_head *cu_headerp;
25207
25208 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25209
25210 if (cu_headerp->version == 2)
25211 return cu_headerp->addr_size;
25212 else
25213 return cu_headerp->offset_size;
25214 }
25215
25216 /* Return the text offset of the CU. The returned offset comes from
25217 this CU's objfile. If this objfile came from a separate debuginfo
25218 file, then the offset may be different from the corresponding
25219 offset in the parent objfile. */
25220
25221 CORE_ADDR
25222 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25223 {
25224 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25225
25226 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25227 }
25228
25229 /* Return a type that is a generic pointer type, the size of which matches
25230 the address size given in the compilation unit header for PER_CU. */
25231 static struct type *
25232 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25233 {
25234 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25235 struct type *void_type = objfile_type (objfile)->builtin_void;
25236 struct type *addr_type = lookup_pointer_type (void_type);
25237 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25238
25239 if (TYPE_LENGTH (addr_type) == addr_size)
25240 return addr_type;
25241
25242 addr_type
25243 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25244 return addr_type;
25245 }
25246
25247 /* Return DWARF version number of PER_CU. */
25248
25249 short
25250 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25251 {
25252 return per_cu->dwarf_version;
25253 }
25254
25255 /* Locate the .debug_info compilation unit from CU's objfile which contains
25256 the DIE at OFFSET. Raises an error on failure. */
25257
25258 static struct dwarf2_per_cu_data *
25259 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25260 unsigned int offset_in_dwz,
25261 struct dwarf2_per_objfile *dwarf2_per_objfile)
25262 {
25263 struct dwarf2_per_cu_data *this_cu;
25264 int low, high;
25265
25266 low = 0;
25267 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25268 while (high > low)
25269 {
25270 struct dwarf2_per_cu_data *mid_cu;
25271 int mid = low + (high - low) / 2;
25272
25273 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25274 if (mid_cu->is_dwz > offset_in_dwz
25275 || (mid_cu->is_dwz == offset_in_dwz
25276 && mid_cu->sect_off + mid_cu->length >= sect_off))
25277 high = mid;
25278 else
25279 low = mid + 1;
25280 }
25281 gdb_assert (low == high);
25282 this_cu = dwarf2_per_objfile->all_comp_units[low];
25283 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25284 {
25285 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25286 error (_("Dwarf Error: could not find partial DIE containing "
25287 "offset %s [in module %s]"),
25288 sect_offset_str (sect_off),
25289 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25290
25291 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25292 <= sect_off);
25293 return dwarf2_per_objfile->all_comp_units[low-1];
25294 }
25295 else
25296 {
25297 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25298 && sect_off >= this_cu->sect_off + this_cu->length)
25299 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25300 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25301 return this_cu;
25302 }
25303 }
25304
25305 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25306
25307 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25308 : per_cu (per_cu_),
25309 mark (false),
25310 has_loclist (false),
25311 checked_producer (false),
25312 producer_is_gxx_lt_4_6 (false),
25313 producer_is_gcc_lt_4_3 (false),
25314 producer_is_icc (false),
25315 producer_is_icc_lt_14 (false),
25316 producer_is_codewarrior (false),
25317 processing_has_namespace_info (false)
25318 {
25319 per_cu->cu = this;
25320 }
25321
25322 /* Destroy a dwarf2_cu. */
25323
25324 dwarf2_cu::~dwarf2_cu ()
25325 {
25326 per_cu->cu = NULL;
25327 }
25328
25329 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25330
25331 static void
25332 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25333 enum language pretend_language)
25334 {
25335 struct attribute *attr;
25336
25337 /* Set the language we're debugging. */
25338 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25339 if (attr)
25340 set_cu_language (DW_UNSND (attr), cu);
25341 else
25342 {
25343 cu->language = pretend_language;
25344 cu->language_defn = language_def (cu->language);
25345 }
25346
25347 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25348 }
