Remove free_cached_comp_units cleanups
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828 static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844 static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847 static void dwarf2_mark (struct dwarf2_cu *);
1848
1849 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 /* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866 class dwarf2_queue_guard
1867 {
1868 public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896 };
1897
1898 /* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901 struct file_and_directory
1902 {
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915 };
1916
1917 static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920 static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924 enum class rcuh_kind { COMPILE, TYPE };
1925
1926 static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933 static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938 static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946 static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951 static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954 static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957 static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962 static void free_dwo_file_cleanup (void *);
1963
1964 struct free_dwo_file_cleanup_data
1965 {
1966 struct dwo_file *dwo_file;
1967 struct dwarf2_per_objfile *dwarf2_per_objfile;
1968 };
1969
1970 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1971
1972 static void check_producer (struct dwarf2_cu *cu);
1973
1974 static void free_line_header_voidp (void *arg);
1975 \f
1976 /* Various complaints about symbol reading that don't abort the process. */
1977
1978 static void
1979 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1980 {
1981 complaint (&symfile_complaints,
1982 _("statement list doesn't fit in .debug_line section"));
1983 }
1984
1985 static void
1986 dwarf2_debug_line_missing_file_complaint (void)
1987 {
1988 complaint (&symfile_complaints,
1989 _(".debug_line section has line data without a file"));
1990 }
1991
1992 static void
1993 dwarf2_debug_line_missing_end_sequence_complaint (void)
1994 {
1995 complaint (&symfile_complaints,
1996 _(".debug_line section has line "
1997 "program sequence without an end"));
1998 }
1999
2000 static void
2001 dwarf2_complex_location_expr_complaint (void)
2002 {
2003 complaint (&symfile_complaints, _("location expression too complex"));
2004 }
2005
2006 static void
2007 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2008 int arg3)
2009 {
2010 complaint (&symfile_complaints,
2011 _("const value length mismatch for '%s', got %d, expected %d"),
2012 arg1, arg2, arg3);
2013 }
2014
2015 static void
2016 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2017 {
2018 complaint (&symfile_complaints,
2019 _("debug info runs off end of %s section"
2020 " [in module %s]"),
2021 get_section_name (section),
2022 get_section_file_name (section));
2023 }
2024
2025 static void
2026 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2027 {
2028 complaint (&symfile_complaints,
2029 _("macro debug info contains a "
2030 "malformed macro definition:\n`%s'"),
2031 arg1);
2032 }
2033
2034 static void
2035 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2036 {
2037 complaint (&symfile_complaints,
2038 _("invalid attribute class or form for '%s' in '%s'"),
2039 arg1, arg2);
2040 }
2041
2042 /* Hash function for line_header_hash. */
2043
2044 static hashval_t
2045 line_header_hash (const struct line_header *ofs)
2046 {
2047 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2048 }
2049
2050 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2051
2052 static hashval_t
2053 line_header_hash_voidp (const void *item)
2054 {
2055 const struct line_header *ofs = (const struct line_header *) item;
2056
2057 return line_header_hash (ofs);
2058 }
2059
2060 /* Equality function for line_header_hash. */
2061
2062 static int
2063 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2064 {
2065 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2066 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2067
2068 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2069 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2070 }
2071
2072 \f
2073
2074 /* Read the given attribute value as an address, taking the attribute's
2075 form into account. */
2076
2077 static CORE_ADDR
2078 attr_value_as_address (struct attribute *attr)
2079 {
2080 CORE_ADDR addr;
2081
2082 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2083 {
2084 /* Aside from a few clearly defined exceptions, attributes that
2085 contain an address must always be in DW_FORM_addr form.
2086 Unfortunately, some compilers happen to be violating this
2087 requirement by encoding addresses using other forms, such
2088 as DW_FORM_data4 for example. For those broken compilers,
2089 we try to do our best, without any guarantee of success,
2090 to interpret the address correctly. It would also be nice
2091 to generate a complaint, but that would require us to maintain
2092 a list of legitimate cases where a non-address form is allowed,
2093 as well as update callers to pass in at least the CU's DWARF
2094 version. This is more overhead than what we're willing to
2095 expand for a pretty rare case. */
2096 addr = DW_UNSND (attr);
2097 }
2098 else
2099 addr = DW_ADDR (attr);
2100
2101 return addr;
2102 }
2103
2104 /* See declaration. */
2105
2106 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2107 const dwarf2_debug_sections *names)
2108 : objfile (objfile_)
2109 {
2110 if (names == NULL)
2111 names = &dwarf2_elf_names;
2112
2113 bfd *obfd = objfile->obfd;
2114
2115 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2116 locate_sections (obfd, sec, *names);
2117 }
2118
2119 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2120
2121 dwarf2_per_objfile::~dwarf2_per_objfile ()
2122 {
2123 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2124 free_cached_comp_units ();
2125
2126 if (quick_file_names_table)
2127 htab_delete (quick_file_names_table);
2128
2129 if (line_header_hash)
2130 htab_delete (line_header_hash);
2131
2132 for (int ix = 0; ix < n_comp_units; ++ix)
2133 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2134
2135 for (int ix = 0; ix < n_type_units; ++ix)
2136 VEC_free (dwarf2_per_cu_ptr,
2137 all_type_units[ix]->per_cu.imported_symtabs);
2138 xfree (all_type_units);
2139
2140 VEC_free (dwarf2_section_info_def, types);
2141
2142 if (dwo_files != NULL)
2143 free_dwo_files (dwo_files, objfile);
2144 if (dwp_file != NULL)
2145 gdb_bfd_unref (dwp_file->dbfd);
2146
2147 if (dwz_file != NULL && dwz_file->dwz_bfd)
2148 gdb_bfd_unref (dwz_file->dwz_bfd);
2149
2150 if (index_table != NULL)
2151 index_table->~mapped_index ();
2152
2153 /* Everything else should be on the objfile obstack. */
2154 }
2155
2156 /* See declaration. */
2157
2158 void
2159 dwarf2_per_objfile::free_cached_comp_units ()
2160 {
2161 dwarf2_per_cu_data *per_cu = read_in_chain;
2162 dwarf2_per_cu_data **last_chain = &read_in_chain;
2163 while (per_cu != NULL)
2164 {
2165 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2166
2167 delete per_cu->cu;
2168 *last_chain = next_cu;
2169 per_cu = next_cu;
2170 }
2171 }
2172
2173 /* A helper class that calls free_cached_comp_units on
2174 destruction. */
2175
2176 class free_cached_comp_units
2177 {
2178 public:
2179
2180 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2181 : m_per_objfile (per_objfile)
2182 {
2183 }
2184
2185 ~free_cached_comp_units ()
2186 {
2187 m_per_objfile->free_cached_comp_units ();
2188 }
2189
2190 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2191
2192 private:
2193
2194 dwarf2_per_objfile *m_per_objfile;
2195 };
2196
2197 /* Try to locate the sections we need for DWARF 2 debugging
2198 information and return true if we have enough to do something.
2199 NAMES points to the dwarf2 section names, or is NULL if the standard
2200 ELF names are used. */
2201
2202 int
2203 dwarf2_has_info (struct objfile *objfile,
2204 const struct dwarf2_debug_sections *names)
2205 {
2206 if (objfile->flags & OBJF_READNEVER)
2207 return 0;
2208
2209 struct dwarf2_per_objfile *dwarf2_per_objfile
2210 = get_dwarf2_per_objfile (objfile);
2211
2212 if (dwarf2_per_objfile == NULL)
2213 {
2214 /* Initialize per-objfile state. */
2215 dwarf2_per_objfile
2216 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2217 names);
2218 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2219 }
2220 return (!dwarf2_per_objfile->info.is_virtual
2221 && dwarf2_per_objfile->info.s.section != NULL
2222 && !dwarf2_per_objfile->abbrev.is_virtual
2223 && dwarf2_per_objfile->abbrev.s.section != NULL);
2224 }
2225
2226 /* Return the containing section of virtual section SECTION. */
2227
2228 static struct dwarf2_section_info *
2229 get_containing_section (const struct dwarf2_section_info *section)
2230 {
2231 gdb_assert (section->is_virtual);
2232 return section->s.containing_section;
2233 }
2234
2235 /* Return the bfd owner of SECTION. */
2236
2237 static struct bfd *
2238 get_section_bfd_owner (const struct dwarf2_section_info *section)
2239 {
2240 if (section->is_virtual)
2241 {
2242 section = get_containing_section (section);
2243 gdb_assert (!section->is_virtual);
2244 }
2245 return section->s.section->owner;
2246 }
2247
2248 /* Return the bfd section of SECTION.
2249 Returns NULL if the section is not present. */
2250
2251 static asection *
2252 get_section_bfd_section (const struct dwarf2_section_info *section)
2253 {
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
2259 return section->s.section;
2260 }
2261
2262 /* Return the name of SECTION. */
2263
2264 static const char *
2265 get_section_name (const struct dwarf2_section_info *section)
2266 {
2267 asection *sectp = get_section_bfd_section (section);
2268
2269 gdb_assert (sectp != NULL);
2270 return bfd_section_name (get_section_bfd_owner (section), sectp);
2271 }
2272
2273 /* Return the name of the file SECTION is in. */
2274
2275 static const char *
2276 get_section_file_name (const struct dwarf2_section_info *section)
2277 {
2278 bfd *abfd = get_section_bfd_owner (section);
2279
2280 return bfd_get_filename (abfd);
2281 }
2282
2283 /* Return the id of SECTION.
2284 Returns 0 if SECTION doesn't exist. */
2285
2286 static int
2287 get_section_id (const struct dwarf2_section_info *section)
2288 {
2289 asection *sectp = get_section_bfd_section (section);
2290
2291 if (sectp == NULL)
2292 return 0;
2293 return sectp->id;
2294 }
2295
2296 /* Return the flags of SECTION.
2297 SECTION (or containing section if this is a virtual section) must exist. */
2298
2299 static int
2300 get_section_flags (const struct dwarf2_section_info *section)
2301 {
2302 asection *sectp = get_section_bfd_section (section);
2303
2304 gdb_assert (sectp != NULL);
2305 return bfd_get_section_flags (sectp->owner, sectp);
2306 }
2307
2308 /* When loading sections, we look either for uncompressed section or for
2309 compressed section names. */
2310
2311 static int
2312 section_is_p (const char *section_name,
2313 const struct dwarf2_section_names *names)
2314 {
2315 if (names->normal != NULL
2316 && strcmp (section_name, names->normal) == 0)
2317 return 1;
2318 if (names->compressed != NULL
2319 && strcmp (section_name, names->compressed) == 0)
2320 return 1;
2321 return 0;
2322 }
2323
2324 /* See declaration. */
2325
2326 void
2327 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2328 const dwarf2_debug_sections &names)
2329 {
2330 flagword aflag = bfd_get_section_flags (abfd, sectp);
2331
2332 if ((aflag & SEC_HAS_CONTENTS) == 0)
2333 {
2334 }
2335 else if (section_is_p (sectp->name, &names.info))
2336 {
2337 this->info.s.section = sectp;
2338 this->info.size = bfd_get_section_size (sectp);
2339 }
2340 else if (section_is_p (sectp->name, &names.abbrev))
2341 {
2342 this->abbrev.s.section = sectp;
2343 this->abbrev.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.line))
2346 {
2347 this->line.s.section = sectp;
2348 this->line.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.loc))
2351 {
2352 this->loc.s.section = sectp;
2353 this->loc.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loclists))
2356 {
2357 this->loclists.s.section = sectp;
2358 this->loclists.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.macinfo))
2361 {
2362 this->macinfo.s.section = sectp;
2363 this->macinfo.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macro))
2366 {
2367 this->macro.s.section = sectp;
2368 this->macro.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.str))
2371 {
2372 this->str.s.section = sectp;
2373 this->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.line_str))
2376 {
2377 this->line_str.s.section = sectp;
2378 this->line_str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.addr))
2381 {
2382 this->addr.s.section = sectp;
2383 this->addr.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.frame))
2386 {
2387 this->frame.s.section = sectp;
2388 this->frame.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.eh_frame))
2391 {
2392 this->eh_frame.s.section = sectp;
2393 this->eh_frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.ranges))
2396 {
2397 this->ranges.s.section = sectp;
2398 this->ranges.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.rnglists))
2401 {
2402 this->rnglists.s.section = sectp;
2403 this->rnglists.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.types))
2406 {
2407 struct dwarf2_section_info type_section;
2408
2409 memset (&type_section, 0, sizeof (type_section));
2410 type_section.s.section = sectp;
2411 type_section.size = bfd_get_section_size (sectp);
2412
2413 VEC_safe_push (dwarf2_section_info_def, this->types,
2414 &type_section);
2415 }
2416 else if (section_is_p (sectp->name, &names.gdb_index))
2417 {
2418 this->gdb_index.s.section = sectp;
2419 this->gdb_index.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.debug_names))
2422 {
2423 this->debug_names.s.section = sectp;
2424 this->debug_names.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.debug_aranges))
2427 {
2428 this->debug_aranges.s.section = sectp;
2429 this->debug_aranges.size = bfd_get_section_size (sectp);
2430 }
2431
2432 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2433 && bfd_section_vma (abfd, sectp) == 0)
2434 this->has_section_at_zero = true;
2435 }
2436
2437 /* A helper function that decides whether a section is empty,
2438 or not present. */
2439
2440 static int
2441 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2442 {
2443 if (section->is_virtual)
2444 return section->size == 0;
2445 return section->s.section == NULL || section->size == 0;
2446 }
2447
2448 /* See dwarf2read.h. */
2449
2450 void
2451 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2452 {
2453 asection *sectp;
2454 bfd *abfd;
2455 gdb_byte *buf, *retbuf;
2456
2457 if (info->readin)
2458 return;
2459 info->buffer = NULL;
2460 info->readin = 1;
2461
2462 if (dwarf2_section_empty_p (info))
2463 return;
2464
2465 sectp = get_section_bfd_section (info);
2466
2467 /* If this is a virtual section we need to read in the real one first. */
2468 if (info->is_virtual)
2469 {
2470 struct dwarf2_section_info *containing_section =
2471 get_containing_section (info);
2472
2473 gdb_assert (sectp != NULL);
2474 if ((sectp->flags & SEC_RELOC) != 0)
2475 {
2476 error (_("Dwarf Error: DWP format V2 with relocations is not"
2477 " supported in section %s [in module %s]"),
2478 get_section_name (info), get_section_file_name (info));
2479 }
2480 dwarf2_read_section (objfile, containing_section);
2481 /* Other code should have already caught virtual sections that don't
2482 fit. */
2483 gdb_assert (info->virtual_offset + info->size
2484 <= containing_section->size);
2485 /* If the real section is empty or there was a problem reading the
2486 section we shouldn't get here. */
2487 gdb_assert (containing_section->buffer != NULL);
2488 info->buffer = containing_section->buffer + info->virtual_offset;
2489 return;
2490 }
2491
2492 /* If the section has relocations, we must read it ourselves.
2493 Otherwise we attach it to the BFD. */
2494 if ((sectp->flags & SEC_RELOC) == 0)
2495 {
2496 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2497 return;
2498 }
2499
2500 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2501 info->buffer = buf;
2502
2503 /* When debugging .o files, we may need to apply relocations; see
2504 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2505 We never compress sections in .o files, so we only need to
2506 try this when the section is not compressed. */
2507 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2508 if (retbuf != NULL)
2509 {
2510 info->buffer = retbuf;
2511 return;
2512 }
2513
2514 abfd = get_section_bfd_owner (info);
2515 gdb_assert (abfd != NULL);
2516
2517 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2518 || bfd_bread (buf, info->size, abfd) != info->size)
2519 {
2520 error (_("Dwarf Error: Can't read DWARF data"
2521 " in section %s [in module %s]"),
2522 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2523 }
2524 }
2525
2526 /* A helper function that returns the size of a section in a safe way.
2527 If you are positive that the section has been read before using the
2528 size, then it is safe to refer to the dwarf2_section_info object's
2529 "size" field directly. In other cases, you must call this
2530 function, because for compressed sections the size field is not set
2531 correctly until the section has been read. */
2532
2533 static bfd_size_type
2534 dwarf2_section_size (struct objfile *objfile,
2535 struct dwarf2_section_info *info)
2536 {
2537 if (!info->readin)
2538 dwarf2_read_section (objfile, info);
2539 return info->size;
2540 }
2541
2542 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2543 SECTION_NAME. */
2544
2545 void
2546 dwarf2_get_section_info (struct objfile *objfile,
2547 enum dwarf2_section_enum sect,
2548 asection **sectp, const gdb_byte **bufp,
2549 bfd_size_type *sizep)
2550 {
2551 struct dwarf2_per_objfile *data
2552 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2553 dwarf2_objfile_data_key);
2554 struct dwarf2_section_info *info;
2555
2556 /* We may see an objfile without any DWARF, in which case we just
2557 return nothing. */
2558 if (data == NULL)
2559 {
2560 *sectp = NULL;
2561 *bufp = NULL;
2562 *sizep = 0;
2563 return;
2564 }
2565 switch (sect)
2566 {
2567 case DWARF2_DEBUG_FRAME:
2568 info = &data->frame;
2569 break;
2570 case DWARF2_EH_FRAME:
2571 info = &data->eh_frame;
2572 break;
2573 default:
2574 gdb_assert_not_reached ("unexpected section");
2575 }
2576
2577 dwarf2_read_section (objfile, info);
2578
2579 *sectp = get_section_bfd_section (info);
2580 *bufp = info->buffer;
2581 *sizep = info->size;
2582 }
2583
2584 /* A helper function to find the sections for a .dwz file. */
2585
2586 static void
2587 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2588 {
2589 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2590
2591 /* Note that we only support the standard ELF names, because .dwz
2592 is ELF-only (at the time of writing). */
2593 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2594 {
2595 dwz_file->abbrev.s.section = sectp;
2596 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2597 }
2598 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2599 {
2600 dwz_file->info.s.section = sectp;
2601 dwz_file->info.size = bfd_get_section_size (sectp);
2602 }
2603 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2604 {
2605 dwz_file->str.s.section = sectp;
2606 dwz_file->str.size = bfd_get_section_size (sectp);
2607 }
2608 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2609 {
2610 dwz_file->line.s.section = sectp;
2611 dwz_file->line.size = bfd_get_section_size (sectp);
2612 }
2613 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2614 {
2615 dwz_file->macro.s.section = sectp;
2616 dwz_file->macro.size = bfd_get_section_size (sectp);
2617 }
2618 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2619 {
2620 dwz_file->gdb_index.s.section = sectp;
2621 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2622 }
2623 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2624 {
2625 dwz_file->debug_names.s.section = sectp;
2626 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2627 }
2628 }
2629
2630 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2631 there is no .gnu_debugaltlink section in the file. Error if there
2632 is such a section but the file cannot be found. */
2633
2634 static struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 struct dwz_file *result;
2639 bfd_size_type buildid_len_arg;
2640 size_t buildid_len;
2641 bfd_byte *buildid;
2642
2643 if (dwarf2_per_objfile->dwz_file != NULL)
2644 return dwarf2_per_objfile->dwz_file;
2645
2646 bfd_set_error (bfd_error_no_error);
2647 gdb::unique_xmalloc_ptr<char> data
2648 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2649 &buildid_len_arg, &buildid));
2650 if (data == NULL)
2651 {
2652 if (bfd_get_error () == bfd_error_no_error)
2653 return NULL;
2654 error (_("could not read '.gnu_debugaltlink' section: %s"),
2655 bfd_errmsg (bfd_get_error ()));
2656 }
2657
2658 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2659
2660 buildid_len = (size_t) buildid_len_arg;
2661
2662 filename = data.get ();
2663
2664 std::string abs_storage;
2665 if (!IS_ABSOLUTE_PATH (filename))
2666 {
2667 gdb::unique_xmalloc_ptr<char> abs
2668 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2669
2670 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2671 filename = abs_storage.c_str ();
2672 }
2673
2674 /* First try the file name given in the section. If that doesn't
2675 work, try to use the build-id instead. */
2676 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2677 if (dwz_bfd != NULL)
2678 {
2679 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2680 dwz_bfd.release ();
2681 }
2682
2683 if (dwz_bfd == NULL)
2684 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2685
2686 if (dwz_bfd == NULL)
2687 error (_("could not find '.gnu_debugaltlink' file for %s"),
2688 objfile_name (dwarf2_per_objfile->objfile));
2689
2690 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2691 struct dwz_file);
2692 result->dwz_bfd = dwz_bfd.release ();
2693
2694 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2695
2696 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2697 dwarf2_per_objfile->dwz_file = result;
2698 return result;
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* Return the CU/TU given its index.
2911
2912 This is intended for loops like:
2913
2914 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2915 + dwarf2_per_objfile->n_type_units); ++i)
2916 {
2917 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2918
2919 ...;
2920 }
2921 */
2922
2923 static struct dwarf2_per_cu_data *
2924 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
2925 int index)
2926 {
2927 if (index >= dwarf2_per_objfile->n_comp_units)
2928 {
2929 index -= dwarf2_per_objfile->n_comp_units;
2930 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2931 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2932 }
2933
2934 return dwarf2_per_objfile->all_comp_units[index];
2935 }
2936
2937 /* Return the CU given its index.
2938 This differs from dw2_get_cutu in that it's for when you know INDEX
2939 refers to a CU. */
2940
2941 static struct dwarf2_per_cu_data *
2942 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
2943 {
2944 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2945
2946 return dwarf2_per_objfile->all_comp_units[index];
2947 }
2948
2949 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2950 objfile_obstack, and constructed with the specified field
2951 values. */
2952
2953 static dwarf2_per_cu_data *
2954 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2955 struct dwarf2_section_info *section,
2956 int is_dwz,
2957 sect_offset sect_off, ULONGEST length)
2958 {
2959 struct objfile *objfile = dwarf2_per_objfile->objfile;
2960 dwarf2_per_cu_data *the_cu
2961 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2962 struct dwarf2_per_cu_data);
2963 the_cu->sect_off = sect_off;
2964 the_cu->length = length;
2965 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2966 the_cu->section = section;
2967 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2968 struct dwarf2_per_cu_quick_data);
2969 the_cu->is_dwz = is_dwz;
2970 return the_cu;
2971 }
2972
2973 /* A helper for create_cus_from_index that handles a given list of
2974 CUs. */
2975
2976 static void
2977 create_cus_from_index_list (struct objfile *objfile,
2978 const gdb_byte *cu_list, offset_type n_elements,
2979 struct dwarf2_section_info *section,
2980 int is_dwz,
2981 int base_offset)
2982 {
2983 offset_type i;
2984 struct dwarf2_per_objfile *dwarf2_per_objfile
2985 = get_dwarf2_per_objfile (objfile);
2986
2987 for (i = 0; i < n_elements; i += 2)
2988 {
2989 gdb_static_assert (sizeof (ULONGEST) >= 8);
2990
2991 sect_offset sect_off
2992 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2993 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2994 cu_list += 2 * 8;
2995
2996 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
2997 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2998 sect_off, length);
2999 }
3000 }
3001
3002 /* Read the CU list from the mapped index, and use it to create all
3003 the CU objects for this objfile. */
3004
3005 static void
3006 create_cus_from_index (struct objfile *objfile,
3007 const gdb_byte *cu_list, offset_type cu_list_elements,
3008 const gdb_byte *dwz_list, offset_type dwz_elements)
3009 {
3010 struct dwz_file *dwz;
3011 struct dwarf2_per_objfile *dwarf2_per_objfile
3012 = get_dwarf2_per_objfile (objfile);
3013
3014 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3015 dwarf2_per_objfile->all_comp_units =
3016 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3017 dwarf2_per_objfile->n_comp_units);
3018
3019 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3020 &dwarf2_per_objfile->info, 0, 0);
3021
3022 if (dwz_elements == 0)
3023 return;
3024
3025 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3026 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3027 cu_list_elements / 2);
3028 }
3029
3030 /* Create the signatured type hash table from the index. */
3031
3032 static void
3033 create_signatured_type_table_from_index (struct objfile *objfile,
3034 struct dwarf2_section_info *section,
3035 const gdb_byte *bytes,
3036 offset_type elements)
3037 {
3038 offset_type i;
3039 htab_t sig_types_hash;
3040 struct dwarf2_per_objfile *dwarf2_per_objfile
3041 = get_dwarf2_per_objfile (objfile);
3042
3043 dwarf2_per_objfile->n_type_units
3044 = dwarf2_per_objfile->n_allocated_type_units
3045 = elements / 3;
3046 dwarf2_per_objfile->all_type_units =
3047 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3048
3049 sig_types_hash = allocate_signatured_type_table (objfile);
3050
3051 for (i = 0; i < elements; i += 3)
3052 {
3053 struct signatured_type *sig_type;
3054 ULONGEST signature;
3055 void **slot;
3056 cu_offset type_offset_in_tu;
3057
3058 gdb_static_assert (sizeof (ULONGEST) >= 8);
3059 sect_offset sect_off
3060 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3061 type_offset_in_tu
3062 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3063 BFD_ENDIAN_LITTLE);
3064 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3065 bytes += 3 * 8;
3066
3067 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3068 struct signatured_type);
3069 sig_type->signature = signature;
3070 sig_type->type_offset_in_tu = type_offset_in_tu;
3071 sig_type->per_cu.is_debug_types = 1;
3072 sig_type->per_cu.section = section;
3073 sig_type->per_cu.sect_off = sect_off;
3074 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3075 sig_type->per_cu.v.quick
3076 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3077 struct dwarf2_per_cu_quick_data);
3078
3079 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3080 *slot = sig_type;
3081
3082 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3083 }
3084
3085 dwarf2_per_objfile->signatured_types = sig_types_hash;
3086 }
3087
3088 /* Create the signatured type hash table from .debug_names. */
3089
3090 static void
3091 create_signatured_type_table_from_debug_names
3092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3093 const mapped_debug_names &map,
3094 struct dwarf2_section_info *section,
3095 struct dwarf2_section_info *abbrev_section)
3096 {
3097 struct objfile *objfile = dwarf2_per_objfile->objfile;
3098
3099 dwarf2_read_section (objfile, section);
3100 dwarf2_read_section (objfile, abbrev_section);
3101
3102 dwarf2_per_objfile->n_type_units
3103 = dwarf2_per_objfile->n_allocated_type_units
3104 = map.tu_count;
3105 dwarf2_per_objfile->all_type_units
3106 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3107
3108 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3109
3110 for (uint32_t i = 0; i < map.tu_count; ++i)
3111 {
3112 struct signatured_type *sig_type;
3113 ULONGEST signature;
3114 void **slot;
3115 cu_offset type_offset_in_tu;
3116
3117 sect_offset sect_off
3118 = (sect_offset) (extract_unsigned_integer
3119 (map.tu_table_reordered + i * map.offset_size,
3120 map.offset_size,
3121 map.dwarf5_byte_order));
3122
3123 comp_unit_head cu_header;
3124 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3125 abbrev_section,
3126 section->buffer + to_underlying (sect_off),
3127 rcuh_kind::TYPE);
3128
3129 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct signatured_type);
3131 sig_type->signature = cu_header.signature;
3132 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3133 sig_type->per_cu.is_debug_types = 1;
3134 sig_type->per_cu.section = section;
3135 sig_type->per_cu.sect_off = sect_off;
3136 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3137 sig_type->per_cu.v.quick
3138 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3139 struct dwarf2_per_cu_quick_data);
3140
3141 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3142 *slot = sig_type;
3143
3144 dwarf2_per_objfile->all_type_units[i] = sig_type;
3145 }
3146
3147 dwarf2_per_objfile->signatured_types = sig_types_hash;
3148 }
3149
3150 /* Read the address map data from the mapped index, and use it to
3151 populate the objfile's psymtabs_addrmap. */
3152
3153 static void
3154 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3155 struct mapped_index *index)
3156 {
3157 struct objfile *objfile = dwarf2_per_objfile->objfile;
3158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3159 const gdb_byte *iter, *end;
3160 struct addrmap *mutable_map;
3161 CORE_ADDR baseaddr;
3162
3163 auto_obstack temp_obstack;
3164
3165 mutable_map = addrmap_create_mutable (&temp_obstack);
3166
3167 iter = index->address_table.data ();
3168 end = iter + index->address_table.size ();
3169
3170 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3171
3172 while (iter < end)
3173 {
3174 ULONGEST hi, lo, cu_index;
3175 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3176 iter += 8;
3177 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3178 iter += 8;
3179 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3180 iter += 4;
3181
3182 if (lo > hi)
3183 {
3184 complaint (&symfile_complaints,
3185 _(".gdb_index address table has invalid range (%s - %s)"),
3186 hex_string (lo), hex_string (hi));
3187 continue;
3188 }
3189
3190 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3191 {
3192 complaint (&symfile_complaints,
3193 _(".gdb_index address table has invalid CU number %u"),
3194 (unsigned) cu_index);
3195 continue;
3196 }
3197
3198 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3199 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3200 addrmap_set_empty (mutable_map, lo, hi - 1,
3201 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3202 }
3203
3204 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3205 &objfile->objfile_obstack);
3206 }
3207
3208 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3209 populate the objfile's psymtabs_addrmap. */
3210
3211 static void
3212 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3213 struct dwarf2_section_info *section)
3214 {
3215 struct objfile *objfile = dwarf2_per_objfile->objfile;
3216 bfd *abfd = objfile->obfd;
3217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3218 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3219 SECT_OFF_TEXT (objfile));
3220
3221 auto_obstack temp_obstack;
3222 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3223
3224 std::unordered_map<sect_offset,
3225 dwarf2_per_cu_data *,
3226 gdb::hash_enum<sect_offset>>
3227 debug_info_offset_to_per_cu;
3228 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3229 {
3230 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3231 const auto insertpair
3232 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3233 if (!insertpair.second)
3234 {
3235 warning (_("Section .debug_aranges in %s has duplicate "
3236 "debug_info_offset %s, ignoring .debug_aranges."),
3237 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3238 return;
3239 }
3240 }
3241
3242 dwarf2_read_section (objfile, section);
3243
3244 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3245
3246 const gdb_byte *addr = section->buffer;
3247
3248 while (addr < section->buffer + section->size)
3249 {
3250 const gdb_byte *const entry_addr = addr;
3251 unsigned int bytes_read;
3252
3253 const LONGEST entry_length = read_initial_length (abfd, addr,
3254 &bytes_read);
3255 addr += bytes_read;
3256
3257 const gdb_byte *const entry_end = addr + entry_length;
3258 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3259 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3260 if (addr + entry_length > section->buffer + section->size)
3261 {
3262 warning (_("Section .debug_aranges in %s entry at offset %zu "
3263 "length %s exceeds section length %s, "
3264 "ignoring .debug_aranges."),
3265 objfile_name (objfile), entry_addr - section->buffer,
3266 plongest (bytes_read + entry_length),
3267 pulongest (section->size));
3268 return;
3269 }
3270
3271 /* The version number. */
3272 const uint16_t version = read_2_bytes (abfd, addr);
3273 addr += 2;
3274 if (version != 2)
3275 {
3276 warning (_("Section .debug_aranges in %s entry at offset %zu "
3277 "has unsupported version %d, ignoring .debug_aranges."),
3278 objfile_name (objfile), entry_addr - section->buffer,
3279 version);
3280 return;
3281 }
3282
3283 const uint64_t debug_info_offset
3284 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3285 addr += offset_size;
3286 const auto per_cu_it
3287 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3288 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "debug_info_offset %s does not exists, "
3292 "ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3294 pulongest (debug_info_offset));
3295 return;
3296 }
3297 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3298
3299 const uint8_t address_size = *addr++;
3300 if (address_size < 1 || address_size > 8)
3301 {
3302 warning (_("Section .debug_aranges in %s entry at offset %zu "
3303 "address_size %u is invalid, ignoring .debug_aranges."),
3304 objfile_name (objfile), entry_addr - section->buffer,
3305 address_size);
3306 return;
3307 }
3308
3309 const uint8_t segment_selector_size = *addr++;
3310 if (segment_selector_size != 0)
3311 {
3312 warning (_("Section .debug_aranges in %s entry at offset %zu "
3313 "segment_selector_size %u is not supported, "
3314 "ignoring .debug_aranges."),
3315 objfile_name (objfile), entry_addr - section->buffer,
3316 segment_selector_size);
3317 return;
3318 }
3319
3320 /* Must pad to an alignment boundary that is twice the address
3321 size. It is undocumented by the DWARF standard but GCC does
3322 use it. */
3323 for (size_t padding = ((-(addr - section->buffer))
3324 & (2 * address_size - 1));
3325 padding > 0; padding--)
3326 if (*addr++ != 0)
3327 {
3328 warning (_("Section .debug_aranges in %s entry at offset %zu "
3329 "padding is not zero, ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer);
3331 return;
3332 }
3333
3334 for (;;)
3335 {
3336 if (addr + 2 * address_size > entry_end)
3337 {
3338 warning (_("Section .debug_aranges in %s entry at offset %zu "
3339 "address list is not properly terminated, "
3340 "ignoring .debug_aranges."),
3341 objfile_name (objfile), entry_addr - section->buffer);
3342 return;
3343 }
3344 ULONGEST start = extract_unsigned_integer (addr, address_size,
3345 dwarf5_byte_order);
3346 addr += address_size;
3347 ULONGEST length = extract_unsigned_integer (addr, address_size,
3348 dwarf5_byte_order);
3349 addr += address_size;
3350 if (start == 0 && length == 0)
3351 break;
3352 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3353 {
3354 /* Symbol was eliminated due to a COMDAT group. */
3355 continue;
3356 }
3357 ULONGEST end = start + length;
3358 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3359 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3360 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3361 }
3362 }
3363
3364 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3365 &objfile->objfile_obstack);
3366 }
3367
3368 /* Find a slot in the mapped index INDEX for the object named NAME.
3369 If NAME is found, set *VEC_OUT to point to the CU vector in the
3370 constant pool and return true. If NAME cannot be found, return
3371 false. */
3372
3373 static bool
3374 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3375 offset_type **vec_out)
3376 {
3377 offset_type hash;
3378 offset_type slot, step;
3379 int (*cmp) (const char *, const char *);
3380
3381 gdb::unique_xmalloc_ptr<char> without_params;
3382 if (current_language->la_language == language_cplus
3383 || current_language->la_language == language_fortran
3384 || current_language->la_language == language_d)
3385 {
3386 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3387 not contain any. */
3388
3389 if (strchr (name, '(') != NULL)
3390 {
3391 without_params = cp_remove_params (name);
3392
3393 if (without_params != NULL)
3394 name = without_params.get ();
3395 }
3396 }
3397
3398 /* Index version 4 did not support case insensitive searches. But the
3399 indices for case insensitive languages are built in lowercase, therefore
3400 simulate our NAME being searched is also lowercased. */
3401 hash = mapped_index_string_hash ((index->version == 4
3402 && case_sensitivity == case_sensitive_off
3403 ? 5 : index->version),
3404 name);
3405
3406 slot = hash & (index->symbol_table.size () - 1);
3407 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3408 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3409
3410 for (;;)
3411 {
3412 const char *str;
3413
3414 const auto &bucket = index->symbol_table[slot];
3415 if (bucket.name == 0 && bucket.vec == 0)
3416 return false;
3417
3418 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3419 if (!cmp (name, str))
3420 {
3421 *vec_out = (offset_type *) (index->constant_pool
3422 + MAYBE_SWAP (bucket.vec));
3423 return true;
3424 }
3425
3426 slot = (slot + step) & (index->symbol_table.size () - 1);
3427 }
3428 }
3429
3430 /* A helper function that reads the .gdb_index from SECTION and fills
3431 in MAP. FILENAME is the name of the file containing the section;
3432 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3433 ok to use deprecated sections.
3434
3435 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3436 out parameters that are filled in with information about the CU and
3437 TU lists in the section.
3438
3439 Returns 1 if all went well, 0 otherwise. */
3440
3441 static int
3442 read_index_from_section (struct objfile *objfile,
3443 const char *filename,
3444 int deprecated_ok,
3445 struct dwarf2_section_info *section,
3446 struct mapped_index *map,
3447 const gdb_byte **cu_list,
3448 offset_type *cu_list_elements,
3449 const gdb_byte **types_list,
3450 offset_type *types_list_elements)
3451 {
3452 const gdb_byte *addr;
3453 offset_type version;
3454 offset_type *metadata;
3455 int i;
3456
3457 if (dwarf2_section_empty_p (section))
3458 return 0;
3459
3460 /* Older elfutils strip versions could keep the section in the main
3461 executable while splitting it for the separate debug info file. */
3462 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3463 return 0;
3464
3465 dwarf2_read_section (objfile, section);
3466
3467 addr = section->buffer;
3468 /* Version check. */
3469 version = MAYBE_SWAP (*(offset_type *) addr);
3470 /* Versions earlier than 3 emitted every copy of a psymbol. This
3471 causes the index to behave very poorly for certain requests. Version 3
3472 contained incomplete addrmap. So, it seems better to just ignore such
3473 indices. */
3474 if (version < 4)
3475 {
3476 static int warning_printed = 0;
3477 if (!warning_printed)
3478 {
3479 warning (_("Skipping obsolete .gdb_index section in %s."),
3480 filename);
3481 warning_printed = 1;
3482 }
3483 return 0;
3484 }
3485 /* Index version 4 uses a different hash function than index version
3486 5 and later.
3487
3488 Versions earlier than 6 did not emit psymbols for inlined
3489 functions. Using these files will cause GDB not to be able to
3490 set breakpoints on inlined functions by name, so we ignore these
3491 indices unless the user has done
3492 "set use-deprecated-index-sections on". */
3493 if (version < 6 && !deprecated_ok)
3494 {
3495 static int warning_printed = 0;
3496 if (!warning_printed)
3497 {
3498 warning (_("\
3499 Skipping deprecated .gdb_index section in %s.\n\
3500 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3501 to use the section anyway."),
3502 filename);
3503 warning_printed = 1;
3504 }
3505 return 0;
3506 }
3507 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3508 of the TU (for symbols coming from TUs),
3509 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3510 Plus gold-generated indices can have duplicate entries for global symbols,
3511 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3512 These are just performance bugs, and we can't distinguish gdb-generated
3513 indices from gold-generated ones, so issue no warning here. */
3514
3515 /* Indexes with higher version than the one supported by GDB may be no
3516 longer backward compatible. */
3517 if (version > 8)
3518 return 0;
3519
3520 map->version = version;
3521 map->total_size = section->size;
3522
3523 metadata = (offset_type *) (addr + sizeof (offset_type));
3524
3525 i = 0;
3526 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3527 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3528 / 8);
3529 ++i;
3530
3531 *types_list = addr + MAYBE_SWAP (metadata[i]);
3532 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3533 - MAYBE_SWAP (metadata[i]))
3534 / 8);
3535 ++i;
3536
3537 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3538 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3539 map->address_table
3540 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3541 ++i;
3542
3543 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3544 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3545 map->symbol_table
3546 = gdb::array_view<mapped_index::symbol_table_slot>
3547 ((mapped_index::symbol_table_slot *) symbol_table,
3548 (mapped_index::symbol_table_slot *) symbol_table_end);
3549
3550 ++i;
3551 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3552
3553 return 1;
3554 }
3555
3556 /* Read .gdb_index. If everything went ok, initialize the "quick"
3557 elements of all the CUs and return 1. Otherwise, return 0. */
3558
3559 static int
3560 dwarf2_read_index (struct objfile *objfile)
3561 {
3562 struct mapped_index local_map, *map;
3563 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3564 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3565 struct dwz_file *dwz;
3566 struct dwarf2_per_objfile *dwarf2_per_objfile
3567 = get_dwarf2_per_objfile (objfile);
3568
3569 if (!read_index_from_section (objfile, objfile_name (objfile),
3570 use_deprecated_index_sections,
3571 &dwarf2_per_objfile->gdb_index, &local_map,
3572 &cu_list, &cu_list_elements,
3573 &types_list, &types_list_elements))
3574 return 0;
3575
3576 /* Don't use the index if it's empty. */
3577 if (local_map.symbol_table.empty ())
3578 return 0;
3579
3580 /* If there is a .dwz file, read it so we can get its CU list as
3581 well. */
3582 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3583 if (dwz != NULL)
3584 {
3585 struct mapped_index dwz_map;
3586 const gdb_byte *dwz_types_ignore;
3587 offset_type dwz_types_elements_ignore;
3588
3589 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3590 1,
3591 &dwz->gdb_index, &dwz_map,
3592 &dwz_list, &dwz_list_elements,
3593 &dwz_types_ignore,
3594 &dwz_types_elements_ignore))
3595 {
3596 warning (_("could not read '.gdb_index' section from %s; skipping"),
3597 bfd_get_filename (dwz->dwz_bfd));
3598 return 0;
3599 }
3600 }
3601
3602 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3603 dwz_list_elements);
3604
3605 if (types_list_elements)
3606 {
3607 struct dwarf2_section_info *section;
3608
3609 /* We can only handle a single .debug_types when we have an
3610 index. */
3611 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3612 return 0;
3613
3614 section = VEC_index (dwarf2_section_info_def,
3615 dwarf2_per_objfile->types, 0);
3616
3617 create_signatured_type_table_from_index (objfile, section, types_list,
3618 types_list_elements);
3619 }
3620
3621 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3622
3623 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3624 map = new (map) mapped_index ();
3625 *map = local_map;
3626
3627 dwarf2_per_objfile->index_table = map;
3628 dwarf2_per_objfile->using_index = 1;
3629 dwarf2_per_objfile->quick_file_names_table =
3630 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3631
3632 return 1;
3633 }
3634
3635 /* die_reader_func for dw2_get_file_names. */
3636
3637 static void
3638 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3639 const gdb_byte *info_ptr,
3640 struct die_info *comp_unit_die,
3641 int has_children,
3642 void *data)
3643 {
3644 struct dwarf2_cu *cu = reader->cu;
3645 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3646 struct dwarf2_per_objfile *dwarf2_per_objfile
3647 = cu->per_cu->dwarf2_per_objfile;
3648 struct objfile *objfile = dwarf2_per_objfile->objfile;
3649 struct dwarf2_per_cu_data *lh_cu;
3650 struct attribute *attr;
3651 int i;
3652 void **slot;
3653 struct quick_file_names *qfn;
3654
3655 gdb_assert (! this_cu->is_debug_types);
3656
3657 /* Our callers never want to match partial units -- instead they
3658 will match the enclosing full CU. */
3659 if (comp_unit_die->tag == DW_TAG_partial_unit)
3660 {
3661 this_cu->v.quick->no_file_data = 1;
3662 return;
3663 }
3664
3665 lh_cu = this_cu;
3666 slot = NULL;
3667
3668 line_header_up lh;
3669 sect_offset line_offset {};
3670
3671 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3672 if (attr)
3673 {
3674 struct quick_file_names find_entry;
3675
3676 line_offset = (sect_offset) DW_UNSND (attr);
3677
3678 /* We may have already read in this line header (TU line header sharing).
3679 If we have we're done. */
3680 find_entry.hash.dwo_unit = cu->dwo_unit;
3681 find_entry.hash.line_sect_off = line_offset;
3682 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3683 &find_entry, INSERT);
3684 if (*slot != NULL)
3685 {
3686 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3687 return;
3688 }
3689
3690 lh = dwarf_decode_line_header (line_offset, cu);
3691 }
3692 if (lh == NULL)
3693 {
3694 lh_cu->v.quick->no_file_data = 1;
3695 return;
3696 }
3697
3698 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3699 qfn->hash.dwo_unit = cu->dwo_unit;
3700 qfn->hash.line_sect_off = line_offset;
3701 gdb_assert (slot != NULL);
3702 *slot = qfn;
3703
3704 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3705
3706 qfn->num_file_names = lh->file_names.size ();
3707 qfn->file_names =
3708 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3709 for (i = 0; i < lh->file_names.size (); ++i)
3710 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3711 qfn->real_names = NULL;
3712
3713 lh_cu->v.quick->file_names = qfn;
3714 }
3715
3716 /* A helper for the "quick" functions which attempts to read the line
3717 table for THIS_CU. */
3718
3719 static struct quick_file_names *
3720 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3721 {
3722 /* This should never be called for TUs. */
3723 gdb_assert (! this_cu->is_debug_types);
3724 /* Nor type unit groups. */
3725 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3726
3727 if (this_cu->v.quick->file_names != NULL)
3728 return this_cu->v.quick->file_names;
3729 /* If we know there is no line data, no point in looking again. */
3730 if (this_cu->v.quick->no_file_data)
3731 return NULL;
3732
3733 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3734
3735 if (this_cu->v.quick->no_file_data)
3736 return NULL;
3737 return this_cu->v.quick->file_names;
3738 }
3739
3740 /* A helper for the "quick" functions which computes and caches the
3741 real path for a given file name from the line table. */
3742
3743 static const char *
3744 dw2_get_real_path (struct objfile *objfile,
3745 struct quick_file_names *qfn, int index)
3746 {
3747 if (qfn->real_names == NULL)
3748 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3749 qfn->num_file_names, const char *);
3750
3751 if (qfn->real_names[index] == NULL)
3752 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3753
3754 return qfn->real_names[index];
3755 }
3756
3757 static struct symtab *
3758 dw2_find_last_source_symtab (struct objfile *objfile)
3759 {
3760 struct dwarf2_per_objfile *dwarf2_per_objfile
3761 = get_dwarf2_per_objfile (objfile);
3762 int index = dwarf2_per_objfile->n_comp_units - 1;
3763 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
3764 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3765
3766 if (cust == NULL)
3767 return NULL;
3768
3769 return compunit_primary_filetab (cust);
3770 }
3771
3772 /* Traversal function for dw2_forget_cached_source_info. */
3773
3774 static int
3775 dw2_free_cached_file_names (void **slot, void *info)
3776 {
3777 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3778
3779 if (file_data->real_names)
3780 {
3781 int i;
3782
3783 for (i = 0; i < file_data->num_file_names; ++i)
3784 {
3785 xfree ((void*) file_data->real_names[i]);
3786 file_data->real_names[i] = NULL;
3787 }
3788 }
3789
3790 return 1;
3791 }
3792
3793 static void
3794 dw2_forget_cached_source_info (struct objfile *objfile)
3795 {
3796 struct dwarf2_per_objfile *dwarf2_per_objfile
3797 = get_dwarf2_per_objfile (objfile);
3798
3799 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3800 dw2_free_cached_file_names, NULL);
3801 }
3802
3803 /* Helper function for dw2_map_symtabs_matching_filename that expands
3804 the symtabs and calls the iterator. */
3805
3806 static int
3807 dw2_map_expand_apply (struct objfile *objfile,
3808 struct dwarf2_per_cu_data *per_cu,
3809 const char *name, const char *real_path,
3810 gdb::function_view<bool (symtab *)> callback)
3811 {
3812 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3813
3814 /* Don't visit already-expanded CUs. */
3815 if (per_cu->v.quick->compunit_symtab)
3816 return 0;
3817
3818 /* This may expand more than one symtab, and we want to iterate over
3819 all of them. */
3820 dw2_instantiate_symtab (per_cu);
3821
3822 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3823 last_made, callback);
3824 }
3825
3826 /* Implementation of the map_symtabs_matching_filename method. */
3827
3828 static bool
3829 dw2_map_symtabs_matching_filename
3830 (struct objfile *objfile, const char *name, const char *real_path,
3831 gdb::function_view<bool (symtab *)> callback)
3832 {
3833 int i;
3834 const char *name_basename = lbasename (name);
3835 struct dwarf2_per_objfile *dwarf2_per_objfile
3836 = get_dwarf2_per_objfile (objfile);
3837
3838 /* The rule is CUs specify all the files, including those used by
3839 any TU, so there's no need to scan TUs here. */
3840
3841 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3842 {
3843 int j;
3844 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
3845 struct quick_file_names *file_data;
3846
3847 /* We only need to look at symtabs not already expanded. */
3848 if (per_cu->v.quick->compunit_symtab)
3849 continue;
3850
3851 file_data = dw2_get_file_names (per_cu);
3852 if (file_data == NULL)
3853 continue;
3854
3855 for (j = 0; j < file_data->num_file_names; ++j)
3856 {
3857 const char *this_name = file_data->file_names[j];
3858 const char *this_real_name;
3859
3860 if (compare_filenames_for_search (this_name, name))
3861 {
3862 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3863 callback))
3864 return true;
3865 continue;
3866 }
3867
3868 /* Before we invoke realpath, which can get expensive when many
3869 files are involved, do a quick comparison of the basenames. */
3870 if (! basenames_may_differ
3871 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3872 continue;
3873
3874 this_real_name = dw2_get_real_path (objfile, file_data, j);
3875 if (compare_filenames_for_search (this_real_name, name))
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882
3883 if (real_path != NULL)
3884 {
3885 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3886 gdb_assert (IS_ABSOLUTE_PATH (name));
3887 if (this_real_name != NULL
3888 && FILENAME_CMP (real_path, this_real_name) == 0)
3889 {
3890 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3891 callback))
3892 return true;
3893 continue;
3894 }
3895 }
3896 }
3897 }
3898
3899 return false;
3900 }
3901
3902 /* Struct used to manage iterating over all CUs looking for a symbol. */
3903
3904 struct dw2_symtab_iterator
3905 {
3906 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3907 struct dwarf2_per_objfile *dwarf2_per_objfile;
3908 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3909 int want_specific_block;
3910 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3911 Unused if !WANT_SPECIFIC_BLOCK. */
3912 int block_index;
3913 /* The kind of symbol we're looking for. */
3914 domain_enum domain;
3915 /* The list of CUs from the index entry of the symbol,
3916 or NULL if not found. */
3917 offset_type *vec;
3918 /* The next element in VEC to look at. */
3919 int next;
3920 /* The number of elements in VEC, or zero if there is no match. */
3921 int length;
3922 /* Have we seen a global version of the symbol?
3923 If so we can ignore all further global instances.
3924 This is to work around gold/15646, inefficient gold-generated
3925 indices. */
3926 int global_seen;
3927 };
3928
3929 /* Initialize the index symtab iterator ITER.
3930 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3931 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3932
3933 static void
3934 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3935 struct dwarf2_per_objfile *dwarf2_per_objfile,
3936 int want_specific_block,
3937 int block_index,
3938 domain_enum domain,
3939 const char *name)
3940 {
3941 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3942 iter->want_specific_block = want_specific_block;
3943 iter->block_index = block_index;
3944 iter->domain = domain;
3945 iter->next = 0;
3946 iter->global_seen = 0;
3947
3948 mapped_index *index = dwarf2_per_objfile->index_table;
3949
3950 /* index is NULL if OBJF_READNOW. */
3951 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3952 iter->length = MAYBE_SWAP (*iter->vec);
3953 else
3954 {
3955 iter->vec = NULL;
3956 iter->length = 0;
3957 }
3958 }
3959
3960 /* Return the next matching CU or NULL if there are no more. */
3961
3962 static struct dwarf2_per_cu_data *
3963 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3964 {
3965 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3966
3967 for ( ; iter->next < iter->length; ++iter->next)
3968 {
3969 offset_type cu_index_and_attrs =
3970 MAYBE_SWAP (iter->vec[iter->next + 1]);
3971 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3972 struct dwarf2_per_cu_data *per_cu;
3973 int want_static = iter->block_index != GLOBAL_BLOCK;
3974 /* This value is only valid for index versions >= 7. */
3975 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3976 gdb_index_symbol_kind symbol_kind =
3977 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3978 /* Only check the symbol attributes if they're present.
3979 Indices prior to version 7 don't record them,
3980 and indices >= 7 may elide them for certain symbols
3981 (gold does this). */
3982 int attrs_valid =
3983 (dwarf2_per_objfile->index_table->version >= 7
3984 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3985
3986 /* Don't crash on bad data. */
3987 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3988 + dwarf2_per_objfile->n_type_units))
3989 {
3990 complaint (&symfile_complaints,
3991 _(".gdb_index entry has bad CU index"
3992 " [in module %s]"),
3993 objfile_name (dwarf2_per_objfile->objfile));
3994 continue;
3995 }
3996
3997 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
3998
3999 /* Skip if already read in. */
4000 if (per_cu->v.quick->compunit_symtab)
4001 continue;
4002
4003 /* Check static vs global. */
4004 if (attrs_valid)
4005 {
4006 if (iter->want_specific_block
4007 && want_static != is_static)
4008 continue;
4009 /* Work around gold/15646. */
4010 if (!is_static && iter->global_seen)
4011 continue;
4012 if (!is_static)
4013 iter->global_seen = 1;
4014 }
4015
4016 /* Only check the symbol's kind if it has one. */
4017 if (attrs_valid)
4018 {
4019 switch (iter->domain)
4020 {
4021 case VAR_DOMAIN:
4022 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4023 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4024 /* Some types are also in VAR_DOMAIN. */
4025 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4026 continue;
4027 break;
4028 case STRUCT_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4030 continue;
4031 break;
4032 case LABEL_DOMAIN:
4033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4034 continue;
4035 break;
4036 default:
4037 break;
4038 }
4039 }
4040
4041 ++iter->next;
4042 return per_cu;
4043 }
4044
4045 return NULL;
4046 }
4047
4048 static struct compunit_symtab *
4049 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4050 const char *name, domain_enum domain)
4051 {
4052 struct compunit_symtab *stab_best = NULL;
4053 struct dwarf2_per_objfile *dwarf2_per_objfile
4054 = get_dwarf2_per_objfile (objfile);
4055
4056 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4057
4058 struct dw2_symtab_iterator iter;
4059 struct dwarf2_per_cu_data *per_cu;
4060
4061 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4062
4063 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4064 {
4065 struct symbol *sym, *with_opaque = NULL;
4066 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4067 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4068 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4069
4070 sym = block_find_symbol (block, name, domain,
4071 block_find_non_opaque_type_preferred,
4072 &with_opaque);
4073
4074 /* Some caution must be observed with overloaded functions
4075 and methods, since the index will not contain any overload
4076 information (but NAME might contain it). */
4077
4078 if (sym != NULL
4079 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4080 return stab;
4081 if (with_opaque != NULL
4082 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4083 stab_best = stab;
4084
4085 /* Keep looking through other CUs. */
4086 }
4087
4088 return stab_best;
4089 }
4090
4091 static void
4092 dw2_print_stats (struct objfile *objfile)
4093 {
4094 struct dwarf2_per_objfile *dwarf2_per_objfile
4095 = get_dwarf2_per_objfile (objfile);
4096 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4097 int count = 0;
4098
4099 for (int i = 0; i < total; ++i)
4100 {
4101 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4102
4103 if (!per_cu->v.quick->compunit_symtab)
4104 ++count;
4105 }
4106 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4107 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4108 }
4109
4110 /* This dumps minimal information about the index.
4111 It is called via "mt print objfiles".
4112 One use is to verify .gdb_index has been loaded by the
4113 gdb.dwarf2/gdb-index.exp testcase. */
4114
4115 static void
4116 dw2_dump (struct objfile *objfile)
4117 {
4118 struct dwarf2_per_objfile *dwarf2_per_objfile
4119 = get_dwarf2_per_objfile (objfile);
4120
4121 gdb_assert (dwarf2_per_objfile->using_index);
4122 printf_filtered (".gdb_index:");
4123 if (dwarf2_per_objfile->index_table != NULL)
4124 {
4125 printf_filtered (" version %d\n",
4126 dwarf2_per_objfile->index_table->version);
4127 }
4128 else
4129 printf_filtered (" faked for \"readnow\"\n");
4130 printf_filtered ("\n");
4131 }
4132
4133 static void
4134 dw2_relocate (struct objfile *objfile,
4135 const struct section_offsets *new_offsets,
4136 const struct section_offsets *delta)
4137 {
4138 /* There's nothing to relocate here. */
4139 }
4140
4141 static void
4142 dw2_expand_symtabs_for_function (struct objfile *objfile,
4143 const char *func_name)
4144 {
4145 struct dwarf2_per_objfile *dwarf2_per_objfile
4146 = get_dwarf2_per_objfile (objfile);
4147
4148 struct dw2_symtab_iterator iter;
4149 struct dwarf2_per_cu_data *per_cu;
4150
4151 /* Note: It doesn't matter what we pass for block_index here. */
4152 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4153 func_name);
4154
4155 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4156 dw2_instantiate_symtab (per_cu);
4157
4158 }
4159
4160 static void
4161 dw2_expand_all_symtabs (struct objfile *objfile)
4162 {
4163 struct dwarf2_per_objfile *dwarf2_per_objfile
4164 = get_dwarf2_per_objfile (objfile);
4165 int total_units = (dwarf2_per_objfile->n_comp_units
4166 + dwarf2_per_objfile->n_type_units);
4167
4168 for (int i = 0; i < total_units; ++i)
4169 {
4170 struct dwarf2_per_cu_data *per_cu
4171 = dw2_get_cutu (dwarf2_per_objfile, i);
4172
4173 dw2_instantiate_symtab (per_cu);
4174 }
4175 }
4176
4177 static void
4178 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4179 const char *fullname)
4180 {
4181 struct dwarf2_per_objfile *dwarf2_per_objfile
4182 = get_dwarf2_per_objfile (objfile);
4183
4184 /* We don't need to consider type units here.
4185 This is only called for examining code, e.g. expand_line_sal.
4186 There can be an order of magnitude (or more) more type units
4187 than comp units, and we avoid them if we can. */
4188
4189 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4190 {
4191 int j;
4192 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4193 struct quick_file_names *file_data;
4194
4195 /* We only need to look at symtabs not already expanded. */
4196 if (per_cu->v.quick->compunit_symtab)
4197 continue;
4198
4199 file_data = dw2_get_file_names (per_cu);
4200 if (file_data == NULL)
4201 continue;
4202
4203 for (j = 0; j < file_data->num_file_names; ++j)
4204 {
4205 const char *this_fullname = file_data->file_names[j];
4206
4207 if (filename_cmp (this_fullname, fullname) == 0)
4208 {
4209 dw2_instantiate_symtab (per_cu);
4210 break;
4211 }
4212 }
4213 }
4214 }
4215
4216 static void
4217 dw2_map_matching_symbols (struct objfile *objfile,
4218 const char * name, domain_enum domain,
4219 int global,
4220 int (*callback) (struct block *,
4221 struct symbol *, void *),
4222 void *data, symbol_name_match_type match,
4223 symbol_compare_ftype *ordered_compare)
4224 {
4225 /* Currently unimplemented; used for Ada. The function can be called if the
4226 current language is Ada for a non-Ada objfile using GNU index. As Ada
4227 does not look for non-Ada symbols this function should just return. */
4228 }
4229
4230 /* Symbol name matcher for .gdb_index names.
4231
4232 Symbol names in .gdb_index have a few particularities:
4233
4234 - There's no indication of which is the language of each symbol.
4235
4236 Since each language has its own symbol name matching algorithm,
4237 and we don't know which language is the right one, we must match
4238 each symbol against all languages. This would be a potential
4239 performance problem if it were not mitigated by the
4240 mapped_index::name_components lookup table, which significantly
4241 reduces the number of times we need to call into this matcher,
4242 making it a non-issue.
4243
4244 - Symbol names in the index have no overload (parameter)
4245 information. I.e., in C++, "foo(int)" and "foo(long)" both
4246 appear as "foo" in the index, for example.
4247
4248 This means that the lookup names passed to the symbol name
4249 matcher functions must have no parameter information either
4250 because (e.g.) symbol search name "foo" does not match
4251 lookup-name "foo(int)" [while swapping search name for lookup
4252 name would match].
4253 */
4254 class gdb_index_symbol_name_matcher
4255 {
4256 public:
4257 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4258 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4259
4260 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4261 Returns true if any matcher matches. */
4262 bool matches (const char *symbol_name);
4263
4264 private:
4265 /* A reference to the lookup name we're matching against. */
4266 const lookup_name_info &m_lookup_name;
4267
4268 /* A vector holding all the different symbol name matchers, for all
4269 languages. */
4270 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4271 };
4272
4273 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4274 (const lookup_name_info &lookup_name)
4275 : m_lookup_name (lookup_name)
4276 {
4277 /* Prepare the vector of comparison functions upfront, to avoid
4278 doing the same work for each symbol. Care is taken to avoid
4279 matching with the same matcher more than once if/when multiple
4280 languages use the same matcher function. */
4281 auto &matchers = m_symbol_name_matcher_funcs;
4282 matchers.reserve (nr_languages);
4283
4284 matchers.push_back (default_symbol_name_matcher);
4285
4286 for (int i = 0; i < nr_languages; i++)
4287 {
4288 const language_defn *lang = language_def ((enum language) i);
4289 symbol_name_matcher_ftype *name_matcher
4290 = get_symbol_name_matcher (lang, m_lookup_name);
4291
4292 /* Don't insert the same comparison routine more than once.
4293 Note that we do this linear walk instead of a seemingly
4294 cheaper sorted insert, or use a std::set or something like
4295 that, because relative order of function addresses is not
4296 stable. This is not a problem in practice because the number
4297 of supported languages is low, and the cost here is tiny
4298 compared to the number of searches we'll do afterwards using
4299 this object. */
4300 if (name_matcher != default_symbol_name_matcher
4301 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4302 == matchers.end ()))
4303 matchers.push_back (name_matcher);
4304 }
4305 }
4306
4307 bool
4308 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4309 {
4310 for (auto matches_name : m_symbol_name_matcher_funcs)
4311 if (matches_name (symbol_name, m_lookup_name, NULL))
4312 return true;
4313
4314 return false;
4315 }
4316
4317 /* Starting from a search name, return the string that finds the upper
4318 bound of all strings that start with SEARCH_NAME in a sorted name
4319 list. Returns the empty string to indicate that the upper bound is
4320 the end of the list. */
4321
4322 static std::string
4323 make_sort_after_prefix_name (const char *search_name)
4324 {
4325 /* When looking to complete "func", we find the upper bound of all
4326 symbols that start with "func" by looking for where we'd insert
4327 the closest string that would follow "func" in lexicographical
4328 order. Usually, that's "func"-with-last-character-incremented,
4329 i.e. "fund". Mind non-ASCII characters, though. Usually those
4330 will be UTF-8 multi-byte sequences, but we can't be certain.
4331 Especially mind the 0xff character, which is a valid character in
4332 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4333 rule out compilers allowing it in identifiers. Note that
4334 conveniently, strcmp/strcasecmp are specified to compare
4335 characters interpreted as unsigned char. So what we do is treat
4336 the whole string as a base 256 number composed of a sequence of
4337 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4338 to 0, and carries 1 to the following more-significant position.
4339 If the very first character in SEARCH_NAME ends up incremented
4340 and carries/overflows, then the upper bound is the end of the
4341 list. The string after the empty string is also the empty
4342 string.
4343
4344 Some examples of this operation:
4345
4346 SEARCH_NAME => "+1" RESULT
4347
4348 "abc" => "abd"
4349 "ab\xff" => "ac"
4350 "\xff" "a" "\xff" => "\xff" "b"
4351 "\xff" => ""
4352 "\xff\xff" => ""
4353 "" => ""
4354
4355 Then, with these symbols for example:
4356
4357 func
4358 func1
4359 fund
4360
4361 completing "func" looks for symbols between "func" and
4362 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4363 which finds "func" and "func1", but not "fund".
4364
4365 And with:
4366
4367 funcÿ (Latin1 'ÿ' [0xff])
4368 funcÿ1
4369 fund
4370
4371 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4372 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4373
4374 And with:
4375
4376 ÿÿ (Latin1 'ÿ' [0xff])
4377 ÿÿ1
4378
4379 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4380 the end of the list.
4381 */
4382 std::string after = search_name;
4383 while (!after.empty () && (unsigned char) after.back () == 0xff)
4384 after.pop_back ();
4385 if (!after.empty ())
4386 after.back () = (unsigned char) after.back () + 1;
4387 return after;
4388 }
4389
4390 /* See declaration. */
4391
4392 std::pair<std::vector<name_component>::const_iterator,
4393 std::vector<name_component>::const_iterator>
4394 mapped_index_base::find_name_components_bounds
4395 (const lookup_name_info &lookup_name_without_params) const
4396 {
4397 auto *name_cmp
4398 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4399
4400 const char *cplus
4401 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4402
4403 /* Comparison function object for lower_bound that matches against a
4404 given symbol name. */
4405 auto lookup_compare_lower = [&] (const name_component &elem,
4406 const char *name)
4407 {
4408 const char *elem_qualified = this->symbol_name_at (elem.idx);
4409 const char *elem_name = elem_qualified + elem.name_offset;
4410 return name_cmp (elem_name, name) < 0;
4411 };
4412
4413 /* Comparison function object for upper_bound that matches against a
4414 given symbol name. */
4415 auto lookup_compare_upper = [&] (const char *name,
4416 const name_component &elem)
4417 {
4418 const char *elem_qualified = this->symbol_name_at (elem.idx);
4419 const char *elem_name = elem_qualified + elem.name_offset;
4420 return name_cmp (name, elem_name) < 0;
4421 };
4422
4423 auto begin = this->name_components.begin ();
4424 auto end = this->name_components.end ();
4425
4426 /* Find the lower bound. */
4427 auto lower = [&] ()
4428 {
4429 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4430 return begin;
4431 else
4432 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4433 } ();
4434
4435 /* Find the upper bound. */
4436 auto upper = [&] ()
4437 {
4438 if (lookup_name_without_params.completion_mode ())
4439 {
4440 /* In completion mode, we want UPPER to point past all
4441 symbols names that have the same prefix. I.e., with
4442 these symbols, and completing "func":
4443
4444 function << lower bound
4445 function1
4446 other_function << upper bound
4447
4448 We find the upper bound by looking for the insertion
4449 point of "func"-with-last-character-incremented,
4450 i.e. "fund". */
4451 std::string after = make_sort_after_prefix_name (cplus);
4452 if (after.empty ())
4453 return end;
4454 return std::lower_bound (lower, end, after.c_str (),
4455 lookup_compare_lower);
4456 }
4457 else
4458 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4459 } ();
4460
4461 return {lower, upper};
4462 }
4463
4464 /* See declaration. */
4465
4466 void
4467 mapped_index_base::build_name_components ()
4468 {
4469 if (!this->name_components.empty ())
4470 return;
4471
4472 this->name_components_casing = case_sensitivity;
4473 auto *name_cmp
4474 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4475
4476 /* The code below only knows how to break apart components of C++
4477 symbol names (and other languages that use '::' as
4478 namespace/module separator). If we add support for wild matching
4479 to some language that uses some other operator (E.g., Ada, Go and
4480 D use '.'), then we'll need to try splitting the symbol name
4481 according to that language too. Note that Ada does support wild
4482 matching, but doesn't currently support .gdb_index. */
4483 auto count = this->symbol_name_count ();
4484 for (offset_type idx = 0; idx < count; idx++)
4485 {
4486 if (this->symbol_name_slot_invalid (idx))
4487 continue;
4488
4489 const char *name = this->symbol_name_at (idx);
4490
4491 /* Add each name component to the name component table. */
4492 unsigned int previous_len = 0;
4493 for (unsigned int current_len = cp_find_first_component (name);
4494 name[current_len] != '\0';
4495 current_len += cp_find_first_component (name + current_len))
4496 {
4497 gdb_assert (name[current_len] == ':');
4498 this->name_components.push_back ({previous_len, idx});
4499 /* Skip the '::'. */
4500 current_len += 2;
4501 previous_len = current_len;
4502 }
4503 this->name_components.push_back ({previous_len, idx});
4504 }
4505
4506 /* Sort name_components elements by name. */
4507 auto name_comp_compare = [&] (const name_component &left,
4508 const name_component &right)
4509 {
4510 const char *left_qualified = this->symbol_name_at (left.idx);
4511 const char *right_qualified = this->symbol_name_at (right.idx);
4512
4513 const char *left_name = left_qualified + left.name_offset;
4514 const char *right_name = right_qualified + right.name_offset;
4515
4516 return name_cmp (left_name, right_name) < 0;
4517 };
4518
4519 std::sort (this->name_components.begin (),
4520 this->name_components.end (),
4521 name_comp_compare);
4522 }
4523
4524 /* Helper for dw2_expand_symtabs_matching that works with a
4525 mapped_index_base instead of the containing objfile. This is split
4526 to a separate function in order to be able to unit test the
4527 name_components matching using a mock mapped_index_base. For each
4528 symbol name that matches, calls MATCH_CALLBACK, passing it the
4529 symbol's index in the mapped_index_base symbol table. */
4530
4531 static void
4532 dw2_expand_symtabs_matching_symbol
4533 (mapped_index_base &index,
4534 const lookup_name_info &lookup_name_in,
4535 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4536 enum search_domain kind,
4537 gdb::function_view<void (offset_type)> match_callback)
4538 {
4539 lookup_name_info lookup_name_without_params
4540 = lookup_name_in.make_ignore_params ();
4541 gdb_index_symbol_name_matcher lookup_name_matcher
4542 (lookup_name_without_params);
4543
4544 /* Build the symbol name component sorted vector, if we haven't
4545 yet. */
4546 index.build_name_components ();
4547
4548 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4549
4550 /* Now for each symbol name in range, check to see if we have a name
4551 match, and if so, call the MATCH_CALLBACK callback. */
4552
4553 /* The same symbol may appear more than once in the range though.
4554 E.g., if we're looking for symbols that complete "w", and we have
4555 a symbol named "w1::w2", we'll find the two name components for
4556 that same symbol in the range. To be sure we only call the
4557 callback once per symbol, we first collect the symbol name
4558 indexes that matched in a temporary vector and ignore
4559 duplicates. */
4560 std::vector<offset_type> matches;
4561 matches.reserve (std::distance (bounds.first, bounds.second));
4562
4563 for (; bounds.first != bounds.second; ++bounds.first)
4564 {
4565 const char *qualified = index.symbol_name_at (bounds.first->idx);
4566
4567 if (!lookup_name_matcher.matches (qualified)
4568 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4569 continue;
4570
4571 matches.push_back (bounds.first->idx);
4572 }
4573
4574 std::sort (matches.begin (), matches.end ());
4575
4576 /* Finally call the callback, once per match. */
4577 ULONGEST prev = -1;
4578 for (offset_type idx : matches)
4579 {
4580 if (prev != idx)
4581 {
4582 match_callback (idx);
4583 prev = idx;
4584 }
4585 }
4586
4587 /* Above we use a type wider than idx's for 'prev', since 0 and
4588 (offset_type)-1 are both possible values. */
4589 static_assert (sizeof (prev) > sizeof (offset_type), "");
4590 }
4591
4592 #if GDB_SELF_TEST
4593
4594 namespace selftests { namespace dw2_expand_symtabs_matching {
4595
4596 /* A mock .gdb_index/.debug_names-like name index table, enough to
4597 exercise dw2_expand_symtabs_matching_symbol, which works with the
4598 mapped_index_base interface. Builds an index from the symbol list
4599 passed as parameter to the constructor. */
4600 class mock_mapped_index : public mapped_index_base
4601 {
4602 public:
4603 mock_mapped_index (gdb::array_view<const char *> symbols)
4604 : m_symbol_table (symbols)
4605 {}
4606
4607 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4608
4609 /* Return the number of names in the symbol table. */
4610 virtual size_t symbol_name_count () const
4611 {
4612 return m_symbol_table.size ();
4613 }
4614
4615 /* Get the name of the symbol at IDX in the symbol table. */
4616 virtual const char *symbol_name_at (offset_type idx) const
4617 {
4618 return m_symbol_table[idx];
4619 }
4620
4621 private:
4622 gdb::array_view<const char *> m_symbol_table;
4623 };
4624
4625 /* Convenience function that converts a NULL pointer to a "<null>"
4626 string, to pass to print routines. */
4627
4628 static const char *
4629 string_or_null (const char *str)
4630 {
4631 return str != NULL ? str : "<null>";
4632 }
4633
4634 /* Check if a lookup_name_info built from
4635 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4636 index. EXPECTED_LIST is the list of expected matches, in expected
4637 matching order. If no match expected, then an empty list is
4638 specified. Returns true on success. On failure prints a warning
4639 indicating the file:line that failed, and returns false. */
4640
4641 static bool
4642 check_match (const char *file, int line,
4643 mock_mapped_index &mock_index,
4644 const char *name, symbol_name_match_type match_type,
4645 bool completion_mode,
4646 std::initializer_list<const char *> expected_list)
4647 {
4648 lookup_name_info lookup_name (name, match_type, completion_mode);
4649
4650 bool matched = true;
4651
4652 auto mismatch = [&] (const char *expected_str,
4653 const char *got)
4654 {
4655 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4656 "expected=\"%s\", got=\"%s\"\n"),
4657 file, line,
4658 (match_type == symbol_name_match_type::FULL
4659 ? "FULL" : "WILD"),
4660 name, string_or_null (expected_str), string_or_null (got));
4661 matched = false;
4662 };
4663
4664 auto expected_it = expected_list.begin ();
4665 auto expected_end = expected_list.end ();
4666
4667 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4668 NULL, ALL_DOMAIN,
4669 [&] (offset_type idx)
4670 {
4671 const char *matched_name = mock_index.symbol_name_at (idx);
4672 const char *expected_str
4673 = expected_it == expected_end ? NULL : *expected_it++;
4674
4675 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4676 mismatch (expected_str, matched_name);
4677 });
4678
4679 const char *expected_str
4680 = expected_it == expected_end ? NULL : *expected_it++;
4681 if (expected_str != NULL)
4682 mismatch (expected_str, NULL);
4683
4684 return matched;
4685 }
4686
4687 /* The symbols added to the mock mapped_index for testing (in
4688 canonical form). */
4689 static const char *test_symbols[] = {
4690 "function",
4691 "std::bar",
4692 "std::zfunction",
4693 "std::zfunction2",
4694 "w1::w2",
4695 "ns::foo<char*>",
4696 "ns::foo<int>",
4697 "ns::foo<long>",
4698 "ns2::tmpl<int>::foo2",
4699 "(anonymous namespace)::A::B::C",
4700
4701 /* These are used to check that the increment-last-char in the
4702 matching algorithm for completion doesn't match "t1_fund" when
4703 completing "t1_func". */
4704 "t1_func",
4705 "t1_func1",
4706 "t1_fund",
4707 "t1_fund1",
4708
4709 /* A UTF-8 name with multi-byte sequences to make sure that
4710 cp-name-parser understands this as a single identifier ("função"
4711 is "function" in PT). */
4712 u8"u8função",
4713
4714 /* \377 (0xff) is Latin1 'ÿ'. */
4715 "yfunc\377",
4716
4717 /* \377 (0xff) is Latin1 'ÿ'. */
4718 "\377",
4719 "\377\377123",
4720
4721 /* A name with all sorts of complications. Starts with "z" to make
4722 it easier for the completion tests below. */
4723 #define Z_SYM_NAME \
4724 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4725 "::tuple<(anonymous namespace)::ui*, " \
4726 "std::default_delete<(anonymous namespace)::ui>, void>"
4727
4728 Z_SYM_NAME
4729 };
4730
4731 /* Returns true if the mapped_index_base::find_name_component_bounds
4732 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4733 in completion mode. */
4734
4735 static bool
4736 check_find_bounds_finds (mapped_index_base &index,
4737 const char *search_name,
4738 gdb::array_view<const char *> expected_syms)
4739 {
4740 lookup_name_info lookup_name (search_name,
4741 symbol_name_match_type::FULL, true);
4742
4743 auto bounds = index.find_name_components_bounds (lookup_name);
4744
4745 size_t distance = std::distance (bounds.first, bounds.second);
4746 if (distance != expected_syms.size ())
4747 return false;
4748
4749 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4750 {
4751 auto nc_elem = bounds.first + exp_elem;
4752 const char *qualified = index.symbol_name_at (nc_elem->idx);
4753 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4754 return false;
4755 }
4756
4757 return true;
4758 }
4759
4760 /* Test the lower-level mapped_index::find_name_component_bounds
4761 method. */
4762
4763 static void
4764 test_mapped_index_find_name_component_bounds ()
4765 {
4766 mock_mapped_index mock_index (test_symbols);
4767
4768 mock_index.build_name_components ();
4769
4770 /* Test the lower-level mapped_index::find_name_component_bounds
4771 method in completion mode. */
4772 {
4773 static const char *expected_syms[] = {
4774 "t1_func",
4775 "t1_func1",
4776 };
4777
4778 SELF_CHECK (check_find_bounds_finds (mock_index,
4779 "t1_func", expected_syms));
4780 }
4781
4782 /* Check that the increment-last-char in the name matching algorithm
4783 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4784 {
4785 static const char *expected_syms1[] = {
4786 "\377",
4787 "\377\377123",
4788 };
4789 SELF_CHECK (check_find_bounds_finds (mock_index,
4790 "\377", expected_syms1));
4791
4792 static const char *expected_syms2[] = {
4793 "\377\377123",
4794 };
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377\377", expected_syms2));
4797 }
4798 }
4799
4800 /* Test dw2_expand_symtabs_matching_symbol. */
4801
4802 static void
4803 test_dw2_expand_symtabs_matching_symbol ()
4804 {
4805 mock_mapped_index mock_index (test_symbols);
4806
4807 /* We let all tests run until the end even if some fails, for debug
4808 convenience. */
4809 bool any_mismatch = false;
4810
4811 /* Create the expected symbols list (an initializer_list). Needed
4812 because lists have commas, and we need to pass them to CHECK,
4813 which is a macro. */
4814 #define EXPECT(...) { __VA_ARGS__ }
4815
4816 /* Wrapper for check_match that passes down the current
4817 __FILE__/__LINE__. */
4818 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4819 any_mismatch |= !check_match (__FILE__, __LINE__, \
4820 mock_index, \
4821 NAME, MATCH_TYPE, COMPLETION_MODE, \
4822 EXPECTED_LIST)
4823
4824 /* Identity checks. */
4825 for (const char *sym : test_symbols)
4826 {
4827 /* Should be able to match all existing symbols. */
4828 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4829 EXPECT (sym));
4830
4831 /* Should be able to match all existing symbols with
4832 parameters. */
4833 std::string with_params = std::string (sym) + "(int)";
4834 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4835 EXPECT (sym));
4836
4837 /* Should be able to match all existing symbols with
4838 parameters and qualifiers. */
4839 with_params = std::string (sym) + " ( int ) const";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4841 EXPECT (sym));
4842
4843 /* This should really find sym, but cp-name-parser.y doesn't
4844 know about lvalue/rvalue qualifiers yet. */
4845 with_params = std::string (sym) + " ( int ) &&";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4847 {});
4848 }
4849
4850 /* Check that the name matching algorithm for completion doesn't get
4851 confused with Latin1 'ÿ' / 0xff. */
4852 {
4853 static const char str[] = "\377";
4854 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4855 EXPECT ("\377", "\377\377123"));
4856 }
4857
4858 /* Check that the increment-last-char in the matching algorithm for
4859 completion doesn't match "t1_fund" when completing "t1_func". */
4860 {
4861 static const char str[] = "t1_func";
4862 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4863 EXPECT ("t1_func", "t1_func1"));
4864 }
4865
4866 /* Check that completion mode works at each prefix of the expected
4867 symbol name. */
4868 {
4869 static const char str[] = "function(int)";
4870 size_t len = strlen (str);
4871 std::string lookup;
4872
4873 for (size_t i = 1; i < len; i++)
4874 {
4875 lookup.assign (str, i);
4876 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4877 EXPECT ("function"));
4878 }
4879 }
4880
4881 /* While "w" is a prefix of both components, the match function
4882 should still only be called once. */
4883 {
4884 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4885 EXPECT ("w1::w2"));
4886 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4887 EXPECT ("w1::w2"));
4888 }
4889
4890 /* Same, with a "complicated" symbol. */
4891 {
4892 static const char str[] = Z_SYM_NAME;
4893 size_t len = strlen (str);
4894 std::string lookup;
4895
4896 for (size_t i = 1; i < len; i++)
4897 {
4898 lookup.assign (str, i);
4899 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4900 EXPECT (Z_SYM_NAME));
4901 }
4902 }
4903
4904 /* In FULL mode, an incomplete symbol doesn't match. */
4905 {
4906 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4907 {});
4908 }
4909
4910 /* A complete symbol with parameters matches any overload, since the
4911 index has no overload info. */
4912 {
4913 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4914 EXPECT ("std::zfunction", "std::zfunction2"));
4915 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4916 EXPECT ("std::zfunction", "std::zfunction2"));
4917 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4918 EXPECT ("std::zfunction", "std::zfunction2"));
4919 }
4920
4921 /* Check that whitespace is ignored appropriately. A symbol with a
4922 template argument list. */
4923 {
4924 static const char expected[] = "ns::foo<int>";
4925 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4926 EXPECT (expected));
4927 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4928 EXPECT (expected));
4929 }
4930
4931 /* Check that whitespace is ignored appropriately. A symbol with a
4932 template argument list that includes a pointer. */
4933 {
4934 static const char expected[] = "ns::foo<char*>";
4935 /* Try both completion and non-completion modes. */
4936 static const bool completion_mode[2] = {false, true};
4937 for (size_t i = 0; i < 2; i++)
4938 {
4939 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4940 completion_mode[i], EXPECT (expected));
4941 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4942 completion_mode[i], EXPECT (expected));
4943
4944 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4945 completion_mode[i], EXPECT (expected));
4946 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4947 completion_mode[i], EXPECT (expected));
4948 }
4949 }
4950
4951 {
4952 /* Check method qualifiers are ignored. */
4953 static const char expected[] = "ns::foo<char*>";
4954 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4955 symbol_name_match_type::FULL, true, EXPECT (expected));
4956 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4957 symbol_name_match_type::FULL, true, EXPECT (expected));
4958 CHECK_MATCH ("foo < char * > ( int ) const",
4959 symbol_name_match_type::WILD, true, EXPECT (expected));
4960 CHECK_MATCH ("foo < char * > ( int ) &&",
4961 symbol_name_match_type::WILD, true, EXPECT (expected));
4962 }
4963
4964 /* Test lookup names that don't match anything. */
4965 {
4966 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4967 {});
4968
4969 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4970 {});
4971 }
4972
4973 /* Some wild matching tests, exercising "(anonymous namespace)",
4974 which should not be confused with a parameter list. */
4975 {
4976 static const char *syms[] = {
4977 "A::B::C",
4978 "B::C",
4979 "C",
4980 "A :: B :: C ( int )",
4981 "B :: C ( int )",
4982 "C ( int )",
4983 };
4984
4985 for (const char *s : syms)
4986 {
4987 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4988 EXPECT ("(anonymous namespace)::A::B::C"));
4989 }
4990 }
4991
4992 {
4993 static const char expected[] = "ns2::tmpl<int>::foo2";
4994 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4995 EXPECT (expected));
4996 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4997 EXPECT (expected));
4998 }
4999
5000 SELF_CHECK (!any_mismatch);
5001
5002 #undef EXPECT
5003 #undef CHECK_MATCH
5004 }
5005
5006 static void
5007 run_test ()
5008 {
5009 test_mapped_index_find_name_component_bounds ();
5010 test_dw2_expand_symtabs_matching_symbol ();
5011 }
5012
5013 }} // namespace selftests::dw2_expand_symtabs_matching
5014
5015 #endif /* GDB_SELF_TEST */
5016
5017 /* If FILE_MATCHER is NULL or if PER_CU has
5018 dwarf2_per_cu_quick_data::MARK set (see
5019 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5020 EXPANSION_NOTIFY on it. */
5021
5022 static void
5023 dw2_expand_symtabs_matching_one
5024 (struct dwarf2_per_cu_data *per_cu,
5025 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5026 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5027 {
5028 if (file_matcher == NULL || per_cu->v.quick->mark)
5029 {
5030 bool symtab_was_null
5031 = (per_cu->v.quick->compunit_symtab == NULL);
5032
5033 dw2_instantiate_symtab (per_cu);
5034
5035 if (expansion_notify != NULL
5036 && symtab_was_null
5037 && per_cu->v.quick->compunit_symtab != NULL)
5038 expansion_notify (per_cu->v.quick->compunit_symtab);
5039 }
5040 }
5041
5042 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5043 matched, to expand corresponding CUs that were marked. IDX is the
5044 index of the symbol name that matched. */
5045
5046 static void
5047 dw2_expand_marked_cus
5048 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5049 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5050 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5051 search_domain kind)
5052 {
5053 offset_type *vec, vec_len, vec_idx;
5054 bool global_seen = false;
5055 mapped_index &index = *dwarf2_per_objfile->index_table;
5056
5057 vec = (offset_type *) (index.constant_pool
5058 + MAYBE_SWAP (index.symbol_table[idx].vec));
5059 vec_len = MAYBE_SWAP (vec[0]);
5060 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5061 {
5062 struct dwarf2_per_cu_data *per_cu;
5063 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5064 /* This value is only valid for index versions >= 7. */
5065 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5066 gdb_index_symbol_kind symbol_kind =
5067 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5068 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5069 /* Only check the symbol attributes if they're present.