25349
25350 /* Increase the age counter on each cached compilation unit, and free
25351 any that are too old. */
25352
25353 static void
25354 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25355 {
25356 struct dwarf2_per_cu_data *per_cu, **last_chain;
25357
25358 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25359 per_cu = dwarf2_per_objfile->read_in_chain;
25360 while (per_cu != NULL)
25361 {
25362 per_cu->cu->last_used ++;
25363 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25364 dwarf2_mark (per_cu->cu);
25365 per_cu = per_cu->cu->read_in_chain;
25366 }
25367
25368 per_cu = dwarf2_per_objfile->read_in_chain;
25369 last_chain = &dwarf2_per_objfile->read_in_chain;
25370 while (per_cu != NULL)
25371 {
25372 struct dwarf2_per_cu_data *next_cu;
25373
25374 next_cu = per_cu->cu->read_in_chain;
25375
25376 if (!per_cu->cu->mark)
25377 {
25378 delete per_cu->cu;
25379 *last_chain = next_cu;
25380 }
25381 else
25382 last_chain = &per_cu->cu->read_in_chain;
25383
25384 per_cu = next_cu;
25385 }
25386 }
25387
25388 /* Remove a single compilation unit from the cache. */
25389
25390 static void
25391 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25392 {
25393 struct dwarf2_per_cu_data *per_cu, **last_chain;
25394 struct dwarf2_per_objfile *dwarf2_per_objfile
25395 = target_per_cu->dwarf2_per_objfile;
25396
25397 per_cu = dwarf2_per_objfile->read_in_chain;
25398 last_chain = &dwarf2_per_objfile->read_in_chain;
25399 while (per_cu != NULL)
25400 {
25401 struct dwarf2_per_cu_data *next_cu;
25402
25403 next_cu = per_cu->cu->read_in_chain;
25404
25405 if (per_cu == target_per_cu)
25406 {
25407 delete per_cu->cu;
25408 per_cu->cu = NULL;
25409 *last_chain = next_cu;
25410 break;
25411 }
25412 else
25413 last_chain = &per_cu->cu->read_in_chain;
25414
25415 per_cu = next_cu;
25416 }
25417 }
25418
25419 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25420 We store these in a hash table separate from the DIEs, and preserve them
25421 when the DIEs are flushed out of cache.
25422
25423 The CU "per_cu" pointer is needed because offset alone is not enough to
25424 uniquely identify the type. A file may have multiple .debug_types sections,
25425 or the type may come from a DWO file. Furthermore, while it's more logical
25426 to use per_cu->section+offset, with Fission the section with the data is in
25427 the DWO file but we don't know that section at the point we need it.
25428 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25429 because we can enter the lookup routine, get_die_type_at_offset, from
25430 outside this file, and thus won't necessarily have PER_CU->cu.
25431 Fortunately, PER_CU is stable for the life of the objfile. */
25432
25433 struct dwarf2_per_cu_offset_and_type
25434 {
25435 const struct dwarf2_per_cu_data *per_cu;
25436 sect_offset sect_off;
25437 struct type *type;
25438 };
25439
25440 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25441
25442 static hashval_t
25443 per_cu_offset_and_type_hash (const void *item)
25444 {
25445 const struct dwarf2_per_cu_offset_and_type *ofs
25446 = (const struct dwarf2_per_cu_offset_and_type *) item;
25447
25448 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25449 }
25450
25451 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25452
25453 static int
25454 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25455 {
25456 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25457 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25458 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25459 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25460
25461 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25462 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25463 }
25464
25465 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25466 table if necessary. For convenience, return TYPE.
25467
25468 The DIEs reading must have careful ordering to:
25469 * Not cause infite loops trying to read in DIEs as a prerequisite for
25470 reading current DIE.
25471 * Not trying to dereference contents of still incompletely read in types
25472 while reading in other DIEs.
25473 * Enable referencing still incompletely read in types just by a pointer to
25474 the type without accessing its fields.
25475
25476 Therefore caller should follow these rules:
25477 * Try to fetch any prerequisite types we may need to build this DIE type
25478 before building the type and calling set_die_type.
25479 * After building type call set_die_type for current DIE as soon as
25480 possible before fetching more types to complete the current type.
25481 * Make the type as complete as possible before fetching more types. */
25482
25483 static struct type *
25484 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25485 {
25486 struct dwarf2_per_objfile *dwarf2_per_objfile
25487 = cu->per_cu->dwarf2_per_objfile;
25488 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25489 struct objfile *objfile = dwarf2_per_objfile->objfile;
25490 struct attribute *attr;
25491 struct dynamic_prop prop;
25492
25493 /* For Ada types, make sure that the gnat-specific data is always
25494 initialized (if not already set). There are a few types where
25495 we should not be doing so, because the type-specific area is
25496 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25497 where the type-specific area is used to store the floatformat).
25498 But this is not a problem, because the gnat-specific information
25499 is actually not needed for these types. */
25500 if (need_gnat_info (cu)
25501 && TYPE_CODE (type) != TYPE_CODE_FUNC
25502 && TYPE_CODE (type) != TYPE_CODE_FLT
25503 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25504 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25505 && TYPE_CODE (type) != TYPE_CODE_METHOD
25506 && !HAVE_GNAT_AUX_INFO (type))
25507 INIT_GNAT_SPECIFIC (type);
25508
25509 /* Read DW_AT_allocated and set in type. */
25510 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25511 if (attr_form_is_block (attr))
25512 {
25513 struct type *prop_type
25514 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25515 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25516 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25517 }
25518 else if (attr != NULL)
25519 {
25520 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25521 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25522 sect_offset_str (die->sect_off));
25523 }
25524
25525 /* Read DW_AT_associated and set in type. */
25526 attr = dwarf2_attr (die, DW_AT_associated, cu);
25527 if (attr_form_is_block (attr))
25528 {
25529 struct type *prop_type
25530 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25531 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25532 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25533 }
25534 else if (attr != NULL)
25535 {
25536 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25537 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25538 sect_offset_str (die->sect_off));
25539 }
25540
25541 /* Read DW_AT_data_location and set in type. */
25542 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25543 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25544 dwarf2_per_cu_addr_type (cu->per_cu)))
25545 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25546
25547 if (dwarf2_per_objfile->die_type_hash == NULL)
25548 {
25549 dwarf2_per_objfile->die_type_hash =
25550 htab_create_alloc_ex (127,
25551 per_cu_offset_and_type_hash,
25552 per_cu_offset_and_type_eq,
25553 NULL,
25554 &objfile->objfile_obstack,
25555 hashtab_obstack_allocate,
25556 dummy_obstack_deallocate);
25557 }
25558
25559 ofs.per_cu = cu->per_cu;
25560 ofs.sect_off = die->sect_off;
25561 ofs.type = type;
25562 slot = (struct dwarf2_per_cu_offset_and_type **)
25563 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25564 if (*slot)
25565 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25566 sect_offset_str (die->sect_off));
25567 *slot = XOBNEW (&objfile->objfile_obstack,
25568 struct dwarf2_per_cu_offset_and_type);
25569 **slot = ofs;
25570 return type;
25571 }
25572
25573 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25574 or return NULL if the die does not have a saved type. */
25575
25576 static struct type *
25577 get_die_type_at_offset (sect_offset sect_off,
25578 struct dwarf2_per_cu_data *per_cu)
25579 {
25580 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25581 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25582
25583 if (dwarf2_per_objfile->die_type_hash == NULL)
25584 return NULL;
25585
25586 ofs.per_cu = per_cu;
25587 ofs.sect_off = sect_off;
25588 slot = ((struct dwarf2_per_cu_offset_and_type *)
25589 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25590 if (slot)
25591 return slot->type;
25592 else