5070 Indices prior to version 7 don't record them,
5071 and indices >= 7 may elide them for certain symbols
5072 (gold does this). */
5073 int attrs_valid =
5074 (index.version >= 7
5075 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5076
5077 /* Work around gold/15646. */
5078 if (attrs_valid)
5079 {
5080 if (!is_static && global_seen)
5081 continue;
5082 if (!is_static)
5083 global_seen = true;
5084 }
5085
5086 /* Only check the symbol's kind if it has one. */
5087 if (attrs_valid)
5088 {
5089 switch (kind)
5090 {
5091 case VARIABLES_DOMAIN:
5092 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5093 continue;
5094 break;
5095 case FUNCTIONS_DOMAIN:
5096 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5097 continue;
5098 break;
5099 case TYPES_DOMAIN:
5100 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5101 continue;
5102 break;
5103 default:
5104 break;
5105 }
5106 }
5107
5108 /* Don't crash on bad data. */
5109 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5110 + dwarf2_per_objfile->n_type_units))
5111 {
5112 complaint (&symfile_complaints,
5113 _(".gdb_index entry has bad CU index"
5114 " [in module %s]"),
5115 objfile_name (dwarf2_per_objfile->objfile));
5116 continue;
5117 }
5118
5119 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5120 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5121 expansion_notify);
5122 }
5123 }
5124
5125 /* If FILE_MATCHER is non-NULL, set all the
5126 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5127 that match FILE_MATCHER. */
5128
5129 static void
5130 dw_expand_symtabs_matching_file_matcher
5131 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5132 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5133 {
5134 if (file_matcher == NULL)
5135 return;
5136
5137 objfile *const objfile = dwarf2_per_objfile->objfile;
5138
5139 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5140 htab_eq_pointer,
5141 NULL, xcalloc, xfree));
5142 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5143 htab_eq_pointer,
5144 NULL, xcalloc, xfree));
5145
5146 /* The rule is CUs specify all the files, including those used by
5147 any TU, so there's no need to scan TUs here. */
5148
5149 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5150 {
5151 int j;
5152 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5153 struct quick_file_names *file_data;
5154 void **slot;
5155
5156 QUIT;
5157
5158 per_cu->v.quick->mark = 0;
5159
5160 /* We only need to look at symtabs not already expanded. */
5161 if (per_cu->v.quick->compunit_symtab)
5162 continue;
5163
5164 file_data = dw2_get_file_names (per_cu);
5165 if (file_data == NULL)
5166 continue;
5167
5168 if (htab_find (visited_not_found.get (), file_data) != NULL)
5169 continue;
5170 else if (htab_find (visited_found.get (), file_data) != NULL)
5171 {
5172 per_cu->v.quick->mark = 1;
5173 continue;
5174 }
5175
5176 for (j = 0; j < file_data->num_file_names; ++j)
5177 {
5178 const char *this_real_name;
5179
5180 if (file_matcher (file_data->file_names[j], false))
5181 {
5182 per_cu->v.quick->mark = 1;
5183 break;
5184 }
5185
5186 /* Before we invoke realpath, which can get expensive when many
5187 files are involved, do a quick comparison of the basenames. */
5188 if (!basenames_may_differ
5189 && !file_matcher (lbasename (file_data->file_names[j]),
5190 true))
5191 continue;
5192
5193 this_real_name = dw2_get_real_path (objfile, file_data, j);
5194 if (file_matcher (this_real_name, false))
5195 {
5196 per_cu->v.quick->mark = 1;
5197 break;
5198 }
5199 }
5200
5201 slot = htab_find_slot (per_cu->v.quick->mark
5202 ? visited_found.get ()
5203 : visited_not_found.get (),
5204 file_data, INSERT);
5205 *slot = file_data;
5206 }
5207 }
5208
5209 static void
5210 dw2_expand_symtabs_matching
5211 (struct objfile *objfile,
5212 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5213 const lookup_name_info &lookup_name,
5214 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5215 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5216 enum search_domain kind)
5217 {
5218 struct dwarf2_per_objfile *dwarf2_per_objfile
5219 = get_dwarf2_per_objfile (objfile);
5220
5221 /* index_table is NULL if OBJF_READNOW. */
5222 if (!dwarf2_per_objfile->index_table)
5223 return;
5224
5225 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5226
5227 mapped_index &index = *dwarf2_per_objfile->index_table;
5228
5229 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5230 symbol_matcher,
5231 kind, [&] (offset_type idx)
5232 {
5233 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5234 expansion_notify, kind);
5235 });
5236 }
5237
5238 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5239 symtab. */
5240
5241 static struct compunit_symtab *
5242 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5243 CORE_ADDR pc)
5244 {
5245 int i;
5246
5247 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5248 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5249 return cust;
5250
5251 if (cust->includes == NULL)
5252 return NULL;
5253
5254 for (i = 0; cust->includes[i]; ++i)
5255 {
5256 struct compunit_symtab *s = cust->includes[i];
5257
5258 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5259 if (s != NULL)
5260 return s;
5261 }
5262
5263 return NULL;
5264 }
5265
5266 static struct compunit_symtab *
5267 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5268 struct bound_minimal_symbol msymbol,
5269 CORE_ADDR pc,
5270 struct obj_section *section,
5271 int warn_if_readin)
5272 {
5273 struct dwarf2_per_cu_data *data;
5274 struct compunit_symtab *result;
5275
5276 if (!objfile->psymtabs_addrmap)
5277 return NULL;
5278
5279 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5280 pc);
5281 if (!data)
5282 return NULL;
5283
5284 if (warn_if_readin && data->v.quick->compunit_symtab)
5285 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5286 paddress (get_objfile_arch (objfile), pc));
5287
5288 result
5289 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5290 pc);
5291 gdb_assert (result != NULL);
5292 return result;
5293 }
5294
5295 static void
5296 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5297 void *data, int need_fullname)
5298 {
5299 struct dwarf2_per_objfile *dwarf2_per_objfile
5300 = get_dwarf2_per_objfile (objfile);
5301
5302 if (!dwarf2_per_objfile->filenames_cache)
5303 {
5304 dwarf2_per_objfile->filenames_cache.emplace ();
5305
5306 htab_up visited (htab_create_alloc (10,
5307 htab_hash_pointer, htab_eq_pointer,
5308 NULL, xcalloc, xfree));
5309
5310 /* The rule is CUs specify all the files, including those used
5311 by any TU, so there's no need to scan TUs here. We can
5312 ignore file names coming from already-expanded CUs. */
5313
5314 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5315 {
5316 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5317
5318 if (per_cu->v.quick->compunit_symtab)
5319 {
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5322 INSERT);
5323
5324 *slot = per_cu->v.quick->file_names;
5325 }
5326 }
5327
5328 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5329 {
5330 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5331 struct quick_file_names *file_data;
5332 void **slot;
5333
5334 /* We only need to look at symtabs not already expanded. */
5335 if (per_cu->v.quick->compunit_symtab)
5336 continue;
5337
5338 file_data = dw2_get_file_names (per_cu);
5339 if (file_data == NULL)
5340 continue;
5341
5342 slot = htab_find_slot (visited.get (), file_data, INSERT);
5343 if (*slot)
5344 {
5345 /* Already visited. */
5346 continue;
5347 }
5348 *slot = file_data;
5349
5350 for (int j = 0; j < file_data->num_file_names; ++j)
5351 {
5352 const char *filename = file_data->file_names[j];
5353 dwarf2_per_objfile->filenames_cache->seen (filename);
5354 }
5355 }
5356 }
5357
5358 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5359 {
5360 gdb::unique_xmalloc_ptr<char> this_real_name;
5361
5362 if (need_fullname)
5363 this_real_name = gdb_realpath (filename);
5364 (*fun) (filename, this_real_name.get (), data);
5365 });
5366 }
5367
5368 static int
5369 dw2_has_symbols (struct objfile *objfile)
5370 {
5371 return 1;
5372 }
5373
5374 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5375 {
5376 dw2_has_symbols,
5377 dw2_find_last_source_symtab,
5378 dw2_forget_cached_source_info,
5379 dw2_map_symtabs_matching_filename,
5380 dw2_lookup_symbol,
5381 dw2_print_stats,
5382 dw2_dump,
5383 dw2_relocate,
5384 dw2_expand_symtabs_for_function,
5385 dw2_expand_all_symtabs,
5386 dw2_expand_symtabs_with_fullname,
5387 dw2_map_matching_symbols,
5388 dw2_expand_symtabs_matching,
5389 dw2_find_pc_sect_compunit_symtab,
5390 NULL,
5391 dw2_map_symbol_filenames
5392 };
5393
5394 /* DWARF-5 debug_names reader. */
5395
5396 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5397 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5398
5399 /* A helper function that reads the .debug_names section in SECTION
5400 and fills in MAP. FILENAME is the name of the file containing the
5401 section; it is used for error reporting.
5402
5403 Returns true if all went well, false otherwise. */
5404
5405 static bool
5406 read_debug_names_from_section (struct objfile *objfile,
5407 const char *filename,
5408 struct dwarf2_section_info *section,
5409 mapped_debug_names &map)
5410 {
5411 if (dwarf2_section_empty_p (section))
5412 return false;
5413
5414 /* Older elfutils strip versions could keep the section in the main
5415 executable while splitting it for the separate debug info file. */
5416 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5417 return false;
5418
5419 dwarf2_read_section (objfile, section);
5420
5421 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5422
5423 const gdb_byte *addr = section->buffer;
5424
5425 bfd *const abfd = get_section_bfd_owner (section);
5426
5427 unsigned int bytes_read;
5428 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5429 addr += bytes_read;
5430
5431 map.dwarf5_is_dwarf64 = bytes_read != 4;
5432 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5433 if (bytes_read + length != section->size)
5434 {
5435 /* There may be multiple per-CU indices. */
5436 warning (_("Section .debug_names in %s length %s does not match "
5437 "section length %s, ignoring .debug_names."),
5438 filename, plongest (bytes_read + length),
5439 pulongest (section->size));
5440 return false;
5441 }
5442
5443 /* The version number. */
5444 uint16_t version = read_2_bytes (abfd, addr);
5445 addr += 2;
5446 if (version != 5)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported version %d, "
5449 "ignoring .debug_names."),
5450 filename, version);
5451 return false;
5452 }
5453
5454 /* Padding. */
5455 uint16_t padding = read_2_bytes (abfd, addr);
5456 addr += 2;
5457 if (padding != 0)
5458 {
5459 warning (_("Section .debug_names in %s has unsupported padding %d, "
5460 "ignoring .debug_names."),
5461 filename, padding);
5462 return false;
5463 }
5464
5465 /* comp_unit_count - The number of CUs in the CU list. */
5466 map.cu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* local_type_unit_count - The number of TUs in the local TU
5470 list. */
5471 map.tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473
5474 /* foreign_type_unit_count - The number of TUs in the foreign TU
5475 list. */
5476 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5477 addr += 4;
5478 if (foreign_tu_count != 0)
5479 {
5480 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5481 "ignoring .debug_names."),
5482 filename, static_cast<unsigned long> (foreign_tu_count));
5483 return false;
5484 }
5485
5486 /* bucket_count - The number of hash buckets in the hash lookup
5487 table. */
5488 map.bucket_count = read_4_bytes (abfd, addr);
5489 addr += 4;
5490
5491 /* name_count - The number of unique names in the index. */
5492 map.name_count = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* abbrev_table_size - The size in bytes of the abbreviations
5496 table. */
5497 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499
5500 /* augmentation_string_size - The size in bytes of the augmentation
5501 string. This value is rounded up to a multiple of 4. */
5502 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5503 addr += 4;
5504 map.augmentation_is_gdb = ((augmentation_string_size
5505 == sizeof (dwarf5_augmentation))
5506 && memcmp (addr, dwarf5_augmentation,
5507 sizeof (dwarf5_augmentation)) == 0);
5508 augmentation_string_size += (-augmentation_string_size) & 3;
5509 addr += augmentation_string_size;
5510
5511 /* List of CUs */
5512 map.cu_table_reordered = addr;
5513 addr += map.cu_count * map.offset_size;
5514
5515 /* List of Local TUs */
5516 map.tu_table_reordered = addr;
5517 addr += map.tu_count * map.offset_size;
5518
5519 /* Hash Lookup Table */
5520 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5521 addr += map.bucket_count * 4;
5522 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5523 addr += map.name_count * 4;
5524
5525 /* Name Table */
5526 map.name_table_string_offs_reordered = addr;
5527 addr += map.name_count * map.offset_size;
5528 map.name_table_entry_offs_reordered = addr;
5529 addr += map.name_count * map.offset_size;
5530
5531 const gdb_byte *abbrev_table_start = addr;
5532 for (;;)
5533 {
5534 unsigned int bytes_read;
5535 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5536 addr += bytes_read;
5537 if (index_num == 0)
5538 break;
5539
5540 const auto insertpair
5541 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5542 if (!insertpair.second)
5543 {
5544 warning (_("Section .debug_names in %s has duplicate index %s, "
5545 "ignoring .debug_names."),
5546 filename, pulongest (index_num));
5547 return false;
5548 }
5549 mapped_debug_names::index_val &indexval = insertpair.first->second;
5550 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5551 addr += bytes_read;
5552
5553 for (;;)
5554 {
5555 mapped_debug_names::index_val::attr attr;
5556 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5557 addr += bytes_read;
5558 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5559 addr += bytes_read;
5560 if (attr.form == DW_FORM_implicit_const)
5561 {
5562 attr.implicit_const = read_signed_leb128 (abfd, addr,
5563 &bytes_read);
5564 addr += bytes_read;
5565 }
5566 if (attr.dw_idx == 0 && attr.form == 0)
5567 break;
5568 indexval.attr_vec.push_back (std::move (attr));
5569 }
5570 }
5571 if (addr != abbrev_table_start + abbrev_table_size)
5572 {
5573 warning (_("Section .debug_names in %s has abbreviation_table "
5574 "of size %zu vs. written as %u, ignoring .debug_names."),
5575 filename, addr - abbrev_table_start, abbrev_table_size);
5576 return false;
5577 }
5578 map.entry_pool = addr;
5579
5580 return true;
5581 }
5582
5583 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5584 list. */
5585
5586 static void
5587 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5588 const mapped_debug_names &map,
5589 dwarf2_section_info &section,
5590 bool is_dwz, int base_offset)
5591 {
5592 sect_offset sect_off_prev;
5593 for (uint32_t i = 0; i <= map.cu_count; ++i)
5594 {
5595 sect_offset sect_off_next;
5596 if (i < map.cu_count)
5597 {
5598 sect_off_next
5599 = (sect_offset) (extract_unsigned_integer
5600 (map.cu_table_reordered + i * map.offset_size,
5601 map.offset_size,
5602 map.dwarf5_byte_order));
5603 }
5604 else
5605 sect_off_next = (sect_offset) section.size;
5606 if (i >= 1)
5607 {
5608 const ULONGEST length = sect_off_next - sect_off_prev;
5609 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5610 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5611 sect_off_prev, length);
5612 }
5613 sect_off_prev = sect_off_next;
5614 }
5615 }
5616
5617 /* Read the CU list from the mapped index, and use it to create all
5618 the CU objects for this dwarf2_per_objfile. */
5619
5620 static void
5621 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5622 const mapped_debug_names &map,
5623 const mapped_debug_names &dwz_map)
5624 {
5625 struct objfile *objfile = dwarf2_per_objfile->objfile;
5626
5627 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
5628 dwarf2_per_objfile->all_comp_units
5629 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
5630 dwarf2_per_objfile->n_comp_units);
5631
5632 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5633 dwarf2_per_objfile->info,
5634 false /* is_dwz */,
5635 0 /* base_offset */);
5636
5637 if (dwz_map.cu_count == 0)
5638 return;
5639
5640 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5641 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5642 true /* is_dwz */,
5643 map.cu_count /* base_offset */);
5644 }
5645
5646 /* Read .debug_names. If everything went ok, initialize the "quick"
5647 elements of all the CUs and return true. Otherwise, return false. */
5648
5649 static bool
5650 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5651 {
5652 mapped_debug_names local_map (dwarf2_per_objfile);
5653 mapped_debug_names dwz_map (dwarf2_per_objfile);
5654 struct objfile *objfile = dwarf2_per_objfile->objfile;
5655
5656 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5657 &dwarf2_per_objfile->debug_names,
5658 local_map))
5659 return false;
5660
5661 /* Don't use the index if it's empty. */
5662 if (local_map.name_count == 0)
5663 return false;
5664
5665 /* If there is a .dwz file, read it so we can get its CU list as
5666 well. */
5667 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5668 if (dwz != NULL)
5669 {
5670 if (!read_debug_names_from_section (objfile,
5671 bfd_get_filename (dwz->dwz_bfd),
5672 &dwz->debug_names, dwz_map))
5673 {
5674 warning (_("could not read '.debug_names' section from %s; skipping"),
5675 bfd_get_filename (dwz->dwz_bfd));
5676 return false;
5677 }
5678 }
5679
5680 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5681
5682 if (local_map.tu_count != 0)
5683 {
5684 /* We can only handle a single .debug_types when we have an
5685 index. */
5686 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5687 return false;
5688
5689 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5690 dwarf2_per_objfile->types, 0);
5691
5692 create_signatured_type_table_from_debug_names
5693 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5694 }
5695
5696 create_addrmap_from_aranges (dwarf2_per_objfile,
5697 &dwarf2_per_objfile->debug_aranges);
5698
5699 dwarf2_per_objfile->debug_names_table.reset
5700 (new mapped_debug_names (dwarf2_per_objfile));
5701 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5702 dwarf2_per_objfile->using_index = 1;
5703 dwarf2_per_objfile->quick_file_names_table =
5704 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5705
5706 return true;
5707 }
5708
5709 /* Type used to manage iterating over all CUs looking for a symbol for
5710 .debug_names. */
5711
5712 class dw2_debug_names_iterator
5713 {
5714 public:
5715 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5716 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5717 dw2_debug_names_iterator (const mapped_debug_names &map,
5718 bool want_specific_block,
5719 block_enum block_index, domain_enum domain,
5720 const char *name)
5721 : m_map (map), m_want_specific_block (want_specific_block),
5722 m_block_index (block_index), m_domain (domain),
5723 m_addr (find_vec_in_debug_names (map, name))
5724 {}
5725
5726 dw2_debug_names_iterator (const mapped_debug_names &map,
5727 search_domain search, uint32_t namei)
5728 : m_map (map),
5729 m_search (search),
5730 m_addr (find_vec_in_debug_names (map, namei))
5731 {}
5732
5733 /* Return the next matching CU or NULL if there are no more. */
5734 dwarf2_per_cu_data *next ();
5735
5736 private:
5737 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5738 const char *name);
5739 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5740 uint32_t namei);
5741
5742 /* The internalized form of .debug_names. */
5743 const mapped_debug_names &m_map;
5744
5745 /* If true, only look for symbols that match BLOCK_INDEX. */
5746 const bool m_want_specific_block = false;
5747
5748 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5749 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5750 value. */
5751 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5752
5753 /* The kind of symbol we're looking for. */
5754 const domain_enum m_domain = UNDEF_DOMAIN;
5755 const search_domain m_search = ALL_DOMAIN;
5756
5757 /* The list of CUs from the index entry of the symbol, or NULL if
5758 not found. */
5759 const gdb_byte *m_addr;
5760 };
5761
5762 const char *
5763 mapped_debug_names::namei_to_name (uint32_t namei) const
5764 {
5765 const ULONGEST namei_string_offs
5766 = extract_unsigned_integer ((name_table_string_offs_reordered
5767 + namei * offset_size),
5768 offset_size,
5769 dwarf5_byte_order);
5770 return read_indirect_string_at_offset
5771 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5772 }
5773
5774 /* Find a slot in .debug_names for the object named NAME. If NAME is
5775 found, return pointer to its pool data. If NAME cannot be found,
5776 return NULL. */
5777
5778 const gdb_byte *
5779 dw2_debug_names_iterator::find_vec_in_debug_names
5780 (const mapped_debug_names &map, const char *name)
5781 {
5782 int (*cmp) (const char *, const char *);
5783
5784 if (current_language->la_language == language_cplus
5785 || current_language->la_language == language_fortran
5786 || current_language->la_language == language_d)
5787 {
5788 /* NAME is already canonical. Drop any qualifiers as
5789 .debug_names does not contain any. */
5790
5791 if (strchr (name, '(') != NULL)
5792 {
5793 gdb::unique_xmalloc_ptr<char> without_params
5794 = cp_remove_params (name);
5795
5796 if (without_params != NULL)
5797 {
5798 name = without_params.get();
5799 }
5800 }
5801 }
5802
5803 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5804
5805 const uint32_t full_hash = dwarf5_djb_hash (name);
5806 uint32_t namei
5807 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5808 (map.bucket_table_reordered
5809 + (full_hash % map.bucket_count)), 4,
5810 map.dwarf5_byte_order);
5811 if (namei == 0)
5812 return NULL;
5813 --namei;
5814 if (namei >= map.name_count)
5815 {
5816 complaint (&symfile_complaints,
5817 _("Wrong .debug_names with name index %u but name_count=%u "
5818 "[in module %s]"),
5819 namei, map.name_count,
5820 objfile_name (map.dwarf2_per_objfile->objfile));
5821 return NULL;
5822 }
5823
5824 for (;;)
5825 {
5826 const uint32_t namei_full_hash
5827 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5828 (map.hash_table_reordered + namei), 4,
5829 map.dwarf5_byte_order);
5830 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5831 return NULL;
5832
5833 if (full_hash == namei_full_hash)
5834 {
5835 const char *const namei_string = map.namei_to_name (namei);
5836
5837 #if 0 /* An expensive sanity check. */
5838 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5839 {
5840 complaint (&symfile_complaints,
5841 _("Wrong .debug_names hash for string at index %u "
5842 "[in module %s]"),
5843 namei, objfile_name (dwarf2_per_objfile->objfile));
5844 return NULL;
5845 }
5846 #endif
5847
5848 if (cmp (namei_string, name) == 0)
5849 {
5850 const ULONGEST namei_entry_offs
5851 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5852 + namei * map.offset_size),
5853 map.offset_size, map.dwarf5_byte_order);
5854 return map.entry_pool + namei_entry_offs;
5855 }
5856 }
5857
5858 ++namei;
5859 if (namei >= map.name_count)
5860 return NULL;
5861 }
5862 }
5863
5864 const gdb_byte *
5865 dw2_debug_names_iterator::find_vec_in_debug_names
5866 (const mapped_debug_names &map, uint32_t namei)
5867 {
5868 if (namei >= map.name_count)
5869 {
5870 complaint (&symfile_complaints,
5871 _("Wrong .debug_names with name index %u but name_count=%u "
5872 "[in module %s]"),
5873 namei, map.name_count,
5874 objfile_name (map.dwarf2_per_objfile->objfile));
5875 return NULL;
5876 }
5877
5878 const ULONGEST namei_entry_offs
5879 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5880 + namei * map.offset_size),
5881 map.offset_size, map.dwarf5_byte_order);
5882 return map.entry_pool + namei_entry_offs;
5883 }
5884
5885 /* See dw2_debug_names_iterator. */
5886
5887 dwarf2_per_cu_data *
5888 dw2_debug_names_iterator::next ()
5889 {
5890 if (m_addr == NULL)
5891 return NULL;
5892
5893 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5894 struct objfile *objfile = dwarf2_per_objfile->objfile;
5895 bfd *const abfd = objfile->obfd;
5896
5897 again:
5898
5899 unsigned int bytes_read;
5900 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5901 m_addr += bytes_read;
5902 if (abbrev == 0)
5903 return NULL;
5904
5905 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5906 if (indexval_it == m_map.abbrev_map.cend ())
5907 {
5908 complaint (&symfile_complaints,
5909 _("Wrong .debug_names undefined abbrev code %s "
5910 "[in module %s]"),
5911 pulongest (abbrev), objfile_name (objfile));
5912 return NULL;
5913 }
5914 const mapped_debug_names::index_val &indexval = indexval_it->second;
5915 bool have_is_static = false;
5916 bool is_static;
5917 dwarf2_per_cu_data *per_cu = NULL;
5918 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5919 {
5920 ULONGEST ull;
5921 switch (attr.form)
5922 {
5923 case DW_FORM_implicit_const:
5924 ull = attr.implicit_const;
5925 break;
5926 case DW_FORM_flag_present:
5927 ull = 1;
5928 break;
5929 case DW_FORM_udata:
5930 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5931 m_addr += bytes_read;
5932 break;
5933 default:
5934 complaint (&symfile_complaints,
5935 _("Unsupported .debug_names form %s [in module %s]"),
5936 dwarf_form_name (attr.form),
5937 objfile_name (objfile));
5938 return NULL;
5939 }
5940 switch (attr.dw_idx)
5941 {
5942 case DW_IDX_compile_unit:
5943 /* Don't crash on bad data. */
5944 if (ull >= dwarf2_per_objfile->n_comp_units)
5945 {
5946 complaint (&symfile_complaints,
5947 _(".debug_names entry has bad CU index %s"
5948 " [in module %s]"),
5949 pulongest (ull),
5950 objfile_name (dwarf2_per_objfile->objfile));
5951 continue;
5952 }
5953 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
5954 break;
5955 case DW_IDX_type_unit:
5956 /* Don't crash on bad data. */
5957 if (ull >= dwarf2_per_objfile->n_type_units)
5958 {
5959 complaint (&symfile_complaints,
5960 _(".debug_names entry has bad TU index %s"
5961 " [in module %s]"),
5962 pulongest (ull),
5963 objfile_name (dwarf2_per_objfile->objfile));
5964 continue;
5965 }
5966 per_cu = dw2_get_cutu (dwarf2_per_objfile,
5967 dwarf2_per_objfile->n_comp_units + ull);
5968 break;
5969 case DW_IDX_GNU_internal:
5970 if (!m_map.augmentation_is_gdb)
5971 break;
5972 have_is_static = true;
5973 is_static = true;
5974 break;
5975 case DW_IDX_GNU_external:
5976 if (!m_map.augmentation_is_gdb)
5977 break;
5978 have_is_static = true;
5979 is_static = false;
5980 break;
5981 }
5982 }
5983
5984 /* Skip if already read in. */
5985 if (per_cu->v.quick->compunit_symtab)
5986 goto again;
5987
5988 /* Check static vs global. */
5989 if (have_is_static)
5990 {
5991 const bool want_static = m_block_index != GLOBAL_BLOCK;
5992 if (m_want_specific_block && want_static != is_static)
5993 goto again;
5994 }
5995
5996 /* Match dw2_symtab_iter_next, symbol_kind
5997 and debug_names::psymbol_tag. */
5998 switch (m_domain)
5999 {
6000 case VAR_DOMAIN:
6001 switch (indexval.dwarf_tag)
6002 {
6003 case DW_TAG_variable:
6004 case DW_TAG_subprogram:
6005 /* Some types are also in VAR_DOMAIN. */
6006 case DW_TAG_typedef:
6007 case DW_TAG_structure_type:
6008 break;
6009 default:
6010 goto again;
6011 }
6012 break;
6013 case STRUCT_DOMAIN:
6014 switch (indexval.dwarf_tag)
6015 {
6016 case DW_TAG_typedef:
6017 case DW_TAG_structure_type:
6018 break;
6019 default:
6020 goto again;
6021 }
6022 break;
6023 case LABEL_DOMAIN:
6024 switch (indexval.dwarf_tag)
6025 {
6026 case 0:
6027 case DW_TAG_variable:
6028 break;
6029 default:
6030 goto again;
6031 }
6032 break;
6033 default:
6034 break;
6035 }
6036
6037 /* Match dw2_expand_symtabs_matching, symbol_kind and
6038 debug_names::psymbol_tag. */
6039 switch (m_search)
6040 {
6041 case VARIABLES_DOMAIN:
6042 switch (indexval.dwarf_tag)
6043 {
6044 case DW_TAG_variable:
6045 break;
6046 default:
6047 goto again;
6048 }
6049 break;
6050 case FUNCTIONS_DOMAIN:
6051 switch (indexval.dwarf_tag)
6052 {
6053 case DW_TAG_subprogram:
6054 break;
6055 default:
6056 goto again;
6057 }
6058 break;
6059 case TYPES_DOMAIN:
6060 switch (indexval.dwarf_tag)
6061 {
6062 case DW_TAG_typedef:
6063 case DW_TAG_structure_type:
6064 break;
6065 default:
6066 goto again;
6067 }
6068 break;
6069 default:
6070 break;
6071 }
6072
6073 return per_cu;
6074 }
6075
6076 static struct compunit_symtab *
6077 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6078 const char *name, domain_enum domain)
6079 {
6080 const block_enum block_index = static_cast<block_enum> (block_index_int);
6081 struct dwarf2_per_objfile *dwarf2_per_objfile
6082 = get_dwarf2_per_objfile (objfile);
6083
6084 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6085 if (!mapp)
6086 {
6087 /* index is NULL if OBJF_READNOW. */
6088 return NULL;
6089 }
6090 const auto &map = *mapp;
6091
6092 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6093 block_index, domain, name);
6094
6095 struct compunit_symtab *stab_best = NULL;
6096 struct dwarf2_per_cu_data *per_cu;
6097 while ((per_cu = iter.next ()) != NULL)
6098 {
6099 struct symbol *sym, *with_opaque = NULL;
6100 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6101 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6102 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6103
6104 sym = block_find_symbol (block, name, domain,
6105 block_find_non_opaque_type_preferred,
6106 &with_opaque);
6107
6108 /* Some caution must be observed with overloaded functions and
6109 methods, since the index will not contain any overload
6110 information (but NAME might contain it). */
6111
6112 if (sym != NULL
6113 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6114 return stab;
6115 if (with_opaque != NULL
6116 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6117 stab_best = stab;
6118
6119 /* Keep looking through other CUs. */
6120 }
6121
6122 return stab_best;
6123 }
6124
6125 /* This dumps minimal information about .debug_names. It is called
6126 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6127 uses this to verify that .debug_names has been loaded. */
6128
6129 static void
6130 dw2_debug_names_dump (struct objfile *objfile)
6131 {
6132 struct dwarf2_per_objfile *dwarf2_per_objfile
6133 = get_dwarf2_per_objfile (objfile);
6134
6135 gdb_assert (dwarf2_per_objfile->using_index);
6136 printf_filtered (".debug_names:");
6137 if (dwarf2_per_objfile->debug_names_table)
6138 printf_filtered (" exists\n");
6139 else
6140 printf_filtered (" faked for \"readnow\"\n");
6141 printf_filtered ("\n");
6142 }
6143
6144 static void
6145 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6146 const char *func_name)
6147 {
6148 struct dwarf2_per_objfile *dwarf2_per_objfile
6149 = get_dwarf2_per_objfile (objfile);
6150
6151 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6152 if (dwarf2_per_objfile->debug_names_table)
6153 {
6154 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6155
6156 /* Note: It doesn't matter what we pass for block_index here. */
6157 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6158 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6159
6160 struct dwarf2_per_cu_data *per_cu;
6161 while ((per_cu = iter.next ()) != NULL)
6162 dw2_instantiate_symtab (per_cu);
6163 }
6164 }
6165
6166 static void
6167 dw2_debug_names_expand_symtabs_matching
6168 (struct objfile *objfile,
6169 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6170 const lookup_name_info &lookup_name,
6171 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6172 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6173 enum search_domain kind)
6174 {
6175 struct dwarf2_per_objfile *dwarf2_per_objfile
6176 = get_dwarf2_per_objfile (objfile);
6177
6178 /* debug_names_table is NULL if OBJF_READNOW. */
6179 if (!dwarf2_per_objfile->debug_names_table)
6180 return;
6181
6182 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6183
6184 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6185
6186 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6187 symbol_matcher,
6188 kind, [&] (offset_type namei)
6189 {
6190 /* The name was matched, now expand corresponding CUs that were
6191 marked. */
6192 dw2_debug_names_iterator iter (map, kind, namei);
6193
6194 struct dwarf2_per_cu_data *per_cu;
6195 while ((per_cu = iter.next ()) != NULL)
6196 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6197 expansion_notify);
6198 });
6199 }
6200
6201 const struct quick_symbol_functions dwarf2_debug_names_functions =
6202 {
6203 dw2_has_symbols,
6204 dw2_find_last_source_symtab,
6205 dw2_forget_cached_source_info,
6206 dw2_map_symtabs_matching_filename,
6207 dw2_debug_names_lookup_symbol,
6208 dw2_print_stats,
6209 dw2_debug_names_dump,
6210 dw2_relocate,
6211 dw2_debug_names_expand_symtabs_for_function,
6212 dw2_expand_all_symtabs,
6213 dw2_expand_symtabs_with_fullname,
6214 dw2_map_matching_symbols,
6215 dw2_debug_names_expand_symtabs_matching,
6216 dw2_find_pc_sect_compunit_symtab,
6217 NULL,
6218 dw2_map_symbol_filenames
6219 };
6220
6221 /* See symfile.h. */
6222
6223 bool
6224 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6225 {
6226 struct dwarf2_per_objfile *dwarf2_per_objfile
6227 = get_dwarf2_per_objfile (objfile);
6228
6229 /* If we're about to read full symbols, don't bother with the
6230 indices. In this case we also don't care if some other debug
6231 format is making psymtabs, because they are all about to be
6232 expanded anyway. */
6233 if ((objfile->flags & OBJF_READNOW))
6234 {
6235 int i;
6236
6237 dwarf2_per_objfile->using_index = 1;
6238 create_all_comp_units (dwarf2_per_objfile);
6239 create_all_type_units (dwarf2_per_objfile);
6240 dwarf2_per_objfile->quick_file_names_table =
6241 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6242
6243 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6244 + dwarf2_per_objfile->n_type_units); ++i)
6245 {
6246 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6247
6248 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6249 struct dwarf2_per_cu_quick_data);
6250 }
6251
6252 /* Return 1 so that gdb sees the "quick" functions. However,
6253 these functions will be no-ops because we will have expanded
6254 all symtabs. */
6255 *index_kind = dw_index_kind::GDB_INDEX;
6256 return true;
6257 }
6258
6259 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6260 {
6261 *index_kind = dw_index_kind::DEBUG_NAMES;
6262 return true;
6263 }
6264
6265 if (dwarf2_read_index (objfile))
6266 {
6267 *index_kind = dw_index_kind::GDB_INDEX;
6268 return true;
6269 }
6270
6271 return false;
6272 }
6273
6274 \f
6275
6276 /* Build a partial symbol table. */
6277
6278 void
6279 dwarf2_build_psymtabs (struct objfile *objfile)
6280 {
6281 struct dwarf2_per_objfile *dwarf2_per_objfile
6282 = get_dwarf2_per_objfile (objfile);
6283
6284 if (objfile->global_psymbols.capacity () == 0
6285 && objfile->static_psymbols.capacity () == 0)
6286 init_psymbol_list (objfile, 1024);
6287
6288 TRY
6289 {
6290 /* This isn't really ideal: all the data we allocate on the
6291 objfile's obstack is still uselessly kept around. However,
6292 freeing it seems unsafe. */
6293 psymtab_discarder psymtabs (objfile);
6294 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6295 psymtabs.keep ();
6296 }
6297 CATCH (except, RETURN_MASK_ERROR)
6298 {
6299 exception_print (gdb_stderr, except);
6300 }
6301 END_CATCH
6302 }
6303
6304 /* Return the total length of the CU described by HEADER. */
6305
6306 static unsigned int
6307 get_cu_length (const struct comp_unit_head *header)
6308 {
6309 return header->initial_length_size + header->length;
6310 }
6311
6312 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6313
6314 static inline bool
6315 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6316 {
6317 sect_offset bottom = cu_header->sect_off;
6318 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6319
6320 return sect_off >= bottom && sect_off < top;
6321 }
6322
6323 /* Find the base address of the compilation unit for range lists and
6324 location lists. It will normally be specified by DW_AT_low_pc.
6325 In DWARF-3 draft 4, the base address could be overridden by
6326 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6327 compilation units with discontinuous ranges. */
6328
6329 static void
6330 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6331 {
6332 struct attribute *attr;
6333
6334 cu->base_known = 0;
6335 cu->base_address = 0;
6336
6337 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6338 if (attr)
6339 {
6340 cu->base_address = attr_value_as_address (attr);
6341 cu->base_known = 1;
6342 }
6343 else
6344 {
6345 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6346 if (attr)
6347 {
6348 cu->base_address = attr_value_as_address (attr);
6349 cu->base_known = 1;
6350 }
6351 }
6352 }
6353
6354 /* Read in the comp unit header information from the debug_info at info_ptr.
6355 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6356 NOTE: This leaves members offset, first_die_offset to be filled in
6357 by the caller. */
6358
6359 static const gdb_byte *
6360 read_comp_unit_head (struct comp_unit_head *cu_header,
6361 const gdb_byte *info_ptr,
6362 struct dwarf2_section_info *section,
6363 rcuh_kind section_kind)
6364 {
6365 int signed_addr;
6366 unsigned int bytes_read;
6367 const char *filename = get_section_file_name (section);
6368 bfd *abfd = get_section_bfd_owner (section);
6369
6370 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6371 cu_header->initial_length_size = bytes_read;
6372 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6373 info_ptr += bytes_read;
6374 cu_header->version = read_2_bytes (abfd, info_ptr);
6375 info_ptr += 2;
6376 if (cu_header->version < 5)
6377 switch (section_kind)
6378 {
6379 case rcuh_kind::COMPILE:
6380 cu_header->unit_type = DW_UT_compile;
6381 break;
6382 case rcuh_kind::TYPE:
6383 cu_header->unit_type = DW_UT_type;
6384 break;
6385 default:
6386 internal_error (__FILE__, __LINE__,
6387 _("read_comp_unit_head: invalid section_kind"));
6388 }
6389 else
6390 {
6391 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6392 (read_1_byte (abfd, info_ptr));
6393 info_ptr += 1;
6394 switch (cu_header->unit_type)
6395 {
6396 case DW_UT_compile:
6397 if (section_kind != rcuh_kind::COMPILE)
6398 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6399 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6400 filename);
6401 break;
6402 case DW_UT_type:
6403 section_kind = rcuh_kind::TYPE;
6404 break;
6405 default:
6406 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6407 "(is %d, should be %d or %d) [in module %s]"),
6408 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6409 }
6410
6411 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6412 info_ptr += 1;
6413 }
6414 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6415 cu_header,
6416 &bytes_read);
6417 info_ptr += bytes_read;
6418 if (cu_header->version < 5)
6419 {
6420 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6421 info_ptr += 1;
6422 }
6423 signed_addr = bfd_get_sign_extend_vma (abfd);
6424 if (signed_addr < 0)
6425 internal_error (__FILE__, __LINE__,
6426 _("read_comp_unit_head: dwarf from non elf file"));
6427 cu_header->signed_addr_p = signed_addr;
6428
6429 if (section_kind == rcuh_kind::TYPE)
6430 {
6431 LONGEST type_offset;
6432
6433 cu_header->signature = read_8_bytes (abfd, info_ptr);
6434 info_ptr += 8;
6435
6436 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6437 info_ptr += bytes_read;
6438 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6439 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6440 error (_("Dwarf Error: Too big type_offset in compilation unit "
6441 "header (is %s) [in module %s]"), plongest (type_offset),
6442 filename);
6443 }
6444
6445 return info_ptr;
6446 }
6447
6448 /* Helper function that returns the proper abbrev section for
6449 THIS_CU. */
6450
6451 static struct dwarf2_section_info *
6452 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6453 {
6454 struct dwarf2_section_info *abbrev;
6455 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6456
6457 if (this_cu->is_dwz)
6458 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6459 else
6460 abbrev = &dwarf2_per_objfile->abbrev;
6461
6462 return abbrev;
6463 }
6464
6465 /* Subroutine of read_and_check_comp_unit_head and
6466 read_and_check_type_unit_head to simplify them.
6467 Perform various error checking on the header. */
6468
6469 static void
6470 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6471 struct comp_unit_head *header,
6472 struct dwarf2_section_info *section,
6473 struct dwarf2_section_info *abbrev_section)
6474 {
6475 const char *filename = get_section_file_name (section);
6476
6477 if (header->version < 2 || header->version > 5)
6478 error (_("Dwarf Error: wrong version in compilation unit header "
6479 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6480 filename);
6481
6482 if (to_underlying (header->abbrev_sect_off)
6483 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6484 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6485 "(offset %s + 6) [in module %s]"),
6486 sect_offset_str (header->abbrev_sect_off),
6487 sect_offset_str (header->sect_off),
6488 filename);
6489
6490 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6491 avoid potential 32-bit overflow. */
6492 if (((ULONGEST) header->sect_off + get_cu_length (header))
6493 > section->size)
6494 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6495 "(offset %s + 0) [in module %s]"),
6496 header->length, sect_offset_str (header->sect_off),
6497 filename);
6498 }
6499
6500 /* Read in a CU/TU header and perform some basic error checking.
6501 The contents of the header are stored in HEADER.
6502 The result is a pointer to the start of the first DIE. */
6503
6504 static const gdb_byte *
6505 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6506 struct comp_unit_head *header,
6507 struct dwarf2_section_info *section,
6508 struct dwarf2_section_info *abbrev_section,
6509 const gdb_byte *info_ptr,
6510 rcuh_kind section_kind)
6511 {
6512 const gdb_byte *beg_of_comp_unit = info_ptr;
6513
6514 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6515
6516 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6517
6518 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6519
6520 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6521 abbrev_section);
6522
6523 return info_ptr;
6524 }
6525
6526 /* Fetch the abbreviation table offset from a comp or type unit header. */
6527
6528 static sect_offset
6529 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6530 struct dwarf2_section_info *section,
6531 sect_offset sect_off)
6532 {
6533 bfd *abfd = get_section_bfd_owner (section);
6534 const gdb_byte *info_ptr;
6535 unsigned int initial_length_size, offset_size;
6536 uint16_t version;
6537
6538 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6539 info_ptr = section->buffer + to_underlying (sect_off);
6540 read_initial_length (abfd, info_ptr, &initial_length_size);
6541 offset_size = initial_length_size == 4 ? 4 : 8;
6542 info_ptr += initial_length_size;
6543
6544 version = read_2_bytes (abfd, info_ptr);
6545 info_ptr += 2;
6546 if (version >= 5)
6547 {
6548 /* Skip unit type and address size. */
6549 info_ptr += 2;
6550 }
6551
6552 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6553 }
6554
6555 /* Allocate a new partial symtab for file named NAME and mark this new
6556 partial symtab as being an include of PST. */
6557
6558 static void
6559 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6560 struct objfile *objfile)
6561 {
6562 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6563
6564 if (!IS_ABSOLUTE_PATH (subpst->filename))
6565 {
6566 /* It shares objfile->objfile_obstack. */
6567 subpst->dirname = pst->dirname;
6568 }
6569
6570 subpst->textlow = 0;
6571 subpst->texthigh = 0;
6572
6573 subpst->dependencies
6574 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6575 subpst->dependencies[0] = pst;
6576 subpst->number_of_dependencies = 1;
6577
6578 subpst->globals_offset = 0;
6579 subpst->n_global_syms = 0;
6580 subpst->statics_offset = 0;
6581 subpst->n_static_syms = 0;
6582 subpst->compunit_symtab = NULL;
6583 subpst->read_symtab = pst->read_symtab;
6584 subpst->readin = 0;
6585
6586 /* No private part is necessary for include psymtabs. This property
6587 can be used to differentiate between such include psymtabs and
6588 the regular ones. */
6589 subpst->read_symtab_private = NULL;
6590 }
6591
6592 /* Read the Line Number Program data and extract the list of files
6593 included by the source file represented by PST. Build an include
6594 partial symtab for each of these included files. */
6595
6596 static void
6597 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6598 struct die_info *die,
6599 struct partial_symtab *pst)
6600 {
6601 line_header_up lh;
6602 struct attribute *attr;
6603
6604 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6605 if (attr)
6606 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6607 if (lh == NULL)
6608 return; /* No linetable, so no includes. */
6609
6610 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6611 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6612 }
6613
6614 static hashval_t
6615 hash_signatured_type (const void *item)
6616 {
6617 const struct signatured_type *sig_type
6618 = (const struct signatured_type *) item;
6619
6620 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6621 return sig_type->signature;
6622 }
6623
6624 static int
6625 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6626 {
6627 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6628 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6629
6630 return lhs->signature == rhs->signature;
6631 }
6632
6633 /* Allocate a hash table for signatured types. */
6634
6635 static htab_t
6636 allocate_signatured_type_table (struct objfile *objfile)
6637 {
6638 return htab_create_alloc_ex (41,
6639 hash_signatured_type,
6640 eq_signatured_type,
6641 NULL,
6642 &objfile->objfile_obstack,
6643 hashtab_obstack_allocate,
6644 dummy_obstack_deallocate);
6645 }
6646
6647 /* A helper function to add a signatured type CU to a table. */
6648
6649 static int
6650 add_signatured_type_cu_to_table (void **slot, void *datum)
6651 {
6652 struct signatured_type *sigt = (struct signatured_type *) *slot;
6653 struct signatured_type ***datap = (struct signatured_type ***) datum;
6654
6655 **datap = sigt;
6656 ++*datap;
6657
6658 return 1;
6659 }
6660
6661 /* A helper for create_debug_types_hash_table. Read types from SECTION
6662 and fill them into TYPES_HTAB. It will process only type units,
6663 therefore DW_UT_type. */
6664
6665 static void
6666 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6667 struct dwo_file *dwo_file,
6668 dwarf2_section_info *section, htab_t &types_htab,
6669 rcuh_kind section_kind)
6670 {
6671 struct objfile *objfile = dwarf2_per_objfile->objfile;
6672 struct dwarf2_section_info *abbrev_section;
6673 bfd *abfd;
6674 const gdb_byte *info_ptr, *end_ptr;
6675
6676 abbrev_section = (dwo_file != NULL
6677 ? &dwo_file->sections.abbrev
6678 : &dwarf2_per_objfile->abbrev);
6679
6680 if (dwarf_read_debug)
6681 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6682 get_section_name (section),
6683 get_section_file_name (abbrev_section));
6684
6685 dwarf2_read_section (objfile, section);
6686 info_ptr = section->buffer;
6687
6688 if (info_ptr == NULL)
6689 return;
6690
6691 /* We can't set abfd until now because the section may be empty or
6692 not present, in which case the bfd is unknown. */
6693 abfd = get_section_bfd_owner (section);
6694
6695 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6696 because we don't need to read any dies: the signature is in the
6697 header. */
6698
6699 end_ptr = info_ptr + section->size;
6700 while (info_ptr < end_ptr)
6701 {
6702 struct signatured_type *sig_type;
6703 struct dwo_unit *dwo_tu;
6704 void **slot;
6705 const gdb_byte *ptr = info_ptr;
6706 struct comp_unit_head header;
6707 unsigned int length;
6708
6709 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6710
6711 /* Initialize it due to a false compiler warning. */
6712 header.signature = -1;
6713 header.type_cu_offset_in_tu = (cu_offset) -1;
6714
6715 /* We need to read the type's signature in order to build the hash
6716 table, but we don't need anything else just yet. */
6717
6718 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6719 abbrev_section, ptr, section_kind);
6720
6721 length = get_cu_length (&header);
6722
6723 /* Skip dummy type units. */
6724 if (ptr >= info_ptr + length
6725 || peek_abbrev_code (abfd, ptr) == 0
6726 || header.unit_type != DW_UT_type)
6727 {
6728 info_ptr += length;
6729 continue;
6730 }
6731
6732 if (types_htab == NULL)
6733 {
6734 if (dwo_file)
6735 types_htab = allocate_dwo_unit_table (objfile);
6736 else
6737 types_htab = allocate_signatured_type_table (objfile);
6738 }
6739
6740 if (dwo_file)
6741 {
6742 sig_type = NULL;
6743 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6744 struct dwo_unit);
6745 dwo_tu->dwo_file = dwo_file;
6746 dwo_tu->signature = header.signature;
6747 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6748 dwo_tu->section = section;
6749 dwo_tu->sect_off = sect_off;
6750 dwo_tu->length = length;
6751 }
6752 else
6753 {
6754 /* N.B.: type_offset is not usable if this type uses a DWO file.
6755 The real type_offset is in the DWO file. */
6756 dwo_tu = NULL;
6757 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6758 struct signatured_type);
6759 sig_type->signature = header.signature;
6760 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6761 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6762 sig_type->per_cu.is_debug_types = 1;
6763 sig_type->per_cu.section = section;
6764 sig_type->per_cu.sect_off = sect_off;
6765 sig_type->per_cu.length = length;
6766 }
6767
6768 slot = htab_find_slot (types_htab,
6769 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6770 INSERT);
6771 gdb_assert (slot != NULL);
6772 if (*slot != NULL)
6773 {
6774 sect_offset dup_sect_off;
6775
6776 if (dwo_file)
6777 {
6778 const struct dwo_unit *dup_tu
6779 = (const struct dwo_unit *) *slot;
6780
6781 dup_sect_off = dup_tu->sect_off;
6782 }
6783 else
6784 {
6785 const struct signatured_type *dup_tu
6786 = (const struct signatured_type *) *slot;
6787
6788 dup_sect_off = dup_tu->per_cu.sect_off;
6789 }
6790
6791 complaint (&symfile_complaints,
6792 _("debug type entry at offset %s is duplicate to"
6793 " the entry at offset %s, signature %s"),
6794 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6795 hex_string (header.signature));
6796 }
6797 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6798
6799 if (dwarf_read_debug > 1)
6800 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6801 sect_offset_str (sect_off),
6802 hex_string (header.signature));
6803
6804 info_ptr += length;
6805 }
6806 }
6807
6808 /* Create the hash table of all entries in the .debug_types
6809 (or .debug_types.dwo) section(s).
6810 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6811 otherwise it is NULL.
6812
6813 The result is a pointer to the hash table or NULL if there are no types.
6814
6815 Note: This function processes DWO files only, not DWP files. */
6816
6817 static void
6818 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6819 struct dwo_file *dwo_file,
6820 VEC (dwarf2_section_info_def) *types,
6821 htab_t &types_htab)
6822 {
6823 int ix;
6824 struct dwarf2_section_info *section;
6825
6826 if (VEC_empty (dwarf2_section_info_def, types))
6827 return;
6828
6829 for (ix = 0;
6830 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6831 ++ix)
6832 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6833 types_htab, rcuh_kind::TYPE);
6834 }
6835
6836 /* Create the hash table of all entries in the .debug_types section,
6837 and initialize all_type_units.
6838 The result is zero if there is an error (e.g. missing .debug_types section),
6839 otherwise non-zero. */
6840
6841 static int
6842 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6843 {
6844 htab_t types_htab = NULL;
6845 struct signatured_type **iter;
6846
6847 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6848 &dwarf2_per_objfile->info, types_htab,
6849 rcuh_kind::COMPILE);
6850 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6851 dwarf2_per_objfile->types, types_htab);
6852 if (types_htab == NULL)
6853 {
6854 dwarf2_per_objfile->signatured_types = NULL;
6855 return 0;
6856 }
6857
6858 dwarf2_per_objfile->signatured_types = types_htab;
6859
6860 dwarf2_per_objfile->n_type_units
6861 = dwarf2_per_objfile->n_allocated_type_units
6862 = htab_elements (types_htab);
6863 dwarf2_per_objfile->all_type_units =
6864 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
6865 iter = &dwarf2_per_objfile->all_type_units[0];
6866 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
6867 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
6868 == dwarf2_per_objfile->n_type_units);
6869
6870 return 1;
6871 }
6872
6873 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6874 If SLOT is non-NULL, it is the entry to use in the hash table.
6875 Otherwise we find one. */
6876
6877 static struct signatured_type *
6878 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6879 void **slot)
6880 {
6881 struct objfile *objfile = dwarf2_per_objfile->objfile;
6882 int n_type_units = dwarf2_per_objfile->n_type_units;
6883 struct signatured_type *sig_type;
6884
6885 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
6886 ++n_type_units;
6887 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
6888 {
6889 if (dwarf2_per_objfile->n_allocated_type_units == 0)
6890 dwarf2_per_objfile->n_allocated_type_units = 1;
6891 dwarf2_per_objfile->n_allocated_type_units *= 2;
6892 dwarf2_per_objfile->all_type_units
6893 = XRESIZEVEC (struct signatured_type *,
6894 dwarf2_per_objfile->all_type_units,
6895 dwarf2_per_objfile->n_allocated_type_units);
6896 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6897 }
6898 dwarf2_per_objfile->n_type_units = n_type_units;
6899
6900 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6901 struct signatured_type);
6902 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
6903 sig_type->signature = sig;
6904 sig_type->per_cu.is_debug_types = 1;
6905 if (dwarf2_per_objfile->using_index)
6906 {
6907 sig_type->per_cu.v.quick =
6908 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6909 struct dwarf2_per_cu_quick_data);
6910 }
6911
6912 if (slot == NULL)
6913 {
6914 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6915 sig_type, INSERT);
6916 }
6917 gdb_assert (*slot == NULL);
6918 *slot = sig_type;
6919 /* The rest of sig_type must be filled in by the caller. */
6920 return sig_type;
6921 }
6922
6923 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6924 Fill in SIG_ENTRY with DWO_ENTRY. */
6925
6926 static void
6927 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6928 struct signatured_type *sig_entry,
6929 struct dwo_unit *dwo_entry)
6930 {
6931 /* Make sure we're not clobbering something we don't expect to. */
6932 gdb_assert (! sig_entry->per_cu.queued);
6933 gdb_assert (sig_entry->per_cu.cu == NULL);
6934 if (dwarf2_per_objfile->using_index)
6935 {
6936 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6937 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6938 }
6939 else
6940 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6941 gdb_assert (sig_entry->signature == dwo_entry->signature);
6942 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6943 gdb_assert (sig_entry->type_unit_group == NULL);
6944 gdb_assert (sig_entry->dwo_unit == NULL);
6945
6946 sig_entry->per_cu.section = dwo_entry->section;
6947 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6948 sig_entry->per_cu.length = dwo_entry->length;
6949 sig_entry->per_cu.reading_dwo_directly = 1;
6950 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6951 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6952 sig_entry->dwo_unit = dwo_entry;
6953 }
6954
6955 /* Subroutine of lookup_signatured_type.
6956 If we haven't read the TU yet, create the signatured_type data structure
6957 for a TU to be read in directly from a DWO file, bypassing the stub.
6958 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6959 using .gdb_index, then when reading a CU we want to stay in the DWO file
6960 containing that CU. Otherwise we could end up reading several other DWO
6961 files (due to comdat folding) to process the transitive closure of all the
6962 mentioned TUs, and that can be slow. The current DWO file will have every
6963 type signature that it needs.
6964 We only do this for .gdb_index because in the psymtab case we already have
6965 to read all the DWOs to build the type unit groups. */
6966
6967 static struct signatured_type *
6968 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6969 {
6970 struct dwarf2_per_objfile *dwarf2_per_objfile
6971 = cu->per_cu->dwarf2_per_objfile;
6972 struct objfile *objfile = dwarf2_per_objfile->objfile;
6973 struct dwo_file *dwo_file;
6974 struct dwo_unit find_dwo_entry, *dwo_entry;
6975 struct signatured_type find_sig_entry, *sig_entry;
6976 void **slot;
6977
6978 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6979
6980 /* If TU skeletons have been removed then we may not have read in any
6981 TUs yet. */
6982 if (dwarf2_per_objfile->signatured_types == NULL)
6983 {
6984 dwarf2_per_objfile->signatured_types
6985 = allocate_signatured_type_table (objfile);
6986 }
6987
6988 /* We only ever need to read in one copy of a signatured type.
6989 Use the global signatured_types array to do our own comdat-folding
6990 of types. If this is the first time we're reading this TU, and
6991 the TU has an entry in .gdb_index, replace the recorded data from
6992 .gdb_index with this TU. */
6993
6994 find_sig_entry.signature = sig;
6995 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6996 &find_sig_entry, INSERT);
6997 sig_entry = (struct signatured_type *) *slot;
6998
6999 /* We can get here with the TU already read, *or* in the process of being
7000 read. Don't reassign the global entry to point to this DWO if that's
7001 the case. Also note that if the TU is already being read, it may not
7002 have come from a DWO, the program may be a mix of Fission-compiled
7003 code and non-Fission-compiled code. */
7004
7005 /* Have we already tried to read this TU?
7006 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7007 needn't exist in the global table yet). */
7008 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7009 return sig_entry;
7010
7011 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7012 dwo_unit of the TU itself. */
7013 dwo_file = cu->dwo_unit->dwo_file;
7014
7015 /* Ok, this is the first time we're reading this TU. */
7016 if (dwo_file->tus == NULL)
7017 return NULL;
7018 find_dwo_entry.signature = sig;
7019 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7020 if (dwo_entry == NULL)
7021 return NULL;
7022
7023 /* If the global table doesn't have an entry for this TU, add one. */
7024 if (sig_entry == NULL)
7025 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7026
7027 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7028 sig_entry->per_cu.tu_read = 1;
7029 return sig_entry;
7030 }
7031
7032 /* Subroutine of lookup_signatured_type.
7033 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7034 then try the DWP file. If the TU stub (skeleton) has been removed then
7035 it won't be in .gdb_index. */
7036
7037 static struct signatured_type *
7038 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7039 {
7040 struct dwarf2_per_objfile *dwarf2_per_objfile
7041 = cu->per_cu->dwarf2_per_objfile;
7042 struct objfile *objfile = dwarf2_per_objfile->objfile;
7043 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7044 struct dwo_unit *dwo_entry;
7045 struct signatured_type find_sig_entry, *sig_entry;
7046 void **slot;
7047
7048 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7049 gdb_assert (dwp_file != NULL);
7050
7051 /* If TU skeletons have been removed then we may not have read in any
7052 TUs yet. */
7053 if (dwarf2_per_objfile->signatured_types == NULL)
7054 {
7055 dwarf2_per_objfile->signatured_types
7056 = allocate_signatured_type_table (objfile);
7057 }
7058
7059 find_sig_entry.signature = sig;
7060 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7061 &find_sig_entry, INSERT);
7062 sig_entry = (struct signatured_type *) *slot;
7063
7064 /* Have we already tried to read this TU?
7065 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7066 needn't exist in the global table yet). */
7067 if (sig_entry != NULL)
7068 return sig_entry;
7069
7070 if (dwp_file->tus == NULL)
7071 return NULL;
7072 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7073 sig, 1 /* is_debug_types */);
7074 if (dwo_entry == NULL)
7075 return NULL;
7076
7077 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7078 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7079
7080 return sig_entry;
7081 }
7082
7083 /* Lookup a signature based type for DW_FORM_ref_sig8.
7084 Returns NULL if signature SIG is not present in the table.
7085 It is up to the caller to complain about this. */
7086
7087 static struct signatured_type *
7088 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7089 {
7090 struct dwarf2_per_objfile *dwarf2_per_objfile
7091 = cu->per_cu->dwarf2_per_objfile;
7092
7093 if (cu->dwo_unit
7094 && dwarf2_per_objfile->using_index)
7095 {
7096 /* We're in a DWO/DWP file, and we're using .gdb_index.
7097 These cases require special processing. */
7098 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7099 return lookup_dwo_signatured_type (cu, sig);
7100 else
7101 return lookup_dwp_signatured_type (cu, sig);
7102 }
7103 else
7104 {
7105 struct signatured_type find_entry, *entry;
7106
7107 if (dwarf2_per_objfile->signatured_types == NULL)
7108 return NULL;
7109 find_entry.signature = sig;
7110 entry = ((struct signatured_type *)
7111 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7112 return entry;
7113 }
7114 }
7115 \f
7116 /* Low level DIE reading support. */
7117
7118 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7119
7120 static void
7121 init_cu_die_reader (struct die_reader_specs *reader,
7122 struct dwarf2_cu *cu,
7123 struct dwarf2_section_info *section,
7124 struct dwo_file *dwo_file,
7125 struct abbrev_table *abbrev_table)
7126 {
7127 gdb_assert (section->readin && section->buffer != NULL);
7128 reader->abfd = get_section_bfd_owner (section);
7129 reader->cu = cu;
7130 reader->dwo_file = dwo_file;
7131 reader->die_section = section;
7132 reader->buffer = section->buffer;
7133 reader->buffer_end = section->buffer + section->size;
7134 reader->comp_dir = NULL;
7135 reader->abbrev_table = abbrev_table;
7136 }
7137
7138 /* Subroutine of init_cutu_and_read_dies to simplify it.
7139 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7140 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7141 already.
7142
7143 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7144 from it to the DIE in the DWO. If NULL we are skipping the stub.
7145 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7146 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7147 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7148 STUB_COMP_DIR may be non-NULL.
7149 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7150 are filled in with the info of the DIE from the DWO file.
7151 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7152 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7153 kept around for at least as long as *RESULT_READER.
7154
7155 The result is non-zero if a valid (non-dummy) DIE was found. */
7156
7157 static int
7158 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7159 struct dwo_unit *dwo_unit,
7160 struct die_info *stub_comp_unit_die,
7161 const char *stub_comp_dir,
7162 struct die_reader_specs *result_reader,
7163 const gdb_byte **result_info_ptr,
7164 struct die_info **result_comp_unit_die,
7165 int *result_has_children,
7166 abbrev_table_up *result_dwo_abbrev_table)
7167 {
7168 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7169 struct objfile *objfile = dwarf2_per_objfile->objfile;
7170 struct dwarf2_cu *cu = this_cu->cu;
7171 bfd *abfd;
7172 const gdb_byte *begin_info_ptr, *info_ptr;
7173 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7174 int i,num_extra_attrs;
7175 struct dwarf2_section_info *dwo_abbrev_section;
7176 struct attribute *attr;
7177 struct die_info *comp_unit_die;
7178
7179 /* At most one of these may be provided. */
7180 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7181
7182 /* These attributes aren't processed until later:
7183 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7184 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7185 referenced later. However, these attributes are found in the stub
7186 which we won't have later. In order to not impose this complication
7187 on the rest of the code, we read them here and copy them to the
7188 DWO CU/TU die. */
7189
7190 stmt_list = NULL;
7191 low_pc = NULL;
7192 high_pc = NULL;
7193 ranges = NULL;
7194 comp_dir = NULL;
7195
7196 if (stub_comp_unit_die != NULL)
7197 {
7198 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7199 DWO file. */
7200 if (! this_cu->is_debug_types)
7201 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7202 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7203 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7204 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7205 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7206
7207 /* There should be a DW_AT_addr_base attribute here (if needed).
7208 We need the value before we can process DW_FORM_GNU_addr_index. */
7209 cu->addr_base = 0;
7210 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7211 if (attr)
7212 cu->addr_base = DW_UNSND (attr);
7213
7214 /* There should be a DW_AT_ranges_base attribute here (if needed).
7215 We need the value before we can process DW_AT_ranges. */
7216 cu->ranges_base = 0;
7217 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7218 if (attr)
7219 cu->ranges_base = DW_UNSND (attr);
7220 }
7221 else if (stub_comp_dir != NULL)
7222 {
7223 /* Reconstruct the comp_dir attribute to simplify the code below. */
7224 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7225 comp_dir->name = DW_AT_comp_dir;
7226 comp_dir->form = DW_FORM_string;
7227 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7228 DW_STRING (comp_dir) = stub_comp_dir;
7229 }
7230
7231 /* Set up for reading the DWO CU/TU. */
7232 cu->dwo_unit = dwo_unit;
7233 dwarf2_section_info *section = dwo_unit->section;
7234 dwarf2_read_section (objfile, section);
7235 abfd = get_section_bfd_owner (section);
7236 begin_info_ptr = info_ptr = (section->buffer
7237 + to_underlying (dwo_unit->sect_off));
7238 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7239
7240 if (this_cu->is_debug_types)
7241 {
7242 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7243
7244 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7245 &cu->header, section,
7246 dwo_abbrev_section,
7247 info_ptr, rcuh_kind::TYPE);
7248 /* This is not an assert because it can be caused by bad debug info. */
7249 if (sig_type->signature != cu->header.signature)
7250 {
7251 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7252 " TU at offset %s [in module %s]"),
7253 hex_string (sig_type->signature),
7254 hex_string (cu->header.signature),
7255 sect_offset_str (dwo_unit->sect_off),
7256 bfd_get_filename (abfd));
7257 }
7258 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7259 /* For DWOs coming from DWP files, we don't know the CU length
7260 nor the type's offset in the TU until now. */
7261 dwo_unit->length = get_cu_length (&cu->header);
7262 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7263
7264 /* Establish the type offset that can be used to lookup the type.
7265 For DWO files, we don't know it until now. */
7266 sig_type->type_offset_in_section
7267 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7268 }
7269 else
7270 {
7271 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7272 &cu->header, section,
7273 dwo_abbrev_section,
7274 info_ptr, rcuh_kind::COMPILE);
7275 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7276 /* For DWOs coming from DWP files, we don't know the CU length
7277 until now. */
7278 dwo_unit->length = get_cu_length (&cu->header);
7279 }
7280
7281 *result_dwo_abbrev_table
7282 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7283 cu->header.abbrev_sect_off);
7284 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7285 result_dwo_abbrev_table->get ());
7286
7287 /* Read in the die, but leave space to copy over the attributes
7288 from the stub. This has the benefit of simplifying the rest of
7289 the code - all the work to maintain the illusion of a single
7290 DW_TAG_{compile,type}_unit DIE is done here. */
7291 num_extra_attrs = ((stmt_list != NULL)
7292 + (low_pc != NULL)
7293 + (high_pc != NULL)
7294 + (ranges != NULL)
7295 + (comp_dir != NULL));
7296 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7297 result_has_children, num_extra_attrs);
7298
7299 /* Copy over the attributes from the stub to the DIE we just read in. */
7300 comp_unit_die = *result_comp_unit_die;
7301 i = comp_unit_die->num_attrs;
7302 if (stmt_list != NULL)
7303 comp_unit_die->attrs[i++] = *stmt_list;
7304 if (low_pc != NULL)
7305 comp_unit_die->attrs[i++] = *low_pc;
7306 if (high_pc != NULL)
7307 comp_unit_die->attrs[i++] = *high_pc;
7308 if (ranges != NULL)
7309 comp_unit_die->attrs[i++] = *ranges;
7310 if (comp_dir != NULL)
7311 comp_unit_die->attrs[i++] = *comp_dir;
7312 comp_unit_die->num_attrs += num_extra_attrs;
7313
7314 if (dwarf_die_debug)
7315 {
7316 fprintf_unfiltered (gdb_stdlog,
7317 "Read die from %s@0x%x of %s:\n",
7318 get_section_name (section),
7319 (unsigned) (begin_info_ptr - section->buffer),
7320 bfd_get_filename (abfd));
7321 dump_die (comp_unit_die, dwarf_die_debug);
7322 }
7323
7324 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7325 TUs by skipping the stub and going directly to the entry in the DWO file.
7326 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7327 to get it via circuitous means. Blech. */
7328 if (comp_dir != NULL)
7329 result_reader->comp_dir = DW_STRING (comp_dir);
7330
7331 /* Skip dummy compilation units. */
7332 if (info_ptr >= begin_info_ptr + dwo_unit->length
7333 || peek_abbrev_code (abfd, info_ptr) == 0)
7334 return 0;
7335
7336 *result_info_ptr = info_ptr;
7337 return 1;
7338 }
7339
7340 /* Subroutine of init_cutu_and_read_dies to simplify it.
7341 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7342 Returns NULL if the specified DWO unit cannot be found. */
7343
7344 static struct dwo_unit *
7345 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7346 struct die_info *comp_unit_die)
7347 {
7348 struct dwarf2_cu *cu = this_cu->cu;
7349 ULONGEST signature;
7350 struct dwo_unit *dwo_unit;
7351 const char *comp_dir, *dwo_name;
7352
7353 gdb_assert (cu != NULL);
7354
7355 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7356 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7357 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7358
7359 if (this_cu->is_debug_types)
7360 {
7361 struct signatured_type *sig_type;
7362
7363 /* Since this_cu is the first member of struct signatured_type,
7364 we can go from a pointer to one to a pointer to the other. */
7365 sig_type = (struct signatured_type *) this_cu;
7366 signature = sig_type->signature;
7367 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7368 }
7369 else
7370 {
7371 struct attribute *attr;
7372
7373 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7374 if (! attr)
7375 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7376 " [in module %s]"),
7377 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7378 signature = DW_UNSND (attr);
7379 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7380 signature);
7381 }
7382
7383 return dwo_unit;
7384 }
7385
7386 /* Subroutine of init_cutu_and_read_dies to simplify it.
7387 See it for a description of the parameters.
7388 Read a TU directly from a DWO file, bypassing the stub. */
7389
7390 static void
7391 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7392 int use_existing_cu, int keep,
7393 die_reader_func_ftype *die_reader_func,
7394 void *data)
7395 {
7396 std::unique_ptr<dwarf2_cu> new_cu;
7397 struct signatured_type *sig_type;
7398 struct die_reader_specs reader;
7399 const gdb_byte *info_ptr;
7400 struct die_info *comp_unit_die;
7401 int has_children;
7402 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7403
7404 /* Verify we can do the following downcast, and that we have the
7405 data we need. */
7406 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7407 sig_type = (struct signatured_type *) this_cu;
7408 gdb_assert (sig_type->dwo_unit != NULL);
7409
7410 if (use_existing_cu && this_cu->cu != NULL)
7411 {
7412 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7413 /* There's no need to do the rereading_dwo_cu handling that
7414 init_cutu_and_read_dies does since we don't read the stub. */
7415 }
7416 else
7417 {
7418 /* If !use_existing_cu, this_cu->cu must be NULL. */
7419 gdb_assert (this_cu->cu == NULL);
7420 new_cu.reset (new dwarf2_cu (this_cu));
7421 }
7422
7423 /* A future optimization, if needed, would be to use an existing
7424 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7425 could share abbrev tables. */
7426
7427 /* The abbreviation table used by READER, this must live at least as long as
7428 READER. */
7429 abbrev_table_up dwo_abbrev_table;
7430
7431 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7432 NULL /* stub_comp_unit_die */,
7433 sig_type->dwo_unit->dwo_file->comp_dir,
7434 &reader, &info_ptr,
7435 &comp_unit_die, &has_children,
7436 &dwo_abbrev_table) == 0)
7437 {
7438 /* Dummy die. */
7439 return;
7440 }
7441
7442 /* All the "real" work is done here. */
7443 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7444
7445 /* This duplicates the code in init_cutu_and_read_dies,
7446 but the alternative is making the latter more complex.
7447 This function is only for the special case of using DWO files directly:
7448 no point in overly complicating the general case just to handle this. */
7449 if (new_cu != NULL && keep)
7450 {
7451 /* Link this CU into read_in_chain. */
7452 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7453 dwarf2_per_objfile->read_in_chain = this_cu;
7454 /* The chain owns it now. */
7455 new_cu.release ();
7456 }
7457 }
7458
7459 /* Initialize a CU (or TU) and read its DIEs.
7460 If the CU defers to a DWO file, read the DWO file as well.
7461
7462 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7463 Otherwise the table specified in the comp unit header is read in and used.
7464 This is an optimization for when we already have the abbrev table.
7465
7466 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7467 Otherwise, a new CU is allocated with xmalloc.
7468
7469 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7470 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7471
7472 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7473 linker) then DIE_READER_FUNC will not get called. */
7474
7475 static void
7476 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7477 struct abbrev_table *abbrev_table,
7478 int use_existing_cu, int keep,
7479 die_reader_func_ftype *die_reader_func,
7480 void *data)
7481 {
7482 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7483 struct objfile *objfile = dwarf2_per_objfile->objfile;
7484 struct dwarf2_section_info *section = this_cu->section;
7485 bfd *abfd = get_section_bfd_owner (section);
7486 struct dwarf2_cu *cu;
7487 const gdb_byte *begin_info_ptr, *info_ptr;
7488 struct die_reader_specs reader;
7489 struct die_info *comp_unit_die;
7490 int has_children;
7491 struct attribute *attr;
7492 struct signatured_type *sig_type = NULL;
7493 struct dwarf2_section_info *abbrev_section;
7494 /* Non-zero if CU currently points to a DWO file and we need to
7495 reread it. When this happens we need to reread the skeleton die
7496 before we can reread the DWO file (this only applies to CUs, not TUs). */
7497 int rereading_dwo_cu = 0;
7498
7499 if (dwarf_die_debug)
7500 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7501 this_cu->is_debug_types ? "type" : "comp",
7502 sect_offset_str (this_cu->sect_off));
7503
7504 if (use_existing_cu)
7505 gdb_assert (keep);
7506
7507 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7508 file (instead of going through the stub), short-circuit all of this. */
7509 if (this_cu->reading_dwo_directly)
7510 {
7511 /* Narrow down the scope of possibilities to have to understand. */
7512 gdb_assert (this_cu->is_debug_types);
7513 gdb_assert (abbrev_table == NULL);
7514 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7515 die_reader_func, data);
7516 return;
7517 }
7518
7519 /* This is cheap if the section is already read in. */
7520 dwarf2_read_section (objfile, section);
7521
7522 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7523
7524 abbrev_section = get_abbrev_section_for_cu (this_cu);
7525
7526 std::unique_ptr<dwarf2_cu> new_cu;
7527 if (use_existing_cu && this_cu->cu != NULL)
7528 {
7529 cu = this_cu->cu;
7530 /* If this CU is from a DWO file we need to start over, we need to
7531 refetch the attributes from the skeleton CU.
7532 This could be optimized by retrieving those attributes from when we
7533 were here the first time: the previous comp_unit_die was stored in
7534 comp_unit_obstack. But there's no data yet that we need this
7535 optimization. */
7536 if (cu->dwo_unit != NULL)
7537 rereading_dwo_cu = 1;
7538 }
7539 else
7540 {
7541 /* If !use_existing_cu, this_cu->cu must be NULL. */
7542 gdb_assert (this_cu->cu == NULL);
7543 new_cu.reset (new dwarf2_cu (this_cu));
7544 cu = new_cu.get ();
7545 }
7546
7547 /* Get the header. */
7548 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7549 {
7550 /* We already have the header, there's no need to read it in again. */
7551 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7552 }
7553 else
7554 {
7555 if (this_cu->is_debug_types)
7556 {
7557 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7558 &cu->header, section,
7559 abbrev_section, info_ptr,
7560 rcuh_kind::TYPE);
7561
7562 /* Since per_cu is the first member of struct signatured_type,
7563 we can go from a pointer to one to a pointer to the other. */
7564 sig_type = (struct signatured_type *) this_cu;
7565 gdb_assert (sig_type->signature == cu->header.signature);
7566 gdb_assert (sig_type->type_offset_in_tu
7567 == cu->header.type_cu_offset_in_tu);
7568 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7569
7570 /* LENGTH has not been set yet for type units if we're
7571 using .gdb_index. */
7572 this_cu->length = get_cu_length (&cu->header);
7573
7574 /* Establish the type offset that can be used to lookup the type. */
7575 sig_type->type_offset_in_section =
7576 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7577
7578 this_cu->dwarf_version = cu->header.version;
7579 }
7580 else
7581 {
7582 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7583 &cu->header, section,
7584 abbrev_section,
7585 info_ptr,
7586 rcuh_kind::COMPILE);
7587
7588 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7589 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7590 this_cu->dwarf_version = cu->header.version;
7591 }
7592 }
7593
7594 /* Skip dummy compilation units. */
7595 if (info_ptr >= begin_info_ptr + this_cu->length
7596 || peek_abbrev_code (abfd, info_ptr) == 0)
7597 return;
7598
7599 /* If we don't have them yet, read the abbrevs for this compilation unit.
7600 And if we need to read them now, make sure they're freed when we're
7601 done (own the table through ABBREV_TABLE_HOLDER). */
7602 abbrev_table_up abbrev_table_holder;
7603 if (abbrev_table != NULL)
7604 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7605 else
7606 {
7607 abbrev_table_holder
7608 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7609 cu->header.abbrev_sect_off);
7610 abbrev_table = abbrev_table_holder.get ();
7611 }
7612
7613 /* Read the top level CU/TU die. */
7614 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7615 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7616
7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7621 with READER.
7622
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7626 abbrev_table_up dwo_abbrev_table;
7627 if (attr)
7628 {
7629 struct dwo_unit *dwo_unit;
7630 struct die_info *dwo_comp_unit_die;
7631
7632 if (has_children)
7633 {
7634 complaint (&symfile_complaints,
7635 _("compilation unit with DW_AT_GNU_dwo_name"
7636 " has children (offset %s) [in module %s]"),
7637 sect_offset_str (this_cu->sect_off),
7638 bfd_get_filename (abfd));
7639 }
7640 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7641 if (dwo_unit != NULL)
7642 {
7643 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7644 comp_unit_die, NULL,
7645 &reader, &info_ptr,
7646 &dwo_comp_unit_die, &has_children,
7647 &dwo_abbrev_table) == 0)
7648 {
7649 /* Dummy die. */
7650 return;
7651 }
7652 comp_unit_die = dwo_comp_unit_die;
7653 }
7654 else
7655 {
7656 /* Yikes, we couldn't find the rest of the DIE, we only have
7657 the stub. A complaint has already been logged. There's
7658 not much more we can do except pass on the stub DIE to
7659 die_reader_func. We don't want to throw an error on bad
7660 debug info. */
7661 }
7662 }
7663
7664 /* All of the above is setup for this call. Yikes. */
7665 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7666
7667 /* Done, clean up. */
7668 if (new_cu != NULL && keep)
7669 {
7670 /* Link this CU into read_in_chain. */
7671 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7672 dwarf2_per_objfile->read_in_chain = this_cu;
7673 /* The chain owns it now. */
7674 new_cu.release ();
7675 }
7676 }
7677
7678 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7679 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7680 to have already done the lookup to find the DWO file).
7681
7682 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7683 THIS_CU->is_debug_types, but nothing else.
7684
7685 We fill in THIS_CU->length.
7686
7687 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7688 linker) then DIE_READER_FUNC will not get called.
7689
7690 THIS_CU->cu is always freed when done.
7691 This is done in order to not leave THIS_CU->cu in a state where we have
7692 to care whether it refers to the "main" CU or the DWO CU. */
7693
7694 static void
7695 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7696 struct dwo_file *dwo_file,
7697 die_reader_func_ftype *die_reader_func,
7698 void *data)
7699 {
7700 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7701 struct objfile *objfile = dwarf2_per_objfile->objfile;
7702 struct dwarf2_section_info *section = this_cu->section;
7703 bfd *abfd = get_section_bfd_owner (section);
7704 struct dwarf2_section_info *abbrev_section;
7705 const gdb_byte *begin_info_ptr, *info_ptr;
7706 struct die_reader_specs reader;
7707 struct die_info *comp_unit_die;
7708 int has_children;
7709
7710 if (dwarf_die_debug)
7711 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7712 this_cu->is_debug_types ? "type" : "comp",
7713 sect_offset_str (this_cu->sect_off));
7714
7715 gdb_assert (this_cu->cu == NULL);
7716
7717 abbrev_section = (dwo_file != NULL
7718 ? &dwo_file->sections.abbrev
7719 : get_abbrev_section_for_cu (this_cu));
7720
7721 /* This is cheap if the section is already read in. */
7722 dwarf2_read_section (objfile, section);
7723
7724 struct dwarf2_cu cu (this_cu);
7725
7726 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7727 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7728 &cu.header, section,
7729 abbrev_section, info_ptr,
7730 (this_cu->is_debug_types
7731 ? rcuh_kind::TYPE
7732 : rcuh_kind::COMPILE));
7733
7734 this_cu->length = get_cu_length (&cu.header);
7735
7736 /* Skip dummy compilation units. */
7737 if (info_ptr >= begin_info_ptr + this_cu->length
7738 || peek_abbrev_code (abfd, info_ptr) == 0)
7739 return;
7740
7741 abbrev_table_up abbrev_table
7742 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7743 cu.header.abbrev_sect_off);
7744
7745 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7746 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7747
7748 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7749 }
7750
7751 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7752 does not lookup the specified DWO file.
7753 This cannot be used to read DWO files.
7754
7755 THIS_CU->cu is always freed when done.
7756 This is done in order to not leave THIS_CU->cu in a state where we have
7757 to care whether it refers to the "main" CU or the DWO CU.
7758 We can revisit this if the data shows there's a performance issue. */
7759
7760 static void
7761 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7762 die_reader_func_ftype *die_reader_func,
7763 void *data)
7764 {
7765 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7766 }
7767 \f
7768 /* Type Unit Groups.
7769
7770 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7771 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7772 so that all types coming from the same compilation (.o file) are grouped
7773 together. A future step could be to put the types in the same symtab as
7774 the CU the types ultimately came from. */
7775
7776 static hashval_t
7777 hash_type_unit_group (const void *item)
7778 {
7779 const struct type_unit_group *tu_group
7780 = (const struct type_unit_group *) item;
7781
7782 return hash_stmt_list_entry (&tu_group->hash);
7783 }
7784
7785 static int
7786 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7787 {
7788 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7789 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7790
7791 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7792 }
7793
7794 /* Allocate a hash table for type unit groups. */
7795
7796 static htab_t
7797 allocate_type_unit_groups_table (struct objfile *objfile)
7798 {
7799 return htab_create_alloc_ex (3,
7800 hash_type_unit_group,
7801 eq_type_unit_group,
7802 NULL,
7803 &objfile->objfile_obstack,
7804 hashtab_obstack_allocate,
7805 dummy_obstack_deallocate);
7806 }
7807
7808 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7809 partial symtabs. We combine several TUs per psymtab to not let the size
7810 of any one psymtab grow too big. */
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7812 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7813
7814 /* Helper routine for get_type_unit_group.
7815 Create the type_unit_group object used to hold one or more TUs. */
7816
7817 static struct type_unit_group *
7818 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7819 {
7820 struct dwarf2_per_objfile *dwarf2_per_objfile
7821 = cu->per_cu->dwarf2_per_objfile;
7822 struct objfile *objfile = dwarf2_per_objfile->objfile;
7823 struct dwarf2_per_cu_data *per_cu;
7824 struct type_unit_group *tu_group;
7825
7826 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7827 struct type_unit_group);
7828 per_cu = &tu_group->per_cu;
7829 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7830
7831 if (dwarf2_per_objfile->using_index)
7832 {
7833 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7834 struct dwarf2_per_cu_quick_data);
7835 }
7836 else
7837 {
7838 unsigned int line_offset = to_underlying (line_offset_struct);
7839 struct partial_symtab *pst;
7840 char *name;
7841
7842 /* Give the symtab a useful name for debug purposes. */
7843 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7844 name = xstrprintf ("<type_units_%d>",
7845 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7846 else
7847 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7848
7849 pst = create_partial_symtab (per_cu, name);
7850 pst->anonymous = 1;
7851
7852 xfree (name);
7853 }
7854
7855 tu_group->hash.dwo_unit = cu->dwo_unit;
7856 tu_group->hash.line_sect_off = line_offset_struct;
7857
7858 return tu_group;
7859 }
7860
7861 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7862 STMT_LIST is a DW_AT_stmt_list attribute. */
7863
7864 static struct type_unit_group *
7865 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7866 {
7867 struct dwarf2_per_objfile *dwarf2_per_objfile
7868 = cu->per_cu->dwarf2_per_objfile;
7869 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7870 struct type_unit_group *tu_group;
7871 void **slot;
7872 unsigned int line_offset;
7873 struct type_unit_group type_unit_group_for_lookup;
7874
7875 if (dwarf2_per_objfile->type_unit_groups == NULL)
7876 {
7877 dwarf2_per_objfile->type_unit_groups =
7878 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7879 }
7880
7881 /* Do we need to create a new group, or can we use an existing one? */
7882
7883 if (stmt_list)
7884 {
7885 line_offset = DW_UNSND (stmt_list);
7886 ++tu_stats->nr_symtab_sharers;
7887 }
7888 else
7889 {
7890 /* Ugh, no stmt_list. Rare, but we have to handle it.
7891 We can do various things here like create one group per TU or
7892 spread them over multiple groups to split up the expansion work.
7893 To avoid worst case scenarios (too many groups or too large groups)
7894 we, umm, group them in bunches. */
7895 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7896 | (tu_stats->nr_stmt_less_type_units
7897 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7898 ++tu_stats->nr_stmt_less_type_units;
7899 }
7900
7901 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7902 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7903 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7904 &type_unit_group_for_lookup, INSERT);
7905 if (*slot != NULL)
7906 {
7907 tu_group = (struct type_unit_group *) *slot;
7908 gdb_assert (tu_group != NULL);
7909 }
7910 else
7911 {
7912 sect_offset line_offset_struct = (sect_offset) line_offset;
7913 tu_group = create_type_unit_group (cu, line_offset_struct);
7914 *slot = tu_group;
7915 ++tu_stats->nr_symtabs;
7916 }
7917
7918 return tu_group;
7919 }
7920 \f
7921 /* Partial symbol tables. */
7922
7923 /* Create a psymtab named NAME and assign it to PER_CU.
7924
7925 The caller must fill in the following details:
7926 dirname, textlow, texthigh. */
7927
7928 static struct partial_symtab *
7929 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7930 {
7931 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7932 struct partial_symtab *pst;
7933
7934 pst = start_psymtab_common (objfile, name, 0,
7935 objfile->global_psymbols,
7936 objfile->static_psymbols);
7937
7938 pst->psymtabs_addrmap_supported = 1;
7939
7940 /* This is the glue that links PST into GDB's symbol API. */
7941 pst->read_symtab_private = per_cu;
7942 pst->read_symtab = dwarf2_read_symtab;
7943 per_cu->v.psymtab = pst;
7944
7945 return pst;
7946 }
7947
7948 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7949 type. */
7950
7951 struct process_psymtab_comp_unit_data
7952 {
7953 /* True if we are reading a DW_TAG_partial_unit. */
7954
7955 int want_partial_unit;
7956
7957 /* The "pretend" language that is used if the CU doesn't declare a
7958 language. */
7959
7960 enum language pretend_language;
7961 };
7962
7963 /* die_reader_func for process_psymtab_comp_unit. */
7964
7965 static void
7966 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7967 const gdb_byte *info_ptr,
7968 struct die_info *comp_unit_die,
7969 int has_children,
7970 void *data)
7971 {
7972 struct dwarf2_cu *cu = reader->cu;
7973 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7974 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7975 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7976 CORE_ADDR baseaddr;
7977 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7978 struct partial_symtab *pst;
7979 enum pc_bounds_kind cu_bounds_kind;
7980 const char *filename;
7981 struct process_psymtab_comp_unit_data *info
7982 = (struct process_psymtab_comp_unit_data *) data;
7983
7984 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7985 return;
7986
7987 gdb_assert (! per_cu->is_debug_types);
7988
7989 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7990
7991 cu->list_in_scope = &file_symbols;
7992
7993 /* Allocate a new partial symbol table structure. */
7994 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7995 if (filename == NULL)
7996 filename = "";
7997
7998 pst = create_partial_symtab (per_cu, filename);
7999
8000 /* This must be done before calling dwarf2_build_include_psymtabs. */
8001 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8002
8003 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8004
8005 dwarf2_find_base_address (comp_unit_die, cu);
8006
8007 /* Possibly set the default values of LOWPC and HIGHPC from
8008 `DW_AT_ranges'. */
8009 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8010 &best_highpc, cu, pst);
8011 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8012 /* Store the contiguous range if it is not empty; it can be empty for
8013 CUs with no code. */
8014 addrmap_set_empty (objfile->psymtabs_addrmap,
8015 gdbarch_adjust_dwarf2_addr (gdbarch,
8016 best_lowpc + baseaddr),
8017 gdbarch_adjust_dwarf2_addr (gdbarch,
8018 best_highpc + baseaddr) - 1,
8019 pst);
8020
8021 /* Check if comp unit has_children.
8022 If so, read the rest of the partial symbols from this comp unit.
8023 If not, there's no more debug_info for this comp unit. */
8024 if (has_children)
8025 {
8026 struct partial_die_info *first_die;
8027 CORE_ADDR lowpc, highpc;
8028
8029 lowpc = ((CORE_ADDR) -1);
8030 highpc = ((CORE_ADDR) 0);
8031
8032 first_die = load_partial_dies (reader, info_ptr, 1);
8033
8034 scan_partial_symbols (first_die, &lowpc, &highpc,
8035 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8036
8037 /* If we didn't find a lowpc, set it to highpc to avoid
8038 complaints from `maint check'. */
8039 if (lowpc == ((CORE_ADDR) -1))
8040 lowpc = highpc;
8041
8042 /* If the compilation unit didn't have an explicit address range,
8043 then use the information extracted from its child dies. */
8044 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8045 {
8046 best_lowpc = lowpc;
8047 best_highpc = highpc;
8048 }
8049 }
8050 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8051 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8052
8053 end_psymtab_common (objfile, pst);
8054
8055 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8056 {
8057 int i;
8058 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8059 struct dwarf2_per_cu_data *iter;
8060
8061 /* Fill in 'dependencies' here; we fill in 'users' in a
8062 post-pass. */
8063 pst->number_of_dependencies = len;
8064 pst->dependencies =
8065 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8066 for (i = 0;
8067 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8068 i, iter);
8069 ++i)
8070 pst->dependencies[i] = iter->v.psymtab;
8071
8072 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8073 }
8074
8075 /* Get the list of files included in the current compilation unit,
8076 and build a psymtab for each of them. */
8077 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8078
8079 if (dwarf_read_debug)
8080 {
8081 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8082
8083 fprintf_unfiltered (gdb_stdlog,
8084 "Psymtab for %s unit @%s: %s - %s"
8085 ", %d global, %d static syms\n",
8086 per_cu->is_debug_types ? "type" : "comp",
8087 sect_offset_str (per_cu->sect_off),
8088 paddress (gdbarch, pst->textlow),
8089 paddress (gdbarch, pst->texthigh),
8090 pst->n_global_syms, pst->n_static_syms);
8091 }
8092 }
8093
8094 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8095 Process compilation unit THIS_CU for a psymtab. */
8096
8097 static void
8098 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8099 int want_partial_unit,
8100 enum language pretend_language)
8101 {
8102 /* If this compilation unit was already read in, free the
8103 cached copy in order to read it in again. This is
8104 necessary because we skipped some symbols when we first
8105 read in the compilation unit (see load_partial_dies).
8106 This problem could be avoided, but the benefit is unclear. */
8107 if (this_cu->cu != NULL)
8108 free_one_cached_comp_unit (this_cu);
8109
8110 if (this_cu->is_debug_types)
8111 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8112 NULL);
8113 else
8114 {
8115 process_psymtab_comp_unit_data info;
8116 info.want_partial_unit = want_partial_unit;
8117 info.pretend_language = pretend_language;
8118 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8119 process_psymtab_comp_unit_reader, &info);
8120 }
8121
8122 /* Age out any secondary CUs. */
8123 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8124 }
8125
8126 /* Reader function for build_type_psymtabs. */
8127
8128 static void
8129 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8130 const gdb_byte *info_ptr,
8131 struct die_info *type_unit_die,
8132 int has_children,
8133 void *data)
8134 {
8135 struct dwarf2_per_objfile *dwarf2_per_objfile
8136 = reader->cu->per_cu->dwarf2_per_objfile;
8137 struct objfile *objfile = dwarf2_per_objfile->objfile;
8138 struct dwarf2_cu *cu = reader->cu;
8139 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8140 struct signatured_type *sig_type;
8141 struct type_unit_group *tu_group;
8142 struct attribute *attr;
8143 struct partial_die_info *first_die;
8144 CORE_ADDR lowpc, highpc;
8145 struct partial_symtab *pst;
8146
8147 gdb_assert (data == NULL);
8148 gdb_assert (per_cu->is_debug_types);
8149 sig_type = (struct signatured_type *) per_cu;
8150
8151 if (! has_children)
8152 return;
8153
8154 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8155 tu_group = get_type_unit_group (cu, attr);
8156
8157 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8158
8159 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8160 cu->list_in_scope = &file_symbols;
8161 pst = create_partial_symtab (per_cu, "");
8162 pst->anonymous = 1;
8163
8164 first_die = load_partial_dies (reader, info_ptr, 1);
8165
8166 lowpc = (CORE_ADDR) -1;
8167 highpc = (CORE_ADDR) 0;
8168 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8169
8170 end_psymtab_common (objfile, pst);
8171 }
8172
8173 /* Struct used to sort TUs by their abbreviation table offset. */
8174
8175 struct tu_abbrev_offset
8176 {
8177 struct signatured_type *sig_type;
8178 sect_offset abbrev_offset;
8179 };
8180
8181 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8182
8183 static bool
8184 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8185 const struct tu_abbrev_offset &b)
8186 {
8187 return a.abbrev_offset < b.abbrev_offset;
8188 }
8189
8190 /* Efficiently read all the type units.
8191 This does the bulk of the work for build_type_psymtabs.
8192
8193 The efficiency is because we sort TUs by the abbrev table they use and
8194 only read each abbrev table once. In one program there are 200K TUs
8195 sharing 8K abbrev tables.
8196
8197 The main purpose of this function is to support building the
8198 dwarf2_per_objfile->type_unit_groups table.
8199 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8200 can collapse the search space by grouping them by stmt_list.
8201 The savings can be significant, in the same program from above the 200K TUs
8202 share 8K stmt_list tables.
8203
8204 FUNC is expected to call get_type_unit_group, which will create the
8205 struct type_unit_group if necessary and add it to
8206 dwarf2_per_objfile->type_unit_groups. */
8207
8208 static void
8209 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8210 {
8211 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8212 abbrev_table_up abbrev_table;
8213 sect_offset abbrev_offset;
8214 int i;
8215
8216 /* It's up to the caller to not call us multiple times. */
8217 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8218
8219 if (dwarf2_per_objfile->n_type_units == 0)
8220 return;
8221
8222 /* TUs typically share abbrev tables, and there can be way more TUs than
8223 abbrev tables. Sort by abbrev table to reduce the number of times we
8224 read each abbrev table in.
8225 Alternatives are to punt or to maintain a cache of abbrev tables.
8226 This is simpler and efficient enough for now.
8227
8228 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8229 symtab to use). Typically TUs with the same abbrev offset have the same
8230 stmt_list value too so in practice this should work well.
8231
8232 The basic algorithm here is:
8233
8234 sort TUs by abbrev table
8235 for each TU with same abbrev table:
8236 read abbrev table if first user
8237 read TU top level DIE
8238 [IWBN if DWO skeletons had DW_AT_stmt_list]
8239 call FUNC */
8240
8241 if (dwarf_read_debug)
8242 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8243
8244 /* Sort in a separate table to maintain the order of all_type_units
8245 for .gdb_index: TU indices directly index all_type_units. */
8246 std::vector<struct tu_abbrev_offset> sorted_by_abbrev
8247 (dwarf2_per_objfile->n_type_units);
8248 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8249 {
8250 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8251
8252 sorted_by_abbrev[i].sig_type = sig_type;
8253 sorted_by_abbrev[i].abbrev_offset =
8254 read_abbrev_offset (dwarf2_per_objfile,
8255 sig_type->per_cu.section,
8256 sig_type->per_cu.sect_off);
8257 }
8258 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8259 sort_tu_by_abbrev_offset);
8260
8261 abbrev_offset = (sect_offset) ~(unsigned) 0;
8262
8263 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8264 {
8265 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8266
8267 /* Switch to the next abbrev table if necessary. */
8268 if (abbrev_table == NULL
8269 || tu->abbrev_offset != abbrev_offset)
8270 {
8271 abbrev_offset = tu->abbrev_offset;
8272 abbrev_table =
8273 abbrev_table_read_table (dwarf2_per_objfile,
8274 &dwarf2_per_objfile->abbrev,
8275 abbrev_offset);
8276 ++tu_stats->nr_uniq_abbrev_tables;
8277 }
8278
8279 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8280 0, 0, build_type_psymtabs_reader, NULL);
8281 }
8282 }
8283
8284 /* Print collected type unit statistics. */
8285
8286 static void
8287 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8288 {
8289 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8290
8291 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8292 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8293 dwarf2_per_objfile->n_type_units);
8294 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8295 tu_stats->nr_uniq_abbrev_tables);
8296 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8297 tu_stats->nr_symtabs);
8298 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8299 tu_stats->nr_symtab_sharers);
8300 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8301 tu_stats->nr_stmt_less_type_units);
8302 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8303 tu_stats->nr_all_type_units_reallocs);
8304 }
8305
8306 /* Traversal function for build_type_psymtabs. */
8307
8308 static int
8309 build_type_psymtab_dependencies (void **slot, void *info)
8310 {
8311 struct dwarf2_per_objfile *dwarf2_per_objfile
8312 = (struct dwarf2_per_objfile *) info;
8313 struct objfile *objfile = dwarf2_per_objfile->objfile;
8314 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8315 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8316 struct partial_symtab *pst = per_cu->v.psymtab;
8317 int len = VEC_length (sig_type_ptr, tu_group->tus);
8318 struct signatured_type *iter;
8319 int i;
8320
8321 gdb_assert (len > 0);
8322 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8323
8324 pst->number_of_dependencies = len;
8325 pst->dependencies =
8326 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8327 for (i = 0;
8328 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8329 ++i)
8330 {
8331 gdb_assert (iter->per_cu.is_debug_types);
8332 pst->dependencies[i] = iter->per_cu.v.psymtab;
8333 iter->type_unit_group = tu_group;
8334 }
8335
8336 VEC_free (sig_type_ptr, tu_group->tus);
8337
8338 return 1;
8339 }
8340
8341 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8342 Build partial symbol tables for the .debug_types comp-units. */
8343
8344 static void
8345 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8346 {
8347 if (! create_all_type_units (dwarf2_per_objfile))
8348 return;
8349
8350 build_type_psymtabs_1 (dwarf2_per_objfile);
8351 }
8352
8353 /* Traversal function for process_skeletonless_type_unit.
8354 Read a TU in a DWO file and build partial symbols for it. */
8355
8356 static int
8357 process_skeletonless_type_unit (void **slot, void *info)
8358 {
8359 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8360 struct dwarf2_per_objfile *dwarf2_per_objfile
8361 = (struct dwarf2_per_objfile *) info;
8362 struct signatured_type find_entry, *entry;
8363
8364 /* If this TU doesn't exist in the global table, add it and read it in. */
8365
8366 if (dwarf2_per_objfile->signatured_types == NULL)
8367 {
8368 dwarf2_per_objfile->signatured_types
8369 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8370 }
8371
8372 find_entry.signature = dwo_unit->signature;
8373 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8374 INSERT);
8375 /* If we've already seen this type there's nothing to do. What's happening
8376 is we're doing our own version of comdat-folding here. */
8377 if (*slot != NULL)
8378 return 1;
8379
8380 /* This does the job that create_all_type_units would have done for
8381 this TU. */
8382 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8383 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8384 *slot = entry;
8385
8386 /* This does the job that build_type_psymtabs_1 would have done. */
8387 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8388 build_type_psymtabs_reader, NULL);
8389
8390 return 1;
8391 }
8392
8393 /* Traversal function for process_skeletonless_type_units. */
8394
8395 static int
8396 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8397 {
8398 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8399
8400 if (dwo_file->tus != NULL)
8401 {
8402 htab_traverse_noresize (dwo_file->tus,
8403 process_skeletonless_type_unit, info);
8404 }
8405
8406 return 1;
8407 }
8408
8409 /* Scan all TUs of DWO files, verifying we've processed them.
8410 This is needed in case a TU was emitted without its skeleton.
8411 Note: This can't be done until we know what all the DWO files are. */
8412
8413 static void
8414 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8415 {
8416 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8417 if (get_dwp_file (dwarf2_per_objfile) == NULL
8418 && dwarf2_per_objfile->dwo_files != NULL)
8419 {
8420 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8421 process_dwo_file_for_skeletonless_type_units,
8422 dwarf2_per_objfile);
8423 }
8424 }
8425
8426 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8427
8428 static void
8429 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8430 {
8431 int i;
8432
8433 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8434 {
8435 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8436 struct partial_symtab *pst = per_cu->v.psymtab;
8437 int j;
8438
8439 if (pst == NULL)
8440 continue;
8441
8442 for (j = 0; j < pst->number_of_dependencies; ++j)
8443 {
8444 /* Set the 'user' field only if it is not already set. */
8445 if (pst->dependencies[j]->user == NULL)
8446 pst->dependencies[j]->user = pst;
8447 }
8448 }
8449 }
8450
8451 /* Build the partial symbol table by doing a quick pass through the
8452 .debug_info and .debug_abbrev sections. */
8453
8454 static void
8455 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8456 {
8457 int i;
8458 struct objfile *objfile = dwarf2_per_objfile->objfile;
8459
8460 if (dwarf_read_debug)
8461 {
8462 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8463 objfile_name (objfile));
8464 }
8465
8466 dwarf2_per_objfile->reading_partial_symbols = 1;
8467
8468 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8469
8470 /* Any cached compilation units will be linked by the per-objfile
8471 read_in_chain. Make sure to free them when we're done. */
8472 free_cached_comp_units freer (dwarf2_per_objfile);
8473
8474 build_type_psymtabs (dwarf2_per_objfile);
8475
8476 create_all_comp_units (dwarf2_per_objfile);
8477
8478 /* Create a temporary address map on a temporary obstack. We later
8479 copy this to the final obstack. */
8480 auto_obstack temp_obstack;
8481
8482 scoped_restore save_psymtabs_addrmap
8483 = make_scoped_restore (&objfile->psymtabs_addrmap,
8484 addrmap_create_mutable (&temp_obstack));
8485
8486 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8487 {
8488 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8489
8490 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8491 }
8492
8493 /* This has to wait until we read the CUs, we need the list of DWOs. */
8494 process_skeletonless_type_units (dwarf2_per_objfile);
8495
8496 /* Now that all TUs have been processed we can fill in the dependencies. */
8497 if (dwarf2_per_objfile->type_unit_groups != NULL)
8498 {
8499 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8500 build_type_psymtab_dependencies, dwarf2_per_objfile);
8501 }
8502
8503 if (dwarf_read_debug)
8504 print_tu_stats (dwarf2_per_objfile);
8505
8506 set_partial_user (dwarf2_per_objfile);
8507
8508 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8509 &objfile->objfile_obstack);
8510 /* At this point we want to keep the address map. */
8511 save_psymtabs_addrmap.release ();
8512
8513 if (dwarf_read_debug)
8514 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8515 objfile_name (objfile));
8516 }
8517
8518 /* die_reader_func for load_partial_comp_unit. */
8519
8520 static void
8521 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8522 const gdb_byte *info_ptr,
8523 struct die_info *comp_unit_die,
8524 int has_children,
8525 void *data)
8526 {
8527 struct dwarf2_cu *cu = reader->cu;
8528
8529 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8530
8531 /* Check if comp unit has_children.
8532 If so, read the rest of the partial symbols from this comp unit.
8533 If not, there's no more debug_info for this comp unit. */
8534 if (has_children)
8535 load_partial_dies (reader, info_ptr, 0);
8536 }
8537
8538 /* Load the partial DIEs for a secondary CU into memory.
8539 This is also used when rereading a primary CU with load_all_dies. */
8540
8541 static void
8542 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8543 {
8544 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8545 load_partial_comp_unit_reader, NULL);
8546 }
8547
8548 static void
8549 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8550 struct dwarf2_section_info *section,
8551 struct dwarf2_section_info *abbrev_section,
8552 unsigned int is_dwz,
8553 int *n_allocated,
8554 int *n_comp_units,
8555 struct dwarf2_per_cu_data ***all_comp_units)
8556 {
8557 const gdb_byte *info_ptr;
8558 struct objfile *objfile = dwarf2_per_objfile->objfile;
8559
8560 if (dwarf_read_debug)
8561 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8562 get_section_name (section),
8563 get_section_file_name (section));
8564
8565 dwarf2_read_section (objfile, section);
8566
8567 info_ptr = section->buffer;
8568
8569 while (info_ptr < section->buffer + section->size)
8570 {
8571 struct dwarf2_per_cu_data *this_cu;
8572
8573 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8574
8575 comp_unit_head cu_header;
8576 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8577 abbrev_section, info_ptr,
8578 rcuh_kind::COMPILE);
8579
8580 /* Save the compilation unit for later lookup. */
8581 if (cu_header.unit_type != DW_UT_type)
8582 {
8583 this_cu = XOBNEW (&objfile->objfile_obstack,
8584 struct dwarf2_per_cu_data);
8585 memset (this_cu, 0, sizeof (*this_cu));
8586 }
8587 else
8588 {
8589 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8590 struct signatured_type);
8591 memset (sig_type, 0, sizeof (*sig_type));
8592 sig_type->signature = cu_header.signature;
8593 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8594 this_cu = &sig_type->per_cu;
8595 }
8596 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8597 this_cu->sect_off = sect_off;
8598 this_cu->length = cu_header.length + cu_header.initial_length_size;
8599 this_cu->is_dwz = is_dwz;
8600 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8601 this_cu->section = section;
8602
8603 if (*n_comp_units == *n_allocated)
8604 {
8605 *n_allocated *= 2;
8606 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
8607 *all_comp_units, *n_allocated);
8608 }
8609 (*all_comp_units)[*n_comp_units] = this_cu;
8610 ++*n_comp_units;
8611
8612 info_ptr = info_ptr + this_cu->length;
8613 }
8614 }
8615
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8618
8619 static void
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8621 {
8622 int n_allocated;
8623 int n_comp_units;
8624 struct dwarf2_per_cu_data **all_comp_units;
8625 struct dwz_file *dwz;
8626 struct objfile *objfile = dwarf2_per_objfile->objfile;
8627
8628 n_comp_units = 0;
8629 n_allocated = 10;
8630 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
8631
8632 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8633 &dwarf2_per_objfile->abbrev, 0,
8634 &n_allocated, &n_comp_units, &all_comp_units);
8635
8636 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8637 if (dwz != NULL)
8638 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8639 1, &n_allocated, &n_comp_units,
8640 &all_comp_units);
8641
8642 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
8643 struct dwarf2_per_cu_data *,
8644 n_comp_units);
8645 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
8646 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
8647 xfree (all_comp_units);
8648 dwarf2_per_objfile->n_comp_units = n_comp_units;
8649 }
8650
8651 /* Process all loaded DIEs for compilation unit CU, starting at
8652 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8653 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8654 DW_AT_ranges). See the comments of add_partial_subprogram on how
8655 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8656
8657 static void
8658 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8659 CORE_ADDR *highpc, int set_addrmap,
8660 struct dwarf2_cu *cu)
8661 {
8662 struct partial_die_info *pdi;
8663
8664 /* Now, march along the PDI's, descending into ones which have
8665 interesting children but skipping the children of the other ones,
8666 until we reach the end of the compilation unit. */
8667
8668 pdi = first_die;
8669
8670 while (pdi != NULL)
8671 {
8672 pdi->fixup (cu);
8673
8674 /* Anonymous namespaces or modules have no name but have interesting
8675 children, so we need to look at them. Ditto for anonymous
8676 enums. */
8677
8678 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8679 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8680 || pdi->tag == DW_TAG_imported_unit
8681 || pdi->tag == DW_TAG_inlined_subroutine)
8682 {
8683 switch (pdi->tag)
8684 {
8685 case DW_TAG_subprogram:
8686 case DW_TAG_inlined_subroutine:
8687 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8688 break;
8689 case DW_TAG_constant:
8690 case DW_TAG_variable:
8691 case DW_TAG_typedef:
8692 case DW_TAG_union_type:
8693 if (!pdi->is_declaration)
8694 {
8695 add_partial_symbol (pdi, cu);
8696 }
8697 break;
8698 case DW_TAG_class_type:
8699 case DW_TAG_interface_type:
8700 case DW_TAG_structure_type:
8701 if (!pdi->is_declaration)
8702 {
8703 add_partial_symbol (pdi, cu);
8704 }
8705 if ((cu->language == language_rust
8706 || cu->language == language_cplus) && pdi->has_children)
8707 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8708 set_addrmap, cu);
8709 break;
8710 case DW_TAG_enumeration_type:
8711 if (!pdi->is_declaration)
8712 add_partial_enumeration (pdi, cu);
8713 break;
8714 case DW_TAG_base_type:
8715 case DW_TAG_subrange_type:
8716 /* File scope base type definitions are added to the partial
8717 symbol table. */
8718 add_partial_symbol (pdi, cu);
8719 break;
8720 case DW_TAG_namespace:
8721 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8722 break;
8723 case DW_TAG_module:
8724 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8725 break;
8726 case DW_TAG_imported_unit:
8727 {
8728 struct dwarf2_per_cu_data *per_cu;
8729
8730 /* For now we don't handle imported units in type units. */
8731 if (cu->per_cu->is_debug_types)
8732 {
8733 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8734 " supported in type units [in module %s]"),
8735 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8736 }
8737
8738 per_cu = dwarf2_find_containing_comp_unit
8739 (pdi->d.sect_off, pdi->is_dwz,
8740 cu->per_cu->dwarf2_per_objfile);
8741
8742 /* Go read the partial unit, if needed. */
8743 if (per_cu->v.psymtab == NULL)
8744 process_psymtab_comp_unit (per_cu, 1, cu->language);
8745
8746 VEC_safe_push (dwarf2_per_cu_ptr,
8747 cu->per_cu->imported_symtabs, per_cu);
8748 }
8749 break;
8750 case DW_TAG_imported_declaration:
8751 add_partial_symbol (pdi, cu);
8752 break;
8753 default:
8754 break;
8755 }
8756 }
8757
8758 /* If the die has a sibling, skip to the sibling. */
8759
8760 pdi = pdi->die_sibling;
8761 }
8762 }
8763
8764 /* Functions used to compute the fully scoped name of a partial DIE.
8765
8766 Normally, this is simple. For C++, the parent DIE's fully scoped
8767 name is concatenated with "::" and the partial DIE's name.
8768 Enumerators are an exception; they use the scope of their parent
8769 enumeration type, i.e. the name of the enumeration type is not
8770 prepended to the enumerator.
8771
8772 There are two complexities. One is DW_AT_specification; in this
8773 case "parent" means the parent of the target of the specification,
8774 instead of the direct parent of the DIE. The other is compilers
8775 which do not emit DW_TAG_namespace; in this case we try to guess
8776 the fully qualified name of structure types from their members'
8777 linkage names. This must be done using the DIE's children rather
8778 than the children of any DW_AT_specification target. We only need
8779 to do this for structures at the top level, i.e. if the target of
8780 any DW_AT_specification (if any; otherwise the DIE itself) does not
8781 have a parent. */
8782
8783 /* Compute the scope prefix associated with PDI's parent, in
8784 compilation unit CU. The result will be allocated on CU's
8785 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8786 field. NULL is returned if no prefix is necessary. */
8787 static const char *
8788 partial_die_parent_scope (struct partial_die_info *pdi,
8789 struct dwarf2_cu *cu)
8790 {
8791 const char *grandparent_scope;
8792 struct partial_die_info *parent, *real_pdi;
8793
8794 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8795 then this means the parent of the specification DIE. */
8796
8797 real_pdi = pdi;
8798 while (real_pdi->has_specification)
8799 real_pdi = find_partial_die (real_pdi->spec_offset,
8800 real_pdi->spec_is_dwz, cu);
8801
8802 parent = real_pdi->die_parent;
8803 if (parent == NULL)
8804 return NULL;
8805
8806 if (parent->scope_set)
8807 return parent->scope;
8808
8809 parent->fixup (cu);
8810
8811 grandparent_scope = partial_die_parent_scope (parent, cu);
8812
8813 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8814 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8815 Work around this problem here. */
8816 if (cu->language == language_cplus
8817 && parent->tag == DW_TAG_namespace
8818 && strcmp (parent->name, "::") == 0
8819 && grandparent_scope == NULL)
8820 {
8821 parent->scope = NULL;
8822 parent->scope_set = 1;
8823 return NULL;
8824 }
8825
8826 if (pdi->tag == DW_TAG_enumerator)
8827 /* Enumerators should not get the name of the enumeration as a prefix. */
8828 parent->scope = grandparent_scope;
8829 else if (parent->tag == DW_TAG_namespace
8830 || parent->tag == DW_TAG_module
8831 || parent->tag == DW_TAG_structure_type
8832 || parent->tag == DW_TAG_class_type
8833 || parent->tag == DW_TAG_interface_type
8834 || parent->tag == DW_TAG_union_type
8835 || parent->tag == DW_TAG_enumeration_type)
8836 {
8837 if (grandparent_scope == NULL)
8838 parent->scope = parent->name;
8839 else
8840 parent->scope = typename_concat (&cu->comp_unit_obstack,
8841 grandparent_scope,
8842 parent->name, 0, cu);
8843 }
8844 else
8845 {
8846 /* FIXME drow/2004-04-01: What should we be doing with
8847 function-local names? For partial symbols, we should probably be
8848 ignoring them. */
8849 complaint (&symfile_complaints,
8850 _("unhandled containing DIE tag %d for DIE at %s"),
8851 parent->tag, sect_offset_str (pdi->sect_off));
8852 parent->scope = grandparent_scope;
8853 }
8854
8855 parent->scope_set = 1;
8856 return parent->scope;
8857 }
8858
8859 /* Return the fully scoped name associated with PDI, from compilation unit
8860 CU. The result will be allocated with malloc. */
8861
8862 static char *
8863 partial_die_full_name (struct partial_die_info *pdi,
8864 struct dwarf2_cu *cu)
8865 {
8866 const char *parent_scope;
8867
8868 /* If this is a template instantiation, we can not work out the
8869 template arguments from partial DIEs. So, unfortunately, we have
8870 to go through the full DIEs. At least any work we do building
8871 types here will be reused if full symbols are loaded later. */
8872 if (pdi->has_template_arguments)
8873 {
8874 pdi->fixup (cu);
8875
8876 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8877 {
8878 struct die_info *die;
8879 struct attribute attr;
8880 struct dwarf2_cu *ref_cu = cu;
8881
8882 /* DW_FORM_ref_addr is using section offset. */
8883 attr.name = (enum dwarf_attribute) 0;
8884 attr.form = DW_FORM_ref_addr;
8885 attr.u.unsnd = to_underlying (pdi->sect_off);
8886 die = follow_die_ref (NULL, &attr, &ref_cu);
8887
8888 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8889 }
8890 }
8891
8892 parent_scope = partial_die_parent_scope (pdi, cu);
8893 if (parent_scope == NULL)
8894 return NULL;
8895 else
8896 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8897 }
8898
8899 static void
8900 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8901 {
8902 struct dwarf2_per_objfile *dwarf2_per_objfile
8903 = cu->per_cu->dwarf2_per_objfile;
8904 struct objfile *objfile = dwarf2_per_objfile->objfile;
8905 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8906 CORE_ADDR addr = 0;
8907 const char *actual_name = NULL;
8908 CORE_ADDR baseaddr;
8909 char *built_actual_name;
8910
8911 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8912
8913 built_actual_name = partial_die_full_name (pdi, cu);
8914 if (built_actual_name != NULL)
8915 actual_name = built_actual_name;
8916
8917 if (actual_name == NULL)
8918 actual_name = pdi->name;
8919
8920 switch (pdi->tag)
8921 {
8922 case DW_TAG_inlined_subroutine:
8923 case DW_TAG_subprogram:
8924 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8925 if (pdi->is_external || cu->language == language_ada)
8926 {
8927 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8928 of the global scope. But in Ada, we want to be able to access
8929 nested procedures globally. So all Ada subprograms are stored
8930 in the global scope. */
8931 add_psymbol_to_list (actual_name, strlen (actual_name),
8932 built_actual_name != NULL,
8933 VAR_DOMAIN, LOC_BLOCK,
8934 &objfile->global_psymbols,
8935 addr, cu->language, objfile);
8936 }
8937 else
8938 {
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL,
8941 VAR_DOMAIN, LOC_BLOCK,
8942 &objfile->static_psymbols,
8943 addr, cu->language, objfile);
8944 }
8945
8946 if (pdi->main_subprogram && actual_name != NULL)
8947 set_objfile_main_name (objfile, actual_name, cu->language);
8948 break;
8949 case DW_TAG_constant:
8950 {
8951 std::vector<partial_symbol *> *list;
8952
8953 if (pdi->is_external)
8954 list = &objfile->global_psymbols;
8955 else
8956 list = &objfile->static_psymbols;
8957 add_psymbol_to_list (actual_name, strlen (actual_name),
8958 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8959 list, 0, cu->language, objfile);
8960 }
8961 break;
8962 case DW_TAG_variable:
8963 if (pdi->d.locdesc)
8964 addr = decode_locdesc (pdi->d.locdesc, cu);
8965
8966 if (pdi->d.locdesc
8967 && addr == 0
8968 && !dwarf2_per_objfile->has_section_at_zero)
8969 {
8970 /* A global or static variable may also have been stripped
8971 out by the linker if unused, in which case its address
8972 will be nullified; do not add such variables into partial
8973 symbol table then. */
8974 }
8975 else if (pdi->is_external)
8976 {
8977 /* Global Variable.
8978 Don't enter into the minimal symbol tables as there is
8979 a minimal symbol table entry from the ELF symbols already.
8980 Enter into partial symbol table if it has a location
8981 descriptor or a type.
8982 If the location descriptor is missing, new_symbol will create
8983 a LOC_UNRESOLVED symbol, the address of the variable will then
8984 be determined from the minimal symbol table whenever the variable
8985 is referenced.
8986 The address for the partial symbol table entry is not
8987 used by GDB, but it comes in handy for debugging partial symbol
8988 table building. */
8989
8990 if (pdi->d.locdesc || pdi->has_type)
8991 add_psymbol_to_list (actual_name, strlen (actual_name),
8992 built_actual_name != NULL,
8993 VAR_DOMAIN, LOC_STATIC,
8994 &objfile->global_psymbols,
8995 addr + baseaddr,
8996 cu->language, objfile);
8997 }
8998 else
8999 {
9000 int has_loc = pdi->d.locdesc != NULL;
9001
9002 /* Static Variable. Skip symbols whose value we cannot know (those
9003 without location descriptors or constant values). */
9004 if (!has_loc && !pdi->has_const_value)
9005 {
9006 xfree (built_actual_name);
9007 return;
9008 }
9009
9010 add_psymbol_to_list (actual_name, strlen (actual_name),
9011 built_actual_name != NULL,
9012 VAR_DOMAIN, LOC_STATIC,
9013 &objfile->static_psymbols,
9014 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9015 cu->language, objfile);
9016 }
9017 break;
9018 case DW_TAG_typedef:
9019 case DW_TAG_base_type:
9020 case DW_TAG_subrange_type:
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 VAR_DOMAIN, LOC_TYPEDEF,
9024 &objfile->static_psymbols,
9025 0, cu->language, objfile);
9026 break;
9027 case DW_TAG_imported_declaration:
9028 case DW_TAG_namespace:
9029 add_psymbol_to_list (actual_name, strlen (actual_name),
9030 built_actual_name != NULL,
9031 VAR_DOMAIN, LOC_TYPEDEF,
9032 &objfile->global_psymbols,
9033 0, cu->language, objfile);
9034 break;
9035 case DW_TAG_module:
9036 add_psymbol_to_list (actual_name, strlen (actual_name),
9037 built_actual_name != NULL,
9038 MODULE_DOMAIN, LOC_TYPEDEF,
9039 &objfile->global_psymbols,
9040 0, cu->language, objfile);
9041 break;
9042 case DW_TAG_class_type:
9043 case DW_TAG_interface_type:
9044 case DW_TAG_structure_type:
9045 case DW_TAG_union_type:
9046 case DW_TAG_enumeration_type:
9047 /* Skip external references. The DWARF standard says in the section
9048 about "Structure, Union, and Class Type Entries": "An incomplete
9049 structure, union or class type is represented by a structure,
9050 union or class entry that does not have a byte size attribute
9051 and that has a DW_AT_declaration attribute." */
9052 if (!pdi->has_byte_size && pdi->is_declaration)
9053 {
9054 xfree (built_actual_name);
9055 return;
9056 }
9057
9058 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9059 static vs. global. */
9060 add_psymbol_to_list (actual_name, strlen (actual_name),
9061 built_actual_name != NULL,
9062 STRUCT_DOMAIN, LOC_TYPEDEF,
9063 cu->language == language_cplus
9064 ? &objfile->global_psymbols
9065 : &objfile->static_psymbols,
9066 0, cu->language, objfile);
9067
9068 break;
9069 case DW_TAG_enumerator:
9070 add_psymbol_to_list (actual_name, strlen (actual_name),
9071 built_actual_name != NULL,
9072 VAR_DOMAIN, LOC_CONST,
9073 cu->language == language_cplus
9074 ? &objfile->global_psymbols
9075 : &objfile->static_psymbols,
9076 0, cu->language, objfile);
9077 break;
9078 default:
9079 break;
9080 }
9081
9082 xfree (built_actual_name);
9083 }
9084
9085 /* Read a partial die corresponding to a namespace; also, add a symbol
9086 corresponding to that namespace to the symbol table. NAMESPACE is
9087 the name of the enclosing namespace. */
9088
9089 static void
9090 add_partial_namespace (struct partial_die_info *pdi,
9091 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9092 int set_addrmap, struct dwarf2_cu *cu)
9093 {
9094 /* Add a symbol for the namespace. */
9095
9096 add_partial_symbol (pdi, cu);
9097
9098 /* Now scan partial symbols in that namespace. */
9099
9100 if (pdi->has_children)
9101 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9102 }
9103
9104 /* Read a partial die corresponding to a Fortran module. */
9105
9106 static void
9107 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9108 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9109 {
9110 /* Add a symbol for the namespace. */
9111
9112 add_partial_symbol (pdi, cu);
9113
9114 /* Now scan partial symbols in that module. */
9115
9116 if (pdi->has_children)
9117 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9118 }
9119
9120 /* Read a partial die corresponding to a subprogram or an inlined
9121 subprogram and create a partial symbol for that subprogram.
9122 When the CU language allows it, this routine also defines a partial
9123 symbol for each nested subprogram that this subprogram contains.
9124 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9125 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9126
9127 PDI may also be a lexical block, in which case we simply search
9128 recursively for subprograms defined inside that lexical block.
9129 Again, this is only performed when the CU language allows this
9130 type of definitions. */
9131
9132 static void
9133 add_partial_subprogram (struct partial_die_info *pdi,
9134 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9135 int set_addrmap, struct dwarf2_cu *cu)
9136 {
9137 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9138 {
9139 if (pdi->has_pc_info)
9140 {
9141 if (pdi->lowpc < *lowpc)
9142 *lowpc = pdi->lowpc;
9143 if (pdi->highpc > *highpc)
9144 *highpc = pdi->highpc;
9145 if (set_addrmap)
9146 {
9147 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9149 CORE_ADDR baseaddr;
9150 CORE_ADDR highpc;
9151 CORE_ADDR lowpc;
9152
9153 baseaddr = ANOFFSET (objfile->section_offsets,
9154 SECT_OFF_TEXT (objfile));
9155 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9156 pdi->lowpc + baseaddr);
9157 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9158 pdi->highpc + baseaddr);
9159 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9160 cu->per_cu->v.psymtab);
9161 }
9162 }
9163
9164 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9165 {
9166 if (!pdi->is_declaration)
9167 /* Ignore subprogram DIEs that do not have a name, they are
9168 illegal. Do not emit a complaint at this point, we will
9169 do so when we convert this psymtab into a symtab. */
9170 if (pdi->name)
9171 add_partial_symbol (pdi, cu);
9172 }
9173 }
9174
9175 if (! pdi->has_children)
9176 return;
9177
9178 if (cu->language == language_ada)
9179 {
9180 pdi = pdi->die_child;
9181 while (pdi != NULL)
9182 {
9183 pdi->fixup (cu);
9184 if (pdi->tag == DW_TAG_subprogram
9185 || pdi->tag == DW_TAG_inlined_subroutine
9186 || pdi->tag == DW_TAG_lexical_block)
9187 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9188 pdi = pdi->die_sibling;
9189 }
9190 }
9191 }
9192
9193 /* Read a partial die corresponding to an enumeration type. */
9194
9195 static void
9196 add_partial_enumeration (struct partial_die_info *enum_pdi,
9197 struct dwarf2_cu *cu)
9198 {
9199 struct partial_die_info *pdi;
9200
9201 if (enum_pdi->name != NULL)
9202 add_partial_symbol (enum_pdi, cu);
9203
9204 pdi = enum_pdi->die_child;
9205 while (pdi)
9206 {
9207 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9208 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9209 else
9210 add_partial_symbol (pdi, cu);
9211 pdi = pdi->die_sibling;
9212 }
9213 }
9214
9215 /* Return the initial uleb128 in the die at INFO_PTR. */
9216
9217 static unsigned int
9218 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9219 {
9220 unsigned int bytes_read;
9221
9222 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9223 }
9224
9225 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9226 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9227
9228 Return the corresponding abbrev, or NULL if the number is zero (indicating
9229 an empty DIE). In either case *BYTES_READ will be set to the length of
9230 the initial number. */
9231
9232 static struct abbrev_info *
9233 peek_die_abbrev (const die_reader_specs &reader,
9234 const gdb_byte *info_ptr, unsigned int *bytes_read)
9235 {
9236 dwarf2_cu *cu = reader.cu;
9237 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9238 unsigned int abbrev_number
9239 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9240
9241 if (abbrev_number == 0)
9242 return NULL;
9243
9244 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9245 if (!abbrev)
9246 {
9247 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9248 " at offset %s [in module %s]"),
9249 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9250 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9251 }
9252
9253 return abbrev;
9254 }
9255
9256 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9257 Returns a pointer to the end of a series of DIEs, terminated by an empty
9258 DIE. Any children of the skipped DIEs will also be skipped. */
9259
9260 static const gdb_byte *
9261 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9262 {
9263 while (1)
9264 {
9265 unsigned int bytes_read;
9266 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9267
9268 if (abbrev == NULL)
9269 return info_ptr + bytes_read;
9270 else
9271 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9272 }
9273 }
9274
9275 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9276 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9277 abbrev corresponding to that skipped uleb128 should be passed in
9278 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9279 children. */
9280
9281 static const gdb_byte *
9282 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9283 struct abbrev_info *abbrev)
9284 {
9285 unsigned int bytes_read;
9286 struct attribute attr;
9287 bfd *abfd = reader->abfd;
9288 struct dwarf2_cu *cu = reader->cu;
9289 const gdb_byte *buffer = reader->buffer;
9290 const gdb_byte *buffer_end = reader->buffer_end;
9291 unsigned int form, i;
9292
9293 for (i = 0; i < abbrev->num_attrs; i++)
9294 {
9295 /* The only abbrev we care about is DW_AT_sibling. */
9296 if (abbrev->attrs[i].name == DW_AT_sibling)
9297 {
9298 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9299 if (attr.form == DW_FORM_ref_addr)
9300 complaint (&symfile_complaints,
9301 _("ignoring absolute DW_AT_sibling"));
9302 else
9303 {
9304 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9305 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9306
9307 if (sibling_ptr < info_ptr)
9308 complaint (&symfile_complaints,
9309 _("DW_AT_sibling points backwards"));
9310 else if (sibling_ptr > reader->buffer_end)
9311 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9312 else
9313 return sibling_ptr;
9314 }
9315 }
9316
9317 /* If it isn't DW_AT_sibling, skip this attribute. */
9318 form = abbrev->attrs[i].form;
9319 skip_attribute:
9320 switch (form)
9321 {
9322 case DW_FORM_ref_addr:
9323 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9324 and later it is offset sized. */
9325 if (cu->header.version == 2)
9326 info_ptr += cu->header.addr_size;
9327 else
9328 info_ptr += cu->header.offset_size;
9329 break;
9330 case DW_FORM_GNU_ref_alt:
9331 info_ptr += cu->header.offset_size;
9332 break;
9333 case DW_FORM_addr:
9334 info_ptr += cu->header.addr_size;
9335 break;
9336 case DW_FORM_data1:
9337 case DW_FORM_ref1:
9338 case DW_FORM_flag:
9339 info_ptr += 1;
9340 break;
9341 case DW_FORM_flag_present:
9342 case DW_FORM_implicit_const:
9343 break;
9344 case DW_FORM_data2:
9345 case DW_FORM_ref2:
9346 info_ptr += 2;
9347 break;
9348 case DW_FORM_data4:
9349 case DW_FORM_ref4:
9350 info_ptr += 4;
9351 break;
9352 case DW_FORM_data8:
9353 case DW_FORM_ref8:
9354 case DW_FORM_ref_sig8:
9355 info_ptr += 8;
9356 break;
9357 case DW_FORM_data16:
9358 info_ptr += 16;
9359 break;
9360 case DW_FORM_string:
9361 read_direct_string (abfd, info_ptr, &bytes_read);
9362 info_ptr += bytes_read;
9363 break;
9364 case DW_FORM_sec_offset:
9365 case DW_FORM_strp:
9366 case DW_FORM_GNU_strp_alt:
9367 info_ptr += cu->header.offset_size;
9368 break;
9369 case DW_FORM_exprloc:
9370 case DW_FORM_block:
9371 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9372 info_ptr += bytes_read;
9373 break;
9374 case DW_FORM_block1:
9375 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9376 break;
9377 case DW_FORM_block2:
9378 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9379 break;
9380 case DW_FORM_block4:
9381 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9382 break;
9383 case DW_FORM_sdata:
9384 case DW_FORM_udata:
9385 case DW_FORM_ref_udata:
9386 case DW_FORM_GNU_addr_index:
9387 case DW_FORM_GNU_str_index:
9388 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9389 break;
9390 case DW_FORM_indirect:
9391 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9392 info_ptr += bytes_read;
9393 /* We need to continue parsing from here, so just go back to
9394 the top. */
9395 goto skip_attribute;
9396
9397 default:
9398 error (_("Dwarf Error: Cannot handle %s "
9399 "in DWARF reader [in module %s]"),
9400 dwarf_form_name (form),
9401 bfd_get_filename (abfd));
9402 }
9403 }
9404
9405 if (abbrev->has_children)
9406 return skip_children (reader, info_ptr);
9407 else
9408 return info_ptr;
9409 }
9410
9411 /* Locate ORIG_PDI's sibling.
9412 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9413
9414 static const gdb_byte *
9415 locate_pdi_sibling (const struct die_reader_specs *reader,
9416 struct partial_die_info *orig_pdi,
9417 const gdb_byte *info_ptr)
9418 {
9419 /* Do we know the sibling already? */
9420
9421 if (orig_pdi->sibling)
9422 return orig_pdi->sibling;
9423
9424 /* Are there any children to deal with? */
9425
9426 if (!orig_pdi->has_children)
9427 return info_ptr;
9428
9429 /* Skip the children the long way. */
9430
9431 return skip_children (reader, info_ptr);
9432 }
9433
9434 /* Expand this partial symbol table into a full symbol table. SELF is
9435 not NULL. */
9436
9437 static void
9438 dwarf2_read_symtab (struct partial_symtab *self,
9439 struct objfile *objfile)
9440 {
9441 struct dwarf2_per_objfile *dwarf2_per_objfile
9442 = get_dwarf2_per_objfile (objfile);
9443
9444 if (self->readin)
9445 {
9446 warning (_("bug: psymtab for %s is already read in."),
9447 self->filename);
9448 }
9449 else
9450 {
9451 if (info_verbose)
9452 {
9453 printf_filtered (_("Reading in symbols for %s..."),
9454 self->filename);
9455 gdb_flush (gdb_stdout);
9456 }
9457
9458 /* If this psymtab is constructed from a debug-only objfile, the
9459 has_section_at_zero flag will not necessarily be correct. We
9460 can get the correct value for this flag by looking at the data
9461 associated with the (presumably stripped) associated objfile. */
9462 if (objfile->separate_debug_objfile_backlink)
9463 {
9464 struct dwarf2_per_objfile *dpo_backlink
9465 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9466
9467 dwarf2_per_objfile->has_section_at_zero
9468 = dpo_backlink->has_section_at_zero;
9469 }
9470
9471 dwarf2_per_objfile->reading_partial_symbols = 0;
9472
9473 psymtab_to_symtab_1 (self);
9474
9475 /* Finish up the debug error message. */
9476 if (info_verbose)
9477 printf_filtered (_("done.\n"));
9478 }
9479
9480 process_cu_includes (dwarf2_per_objfile);
9481 }
9482 \f
9483 /* Reading in full CUs. */
9484
9485 /* Add PER_CU to the queue. */
9486
9487 static void
9488 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9489 enum language pretend_language)
9490 {
9491 struct dwarf2_queue_item *item;
9492
9493 per_cu->queued = 1;
9494 item = XNEW (struct dwarf2_queue_item);
9495 item->per_cu = per_cu;
9496 item->pretend_language = pretend_language;
9497 item->next = NULL;
9498
9499 if (dwarf2_queue == NULL)
9500 dwarf2_queue = item;
9501 else
9502 dwarf2_queue_tail->next = item;
9503
9504 dwarf2_queue_tail = item;
9505 }
9506
9507 /* If PER_CU is not yet queued, add it to the queue.
9508 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9509 dependency.
9510 The result is non-zero if PER_CU was queued, otherwise the result is zero
9511 meaning either PER_CU is already queued or it is already loaded.
9512
9513 N.B. There is an invariant here that if a CU is queued then it is loaded.
9514 The caller is required to load PER_CU if we return non-zero. */
9515
9516 static int
9517 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9518 struct dwarf2_per_cu_data *per_cu,
9519 enum language pretend_language)
9520 {
9521 /* We may arrive here during partial symbol reading, if we need full
9522 DIEs to process an unusual case (e.g. template arguments). Do
9523 not queue PER_CU, just tell our caller to load its DIEs. */
9524 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9525 {
9526 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9527 return 1;
9528 return 0;
9529 }
9530
9531 /* Mark the dependence relation so that we don't flush PER_CU
9532 too early. */
9533 if (dependent_cu != NULL)
9534 dwarf2_add_dependence (dependent_cu, per_cu);
9535
9536 /* If it's already on the queue, we have nothing to do. */
9537 if (per_cu->queued)
9538 return 0;
9539
9540 /* If the compilation unit is already loaded, just mark it as
9541 used. */
9542 if (per_cu->cu != NULL)
9543 {
9544 per_cu->cu->last_used = 0;
9545 return 0;
9546 }
9547
9548 /* Add it to the queue. */
9549 queue_comp_unit (per_cu, pretend_language);
9550
9551 return 1;
9552 }
9553
9554 /* Process the queue. */
9555
9556 static void
9557 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9558 {
9559 struct dwarf2_queue_item *item, *next_item;
9560
9561 if (dwarf_read_debug)
9562 {
9563 fprintf_unfiltered (gdb_stdlog,
9564 "Expanding one or more symtabs of objfile %s ...\n",
9565 objfile_name (dwarf2_per_objfile->objfile));
9566 }
9567
9568 /* The queue starts out with one item, but following a DIE reference
9569 may load a new CU, adding it to the end of the queue. */
9570 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9571 {
9572 if ((dwarf2_per_objfile->using_index
9573 ? !item->per_cu->v.quick->compunit_symtab
9574 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9575 /* Skip dummy CUs. */
9576 && item->per_cu->cu != NULL)
9577 {
9578 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9579 unsigned int debug_print_threshold;
9580 char buf[100];
9581
9582 if (per_cu->is_debug_types)
9583 {
9584 struct signatured_type *sig_type =
9585 (struct signatured_type *) per_cu;
9586
9587 sprintf (buf, "TU %s at offset %s",
9588 hex_string (sig_type->signature),
9589 sect_offset_str (per_cu->sect_off));
9590 /* There can be 100s of TUs.
9591 Only print them in verbose mode. */
9592 debug_print_threshold = 2;
9593 }
9594 else
9595 {
9596 sprintf (buf, "CU at offset %s",
9597 sect_offset_str (per_cu->sect_off));
9598 debug_print_threshold = 1;
9599 }
9600
9601 if (dwarf_read_debug >= debug_print_threshold)
9602 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9603
9604 if (per_cu->is_debug_types)
9605 process_full_type_unit (per_cu, item->pretend_language);
9606 else
9607 process_full_comp_unit (per_cu, item->pretend_language);
9608
9609 if (dwarf_read_debug >= debug_print_threshold)
9610 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9611 }
9612
9613 item->per_cu->queued = 0;
9614 next_item = item->next;
9615 xfree (item);
9616 }
9617
9618 dwarf2_queue_tail = NULL;
9619
9620 if (dwarf_read_debug)
9621 {
9622 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9623 objfile_name (dwarf2_per_objfile->objfile));
9624 }
9625 }
9626
9627 /* Read in full symbols for PST, and anything it depends on. */
9628
9629 static void
9630 psymtab_to_symtab_1 (struct partial_symtab *pst)
9631 {
9632 struct dwarf2_per_cu_data *per_cu;
9633 int i;
9634
9635 if (pst->readin)
9636 return;
9637
9638 for (i = 0; i < pst->number_of_dependencies; i++)
9639 if (!pst->dependencies[i]->readin
9640 && pst->dependencies[i]->user == NULL)
9641 {
9642 /* Inform about additional files that need to be read in. */
9643 if (info_verbose)
9644 {
9645 /* FIXME: i18n: Need to make this a single string. */
9646 fputs_filtered (" ", gdb_stdout);
9647 wrap_here ("");
9648 fputs_filtered ("and ", gdb_stdout);
9649 wrap_here ("");
9650 printf_filtered ("%s...", pst->dependencies[i]->filename);
9651 wrap_here (""); /* Flush output. */
9652 gdb_flush (gdb_stdout);
9653 }
9654 psymtab_to_symtab_1 (pst->dependencies[i]);
9655 }
9656
9657 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9658
9659 if (per_cu == NULL)
9660 {
9661 /* It's an include file, no symbols to read for it.
9662 Everything is in the parent symtab. */
9663 pst->readin = 1;
9664 return;
9665 }
9666
9667 dw2_do_instantiate_symtab (per_cu);
9668 }
9669
9670 /* Trivial hash function for die_info: the hash value of a DIE
9671 is its offset in .debug_info for this objfile. */
9672
9673 static hashval_t
9674 die_hash (const void *item)
9675 {
9676 const struct die_info *die = (const struct die_info *) item;
9677
9678 return to_underlying (die->sect_off);
9679 }
9680
9681 /* Trivial comparison function for die_info structures: two DIEs
9682 are equal if they have the same offset. */
9683
9684 static int
9685 die_eq (const void *item_lhs, const void *item_rhs)
9686 {
9687 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9688 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9689
9690 return die_lhs->sect_off == die_rhs->sect_off;
9691 }
9692
9693 /* die_reader_func for load_full_comp_unit.
9694 This is identical to read_signatured_type_reader,
9695 but is kept separate for now. */
9696
9697 static void
9698 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9699 const gdb_byte *info_ptr,
9700 struct die_info *comp_unit_die,
9701 int has_children,
9702 void *data)
9703 {
9704 struct dwarf2_cu *cu = reader->cu;
9705 enum language *language_ptr = (enum language *) data;
9706
9707 gdb_assert (cu->die_hash == NULL);
9708 cu->die_hash =
9709 htab_create_alloc_ex (cu->header.length / 12,
9710 die_hash,
9711 die_eq,
9712 NULL,
9713 &cu->comp_unit_obstack,
9714 hashtab_obstack_allocate,
9715 dummy_obstack_deallocate);
9716
9717 if (has_children)
9718 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9719 &info_ptr, comp_unit_die);
9720 cu->dies = comp_unit_die;
9721 /* comp_unit_die is not stored in die_hash, no need. */
9722
9723 /* We try not to read any attributes in this function, because not
9724 all CUs needed for references have been loaded yet, and symbol
9725 table processing isn't initialized. But we have to set the CU language,
9726 or we won't be able to build types correctly.
9727 Similarly, if we do not read the producer, we can not apply
9728 producer-specific interpretation. */
9729 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9730 }
9731
9732 /* Load the DIEs associated with PER_CU into memory. */
9733
9734 static void
9735 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9736 enum language pretend_language)
9737 {
9738 gdb_assert (! this_cu->is_debug_types);
9739
9740 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9741 load_full_comp_unit_reader, &pretend_language);
9742 }
9743
9744 /* Add a DIE to the delayed physname list. */
9745
9746 static void
9747 add_to_method_list (struct type *type, int fnfield_index, int index,
9748 const char *name, struct die_info *die,
9749 struct dwarf2_cu *cu)
9750 {
9751 struct delayed_method_info mi;
9752 mi.type = type;
9753 mi.fnfield_index = fnfield_index;
9754 mi.index = index;
9755 mi.name = name;
9756 mi.die = die;
9757 cu->method_list.push_back (mi);
9758 }
9759
9760 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9761 "const" / "volatile". If so, decrements LEN by the length of the
9762 modifier and return true. Otherwise return false. */
9763
9764 template<size_t N>
9765 static bool
9766 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9767 {
9768 size_t mod_len = sizeof (mod) - 1;
9769 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9770 {
9771 len -= mod_len;
9772 return true;
9773 }
9774 return false;
9775 }
9776
9777 /* Compute the physnames of any methods on the CU's method list.
9778
9779 The computation of method physnames is delayed in order to avoid the
9780 (bad) condition that one of the method's formal parameters is of an as yet
9781 incomplete type. */
9782
9783 static void
9784 compute_delayed_physnames (struct dwarf2_cu *cu)
9785 {
9786 /* Only C++ delays computing physnames. */
9787 if (cu->method_list.empty ())
9788 return;
9789 gdb_assert (cu->language == language_cplus);
9790
9791 for (struct delayed_method_info &mi : cu->method_list)
9792 {
9793 const char *physname;
9794 struct fn_fieldlist *fn_flp
9795 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9796 physname = dwarf2_physname (mi.name, mi.die, cu);
9797 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9798 = physname ? physname : "";
9799
9800 /* Since there's no tag to indicate whether a method is a
9801 const/volatile overload, extract that information out of the
9802 demangled name. */
9803 if (physname != NULL)
9804 {
9805 size_t len = strlen (physname);
9806
9807 while (1)
9808 {
9809 if (physname[len] == ')') /* shortcut */
9810 break;
9811 else if (check_modifier (physname, len, " const"))
9812 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9813 else if (check_modifier (physname, len, " volatile"))
9814 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9815 else
9816 break;
9817 }
9818 }
9819 }
9820
9821 /* The list is no longer needed. */
9822 cu->method_list.clear ();
9823 }
9824
9825 /* Go objects should be embedded in a DW_TAG_module DIE,
9826 and it's not clear if/how imported objects will appear.
9827 To keep Go support simple until that's worked out,
9828 go back through what we've read and create something usable.
9829 We could do this while processing each DIE, and feels kinda cleaner,
9830 but that way is more invasive.
9831 This is to, for example, allow the user to type "p var" or "b main"
9832 without having to specify the package name, and allow lookups
9833 of module.object to work in contexts that use the expression
9834 parser. */
9835
9836 static void
9837 fixup_go_packaging (struct dwarf2_cu *cu)
9838 {
9839 char *package_name = NULL;
9840 struct pending *list;
9841 int i;
9842
9843 for (list = global_symbols; list != NULL; list = list->next)
9844 {
9845 for (i = 0; i < list->nsyms; ++i)
9846 {
9847 struct symbol *sym = list->symbol[i];
9848
9849 if (SYMBOL_LANGUAGE (sym) == language_go
9850 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9851 {
9852 char *this_package_name = go_symbol_package_name (sym);
9853
9854 if (this_package_name == NULL)
9855 continue;
9856 if (package_name == NULL)
9857 package_name = this_package_name;
9858 else
9859 {
9860 struct objfile *objfile
9861 = cu->per_cu->dwarf2_per_objfile->objfile;
9862 if (strcmp (package_name, this_package_name) != 0)
9863 complaint (&symfile_complaints,
9864 _("Symtab %s has objects from two different Go packages: %s and %s"),
9865 (symbol_symtab (sym) != NULL
9866 ? symtab_to_filename_for_display
9867 (symbol_symtab (sym))
9868 : objfile_name (objfile)),
9869 this_package_name, package_name);
9870 xfree (this_package_name);
9871 }
9872 }
9873 }
9874 }
9875
9876 if (package_name != NULL)
9877 {
9878 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9879 const char *saved_package_name
9880 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9881 package_name,
9882 strlen (package_name));
9883 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9884 saved_package_name);
9885 struct symbol *sym;
9886
9887 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9888
9889 sym = allocate_symbol (objfile);
9890 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9891 SYMBOL_SET_NAMES (sym, saved_package_name,
9892 strlen (saved_package_name), 0, objfile);
9893 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9894 e.g., "main" finds the "main" module and not C's main(). */
9895 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9896 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9897 SYMBOL_TYPE (sym) = type;
9898
9899 add_symbol_to_list (sym, &global_symbols);
9900
9901 xfree (package_name);
9902 }
9903 }
9904
9905 /* Allocate a fully-qualified name consisting of the two parts on the
9906 obstack. */
9907
9908 static const char *
9909 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9910 {
9911 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9912 }
9913
9914 /* A helper that allocates a struct discriminant_info to attach to a
9915 union type. */
9916
9917 static struct discriminant_info *
9918 alloc_discriminant_info (struct type *type, int discriminant_index,
9919 int default_index)
9920 {
9921 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9922 gdb_assert (discriminant_index == -1
9923 || (discriminant_index >= 0
9924 && discriminant_index < TYPE_NFIELDS (type)));
9925 gdb_assert (default_index == -1
9926 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9927
9928 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9929
9930 struct discriminant_info *disc
9931 = ((struct discriminant_info *)
9932 TYPE_ZALLOC (type,
9933 offsetof (struct discriminant_info, discriminants)
9934 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9935 disc->default_index = default_index;
9936 disc->discriminant_index = discriminant_index;
9937
9938 struct dynamic_prop prop;
9939 prop.kind = PROP_UNDEFINED;
9940 prop.data.baton = disc;
9941
9942 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9943
9944 return disc;
9945 }
9946
9947 /* Some versions of rustc emitted enums in an unusual way.
9948
9949 Ordinary enums were emitted as unions. The first element of each
9950 structure in the union was named "RUST$ENUM$DISR". This element
9951 held the discriminant.
9952
9953 These versions of Rust also implemented the "non-zero"
9954 optimization. When the enum had two values, and one is empty and
9955 the other holds a pointer that cannot be zero, the pointer is used
9956 as the discriminant, with a zero value meaning the empty variant.
9957 Here, the union's first member is of the form
9958 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9959 where the fieldnos are the indices of the fields that should be
9960 traversed in order to find the field (which may be several fields deep)
9961 and the variantname is the name of the variant of the case when the
9962 field is zero.
9963
9964 This function recognizes whether TYPE is of one of these forms,
9965 and, if so, smashes it to be a variant type. */
9966
9967 static void
9968 quirk_rust_enum (struct type *type, struct objfile *objfile)
9969 {
9970 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9971
9972 /* We don't need to deal with empty enums. */
9973 if (TYPE_NFIELDS (type) == 0)
9974 return;
9975
9976 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9977 if (TYPE_NFIELDS (type) == 1
9978 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9979 {
9980 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9981
9982 /* Decode the field name to find the offset of the
9983 discriminant. */
9984 ULONGEST bit_offset = 0;
9985 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9986 while (name[0] >= '0' && name[0] <= '9')
9987 {
9988 char *tail;
9989 unsigned long index = strtoul (name, &tail, 10);
9990 name = tail;
9991 if (*name != '$'
9992 || index >= TYPE_NFIELDS (field_type)
9993 || (TYPE_FIELD_LOC_KIND (field_type, index)
9994 != FIELD_LOC_KIND_BITPOS))
9995 {
9996 complaint (&symfile_complaints,
9997 _("Could not parse Rust enum encoding string \"%s\""
9998 "[in module %s]"),
9999 TYPE_FIELD_NAME (type, 0),
10000 objfile_name (objfile));
10001 return;
10002 }
10003 ++name;
10004
10005 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10006 field_type = TYPE_FIELD_TYPE (field_type, index);
10007 }
10008
10009 /* Make a union to hold the variants. */
10010 struct type *union_type = alloc_type (objfile);
10011 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10012 TYPE_NFIELDS (union_type) = 3;
10013 TYPE_FIELDS (union_type)
10014 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10015 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10016
10017 /* Put the discriminant must at index 0. */
10018 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10019 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10020 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10021 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10022
10023 /* The order of fields doesn't really matter, so put the real
10024 field at index 1 and the data-less field at index 2. */
10025 struct discriminant_info *disc
10026 = alloc_discriminant_info (union_type, 0, 1);
10027 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10028 TYPE_FIELD_NAME (union_type, 1)
10029 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10030 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10031 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10032 TYPE_FIELD_NAME (union_type, 1));
10033
10034 const char *dataless_name
10035 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10036 name);
10037 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10038 dataless_name);
10039 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10040 /* NAME points into the original discriminant name, which
10041 already has the correct lifetime. */
10042 TYPE_FIELD_NAME (union_type, 2) = name;
10043 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10044 disc->discriminants[2] = 0;
10045
10046 /* Smash this type to be a structure type. We have to do this
10047 because the type has already been recorded. */
10048 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10049 TYPE_NFIELDS (type) = 1;
10050 TYPE_FIELDS (type)
10051 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10052
10053 /* Install the variant part. */
10054 TYPE_FIELD_TYPE (type, 0) = union_type;
10055 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10056 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10057 }
10058 else if (TYPE_NFIELDS (type) == 1)
10059 {
10060 /* We assume that a union with a single field is a univariant
10061 enum. */
10062 /* Smash this type to be a structure type. We have to do this
10063 because the type has already been recorded. */
10064 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10065
10066 /* Make a union to hold the variants. */
10067 struct type *union_type = alloc_type (objfile);
10068 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10069 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10070 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10071 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10072
10073 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10074 const char *variant_name
10075 = rust_last_path_segment (TYPE_NAME (field_type));
10076 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10077 TYPE_NAME (field_type)
10078 = rust_fully_qualify (&objfile->objfile_obstack,
10079 TYPE_NAME (type), variant_name);
10080
10081 /* Install the union in the outer struct type. */
10082 TYPE_NFIELDS (type) = 1;
10083 TYPE_FIELDS (type)
10084 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10085 TYPE_FIELD_TYPE (type, 0) = union_type;
10086 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10087 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10088
10089 alloc_discriminant_info (union_type, -1, 0);
10090 }
10091 else
10092 {
10093 struct type *disr_type = nullptr;
10094 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10095 {
10096 disr_type = TYPE_FIELD_TYPE (type, i);
10097
10098 if (TYPE_NFIELDS (disr_type) == 0)
10099 {
10100 /* Could be data-less variant, so keep going. */
10101 }
10102 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10103 "RUST$ENUM$DISR") != 0)
10104 {
10105 /* Not a Rust enum. */
10106 return;
10107 }
10108 else
10109 {
10110 /* Found one. */
10111 break;
10112 }
10113 }
10114
10115 /* If we got here without a discriminant, then it's probably
10116 just a union. */
10117 if (disr_type == nullptr)
10118 return;
10119
10120 /* Smash this type to be a structure type. We have to do this
10121 because the type has already been recorded. */
10122 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10123
10124 /* Make a union to hold the variants. */
10125 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10126 struct type *union_type = alloc_type (objfile);
10127 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10128 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10129 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10130 TYPE_FIELDS (union_type)
10131 = (struct field *) TYPE_ZALLOC (union_type,
10132 (TYPE_NFIELDS (union_type)
10133 * sizeof (struct field)));
10134
10135 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10136 TYPE_NFIELDS (type) * sizeof (struct field));
10137
10138 /* Install the discriminant at index 0 in the union. */
10139 TYPE_FIELD (union_type, 0) = *disr_field;
10140 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10141 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10142
10143 /* Install the union in the outer struct type. */
10144 TYPE_FIELD_TYPE (type, 0) = union_type;
10145 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10146 TYPE_NFIELDS (type) = 1;
10147
10148 /* Set the size and offset of the union type. */
10149 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10150
10151 /* We need a way to find the correct discriminant given a
10152 variant name. For convenience we build a map here. */
10153 struct type *enum_type = FIELD_TYPE (*disr_field);
10154 std::unordered_map<std::string, ULONGEST> discriminant_map;
10155 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10156 {
10157 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10158 {
10159 const char *name
10160 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10161 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10162 }
10163 }
10164
10165 int n_fields = TYPE_NFIELDS (union_type);
10166 struct discriminant_info *disc
10167 = alloc_discriminant_info (union_type, 0, -1);
10168 /* Skip the discriminant here. */
10169 for (int i = 1; i < n_fields; ++i)
10170 {
10171 /* Find the final word in the name of this variant's type.
10172 That name can be used to look up the correct
10173 discriminant. */
10174 const char *variant_name
10175 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10176 i)));
10177
10178 auto iter = discriminant_map.find (variant_name);
10179 if (iter != discriminant_map.end ())
10180 disc->discriminants[i] = iter->second;
10181
10182 /* Remove the discriminant field. */
10183 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10184 --TYPE_NFIELDS (sub_type);
10185 ++TYPE_FIELDS (sub_type);
10186 TYPE_FIELD_NAME (union_type, i) = variant_name;
10187 TYPE_NAME (sub_type)
10188 = rust_fully_qualify (&objfile->objfile_obstack,
10189 TYPE_NAME (type), variant_name);
10190 }
10191 }
10192 }
10193
10194 /* Rewrite some Rust unions to be structures with variants parts. */
10195
10196 static void
10197 rust_union_quirks (struct dwarf2_cu *cu)
10198 {
10199 gdb_assert (cu->language == language_rust);
10200 for (struct type *type : cu->rust_unions)
10201 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10202 }
10203
10204 /* Return the symtab for PER_CU. This works properly regardless of
10205 whether we're using the index or psymtabs. */
10206
10207 static struct compunit_symtab *
10208 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10209 {
10210 return (per_cu->dwarf2_per_objfile->using_index
10211 ? per_cu->v.quick->compunit_symtab
10212 : per_cu->v.psymtab->compunit_symtab);
10213 }
10214
10215 /* A helper function for computing the list of all symbol tables
10216 included by PER_CU. */
10217
10218 static void
10219 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10220 htab_t all_children, htab_t all_type_symtabs,
10221 struct dwarf2_per_cu_data *per_cu,
10222 struct compunit_symtab *immediate_parent)
10223 {
10224 void **slot;
10225 int ix;
10226 struct compunit_symtab *cust;
10227 struct dwarf2_per_cu_data *iter;
10228
10229 slot = htab_find_slot (all_children, per_cu, INSERT);
10230 if (*slot != NULL)
10231 {
10232 /* This inclusion and its children have been processed. */
10233 return;
10234 }
10235
10236 *slot = per_cu;
10237 /* Only add a CU if it has a symbol table. */
10238 cust = get_compunit_symtab (per_cu);
10239 if (cust != NULL)
10240 {
10241 /* If this is a type unit only add its symbol table if we haven't
10242 seen it yet (type unit per_cu's can share symtabs). */
10243 if (per_cu->is_debug_types)
10244 {
10245 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10246 if (*slot == NULL)
10247 {
10248 *slot = cust;
10249 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10250 if (cust->user == NULL)
10251 cust->user = immediate_parent;
10252 }
10253 }
10254 else
10255 {
10256 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10257 if (cust->user == NULL)
10258 cust->user = immediate_parent;
10259 }
10260 }
10261
10262 for (ix = 0;
10263 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10264 ++ix)
10265 {
10266 recursively_compute_inclusions (result, all_children,
10267 all_type_symtabs, iter, cust);
10268 }
10269 }
10270
10271 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10272 PER_CU. */
10273
10274 static void
10275 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10276 {
10277 gdb_assert (! per_cu->is_debug_types);
10278
10279 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10280 {
10281 int ix, len;
10282 struct dwarf2_per_cu_data *per_cu_iter;
10283 struct compunit_symtab *compunit_symtab_iter;
10284 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10285 htab_t all_children, all_type_symtabs;
10286 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10287
10288 /* If we don't have a symtab, we can just skip this case. */
10289 if (cust == NULL)
10290 return;
10291
10292 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10293 NULL, xcalloc, xfree);
10294 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10296
10297 for (ix = 0;
10298 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10299 ix, per_cu_iter);
10300 ++ix)
10301 {
10302 recursively_compute_inclusions (&result_symtabs, all_children,
10303 all_type_symtabs, per_cu_iter,
10304 cust);
10305 }
10306
10307 /* Now we have a transitive closure of all the included symtabs. */
10308 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10309 cust->includes
10310 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10311 struct compunit_symtab *, len + 1);
10312 for (ix = 0;
10313 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10314 compunit_symtab_iter);
10315 ++ix)
10316 cust->includes[ix] = compunit_symtab_iter;
10317 cust->includes[len] = NULL;
10318
10319 VEC_free (compunit_symtab_ptr, result_symtabs);
10320 htab_delete (all_children);
10321 htab_delete (all_type_symtabs);
10322 }
10323 }
10324
10325 /* Compute the 'includes' field for the symtabs of all the CUs we just
10326 read. */
10327
10328 static void
10329 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10330 {
10331 int ix;
10332 struct dwarf2_per_cu_data *iter;
10333
10334 for (ix = 0;
10335 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10336 ix, iter);
10337 ++ix)
10338 {
10339 if (! iter->is_debug_types)
10340 compute_compunit_symtab_includes (iter);
10341 }
10342
10343 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10344 }
10345
10346 /* Generate full symbol information for PER_CU, whose DIEs have
10347 already been loaded into memory. */
10348
10349 static void
10350 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10351 enum language pretend_language)
10352 {
10353 struct dwarf2_cu *cu = per_cu->cu;
10354 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10355 struct objfile *objfile = dwarf2_per_objfile->objfile;
10356 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10357 CORE_ADDR lowpc, highpc;
10358 struct compunit_symtab *cust;
10359 CORE_ADDR baseaddr;
10360 struct block *static_block;
10361 CORE_ADDR addr;
10362
10363 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10364
10365 buildsym_init ();
10366 scoped_free_pendings free_pending;
10367
10368 /* Clear the list here in case something was left over. */
10369 cu->method_list.clear ();
10370
10371 cu->list_in_scope = &file_symbols;
10372
10373 cu->language = pretend_language;
10374 cu->language_defn = language_def (cu->language);
10375
10376 /* Do line number decoding in read_file_scope () */
10377 process_die (cu->dies, cu);
10378
10379 /* For now fudge the Go package. */
10380 if (cu->language == language_go)
10381 fixup_go_packaging (cu);
10382
10383 /* Now that we have processed all the DIEs in the CU, all the types
10384 should be complete, and it should now be safe to compute all of the
10385 physnames. */
10386 compute_delayed_physnames (cu);
10387
10388 if (cu->language == language_rust)
10389 rust_union_quirks (cu);
10390
10391 /* Some compilers don't define a DW_AT_high_pc attribute for the
10392 compilation unit. If the DW_AT_high_pc is missing, synthesize
10393 it, by scanning the DIE's below the compilation unit. */
10394 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10395
10396 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10397 static_block = end_symtab_get_static_block (addr, 0, 1);
10398
10399 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10400 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10401 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10402 addrmap to help ensure it has an accurate map of pc values belonging to
10403 this comp unit. */
10404 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10405
10406 cust = end_symtab_from_static_block (static_block,
10407 SECT_OFF_TEXT (objfile), 0);
10408
10409 if (cust != NULL)
10410 {
10411 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10412
10413 /* Set symtab language to language from DW_AT_language. If the
10414 compilation is from a C file generated by language preprocessors, do
10415 not set the language if it was already deduced by start_subfile. */
10416 if (!(cu->language == language_c
10417 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10418 COMPUNIT_FILETABS (cust)->language = cu->language;
10419
10420 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10421 produce DW_AT_location with location lists but it can be possibly
10422 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10423 there were bugs in prologue debug info, fixed later in GCC-4.5
10424 by "unwind info for epilogues" patch (which is not directly related).
10425
10426 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10427 needed, it would be wrong due to missing DW_AT_producer there.
10428
10429 Still one can confuse GDB by using non-standard GCC compilation
10430 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10431 */
10432 if (cu->has_loclist && gcc_4_minor >= 5)
10433 cust->locations_valid = 1;
10434
10435 if (gcc_4_minor >= 5)
10436 cust->epilogue_unwind_valid = 1;
10437
10438 cust->call_site_htab = cu->call_site_htab;
10439 }
10440
10441 if (dwarf2_per_objfile->using_index)
10442 per_cu->v.quick->compunit_symtab = cust;
10443 else
10444 {
10445 struct partial_symtab *pst = per_cu->v.psymtab;
10446 pst->compunit_symtab = cust;
10447 pst->readin = 1;
10448 }
10449
10450 /* Push it for inclusion processing later. */
10451 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10452 }
10453
10454 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10455 already been loaded into memory. */
10456
10457 static void
10458 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10459 enum language pretend_language)
10460 {
10461 struct dwarf2_cu *cu = per_cu->cu;
10462 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10463 struct objfile *objfile = dwarf2_per_objfile->objfile;
10464 struct compunit_symtab *cust;
10465 struct signatured_type *sig_type;
10466
10467 gdb_assert (per_cu->is_debug_types);
10468 sig_type = (struct signatured_type *) per_cu;
10469
10470 buildsym_init ();
10471 scoped_free_pendings free_pending;
10472
10473 /* Clear the list here in case something was left over. */
10474 cu->method_list.clear ();
10475
10476 cu->list_in_scope = &file_symbols;
10477
10478 cu->language = pretend_language;
10479 cu->language_defn = language_def (cu->language);
10480
10481 /* The symbol tables are set up in read_type_unit_scope. */
10482 process_die (cu->dies, cu);
10483
10484 /* For now fudge the Go package. */
10485 if (cu->language == language_go)
10486 fixup_go_packaging (cu);
10487
10488 /* Now that we have processed all the DIEs in the CU, all the types
10489 should be complete, and it should now be safe to compute all of the
10490 physnames. */
10491 compute_delayed_physnames (cu);
10492
10493 if (cu->language == language_rust)
10494 rust_union_quirks (cu);
10495
10496 /* TUs share symbol tables.
10497 If this is the first TU to use this symtab, complete the construction
10498 of it with end_expandable_symtab. Otherwise, complete the addition of
10499 this TU's symbols to the existing symtab. */
10500 if (sig_type->type_unit_group->compunit_symtab == NULL)
10501 {
10502 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10503 sig_type->type_unit_group->compunit_symtab = cust;
10504
10505 if (cust != NULL)
10506 {
10507 /* Set symtab language to language from DW_AT_language. If the
10508 compilation is from a C file generated by language preprocessors,
10509 do not set the language if it was already deduced by
10510 start_subfile. */
10511 if (!(cu->language == language_c
10512 && COMPUNIT_FILETABS (cust)->language != language_c))
10513 COMPUNIT_FILETABS (cust)->language = cu->language;
10514 }
10515 }
10516 else
10517 {
10518 augment_type_symtab ();
10519 cust = sig_type->type_unit_group->compunit_symtab;
10520 }
10521
10522 if (dwarf2_per_objfile->using_index)
10523 per_cu->v.quick->compunit_symtab = cust;
10524 else
10525 {
10526 struct partial_symtab *pst = per_cu->v.psymtab;
10527 pst->compunit_symtab = cust;
10528 pst->readin = 1;
10529 }
10530 }
10531
10532 /* Process an imported unit DIE. */
10533
10534 static void
10535 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10536 {
10537 struct attribute *attr;
10538
10539 /* For now we don't handle imported units in type units. */
10540 if (cu->per_cu->is_debug_types)
10541 {
10542 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10543 " supported in type units [in module %s]"),
10544 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10545 }
10546
10547 attr = dwarf2_attr (die, DW_AT_import, cu);
10548 if (attr != NULL)
10549 {
10550 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10551 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10552 dwarf2_per_cu_data *per_cu
10553 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10554 cu->per_cu->dwarf2_per_objfile);
10555
10556 /* If necessary, add it to the queue and load its DIEs. */
10557 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10558 load_full_comp_unit (per_cu, cu->language);
10559
10560 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10561 per_cu);
10562 }
10563 }
10564
10565 /* RAII object that represents a process_die scope: i.e.,
10566 starts/finishes processing a DIE. */
10567 class process_die_scope
10568 {
10569 public:
10570 process_die_scope (die_info *die, dwarf2_cu *cu)
10571 : m_die (die), m_cu (cu)
10572 {
10573 /* We should only be processing DIEs not already in process. */
10574 gdb_assert (!m_die->in_process);
10575 m_die->in_process = true;
10576 }
10577
10578 ~process_die_scope ()
10579 {
10580 m_die->in_process = false;
10581
10582 /* If we're done processing the DIE for the CU that owns the line
10583 header, we don't need the line header anymore. */
10584 if (m_cu->line_header_die_owner == m_die)
10585 {
10586 delete m_cu->line_header;
10587 m_cu->line_header = NULL;
10588 m_cu->line_header_die_owner = NULL;
10589 }
10590 }
10591
10592 private:
10593 die_info *m_die;
10594 dwarf2_cu *m_cu;
10595 };
10596
10597 /* Process a die and its children. */
10598
10599 static void
10600 process_die (struct die_info *die, struct dwarf2_cu *cu)
10601 {
10602 process_die_scope scope (die, cu);
10603
10604 switch (die->tag)
10605 {
10606 case DW_TAG_padding:
10607 break;
10608 case DW_TAG_compile_unit:
10609 case DW_TAG_partial_unit:
10610 read_file_scope (die, cu);
10611 break;
10612 case DW_TAG_type_unit:
10613 read_type_unit_scope (die, cu);
10614 break;
10615 case DW_TAG_subprogram:
10616 case DW_TAG_inlined_subroutine:
10617 read_func_scope (die, cu);
10618 break;
10619 case DW_TAG_lexical_block:
10620 case DW_TAG_try_block:
10621 case DW_TAG_catch_block:
10622 read_lexical_block_scope (die, cu);
10623 break;
10624 case DW_TAG_call_site:
10625 case DW_TAG_GNU_call_site:
10626 read_call_site_scope (die, cu);
10627 break;
10628 case DW_TAG_class_type:
10629 case DW_TAG_interface_type:
10630 case DW_TAG_structure_type:
10631 case DW_TAG_union_type:
10632 process_structure_scope (die, cu);
10633 break;
10634 case DW_TAG_enumeration_type:
10635 process_enumeration_scope (die, cu);
10636 break;
10637
10638 /* These dies have a type, but processing them does not create
10639 a symbol or recurse to process the children. Therefore we can
10640 read them on-demand through read_type_die. */
10641 case DW_TAG_subroutine_type:
10642 case DW_TAG_set_type:
10643 case DW_TAG_array_type:
10644 case DW_TAG_pointer_type:
10645 case DW_TAG_ptr_to_member_type:
10646 case DW_TAG_reference_type:
10647 case DW_TAG_rvalue_reference_type:
10648 case DW_TAG_string_type:
10649 break;
10650
10651 case DW_TAG_base_type:
10652 case DW_TAG_subrange_type:
10653 case DW_TAG_typedef:
10654 /* Add a typedef symbol for the type definition, if it has a
10655 DW_AT_name. */
10656 new_symbol (die, read_type_die (die, cu), cu);
10657 break;
10658 case DW_TAG_common_block:
10659 read_common_block (die, cu);
10660 break;
10661 case DW_TAG_common_inclusion:
10662 break;
10663 case DW_TAG_namespace:
10664 cu->processing_has_namespace_info = 1;
10665 read_namespace (die, cu);
10666 break;
10667 case DW_TAG_module:
10668 cu->processing_has_namespace_info = 1;
10669 read_module (die, cu);
10670 break;
10671 case DW_TAG_imported_declaration:
10672 cu->processing_has_namespace_info = 1;
10673 if (read_namespace_alias (die, cu))
10674 break;
10675 /* The declaration is not a global namespace alias: fall through. */
10676 case DW_TAG_imported_module:
10677 cu->processing_has_namespace_info = 1;
10678 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10679 || cu->language != language_fortran))
10680 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10681 dwarf_tag_name (die->tag));
10682 read_import_statement (die, cu);
10683 break;
10684
10685 case DW_TAG_imported_unit:
10686 process_imported_unit_die (die, cu);
10687 break;
10688
10689 case DW_TAG_variable:
10690 read_variable (die, cu);
10691 break;
10692
10693 default:
10694 new_symbol (die, NULL, cu);
10695 break;
10696 }
10697 }
10698 \f
10699 /* DWARF name computation. */
10700
10701 /* A helper function for dwarf2_compute_name which determines whether DIE
10702 needs to have the name of the scope prepended to the name listed in the
10703 die. */
10704
10705 static int
10706 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10707 {
10708 struct attribute *attr;
10709
10710 switch (die->tag)
10711 {
10712 case DW_TAG_namespace:
10713 case DW_TAG_typedef:
10714 case DW_TAG_class_type:
10715 case DW_TAG_interface_type:
10716 case DW_TAG_structure_type:
10717 case DW_TAG_union_type:
10718 case DW_TAG_enumeration_type:
10719 case DW_TAG_enumerator:
10720 case DW_TAG_subprogram:
10721 case DW_TAG_inlined_subroutine:
10722 case DW_TAG_member:
10723 case DW_TAG_imported_declaration:
10724 return 1;
10725
10726 case DW_TAG_variable:
10727 case DW_TAG_constant:
10728 /* We only need to prefix "globally" visible variables. These include
10729 any variable marked with DW_AT_external or any variable that
10730 lives in a namespace. [Variables in anonymous namespaces
10731 require prefixing, but they are not DW_AT_external.] */
10732
10733 if (dwarf2_attr (die, DW_AT_specification, cu))
10734 {
10735 struct dwarf2_cu *spec_cu = cu;
10736
10737 return die_needs_namespace (die_specification (die, &spec_cu),
10738 spec_cu);
10739 }
10740
10741 attr = dwarf2_attr (die, DW_AT_external, cu);
10742 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10743 && die->parent->tag != DW_TAG_module)
10744 return 0;
10745 /* A variable in a lexical block of some kind does not need a
10746 namespace, even though in C++ such variables may be external
10747 and have a mangled name. */
10748 if (die->parent->tag == DW_TAG_lexical_block
10749 || die->parent->tag == DW_TAG_try_block
10750 || die->parent->tag == DW_TAG_catch_block
10751 || die->parent->tag == DW_TAG_subprogram)
10752 return 0;
10753 return 1;
10754
10755 default:
10756 return 0;
10757 }
10758 }
10759
10760 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10761 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10762 defined for the given DIE. */
10763
10764 static struct attribute *
10765 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10766 {
10767 struct attribute *attr;
10768
10769 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10770 if (attr == NULL)
10771 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10772
10773 return attr;
10774 }
10775
10776 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10777 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10778 defined for the given DIE. */
10779
10780 static const char *
10781 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10782 {
10783 const char *linkage_name;
10784
10785 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10786 if (linkage_name == NULL)
10787 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10788
10789 return linkage_name;
10790 }
10791
10792 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10793 compute the physname for the object, which include a method's:
10794 - formal parameters (C++),
10795 - receiver type (Go),
10796
10797 The term "physname" is a bit confusing.
10798 For C++, for example, it is the demangled name.
10799 For Go, for example, it's the mangled name.
10800
10801 For Ada, return the DIE's linkage name rather than the fully qualified
10802 name. PHYSNAME is ignored..
10803
10804 The result is allocated on the objfile_obstack and canonicalized. */
10805
10806 static const char *
10807 dwarf2_compute_name (const char *name,
10808 struct die_info *die, struct dwarf2_cu *cu,
10809 int physname)
10810 {
10811 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10812
10813 if (name == NULL)
10814 name = dwarf2_name (die, cu);
10815
10816 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10817 but otherwise compute it by typename_concat inside GDB.
10818 FIXME: Actually this is not really true, or at least not always true.
10819 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10820 Fortran names because there is no mangling standard. So new_symbol
10821 will set the demangled name to the result of dwarf2_full_name, and it is
10822 the demangled name that GDB uses if it exists. */
10823 if (cu->language == language_ada
10824 || (cu->language == language_fortran && physname))
10825 {
10826 /* For Ada unit, we prefer the linkage name over the name, as
10827 the former contains the exported name, which the user expects
10828 to be able to reference. Ideally, we want the user to be able
10829 to reference this entity using either natural or linkage name,
10830 but we haven't started looking at this enhancement yet. */
10831 const char *linkage_name = dw2_linkage_name (die, cu);
10832
10833 if (linkage_name != NULL)
10834 return linkage_name;
10835 }
10836
10837 /* These are the only languages we know how to qualify names in. */
10838 if (name != NULL
10839 && (cu->language == language_cplus
10840 || cu->language == language_fortran || cu->language == language_d
10841 || cu->language == language_rust))
10842 {
10843 if (die_needs_namespace (die, cu))
10844 {
10845 const char *prefix;
10846 const char *canonical_name = NULL;
10847
10848 string_file buf;
10849
10850 prefix = determine_prefix (die, cu);
10851 if (*prefix != '\0')
10852 {
10853 char *prefixed_name = typename_concat (NULL, prefix, name,
10854 physname, cu);
10855
10856 buf.puts (prefixed_name);
10857 xfree (prefixed_name);
10858 }
10859 else
10860 buf.puts (name);
10861
10862 /* Template parameters may be specified in the DIE's DW_AT_name, or
10863 as children with DW_TAG_template_type_param or
10864 DW_TAG_value_type_param. If the latter, add them to the name
10865 here. If the name already has template parameters, then
10866 skip this step; some versions of GCC emit both, and
10867 it is more efficient to use the pre-computed name.
10868
10869 Something to keep in mind about this process: it is very
10870 unlikely, or in some cases downright impossible, to produce
10871 something that will match the mangled name of a function.
10872 If the definition of the function has the same debug info,
10873 we should be able to match up with it anyway. But fallbacks
10874 using the minimal symbol, for instance to find a method
10875 implemented in a stripped copy of libstdc++, will not work.
10876 If we do not have debug info for the definition, we will have to
10877 match them up some other way.
10878
10879 When we do name matching there is a related problem with function
10880 templates; two instantiated function templates are allowed to
10881 differ only by their return types, which we do not add here. */
10882
10883 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10884 {
10885 struct attribute *attr;
10886 struct die_info *child;
10887 int first = 1;
10888
10889 die->building_fullname = 1;
10890
10891 for (child = die->child; child != NULL; child = child->sibling)
10892 {
10893 struct type *type;
10894 LONGEST value;
10895 const gdb_byte *bytes;
10896 struct dwarf2_locexpr_baton *baton;
10897 struct value *v;
10898
10899 if (child->tag != DW_TAG_template_type_param
10900 && child->tag != DW_TAG_template_value_param)
10901 continue;
10902
10903 if (first)
10904 {
10905 buf.puts ("<");
10906 first = 0;
10907 }
10908 else
10909 buf.puts (", ");
10910
10911 attr = dwarf2_attr (child, DW_AT_type, cu);
10912 if (attr == NULL)
10913 {
10914 complaint (&symfile_complaints,
10915 _("template parameter missing DW_AT_type"));
10916 buf.puts ("UNKNOWN_TYPE");
10917 continue;
10918 }
10919 type = die_type (child, cu);
10920
10921 if (child->tag == DW_TAG_template_type_param)
10922 {
10923 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10924 continue;
10925 }
10926
10927 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10928 if (attr == NULL)
10929 {
10930 complaint (&symfile_complaints,
10931 _("template parameter missing "
10932 "DW_AT_const_value"));
10933 buf.puts ("UNKNOWN_VALUE");
10934 continue;
10935 }
10936
10937 dwarf2_const_value_attr (attr, type, name,
10938 &cu->comp_unit_obstack, cu,
10939 &value, &bytes, &baton);
10940
10941 if (TYPE_NOSIGN (type))
10942 /* GDB prints characters as NUMBER 'CHAR'. If that's
10943 changed, this can use value_print instead. */
10944 c_printchar (value, type, &buf);
10945 else
10946 {
10947 struct value_print_options opts;
10948
10949 if (baton != NULL)
10950 v = dwarf2_evaluate_loc_desc (type, NULL,
10951 baton->data,
10952 baton->size,
10953 baton->per_cu);
10954 else if (bytes != NULL)
10955 {
10956 v = allocate_value (type);
10957 memcpy (value_contents_writeable (v), bytes,
10958 TYPE_LENGTH (type));
10959 }
10960 else
10961 v = value_from_longest (type, value);
10962
10963 /* Specify decimal so that we do not depend on
10964 the radix. */
10965 get_formatted_print_options (&opts, 'd');
10966 opts.raw = 1;
10967 value_print (v, &buf, &opts);
10968 release_value (v);
10969 value_free (v);
10970 }
10971 }
10972
10973 die->building_fullname = 0;
10974
10975 if (!first)
10976 {
10977 /* Close the argument list, with a space if necessary
10978 (nested templates). */
10979 if (!buf.empty () && buf.string ().back () == '>')
10980 buf.puts (" >");
10981 else
10982 buf.puts (">");
10983 }
10984 }
10985
10986 /* For C++ methods, append formal parameter type
10987 information, if PHYSNAME. */
10988
10989 if (physname && die->tag == DW_TAG_subprogram
10990 && cu->language == language_cplus)
10991 {
10992 struct type *type = read_type_die (die, cu);
10993
10994 c_type_print_args (type, &buf, 1, cu->language,
10995 &type_print_raw_options);
10996
10997 if (cu->language == language_cplus)
10998 {
10999 /* Assume that an artificial first parameter is
11000 "this", but do not crash if it is not. RealView
11001 marks unnamed (and thus unused) parameters as
11002 artificial; there is no way to differentiate
11003 the two cases. */
11004 if (TYPE_NFIELDS (type) > 0
11005 && TYPE_FIELD_ARTIFICIAL (type, 0)
11006 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11007 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11008 0))))
11009 buf.puts (" const");
11010 }
11011 }
11012
11013 const std::string &intermediate_name = buf.string ();
11014
11015 if (cu->language == language_cplus)
11016 canonical_name
11017 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11018 &objfile->per_bfd->storage_obstack);
11019
11020 /* If we only computed INTERMEDIATE_NAME, or if
11021 INTERMEDIATE_NAME is already canonical, then we need to
11022 copy it to the appropriate obstack. */
11023 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11024 name = ((const char *)
11025 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11026 intermediate_name.c_str (),
11027 intermediate_name.length ()));
11028 else
11029 name = canonical_name;
11030 }
11031 }
11032
11033 return name;
11034 }
11035
11036 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11037 If scope qualifiers are appropriate they will be added. The result
11038 will be allocated on the storage_obstack, or NULL if the DIE does
11039 not have a name. NAME may either be from a previous call to
11040 dwarf2_name or NULL.