25593 return NULL;
25594 }
25595
25596 /* Look up the type for DIE in CU in die_type_hash,
25597 or return NULL if DIE does not have a saved type. */
25598
25599 static struct type *
25600 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25601 {
25602 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25603 }
25604
25605 /* Add a dependence relationship from CU to REF_PER_CU. */
25606
25607 static void
25608 dwarf2_add_dependence (struct dwarf2_cu *cu,
25609 struct dwarf2_per_cu_data *ref_per_cu)
25610 {
25611 void **slot;
25612
25613 if (cu->dependencies == NULL)
25614 cu->dependencies
25615 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25616 NULL, &cu->comp_unit_obstack,
25617 hashtab_obstack_allocate,
25618 dummy_obstack_deallocate);
25619
25620 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25621 if (*slot == NULL)
25622 *slot = ref_per_cu;
25623 }
25624
25625 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25626 Set the mark field in every compilation unit in the
25627 cache that we must keep because we are keeping CU. */
25628
25629 static int
25630 dwarf2_mark_helper (void **slot, void *data)
25631 {
25632 struct dwarf2_per_cu_data *per_cu;
25633
25634 per_cu = (struct dwarf2_per_cu_data *) *slot;
25635
25636 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25637 reading of the chain. As such dependencies remain valid it is not much
25638 useful to track and undo them during QUIT cleanups. */
25639 if (per_cu->cu == NULL)
25640 return 1;
25641
25642 if (per_cu->cu->mark)
25643 return 1;
25644 per_cu->cu->mark = true;
25645
25646 if (per_cu->cu->dependencies != NULL)
25647 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25648
25649 return 1;
25650 }
25651
25652 /* Set the mark field in CU and in every other compilation unit in the
25653 cache that we must keep because we are keeping CU. */
25654
25655 static void
25656 dwarf2_mark (struct dwarf2_cu *cu)
25657 {
25658 if (cu->mark)
25659 return;
25660 cu->mark = true;
25661 if (cu->dependencies != NULL)
25662 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25663 }
25664
25665 static void
25666 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25667 {
25668 while (per_cu)
25669 {
25670 per_cu->cu->mark = false;
25671 per_cu = per_cu->cu->read_in_chain;
25672 }
25673 }
25674
25675 /* Trivial hash function for partial_die_info: the hash value of a DIE
25676 is its offset in .debug_info for this objfile. */
25677
25678 static hashval_t
25679 partial_die_hash (const void *item)
25680 {
25681 const struct partial_die_info *part_die
25682 = (const struct partial_die_info *) item;
25683
25684 return to_underlying (part_die->sect_off);
25685 }
25686
25687 /* Trivial comparison function for partial_die_info structures: two DIEs
25688 are equal if they have the same offset. */
25689
25690 static int
25691 partial_die_eq (const void *item_lhs, const void *item_rhs)
25692 {
25693 const struct partial_die_info *part_die_lhs
25694 = (const struct partial_die_info *) item_lhs;
25695 const struct partial_die_info *part_die_rhs
25696 = (const struct partial_die_info *) item_rhs;
25697
25698 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25699 }
25700
25701 struct cmd_list_element *set_dwarf_cmdlist;
25702 struct cmd_list_element *show_dwarf_cmdlist;
25703
25704 static void
25705 set_dwarf_cmd (const char *args, int from_tty)
25706 {
25707 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25708 gdb_stdout);
25709 }
25710
25711 static void
25712 show_dwarf_cmd (const char *args, int from_tty)
25713 {
25714 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25715 }
25716
25717 int dwarf_always_disassemble;
25718
25719 static void
25720 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25721 struct cmd_list_element *c, const char *value)
25722 {
25723 fprintf_filtered (file,
25724 _("Whether to always disassemble "
25725 "DWARF expressions is %s.\n"),
25726 value);
25727 }
25728
25729 static void
25730 show_check_physname (struct ui_file *file, int from_tty,
25731 struct cmd_list_element *c, const char *value)
25732 {
25733 fprintf_filtered (file,
25734 _("Whether to check \"physname\" is %s.\n"),
25735 value);
25736 }
25737
25738 void
25739 _initialize_dwarf2_read (void)
25740 {
25741 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25742 Set DWARF specific variables.\n\