11041
11042 The output string will be canonicalized (if C++). */
11043
11044 static const char *
11045 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11046 {
11047 return dwarf2_compute_name (name, die, cu, 0);
11048 }
11049
11050 /* Construct a physname for the given DIE in CU. NAME may either be
11051 from a previous call to dwarf2_name or NULL. The result will be
11052 allocated on the objfile_objstack or NULL if the DIE does not have a
11053 name.
11054
11055 The output string will be canonicalized (if C++). */
11056
11057 static const char *
11058 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11059 {
11060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11061 const char *retval, *mangled = NULL, *canon = NULL;
11062 int need_copy = 1;
11063
11064 /* In this case dwarf2_compute_name is just a shortcut not building anything
11065 on its own. */
11066 if (!die_needs_namespace (die, cu))
11067 return dwarf2_compute_name (name, die, cu, 1);
11068
11069 mangled = dw2_linkage_name (die, cu);
11070
11071 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11072 See https://github.com/rust-lang/rust/issues/32925. */
11073 if (cu->language == language_rust && mangled != NULL
11074 && strchr (mangled, '{') != NULL)
11075 mangled = NULL;
11076
11077 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11078 has computed. */
11079 gdb::unique_xmalloc_ptr<char> demangled;
11080 if (mangled != NULL)
11081 {
11082
11083 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11084 {
11085 /* Do nothing (do not demangle the symbol name). */
11086 }
11087 else if (cu->language == language_go)
11088 {
11089 /* This is a lie, but we already lie to the caller new_symbol.
11090 new_symbol assumes we return the mangled name.
11091 This just undoes that lie until things are cleaned up. */
11092 }
11093 else
11094 {
11095 /* Use DMGL_RET_DROP for C++ template functions to suppress
11096 their return type. It is easier for GDB users to search
11097 for such functions as `name(params)' than `long name(params)'.
11098 In such case the minimal symbol names do not match the full
11099 symbol names but for template functions there is never a need
11100 to look up their definition from their declaration so
11101 the only disadvantage remains the minimal symbol variant
11102 `long name(params)' does not have the proper inferior type. */
11103 demangled.reset (gdb_demangle (mangled,
11104 (DMGL_PARAMS | DMGL_ANSI
11105 | DMGL_RET_DROP)));
11106 }
11107 if (demangled)
11108 canon = demangled.get ();
11109 else
11110 {
11111 canon = mangled;
11112 need_copy = 0;
11113 }
11114 }
11115
11116 if (canon == NULL || check_physname)
11117 {
11118 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11119
11120 if (canon != NULL && strcmp (physname, canon) != 0)
11121 {
11122 /* It may not mean a bug in GDB. The compiler could also
11123 compute DW_AT_linkage_name incorrectly. But in such case
11124 GDB would need to be bug-to-bug compatible. */
11125
11126 complaint (&symfile_complaints,
11127 _("Computed physname <%s> does not match demangled <%s> "
11128 "(from linkage <%s>) - DIE at %s [in module %s]"),
11129 physname, canon, mangled, sect_offset_str (die->sect_off),
11130 objfile_name (objfile));
11131
11132 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11133 is available here - over computed PHYSNAME. It is safer
11134 against both buggy GDB and buggy compilers. */
11135
11136 retval = canon;
11137 }
11138 else
11139 {
11140 retval = physname;
11141 need_copy = 0;
11142 }
11143 }
11144 else
11145 retval = canon;
11146
11147 if (need_copy)
11148 retval = ((const char *)
11149 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11150 retval, strlen (retval)));
11151
11152 return retval;
11153 }
11154
11155 /* Inspect DIE in CU for a namespace alias. If one exists, record
11156 a new symbol for it.
11157
11158 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11159
11160 static int
11161 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11162 {
11163 struct attribute *attr;
11164
11165 /* If the die does not have a name, this is not a namespace
11166 alias. */
11167 attr = dwarf2_attr (die, DW_AT_name, cu);
11168 if (attr != NULL)
11169 {
11170 int num;
11171 struct die_info *d = die;
11172 struct dwarf2_cu *imported_cu = cu;
11173
11174 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11175 keep inspecting DIEs until we hit the underlying import. */
11176 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11177 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11178 {
11179 attr = dwarf2_attr (d, DW_AT_import, cu);
11180 if (attr == NULL)
11181 break;
11182
11183 d = follow_die_ref (d, attr, &imported_cu);
11184 if (d->tag != DW_TAG_imported_declaration)
11185 break;
11186 }
11187
11188 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11189 {
11190 complaint (&symfile_complaints,
11191 _("DIE at %s has too many recursively imported "
11192 "declarations"), sect_offset_str (d->sect_off));
11193 return 0;
11194 }
11195
11196 if (attr != NULL)
11197 {
11198 struct type *type;
11199 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11200
11201 type = get_die_type_at_offset (sect_off, cu->per_cu);
11202 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11203 {
11204 /* This declaration is a global namespace alias. Add
11205 a symbol for it whose type is the aliased namespace. */
11206 new_symbol (die, type, cu);
11207 return 1;
11208 }
11209 }
11210 }
11211
11212 return 0;
11213 }
11214
11215 /* Return the using directives repository (global or local?) to use in the
11216 current context for LANGUAGE.
11217
11218 For Ada, imported declarations can materialize renamings, which *may* be
11219 global. However it is impossible (for now?) in DWARF to distinguish
11220 "external" imported declarations and "static" ones. As all imported
11221 declarations seem to be static in all other languages, make them all CU-wide
11222 global only in Ada. */
11223
11224 static struct using_direct **
11225 using_directives (enum language language)
11226 {
11227 if (language == language_ada && context_stack_depth == 0)
11228 return &global_using_directives;
11229 else
11230 return &local_using_directives;
11231 }
11232
11233 /* Read the import statement specified by the given die and record it. */
11234
11235 static void
11236 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11237 {
11238 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11239 struct attribute *import_attr;
11240 struct die_info *imported_die, *child_die;
11241 struct dwarf2_cu *imported_cu;
11242 const char *imported_name;
11243 const char *imported_name_prefix;
11244 const char *canonical_name;
11245 const char *import_alias;
11246 const char *imported_declaration = NULL;
11247 const char *import_prefix;
11248 std::vector<const char *> excludes;
11249
11250 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11251 if (import_attr == NULL)
11252 {
11253 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11254 dwarf_tag_name (die->tag));
11255 return;
11256 }
11257
11258 imported_cu = cu;
11259 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11260 imported_name = dwarf2_name (imported_die, imported_cu);
11261 if (imported_name == NULL)
11262 {
11263 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11264
11265 The import in the following code:
11266 namespace A
11267 {
11268 typedef int B;
11269 }
11270
11271 int main ()
11272 {
11273 using A::B;
11274 B b;
11275 return b;
11276 }
11277
11278 ...
11279 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11280 <52> DW_AT_decl_file : 1
11281 <53> DW_AT_decl_line : 6
11282 <54> DW_AT_import : <0x75>
11283 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11284 <59> DW_AT_name : B
11285 <5b> DW_AT_decl_file : 1
11286 <5c> DW_AT_decl_line : 2
11287 <5d> DW_AT_type : <0x6e>
11288 ...
11289 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11290 <76> DW_AT_byte_size : 4
11291 <77> DW_AT_encoding : 5 (signed)
11292
11293 imports the wrong die ( 0x75 instead of 0x58 ).
11294 This case will be ignored until the gcc bug is fixed. */
11295 return;
11296 }
11297
11298 /* Figure out the local name after import. */
11299 import_alias = dwarf2_name (die, cu);
11300
11301 /* Figure out where the statement is being imported to. */
11302 import_prefix = determine_prefix (die, cu);
11303
11304 /* Figure out what the scope of the imported die is and prepend it
11305 to the name of the imported die. */
11306 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11307
11308 if (imported_die->tag != DW_TAG_namespace
11309 && imported_die->tag != DW_TAG_module)
11310 {
11311 imported_declaration = imported_name;
11312 canonical_name = imported_name_prefix;
11313 }
11314 else if (strlen (imported_name_prefix) > 0)
11315 canonical_name = obconcat (&objfile->objfile_obstack,
11316 imported_name_prefix,
11317 (cu->language == language_d ? "." : "::"),
11318 imported_name, (char *) NULL);
11319 else
11320 canonical_name = imported_name;
11321
11322 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11323 for (child_die = die->child; child_die && child_die->tag;
11324 child_die = sibling_die (child_die))
11325 {
11326 /* DWARF-4: A Fortran use statement with a “rename list” may be
11327 represented by an imported module entry with an import attribute
11328 referring to the module and owned entries corresponding to those
11329 entities that are renamed as part of being imported. */
11330
11331 if (child_die->tag != DW_TAG_imported_declaration)
11332 {
11333 complaint (&symfile_complaints,
11334 _("child DW_TAG_imported_declaration expected "
11335 "- DIE at %s [in module %s]"),
11336 sect_offset_str (child_die->sect_off),
11337 objfile_name (objfile));
11338 continue;
11339 }
11340
11341 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11342 if (import_attr == NULL)
11343 {
11344 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11345 dwarf_tag_name (child_die->tag));
11346 continue;
11347 }
11348
11349 imported_cu = cu;
11350 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11351 &imported_cu);
11352 imported_name = dwarf2_name (imported_die, imported_cu);
11353 if (imported_name == NULL)
11354 {
11355 complaint (&symfile_complaints,
11356 _("child DW_TAG_imported_declaration has unknown "
11357 "imported name - DIE at %s [in module %s]"),
11358 sect_offset_str (child_die->sect_off),
11359 objfile_name (objfile));
11360 continue;
11361 }
11362
11363 excludes.push_back (imported_name);
11364
11365 process_die (child_die, cu);
11366 }
11367
11368 add_using_directive (using_directives (cu->language),
11369 import_prefix,
11370 canonical_name,
11371 import_alias,
11372 imported_declaration,
11373 excludes,
11374 0,
11375 &objfile->objfile_obstack);
11376 }
11377
11378 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11379 types, but gives them a size of zero. Starting with version 14,
11380 ICC is compatible with GCC. */
11381
11382 static int
11383 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11384 {
11385 if (!cu->checked_producer)
11386 check_producer (cu);
11387
11388 return cu->producer_is_icc_lt_14;
11389 }
11390
11391 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11392 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11393 this, it was first present in GCC release 4.3.0. */
11394
11395 static int
11396 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11397 {
11398 if (!cu->checked_producer)
11399 check_producer (cu);
11400
11401 return cu->producer_is_gcc_lt_4_3;
11402 }
11403
11404 static file_and_directory
11405 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11406 {
11407 file_and_directory res;
11408
11409 /* Find the filename. Do not use dwarf2_name here, since the filename
11410 is not a source language identifier. */
11411 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11412 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11413
11414 if (res.comp_dir == NULL
11415 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11416 && IS_ABSOLUTE_PATH (res.name))
11417 {
11418 res.comp_dir_storage = ldirname (res.name);
11419 if (!res.comp_dir_storage.empty ())
11420 res.comp_dir = res.comp_dir_storage.c_str ();
11421 }
11422 if (res.comp_dir != NULL)
11423 {
11424 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11425 directory, get rid of it. */
11426 const char *cp = strchr (res.comp_dir, ':');
11427
11428 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11429 res.comp_dir = cp + 1;
11430 }
11431
11432 if (res.name == NULL)
11433 res.name = "<unknown>";
11434
11435 return res;
11436 }
11437
11438 /* Handle DW_AT_stmt_list for a compilation unit.
11439 DIE is the DW_TAG_compile_unit die for CU.
11440 COMP_DIR is the compilation directory. LOWPC is passed to
11441 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11442
11443 static void
11444 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11445 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11446 {
11447 struct dwarf2_per_objfile *dwarf2_per_objfile
11448 = cu->per_cu->dwarf2_per_objfile;
11449 struct objfile *objfile = dwarf2_per_objfile->objfile;
11450 struct attribute *attr;
11451 struct line_header line_header_local;
11452 hashval_t line_header_local_hash;
11453 void **slot;
11454 int decode_mapping;
11455
11456 gdb_assert (! cu->per_cu->is_debug_types);
11457
11458 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11459 if (attr == NULL)
11460 return;
11461
11462 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11463
11464 /* The line header hash table is only created if needed (it exists to
11465 prevent redundant reading of the line table for partial_units).
11466 If we're given a partial_unit, we'll need it. If we're given a
11467 compile_unit, then use the line header hash table if it's already
11468 created, but don't create one just yet. */
11469
11470 if (dwarf2_per_objfile->line_header_hash == NULL
11471 && die->tag == DW_TAG_partial_unit)
11472 {
11473 dwarf2_per_objfile->line_header_hash
11474 = htab_create_alloc_ex (127, line_header_hash_voidp,
11475 line_header_eq_voidp,
11476 free_line_header_voidp,
11477 &objfile->objfile_obstack,
11478 hashtab_obstack_allocate,
11479 dummy_obstack_deallocate);
11480 }
11481
11482 line_header_local.sect_off = line_offset;
11483 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11484 line_header_local_hash = line_header_hash (&line_header_local);
11485 if (dwarf2_per_objfile->line_header_hash != NULL)
11486 {
11487 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11488 &line_header_local,
11489 line_header_local_hash, NO_INSERT);
11490
11491 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11492 is not present in *SLOT (since if there is something in *SLOT then
11493 it will be for a partial_unit). */
11494 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11495 {
11496 gdb_assert (*slot != NULL);
11497 cu->line_header = (struct line_header *) *slot;
11498 return;
11499 }
11500 }
11501
11502 /* dwarf_decode_line_header does not yet provide sufficient information.
11503 We always have to call also dwarf_decode_lines for it. */
11504 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11505 if (lh == NULL)
11506 return;
11507
11508 cu->line_header = lh.release ();
11509 cu->line_header_die_owner = die;
11510
11511 if (dwarf2_per_objfile->line_header_hash == NULL)
11512 slot = NULL;
11513 else
11514 {
11515 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11516 &line_header_local,
11517 line_header_local_hash, INSERT);
11518 gdb_assert (slot != NULL);
11519 }
11520 if (slot != NULL && *slot == NULL)
11521 {
11522 /* This newly decoded line number information unit will be owned
11523 by line_header_hash hash table. */
11524 *slot = cu->line_header;
11525 cu->line_header_die_owner = NULL;
11526 }
11527 else
11528 {
11529 /* We cannot free any current entry in (*slot) as that struct line_header
11530 may be already used by multiple CUs. Create only temporary decoded
11531 line_header for this CU - it may happen at most once for each line
11532 number information unit. And if we're not using line_header_hash
11533 then this is what we want as well. */
11534 gdb_assert (die->tag != DW_TAG_partial_unit);
11535 }
11536 decode_mapping = (die->tag != DW_TAG_partial_unit);
11537 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11538 decode_mapping);
11539
11540 }
11541
11542 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11543
11544 static void
11545 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11546 {
11547 struct dwarf2_per_objfile *dwarf2_per_objfile
11548 = cu->per_cu->dwarf2_per_objfile;
11549 struct objfile *objfile = dwarf2_per_objfile->objfile;
11550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11551 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11552 CORE_ADDR highpc = ((CORE_ADDR) 0);
11553 struct attribute *attr;
11554 struct die_info *child_die;
11555 CORE_ADDR baseaddr;
11556
11557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11558
11559 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11560
11561 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11562 from finish_block. */
11563 if (lowpc == ((CORE_ADDR) -1))
11564 lowpc = highpc;
11565 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11566
11567 file_and_directory fnd = find_file_and_directory (die, cu);
11568
11569 prepare_one_comp_unit (cu, die, cu->language);
11570
11571 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11572 standardised yet. As a workaround for the language detection we fall
11573 back to the DW_AT_producer string. */
11574 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11575 cu->language = language_opencl;
11576
11577 /* Similar hack for Go. */
11578 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11579 set_cu_language (DW_LANG_Go, cu);
11580
11581 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11582
11583 /* Decode line number information if present. We do this before
11584 processing child DIEs, so that the line header table is available
11585 for DW_AT_decl_file. */
11586 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11587
11588 /* Process all dies in compilation unit. */
11589 if (die->child != NULL)
11590 {
11591 child_die = die->child;
11592 while (child_die && child_die->tag)
11593 {
11594 process_die (child_die, cu);
11595 child_die = sibling_die (child_die);
11596 }
11597 }
11598
11599 /* Decode macro information, if present. Dwarf 2 macro information
11600 refers to information in the line number info statement program
11601 header, so we can only read it if we've read the header
11602 successfully. */
11603 attr = dwarf2_attr (die, DW_AT_macros, cu);
11604 if (attr == NULL)
11605 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11606 if (attr && cu->line_header)
11607 {
11608 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11609 complaint (&symfile_complaints,
11610 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11611
11612 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11613 }
11614 else
11615 {
11616 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11617 if (attr && cu->line_header)
11618 {
11619 unsigned int macro_offset = DW_UNSND (attr);
11620
11621 dwarf_decode_macros (cu, macro_offset, 0);
11622 }
11623 }
11624 }
11625
11626 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11627 Create the set of symtabs used by this TU, or if this TU is sharing
11628 symtabs with another TU and the symtabs have already been created
11629 then restore those symtabs in the line header.
11630 We don't need the pc/line-number mapping for type units. */
11631
11632 static void
11633 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11634 {
11635 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11636 struct type_unit_group *tu_group;
11637 int first_time;
11638 struct attribute *attr;
11639 unsigned int i;
11640 struct signatured_type *sig_type;
11641
11642 gdb_assert (per_cu->is_debug_types);
11643 sig_type = (struct signatured_type *) per_cu;
11644
11645 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11646
11647 /* If we're using .gdb_index (includes -readnow) then
11648 per_cu->type_unit_group may not have been set up yet. */
11649 if (sig_type->type_unit_group == NULL)
11650 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11651 tu_group = sig_type->type_unit_group;
11652
11653 /* If we've already processed this stmt_list there's no real need to
11654 do it again, we could fake it and just recreate the part we need
11655 (file name,index -> symtab mapping). If data shows this optimization
11656 is useful we can do it then. */
11657 first_time = tu_group->compunit_symtab == NULL;
11658
11659 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11660 debug info. */
11661 line_header_up lh;
11662 if (attr != NULL)
11663 {
11664 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11665 lh = dwarf_decode_line_header (line_offset, cu);
11666 }
11667 if (lh == NULL)
11668 {
11669 if (first_time)
11670 dwarf2_start_symtab (cu, "", NULL, 0);
11671 else
11672 {
11673 gdb_assert (tu_group->symtabs == NULL);
11674 restart_symtab (tu_group->compunit_symtab, "", 0);
11675 }
11676 return;
11677 }
11678
11679 cu->line_header = lh.release ();
11680 cu->line_header_die_owner = die;
11681
11682 if (first_time)
11683 {
11684 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11685
11686 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11687 still initializing it, and our caller (a few levels up)
11688 process_full_type_unit still needs to know if this is the first
11689 time. */
11690
11691 tu_group->num_symtabs = cu->line_header->file_names.size ();
11692 tu_group->symtabs = XNEWVEC (struct symtab *,
11693 cu->line_header->file_names.size ());
11694
11695 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11696 {
11697 file_entry &fe = cu->line_header->file_names[i];
11698
11699 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11700
11701 if (current_subfile->symtab == NULL)
11702 {
11703 /* NOTE: start_subfile will recognize when it's been
11704 passed a file it has already seen. So we can't
11705 assume there's a simple mapping from
11706 cu->line_header->file_names to subfiles, plus
11707 cu->line_header->file_names may contain dups. */
11708 current_subfile->symtab
11709 = allocate_symtab (cust, current_subfile->name);
11710 }
11711
11712 fe.symtab = current_subfile->symtab;
11713 tu_group->symtabs[i] = fe.symtab;
11714 }
11715 }
11716 else
11717 {
11718 restart_symtab (tu_group->compunit_symtab, "", 0);
11719
11720 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11721 {
11722 file_entry &fe = cu->line_header->file_names[i];
11723
11724 fe.symtab = tu_group->symtabs[i];
11725 }
11726 }
11727
11728 /* The main symtab is allocated last. Type units don't have DW_AT_name
11729 so they don't have a "real" (so to speak) symtab anyway.
11730 There is later code that will assign the main symtab to all symbols
11731 that don't have one. We need to handle the case of a symbol with a
11732 missing symtab (DW_AT_decl_file) anyway. */
11733 }
11734
11735 /* Process DW_TAG_type_unit.
11736 For TUs we want to skip the first top level sibling if it's not the
11737 actual type being defined by this TU. In this case the first top
11738 level sibling is there to provide context only. */
11739
11740 static void
11741 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11742 {
11743 struct die_info *child_die;
11744
11745 prepare_one_comp_unit (cu, die, language_minimal);
11746
11747 /* Initialize (or reinitialize) the machinery for building symtabs.
11748 We do this before processing child DIEs, so that the line header table
11749 is available for DW_AT_decl_file. */
11750 setup_type_unit_groups (die, cu);
11751
11752 if (die->child != NULL)
11753 {
11754 child_die = die->child;
11755 while (child_die && child_die->tag)
11756 {
11757 process_die (child_die, cu);
11758 child_die = sibling_die (child_die);
11759 }
11760 }
11761 }
11762 \f
11763 /* DWO/DWP files.
11764
11765 http://gcc.gnu.org/wiki/DebugFission
11766 http://gcc.gnu.org/wiki/DebugFissionDWP
11767
11768 To simplify handling of both DWO files ("object" files with the DWARF info)
11769 and DWP files (a file with the DWOs packaged up into one file), we treat
11770 DWP files as having a collection of virtual DWO files. */
11771
11772 static hashval_t
11773 hash_dwo_file (const void *item)
11774 {
11775 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11776 hashval_t hash;
11777
11778 hash = htab_hash_string (dwo_file->dwo_name);
11779 if (dwo_file->comp_dir != NULL)
11780 hash += htab_hash_string (dwo_file->comp_dir);
11781 return hash;
11782 }
11783
11784 static int
11785 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11786 {
11787 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11788 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11789
11790 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11791 return 0;
11792 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11793 return lhs->comp_dir == rhs->comp_dir;
11794 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11795 }
11796
11797 /* Allocate a hash table for DWO files. */
11798
11799 static htab_t
11800 allocate_dwo_file_hash_table (struct objfile *objfile)
11801 {
11802 return htab_create_alloc_ex (41,
11803 hash_dwo_file,
11804 eq_dwo_file,
11805 NULL,
11806 &objfile->objfile_obstack,
11807 hashtab_obstack_allocate,
11808 dummy_obstack_deallocate);
11809 }
11810
11811 /* Lookup DWO file DWO_NAME. */
11812
11813 static void **
11814 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11815 const char *dwo_name,
11816 const char *comp_dir)
11817 {
11818 struct dwo_file find_entry;
11819 void **slot;
11820
11821 if (dwarf2_per_objfile->dwo_files == NULL)
11822 dwarf2_per_objfile->dwo_files
11823 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11824
11825 memset (&find_entry, 0, sizeof (find_entry));
11826 find_entry.dwo_name = dwo_name;
11827 find_entry.comp_dir = comp_dir;
11828 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11829
11830 return slot;
11831 }
11832
11833 static hashval_t
11834 hash_dwo_unit (const void *item)
11835 {
11836 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11837
11838 /* This drops the top 32 bits of the id, but is ok for a hash. */
11839 return dwo_unit->signature;
11840 }
11841
11842 static int
11843 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11844 {
11845 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11846 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11847
11848 /* The signature is assumed to be unique within the DWO file.
11849 So while object file CU dwo_id's always have the value zero,
11850 that's OK, assuming each object file DWO file has only one CU,
11851 and that's the rule for now. */
11852 return lhs->signature == rhs->signature;
11853 }
11854
11855 /* Allocate a hash table for DWO CUs,TUs.
11856 There is one of these tables for each of CUs,TUs for each DWO file. */
11857
11858 static htab_t
11859 allocate_dwo_unit_table (struct objfile *objfile)
11860 {
11861 /* Start out with a pretty small number.
11862 Generally DWO files contain only one CU and maybe some TUs. */
11863 return htab_create_alloc_ex (3,
11864 hash_dwo_unit,
11865 eq_dwo_unit,
11866 NULL,
11867 &objfile->objfile_obstack,
11868 hashtab_obstack_allocate,
11869 dummy_obstack_deallocate);
11870 }
11871
11872 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11873
11874 struct create_dwo_cu_data
11875 {
11876 struct dwo_file *dwo_file;
11877 struct dwo_unit dwo_unit;
11878 };
11879
11880 /* die_reader_func for create_dwo_cu. */
11881
11882 static void
11883 create_dwo_cu_reader (const struct die_reader_specs *reader,
11884 const gdb_byte *info_ptr,
11885 struct die_info *comp_unit_die,
11886 int has_children,
11887 void *datap)
11888 {
11889 struct dwarf2_cu *cu = reader->cu;
11890 sect_offset sect_off = cu->per_cu->sect_off;
11891 struct dwarf2_section_info *section = cu->per_cu->section;
11892 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11893 struct dwo_file *dwo_file = data->dwo_file;
11894 struct dwo_unit *dwo_unit = &data->dwo_unit;
11895 struct attribute *attr;
11896
11897 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11898 if (attr == NULL)
11899 {
11900 complaint (&symfile_complaints,
11901 _("Dwarf Error: debug entry at offset %s is missing"
11902 " its dwo_id [in module %s]"),
11903 sect_offset_str (sect_off), dwo_file->dwo_name);
11904 return;
11905 }
11906
11907 dwo_unit->dwo_file = dwo_file;
11908 dwo_unit->signature = DW_UNSND (attr);
11909 dwo_unit->section = section;
11910 dwo_unit->sect_off = sect_off;
11911 dwo_unit->length = cu->per_cu->length;
11912
11913 if (dwarf_read_debug)
11914 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11915 sect_offset_str (sect_off),
11916 hex_string (dwo_unit->signature));
11917 }
11918
11919 /* Create the dwo_units for the CUs in a DWO_FILE.
11920 Note: This function processes DWO files only, not DWP files. */
11921
11922 static void
11923 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11924 struct dwo_file &dwo_file, dwarf2_section_info &section,
11925 htab_t &cus_htab)
11926 {
11927 struct objfile *objfile = dwarf2_per_objfile->objfile;
11928 const gdb_byte *info_ptr, *end_ptr;
11929
11930 dwarf2_read_section (objfile, &section);
11931 info_ptr = section.buffer;
11932
11933 if (info_ptr == NULL)
11934 return;
11935
11936 if (dwarf_read_debug)
11937 {
11938 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11939 get_section_name (&section),
11940 get_section_file_name (&section));
11941 }
11942
11943 end_ptr = info_ptr + section.size;
11944 while (info_ptr < end_ptr)
11945 {
11946 struct dwarf2_per_cu_data per_cu;
11947 struct create_dwo_cu_data create_dwo_cu_data;
11948 struct dwo_unit *dwo_unit;
11949 void **slot;
11950 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11951
11952 memset (&create_dwo_cu_data.dwo_unit, 0,
11953 sizeof (create_dwo_cu_data.dwo_unit));
11954 memset (&per_cu, 0, sizeof (per_cu));
11955 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11956 per_cu.is_debug_types = 0;
11957 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11958 per_cu.section = &section;
11959 create_dwo_cu_data.dwo_file = &dwo_file;
11960
11961 init_cutu_and_read_dies_no_follow (
11962 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11963 info_ptr += per_cu.length;
11964
11965 // If the unit could not be parsed, skip it.
11966 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11967 continue;
11968
11969 if (cus_htab == NULL)
11970 cus_htab = allocate_dwo_unit_table (objfile);
11971
11972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11973 *dwo_unit = create_dwo_cu_data.dwo_unit;
11974 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11975 gdb_assert (slot != NULL);
11976 if (*slot != NULL)
11977 {
11978 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11979 sect_offset dup_sect_off = dup_cu->sect_off;
11980
11981 complaint (&symfile_complaints,
11982 _("debug cu entry at offset %s is duplicate to"
11983 " the entry at offset %s, signature %s"),
11984 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11985 hex_string (dwo_unit->signature));
11986 }
11987 *slot = (void *)dwo_unit;
11988 }
11989 }
11990
11991 /* DWP file .debug_{cu,tu}_index section format:
11992 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11993
11994 DWP Version 1:
11995
11996 Both index sections have the same format, and serve to map a 64-bit
11997 signature to a set of section numbers. Each section begins with a header,
11998 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11999 indexes, and a pool of 32-bit section numbers. The index sections will be
12000 aligned at 8-byte boundaries in the file.
12001
12002 The index section header consists of:
12003
12004 V, 32 bit version number
12005 -, 32 bits unused
12006 N, 32 bit number of compilation units or type units in the index
12007 M, 32 bit number of slots in the hash table
12008
12009 Numbers are recorded using the byte order of the application binary.
12010
12011 The hash table begins at offset 16 in the section, and consists of an array
12012 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12013 order of the application binary). Unused slots in the hash table are 0.
12014 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12015
12016 The parallel table begins immediately after the hash table
12017 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12018 array of 32-bit indexes (using the byte order of the application binary),
12019 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12020 table contains a 32-bit index into the pool of section numbers. For unused
12021 hash table slots, the corresponding entry in the parallel table will be 0.
12022
12023 The pool of section numbers begins immediately following the hash table
12024 (at offset 16 + 12 * M from the beginning of the section). The pool of
12025 section numbers consists of an array of 32-bit words (using the byte order
12026 of the application binary). Each item in the array is indexed starting
12027 from 0. The hash table entry provides the index of the first section
12028 number in the set. Additional section numbers in the set follow, and the
12029 set is terminated by a 0 entry (section number 0 is not used in ELF).
12030
12031 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12032 section must be the first entry in the set, and the .debug_abbrev.dwo must
12033 be the second entry. Other members of the set may follow in any order.
12034
12035 ---
12036
12037 DWP Version 2:
12038
12039 DWP Version 2 combines all the .debug_info, etc. sections into one,
12040 and the entries in the index tables are now offsets into these sections.
12041 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12042 section.
12043
12044 Index Section Contents:
12045 Header
12046 Hash Table of Signatures dwp_hash_table.hash_table
12047 Parallel Table of Indices dwp_hash_table.unit_table
12048 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12049 Table of Section Sizes dwp_hash_table.v2.sizes
12050
12051 The index section header consists of:
12052
12053 V, 32 bit version number
12054 L, 32 bit number of columns in the table of section offsets
12055 N, 32 bit number of compilation units or type units in the index
12056 M, 32 bit number of slots in the hash table
12057
12058 Numbers are recorded using the byte order of the application binary.
12059
12060 The hash table has the same format as version 1.
12061 The parallel table of indices has the same format as version 1,
12062 except that the entries are origin-1 indices into the table of sections
12063 offsets and the table of section sizes.
12064
12065 The table of offsets begins immediately following the parallel table
12066 (at offset 16 + 12 * M from the beginning of the section). The table is
12067 a two-dimensional array of 32-bit words (using the byte order of the
12068 application binary), with L columns and N+1 rows, in row-major order.
12069 Each row in the array is indexed starting from 0. The first row provides
12070 a key to the remaining rows: each column in this row provides an identifier
12071 for a debug section, and the offsets in the same column of subsequent rows
12072 refer to that section. The section identifiers are:
12073
12074 DW_SECT_INFO 1 .debug_info.dwo
12075 DW_SECT_TYPES 2 .debug_types.dwo
12076 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12077 DW_SECT_LINE 4 .debug_line.dwo
12078 DW_SECT_LOC 5 .debug_loc.dwo
12079 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12080 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12081 DW_SECT_MACRO 8 .debug_macro.dwo
12082
12083 The offsets provided by the CU and TU index sections are the base offsets
12084 for the contributions made by each CU or TU to the corresponding section
12085 in the package file. Each CU and TU header contains an abbrev_offset
12086 field, used to find the abbreviations table for that CU or TU within the
12087 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12088 be interpreted as relative to the base offset given in the index section.
12089 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12090 should be interpreted as relative to the base offset for .debug_line.dwo,
12091 and offsets into other debug sections obtained from DWARF attributes should
12092 also be interpreted as relative to the corresponding base offset.
12093
12094 The table of sizes begins immediately following the table of offsets.
12095 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12096 with L columns and N rows, in row-major order. Each row in the array is
12097 indexed starting from 1 (row 0 is shared by the two tables).
12098
12099 ---
12100
12101 Hash table lookup is handled the same in version 1 and 2:
12102
12103 We assume that N and M will not exceed 2^32 - 1.
12104 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12105
12106 Given a 64-bit compilation unit signature or a type signature S, an entry
12107 in the hash table is located as follows:
12108
12109 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12110 the low-order k bits all set to 1.
12111
12112 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12113
12114 3) If the hash table entry at index H matches the signature, use that
12115 entry. If the hash table entry at index H is unused (all zeroes),
12116 terminate the search: the signature is not present in the table.
12117
12118 4) Let H = (H + H') modulo M. Repeat at Step 3.
12119
12120 Because M > N and H' and M are relatively prime, the search is guaranteed
12121 to stop at an unused slot or find the match. */
12122
12123 /* Create a hash table to map DWO IDs to their CU/TU entry in
12124 .debug_{info,types}.dwo in DWP_FILE.
12125 Returns NULL if there isn't one.
12126 Note: This function processes DWP files only, not DWO files. */
12127
12128 static struct dwp_hash_table *
12129 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12130 struct dwp_file *dwp_file, int is_debug_types)
12131 {
12132 struct objfile *objfile = dwarf2_per_objfile->objfile;
12133 bfd *dbfd = dwp_file->dbfd;
12134 const gdb_byte *index_ptr, *index_end;
12135 struct dwarf2_section_info *index;
12136 uint32_t version, nr_columns, nr_units, nr_slots;
12137 struct dwp_hash_table *htab;
12138
12139 if (is_debug_types)
12140 index = &dwp_file->sections.tu_index;
12141 else
12142 index = &dwp_file->sections.cu_index;
12143
12144 if (dwarf2_section_empty_p (index))
12145 return NULL;
12146 dwarf2_read_section (objfile, index);
12147
12148 index_ptr = index->buffer;
12149 index_end = index_ptr + index->size;
12150
12151 version = read_4_bytes (dbfd, index_ptr);
12152 index_ptr += 4;
12153 if (version == 2)
12154 nr_columns = read_4_bytes (dbfd, index_ptr);
12155 else
12156 nr_columns = 0;
12157 index_ptr += 4;
12158 nr_units = read_4_bytes (dbfd, index_ptr);
12159 index_ptr += 4;
12160 nr_slots = read_4_bytes (dbfd, index_ptr);
12161 index_ptr += 4;
12162
12163 if (version != 1 && version != 2)
12164 {
12165 error (_("Dwarf Error: unsupported DWP file version (%s)"
12166 " [in module %s]"),
12167 pulongest (version), dwp_file->name);
12168 }
12169 if (nr_slots != (nr_slots & -nr_slots))
12170 {
12171 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12172 " is not power of 2 [in module %s]"),
12173 pulongest (nr_slots), dwp_file->name);
12174 }
12175
12176 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12177 htab->version = version;
12178 htab->nr_columns = nr_columns;
12179 htab->nr_units = nr_units;
12180 htab->nr_slots = nr_slots;
12181 htab->hash_table = index_ptr;
12182 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12183
12184 /* Exit early if the table is empty. */
12185 if (nr_slots == 0 || nr_units == 0
12186 || (version == 2 && nr_columns == 0))
12187 {
12188 /* All must be zero. */
12189 if (nr_slots != 0 || nr_units != 0
12190 || (version == 2 && nr_columns != 0))
12191 {
12192 complaint (&symfile_complaints,
12193 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12194 " all zero [in modules %s]"),
12195 dwp_file->name);
12196 }
12197 return htab;
12198 }
12199
12200 if (version == 1)
12201 {
12202 htab->section_pool.v1.indices =
12203 htab->unit_table + sizeof (uint32_t) * nr_slots;
12204 /* It's harder to decide whether the section is too small in v1.
12205 V1 is deprecated anyway so we punt. */
12206 }
12207 else
12208 {
12209 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12210 int *ids = htab->section_pool.v2.section_ids;
12211 /* Reverse map for error checking. */
12212 int ids_seen[DW_SECT_MAX + 1];
12213 int i;
12214
12215 if (nr_columns < 2)
12216 {
12217 error (_("Dwarf Error: bad DWP hash table, too few columns"
12218 " in section table [in module %s]"),
12219 dwp_file->name);
12220 }
12221 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12222 {
12223 error (_("Dwarf Error: bad DWP hash table, too many columns"
12224 " in section table [in module %s]"),
12225 dwp_file->name);
12226 }
12227 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12228 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12229 for (i = 0; i < nr_columns; ++i)
12230 {
12231 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12232
12233 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12234 {
12235 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12236 " in section table [in module %s]"),
12237 id, dwp_file->name);
12238 }
12239 if (ids_seen[id] != -1)
12240 {
12241 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12242 " id %d in section table [in module %s]"),
12243 id, dwp_file->name);
12244 }
12245 ids_seen[id] = i;
12246 ids[i] = id;
12247 }
12248 /* Must have exactly one info or types section. */
12249 if (((ids_seen[DW_SECT_INFO] != -1)
12250 + (ids_seen[DW_SECT_TYPES] != -1))
12251 != 1)
12252 {
12253 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12254 " DWO info/types section [in module %s]"),
12255 dwp_file->name);
12256 }
12257 /* Must have an abbrev section. */
12258 if (ids_seen[DW_SECT_ABBREV] == -1)
12259 {
12260 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12261 " section [in module %s]"),
12262 dwp_file->name);
12263 }
12264 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12265 htab->section_pool.v2.sizes =
12266 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12267 * nr_units * nr_columns);
12268 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12269 * nr_units * nr_columns))
12270 > index_end)
12271 {
12272 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12273 " [in module %s]"),
12274 dwp_file->name);
12275 }
12276 }
12277
12278 return htab;
12279 }
12280
12281 /* Update SECTIONS with the data from SECTP.
12282
12283 This function is like the other "locate" section routines that are
12284 passed to bfd_map_over_sections, but in this context the sections to
12285 read comes from the DWP V1 hash table, not the full ELF section table.
12286
12287 The result is non-zero for success, or zero if an error was found. */
12288
12289 static int
12290 locate_v1_virtual_dwo_sections (asection *sectp,
12291 struct virtual_v1_dwo_sections *sections)
12292 {
12293 const struct dwop_section_names *names = &dwop_section_names;
12294
12295 if (section_is_p (sectp->name, &names->abbrev_dwo))
12296 {
12297 /* There can be only one. */
12298 if (sections->abbrev.s.section != NULL)
12299 return 0;
12300 sections->abbrev.s.section = sectp;
12301 sections->abbrev.size = bfd_get_section_size (sectp);
12302 }
12303 else if (section_is_p (sectp->name, &names->info_dwo)
12304 || section_is_p (sectp->name, &names->types_dwo))
12305 {
12306 /* There can be only one. */
12307 if (sections->info_or_types.s.section != NULL)
12308 return 0;
12309 sections->info_or_types.s.section = sectp;
12310 sections->info_or_types.size = bfd_get_section_size (sectp);
12311 }
12312 else if (section_is_p (sectp->name, &names->line_dwo))
12313 {
12314 /* There can be only one. */
12315 if (sections->line.s.section != NULL)
12316 return 0;
12317 sections->line.s.section = sectp;
12318 sections->line.size = bfd_get_section_size (sectp);
12319 }
12320 else if (section_is_p (sectp->name, &names->loc_dwo))
12321 {
12322 /* There can be only one. */
12323 if (sections->loc.s.section != NULL)
12324 return 0;
12325 sections->loc.s.section = sectp;
12326 sections->loc.size = bfd_get_section_size (sectp);
12327 }
12328 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12329 {
12330 /* There can be only one. */
12331 if (sections->macinfo.s.section != NULL)
12332 return 0;
12333 sections->macinfo.s.section = sectp;
12334 sections->macinfo.size = bfd_get_section_size (sectp);
12335 }
12336 else if (section_is_p (sectp->name, &names->macro_dwo))
12337 {
12338 /* There can be only one. */
12339 if (sections->macro.s.section != NULL)
12340 return 0;
12341 sections->macro.s.section = sectp;
12342 sections->macro.size = bfd_get_section_size (sectp);
12343 }
12344 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12345 {
12346 /* There can be only one. */
12347 if (sections->str_offsets.s.section != NULL)
12348 return 0;
12349 sections->str_offsets.s.section = sectp;
12350 sections->str_offsets.size = bfd_get_section_size (sectp);
12351 }
12352 else
12353 {
12354 /* No other kind of section is valid. */
12355 return 0;
12356 }
12357
12358 return 1;
12359 }
12360
12361 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12362 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12363 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12364 This is for DWP version 1 files. */
12365
12366 static struct dwo_unit *
12367 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12368 struct dwp_file *dwp_file,
12369 uint32_t unit_index,
12370 const char *comp_dir,
12371 ULONGEST signature, int is_debug_types)
12372 {
12373 struct objfile *objfile = dwarf2_per_objfile->objfile;
12374 const struct dwp_hash_table *dwp_htab =
12375 is_debug_types ? dwp_file->tus : dwp_file->cus;
12376 bfd *dbfd = dwp_file->dbfd;
12377 const char *kind = is_debug_types ? "TU" : "CU";
12378 struct dwo_file *dwo_file;
12379 struct dwo_unit *dwo_unit;
12380 struct virtual_v1_dwo_sections sections;
12381 void **dwo_file_slot;
12382 int i;
12383
12384 gdb_assert (dwp_file->version == 1);
12385
12386 if (dwarf_read_debug)
12387 {
12388 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12389 kind,
12390 pulongest (unit_index), hex_string (signature),
12391 dwp_file->name);
12392 }
12393
12394 /* Fetch the sections of this DWO unit.
12395 Put a limit on the number of sections we look for so that bad data
12396 doesn't cause us to loop forever. */
12397
12398 #define MAX_NR_V1_DWO_SECTIONS \
12399 (1 /* .debug_info or .debug_types */ \
12400 + 1 /* .debug_abbrev */ \
12401 + 1 /* .debug_line */ \
12402 + 1 /* .debug_loc */ \
12403 + 1 /* .debug_str_offsets */ \
12404 + 1 /* .debug_macro or .debug_macinfo */ \
12405 + 1 /* trailing zero */)
12406
12407 memset (&sections, 0, sizeof (sections));
12408
12409 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12410 {
12411 asection *sectp;
12412 uint32_t section_nr =
12413 read_4_bytes (dbfd,
12414 dwp_htab->section_pool.v1.indices
12415 + (unit_index + i) * sizeof (uint32_t));
12416
12417 if (section_nr == 0)
12418 break;
12419 if (section_nr >= dwp_file->num_sections)
12420 {
12421 error (_("Dwarf Error: bad DWP hash table, section number too large"
12422 " [in module %s]"),
12423 dwp_file->name);
12424 }
12425
12426 sectp = dwp_file->elf_sections[section_nr];
12427 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12428 {
12429 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12430 " [in module %s]"),
12431 dwp_file->name);
12432 }
12433 }
12434
12435 if (i < 2
12436 || dwarf2_section_empty_p (&sections.info_or_types)
12437 || dwarf2_section_empty_p (&sections.abbrev))
12438 {
12439 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12440 " [in module %s]"),
12441 dwp_file->name);
12442 }
12443 if (i == MAX_NR_V1_DWO_SECTIONS)
12444 {
12445 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12446 " [in module %s]"),
12447 dwp_file->name);
12448 }
12449
12450 /* It's easier for the rest of the code if we fake a struct dwo_file and
12451 have dwo_unit "live" in that. At least for now.
12452
12453 The DWP file can be made up of a random collection of CUs and TUs.
12454 However, for each CU + set of TUs that came from the same original DWO
12455 file, we can combine them back into a virtual DWO file to save space
12456 (fewer struct dwo_file objects to allocate). Remember that for really
12457 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12458
12459 std::string virtual_dwo_name =
12460 string_printf ("virtual-dwo/%d-%d-%d-%d",
12461 get_section_id (&sections.abbrev),
12462 get_section_id (&sections.line),
12463 get_section_id (&sections.loc),
12464 get_section_id (&sections.str_offsets));
12465 /* Can we use an existing virtual DWO file? */
12466 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12467 virtual_dwo_name.c_str (),
12468 comp_dir);
12469 /* Create one if necessary. */
12470 if (*dwo_file_slot == NULL)
12471 {
12472 if (dwarf_read_debug)
12473 {
12474 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12475 virtual_dwo_name.c_str ());
12476 }
12477 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12478 dwo_file->dwo_name
12479 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12480 virtual_dwo_name.c_str (),
12481 virtual_dwo_name.size ());
12482 dwo_file->comp_dir = comp_dir;
12483 dwo_file->sections.abbrev = sections.abbrev;
12484 dwo_file->sections.line = sections.line;
12485 dwo_file->sections.loc = sections.loc;
12486 dwo_file->sections.macinfo = sections.macinfo;
12487 dwo_file->sections.macro = sections.macro;
12488 dwo_file->sections.str_offsets = sections.str_offsets;
12489 /* The "str" section is global to the entire DWP file. */
12490 dwo_file->sections.str = dwp_file->sections.str;
12491 /* The info or types section is assigned below to dwo_unit,
12492 there's no need to record it in dwo_file.
12493 Also, we can't simply record type sections in dwo_file because
12494 we record a pointer into the vector in dwo_unit. As we collect more
12495 types we'll grow the vector and eventually have to reallocate space
12496 for it, invalidating all copies of pointers into the previous
12497 contents. */
12498 *dwo_file_slot = dwo_file;
12499 }
12500 else
12501 {
12502 if (dwarf_read_debug)
12503 {
12504 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12505 virtual_dwo_name.c_str ());
12506 }
12507 dwo_file = (struct dwo_file *) *dwo_file_slot;
12508 }
12509
12510 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12511 dwo_unit->dwo_file = dwo_file;
12512 dwo_unit->signature = signature;
12513 dwo_unit->section =
12514 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12515 *dwo_unit->section = sections.info_or_types;
12516 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12517
12518 return dwo_unit;
12519 }
12520
12521 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12522 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12523 piece within that section used by a TU/CU, return a virtual section
12524 of just that piece. */
12525
12526 static struct dwarf2_section_info
12527 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12528 struct dwarf2_section_info *section,
12529 bfd_size_type offset, bfd_size_type size)
12530 {
12531 struct dwarf2_section_info result;
12532 asection *sectp;
12533
12534 gdb_assert (section != NULL);
12535 gdb_assert (!section->is_virtual);
12536
12537 memset (&result, 0, sizeof (result));
12538 result.s.containing_section = section;
12539 result.is_virtual = 1;
12540
12541 if (size == 0)
12542 return result;
12543
12544 sectp = get_section_bfd_section (section);
12545
12546 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12547 bounds of the real section. This is a pretty-rare event, so just
12548 flag an error (easier) instead of a warning and trying to cope. */
12549 if (sectp == NULL
12550 || offset + size > bfd_get_section_size (sectp))
12551 {
12552 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12553 " in section %s [in module %s]"),
12554 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12555 objfile_name (dwarf2_per_objfile->objfile));
12556 }
12557
12558 result.virtual_offset = offset;
12559 result.size = size;
12560 return result;
12561 }
12562
12563 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12564 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12565 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12566 This is for DWP version 2 files. */
12567
12568 static struct dwo_unit *
12569 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12570 struct dwp_file *dwp_file,
12571 uint32_t unit_index,
12572 const char *comp_dir,
12573 ULONGEST signature, int is_debug_types)
12574 {
12575 struct objfile *objfile = dwarf2_per_objfile->objfile;
12576 const struct dwp_hash_table *dwp_htab =
12577 is_debug_types ? dwp_file->tus : dwp_file->cus;
12578 bfd *dbfd = dwp_file->dbfd;
12579 const char *kind = is_debug_types ? "TU" : "CU";
12580 struct dwo_file *dwo_file;
12581 struct dwo_unit *dwo_unit;
12582 struct virtual_v2_dwo_sections sections;
12583 void **dwo_file_slot;
12584 int i;
12585
12586 gdb_assert (dwp_file->version == 2);
12587
12588 if (dwarf_read_debug)
12589 {
12590 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12591 kind,
12592 pulongest (unit_index), hex_string (signature),
12593 dwp_file->name);
12594 }
12595
12596 /* Fetch the section offsets of this DWO unit. */
12597
12598 memset (&sections, 0, sizeof (sections));
12599
12600 for (i = 0; i < dwp_htab->nr_columns; ++i)
12601 {
12602 uint32_t offset = read_4_bytes (dbfd,
12603 dwp_htab->section_pool.v2.offsets
12604 + (((unit_index - 1) * dwp_htab->nr_columns
12605 + i)
12606 * sizeof (uint32_t)));
12607 uint32_t size = read_4_bytes (dbfd,
12608 dwp_htab->section_pool.v2.sizes
12609 + (((unit_index - 1) * dwp_htab->nr_columns
12610 + i)
12611 * sizeof (uint32_t)));
12612
12613 switch (dwp_htab->section_pool.v2.section_ids[i])
12614 {
12615 case DW_SECT_INFO:
12616 case DW_SECT_TYPES:
12617 sections.info_or_types_offset = offset;
12618 sections.info_or_types_size = size;
12619 break;
12620 case DW_SECT_ABBREV:
12621 sections.abbrev_offset = offset;
12622 sections.abbrev_size = size;
12623 break;
12624 case DW_SECT_LINE:
12625 sections.line_offset = offset;
12626 sections.line_size = size;
12627 break;
12628 case DW_SECT_LOC:
12629 sections.loc_offset = offset;
12630 sections.loc_size = size;
12631 break;
12632 case DW_SECT_STR_OFFSETS:
12633 sections.str_offsets_offset = offset;
12634 sections.str_offsets_size = size;
12635 break;
12636 case DW_SECT_MACINFO:
12637 sections.macinfo_offset = offset;
12638 sections.macinfo_size = size;
12639 break;
12640 case DW_SECT_MACRO:
12641 sections.macro_offset = offset;
12642 sections.macro_size = size;
12643 break;
12644 }
12645 }
12646
12647 /* It's easier for the rest of the code if we fake a struct dwo_file and
12648 have dwo_unit "live" in that. At least for now.
12649
12650 The DWP file can be made up of a random collection of CUs and TUs.
12651 However, for each CU + set of TUs that came from the same original DWO
12652 file, we can combine them back into a virtual DWO file to save space
12653 (fewer struct dwo_file objects to allocate). Remember that for really
12654 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12655
12656 std::string virtual_dwo_name =
12657 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12658 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12659 (long) (sections.line_size ? sections.line_offset : 0),
12660 (long) (sections.loc_size ? sections.loc_offset : 0),
12661 (long) (sections.str_offsets_size
12662 ? sections.str_offsets_offset : 0));
12663 /* Can we use an existing virtual DWO file? */
12664 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12665 virtual_dwo_name.c_str (),
12666 comp_dir);
12667 /* Create one if necessary. */
12668 if (*dwo_file_slot == NULL)
12669 {
12670 if (dwarf_read_debug)
12671 {
12672 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12673 virtual_dwo_name.c_str ());
12674 }
12675 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12676 dwo_file->dwo_name
12677 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12678 virtual_dwo_name.c_str (),
12679 virtual_dwo_name.size ());
12680 dwo_file->comp_dir = comp_dir;
12681 dwo_file->sections.abbrev =
12682 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12683 sections.abbrev_offset, sections.abbrev_size);
12684 dwo_file->sections.line =
12685 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12686 sections.line_offset, sections.line_size);
12687 dwo_file->sections.loc =
12688 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12689 sections.loc_offset, sections.loc_size);
12690 dwo_file->sections.macinfo =
12691 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12692 sections.macinfo_offset, sections.macinfo_size);
12693 dwo_file->sections.macro =
12694 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12695 sections.macro_offset, sections.macro_size);
12696 dwo_file->sections.str_offsets =
12697 create_dwp_v2_section (dwarf2_per_objfile,
12698 &dwp_file->sections.str_offsets,
12699 sections.str_offsets_offset,
12700 sections.str_offsets_size);
12701 /* The "str" section is global to the entire DWP file. */
12702 dwo_file->sections.str = dwp_file->sections.str;
12703 /* The info or types section is assigned below to dwo_unit,
12704 there's no need to record it in dwo_file.
12705 Also, we can't simply record type sections in dwo_file because
12706 we record a pointer into the vector in dwo_unit. As we collect more
12707 types we'll grow the vector and eventually have to reallocate space
12708 for it, invalidating all copies of pointers into the previous
12709 contents. */
12710 *dwo_file_slot = dwo_file;
12711 }
12712 else
12713 {
12714 if (dwarf_read_debug)
12715 {
12716 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12717 virtual_dwo_name.c_str ());
12718 }
12719 dwo_file = (struct dwo_file *) *dwo_file_slot;
12720 }
12721
12722 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12723 dwo_unit->dwo_file = dwo_file;
12724 dwo_unit->signature = signature;
12725 dwo_unit->section =
12726 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12727 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12728 is_debug_types
12729 ? &dwp_file->sections.types
12730 : &dwp_file->sections.info,
12731 sections.info_or_types_offset,
12732 sections.info_or_types_size);
12733 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12734
12735 return dwo_unit;
12736 }
12737
12738 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12739 Returns NULL if the signature isn't found. */
12740
12741 static struct dwo_unit *
12742 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12743 struct dwp_file *dwp_file, const char *comp_dir,
12744 ULONGEST signature, int is_debug_types)
12745 {
12746 const struct dwp_hash_table *dwp_htab =
12747 is_debug_types ? dwp_file->tus : dwp_file->cus;
12748 bfd *dbfd = dwp_file->dbfd;
12749 uint32_t mask = dwp_htab->nr_slots - 1;
12750 uint32_t hash = signature & mask;
12751 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12752 unsigned int i;
12753 void **slot;
12754 struct dwo_unit find_dwo_cu;
12755
12756 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12757 find_dwo_cu.signature = signature;
12758 slot = htab_find_slot (is_debug_types
12759 ? dwp_file->loaded_tus
12760 : dwp_file->loaded_cus,
12761 &find_dwo_cu, INSERT);
12762
12763 if (*slot != NULL)
12764 return (struct dwo_unit *) *slot;
12765
12766 /* Use a for loop so that we don't loop forever on bad debug info. */
12767 for (i = 0; i < dwp_htab->nr_slots; ++i)
12768 {
12769 ULONGEST signature_in_table;
12770
12771 signature_in_table =
12772 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12773 if (signature_in_table == signature)
12774 {
12775 uint32_t unit_index =
12776 read_4_bytes (dbfd,
12777 dwp_htab->unit_table + hash * sizeof (uint32_t));
12778
12779 if (dwp_file->version == 1)
12780 {
12781 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12782 dwp_file, unit_index,
12783 comp_dir, signature,
12784 is_debug_types);
12785 }
12786 else
12787 {
12788 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12789 dwp_file, unit_index,
12790 comp_dir, signature,
12791 is_debug_types);
12792 }
12793 return (struct dwo_unit *) *slot;
12794 }
12795 if (signature_in_table == 0)
12796 return NULL;
12797 hash = (hash + hash2) & mask;
12798 }
12799
12800 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12801 " [in module %s]"),
12802 dwp_file->name);
12803 }
12804
12805 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12806 Open the file specified by FILE_NAME and hand it off to BFD for
12807 preliminary analysis. Return a newly initialized bfd *, which
12808 includes a canonicalized copy of FILE_NAME.
12809 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12810 SEARCH_CWD is true if the current directory is to be searched.
12811 It will be searched before debug-file-directory.
12812 If successful, the file is added to the bfd include table of the
12813 objfile's bfd (see gdb_bfd_record_inclusion).
12814 If unable to find/open the file, return NULL.
12815 NOTE: This function is derived from symfile_bfd_open. */
12816
12817 static gdb_bfd_ref_ptr
12818 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12819 const char *file_name, int is_dwp, int search_cwd)
12820 {
12821 int desc;
12822 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12823 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12824 to debug_file_directory. */
12825 const char *search_path;
12826 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12827
12828 gdb::unique_xmalloc_ptr<char> search_path_holder;
12829 if (search_cwd)
12830 {
12831 if (*debug_file_directory != '\0')
12832 {
12833 search_path_holder.reset (concat (".", dirname_separator_string,
12834 debug_file_directory,
12835 (char *) NULL));
12836 search_path = search_path_holder.get ();
12837 }
12838 else
12839 search_path = ".";
12840 }
12841 else
12842 search_path = debug_file_directory;
12843
12844 openp_flags flags = OPF_RETURN_REALPATH;
12845 if (is_dwp)
12846 flags |= OPF_SEARCH_IN_PATH;
12847
12848 gdb::unique_xmalloc_ptr<char> absolute_name;
12849 desc = openp (search_path, flags, file_name,
12850 O_RDONLY | O_BINARY, &absolute_name);
12851 if (desc < 0)
12852 return NULL;
12853
12854 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12855 gnutarget, desc));
12856 if (sym_bfd == NULL)
12857 return NULL;
12858 bfd_set_cacheable (sym_bfd.get (), 1);
12859
12860 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12861 return NULL;
12862
12863 /* Success. Record the bfd as having been included by the objfile's bfd.
12864 This is important because things like demangled_names_hash lives in the
12865 objfile's per_bfd space and may have references to things like symbol
12866 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12867 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12868
12869 return sym_bfd;
12870 }
12871
12872 /* Try to open DWO file FILE_NAME.
12873 COMP_DIR is the DW_AT_comp_dir attribute.
12874 The result is the bfd handle of the file.
12875 If there is a problem finding or opening the file, return NULL.
12876 Upon success, the canonicalized path of the file is stored in the bfd,
12877 same as symfile_bfd_open. */
12878
12879 static gdb_bfd_ref_ptr
12880 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12881 const char *file_name, const char *comp_dir)
12882 {
12883 if (IS_ABSOLUTE_PATH (file_name))
12884 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12885 0 /*is_dwp*/, 0 /*search_cwd*/);
12886
12887 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12888
12889 if (comp_dir != NULL)
12890 {
12891 char *path_to_try = concat (comp_dir, SLASH_STRING,
12892 file_name, (char *) NULL);
12893
12894 /* NOTE: If comp_dir is a relative path, this will also try the
12895 search path, which seems useful. */
12896 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12897 path_to_try,
12898 0 /*is_dwp*/,
12899 1 /*search_cwd*/));
12900 xfree (path_to_try);
12901 if (abfd != NULL)
12902 return abfd;
12903 }
12904
12905 /* That didn't work, try debug-file-directory, which, despite its name,
12906 is a list of paths. */
12907
12908 if (*debug_file_directory == '\0')
12909 return NULL;
12910
12911 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12912 0 /*is_dwp*/, 1 /*search_cwd*/);
12913 }
12914
12915 /* This function is mapped across the sections and remembers the offset and
12916 size of each of the DWO debugging sections we are interested in. */
12917
12918 static void
12919 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12920 {
12921 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12922 const struct dwop_section_names *names = &dwop_section_names;
12923
12924 if (section_is_p (sectp->name, &names->abbrev_dwo))
12925 {
12926 dwo_sections->abbrev.s.section = sectp;
12927 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12928 }
12929 else if (section_is_p (sectp->name, &names->info_dwo))
12930 {
12931 dwo_sections->info.s.section = sectp;
12932 dwo_sections->info.size = bfd_get_section_size (sectp);
12933 }
12934 else if (section_is_p (sectp->name, &names->line_dwo))
12935 {
12936 dwo_sections->line.s.section = sectp;
12937 dwo_sections->line.size = bfd_get_section_size (sectp);
12938 }
12939 else if (section_is_p (sectp->name, &names->loc_dwo))
12940 {
12941 dwo_sections->loc.s.section = sectp;
12942 dwo_sections->loc.size = bfd_get_section_size (sectp);
12943 }
12944 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12945 {
12946 dwo_sections->macinfo.s.section = sectp;
12947 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12948 }
12949 else if (section_is_p (sectp->name, &names->macro_dwo))
12950 {
12951 dwo_sections->macro.s.section = sectp;
12952 dwo_sections->macro.size = bfd_get_section_size (sectp);
12953 }
12954 else if (section_is_p (sectp->name, &names->str_dwo))
12955 {
12956 dwo_sections->str.s.section = sectp;
12957 dwo_sections->str.size = bfd_get_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12960 {
12961 dwo_sections->str_offsets.s.section = sectp;
12962 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->types_dwo))
12965 {
12966 struct dwarf2_section_info type_section;
12967
12968 memset (&type_section, 0, sizeof (type_section));
12969 type_section.s.section = sectp;
12970 type_section.size = bfd_get_section_size (sectp);
12971 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12972 &type_section);
12973 }
12974 }
12975
12976 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12977 by PER_CU. This is for the non-DWP case.
12978 The result is NULL if DWO_NAME can't be found. */
12979
12980 static struct dwo_file *
12981 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12982 const char *dwo_name, const char *comp_dir)
12983 {
12984 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12985 struct objfile *objfile = dwarf2_per_objfile->objfile;
12986 struct dwo_file *dwo_file;
12987 struct cleanup *cleanups;
12988
12989 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12990 if (dbfd == NULL)
12991 {
12992 if (dwarf_read_debug)
12993 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12994 return NULL;
12995 }
12996 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12997 dwo_file->dwo_name = dwo_name;
12998 dwo_file->comp_dir = comp_dir;
12999 dwo_file->dbfd = dbfd.release ();
13000
13001 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13002 cleanup_data->dwo_file = dwo_file;
13003 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13004
13005 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13006
13007 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13008 &dwo_file->sections);
13009
13010 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13011 dwo_file->cus);
13012
13013 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13014 dwo_file->sections.types, dwo_file->tus);
13015
13016 discard_cleanups (cleanups);
13017
13018 if (dwarf_read_debug)
13019 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13020
13021 return dwo_file;
13022 }
13023
13024 /* This function is mapped across the sections and remembers the offset and
13025 size of each of the DWP debugging sections common to version 1 and 2 that
13026 we are interested in. */
13027
13028 static void
13029 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13030 void *dwp_file_ptr)
13031 {
13032 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13033 const struct dwop_section_names *names = &dwop_section_names;
13034 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13035
13036 /* Record the ELF section number for later lookup: this is what the
13037 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13038 gdb_assert (elf_section_nr < dwp_file->num_sections);
13039 dwp_file->elf_sections[elf_section_nr] = sectp;
13040
13041 /* Look for specific sections that we need. */
13042 if (section_is_p (sectp->name, &names->str_dwo))
13043 {
13044 dwp_file->sections.str.s.section = sectp;
13045 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13046 }
13047 else if (section_is_p (sectp->name, &names->cu_index))
13048 {
13049 dwp_file->sections.cu_index.s.section = sectp;
13050 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13051 }
13052 else if (section_is_p (sectp->name, &names->tu_index))
13053 {
13054 dwp_file->sections.tu_index.s.section = sectp;
13055 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13056 }
13057 }
13058
13059 /* This function is mapped across the sections and remembers the offset and
13060 size of each of the DWP version 2 debugging sections that we are interested
13061 in. This is split into a separate function because we don't know if we
13062 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13063
13064 static void
13065 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13066 {
13067 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13068 const struct dwop_section_names *names = &dwop_section_names;
13069 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13070
13071 /* Record the ELF section number for later lookup: this is what the
13072 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13073 gdb_assert (elf_section_nr < dwp_file->num_sections);
13074 dwp_file->elf_sections[elf_section_nr] = sectp;
13075
13076 /* Look for specific sections that we need. */
13077 if (section_is_p (sectp->name, &names->abbrev_dwo))
13078 {
13079 dwp_file->sections.abbrev.s.section = sectp;
13080 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13081 }
13082 else if (section_is_p (sectp->name, &names->info_dwo))
13083 {
13084 dwp_file->sections.info.s.section = sectp;
13085 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13086 }
13087 else if (section_is_p (sectp->name, &names->line_dwo))
13088 {
13089 dwp_file->sections.line.s.section = sectp;
13090 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13091 }
13092 else if (section_is_p (sectp->name, &names->loc_dwo))
13093 {
13094 dwp_file->sections.loc.s.section = sectp;
13095 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13096 }
13097 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13098 {
13099 dwp_file->sections.macinfo.s.section = sectp;
13100 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13101 }
13102 else if (section_is_p (sectp->name, &names->macro_dwo))
13103 {
13104 dwp_file->sections.macro.s.section = sectp;
13105 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13106 }
13107 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13108 {
13109 dwp_file->sections.str_offsets.s.section = sectp;
13110 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13111 }
13112 else if (section_is_p (sectp->name, &names->types_dwo))
13113 {
13114 dwp_file->sections.types.s.section = sectp;
13115 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13116 }
13117 }
13118
13119 /* Hash function for dwp_file loaded CUs/TUs. */
13120
13121 static hashval_t
13122 hash_dwp_loaded_cutus (const void *item)
13123 {
13124 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13125
13126 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13127 return dwo_unit->signature;
13128 }
13129
13130 /* Equality function for dwp_file loaded CUs/TUs. */
13131
13132 static int
13133 eq_dwp_loaded_cutus (const void *a, const void *b)
13134 {
13135 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13136 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13137
13138 return dua->signature == dub->signature;
13139 }
13140
13141 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13142
13143 static htab_t
13144 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13145 {
13146 return htab_create_alloc_ex (3,
13147 hash_dwp_loaded_cutus,
13148 eq_dwp_loaded_cutus,
13149 NULL,
13150 &objfile->objfile_obstack,
13151 hashtab_obstack_allocate,
13152 dummy_obstack_deallocate);
13153 }
13154
13155 /* Try to open DWP file FILE_NAME.
13156 The result is the bfd handle of the file.
13157 If there is a problem finding or opening the file, return NULL.
13158 Upon success, the canonicalized path of the file is stored in the bfd,
13159 same as symfile_bfd_open. */
13160
13161 static gdb_bfd_ref_ptr
13162 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13163 const char *file_name)
13164 {
13165 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13166 1 /*is_dwp*/,
13167 1 /*search_cwd*/));
13168 if (abfd != NULL)
13169 return abfd;
13170
13171 /* Work around upstream bug 15652.
13172 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13173 [Whether that's a "bug" is debatable, but it is getting in our way.]
13174 We have no real idea where the dwp file is, because gdb's realpath-ing
13175 of the executable's path may have discarded the needed info.
13176 [IWBN if the dwp file name was recorded in the executable, akin to
13177 .gnu_debuglink, but that doesn't exist yet.]
13178 Strip the directory from FILE_NAME and search again. */
13179 if (*debug_file_directory != '\0')
13180 {
13181 /* Don't implicitly search the current directory here.
13182 If the user wants to search "." to handle this case,
13183 it must be added to debug-file-directory. */
13184 return try_open_dwop_file (dwarf2_per_objfile,
13185 lbasename (file_name), 1 /*is_dwp*/,
13186 0 /*search_cwd*/);
13187 }
13188
13189 return NULL;
13190 }
13191
13192 /* Initialize the use of the DWP file for the current objfile.
13193 By convention the name of the DWP file is ${objfile}.dwp.
13194 The result is NULL if it can't be found. */
13195
13196 static struct dwp_file *
13197 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13198 {
13199 struct objfile *objfile = dwarf2_per_objfile->objfile;
13200 struct dwp_file *dwp_file;
13201
13202 /* Try to find first .dwp for the binary file before any symbolic links
13203 resolving. */
13204
13205 /* If the objfile is a debug file, find the name of the real binary
13206 file and get the name of dwp file from there. */
13207 std::string dwp_name;
13208 if (objfile->separate_debug_objfile_backlink != NULL)
13209 {
13210 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13211 const char *backlink_basename = lbasename (backlink->original_name);
13212
13213 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13214 }
13215 else
13216 dwp_name = objfile->original_name;
13217
13218 dwp_name += ".dwp";
13219
13220 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13221 if (dbfd == NULL
13222 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13223 {
13224 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13225 dwp_name = objfile_name (objfile);
13226 dwp_name += ".dwp";
13227 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13228 }
13229
13230 if (dbfd == NULL)
13231 {
13232 if (dwarf_read_debug)
13233 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13234 return NULL;
13235 }
13236 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13237 dwp_file->name = bfd_get_filename (dbfd.get ());
13238 dwp_file->dbfd = dbfd.release ();
13239
13240 /* +1: section 0 is unused */
13241 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13242 dwp_file->elf_sections =
13243 OBSTACK_CALLOC (&objfile->objfile_obstack,
13244 dwp_file->num_sections, asection *);
13245
13246 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13247 dwp_file);
13248
13249 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13250
13251 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13252
13253 /* The DWP file version is stored in the hash table. Oh well. */
13254 if (dwp_file->cus && dwp_file->tus
13255 && dwp_file->cus->version != dwp_file->tus->version)
13256 {
13257 /* Technically speaking, we should try to limp along, but this is
13258 pretty bizarre. We use pulongest here because that's the established
13259 portability solution (e.g, we cannot use %u for uint32_t). */
13260 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13261 " TU version %s [in DWP file %s]"),
13262 pulongest (dwp_file->cus->version),
13263 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13264 }
13265
13266 if (dwp_file->cus)
13267 dwp_file->version = dwp_file->cus->version;
13268 else if (dwp_file->tus)
13269 dwp_file->version = dwp_file->tus->version;
13270 else
13271 dwp_file->version = 2;
13272
13273 if (dwp_file->version == 2)
13274 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13275 dwp_file);
13276
13277 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13278 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13279
13280 if (dwarf_read_debug)
13281 {
13282 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13283 fprintf_unfiltered (gdb_stdlog,
13284 " %s CUs, %s TUs\n",
13285 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13286 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13287 }
13288
13289 return dwp_file;
13290 }
13291
13292 /* Wrapper around open_and_init_dwp_file, only open it once. */
13293
13294 static struct dwp_file *
13295 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13296 {
13297 if (! dwarf2_per_objfile->dwp_checked)
13298 {
13299 dwarf2_per_objfile->dwp_file
13300 = open_and_init_dwp_file (dwarf2_per_objfile);
13301 dwarf2_per_objfile->dwp_checked = 1;
13302 }
13303 return dwarf2_per_objfile->dwp_file;
13304 }
13305
13306 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13307 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13308 or in the DWP file for the objfile, referenced by THIS_UNIT.
13309 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13310 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13311
13312 This is called, for example, when wanting to read a variable with a
13313 complex location. Therefore we don't want to do file i/o for every call.
13314 Therefore we don't want to look for a DWO file on every call.
13315 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13316 then we check if we've already seen DWO_NAME, and only THEN do we check
13317 for a DWO file.
13318
13319 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13320 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13321
13322 static struct dwo_unit *
13323 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13324 const char *dwo_name, const char *comp_dir,
13325 ULONGEST signature, int is_debug_types)
13326 {
13327 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13328 struct objfile *objfile = dwarf2_per_objfile->objfile;
13329 const char *kind = is_debug_types ? "TU" : "CU";
13330 void **dwo_file_slot;
13331 struct dwo_file *dwo_file;
13332 struct dwp_file *dwp_file;
13333
13334 /* First see if there's a DWP file.
13335 If we have a DWP file but didn't find the DWO inside it, don't
13336 look for the original DWO file. It makes gdb behave differently
13337 depending on whether one is debugging in the build tree. */
13338
13339 dwp_file = get_dwp_file (dwarf2_per_objfile);
13340 if (dwp_file != NULL)
13341 {
13342 const struct dwp_hash_table *dwp_htab =
13343 is_debug_types ? dwp_file->tus : dwp_file->cus;
13344
13345 if (dwp_htab != NULL)
13346 {
13347 struct dwo_unit *dwo_cutu =
13348 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13349 signature, is_debug_types);
13350
13351 if (dwo_cutu != NULL)
13352 {
13353 if (dwarf_read_debug)
13354 {
13355 fprintf_unfiltered (gdb_stdlog,
13356 "Virtual DWO %s %s found: @%s\n",
13357 kind, hex_string (signature),
13358 host_address_to_string (dwo_cutu));
13359 }
13360 return dwo_cutu;
13361 }
13362 }
13363 }
13364 else
13365 {
13366 /* No DWP file, look for the DWO file. */
13367
13368 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13369 dwo_name, comp_dir);
13370 if (*dwo_file_slot == NULL)
13371 {
13372 /* Read in the file and build a table of the CUs/TUs it contains. */
13373 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13374 }
13375 /* NOTE: This will be NULL if unable to open the file. */
13376 dwo_file = (struct dwo_file *) *dwo_file_slot;
13377
13378 if (dwo_file != NULL)
13379 {
13380 struct dwo_unit *dwo_cutu = NULL;
13381
13382 if (is_debug_types && dwo_file->tus)
13383 {
13384 struct dwo_unit find_dwo_cutu;
13385
13386 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13387 find_dwo_cutu.signature = signature;
13388 dwo_cutu
13389 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13390 }
13391 else if (!is_debug_types && dwo_file->cus)
13392 {
13393 struct dwo_unit find_dwo_cutu;
13394
13395 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13396 find_dwo_cutu.signature = signature;
13397 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13398 &find_dwo_cutu);
13399 }
13400
13401 if (dwo_cutu != NULL)
13402 {
13403 if (dwarf_read_debug)
13404 {
13405 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13406 kind, dwo_name, hex_string (signature),
13407 host_address_to_string (dwo_cutu));
13408 }
13409 return dwo_cutu;
13410 }
13411 }
13412 }
13413
13414 /* We didn't find it. This could mean a dwo_id mismatch, or
13415 someone deleted the DWO/DWP file, or the search path isn't set up
13416 correctly to find the file. */
13417
13418 if (dwarf_read_debug)
13419 {
13420 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13421 kind, dwo_name, hex_string (signature));
13422 }
13423
13424 /* This is a warning and not a complaint because it can be caused by
13425 pilot error (e.g., user accidentally deleting the DWO). */
13426 {
13427 /* Print the name of the DWP file if we looked there, helps the user
13428 better diagnose the problem. */
13429 std::string dwp_text;
13430
13431 if (dwp_file != NULL)
13432 dwp_text = string_printf (" [in DWP file %s]",
13433 lbasename (dwp_file->name));
13434
13435 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13436 " [in module %s]"),
13437 kind, dwo_name, hex_string (signature),
13438 dwp_text.c_str (),
13439 this_unit->is_debug_types ? "TU" : "CU",
13440 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13441 }
13442 return NULL;
13443 }
13444
13445 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13446 See lookup_dwo_cutu_unit for details. */
13447
13448 static struct dwo_unit *
13449 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13450 const char *dwo_name, const char *comp_dir,
13451 ULONGEST signature)
13452 {
13453 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13454 }
13455
13456 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13457 See lookup_dwo_cutu_unit for details. */
13458
13459 static struct dwo_unit *
13460 lookup_dwo_type_unit (struct signatured_type *this_tu,
13461 const char *dwo_name, const char *comp_dir)
13462 {
13463 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13464 }
13465
13466 /* Traversal function for queue_and_load_all_dwo_tus. */
13467
13468 static int
13469 queue_and_load_dwo_tu (void **slot, void *info)
13470 {
13471 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13472 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13473 ULONGEST signature = dwo_unit->signature;
13474 struct signatured_type *sig_type =
13475 lookup_dwo_signatured_type (per_cu->cu, signature);
13476
13477 if (sig_type != NULL)
13478 {
13479 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13480
13481 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13482 a real dependency of PER_CU on SIG_TYPE. That is detected later
13483 while processing PER_CU. */
13484 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13485 load_full_type_unit (sig_cu);
13486 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13487 }
13488
13489 return 1;
13490 }
13491
13492 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13493 The DWO may have the only definition of the type, though it may not be
13494 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13495 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13496
13497 static void
13498 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13499 {
13500 struct dwo_unit *dwo_unit;
13501 struct dwo_file *dwo_file;
13502
13503 gdb_assert (!per_cu->is_debug_types);
13504 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13505 gdb_assert (per_cu->cu != NULL);
13506
13507 dwo_unit = per_cu->cu->dwo_unit;
13508 gdb_assert (dwo_unit != NULL);
13509
13510 dwo_file = dwo_unit->dwo_file;
13511 if (dwo_file->tus != NULL)
13512 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13513 }
13514
13515 /* Free all resources associated with DWO_FILE.
13516 Close the DWO file and munmap the sections.
13517 All memory should be on the objfile obstack. */
13518
13519 static void
13520 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13521 {
13522
13523 /* Note: dbfd is NULL for virtual DWO files. */
13524 gdb_bfd_unref (dwo_file->dbfd);
13525
13526 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13527 }
13528
13529 /* Wrapper for free_dwo_file for use in cleanups. */
13530
13531 static void
13532 free_dwo_file_cleanup (void *arg)
13533 {
13534 struct free_dwo_file_cleanup_data *data
13535 = (struct free_dwo_file_cleanup_data *) arg;
13536 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13537
13538 free_dwo_file (data->dwo_file, objfile);
13539
13540 xfree (data);
13541 }
13542
13543 /* Traversal function for free_dwo_files. */
13544
13545 static int
13546 free_dwo_file_from_slot (void **slot, void *info)
13547 {
13548 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13549 struct objfile *objfile = (struct objfile *) info;
13550
13551 free_dwo_file (dwo_file, objfile);
13552
13553 return 1;
13554 }
13555
13556 /* Free all resources associated with DWO_FILES. */
13557
13558 static void
13559 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13560 {
13561 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13562 }
13563 \f
13564 /* Read in various DIEs. */
13565
13566 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13567 Inherit only the children of the DW_AT_abstract_origin DIE not being
13568 already referenced by DW_AT_abstract_origin from the children of the
13569 current DIE. */
13570
13571 static void
13572 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13573 {
13574 struct die_info *child_die;
13575 sect_offset *offsetp;
13576 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13577 struct die_info *origin_die;
13578 /* Iterator of the ORIGIN_DIE children. */
13579 struct die_info *origin_child_die;
13580 struct attribute *attr;
13581 struct dwarf2_cu *origin_cu;
13582 struct pending **origin_previous_list_in_scope;
13583
13584 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13585 if (!attr)
13586 return;
13587
13588 /* Note that following die references may follow to a die in a
13589 different cu. */
13590
13591 origin_cu = cu;
13592 origin_die = follow_die_ref (die, attr, &origin_cu);
13593
13594 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13595 symbols in. */
13596 origin_previous_list_in_scope = origin_cu->list_in_scope;
13597 origin_cu->list_in_scope = cu->list_in_scope;
13598
13599 if (die->tag != origin_die->tag
13600 && !(die->tag == DW_TAG_inlined_subroutine
13601 && origin_die->tag == DW_TAG_subprogram))
13602 complaint (&symfile_complaints,
13603 _("DIE %s and its abstract origin %s have different tags"),
13604 sect_offset_str (die->sect_off),
13605 sect_offset_str (origin_die->sect_off));
13606
13607 std::vector<sect_offset> offsets;
13608
13609 for (child_die = die->child;
13610 child_die && child_die->tag;
13611 child_die = sibling_die (child_die))
13612 {
13613 struct die_info *child_origin_die;
13614 struct dwarf2_cu *child_origin_cu;
13615
13616 /* We are trying to process concrete instance entries:
13617 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13618 it's not relevant to our analysis here. i.e. detecting DIEs that are
13619 present in the abstract instance but not referenced in the concrete
13620 one. */
13621 if (child_die->tag == DW_TAG_call_site
13622 || child_die->tag == DW_TAG_GNU_call_site)
13623 continue;
13624
13625 /* For each CHILD_DIE, find the corresponding child of
13626 ORIGIN_DIE. If there is more than one layer of
13627 DW_AT_abstract_origin, follow them all; there shouldn't be,
13628 but GCC versions at least through 4.4 generate this (GCC PR
13629 40573). */
13630 child_origin_die = child_die;
13631 child_origin_cu = cu;
13632 while (1)
13633 {
13634 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13635 child_origin_cu);
13636 if (attr == NULL)
13637 break;
13638 child_origin_die = follow_die_ref (child_origin_die, attr,
13639 &child_origin_cu);
13640 }
13641
13642 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13643 counterpart may exist. */
13644 if (child_origin_die != child_die)
13645 {
13646 if (child_die->tag != child_origin_die->tag
13647 && !(child_die->tag == DW_TAG_inlined_subroutine
13648 && child_origin_die->tag == DW_TAG_subprogram))
13649 complaint (&symfile_complaints,
13650 _("Child DIE %s and its abstract origin %s have "
13651 "different tags"),
13652 sect_offset_str (child_die->sect_off),
13653 sect_offset_str (child_origin_die->sect_off));
13654 if (child_origin_die->parent != origin_die)
13655 complaint (&symfile_complaints,
13656 _("Child DIE %s and its abstract origin %s have "
13657 "different parents"),
13658 sect_offset_str (child_die->sect_off),
13659 sect_offset_str (child_origin_die->sect_off));
13660 else
13661 offsets.push_back (child_origin_die->sect_off);
13662 }
13663 }
13664 std::sort (offsets.begin (), offsets.end ());
13665 sect_offset *offsets_end = offsets.data () + offsets.size ();
13666 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13667 if (offsetp[-1] == *offsetp)
13668 complaint (&symfile_complaints,
13669 _("Multiple children of DIE %s refer "
13670 "to DIE %s as their abstract origin"),
13671 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13672
13673 offsetp = offsets.data ();
13674 origin_child_die = origin_die->child;
13675 while (origin_child_die && origin_child_die->tag)
13676 {
13677 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13678 while (offsetp < offsets_end
13679 && *offsetp < origin_child_die->sect_off)
13680 offsetp++;
13681 if (offsetp >= offsets_end
13682 || *offsetp > origin_child_die->sect_off)
13683 {
13684 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13685 Check whether we're already processing ORIGIN_CHILD_DIE.
13686 This can happen with mutually referenced abstract_origins.
13687 PR 16581. */
13688 if (!origin_child_die->in_process)
13689 process_die (origin_child_die, origin_cu);
13690 }
13691 origin_child_die = sibling_die (origin_child_die);
13692 }
13693 origin_cu->list_in_scope = origin_previous_list_in_scope;
13694 }
13695
13696 static void
13697 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13698 {
13699 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13700 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13701 struct context_stack *newobj;
13702 CORE_ADDR lowpc;
13703 CORE_ADDR highpc;
13704 struct die_info *child_die;
13705 struct attribute *attr, *call_line, *call_file;
13706 const char *name;
13707 CORE_ADDR baseaddr;
13708 struct block *block;
13709 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13710 std::vector<struct symbol *> template_args;
13711 struct template_symbol *templ_func = NULL;
13712
13713 if (inlined_func)
13714 {
13715 /* If we do not have call site information, we can't show the
13716 caller of this inlined function. That's too confusing, so
13717 only use the scope for local variables. */
13718 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13719 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13720 if (call_line == NULL || call_file == NULL)
13721 {
13722 read_lexical_block_scope (die, cu);
13723 return;
13724 }
13725 }
13726
13727 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13728
13729 name = dwarf2_name (die, cu);
13730
13731 /* Ignore functions with missing or empty names. These are actually
13732 illegal according to the DWARF standard. */
13733 if (name == NULL)
13734 {
13735 complaint (&symfile_complaints,
13736 _("missing name for subprogram DIE at %s"),
13737 sect_offset_str (die->sect_off));
13738 return;
13739 }
13740
13741 /* Ignore functions with missing or invalid low and high pc attributes. */
13742 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13743 <= PC_BOUNDS_INVALID)
13744 {
13745 attr = dwarf2_attr (die, DW_AT_external, cu);
13746 if (!attr || !DW_UNSND (attr))
13747 complaint (&symfile_complaints,
13748 _("cannot get low and high bounds "
13749 "for subprogram DIE at %s"),
13750 sect_offset_str (die->sect_off));
13751 return;
13752 }
13753
13754 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13755 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13756
13757 /* If we have any template arguments, then we must allocate a
13758 different sort of symbol. */
13759 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13760 {
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 templ_func = allocate_template_symbol (objfile);
13765 templ_func->subclass = SYMBOL_TEMPLATE;
13766 break;
13767 }
13768 }
13769
13770 newobj = push_context (0, lowpc);
13771 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13772 (struct symbol *) templ_func);
13773
13774 /* If there is a location expression for DW_AT_frame_base, record
13775 it. */
13776 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13777 if (attr)
13778 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13779
13780 /* If there is a location for the static link, record it. */
13781 newobj->static_link = NULL;
13782 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13783 if (attr)
13784 {
13785 newobj->static_link
13786 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13787 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13788 }
13789
13790 cu->list_in_scope = &local_symbols;
13791
13792 if (die->child != NULL)
13793 {
13794 child_die = die->child;
13795 while (child_die && child_die->tag)
13796 {
13797 if (child_die->tag == DW_TAG_template_type_param
13798 || child_die->tag == DW_TAG_template_value_param)
13799 {
13800 struct symbol *arg = new_symbol (child_die, NULL, cu);
13801
13802 if (arg != NULL)
13803 template_args.push_back (arg);
13804 }
13805 else
13806 process_die (child_die, cu);
13807 child_die = sibling_die (child_die);
13808 }
13809 }
13810
13811 inherit_abstract_dies (die, cu);
13812
13813 /* If we have a DW_AT_specification, we might need to import using
13814 directives from the context of the specification DIE. See the
13815 comment in determine_prefix. */
13816 if (cu->language == language_cplus
13817 && dwarf2_attr (die, DW_AT_specification, cu))
13818 {
13819 struct dwarf2_cu *spec_cu = cu;
13820 struct die_info *spec_die = die_specification (die, &spec_cu);
13821
13822 while (spec_die)
13823 {
13824 child_die = spec_die->child;
13825 while (child_die && child_die->tag)
13826 {
13827 if (child_die->tag == DW_TAG_imported_module)
13828 process_die (child_die, spec_cu);
13829 child_die = sibling_die (child_die);
13830 }
13831
13832 /* In some cases, GCC generates specification DIEs that
13833 themselves contain DW_AT_specification attributes. */
13834 spec_die = die_specification (spec_die, &spec_cu);
13835 }
13836 }
13837
13838 newobj = pop_context ();
13839 /* Make a block for the local symbols within. */
13840 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13841 newobj->static_link, lowpc, highpc);
13842
13843 /* For C++, set the block's scope. */
13844 if ((cu->language == language_cplus
13845 || cu->language == language_fortran
13846 || cu->language == language_d
13847 || cu->language == language_rust)
13848 && cu->processing_has_namespace_info)
13849 block_set_scope (block, determine_prefix (die, cu),
13850 &objfile->objfile_obstack);
13851
13852 /* If we have address ranges, record them. */
13853 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13854
13855 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13856
13857 /* Attach template arguments to function. */
13858 if (!template_args.empty ())
13859 {
13860 gdb_assert (templ_func != NULL);
13861
13862 templ_func->n_template_arguments = template_args.size ();
13863 templ_func->template_arguments
13864 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13865 templ_func->n_template_arguments);
13866 memcpy (templ_func->template_arguments,
13867 template_args.data (),
13868 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13869 }
13870
13871 /* In C++, we can have functions nested inside functions (e.g., when
13872 a function declares a class that has methods). This means that
13873 when we finish processing a function scope, we may need to go
13874 back to building a containing block's symbol lists. */
13875 local_symbols = newobj->locals;
13876 local_using_directives = newobj->local_using_directives;
13877
13878 /* If we've finished processing a top-level function, subsequent
13879 symbols go in the file symbol list. */
13880 if (outermost_context_p ())
13881 cu->list_in_scope = &file_symbols;
13882 }
13883
13884 /* Process all the DIES contained within a lexical block scope. Start
13885 a new scope, process the dies, and then close the scope. */
13886
13887 static void
13888 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13889 {
13890 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13892 struct context_stack *newobj;
13893 CORE_ADDR lowpc, highpc;
13894 struct die_info *child_die;
13895 CORE_ADDR baseaddr;
13896
13897 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13898
13899 /* Ignore blocks with missing or invalid low and high pc attributes. */
13900 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13901 as multiple lexical blocks? Handling children in a sane way would
13902 be nasty. Might be easier to properly extend generic blocks to
13903 describe ranges. */
13904 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13905 {
13906 case PC_BOUNDS_NOT_PRESENT:
13907 /* DW_TAG_lexical_block has no attributes, process its children as if
13908 there was no wrapping by that DW_TAG_lexical_block.