25743 Configure DWARF variables such as the cache size."),
25744 &set_dwarf_cmdlist, "maintenance set dwarf ",
25745 0/*allow-unknown*/, &maintenance_set_cmdlist);
25746
25747 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25748 Show DWARF specific variables.\n\
25749 Show DWARF variables such as the cache size."),
25750 &show_dwarf_cmdlist, "maintenance show dwarf ",
25751 0/*allow-unknown*/, &maintenance_show_cmdlist);
25752
25753 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25754 &dwarf_max_cache_age, _("\
25755 Set the upper bound on the age of cached DWARF compilation units."), _("\
25756 Show the upper bound on the age of cached DWARF compilation units."), _("\
25757 A higher limit means that cached compilation units will be stored\n\
25758 in memory longer, and more total memory will be used. Zero disables\n\
25759 caching, which can slow down startup."),
25760 NULL,
25761 show_dwarf_max_cache_age,
25762 &set_dwarf_cmdlist,
25763 &show_dwarf_cmdlist);
25764
25765 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25766 &dwarf_always_disassemble, _("\
25767 Set whether `info address' always disassembles DWARF expressions."), _("\
25768 Show whether `info address' always disassembles DWARF expressions."), _("\
25769 When enabled, DWARF expressions are always printed in an assembly-like\n\
25770 syntax. When disabled, expressions will be printed in a more\n\
25771 conversational style, when possible."),
25772 NULL,
25773 show_dwarf_always_disassemble,
25774 &set_dwarf_cmdlist,
25775 &show_dwarf_cmdlist);
25776
25777 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25778 Set debugging of the DWARF reader."), _("\
25779 Show debugging of the DWARF reader."), _("\
25780 When enabled (non-zero), debugging messages are printed during DWARF\n\
25781 reading and symtab expansion. A value of 1 (one) provides basic\n\
25782 information. A value greater than 1 provides more verbose information."),
25783 NULL,
25784 NULL,
25785 &setdebuglist, &showdebuglist);
25786
25787 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25788 Set debugging of the DWARF DIE reader."), _("\
25789 Show debugging of the DWARF DIE reader."), _("\
25790 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25791 The value is the maximum depth to print."),
25792 NULL,
25793 NULL,
25794 &setdebuglist, &showdebuglist);
25795
25796 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25797 Set debugging of the dwarf line reader."), _("\
25798 Show debugging of the dwarf line reader."), _("\
25799 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25800 A value of 1 (one) provides basic information.\n\
25801 A value greater than 1 provides more verbose information."),
25802 NULL,
25803 NULL,
25804 &setdebuglist, &showdebuglist);
25805
25806 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25807 Set cross-checking of \"physname\" code against demangler."), _("\
25808 Show cross-checking of \"physname\" code against demangler."), _("\
25809 When enabled, GDB's internal \"physname\" code is checked against\n\
25810 the demangler."),
25811 NULL, show_check_physname,
25812 &setdebuglist, &showdebuglist);
25813
25814 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25815 no_class, &use_deprecated_index_sections, _("\
25816 Set whether to use deprecated gdb_index sections."), _("\
25817 Show whether to use deprecated gdb_index sections."), _("\
25818 When enabled, deprecated .gdb_index sections are used anyway.\n\
25819 Normally they are ignored either because of a missing feature or\n\
25820 performance issue.\n\
25821 Warning: This option must be enabled before gdb reads the file."),
25822 NULL,
25823 NULL,
25824 &setlist, &showlist);
25825
25826 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25827 &dwarf2_locexpr_funcs);
25828 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25829 &dwarf2_loclist_funcs);
25830
25831 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25832 &dwarf2_block_frame_base_locexpr_funcs);
25833 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25834 &dwarf2_block_frame_base_loclist_funcs);
25835
25836 #if GDB_SELF_TEST
25837 selftests::register_test ("dw2_expand_symtabs_matching",
25838 selftests::dw2_expand_symtabs_matching::run_test);
25839 #endif
25840 }
This page took 0.63868 seconds and 5 git commands to generate.