13909 GCC does no longer produces such DWARF since GCC r224161. */
13910 for (child_die = die->child;
13911 child_die != NULL && child_die->tag;
13912 child_die = sibling_die (child_die))
13913 process_die (child_die, cu);
13914 return;
13915 case PC_BOUNDS_INVALID:
13916 return;
13917 }
13918 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13919 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13920
13921 push_context (0, lowpc);
13922 if (die->child != NULL)
13923 {
13924 child_die = die->child;
13925 while (child_die && child_die->tag)
13926 {
13927 process_die (child_die, cu);
13928 child_die = sibling_die (child_die);
13929 }
13930 }
13931 inherit_abstract_dies (die, cu);
13932 newobj = pop_context ();
13933
13934 if (local_symbols != NULL || local_using_directives != NULL)
13935 {
13936 struct block *block
13937 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13938 newobj->start_addr, highpc);
13939
13940 /* Note that recording ranges after traversing children, as we
13941 do here, means that recording a parent's ranges entails
13942 walking across all its children's ranges as they appear in
13943 the address map, which is quadratic behavior.
13944
13945 It would be nicer to record the parent's ranges before
13946 traversing its children, simply overriding whatever you find
13947 there. But since we don't even decide whether to create a
13948 block until after we've traversed its children, that's hard
13949 to do. */
13950 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13951 }
13952 local_symbols = newobj->locals;
13953 local_using_directives = newobj->local_using_directives;
13954 }
13955
13956 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13957
13958 static void
13959 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13960 {
13961 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13963 CORE_ADDR pc, baseaddr;
13964 struct attribute *attr;
13965 struct call_site *call_site, call_site_local;
13966 void **slot;
13967 int nparams;
13968 struct die_info *child_die;
13969
13970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13971
13972 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13973 if (attr == NULL)
13974 {
13975 /* This was a pre-DWARF-5 GNU extension alias
13976 for DW_AT_call_return_pc. */
13977 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13978 }
13979 if (!attr)
13980 {
13981 complaint (&symfile_complaints,
13982 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13983 "DIE %s [in module %s]"),
13984 sect_offset_str (die->sect_off), objfile_name (objfile));
13985 return;
13986 }
13987 pc = attr_value_as_address (attr) + baseaddr;
13988 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13989
13990 if (cu->call_site_htab == NULL)
13991 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13992 NULL, &objfile->objfile_obstack,
13993 hashtab_obstack_allocate, NULL);
13994 call_site_local.pc = pc;
13995 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13996 if (*slot != NULL)
13997 {
13998 complaint (&symfile_complaints,
13999 _("Duplicate PC %s for DW_TAG_call_site "
14000 "DIE %s [in module %s]"),
14001 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14002 objfile_name (objfile));
14003 return;
14004 }
14005
14006 /* Count parameters at the caller. */
14007
14008 nparams = 0;
14009 for (child_die = die->child; child_die && child_die->tag;
14010 child_die = sibling_die (child_die))
14011 {
14012 if (child_die->tag != DW_TAG_call_site_parameter
14013 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14014 {
14015 complaint (&symfile_complaints,
14016 _("Tag %d is not DW_TAG_call_site_parameter in "
14017 "DW_TAG_call_site child DIE %s [in module %s]"),
14018 child_die->tag, sect_offset_str (child_die->sect_off),
14019 objfile_name (objfile));
14020 continue;
14021 }
14022
14023 nparams++;
14024 }
14025
14026 call_site
14027 = ((struct call_site *)
14028 obstack_alloc (&objfile->objfile_obstack,
14029 sizeof (*call_site)
14030 + (sizeof (*call_site->parameter) * (nparams - 1))));
14031 *slot = call_site;
14032 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14033 call_site->pc = pc;
14034
14035 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14036 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14037 {
14038 struct die_info *func_die;
14039
14040 /* Skip also over DW_TAG_inlined_subroutine. */
14041 for (func_die = die->parent;
14042 func_die && func_die->tag != DW_TAG_subprogram
14043 && func_die->tag != DW_TAG_subroutine_type;
14044 func_die = func_die->parent);
14045
14046 /* DW_AT_call_all_calls is a superset
14047 of DW_AT_call_all_tail_calls. */
14048 if (func_die
14049 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14050 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14051 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14052 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14053 {
14054 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14055 not complete. But keep CALL_SITE for look ups via call_site_htab,
14056 both the initial caller containing the real return address PC and
14057 the final callee containing the current PC of a chain of tail
14058 calls do not need to have the tail call list complete. But any
14059 function candidate for a virtual tail call frame searched via
14060 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14061 determined unambiguously. */
14062 }
14063 else
14064 {
14065 struct type *func_type = NULL;
14066
14067 if (func_die)
14068 func_type = get_die_type (func_die, cu);
14069 if (func_type != NULL)
14070 {
14071 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14072
14073 /* Enlist this call site to the function. */
14074 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14075 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14076 }
14077 else
14078 complaint (&symfile_complaints,
14079 _("Cannot find function owning DW_TAG_call_site "
14080 "DIE %s [in module %s]"),
14081 sect_offset_str (die->sect_off), objfile_name (objfile));
14082 }
14083 }
14084
14085 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14086 if (attr == NULL)
14087 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14088 if (attr == NULL)
14089 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14090 if (attr == NULL)
14091 {
14092 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14093 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14094 }
14095 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14096 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14097 /* Keep NULL DWARF_BLOCK. */;
14098 else if (attr_form_is_block (attr))
14099 {
14100 struct dwarf2_locexpr_baton *dlbaton;
14101
14102 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14103 dlbaton->data = DW_BLOCK (attr)->data;
14104 dlbaton->size = DW_BLOCK (attr)->size;
14105 dlbaton->per_cu = cu->per_cu;
14106
14107 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14108 }
14109 else if (attr_form_is_ref (attr))
14110 {
14111 struct dwarf2_cu *target_cu = cu;
14112 struct die_info *target_die;
14113
14114 target_die = follow_die_ref (die, attr, &target_cu);
14115 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14116 if (die_is_declaration (target_die, target_cu))
14117 {
14118 const char *target_physname;
14119
14120 /* Prefer the mangled name; otherwise compute the demangled one. */
14121 target_physname = dw2_linkage_name (target_die, target_cu);
14122 if (target_physname == NULL)
14123 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14124 if (target_physname == NULL)
14125 complaint (&symfile_complaints,
14126 _("DW_AT_call_target target DIE has invalid "
14127 "physname, for referencing DIE %s [in module %s]"),
14128 sect_offset_str (die->sect_off), objfile_name (objfile));
14129 else
14130 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14131 }
14132 else
14133 {
14134 CORE_ADDR lowpc;
14135
14136 /* DW_AT_entry_pc should be preferred. */
14137 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14138 <= PC_BOUNDS_INVALID)
14139 complaint (&symfile_complaints,
14140 _("DW_AT_call_target target DIE has invalid "
14141 "low pc, for referencing DIE %s [in module %s]"),
14142 sect_offset_str (die->sect_off), objfile_name (objfile));
14143 else
14144 {
14145 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14146 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14147 }
14148 }
14149 }
14150 else
14151 complaint (&symfile_complaints,
14152 _("DW_TAG_call_site DW_AT_call_target is neither "
14153 "block nor reference, for DIE %s [in module %s]"),
14154 sect_offset_str (die->sect_off), objfile_name (objfile));
14155
14156 call_site->per_cu = cu->per_cu;
14157
14158 for (child_die = die->child;
14159 child_die && child_die->tag;
14160 child_die = sibling_die (child_die))
14161 {
14162 struct call_site_parameter *parameter;
14163 struct attribute *loc, *origin;
14164
14165 if (child_die->tag != DW_TAG_call_site_parameter
14166 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14167 {
14168 /* Already printed the complaint above. */
14169 continue;
14170 }
14171
14172 gdb_assert (call_site->parameter_count < nparams);
14173 parameter = &call_site->parameter[call_site->parameter_count];
14174
14175 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14176 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14177 register is contained in DW_AT_call_value. */
14178
14179 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14180 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14181 if (origin == NULL)
14182 {
14183 /* This was a pre-DWARF-5 GNU extension alias
14184 for DW_AT_call_parameter. */
14185 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14186 }
14187 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14188 {
14189 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14190
14191 sect_offset sect_off
14192 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14193 if (!offset_in_cu_p (&cu->header, sect_off))
14194 {
14195 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14196 binding can be done only inside one CU. Such referenced DIE
14197 therefore cannot be even moved to DW_TAG_partial_unit. */
14198 complaint (&symfile_complaints,
14199 _("DW_AT_call_parameter offset is not in CU for "
14200 "DW_TAG_call_site child DIE %s [in module %s]"),
14201 sect_offset_str (child_die->sect_off),
14202 objfile_name (objfile));
14203 continue;
14204 }
14205 parameter->u.param_cu_off
14206 = (cu_offset) (sect_off - cu->header.sect_off);
14207 }
14208 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14209 {
14210 complaint (&symfile_complaints,
14211 _("No DW_FORM_block* DW_AT_location for "
14212 "DW_TAG_call_site child DIE %s [in module %s]"),
14213 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14214 continue;
14215 }
14216 else
14217 {
14218 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14219 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14220 if (parameter->u.dwarf_reg != -1)
14221 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14222 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14223 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14224 &parameter->u.fb_offset))
14225 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14226 else
14227 {
14228 complaint (&symfile_complaints,
14229 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14230 "for DW_FORM_block* DW_AT_location is supported for "
14231 "DW_TAG_call_site child DIE %s "
14232 "[in module %s]"),
14233 sect_offset_str (child_die->sect_off),
14234 objfile_name (objfile));
14235 continue;
14236 }
14237 }
14238
14239 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14240 if (attr == NULL)
14241 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14242 if (!attr_form_is_block (attr))
14243 {
14244 complaint (&symfile_complaints,
14245 _("No DW_FORM_block* DW_AT_call_value for "
14246 "DW_TAG_call_site child DIE %s [in module %s]"),
14247 sect_offset_str (child_die->sect_off),
14248 objfile_name (objfile));
14249 continue;
14250 }
14251 parameter->value = DW_BLOCK (attr)->data;
14252 parameter->value_size = DW_BLOCK (attr)->size;
14253
14254 /* Parameters are not pre-cleared by memset above. */
14255 parameter->data_value = NULL;
14256 parameter->data_value_size = 0;
14257 call_site->parameter_count++;
14258
14259 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14260 if (attr == NULL)
14261 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14262 if (attr)
14263 {
14264 if (!attr_form_is_block (attr))
14265 complaint (&symfile_complaints,
14266 _("No DW_FORM_block* DW_AT_call_data_value for "
14267 "DW_TAG_call_site child DIE %s [in module %s]"),
14268 sect_offset_str (child_die->sect_off),
14269 objfile_name (objfile));
14270 else
14271 {
14272 parameter->data_value = DW_BLOCK (attr)->data;
14273 parameter->data_value_size = DW_BLOCK (attr)->size;
14274 }
14275 }
14276 }
14277 }
14278
14279 /* Helper function for read_variable. If DIE represents a virtual
14280 table, then return the type of the concrete object that is
14281 associated with the virtual table. Otherwise, return NULL. */
14282
14283 static struct type *
14284 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14285 {
14286 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14287 if (attr == NULL)
14288 return NULL;
14289
14290 /* Find the type DIE. */
14291 struct die_info *type_die = NULL;
14292 struct dwarf2_cu *type_cu = cu;
14293
14294 if (attr_form_is_ref (attr))
14295 type_die = follow_die_ref (die, attr, &type_cu);
14296 if (type_die == NULL)
14297 return NULL;
14298
14299 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14300 return NULL;
14301 return die_containing_type (type_die, type_cu);
14302 }
14303
14304 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14305
14306 static void
14307 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14308 {
14309 struct rust_vtable_symbol *storage = NULL;
14310
14311 if (cu->language == language_rust)
14312 {
14313 struct type *containing_type = rust_containing_type (die, cu);
14314
14315 if (containing_type != NULL)
14316 {
14317 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14318
14319 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14320 struct rust_vtable_symbol);
14321 initialize_objfile_symbol (storage);
14322 storage->concrete_type = containing_type;
14323 storage->subclass = SYMBOL_RUST_VTABLE;
14324 }
14325 }
14326
14327 new_symbol (die, NULL, cu, storage);
14328 }
14329
14330 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14331 reading .debug_rnglists.
14332 Callback's type should be:
14333 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14334 Return true if the attributes are present and valid, otherwise,
14335 return false. */
14336
14337 template <typename Callback>
14338 static bool
14339 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14340 Callback &&callback)
14341 {
14342 struct dwarf2_per_objfile *dwarf2_per_objfile
14343 = cu->per_cu->dwarf2_per_objfile;
14344 struct objfile *objfile = dwarf2_per_objfile->objfile;
14345 bfd *obfd = objfile->obfd;
14346 /* Base address selection entry. */
14347 CORE_ADDR base;
14348 int found_base;
14349 const gdb_byte *buffer;
14350 CORE_ADDR baseaddr;
14351 bool overflow = false;
14352
14353 found_base = cu->base_known;
14354 base = cu->base_address;
14355
14356 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14357 if (offset >= dwarf2_per_objfile->rnglists.size)
14358 {
14359 complaint (&symfile_complaints,
14360 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14361 offset);
14362 return false;
14363 }
14364 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14365
14366 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14367
14368 while (1)
14369 {
14370 /* Initialize it due to a false compiler warning. */
14371 CORE_ADDR range_beginning = 0, range_end = 0;
14372 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14373 + dwarf2_per_objfile->rnglists.size);
14374 unsigned int bytes_read;
14375
14376 if (buffer == buf_end)
14377 {
14378 overflow = true;
14379 break;
14380 }
14381 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14382 switch (rlet)
14383 {
14384 case DW_RLE_end_of_list:
14385 break;
14386 case DW_RLE_base_address:
14387 if (buffer + cu->header.addr_size > buf_end)
14388 {
14389 overflow = true;
14390 break;
14391 }
14392 base = read_address (obfd, buffer, cu, &bytes_read);
14393 found_base = 1;
14394 buffer += bytes_read;
14395 break;
14396 case DW_RLE_start_length:
14397 if (buffer + cu->header.addr_size > buf_end)
14398 {
14399 overflow = true;
14400 break;
14401 }
14402 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14403 buffer += bytes_read;
14404 range_end = (range_beginning
14405 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14406 buffer += bytes_read;
14407 if (buffer > buf_end)
14408 {
14409 overflow = true;
14410 break;
14411 }
14412 break;
14413 case DW_RLE_offset_pair:
14414 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14415 buffer += bytes_read;
14416 if (buffer > buf_end)
14417 {
14418 overflow = true;
14419 break;
14420 }
14421 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14422 buffer += bytes_read;
14423 if (buffer > buf_end)
14424 {
14425 overflow = true;
14426 break;
14427 }
14428 break;
14429 case DW_RLE_start_end:
14430 if (buffer + 2 * cu->header.addr_size > buf_end)
14431 {
14432 overflow = true;
14433 break;
14434 }
14435 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14436 buffer += bytes_read;
14437 range_end = read_address (obfd, buffer, cu, &bytes_read);
14438 buffer += bytes_read;
14439 break;
14440 default:
14441 complaint (&symfile_complaints,
14442 _("Invalid .debug_rnglists data (no base address)"));
14443 return false;
14444 }
14445 if (rlet == DW_RLE_end_of_list || overflow)
14446 break;
14447 if (rlet == DW_RLE_base_address)
14448 continue;
14449
14450 if (!found_base)
14451 {
14452 /* We have no valid base address for the ranges
14453 data. */
14454 complaint (&symfile_complaints,
14455 _("Invalid .debug_rnglists data (no base address)"));
14456 return false;
14457 }
14458
14459 if (range_beginning > range_end)
14460 {
14461 /* Inverted range entries are invalid. */
14462 complaint (&symfile_complaints,
14463 _("Invalid .debug_rnglists data (inverted range)"));
14464 return false;
14465 }
14466
14467 /* Empty range entries have no effect. */
14468 if (range_beginning == range_end)
14469 continue;
14470
14471 range_beginning += base;
14472 range_end += base;
14473
14474 /* A not-uncommon case of bad debug info.
14475 Don't pollute the addrmap with bad data. */
14476 if (range_beginning + baseaddr == 0
14477 && !dwarf2_per_objfile->has_section_at_zero)
14478 {
14479 complaint (&symfile_complaints,
14480 _(".debug_rnglists entry has start address of zero"
14481 " [in module %s]"), objfile_name (objfile));
14482 continue;
14483 }
14484
14485 callback (range_beginning, range_end);
14486 }
14487
14488 if (overflow)
14489 {
14490 complaint (&symfile_complaints,
14491 _("Offset %d is not terminated "
14492 "for DW_AT_ranges attribute"),
14493 offset);
14494 return false;
14495 }
14496
14497 return true;
14498 }
14499
14500 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14501 Callback's type should be:
14502 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14503 Return 1 if the attributes are present and valid, otherwise, return 0. */
14504
14505 template <typename Callback>
14506 static int
14507 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14508 Callback &&callback)
14509 {
14510 struct dwarf2_per_objfile *dwarf2_per_objfile
14511 = cu->per_cu->dwarf2_per_objfile;
14512 struct objfile *objfile = dwarf2_per_objfile->objfile;
14513 struct comp_unit_head *cu_header = &cu->header;
14514 bfd *obfd = objfile->obfd;
14515 unsigned int addr_size = cu_header->addr_size;
14516 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14517 /* Base address selection entry. */
14518 CORE_ADDR base;
14519 int found_base;
14520 unsigned int dummy;
14521 const gdb_byte *buffer;
14522 CORE_ADDR baseaddr;
14523
14524 if (cu_header->version >= 5)
14525 return dwarf2_rnglists_process (offset, cu, callback);
14526
14527 found_base = cu->base_known;
14528 base = cu->base_address;
14529
14530 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14531 if (offset >= dwarf2_per_objfile->ranges.size)
14532 {
14533 complaint (&symfile_complaints,
14534 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14535 offset);
14536 return 0;
14537 }
14538 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14539
14540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14541
14542 while (1)
14543 {
14544 CORE_ADDR range_beginning, range_end;
14545
14546 range_beginning = read_address (obfd, buffer, cu, &dummy);
14547 buffer += addr_size;
14548 range_end = read_address (obfd, buffer, cu, &dummy);
14549 buffer += addr_size;
14550 offset += 2 * addr_size;
14551
14552 /* An end of list marker is a pair of zero addresses. */
14553 if (range_beginning == 0 && range_end == 0)
14554 /* Found the end of list entry. */
14555 break;
14556
14557 /* Each base address selection entry is a pair of 2 values.
14558 The first is the largest possible address, the second is
14559 the base address. Check for a base address here. */
14560 if ((range_beginning & mask) == mask)
14561 {
14562 /* If we found the largest possible address, then we already
14563 have the base address in range_end. */
14564 base = range_end;
14565 found_base = 1;
14566 continue;
14567 }
14568
14569 if (!found_base)
14570 {
14571 /* We have no valid base address for the ranges
14572 data. */
14573 complaint (&symfile_complaints,
14574 _("Invalid .debug_ranges data (no base address)"));
14575 return 0;
14576 }
14577
14578 if (range_beginning > range_end)
14579 {
14580 /* Inverted range entries are invalid. */
14581 complaint (&symfile_complaints,
14582 _("Invalid .debug_ranges data (inverted range)"));
14583 return 0;
14584 }
14585
14586 /* Empty range entries have no effect. */
14587 if (range_beginning == range_end)
14588 continue;
14589
14590 range_beginning += base;
14591 range_end += base;
14592
14593 /* A not-uncommon case of bad debug info.
14594 Don't pollute the addrmap with bad data. */
14595 if (range_beginning + baseaddr == 0
14596 && !dwarf2_per_objfile->has_section_at_zero)
14597 {
14598 complaint (&symfile_complaints,
14599 _(".debug_ranges entry has start address of zero"
14600 " [in module %s]"), objfile_name (objfile));
14601 continue;
14602 }
14603
14604 callback (range_beginning, range_end);
14605 }
14606
14607 return 1;
14608 }
14609
14610 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14611 Return 1 if the attributes are present and valid, otherwise, return 0.
14612 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14613
14614 static int
14615 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14616 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14617 struct partial_symtab *ranges_pst)
14618 {
14619 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14620 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14621 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14622 SECT_OFF_TEXT (objfile));
14623 int low_set = 0;
14624 CORE_ADDR low = 0;
14625 CORE_ADDR high = 0;
14626 int retval;
14627
14628 retval = dwarf2_ranges_process (offset, cu,
14629 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14630 {
14631 if (ranges_pst != NULL)
14632 {
14633 CORE_ADDR lowpc;
14634 CORE_ADDR highpc;
14635
14636 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14637 range_beginning + baseaddr);
14638 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14639 range_end + baseaddr);
14640 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14641 ranges_pst);
14642 }
14643
14644 /* FIXME: This is recording everything as a low-high
14645 segment of consecutive addresses. We should have a
14646 data structure for discontiguous block ranges
14647 instead. */
14648 if (! low_set)
14649 {
14650 low = range_beginning;
14651 high = range_end;
14652 low_set = 1;
14653 }
14654 else
14655 {
14656 if (range_beginning < low)
14657 low = range_beginning;
14658 if (range_end > high)
14659 high = range_end;
14660 }
14661 });
14662 if (!retval)
14663 return 0;
14664
14665 if (! low_set)
14666 /* If the first entry is an end-of-list marker, the range
14667 describes an empty scope, i.e. no instructions. */
14668 return 0;
14669
14670 if (low_return)
14671 *low_return = low;
14672 if (high_return)
14673 *high_return = high;
14674 return 1;
14675 }
14676
14677 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14678 definition for the return value. *LOWPC and *HIGHPC are set iff
14679 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14680
14681 static enum pc_bounds_kind
14682 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14683 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14684 struct partial_symtab *pst)
14685 {
14686 struct dwarf2_per_objfile *dwarf2_per_objfile
14687 = cu->per_cu->dwarf2_per_objfile;
14688 struct attribute *attr;
14689 struct attribute *attr_high;
14690 CORE_ADDR low = 0;
14691 CORE_ADDR high = 0;
14692 enum pc_bounds_kind ret;
14693
14694 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14695 if (attr_high)
14696 {
14697 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14698 if (attr)
14699 {
14700 low = attr_value_as_address (attr);
14701 high = attr_value_as_address (attr_high);
14702 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14703 high += low;
14704 }
14705 else
14706 /* Found high w/o low attribute. */
14707 return PC_BOUNDS_INVALID;
14708
14709 /* Found consecutive range of addresses. */
14710 ret = PC_BOUNDS_HIGH_LOW;
14711 }
14712 else
14713 {
14714 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14715 if (attr != NULL)
14716 {
14717 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14718 We take advantage of the fact that DW_AT_ranges does not appear
14719 in DW_TAG_compile_unit of DWO files. */
14720 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14721 unsigned int ranges_offset = (DW_UNSND (attr)
14722 + (need_ranges_base
14723 ? cu->ranges_base
14724 : 0));
14725
14726 /* Value of the DW_AT_ranges attribute is the offset in the
14727 .debug_ranges section. */
14728 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14729 return PC_BOUNDS_INVALID;
14730 /* Found discontinuous range of addresses. */
14731 ret = PC_BOUNDS_RANGES;
14732 }
14733 else
14734 return PC_BOUNDS_NOT_PRESENT;
14735 }
14736
14737 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14738 if (high <= low)
14739 return PC_BOUNDS_INVALID;
14740
14741 /* When using the GNU linker, .gnu.linkonce. sections are used to
14742 eliminate duplicate copies of functions and vtables and such.
14743 The linker will arbitrarily choose one and discard the others.
14744 The AT_*_pc values for such functions refer to local labels in
14745 these sections. If the section from that file was discarded, the
14746 labels are not in the output, so the relocs get a value of 0.
14747 If this is a discarded function, mark the pc bounds as invalid,
14748 so that GDB will ignore it. */
14749 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14750 return PC_BOUNDS_INVALID;
14751
14752 *lowpc = low;
14753 if (highpc)
14754 *highpc = high;
14755 return ret;
14756 }
14757
14758 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14759 its low and high PC addresses. Do nothing if these addresses could not
14760 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14761 and HIGHPC to the high address if greater than HIGHPC. */
14762
14763 static void
14764 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14765 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14766 struct dwarf2_cu *cu)
14767 {
14768 CORE_ADDR low, high;
14769 struct die_info *child = die->child;
14770
14771 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14772 {
14773 *lowpc = std::min (*lowpc, low);
14774 *highpc = std::max (*highpc, high);
14775 }
14776
14777 /* If the language does not allow nested subprograms (either inside
14778 subprograms or lexical blocks), we're done. */
14779 if (cu->language != language_ada)
14780 return;
14781
14782 /* Check all the children of the given DIE. If it contains nested
14783 subprograms, then check their pc bounds. Likewise, we need to
14784 check lexical blocks as well, as they may also contain subprogram
14785 definitions. */
14786 while (child && child->tag)
14787 {
14788 if (child->tag == DW_TAG_subprogram
14789 || child->tag == DW_TAG_lexical_block)
14790 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14791 child = sibling_die (child);
14792 }
14793 }
14794
14795 /* Get the low and high pc's represented by the scope DIE, and store
14796 them in *LOWPC and *HIGHPC. If the correct values can't be
14797 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14798
14799 static void
14800 get_scope_pc_bounds (struct die_info *die,
14801 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14802 struct dwarf2_cu *cu)
14803 {
14804 CORE_ADDR best_low = (CORE_ADDR) -1;
14805 CORE_ADDR best_high = (CORE_ADDR) 0;
14806 CORE_ADDR current_low, current_high;
14807
14808 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14809 >= PC_BOUNDS_RANGES)
14810 {
14811 best_low = current_low;
14812 best_high = current_high;
14813 }
14814 else
14815 {
14816 struct die_info *child = die->child;
14817
14818 while (child && child->tag)
14819 {
14820 switch (child->tag) {
14821 case DW_TAG_subprogram:
14822 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14823 break;
14824 case DW_TAG_namespace:
14825 case DW_TAG_module:
14826 /* FIXME: carlton/2004-01-16: Should we do this for
14827 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14828 that current GCC's always emit the DIEs corresponding
14829 to definitions of methods of classes as children of a
14830 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14831 the DIEs giving the declarations, which could be
14832 anywhere). But I don't see any reason why the
14833 standards says that they have to be there. */
14834 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14835
14836 if (current_low != ((CORE_ADDR) -1))
14837 {
14838 best_low = std::min (best_low, current_low);
14839 best_high = std::max (best_high, current_high);
14840 }
14841 break;
14842 default:
14843 /* Ignore. */
14844 break;
14845 }
14846
14847 child = sibling_die (child);
14848 }
14849 }
14850
14851 *lowpc = best_low;
14852 *highpc = best_high;
14853 }
14854
14855 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14856 in DIE. */
14857
14858 static void
14859 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14860 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14861 {
14862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14863 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14864 struct attribute *attr;
14865 struct attribute *attr_high;
14866
14867 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14868 if (attr_high)
14869 {
14870 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14871 if (attr)
14872 {
14873 CORE_ADDR low = attr_value_as_address (attr);
14874 CORE_ADDR high = attr_value_as_address (attr_high);
14875
14876 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14877 high += low;
14878
14879 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14880 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14881 record_block_range (block, low, high - 1);
14882 }
14883 }
14884
14885 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14886 if (attr)
14887 {
14888 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14889 We take advantage of the fact that DW_AT_ranges does not appear
14890 in DW_TAG_compile_unit of DWO files. */
14891 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14892
14893 /* The value of the DW_AT_ranges attribute is the offset of the
14894 address range list in the .debug_ranges section. */
14895 unsigned long offset = (DW_UNSND (attr)
14896 + (need_ranges_base ? cu->ranges_base : 0));
14897 const gdb_byte *buffer;
14898
14899 /* For some target architectures, but not others, the
14900 read_address function sign-extends the addresses it returns.
14901 To recognize base address selection entries, we need a
14902 mask. */
14903 unsigned int addr_size = cu->header.addr_size;
14904 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14905
14906 /* The base address, to which the next pair is relative. Note
14907 that this 'base' is a DWARF concept: most entries in a range
14908 list are relative, to reduce the number of relocs against the
14909 debugging information. This is separate from this function's
14910 'baseaddr' argument, which GDB uses to relocate debugging
14911 information from a shared library based on the address at
14912 which the library was loaded. */
14913 CORE_ADDR base = cu->base_address;
14914 int base_known = cu->base_known;
14915
14916 dwarf2_ranges_process (offset, cu,
14917 [&] (CORE_ADDR start, CORE_ADDR end)
14918 {
14919 start += baseaddr;
14920 end += baseaddr;
14921 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14922 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14923 record_block_range (block, start, end - 1);
14924 });
14925 }
14926 }
14927
14928 /* Check whether the producer field indicates either of GCC < 4.6, or the
14929 Intel C/C++ compiler, and cache the result in CU. */
14930
14931 static void
14932 check_producer (struct dwarf2_cu *cu)
14933 {
14934 int major, minor;
14935
14936 if (cu->producer == NULL)
14937 {
14938 /* For unknown compilers expect their behavior is DWARF version
14939 compliant.
14940
14941 GCC started to support .debug_types sections by -gdwarf-4 since
14942 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14943 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14944 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14945 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14946 }
14947 else if (producer_is_gcc (cu->producer, &major, &minor))
14948 {
14949 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14950 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14951 }
14952 else if (producer_is_icc (cu->producer, &major, &minor))
14953 cu->producer_is_icc_lt_14 = major < 14;
14954 else
14955 {
14956 /* For other non-GCC compilers, expect their behavior is DWARF version
14957 compliant. */
14958 }
14959
14960 cu->checked_producer = 1;
14961 }
14962
14963 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14964 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14965 during 4.6.0 experimental. */
14966
14967 static int
14968 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14969 {
14970 if (!cu->checked_producer)
14971 check_producer (cu);
14972
14973 return cu->producer_is_gxx_lt_4_6;
14974 }
14975
14976 /* Return the default accessibility type if it is not overriden by
14977 DW_AT_accessibility. */
14978
14979 static enum dwarf_access_attribute
14980 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14981 {
14982 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14983 {
14984 /* The default DWARF 2 accessibility for members is public, the default
14985 accessibility for inheritance is private. */
14986
14987 if (die->tag != DW_TAG_inheritance)
14988 return DW_ACCESS_public;
14989 else
14990 return DW_ACCESS_private;
14991 }
14992 else
14993 {
14994 /* DWARF 3+ defines the default accessibility a different way. The same
14995 rules apply now for DW_TAG_inheritance as for the members and it only
14996 depends on the container kind. */
14997
14998 if (die->parent->tag == DW_TAG_class_type)
14999 return DW_ACCESS_private;
15000 else
15001 return DW_ACCESS_public;
15002 }
15003 }
15004
15005 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15006 offset. If the attribute was not found return 0, otherwise return
15007 1. If it was found but could not properly be handled, set *OFFSET
15008 to 0. */
15009
15010 static int
15011 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15012 LONGEST *offset)
15013 {
15014 struct attribute *attr;
15015
15016 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15017 if (attr != NULL)
15018 {
15019 *offset = 0;
15020
15021 /* Note that we do not check for a section offset first here.
15022 This is because DW_AT_data_member_location is new in DWARF 4,
15023 so if we see it, we can assume that a constant form is really
15024 a constant and not a section offset. */
15025 if (attr_form_is_constant (attr))
15026 *offset = dwarf2_get_attr_constant_value (attr, 0);
15027 else if (attr_form_is_section_offset (attr))
15028 dwarf2_complex_location_expr_complaint ();
15029 else if (attr_form_is_block (attr))
15030 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15031 else
15032 dwarf2_complex_location_expr_complaint ();
15033
15034 return 1;
15035 }
15036
15037 return 0;
15038 }
15039
15040 /* Add an aggregate field to the field list. */
15041
15042 static void
15043 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15044 struct dwarf2_cu *cu)
15045 {
15046 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15047 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15048 struct nextfield *new_field;
15049 struct attribute *attr;
15050 struct field *fp;
15051 const char *fieldname = "";
15052
15053 if (die->tag == DW_TAG_inheritance)
15054 {
15055 fip->baseclasses.emplace_back ();
15056 new_field = &fip->baseclasses.back ();
15057 }
15058 else
15059 {
15060 fip->fields.emplace_back ();
15061 new_field = &fip->fields.back ();
15062 }
15063
15064 fip->nfields++;
15065
15066 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15067 if (attr)
15068 new_field->accessibility = DW_UNSND (attr);
15069 else
15070 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15071 if (new_field->accessibility != DW_ACCESS_public)
15072 fip->non_public_fields = 1;
15073
15074 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15075 if (attr)
15076 new_field->virtuality = DW_UNSND (attr);
15077 else
15078 new_field->virtuality = DW_VIRTUALITY_none;
15079
15080 fp = &new_field->field;
15081
15082 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15083 {
15084 LONGEST offset;
15085
15086 /* Data member other than a C++ static data member. */
15087
15088 /* Get type of field. */
15089 fp->type = die_type (die, cu);
15090
15091 SET_FIELD_BITPOS (*fp, 0);
15092
15093 /* Get bit size of field (zero if none). */
15094 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15095 if (attr)
15096 {
15097 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15098 }
15099 else
15100 {
15101 FIELD_BITSIZE (*fp) = 0;
15102 }
15103
15104 /* Get bit offset of field. */
15105 if (handle_data_member_location (die, cu, &offset))
15106 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15107 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15108 if (attr)
15109 {
15110 if (gdbarch_bits_big_endian (gdbarch))
15111 {
15112 /* For big endian bits, the DW_AT_bit_offset gives the
15113 additional bit offset from the MSB of the containing
15114 anonymous object to the MSB of the field. We don't
15115 have to do anything special since we don't need to
15116 know the size of the anonymous object. */
15117 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15118 }
15119 else
15120 {
15121 /* For little endian bits, compute the bit offset to the
15122 MSB of the anonymous object, subtract off the number of
15123 bits from the MSB of the field to the MSB of the
15124 object, and then subtract off the number of bits of
15125 the field itself. The result is the bit offset of
15126 the LSB of the field. */
15127 int anonymous_size;
15128 int bit_offset = DW_UNSND (attr);
15129
15130 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15131 if (attr)
15132 {
15133 /* The size of the anonymous object containing
15134 the bit field is explicit, so use the
15135 indicated size (in bytes). */
15136 anonymous_size = DW_UNSND (attr);
15137 }
15138 else
15139 {
15140 /* The size of the anonymous object containing
15141 the bit field must be inferred from the type
15142 attribute of the data member containing the
15143 bit field. */
15144 anonymous_size = TYPE_LENGTH (fp->type);
15145 }
15146 SET_FIELD_BITPOS (*fp,
15147 (FIELD_BITPOS (*fp)
15148 + anonymous_size * bits_per_byte
15149 - bit_offset - FIELD_BITSIZE (*fp)));
15150 }
15151 }
15152 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15153 if (attr != NULL)
15154 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15155 + dwarf2_get_attr_constant_value (attr, 0)));
15156
15157 /* Get name of field. */
15158 fieldname = dwarf2_name (die, cu);
15159 if (fieldname == NULL)
15160 fieldname = "";
15161
15162 /* The name is already allocated along with this objfile, so we don't
15163 need to duplicate it for the type. */
15164 fp->name = fieldname;
15165
15166 /* Change accessibility for artificial fields (e.g. virtual table
15167 pointer or virtual base class pointer) to private. */
15168 if (dwarf2_attr (die, DW_AT_artificial, cu))
15169 {
15170 FIELD_ARTIFICIAL (*fp) = 1;
15171 new_field->accessibility = DW_ACCESS_private;
15172 fip->non_public_fields = 1;
15173 }
15174 }
15175 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15176 {
15177 /* C++ static member. */
15178
15179 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15180 is a declaration, but all versions of G++ as of this writing
15181 (so through at least 3.2.1) incorrectly generate
15182 DW_TAG_variable tags. */
15183
15184 const char *physname;
15185
15186 /* Get name of field. */
15187 fieldname = dwarf2_name (die, cu);
15188 if (fieldname == NULL)
15189 return;
15190
15191 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15192 if (attr
15193 /* Only create a symbol if this is an external value.
15194 new_symbol checks this and puts the value in the global symbol
15195 table, which we want. If it is not external, new_symbol
15196 will try to put the value in cu->list_in_scope which is wrong. */
15197 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15198 {
15199 /* A static const member, not much different than an enum as far as
15200 we're concerned, except that we can support more types. */
15201 new_symbol (die, NULL, cu);
15202 }
15203
15204 /* Get physical name. */
15205 physname = dwarf2_physname (fieldname, die, cu);
15206
15207 /* The name is already allocated along with this objfile, so we don't
15208 need to duplicate it for the type. */
15209 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15210 FIELD_TYPE (*fp) = die_type (die, cu);
15211 FIELD_NAME (*fp) = fieldname;
15212 }
15213 else if (die->tag == DW_TAG_inheritance)
15214 {
15215 LONGEST offset;
15216
15217 /* C++ base class field. */
15218 if (handle_data_member_location (die, cu, &offset))
15219 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15220 FIELD_BITSIZE (*fp) = 0;
15221 FIELD_TYPE (*fp) = die_type (die, cu);
15222 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15223 }
15224 else if (die->tag == DW_TAG_variant_part)
15225 {
15226 /* process_structure_scope will treat this DIE as a union. */
15227 process_structure_scope (die, cu);
15228
15229 /* The variant part is relative to the start of the enclosing
15230 structure. */
15231 SET_FIELD_BITPOS (*fp, 0);
15232 fp->type = get_die_type (die, cu);
15233 fp->artificial = 1;
15234 fp->name = "<<variant>>";
15235 }
15236 else
15237 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15238 }
15239
15240 /* Can the type given by DIE define another type? */
15241
15242 static bool
15243 type_can_define_types (const struct die_info *die)
15244 {
15245 switch (die->tag)
15246 {
15247 case DW_TAG_typedef:
15248 case DW_TAG_class_type:
15249 case DW_TAG_structure_type:
15250 case DW_TAG_union_type:
15251 case DW_TAG_enumeration_type:
15252 return true;
15253
15254 default:
15255 return false;
15256 }
15257 }
15258
15259 /* Add a type definition defined in the scope of the FIP's class. */
15260
15261 static void
15262 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15263 struct dwarf2_cu *cu)
15264 {
15265 struct decl_field fp;
15266 memset (&fp, 0, sizeof (fp));
15267
15268 gdb_assert (type_can_define_types (die));
15269
15270 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15271 fp.name = dwarf2_name (die, cu);
15272 fp.type = read_type_die (die, cu);
15273
15274 /* Save accessibility. */
15275 enum dwarf_access_attribute accessibility;
15276 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15277 if (attr != NULL)
15278 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15279 else
15280 accessibility = dwarf2_default_access_attribute (die, cu);
15281 switch (accessibility)
15282 {
15283 case DW_ACCESS_public:
15284 /* The assumed value if neither private nor protected. */
15285 break;
15286 case DW_ACCESS_private:
15287 fp.is_private = 1;
15288 break;
15289 case DW_ACCESS_protected:
15290 fp.is_protected = 1;
15291 break;
15292 default:
15293 complaint (&symfile_complaints,
15294 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15295 }
15296
15297 if (die->tag == DW_TAG_typedef)
15298 fip->typedef_field_list.push_back (fp);
15299 else
15300 fip->nested_types_list.push_back (fp);
15301 }
15302
15303 /* Create the vector of fields, and attach it to the type. */
15304
15305 static void
15306 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15307 struct dwarf2_cu *cu)
15308 {
15309 int nfields = fip->nfields;
15310
15311 /* Record the field count, allocate space for the array of fields,
15312 and create blank accessibility bitfields if necessary. */
15313 TYPE_NFIELDS (type) = nfields;
15314 TYPE_FIELDS (type) = (struct field *)
15315 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15316
15317 if (fip->non_public_fields && cu->language != language_ada)
15318 {
15319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15320
15321 TYPE_FIELD_PRIVATE_BITS (type) =
15322 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15323 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15324
15325 TYPE_FIELD_PROTECTED_BITS (type) =
15326 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15327 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15328
15329 TYPE_FIELD_IGNORE_BITS (type) =
15330 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15331 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15332 }
15333
15334 /* If the type has baseclasses, allocate and clear a bit vector for
15335 TYPE_FIELD_VIRTUAL_BITS. */
15336 if (!fip->baseclasses.empty () && cu->language != language_ada)
15337 {
15338 int num_bytes = B_BYTES (fip->baseclasses.size ());
15339 unsigned char *pointer;
15340
15341 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15342 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15343 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15344 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15345 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15346 }
15347
15348 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15349 {
15350 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15351
15352 for (int index = 0; index < nfields; ++index)
15353 {
15354 struct nextfield &field = fip->fields[index];
15355
15356 if (field.variant.is_discriminant)
15357 di->discriminant_index = index;
15358 else if (field.variant.default_branch)
15359 di->default_index = index;
15360 else
15361 di->discriminants[index] = field.variant.discriminant_value;
15362 }
15363 }
15364
15365 /* Copy the saved-up fields into the field vector. */
15366 for (int i = 0; i < nfields; ++i)
15367 {
15368 struct nextfield &field
15369 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15370 : fip->fields[i - fip->baseclasses.size ()]);
15371
15372 TYPE_FIELD (type, i) = field.field;
15373 switch (field.accessibility)
15374 {
15375 case DW_ACCESS_private:
15376 if (cu->language != language_ada)
15377 SET_TYPE_FIELD_PRIVATE (type, i);
15378 break;
15379
15380 case DW_ACCESS_protected:
15381 if (cu->language != language_ada)
15382 SET_TYPE_FIELD_PROTECTED (type, i);
15383 break;
15384
15385 case DW_ACCESS_public:
15386 break;
15387
15388 default:
15389 /* Unknown accessibility. Complain and treat it as public. */
15390 {
15391 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15392 field.accessibility);
15393 }
15394 break;
15395 }
15396 if (i < fip->baseclasses.size ())
15397 {
15398 switch (field.virtuality)
15399 {
15400 case DW_VIRTUALITY_virtual:
15401 case DW_VIRTUALITY_pure_virtual:
15402 if (cu->language == language_ada)
15403 error (_("unexpected virtuality in component of Ada type"));
15404 SET_TYPE_FIELD_VIRTUAL (type, i);
15405 break;
15406 }
15407 }
15408 }
15409 }
15410
15411 /* Return true if this member function is a constructor, false
15412 otherwise. */
15413
15414 static int
15415 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15416 {
15417 const char *fieldname;
15418 const char *type_name;
15419 int len;
15420
15421 if (die->parent == NULL)
15422 return 0;
15423
15424 if (die->parent->tag != DW_TAG_structure_type
15425 && die->parent->tag != DW_TAG_union_type
15426 && die->parent->tag != DW_TAG_class_type)
15427 return 0;
15428
15429 fieldname = dwarf2_name (die, cu);
15430 type_name = dwarf2_name (die->parent, cu);
15431 if (fieldname == NULL || type_name == NULL)
15432 return 0;
15433
15434 len = strlen (fieldname);
15435 return (strncmp (fieldname, type_name, len) == 0
15436 && (type_name[len] == '\0' || type_name[len] == '<'));
15437 }
15438
15439 /* Add a member function to the proper fieldlist. */
15440
15441 static void
15442 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15443 struct type *type, struct dwarf2_cu *cu)
15444 {
15445 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15446 struct attribute *attr;
15447 int i;
15448 struct fnfieldlist *flp = nullptr;
15449 struct fn_field *fnp;
15450 const char *fieldname;
15451 struct type *this_type;
15452 enum dwarf_access_attribute accessibility;
15453
15454 if (cu->language == language_ada)
15455 error (_("unexpected member function in Ada type"));
15456
15457 /* Get name of member function. */
15458 fieldname = dwarf2_name (die, cu);
15459 if (fieldname == NULL)
15460 return;
15461
15462 /* Look up member function name in fieldlist. */
15463 for (i = 0; i < fip->fnfieldlists.size (); i++)
15464 {
15465 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15466 {
15467 flp = &fip->fnfieldlists[i];
15468 break;
15469 }
15470 }
15471
15472 /* Create a new fnfieldlist if necessary. */
15473 if (flp == nullptr)
15474 {
15475 fip->fnfieldlists.emplace_back ();
15476 flp = &fip->fnfieldlists.back ();
15477 flp->name = fieldname;
15478 i = fip->fnfieldlists.size () - 1;
15479 }
15480
15481 /* Create a new member function field and add it to the vector of
15482 fnfieldlists. */
15483 flp->fnfields.emplace_back ();
15484 fnp = &flp->fnfields.back ();
15485
15486 /* Delay processing of the physname until later. */
15487 if (cu->language == language_cplus)
15488 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15489 die, cu);
15490 else
15491 {
15492 const char *physname = dwarf2_physname (fieldname, die, cu);
15493 fnp->physname = physname ? physname : "";
15494 }
15495
15496 fnp->type = alloc_type (objfile);
15497 this_type = read_type_die (die, cu);
15498 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15499 {
15500 int nparams = TYPE_NFIELDS (this_type);
15501
15502 /* TYPE is the domain of this method, and THIS_TYPE is the type
15503 of the method itself (TYPE_CODE_METHOD). */
15504 smash_to_method_type (fnp->type, type,
15505 TYPE_TARGET_TYPE (this_type),
15506 TYPE_FIELDS (this_type),
15507 TYPE_NFIELDS (this_type),
15508 TYPE_VARARGS (this_type));
15509
15510 /* Handle static member functions.
15511 Dwarf2 has no clean way to discern C++ static and non-static
15512 member functions. G++ helps GDB by marking the first
15513 parameter for non-static member functions (which is the this
15514 pointer) as artificial. We obtain this information from
15515 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15516 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15517 fnp->voffset = VOFFSET_STATIC;
15518 }
15519 else
15520 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15521 dwarf2_full_name (fieldname, die, cu));
15522
15523 /* Get fcontext from DW_AT_containing_type if present. */
15524 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15525 fnp->fcontext = die_containing_type (die, cu);
15526
15527 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15528 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15529
15530 /* Get accessibility. */
15531 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15532 if (attr)
15533 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15534 else
15535 accessibility = dwarf2_default_access_attribute (die, cu);
15536 switch (accessibility)
15537 {
15538 case DW_ACCESS_private:
15539 fnp->is_private = 1;
15540 break;
15541 case DW_ACCESS_protected:
15542 fnp->is_protected = 1;
15543 break;
15544 }
15545
15546 /* Check for artificial methods. */
15547 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15548 if (attr && DW_UNSND (attr) != 0)
15549 fnp->is_artificial = 1;
15550
15551 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15552
15553 /* Get index in virtual function table if it is a virtual member
15554 function. For older versions of GCC, this is an offset in the
15555 appropriate virtual table, as specified by DW_AT_containing_type.
15556 For everyone else, it is an expression to be evaluated relative
15557 to the object address. */
15558
15559 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15560 if (attr)
15561 {
15562 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15563 {
15564 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15565 {
15566 /* Old-style GCC. */
15567 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15568 }
15569 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15570 || (DW_BLOCK (attr)->size > 1
15571 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15572 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15573 {
15574 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15575 if ((fnp->voffset % cu->header.addr_size) != 0)
15576 dwarf2_complex_location_expr_complaint ();
15577 else
15578 fnp->voffset /= cu->header.addr_size;
15579 fnp->voffset += 2;
15580 }
15581 else
15582 dwarf2_complex_location_expr_complaint ();
15583
15584 if (!fnp->fcontext)
15585 {
15586 /* If there is no `this' field and no DW_AT_containing_type,
15587 we cannot actually find a base class context for the
15588 vtable! */
15589 if (TYPE_NFIELDS (this_type) == 0
15590 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15591 {
15592 complaint (&symfile_complaints,
15593 _("cannot determine context for virtual member "
15594 "function \"%s\" (offset %s)"),
15595 fieldname, sect_offset_str (die->sect_off));
15596 }
15597 else
15598 {
15599 fnp->fcontext
15600 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15601 }
15602 }
15603 }
15604 else if (attr_form_is_section_offset (attr))
15605 {
15606 dwarf2_complex_location_expr_complaint ();
15607 }
15608 else
15609 {
15610 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15611 fieldname);
15612 }
15613 }
15614 else
15615 {
15616 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15617 if (attr && DW_UNSND (attr))
15618 {
15619 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15620 complaint (&symfile_complaints,
15621 _("Member function \"%s\" (offset %s) is virtual "
15622 "but the vtable offset is not specified"),
15623 fieldname, sect_offset_str (die->sect_off));
15624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15625 TYPE_CPLUS_DYNAMIC (type) = 1;
15626 }
15627 }
15628 }
15629
15630 /* Create the vector of member function fields, and attach it to the type. */
15631
15632 static void
15633 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15634 struct dwarf2_cu *cu)
15635 {
15636 if (cu->language == language_ada)
15637 error (_("unexpected member functions in Ada type"));
15638
15639 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15640 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15641 TYPE_ALLOC (type,
15642 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15643
15644 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15645 {
15646 struct fnfieldlist &nf = fip->fnfieldlists[i];
15647 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15648
15649 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15650 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15651 fn_flp->fn_fields = (struct fn_field *)
15652 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15653
15654 for (int k = 0; k < nf.fnfields.size (); ++k)
15655 fn_flp->fn_fields[k] = nf.fnfields[k];
15656 }
15657
15658 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15659 }
15660
15661 /* Returns non-zero if NAME is the name of a vtable member in CU's
15662 language, zero otherwise. */
15663 static int
15664 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15665 {
15666 static const char vptr[] = "_vptr";
15667
15668 /* Look for the C++ form of the vtable. */
15669 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15670 return 1;
15671
15672 return 0;
15673 }
15674
15675 /* GCC outputs unnamed structures that are really pointers to member
15676 functions, with the ABI-specified layout. If TYPE describes
15677 such a structure, smash it into a member function type.
15678
15679 GCC shouldn't do this; it should just output pointer to member DIEs.
15680 This is GCC PR debug/28767. */
15681
15682 static void
15683 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15684 {
15685 struct type *pfn_type, *self_type, *new_type;
15686
15687 /* Check for a structure with no name and two children. */
15688 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15689 return;
15690
15691 /* Check for __pfn and __delta members. */
15692 if (TYPE_FIELD_NAME (type, 0) == NULL
15693 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15694 || TYPE_FIELD_NAME (type, 1) == NULL
15695 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15696 return;
15697
15698 /* Find the type of the method. */
15699 pfn_type = TYPE_FIELD_TYPE (type, 0);
15700 if (pfn_type == NULL
15701 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15702 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15703 return;
15704
15705 /* Look for the "this" argument. */
15706 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15707 if (TYPE_NFIELDS (pfn_type) == 0
15708 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15709 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15710 return;
15711
15712 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15713 new_type = alloc_type (objfile);
15714 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15715 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15716 TYPE_VARARGS (pfn_type));
15717 smash_to_methodptr_type (type, new_type);
15718 }
15719
15720
15721 /* Called when we find the DIE that starts a structure or union scope
15722 (definition) to create a type for the structure or union. Fill in
15723 the type's name and general properties; the members will not be
15724 processed until process_structure_scope. A symbol table entry for
15725 the type will also not be done until process_structure_scope (assuming
15726 the type has a name).
15727
15728 NOTE: we need to call these functions regardless of whether or not the
15729 DIE has a DW_AT_name attribute, since it might be an anonymous
15730 structure or union. This gets the type entered into our set of
15731 user defined types. */
15732
15733 static struct type *
15734 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15735 {
15736 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15737 struct type *type;
15738 struct attribute *attr;
15739 const char *name;
15740
15741 /* If the definition of this type lives in .debug_types, read that type.
15742 Don't follow DW_AT_specification though, that will take us back up
15743 the chain and we want to go down. */
15744 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15745 if (attr)
15746 {
15747 type = get_DW_AT_signature_type (die, attr, cu);
15748
15749 /* The type's CU may not be the same as CU.
15750 Ensure TYPE is recorded with CU in die_type_hash. */
15751 return set_die_type (die, type, cu);
15752 }
15753
15754 type = alloc_type (objfile);
15755 INIT_CPLUS_SPECIFIC (type);
15756
15757 name = dwarf2_name (die, cu);
15758 if (name != NULL)
15759 {
15760 if (cu->language == language_cplus
15761 || cu->language == language_d
15762 || cu->language == language_rust)
15763 {
15764 const char *full_name = dwarf2_full_name (name, die, cu);
15765
15766 /* dwarf2_full_name might have already finished building the DIE's
15767 type. If so, there is no need to continue. */
15768 if (get_die_type (die, cu) != NULL)
15769 return get_die_type (die, cu);
15770
15771 TYPE_TAG_NAME (type) = full_name;
15772 if (die->tag == DW_TAG_structure_type
15773 || die->tag == DW_TAG_class_type)
15774 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15775 }
15776 else
15777 {
15778 /* The name is already allocated along with this objfile, so
15779 we don't need to duplicate it for the type. */
15780 TYPE_TAG_NAME (type) = name;
15781 if (die->tag == DW_TAG_class_type)
15782 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15783 }
15784 }
15785
15786 if (die->tag == DW_TAG_structure_type)
15787 {
15788 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15789 }
15790 else if (die->tag == DW_TAG_union_type)
15791 {
15792 TYPE_CODE (type) = TYPE_CODE_UNION;
15793 }
15794 else if (die->tag == DW_TAG_variant_part)
15795 {
15796 TYPE_CODE (type) = TYPE_CODE_UNION;
15797 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15798 }
15799 else
15800 {
15801 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15802 }
15803
15804 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15805 TYPE_DECLARED_CLASS (type) = 1;
15806
15807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15808 if (attr)
15809 {
15810 if (attr_form_is_constant (attr))
15811 TYPE_LENGTH (type) = DW_UNSND (attr);
15812 else
15813 {
15814 /* For the moment, dynamic type sizes are not supported
15815 by GDB's struct type. The actual size is determined
15816 on-demand when resolving the type of a given object,
15817 so set the type's length to zero for now. Otherwise,
15818 we record an expression as the length, and that expression
15819 could lead to a very large value, which could eventually
15820 lead to us trying to allocate that much memory when creating
15821 a value of that type. */
15822 TYPE_LENGTH (type) = 0;
15823 }
15824 }
15825 else
15826 {
15827 TYPE_LENGTH (type) = 0;
15828 }
15829
15830 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15831 {
15832 /* ICC<14 does not output the required DW_AT_declaration on
15833 incomplete types, but gives them a size of zero. */
15834 TYPE_STUB (type) = 1;
15835 }
15836 else
15837 TYPE_STUB_SUPPORTED (type) = 1;
15838
15839 if (die_is_declaration (die, cu))
15840 TYPE_STUB (type) = 1;
15841 else if (attr == NULL && die->child == NULL
15842 && producer_is_realview (cu->producer))
15843 /* RealView does not output the required DW_AT_declaration
15844 on incomplete types. */
15845 TYPE_STUB (type) = 1;
15846
15847 /* We need to add the type field to the die immediately so we don't
15848 infinitely recurse when dealing with pointers to the structure
15849 type within the structure itself. */
15850 set_die_type (die, type, cu);
15851
15852 /* set_die_type should be already done. */
15853 set_descriptive_type (type, die, cu);
15854
15855 return type;
15856 }
15857
15858 /* A helper for process_structure_scope that handles a single member
15859 DIE. */
15860
15861 static void
15862 handle_struct_member_die (struct die_info *child_die, struct type *type,
15863 struct field_info *fi,
15864 std::vector<struct symbol *> *template_args,
15865 struct dwarf2_cu *cu)
15866 {
15867 if (child_die->tag == DW_TAG_member
15868 || child_die->tag == DW_TAG_variable
15869 || child_die->tag == DW_TAG_variant_part)
15870 {
15871 /* NOTE: carlton/2002-11-05: A C++ static data member
15872 should be a DW_TAG_member that is a declaration, but
15873 all versions of G++ as of this writing (so through at
15874 least 3.2.1) incorrectly generate DW_TAG_variable
15875 tags for them instead. */
15876 dwarf2_add_field (fi, child_die, cu);
15877 }
15878 else if (child_die->tag == DW_TAG_subprogram)
15879 {
15880 /* Rust doesn't have member functions in the C++ sense.
15881 However, it does emit ordinary functions as children
15882 of a struct DIE. */
15883 if (cu->language == language_rust)
15884 read_func_scope (child_die, cu);
15885 else
15886 {
15887 /* C++ member function. */
15888 dwarf2_add_member_fn (fi, child_die, type, cu);
15889 }
15890 }
15891 else if (child_die->tag == DW_TAG_inheritance)
15892 {
15893 /* C++ base class field. */
15894 dwarf2_add_field (fi, child_die, cu);
15895 }
15896 else if (type_can_define_types (child_die))
15897 dwarf2_add_type_defn (fi, child_die, cu);
15898 else if (child_die->tag == DW_TAG_template_type_param
15899 || child_die->tag == DW_TAG_template_value_param)
15900 {
15901 struct symbol *arg = new_symbol (child_die, NULL, cu);
15902
15903 if (arg != NULL)
15904 template_args->push_back (arg);
15905 }
15906 else if (child_die->tag == DW_TAG_variant)
15907 {
15908 /* In a variant we want to get the discriminant and also add a
15909 field for our sole member child. */
15910 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15911
15912 for (struct die_info *variant_child = child_die->child;
15913 variant_child != NULL;
15914 variant_child = sibling_die (variant_child))
15915 {
15916 if (variant_child->tag == DW_TAG_member)
15917 {
15918 handle_struct_member_die (variant_child, type, fi,
15919 template_args, cu);
15920 /* Only handle the one. */
15921 break;
15922 }
15923 }
15924
15925 /* We don't handle this but we might as well report it if we see
15926 it. */
15927 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15928 complaint (&symfile_complaints,
15929 _("DW_AT_discr_list is not supported yet"
15930 " - DIE at %s [in module %s]"),
15931 sect_offset_str (child_die->sect_off),
15932 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15933
15934 /* The first field was just added, so we can stash the
15935 discriminant there. */
15936 gdb_assert (!fi->fields.empty ());
15937 if (discr == NULL)
15938 fi->fields.back ().variant.default_branch = true;
15939 else
15940 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15941 }
15942 }
15943
15944 /* Finish creating a structure or union type, including filling in
15945 its members and creating a symbol for it. */
15946
15947 static void
15948 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15949 {
15950 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15951 struct die_info *child_die;
15952 struct type *type;
15953
15954 type = get_die_type (die, cu);
15955 if (type == NULL)
15956 type = read_structure_type (die, cu);
15957
15958 /* When reading a DW_TAG_variant_part, we need to notice when we
15959 read the discriminant member, so we can record it later in the
15960 discriminant_info. */
15961 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15962 sect_offset discr_offset;
15963
15964 if (is_variant_part)
15965 {
15966 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15967 if (discr == NULL)
15968 {
15969 /* Maybe it's a univariant form, an extension we support.
15970 In this case arrange not to check the offset. */
15971 is_variant_part = false;
15972 }
15973 else if (attr_form_is_ref (discr))
15974 {
15975 struct dwarf2_cu *target_cu = cu;
15976 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15977
15978 discr_offset = target_die->sect_off;
15979 }
15980 else
15981 {
15982 complaint (&symfile_complaints,
15983 _("DW_AT_discr does not have DIE reference form"
15984 " - DIE at %s [in module %s]"),
15985 sect_offset_str (die->sect_off),
15986 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15987 is_variant_part = false;
15988 }
15989 }
15990
15991 if (die->child != NULL && ! die_is_declaration (die, cu))
15992 {
15993 struct field_info fi;
15994 std::vector<struct symbol *> template_args;
15995
15996 child_die = die->child;
15997
15998 while (child_die && child_die->tag)
15999 {
16000 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16001
16002 if (is_variant_part && discr_offset == child_die->sect_off)
16003 fi.fields.back ().variant.is_discriminant = true;
16004
16005 child_die = sibling_die (child_die);
16006 }
16007
16008 /* Attach template arguments to type. */
16009 if (!template_args.empty ())
16010 {
16011 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16012 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16013 TYPE_TEMPLATE_ARGUMENTS (type)
16014 = XOBNEWVEC (&objfile->objfile_obstack,
16015 struct symbol *,
16016 TYPE_N_TEMPLATE_ARGUMENTS (type));
16017 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16018 template_args.data (),
16019 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16020 * sizeof (struct symbol *)));
16021 }
16022
16023 /* Attach fields and member functions to the type. */
16024 if (fi.nfields)
16025 dwarf2_attach_fields_to_type (&fi, type, cu);
16026 if (!fi.fnfieldlists.empty ())
16027 {
16028 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16029
16030 /* Get the type which refers to the base class (possibly this
16031 class itself) which contains the vtable pointer for the current
16032 class from the DW_AT_containing_type attribute. This use of
16033 DW_AT_containing_type is a GNU extension. */
16034
16035 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16036 {
16037 struct type *t = die_containing_type (die, cu);
16038
16039 set_type_vptr_basetype (type, t);
16040 if (type == t)
16041 {
16042 int i;
16043
16044 /* Our own class provides vtbl ptr. */
16045 for (i = TYPE_NFIELDS (t) - 1;
16046 i >= TYPE_N_BASECLASSES (t);
16047 --i)
16048 {
16049 const char *fieldname = TYPE_FIELD_NAME (t, i);
16050
16051 if (is_vtable_name (fieldname, cu))
16052 {
16053 set_type_vptr_fieldno (type, i);
16054 break;
16055 }
16056 }
16057
16058 /* Complain if virtual function table field not found. */
16059 if (i < TYPE_N_BASECLASSES (t))
16060 complaint (&symfile_complaints,
16061 _("virtual function table pointer "
16062 "not found when defining class '%s'"),
16063 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16064 "");
16065 }
16066 else
16067 {
16068 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16069 }
16070 }
16071 else if (cu->producer
16072 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16073 {
16074 /* The IBM XLC compiler does not provide direct indication
16075 of the containing type, but the vtable pointer is
16076 always named __vfp. */
16077
16078 int i;
16079
16080 for (i = TYPE_NFIELDS (type) - 1;
16081 i >= TYPE_N_BASECLASSES (type);
16082 --i)
16083 {
16084 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16085 {
16086 set_type_vptr_fieldno (type, i);
16087 set_type_vptr_basetype (type, type);
16088 break;
16089 }
16090 }
16091 }
16092 }
16093
16094 /* Copy fi.typedef_field_list linked list elements content into the
16095 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16096 if (!fi.typedef_field_list.empty ())
16097 {
16098 int count = fi.typedef_field_list.size ();
16099
16100 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16101 TYPE_TYPEDEF_FIELD_ARRAY (type)
16102 = ((struct decl_field *)
16103 TYPE_ALLOC (type,
16104 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16105 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16106
16107 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16108 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16109 }
16110
16111 /* Copy fi.nested_types_list linked list elements content into the
16112 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16113 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16114 {
16115 int count = fi.nested_types_list.size ();
16116
16117 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16118 TYPE_NESTED_TYPES_ARRAY (type)
16119 = ((struct decl_field *)
16120 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16121 TYPE_NESTED_TYPES_COUNT (type) = count;
16122
16123 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16124 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16125 }
16126 }
16127
16128 quirk_gcc_member_function_pointer (type, objfile);
16129 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16130 cu->rust_unions.push_back (type);
16131
16132 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16133 snapshots) has been known to create a die giving a declaration
16134 for a class that has, as a child, a die giving a definition for a
16135 nested class. So we have to process our children even if the
16136 current die is a declaration. Normally, of course, a declaration
16137 won't have any children at all. */
16138
16139 child_die = die->child;
16140
16141 while (child_die != NULL && child_die->tag)
16142 {
16143 if (child_die->tag == DW_TAG_member
16144 || child_die->tag == DW_TAG_variable
16145 || child_die->tag == DW_TAG_inheritance
16146 || child_die->tag == DW_TAG_template_value_param
16147 || child_die->tag == DW_TAG_template_type_param)
16148 {
16149 /* Do nothing. */
16150 }
16151 else
16152 process_die (child_die, cu);
16153
16154 child_die = sibling_die (child_die);
16155 }
16156
16157 /* Do not consider external references. According to the DWARF standard,
16158 these DIEs are identified by the fact that they have no byte_size
16159 attribute, and a declaration attribute. */
16160 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16161 || !die_is_declaration (die, cu))
16162 new_symbol (die, type, cu);
16163 }
16164
16165 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16166 update TYPE using some information only available in DIE's children. */
16167
16168 static void
16169 update_enumeration_type_from_children (struct die_info *die,
16170 struct type *type,
16171 struct dwarf2_cu *cu)
16172 {
16173 struct die_info *child_die;
16174 int unsigned_enum = 1;
16175 int flag_enum = 1;
16176 ULONGEST mask = 0;
16177
16178 auto_obstack obstack;
16179
16180 for (child_die = die->child;
16181 child_die != NULL && child_die->tag;
16182 child_die = sibling_die (child_die))
16183 {
16184 struct attribute *attr;
16185 LONGEST value;
16186 const gdb_byte *bytes;
16187 struct dwarf2_locexpr_baton *baton;
16188 const char *name;
16189
16190 if (child_die->tag != DW_TAG_enumerator)
16191 continue;
16192
16193 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16194 if (attr == NULL)
16195 continue;
16196
16197 name = dwarf2_name (child_die, cu);
16198 if (name == NULL)
16199 name = "<anonymous enumerator>";
16200
16201 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16202 &value, &bytes, &baton);
16203 if (value < 0)
16204 {
16205 unsigned_enum = 0;
16206 flag_enum = 0;
16207 }
16208 else if ((mask & value) != 0)
16209 flag_enum = 0;
16210 else
16211 mask |= value;
16212
16213 /* If we already know that the enum type is neither unsigned, nor
16214 a flag type, no need to look at the rest of the enumerates. */
16215 if (!unsigned_enum && !flag_enum)
16216 break;
16217 }
16218
16219 if (unsigned_enum)
16220 TYPE_UNSIGNED (type) = 1;
16221 if (flag_enum)
16222 TYPE_FLAG_ENUM (type) = 1;
16223 }
16224
16225 /* Given a DW_AT_enumeration_type die, set its type. We do not
16226 complete the type's fields yet, or create any symbols. */
16227
16228 static struct type *
16229 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16230 {
16231 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16232 struct type *type;
16233 struct attribute *attr;
16234 const char *name;
16235
16236 /* If the definition of this type lives in .debug_types, read that type.
16237 Don't follow DW_AT_specification though, that will take us back up
16238 the chain and we want to go down. */
16239 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16240 if (attr)
16241 {
16242 type = get_DW_AT_signature_type (die, attr, cu);
16243
16244 /* The type's CU may not be the same as CU.
16245 Ensure TYPE is recorded with CU in die_type_hash. */
16246 return set_die_type (die, type, cu);
16247 }
16248
16249 type = alloc_type (objfile);
16250
16251 TYPE_CODE (type) = TYPE_CODE_ENUM;
16252 name = dwarf2_full_name (NULL, die, cu);
16253 if (name != NULL)
16254 TYPE_TAG_NAME (type) = name;
16255
16256 attr = dwarf2_attr (die, DW_AT_type, cu);
16257 if (attr != NULL)
16258 {
16259 struct type *underlying_type = die_type (die, cu);
16260
16261 TYPE_TARGET_TYPE (type) = underlying_type;
16262 }
16263
16264 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16265 if (attr)
16266 {
16267 TYPE_LENGTH (type) = DW_UNSND (attr);
16268 }
16269 else
16270 {
16271 TYPE_LENGTH (type) = 0;
16272 }
16273
16274 /* The enumeration DIE can be incomplete. In Ada, any type can be
16275 declared as private in the package spec, and then defined only
16276 inside the package body. Such types are known as Taft Amendment
16277 Types. When another package uses such a type, an incomplete DIE
16278 may be generated by the compiler. */
16279 if (die_is_declaration (die, cu))
16280 TYPE_STUB (type) = 1;
16281
16282 /* Finish the creation of this type by using the enum's children.
16283 We must call this even when the underlying type has been provided
16284 so that we can determine if we're looking at a "flag" enum. */
16285 update_enumeration_type_from_children (die, type, cu);
16286
16287 /* If this type has an underlying type that is not a stub, then we
16288 may use its attributes. We always use the "unsigned" attribute
16289 in this situation, because ordinarily we guess whether the type
16290 is unsigned -- but the guess can be wrong and the underlying type
16291 can tell us the reality. However, we defer to a local size
16292 attribute if one exists, because this lets the compiler override
16293 the underlying type if needed. */
16294 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16295 {
16296 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16297 if (TYPE_LENGTH (type) == 0)
16298 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16299 }
16300
16301 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16302
16303 return set_die_type (die, type, cu);
16304 }
16305
16306 /* Given a pointer to a die which begins an enumeration, process all
16307 the dies that define the members of the enumeration, and create the
16308 symbol for the enumeration type.
16309
16310 NOTE: We reverse the order of the element list. */
16311
16312 static void
16313 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16314 {
16315 struct type *this_type;
16316
16317 this_type = get_die_type (die, cu);
16318 if (this_type == NULL)
16319 this_type = read_enumeration_type (die, cu);
16320
16321 if (die->child != NULL)
16322 {
16323 struct die_info *child_die;
16324 struct symbol *sym;
16325 struct field *fields = NULL;
16326 int num_fields = 0;
16327 const char *name;
16328
16329 child_die = die->child;
16330 while (child_die && child_die->tag)
16331 {
16332 if (child_die->tag != DW_TAG_enumerator)
16333 {
16334 process_die (child_die, cu);
16335 }
16336 else
16337 {
16338 name = dwarf2_name (child_die, cu);
16339 if (name)
16340 {
16341 sym = new_symbol (child_die, this_type, cu);
16342
16343 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16344 {
16345 fields = (struct field *)
16346 xrealloc (fields,
16347 (num_fields + DW_FIELD_ALLOC_CHUNK)
16348 * sizeof (struct field));
16349 }
16350
16351 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16352 FIELD_TYPE (fields[num_fields]) = NULL;
16353 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16354 FIELD_BITSIZE (fields[num_fields]) = 0;
16355
16356 num_fields++;
16357 }
16358 }
16359
16360 child_die = sibling_die (child_die);
16361 }
16362
16363 if (num_fields)
16364 {
16365 TYPE_NFIELDS (this_type) = num_fields;
16366 TYPE_FIELDS (this_type) = (struct field *)
16367 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16368 memcpy (TYPE_FIELDS (this_type), fields,
16369 sizeof (struct field) * num_fields);
16370 xfree (fields);
16371 }
16372 }
16373
16374 /* If we are reading an enum from a .debug_types unit, and the enum
16375 is a declaration, and the enum is not the signatured type in the
16376 unit, then we do not want to add a symbol for it. Adding a
16377 symbol would in some cases obscure the true definition of the
16378 enum, giving users an incomplete type when the definition is
16379 actually available. Note that we do not want to do this for all
16380 enums which are just declarations, because C++0x allows forward
16381 enum declarations. */
16382 if (cu->per_cu->is_debug_types
16383 && die_is_declaration (die, cu))
16384 {
16385 struct signatured_type *sig_type;
16386
16387 sig_type = (struct signatured_type *) cu->per_cu;
16388 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16389 if (sig_type->type_offset_in_section != die->sect_off)
16390 return;
16391 }
16392
16393 new_symbol (die, this_type, cu);
16394 }
16395
16396 /* Extract all information from a DW_TAG_array_type DIE and put it in
16397 the DIE's type field. For now, this only handles one dimensional
16398 arrays. */
16399
16400 static struct type *
16401 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16402 {
16403 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16404 struct die_info *child_die;
16405 struct type *type;
16406 struct type *element_type, *range_type, *index_type;
16407 struct attribute *attr;
16408 const char *name;
16409 struct dynamic_prop *byte_stride_prop = NULL;
16410 unsigned int bit_stride = 0;
16411
16412 element_type = die_type (die, cu);
16413
16414 /* The die_type call above may have already set the type for this DIE. */
16415 type = get_die_type (die, cu);
16416 if (type)
16417 return type;
16418
16419 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16420 if (attr != NULL)
16421 {
16422 int stride_ok;
16423
16424 byte_stride_prop
16425 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16426 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16427 if (!stride_ok)
16428 {
16429 complaint (&symfile_complaints,
16430 _("unable to read array DW_AT_byte_stride "
16431 " - DIE at %s [in module %s]"),
16432 sect_offset_str (die->sect_off),
16433 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16434 /* Ignore this attribute. We will likely not be able to print
16435 arrays of this type correctly, but there is little we can do
16436 to help if we cannot read the attribute's value. */
16437 byte_stride_prop = NULL;
16438 }
16439 }
16440
16441 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16442 if (attr != NULL)
16443 bit_stride = DW_UNSND (attr);
16444
16445 /* Irix 6.2 native cc creates array types without children for
16446 arrays with unspecified length. */
16447 if (die->child == NULL)
16448 {
16449 index_type = objfile_type (objfile)->builtin_int;
16450 range_type = create_static_range_type (NULL, index_type, 0, -1);
16451 type = create_array_type_with_stride (NULL, element_type, range_type,
16452 byte_stride_prop, bit_stride);
16453 return set_die_type (die, type, cu);
16454 }
16455
16456 std::vector<struct type *> range_types;
16457 child_die = die->child;
16458 while (child_die && child_die->tag)
16459 {
16460 if (child_die->tag == DW_TAG_subrange_type)
16461 {
16462 struct type *child_type = read_type_die (child_die, cu);
16463
16464 if (child_type != NULL)
16465 {
16466 /* The range type was succesfully read. Save it for the
16467 array type creation. */
16468 range_types.push_back (child_type);
16469 }
16470 }
16471 child_die = sibling_die (child_die);
16472 }
16473
16474 /* Dwarf2 dimensions are output from left to right, create the
16475 necessary array types in backwards order. */
16476
16477 type = element_type;
16478
16479 if (read_array_order (die, cu) == DW_ORD_col_major)
16480 {
16481 int i = 0;
16482
16483 while (i < range_types.size ())
16484 type = create_array_type_with_stride (NULL, type, range_types[i++],
16485 byte_stride_prop, bit_stride);
16486 }
16487 else
16488 {
16489 size_t ndim = range_types.size ();
16490 while (ndim-- > 0)
16491 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16492 byte_stride_prop, bit_stride);
16493 }
16494
16495 /* Understand Dwarf2 support for vector types (like they occur on
16496 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16497 array type. This is not part of the Dwarf2/3 standard yet, but a
16498 custom vendor extension. The main difference between a regular
16499 array and the vector variant is that vectors are passed by value
16500 to functions. */
16501 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16502 if (attr)
16503 make_vector_type (type);
16504
16505 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16506 implementation may choose to implement triple vectors using this
16507 attribute. */
16508 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16509 if (attr)
16510 {
16511 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16512 TYPE_LENGTH (type) = DW_UNSND (attr);
16513 else
16514 complaint (&symfile_complaints,
16515 _("DW_AT_byte_size for array type smaller "
16516 "than the total size of elements"));
16517 }
16518
16519 name = dwarf2_name (die, cu);
16520 if (name)
16521 TYPE_NAME (type) = name;
16522
16523 /* Install the type in the die. */
16524 set_die_type (die, type, cu);
16525
16526 /* set_die_type should be already done. */
16527 set_descriptive_type (type, die, cu);
16528
16529 return type;
16530 }
16531
16532 static enum dwarf_array_dim_ordering
16533 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16534 {
16535 struct attribute *attr;
16536
16537 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16538
16539 if (attr)
16540 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16541
16542 /* GNU F77 is a special case, as at 08/2004 array type info is the
16543 opposite order to the dwarf2 specification, but data is still
16544 laid out as per normal fortran.
16545
16546 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16547 version checking. */
16548
16549 if (cu->language == language_fortran
16550 && cu->producer && strstr (cu->producer, "GNU F77"))
16551 {
16552 return DW_ORD_row_major;
16553 }
16554
16555 switch (cu->language_defn->la_array_ordering)
16556 {
16557 case array_column_major:
16558 return DW_ORD_col_major;
16559 case array_row_major:
16560 default:
16561 return DW_ORD_row_major;
16562 };
16563 }
16564
16565 /* Extract all information from a DW_TAG_set_type DIE and put it in
16566 the DIE's type field. */
16567
16568 static struct type *
16569 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16570 {
16571 struct type *domain_type, *set_type;
16572 struct attribute *attr;
16573
16574 domain_type = die_type (die, cu);
16575
16576 /* The die_type call above may have already set the type for this DIE. */
16577 set_type = get_die_type (die, cu);
16578 if (set_type)
16579 return set_type;
16580
16581 set_type = create_set_type (NULL, domain_type);
16582
16583 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16584 if (attr)
16585 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16586
16587 return set_die_type (die, set_type, cu);
16588 }
16589
16590 /* A helper for read_common_block that creates a locexpr baton.
16591 SYM is the symbol which we are marking as computed.
16592 COMMON_DIE is the DIE for the common block.
16593 COMMON_LOC is the location expression attribute for the common
16594 block itself.
16595 MEMBER_LOC is the location expression attribute for the particular
16596 member of the common block that we are processing.
16597 CU is the CU from which the above come. */
16598
16599 static void
16600 mark_common_block_symbol_computed (struct symbol *sym,
16601 struct die_info *common_die,
16602 struct attribute *common_loc,
16603 struct attribute *member_loc,
16604 struct dwarf2_cu *cu)
16605 {
16606 struct dwarf2_per_objfile *dwarf2_per_objfile
16607 = cu->per_cu->dwarf2_per_objfile;
16608 struct objfile *objfile = dwarf2_per_objfile->objfile;
16609 struct dwarf2_locexpr_baton *baton;
16610 gdb_byte *ptr;
16611 unsigned int cu_off;
16612 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16613 LONGEST offset = 0;
16614
16615 gdb_assert (common_loc && member_loc);
16616 gdb_assert (attr_form_is_block (common_loc));
16617 gdb_assert (attr_form_is_block (member_loc)
16618 || attr_form_is_constant (member_loc));
16619
16620 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16621 baton->per_cu = cu->per_cu;
16622 gdb_assert (baton->per_cu);
16623
16624 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16625
16626 if (attr_form_is_constant (member_loc))
16627 {
16628 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16629 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16630 }
16631 else
16632 baton->size += DW_BLOCK (member_loc)->size;
16633
16634 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16635 baton->data = ptr;
16636
16637 *ptr++ = DW_OP_call4;
16638 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16639 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16640 ptr += 4;
16641
16642 if (attr_form_is_constant (member_loc))
16643 {
16644 *ptr++ = DW_OP_addr;
16645 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16646 ptr += cu->header.addr_size;
16647 }
16648 else
16649 {
16650 /* We have to copy the data here, because DW_OP_call4 will only
16651 use a DW_AT_location attribute. */
16652 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16653 ptr += DW_BLOCK (member_loc)->size;
16654 }
16655
16656 *ptr++ = DW_OP_plus;
16657 gdb_assert (ptr - baton->data == baton->size);
16658
16659 SYMBOL_LOCATION_BATON (sym) = baton;
16660 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16661 }
16662
16663 /* Create appropriate locally-scoped variables for all the
16664 DW_TAG_common_block entries. Also create a struct common_block
16665 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16666 is used to sepate the common blocks name namespace from regular
16667 variable names. */
16668
16669 static void
16670 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16671 {
16672 struct attribute *attr;
16673
16674 attr = dwarf2_attr (die, DW_AT_location, cu);
16675 if (attr)
16676 {
16677 /* Support the .debug_loc offsets. */
16678 if (attr_form_is_block (attr))
16679 {
16680 /* Ok. */
16681 }
16682 else if (attr_form_is_section_offset (attr))
16683 {
16684 dwarf2_complex_location_expr_complaint ();
16685 attr = NULL;
16686 }
16687 else
16688 {
16689 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16690 "common block member");
16691 attr = NULL;
16692 }
16693 }
16694
16695 if (die->child != NULL)
16696 {
16697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16698 struct die_info *child_die;
16699 size_t n_entries = 0, size;
16700 struct common_block *common_block;
16701 struct symbol *sym;
16702
16703 for (child_die = die->child;
16704 child_die && child_die->tag;
16705 child_die = sibling_die (child_die))
16706 ++n_entries;
16707
16708 size = (sizeof (struct common_block)
16709 + (n_entries - 1) * sizeof (struct symbol *));
16710 common_block
16711 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16712 size);
16713 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16714 common_block->n_entries = 0;
16715
16716 for (child_die = die->child;
16717 child_die && child_die->tag;
16718 child_die = sibling_die (child_die))
16719 {
16720 /* Create the symbol in the DW_TAG_common_block block in the current
16721 symbol scope. */
16722 sym = new_symbol (child_die, NULL, cu);
16723 if (sym != NULL)
16724 {
16725 struct attribute *member_loc;
16726
16727 common_block->contents[common_block->n_entries++] = sym;
16728
16729 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16730 cu);
16731 if (member_loc)
16732 {
16733 /* GDB has handled this for a long time, but it is
16734 not specified by DWARF. It seems to have been
16735 emitted by gfortran at least as recently as:
16736 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16737 complaint (&symfile_complaints,
16738 _("Variable in common block has "
16739 "DW_AT_data_member_location "
16740 "- DIE at %s [in module %s]"),
16741 sect_offset_str (child_die->sect_off),
16742 objfile_name (objfile));
16743
16744 if (attr_form_is_section_offset (member_loc))
16745 dwarf2_complex_location_expr_complaint ();
16746 else if (attr_form_is_constant (member_loc)
16747 || attr_form_is_block (member_loc))
16748 {
16749 if (attr)
16750 mark_common_block_symbol_computed (sym, die, attr,
16751 member_loc, cu);
16752 }
16753 else
16754 dwarf2_complex_location_expr_complaint ();
16755 }
16756 }
16757 }
16758
16759 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16760 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16761 }
16762 }
16763
16764 /* Create a type for a C++ namespace. */
16765
16766 static struct type *
16767 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16768 {
16769 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16770 const char *previous_prefix, *name;
16771 int is_anonymous;
16772 struct type *type;
16773
16774 /* For extensions, reuse the type of the original namespace. */
16775 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16776 {
16777 struct die_info *ext_die;
16778 struct dwarf2_cu *ext_cu = cu;
16779
16780 ext_die = dwarf2_extension (die, &ext_cu);
16781 type = read_type_die (ext_die, ext_cu);
16782
16783 /* EXT_CU may not be the same as CU.
16784 Ensure TYPE is recorded with CU in die_type_hash. */
16785 return set_die_type (die, type, cu);
16786 }
16787
16788 name = namespace_name (die, &is_anonymous, cu);
16789
16790 /* Now build the name of the current namespace. */
16791
16792 previous_prefix = determine_prefix (die, cu);
16793 if (previous_prefix[0] != '\0')
16794 name = typename_concat (&objfile->objfile_obstack,
16795 previous_prefix, name, 0, cu);
16796
16797 /* Create the type. */
16798 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16799 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16800
16801 return set_die_type (die, type, cu);
16802 }
16803
16804 /* Read a namespace scope. */
16805
16806 static void
16807 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16808 {
16809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16810 int is_anonymous;
16811
16812 /* Add a symbol associated to this if we haven't seen the namespace
16813 before. Also, add a using directive if it's an anonymous
16814 namespace. */
16815
16816 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16817 {
16818 struct type *type;
16819
16820 type = read_type_die (die, cu);
16821 new_symbol (die, type, cu);
16822
16823 namespace_name (die, &is_anonymous, cu);
16824 if (is_anonymous)
16825 {
16826 const char *previous_prefix = determine_prefix (die, cu);
16827
16828 std::vector<const char *> excludes;
16829 add_using_directive (using_directives (cu->language),
16830 previous_prefix, TYPE_NAME (type), NULL,
16831 NULL, excludes, 0, &objfile->objfile_obstack);
16832 }
16833 }
16834
16835 if (die->child != NULL)
16836 {
16837 struct die_info *child_die = die->child;
16838
16839 while (child_die && child_die->tag)
16840 {
16841 process_die (child_die, cu);
16842 child_die = sibling_die (child_die);
16843 }
16844 }
16845 }
16846
16847 /* Read a Fortran module as type. This DIE can be only a declaration used for
16848 imported module. Still we need that type as local Fortran "use ... only"
16849 declaration imports depend on the created type in determine_prefix. */
16850
16851 static struct type *
16852 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16853 {
16854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16855 const char *module_name;
16856 struct type *type;
16857
16858 module_name = dwarf2_name (die, cu);
16859 if (!module_name)
16860 complaint (&symfile_complaints,
16861 _("DW_TAG_module has no name, offset %s"),
16862 sect_offset_str (die->sect_off));
16863 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16864
16865 /* determine_prefix uses TYPE_TAG_NAME. */
16866 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16867
16868 return set_die_type (die, type, cu);
16869 }
16870
16871 /* Read a Fortran module. */
16872
16873 static void
16874 read_module (struct die_info *die, struct dwarf2_cu *cu)
16875 {
16876 struct die_info *child_die = die->child;
16877 struct type *type;
16878
16879 type = read_type_die (die, cu);
16880 new_symbol (die, type, cu);
16881
16882 while (child_die && child_die->tag)
16883 {
16884 process_die (child_die, cu);
16885 child_die = sibling_die (child_die);
16886 }
16887 }
16888
16889 /* Return the name of the namespace represented by DIE. Set
16890 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16891 namespace. */
16892
16893 static const char *
16894 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16895 {
16896 struct die_info *current_die;
16897 const char *name = NULL;
16898
16899 /* Loop through the extensions until we find a name. */
16900
16901 for (current_die = die;
16902 current_die != NULL;
16903 current_die = dwarf2_extension (die, &cu))
16904 {
16905 /* We don't use dwarf2_name here so that we can detect the absence
16906 of a name -> anonymous namespace. */
16907 name = dwarf2_string_attr (die, DW_AT_name, cu);
16908
16909 if (name != NULL)
16910 break;
16911 }
16912
16913 /* Is it an anonymous namespace? */
16914
16915 *is_anonymous = (name == NULL);
16916 if (*is_anonymous)
16917 name = CP_ANONYMOUS_NAMESPACE_STR;
16918
16919 return name;
16920 }
16921
16922 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16923 the user defined type vector. */
16924
16925 static struct type *
16926 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16927 {
16928 struct gdbarch *gdbarch
16929 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16930 struct comp_unit_head *cu_header = &cu->header;
16931 struct type *type;
16932 struct attribute *attr_byte_size;
16933 struct attribute *attr_address_class;
16934 int byte_size, addr_class;
16935 struct type *target_type;
16936
16937 target_type = die_type (die, cu);
16938
16939 /* The die_type call above may have already set the type for this DIE. */
16940 type = get_die_type (die, cu);
16941 if (type)
16942 return type;
16943
16944 type = lookup_pointer_type (target_type);
16945
16946 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16947 if (attr_byte_size)
16948 byte_size = DW_UNSND (attr_byte_size);
16949 else
16950 byte_size = cu_header->addr_size;
16951
16952 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16953 if (attr_address_class)
16954 addr_class = DW_UNSND (attr_address_class);
16955 else
16956 addr_class = DW_ADDR_none;
16957
16958 /* If the pointer size or address class is different than the
16959 default, create a type variant marked as such and set the
16960 length accordingly. */
16961 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16962 {
16963 if (gdbarch_address_class_type_flags_p (gdbarch))
16964 {
16965 int type_flags;
16966
16967 type_flags = gdbarch_address_class_type_flags
16968 (gdbarch, byte_size, addr_class);
16969 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16970 == 0);
16971 type = make_type_with_address_space (type, type_flags);
16972 }
16973 else if (TYPE_LENGTH (type) != byte_size)
16974 {
16975 complaint (&symfile_complaints,
16976 _("invalid pointer size %d"), byte_size);
16977 }
16978 else
16979 {
16980 /* Should we also complain about unhandled address classes? */
16981 }
16982 }
16983
16984 TYPE_LENGTH (type) = byte_size;
16985 return set_die_type (die, type, cu);
16986 }
16987
16988 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16989 the user defined type vector. */
16990
16991 static struct type *
16992 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16993 {
16994 struct type *type;
16995 struct type *to_type;
16996 struct type *domain;
16997
16998 to_type = die_type (die, cu);
16999 domain = die_containing_type (die, cu);
17000
17001 /* The calls above may have already set the type for this DIE. */
17002 type = get_die_type (die, cu);
17003 if (type)
17004 return type;
17005
17006 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17007 type = lookup_methodptr_type (to_type);
17008 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17009 {
17010 struct type *new_type
17011 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17012
17013 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17014 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17015 TYPE_VARARGS (to_type));
17016 type = lookup_methodptr_type (new_type);
17017 }
17018 else
17019 type = lookup_memberptr_type (to_type, domain);
17020
17021 return set_die_type (die, type, cu);
17022 }
17023
17024 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17025 the user defined type vector. */
17026
17027 static struct type *
17028 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17029 enum type_code refcode)
17030 {
17031 struct comp_unit_head *cu_header = &cu->header;
17032 struct type *type, *target_type;
17033 struct attribute *attr;
17034
17035 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17036
17037 target_type = die_type (die, cu);
17038
17039 /* The die_type call above may have already set the type for this DIE. */
17040 type = get_die_type (die, cu);
17041 if (type)
17042 return type;
17043
17044 type = lookup_reference_type (target_type, refcode);
17045 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17046 if (attr)
17047 {
17048 TYPE_LENGTH (type) = DW_UNSND (attr);
17049 }
17050 else
17051 {
17052 TYPE_LENGTH (type) = cu_header->addr_size;
17053 }
17054 return set_die_type (die, type, cu);
17055 }
17056
17057 /* Add the given cv-qualifiers to the element type of the array. GCC
17058 outputs DWARF type qualifiers that apply to an array, not the
17059 element type. But GDB relies on the array element type to carry
17060 the cv-qualifiers. This mimics section 6.7.3 of the C99
17061 specification. */
17062
17063 static struct type *
17064 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17065 struct type *base_type, int cnst, int voltl)
17066 {
17067 struct type *el_type, *inner_array;
17068
17069 base_type = copy_type (base_type);
17070 inner_array = base_type;
17071
17072 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17073 {
17074 TYPE_TARGET_TYPE (inner_array) =
17075 copy_type (TYPE_TARGET_TYPE (inner_array));
17076 inner_array = TYPE_TARGET_TYPE (inner_array);
17077 }
17078
17079 el_type = TYPE_TARGET_TYPE (inner_array);
17080 cnst |= TYPE_CONST (el_type);
17081 voltl |= TYPE_VOLATILE (el_type);
17082 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17083
17084 return set_die_type (die, base_type, cu);
17085 }
17086
17087 static struct type *
17088 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17089 {
17090 struct type *base_type, *cv_type;
17091
17092 base_type = die_type (die, cu);
17093
17094 /* The die_type call above may have already set the type for this DIE. */
17095 cv_type = get_die_type (die, cu);
17096 if (cv_type)
17097 return cv_type;
17098
17099 /* In case the const qualifier is applied to an array type, the element type
17100 is so qualified, not the array type (section 6.7.3 of C99). */
17101 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17102 return add_array_cv_type (die, cu, base_type, 1, 0);
17103
17104 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17105 return set_die_type (die, cv_type, cu);
17106 }
17107
17108 static struct type *
17109 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17110 {
17111 struct type *base_type, *cv_type;
17112
17113 base_type = die_type (die, cu);
17114
17115 /* The die_type call above may have already set the type for this DIE. */
17116 cv_type = get_die_type (die, cu);
17117 if (cv_type)
17118 return cv_type;
17119
17120 /* In case the volatile qualifier is applied to an array type, the
17121 element type is so qualified, not the array type (section 6.7.3
17122 of C99). */
17123 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17124 return add_array_cv_type (die, cu, base_type, 0, 1);
17125
17126 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17127 return set_die_type (die, cv_type, cu);
17128 }
17129
17130 /* Handle DW_TAG_restrict_type. */
17131
17132 static struct type *
17133 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17134 {
17135 struct type *base_type, *cv_type;
17136
17137 base_type = die_type (die, cu);
17138
17139 /* The die_type call above may have already set the type for this DIE. */
17140 cv_type = get_die_type (die, cu);
17141 if (cv_type)
17142 return cv_type;
17143
17144 cv_type = make_restrict_type (base_type);
17145 return set_die_type (die, cv_type, cu);
17146 }
17147
17148 /* Handle DW_TAG_atomic_type. */
17149
17150 static struct type *
17151 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17152 {
17153 struct type *base_type, *cv_type;
17154
17155 base_type = die_type (die, cu);
17156
17157 /* The die_type call above may have already set the type for this DIE. */
17158 cv_type = get_die_type (die, cu);
17159 if (cv_type)
17160 return cv_type;
17161
17162 cv_type = make_atomic_type (base_type);
17163 return set_die_type (die, cv_type, cu);
17164 }
17165
17166 /* Extract all information from a DW_TAG_string_type DIE and add to
17167 the user defined type vector. It isn't really a user defined type,
17168 but it behaves like one, with other DIE's using an AT_user_def_type
17169 attribute to reference it. */
17170
17171 static struct type *
17172 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17173 {
17174 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17176 struct type *type, *range_type, *index_type, *char_type;
17177 struct attribute *attr;
17178 unsigned int length;
17179
17180 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17181 if (attr)
17182 {
17183 length = DW_UNSND (attr);
17184 }
17185 else
17186 {
17187 /* Check for the DW_AT_byte_size attribute. */
17188 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17189 if (attr)
17190 {
17191 length = DW_UNSND (attr);
17192 }
17193 else
17194 {
17195 length = 1;
17196 }
17197 }
17198
17199 index_type = objfile_type (objfile)->builtin_int;
17200 range_type = create_static_range_type (NULL, index_type, 1, length);
17201 char_type = language_string_char_type (cu->language_defn, gdbarch);
17202 type = create_string_type (NULL, char_type, range_type);
17203
17204 return set_die_type (die, type, cu);
17205 }
17206
17207 /* Assuming that DIE corresponds to a function, returns nonzero
17208 if the function is prototyped. */
17209
17210 static int
17211 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17212 {
17213 struct attribute *attr;
17214
17215 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17216 if (attr && (DW_UNSND (attr) != 0))
17217 return 1;
17218
17219 /* The DWARF standard implies that the DW_AT_prototyped attribute
17220 is only meaninful for C, but the concept also extends to other
17221 languages that allow unprototyped functions (Eg: Objective C).
17222 For all other languages, assume that functions are always
17223 prototyped. */
17224 if (cu->language != language_c
17225 && cu->language != language_objc
17226 && cu->language != language_opencl)
17227 return 1;
17228
17229 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17230 prototyped and unprototyped functions; default to prototyped,
17231 since that is more common in modern code (and RealView warns
17232 about unprototyped functions). */
17233 if (producer_is_realview (cu->producer))
17234 return 1;
17235
17236 return 0;
17237 }
17238
17239 /* Handle DIES due to C code like:
17240
17241 struct foo
17242 {
17243 int (*funcp)(int a, long l);
17244 int b;
17245 };
17246
17247 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17248
17249 static struct type *
17250 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17251 {
17252 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17253 struct type *type; /* Type that this function returns. */
17254 struct type *ftype; /* Function that returns above type. */
17255 struct attribute *attr;
17256
17257 type = die_type (die, cu);
17258
17259 /* The die_type call above may have already set the type for this DIE. */
17260 ftype = get_die_type (die, cu);
17261 if (ftype)
17262 return ftype;
17263
17264 ftype = lookup_function_type (type);
17265
17266 if (prototyped_function_p (die, cu))
17267 TYPE_PROTOTYPED (ftype) = 1;
17268
17269 /* Store the calling convention in the type if it's available in
17270 the subroutine die. Otherwise set the calling convention to
17271 the default value DW_CC_normal. */
17272 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17273 if (attr)
17274 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17275 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17276 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17277 else
17278 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17279
17280 /* Record whether the function returns normally to its caller or not
17281 if the DWARF producer set that information. */
17282 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17283 if (attr && (DW_UNSND (attr) != 0))
17284 TYPE_NO_RETURN (ftype) = 1;
17285
17286 /* We need to add the subroutine type to the die immediately so
17287 we don't infinitely recurse when dealing with parameters
17288 declared as the same subroutine type. */
17289 set_die_type (die, ftype, cu);
17290
17291 if (die->child != NULL)
17292 {
17293 struct type *void_type = objfile_type (objfile)->builtin_void;
17294 struct die_info *child_die;
17295 int nparams, iparams;
17296
17297 /* Count the number of parameters.
17298 FIXME: GDB currently ignores vararg functions, but knows about
17299 vararg member functions. */
17300 nparams = 0;
17301 child_die = die->child;
17302 while (child_die && child_die->tag)
17303 {
17304 if (child_die->tag == DW_TAG_formal_parameter)
17305 nparams++;
17306 else if (child_die->tag == DW_TAG_unspecified_parameters)
17307 TYPE_VARARGS (ftype) = 1;
17308 child_die = sibling_die (child_die);
17309 }
17310
17311 /* Allocate storage for parameters and fill them in. */
17312 TYPE_NFIELDS (ftype) = nparams;
17313 TYPE_FIELDS (ftype) = (struct field *)
17314 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17315
17316 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17317 even if we error out during the parameters reading below. */
17318 for (iparams = 0; iparams < nparams; iparams++)
17319 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17320
17321 iparams = 0;
17322 child_die = die->child;
17323 while (child_die && child_die->tag)
17324 {
17325 if (child_die->tag == DW_TAG_formal_parameter)
17326 {
17327 struct type *arg_type;
17328
17329 /* DWARF version 2 has no clean way to discern C++
17330 static and non-static member functions. G++ helps
17331 GDB by marking the first parameter for non-static
17332 member functions (which is the this pointer) as
17333 artificial. We pass this information to
17334 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17335
17336 DWARF version 3 added DW_AT_object_pointer, which GCC
17337 4.5 does not yet generate. */
17338 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17339 if (attr)
17340 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17341 else
17342 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17343 arg_type = die_type (child_die, cu);
17344
17345 /* RealView does not mark THIS as const, which the testsuite
17346 expects. GCC marks THIS as const in method definitions,
17347 but not in the class specifications (GCC PR 43053). */
17348 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17349 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17350 {
17351 int is_this = 0;
17352 struct dwarf2_cu *arg_cu = cu;
17353 const char *name = dwarf2_name (child_die, cu);
17354
17355 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17356 if (attr)
17357 {
17358 /* If the compiler emits this, use it. */
17359 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17360 is_this = 1;
17361 }
17362 else if (name && strcmp (name, "this") == 0)
17363 /* Function definitions will have the argument names. */
17364 is_this = 1;
17365 else if (name == NULL && iparams == 0)
17366 /* Declarations may not have the names, so like
17367 elsewhere in GDB, assume an artificial first
17368 argument is "this". */
17369 is_this = 1;
17370
17371 if (is_this)
17372 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17373 arg_type, 0);
17374 }
17375
17376 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17377 iparams++;
17378 }
17379 child_die = sibling_die (child_die);
17380 }
17381 }
17382
17383 return ftype;
17384 }
17385
17386 static struct type *
17387 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17388 {
17389 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17390 const char *name = NULL;
17391 struct type *this_type, *target_type;
17392
17393 name = dwarf2_full_name (NULL, die, cu);
17394 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17395 TYPE_TARGET_STUB (this_type) = 1;
17396 set_die_type (die, this_type, cu);
17397 target_type = die_type (die, cu);
17398 if (target_type != this_type)
17399 TYPE_TARGET_TYPE (this_type) = target_type;
17400 else
17401 {
17402 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17403 spec and cause infinite loops in GDB. */
17404 complaint (&symfile_complaints,
17405 _("Self-referential DW_TAG_typedef "
17406 "- DIE at %s [in module %s]"),
17407 sect_offset_str (die->sect_off), objfile_name (objfile));
17408 TYPE_TARGET_TYPE (this_type) = NULL;
17409 }
17410 return this_type;
17411 }
17412
17413 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17414 (which may be different from NAME) to the architecture back-end to allow
17415 it to guess the correct format if necessary. */
17416
17417 static struct type *
17418 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17419 const char *name_hint)
17420 {
17421 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17422 const struct floatformat **format;
17423 struct type *type;
17424
17425 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17426 if (format)
17427 type = init_float_type (objfile, bits, name, format);
17428 else
17429 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17430
17431 return type;
17432 }
17433
17434 /* Find a representation of a given base type and install
17435 it in the TYPE field of the die. */
17436
17437 static struct type *
17438 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17439 {
17440 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17441 struct type *type;
17442 struct attribute *attr;
17443 int encoding = 0, bits = 0;
17444 const char *name;
17445
17446 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17447 if (attr)
17448 {
17449 encoding = DW_UNSND (attr);
17450 }
17451 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17452 if (attr)
17453 {
17454 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17455 }
17456 name = dwarf2_name (die, cu);
17457 if (!name)
17458 {
17459 complaint (&symfile_complaints,
17460 _("DW_AT_name missing from DW_TAG_base_type"));
17461 }
17462
17463 switch (encoding)
17464 {
17465 case DW_ATE_address:
17466 /* Turn DW_ATE_address into a void * pointer. */
17467 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17468 type = init_pointer_type (objfile, bits, name, type);
17469 break;
17470 case DW_ATE_boolean:
17471 type = init_boolean_type (objfile, bits, 1, name);
17472 break;
17473 case DW_ATE_complex_float:
17474 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17475 type = init_complex_type (objfile, name, type);
17476 break;
17477 case DW_ATE_decimal_float:
17478 type = init_decfloat_type (objfile, bits, name);
17479 break;
17480 case DW_ATE_float:
17481 type = dwarf2_init_float_type (objfile, bits, name, name);
17482 break;
17483 case DW_ATE_signed:
17484 type = init_integer_type (objfile, bits, 0, name);
17485 break;
17486 case DW_ATE_unsigned:
17487 if (cu->language == language_fortran
17488 && name
17489 && startswith (name, "character("))
17490 type = init_character_type (objfile, bits, 1, name);
17491 else
17492 type = init_integer_type (objfile, bits, 1, name);
17493 break;
17494 case DW_ATE_signed_char:
17495 if (cu->language == language_ada || cu->language == language_m2
17496 || cu->language == language_pascal
17497 || cu->language == language_fortran)
17498 type = init_character_type (objfile, bits, 0, name);
17499 else
17500 type = init_integer_type (objfile, bits, 0, name);
17501 break;
17502 case DW_ATE_unsigned_char:
17503 if (cu->language == language_ada || cu->language == language_m2
17504 || cu->language == language_pascal
17505 || cu->language == language_fortran
17506 || cu->language == language_rust)
17507 type = init_character_type (objfile, bits, 1, name);
17508 else
17509 type = init_integer_type (objfile, bits, 1, name);
17510 break;
17511 case DW_ATE_UTF:
17512 {
17513 gdbarch *arch = get_objfile_arch (objfile);
17514
17515 if (bits == 16)
17516 type = builtin_type (arch)->builtin_char16;
17517 else if (bits == 32)
17518 type = builtin_type (arch)->builtin_char32;
17519 else
17520 {
17521 complaint (&symfile_complaints,
17522 _("unsupported DW_ATE_UTF bit size: '%d'"),
17523 bits);
17524 type = init_integer_type (objfile, bits, 1, name);
17525 }
17526 return set_die_type (die, type, cu);
17527 }
17528 break;
17529
17530 default:
17531 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17532 dwarf_type_encoding_name (encoding));
17533 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17534 break;
17535 }
17536
17537 if (name && strcmp (name, "char") == 0)
17538 TYPE_NOSIGN (type) = 1;
17539
17540 return set_die_type (die, type, cu);
17541 }
17542
17543 /* Parse dwarf attribute if it's a block, reference or constant and put the
17544 resulting value of the attribute into struct bound_prop.
17545 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17546
17547 static int
17548 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17549 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17550 {
17551 struct dwarf2_property_baton *baton;
17552 struct obstack *obstack
17553 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17554
17555 if (attr == NULL || prop == NULL)
17556 return 0;
17557
17558 if (attr_form_is_block (attr))
17559 {
17560 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17561 baton->referenced_type = NULL;
17562 baton->locexpr.per_cu = cu->per_cu;
17563 baton->locexpr.size = DW_BLOCK (attr)->size;
17564 baton->locexpr.data = DW_BLOCK (attr)->data;
17565 prop->data.baton = baton;
17566 prop->kind = PROP_LOCEXPR;
17567 gdb_assert (prop->data.baton != NULL);
17568 }
17569 else if (attr_form_is_ref (attr))
17570 {
17571 struct dwarf2_cu *target_cu = cu;
17572 struct die_info *target_die;
17573 struct attribute *target_attr;
17574
17575 target_die = follow_die_ref (die, attr, &target_cu);
17576 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17577 if (target_attr == NULL)
17578 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17579 target_cu);
17580 if (target_attr == NULL)
17581 return 0;
17582
17583 switch (target_attr->name)
17584 {
17585 case DW_AT_location:
17586 if (attr_form_is_section_offset (target_attr))
17587 {
17588 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17589 baton->referenced_type = die_type (target_die, target_cu);
17590 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17591 prop->data.baton = baton;
17592 prop->kind = PROP_LOCLIST;
17593 gdb_assert (prop->data.baton != NULL);
17594 }
17595 else if (attr_form_is_block (target_attr))
17596 {
17597 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17598 baton->referenced_type = die_type (target_die, target_cu);
17599 baton->locexpr.per_cu = cu->per_cu;
17600 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17601 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17602 prop->data.baton = baton;
17603 prop->kind = PROP_LOCEXPR;
17604 gdb_assert (prop->data.baton != NULL);
17605 }
17606 else
17607 {
17608 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17609 "dynamic property");
17610 return 0;
17611 }
17612 break;
17613 case DW_AT_data_member_location:
17614 {
17615 LONGEST offset;
17616
17617 if (!handle_data_member_location (target_die, target_cu,
17618 &offset))
17619 return 0;
17620
17621 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17622 baton->referenced_type = read_type_die (target_die->parent,
17623 target_cu);
17624 baton->offset_info.offset = offset;
17625 baton->offset_info.type = die_type (target_die, target_cu);
17626 prop->data.baton = baton;
17627 prop->kind = PROP_ADDR_OFFSET;
17628 break;
17629 }
17630 }
17631 }
17632 else if (attr_form_is_constant (attr))
17633 {
17634 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17635 prop->kind = PROP_CONST;
17636 }
17637 else
17638 {
17639 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17640 dwarf2_name (die, cu));
17641 return 0;
17642 }
17643
17644 return 1;
17645 }
17646
17647 /* Read the given DW_AT_subrange DIE. */
17648
17649 static struct type *
17650 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17651 {
17652 struct type *base_type, *orig_base_type;
17653 struct type *range_type;
17654 struct attribute *attr;
17655 struct dynamic_prop low, high;
17656 int low_default_is_valid;
17657 int high_bound_is_count = 0;
17658 const char *name;
17659 LONGEST negative_mask;
17660
17661 orig_base_type = die_type (die, cu);
17662 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17663 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17664 creating the range type, but we use the result of check_typedef
17665 when examining properties of the type. */
17666 base_type = check_typedef (orig_base_type);
17667
17668 /* The die_type call above may have already set the type for this DIE. */
17669 range_type = get_die_type (die, cu);
17670 if (range_type)
17671 return range_type;
17672
17673 low.kind = PROP_CONST;
17674 high.kind = PROP_CONST;
17675 high.data.const_val = 0;
17676
17677 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17678 omitting DW_AT_lower_bound. */
17679 switch (cu->language)
17680 {
17681 case language_c:
17682 case language_cplus:
17683 low.data.const_val = 0;
17684 low_default_is_valid = 1;
17685 break;
17686 case language_fortran:
17687 low.data.const_val = 1;
17688 low_default_is_valid = 1;
17689 break;
17690 case language_d:
17691 case language_objc:
17692 case language_rust:
17693 low.data.const_val = 0;
17694 low_default_is_valid = (cu->header.version >= 4);
17695 break;
17696 case language_ada:
17697 case language_m2:
17698 case language_pascal:
17699 low.data.const_val = 1;
17700 low_default_is_valid = (cu->header.version >= 4);
17701 break;
17702 default:
17703 low.data.const_val = 0;
17704 low_default_is_valid = 0;
17705 break;
17706 }
17707
17708 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17709 if (attr)
17710 attr_to_dynamic_prop (attr, die, cu, &low);
17711 else if (!low_default_is_valid)
17712 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17713 "- DIE at %s [in module %s]"),
17714 sect_offset_str (die->sect_off),
17715 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17716
17717 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17718 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17719 {
17720 attr = dwarf2_attr (die, DW_AT_count, cu);
17721 if (attr_to_dynamic_prop (attr, die, cu, &high))
17722 {
17723 /* If bounds are constant do the final calculation here. */
17724 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17725 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17726 else
17727 high_bound_is_count = 1;
17728 }
17729 }
17730
17731 /* Dwarf-2 specifications explicitly allows to create subrange types
17732 without specifying a base type.
17733 In that case, the base type must be set to the type of
17734 the lower bound, upper bound or count, in that order, if any of these
17735 three attributes references an object that has a type.
17736 If no base type is found, the Dwarf-2 specifications say that
17737 a signed integer type of size equal to the size of an address should
17738 be used.
17739 For the following C code: `extern char gdb_int [];'
17740 GCC produces an empty range DIE.
17741 FIXME: muller/2010-05-28: Possible references to object for low bound,
17742 high bound or count are not yet handled by this code. */
17743 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17744 {
17745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17746 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17747 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17748 struct type *int_type = objfile_type (objfile)->builtin_int;
17749
17750 /* Test "int", "long int", and "long long int" objfile types,
17751 and select the first one having a size above or equal to the
17752 architecture address size. */
17753 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17754 base_type = int_type;
17755 else
17756 {
17757 int_type = objfile_type (objfile)->builtin_long;
17758 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17759 base_type = int_type;
17760 else
17761 {
17762 int_type = objfile_type (objfile)->builtin_long_long;
17763 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17764 base_type = int_type;
17765 }
17766 }
17767 }
17768
17769 /* Normally, the DWARF producers are expected to use a signed
17770 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17771 But this is unfortunately not always the case, as witnessed
17772 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17773 is used instead. To work around that ambiguity, we treat
17774 the bounds as signed, and thus sign-extend their values, when
17775 the base type is signed. */
17776 negative_mask =
17777 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17778 if (low.kind == PROP_CONST
17779 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17780 low.data.const_val |= negative_mask;
17781 if (high.kind == PROP_CONST
17782 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17783 high.data.const_val |= negative_mask;
17784
17785 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17786
17787 if (high_bound_is_count)
17788 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17789
17790 /* Ada expects an empty array on no boundary attributes. */
17791 if (attr == NULL && cu->language != language_ada)
17792 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17793
17794 name = dwarf2_name (die, cu);
17795 if (name)
17796 TYPE_NAME (range_type) = name;
17797
17798 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17799 if (attr)
17800 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17801
17802 set_die_type (die, range_type, cu);
17803
17804 /* set_die_type should be already done. */
17805 set_descriptive_type (range_type, die, cu);
17806
17807 return range_type;
17808 }
17809
17810 static struct type *
17811 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17812 {
17813 struct type *type;
17814
17815 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17816 NULL);
17817 TYPE_NAME (type) = dwarf2_name (die, cu);
17818
17819 /* In Ada, an unspecified type is typically used when the description
17820 of the type is defered to a different unit. When encountering
17821 such a type, we treat it as a stub, and try to resolve it later on,
17822 when needed. */
17823 if (cu->language == language_ada)
17824 TYPE_STUB (type) = 1;
17825
17826 return set_die_type (die, type, cu);
17827 }
17828
17829 /* Read a single die and all its descendents. Set the die's sibling
17830 field to NULL; set other fields in the die correctly, and set all
17831 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17832 location of the info_ptr after reading all of those dies. PARENT
17833 is the parent of the die in question. */
17834
17835 static struct die_info *
17836 read_die_and_children (const struct die_reader_specs *reader,
17837 const gdb_byte *info_ptr,
17838 const gdb_byte **new_info_ptr,
17839 struct die_info *parent)
17840 {
17841 struct die_info *die;
17842 const gdb_byte *cur_ptr;
17843 int has_children;
17844
17845 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17846 if (die == NULL)
17847 {
17848 *new_info_ptr = cur_ptr;
17849 return NULL;
17850 }
17851 store_in_ref_table (die, reader->cu);
17852
17853 if (has_children)
17854 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17855 else
17856 {
17857 die->child = NULL;
17858 *new_info_ptr = cur_ptr;
17859 }
17860
17861 die->sibling = NULL;
17862 die->parent = parent;
17863 return die;
17864 }
17865
17866 /* Read a die, all of its descendents, and all of its siblings; set
17867 all of the fields of all of the dies correctly. Arguments are as
17868 in read_die_and_children. */
17869
17870 static struct die_info *
17871 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17872 const gdb_byte *info_ptr,
17873 const gdb_byte **new_info_ptr,
17874 struct die_info *parent)
17875 {
17876 struct die_info *first_die, *last_sibling;
17877 const gdb_byte *cur_ptr;
17878
17879 cur_ptr = info_ptr;
17880 first_die = last_sibling = NULL;
17881
17882 while (1)
17883 {
17884 struct die_info *die
17885 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17886
17887 if (die == NULL)
17888 {
17889 *new_info_ptr = cur_ptr;
17890 return first_die;
17891 }
17892
17893 if (!first_die)
17894 first_die = die;
17895 else
17896 last_sibling->sibling = die;
17897
17898 last_sibling = die;
17899 }
17900 }
17901
17902 /* Read a die, all of its descendents, and all of its siblings; set
17903 all of the fields of all of the dies correctly. Arguments are as
17904 in read_die_and_children.
17905 This the main entry point for reading a DIE and all its children. */
17906
17907 static struct die_info *
17908 read_die_and_siblings (const struct die_reader_specs *reader,
17909 const gdb_byte *info_ptr,
17910 const gdb_byte **new_info_ptr,
17911 struct die_info *parent)
17912 {
17913 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17914 new_info_ptr, parent);
17915
17916 if (dwarf_die_debug)
17917 {
17918 fprintf_unfiltered (gdb_stdlog,
17919 "Read die from %s@0x%x of %s:\n",
17920 get_section_name (reader->die_section),
17921 (unsigned) (info_ptr - reader->die_section->buffer),
17922 bfd_get_filename (reader->abfd));
17923 dump_die (die, dwarf_die_debug);
17924 }
17925
17926 return die;
17927 }
17928
17929 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17930 attributes.
17931 The caller is responsible for filling in the extra attributes
17932 and updating (*DIEP)->num_attrs.
17933 Set DIEP to point to a newly allocated die with its information,
17934 except for its child, sibling, and parent fields.
17935 Set HAS_CHILDREN to tell whether the die has children or not. */
17936
17937 static const gdb_byte *
17938 read_full_die_1 (const struct die_reader_specs *reader,
17939 struct die_info **diep, const gdb_byte *info_ptr,
17940 int *has_children, int num_extra_attrs)
17941 {
17942 unsigned int abbrev_number, bytes_read, i;
17943 struct abbrev_info *abbrev;
17944 struct die_info *die;
17945 struct dwarf2_cu *cu = reader->cu;
17946 bfd *abfd = reader->abfd;
17947
17948 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17949 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17950 info_ptr += bytes_read;
17951 if (!abbrev_number)
17952 {
17953 *diep = NULL;
17954 *has_children = 0;
17955 return info_ptr;
17956 }
17957
17958 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17959 if (!abbrev)
17960 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17961 abbrev_number,
17962 bfd_get_filename (abfd));
17963
17964 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17965 die->sect_off = sect_off;
17966 die->tag = abbrev->tag;
17967 die->abbrev = abbrev_number;
17968
17969 /* Make the result usable.
17970 The caller needs to update num_attrs after adding the extra
17971 attributes. */
17972 die->num_attrs = abbrev->num_attrs;
17973
17974 for (i = 0; i < abbrev->num_attrs; ++i)
17975 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17976 info_ptr);
17977
17978 *diep = die;
17979 *has_children = abbrev->has_children;
17980 return info_ptr;
17981 }
17982
17983 /* Read a die and all its attributes.
17984 Set DIEP to point to a newly allocated die with its information,
17985 except for its child, sibling, and parent fields.
17986 Set HAS_CHILDREN to tell whether the die has children or not. */
17987
17988 static const gdb_byte *
17989 read_full_die (const struct die_reader_specs *reader,
17990 struct die_info **diep, const gdb_byte *info_ptr,
17991 int *has_children)
17992 {
17993 const gdb_byte *result;
17994
17995 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17996
17997 if (dwarf_die_debug)
17998 {
17999 fprintf_unfiltered (gdb_stdlog,
18000 "Read die from %s@0x%x of %s:\n",
18001 get_section_name (reader->die_section),
18002 (unsigned) (info_ptr - reader->die_section->buffer),
18003 bfd_get_filename (reader->abfd));
18004 dump_die (*diep, dwarf_die_debug);
18005 }
18006
18007 return result;
18008 }
18009 \f
18010 /* Abbreviation tables.
18011
18012 In DWARF version 2, the description of the debugging information is
18013 stored in a separate .debug_abbrev section. Before we read any
18014 dies from a section we read in all abbreviations and install them
18015 in a hash table. */
18016
18017 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18018
18019 struct abbrev_info *
18020 abbrev_table::alloc_abbrev ()
18021 {
18022 struct abbrev_info *abbrev;
18023
18024 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18025 memset (abbrev, 0, sizeof (struct abbrev_info));
18026
18027 return abbrev;
18028 }
18029
18030 /* Add an abbreviation to the table. */
18031
18032 void
18033 abbrev_table::add_abbrev (unsigned int abbrev_number,
18034 struct abbrev_info *abbrev)
18035 {
18036 unsigned int hash_number;
18037
18038 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18039 abbrev->next = m_abbrevs[hash_number];
18040 m_abbrevs[hash_number] = abbrev;
18041 }
18042
18043 /* Look up an abbrev in the table.
18044 Returns NULL if the abbrev is not found. */
18045
18046 struct abbrev_info *
18047 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18048 {
18049 unsigned int hash_number;
18050 struct abbrev_info *abbrev;
18051
18052 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18053 abbrev = m_abbrevs[hash_number];
18054
18055 while (abbrev)
18056 {
18057 if (abbrev->number == abbrev_number)
18058 return abbrev;
18059 abbrev = abbrev->next;
18060 }
18061 return NULL;
18062 }
18063
18064 /* Read in an abbrev table. */
18065
18066 static abbrev_table_up
18067 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18068 struct dwarf2_section_info *section,
18069 sect_offset sect_off)
18070 {
18071 struct objfile *objfile = dwarf2_per_objfile->objfile;
18072 bfd *abfd = get_section_bfd_owner (section);
18073 const gdb_byte *abbrev_ptr;
18074 struct abbrev_info *cur_abbrev;
18075 unsigned int abbrev_number, bytes_read, abbrev_name;
18076 unsigned int abbrev_form;
18077 struct attr_abbrev *cur_attrs;
18078 unsigned int allocated_attrs;
18079
18080 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18081
18082 dwarf2_read_section (objfile, section);
18083 abbrev_ptr = section->buffer + to_underlying (sect_off);
18084 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18085 abbrev_ptr += bytes_read;
18086
18087 allocated_attrs = ATTR_ALLOC_CHUNK;
18088 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18089
18090 /* Loop until we reach an abbrev number of 0. */
18091 while (abbrev_number)
18092 {
18093 cur_abbrev = abbrev_table->alloc_abbrev ();
18094
18095 /* read in abbrev header */
18096 cur_abbrev->number = abbrev_number;
18097 cur_abbrev->tag
18098 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18099 abbrev_ptr += bytes_read;
18100 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18101 abbrev_ptr += 1;
18102
18103 /* now read in declarations */
18104 for (;;)
18105 {
18106 LONGEST implicit_const;
18107
18108 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18109 abbrev_ptr += bytes_read;
18110 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18111 abbrev_ptr += bytes_read;
18112 if (abbrev_form == DW_FORM_implicit_const)
18113 {
18114 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18115 &bytes_read);
18116 abbrev_ptr += bytes_read;
18117 }
18118 else
18119 {
18120 /* Initialize it due to a false compiler warning. */
18121 implicit_const = -1;
18122 }
18123
18124 if (abbrev_name == 0)
18125 break;
18126
18127 if (cur_abbrev->num_attrs == allocated_attrs)
18128 {
18129 allocated_attrs += ATTR_ALLOC_CHUNK;
18130 cur_attrs
18131 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18132 }
18133
18134 cur_attrs[cur_abbrev->num_attrs].name
18135 = (enum dwarf_attribute) abbrev_name;
18136 cur_attrs[cur_abbrev->num_attrs].form
18137 = (enum dwarf_form) abbrev_form;
18138 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18139 ++cur_abbrev->num_attrs;
18140 }
18141
18142 cur_abbrev->attrs =
18143 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18144 cur_abbrev->num_attrs);
18145 memcpy (cur_abbrev->attrs, cur_attrs,
18146 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18147
18148 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18149
18150 /* Get next abbreviation.
18151 Under Irix6 the abbreviations for a compilation unit are not
18152 always properly terminated with an abbrev number of 0.
18153 Exit loop if we encounter an abbreviation which we have
18154 already read (which means we are about to read the abbreviations
18155 for the next compile unit) or if the end of the abbreviation
18156 table is reached. */
18157 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18158 break;
18159 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18160 abbrev_ptr += bytes_read;
18161 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18162 break;
18163 }
18164
18165 xfree (cur_attrs);
18166 return abbrev_table;
18167 }
18168
18169 /* Returns nonzero if TAG represents a type that we might generate a partial
18170 symbol for. */
18171
18172 static int
18173 is_type_tag_for_partial (int tag)
18174 {
18175 switch (tag)
18176 {
18177 #if 0
18178 /* Some types that would be reasonable to generate partial symbols for,
18179 that we don't at present. */
18180 case DW_TAG_array_type:
18181 case DW_TAG_file_type:
18182 case DW_TAG_ptr_to_member_type:
18183 case DW_TAG_set_type:
18184 case DW_TAG_string_type:
18185 case DW_TAG_subroutine_type:
18186 #endif
18187 case DW_TAG_base_type:
18188 case DW_TAG_class_type:
18189 case DW_TAG_interface_type:
18190 case DW_TAG_enumeration_type:
18191 case DW_TAG_structure_type:
18192 case DW_TAG_subrange_type:
18193 case DW_TAG_typedef:
18194 case DW_TAG_union_type:
18195 return 1;
18196 default:
18197 return 0;
18198 }
18199 }
18200
18201 /* Load all DIEs that are interesting for partial symbols into memory. */
18202
18203 static struct partial_die_info *
18204 load_partial_dies (const struct die_reader_specs *reader,
18205 const gdb_byte *info_ptr, int building_psymtab)
18206 {
18207 struct dwarf2_cu *cu = reader->cu;
18208 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18209 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18210 unsigned int bytes_read;
18211 unsigned int load_all = 0;
18212 int nesting_level = 1;
18213
18214 parent_die = NULL;
18215 last_die = NULL;
18216
18217 gdb_assert (cu->per_cu != NULL);
18218 if (cu->per_cu->load_all_dies)
18219 load_all = 1;
18220
18221 cu->partial_dies
18222 = htab_create_alloc_ex (cu->header.length / 12,
18223 partial_die_hash,
18224 partial_die_eq,
18225 NULL,
18226 &cu->comp_unit_obstack,
18227 hashtab_obstack_allocate,
18228 dummy_obstack_deallocate);
18229
18230 while (1)
18231 {
18232 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18233
18234 /* A NULL abbrev means the end of a series of children. */
18235 if (abbrev == NULL)
18236 {
18237 if (--nesting_level == 0)
18238 return first_die;
18239
18240 info_ptr += bytes_read;
18241 last_die = parent_die;
18242 parent_die = parent_die->die_parent;
18243 continue;
18244 }
18245
18246 /* Check for template arguments. We never save these; if
18247 they're seen, we just mark the parent, and go on our way. */
18248 if (parent_die != NULL
18249 && cu->language == language_cplus
18250 && (abbrev->tag == DW_TAG_template_type_param
18251 || abbrev->tag == DW_TAG_template_value_param))
18252 {
18253 parent_die->has_template_arguments = 1;
18254
18255 if (!load_all)
18256 {
18257 /* We don't need a partial DIE for the template argument. */
18258 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18259 continue;
18260 }
18261 }
18262
18263 /* We only recurse into c++ subprograms looking for template arguments.
18264 Skip their other children. */
18265 if (!load_all
18266 && cu->language == language_cplus
18267 && parent_die != NULL
18268 && parent_die->tag == DW_TAG_subprogram)
18269 {
18270 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18271 continue;
18272 }
18273
18274 /* Check whether this DIE is interesting enough to save. Normally
18275 we would not be interested in members here, but there may be
18276 later variables referencing them via DW_AT_specification (for
18277 static members). */
18278 if (!load_all
18279 && !is_type_tag_for_partial (abbrev->tag)
18280 && abbrev->tag != DW_TAG_constant
18281 && abbrev->tag != DW_TAG_enumerator
18282 && abbrev->tag != DW_TAG_subprogram
18283 && abbrev->tag != DW_TAG_inlined_subroutine
18284 && abbrev->tag != DW_TAG_lexical_block
18285 && abbrev->tag != DW_TAG_variable
18286 && abbrev->tag != DW_TAG_namespace
18287 && abbrev->tag != DW_TAG_module
18288 && abbrev->tag != DW_TAG_member
18289 && abbrev->tag != DW_TAG_imported_unit
18290 && abbrev->tag != DW_TAG_imported_declaration)
18291 {
18292 /* Otherwise we skip to the next sibling, if any. */
18293 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18294 continue;
18295 }
18296
18297 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18298 abbrev);
18299
18300 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18301
18302 /* This two-pass algorithm for processing partial symbols has a
18303 high cost in cache pressure. Thus, handle some simple cases
18304 here which cover the majority of C partial symbols. DIEs
18305 which neither have specification tags in them, nor could have
18306 specification tags elsewhere pointing at them, can simply be
18307 processed and discarded.
18308
18309 This segment is also optional; scan_partial_symbols and
18310 add_partial_symbol will handle these DIEs if we chain
18311 them in normally. When compilers which do not emit large
18312 quantities of duplicate debug information are more common,
18313 this code can probably be removed. */
18314
18315 /* Any complete simple types at the top level (pretty much all
18316 of them, for a language without namespaces), can be processed
18317 directly. */
18318 if (parent_die == NULL
18319 && pdi.has_specification == 0
18320 && pdi.is_declaration == 0
18321 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18322 || pdi.tag == DW_TAG_base_type
18323 || pdi.tag == DW_TAG_subrange_type))
18324 {
18325 if (building_psymtab && pdi.name != NULL)
18326 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18327 VAR_DOMAIN, LOC_TYPEDEF,
18328 &objfile->static_psymbols,
18329 0, cu->language, objfile);
18330 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18331 continue;
18332 }
18333
18334 /* The exception for DW_TAG_typedef with has_children above is
18335 a workaround of GCC PR debug/47510. In the case of this complaint
18336 type_name_no_tag_or_error will error on such types later.
18337
18338 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18339 it could not find the child DIEs referenced later, this is checked
18340 above. In correct DWARF DW_TAG_typedef should have no children. */
18341
18342 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18343 complaint (&symfile_complaints,
18344 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18345 "- DIE at %s [in module %s]"),
18346 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18347
18348 /* If we're at the second level, and we're an enumerator, and
18349 our parent has no specification (meaning possibly lives in a
18350 namespace elsewhere), then we can add the partial symbol now
18351 instead of queueing it. */
18352 if (pdi.tag == DW_TAG_enumerator
18353 && parent_die != NULL
18354 && parent_die->die_parent == NULL
18355 && parent_die->tag == DW_TAG_enumeration_type
18356 && parent_die->has_specification == 0)
18357 {
18358 if (pdi.name == NULL)
18359 complaint (&symfile_complaints,
18360 _("malformed enumerator DIE ignored"));
18361 else if (building_psymtab)
18362 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18363 VAR_DOMAIN, LOC_CONST,
18364 cu->language == language_cplus
18365 ? &objfile->global_psymbols
18366 : &objfile->static_psymbols,
18367 0, cu->language, objfile);
18368
18369 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18370 continue;
18371 }
18372
18373 struct partial_die_info *part_die
18374 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18375
18376 /* We'll save this DIE so link it in. */
18377 part_die->die_parent = parent_die;
18378 part_die->die_sibling = NULL;
18379 part_die->die_child = NULL;
18380
18381 if (last_die && last_die == parent_die)
18382 last_die->die_child = part_die;
18383 else if (last_die)
18384 last_die->die_sibling = part_die;
18385
18386 last_die = part_die;
18387
18388 if (first_die == NULL)
18389 first_die = part_die;
18390
18391 /* Maybe add the DIE to the hash table. Not all DIEs that we
18392 find interesting need to be in the hash table, because we
18393 also have the parent/sibling/child chains; only those that we
18394 might refer to by offset later during partial symbol reading.
18395
18396 For now this means things that might have be the target of a
18397 DW_AT_specification, DW_AT_abstract_origin, or
18398 DW_AT_extension. DW_AT_extension will refer only to
18399 namespaces; DW_AT_abstract_origin refers to functions (and
18400 many things under the function DIE, but we do not recurse
18401 into function DIEs during partial symbol reading) and
18402 possibly variables as well; DW_AT_specification refers to
18403 declarations. Declarations ought to have the DW_AT_declaration
18404 flag. It happens that GCC forgets to put it in sometimes, but
18405 only for functions, not for types.
18406
18407 Adding more things than necessary to the hash table is harmless
18408 except for the performance cost. Adding too few will result in
18409 wasted time in find_partial_die, when we reread the compilation
18410 unit with load_all_dies set. */
18411
18412 if (load_all
18413 || abbrev->tag == DW_TAG_constant
18414 || abbrev->tag == DW_TAG_subprogram
18415 || abbrev->tag == DW_TAG_variable
18416 || abbrev->tag == DW_TAG_namespace
18417 || part_die->is_declaration)
18418 {
18419 void **slot;
18420
18421 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18422 to_underlying (part_die->sect_off),
18423 INSERT);
18424 *slot = part_die;
18425 }
18426
18427 /* For some DIEs we want to follow their children (if any). For C
18428 we have no reason to follow the children of structures; for other
18429 languages we have to, so that we can get at method physnames
18430 to infer fully qualified class names, for DW_AT_specification,
18431 and for C++ template arguments. For C++, we also look one level
18432 inside functions to find template arguments (if the name of the
18433 function does not already contain the template arguments).
18434
18435 For Ada, we need to scan the children of subprograms and lexical
18436 blocks as well because Ada allows the definition of nested
18437 entities that could be interesting for the debugger, such as
18438 nested subprograms for instance. */
18439 if (last_die->has_children
18440 && (load_all
18441 || last_die->tag == DW_TAG_namespace
18442 || last_die->tag == DW_TAG_module
18443 || last_die->tag == DW_TAG_enumeration_type
18444 || (cu->language == language_cplus
18445 && last_die->tag == DW_TAG_subprogram
18446 && (last_die->name == NULL
18447 || strchr (last_die->name, '<') == NULL))
18448 || (cu->language != language_c
18449 && (last_die->tag == DW_TAG_class_type
18450 || last_die->tag == DW_TAG_interface_type
18451 || last_die->tag == DW_TAG_structure_type
18452 || last_die->tag == DW_TAG_union_type))
18453 || (cu->language == language_ada
18454 && (last_die->tag == DW_TAG_subprogram
18455 || last_die->tag == DW_TAG_lexical_block))))
18456 {
18457 nesting_level++;
18458 parent_die = last_die;
18459 continue;
18460 }
18461
18462 /* Otherwise we skip to the next sibling, if any. */
18463 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18464
18465 /* Back to the top, do it again. */
18466 }
18467 }
18468
18469 partial_die_info::partial_die_info (sect_offset sect_off_,
18470 struct abbrev_info *abbrev)
18471 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18472 {
18473 }
18474
18475 /* Read a minimal amount of information into the minimal die structure.
18476 INFO_PTR should point just after the initial uleb128 of a DIE. */
18477
18478 const gdb_byte *
18479 partial_die_info::read (const struct die_reader_specs *reader,
18480 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18481 {
18482 struct dwarf2_cu *cu = reader->cu;
18483 struct dwarf2_per_objfile *dwarf2_per_objfile
18484 = cu->per_cu->dwarf2_per_objfile;
18485 unsigned int i;
18486 int has_low_pc_attr = 0;
18487 int has_high_pc_attr = 0;
18488 int high_pc_relative = 0;
18489
18490 for (i = 0; i < abbrev.num_attrs; ++i)
18491 {
18492 struct attribute attr;
18493
18494 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18495
18496 /* Store the data if it is of an attribute we want to keep in a
18497 partial symbol table. */
18498 switch (attr.name)
18499 {
18500 case DW_AT_name:
18501 switch (tag)
18502 {
18503 case DW_TAG_compile_unit:
18504 case DW_TAG_partial_unit:
18505 case DW_TAG_type_unit:
18506 /* Compilation units have a DW_AT_name that is a filename, not
18507 a source language identifier. */
18508 case DW_TAG_enumeration_type:
18509 case DW_TAG_enumerator:
18510 /* These tags always have simple identifiers already; no need
18511 to canonicalize them. */
18512 name = DW_STRING (&attr);
18513 break;
18514 default:
18515 {
18516 struct objfile *objfile = dwarf2_per_objfile->objfile;
18517
18518 name
18519 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18520 &objfile->per_bfd->storage_obstack);
18521 }
18522 break;
18523 }
18524 break;
18525 case DW_AT_linkage_name:
18526 case DW_AT_MIPS_linkage_name:
18527 /* Note that both forms of linkage name might appear. We
18528 assume they will be the same, and we only store the last
18529 one we see. */
18530 if (cu->language == language_ada)
18531 name = DW_STRING (&attr);
18532 linkage_name = DW_STRING (&attr);
18533 break;
18534 case DW_AT_low_pc:
18535 has_low_pc_attr = 1;
18536 lowpc = attr_value_as_address (&attr);
18537 break;
18538 case DW_AT_high_pc:
18539 has_high_pc_attr = 1;
18540 highpc = attr_value_as_address (&attr);
18541 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18542 high_pc_relative = 1;
18543 break;
18544 case DW_AT_location:
18545 /* Support the .debug_loc offsets. */
18546 if (attr_form_is_block (&attr))
18547 {
18548 d.locdesc = DW_BLOCK (&attr);
18549 }
18550 else if (attr_form_is_section_offset (&attr))
18551 {
18552 dwarf2_complex_location_expr_complaint ();
18553 }
18554 else
18555 {
18556 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18557 "partial symbol information");
18558 }
18559 break;
18560 case DW_AT_external:
18561 is_external = DW_UNSND (&attr);
18562 break;
18563 case DW_AT_declaration:
18564 is_declaration = DW_UNSND (&attr);
18565 break;
18566 case DW_AT_type:
18567 has_type = 1;
18568 break;
18569 case DW_AT_abstract_origin:
18570 case DW_AT_specification:
18571 case DW_AT_extension:
18572 has_specification = 1;
18573 spec_offset = dwarf2_get_ref_die_offset (&attr);
18574 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18575 || cu->per_cu->is_dwz);
18576 break;
18577 case DW_AT_sibling:
18578 /* Ignore absolute siblings, they might point outside of
18579 the current compile unit. */
18580 if (attr.form == DW_FORM_ref_addr)
18581 complaint (&symfile_complaints,
18582 _("ignoring absolute DW_AT_sibling"));
18583 else
18584 {
18585 const gdb_byte *buffer = reader->buffer;
18586 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18587 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18588
18589 if (sibling_ptr < info_ptr)
18590 complaint (&symfile_complaints,
18591 _("DW_AT_sibling points backwards"));
18592 else if (sibling_ptr > reader->buffer_end)
18593 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18594 else
18595 sibling = sibling_ptr;
18596 }
18597 break;
18598 case DW_AT_byte_size:
18599 has_byte_size = 1;
18600 break;
18601 case DW_AT_const_value:
18602 has_const_value = 1;
18603 break;
18604 case DW_AT_calling_convention:
18605 /* DWARF doesn't provide a way to identify a program's source-level
18606 entry point. DW_AT_calling_convention attributes are only meant
18607 to describe functions' calling conventions.
18608
18609 However, because it's a necessary piece of information in
18610 Fortran, and before DWARF 4 DW_CC_program was the only
18611 piece of debugging information whose definition refers to
18612 a 'main program' at all, several compilers marked Fortran
18613 main programs with DW_CC_program --- even when those
18614 functions use the standard calling conventions.
18615
18616 Although DWARF now specifies a way to provide this
18617 information, we support this practice for backward
18618 compatibility. */
18619 if (DW_UNSND (&attr) == DW_CC_program
18620 && cu->language == language_fortran)
18621 main_subprogram = 1;
18622 break;
18623 case DW_AT_inline:
18624 if (DW_UNSND (&attr) == DW_INL_inlined
18625 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18626 may_be_inlined = 1;
18627 break;
18628
18629 case DW_AT_import:
18630 if (tag == DW_TAG_imported_unit)
18631 {
18632 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18633 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18634 || cu->per_cu->is_dwz);
18635 }
18636 break;
18637
18638 case DW_AT_main_subprogram:
18639 main_subprogram = DW_UNSND (&attr);
18640 break;
18641
18642 default:
18643 break;
18644 }
18645 }
18646
18647 if (high_pc_relative)
18648 highpc += lowpc;
18649
18650 if (has_low_pc_attr && has_high_pc_attr)
18651 {
18652 /* When using the GNU linker, .gnu.linkonce. sections are used to
18653 eliminate duplicate copies of functions and vtables and such.
18654 The linker will arbitrarily choose one and discard the others.
18655 The AT_*_pc values for such functions refer to local labels in
18656 these sections. If the section from that file was discarded, the
18657 labels are not in the output, so the relocs get a value of 0.
18658 If this is a discarded function, mark the pc bounds as invalid,
18659 so that GDB will ignore it. */
18660 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18661 {
18662 struct objfile *objfile = dwarf2_per_objfile->objfile;
18663 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18664
18665 complaint (&symfile_complaints,
18666 _("DW_AT_low_pc %s is zero "
18667 "for DIE at %s [in module %s]"),
18668 paddress (gdbarch, lowpc),
18669 sect_offset_str (sect_off),
18670 objfile_name (objfile));
18671 }
18672 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18673 else if (lowpc >= highpc)
18674 {
18675 struct objfile *objfile = dwarf2_per_objfile->objfile;
18676 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18677
18678 complaint (&symfile_complaints,
18679 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18680 "for DIE at %s [in module %s]"),
18681 paddress (gdbarch, lowpc),
18682 paddress (gdbarch, highpc),
18683 sect_offset_str (sect_off),
18684 objfile_name (objfile));
18685 }
18686 else
18687 has_pc_info = 1;
18688 }
18689
18690 return info_ptr;
18691 }
18692
18693 /* Find a cached partial DIE at OFFSET in CU. */
18694
18695 struct partial_die_info *
18696 dwarf2_cu::find_partial_die (sect_offset sect_off)
18697 {
18698 struct partial_die_info *lookup_die = NULL;
18699 struct partial_die_info part_die (sect_off);
18700
18701 lookup_die = ((struct partial_die_info *)
18702 htab_find_with_hash (partial_dies, &part_die,
18703 to_underlying (sect_off)));
18704
18705 return lookup_die;
18706 }
18707
18708 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18709 except in the case of .debug_types DIEs which do not reference
18710 outside their CU (they do however referencing other types via
18711 DW_FORM_ref_sig8). */
18712
18713 static struct partial_die_info *
18714 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18715 {
18716 struct dwarf2_per_objfile *dwarf2_per_objfile
18717 = cu->per_cu->dwarf2_per_objfile;
18718 struct objfile *objfile = dwarf2_per_objfile->objfile;
18719 struct dwarf2_per_cu_data *per_cu = NULL;
18720 struct partial_die_info *pd = NULL;
18721
18722 if (offset_in_dwz == cu->per_cu->is_dwz
18723 && offset_in_cu_p (&cu->header, sect_off))
18724 {
18725 pd = cu->find_partial_die (sect_off);
18726 if (pd != NULL)
18727 return pd;
18728 /* We missed recording what we needed.
18729 Load all dies and try again. */
18730 per_cu = cu->per_cu;
18731 }
18732 else
18733 {
18734 /* TUs don't reference other CUs/TUs (except via type signatures). */
18735 if (cu->per_cu->is_debug_types)
18736 {
18737 error (_("Dwarf Error: Type Unit at offset %s contains"
18738 " external reference to offset %s [in module %s].\n"),
18739 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18740 bfd_get_filename (objfile->obfd));
18741 }
18742 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18743 dwarf2_per_objfile);
18744
18745 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18746 load_partial_comp_unit (per_cu);
18747
18748 per_cu->cu->last_used = 0;
18749 pd = per_cu->cu->find_partial_die (sect_off);
18750 }
18751
18752 /* If we didn't find it, and not all dies have been loaded,
18753 load them all and try again. */
18754
18755 if (pd == NULL && per_cu->load_all_dies == 0)
18756 {
18757 per_cu->load_all_dies = 1;
18758
18759 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18760 THIS_CU->cu may already be in use. So we can't just free it and
18761 replace its DIEs with the ones we read in. Instead, we leave those
18762 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18763 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18764 set. */
18765 load_partial_comp_unit (per_cu);
18766
18767 pd = per_cu->cu->find_partial_die (sect_off);
18768 }
18769
18770 if (pd == NULL)
18771 internal_error (__FILE__, __LINE__,
18772 _("could not find partial DIE %s "
18773 "in cache [from module %s]\n"),
18774 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18775 return pd;
18776 }
18777
18778 /* See if we can figure out if the class lives in a namespace. We do
18779 this by looking for a member function; its demangled name will
18780 contain namespace info, if there is any. */
18781
18782 static void
18783 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18784 struct dwarf2_cu *cu)
18785 {
18786 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18787 what template types look like, because the demangler
18788 frequently doesn't give the same name as the debug info. We
18789 could fix this by only using the demangled name to get the
18790 prefix (but see comment in read_structure_type). */
18791
18792 struct partial_die_info *real_pdi;
18793 struct partial_die_info *child_pdi;
18794
18795 /* If this DIE (this DIE's specification, if any) has a parent, then
18796 we should not do this. We'll prepend the parent's fully qualified
18797 name when we create the partial symbol. */
18798
18799 real_pdi = struct_pdi;
18800 while (real_pdi->has_specification)
18801 real_pdi = find_partial_die (real_pdi->spec_offset,
18802 real_pdi->spec_is_dwz, cu);
18803
18804 if (real_pdi->die_parent != NULL)
18805 return;
18806
18807 for (child_pdi = struct_pdi->die_child;
18808 child_pdi != NULL;
18809 child_pdi = child_pdi->die_sibling)
18810 {
18811 if (child_pdi->tag == DW_TAG_subprogram
18812 && child_pdi->linkage_name != NULL)
18813 {
18814 char *actual_class_name
18815 = language_class_name_from_physname (cu->language_defn,
18816 child_pdi->linkage_name);
18817 if (actual_class_name != NULL)
18818 {
18819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18820 struct_pdi->name
18821 = ((const char *)
18822 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18823 actual_class_name,
18824 strlen (actual_class_name)));
18825 xfree (actual_class_name);
18826 }
18827 break;
18828 }
18829 }
18830 }
18831
18832 void
18833 partial_die_info::fixup (struct dwarf2_cu *cu)
18834 {
18835 /* Once we've fixed up a die, there's no point in doing so again.
18836 This also avoids a memory leak if we were to call
18837 guess_partial_die_structure_name multiple times. */
18838 if (fixup_called)
18839 return;
18840
18841 /* If we found a reference attribute and the DIE has no name, try
18842 to find a name in the referred to DIE. */
18843
18844 if (name == NULL && has_specification)
18845 {
18846 struct partial_die_info *spec_die;
18847
18848 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18849
18850 spec_die->fixup (cu);
18851
18852 if (spec_die->name)
18853 {
18854 name = spec_die->name;
18855
18856 /* Copy DW_AT_external attribute if it is set. */
18857 if (spec_die->is_external)
18858 is_external = spec_die->is_external;
18859 }
18860 }
18861
18862 /* Set default names for some unnamed DIEs. */
18863
18864 if (name == NULL && tag == DW_TAG_namespace)
18865 name = CP_ANONYMOUS_NAMESPACE_STR;
18866
18867 /* If there is no parent die to provide a namespace, and there are
18868 children, see if we can determine the namespace from their linkage
18869 name. */
18870 if (cu->language == language_cplus
18871 && !VEC_empty (dwarf2_section_info_def,
18872 cu->per_cu->dwarf2_per_objfile->types)
18873 && die_parent == NULL
18874 && has_children
18875 && (tag == DW_TAG_class_type
18876 || tag == DW_TAG_structure_type
18877 || tag == DW_TAG_union_type))
18878 guess_partial_die_structure_name (this, cu);
18879
18880 /* GCC might emit a nameless struct or union that has a linkage
18881 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18882 if (name == NULL
18883 && (tag == DW_TAG_class_type
18884 || tag == DW_TAG_interface_type
18885 || tag == DW_TAG_structure_type
18886 || tag == DW_TAG_union_type)
18887 && linkage_name != NULL)
18888 {
18889 char *demangled;
18890
18891 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18892 if (demangled)
18893 {
18894 const char *base;
18895
18896 /* Strip any leading namespaces/classes, keep only the base name.
18897 DW_AT_name for named DIEs does not contain the prefixes. */
18898 base = strrchr (demangled, ':');
18899 if (base && base > demangled && base[-1] == ':')
18900 base++;
18901 else
18902 base = demangled;
18903
18904 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18905 name
18906 = ((const char *)
18907 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18908 base, strlen (base)));
18909 xfree (demangled);
18910 }
18911 }
18912
18913 fixup_called = 1;
18914 }
18915
18916 /* Read an attribute value described by an attribute form. */
18917
18918 static const gdb_byte *
18919 read_attribute_value (const struct die_reader_specs *reader,
18920 struct attribute *attr, unsigned form,
18921 LONGEST implicit_const, const gdb_byte *info_ptr)
18922 {
18923 struct dwarf2_cu *cu = reader->cu;
18924 struct dwarf2_per_objfile *dwarf2_per_objfile
18925 = cu->per_cu->dwarf2_per_objfile;
18926 struct objfile *objfile = dwarf2_per_objfile->objfile;
18927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18928 bfd *abfd = reader->abfd;
18929 struct comp_unit_head *cu_header = &cu->header;
18930 unsigned int bytes_read;
18931 struct dwarf_block *blk;
18932
18933 attr->form = (enum dwarf_form) form;
18934 switch (form)
18935 {
18936 case DW_FORM_ref_addr:
18937 if (cu->header.version == 2)
18938 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18939 else
18940 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18941 &cu->header, &bytes_read);
18942 info_ptr += bytes_read;
18943 break;
18944 case DW_FORM_GNU_ref_alt:
18945 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18946 info_ptr += bytes_read;
18947 break;
18948 case DW_FORM_addr:
18949 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18950 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18951 info_ptr += bytes_read;
18952 break;
18953 case DW_FORM_block2:
18954 blk = dwarf_alloc_block (cu);
18955 blk->size = read_2_bytes (abfd, info_ptr);
18956 info_ptr += 2;
18957 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18958 info_ptr += blk->size;
18959 DW_BLOCK (attr) = blk;
18960 break;
18961 case DW_FORM_block4:
18962 blk = dwarf_alloc_block (cu);
18963 blk->size = read_4_bytes (abfd, info_ptr);
18964 info_ptr += 4;
18965 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18966 info_ptr += blk->size;
18967 DW_BLOCK (attr) = blk;
18968 break;
18969 case DW_FORM_data2:
18970 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18971 info_ptr += 2;
18972 break;
18973 case DW_FORM_data4:
18974 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18975 info_ptr += 4;
18976 break;
18977 case DW_FORM_data8:
18978 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18979 info_ptr += 8;
18980 break;
18981 case DW_FORM_data16:
18982 blk = dwarf_alloc_block (cu);
18983 blk->size = 16;
18984 blk->data = read_n_bytes (abfd, info_ptr, 16);
18985 info_ptr += 16;
18986 DW_BLOCK (attr) = blk;
18987 break;
18988 case DW_FORM_sec_offset:
18989 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18990 info_ptr += bytes_read;
18991 break;
18992 case DW_FORM_string:
18993 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18994 DW_STRING_IS_CANONICAL (attr) = 0;
18995 info_ptr += bytes_read;
18996 break;
18997 case DW_FORM_strp:
18998 if (!cu->per_cu->is_dwz)
18999 {
19000 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19001 abfd, info_ptr, cu_header,
19002 &bytes_read);
19003 DW_STRING_IS_CANONICAL (attr) = 0;
19004 info_ptr += bytes_read;
19005 break;
19006 }
19007 /* FALLTHROUGH */
19008 case DW_FORM_line_strp:
19009 if (!cu->per_cu->is_dwz)
19010 {
19011 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19012 abfd, info_ptr,
19013 cu_header, &bytes_read);
19014 DW_STRING_IS_CANONICAL (attr) = 0;
19015 info_ptr += bytes_read;
19016 break;
19017 }
19018 /* FALLTHROUGH */
19019 case DW_FORM_GNU_strp_alt:
19020 {
19021 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19022 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19023 &bytes_read);
19024
19025 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19026 dwz, str_offset);
19027 DW_STRING_IS_CANONICAL (attr) = 0;
19028 info_ptr += bytes_read;
19029 }
19030 break;
19031 case DW_FORM_exprloc:
19032 case DW_FORM_block:
19033 blk = dwarf_alloc_block (cu);
19034 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19035 info_ptr += bytes_read;
19036 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19037 info_ptr += blk->size;
19038 DW_BLOCK (attr) = blk;
19039 break;
19040 case DW_FORM_block1:
19041 blk = dwarf_alloc_block (cu);
19042 blk->size = read_1_byte (abfd, info_ptr);
19043 info_ptr += 1;
19044 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19045 info_ptr += blk->size;
19046 DW_BLOCK (attr) = blk;
19047 break;
19048 case DW_FORM_data1:
19049 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19050 info_ptr += 1;
19051 break;
19052 case DW_FORM_flag:
19053 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19054 info_ptr += 1;
19055 break;
19056 case DW_FORM_flag_present:
19057 DW_UNSND (attr) = 1;
19058 break;
19059 case DW_FORM_sdata:
19060 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19061 info_ptr += bytes_read;
19062 break;
19063 case DW_FORM_udata:
19064 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19065 info_ptr += bytes_read;
19066 break;
19067 case DW_FORM_ref1:
19068 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19069 + read_1_byte (abfd, info_ptr));
19070 info_ptr += 1;
19071 break;
19072 case DW_FORM_ref2:
19073 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19074 + read_2_bytes (abfd, info_ptr));
19075 info_ptr += 2;
19076 break;
19077 case DW_FORM_ref4:
19078 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19079 + read_4_bytes (abfd, info_ptr));
19080 info_ptr += 4;
19081 break;
19082 case DW_FORM_ref8:
19083 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19084 + read_8_bytes (abfd, info_ptr));
19085 info_ptr += 8;
19086 break;
19087 case DW_FORM_ref_sig8:
19088 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19089 info_ptr += 8;
19090 break;
19091 case DW_FORM_ref_udata:
19092 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19093 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19094 info_ptr += bytes_read;
19095 break;
19096 case DW_FORM_indirect:
19097 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19098 info_ptr += bytes_read;
19099 if (form == DW_FORM_implicit_const)
19100 {
19101 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19102 info_ptr += bytes_read;
19103 }
19104 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19105 info_ptr);
19106 break;
19107 case DW_FORM_implicit_const:
19108 DW_SND (attr) = implicit_const;
19109 break;
19110 case DW_FORM_GNU_addr_index:
19111 if (reader->dwo_file == NULL)
19112 {
19113 /* For now flag a hard error.
19114 Later we can turn this into a complaint. */
19115 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19116 dwarf_form_name (form),
19117 bfd_get_filename (abfd));
19118 }
19119 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19120 info_ptr += bytes_read;
19121 break;
19122 case DW_FORM_GNU_str_index:
19123 if (reader->dwo_file == NULL)
19124 {
19125 /* For now flag a hard error.
19126 Later we can turn this into a complaint if warranted. */
19127 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19128 dwarf_form_name (form),
19129 bfd_get_filename (abfd));
19130 }
19131 {
19132 ULONGEST str_index =
19133 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19134
19135 DW_STRING (attr) = read_str_index (reader, str_index);
19136 DW_STRING_IS_CANONICAL (attr) = 0;
19137 info_ptr += bytes_read;
19138 }
19139 break;
19140 default:
19141 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19142 dwarf_form_name (form),
19143 bfd_get_filename (abfd));
19144 }
19145
19146 /* Super hack. */
19147 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19148 attr->form = DW_FORM_GNU_ref_alt;
19149
19150 /* We have seen instances where the compiler tried to emit a byte
19151 size attribute of -1 which ended up being encoded as an unsigned
19152 0xffffffff. Although 0xffffffff is technically a valid size value,
19153 an object of this size seems pretty unlikely so we can relatively
19154 safely treat these cases as if the size attribute was invalid and
19155 treat them as zero by default. */
19156 if (attr->name == DW_AT_byte_size
19157 && form == DW_FORM_data4
19158 && DW_UNSND (attr) >= 0xffffffff)
19159 {
19160 complaint
19161 (&symfile_complaints,
19162 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19163 hex_string (DW_UNSND (attr)));
19164 DW_UNSND (attr) = 0;
19165 }
19166
19167 return info_ptr;
19168 }
19169
19170 /* Read an attribute described by an abbreviated attribute. */
19171
19172 static const gdb_byte *
19173 read_attribute (const struct die_reader_specs *reader,
19174 struct attribute *attr, struct attr_abbrev *abbrev,
19175 const gdb_byte *info_ptr)
19176 {
19177 attr->name = abbrev->name;
19178 return read_attribute_value (reader, attr, abbrev->form,
19179 abbrev->implicit_const, info_ptr);
19180 }
19181
19182 /* Read dwarf information from a buffer. */
19183
19184 static unsigned int
19185 read_1_byte (bfd *abfd, const gdb_byte *buf)
19186 {
19187 return bfd_get_8 (abfd, buf);
19188 }
19189
19190 static int
19191 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19192 {
19193 return bfd_get_signed_8 (abfd, buf);
19194 }
19195
19196 static unsigned int
19197 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19198 {
19199 return bfd_get_16 (abfd, buf);
19200 }
19201
19202 static int
19203 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19204 {
19205 return bfd_get_signed_16 (abfd, buf);
19206 }
19207
19208 static unsigned int
19209 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19210 {
19211 return bfd_get_32 (abfd, buf);
19212 }
19213
19214 static int
19215 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19216 {
19217 return bfd_get_signed_32 (abfd, buf);
19218 }
19219
19220 static ULONGEST
19221 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19222 {
19223 return bfd_get_64 (abfd, buf);
19224 }
19225
19226 static CORE_ADDR
19227 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19228 unsigned int *bytes_read)
19229 {
19230 struct comp_unit_head *cu_header = &cu->header;
19231 CORE_ADDR retval = 0;
19232
19233 if (cu_header->signed_addr_p)
19234 {
19235 switch (cu_header->addr_size)
19236 {
19237 case 2:
19238 retval = bfd_get_signed_16 (abfd, buf);
19239 break;
19240 case 4:
19241 retval = bfd_get_signed_32 (abfd, buf);
19242 break;
19243 case 8:
19244 retval = bfd_get_signed_64 (abfd, buf);
19245 break;
19246 default:
19247 internal_error (__FILE__, __LINE__,
19248 _("read_address: bad switch, signed [in module %s]"),
19249 bfd_get_filename (abfd));
19250 }
19251 }
19252 else
19253 {
19254 switch (cu_header->addr_size)
19255 {
19256 case 2:
19257 retval = bfd_get_16 (abfd, buf);
19258 break;
19259 case 4:
19260 retval = bfd_get_32 (abfd, buf);
19261 break;
19262 case 8:
19263 retval = bfd_get_64 (abfd, buf);
19264 break;
19265 default:
19266 internal_error (__FILE__, __LINE__,
19267 _("read_address: bad switch, "
19268 "unsigned [in module %s]"),
19269 bfd_get_filename (abfd));
19270 }
19271 }
19272
19273 *bytes_read = cu_header->addr_size;
19274 return retval;
19275 }
19276
19277 /* Read the initial length from a section. The (draft) DWARF 3
19278 specification allows the initial length to take up either 4 bytes
19279 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19280 bytes describe the length and all offsets will be 8 bytes in length
19281 instead of 4.
19282
19283 An older, non-standard 64-bit format is also handled by this
19284 function. The older format in question stores the initial length
19285 as an 8-byte quantity without an escape value. Lengths greater
19286 than 2^32 aren't very common which means that the initial 4 bytes
19287 is almost always zero. Since a length value of zero doesn't make
19288 sense for the 32-bit format, this initial zero can be considered to
19289 be an escape value which indicates the presence of the older 64-bit
19290 format. As written, the code can't detect (old format) lengths
19291 greater than 4GB. If it becomes necessary to handle lengths
19292 somewhat larger than 4GB, we could allow other small values (such
19293 as the non-sensical values of 1, 2, and 3) to also be used as
19294 escape values indicating the presence of the old format.
19295
19296 The value returned via bytes_read should be used to increment the
19297 relevant pointer after calling read_initial_length().
19298
19299 [ Note: read_initial_length() and read_offset() are based on the
19300 document entitled "DWARF Debugging Information Format", revision
19301 3, draft 8, dated November 19, 2001. This document was obtained
19302 from:
19303
19304 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19305
19306 This document is only a draft and is subject to change. (So beware.)
19307
19308 Details regarding the older, non-standard 64-bit format were
19309 determined empirically by examining 64-bit ELF files produced by
19310 the SGI toolchain on an IRIX 6.5 machine.
19311
19312 - Kevin, July 16, 2002
19313 ] */
19314
19315 static LONGEST
19316 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19317 {
19318 LONGEST length = bfd_get_32 (abfd, buf);
19319
19320 if (length == 0xffffffff)
19321 {
19322 length = bfd_get_64 (abfd, buf + 4);
19323 *bytes_read = 12;
19324 }
19325 else if (length == 0)
19326 {
19327 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19328 length = bfd_get_64 (abfd, buf);
19329 *bytes_read = 8;
19330 }
19331 else
19332 {
19333 *bytes_read = 4;
19334 }
19335
19336 return length;
19337 }
19338
19339 /* Cover function for read_initial_length.
19340 Returns the length of the object at BUF, and stores the size of the
19341 initial length in *BYTES_READ and stores the size that offsets will be in
19342 *OFFSET_SIZE.
19343 If the initial length size is not equivalent to that specified in
19344 CU_HEADER then issue a complaint.
19345 This is useful when reading non-comp-unit headers. */
19346
19347 static LONGEST
19348 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19349 const struct comp_unit_head *cu_header,
19350 unsigned int *bytes_read,
19351 unsigned int *offset_size)
19352 {
19353 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19354
19355 gdb_assert (cu_header->initial_length_size == 4
19356 || cu_header->initial_length_size == 8
19357 || cu_header->initial_length_size == 12);
19358
19359 if (cu_header->initial_length_size != *bytes_read)
19360 complaint (&symfile_complaints,
19361 _("intermixed 32-bit and 64-bit DWARF sections"));
19362
19363 *offset_size = (*bytes_read == 4) ? 4 : 8;
19364 return length;
19365 }
19366
19367 /* Read an offset from the data stream. The size of the offset is
19368 given by cu_header->offset_size. */
19369
19370 static LONGEST
19371 read_offset (bfd *abfd, const gdb_byte *buf,
19372 const struct comp_unit_head *cu_header,
19373 unsigned int *bytes_read)
19374 {
19375 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19376
19377 *bytes_read = cu_header->offset_size;
19378 return offset;
19379 }
19380
19381 /* Read an offset from the data stream. */
19382
19383 static LONGEST
19384 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19385 {
19386 LONGEST retval = 0;
19387
19388 switch (offset_size)
19389 {
19390 case 4:
19391 retval = bfd_get_32 (abfd, buf);
19392 break;
19393 case 8:
19394 retval = bfd_get_64 (abfd, buf);
19395 break;
19396 default:
19397 internal_error (__FILE__, __LINE__,
19398 _("read_offset_1: bad switch [in module %s]"),
19399 bfd_get_filename (abfd));
19400 }
19401
19402 return retval;
19403 }
19404
19405 static const gdb_byte *
19406 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19407 {
19408 /* If the size of a host char is 8 bits, we can return a pointer
19409 to the buffer, otherwise we have to copy the data to a buffer
19410 allocated on the temporary obstack. */
19411 gdb_assert (HOST_CHAR_BIT == 8);
19412 return buf;
19413 }
19414
19415 static const char *
19416 read_direct_string (bfd *abfd, const gdb_byte *buf,
19417 unsigned int *bytes_read_ptr)
19418 {
19419 /* If the size of a host char is 8 bits, we can return a pointer
19420 to the string, otherwise we have to copy the string to a buffer
19421 allocated on the temporary obstack. */
19422 gdb_assert (HOST_CHAR_BIT == 8);
19423 if (*buf == '\0')
19424 {
19425 *bytes_read_ptr = 1;
19426 return NULL;
19427 }
19428 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19429 return (const char *) buf;
19430 }
19431
19432 /* Return pointer to string at section SECT offset STR_OFFSET with error
19433 reporting strings FORM_NAME and SECT_NAME. */
19434
19435 static const char *
19436 read_indirect_string_at_offset_from (struct objfile *objfile,
19437 bfd *abfd, LONGEST str_offset,
19438 struct dwarf2_section_info *sect,
19439 const char *form_name,
19440 const char *sect_name)
19441 {
19442 dwarf2_read_section (objfile, sect);
19443 if (sect->buffer == NULL)
19444 error (_("%s used without %s section [in module %s]"),
19445 form_name, sect_name, bfd_get_filename (abfd));
19446 if (str_offset >= sect->size)
19447 error (_("%s pointing outside of %s section [in module %s]"),
19448 form_name, sect_name, bfd_get_filename (abfd));
19449 gdb_assert (HOST_CHAR_BIT == 8);
19450 if (sect->buffer[str_offset] == '\0')
19451 return NULL;
19452 return (const char *) (sect->buffer + str_offset);
19453 }
19454
19455 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19456
19457 static const char *
19458 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19459 bfd *abfd, LONGEST str_offset)
19460 {
19461 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19462 abfd, str_offset,
19463 &dwarf2_per_objfile->str,
19464 "DW_FORM_strp", ".debug_str");
19465 }
19466
19467 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19468
19469 static const char *
19470 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19471 bfd *abfd, LONGEST str_offset)
19472 {
19473 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19474 abfd, str_offset,
19475 &dwarf2_per_objfile->line_str,
19476 "DW_FORM_line_strp",
19477 ".debug_line_str");
19478 }
19479
19480 /* Read a string at offset STR_OFFSET in the .debug_str section from
19481 the .dwz file DWZ. Throw an error if the offset is too large. If
19482 the string consists of a single NUL byte, return NULL; otherwise
19483 return a pointer to the string. */
19484
19485 static const char *
19486 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19487 LONGEST str_offset)
19488 {
19489 dwarf2_read_section (objfile, &dwz->str);
19490
19491 if (dwz->str.buffer == NULL)
19492 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19493 "section [in module %s]"),
19494 bfd_get_filename (dwz->dwz_bfd));
19495 if (str_offset >= dwz->str.size)
19496 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19497 ".debug_str section [in module %s]"),
19498 bfd_get_filename (dwz->dwz_bfd));
19499 gdb_assert (HOST_CHAR_BIT == 8);
19500 if (dwz->str.buffer[str_offset] == '\0')
19501 return NULL;
19502 return (const char *) (dwz->str.buffer + str_offset);
19503 }
19504
19505 /* Return pointer to string at .debug_str offset as read from BUF.
19506 BUF is assumed to be in a compilation unit described by CU_HEADER.
19507 Return *BYTES_READ_PTR count of bytes read from BUF. */
19508
19509 static const char *
19510 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19511 const gdb_byte *buf,
19512 const struct comp_unit_head *cu_header,
19513 unsigned int *bytes_read_ptr)
19514 {
19515 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19516
19517 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19518 }
19519
19520 /* Return pointer to string at .debug_line_str offset as read from BUF.
19521 BUF is assumed to be in a compilation unit described by CU_HEADER.
19522 Return *BYTES_READ_PTR count of bytes read from BUF. */
19523
19524 static const char *
19525 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19526 bfd *abfd, const gdb_byte *buf,
19527 const struct comp_unit_head *cu_header,
19528 unsigned int *bytes_read_ptr)
19529 {
19530 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19531
19532 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19533 str_offset);
19534 }
19535
19536 ULONGEST
19537 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19538 unsigned int *bytes_read_ptr)
19539 {
19540 ULONGEST result;
19541 unsigned int num_read;
19542 int shift;
19543 unsigned char byte;
19544
19545 result = 0;
19546 shift = 0;
19547 num_read = 0;
19548 while (1)
19549 {
19550 byte = bfd_get_8 (abfd, buf);
19551 buf++;
19552 num_read++;
19553 result |= ((ULONGEST) (byte & 127) << shift);
19554 if ((byte & 128) == 0)
19555 {
19556 break;
19557 }
19558 shift += 7;
19559 }
19560 *bytes_read_ptr = num_read;
19561 return result;
19562 }
19563
19564 static LONGEST
19565 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19566 unsigned int *bytes_read_ptr)
19567 {
19568 LONGEST result;
19569 int shift, num_read;
19570 unsigned char byte;
19571
19572 result = 0;
19573 shift = 0;
19574 num_read = 0;
19575 while (1)
19576 {
19577 byte = bfd_get_8 (abfd, buf);
19578 buf++;
19579 num_read++;
19580 result |= ((LONGEST) (byte & 127) << shift);
19581 shift += 7;
19582 if ((byte & 128) == 0)
19583 {
19584 break;
19585 }
19586 }
19587 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19588 result |= -(((LONGEST) 1) << shift);
19589 *bytes_read_ptr = num_read;
19590 return result;
19591 }
19592
19593 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19594 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19595 ADDR_SIZE is the size of addresses from the CU header. */
19596
19597 static CORE_ADDR
19598 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19599 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19600 {
19601 struct objfile *objfile = dwarf2_per_objfile->objfile;
19602 bfd *abfd = objfile->obfd;
19603 const gdb_byte *info_ptr;
19604
19605 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19606 if (dwarf2_per_objfile->addr.buffer == NULL)
19607 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19608 objfile_name (objfile));
19609 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19610 error (_("DW_FORM_addr_index pointing outside of "
19611 ".debug_addr section [in module %s]"),
19612 objfile_name (objfile));
19613 info_ptr = (dwarf2_per_objfile->addr.buffer
19614 + addr_base + addr_index * addr_size);
19615 if (addr_size == 4)
19616 return bfd_get_32 (abfd, info_ptr);
19617 else
19618 return bfd_get_64 (abfd, info_ptr);
19619 }
19620
19621 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19622
19623 static CORE_ADDR
19624 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19625 {
19626 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19627 cu->addr_base, cu->header.addr_size);
19628 }
19629
19630 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19631
19632 static CORE_ADDR
19633 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19634 unsigned int *bytes_read)
19635 {
19636 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19637 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19638
19639 return read_addr_index (cu, addr_index);
19640 }
19641
19642 /* Data structure to pass results from dwarf2_read_addr_index_reader
19643 back to dwarf2_read_addr_index. */
19644
19645 struct dwarf2_read_addr_index_data
19646 {
19647 ULONGEST addr_base;
19648 int addr_size;
19649 };
19650
19651 /* die_reader_func for dwarf2_read_addr_index. */
19652
19653 static void
19654 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19655 const gdb_byte *info_ptr,
19656 struct die_info *comp_unit_die,
19657 int has_children,
19658 void *data)
19659 {
19660 struct dwarf2_cu *cu = reader->cu;
19661 struct dwarf2_read_addr_index_data *aidata =
19662 (struct dwarf2_read_addr_index_data *) data;
19663
19664 aidata->addr_base = cu->addr_base;
19665 aidata->addr_size = cu->header.addr_size;
19666 }
19667
19668 /* Given an index in .debug_addr, fetch the value.
19669 NOTE: This can be called during dwarf expression evaluation,
19670 long after the debug information has been read, and thus per_cu->cu
19671 may no longer exist. */
19672
19673 CORE_ADDR
19674 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19675 unsigned int addr_index)
19676 {
19677 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19678 struct objfile *objfile = dwarf2_per_objfile->objfile;
19679 struct dwarf2_cu *cu = per_cu->cu;
19680 ULONGEST addr_base;
19681 int addr_size;
19682
19683 /* We need addr_base and addr_size.
19684 If we don't have PER_CU->cu, we have to get it.
19685 Nasty, but the alternative is storing the needed info in PER_CU,
19686 which at this point doesn't seem justified: it's not clear how frequently
19687 it would get used and it would increase the size of every PER_CU.
19688 Entry points like dwarf2_per_cu_addr_size do a similar thing
19689 so we're not in uncharted territory here.
19690 Alas we need to be a bit more complicated as addr_base is contained
19691 in the DIE.
19692
19693 We don't need to read the entire CU(/TU).
19694 We just need the header and top level die.
19695
19696 IWBN to use the aging mechanism to let us lazily later discard the CU.
19697 For now we skip this optimization. */
19698
19699 if (cu != NULL)
19700 {
19701 addr_base = cu->addr_base;
19702 addr_size = cu->header.addr_size;
19703 }
19704 else
19705 {
19706 struct dwarf2_read_addr_index_data aidata;
19707
19708 /* Note: We can't use init_cutu_and_read_dies_simple here,
19709 we need addr_base. */
19710 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19711 dwarf2_read_addr_index_reader, &aidata);
19712 addr_base = aidata.addr_base;
19713 addr_size = aidata.addr_size;
19714 }
19715
19716 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19717 addr_size);
19718 }
19719
19720 /* Given a DW_FORM_GNU_str_index, fetch the string.
19721 This is only used by the Fission support. */
19722
19723 static const char *
19724 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19725 {
19726 struct dwarf2_cu *cu = reader->cu;
19727 struct dwarf2_per_objfile *dwarf2_per_objfile
19728 = cu->per_cu->dwarf2_per_objfile;
19729 struct objfile *objfile = dwarf2_per_objfile->objfile;
19730 const char *objf_name = objfile_name (objfile);
19731 bfd *abfd = objfile->obfd;
19732 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19733 struct dwarf2_section_info *str_offsets_section =
19734 &reader->dwo_file->sections.str_offsets;
19735 const gdb_byte *info_ptr;
19736 ULONGEST str_offset;
19737 static const char form_name[] = "DW_FORM_GNU_str_index";
19738
19739 dwarf2_read_section (objfile, str_section);
19740 dwarf2_read_section (objfile, str_offsets_section);
19741 if (str_section->buffer == NULL)
19742 error (_("%s used without .debug_str.dwo section"
19743 " in CU at offset %s [in module %s]"),
19744 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19745 if (str_offsets_section->buffer == NULL)
19746 error (_("%s used without .debug_str_offsets.dwo section"
19747 " in CU at offset %s [in module %s]"),
19748 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19749 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19750 error (_("%s pointing outside of .debug_str_offsets.dwo"
19751 " section in CU at offset %s [in module %s]"),
19752 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19753 info_ptr = (str_offsets_section->buffer
19754 + str_index * cu->header.offset_size);
19755 if (cu->header.offset_size == 4)
19756 str_offset = bfd_get_32 (abfd, info_ptr);
19757 else
19758 str_offset = bfd_get_64 (abfd, info_ptr);
19759 if (str_offset >= str_section->size)
19760 error (_("Offset from %s pointing outside of"
19761 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19762 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19763 return (const char *) (str_section->buffer + str_offset);
19764 }
19765
19766 /* Return the length of an LEB128 number in BUF. */
19767
19768 static int
19769 leb128_size (const gdb_byte *buf)
19770 {
19771 const gdb_byte *begin = buf;
19772 gdb_byte byte;
19773
19774 while (1)
19775 {
19776 byte = *buf++;
19777 if ((byte & 128) == 0)
19778 return buf - begin;
19779 }
19780 }
19781
19782 static void
19783 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19784 {
19785 switch (lang)
19786 {
19787 case DW_LANG_C89:
19788 case DW_LANG_C99:
19789 case DW_LANG_C11:
19790 case DW_LANG_C:
19791 case DW_LANG_UPC:
19792 cu->language = language_c;
19793 break;
19794 case DW_LANG_Java:
19795 case DW_LANG_C_plus_plus:
19796 case DW_LANG_C_plus_plus_11:
19797 case DW_LANG_C_plus_plus_14:
19798 cu->language = language_cplus;
19799 break;
19800 case DW_LANG_D:
19801 cu->language = language_d;
19802 break;
19803 case DW_LANG_Fortran77:
19804 case DW_LANG_Fortran90:
19805 case DW_LANG_Fortran95:
19806 case DW_LANG_Fortran03:
19807 case DW_LANG_Fortran08:
19808 cu->language = language_fortran;
19809 break;
19810 case DW_LANG_Go:
19811 cu->language = language_go;
19812 break;
19813 case DW_LANG_Mips_Assembler:
19814 cu->language = language_asm;
19815 break;
19816 case DW_LANG_Ada83:
19817 case DW_LANG_Ada95:
19818 cu->language = language_ada;
19819 break;
19820 case DW_LANG_Modula2:
19821 cu->language = language_m2;
19822 break;
19823 case DW_LANG_Pascal83:
19824 cu->language = language_pascal;
19825 break;
19826 case DW_LANG_ObjC:
19827 cu->language = language_objc;
19828 break;
19829 case DW_LANG_Rust:
19830 case DW_LANG_Rust_old:
19831 cu->language = language_rust;
19832 break;
19833 case DW_LANG_Cobol74:
19834 case DW_LANG_Cobol85:
19835 default:
19836 cu->language = language_minimal;
19837 break;
19838 }
19839 cu->language_defn = language_def (cu->language);
19840 }
19841
19842 /* Return the named attribute or NULL if not there. */
19843
19844 static struct attribute *
19845 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19846 {
19847 for (;;)
19848 {
19849 unsigned int i;
19850 struct attribute *spec = NULL;
19851
19852 for (i = 0; i < die->num_attrs; ++i)
19853 {
19854 if (die->attrs[i].name == name)
19855 return &die->attrs[i];
19856 if (die->attrs[i].name == DW_AT_specification
19857 || die->attrs[i].name == DW_AT_abstract_origin)
19858 spec = &die->attrs[i];
19859 }
19860
19861 if (!spec)
19862 break;
19863
19864 die = follow_die_ref (die, spec, &cu);
19865 }
19866
19867 return NULL;
19868 }
19869
19870 /* Return the named attribute or NULL if not there,
19871 but do not follow DW_AT_specification, etc.
19872 This is for use in contexts where we're reading .debug_types dies.
19873 Following DW_AT_specification, DW_AT_abstract_origin will take us
19874 back up the chain, and we want to go down. */
19875
19876 static struct attribute *
19877 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19878 {
19879 unsigned int i;
19880
19881 for (i = 0; i < die->num_attrs; ++i)
19882 if (die->attrs[i].name == name)
19883 return &die->attrs[i];
19884
19885 return NULL;
19886 }
19887
19888 /* Return the string associated with a string-typed attribute, or NULL if it
19889 is either not found or is of an incorrect type. */
19890
19891 static const char *
19892 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19893 {
19894 struct attribute *attr;
19895 const char *str = NULL;
19896
19897 attr = dwarf2_attr (die, name, cu);
19898
19899 if (attr != NULL)
19900 {
19901 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19902 || attr->form == DW_FORM_string
19903 || attr->form == DW_FORM_GNU_str_index
19904 || attr->form == DW_FORM_GNU_strp_alt)
19905 str = DW_STRING (attr);
19906 else
19907 complaint (&symfile_complaints,
19908 _("string type expected for attribute %s for "
19909 "DIE at %s in module %s"),
19910 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19911 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19912 }
19913
19914 return str;
19915 }
19916
19917 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19918 and holds a non-zero value. This function should only be used for
19919 DW_FORM_flag or DW_FORM_flag_present attributes. */
19920
19921 static int
19922 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19923 {
19924 struct attribute *attr = dwarf2_attr (die, name, cu);
19925
19926 return (attr && DW_UNSND (attr));
19927 }
19928
19929 static int
19930 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19931 {
19932 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19933 which value is non-zero. However, we have to be careful with
19934 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19935 (via dwarf2_flag_true_p) follows this attribute. So we may
19936 end up accidently finding a declaration attribute that belongs
19937 to a different DIE referenced by the specification attribute,
19938 even though the given DIE does not have a declaration attribute. */
19939 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19940 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19941 }
19942
19943 /* Return the die giving the specification for DIE, if there is
19944 one. *SPEC_CU is the CU containing DIE on input, and the CU
19945 containing the return value on output. If there is no
19946 specification, but there is an abstract origin, that is
19947 returned. */
19948
19949 static struct die_info *
19950 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19951 {
19952 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19953 *spec_cu);
19954
19955 if (spec_attr == NULL)
19956 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19957
19958 if (spec_attr == NULL)
19959 return NULL;
19960 else
19961 return follow_die_ref (die, spec_attr, spec_cu);
19962 }
19963
19964 /* Stub for free_line_header to match void * callback types. */
19965
19966 static void
19967 free_line_header_voidp (void *arg)
19968 {
19969 struct line_header *lh = (struct line_header *) arg;
19970
19971 delete lh;
19972 }
19973
19974 void
19975 line_header::add_include_dir (const char *include_dir)
19976 {
19977 if (dwarf_line_debug >= 2)
19978 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19979 include_dirs.size () + 1, include_dir);
19980
19981 include_dirs.push_back (include_dir);
19982 }
19983
19984 void
19985 line_header::add_file_name (const char *name,
19986 dir_index d_index,
19987 unsigned int mod_time,
19988 unsigned int length)
19989 {
19990 if (dwarf_line_debug >= 2)
19991 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19992 (unsigned) file_names.size () + 1, name);
19993
19994 file_names.emplace_back (name, d_index, mod_time, length);
19995 }
19996
19997 /* A convenience function to find the proper .debug_line section for a CU. */
19998
19999 static struct dwarf2_section_info *
20000 get_debug_line_section (struct dwarf2_cu *cu)
20001 {
20002 struct dwarf2_section_info *section;
20003 struct dwarf2_per_objfile *dwarf2_per_objfile
20004 = cu->per_cu->dwarf2_per_objfile;
20005
20006 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20007 DWO file. */
20008 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20009 section = &cu->dwo_unit->dwo_file->sections.line;
20010 else if (cu->per_cu->is_dwz)
20011 {
20012 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20013
20014 section = &dwz->line;
20015 }
20016 else
20017 section = &dwarf2_per_objfile->line;
20018
20019 return section;
20020 }
20021
20022 /* Read directory or file name entry format, starting with byte of
20023 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20024 entries count and the entries themselves in the described entry
20025 format. */
20026
20027 static void
20028 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20029 bfd *abfd, const gdb_byte **bufp,
20030 struct line_header *lh,
20031 const struct comp_unit_head *cu_header,
20032 void (*callback) (struct line_header *lh,
20033 const char *name,
20034 dir_index d_index,
20035 unsigned int mod_time,
20036 unsigned int length))
20037 {
20038 gdb_byte format_count, formati;
20039 ULONGEST data_count, datai;
20040 const gdb_byte *buf = *bufp;
20041 const gdb_byte *format_header_data;
20042 unsigned int bytes_read;
20043
20044 format_count = read_1_byte (abfd, buf);
20045 buf += 1;
20046 format_header_data = buf;
20047 for (formati = 0; formati < format_count; formati++)
20048 {
20049 read_unsigned_leb128 (abfd, buf, &bytes_read);
20050 buf += bytes_read;
20051 read_unsigned_leb128 (abfd, buf, &bytes_read);
20052 buf += bytes_read;
20053 }
20054
20055 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20056 buf += bytes_read;
20057 for (datai = 0; datai < data_count; datai++)
20058 {
20059 const gdb_byte *format = format_header_data;
20060 struct file_entry fe;
20061
20062 for (formati = 0; formati < format_count; formati++)
20063 {
20064 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20065 format += bytes_read;
20066
20067 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20068 format += bytes_read;
20069
20070 gdb::optional<const char *> string;
20071 gdb::optional<unsigned int> uint;
20072
20073 switch (form)
20074 {
20075 case DW_FORM_string:
20076 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20077 buf += bytes_read;
20078 break;
20079
20080 case DW_FORM_line_strp:
20081 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20082 abfd, buf,
20083 cu_header,
20084 &bytes_read));
20085 buf += bytes_read;
20086 break;
20087
20088 case DW_FORM_data1:
20089 uint.emplace (read_1_byte (abfd, buf));
20090 buf += 1;
20091 break;
20092
20093 case DW_FORM_data2:
20094 uint.emplace (read_2_bytes (abfd, buf));
20095 buf += 2;
20096 break;
20097
20098 case DW_FORM_data4:
20099 uint.emplace (read_4_bytes (abfd, buf));
20100 buf += 4;
20101 break;
20102
20103 case DW_FORM_data8:
20104 uint.emplace (read_8_bytes (abfd, buf));
20105 buf += 8;
20106 break;
20107
20108 case DW_FORM_udata:
20109 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20110 buf += bytes_read;
20111 break;
20112
20113 case DW_FORM_block:
20114 /* It is valid only for DW_LNCT_timestamp which is ignored by
20115 current GDB. */
20116 break;
20117 }
20118
20119 switch (content_type)
20120 {
20121 case DW_LNCT_path:
20122 if (string.has_value ())
20123 fe.name = *string;
20124 break;
20125 case DW_LNCT_directory_index:
20126 if (uint.has_value ())
20127 fe.d_index = (dir_index) *uint;
20128 break;
20129 case DW_LNCT_timestamp:
20130 if (uint.has_value ())
20131 fe.mod_time = *uint;
20132 break;
20133 case DW_LNCT_size:
20134 if (uint.has_value ())
20135 fe.length = *uint;
20136 break;
20137 case DW_LNCT_MD5:
20138 break;
20139 default:
20140 complaint (&symfile_complaints,
20141 _("Unknown format content type %s"),
20142 pulongest (content_type));
20143 }
20144 }
20145
20146 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20147 }
20148
20149 *bufp = buf;
20150 }
20151
20152 /* Read the statement program header starting at OFFSET in
20153 .debug_line, or .debug_line.dwo. Return a pointer
20154 to a struct line_header, allocated using xmalloc.
20155 Returns NULL if there is a problem reading the header, e.g., if it
20156 has a version we don't understand.
20157
20158 NOTE: the strings in the include directory and file name tables of
20159 the returned object point into the dwarf line section buffer,
20160 and must not be freed. */
20161
20162 static line_header_up
20163 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20164 {
20165 const gdb_byte *line_ptr;
20166 unsigned int bytes_read, offset_size;
20167 int i;
20168 const char *cur_dir, *cur_file;
20169 struct dwarf2_section_info *section;
20170 bfd *abfd;
20171 struct dwarf2_per_objfile *dwarf2_per_objfile
20172 = cu->per_cu->dwarf2_per_objfile;
20173
20174 section = get_debug_line_section (cu);
20175 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20176 if (section->buffer == NULL)
20177 {
20178 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20179 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20180 else
20181 complaint (&symfile_complaints, _("missing .debug_line section"));
20182 return 0;
20183 }
20184
20185 /* We can't do this until we know the section is non-empty.
20186 Only then do we know we have such a section. */
20187 abfd = get_section_bfd_owner (section);
20188
20189 /* Make sure that at least there's room for the total_length field.
20190 That could be 12 bytes long, but we're just going to fudge that. */
20191 if (to_underlying (sect_off) + 4 >= section->size)
20192 {
20193 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20194 return 0;
20195 }
20196
20197 line_header_up lh (new line_header ());
20198
20199 lh->sect_off = sect_off;
20200 lh->offset_in_dwz = cu->per_cu->is_dwz;
20201
20202 line_ptr = section->buffer + to_underlying (sect_off);
20203
20204 /* Read in the header. */
20205 lh->total_length =
20206 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20207 &bytes_read, &offset_size);
20208 line_ptr += bytes_read;
20209 if (line_ptr + lh->total_length > (section->buffer + section->size))
20210 {
20211 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20212 return 0;
20213 }
20214 lh->statement_program_end = line_ptr + lh->total_length;
20215 lh->version = read_2_bytes (abfd, line_ptr);
20216 line_ptr += 2;
20217 if (lh->version > 5)
20218 {
20219 /* This is a version we don't understand. The format could have
20220 changed in ways we don't handle properly so just punt. */
20221 complaint (&symfile_complaints,
20222 _("unsupported version in .debug_line section"));
20223 return NULL;
20224 }
20225 if (lh->version >= 5)
20226 {
20227 gdb_byte segment_selector_size;
20228
20229 /* Skip address size. */
20230 read_1_byte (abfd, line_ptr);
20231 line_ptr += 1;
20232
20233 segment_selector_size = read_1_byte (abfd, line_ptr);
20234 line_ptr += 1;
20235 if (segment_selector_size != 0)
20236 {
20237 complaint (&symfile_complaints,
20238 _("unsupported segment selector size %u "
20239 "in .debug_line section"),
20240 segment_selector_size);
20241 return NULL;
20242 }
20243 }
20244 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20245 line_ptr += offset_size;
20246 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20247 line_ptr += 1;
20248 if (lh->version >= 4)
20249 {
20250 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20251 line_ptr += 1;
20252 }
20253 else
20254 lh->maximum_ops_per_instruction = 1;
20255
20256 if (lh->maximum_ops_per_instruction == 0)
20257 {
20258 lh->maximum_ops_per_instruction = 1;
20259 complaint (&symfile_complaints,
20260 _("invalid maximum_ops_per_instruction "
20261 "in `.debug_line' section"));
20262 }
20263
20264 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20265 line_ptr += 1;
20266 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20267 line_ptr += 1;
20268 lh->line_range = read_1_byte (abfd, line_ptr);
20269 line_ptr += 1;
20270 lh->opcode_base = read_1_byte (abfd, line_ptr);
20271 line_ptr += 1;
20272 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20273
20274 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20275 for (i = 1; i < lh->opcode_base; ++i)
20276 {
20277 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20278 line_ptr += 1;
20279 }
20280
20281 if (lh->version >= 5)
20282 {
20283 /* Read directory table. */
20284 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20285 &cu->header,
20286 [] (struct line_header *lh, const char *name,
20287 dir_index d_index, unsigned int mod_time,
20288 unsigned int length)
20289 {
20290 lh->add_include_dir (name);
20291 });
20292
20293 /* Read file name table. */
20294 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20295 &cu->header,
20296 [] (struct line_header *lh, const char *name,
20297 dir_index d_index, unsigned int mod_time,
20298 unsigned int length)
20299 {
20300 lh->add_file_name (name, d_index, mod_time, length);
20301 });
20302 }
20303 else
20304 {
20305 /* Read directory table. */
20306 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20307 {
20308 line_ptr += bytes_read;
20309 lh->add_include_dir (cur_dir);
20310 }
20311 line_ptr += bytes_read;
20312
20313 /* Read file name table. */
20314 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20315 {
20316 unsigned int mod_time, length;
20317 dir_index d_index;
20318
20319 line_ptr += bytes_read;
20320 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20321 line_ptr += bytes_read;
20322 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20323 line_ptr += bytes_read;
20324 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20325 line_ptr += bytes_read;
20326
20327 lh->add_file_name (cur_file, d_index, mod_time, length);
20328 }
20329 line_ptr += bytes_read;
20330 }
20331 lh->statement_program_start = line_ptr;
20332
20333 if (line_ptr > (section->buffer + section->size))
20334 complaint (&symfile_complaints,
20335 _("line number info header doesn't "
20336 "fit in `.debug_line' section"));
20337
20338 return lh;
20339 }
20340
20341 /* Subroutine of dwarf_decode_lines to simplify it.
20342 Return the file name of the psymtab for included file FILE_INDEX
20343 in line header LH of PST.
20344 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20345 If space for the result is malloc'd, *NAME_HOLDER will be set.
20346 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20347
20348 static const char *
20349 psymtab_include_file_name (const struct line_header *lh, int file_index,
20350 const struct partial_symtab *pst,
20351 const char *comp_dir,
20352 gdb::unique_xmalloc_ptr<char> *name_holder)
20353 {
20354 const file_entry &fe = lh->file_names[file_index];
20355 const char *include_name = fe.name;
20356 const char *include_name_to_compare = include_name;
20357 const char *pst_filename;
20358 int file_is_pst;
20359
20360 const char *dir_name = fe.include_dir (lh);
20361
20362 gdb::unique_xmalloc_ptr<char> hold_compare;
20363 if (!IS_ABSOLUTE_PATH (include_name)
20364 && (dir_name != NULL || comp_dir != NULL))
20365 {
20366 /* Avoid creating a duplicate psymtab for PST.
20367 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20368 Before we do the comparison, however, we need to account
20369 for DIR_NAME and COMP_DIR.
20370 First prepend dir_name (if non-NULL). If we still don't
20371 have an absolute path prepend comp_dir (if non-NULL).
20372 However, the directory we record in the include-file's
20373 psymtab does not contain COMP_DIR (to match the
20374 corresponding symtab(s)).
20375
20376 Example:
20377
20378 bash$ cd /tmp
20379 bash$ gcc -g ./hello.c
20380 include_name = "hello.c"
20381 dir_name = "."
20382 DW_AT_comp_dir = comp_dir = "/tmp"
20383 DW_AT_name = "./hello.c"
20384
20385 */
20386
20387 if (dir_name != NULL)
20388 {
20389 name_holder->reset (concat (dir_name, SLASH_STRING,
20390 include_name, (char *) NULL));
20391 include_name = name_holder->get ();
20392 include_name_to_compare = include_name;
20393 }
20394 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20395 {
20396 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20397 include_name, (char *) NULL));
20398 include_name_to_compare = hold_compare.get ();
20399 }
20400 }
20401
20402 pst_filename = pst->filename;
20403 gdb::unique_xmalloc_ptr<char> copied_name;
20404 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20405 {
20406 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20407 pst_filename, (char *) NULL));
20408 pst_filename = copied_name.get ();
20409 }
20410
20411 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20412
20413 if (file_is_pst)
20414 return NULL;
20415 return include_name;
20416 }
20417
20418 /* State machine to track the state of the line number program. */
20419
20420 class lnp_state_machine
20421 {
20422 public:
20423 /* Initialize a machine state for the start of a line number
20424 program. */
20425 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20426
20427 file_entry *current_file ()
20428 {
20429 /* lh->file_names is 0-based, but the file name numbers in the
20430 statement program are 1-based. */
20431 return m_line_header->file_name_at (m_file);
20432 }
20433
20434 /* Record the line in the state machine. END_SEQUENCE is true if
20435 we're processing the end of a sequence. */
20436 void record_line (bool end_sequence);
20437
20438 /* Check address and if invalid nop-out the rest of the lines in this
20439 sequence. */
20440 void check_line_address (struct dwarf2_cu *cu,
20441 const gdb_byte *line_ptr,
20442 CORE_ADDR lowpc, CORE_ADDR address);
20443
20444 void handle_set_discriminator (unsigned int discriminator)
20445 {
20446 m_discriminator = discriminator;
20447 m_line_has_non_zero_discriminator |= discriminator != 0;
20448 }
20449
20450 /* Handle DW_LNE_set_address. */
20451 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20452 {
20453 m_op_index = 0;
20454 address += baseaddr;
20455 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20456 }
20457
20458 /* Handle DW_LNS_advance_pc. */
20459 void handle_advance_pc (CORE_ADDR adjust);
20460
20461 /* Handle a special opcode. */
20462 void handle_special_opcode (unsigned char op_code);
20463
20464 /* Handle DW_LNS_advance_line. */
20465 void handle_advance_line (int line_delta)
20466 {
20467 advance_line (line_delta);
20468 }
20469
20470 /* Handle DW_LNS_set_file. */
20471 void handle_set_file (file_name_index file);
20472
20473 /* Handle DW_LNS_negate_stmt. */
20474 void handle_negate_stmt ()
20475 {
20476 m_is_stmt = !m_is_stmt;
20477 }
20478
20479 /* Handle DW_LNS_const_add_pc. */
20480 void handle_const_add_pc ();
20481
20482 /* Handle DW_LNS_fixed_advance_pc. */
20483 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20484 {
20485 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20486 m_op_index = 0;
20487 }
20488
20489 /* Handle DW_LNS_copy. */
20490 void handle_copy ()
20491 {
20492 record_line (false);
20493 m_discriminator = 0;
20494 }
20495
20496 /* Handle DW_LNE_end_sequence. */
20497 void handle_end_sequence ()
20498 {
20499 m_record_line_callback = ::record_line;
20500 }
20501
20502 private:
20503 /* Advance the line by LINE_DELTA. */
20504 void advance_line (int line_delta)
20505 {
20506 m_line += line_delta;
20507
20508 if (line_delta != 0)
20509 m_line_has_non_zero_discriminator = m_discriminator != 0;
20510 }
20511
20512 gdbarch *m_gdbarch;
20513
20514 /* True if we're recording lines.
20515 Otherwise we're building partial symtabs and are just interested in
20516 finding include files mentioned by the line number program. */
20517 bool m_record_lines_p;
20518
20519 /* The line number header. */
20520 line_header *m_line_header;
20521
20522 /* These are part of the standard DWARF line number state machine,
20523 and initialized according to the DWARF spec. */
20524
20525 unsigned char m_op_index = 0;
20526 /* The line table index (1-based) of the current file. */
20527 file_name_index m_file = (file_name_index) 1;
20528 unsigned int m_line = 1;
20529
20530 /* These are initialized in the constructor. */
20531
20532 CORE_ADDR m_address;
20533 bool m_is_stmt;
20534 unsigned int m_discriminator;
20535
20536 /* Additional bits of state we need to track. */
20537
20538 /* The last file that we called dwarf2_start_subfile for.
20539 This is only used for TLLs. */
20540 unsigned int m_last_file = 0;
20541 /* The last file a line number was recorded for. */
20542 struct subfile *m_last_subfile = NULL;
20543
20544 /* The function to call to record a line. */
20545 record_line_ftype *m_record_line_callback = NULL;
20546
20547 /* The last line number that was recorded, used to coalesce
20548 consecutive entries for the same line. This can happen, for
20549 example, when discriminators are present. PR 17276. */
20550 unsigned int m_last_line = 0;
20551 bool m_line_has_non_zero_discriminator = false;
20552 };
20553
20554 void
20555 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20556 {
20557 CORE_ADDR addr_adj = (((m_op_index + adjust)
20558 / m_line_header->maximum_ops_per_instruction)
20559 * m_line_header->minimum_instruction_length);
20560 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20561 m_op_index = ((m_op_index + adjust)
20562 % m_line_header->maximum_ops_per_instruction);
20563 }
20564
20565 void
20566 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20567 {
20568 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20569 CORE_ADDR addr_adj = (((m_op_index
20570 + (adj_opcode / m_line_header->line_range))
20571 / m_line_header->maximum_ops_per_instruction)
20572 * m_line_header->minimum_instruction_length);
20573 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20574 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20575 % m_line_header->maximum_ops_per_instruction);
20576
20577 int line_delta = (m_line_header->line_base
20578 + (adj_opcode % m_line_header->line_range));
20579 advance_line (line_delta);
20580 record_line (false);
20581 m_discriminator = 0;
20582 }
20583
20584 void
20585 lnp_state_machine::handle_set_file (file_name_index file)
20586 {
20587 m_file = file;
20588
20589 const file_entry *fe = current_file ();
20590 if (fe == NULL)
20591 dwarf2_debug_line_missing_file_complaint ();
20592 else if (m_record_lines_p)
20593 {
20594 const char *dir = fe->include_dir (m_line_header);
20595
20596 m_last_subfile = current_subfile;
20597 m_line_has_non_zero_discriminator = m_discriminator != 0;
20598 dwarf2_start_subfile (fe->name, dir);
20599 }
20600 }
20601
20602 void
20603 lnp_state_machine::handle_const_add_pc ()
20604 {
20605 CORE_ADDR adjust
20606 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20607
20608 CORE_ADDR addr_adj
20609 = (((m_op_index + adjust)
20610 / m_line_header->maximum_ops_per_instruction)
20611 * m_line_header->minimum_instruction_length);
20612
20613 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20614 m_op_index = ((m_op_index + adjust)
20615 % m_line_header->maximum_ops_per_instruction);
20616 }
20617
20618 /* Ignore this record_line request. */
20619
20620 static void
20621 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20622 {
20623 return;
20624 }
20625
20626 /* Return non-zero if we should add LINE to the line number table.
20627 LINE is the line to add, LAST_LINE is the last line that was added,
20628 LAST_SUBFILE is the subfile for LAST_LINE.
20629 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20630 had a non-zero discriminator.
20631
20632 We have to be careful in the presence of discriminators.
20633 E.g., for this line:
20634
20635 for (i = 0; i < 100000; i++);
20636
20637 clang can emit four line number entries for that one line,
20638 each with a different discriminator.
20639 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20640
20641 However, we want gdb to coalesce all four entries into one.
20642 Otherwise the user could stepi into the middle of the line and
20643 gdb would get confused about whether the pc really was in the
20644 middle of the line.
20645
20646 Things are further complicated by the fact that two consecutive
20647 line number entries for the same line is a heuristic used by gcc
20648 to denote the end of the prologue. So we can't just discard duplicate
20649 entries, we have to be selective about it. The heuristic we use is
20650 that we only collapse consecutive entries for the same line if at least
20651 one of those entries has a non-zero discriminator. PR 17276.
20652
20653 Note: Addresses in the line number state machine can never go backwards
20654 within one sequence, thus this coalescing is ok. */
20655
20656 static int
20657 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20658 int line_has_non_zero_discriminator,
20659 struct subfile *last_subfile)
20660 {
20661 if (current_subfile != last_subfile)
20662 return 1;
20663 if (line != last_line)
20664 return 1;
20665 /* Same line for the same file that we've seen already.
20666 As a last check, for pr 17276, only record the line if the line
20667 has never had a non-zero discriminator. */
20668 if (!line_has_non_zero_discriminator)
20669 return 1;
20670 return 0;
20671 }
20672
20673 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20674 in the line table of subfile SUBFILE. */
20675
20676 static void
20677 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20678 unsigned int line, CORE_ADDR address,
20679 record_line_ftype p_record_line)
20680 {
20681 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20682
20683 if (dwarf_line_debug)
20684 {
20685 fprintf_unfiltered (gdb_stdlog,
20686 "Recording line %u, file %s, address %s\n",
20687 line, lbasename (subfile->name),
20688 paddress (gdbarch, address));
20689 }
20690
20691 (*p_record_line) (subfile, line, addr);
20692 }
20693
20694 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20695 Mark the end of a set of line number records.
20696 The arguments are the same as for dwarf_record_line_1.
20697 If SUBFILE is NULL the request is ignored. */
20698
20699 static void
20700 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20701 CORE_ADDR address, record_line_ftype p_record_line)
20702 {
20703 if (subfile == NULL)
20704 return;
20705
20706 if (dwarf_line_debug)
20707 {
20708 fprintf_unfiltered (gdb_stdlog,
20709 "Finishing current line, file %s, address %s\n",
20710 lbasename (subfile->name),
20711 paddress (gdbarch, address));
20712 }
20713
20714 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20715 }
20716
20717 void
20718 lnp_state_machine::record_line (bool end_sequence)
20719 {
20720 if (dwarf_line_debug)
20721 {
20722 fprintf_unfiltered (gdb_stdlog,
20723 "Processing actual line %u: file %u,"
20724 " address %s, is_stmt %u, discrim %u\n",
20725 m_line, to_underlying (m_file),
20726 paddress (m_gdbarch, m_address),
20727 m_is_stmt, m_discriminator);
20728 }
20729
20730 file_entry *fe = current_file ();
20731
20732 if (fe == NULL)
20733 dwarf2_debug_line_missing_file_complaint ();
20734 /* For now we ignore lines not starting on an instruction boundary.
20735 But not when processing end_sequence for compatibility with the
20736 previous version of the code. */
20737 else if (m_op_index == 0 || end_sequence)
20738 {
20739 fe->included_p = 1;
20740 if (m_record_lines_p && m_is_stmt)
20741 {
20742 if (m_last_subfile != current_subfile || end_sequence)
20743 {
20744 dwarf_finish_line (m_gdbarch, m_last_subfile,
20745 m_address, m_record_line_callback);
20746 }
20747
20748 if (!end_sequence)
20749 {
20750 if (dwarf_record_line_p (m_line, m_last_line,
20751 m_line_has_non_zero_discriminator,
20752 m_last_subfile))
20753 {
20754 dwarf_record_line_1 (m_gdbarch, current_subfile,
20755 m_line, m_address,
20756 m_record_line_callback);
20757 }
20758 m_last_subfile = current_subfile;
20759 m_last_line = m_line;
20760 }
20761 }
20762 }
20763 }
20764
20765 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20766 bool record_lines_p)
20767 {
20768 m_gdbarch = arch;
20769 m_record_lines_p = record_lines_p;
20770 m_line_header = lh;
20771
20772 m_record_line_callback = ::record_line;
20773
20774 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20775 was a line entry for it so that the backend has a chance to adjust it
20776 and also record it in case it needs it. This is currently used by MIPS
20777 code, cf. `mips_adjust_dwarf2_line'. */
20778 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20779 m_is_stmt = lh->default_is_stmt;
20780 m_discriminator = 0;
20781 }
20782
20783 void
20784 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20785 const gdb_byte *line_ptr,
20786 CORE_ADDR lowpc, CORE_ADDR address)
20787 {
20788 /* If address < lowpc then it's not a usable value, it's outside the
20789 pc range of the CU. However, we restrict the test to only address
20790 values of zero to preserve GDB's previous behaviour which is to
20791 handle the specific case of a function being GC'd by the linker. */
20792
20793 if (address == 0 && address < lowpc)
20794 {
20795 /* This line table is for a function which has been
20796 GCd by the linker. Ignore it. PR gdb/12528 */
20797
20798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20799 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20800
20801 complaint (&symfile_complaints,
20802 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20803 line_offset, objfile_name (objfile));
20804 m_record_line_callback = noop_record_line;
20805 /* Note: record_line_callback is left as noop_record_line until
20806 we see DW_LNE_end_sequence. */
20807 }
20808 }
20809
20810 /* Subroutine of dwarf_decode_lines to simplify it.
20811 Process the line number information in LH.
20812 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20813 program in order to set included_p for every referenced header. */
20814
20815 static void
20816 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20817 const int decode_for_pst_p, CORE_ADDR lowpc)
20818 {
20819 const gdb_byte *line_ptr, *extended_end;
20820 const gdb_byte *line_end;
20821 unsigned int bytes_read, extended_len;
20822 unsigned char op_code, extended_op;
20823 CORE_ADDR baseaddr;
20824 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20825 bfd *abfd = objfile->obfd;
20826 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20827 /* True if we're recording line info (as opposed to building partial
20828 symtabs and just interested in finding include files mentioned by
20829 the line number program). */
20830 bool record_lines_p = !decode_for_pst_p;
20831
20832 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20833
20834 line_ptr = lh->statement_program_start;
20835 line_end = lh->statement_program_end;
20836
20837 /* Read the statement sequences until there's nothing left. */
20838 while (line_ptr < line_end)
20839 {
20840 /* The DWARF line number program state machine. Reset the state
20841 machine at the start of each sequence. */
20842 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20843 bool end_sequence = false;
20844
20845 if (record_lines_p)
20846 {
20847 /* Start a subfile for the current file of the state
20848 machine. */
20849 const file_entry *fe = state_machine.current_file ();
20850
20851 if (fe != NULL)
20852 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20853 }
20854
20855 /* Decode the table. */
20856 while (line_ptr < line_end && !end_sequence)
20857 {
20858 op_code = read_1_byte (abfd, line_ptr);
20859 line_ptr += 1;
20860
20861 if (op_code >= lh->opcode_base)
20862 {
20863 /* Special opcode. */
20864 state_machine.handle_special_opcode (op_code);
20865 }
20866 else switch (op_code)
20867 {
20868 case DW_LNS_extended_op:
20869 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20870 &bytes_read);
20871 line_ptr += bytes_read;
20872 extended_end = line_ptr + extended_len;
20873 extended_op = read_1_byte (abfd, line_ptr);
20874 line_ptr += 1;
20875 switch (extended_op)
20876 {
20877 case DW_LNE_end_sequence:
20878 state_machine.handle_end_sequence ();
20879 end_sequence = true;
20880 break;
20881 case DW_LNE_set_address:
20882 {
20883 CORE_ADDR address
20884 = read_address (abfd, line_ptr, cu, &bytes_read);
20885 line_ptr += bytes_read;
20886
20887 state_machine.check_line_address (cu, line_ptr,
20888 lowpc, address);
20889 state_machine.handle_set_address (baseaddr, address);
20890 }
20891 break;
20892 case DW_LNE_define_file:
20893 {
20894 const char *cur_file;
20895 unsigned int mod_time, length;
20896 dir_index dindex;
20897
20898 cur_file = read_direct_string (abfd, line_ptr,
20899 &bytes_read);
20900 line_ptr += bytes_read;
20901 dindex = (dir_index)
20902 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20903 line_ptr += bytes_read;
20904 mod_time =
20905 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20906 line_ptr += bytes_read;
20907 length =
20908 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20909 line_ptr += bytes_read;
20910 lh->add_file_name (cur_file, dindex, mod_time, length);
20911 }
20912 break;
20913 case DW_LNE_set_discriminator:
20914 {
20915 /* The discriminator is not interesting to the
20916 debugger; just ignore it. We still need to
20917 check its value though:
20918 if there are consecutive entries for the same
20919 (non-prologue) line we want to coalesce them.
20920 PR 17276. */
20921 unsigned int discr
20922 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20923 line_ptr += bytes_read;
20924
20925 state_machine.handle_set_discriminator (discr);
20926 }
20927 break;
20928 default:
20929 complaint (&symfile_complaints,
20930 _("mangled .debug_line section"));
20931 return;
20932 }
20933 /* Make sure that we parsed the extended op correctly. If e.g.
20934 we expected a different address size than the producer used,
20935 we may have read the wrong number of bytes. */
20936 if (line_ptr != extended_end)
20937 {
20938 complaint (&symfile_complaints,
20939 _("mangled .debug_line section"));
20940 return;
20941 }
20942 break;
20943 case DW_LNS_copy:
20944 state_machine.handle_copy ();
20945 break;
20946 case DW_LNS_advance_pc:
20947 {
20948 CORE_ADDR adjust
20949 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20950 line_ptr += bytes_read;
20951
20952 state_machine.handle_advance_pc (adjust);
20953 }
20954 break;
20955 case DW_LNS_advance_line:
20956 {
20957 int line_delta
20958 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20959 line_ptr += bytes_read;
20960
20961 state_machine.handle_advance_line (line_delta);
20962 }
20963 break;
20964 case DW_LNS_set_file:
20965 {
20966 file_name_index file
20967 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20968 &bytes_read);
20969 line_ptr += bytes_read;
20970
20971 state_machine.handle_set_file (file);
20972 }
20973 break;
20974 case DW_LNS_set_column:
20975 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20976 line_ptr += bytes_read;
20977 break;
20978 case DW_LNS_negate_stmt:
20979 state_machine.handle_negate_stmt ();
20980 break;
20981 case DW_LNS_set_basic_block:
20982 break;
20983 /* Add to the address register of the state machine the
20984 address increment value corresponding to special opcode
20985 255. I.e., this value is scaled by the minimum
20986 instruction length since special opcode 255 would have
20987 scaled the increment. */
20988 case DW_LNS_const_add_pc:
20989 state_machine.handle_const_add_pc ();
20990 break;
20991 case DW_LNS_fixed_advance_pc:
20992 {
20993 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20994 line_ptr += 2;
20995
20996 state_machine.handle_fixed_advance_pc (addr_adj);
20997 }
20998 break;
20999 default:
21000 {
21001 /* Unknown standard opcode, ignore it. */
21002 int i;
21003
21004 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21005 {
21006 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21007 line_ptr += bytes_read;
21008 }
21009 }
21010 }
21011 }
21012
21013 if (!end_sequence)
21014 dwarf2_debug_line_missing_end_sequence_complaint ();
21015
21016 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21017 in which case we still finish recording the last line). */
21018 state_machine.record_line (true);
21019 }
21020 }
21021
21022 /* Decode the Line Number Program (LNP) for the given line_header
21023 structure and CU. The actual information extracted and the type
21024 of structures created from the LNP depends on the value of PST.
21025
21026 1. If PST is NULL, then this procedure uses the data from the program
21027 to create all necessary symbol tables, and their linetables.
21028
21029 2. If PST is not NULL, this procedure reads the program to determine
21030 the list of files included by the unit represented by PST, and
21031 builds all the associated partial symbol tables.
21032
21033 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21034 It is used for relative paths in the line table.
21035 NOTE: When processing partial symtabs (pst != NULL),
21036 comp_dir == pst->dirname.
21037
21038 NOTE: It is important that psymtabs have the same file name (via strcmp)
21039 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21040 symtab we don't use it in the name of the psymtabs we create.
21041 E.g. expand_line_sal requires this when finding psymtabs to expand.
21042 A good testcase for this is mb-inline.exp.
21043
21044 LOWPC is the lowest address in CU (or 0 if not known).
21045
21046 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21047 for its PC<->lines mapping information. Otherwise only the filename
21048 table is read in. */
21049
21050 static void
21051 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21052 struct dwarf2_cu *cu, struct partial_symtab *pst,
21053 CORE_ADDR lowpc, int decode_mapping)
21054 {
21055 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21056 const int decode_for_pst_p = (pst != NULL);
21057
21058 if (decode_mapping)
21059 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21060
21061 if (decode_for_pst_p)
21062 {
21063 int file_index;
21064
21065 /* Now that we're done scanning the Line Header Program, we can
21066 create the psymtab of each included file. */
21067 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21068 if (lh->file_names[file_index].included_p == 1)
21069 {
21070 gdb::unique_xmalloc_ptr<char> name_holder;
21071 const char *include_name =
21072 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21073 &name_holder);
21074 if (include_name != NULL)
21075 dwarf2_create_include_psymtab (include_name, pst, objfile);
21076 }
21077 }
21078 else
21079 {
21080 /* Make sure a symtab is created for every file, even files
21081 which contain only variables (i.e. no code with associated
21082 line numbers). */
21083 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21084 int i;
21085
21086 for (i = 0; i < lh->file_names.size (); i++)
21087 {
21088 file_entry &fe = lh->file_names[i];
21089
21090 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21091
21092 if (current_subfile->symtab == NULL)
21093 {
21094 current_subfile->symtab
21095 = allocate_symtab (cust, current_subfile->name);
21096 }
21097 fe.symtab = current_subfile->symtab;
21098 }
21099 }
21100 }
21101
21102 /* Start a subfile for DWARF. FILENAME is the name of the file and
21103 DIRNAME the name of the source directory which contains FILENAME
21104 or NULL if not known.
21105 This routine tries to keep line numbers from identical absolute and
21106 relative file names in a common subfile.
21107
21108 Using the `list' example from the GDB testsuite, which resides in
21109 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21110 of /srcdir/list0.c yields the following debugging information for list0.c:
21111
21112 DW_AT_name: /srcdir/list0.c
21113 DW_AT_comp_dir: /compdir
21114 files.files[0].name: list0.h
21115 files.files[0].dir: /srcdir
21116 files.files[1].name: list0.c
21117 files.files[1].dir: /srcdir
21118
21119 The line number information for list0.c has to end up in a single
21120 subfile, so that `break /srcdir/list0.c:1' works as expected.
21121 start_subfile will ensure that this happens provided that we pass the
21122 concatenation of files.files[1].dir and files.files[1].name as the
21123 subfile's name. */
21124
21125 static void
21126 dwarf2_start_subfile (const char *filename, const char *dirname)
21127 {
21128 char *copy = NULL;
21129
21130 /* In order not to lose the line information directory,
21131 we concatenate it to the filename when it makes sense.
21132 Note that the Dwarf3 standard says (speaking of filenames in line
21133 information): ``The directory index is ignored for file names
21134 that represent full path names''. Thus ignoring dirname in the
21135 `else' branch below isn't an issue. */
21136
21137 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21138 {
21139 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21140 filename = copy;
21141 }
21142
21143 start_subfile (filename);
21144
21145 if (copy != NULL)
21146 xfree (copy);
21147 }
21148
21149 /* Start a symtab for DWARF.
21150 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21151
21152 static struct compunit_symtab *
21153 dwarf2_start_symtab (struct dwarf2_cu *cu,
21154 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21155 {
21156 struct compunit_symtab *cust
21157 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21158 low_pc, cu->language);
21159
21160 record_debugformat ("DWARF 2");
21161 record_producer (cu->producer);
21162
21163 /* We assume that we're processing GCC output. */
21164 processing_gcc_compilation = 2;
21165
21166 cu->processing_has_namespace_info = 0;
21167
21168 return cust;
21169 }
21170
21171 static void
21172 var_decode_location (struct attribute *attr, struct symbol *sym,
21173 struct dwarf2_cu *cu)
21174 {
21175 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21176 struct comp_unit_head *cu_header = &cu->header;
21177
21178 /* NOTE drow/2003-01-30: There used to be a comment and some special
21179 code here to turn a symbol with DW_AT_external and a
21180 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21181 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21182 with some versions of binutils) where shared libraries could have
21183 relocations against symbols in their debug information - the
21184 minimal symbol would have the right address, but the debug info
21185 would not. It's no longer necessary, because we will explicitly
21186 apply relocations when we read in the debug information now. */
21187
21188 /* A DW_AT_location attribute with no contents indicates that a
21189 variable has been optimized away. */
21190 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21191 {
21192 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21193 return;
21194 }
21195
21196 /* Handle one degenerate form of location expression specially, to
21197 preserve GDB's previous behavior when section offsets are
21198 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21199 then mark this symbol as LOC_STATIC. */
21200
21201 if (attr_form_is_block (attr)
21202 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21203 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21204 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21205 && (DW_BLOCK (attr)->size
21206 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21207 {
21208 unsigned int dummy;
21209
21210 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21211 SYMBOL_VALUE_ADDRESS (sym) =
21212 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21213 else
21214 SYMBOL_VALUE_ADDRESS (sym) =
21215 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21216 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21217 fixup_symbol_section (sym, objfile);
21218 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21219 SYMBOL_SECTION (sym));
21220 return;
21221 }
21222
21223 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21224 expression evaluator, and use LOC_COMPUTED only when necessary
21225 (i.e. when the value of a register or memory location is
21226 referenced, or a thread-local block, etc.). Then again, it might
21227 not be worthwhile. I'm assuming that it isn't unless performance
21228 or memory numbers show me otherwise. */
21229
21230 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21231
21232 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21233 cu->has_loclist = 1;
21234 }
21235
21236 /* Given a pointer to a DWARF information entry, figure out if we need
21237 to make a symbol table entry for it, and if so, create a new entry
21238 and return a pointer to it.
21239 If TYPE is NULL, determine symbol type from the die, otherwise
21240 used the passed type.
21241 If SPACE is not NULL, use it to hold the new symbol. If it is
21242 NULL, allocate a new symbol on the objfile's obstack. */
21243
21244 static struct symbol *
21245 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21246 struct symbol *space)
21247 {
21248 struct dwarf2_per_objfile *dwarf2_per_objfile
21249 = cu->per_cu->dwarf2_per_objfile;
21250 struct objfile *objfile = dwarf2_per_objfile->objfile;
21251 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21252 struct symbol *sym = NULL;
21253 const char *name;
21254 struct attribute *attr = NULL;
21255 struct attribute *attr2 = NULL;
21256 CORE_ADDR baseaddr;
21257 struct pending **list_to_add = NULL;
21258
21259 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21260
21261 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21262
21263 name = dwarf2_name (die, cu);
21264 if (name)
21265 {
21266 const char *linkagename;
21267 int suppress_add = 0;
21268
21269 if (space)
21270 sym = space;
21271 else
21272 sym = allocate_symbol (objfile);
21273 OBJSTAT (objfile, n_syms++);
21274
21275 /* Cache this symbol's name and the name's demangled form (if any). */
21276 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21277 linkagename = dwarf2_physname (name, die, cu);
21278 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21279
21280 /* Fortran does not have mangling standard and the mangling does differ
21281 between gfortran, iFort etc. */
21282 if (cu->language == language_fortran
21283 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21284 symbol_set_demangled_name (&(sym->ginfo),
21285 dwarf2_full_name (name, die, cu),
21286 NULL);
21287
21288 /* Default assumptions.
21289 Use the passed type or decode it from the die. */
21290 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21291 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21292 if (type != NULL)
21293 SYMBOL_TYPE (sym) = type;
21294 else
21295 SYMBOL_TYPE (sym) = die_type (die, cu);
21296 attr = dwarf2_attr (die,
21297 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21298 cu);
21299 if (attr)
21300 {
21301 SYMBOL_LINE (sym) = DW_UNSND (attr);
21302 }
21303
21304 attr = dwarf2_attr (die,
21305 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21306 cu);
21307 if (attr)
21308 {
21309 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21310 struct file_entry *fe;
21311
21312 if (cu->line_header != NULL)
21313 fe = cu->line_header->file_name_at (file_index);
21314 else
21315 fe = NULL;
21316
21317 if (fe == NULL)
21318 complaint (&symfile_complaints,
21319 _("file index out of range"));
21320 else
21321 symbol_set_symtab (sym, fe->symtab);
21322 }
21323
21324 switch (die->tag)
21325 {
21326 case DW_TAG_label:
21327 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21328 if (attr)
21329 {
21330 CORE_ADDR addr;
21331
21332 addr = attr_value_as_address (attr);
21333 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21334 SYMBOL_VALUE_ADDRESS (sym) = addr;
21335 }
21336 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21337 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21338 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21339 add_symbol_to_list (sym, cu->list_in_scope);
21340 break;
21341 case DW_TAG_subprogram:
21342 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21343 finish_block. */
21344 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21345 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21346 if ((attr2 && (DW_UNSND (attr2) != 0))
21347 || cu->language == language_ada)
21348 {
21349 /* Subprograms marked external are stored as a global symbol.
21350 Ada subprograms, whether marked external or not, are always
21351 stored as a global symbol, because we want to be able to
21352 access them globally. For instance, we want to be able
21353 to break on a nested subprogram without having to
21354 specify the context. */
21355 list_to_add = &global_symbols;
21356 }
21357 else
21358 {
21359 list_to_add = cu->list_in_scope;
21360 }
21361 break;
21362 case DW_TAG_inlined_subroutine:
21363 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21364 finish_block. */
21365 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21366 SYMBOL_INLINED (sym) = 1;
21367 list_to_add = cu->list_in_scope;
21368 break;
21369 case DW_TAG_template_value_param:
21370 suppress_add = 1;
21371 /* Fall through. */
21372 case DW_TAG_constant:
21373 case DW_TAG_variable:
21374 case DW_TAG_member:
21375 /* Compilation with minimal debug info may result in
21376 variables with missing type entries. Change the
21377 misleading `void' type to something sensible. */
21378 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21379 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21380
21381 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21382 /* In the case of DW_TAG_member, we should only be called for
21383 static const members. */
21384 if (die->tag == DW_TAG_member)
21385 {
21386 /* dwarf2_add_field uses die_is_declaration,
21387 so we do the same. */
21388 gdb_assert (die_is_declaration (die, cu));
21389 gdb_assert (attr);
21390 }
21391 if (attr)
21392 {
21393 dwarf2_const_value (attr, sym, cu);
21394 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21395 if (!suppress_add)
21396 {
21397 if (attr2 && (DW_UNSND (attr2) != 0))
21398 list_to_add = &global_symbols;
21399 else
21400 list_to_add = cu->list_in_scope;
21401 }
21402 break;
21403 }
21404 attr = dwarf2_attr (die, DW_AT_location, cu);
21405 if (attr)
21406 {
21407 var_decode_location (attr, sym, cu);
21408 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21409
21410 /* Fortran explicitly imports any global symbols to the local
21411 scope by DW_TAG_common_block. */
21412 if (cu->language == language_fortran && die->parent
21413 && die->parent->tag == DW_TAG_common_block)
21414 attr2 = NULL;
21415
21416 if (SYMBOL_CLASS (sym) == LOC_STATIC
21417 && SYMBOL_VALUE_ADDRESS (sym) == 0
21418 && !dwarf2_per_objfile->has_section_at_zero)
21419 {
21420 /* When a static variable is eliminated by the linker,
21421 the corresponding debug information is not stripped
21422 out, but the variable address is set to null;
21423 do not add such variables into symbol table. */
21424 }
21425 else if (attr2 && (DW_UNSND (attr2) != 0))
21426 {
21427 /* Workaround gfortran PR debug/40040 - it uses
21428 DW_AT_location for variables in -fPIC libraries which may
21429 get overriden by other libraries/executable and get
21430 a different address. Resolve it by the minimal symbol
21431 which may come from inferior's executable using copy
21432 relocation. Make this workaround only for gfortran as for
21433 other compilers GDB cannot guess the minimal symbol
21434 Fortran mangling kind. */
21435 if (cu->language == language_fortran && die->parent
21436 && die->parent->tag == DW_TAG_module
21437 && cu->producer
21438 && startswith (cu->producer, "GNU Fortran"))
21439 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21440
21441 /* A variable with DW_AT_external is never static,
21442 but it may be block-scoped. */
21443 list_to_add = (cu->list_in_scope == &file_symbols
21444 ? &global_symbols : cu->list_in_scope);
21445 }
21446 else
21447 list_to_add = cu->list_in_scope;
21448 }
21449 else
21450 {
21451 /* We do not know the address of this symbol.
21452 If it is an external symbol and we have type information
21453 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21454 The address of the variable will then be determined from
21455 the minimal symbol table whenever the variable is
21456 referenced. */
21457 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21458
21459 /* Fortran explicitly imports any global symbols to the local
21460 scope by DW_TAG_common_block. */
21461 if (cu->language == language_fortran && die->parent
21462 && die->parent->tag == DW_TAG_common_block)
21463 {
21464 /* SYMBOL_CLASS doesn't matter here because
21465 read_common_block is going to reset it. */
21466 if (!suppress_add)
21467 list_to_add = cu->list_in_scope;
21468 }
21469 else if (attr2 && (DW_UNSND (attr2) != 0)
21470 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21471 {
21472 /* A variable with DW_AT_external is never static, but it
21473 may be block-scoped. */
21474 list_to_add = (cu->list_in_scope == &file_symbols
21475 ? &global_symbols : cu->list_in_scope);
21476
21477 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21478 }
21479 else if (!die_is_declaration (die, cu))
21480 {
21481 /* Use the default LOC_OPTIMIZED_OUT class. */
21482 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21483 if (!suppress_add)
21484 list_to_add = cu->list_in_scope;
21485 }
21486 }
21487 break;
21488 case DW_TAG_formal_parameter:
21489 /* If we are inside a function, mark this as an argument. If
21490 not, we might be looking at an argument to an inlined function
21491 when we do not have enough information to show inlined frames;
21492 pretend it's a local variable in that case so that the user can
21493 still see it. */
21494 if (context_stack_depth > 0
21495 && context_stack[context_stack_depth - 1].name != NULL)
21496 SYMBOL_IS_ARGUMENT (sym) = 1;
21497 attr = dwarf2_attr (die, DW_AT_location, cu);
21498 if (attr)
21499 {
21500 var_decode_location (attr, sym, cu);
21501 }
21502 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21503 if (attr)
21504 {
21505 dwarf2_const_value (attr, sym, cu);
21506 }
21507
21508 list_to_add = cu->list_in_scope;
21509 break;
21510 case DW_TAG_unspecified_parameters:
21511 /* From varargs functions; gdb doesn't seem to have any
21512 interest in this information, so just ignore it for now.
21513 (FIXME?) */
21514 break;
21515 case DW_TAG_template_type_param:
21516 suppress_add = 1;
21517 /* Fall through. */
21518 case DW_TAG_class_type:
21519 case DW_TAG_interface_type:
21520 case DW_TAG_structure_type:
21521 case DW_TAG_union_type:
21522 case DW_TAG_set_type:
21523 case DW_TAG_enumeration_type:
21524 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21525 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21526
21527 {
21528 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21529 really ever be static objects: otherwise, if you try
21530 to, say, break of a class's method and you're in a file
21531 which doesn't mention that class, it won't work unless
21532 the check for all static symbols in lookup_symbol_aux
21533 saves you. See the OtherFileClass tests in
21534 gdb.c++/namespace.exp. */
21535
21536 if (!suppress_add)
21537 {
21538 list_to_add = (cu->list_in_scope == &file_symbols
21539 && cu->language == language_cplus
21540 ? &global_symbols : cu->list_in_scope);
21541
21542 /* The semantics of C++ state that "struct foo {
21543 ... }" also defines a typedef for "foo". */
21544 if (cu->language == language_cplus
21545 || cu->language == language_ada
21546 || cu->language == language_d
21547 || cu->language == language_rust)
21548 {
21549 /* The symbol's name is already allocated along
21550 with this objfile, so we don't need to
21551 duplicate it for the type. */
21552 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21553 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21554 }
21555 }
21556 }
21557 break;
21558 case DW_TAG_typedef:
21559 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21560 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21561 list_to_add = cu->list_in_scope;
21562 break;
21563 case DW_TAG_base_type:
21564 case DW_TAG_subrange_type:
21565 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21566 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21567 list_to_add = cu->list_in_scope;
21568 break;
21569 case DW_TAG_enumerator:
21570 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21571 if (attr)
21572 {
21573 dwarf2_const_value (attr, sym, cu);
21574 }
21575 {
21576 /* NOTE: carlton/2003-11-10: See comment above in the
21577 DW_TAG_class_type, etc. block. */
21578
21579 list_to_add = (cu->list_in_scope == &file_symbols
21580 && cu->language == language_cplus
21581 ? &global_symbols : cu->list_in_scope);
21582 }
21583 break;
21584 case DW_TAG_imported_declaration:
21585 case DW_TAG_namespace:
21586 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21587 list_to_add = &global_symbols;
21588 break;
21589 case DW_TAG_module:
21590 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21591 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21592 list_to_add = &global_symbols;
21593 break;
21594 case DW_TAG_common_block:
21595 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21596 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21597 add_symbol_to_list (sym, cu->list_in_scope);
21598 break;
21599 default:
21600 /* Not a tag we recognize. Hopefully we aren't processing
21601 trash data, but since we must specifically ignore things
21602 we don't recognize, there is nothing else we should do at
21603 this point. */
21604 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21605 dwarf_tag_name (die->tag));
21606 break;
21607 }
21608
21609 if (suppress_add)
21610 {
21611 sym->hash_next = objfile->template_symbols;
21612 objfile->template_symbols = sym;
21613 list_to_add = NULL;
21614 }
21615
21616 if (list_to_add != NULL)
21617 add_symbol_to_list (sym, list_to_add);
21618
21619 /* For the benefit of old versions of GCC, check for anonymous
21620 namespaces based on the demangled name. */
21621 if (!cu->processing_has_namespace_info
21622 && cu->language == language_cplus)
21623 cp_scan_for_anonymous_namespaces (sym, objfile);
21624 }
21625 return (sym);
21626 }
21627
21628 /* Given an attr with a DW_FORM_dataN value in host byte order,
21629 zero-extend it as appropriate for the symbol's type. The DWARF
21630 standard (v4) is not entirely clear about the meaning of using
21631 DW_FORM_dataN for a constant with a signed type, where the type is
21632 wider than the data. The conclusion of a discussion on the DWARF
21633 list was that this is unspecified. We choose to always zero-extend
21634 because that is the interpretation long in use by GCC. */
21635
21636 static gdb_byte *
21637 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21638 struct dwarf2_cu *cu, LONGEST *value, int bits)
21639 {
21640 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21641 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21642 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21643 LONGEST l = DW_UNSND (attr);
21644
21645 if (bits < sizeof (*value) * 8)
21646 {
21647 l &= ((LONGEST) 1 << bits) - 1;
21648 *value = l;
21649 }
21650 else if (bits == sizeof (*value) * 8)
21651 *value = l;
21652 else
21653 {
21654 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21655 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21656 return bytes;
21657 }
21658
21659 return NULL;
21660 }
21661
21662 /* Read a constant value from an attribute. Either set *VALUE, or if
21663 the value does not fit in *VALUE, set *BYTES - either already
21664 allocated on the objfile obstack, or newly allocated on OBSTACK,
21665 or, set *BATON, if we translated the constant to a location
21666 expression. */
21667
21668 static void
21669 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21670 const char *name, struct obstack *obstack,
21671 struct dwarf2_cu *cu,
21672 LONGEST *value, const gdb_byte **bytes,
21673 struct dwarf2_locexpr_baton **baton)
21674 {
21675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21676 struct comp_unit_head *cu_header = &cu->header;
21677 struct dwarf_block *blk;
21678 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21679 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21680
21681 *value = 0;
21682 *bytes = NULL;
21683 *baton = NULL;
21684
21685 switch (attr->form)
21686 {
21687 case DW_FORM_addr:
21688 case DW_FORM_GNU_addr_index:
21689 {
21690 gdb_byte *data;
21691
21692 if (TYPE_LENGTH (type) != cu_header->addr_size)
21693 dwarf2_const_value_length_mismatch_complaint (name,
21694 cu_header->addr_size,
21695 TYPE_LENGTH (type));
21696 /* Symbols of this form are reasonably rare, so we just
21697 piggyback on the existing location code rather than writing
21698 a new implementation of symbol_computed_ops. */
21699 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21700 (*baton)->per_cu = cu->per_cu;
21701 gdb_assert ((*baton)->per_cu);
21702
21703 (*baton)->size = 2 + cu_header->addr_size;
21704 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21705 (*baton)->data = data;
21706
21707 data[0] = DW_OP_addr;
21708 store_unsigned_integer (&data[1], cu_header->addr_size,
21709 byte_order, DW_ADDR (attr));
21710 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21711 }
21712 break;
21713 case DW_FORM_string:
21714 case DW_FORM_strp:
21715 case DW_FORM_GNU_str_index:
21716 case DW_FORM_GNU_strp_alt:
21717 /* DW_STRING is already allocated on the objfile obstack, point
21718 directly to it. */
21719 *bytes = (const gdb_byte *) DW_STRING (attr);
21720 break;
21721 case DW_FORM_block1:
21722 case DW_FORM_block2:
21723 case DW_FORM_block4:
21724 case DW_FORM_block:
21725 case DW_FORM_exprloc:
21726 case DW_FORM_data16:
21727 blk = DW_BLOCK (attr);
21728 if (TYPE_LENGTH (type) != blk->size)
21729 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21730 TYPE_LENGTH (type));
21731 *bytes = blk->data;
21732 break;
21733
21734 /* The DW_AT_const_value attributes are supposed to carry the
21735 symbol's value "represented as it would be on the target
21736 architecture." By the time we get here, it's already been
21737 converted to host endianness, so we just need to sign- or
21738 zero-extend it as appropriate. */
21739 case DW_FORM_data1:
21740 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21741 break;
21742 case DW_FORM_data2:
21743 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21744 break;
21745 case DW_FORM_data4:
21746 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21747 break;
21748 case DW_FORM_data8:
21749 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21750 break;
21751
21752 case DW_FORM_sdata:
21753 case DW_FORM_implicit_const:
21754 *value = DW_SND (attr);
21755 break;
21756
21757 case DW_FORM_udata:
21758 *value = DW_UNSND (attr);
21759 break;
21760
21761 default:
21762 complaint (&symfile_complaints,
21763 _("unsupported const value attribute form: '%s'"),
21764 dwarf_form_name (attr->form));
21765 *value = 0;
21766 break;
21767 }
21768 }
21769
21770
21771 /* Copy constant value from an attribute to a symbol. */
21772
21773 static void
21774 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21775 struct dwarf2_cu *cu)
21776 {
21777 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21778 LONGEST value;
21779 const gdb_byte *bytes;
21780 struct dwarf2_locexpr_baton *baton;
21781
21782 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21783 SYMBOL_PRINT_NAME (sym),
21784 &objfile->objfile_obstack, cu,
21785 &value, &bytes, &baton);
21786
21787 if (baton != NULL)
21788 {
21789 SYMBOL_LOCATION_BATON (sym) = baton;
21790 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21791 }
21792 else if (bytes != NULL)
21793 {
21794 SYMBOL_VALUE_BYTES (sym) = bytes;
21795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21796 }
21797 else
21798 {
21799 SYMBOL_VALUE (sym) = value;
21800 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21801 }
21802 }
21803
21804 /* Return the type of the die in question using its DW_AT_type attribute. */
21805
21806 static struct type *
21807 die_type (struct die_info *die, struct dwarf2_cu *cu)
21808 {
21809 struct attribute *type_attr;
21810
21811 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21812 if (!type_attr)
21813 {
21814 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21815 /* A missing DW_AT_type represents a void type. */
21816 return objfile_type (objfile)->builtin_void;
21817 }
21818
21819 return lookup_die_type (die, type_attr, cu);
21820 }
21821
21822 /* True iff CU's producer generates GNAT Ada auxiliary information
21823 that allows to find parallel types through that information instead
21824 of having to do expensive parallel lookups by type name. */
21825
21826 static int
21827 need_gnat_info (struct dwarf2_cu *cu)
21828 {
21829 /* Assume that the Ada compiler was GNAT, which always produces
21830 the auxiliary information. */
21831 return (cu->language == language_ada);
21832 }
21833
21834 /* Return the auxiliary type of the die in question using its
21835 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21836 attribute is not present. */
21837
21838 static struct type *
21839 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21840 {
21841 struct attribute *type_attr;
21842
21843 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21844 if (!type_attr)
21845 return NULL;
21846
21847 return lookup_die_type (die, type_attr, cu);
21848 }
21849
21850 /* If DIE has a descriptive_type attribute, then set the TYPE's
21851 descriptive type accordingly. */
21852
21853 static void
21854 set_descriptive_type (struct type *type, struct die_info *die,
21855 struct dwarf2_cu *cu)
21856 {
21857 struct type *descriptive_type = die_descriptive_type (die, cu);
21858
21859 if (descriptive_type)
21860 {
21861 ALLOCATE_GNAT_AUX_TYPE (type);
21862 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21863 }
21864 }
21865
21866 /* Return the containing type of the die in question using its
21867 DW_AT_containing_type attribute. */
21868
21869 static struct type *
21870 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21871 {
21872 struct attribute *type_attr;
21873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21874
21875 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21876 if (!type_attr)
21877 error (_("Dwarf Error: Problem turning containing type into gdb type "
21878 "[in module %s]"), objfile_name (objfile));
21879
21880 return lookup_die_type (die, type_attr, cu);
21881 }
21882
21883 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21884
21885 static struct type *
21886 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21887 {
21888 struct dwarf2_per_objfile *dwarf2_per_objfile
21889 = cu->per_cu->dwarf2_per_objfile;
21890 struct objfile *objfile = dwarf2_per_objfile->objfile;
21891 char *message, *saved;
21892
21893 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21894 objfile_name (objfile),
21895 sect_offset_str (cu->header.sect_off),
21896 sect_offset_str (die->sect_off));
21897 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21898 message, strlen (message));
21899 xfree (message);
21900
21901 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21902 }
21903
21904 /* Look up the type of DIE in CU using its type attribute ATTR.
21905 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21906 DW_AT_containing_type.
21907 If there is no type substitute an error marker. */
21908
21909 static struct type *
21910 lookup_die_type (struct die_info *die, const struct attribute *attr,
21911 struct dwarf2_cu *cu)
21912 {
21913 struct dwarf2_per_objfile *dwarf2_per_objfile
21914 = cu->per_cu->dwarf2_per_objfile;
21915 struct objfile *objfile = dwarf2_per_objfile->objfile;
21916 struct type *this_type;
21917
21918 gdb_assert (attr->name == DW_AT_type
21919 || attr->name == DW_AT_GNAT_descriptive_type
21920 || attr->name == DW_AT_containing_type);
21921
21922 /* First see if we have it cached. */
21923
21924 if (attr->form == DW_FORM_GNU_ref_alt)
21925 {
21926 struct dwarf2_per_cu_data *per_cu;
21927 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21928
21929 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21930 dwarf2_per_objfile);
21931 this_type = get_die_type_at_offset (sect_off, per_cu);
21932 }
21933 else if (attr_form_is_ref (attr))
21934 {
21935 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21936
21937 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21938 }
21939 else if (attr->form == DW_FORM_ref_sig8)
21940 {
21941 ULONGEST signature = DW_SIGNATURE (attr);
21942
21943 return get_signatured_type (die, signature, cu);
21944 }
21945 else
21946 {
21947 complaint (&symfile_complaints,
21948 _("Dwarf Error: Bad type attribute %s in DIE"
21949 " at %s [in module %s]"),
21950 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21951 objfile_name (objfile));
21952 return build_error_marker_type (cu, die);
21953 }
21954
21955 /* If not cached we need to read it in. */
21956
21957 if (this_type == NULL)
21958 {
21959 struct die_info *type_die = NULL;
21960 struct dwarf2_cu *type_cu = cu;
21961
21962 if (attr_form_is_ref (attr))
21963 type_die = follow_die_ref (die, attr, &type_cu);
21964 if (type_die == NULL)
21965 return build_error_marker_type (cu, die);
21966 /* If we find the type now, it's probably because the type came
21967 from an inter-CU reference and the type's CU got expanded before
21968 ours. */
21969 this_type = read_type_die (type_die, type_cu);
21970 }
21971
21972 /* If we still don't have a type use an error marker. */
21973
21974 if (this_type == NULL)
21975 return build_error_marker_type (cu, die);
21976
21977 return this_type;
21978 }
21979
21980 /* Return the type in DIE, CU.
21981 Returns NULL for invalid types.
21982
21983 This first does a lookup in die_type_hash,
21984 and only reads the die in if necessary.
21985
21986 NOTE: This can be called when reading in partial or full symbols. */
21987
21988 static struct type *
21989 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21990 {
21991 struct type *this_type;
21992
21993 this_type = get_die_type (die, cu);
21994 if (this_type)
21995 return this_type;
21996
21997 return read_type_die_1 (die, cu);
21998 }
21999
22000 /* Read the type in DIE, CU.
22001 Returns NULL for invalid types. */
22002
22003 static struct type *
22004 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22005 {
22006 struct type *this_type = NULL;
22007
22008 switch (die->tag)
22009 {
22010 case DW_TAG_class_type:
22011 case DW_TAG_interface_type:
22012 case DW_TAG_structure_type:
22013 case DW_TAG_union_type:
22014 this_type = read_structure_type (die, cu);
22015 break;
22016 case DW_TAG_enumeration_type:
22017 this_type = read_enumeration_type (die, cu);
22018 break;
22019 case DW_TAG_subprogram:
22020 case DW_TAG_subroutine_type:
22021 case DW_TAG_inlined_subroutine:
22022 this_type = read_subroutine_type (die, cu);
22023 break;
22024 case DW_TAG_array_type:
22025 this_type = read_array_type (die, cu);
22026 break;
22027 case DW_TAG_set_type:
22028 this_type = read_set_type (die, cu);
22029 break;
22030 case DW_TAG_pointer_type:
22031 this_type = read_tag_pointer_type (die, cu);
22032 break;
22033 case DW_TAG_ptr_to_member_type:
22034 this_type = read_tag_ptr_to_member_type (die, cu);
22035 break;
22036 case DW_TAG_reference_type:
22037 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22038 break;
22039 case DW_TAG_rvalue_reference_type:
22040 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22041 break;
22042 case DW_TAG_const_type:
22043 this_type = read_tag_const_type (die, cu);
22044 break;
22045 case DW_TAG_volatile_type:
22046 this_type = read_tag_volatile_type (die, cu);
22047 break;
22048 case DW_TAG_restrict_type:
22049 this_type = read_tag_restrict_type (die, cu);
22050 break;
22051 case DW_TAG_string_type:
22052 this_type = read_tag_string_type (die, cu);
22053 break;
22054 case DW_TAG_typedef:
22055 this_type = read_typedef (die, cu);
22056 break;
22057 case DW_TAG_subrange_type:
22058 this_type = read_subrange_type (die, cu);
22059 break;
22060 case DW_TAG_base_type:
22061 this_type = read_base_type (die, cu);
22062 break;
22063 case DW_TAG_unspecified_type:
22064 this_type = read_unspecified_type (die, cu);
22065 break;
22066 case DW_TAG_namespace:
22067 this_type = read_namespace_type (die, cu);
22068 break;
22069 case DW_TAG_module:
22070 this_type = read_module_type (die, cu);
22071 break;
22072 case DW_TAG_atomic_type:
22073 this_type = read_tag_atomic_type (die, cu);
22074 break;
22075 default:
22076 complaint (&symfile_complaints,
22077 _("unexpected tag in read_type_die: '%s'"),
22078 dwarf_tag_name (die->tag));
22079 break;
22080 }
22081
22082 return this_type;
22083 }
22084
22085 /* See if we can figure out if the class lives in a namespace. We do
22086 this by looking for a member function; its demangled name will
22087 contain namespace info, if there is any.
22088 Return the computed name or NULL.
22089 Space for the result is allocated on the objfile's obstack.
22090 This is the full-die version of guess_partial_die_structure_name.
22091 In this case we know DIE has no useful parent. */
22092
22093 static char *
22094 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22095 {
22096 struct die_info *spec_die;
22097 struct dwarf2_cu *spec_cu;
22098 struct die_info *child;
22099 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22100
22101 spec_cu = cu;
22102 spec_die = die_specification (die, &spec_cu);
22103 if (spec_die != NULL)
22104 {
22105 die = spec_die;
22106 cu = spec_cu;
22107 }
22108
22109 for (child = die->child;
22110 child != NULL;
22111 child = child->sibling)
22112 {
22113 if (child->tag == DW_TAG_subprogram)
22114 {
22115 const char *linkage_name = dw2_linkage_name (child, cu);
22116
22117 if (linkage_name != NULL)
22118 {
22119 char *actual_name
22120 = language_class_name_from_physname (cu->language_defn,
22121 linkage_name);
22122 char *name = NULL;
22123
22124 if (actual_name != NULL)
22125 {
22126 const char *die_name = dwarf2_name (die, cu);
22127
22128 if (die_name != NULL
22129 && strcmp (die_name, actual_name) != 0)
22130 {
22131 /* Strip off the class name from the full name.
22132 We want the prefix. */
22133 int die_name_len = strlen (die_name);
22134 int actual_name_len = strlen (actual_name);
22135
22136 /* Test for '::' as a sanity check. */
22137 if (actual_name_len > die_name_len + 2
22138 && actual_name[actual_name_len
22139 - die_name_len - 1] == ':')
22140 name = (char *) obstack_copy0 (
22141 &objfile->per_bfd->storage_obstack,
22142 actual_name, actual_name_len - die_name_len - 2);
22143 }
22144 }
22145 xfree (actual_name);
22146 return name;
22147 }
22148 }
22149 }
22150
22151 return NULL;
22152 }
22153
22154 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22155 prefix part in such case. See
22156 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22157
22158 static const char *
22159 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22160 {
22161 struct attribute *attr;
22162 const char *base;
22163
22164 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22165 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22166 return NULL;
22167
22168 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22169 return NULL;
22170
22171 attr = dw2_linkage_name_attr (die, cu);
22172 if (attr == NULL || DW_STRING (attr) == NULL)
22173 return NULL;
22174
22175 /* dwarf2_name had to be already called. */
22176 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22177
22178 /* Strip the base name, keep any leading namespaces/classes. */
22179 base = strrchr (DW_STRING (attr), ':');
22180 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22181 return "";
22182
22183 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22184 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22185 DW_STRING (attr),
22186 &base[-1] - DW_STRING (attr));
22187 }
22188
22189 /* Return the name of the namespace/class that DIE is defined within,
22190 or "" if we can't tell. The caller should not xfree the result.
22191
22192 For example, if we're within the method foo() in the following
22193 code:
22194
22195 namespace N {
22196 class C {
22197 void foo () {
22198 }
22199 };
22200 }
22201
22202 then determine_prefix on foo's die will return "N::C". */
22203
22204 static const char *
22205 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22206 {
22207 struct dwarf2_per_objfile *dwarf2_per_objfile
22208 = cu->per_cu->dwarf2_per_objfile;
22209 struct die_info *parent, *spec_die;
22210 struct dwarf2_cu *spec_cu;
22211 struct type *parent_type;
22212 const char *retval;
22213
22214 if (cu->language != language_cplus
22215 && cu->language != language_fortran && cu->language != language_d
22216 && cu->language != language_rust)
22217 return "";
22218
22219 retval = anonymous_struct_prefix (die, cu);
22220 if (retval)
22221 return retval;
22222
22223 /* We have to be careful in the presence of DW_AT_specification.
22224 For example, with GCC 3.4, given the code
22225
22226 namespace N {
22227 void foo() {
22228 // Definition of N::foo.
22229 }
22230 }
22231
22232 then we'll have a tree of DIEs like this:
22233
22234 1: DW_TAG_compile_unit
22235 2: DW_TAG_namespace // N
22236 3: DW_TAG_subprogram // declaration of N::foo
22237 4: DW_TAG_subprogram // definition of N::foo
22238 DW_AT_specification // refers to die #3
22239
22240 Thus, when processing die #4, we have to pretend that we're in
22241 the context of its DW_AT_specification, namely the contex of die
22242 #3. */
22243 spec_cu = cu;
22244 spec_die = die_specification (die, &spec_cu);
22245 if (spec_die == NULL)
22246 parent = die->parent;
22247 else
22248 {
22249 parent = spec_die->parent;
22250 cu = spec_cu;
22251 }
22252
22253 if (parent == NULL)
22254 return "";
22255 else if (parent->building_fullname)
22256 {
22257 const char *name;
22258 const char *parent_name;
22259
22260 /* It has been seen on RealView 2.2 built binaries,
22261 DW_TAG_template_type_param types actually _defined_ as
22262 children of the parent class:
22263
22264 enum E {};
22265 template class <class Enum> Class{};
22266 Class<enum E> class_e;
22267
22268 1: DW_TAG_class_type (Class)
22269 2: DW_TAG_enumeration_type (E)
22270 3: DW_TAG_enumerator (enum1:0)
22271 3: DW_TAG_enumerator (enum2:1)
22272 ...
22273 2: DW_TAG_template_type_param
22274 DW_AT_type DW_FORM_ref_udata (E)
22275
22276 Besides being broken debug info, it can put GDB into an
22277 infinite loop. Consider:
22278
22279 When we're building the full name for Class<E>, we'll start
22280 at Class, and go look over its template type parameters,
22281 finding E. We'll then try to build the full name of E, and
22282 reach here. We're now trying to build the full name of E,
22283 and look over the parent DIE for containing scope. In the
22284 broken case, if we followed the parent DIE of E, we'd again
22285 find Class, and once again go look at its template type
22286 arguments, etc., etc. Simply don't consider such parent die
22287 as source-level parent of this die (it can't be, the language
22288 doesn't allow it), and break the loop here. */
22289 name = dwarf2_name (die, cu);
22290 parent_name = dwarf2_name (parent, cu);
22291 complaint (&symfile_complaints,
22292 _("template param type '%s' defined within parent '%s'"),
22293 name ? name : "<unknown>",
22294 parent_name ? parent_name : "<unknown>");
22295 return "";
22296 }
22297 else
22298 switch (parent->tag)
22299 {
22300 case DW_TAG_namespace:
22301 parent_type = read_type_die (parent, cu);
22302 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22303 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22304 Work around this problem here. */
22305 if (cu->language == language_cplus
22306 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22307 return "";
22308 /* We give a name to even anonymous namespaces. */
22309 return TYPE_TAG_NAME (parent_type);
22310 case DW_TAG_class_type:
22311 case DW_TAG_interface_type:
22312 case DW_TAG_structure_type:
22313 case DW_TAG_union_type:
22314 case DW_TAG_module:
22315 parent_type = read_type_die (parent, cu);
22316 if (TYPE_TAG_NAME (parent_type) != NULL)
22317 return TYPE_TAG_NAME (parent_type);
22318 else
22319 /* An anonymous structure is only allowed non-static data
22320 members; no typedefs, no member functions, et cetera.
22321 So it does not need a prefix. */
22322 return "";
22323 case DW_TAG_compile_unit:
22324 case DW_TAG_partial_unit:
22325 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22326 if (cu->language == language_cplus
22327 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22328 && die->child != NULL
22329 && (die->tag == DW_TAG_class_type
22330 || die->tag == DW_TAG_structure_type
22331 || die->tag == DW_TAG_union_type))
22332 {
22333 char *name = guess_full_die_structure_name (die, cu);
22334 if (name != NULL)
22335 return name;
22336 }
22337 return "";
22338 case DW_TAG_enumeration_type:
22339 parent_type = read_type_die (parent, cu);
22340 if (TYPE_DECLARED_CLASS (parent_type))
22341 {
22342 if (TYPE_TAG_NAME (parent_type) != NULL)
22343 return TYPE_TAG_NAME (parent_type);
22344 return "";
22345 }
22346 /* Fall through. */
22347 default:
22348 return determine_prefix (parent, cu);
22349 }
22350 }
22351
22352 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22353 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22354 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22355 an obconcat, otherwise allocate storage for the result. The CU argument is
22356 used to determine the language and hence, the appropriate separator. */
22357
22358 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22359
22360 static char *
22361 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22362 int physname, struct dwarf2_cu *cu)
22363 {
22364 const char *lead = "";
22365 const char *sep;
22366
22367 if (suffix == NULL || suffix[0] == '\0'
22368 || prefix == NULL || prefix[0] == '\0')
22369 sep = "";
22370 else if (cu->language == language_d)
22371 {
22372 /* For D, the 'main' function could be defined in any module, but it
22373 should never be prefixed. */
22374 if (strcmp (suffix, "D main") == 0)
22375 {
22376 prefix = "";
22377 sep = "";
22378 }
22379 else
22380 sep = ".";
22381 }
22382 else if (cu->language == language_fortran && physname)
22383 {
22384 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22385 DW_AT_MIPS_linkage_name is preferred and used instead. */
22386
22387 lead = "__";
22388 sep = "_MOD_";
22389 }
22390 else
22391 sep = "::";
22392
22393 if (prefix == NULL)
22394 prefix = "";
22395 if (suffix == NULL)
22396 suffix = "";
22397
22398 if (obs == NULL)
22399 {
22400 char *retval
22401 = ((char *)
22402 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22403
22404 strcpy (retval, lead);
22405 strcat (retval, prefix);
22406 strcat (retval, sep);
22407 strcat (retval, suffix);
22408 return retval;
22409 }
22410 else
22411 {
22412 /* We have an obstack. */
22413 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22414 }
22415 }
22416
22417 /* Return sibling of die, NULL if no sibling. */
22418
22419 static struct die_info *
22420 sibling_die (struct die_info *die)
22421 {
22422 return die->sibling;
22423 }
22424
22425 /* Get name of a die, return NULL if not found. */
22426
22427 static const char *
22428 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22429 struct obstack *obstack)
22430 {
22431 if (name && cu->language == language_cplus)
22432 {
22433 std::string canon_name = cp_canonicalize_string (name);
22434
22435 if (!canon_name.empty ())
22436 {
22437 if (canon_name != name)
22438 name = (const char *) obstack_copy0 (obstack,
22439 canon_name.c_str (),
22440 canon_name.length ());
22441 }
22442 }
22443
22444 return name;
22445 }
22446
22447 /* Get name of a die, return NULL if not found.
22448 Anonymous namespaces are converted to their magic string. */
22449
22450 static const char *
22451 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22452 {
22453 struct attribute *attr;
22454 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22455
22456 attr = dwarf2_attr (die, DW_AT_name, cu);
22457 if ((!attr || !DW_STRING (attr))
22458 && die->tag != DW_TAG_namespace
22459 && die->tag != DW_TAG_class_type
22460 && die->tag != DW_TAG_interface_type
22461 && die->tag != DW_TAG_structure_type
22462 && die->tag != DW_TAG_union_type)
22463 return NULL;
22464
22465 switch (die->tag)
22466 {
22467 case DW_TAG_compile_unit:
22468 case DW_TAG_partial_unit:
22469 /* Compilation units have a DW_AT_name that is a filename, not
22470 a source language identifier. */
22471 case DW_TAG_enumeration_type:
22472 case DW_TAG_enumerator:
22473 /* These tags always have simple identifiers already; no need
22474 to canonicalize them. */
22475 return DW_STRING (attr);
22476
22477 case DW_TAG_namespace:
22478 if (attr != NULL && DW_STRING (attr) != NULL)
22479 return DW_STRING (attr);
22480 return CP_ANONYMOUS_NAMESPACE_STR;
22481
22482 case DW_TAG_class_type:
22483 case DW_TAG_interface_type:
22484 case DW_TAG_structure_type:
22485 case DW_TAG_union_type:
22486 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22487 structures or unions. These were of the form "._%d" in GCC 4.1,
22488 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22489 and GCC 4.4. We work around this problem by ignoring these. */
22490 if (attr && DW_STRING (attr)
22491 && (startswith (DW_STRING (attr), "._")
22492 || startswith (DW_STRING (attr), "<anonymous")))
22493 return NULL;
22494
22495 /* GCC might emit a nameless typedef that has a linkage name. See
22496 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22497 if (!attr || DW_STRING (attr) == NULL)
22498 {
22499 char *demangled = NULL;
22500
22501 attr = dw2_linkage_name_attr (die, cu);
22502 if (attr == NULL || DW_STRING (attr) == NULL)
22503 return NULL;
22504
22505 /* Avoid demangling DW_STRING (attr) the second time on a second
22506 call for the same DIE. */
22507 if (!DW_STRING_IS_CANONICAL (attr))
22508 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22509
22510 if (demangled)
22511 {
22512 const char *base;
22513
22514 /* FIXME: we already did this for the partial symbol... */
22515 DW_STRING (attr)
22516 = ((const char *)
22517 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22518 demangled, strlen (demangled)));
22519 DW_STRING_IS_CANONICAL (attr) = 1;
22520 xfree (demangled);
22521
22522 /* Strip any leading namespaces/classes, keep only the base name.
22523 DW_AT_name for named DIEs does not contain the prefixes. */
22524 base = strrchr (DW_STRING (attr), ':');
22525 if (base && base > DW_STRING (attr) && base[-1] == ':')
22526 return &base[1];
22527 else
22528 return DW_STRING (attr);
22529 }
22530 }
22531 break;
22532
22533 default:
22534 break;
22535 }
22536
22537 if (!DW_STRING_IS_CANONICAL (attr))
22538 {
22539 DW_STRING (attr)
22540 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22541 &objfile->per_bfd->storage_obstack);
22542 DW_STRING_IS_CANONICAL (attr) = 1;
22543 }
22544 return DW_STRING (attr);
22545 }
22546
22547 /* Return the die that this die in an extension of, or NULL if there
22548 is none. *EXT_CU is the CU containing DIE on input, and the CU
22549 containing the return value on output. */
22550
22551 static struct die_info *
22552 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22553 {
22554 struct attribute *attr;
22555
22556 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22557 if (attr == NULL)
22558 return NULL;
22559
22560 return follow_die_ref (die, attr, ext_cu);
22561 }
22562
22563 /* Convert a DIE tag into its string name. */
22564
22565 static const char *
22566 dwarf_tag_name (unsigned tag)
22567 {
22568 const char *name = get_DW_TAG_name (tag);
22569
22570 if (name == NULL)
22571 return "DW_TAG_<unknown>";
22572
22573 return name;
22574 }
22575
22576 /* Convert a DWARF attribute code into its string name. */
22577
22578 static const char *
22579 dwarf_attr_name (unsigned attr)
22580 {
22581 const char *name;
22582
22583 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22584 if (attr == DW_AT_MIPS_fde)
22585 return "DW_AT_MIPS_fde";
22586 #else
22587 if (attr == DW_AT_HP_block_index)
22588 return "DW_AT_HP_block_index";
22589 #endif
22590
22591 name = get_DW_AT_name (attr);
22592
22593 if (name == NULL)
22594 return "DW_AT_<unknown>";
22595
22596 return name;
22597 }
22598
22599 /* Convert a DWARF value form code into its string name. */
22600
22601 static const char *
22602 dwarf_form_name (unsigned form)
22603 {
22604 const char *name = get_DW_FORM_name (form);
22605
22606 if (name == NULL)
22607 return "DW_FORM_<unknown>";
22608
22609 return name;
22610 }
22611
22612 static const char *
22613 dwarf_bool_name (unsigned mybool)
22614 {
22615 if (mybool)
22616 return "TRUE";
22617 else
22618 return "FALSE";
22619 }
22620
22621 /* Convert a DWARF type code into its string name. */
22622
22623 static const char *
22624 dwarf_type_encoding_name (unsigned enc)
22625 {
22626 const char *name = get_DW_ATE_name (enc);
22627
22628 if (name == NULL)
22629 return "DW_ATE_<unknown>";
22630
22631 return name;
22632 }
22633
22634 static void
22635 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22636 {
22637 unsigned int i;
22638
22639 print_spaces (indent, f);
22640 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22641 dwarf_tag_name (die->tag), die->abbrev,
22642 sect_offset_str (die->sect_off));
22643
22644 if (die->parent != NULL)
22645 {
22646 print_spaces (indent, f);
22647 fprintf_unfiltered (f, " parent at offset: %s\n",
22648 sect_offset_str (die->parent->sect_off));
22649 }
22650
22651 print_spaces (indent, f);
22652 fprintf_unfiltered (f, " has children: %s\n",
22653 dwarf_bool_name (die->child != NULL));
22654
22655 print_spaces (indent, f);
22656 fprintf_unfiltered (f, " attributes:\n");
22657
22658 for (i = 0; i < die->num_attrs; ++i)
22659 {
22660 print_spaces (indent, f);
22661 fprintf_unfiltered (f, " %s (%s) ",
22662 dwarf_attr_name (die->attrs[i].name),
22663 dwarf_form_name (die->attrs[i].form));
22664
22665 switch (die->attrs[i].form)
22666 {
22667 case DW_FORM_addr:
22668 case DW_FORM_GNU_addr_index:
22669 fprintf_unfiltered (f, "address: ");
22670 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22671 break;
22672 case DW_FORM_block2:
22673 case DW_FORM_block4:
22674 case DW_FORM_block:
22675 case DW_FORM_block1:
22676 fprintf_unfiltered (f, "block: size %s",
22677 pulongest (DW_BLOCK (&die->attrs[i])->size));
22678 break;
22679 case DW_FORM_exprloc:
22680 fprintf_unfiltered (f, "expression: size %s",
22681 pulongest (DW_BLOCK (&die->attrs[i])->size));
22682 break;
22683 case DW_FORM_data16:
22684 fprintf_unfiltered (f, "constant of 16 bytes");
22685 break;
22686 case DW_FORM_ref_addr:
22687 fprintf_unfiltered (f, "ref address: ");
22688 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22689 break;
22690 case DW_FORM_GNU_ref_alt:
22691 fprintf_unfiltered (f, "alt ref address: ");
22692 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22693 break;
22694 case DW_FORM_ref1:
22695 case DW_FORM_ref2:
22696 case DW_FORM_ref4:
22697 case DW_FORM_ref8:
22698 case DW_FORM_ref_udata:
22699 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22700 (long) (DW_UNSND (&die->attrs[i])));
22701 break;
22702 case DW_FORM_data1:
22703 case DW_FORM_data2:
22704 case DW_FORM_data4:
22705 case DW_FORM_data8:
22706 case DW_FORM_udata:
22707 case DW_FORM_sdata:
22708 fprintf_unfiltered (f, "constant: %s",
22709 pulongest (DW_UNSND (&die->attrs[i])));
22710 break;
22711 case DW_FORM_sec_offset:
22712 fprintf_unfiltered (f, "section offset: %s",
22713 pulongest (DW_UNSND (&die->attrs[i])));
22714 break;
22715 case DW_FORM_ref_sig8:
22716 fprintf_unfiltered (f, "signature: %s",
22717 hex_string (DW_SIGNATURE (&die->attrs[i])));
22718 break;
22719 case DW_FORM_string:
22720 case DW_FORM_strp:
22721 case DW_FORM_line_strp:
22722 case DW_FORM_GNU_str_index:
22723 case DW_FORM_GNU_strp_alt:
22724 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22725 DW_STRING (&die->attrs[i])
22726 ? DW_STRING (&die->attrs[i]) : "",
22727 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22728 break;
22729 case DW_FORM_flag:
22730 if (DW_UNSND (&die->attrs[i]))
22731 fprintf_unfiltered (f, "flag: TRUE");
22732 else
22733 fprintf_unfiltered (f, "flag: FALSE");
22734 break;
22735 case DW_FORM_flag_present:
22736 fprintf_unfiltered (f, "flag: TRUE");
22737 break;
22738 case DW_FORM_indirect:
22739 /* The reader will have reduced the indirect form to
22740 the "base form" so this form should not occur. */
22741 fprintf_unfiltered (f,
22742 "unexpected attribute form: DW_FORM_indirect");
22743 break;
22744 case DW_FORM_implicit_const:
22745 fprintf_unfiltered (f, "constant: %s",
22746 plongest (DW_SND (&die->attrs[i])));
22747 break;
22748 default:
22749 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22750 die->attrs[i].form);
22751 break;
22752 }
22753 fprintf_unfiltered (f, "\n");
22754 }
22755 }
22756
22757 static void
22758 dump_die_for_error (struct die_info *die)
22759 {
22760 dump_die_shallow (gdb_stderr, 0, die);
22761 }
22762
22763 static void
22764 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22765 {
22766 int indent = level * 4;
22767
22768 gdb_assert (die != NULL);
22769
22770 if (level >= max_level)
22771 return;
22772
22773 dump_die_shallow (f, indent, die);
22774
22775 if (die->child != NULL)
22776 {
22777 print_spaces (indent, f);
22778 fprintf_unfiltered (f, " Children:");
22779 if (level + 1 < max_level)
22780 {
22781 fprintf_unfiltered (f, "\n");
22782 dump_die_1 (f, level + 1, max_level, die->child);
22783 }
22784 else
22785 {
22786 fprintf_unfiltered (f,
22787 " [not printed, max nesting level reached]\n");
22788 }
22789 }
22790
22791 if (die->sibling != NULL && level > 0)
22792 {
22793 dump_die_1 (f, level, max_level, die->sibling);
22794 }
22795 }
22796
22797 /* This is called from the pdie macro in gdbinit.in.
22798 It's not static so gcc will keep a copy callable from gdb. */
22799
22800 void
22801 dump_die (struct die_info *die, int max_level)
22802 {
22803 dump_die_1 (gdb_stdlog, 0, max_level, die);
22804 }
22805
22806 static void
22807 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22808 {
22809 void **slot;
22810
22811 slot = htab_find_slot_with_hash (cu->die_hash, die,
22812 to_underlying (die->sect_off),
22813 INSERT);
22814
22815 *slot = die;
22816 }
22817
22818 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22819 required kind. */
22820
22821 static sect_offset
22822 dwarf2_get_ref_die_offset (const struct attribute *attr)
22823 {
22824 if (attr_form_is_ref (attr))
22825 return (sect_offset) DW_UNSND (attr);
22826
22827 complaint (&symfile_complaints,
22828 _("unsupported die ref attribute form: '%s'"),
22829 dwarf_form_name (attr->form));
22830 return {};
22831 }
22832
22833 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22834 * the value held by the attribute is not constant. */
22835
22836 static LONGEST
22837 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22838 {
22839 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22840 return DW_SND (attr);
22841 else if (attr->form == DW_FORM_udata
22842 || attr->form == DW_FORM_data1
22843 || attr->form == DW_FORM_data2
22844 || attr->form == DW_FORM_data4
22845 || attr->form == DW_FORM_data8)
22846 return DW_UNSND (attr);
22847 else
22848 {
22849 /* For DW_FORM_data16 see attr_form_is_constant. */
22850 complaint (&symfile_complaints,
22851 _("Attribute value is not a constant (%s)"),
22852 dwarf_form_name (attr->form));
22853 return default_value;
22854 }
22855 }
22856
22857 /* Follow reference or signature attribute ATTR of SRC_DIE.
22858 On entry *REF_CU is the CU of SRC_DIE.
22859 On exit *REF_CU is the CU of the result. */
22860
22861 static struct die_info *
22862 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22863 struct dwarf2_cu **ref_cu)
22864 {
22865 struct die_info *die;
22866
22867 if (attr_form_is_ref (attr))
22868 die = follow_die_ref (src_die, attr, ref_cu);
22869 else if (attr->form == DW_FORM_ref_sig8)
22870 die = follow_die_sig (src_die, attr, ref_cu);
22871 else
22872 {
22873 dump_die_for_error (src_die);
22874 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22875 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22876 }
22877
22878 return die;
22879 }
22880
22881 /* Follow reference OFFSET.
22882 On entry *REF_CU is the CU of the source die referencing OFFSET.
22883 On exit *REF_CU is the CU of the result.
22884 Returns NULL if OFFSET is invalid. */
22885
22886 static struct die_info *
22887 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22888 struct dwarf2_cu **ref_cu)
22889 {
22890 struct die_info temp_die;
22891 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22892 struct dwarf2_per_objfile *dwarf2_per_objfile
22893 = cu->per_cu->dwarf2_per_objfile;
22894 struct objfile *objfile = dwarf2_per_objfile->objfile;
22895
22896 gdb_assert (cu->per_cu != NULL);
22897
22898 target_cu = cu;
22899
22900 if (cu->per_cu->is_debug_types)
22901 {
22902 /* .debug_types CUs cannot reference anything outside their CU.
22903 If they need to, they have to reference a signatured type via
22904 DW_FORM_ref_sig8. */
22905 if (!offset_in_cu_p (&cu->header, sect_off))
22906 return NULL;
22907 }
22908 else if (offset_in_dwz != cu->per_cu->is_dwz
22909 || !offset_in_cu_p (&cu->header, sect_off))
22910 {
22911 struct dwarf2_per_cu_data *per_cu;
22912
22913 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22914 dwarf2_per_objfile);
22915
22916 /* If necessary, add it to the queue and load its DIEs. */
22917 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22918 load_full_comp_unit (per_cu, cu->language);
22919
22920 target_cu = per_cu->cu;
22921 }
22922 else if (cu->dies == NULL)
22923 {
22924 /* We're loading full DIEs during partial symbol reading. */
22925 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22926 load_full_comp_unit (cu->per_cu, language_minimal);
22927 }
22928
22929 *ref_cu = target_cu;
22930 temp_die.sect_off = sect_off;
22931 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22932 &temp_die,
22933 to_underlying (sect_off));
22934 }
22935
22936 /* Follow reference attribute ATTR of SRC_DIE.
22937 On entry *REF_CU is the CU of SRC_DIE.
22938 On exit *REF_CU is the CU of the result. */
22939
22940 static struct die_info *
22941 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22942 struct dwarf2_cu **ref_cu)
22943 {
22944 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22945 struct dwarf2_cu *cu = *ref_cu;
22946 struct die_info *die;
22947
22948 die = follow_die_offset (sect_off,
22949 (attr->form == DW_FORM_GNU_ref_alt
22950 || cu->per_cu->is_dwz),
22951 ref_cu);
22952 if (!die)
22953 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22954 "at %s [in module %s]"),
22955 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22956 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22957
22958 return die;
22959 }
22960
22961 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22962 Returned value is intended for DW_OP_call*. Returned
22963 dwarf2_locexpr_baton->data has lifetime of
22964 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22965
22966 struct dwarf2_locexpr_baton
22967 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22968 struct dwarf2_per_cu_data *per_cu,
22969 CORE_ADDR (*get_frame_pc) (void *baton),
22970 void *baton)
22971 {
22972 struct dwarf2_cu *cu;
22973 struct die_info *die;
22974 struct attribute *attr;
22975 struct dwarf2_locexpr_baton retval;
22976 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22977 struct dwarf2_per_objfile *dwarf2_per_objfile
22978 = get_dwarf2_per_objfile (objfile);
22979
22980 if (per_cu->cu == NULL)
22981 load_cu (per_cu);
22982 cu = per_cu->cu;
22983 if (cu == NULL)
22984 {
22985 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22986 Instead just throw an error, not much else we can do. */
22987 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22988 sect_offset_str (sect_off), objfile_name (objfile));
22989 }
22990
22991 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22992 if (!die)
22993 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22994 sect_offset_str (sect_off), objfile_name (objfile));
22995
22996 attr = dwarf2_attr (die, DW_AT_location, cu);
22997 if (!attr)
22998 {
22999 /* DWARF: "If there is no such attribute, then there is no effect.".
23000 DATA is ignored if SIZE is 0. */
23001
23002 retval.data = NULL;
23003 retval.size = 0;
23004 }
23005 else if (attr_form_is_section_offset (attr))
23006 {
23007 struct dwarf2_loclist_baton loclist_baton;
23008 CORE_ADDR pc = (*get_frame_pc) (baton);
23009 size_t size;
23010
23011 fill_in_loclist_baton (cu, &loclist_baton, attr);
23012
23013 retval.data = dwarf2_find_location_expression (&loclist_baton,
23014 &size, pc);
23015 retval.size = size;
23016 }
23017 else
23018 {
23019 if (!attr_form_is_block (attr))
23020 error (_("Dwarf Error: DIE at %s referenced in module %s "
23021 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23022 sect_offset_str (sect_off), objfile_name (objfile));
23023
23024 retval.data = DW_BLOCK (attr)->data;
23025 retval.size = DW_BLOCK (attr)->size;
23026 }
23027 retval.per_cu = cu->per_cu;
23028
23029 age_cached_comp_units (dwarf2_per_objfile);
23030
23031 return retval;
23032 }
23033
23034 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23035 offset. */
23036
23037 struct dwarf2_locexpr_baton
23038 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23039 struct dwarf2_per_cu_data *per_cu,
23040 CORE_ADDR (*get_frame_pc) (void *baton),
23041 void *baton)
23042 {
23043 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23044
23045 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23046 }
23047
23048 /* Write a constant of a given type as target-ordered bytes into
23049 OBSTACK. */
23050
23051 static const gdb_byte *
23052 write_constant_as_bytes (struct obstack *obstack,
23053 enum bfd_endian byte_order,
23054 struct type *type,
23055 ULONGEST value,
23056 LONGEST *len)
23057 {
23058 gdb_byte *result;
23059
23060 *len = TYPE_LENGTH (type);
23061 result = (gdb_byte *) obstack_alloc (obstack, *len);
23062 store_unsigned_integer (result, *len, byte_order, value);
23063
23064 return result;
23065 }
23066
23067 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23068 pointer to the constant bytes and set LEN to the length of the
23069 data. If memory is needed, allocate it on OBSTACK. If the DIE
23070 does not have a DW_AT_const_value, return NULL. */
23071
23072 const gdb_byte *
23073 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23074 struct dwarf2_per_cu_data *per_cu,
23075 struct obstack *obstack,
23076 LONGEST *len)
23077 {
23078 struct dwarf2_cu *cu;
23079 struct die_info *die;
23080 struct attribute *attr;
23081 const gdb_byte *result = NULL;
23082 struct type *type;
23083 LONGEST value;
23084 enum bfd_endian byte_order;
23085 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23086
23087 if (per_cu->cu == NULL)
23088 load_cu (per_cu);
23089 cu = per_cu->cu;
23090 if (cu == NULL)
23091 {
23092 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23093 Instead just throw an error, not much else we can do. */
23094 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23095 sect_offset_str (sect_off), objfile_name (objfile));
23096 }
23097
23098 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23099 if (!die)
23100 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23101 sect_offset_str (sect_off), objfile_name (objfile));
23102
23103 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23104 if (attr == NULL)
23105 return NULL;
23106
23107 byte_order = (bfd_big_endian (objfile->obfd)
23108 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23109
23110 switch (attr->form)
23111 {
23112 case DW_FORM_addr:
23113 case DW_FORM_GNU_addr_index:
23114 {
23115 gdb_byte *tem;
23116
23117 *len = cu->header.addr_size;
23118 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23119 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23120 result = tem;
23121 }
23122 break;
23123 case DW_FORM_string:
23124 case DW_FORM_strp:
23125 case DW_FORM_GNU_str_index:
23126 case DW_FORM_GNU_strp_alt:
23127 /* DW_STRING is already allocated on the objfile obstack, point
23128 directly to it. */
23129 result = (const gdb_byte *) DW_STRING (attr);
23130 *len = strlen (DW_STRING (attr));
23131 break;
23132 case DW_FORM_block1:
23133 case DW_FORM_block2:
23134 case DW_FORM_block4:
23135 case DW_FORM_block:
23136 case DW_FORM_exprloc:
23137 case DW_FORM_data16:
23138 result = DW_BLOCK (attr)->data;
23139 *len = DW_BLOCK (attr)->size;
23140 break;
23141
23142 /* The DW_AT_const_value attributes are supposed to carry the
23143 symbol's value "represented as it would be on the target
23144 architecture." By the time we get here, it's already been
23145 converted to host endianness, so we just need to sign- or
23146 zero-extend it as appropriate. */
23147 case DW_FORM_data1:
23148 type = die_type (die, cu);
23149 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23150 if (result == NULL)
23151 result = write_constant_as_bytes (obstack, byte_order,
23152 type, value, len);
23153 break;
23154 case DW_FORM_data2:
23155 type = die_type (die, cu);
23156 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23157 if (result == NULL)
23158 result = write_constant_as_bytes (obstack, byte_order,
23159 type, value, len);
23160 break;
23161 case DW_FORM_data4:
23162 type = die_type (die, cu);
23163 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23164 if (result == NULL)
23165 result = write_constant_as_bytes (obstack, byte_order,
23166 type, value, len);
23167 break;
23168 case DW_FORM_data8:
23169 type = die_type (die, cu);
23170 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23171 if (result == NULL)
23172 result = write_constant_as_bytes (obstack, byte_order,
23173 type, value, len);
23174 break;
23175
23176 case DW_FORM_sdata:
23177 case DW_FORM_implicit_const:
23178 type = die_type (die, cu);
23179 result = write_constant_as_bytes (obstack, byte_order,
23180 type, DW_SND (attr), len);
23181 break;
23182
23183 case DW_FORM_udata:
23184 type = die_type (die, cu);
23185 result = write_constant_as_bytes (obstack, byte_order,
23186 type, DW_UNSND (attr), len);
23187 break;
23188
23189 default:
23190 complaint (&symfile_complaints,
23191 _("unsupported const value attribute form: '%s'"),
23192 dwarf_form_name (attr->form));
23193 break;
23194 }
23195
23196 return result;
23197 }
23198
23199 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23200 valid type for this die is found. */
23201
23202 struct type *
23203 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23204 struct dwarf2_per_cu_data *per_cu)
23205 {
23206 struct dwarf2_cu *cu;
23207 struct die_info *die;
23208
23209 if (per_cu->cu == NULL)
23210 load_cu (per_cu);
23211 cu = per_cu->cu;
23212 if (!cu)
23213 return NULL;
23214
23215 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23216 if (!die)
23217 return NULL;
23218
23219 return die_type (die, cu);
23220 }
23221
23222 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23223 PER_CU. */
23224
23225 struct type *
23226 dwarf2_get_die_type (cu_offset die_offset,
23227 struct dwarf2_per_cu_data *per_cu)
23228 {
23229 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23230 return get_die_type_at_offset (die_offset_sect, per_cu);
23231 }
23232
23233 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23234 On entry *REF_CU is the CU of SRC_DIE.
23235 On exit *REF_CU is the CU of the result.
23236 Returns NULL if the referenced DIE isn't found. */
23237
23238 static struct die_info *
23239 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23240 struct dwarf2_cu **ref_cu)
23241 {
23242 struct die_info temp_die;
23243 struct dwarf2_cu *sig_cu;
23244 struct die_info *die;
23245
23246 /* While it might be nice to assert sig_type->type == NULL here,
23247 we can get here for DW_AT_imported_declaration where we need
23248 the DIE not the type. */
23249
23250 /* If necessary, add it to the queue and load its DIEs. */
23251
23252 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23253 read_signatured_type (sig_type);
23254
23255 sig_cu = sig_type->per_cu.cu;
23256 gdb_assert (sig_cu != NULL);
23257 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23258 temp_die.sect_off = sig_type->type_offset_in_section;
23259 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23260 to_underlying (temp_die.sect_off));
23261 if (die)
23262 {
23263 struct dwarf2_per_objfile *dwarf2_per_objfile
23264 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23265
23266 /* For .gdb_index version 7 keep track of included TUs.
23267 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23268 if (dwarf2_per_objfile->index_table != NULL
23269 && dwarf2_per_objfile->index_table->version <= 7)
23270 {
23271 VEC_safe_push (dwarf2_per_cu_ptr,
23272 (*ref_cu)->per_cu->imported_symtabs,
23273 sig_cu->per_cu);
23274 }
23275
23276 *ref_cu = sig_cu;
23277 return die;
23278 }
23279
23280 return NULL;
23281 }
23282
23283 /* Follow signatured type referenced by ATTR in SRC_DIE.
23284 On entry *REF_CU is the CU of SRC_DIE.
23285 On exit *REF_CU is the CU of the result.
23286 The result is the DIE of the type.
23287 If the referenced type cannot be found an error is thrown. */
23288
23289 static struct die_info *
23290 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23291 struct dwarf2_cu **ref_cu)
23292 {
23293 ULONGEST signature = DW_SIGNATURE (attr);
23294 struct signatured_type *sig_type;
23295 struct die_info *die;
23296
23297 gdb_assert (attr->form == DW_FORM_ref_sig8);
23298
23299 sig_type = lookup_signatured_type (*ref_cu, signature);
23300 /* sig_type will be NULL if the signatured type is missing from
23301 the debug info. */
23302 if (sig_type == NULL)
23303 {
23304 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23305 " from DIE at %s [in module %s]"),
23306 hex_string (signature), sect_offset_str (src_die->sect_off),
23307 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23308 }
23309
23310 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23311 if (die == NULL)
23312 {
23313 dump_die_for_error (src_die);
23314 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23315 " from DIE at %s [in module %s]"),
23316 hex_string (signature), sect_offset_str (src_die->sect_off),
23317 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23318 }
23319
23320 return die;
23321 }
23322
23323 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23324 reading in and processing the type unit if necessary. */
23325
23326 static struct type *
23327 get_signatured_type (struct die_info *die, ULONGEST signature,
23328 struct dwarf2_cu *cu)
23329 {
23330 struct dwarf2_per_objfile *dwarf2_per_objfile
23331 = cu->per_cu->dwarf2_per_objfile;
23332 struct signatured_type *sig_type;
23333 struct dwarf2_cu *type_cu;
23334 struct die_info *type_die;
23335 struct type *type;
23336
23337 sig_type = lookup_signatured_type (cu, signature);
23338 /* sig_type will be NULL if the signatured type is missing from
23339 the debug info. */
23340 if (sig_type == NULL)
23341 {
23342 complaint (&symfile_complaints,
23343 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23344 " from DIE at %s [in module %s]"),
23345 hex_string (signature), sect_offset_str (die->sect_off),
23346 objfile_name (dwarf2_per_objfile->objfile));
23347 return build_error_marker_type (cu, die);
23348 }
23349
23350 /* If we already know the type we're done. */
23351 if (sig_type->type != NULL)
23352 return sig_type->type;
23353
23354 type_cu = cu;
23355 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23356 if (type_die != NULL)
23357 {
23358 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23359 is created. This is important, for example, because for c++ classes
23360 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23361 type = read_type_die (type_die, type_cu);
23362 if (type == NULL)
23363 {
23364 complaint (&symfile_complaints,
23365 _("Dwarf Error: Cannot build signatured type %s"
23366 " referenced from DIE at %s [in module %s]"),
23367 hex_string (signature), sect_offset_str (die->sect_off),
23368 objfile_name (dwarf2_per_objfile->objfile));
23369 type = build_error_marker_type (cu, die);
23370 }
23371 }
23372 else
23373 {
23374 complaint (&symfile_complaints,
23375 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23376 " from DIE at %s [in module %s]"),
23377 hex_string (signature), sect_offset_str (die->sect_off),
23378 objfile_name (dwarf2_per_objfile->objfile));
23379 type = build_error_marker_type (cu, die);
23380 }
23381 sig_type->type = type;
23382
23383 return type;
23384 }
23385
23386 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23387 reading in and processing the type unit if necessary. */
23388
23389 static struct type *
23390 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23391 struct dwarf2_cu *cu) /* ARI: editCase function */
23392 {
23393 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23394 if (attr_form_is_ref (attr))
23395 {
23396 struct dwarf2_cu *type_cu = cu;
23397 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23398
23399 return read_type_die (type_die, type_cu);
23400 }
23401 else if (attr->form == DW_FORM_ref_sig8)
23402 {
23403 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23404 }
23405 else
23406 {
23407 struct dwarf2_per_objfile *dwarf2_per_objfile
23408 = cu->per_cu->dwarf2_per_objfile;
23409
23410 complaint (&symfile_complaints,
23411 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23412 " at %s [in module %s]"),
23413 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23414 objfile_name (dwarf2_per_objfile->objfile));
23415 return build_error_marker_type (cu, die);
23416 }
23417 }
23418
23419 /* Load the DIEs associated with type unit PER_CU into memory. */
23420
23421 static void
23422 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23423 {
23424 struct signatured_type *sig_type;
23425
23426 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23427 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23428
23429 /* We have the per_cu, but we need the signatured_type.
23430 Fortunately this is an easy translation. */
23431 gdb_assert (per_cu->is_debug_types);
23432 sig_type = (struct signatured_type *) per_cu;
23433
23434 gdb_assert (per_cu->cu == NULL);
23435
23436 read_signatured_type (sig_type);
23437
23438 gdb_assert (per_cu->cu != NULL);
23439 }
23440
23441 /* die_reader_func for read_signatured_type.
23442 This is identical to load_full_comp_unit_reader,
23443 but is kept separate for now. */
23444
23445 static void
23446 read_signatured_type_reader (const struct die_reader_specs *reader,
23447 const gdb_byte *info_ptr,
23448 struct die_info *comp_unit_die,
23449 int has_children,
23450 void *data)
23451 {
23452 struct dwarf2_cu *cu = reader->cu;
23453
23454 gdb_assert (cu->die_hash == NULL);
23455 cu->die_hash =
23456 htab_create_alloc_ex (cu->header.length / 12,
23457 die_hash,
23458 die_eq,
23459 NULL,
23460 &cu->comp_unit_obstack,
23461 hashtab_obstack_allocate,
23462 dummy_obstack_deallocate);
23463
23464 if (has_children)
23465 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23466 &info_ptr, comp_unit_die);
23467 cu->dies = comp_unit_die;
23468 /* comp_unit_die is not stored in die_hash, no need. */
23469
23470 /* We try not to read any attributes in this function, because not
23471 all CUs needed for references have been loaded yet, and symbol
23472 table processing isn't initialized. But we have to set the CU language,
23473 or we won't be able to build types correctly.
23474 Similarly, if we do not read the producer, we can not apply
23475 producer-specific interpretation. */
23476 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23477 }
23478
23479 /* Read in a signatured type and build its CU and DIEs.
23480 If the type is a stub for the real type in a DWO file,
23481 read in the real type from the DWO file as well. */
23482
23483 static void
23484 read_signatured_type (struct signatured_type *sig_type)
23485 {
23486 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23487
23488 gdb_assert (per_cu->is_debug_types);
23489 gdb_assert (per_cu->cu == NULL);
23490
23491 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23492 read_signatured_type_reader, NULL);
23493 sig_type->per_cu.tu_read = 1;
23494 }
23495
23496 /* Decode simple location descriptions.
23497 Given a pointer to a dwarf block that defines a location, compute
23498 the location and return the value.
23499
23500 NOTE drow/2003-11-18: This function is called in two situations
23501 now: for the address of static or global variables (partial symbols
23502 only) and for offsets into structures which are expected to be
23503 (more or less) constant. The partial symbol case should go away,
23504 and only the constant case should remain. That will let this
23505 function complain more accurately. A few special modes are allowed
23506 without complaint for global variables (for instance, global
23507 register values and thread-local values).
23508
23509 A location description containing no operations indicates that the
23510 object is optimized out. The return value is 0 for that case.
23511 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23512 callers will only want a very basic result and this can become a
23513 complaint.
23514
23515 Note that stack[0] is unused except as a default error return. */
23516
23517 static CORE_ADDR
23518 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23519 {
23520 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23521 size_t i;
23522 size_t size = blk->size;
23523 const gdb_byte *data = blk->data;
23524 CORE_ADDR stack[64];
23525 int stacki;
23526 unsigned int bytes_read, unsnd;
23527 gdb_byte op;
23528
23529 i = 0;
23530 stacki = 0;
23531 stack[stacki] = 0;
23532 stack[++stacki] = 0;
23533
23534 while (i < size)
23535 {
23536 op = data[i++];
23537 switch (op)
23538 {
23539 case DW_OP_lit0:
23540 case DW_OP_lit1:
23541 case DW_OP_lit2:
23542 case DW_OP_lit3:
23543 case DW_OP_lit4:
23544 case DW_OP_lit5:
23545 case DW_OP_lit6:
23546 case DW_OP_lit7:
23547 case DW_OP_lit8:
23548 case DW_OP_lit9:
23549 case DW_OP_lit10:
23550 case DW_OP_lit11:
23551 case DW_OP_lit12:
23552 case DW_OP_lit13:
23553 case DW_OP_lit14:
23554 case DW_OP_lit15:
23555 case DW_OP_lit16:
23556 case DW_OP_lit17:
23557 case DW_OP_lit18:
23558 case DW_OP_lit19:
23559 case DW_OP_lit20:
23560 case DW_OP_lit21:
23561 case DW_OP_lit22:
23562 case DW_OP_lit23:
23563 case DW_OP_lit24:
23564 case DW_OP_lit25:
23565 case DW_OP_lit26:
23566 case DW_OP_lit27:
23567 case DW_OP_lit28:
23568 case DW_OP_lit29:
23569 case DW_OP_lit30:
23570 case DW_OP_lit31:
23571 stack[++stacki] = op - DW_OP_lit0;
23572 break;
23573
23574 case DW_OP_reg0:
23575 case DW_OP_reg1:
23576 case DW_OP_reg2:
23577 case DW_OP_reg3:
23578 case DW_OP_reg4:
23579 case DW_OP_reg5:
23580 case DW_OP_reg6:
23581 case DW_OP_reg7:
23582 case DW_OP_reg8:
23583 case DW_OP_reg9:
23584 case DW_OP_reg10:
23585 case DW_OP_reg11:
23586 case DW_OP_reg12:
23587 case DW_OP_reg13:
23588 case DW_OP_reg14:
23589 case DW_OP_reg15:
23590 case DW_OP_reg16:
23591 case DW_OP_reg17:
23592 case DW_OP_reg18:
23593 case DW_OP_reg19:
23594 case DW_OP_reg20:
23595 case DW_OP_reg21:
23596 case DW_OP_reg22:
23597 case DW_OP_reg23:
23598 case DW_OP_reg24:
23599 case DW_OP_reg25:
23600 case DW_OP_reg26:
23601 case DW_OP_reg27:
23602 case DW_OP_reg28:
23603 case DW_OP_reg29:
23604 case DW_OP_reg30:
23605 case DW_OP_reg31:
23606 stack[++stacki] = op - DW_OP_reg0;
23607 if (i < size)
23608 dwarf2_complex_location_expr_complaint ();
23609 break;
23610
23611 case DW_OP_regx:
23612 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23613 i += bytes_read;
23614 stack[++stacki] = unsnd;
23615 if (i < size)
23616 dwarf2_complex_location_expr_complaint ();
23617 break;
23618
23619 case DW_OP_addr:
23620 stack[++stacki] = read_address (objfile->obfd, &data[i],
23621 cu, &bytes_read);
23622 i += bytes_read;
23623 break;
23624
23625 case DW_OP_const1u:
23626 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23627 i += 1;
23628 break;
23629
23630 case DW_OP_const1s:
23631 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23632 i += 1;
23633 break;
23634
23635 case DW_OP_const2u:
23636 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23637 i += 2;
23638 break;
23639
23640 case DW_OP_const2s:
23641 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23642 i += 2;
23643 break;
23644
23645 case DW_OP_const4u:
23646 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23647 i += 4;
23648 break;
23649
23650 case DW_OP_const4s:
23651 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23652 i += 4;
23653 break;
23654
23655 case DW_OP_const8u:
23656 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23657 i += 8;
23658 break;
23659
23660 case DW_OP_constu:
23661 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23662 &bytes_read);
23663 i += bytes_read;
23664 break;
23665
23666 case DW_OP_consts:
23667 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23668 i += bytes_read;
23669 break;
23670
23671 case DW_OP_dup:
23672 stack[stacki + 1] = stack[stacki];
23673 stacki++;
23674 break;
23675
23676 case DW_OP_plus:
23677 stack[stacki - 1] += stack[stacki];
23678 stacki--;
23679 break;
23680
23681 case DW_OP_plus_uconst:
23682 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23683 &bytes_read);
23684 i += bytes_read;
23685 break;
23686
23687 case DW_OP_minus:
23688 stack[stacki - 1] -= stack[stacki];
23689 stacki--;
23690 break;
23691
23692 case DW_OP_deref:
23693 /* If we're not the last op, then we definitely can't encode
23694 this using GDB's address_class enum. This is valid for partial
23695 global symbols, although the variable's address will be bogus
23696 in the psymtab. */
23697 if (i < size)
23698 dwarf2_complex_location_expr_complaint ();
23699 break;
23700
23701 case DW_OP_GNU_push_tls_address:
23702 case DW_OP_form_tls_address:
23703 /* The top of the stack has the offset from the beginning
23704 of the thread control block at which the variable is located. */
23705 /* Nothing should follow this operator, so the top of stack would
23706 be returned. */
23707 /* This is valid for partial global symbols, but the variable's
23708 address will be bogus in the psymtab. Make it always at least
23709 non-zero to not look as a variable garbage collected by linker
23710 which have DW_OP_addr 0. */
23711 if (i < size)
23712 dwarf2_complex_location_expr_complaint ();
23713 stack[stacki]++;
23714 break;
23715
23716 case DW_OP_GNU_uninit:
23717 break;
23718
23719 case DW_OP_GNU_addr_index:
23720 case DW_OP_GNU_const_index:
23721 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23722 &bytes_read);
23723 i += bytes_read;
23724 break;
23725
23726 default:
23727 {
23728 const char *name = get_DW_OP_name (op);
23729
23730 if (name)
23731 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23732 name);
23733 else
23734 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23735 op);
23736 }
23737
23738 return (stack[stacki]);
23739 }
23740
23741 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23742 outside of the allocated space. Also enforce minimum>0. */
23743 if (stacki >= ARRAY_SIZE (stack) - 1)
23744 {
23745 complaint (&symfile_complaints,
23746 _("location description stack overflow"));
23747 return 0;
23748 }
23749
23750 if (stacki <= 0)
23751 {
23752 complaint (&symfile_complaints,
23753 _("location description stack underflow"));
23754 return 0;
23755 }
23756 }
23757 return (stack[stacki]);
23758 }
23759
23760 /* memory allocation interface */
23761
23762 static struct dwarf_block *
23763 dwarf_alloc_block (struct dwarf2_cu *cu)
23764 {
23765 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23766 }
23767
23768 static struct die_info *
23769 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23770 {
23771 struct die_info *die;
23772 size_t size = sizeof (struct die_info);
23773
23774 if (num_attrs > 1)
23775 size += (num_attrs - 1) * sizeof (struct attribute);
23776
23777 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23778 memset (die, 0, sizeof (struct die_info));
23779 return (die);
23780 }
23781
23782 \f
23783 /* Macro support. */
23784
23785 /* Return file name relative to the compilation directory of file number I in
23786 *LH's file name table. The result is allocated using xmalloc; the caller is
23787 responsible for freeing it. */
23788
23789 static char *
23790 file_file_name (int file, struct line_header *lh)
23791 {
23792 /* Is the file number a valid index into the line header's file name
23793 table? Remember that file numbers start with one, not zero. */
23794 if (1 <= file && file <= lh->file_names.size ())
23795 {
23796 const file_entry &fe = lh->file_names[file - 1];
23797
23798 if (!IS_ABSOLUTE_PATH (fe.name))
23799 {
23800 const char *dir = fe.include_dir (lh);
23801 if (dir != NULL)
23802 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23803 }
23804 return xstrdup (fe.name);
23805 }
23806 else
23807 {
23808 /* The compiler produced a bogus file number. We can at least
23809 record the macro definitions made in the file, even if we
23810 won't be able to find the file by name. */
23811 char fake_name[80];
23812
23813 xsnprintf (fake_name, sizeof (fake_name),
23814 "<bad macro file number %d>", file);
23815
23816 complaint (&symfile_complaints,
23817 _("bad file number in macro information (%d)"),
23818 file);
23819
23820 return xstrdup (fake_name);
23821 }
23822 }
23823
23824 /* Return the full name of file number I in *LH's file name table.
23825 Use COMP_DIR as the name of the current directory of the
23826 compilation. The result is allocated using xmalloc; the caller is
23827 responsible for freeing it. */
23828 static char *
23829 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23830 {
23831 /* Is the file number a valid index into the line header's file name
23832 table? Remember that file numbers start with one, not zero. */
23833 if (1 <= file && file <= lh->file_names.size ())
23834 {
23835 char *relative = file_file_name (file, lh);
23836
23837 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23838 return relative;
23839 return reconcat (relative, comp_dir, SLASH_STRING,
23840 relative, (char *) NULL);
23841 }
23842 else
23843 return file_file_name (file, lh);
23844 }
23845
23846
23847 static struct macro_source_file *
23848 macro_start_file (int file, int line,
23849 struct macro_source_file *current_file,
23850 struct line_header *lh)
23851 {
23852 /* File name relative to the compilation directory of this source file. */
23853 char *file_name = file_file_name (file, lh);
23854
23855 if (! current_file)
23856 {
23857 /* Note: We don't create a macro table for this compilation unit
23858 at all until we actually get a filename. */
23859 struct macro_table *macro_table = get_macro_table ();
23860
23861 /* If we have no current file, then this must be the start_file
23862 directive for the compilation unit's main source file. */
23863 current_file = macro_set_main (macro_table, file_name);
23864 macro_define_special (macro_table);
23865 }
23866 else
23867 current_file = macro_include (current_file, line, file_name);
23868
23869 xfree (file_name);
23870
23871 return current_file;
23872 }
23873
23874 static const char *
23875 consume_improper_spaces (const char *p, const char *body)
23876 {
23877 if (*p == ' ')
23878 {
23879 complaint (&symfile_complaints,
23880 _("macro definition contains spaces "
23881 "in formal argument list:\n`%s'"),
23882 body);
23883
23884 while (*p == ' ')
23885 p++;
23886 }
23887
23888 return p;
23889 }
23890
23891
23892 static void
23893 parse_macro_definition (struct macro_source_file *file, int line,
23894 const char *body)
23895 {
23896 const char *p;
23897
23898 /* The body string takes one of two forms. For object-like macro
23899 definitions, it should be:
23900
23901 <macro name> " " <definition>
23902
23903 For function-like macro definitions, it should be:
23904
23905 <macro name> "() " <definition>
23906 or
23907 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23908
23909 Spaces may appear only where explicitly indicated, and in the
23910 <definition>.
23911
23912 The Dwarf 2 spec says that an object-like macro's name is always
23913 followed by a space, but versions of GCC around March 2002 omit
23914 the space when the macro's definition is the empty string.
23915
23916 The Dwarf 2 spec says that there should be no spaces between the
23917 formal arguments in a function-like macro's formal argument list,
23918 but versions of GCC around March 2002 include spaces after the
23919 commas. */
23920
23921
23922 /* Find the extent of the macro name. The macro name is terminated
23923 by either a space or null character (for an object-like macro) or
23924 an opening paren (for a function-like macro). */
23925 for (p = body; *p; p++)
23926 if (*p == ' ' || *p == '(')
23927 break;
23928
23929 if (*p == ' ' || *p == '\0')
23930 {
23931 /* It's an object-like macro. */
23932 int name_len = p - body;
23933 char *name = savestring (body, name_len);
23934 const char *replacement;
23935
23936 if (*p == ' ')
23937 replacement = body + name_len + 1;
23938 else
23939 {
23940 dwarf2_macro_malformed_definition_complaint (body);
23941 replacement = body + name_len;
23942 }
23943
23944 macro_define_object (file, line, name, replacement);
23945
23946 xfree (name);
23947 }
23948 else if (*p == '(')
23949 {
23950 /* It's a function-like macro. */
23951 char *name = savestring (body, p - body);
23952 int argc = 0;
23953 int argv_size = 1;
23954 char **argv = XNEWVEC (char *, argv_size);
23955
23956 p++;
23957
23958 p = consume_improper_spaces (p, body);
23959
23960 /* Parse the formal argument list. */
23961 while (*p && *p != ')')
23962 {
23963 /* Find the extent of the current argument name. */
23964 const char *arg_start = p;
23965
23966 while (*p && *p != ',' && *p != ')' && *p != ' ')
23967 p++;
23968
23969 if (! *p || p == arg_start)
23970 dwarf2_macro_malformed_definition_complaint (body);
23971 else
23972 {
23973 /* Make sure argv has room for the new argument. */
23974 if (argc >= argv_size)
23975 {
23976 argv_size *= 2;
23977 argv = XRESIZEVEC (char *, argv, argv_size);
23978 }
23979
23980 argv[argc++] = savestring (arg_start, p - arg_start);
23981 }
23982
23983 p = consume_improper_spaces (p, body);
23984
23985 /* Consume the comma, if present. */
23986 if (*p == ',')
23987 {
23988 p++;
23989
23990 p = consume_improper_spaces (p, body);
23991 }
23992 }
23993
23994 if (*p == ')')
23995 {
23996 p++;
23997
23998 if (*p == ' ')
23999 /* Perfectly formed definition, no complaints. */
24000 macro_define_function (file, line, name,
24001 argc, (const char **) argv,
24002 p + 1);
24003 else if (*p == '\0')
24004 {
24005 /* Complain, but do define it. */
24006 dwarf2_macro_malformed_definition_complaint (body);
24007 macro_define_function (file, line, name,
24008 argc, (const char **) argv,
24009 p);
24010 }
24011 else
24012 /* Just complain. */
24013 dwarf2_macro_malformed_definition_complaint (body);
24014 }
24015 else
24016 /* Just complain. */
24017 dwarf2_macro_malformed_definition_complaint (body);
24018
24019 xfree (name);
24020 {
24021 int i;
24022
24023 for (i = 0; i < argc; i++)
24024 xfree (argv[i]);
24025 }
24026 xfree (argv);
24027 }
24028 else
24029 dwarf2_macro_malformed_definition_complaint (body);
24030 }
24031
24032 /* Skip some bytes from BYTES according to the form given in FORM.
24033 Returns the new pointer. */
24034
24035 static const gdb_byte *
24036 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24037 enum dwarf_form form,
24038 unsigned int offset_size,
24039 struct dwarf2_section_info *section)
24040 {
24041 unsigned int bytes_read;
24042
24043 switch (form)
24044 {
24045 case DW_FORM_data1:
24046 case DW_FORM_flag:
24047 ++bytes;
24048 break;
24049
24050 case DW_FORM_data2:
24051 bytes += 2;
24052 break;
24053
24054 case DW_FORM_data4:
24055 bytes += 4;
24056 break;
24057
24058 case DW_FORM_data8:
24059 bytes += 8;
24060 break;
24061
24062 case DW_FORM_data16:
24063 bytes += 16;
24064 break;
24065
24066 case DW_FORM_string:
24067 read_direct_string (abfd, bytes, &bytes_read);
24068 bytes += bytes_read;
24069 break;
24070
24071 case DW_FORM_sec_offset:
24072 case DW_FORM_strp:
24073 case DW_FORM_GNU_strp_alt:
24074 bytes += offset_size;
24075 break;
24076
24077 case DW_FORM_block:
24078 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24079 bytes += bytes_read;
24080 break;
24081
24082 case DW_FORM_block1:
24083 bytes += 1 + read_1_byte (abfd, bytes);
24084 break;
24085 case DW_FORM_block2:
24086 bytes += 2 + read_2_bytes (abfd, bytes);
24087 break;
24088 case DW_FORM_block4:
24089 bytes += 4 + read_4_bytes (abfd, bytes);
24090 break;
24091
24092 case DW_FORM_sdata:
24093 case DW_FORM_udata:
24094 case DW_FORM_GNU_addr_index:
24095 case DW_FORM_GNU_str_index:
24096 bytes = gdb_skip_leb128 (bytes, buffer_end);
24097 if (bytes == NULL)
24098 {
24099 dwarf2_section_buffer_overflow_complaint (section);
24100 return NULL;
24101 }
24102 break;
24103
24104 case DW_FORM_implicit_const:
24105 break;
24106
24107 default:
24108 {
24109 complaint (&symfile_complaints,
24110 _("invalid form 0x%x in `%s'"),
24111 form, get_section_name (section));
24112 return NULL;
24113 }
24114 }
24115
24116 return bytes;
24117 }
24118
24119 /* A helper for dwarf_decode_macros that handles skipping an unknown
24120 opcode. Returns an updated pointer to the macro data buffer; or,
24121 on error, issues a complaint and returns NULL. */
24122
24123 static const gdb_byte *
24124 skip_unknown_opcode (unsigned int opcode,
24125 const gdb_byte **opcode_definitions,
24126 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24127 bfd *abfd,
24128 unsigned int offset_size,
24129 struct dwarf2_section_info *section)
24130 {
24131 unsigned int bytes_read, i;
24132 unsigned long arg;
24133 const gdb_byte *defn;
24134
24135 if (opcode_definitions[opcode] == NULL)
24136 {
24137 complaint (&symfile_complaints,
24138 _("unrecognized DW_MACFINO opcode 0x%x"),
24139 opcode);
24140 return NULL;
24141 }
24142
24143 defn = opcode_definitions[opcode];
24144 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24145 defn += bytes_read;
24146
24147 for (i = 0; i < arg; ++i)
24148 {
24149 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24150 (enum dwarf_form) defn[i], offset_size,
24151 section);
24152 if (mac_ptr == NULL)
24153 {
24154 /* skip_form_bytes already issued the complaint. */
24155 return NULL;
24156 }
24157 }
24158
24159 return mac_ptr;
24160 }
24161
24162 /* A helper function which parses the header of a macro section.
24163 If the macro section is the extended (for now called "GNU") type,
24164 then this updates *OFFSET_SIZE. Returns a pointer to just after
24165 the header, or issues a complaint and returns NULL on error. */
24166
24167 static const gdb_byte *
24168 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24169 bfd *abfd,
24170 const gdb_byte *mac_ptr,
24171 unsigned int *offset_size,
24172 int section_is_gnu)
24173 {
24174 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24175
24176 if (section_is_gnu)
24177 {
24178 unsigned int version, flags;
24179
24180 version = read_2_bytes (abfd, mac_ptr);
24181 if (version != 4 && version != 5)
24182 {
24183 complaint (&symfile_complaints,
24184 _("unrecognized version `%d' in .debug_macro section"),
24185 version);
24186 return NULL;
24187 }
24188 mac_ptr += 2;
24189
24190 flags = read_1_byte (abfd, mac_ptr);
24191 ++mac_ptr;
24192 *offset_size = (flags & 1) ? 8 : 4;
24193
24194 if ((flags & 2) != 0)
24195 /* We don't need the line table offset. */
24196 mac_ptr += *offset_size;
24197
24198 /* Vendor opcode descriptions. */
24199 if ((flags & 4) != 0)
24200 {
24201 unsigned int i, count;
24202
24203 count = read_1_byte (abfd, mac_ptr);
24204 ++mac_ptr;
24205 for (i = 0; i < count; ++i)
24206 {
24207 unsigned int opcode, bytes_read;
24208 unsigned long arg;
24209
24210 opcode = read_1_byte (abfd, mac_ptr);
24211 ++mac_ptr;
24212 opcode_definitions[opcode] = mac_ptr;
24213 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24214 mac_ptr += bytes_read;
24215 mac_ptr += arg;
24216 }
24217 }
24218 }
24219
24220 return mac_ptr;
24221 }
24222
24223 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24224 including DW_MACRO_import. */
24225
24226 static void
24227 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24228 bfd *abfd,
24229 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24230 struct macro_source_file *current_file,
24231 struct line_header *lh,
24232 struct dwarf2_section_info *section,
24233 int section_is_gnu, int section_is_dwz,
24234 unsigned int offset_size,
24235 htab_t include_hash)
24236 {
24237 struct objfile *objfile = dwarf2_per_objfile->objfile;
24238 enum dwarf_macro_record_type macinfo_type;
24239 int at_commandline;
24240 const gdb_byte *opcode_definitions[256];
24241
24242 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24243 &offset_size, section_is_gnu);
24244 if (mac_ptr == NULL)
24245 {
24246 /* We already issued a complaint. */
24247 return;
24248 }
24249
24250 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24251 GDB is still reading the definitions from command line. First
24252 DW_MACINFO_start_file will need to be ignored as it was already executed
24253 to create CURRENT_FILE for the main source holding also the command line
24254 definitions. On first met DW_MACINFO_start_file this flag is reset to
24255 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24256
24257 at_commandline = 1;
24258
24259 do
24260 {
24261 /* Do we at least have room for a macinfo type byte? */
24262 if (mac_ptr >= mac_end)
24263 {
24264 dwarf2_section_buffer_overflow_complaint (section);
24265 break;
24266 }
24267
24268 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24269 mac_ptr++;
24270
24271 /* Note that we rely on the fact that the corresponding GNU and
24272 DWARF constants are the same. */
24273 DIAGNOSTIC_PUSH
24274 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24275 switch (macinfo_type)
24276 {
24277 /* A zero macinfo type indicates the end of the macro
24278 information. */
24279 case 0:
24280 break;
24281
24282 case DW_MACRO_define:
24283 case DW_MACRO_undef:
24284 case DW_MACRO_define_strp:
24285 case DW_MACRO_undef_strp:
24286 case DW_MACRO_define_sup:
24287 case DW_MACRO_undef_sup:
24288 {
24289 unsigned int bytes_read;
24290 int line;
24291 const char *body;
24292 int is_define;
24293
24294 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24295 mac_ptr += bytes_read;
24296
24297 if (macinfo_type == DW_MACRO_define
24298 || macinfo_type == DW_MACRO_undef)
24299 {
24300 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24301 mac_ptr += bytes_read;
24302 }
24303 else
24304 {
24305 LONGEST str_offset;
24306
24307 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24308 mac_ptr += offset_size;
24309
24310 if (macinfo_type == DW_MACRO_define_sup
24311 || macinfo_type == DW_MACRO_undef_sup
24312 || section_is_dwz)
24313 {
24314 struct dwz_file *dwz
24315 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24316
24317 body = read_indirect_string_from_dwz (objfile,
24318 dwz, str_offset);
24319 }
24320 else
24321 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24322 abfd, str_offset);
24323 }
24324
24325 is_define = (macinfo_type == DW_MACRO_define
24326 || macinfo_type == DW_MACRO_define_strp
24327 || macinfo_type == DW_MACRO_define_sup);
24328 if (! current_file)
24329 {
24330 /* DWARF violation as no main source is present. */
24331 complaint (&symfile_complaints,
24332 _("debug info with no main source gives macro %s "
24333 "on line %d: %s"),
24334 is_define ? _("definition") : _("undefinition"),
24335 line, body);
24336 break;
24337 }
24338 if ((line == 0 && !at_commandline)
24339 || (line != 0 && at_commandline))
24340 complaint (&symfile_complaints,
24341 _("debug info gives %s macro %s with %s line %d: %s"),
24342 at_commandline ? _("command-line") : _("in-file"),
24343 is_define ? _("definition") : _("undefinition"),
24344 line == 0 ? _("zero") : _("non-zero"), line, body);
24345
24346 if (is_define)
24347 parse_macro_definition (current_file, line, body);
24348 else
24349 {
24350 gdb_assert (macinfo_type == DW_MACRO_undef
24351 || macinfo_type == DW_MACRO_undef_strp
24352 || macinfo_type == DW_MACRO_undef_sup);
24353 macro_undef (current_file, line, body);
24354 }
24355 }
24356 break;
24357
24358 case DW_MACRO_start_file:
24359 {
24360 unsigned int bytes_read;
24361 int line, file;
24362
24363 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24364 mac_ptr += bytes_read;
24365 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24366 mac_ptr += bytes_read;
24367
24368 if ((line == 0 && !at_commandline)
24369 || (line != 0 && at_commandline))
24370 complaint (&symfile_complaints,
24371 _("debug info gives source %d included "
24372 "from %s at %s line %d"),
24373 file, at_commandline ? _("command-line") : _("file"),
24374 line == 0 ? _("zero") : _("non-zero"), line);
24375
24376 if (at_commandline)
24377 {
24378 /* This DW_MACRO_start_file was executed in the
24379 pass one. */
24380 at_commandline = 0;
24381 }
24382 else
24383 current_file = macro_start_file (file, line, current_file, lh);
24384 }
24385 break;
24386
24387 case DW_MACRO_end_file:
24388 if (! current_file)
24389 complaint (&symfile_complaints,
24390 _("macro debug info has an unmatched "
24391 "`close_file' directive"));
24392 else
24393 {
24394 current_file = current_file->included_by;
24395 if (! current_file)
24396 {
24397 enum dwarf_macro_record_type next_type;
24398
24399 /* GCC circa March 2002 doesn't produce the zero
24400 type byte marking the end of the compilation
24401 unit. Complain if it's not there, but exit no
24402 matter what. */
24403
24404 /* Do we at least have room for a macinfo type byte? */
24405 if (mac_ptr >= mac_end)
24406 {
24407 dwarf2_section_buffer_overflow_complaint (section);
24408 return;
24409 }
24410
24411 /* We don't increment mac_ptr here, so this is just
24412 a look-ahead. */
24413 next_type
24414 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24415 mac_ptr);
24416 if (next_type != 0)
24417 complaint (&symfile_complaints,
24418 _("no terminating 0-type entry for "
24419 "macros in `.debug_macinfo' section"));
24420
24421 return;
24422 }
24423 }
24424 break;
24425
24426 case DW_MACRO_import:
24427 case DW_MACRO_import_sup:
24428 {
24429 LONGEST offset;
24430 void **slot;
24431 bfd *include_bfd = abfd;
24432 struct dwarf2_section_info *include_section = section;
24433 const gdb_byte *include_mac_end = mac_end;
24434 int is_dwz = section_is_dwz;
24435 const gdb_byte *new_mac_ptr;
24436
24437 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24438 mac_ptr += offset_size;
24439
24440 if (macinfo_type == DW_MACRO_import_sup)
24441 {
24442 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24443
24444 dwarf2_read_section (objfile, &dwz->macro);
24445
24446 include_section = &dwz->macro;
24447 include_bfd = get_section_bfd_owner (include_section);
24448 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24449 is_dwz = 1;
24450 }
24451
24452 new_mac_ptr = include_section->buffer + offset;
24453 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24454
24455 if (*slot != NULL)
24456 {
24457 /* This has actually happened; see
24458 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24459 complaint (&symfile_complaints,
24460 _("recursive DW_MACRO_import in "
24461 ".debug_macro section"));
24462 }
24463 else
24464 {
24465 *slot = (void *) new_mac_ptr;
24466
24467 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24468 include_bfd, new_mac_ptr,
24469 include_mac_end, current_file, lh,
24470 section, section_is_gnu, is_dwz,
24471 offset_size, include_hash);
24472
24473 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24474 }
24475 }
24476 break;
24477
24478 case DW_MACINFO_vendor_ext:
24479 if (!section_is_gnu)
24480 {
24481 unsigned int bytes_read;
24482
24483 /* This reads the constant, but since we don't recognize
24484 any vendor extensions, we ignore it. */
24485 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24486 mac_ptr += bytes_read;
24487 read_direct_string (abfd, mac_ptr, &bytes_read);
24488 mac_ptr += bytes_read;
24489
24490 /* We don't recognize any vendor extensions. */
24491 break;
24492 }
24493 /* FALLTHROUGH */
24494
24495 default:
24496 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24497 mac_ptr, mac_end, abfd, offset_size,
24498 section);
24499 if (mac_ptr == NULL)
24500 return;
24501 break;
24502 }
24503 DIAGNOSTIC_POP
24504 } while (macinfo_type != 0);
24505 }
24506
24507 static void
24508 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24509 int section_is_gnu)
24510 {
24511 struct dwarf2_per_objfile *dwarf2_per_objfile
24512 = cu->per_cu->dwarf2_per_objfile;
24513 struct objfile *objfile = dwarf2_per_objfile->objfile;
24514 struct line_header *lh = cu->line_header;
24515 bfd *abfd;
24516 const gdb_byte *mac_ptr, *mac_end;
24517 struct macro_source_file *current_file = 0;
24518 enum dwarf_macro_record_type macinfo_type;
24519 unsigned int offset_size = cu->header.offset_size;
24520 const gdb_byte *opcode_definitions[256];
24521 void **slot;
24522 struct dwarf2_section_info *section;
24523 const char *section_name;
24524
24525 if (cu->dwo_unit != NULL)
24526 {
24527 if (section_is_gnu)
24528 {
24529 section = &cu->dwo_unit->dwo_file->sections.macro;
24530 section_name = ".debug_macro.dwo";
24531 }
24532 else
24533 {
24534 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24535 section_name = ".debug_macinfo.dwo";
24536 }
24537 }
24538 else
24539 {
24540 if (section_is_gnu)
24541 {
24542 section = &dwarf2_per_objfile->macro;
24543 section_name = ".debug_macro";
24544 }
24545 else
24546 {
24547 section = &dwarf2_per_objfile->macinfo;
24548 section_name = ".debug_macinfo";
24549 }
24550 }
24551
24552 dwarf2_read_section (objfile, section);
24553 if (section->buffer == NULL)
24554 {
24555 complaint (&symfile_complaints, _("missing %s section"), section_name);
24556 return;
24557 }
24558 abfd = get_section_bfd_owner (section);
24559
24560 /* First pass: Find the name of the base filename.
24561 This filename is needed in order to process all macros whose definition
24562 (or undefinition) comes from the command line. These macros are defined
24563 before the first DW_MACINFO_start_file entry, and yet still need to be
24564 associated to the base file.
24565
24566 To determine the base file name, we scan the macro definitions until we
24567 reach the first DW_MACINFO_start_file entry. We then initialize
24568 CURRENT_FILE accordingly so that any macro definition found before the
24569 first DW_MACINFO_start_file can still be associated to the base file. */
24570
24571 mac_ptr = section->buffer + offset;
24572 mac_end = section->buffer + section->size;
24573
24574 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24575 &offset_size, section_is_gnu);
24576 if (mac_ptr == NULL)
24577 {
24578 /* We already issued a complaint. */
24579 return;
24580 }
24581
24582 do
24583 {
24584 /* Do we at least have room for a macinfo type byte? */
24585 if (mac_ptr >= mac_end)
24586 {
24587 /* Complaint is printed during the second pass as GDB will probably
24588 stop the first pass earlier upon finding
24589 DW_MACINFO_start_file. */
24590 break;
24591 }
24592
24593 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24594 mac_ptr++;
24595
24596 /* Note that we rely on the fact that the corresponding GNU and
24597 DWARF constants are the same. */
24598 DIAGNOSTIC_PUSH
24599 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24600 switch (macinfo_type)
24601 {
24602 /* A zero macinfo type indicates the end of the macro
24603 information. */
24604 case 0:
24605 break;
24606
24607 case DW_MACRO_define:
24608 case DW_MACRO_undef:
24609 /* Only skip the data by MAC_PTR. */
24610 {
24611 unsigned int bytes_read;
24612
24613 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24614 mac_ptr += bytes_read;
24615 read_direct_string (abfd, mac_ptr, &bytes_read);
24616 mac_ptr += bytes_read;
24617 }
24618 break;
24619
24620 case DW_MACRO_start_file:
24621 {
24622 unsigned int bytes_read;
24623 int line, file;
24624
24625 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24626 mac_ptr += bytes_read;
24627 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24628 mac_ptr += bytes_read;
24629
24630 current_file = macro_start_file (file, line, current_file, lh);
24631 }
24632 break;
24633
24634 case DW_MACRO_end_file:
24635 /* No data to skip by MAC_PTR. */
24636 break;
24637
24638 case DW_MACRO_define_strp:
24639 case DW_MACRO_undef_strp:
24640 case DW_MACRO_define_sup:
24641 case DW_MACRO_undef_sup:
24642 {
24643 unsigned int bytes_read;
24644
24645 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24646 mac_ptr += bytes_read;
24647 mac_ptr += offset_size;
24648 }
24649 break;
24650
24651 case DW_MACRO_import:
24652 case DW_MACRO_import_sup:
24653 /* Note that, according to the spec, a transparent include
24654 chain cannot call DW_MACRO_start_file. So, we can just
24655 skip this opcode. */
24656 mac_ptr += offset_size;
24657 break;
24658
24659 case DW_MACINFO_vendor_ext:
24660 /* Only skip the data by MAC_PTR. */
24661 if (!section_is_gnu)
24662 {
24663 unsigned int bytes_read;
24664
24665 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24666 mac_ptr += bytes_read;
24667 read_direct_string (abfd, mac_ptr, &bytes_read);
24668 mac_ptr += bytes_read;
24669 }
24670 /* FALLTHROUGH */
24671
24672 default:
24673 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24674 mac_ptr, mac_end, abfd, offset_size,
24675 section);
24676 if (mac_ptr == NULL)
24677 return;
24678 break;
24679 }
24680 DIAGNOSTIC_POP
24681 } while (macinfo_type != 0 && current_file == NULL);
24682
24683 /* Second pass: Process all entries.
24684
24685 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24686 command-line macro definitions/undefinitions. This flag is unset when we
24687 reach the first DW_MACINFO_start_file entry. */
24688
24689 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24690 htab_eq_pointer,
24691 NULL, xcalloc, xfree));
24692 mac_ptr = section->buffer + offset;
24693 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24694 *slot = (void *) mac_ptr;
24695 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24696 abfd, mac_ptr, mac_end,
24697 current_file, lh, section,
24698 section_is_gnu, 0, offset_size,
24699 include_hash.get ());
24700 }
24701
24702 /* Check if the attribute's form is a DW_FORM_block*
24703 if so return true else false. */
24704
24705 static int
24706 attr_form_is_block (const struct attribute *attr)
24707 {
24708 return (attr == NULL ? 0 :
24709 attr->form == DW_FORM_block1
24710 || attr->form == DW_FORM_block2
24711 || attr->form == DW_FORM_block4
24712 || attr->form == DW_FORM_block
24713 || attr->form == DW_FORM_exprloc);
24714 }
24715
24716 /* Return non-zero if ATTR's value is a section offset --- classes
24717 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24718 You may use DW_UNSND (attr) to retrieve such offsets.
24719
24720 Section 7.5.4, "Attribute Encodings", explains that no attribute
24721 may have a value that belongs to more than one of these classes; it
24722 would be ambiguous if we did, because we use the same forms for all
24723 of them. */
24724
24725 static int
24726 attr_form_is_section_offset (const struct attribute *attr)
24727 {
24728 return (attr->form == DW_FORM_data4
24729 || attr->form == DW_FORM_data8
24730 || attr->form == DW_FORM_sec_offset);
24731 }
24732
24733 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24734 zero otherwise. When this function returns true, you can apply
24735 dwarf2_get_attr_constant_value to it.
24736
24737 However, note that for some attributes you must check
24738 attr_form_is_section_offset before using this test. DW_FORM_data4
24739 and DW_FORM_data8 are members of both the constant class, and of
24740 the classes that contain offsets into other debug sections
24741 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24742 that, if an attribute's can be either a constant or one of the
24743 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24744 taken as section offsets, not constants.
24745
24746 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24747 cannot handle that. */
24748
24749 static int
24750 attr_form_is_constant (const struct attribute *attr)
24751 {
24752 switch (attr->form)
24753 {
24754 case DW_FORM_sdata:
24755 case DW_FORM_udata:
24756 case DW_FORM_data1:
24757 case DW_FORM_data2:
24758 case DW_FORM_data4:
24759 case DW_FORM_data8:
24760 case DW_FORM_implicit_const:
24761 return 1;
24762 default:
24763 return 0;
24764 }
24765 }
24766
24767
24768 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24769 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24770
24771 static int
24772 attr_form_is_ref (const struct attribute *attr)
24773 {
24774 switch (attr->form)
24775 {
24776 case DW_FORM_ref_addr:
24777 case DW_FORM_ref1:
24778 case DW_FORM_ref2:
24779 case DW_FORM_ref4:
24780 case DW_FORM_ref8:
24781 case DW_FORM_ref_udata:
24782 case DW_FORM_GNU_ref_alt:
24783 return 1;
24784 default:
24785 return 0;
24786 }
24787 }
24788
24789 /* Return the .debug_loc section to use for CU.
24790 For DWO files use .debug_loc.dwo. */
24791
24792 static struct dwarf2_section_info *
24793 cu_debug_loc_section (struct dwarf2_cu *cu)
24794 {
24795 struct dwarf2_per_objfile *dwarf2_per_objfile
24796 = cu->per_cu->dwarf2_per_objfile;
24797
24798 if (cu->dwo_unit)
24799 {
24800 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24801
24802 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24803 }
24804 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24805 : &dwarf2_per_objfile->loc);
24806 }
24807
24808 /* A helper function that fills in a dwarf2_loclist_baton. */
24809
24810 static void
24811 fill_in_loclist_baton (struct dwarf2_cu *cu,
24812 struct dwarf2_loclist_baton *baton,
24813 const struct attribute *attr)
24814 {
24815 struct dwarf2_per_objfile *dwarf2_per_objfile
24816 = cu->per_cu->dwarf2_per_objfile;
24817 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24818
24819 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24820
24821 baton->per_cu = cu->per_cu;
24822 gdb_assert (baton->per_cu);
24823 /* We don't know how long the location list is, but make sure we
24824 don't run off the edge of the section. */
24825 baton->size = section->size - DW_UNSND (attr);
24826 baton->data = section->buffer + DW_UNSND (attr);
24827 baton->base_address = cu->base_address;
24828 baton->from_dwo = cu->dwo_unit != NULL;
24829 }
24830
24831 static void
24832 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24833 struct dwarf2_cu *cu, int is_block)
24834 {
24835 struct dwarf2_per_objfile *dwarf2_per_objfile
24836 = cu->per_cu->dwarf2_per_objfile;
24837 struct objfile *objfile = dwarf2_per_objfile->objfile;
24838 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24839
24840 if (attr_form_is_section_offset (attr)
24841 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24842 the section. If so, fall through to the complaint in the
24843 other branch. */
24844 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24845 {
24846 struct dwarf2_loclist_baton *baton;
24847
24848 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24849
24850 fill_in_loclist_baton (cu, baton, attr);
24851
24852 if (cu->base_known == 0)
24853 complaint (&symfile_complaints,
24854 _("Location list used without "
24855 "specifying the CU base address."));
24856
24857 SYMBOL_ACLASS_INDEX (sym) = (is_block
24858 ? dwarf2_loclist_block_index
24859 : dwarf2_loclist_index);
24860 SYMBOL_LOCATION_BATON (sym) = baton;
24861 }
24862 else
24863 {
24864 struct dwarf2_locexpr_baton *baton;
24865
24866 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24867 baton->per_cu = cu->per_cu;
24868 gdb_assert (baton->per_cu);
24869
24870 if (attr_form_is_block (attr))
24871 {
24872 /* Note that we're just copying the block's data pointer
24873 here, not the actual data. We're still pointing into the
24874 info_buffer for SYM's objfile; right now we never release
24875 that buffer, but when we do clean up properly this may
24876 need to change. */
24877 baton->size = DW_BLOCK (attr)->size;
24878 baton->data = DW_BLOCK (attr)->data;
24879 }
24880 else
24881 {
24882 dwarf2_invalid_attrib_class_complaint ("location description",
24883 SYMBOL_NATURAL_NAME (sym));
24884 baton->size = 0;
24885 }
24886
24887 SYMBOL_ACLASS_INDEX (sym) = (is_block
24888 ? dwarf2_locexpr_block_index
24889 : dwarf2_locexpr_index);
24890 SYMBOL_LOCATION_BATON (sym) = baton;
24891 }
24892 }
24893
24894 /* Return the OBJFILE associated with the compilation unit CU. If CU
24895 came from a separate debuginfo file, then the master objfile is
24896 returned. */
24897
24898 struct objfile *
24899 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24900 {
24901 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24902
24903 /* Return the master objfile, so that we can report and look up the
24904 correct file containing this variable. */
24905 if (objfile->separate_debug_objfile_backlink)
24906 objfile = objfile->separate_debug_objfile_backlink;
24907
24908 return objfile;
24909 }
24910
24911 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24912 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24913 CU_HEADERP first. */
24914
24915 static const struct comp_unit_head *
24916 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24917 struct dwarf2_per_cu_data *per_cu)
24918 {
24919 const gdb_byte *info_ptr;
24920
24921 if (per_cu->cu)
24922 return &per_cu->cu->header;
24923
24924 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24925
24926 memset (cu_headerp, 0, sizeof (*cu_headerp));
24927 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24928 rcuh_kind::COMPILE);
24929
24930 return cu_headerp;
24931 }
24932
24933 /* Return the address size given in the compilation unit header for CU. */
24934
24935 int
24936 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24937 {
24938 struct comp_unit_head cu_header_local;
24939 const struct comp_unit_head *cu_headerp;
24940
24941 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24942
24943 return cu_headerp->addr_size;
24944 }
24945
24946 /* Return the offset size given in the compilation unit header for CU. */
24947
24948 int
24949 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24950 {
24951 struct comp_unit_head cu_header_local;
24952 const struct comp_unit_head *cu_headerp;
24953
24954 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24955
24956 return cu_headerp->offset_size;
24957 }
24958
24959 /* See its dwarf2loc.h declaration. */
24960
24961 int
24962 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24963 {
24964 struct comp_unit_head cu_header_local;
24965 const struct comp_unit_head *cu_headerp;
24966
24967 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24968
24969 if (cu_headerp->version == 2)
24970 return cu_headerp->addr_size;
24971 else
24972 return cu_headerp->offset_size;
24973 }
24974
24975 /* Return the text offset of the CU. The returned offset comes from
24976 this CU's objfile. If this objfile came from a separate debuginfo
24977 file, then the offset may be different from the corresponding
24978 offset in the parent objfile. */
24979
24980 CORE_ADDR
24981 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24982 {
24983 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24984
24985 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24986 }
24987
24988 /* Return DWARF version number of PER_CU. */
24989
24990 short
24991 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24992 {
24993 return per_cu->dwarf_version;
24994 }
24995
24996 /* Locate the .debug_info compilation unit from CU's objfile which contains
24997 the DIE at OFFSET. Raises an error on failure. */
24998
24999 static struct dwarf2_per_cu_data *
25000 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25001 unsigned int offset_in_dwz,
25002 struct dwarf2_per_objfile *dwarf2_per_objfile)
25003 {
25004 struct dwarf2_per_cu_data *this_cu;
25005 int low, high;
25006 const sect_offset *cu_off;
25007
25008 low = 0;
25009 high = dwarf2_per_objfile->n_comp_units - 1;
25010 while (high > low)
25011 {
25012 struct dwarf2_per_cu_data *mid_cu;
25013 int mid = low + (high - low) / 2;
25014
25015 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25016 cu_off = &mid_cu->sect_off;
25017 if (mid_cu->is_dwz > offset_in_dwz
25018 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25019 high = mid;
25020 else
25021 low = mid + 1;
25022 }
25023 gdb_assert (low == high);
25024 this_cu = dwarf2_per_objfile->all_comp_units[low];
25025 cu_off = &this_cu->sect_off;
25026 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25027 {
25028 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25029 error (_("Dwarf Error: could not find partial DIE containing "
25030 "offset %s [in module %s]"),
25031 sect_offset_str (sect_off),
25032 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25033
25034 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25035 <= sect_off);
25036 return dwarf2_per_objfile->all_comp_units[low-1];
25037 }
25038 else
25039 {
25040 this_cu = dwarf2_per_objfile->all_comp_units[low];
25041 if (low == dwarf2_per_objfile->n_comp_units - 1
25042 && sect_off >= this_cu->sect_off + this_cu->length)
25043 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25044 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25045 return this_cu;
25046 }
25047 }
25048
25049 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25050
25051 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25052 : per_cu (per_cu_),
25053 mark (0),
25054 has_loclist (0),
25055 checked_producer (0),
25056 producer_is_gxx_lt_4_6 (0),
25057 producer_is_gcc_lt_4_3 (0),
25058 producer_is_icc_lt_14 (0),
25059 processing_has_namespace_info (0)
25060 {
25061 per_cu->cu = this;
25062 }
25063
25064 /* Destroy a dwarf2_cu. */
25065
25066 dwarf2_cu::~dwarf2_cu ()
25067 {
25068 per_cu->cu = NULL;
25069 }
25070
25071 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25072
25073 static void
25074 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25075 enum language pretend_language)
25076 {
25077 struct attribute *attr;
25078
25079 /* Set the language we're debugging. */
25080 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25081 if (attr)
25082 set_cu_language (DW_UNSND (attr), cu);
25083 else
25084 {
25085 cu->language = pretend_language;
25086 cu->language_defn = language_def (cu->language);
25087 }
25088
25089 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25090 }
25091
25092 /* Increase the age counter on each cached compilation unit, and free
25093 any that are too old. */
25094
25095 static void
25096 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25097 {
25098 struct dwarf2_per_cu_data *per_cu, **last_chain;
25099
25100 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25101 per_cu = dwarf2_per_objfile->read_in_chain;
25102 while (per_cu != NULL)
25103 {
25104 per_cu->cu->last_used ++;
25105 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25106 dwarf2_mark (per_cu->cu);
25107 per_cu = per_cu->cu->read_in_chain;
25108 }
25109
25110 per_cu = dwarf2_per_objfile->read_in_chain;
25111 last_chain = &dwarf2_per_objfile->read_in_chain;
25112 while (per_cu != NULL)
25113 {
25114 struct dwarf2_per_cu_data *next_cu;
25115
25116 next_cu = per_cu->cu->read_in_chain;
25117
25118 if (!per_cu->cu->mark)
25119 {
25120 delete per_cu->cu;
25121 *last_chain = next_cu;
25122 }
25123 else
25124 last_chain = &per_cu->cu->read_in_chain;
25125
25126 per_cu = next_cu;
25127 }
25128 }
25129
25130 /* Remove a single compilation unit from the cache. */
25131
25132 static void
25133 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25134 {
25135 struct dwarf2_per_cu_data *per_cu, **last_chain;
25136 struct dwarf2_per_objfile *dwarf2_per_objfile
25137 = target_per_cu->dwarf2_per_objfile;
25138
25139 per_cu = dwarf2_per_objfile->read_in_chain;
25140 last_chain = &dwarf2_per_objfile->read_in_chain;
25141 while (per_cu != NULL)
25142 {
25143 struct dwarf2_per_cu_data *next_cu;
25144
25145 next_cu = per_cu->cu->read_in_chain;
25146
25147 if (per_cu == target_per_cu)
25148 {
25149 delete per_cu->cu;
25150 per_cu->cu = NULL;
25151 *last_chain = next_cu;
25152 break;
25153 }
25154 else
25155 last_chain = &per_cu->cu->read_in_chain;
25156
25157 per_cu = next_cu;
25158 }
25159 }
25160
25161 /* Release all extra memory associated with OBJFILE. */
25162
25163 void
25164 dwarf2_free_objfile (struct objfile *objfile)
25165 {
25166 struct dwarf2_per_objfile *dwarf2_per_objfile
25167 = get_dwarf2_per_objfile (objfile);
25168
25169 delete dwarf2_per_objfile;
25170 }
25171
25172 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25173 We store these in a hash table separate from the DIEs, and preserve them
25174 when the DIEs are flushed out of cache.
25175
25176 The CU "per_cu" pointer is needed because offset alone is not enough to
25177 uniquely identify the type. A file may have multiple .debug_types sections,
25178 or the type may come from a DWO file. Furthermore, while it's more logical
25179 to use per_cu->section+offset, with Fission the section with the data is in
25180 the DWO file but we don't know that section at the point we need it.
25181 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25182 because we can enter the lookup routine, get_die_type_at_offset, from
25183 outside this file, and thus won't necessarily have PER_CU->cu.
25184 Fortunately, PER_CU is stable for the life of the objfile. */
25185
25186 struct dwarf2_per_cu_offset_and_type
25187 {
25188 const struct dwarf2_per_cu_data *per_cu;
25189 sect_offset sect_off;
25190 struct type *type;
25191 };
25192
25193 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25194
25195 static hashval_t
25196 per_cu_offset_and_type_hash (const void *item)
25197 {
25198 const struct dwarf2_per_cu_offset_and_type *ofs
25199 = (const struct dwarf2_per_cu_offset_and_type *) item;
25200
25201 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25202 }
25203
25204 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25205
25206 static int
25207 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25208 {
25209 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25210 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25211 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25212 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25213
25214 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25215 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25216 }
25217
25218 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25219 table if necessary. For convenience, return TYPE.
25220
25221 The DIEs reading must have careful ordering to:
25222 * Not cause infite loops trying to read in DIEs as a prerequisite for
25223 reading current DIE.
25224 * Not trying to dereference contents of still incompletely read in types
25225 while reading in other DIEs.
25226 * Enable referencing still incompletely read in types just by a pointer to
25227 the type without accessing its fields.
25228
25229 Therefore caller should follow these rules:
25230 * Try to fetch any prerequisite types we may need to build this DIE type
25231 before building the type and calling set_die_type.
25232 * After building type call set_die_type for current DIE as soon as
25233 possible before fetching more types to complete the current type.
25234 * Make the type as complete as possible before fetching more types. */
25235
25236 static struct type *
25237 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25238 {
25239 struct dwarf2_per_objfile *dwarf2_per_objfile
25240 = cu->per_cu->dwarf2_per_objfile;
25241 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25242 struct objfile *objfile = dwarf2_per_objfile->objfile;
25243 struct attribute *attr;
25244 struct dynamic_prop prop;
25245
25246 /* For Ada types, make sure that the gnat-specific data is always
25247 initialized (if not already set). There are a few types where
25248 we should not be doing so, because the type-specific area is
25249 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25250 where the type-specific area is used to store the floatformat).
25251 But this is not a problem, because the gnat-specific information
25252 is actually not needed for these types. */
25253 if (need_gnat_info (cu)
25254 && TYPE_CODE (type) != TYPE_CODE_FUNC
25255 && TYPE_CODE (type) != TYPE_CODE_FLT
25256 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25257 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25258 && TYPE_CODE (type) != TYPE_CODE_METHOD
25259 && !HAVE_GNAT_AUX_INFO (type))
25260 INIT_GNAT_SPECIFIC (type);
25261
25262 /* Read DW_AT_allocated and set in type. */
25263 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25264 if (attr_form_is_block (attr))
25265 {
25266 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25267 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25268 }
25269 else if (attr != NULL)
25270 {
25271 complaint (&symfile_complaints,
25272 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25273 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25274 sect_offset_str (die->sect_off));
25275 }
25276
25277 /* Read DW_AT_associated and set in type. */
25278 attr = dwarf2_attr (die, DW_AT_associated, cu);
25279 if (attr_form_is_block (attr))
25280 {
25281 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25282 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25283 }
25284 else if (attr != NULL)
25285 {
25286 complaint (&symfile_complaints,
25287 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25288 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25289 sect_offset_str (die->sect_off));
25290 }
25291
25292 /* Read DW_AT_data_location and set in type. */
25293 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25294 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25295 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25296
25297 if (dwarf2_per_objfile->die_type_hash == NULL)
25298 {
25299 dwarf2_per_objfile->die_type_hash =
25300 htab_create_alloc_ex (127,
25301 per_cu_offset_and_type_hash,
25302 per_cu_offset_and_type_eq,
25303 NULL,
25304 &objfile->objfile_obstack,
25305 hashtab_obstack_allocate,
25306 dummy_obstack_deallocate);
25307 }
25308
25309 ofs.per_cu = cu->per_cu;
25310 ofs.sect_off = die->sect_off;
25311 ofs.type = type;
25312 slot = (struct dwarf2_per_cu_offset_and_type **)
25313 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25314 if (*slot)
25315 complaint (&symfile_complaints,
25316 _("A problem internal to GDB: DIE %s has type already set"),
25317 sect_offset_str (die->sect_off));
25318 *slot = XOBNEW (&objfile->objfile_obstack,
25319 struct dwarf2_per_cu_offset_and_type);
25320 **slot = ofs;
25321 return type;
25322 }
25323
25324 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25325 or return NULL if the die does not have a saved type. */
25326
25327 static struct type *
25328 get_die_type_at_offset (sect_offset sect_off,
25329 struct dwarf2_per_cu_data *per_cu)
25330 {
25331 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25332 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25333
25334 if (dwarf2_per_objfile->die_type_hash == NULL)
25335 return NULL;
25336
25337 ofs.per_cu = per_cu;
25338 ofs.sect_off = sect_off;
25339 slot = ((struct dwarf2_per_cu_offset_and_type *)
25340 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25341 if (slot)
25342 return slot->type;
25343 else
25344 return NULL;
25345 }
25346
25347 /* Look up the type for DIE in CU in die_type_hash,
25348 or return NULL if DIE does not have a saved type. */
25349
25350 static struct type *
25351 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25352 {
25353 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25354 }
25355
25356 /* Add a dependence relationship from CU to REF_PER_CU. */
25357
25358 static void
25359 dwarf2_add_dependence (struct dwarf2_cu *cu,
25360 struct dwarf2_per_cu_data *ref_per_cu)
25361 {
25362 void **slot;
25363
25364 if (cu->dependencies == NULL)
25365 cu->dependencies
25366 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25367 NULL, &cu->comp_unit_obstack,
25368 hashtab_obstack_allocate,
25369 dummy_obstack_deallocate);
25370
25371 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25372 if (*slot == NULL)
25373 *slot = ref_per_cu;
25374 }
25375
25376 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25377 Set the mark field in every compilation unit in the
25378 cache that we must keep because we are keeping CU. */
25379
25380 static int
25381 dwarf2_mark_helper (void **slot, void *data)
25382 {
25383 struct dwarf2_per_cu_data *per_cu;
25384
25385 per_cu = (struct dwarf2_per_cu_data *) *slot;
25386
25387 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25388 reading of the chain. As such dependencies remain valid it is not much
25389 useful to track and undo them during QUIT cleanups. */
25390 if (per_cu->cu == NULL)
25391 return 1;
25392
25393 if (per_cu->cu->mark)
25394 return 1;
25395 per_cu->cu->mark = 1;
25396
25397 if (per_cu->cu->dependencies != NULL)
25398 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25399
25400 return 1;
25401 }
25402
25403 /* Set the mark field in CU and in every other compilation unit in the
25404 cache that we must keep because we are keeping CU. */
25405
25406 static void
25407 dwarf2_mark (struct dwarf2_cu *cu)
25408 {
25409 if (cu->mark)
25410 return;
25411 cu->mark = 1;
25412 if (cu->dependencies != NULL)
25413 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25414 }
25415
25416 static void
25417 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25418 {
25419 while (per_cu)
25420 {
25421 per_cu->cu->mark = 0;
25422 per_cu = per_cu->cu->read_in_chain;
25423 }
25424 }
25425
25426 /* Trivial hash function for partial_die_info: the hash value of a DIE
25427 is its offset in .debug_info for this objfile. */
25428
25429 static hashval_t
25430 partial_die_hash (const void *item)
25431 {
25432 const struct partial_die_info *part_die
25433 = (const struct partial_die_info *) item;
25434
25435 return to_underlying (part_die->sect_off);
25436 }
25437
25438 /* Trivial comparison function for partial_die_info structures: two DIEs
25439 are equal if they have the same offset. */
25440
25441 static int
25442 partial_die_eq (const void *item_lhs, const void *item_rhs)
25443 {
25444 const struct partial_die_info *part_die_lhs
25445 = (const struct partial_die_info *) item_lhs;
25446 const struct partial_die_info *part_die_rhs
25447 = (const struct partial_die_info *) item_rhs;
25448
25449 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25450 }
25451
25452 static struct cmd_list_element *set_dwarf_cmdlist;
25453 static struct cmd_list_element *show_dwarf_cmdlist;
25454
25455 static void
25456 set_dwarf_cmd (const char *args, int from_tty)
25457 {
25458 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25459 gdb_stdout);
25460 }
25461
25462 static void
25463 show_dwarf_cmd (const char *args, int from_tty)
25464 {
25465 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25466 }
25467
25468 int dwarf_always_disassemble;
25469
25470 static void
25471 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25472 struct cmd_list_element *c, const char *value)
25473 {
25474 fprintf_filtered (file,
25475 _("Whether to always disassemble "
25476 "DWARF expressions is %s.\n"),
25477 value);
25478 }
25479
25480 static void
25481 show_check_physname (struct ui_file *file, int from_tty,
25482 struct cmd_list_element *c, const char *value)
25483 {
25484 fprintf_filtered (file,
25485 _("Whether to check \"physname\" is %s.\n"),
25486 value);
25487 }
25488
25489 void
25490 _initialize_dwarf2_read (void)
25491 {
25492
25493 dwarf2_objfile_data_key = register_objfile_data ();
25494
25495 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25496 Set DWARF specific variables.\n\
25497 Configure DWARF variables such as the cache size"),
25498 &set_dwarf_cmdlist, "maintenance set dwarf ",
25499 0/*allow-unknown*/, &maintenance_set_cmdlist);
25500
25501 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25502 Show DWARF specific variables\n\
25503 Show DWARF variables such as the cache size"),
25504 &show_dwarf_cmdlist, "maintenance show dwarf ",
25505 0/*allow-unknown*/, &maintenance_show_cmdlist);
25506
25507 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25508 &dwarf_max_cache_age, _("\
25509 Set the upper bound on the age of cached DWARF compilation units."), _("\
25510 Show the upper bound on the age of cached DWARF compilation units."), _("\
25511 A higher limit means that cached compilation units will be stored\n\
25512 in memory longer, and more total memory will be used. Zero disables\n\
25513 caching, which can slow down startup."),
25514 NULL,
25515 show_dwarf_max_cache_age,
25516 &set_dwarf_cmdlist,
25517 &show_dwarf_cmdlist);
25518
25519 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25520 &dwarf_always_disassemble, _("\
25521 Set whether `info address' always disassembles DWARF expressions."), _("\
25522 Show whether `info address' always disassembles DWARF expressions."), _("\
25523 When enabled, DWARF expressions are always printed in an assembly-like\n\
25524 syntax. When disabled, expressions will be printed in a more\n\
25525 conversational style, when possible."),
25526 NULL,
25527 show_dwarf_always_disassemble,
25528 &set_dwarf_cmdlist,
25529 &show_dwarf_cmdlist);
25530
25531 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25532 Set debugging of the DWARF reader."), _("\
25533 Show debugging of the DWARF reader."), _("\
25534 When enabled (non-zero), debugging messages are printed during DWARF\n\
25535 reading and symtab expansion. A value of 1 (one) provides basic\n\
25536 information. A value greater than 1 provides more verbose information."),
25537 NULL,
25538 NULL,
25539 &setdebuglist, &showdebuglist);
25540
25541 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25542 Set debugging of the DWARF DIE reader."), _("\
25543 Show debugging of the DWARF DIE reader."), _("\
25544 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25545 The value is the maximum depth to print."),
25546 NULL,
25547 NULL,
25548 &setdebuglist, &showdebuglist);
25549
25550 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25551 Set debugging of the dwarf line reader."), _("\
25552 Show debugging of the dwarf line reader."), _("\
25553 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25554 A value of 1 (one) provides basic information.\n\
25555 A value greater than 1 provides more verbose information."),
25556 NULL,
25557 NULL,
25558 &setdebuglist, &showdebuglist);
25559
25560 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25561 Set cross-checking of \"physname\" code against demangler."), _("\
25562 Show cross-checking of \"physname\" code against demangler."), _("\
25563 When enabled, GDB's internal \"physname\" code is checked against\n\
25564 the demangler."),
25565 NULL, show_check_physname,
25566 &setdebuglist, &showdebuglist);
25567
25568 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25569 no_class, &use_deprecated_index_sections, _("\
25570 Set whether to use deprecated gdb_index sections."), _("\
25571 Show whether to use deprecated gdb_index sections."), _("\
25572 When enabled, deprecated .gdb_index sections are used anyway.\n\
25573 Normally they are ignored either because of a missing feature or\n\
25574 performance issue.\n\
25575 Warning: This option must be enabled before gdb reads the file."),
25576 NULL,
25577 NULL,
25578 &setlist, &showlist);
25579
25580 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25581 &dwarf2_locexpr_funcs);
25582 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25583 &dwarf2_loclist_funcs);
25584
25585 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25586 &dwarf2_block_frame_base_locexpr_funcs);
25587 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25588 &dwarf2_block_frame_base_loclist_funcs);
25589
25590 #if GDB_SELF_TEST
25591 selftests::register_test ("dw2_expand_symtabs_matching",
25592 selftests::dw2_expand_symtabs_matching::run_test);
25593 #endif
25594 }
This page took 0.52067 seconds and 5 git commands to generate.